WorldWideScience

Sample records for eye movements rem

  1. Time trends and periodic cycles in REM sleep eye movements.

    Science.gov (United States)

    Krynicki, V

    1975-11-01

    Eye movements during REM sleep episodes were tabulated in 16 young adults. REM episodes were then broken down into four ranges according to length in min: (1) 11.0-21.3; (2) 21.7-29.7; (3) 30.0-42.3; (4) 42.7 or longer. These data were then analyzed for linear and quadratic trends. Eight episodes had a significant linear trend, 10 had a significant quadratic trend, 7 had both linear and quadratic trends, while 12 had no trend. The residuals from the best-fitting polynomial curve were then subject to a spectral analysis. In addition, 2 long periods of pre-sleep wakefulness (approximately 2 h each) were also analyzed. In general, the spectral analysis revealed the dominant presence of a slow cycle (period of 10 min to about 30 min) the exact period of which varied according to the length of the REM episode. A binomial probability test indicated that the presence of slow cycles was significant in REM episodes except for those in the 21-30 min range. For the episodes of wakefulness, a dominant slow cycle was found in both cases. The results give the impression of similarity in the periodic organization of eye movements during REM sleep and waking. The data also indicated that an ultradian (70-150 min) cycle was present in eye movements during sleep and waking. Further, the finding of a decrease in eye movements before sleep onset, coupled with previous reports of an increase in eye movement after sleep onset, indicate the presence of a circadian cycle.

  2. The 'scanning hypothesis' of rapid eye movements during REM sleep: a review of the evidence.

    Science.gov (United States)

    Arnulf, I

    2011-12-01

    Rapid eye movements (REMs) and visual dreams are salient features of REM sleep. However, it is unclear whether the eyes scan dream images. Several lines of evidence oppose the scanning hypothesis: REMs persist in animals and humans without sight (pontine cats, foetus, neonates, born-blinds), some binocular REMs are not conjugated (no focus point), REMs occur in parallel (not in series) with the stimulation of the visual cortex by ponto-geniculo-occipital spikes, and visual dreams can be obtained in non REM sleep. Studies that retrospectively compared the direction of REMs to dream recall recorded after having awakened the sleeper yielded inconsistent results, with a concordance varying from 9 to 80%. However, this method was subject to methodological flaws, including the bias of retrospection and neck atonia that does not allow the determination of the exact direction of gaze. Using the model of RBD (in which patients are able to enact their dreams due to the absence of muscle atonia) in 56 patients, we directly determined if the eyes moved in the same directions as the head and limbs. When REMs accompanied goal-oriented motor behaviour during RBD (e.g., framing something, greeting with the hand, climbing a ladder), 90% were directed towards the action of the patient (same plane and direction). REMs were however absent in 38% of goal-oriented behaviours. This directional coherence between limbs, head and eye movements during RBD suggests that, when present, REMs imitate the scanning of the dream scene. Because REMs index and complexity were similar in patients with RBD and controls, this concordance can be extended to normal REM sleep. These results are consistent with the model of a brainstem generator activating simultaneously images, sounds, limbs movements and REMs in a coordinated parallel manner, as in a virtual reality.

  3. A Classification method for eye movements direction during REM sleep trained on wake electro-oculographic recordings.

    Science.gov (United States)

    Betta, M; Laurino, M; Gemignani, A; Landi, A; Menicucci, D

    2015-01-01

    Rapid eye movements (REMs) are a peculiar and intriguing aspect of REM sleep, even if their physiological function still remains unclear. During this work, a new automatic tool was developed, aimed at a complete description of REMs activity during the night, both in terms of their timing of occurrence that in term of their directional properties. A classification stage of each singular movement detected during the night according to its main direction, was in fact added to our procedure of REMs detection and ocular artifact removal. A supervised classifier was constructed, using as training and validation set EOG data recorded during voluntary saccades of five healthy volunteers. Different classification methods were tested and compared. The further information about REMs directional characteristic provided by the procedure would represent a valuable tool for a deeper investigation into REMs physiological origin and functional meaning.

  4. Rapid-Eye-Movement-Sleep (REM Associated Enhancement of Working Memory Performance after a Daytime Nap.

    Directory of Open Access Journals (Sweden)

    Esther Yuet Ying Lau

    Full Text Available The main objective was to study the impact of a daytime sleep opportunity on working memory and the mechanism behind such impact. This study adopted an experimental design in a sleep research laboratory. Eighty healthy college students (Age:17-23, 36 males were randomized to either have a polysomnography-monitored daytime sleep opportunity (Nap-group, n=40 or stay awake (Wake-group, n=40 between the two assessment sessions. All participants completed a sleep diary and wore an actigraph-watch for 5 days before and one day after the assessment sessions. They completed the state-measurement of sleepiness and affect, in addition to a psychomotor vigilance test and a working memory task before and after the nap/wake sessions. The two groups did not differ in their sleep characteristics prior to and after the lab visit. The Nap-group had higher accuracy on the working memory task, fewer lapses on the psychomotor vigilance test and lower state-sleepiness than the Wake-group. Within the Nap-group, working memory accuracy was positively correlated with duration of rapid eye movement sleep (REM and total sleep time during the nap. Our findings suggested that "sleep gain" during a daytime sleep opportunity had significant positive impact on working memory performance, without affecting subsequent nighttime sleep in young adult, and such impact was associated with the duration of REM. While REM abnormality has long been noted in pathological conditions (e.g. depression, which are also presented with cognitive dysfunctions (e.g. working memory deficits, this was the first evidence showing working memory enhancement associated with REM in daytime napping in college students, who likely had habitual short sleep duration but were otherwise generally healthy.

  5. Rapid-Eye-Movement-Sleep (REM) Associated Enhancement of Working Memory Performance after a Daytime Nap.

    Science.gov (United States)

    Lau, Esther Yuet Ying; Wong, Mark Lawrence; Lau, Kristy Nga Ting; Hui, Florence Wai Ying; Tseng, Chia-huei

    2015-01-01

    The main objective was to study the impact of a daytime sleep opportunity on working memory and the mechanism behind such impact. This study adopted an experimental design in a sleep research laboratory. Eighty healthy college students (Age:17-23, 36 males) were randomized to either have a polysomnography-monitored daytime sleep opportunity (Nap-group, n=40) or stay awake (Wake-group, n=40) between the two assessment sessions. All participants completed a sleep diary and wore an actigraph-watch for 5 days before and one day after the assessment sessions. They completed the state-measurement of sleepiness and affect, in addition to a psychomotor vigilance test and a working memory task before and after the nap/wake sessions. The two groups did not differ in their sleep characteristics prior to and after the lab visit. The Nap-group had higher accuracy on the working memory task, fewer lapses on the psychomotor vigilance test and lower state-sleepiness than the Wake-group. Within the Nap-group, working memory accuracy was positively correlated with duration of rapid eye movement sleep (REM) and total sleep time during the nap. Our findings suggested that "sleep gain" during a daytime sleep opportunity had significant positive impact on working memory performance, without affecting subsequent nighttime sleep in young adult, and such impact was associated with the duration of REM. While REM abnormality has long been noted in pathological conditions (e.g. depression), which are also presented with cognitive dysfunctions (e.g. working memory deficits), this was the first evidence showing working memory enhancement associated with REM in daytime napping in college students, who likely had habitual short sleep duration but were otherwise generally healthy.

  6. Endothelial function and sleep: associations of flow-mediated dilation with perceived sleep quality and rapid eye movement (REM) sleep.

    Science.gov (United States)

    Cooper, Denise C; Ziegler, Michael G; Milic, Milos S; Ancoli-Israel, Sonia; Mills, Paul J; Loredo, José S; Von Känel, Roland; Dimsdale, Joel E

    2014-02-01

    Endothelial function typically precedes clinical manifestations of cardiovascular disease and provides a potential mechanism for the associations observed between cardiovascular disease and sleep quality. This study examined how subjective and objective indicators of sleep quality relate to endothelial function, as measured by brachial artery flow-mediated dilation (FMD). In a clinical research centre, 100 non-shift working adults (mean age: 36 years) completed FMD testing and the Pittsburgh Sleep Quality Index, along with a polysomnography assessment to obtain the following measures: slow wave sleep, percentage rapid eye movement (REM) sleep, REM sleep latency, total arousal index, total sleep time, wake after sleep onset, sleep efficiency and apnea-hypopnea index. Bivariate correlations and follow-up multiple regressions examined how FMD related to subjective (i.e., Pittsburgh Sleep Quality Index scores) and objective (i.e., polysomnography-derived) indicators of sleep quality. After FMD showed bivariate correlations with Pittsburgh Sleep Quality Index scores, percentage REM sleep and REM latency, further examination with separate regression models indicated that these associations remained significant after adjustments for sex, age, race, hypertension, body mass index, apnea-hypopnea index, smoking and income (Ps Quality Index increased (indicating decreased subjective sleep quality) and percentage REM sleep decreased, while REM sleep latency increased (Ps quality and adverse changes in REM sleep were associated with diminished vasodilation, which could link sleep disturbances to cardiovascular disease.

  7. Rapid eye movement (REM sleep deprivation reduces rat frontal cortex acetylcholinesterase (EC 3.1.1.7 activity

    Directory of Open Access Journals (Sweden)

    Camarini R.

    1997-01-01

    Full Text Available Rapid eye movement (REM sleep deprivation induces several behavioral changes. Among these, a decrease in yawning behavior produced by low doses of cholinergic agonists is observed which indicates a change in brain cholinergic neurotransmission after REM sleep deprivation. Acetylcholinesterase (Achase controls acetylcholine (Ach availability in the synaptic cleft. Therefore, altered Achase activity may lead to a change in Ach availability at the receptor level which, in turn, may result in modification of cholinergic neurotransmission. To determine if REM sleep deprivation would change the activity of Achase, male Wistar rats, 3 months old, weighing 250-300 g, were deprived of REM sleep for 96 h by the flower-pot technique (N = 12. Two additional groups, a home-cage control (N = 6 and a large platform control (N = 6, were also used. Achase was measured in the frontal cortex using two different methods to obtain the enzyme activity. One method consisted of the obtention of total (900 g supernatant, membrane-bound (100,000 g pellet and soluble (100,000 g supernatant Achase, and the other method consisted of the obtention of a fraction (40,000 g pellet enriched in synaptic membrane-bound enzyme. In both preparations, REM sleep deprivation induced a significant decrease in rat frontal cortex Achase activity when compared to both home-cage and large platform controls. REM sleep deprivation induced a significant decrease of 16% in the membrane-bound Achase activity (nmol thiocholine formed min-1 mg protein-1 in the 100,000 g pellet enzyme preparation (home-cage group 152.1 ± 5.7, large platform group 152.7 ± 24.9 and REM sleep-deprived group 127.9 ± 13.8. There was no difference in the soluble enzyme activity. REM sleep deprivation also induced a significant decrease of 20% in the enriched synaptic membrane-bound Achase activity (home-cage group 126.4 ± 21.5, large platform group 127.8 ± 20.4, REM sleep-deprived group 102.8 ± 14.2. Our results

  8. Case Report of Rapid-eye-movement(REM) sleep behavior disorder

    Institute of Scientific and Technical Information of China (English)

    Zhen FAN; Yanrui NIU; Hui ZHANG

    2013-01-01

    A 23-year-old female student presented with a five-year history of abnormal sleep in which she would sit up or stand up for brief periods in the early morning,talk loudly for a couple of minutes and then lie back down.When woken by family members she would remember vivid dreams and nightmares.In one episode she had a fall that resulted in a subdural hematoma.On presentation at the psychiatric hospital she had a normal mental status exam except for being mildly depressed and anxious about the chronic fatigue from poor sleep.Overnight polysomnography (PSG) showed multiple waking periods each night,poor sleep efficiency and a lack of normal muscle paralysis during REM sleep.The patient was diagnosed with REM Sleep Behavior Disorder and treated with 1 mg clonazepam nightly.Her sleep improved dramatically and remained better at a six-month follow-up,but.repeat PSG exam found that the lack of muscle paralysis during REM sleep remained.

  9. The effects of sleep deprivation in humans: topographical electroencephalogram changes in non-rapid eye movement (NREM) sleep versus REM sleep.

    Science.gov (United States)

    Marzano, Cristina; Ferrara, Michele; Curcio, Giuseppe; De Gennaro, Luigi

    2010-06-01

    Studies on homeostatic aspects of sleep regulation have been focussed upon non-rapid eye movement (NREM) sleep, and direct comparisons with regional changes in rapid eye movement (REM) sleep are sparse. To this end, evaluation of electroencephalogram (EEG) changes in recovery sleep after extended waking is the classical approach for increasing homeostatic need. Here, we studied a large sample of 40 healthy subjects, considering a full-scalp EEG topography during baseline (BSL) and recovery sleep following 40 h of wakefulness (REC). In NREM sleep, the statistical maps of REC versus BSL differences revealed significant fronto-central increases of power from 0.5 to 11 Hz and decreases from 13 to 15 Hz. In REM sleep, REC versus BSL differences pointed to significant fronto-central increases in the 0.5-7 Hz and decreases in the 8-11 Hz bands. Moreover, the 12-15 Hz band showed a fronto-parietal increase and that at 22-24 Hz exhibited a fronto-central decrease. Hence, the 1-7 Hz range showed significant increases in both NREM sleep and REM sleep, with similar topography. The parallel change of NREM sleep and REM sleep EEG power is related, as confirmed by a correlational analysis, indicating that the increase in frequency of 2-7 Hz possibly subtends a state-aspecific homeostatic response. On the contrary, sleep deprivation has opposite effects on alpha and sigma activity in both states. In particular, this analysis points to the presence of state-specific homeostatic mechanisms for NREM sleep, limited to REM sleep and NREM sleep seem to share some homeostatic mechanisms in response to sleep deprivation, as indicated mainly by the similar direction and topography of changes in low-frequency activity.

  10. Rapid eye movement sleep behavior disorder

    DEFF Research Database (Denmark)

    Zoetmulder, Marielle; Jennum, Poul

    2009-01-01

    Rapid eye movement (REM) sleep behaviour disorder (RBD) is characterized by loss of REM sleep and related electromyographic atonia with marked muscular activity and dream enactment behaviour. RBD is seen in 0.5% of the population. It occurs in an idiopathic form and secondarily to medical...

  11. Eye Movement Disorders

    Science.gov (United States)

    ... work properly. There are many kinds of eye movement disorders. Two common ones are Strabismus - a disorder in ... the eyes, sometimes called "dancing eyes" Some eye movement disorders are present at birth. Others develop over time ...

  12. Characteristics of rapid eye movement sleep behavior disorder in narcolepsy

    DEFF Research Database (Denmark)

    Jennum, Poul Jørgen; Frandsen, Rune Asger Vestergaard; Knudsen, Stine

    2013-01-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is characterized by dream-enacting behavior and impaired motor inhibition during REM sleep (REM sleep without atonia, RSWA). RBD is commonly associated with Parkinsonian disorders, but is also reported in narcolepsy. Most patients with narcol......Rapid eye movement (REM) sleep behavior disorder (RBD) is characterized by dream-enacting behavior and impaired motor inhibition during REM sleep (REM sleep without atonia, RSWA). RBD is commonly associated with Parkinsonian disorders, but is also reported in narcolepsy. Most patients...... and that hypocretin deficiency causes a functional defect in the motor control involved in the development of cataplexy during wakefulness and RBD/RSWA/ phasic motor activity during REM sleep....

  13. Neurophysiological basis of rapid eye movement sleep behavior disorder

    DEFF Research Database (Denmark)

    Jennum, Poul; Christensen, Julie Ae; Zoetmulder, Marielle

    2016-01-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by a history of recurrent nocturnal dream enactment behavior and loss of skeletal muscle atonia and increased phasic muscle activity during REM sleep: REM sleep without atonia. RBD and associated comorbidities have...... of the brainstem and other structures, which is in line with the gradual involvement known in these disorders. We propose that these findings may help identify biomarkers of individuals at high risk of subsequent conversion to parkinsonism....

  14. Rapid eye movement sleep behavior disorder and rapid eye movement sleep without atonia in narcolepsy

    DEFF Research Database (Denmark)

    Dauvilliers, Yves; Jennum, Poul; Plazzi, Giuseppe

    2013-01-01

    Narcolepsy is a rare disabling hypersomnia disorder that may include cataplexy, sleep paralysis, hypnagogic hallucinations, and sleep-onset rapid eye movement (REM) periods, but also disrupted nighttime sleep by nocturnal awakenings, and REM sleep behavior disorder (RBD). RBD is characterized...... by dream-enacting behavior and impaired motor inhibition during REM sleep (REM sleep without atonia, RSWA). RBD is commonly associated with neurodegenerative disorders including Parkinsonisms, but is also reported in narcolepsy in up to 60% of patients. RBD in patients with narcolepsy is, however...... with narcolepsy often present dissociated sleep features including RSWA, increased density of phasic chin EMG and frequent shift from REM to NREM sleep, with or without associated clinical RBD. Most patients with narcolepsy with cataplexy lack the hypocretin neurons in the lateral hypothalamus. Tonic and phasic...

  15. In vitro model for the study of the role of the mesopontine region in rapid eye movement (REM sleep and wakefulness.

    Directory of Open Access Journals (Sweden)

    Esteban Pino

    2017-06-01

    Full Text Available O estudo de estratégias neurais para a organização do comportamento em vertebrados constitui um desafio maior para a neurociencia. O avanço do conhecimento nessa área depende criticamente da utilização de modelos experimentais adequados que suportem múltiplos níveis de análise (por exemplo: comportamental, circuital, celular,  sináptico e molecular e abordagens por múltiplas técnicas. Decidiu-se analisar in vitro uma rede neural da união mesopontina do tronco encefálico criticamente envolvida no controle do sono de movimentos oculares rápidos (S-REM. Apesar da riqueza de provas que sustentam o papel desta rede em relação ao S-REM, os mecanismos celulares e sinápticos subjacentes a este controle são pouco conhecidos e permanecem sob intensa investigação. Para avançar no conhecimento desses mecanismos, caracterizou-se morfológica e funcionalmente uma fatia de tronco encefálico de rato, na qual as estruturas críticas para o controle do S-REM, i.e.: núcleos tegmentais laterodorsal e pedunculopontino, e sua projeção para o núcleo reticular pontis oralis (PnO estão presentes e operantes. A inclusão do núcleo motor do trigêmeo na fatia permitiu detectar mudanças da excitabilidade das motoneuronas provocadas por manipulações farmacológicas do PnO, representativas das alterações do tônus muscular associados com operações semelhantes quando realizados in vivo. A utlização deste modelo in vitro de S-REM permitirá contribuir para a elucidação de estratégias neurais que operam em níveis intermedios de organização do SN de mamíferos para a geração e regulação de um estado comportamental.

  16. Rapid eye movement sleep behavior disorder and rapid eye movement sleep without atonia in narcolepsy.

    Science.gov (United States)

    Dauvilliers, Yves; Jennum, Poul; Plazzi, Giuseppe

    2013-08-01

    Narcolepsy is a rare disabling hypersomnia disorder that may include cataplexy, sleep paralysis, hypnagogic hallucinations, and sleep-onset rapid eye movement (REM) periods, but also disrupted nighttime sleep by nocturnal awakenings, and REM sleep behavior disorder (RBD). RBD is characterized by dream-enacting behavior and impaired motor inhibition during REM sleep (REM sleep without atonia, RSWA). RBD is commonly associated with neurodegenerative disorders including Parkinsonisms, but is also reported in narcolepsy in up to 60% of patients. RBD in patients with narcolepsy is, however, a distinct phenotype with respect to other RBD patients and characterized also by absence of gender predominance, elementary rather than complex movements, less violent behavior and earlier age at onset of motor events, and strong association to narcolepsy with cataplexy/hypocretin deficiency. Patients with narcolepsy often present dissociated sleep features including RSWA, increased density of phasic chin EMG and frequent shift from REM to NREM sleep, with or without associated clinical RBD. Most patients with narcolepsy with cataplexy lack the hypocretin neurons in the lateral hypothalamus. Tonic and phasic motor activities in REM sleep and dream-enacting behavior are mostly reported in presence of cataplexy. Narcolepsy without cataplexy is a condition rarely associated with hypocretin deficiency. We proposed that hypocretin neurons are centrally involved in motor control during wakefulness and sleep in humans, and that hypocretin deficiency causes a functional defect in the motor control involved in the development of cataplexy during wakefulness and RBD/RSWA/phasic motor activity during REM sleep.

  17. Rapid eye movements during sleep in mice: High trait-like stability qualifies rapid eye movement density for characterization of phenotypic variation in sleep patterns of rodents

    Directory of Open Access Journals (Sweden)

    Fulda Stephany

    2011-11-01

    Full Text Available Abstract Background In humans, rapid eye movements (REM density during REM sleep plays a prominent role in psychiatric diseases. Especially in depression, an increased REM density is a vulnerability marker for depression. In clinical practice and research measurement of REM density is highly standardized. In basic animal research, almost no tools are available to obtain and systematically evaluate eye movement data, although, this would create increased comparability between human and animal sleep studies. Methods We obtained standardized electroencephalographic (EEG, electromyographic (EMG and electrooculographic (EOG signals from freely behaving mice. EOG electrodes were bilaterally and chronically implanted with placement of the electrodes directly between the musculus rectus superior and musculus rectus lateralis. After recovery, EEG, EMG and EOG signals were obtained for four days. Subsequent to the implantation process, we developed and validated an Eye Movement scoring in Mice Algorithm (EMMA to detect REM as singularities of the EOG signal, based on wavelet methodology. Results The distribution of wakefulness, non-REM (NREM sleep and rapid eye movement (REM sleep was typical of nocturnal rodents with small amounts of wakefulness and large amounts of NREM sleep during the light period and reversed proportions during the dark period. REM sleep was distributed correspondingly. REM density was significantly higher during REM sleep than NREM sleep. REM bursts were detected more often at the end of the dark period than the beginning of the light period. During REM sleep REM density showed an ultradian course, and during NREM sleep REM density peaked at the beginning of the dark period. Concerning individual eye movements, REM duration was longer and amplitude was lower during REM sleep than NREM sleep. The majority of single REM and REM bursts were associated with micro-arousals during NREM sleep, but not during REM sleep. Conclusions Sleep

  18. Functional neuroanatomical correlates of eye movements during rapid eye movement sleep in depressed patients.

    Science.gov (United States)

    Germain, Anne; Buysse, Daniel J; Wood, Annette; Nofzinger, Eric

    2004-04-30

    In depressed patients, REM density, or the number of rapid eye movements (REMs) per minute of REM sleep, is a correlate of depression severity and clinical outcomes. We investigated the functional neuroanatomical correlates of average REM counts (RC), an automated analog of REM density, in depression. Thirteen medication-free depressed patients underwent all night polysomnography and positron emission tomography (PET) scans using [(18)F]fluoro-2-deoxy-d-glucose ([(18)F] FDG) during REM sleep. Regression analyses were conducted with Statistical Parametric Mapping (SPM-99). Average RC significantly and positively correlated with relative regional cerebral metabolic rate of glucose (rCMRglc) bilaterally in the striate cortex, the posterior parietal cortices, and in the medial and ventrolateral prefrontal cortices. Average RC were negatively correlated with rCMRglc in areas corresponding bilaterally to the lateral occipital cortex, cuneus, temporal cortices, and parahippocampal gyri. The areas where average RC was positively correlated with rCMRglc appear to constitute a diffuse cortical system involved in the regulation of emotion-induced arousal. The observed pattern of correlations suggests that average RC may be a marker of hypofrontality during REM sleep in depressed patients.

  19. Periodic limb movements during REM sleep in multiple sclerosis: a previously undescribed entity

    Directory of Open Access Journals (Sweden)

    Veauthier C

    2015-09-01

    Full Text Available Christian Veauthier,1 Gunnar Gaede,2,3 Helena Radbruch,2 Joern-Peter Sieb,4,5 Klaus-Dieter Wernecke,6,7 Friedemann Paul2,8 1Interdisciplinary Center of Sleep Medicine, Charité University Medicine Berlin, Germany; 2NeuroCure Clinical Research Center, Charité University Medicine Berlin, Germany; 3Department of Neurology, St Joseph Hospital Berlin-Weissensee, Berlin, Germany; 4Department of Neurology, HELIOS Hanseklinikum Stralsund, Stralsund, Germany; 5Department of Neurology, University Hospital Bonn, Bonn, Germany; 6CRO SOSTANA GmbH, Berlin, Germany; 7Institute of Medical Biometry, Charité University Medicine Berlin, Berlin, Germany; 8Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité University Medicine Berlin, Berlin, Germany Background: There are few studies describing periodic limb movement syndrome (PLMS in rapid eye movement (REM sleep in patients with narcolepsy, restless legs syndrome, REM sleep behavior disorder, and spinal cord injury, and to a lesser extent, in insomnia patients and healthy controls, but no published cases in multiple sclerosis (MS. The aim of this study was to investigate PLMS in REM sleep in MS and to analyze whether it is associated with age, sex, disability, and laboratory findings. Methods: From a study of MS patients originally published in 2011, we retrospectively analyzed periodic limb movements (PLMs during REM sleep by classifying patients into two subgroups: PLM during REM sleep greater than or equal to ten per hour of REM sleep (n=7 vs less than ten per hour of REM sleep (n=59. A univariate analysis between PLM and disability, age, sex, laboratory findings, and polysomnographic data was performed. Results: MS patients with more than ten PLMs per hour of REM sleep showed a significantly higher disability measured by the Kurtzke expanded disability status scale (EDSS (P=0.023. The presence of more than ten PLMs per hour of REM sleep was associated with a

  20. Activation of the motor cortex during phasic rapid eye movement sleep

    Science.gov (United States)

    De Carli, Fabrizio; Proserpio, Paola; Morrone, Elisa; Sartori, Ivana; Ferrara, Michele; Gibbs, Steve Alex; De Gennaro, Luigi; Lo Russo, Giorgio

    2016-01-01

    When dreaming during rapid eye movement (REM) sleep, we can perform complex motor behaviors while remaining motionless. How the motor cortex behaves during this state remains unknown. Here, using intracerebral electrodes sampling the human motor cortex in pharmacoresistant epileptic patients, we report a pattern of electroencephalographic activation during REM sleep similar to that observed during the performance of a voluntary movement during wakefulness. This pattern is present during phasic REM sleep but not during tonic REM sleep, the latter resembling relaxed wakefulness. This finding may help clarify certain phenomenological aspects observed in REM sleep behavior disorder. Ann Neurol 2016;79:326–330 PMID:26575212

  1. Neurophysiological basis of rapid eye movement sleep behavior disorder

    DEFF Research Database (Denmark)

    Jennum, Poul; Christensen, Julie Anja Engelhard; Zoetmulder, Marielle

    2016-01-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by a history of recurrent nocturnal dream enactment behavior and loss of skeletal muscle atonia and increased phasic muscle activity during REM sleep: REM sleep without atonia. RBD and associated comorbidities have...... recently been identified as one of the most specific and potentially sensitive risk factors for later development of any of the alpha-synucleinopathies: Parkinson's disease, dementia with Lewy bodies, and other atypical parkinsonian syndromes. Several other sleep-related abnormalities have recently been...

  2. Morbidities in rapid eye movement sleep behavior disorder

    DEFF Research Database (Denmark)

    Jennum, Poul; Mayer, Geert; Ju, Yo-El

    2013-01-01

    Idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD, RBD without any obvious comorbid major neurological disease), is strongly associated with numerous comorbid conditions. The most prominent is that with neurodegenerative disorders, especially synuclein-mediated disorders, above al...

  3. Eye Movements in Gaze Interaction

    DEFF Research Database (Denmark)

    Møllenbach, Emilie; Hansen, John Paulin; Lillholm, Martin

    2013-01-01

    Gaze as a sole input modality must support complex navigation and selection tasks. Gaze interaction combines specific eye movements and graphic display objects (GDOs). This paper suggests a unifying taxonomy of gaze interaction principles. The taxonomy deals with three types of eye movements: fix...

  4. Compensatory eye movements in mice

    NARCIS (Netherlands)

    A.M. van Alphen (Adriaan)

    2002-01-01

    textabstractThis thesis will address the generation of compensatory eye movements in naturally mutated or genetically modified mice. The reason for generating compensatory eye movements is solely related to the requirements for good vision. In a subject moving through its environment the projection

  5. Eye Movements in Gaze Interaction

    DEFF Research Database (Denmark)

    Møllenbach, Emilie; Hansen, John Paulin; Lillholm, Martin

    2013-01-01

    Gaze as a sole input modality must support complex navigation and selection tasks. Gaze interaction combines specific eye movements and graphic display objects (GDOs). This paper suggests a unifying taxonomy of gaze interaction principles. The taxonomy deals with three types of eye movements...

  6. Rapid eye movement sleep behavior disorder--diagnostik, årsager og behandling

    DEFF Research Database (Denmark)

    Zoetmulder, Marielle; Jennum, Poul Jørgen

    2009-01-01

    Rapid eye movement (REM) sleep behaviour disorder (RBD) is characterized by loss of REM sleep and related electromyographic atonia with marked muscular activity and dream enactment behaviour. RBD is seen in 0.5% of the population. It occurs in an idiopathic form and secondarily to medical and neu...

  7. Rapid Eye Movement Sleep Behavior Disorder and Other Rapid Eye Movement Sleep Parasomnias.

    Science.gov (United States)

    Högl, Birgit; Iranzo, Alex

    2017-08-01

    The most common rapid eye movement (REM) parasomnia encountered by neurologists is REM sleep behavior disorder (RBD), and nightmares are so frequent that every neurologist should be able to differentiate them from the dream enactment of RBD. Isolated sleep paralysis is relatively common and is often mistaken for other neurologic disorders. This article summarizes the current state of the art in the diagnosis of RBD, discusses the role of specific questionnaires and polysomnography in the diagnosis of RBD, and reviews recent studies on idiopathic RBD as an early feature of a synucleinopathy, secondary RBD, and its management. Recent diagnostic criteria and implications of nightmares and isolated sleep paralysis are also reviewed. Idiopathic RBD can now be considered as part of the prodromal stage of a synucleinopathy. Therefore, an accurate diagnosis is mandatory, and this implies detection of REM sleep without atonia. The polysomnography montage, including EMG of the submentalis and flexor digitorum superficialis muscles, provides a high sensitivity and specificity for the diagnosis. The exact diagnosis is important for patient counseling and for future neuroprotective trials. REM parasomnias include RBD, sleep paralysis, and nightmares, which have distinct clinical characteristics and different implications regarding diagnostic procedures, management, and prognosis.

  8. Eye Movements When Viewing Advertisements

    Directory of Open Access Journals (Sweden)

    Emily eHiggins

    2014-03-01

    Full Text Available In this selective review, we examine key findings on eye movements when viewing advertisements. We begin with a brief, general introduction to the properties and neural underpinnings of saccadic eye movements. Next, we provide an overview of eye movement behavior during reading, scene perception, and visual search, since each of these activities is, at various times, involved in viewing ads. We then review the literature on eye movements when viewing print ads and warning labels (of the kind that appear on alcohol and tobacco ads, before turning to a consideration of advertisements in dynamic media (television and the Internet. Finally, we propose topics and methodological approaches that may prove to be useful in future research.

  9. Eye movements when viewing advertisements

    Science.gov (United States)

    Higgins, Emily; Leinenger, Mallorie; Rayner, Keith

    2013-01-01

    In this selective review, we examine key findings on eye movements when viewing advertisements. We begin with a brief, general introduction to the properties and neural underpinnings of saccadic eye movements. Next, we provide an overview of eye movement behavior during reading, scene perception, and visual search, since each of these activities is, at various times, involved in viewing ads. We then review the literature on eye movements when viewing print ads and warning labels (of the kind that appear on alcohol and tobacco ads), before turning to a consideration of advertisements in dynamic media (television and the Internet). Finally, we propose topics and methodological approaches that may prove to be useful in future research. PMID:24672500

  10. Human regional cerebral blood flow during rapid-eye-movement sleep

    DEFF Research Database (Denmark)

    Madsen, P L; Holm, S; Vorstrup, S;

    1991-01-01

    Owing to the coupling between CBF and neuronal activity, regional CBF is a reflection of neural activity in different brain regions. In this study we measured regional CBF during polysomnographically well-defined rapid-eye-movement (REM) sleep by the use of single photon emission computerized...... tomography and the new tracer 99mTc-dl-hexamethylpropyleneamine. Eleven healthy volunteers aged between 22 and 27 years were studied. CBF was measured on separate nights during REM sleep and during EEG-verified wakefulness. On awakening from REM sleep, all subjects reported visual dreams. During REM sleep...

  11. Removal of ocular artifacts from the REM sleep EEG

    NARCIS (Netherlands)

    D. Waterman; J.C. Woestenburg; M. Elton; W. Hofman; A. Kok

    1992-01-01

    The present report concerns the first study in which electrooculographic (EOG) contamination of electroencephalographic (EEG) recordings in rapid eye movement (REM) sleep is systematically investigated. Contamination of REM sleep EEG recordings in six subjects was evaluated in the frequency domain.

  12. Yarbus, Eye Movements, and Vision

    Directory of Open Access Journals (Sweden)

    Benjamin W Tatler

    2010-04-01

    Full Text Available The impact of Yarbus's research on eye movements was enormous following the translation of his book Eye Movements and Vision into English in 1967. In stark contrast, the published material in English concerning his life is scant. We provide a brief biography of Yarbus and assess his impact on contemporary approaches to research on eye movements. While early interest in his work focused on his study of stabilised retinal images, more recently this has been replaced with interest in his work on the cognitive influences on scanning patterns. We extended his experiment on the effect of instructions on viewing a picture using a portrait of Yarbus rather than a painting. The results obtained broadly supported those found by Yarbus.

  13. Eye movement monitoring of memory.

    Science.gov (United States)

    Ryan, Jennifer D; Riggs, Lily; McQuiggan, Douglas A; McQuiggan, Doug

    2010-08-15

    Explicit (often verbal) reports are typically used to investigate memory (e.g. "Tell me what you remember about the person you saw at the bank yesterday."), however such reports can often be unreliable or sensitive to response bias, and may be unobtainable in some participant populations. Furthermore, explicit reports only reveal when information has reached consciousness and cannot comment on when memories were accessed during processing, regardless of whether the information is subsequently accessed in a conscious manner. Eye movement monitoring (eye tracking) provides a tool by which memory can be probed without asking participants to comment on the contents of their memories, and access of such memories can be revealed on-line. Video-based eye trackers (either head-mounted or remote) use a system of cameras and infrared markers to examine the pupil and corneal reflection in each eye as the participant views a display monitor. For head-mounted eye trackers, infrared markers are also used to determine head position to allow for head movement and more precise localization of eye position. Here, we demonstrate the use of a head-mounted eye tracking system to investigate memory performance in neurologically-intact and neurologically-impaired adults. Eye movement monitoring procedures begin with the placement of the eye tracker on the participant, and setup of the head and eye cameras. Calibration and validation procedures are conducted to ensure accuracy of eye position recording. Real-time recordings of X,Y-coordinate positions on the display monitor are then converted and used to describe periods of time in which the eye is static (i.e. fixations) versus in motion (i.e., saccades). Fixations and saccades are time-locked with respect to the onset/offset of a visual display or another external event (e.g. button press). Experimental manipulations are constructed to examine how and when patterns of fixations and saccades are altered through different types of prior

  14. Physiological correlates of eye movement desensitization and reprocessing.

    Science.gov (United States)

    Elofsson, Ulf O E; von Schèele, Bo; Theorell, Töres; Söndergaard, Hans Peter

    2008-05-01

    Eye movement desensitization and reprocessing (EMDR) is an established treatment for post-traumatic stress disorder (PTSD). However, its working mechanism remains unclear. This study explored physiological correlates of eye movements during EMDR in relation to current hypotheses; distraction, conditioning, orienting response activation, and REM-like mechanisms. During EMDR therapy, fingertip temperature, heart rate, skin conductance, expiratory carbon dioxide level, and blood pulse oximeter oxygen saturation, were measured in male subjects with PTSD. The ratio between the low and high frequency components of the heart rate power spectrum (LF/HF) were computed as measures of autonomic balance. Respiratory rate was calculated from the carbon dioxide trace. Stimulation shifted the autonomic balance as indicated by decreases in heart rate, skin conductance and LF/HF-ratio, and an increased finger temperature. The breathing frequency and end-tidal carbon dioxide increased; oxygen saturation decreased during eye movements. In conclusion, eye movements during EMDR activate cholinergic and inhibit sympathetic systems. The reactivity has similarities with the pattern during REM-sleep.

  15. Eye Movement Disorders in Dyslexia. Final Report.

    Science.gov (United States)

    Festinger, Leon; And Others

    Eye movements of 18 male and seven female dyslexic children and 10 normal children were evaluated to determine if eye movement disorders may be the cause of some of the symptoms associated with dyslexia. Data on eye movements were collected while Ss moved their eyes from one fixation point to another in a nonreading situation. Errors in vertical…

  16. Eye-movements and ongoing task processing.

    Science.gov (United States)

    Burke, David T; Meleger, Alec; Schneider, Jeffrey C; Snyder, Jim; Dorvlo, Atsu S S; Al-Adawi, Samir

    2003-06-01

    This study tests the relation between eye-movements and thought processing. Subjects were given specific modality tasks (visual, gustatory, kinesthetic) and assessed on whether they responded with distinct eye-movements. Some subjects' eye-movements reflected ongoing thought processing. Instead of a universal pattern, as suggested by the neurolinguistic programming hypothesis, this study yielded subject-specific idiosyncratic eye-movements across all modalities. Included is a discussion of the neurolinguistic programming hypothesis regarding eye-movements and its implications for the eye-movement desensitization and reprocessing theory.

  17. Eye movements and information geometry.

    Science.gov (United States)

    Lenz, Reiner

    2016-08-01

    The human visual system uses eye movements to gather visual information. They act as visual scanning processes and can roughly be divided into two different types: small movements around fixation points and larger movements between fixation points. The processes are often modeled as random walks, and recent models based on heavy tail distributions, also known as Levý flights, have been used in these investigations. In contrast to these approaches we do not model the stochastic processes, but we will show that the step lengths of the movements between fixation points follow generalized Pareto distributions (GPDs). We will use general arguments from the theory of extreme value statistics to motivate the usage of the GPD and show empirically that the GPDs provide good fits for measured eye tracking data. In the framework of information geometry the GPDs with a common threshold form a two-dimensional Riemann manifold with the Fisher information matrix as a metric. We compute the Fisher information matrix for the GPDs and introduce a feature vector describing a GPD by its parameters and different geometrical properties of its Fisher information matrix. In our statistical analysis we use eye tracker measurements in a database with 15 observers viewing 1003 images under free-viewing conditions. We use Matlab functions with their standard parameter settings and show that a naive Bayes classifier using the eigenvalues of the Fisher information matrix provides a high classification rate identifying the 15 observers in the database.

  18. Apnea-Induced Rapid Eye Movement Sleep Disruption Impairs Human Spatial Navigational Memory

    OpenAIRE

    Varga, Andrew W.; Kishi, Akifumi; Mantua, Janna; Lim, Jason; Koushyk, Viachaslau; Leibert, David P.; Osorio, Ricardo S.; David M. Rapoport; Ayappa, Indu

    2014-01-01

    Hippocampal electrophysiology and behavioral evidence support a role for sleep in spatial navigational memory, but the role of particular sleep stages is less clear. Although rodent models suggest the importance of rapid eye movement (REM) sleep in spatial navigational memory, a similar role for REM sleep has never been examined in humans. We recruited subjects with severe obstructive sleep apnea (OSA) who were well treated and adherent with continuous positive airway pressure (CPAP). Restric...

  19. Novel method for evaluation of eye movements in patients with narcolepsy

    DEFF Research Database (Denmark)

    Christensen, Julie A E; Kempfner, Lykke; Leonthin, Helle L

    2017-01-01

    BACKGROUND: Narcolepsy causes abnormalities in the control of wake-sleep, non-rapid-eye-movement (non-REM) sleep and REM sleep, which inlcudes specific eye movements (EMs). In this study, we aim to evaluate EM characteristics in narcolepsy as compared to controls using an automated detector...... for central hypersomnias. Based on PSG, multiple sleep latency test and cerebrospinal fluid hypocretin-1 measures, they were divided into clinical controls (N = 20), narcolepsy type 2 (NT2, N = 19), and narcolepsy type 1 (NT1, N = 28). We investigated the distribution of EMs across sleep stages and cycles...

  20. Anticipatory Eye Movements in Congkak

    Directory of Open Access Journals (Sweden)

    Sheryl Chong

    2011-05-01

    Full Text Available Congkak is a traditional Malaysian board game involving two players taking turns to pick up marbles from a series of holes on the board. We used this game as a model to explore the role of anticipatory eye movements during natural actions (in this case serially picking up/putting marbles as novices learnt the game. Prior work on eye and hand movements in natural behaviour shows that much of the demand on the visual system is computed at the moment it is needed and doesn't depend on information acquired from previous fixations. Vision is driven by the task demands. However, anticipatory fixations to upcoming targets of manipulation have recently been shown to confer spatial accuracy and influence the eye-hand latency. We find that experience with the game also influences the deployment of these anticipatory “look-ahead” fixations, and that their influence on eye-hand latency varies with experience. Results suggest that as our experience in Congkak grows, so does our knowledge of the space relationships necessary for task success.

  1. REM - Rapid Eye Mount. A fast slewing robotized infrared telescope

    CERN Document Server

    Covino, S; Chincarini, G L; Rodono, M; Ghisellini, G; Antonelli, A; Conconi, P; Cutispoto, G; Molinari, E; Covino, Stefano; Zerbi, Filippo; Chincarini, Guido; Rodono', Marcello; Ghisellini, Gabriele; Antonelli, Angelo; Conconi, Paolo; Cutispoto, Giuseppe; Molinari, Emilio

    2001-01-01

    The main goal of the REM project is the observation of prompt afterglow of Gamma-Ray Burst (GRB) events. Such observations at Near InfraRed (NIR) wavelengths are even very promising, since they allow to monitor high-z Ly-$\\alpha$ absorbed bursts as well as events occurring in dusty star-forming regions. In addition to GRB science, a large amount of time ($\\sim 40%$) will be available for different scientific targets: among these the study of variability of stellar objects open exciting new perspectives.

  2. Sleep alterations in mammals: did aquatic conditions inhibit rapid eye movement sleep?

    Science.gov (United States)

    Madan, Vibha; Jha, Sushil K

    2012-12-01

    Sleep has been studied widely in mammals and to some extent in other vertebrates. Higher vertebrates such as birds and mammals have evolved an inimitable rapid eye movement (REM) sleep state. During REM sleep, postural muscles become atonic and the temperature regulating machinery remains suspended. Although REM sleep is present in almost all the terrestrial mammals, the aquatic mammals have either radically reduced or completely eliminated REM sleep. Further, we found a significant negative correlation between REM sleep and the adaptation of the organism to live on land or in water. The amount of REM sleep is highest in terrestrial mammals, significantly reduced in semi-aquatic mammals and completely absent or negligible in aquatic mammals. The aquatic mammals are obligate swimmers and have to surface at regular intervals for air. Also, these animals live in thermally challenging environments, where the conductive heat loss is approximately ~90 times greater than air. Therefore, they have to be moving most of the time. As an adaptation, they have evolved unihemispheric sleep, during which they can rove as well as rest. A condition that immobilizes muscle activity and suspends the thermoregulatory machinery, as happens during REM sleep, is not suitable for these animals. It is possible that, in accord with Darwin's theory, aquatic mammals might have abolished REM sleep with time. In this review, we discuss the possibility of the intrinsic role of aquatic conditions in the elimination of REM sleep in the aquatic mammals.

  3. [Parkinson Disease With Rapid Eye Movement Sleep Behavior Disorder].

    Science.gov (United States)

    Hu, Yang; Zhang, Wei

    2015-06-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is characterized by lack of muscle atonia during REM sleep and enactment of dream content. RBD is associated with Parkinson disease (PD) and has high incidence in PD patients. PD patient with RBD mainly presents rigid type, has longer disease duration, more severe motor and non-motor symptoms and poorer activity of daily living and life quality. The pathophysiological mechanisms of RBD may be related to dysfunctions of pontine tegmentum, locus coeruleus/sub-locus coeruleus complex and related projections. The diagnosis of RBD depends on clinical histories and video-polysomnography (v-PSG). Besides treatment for PD, protective measures have to be taken for patients and their sleep partners. If abnormal behaviors during sleep cause distress and danger,patients should be given drug therapy.

  4. Cognition in rapid eye movement sleep behavior disorder

    Directory of Open Access Journals (Sweden)

    Jean-François eGagnon

    2012-05-01

    Full Text Available Rapid eye movement (REM sleep behavior disorder (RBD is a parasomnia characterized by excessive muscle activity and undesirable motor events during REM sleep. RBD occurs in approximately 0.5% of the general population, with a higher prevalence in older men. RBD is a frequent feature of dementia with Lewy bodies (DLB, but is only rarely reported in Alzheimer’s disease. RBD is also a risk factor for α-synuclein-related diseases, such as DLB, Parkinson’s disease (PD, and multiple system atrophy. Therefore, RBD has major implications for the diagnosis and treatment of neurodegenerative disorders and for understanding neurodegeneration mechanisms. Several markers of neurodegeneration have been identified in RBD, including cognitive impairments such as deficits in attention, executive functions, learning capacities, and visuospatial abilities. Approximately 50% of RBD patients present mild cognitive impairment (MCI. Moreover, RBD is also associated with cognitive decline in PD.

  5. Apnea-induced rapid eye movement sleep disruption impairs human spatial navigational memory.

    Science.gov (United States)

    Varga, Andrew W; Kishi, Akifumi; Mantua, Janna; Lim, Jason; Koushyk, Viachaslau; Leibert, David P; Osorio, Ricardo S; Rapoport, David M; Ayappa, Indu

    2014-10-29

    Hippocampal electrophysiology and behavioral evidence support a role for sleep in spatial navigational memory, but the role of particular sleep stages is less clear. Although rodent models suggest the importance of rapid eye movement (REM) sleep in spatial navigational memory, a similar role for REM sleep has never been examined in humans. We recruited subjects with severe obstructive sleep apnea (OSA) who were well treated and adherent with continuous positive airway pressure (CPAP). Restricting CPAP withdrawal to REM through real-time monitoring of the polysomnogram provides a novel way of addressing the role of REM sleep in spatial navigational memory with a physiologically relevant stimulus. Individuals spent two different nights in the laboratory, during which subjects performed timed trials before and after sleep on one of two unique 3D spatial mazes. One night of sleep was normally consolidated with use of therapeutic CPAP throughout, whereas on the other night, CPAP was reduced only in REM sleep, allowing REM OSA to recur. REM disruption via this method caused REM sleep reduction and significantly fragmented any remaining REM sleep without affecting total sleep time, sleep efficiency, or slow-wave sleep. We observed improvements in maze performance after a night of normal sleep that were significantly attenuated after a night of REM disruption without changes in psychomotor vigilance. Furthermore, the improvement in maze completion time significantly positively correlated with the mean REM run duration across both sleep conditions. In conclusion, we demonstrate a novel role for REM sleep in human memory formation and highlight a significant cognitive consequence of OSA. Copyright © 2014 the authors 0270-6474/14/3414571-07$15.00/0.

  6. Enhanced emotional reactivity after selective REM sleep deprivation in humans: an fMRI study

    OpenAIRE

    Rosales-Lagarde, Alejandra; Jorge L Armony; del Río-Portilla, Yolanda; Trejo-Martínez, David; Conde, Ruben; Corsi-Cabrera, Maria

    2012-01-01

    Converging evidence from animal and human studies suggest that rapid eye movement (REM) sleep modulates emotional processing. The aim of the present study was to explore the effects of selective REM sleep deprivation (REM-D) on emotional responses to threatening visual stimuli and their brain correlates using functional magnetic resonance imaging (fMRI). Twenty healthy subjects were randomly assigned to two groups: selective REM-D, by awakening them at each REM sleep onset, or non-rapid eye m...

  7. A single-question screen for rapid eye movement sleep behavior disorder

    DEFF Research Database (Denmark)

    Postuma, Ronald B; Arnulf, Isabelle; Hogl, Birgit

    2012-01-01

    Idiopathic rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia that is an important risk factor for Parkinson's disease (PD) and Lewy body dementia. Its prevalence is unknown. One barrier to determining prevalence is that current screening tools are too long for large-scale epi...

  8. Reconstruction of eye movements during blinks

    CERN Document Server

    Baptista, M S; Kliegl, R; Engbert, R; Kurths, J

    2008-01-01

    In eye movement research in reading, the amount of data plays a crucial role for the validation of results. A methodological problem for the analysis of the eye movement in reading are blinks, when readers close their eyes. Blinking rate increases with increasing reading time, resulting in high data losses, especially for older adults or reading impaired subjects. We present a method, based on the symbolic sequence dynamics of the eye movements, that reconstructs the horizontal position of the eyes while the reader blinks. The method makes use of an observed fact that the movements of the eyes before closing or after opening contain information about the eyes movements during blinks. Test results indicate that our reconstruction method is superior to methods that use simpler interpolation approaches. In addition, analyses of the reconstructed data show no significant deviation from the usual behavior observed in readers.

  9. Cursive writing with smooth pursuit eye movements.

    Science.gov (United States)

    Lorenceau, Jean

    2012-08-21

    The eyes never cease to move: ballistic saccades quickly turn the gaze toward peripheral targets, whereas smooth pursuit maintains moving targets on the fovea where visual acuity is best. Despite the oculomotor system being endowed with exquisite motor abilities, any attempt to generate smooth eye movements against a static background results in saccadic eye movements. Although exceptions to this rule have been reported, volitional control over smooth eye movements is at best rudimentary. Here, I introduce a novel, temporally modulated visual display, which, although static, sustains smooth eye movements in arbitrary directions. After brief training, participants gain volitional control over smooth pursuit eye movements and can generate digits, letters, words, or drawings at will. For persons deprived of limb movement, this offers a fast, creative, and personal means of linguistic and emotional expression. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. EMDR Effects on Pursuit Eye Movements

    OpenAIRE

    Zoi Kapoula; Qing Yang; Audrey Bonnet; Pauline Bourtoire; Jean Sandretto

    2010-01-01

    This study aimed to objectivize the quality of smooth pursuit eye movements in a standard laboratory task before and after an Eye Movement Desensitization and Reprocessing (EMDR) session run on seven healthy volunteers. EMDR was applied on autobiographic worries causing moderate distress. The EMDR session was complete in 5 out of the 7 cases; distress measured by SUDS (Subjective Units of Discomfort Scale) decreased to a near zero value. Smooth pursuit eye movements were recorded by an Eyelin...

  11. REM sleep homeostasis in the absence of REM sleep: Effects of antidepressants.

    Science.gov (United States)

    McCarthy, Andrew; Wafford, Keith; Shanks, Elaine; Ligocki, Marcin; Edgar, Dale M; Dijk, Derk-Jan

    2016-09-01

    Most antidepressants suppress rapid eye movement (REM) sleep, which is thought to be important to brain function, yet the resulting REM sleep restriction is well tolerated. This study investigated the impact of antidepressants with different mechanisms of action, such as selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCA), on the regulation of REM sleep in rats. REM sleep was first demonstrated to be homeostatically regulated using 5, 8 and 10 h of REM-sleep specific restriction through EEG-triggered arousals, with an average of 91 ± 10% of lost REM sleep recovered following a 26-29 -hour recovery period. Acute treatment with the antidepressants paroxetine, citalopram and imipramine inhibited REM sleep by 84 ± 8, 84 ± 8 and 69 ± 9% respectively relative to vehicle control. The pharmacologically-induced REM sleep deficits by paroxetine and citalopram were not fully recovered, whereas, after imipramine the REM sleep deficit was fully compensated. Given the marked difference between REM sleep recovery following the administration of paroxetine, citalopram, imipramine and REM sleep restriction, the homeostatic response was further examined by pairing REM sleep specific restriction with the three antidepressants. Surprisingly, the physiologically-induced REM sleep deficits incurred prior to suppression of REM sleep by all antidepressants was consistently recovered. The data indicate that REM sleep homeostasis remains operative following subsequent treatment with antidepressants and is unaffected by additional pharmacological inhibition of REM sleep.

  12. Posttraining Increases in REM Sleep Intensity Implicate REM Sleep in Memory Processing and Provide a Biological Marker of Learning Potential

    Science.gov (United States)

    Nader, Rebecca S.; Smith, Carlyle T.; Nixon, Margaret R.

    2004-01-01

    Posttraining rapid eye movement (REM) sleep has been reported to be important for efficient memory consolidation. The present results demonstrate increases in the intensity of REM sleep during the night of sleep following cognitive procedural/implicit task acquisition. These REM increases manifest as increases in total number of rapid eye…

  13. Eye movements predict recollective experience.

    Directory of Open Access Journals (Sweden)

    Tali Sharot

    Full Text Available Previously encountered stimuli can bring to mind a vivid memory of the episodic context in which the stimulus was first experienced ("remembered" stimuli, or can simply seem familiar ("known" stimuli. Past studies suggest that more attentional resources are required to encode stimuli that are subsequently remembered than known. However, it is unclear if the attentional resources are distributed differently during encoding and recognition of remembered and known stimuli. Here, we record eye movements while participants encode photos, and later while indicating whether the photos are remembered, known or new. Eye fixations were more clustered during both encoding and recognition of remembered photos relative to known photos. Thus, recognition of photos that bring to mind a vivid memory for the episodic context in which they were experienced is associated with less distributed overt attention during encoding and recognition. The results suggest that remembering is related to encoding of a few distinct details of a photo rather than the photo as a whole. In turn, during recognition remembering may be trigged by enhanced memory for the salient details of the photos.

  14. Degeneration of rapid eye movement sleep circuitry underlies rapid eye movement sleep behavior disorder.

    Science.gov (United States)

    McKenna, Dillon; Peever, John

    2017-05-01

    During healthy rapid eye movement sleep, skeletal muscles are actively forced into a state of motor paralysis. However, in rapid eye movement sleep behavior disorder-a relatively common neurological disorder-this natural process is lost. A lack of motor paralysis (atonia) in rapid eye movement sleep behavior disorder allows individuals to actively move, which at times can be excessive and violent. At first glance this may sound harmless, but it is not because rapid eye movement sleep behavior disorder patients frequently injure themselves or the person they sleep with. It is hypothesized that the degeneration or dysfunction of the brain stem circuits that control rapid eye movement sleep paralysis is an underlying cause of rapid eye movement sleep behavior disorder. The link between brain stem degeneration and rapid eye movement sleep behavior disorder stems from the fact that rapid eye movement sleep behavior disorder precedes, in the majority (∼80%) of cases, the development of synucleinopathies such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, which are known to initially cause degeneration in the caudal brain stem structures where rapid eye movement sleep circuits are located. Furthermore, basic science and clinical evidence demonstrate that lesions within the rapid eye movement sleep circuits can induce rapid eye movement sleep-specific motor deficits that are virtually identical to those observed in rapid eye movement sleep behavior disorder. This review examines the evidence that rapid eye movement sleep behavior disorder is caused by synucleinopathic neurodegeneration of the core brain stem circuits that control healthy rapid eye movement sleep and concludes that rapid eye movement sleep behavior disorder is not a separate clinical entity from synucleinopathies but, rather, it is the earliest symptom of these disorders. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and

  15. Fetal eye movements on magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Ramona Woitek

    Full Text Available OBJECTIVES: Eye movements are the physical expression of upper fetal brainstem function. Our aim was to identify and differentiate specific types of fetal eye movement patterns using dynamic MRI sequences. Their occurrence as well as the presence of conjugated eyeball motion and consistently parallel eyeball position was systematically analyzed. METHODS: Dynamic SSFP sequences were acquired in 72 singleton fetuses (17-40 GW, three age groups [17-23 GW, 24-32 GW, 33-40 GW]. Fetal eye movements were evaluated according to a modified classification originally published by Birnholz (1981: Type 0: no eye movements; Type I: single transient deviations; Type Ia: fast deviation, slower reposition; Type Ib: fast deviation, fast reposition; Type II: single prolonged eye movements; Type III: complex sequences; and Type IV: nystagmoid. RESULTS: In 95.8% of fetuses, the evaluation of eye movements was possible using MRI, with a mean acquisition time of 70 seconds. Due to head motion, 4.2% of the fetuses and 20.1% of all dynamic SSFP sequences were excluded. Eye movements were observed in 45 fetuses (65.2%. Significant differences between the age groups were found for Type I (p = 0.03, Type Ia (p = 0.031, and Type IV eye movements (p = 0.033. Consistently parallel bulbs were found in 27.3-45%. CONCLUSIONS: In human fetuses, different eye movement patterns can be identified and described by MRI in utero. In addition to the originally classified eye movement patterns, a novel subtype has been observed, which apparently characterizes an important step in fetal brainstem development. We evaluated, for the first time, eyeball position in fetuses. Ultimately, the assessment of fetal eye movements by MRI yields the potential to identify early signs of brainstem dysfunction, as encountered in brain malformations such as Chiari II or molar tooth malformations.

  16. Fetal eye movements on magnetic resonance imaging.

    Science.gov (United States)

    Woitek, Ramona; Kasprian, Gregor; Lindner, Christian; Stuhr, Fritz; Weber, Michael; Schöpf, Veronika; Brugger, Peter C; Asenbaum, Ulrika; Furtner, Julia; Bettelheim, Dieter; Seidl, Rainer; Prayer, Daniela

    2013-01-01

    Eye movements are the physical expression of upper fetal brainstem function. Our aim was to identify and differentiate specific types of fetal eye movement patterns using dynamic MRI sequences. Their occurrence as well as the presence of conjugated eyeball motion and consistently parallel eyeball position was systematically analyzed. Dynamic SSFP sequences were acquired in 72 singleton fetuses (17-40 GW, three age groups [17-23 GW, 24-32 GW, 33-40 GW]). Fetal eye movements were evaluated according to a modified classification originally published by Birnholz (1981): Type 0: no eye movements; Type I: single transient deviations; Type Ia: fast deviation, slower reposition; Type Ib: fast deviation, fast reposition; Type II: single prolonged eye movements; Type III: complex sequences; and Type IV: nystagmoid. In 95.8% of fetuses, the evaluation of eye movements was possible using MRI, with a mean acquisition time of 70 seconds. Due to head motion, 4.2% of the fetuses and 20.1% of all dynamic SSFP sequences were excluded. Eye movements were observed in 45 fetuses (65.2%). Significant differences between the age groups were found for Type I (p = 0.03), Type Ia (p = 0.031), and Type IV eye movements (p = 0.033). Consistently parallel bulbs were found in 27.3-45%. In human fetuses, different eye movement patterns can be identified and described by MRI in utero. In addition to the originally classified eye movement patterns, a novel subtype has been observed, which apparently characterizes an important step in fetal brainstem development. We evaluated, for the first time, eyeball position in fetuses. Ultimately, the assessment of fetal eye movements by MRI yields the potential to identify early signs of brainstem dysfunction, as encountered in brain malformations such as Chiari II or molar tooth malformations.

  17. Fetal Eye Movements on Magnetic Resonance Imaging

    Science.gov (United States)

    Woitek, Ramona; Kasprian, Gregor; Lindner, Christian; Stuhr, Fritz; Weber, Michael; Schöpf, Veronika; Brugger, Peter C.; Asenbaum, Ulrika; Furtner, Julia; Bettelheim, Dieter; Seidl, Rainer; Prayer, Daniela

    2013-01-01

    Objectives Eye movements are the physical expression of upper fetal brainstem function. Our aim was to identify and differentiate specific types of fetal eye movement patterns using dynamic MRI sequences. Their occurrence as well as the presence of conjugated eyeball motion and consistently parallel eyeball position was systematically analyzed. Methods Dynamic SSFP sequences were acquired in 72 singleton fetuses (17–40 GW, three age groups [17–23 GW, 24–32 GW, 33–40 GW]). Fetal eye movements were evaluated according to a modified classification originally published by Birnholz (1981): Type 0: no eye movements; Type I: single transient deviations; Type Ia: fast deviation, slower reposition; Type Ib: fast deviation, fast reposition; Type II: single prolonged eye movements; Type III: complex sequences; and Type IV: nystagmoid. Results In 95.8% of fetuses, the evaluation of eye movements was possible using MRI, with a mean acquisition time of 70 seconds. Due to head motion, 4.2% of the fetuses and 20.1% of all dynamic SSFP sequences were excluded. Eye movements were observed in 45 fetuses (65.2%). Significant differences between the age groups were found for Type I (p = 0.03), Type Ia (p = 0.031), and Type IV eye movements (p = 0.033). Consistently parallel bulbs were found in 27.3–45%. Conclusions In human fetuses, different eye movement patterns can be identified and described by MRI in utero. In addition to the originally classified eye movement patterns, a novel subtype has been observed, which apparently characterizes an important step in fetal brainstem development. We evaluated, for the first time, eyeball position in fetuses. Ultimately, the assessment of fetal eye movements by MRI yields the potential to identify early signs of brainstem dysfunction, as encountered in brain malformations such as Chiari II or molar tooth malformations. PMID:24194885

  18. Rapid eye movement sleep behavior disorder

    DEFF Research Database (Denmark)

    Schenck, C H; Montplaisir, J Y; Frauscher, B

    2013-01-01

    We aimed to provide a consensus statement by the International Rapid Eye Movement Sleep Behavior Disorder Study Group (IRBD-SG) on devising controlled active treatment studies in rapid eye movement sleep behavior disorder (RBD) and devising studies of neuroprotection against Parkinson disease (PD...

  19. The Fingerprint of Rapid Eye Movement: Its Algorithmic Detection in the Sleep Electroencephalogram Using a Single Derivation.

    Science.gov (United States)

    McCarty, David E; Kim, Paul Y; Frilot, Clifton; Chesson, Andrew L; Marino, Andrew A

    2016-10-01

    The strong associations of rapid eye movement (REM) sleep with dreaming and memory consolidation imply the existence of REM-specific brain electrical activity, notwithstanding the visual similarity of the electroencephalograms (EEGs) in REM and wake states. Our goal was to detect REM sleep by means of algorithmic analysis of the EEG. We postulated that novel depth and fragmentation variables, defined in relation to temporal changes in the signal (recurrences), could be statistically combined to allow disambiguation of REM epochs. The cohorts studied were consecutive patients with obstructive sleep apnea (OSA) recruited from a sleep medicine clinic, and clinically normal participants selected randomly from a national database (N = 20 in each cohort). Individual discriminant analyses were performed, for each subject based on 4 recurrence biomarkers, and used to classify every 30-second epoch in the subject's overnight polysomnogram as REM or NotREM (wake or any non-REM sleep stage), using standard clinical staging as ground truth. The primary outcome variable was the accuracy of algorithmic REM classification. Average accuracies of 90% and 87% (initial and cross-validation analyses) were achieved in the OSA cohort; corresponding results in the normal cohort were 87% and 85%. Analysis of brain recurrence allowed identification of REM sleep, disambiguated from wake and all other stages, using only a single EEG lead, in subjects with or without OSA.

  20. Investigating rapid eye movement sleep without atonia in Parkinson's disease using the rapid eye movement sleep behavior disorder screening questionnaire.

    Science.gov (United States)

    Bolitho, Samuel J; Naismith, Sharon L; Terpening, Zoe; Grunstein, Ron R; Melehan, Kerri; Yee, Brendon J; Coeytaux, Alessandra; Gilat, Moran; Lewis, Simon J G

    2014-05-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is frequently observed in patients with Parkinson's disease (PD). Accurate diagnosis is essential for managing this condition. Furthermore, the emergence of idiopathic RBD in later life can represent a premotor feature, heralding the development of PD. Reliable, accurate methods for identifying RBD may offer a window for early intervention. This study sought to identify whether the RBD screening questionnaire (RBDSQ) and three questionnaires focused on dream enactment were able to correctly identify patients with REM without atonia (RWA), the neurophysiological hallmark of RBD. Forty-six patients with PD underwent neurological and sleep assessment in addition to completing the RBDSQ, the RBD single question (RBD1Q), and the Mayo Sleep Questionnaire (MSQ). The REM atonia index was derived for all participants as an objective measure of RWA. Patients identified to be RBD positive on the RBDSQ did not show increased RWA on polysomnography (80% sensitivity and 55% specificity). However, patients positive for RBD on questionnaires specific to dream enactment correctly identified higher degrees of RWA and improved the diagnostic accuracy of these questionnaires. This study suggests that the RBDSQ does not accurately identify RWA, essential for diagnosing RBD in PD. Furthermore, the results suggest that self-report measures of RBD need to focus questions on dream enactment behavior to better identify RWA and RBD. Further studies are needed to develop accurate determination and quantification of RWA in RBD to improve management of patients with PD in the future.

  1. Abnormal Fixational Eye Movements in Amblyopia.

    Science.gov (United States)

    Shaikh, Aasef G; Otero-Millan, Jorge; Kumar, Priyanka; Ghasia, Fatema F

    2016-01-01

    Fixational saccades shift the foveal image to counteract visual fading related to neural adaptation. Drifts are slow eye movements between two adjacent fixational saccades. We quantified fixational saccades and asked whether their changes could be attributed to pathologic drifts seen in amblyopia, one of the most common causes of blindness in childhood. Thirty-six pediatric subjects with varying severity of amblyopia and eleven healthy age-matched controls held their gaze on a visual target. Eye movements were measured with high-resolution video-oculography during fellow eye-viewing and amblyopic eye-viewing conditions. Fixational saccades and drifts were analyzed in the amblyopic and fellow eye and compared with controls. We found an increase in the amplitude with decreased frequency of fixational saccades in children with amblyopia. These alterations in fixational eye movements correlated with the severity of their amblyopia. There was also an increase in eye position variance during drifts in amblyopes. There was no correlation between the eye position variance or the eye velocity during ocular drifts and the amplitude of subsequent fixational saccade. Our findings suggest that abnormalities in fixational saccades in amblyopia are independent of the ocular drift. This investigation of amblyopia in pediatric age group quantitatively characterizes the fixation instability. Impaired properties of fixational saccades could be the consequence of abnormal processing and reorganization of the visual system in amblyopia. Paucity in the visual feedback during amblyopic eye-viewing condition can attribute to the increased eye position variance and drift velocity.

  2. Intensive language learning and increases in rapid eye movement sleep: evidence of a performance factor.

    Science.gov (United States)

    De Koninck, J; Lorrain, D; Christ, G; Proulx, G; Coulombe, D

    1989-09-01

    Ten anglophone students taking a 6-week French immersion course were recorded in the sleep laboratory during 4 consecutive nights before the course, during the course and after the course. There was a positive and significant (P less than 0.05) correlation between language learning efficiency and increases in the percentage of rapid eye movement (REM) sleep from pre-course to course periods. This observation suggests that learning performance may be an important factor in the relationship between information processing and REM sleep.

  3. Rapid eye movement sleep behavior disorder--diagnostik, årsager og behandling

    DEFF Research Database (Denmark)

    Zoetmulder, Marielle; Jennum, Poul Jørgen

    2009-01-01

    Rapid eye movement (REM) sleep behaviour disorder (RBD) is characterized by loss of REM sleep and related electromyographic atonia with marked muscular activity and dream enactment behaviour. RBD is seen in 0.5% of the population. It occurs in an idiopathic form and secondarily to medical and neu...... and neurological disease. RBD is related to brainstem pathology. Furthermore, it is increasingly recognized that RBD is frequently related to Parkinsonian disorders and narcolepsy. This article reviews recent knowledge about RBD with focus on the diagnostic process and management....

  4. Rapid eye movement sleep behavior disorder--diagnostik, årsager og behandling

    DEFF Research Database (Denmark)

    Zoetmulder, Marielle; Jennum, Poul Jørgen

    2009-01-01

    Rapid eye movement (REM) sleep behaviour disorder (RBD) is characterized by loss of REM sleep and related electromyographic atonia with marked muscular activity and dream enactment behaviour. RBD is seen in 0.5% of the population. It occurs in an idiopathic form and secondarily to medical...... and neurological disease. RBD is related to brainstem pathology. Furthermore, it is increasingly recognized that RBD is frequently related to Parkinsonian disorders and narcolepsy. This article reviews recent knowledge about RBD with focus on the diagnostic process and management....

  5. Control and Functions of Fixational Eye Movements

    Science.gov (United States)

    Rucci, Michele; Poletti, Martina

    2016-01-01

    Humans and other species explore a visual scene by rapidly shifting their gaze 2-3 times every second. Although the eyes may appear immobile in the brief intervals in between saccades, microscopic (fixational) eye movements are always present, even when attending to a single point. These movements occur during the very periods in which visual information is acquired and processed and their functions have long been debated. Recent technical advances in controlling retinal stimulation during normal oculomotor activity have shed new light on the visual contributions of fixational eye movements and their degree of control. The emerging body of evidence, reviewed in this article, indicates that fixational eye movements are important components of the strategy by which the visual system processes fine spatial details, enabling both precise positioning of the stimulus on the retina and encoding of spatial information into the joint space-time domain.

  6. Pain ameliorating effect of eye movement desensitization.

    Science.gov (United States)

    Hekmat, H; Groth, S; Rogers, D

    1994-06-01

    This study explores the efficacy of eye movement desensitization and reprocessing (EMD/R) in the management of acute pain induced by hand exposures to ice water. Thirty participants were randomly assigned to one of the following interventions: (a) eye movement desensitization and reprocessing, (b) eye movement desensitization with music (EMD/M), and (c) control. The EMD/R participants focused on negative experiences associated with exposure to ice water, generated positive self-talk, and diverted their attention away from pain by focusing on a rapidly moving light on a monitor. The EMD with music group received eye movement desensitization coupled with preferred music. Repeated measures univariate and multivariate analysis of covariance was used to analyze the data. Results indicated that both procedures alleviated participants' pain to a similar degree and significantly more than the control, P < 0.05.

  7. EMDR effects on pursuit eye movements.

    Science.gov (United States)

    Kapoula, Zoi; Yang, Qing; Bonnet, Audrey; Bourtoire, Pauline; Sandretto, Jean

    2010-05-21

    This study aimed to objectivize the quality of smooth pursuit eye movements in a standard laboratory task before and after an Eye Movement Desensitization and Reprocessing (EMDR) session run on seven healthy volunteers. EMDR was applied on autobiographic worries causing moderate distress. The EMDR session was complete in 5 out of the 7 cases; distress measured by SUDS (Subjective Units of Discomfort Scale) decreased to a near zero value. Smooth pursuit eye movements were recorded by an Eyelink II video system before and after EMDR. For the five complete sessions, pursuit eye movement improved after their EMDR session. Notably, the number of saccade intrusions-catch-up saccades (CUS)-decreased and, reciprocally, there was an increase in the smooth components of the pursuit. Such an increase in the smoothness of the pursuit presumably reflects an improvement in the use of visual attention needed to follow the target accurately. Perhaps EMDR reduces distress thereby activating a cholinergic effect known to improve ocular pursuit.

  8. Dopamine transporter imaging in rapid eye movement sleep behavior disorder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Kyeong; Yoon, In Young; Kim, Jong Min; Jeong, Seok Hoon; Kim, Ji Sun; Lee, Byung Chul; Lee, Won Woo; Kim, Sang Eun [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    The pathogenesis of rapid eye movement (REM) sleep behavior disorder (RBD) is still unknown. However, involvement of dopaminergic system in RBD has been hypothesized because of frequent association with degenerative movement disorders such as Parkinson's disease. The purpose of this study was to examine the extent and pattern of loss of dopamine transporter in RBD using FP-CIT SPECT. Fourteen patient with idiopathic RBD (mean age:665 yrs, M:F=10:3) participated in this study. Polysonmography confirmed loss of REM atonia and determined RBD severities by amount of tonic/phasic muscle activity during REM sleep in all cases. To compare with RBD, 14 early idiopathic Parkinson's disease rated as Hoehn and Yahr stage 1 (IPD) and 12 healthy controls were also selected. All participants performed single-photon emission computed tomography (SPECT) imaging 3 hours after injection of [123I]FP-CIT. Regions of interest were drawn on bilateral caudate and putamen, whole striatum and occipital cortex. Specific binding for dopamine transporters (DAT) were calculated using region to occipital uptake ratio based on the transient equilibrium method. Overall mean of DAT density in the striatum was lower in RBD group than controls, and higher than IPD group, However, DAT density in most individual RBD was still within normal range, and total striatal DAT density was not correlated with severity of RBD. Meanwhile, the caudate to putamen uptake ratio (C/P ratio) in RBD group was insignificantly higher than those in healthy controls. Nevertheless, C/P ratio within RBD group was reversely correlated with the RBD severity. Our study suggested that nigrostriatal dopaminergic degeneration could be a part of the pathogenesis of RBD, but not essential for the development of RBD. Further longitudinal evaluation of presynaptic dopaminergic system in idiopathic RBD may guarantee the more understanding for RBD and associated neurodegenerative disease.

  9. Sleep alterations in mammals: Did aquatic conditions inhibit rapid eye movement sleep?

    Institute of Scientific and Technical Information of China (English)

    Vibha Madan; Sushil K.Jha

    2012-01-01

    Sleep has been studied widely in mammals and to some extent in other vertebrates.Higher vertebrates such as birds and mammals have evolved an inimitable rapid eye movement (REM) sleep state.During REM sleep,postural muscles become atonic and the temperature regulating machinery remains suspended.Although REM sleep is present in almost all the terrestrial mammals,the aquatic mammals have either radically reduced or completely eliminated REM sleep.Further,we found a significant negative correlation between REM sleep and the adaptation of the organism to live on land or in water.The amount of REM sleep is highest in terrestrial mammals,significantly reduced in semi-aquatic mammals and completely absent or negligible in aquatic mammals.The aquatic mammals are obligate swimmers and have to surface at regular intervals for air.Also,these animals live in thermally challenging environments,where the conductive heat loss is approximately ~90 times greater than air.Therefore,they have to be moving most of the time.As an adaptation,they have evolved unihemispheric sleep,during which they can rove as well as rest.A condition that immobilizes muscle activity and suspends the thermoregulatory machinery,as happens during REM sleep,is not suitable for these animals.It is possible that,in accord with Darwin's theory,aquatic mammals might have abolished REM sleep with time.In this review,we discuss the possibility of the intrinsic role of aquatic conditions in the elimination of REM sleep in the aquatic mammals.

  10. Viewpoint Consistency: An Eye Movement Study

    Directory of Open Access Journals (Sweden)

    Filipe Cristino

    2012-05-01

    Full Text Available Eye movements have been widely studied, using images and videos in laboratories or portable eye trackers in the real world. Although a good understanding of the saccadic system and extensive models of gaze have been developed over the years, only a few studies have focused on the consistency of eye movements across viewpoints. We have developed a new technique to compute and map the depth of collected eye movements on stimuli rendered from 3D mesh objects using a traditional corneal reflection eye tracker (SR Eyelink 1000. Having eye movements mapped into 3D space (and not on an image space allowed us to compare fixations across viewpoints. Fixation sequences (scanpaths were also studied across viewpoints using the ScanMatch method (Cristino et al 2010, Behavioural and Research Methods 42, 692–700, extended to work with 3D eye movements. In a set of experiments where participants were asked to perform a recognition task on either a set of objects or faces, we recorded their gaze while performing the task. Participants either viewed the stimuli in 2D or using anaglyph glasses. The stimuli were shown from different viewpoints during the learning and testing phases. A high degree of gaze consistency was found across the different viewpoints, particularly between learning and testing phases. Scanpaths were also similar across viewpoints, suggesting not only that the gazed spatial locations are alike, but also their temporal order.

  11. Relations between Psychological Status and Eye Movements

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2015-06-01

    Full Text Available Relations between psychological status and eye movements are found through experiments with readings of different types of documents as well as playing games. Psychological status can be monitored with Electroencephalogram: EEG sensor while eye movements can be monitored with Near Infrared: NIR cameras with NIR Light Emission Diode: LED. EEG signals are suffred from noises while eye movement can be acquired without any influence from nise. Therefore, psychlogical status can be monitored with eye movement detection instead of EEG signal acquisition if there is relation between both. Through the experiments, it is found strong relation between both. In particular, relation between the number of rapid changes of line of sight directions and relatively high frequency components of EEG signals is found. It is also found that the number of rapid eye movement is counted when the users are reading the documents. The rapid eye movement is defined as 10 degrees of look angle difference for one second. Not only when the users change the lines in the document, but also when the users feel a difficulty for reading words in the document, the users’ line of sight direction moves rapidly.

  12. How Were Eye Movements Recorded Before Yarbus?

    Science.gov (United States)

    Wade, Nicholas J

    2015-01-01

    Alfred Yarbus introduced a new dimension of precision in recording how the eyes moved, either when attempts were made to keep them stationary or when scanning pictures. Movements of the eyes had been remarked upon for millennia, but recording how they move is a more recent preoccupation. Emphasis was initially placed on abnormalities of oculomotor function (like strabismus) before normal features were considered. The interest was in where the eyes moved to rather than determining how they got there. The most venerable technique for examining ocular stability involved comparing the relative motion between an afterimage and a real image. In the late 18th century, Wells compared afterimages generated before body rotation with real images observed following it when dizzy; he described both lateral and torsional nystagmus, thereby demonstrating the directional discontinuities in eye velocities. At around the same time Erasmus Darwin used afterimages as a means of demonstrating ocular instability when attempting to fixate steadily. However, the overriding concern in the 19th century was with eye position rather than eye movements. Thus, the characteristics of nystagmus were recorded before those of saccades and fixations. Eye movements during reading were described by Hering and by Lamare (working in Javal's laboratory) in 1879; both used similar techniques of listening (with tubes placed over the eyelids) to the sounds made during contractions of the extraocular muscles. Photographic records of eye movements during reading were made by Dodge early in the 20th century, and this stimulated research using a wider array of patterns. Eye movements over pictures were examined by Stratton and later by Buswell, who drew attention to the effects of instructions on the pattern of eye movements. In midcentury, attention shifted back to the stability of the eyes during fixation, with the emphasis on involuntary movements. The suction cap methods developed by Yarbus were applied

  13. Impact of Air Movement on Eye Symptoms

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Sakoi, Tomonori; Kolencíková, Sona

    2013-01-01

    The impact of direction, oscillation and temperature of isothermal room air movement on eye discomfort and tear film quality was studied. Twenty-four male subjects participated in the experiment. Horizontal air movement against the face and chest was generated by a large desk fan – LDF and a smal...

  14. Multipulse control of saccadic eye movements

    Science.gov (United States)

    Lehman, S. L.; Stark, L.

    1981-01-01

    We present three conclusions regarding the neural control of saccadic eye movements, resulting from comparisons between recorded movements and computer simulations. The controller signal to the muscles is probably a multipulse-step. This kind of signal drives the fastest model trajectories. Finally, multipulse signals explain differences between model and electrophysiological results.

  15. A Note on Eye Movement

    CERN Document Server

    Bolina, O; Bolina, Oscar

    1998-01-01

    In a simplified fashion, the motion of the eyeball in its orbit consists of rotations around a fixed point. Therefore, this motion can be described in terms of the Euler's angles of rigid body dynamics. However, there is a physiological constraint in the motion of the eye which reduces to two its degrees of freedom. This paper reviews the basic features of the kinematics of the eye and the laws governing its motion.

  16. Suppressant effects of selective 5-HT2 antagonists on rapid eye movement sleep in rats.

    Science.gov (United States)

    Tortella, F C; Echevarria, E; Pastel, R H; Cox, B; Blackburn, T P

    1989-04-24

    The effects of the novel, highly selective serotonin-2 (5-HT2) antagonists, ICI 169,369 and ICI 170,809, on 24 h EEG sleep-wake activity were studied in the rat. Both compounds caused a dose-related increase in the latency to rapid eye movement sleep (REMS) and significantly suppressed cumulative REMS time up to 12 h postinjection. In contrast, neither drug disrupted slow-wave sleep continuity in as much as the latency to non-REMS (NREMS) and cumulative NREMS time were unchanged. However, at the highest dose tested (20 mg/kg) ICI 170,809 did produce a significant increase in total NREMS time during the second half of the sleep-awake cycle. These results demonstrate effects of selective 5-HT2 antagonists on sleep in rats which appear to be specific for REMS behavior, suggesting that the priming influence of serotonin on REMS may involve 5-HT2 receptor subtypes. The relationship between the REMS suppressant actions of these compounds and their consideration as therapeutic agents in depression is discussed.

  17. Rapid eye movement sleep deprivation induces an increase in acetylcholinesterase activity in discrete rat brain regions

    Directory of Open Access Journals (Sweden)

    Benedito M.A.C.

    2001-01-01

    Full Text Available Some upper brainstem cholinergic neurons (pedunculopontine and laterodorsal tegmental nuclei are involved in the generation of rapid eye movement (REM sleep and project rostrally to the thalamus and caudally to the medulla oblongata. A previous report showed that 96 h of REM sleep deprivation in rats induced an increase in the activity of brainstem acetylcholinesterase (Achase, the enzyme which inactivates acetylcholine (Ach in the synaptic cleft. There was no change in the enzyme's activity in the whole brain and cerebrum. The components of the cholinergic synaptic endings (for example, Achase are not uniformly distributed throughout the discrete regions of the brain. In order to detect possible regional changes we measured Achase activity in several discrete rat brain regions (medulla oblongata, pons, thalamus, striatum, hippocampus and cerebral cortex after 96 h of REM sleep deprivation. Naive adult male Wistar rats were deprived of REM sleep using the flower-pot technique, while control rats were left in their home cages. Total, membrane-bound and soluble Achase activities (nmol of thiocholine formed min-1 mg protein-1 were assayed photometrically. The results (mean ± SD obtained showed a statistically significant (Student t-test increase in total Achase activity in the pons (control: 147.8 ± 12.8, REM sleep-deprived: 169.3 ± 17.4, N = 6 for both groups, P<0.025 and thalamus (control: 167.4 ± 29.0, REM sleep-deprived: 191.9 ± 15.4, N = 6 for both groups, P<0.05. Increases in membrane-bound Achase activity in the pons (control: 171.0 ± 14.7, REM sleep-deprived: 189.5 ± 19.5, N = 6 for both groups, P<0.05 and soluble enzyme activity in the medulla oblongata (control: 147.6 ± 16.3, REM sleep-deprived: 163.8 ± 8.3, N = 6 for both groups, P<0.05 were also observed. There were no statistically significant differences in the enzyme's activity in the other brain regions assayed. The present findings show that the increase in Achase activity

  18. Recent data on rapid eye movement sleep behavior disorder in patients with Parkinson disease: analysis of behaviors, movements, and periodic limb movements.

    Science.gov (United States)

    Cochen De Cock, Valérie

    2013-08-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is a fascinating parasomnia in which patients are able to enact their dreams because of a lack of muscle atonia during REM sleep. RBD represents a unique window into the dream world. Frequently associated with Parkinson's disease (PD), RBD raises various issues about dream modifications in this pathology and about aggressiveness during RBD episodes in placid patients during wakefulness. Studies on these behaviors have underlined their non-stereotyped, action-filled and violent characteristics but also their isomorphism with dream content. Complex, learnt behaviors may reflect the cortical involvement in this parasomnia but the more frequent elementary movements and the associated periodic limb movements during sleep also implicate the brainstem. Surprisingly, patients with PD have an improvement of their movements during their RBD as if they were disease-free. Also not yet understood, this improvement of movement during REM sleep raises issues about the pathways involved in RBD and about the possibility of using this pathway to improve movement in PD during the day.

  19. Cells of a common developmental origin regulate REM/non-REM sleep and wakefulness in mice.

    Science.gov (United States)

    Hayashi, Yu; Kashiwagi, Mitsuaki; Yasuda, Kosuke; Ando, Reiko; Kanuka, Mika; Sakai, Kazuya; Itohara, Shigeyoshi

    2015-11-20

    Mammalian sleep comprises rapid eye movement (REM) sleep and non-REM (NREM) sleep. To functionally isolate from the complex mixture of neurons populating the brainstem pons those involved in switching between REM and NREM sleep, we chemogenetically manipulated neurons of a specific embryonic cell lineage in mice. We identified excitatory glutamatergic neurons that inhibit REM sleep and promote NREM sleep. These neurons shared a common developmental origin with neurons promoting wakefulness; both derived from a pool of proneural hindbrain cells expressing Atoh1 at embryonic day 10.5. We also identified inhibitory γ-aminobutyric acid-releasing neurons that act downstream to inhibit REM sleep. Artificial reduction or prolongation of REM sleep in turn affected slow-wave activity during subsequent NREM sleep, implicating REM sleep in the regulation of NREM sleep.

  20. Frequency of REM sleep behavior disorders in patients with Parkinson’s disease

    OpenAIRE

    Janković Marko; Svetel Marina; Kostić Vladimir

    2015-01-01

    Background/Aim. Sleep is prompted by natural cycles of activity in the brain and consists of two basic states: rapid eye movement (REM) sleep and non-rapid eye movement (NREM) sleep. REM sleep behavior disorder (RBD) is characterized by violent motor and vocal behavior during REM sleep which represents dream enactment. The normal loss of muscle tone, with the exception of respiratory, sphincter, extra ocular and middle ear muscles, is absent in patients wit...

  1. An Analog VLSI Saccadic Eye Movement System

    OpenAIRE

    1994-01-01

    In an effort to understand saccadic eye movements and their relation to visual attention and other forms of eye movements, we - in collaboration with a number of other laboratories - are carrying out a large-scale effort to design and build a complete primate oculomotor system using analog CMOS VLSI technology. Using this technology, a low power, compact, multi-chip system has been built which works in real-time using real-world visual inputs. We describe in this paper the performance of a...

  2. Eye mechanics and their implications for eye movement control

    NARCIS (Netherlands)

    Koene, Ansgar Roald

    2002-01-01

    The topic of this thesis is the investigation of the mechanical properties of the oculomotor system and the implications of these properties for eye movement control. The investigation was conducted by means of computer models and simulations. This allowed us to combine data from anatomy, physiology

  3. Eye movement as a biomarker of schizophrenia: Using an integrated eye movement score.

    Science.gov (United States)

    Morita, Kentaro; Miura, Kenichiro; Fujimoto, Michiko; Yamamori, Hidenaga; Yasuda, Yuka; Iwase, Masao; Kasai, Kiyoto; Hashimoto, Ryota

    2017-02-01

    Studies have shown that eye movement abnormalities are possible neurophysiological biomarkers for schizophrenia. The aim of this study was to investigate the utility of eye movement abnormalities in identifying patients with schizophrenia from healthy controls. Eighty-five patients with schizophrenia and 252 healthy controls participated in this study. Eye movement measures were collected from free viewing, fixation stability, and smooth pursuit tests. In an objective and stepwise method, eye movement measures were extracted to create an integrated eye movement score. The discriminant analysis resulted in three eye movement measures; the scanpath length during the free viewing test, the horizontal position gain during the fast Lissajous paradigm of the smooth pursuit test, and the duration of fixations during the far distractor paradigm of the fixation stability test. An integrated score using these variables can distinguish patients with schizophrenia from healthy controls with 82% accuracy. The integrated score was correlated with Wechsler Adult Intelligence Scale-Third Edition full scale IQ, Positive and Negative Syndrome Scale scores, and chlorpromazine equivalents, with different correlation patterns in the three eye movement measures used. The discriminant analysis in subgroups matched for age, sex, years of education, and premorbid IQ revealed a sustained classification rate. We established an integrated eye movement score with high classification accuracy between patients with schizophrenia and healthy controls, although there was a significant effect of medication. This study provides further evidence of the utility of eye movement abnormalities in schizophrenia pathology and treatment. © 2016 The Authors. Psychiatry and Clinical Neurosciences © 2016 Japanese Society of Psychiatry and Neurology.

  4. Eye-movements During Translation

    DEFF Research Database (Denmark)

    Balling, Laura Winther

    2013-01-01

    Translation process research or TPR, the study of the cognitive processes involved in translation, is a relatively new field characterised by small-scale studies with few participants and variables. However, the translation process is characterised by much variation between different translators......, texts, tasks and languages, and larger-scale investigations are therefore highly desirable. To that end, we have publicly released the CRITT TPR database which currently contains data from 845 translation sessions but is continually extended. The database includes information about the source and target...... texts as well as both eye-tracking and keylogging data. Based on this database, I present a large-scale analysis of gaze on the source text based on 91 translators' translations of six different texts from English into four different target languages. I use mixed-effects modelling to compare from...

  5. Automatic REM sleep detection associated with idiopathic rem sleep Behavior Disorder

    DEFF Research Database (Denmark)

    Kempfner, J; Sørensen, Gertrud Laura; Sorensen, H B D

    2011-01-01

    Rapid eye movement sleep Behavior Disorder (RBD) is a strong early marker of later development of Parkinsonism. Currently there are no objective methods to identify and discriminate abnormal from normal motor activity during REM sleep. Therefore, a REM sleep detection without the use of chin...... electromyography (EMG) is useful. This is addressed by analyzing the classification performance when implementing two automatic REM sleep detectors. The first detector uses the electroencephalography (EEG), electrooculography (EOG) and EMG to detect REM sleep, while the second detector only uses the EEG and EOG....

  6. Pharmacological Treatment Effects on Eye Movement Control

    Science.gov (United States)

    Reilly, James L.; Lencer, Rebekka; Bishop, Jeffrey R.; Keedy, Sarah; Sweeney, John A.

    2008-01-01

    The increasing use of eye movement paradigms to assess the functional integrity of brain systems involved in sensorimotor and cognitive processing in clinical disorders requires greater attention to effects of pharmacological treatments on these systems. This is needed to better differentiate disease and medication effects in clinical samples, to…

  7. Saccadic eye movement applications for psychiatric disorders

    Science.gov (United States)

    Bittencourt, Juliana; Velasques, Bruna; Teixeira, Silmar; Basile, Luis F; Salles, José Inácio; Nardi, Antonio Egídio; Budde, Henning; Cagy, Mauricio; Piedade, Roberto; Ribeiro, Pedro

    2013-01-01

    Objective The study presented here analyzed the patterns of relationship between oculomotor performance and psychopathology, focusing on depression, bipolar disorder, schizophrenia, attention-deficit hyperactivity disorder, and anxiety disorder. Methods Scientific articles published from 1967 to 2013 in the PubMed/Medline, ISI Web of Knowledge, Cochrane, and SciELO databases were reviewed. Results Saccadic eye movement appears to be heavily involved in psychiatric diseases covered in this review via a direct mechanism. The changes seen in the execution of eye movement tasks in patients with psychopathologies of various studies confirm that eye movement is associated with the cognitive and motor system. Conclusion Saccadic eye movement changes appear to be heavily involved in the psychiatric disorders covered in this review and may be considered a possible marker of some disorders. The few existing studies that approach the topic demonstrate a need to improve the experimental paradigms, as well as the methods of analysis. Most of them report behavioral variables (latency/reaction time), though electrophysiological measures are absent. PMID:24072973

  8. Lateral Eye Movement Behavior in Children.

    Science.gov (United States)

    Reynolds, Cecil R.; Kaufman, Alan S.

    1980-01-01

    The conjugate lateral eye movement phenomenon was investigated for 52 children aged 2 through 10 using both spatial and verbal-analytic questions. The phenomenon was observed in 50 subjects and appeared well-established by age 3 1/2. Some interesting developmental findings and discrepancies with the results of adult studies are noted. (Author/SJL)

  9. Eye Movements and Visual Memory for Scenes

    Science.gov (United States)

    2005-01-01

    Di Lo110,V. (1980). Temporal integration in visual memory. Journal of Experimental Pychology : General 109,7597. Duhamel, J. R, Colby, C. L, and...H. (1978). Direction-specific motion thresholds for abnormal 9,441474. image shifts during saccadic eye movement. Perception and Psychophyn’cs

  10. Eye Movements in Implicit Artificial Grammar Learning

    Science.gov (United States)

    Silva, Susana; Inácio, Filomena; Folia, Vasiliki; Petersson, Karl Magnus

    2017-01-01

    Artificial grammar learning (AGL) has been probed with forced-choice behavioral tests (active tests). Recent attempts to probe the outcomes of learning (implicitly acquired knowledge) with eye-movement responses (passive tests) have shown null results. However, these latter studies have not tested for sensitivity effects, for example, increased…

  11. EMDR effects on pursuit eye movements.

    Directory of Open Access Journals (Sweden)

    Zoi Kapoula

    Full Text Available This study aimed to objectivize the quality of smooth pursuit eye movements in a standard laboratory task before and after an Eye Movement Desensitization and Reprocessing (EMDR session run on seven healthy volunteers. EMDR was applied on autobiographic worries causing moderate distress. The EMDR session was complete in 5 out of the 7 cases; distress measured by SUDS (Subjective Units of Discomfort Scale decreased to a near zero value. Smooth pursuit eye movements were recorded by an Eyelink II video system before and after EMDR. For the five complete sessions, pursuit eye movement improved after their EMDR session. Notably, the number of saccade intrusions-catch-up saccades (CUS-decreased and, reciprocally, there was an increase in the smooth components of the pursuit. Such an increase in the smoothness of the pursuit presumably reflects an improvement in the use of visual attention needed to follow the target accurately. Perhaps EMDR reduces distress thereby activating a cholinergic effect known to improve ocular pursuit.

  12. Rhythmic alternating patterns of brain activity distinguish rapid eye movement sleep from other states of consciousness.

    Science.gov (United States)

    Chow, Ho Ming; Horovitz, Silvina G; Carr, Walter S; Picchioni, Dante; Coddington, Nate; Fukunaga, Masaki; Xu, Yisheng; Balkin, Thomas J; Duyn, Jeff H; Braun, Allen R

    2013-06-18

    Rapid eye movement (REM) sleep constitutes a distinct "third state" of consciousness, during which levels of brain activity are commensurate with wakefulness, but conscious awareness is radically transformed. To characterize the temporal and spatial features of this paradoxical state, we examined functional interactions between brain regions using fMRI resting-state connectivity methods. Supporting the view that the functional integrity of the default mode network (DMN) reflects "level of consciousness," we observed functional uncoupling of the DMN during deep sleep and recoupling during REM sleep (similar to wakefulness). However, unlike either deep sleep or wakefulness, REM was characterized by a more widespread, temporally dynamic interaction between two major brain systems: unimodal sensorimotor areas and the higher-order association cortices (including the DMN), which normally regulate their activity. During REM, these two systems become anticorrelated and fluctuate rhythmically, in reciprocally alternating multisecond epochs with a frequency ranging from 0.1 to 0.01 Hz. This unique spatiotemporal pattern suggests a model for REM sleep that may be consistent with its role in dream formation and memory consolidation.

  13. A microstructural study of sleep instability in drug-naive patients with schizophrenia and healthy controls: sleep spindles, rapid eye movements, and muscle atonia.

    Science.gov (United States)

    Guénolé, Fabian; Chevrier, Elyse; Stip, Emmanuel; Godbout, Roger

    2014-05-01

    This study aimed at characterizing the functional stability of sleep in schizophrenia by quantifying dissociated stages of sleep (DSS), and to explore their correlation with psychopathology. The sleep of 10 first-break, drug-naive young adults with schizophrenia and 10 controls was recorded. Four basic DSS patterns were scored: 1) the transitional EEG-mixed intermediate stage (EMIS); 2) Rapid-eye-movement (REM) sleep without rapid eye movement (RSWR); 3) REM sleep without atonia (RSWA); and 4) non-REM sleep with rapid eye movements. An intermediate sleep (IS) score was calculated by summing EMIS and RSWR scores, and the durations of intra-REM sleep periods IS (IRSPIS) and IS scored "at the expense" of REM sleep (ISERS) were determined. Patients were administered the Brief Psychiatric Rating Scale (BPRS) at the time of recording. Proportions of each DSS variables over total sleep time and proportions of IRSPIS and ISERS over REM sleep duration were compared between patients and controls. Correlation coefficients between DSS variables and BPRS total scores were calculated. The proportion of total DSS did not differ between patients and controls. Among DSS subtypes, RSWA was significantly increased in patients while other comparisons showed no significant differences. Significant positive correlations were found between BPRS scores and proportions of DSS, IS, RSWR, IRSPIS and ISERS over total sleep and REM sleep durations. These results demonstrate the functional instability of REM sleep in first-break, drug naive young adults with schizophrenia and unveil a pattern reminiscent of REM sleep behavior disorder. The significant correlation suggests that schizophrenia and REM sleep share common neuronal control mechanisms.

  14. The Neurobiological Mechanisms and Treatments of REM Sleep Disturbances in Depression.

    Science.gov (United States)

    Wang, Yi-Qun; Li, Rui; Zhang, Meng-Qi; Zhang, Ze; Qu, Wei-Min; Huang, Zhi-Li

    2015-01-01

    Most depressed patients suffer from sleep abnormalities, which are one of the critical symptoms of depression. They are robust risk factors for the initiation and development of depression. Studies about sleep electroencephalograms have shown characteristic changes in depression such as reductions in non-rapid eye movement sleep production, disruptions of sleep continuity and disinhibition of rapid eye movement (REM) sleep. REM sleep alterations include a decrease in REM sleep latency, an increase in REM sleep duration and REM sleep density with respect to depressive episodes. Emotional brain processing dependent on the normal sleep-wake regulation seems to be failed in depression, which also promotes the development of clinical depression. Also, REM sleep alterations have been considered as biomarkers of depression. The disturbances of norepinephrine and serotonin systems may contribute to REM sleep abnormalities in depression. Lastly, this review also discusses the effects of different antidepressants on REM sleep disturbances in depression.

  15. Neocortical 40 Hz oscillations during carbachol-induced rapid eye movement sleep and cataplexy.

    Science.gov (United States)

    Torterolo, Pablo; Castro-Zaballa, Santiago; Cavelli, Matías; Chase, Michael H; Falconi, Atilio

    2016-02-01

    Higher cognitive functions require the integration and coordination of large populations of neurons in cortical and subcortical regions. Oscillations in the gamma band (30-45 Hz) of the electroencephalogram (EEG) have been involved in these cognitive functions. In previous studies, we analysed the extent of functional connectivity between cortical areas employing the 'mean squared coherence' analysis of the EEG gamma band. We demonstrated that gamma coherence is maximal during alert wakefulness and is almost absent during rapid eye movement (REM) sleep. The nucleus pontis oralis (NPO) is critical for REM sleep generation. The NPO is considered to exert executive control over the initiation and maintenance of REM sleep. In the cat, depending on the previous state of the animal, a single microinjection of carbachol (a cholinergic agonist) into the NPO can produce either REM sleep [REM sleep induced by carbachol (REMc)] or a waking state with muscle atonia, i.e. cataplexy [cataplexy induced by carbachol (CA)]. In the present study, in cats that were implanted with electrodes in different cortical areas to record polysomnographic activity, we compared the degree of gamma (30-45 Hz) coherence during REMc, CA and naturally-occurring behavioural states. Gamma coherence was maximal during CA and alert wakefulness. In contrast, gamma coherence was almost absent during REMc as in naturally-occurring REM sleep. We conclude that, in spite of the presence of somatic muscle paralysis, there are remarkable differences in cortical activity between REMc and CA, which confirm that EEG gamma (≈40 Hz) coherence is a trait that differentiates wakefulness from REM sleep.

  16. Effects of rapid eye movement sleep deprivation on fear extinction recall and prediction error signaling.

    Science.gov (United States)

    Spoormaker, Victor I; Schröter, Manuel S; Andrade, Kátia C; Dresler, Martin; Kiem, Sara A; Goya-Maldonado, Roberto; Wetter, Thomas C; Holsboer, Florian; Sämann, Philipp G; Czisch, Michael

    2012-10-01

    In a temporal difference learning approach of classical conditioning, a theoretical error signal shifts from outcome deliverance to the onset of the conditioned stimulus. Omission of an expected outcome results in a negative prediction error signal, which is the initial step towards successful extinction and may therefore be relevant for fear extinction recall. As studies in rodents have observed a bidirectional relationship between fear extinction and rapid eye movement (REM) sleep, we aimed to test the hypothesis that REM sleep deprivation impairs recall of fear extinction through prediction error signaling in humans. In a three-day design with polysomnographically controlled REM sleep deprivation, 18 young, healthy subjects performed a fear conditioning, extinction and recall of extinction task with visual stimuli, and mild electrical shocks during combined functional magnetic resonance imaging (fMRI) and skin conductance response (SCR) measurements. Compared to the control group, the REM sleep deprivation group had increased SCR scores to a previously extinguished stimulus at early recall of extinction trials, which was associated with an altered fMRI time-course in the left middle temporal gyrus. Post-hoc contrasts corrected for measures of NREM sleep variability also revealed between-group differences primarily in the temporal lobe. Our results demonstrate altered prediction error signaling during recall of fear extinction after REM sleep deprivation, which may further our understanding of anxiety disorders in which disturbed sleep and impaired fear extinction learning coincide. Moreover, our findings are indicative of REM sleep related plasticity in regions that also show an increase in activity during REM sleep.

  17. REM Sleep Phase Preference in the Crepuscular Octodon degus Assessed by Selective REM Sleep Deprivation

    Science.gov (United States)

    Ocampo-Garcés, Adrián; Hernández, Felipe; Palacios, Adrian G.

    2013-01-01

    Study Objectives: To determine rapid eye movement (REM) sleep phase preference in a crepuscular mammal (Octodon degus) by challenging the specific REM sleep homeostatic response during the diurnal and nocturnal anticrepuscular rest phases. Design: We have investigated REM sleep rebound, recovery, and documented REM sleep propensity measures during and after diurnal and nocturnal selective REM sleep deprivations. Subjects: Nine male wild-captured O. degus prepared for polysomnographic recordings Interventions: Animals were recorded during four consecutive baseline and two separate diurnal or nocturnal deprivation days, under a 12:12 light-dark schedule. Three-h selective REM sleep deprivations were performed, starting at midday (zeitgeber time 6) or midnight (zeitgeber time 18). Measurements and Results: Diurnal and nocturnal REM sleep deprivations provoked equivalent amounts of REM sleep debt, but a consistent REM sleep rebound was found only after nocturnal deprivation. The nocturnal rebound was characterized by a complete recovery of REM sleep associated with an augment in REM/total sleep time ratio and enhancement in REM sleep episode consolidation. Conclusions: Our results support the notion that the circadian system actively promotes REM sleep. We propose that the sleep-wake cycle of O. degus is modulated by a chorus of circadian oscillators with a bimodal crepuscular modulation of arousal and a unimodal promotion of nocturnal REM sleep. Citation: Ocampo-Garcés A; Hernández F; Palacios AG. REM sleep phase preference in the crepuscular Octodon degus assessed by selective REM sleep deprivation. SLEEP 2013;36(8):1247-1256. PMID:23904685

  18. Fragmentation of Rapid Eye Movement and Nonrapid Eye Movement Sleep without Total Sleep Loss Impairs Hippocampus-Dependent Fear Memory Consolidation.

    Science.gov (United States)

    Lee, Michael L; Katsuyama, Ângela M; Duge, Leanne S; Sriram, Chaitra; Krushelnytskyy, Mykhaylo; Kim, Jeansok J; de la Iglesia, Horacio O

    2016-11-01

    Sleep is important for consolidation of hippocampus-dependent memories. It is hypothesized that the temporal sequence of nonrapid eye movement (NREM) sleep and rapid eye movement (REM) sleep is critical for the weakening of nonadaptive memories and the subsequent transfer of memories temporarily stored in the hippocampus to more permanent memories in the neocortex. A great body of evidence supporting this hypothesis relies on behavioral, pharmacological, neural, and/or genetic manipulations that induce sleep deprivation or stage-specific sleep deprivation. We exploit an experimental model of circadian desynchrony in which intact animals are not deprived of any sleep stage but show fragmentation of REM and NREM sleep within nonfragmented sleep bouts. We test the hypothesis that the shortening of NREM and REM sleep durations post-training will impair memory consolidation irrespective of total sleep duration. When circadian-desynchronized animals are trained in a hippocampus-dependent contextual fear-conditioning task they show normal short-term memory but impaired long-term memory consolidation. This impairment in memory consolidation is positively associated with the post-training fragmentation of REM and NREM sleep but is not significantly associated with the fragmentation of total sleep or the total amount of delta activity. We also show that the sleep stage fragmentation resulting from circadian desynchrony has no effect on hippocampus-dependent spatial memory and no effect on hippocampus-independent cued fear-conditioning memory. Our findings in an intact animal model, in which sleep deprivation is not a confounding factor, support the hypothesis that the stereotypic sequence and duration of sleep stages play a specific role in long-term hippocampus-dependent fear memory consolidation.

  19. A Temporally Controlled Inhibitory Drive Coordinates Twitch Movements during REM Sleep.

    Science.gov (United States)

    Brooks, Patricia L; Peever, John

    2016-05-01

    During REM sleep, skeletal muscles are paralyzed in one moment but twitch and jerk in the next. REM sleep twitches are traditionally considered random motor events that result from momentary lapses in REM sleep paralysis [1-3]. However, recent evidence indicates that twitches are not byproducts of REM sleep, but are in fact self-generated events that could function to promote motor learning and development [4-6]. If REM twitches are indeed purposefully generated, then they should be controlled by a coordinated and definable mechanism. Here, we used behavioral, electrophysiological, pharmacological, and neuroanatomical methods to demonstrate that an inhibitory drive onto skeletal motoneurons produces a temporally coordinated pattern of muscle twitches during REM sleep. First, we show that muscle twitches in adult rats are not uniformly distributed during REM sleep, but instead follow a well-defined temporal trajectory. They are largely absent during REM initiation but increase steadily thereafter, peaking toward REM termination. Next, we identify the transmitter mechanism that controls the temporal nature of twitch activity. Specifically, we show that a GABA and glycine drive onto motoneurons prevents twitch activity during REM initiation, but progressive weakening of this drive functions to promote twitch activity during REM termination. These results demonstrate that REM twitches are not random byproducts of REM sleep, but are instead rather coherently generated events controlled by a temporally variable inhibitory drive.

  20. A Change of Possible Neurological and Psychological Significance Within the First Week of Neonate Life: Sleeping REM Rate.

    Science.gov (United States)

    Minard, James; And Others

    The percentage of rapid eye movement (REM) during sleep is substantially greater in neonates (infants in first month after birth) than in other children or adults. It was hypothesized that REM rate may decline as rates of many response sequences do when repeatedly elicited. Electrical recordings of eye movements were obtained from a 3-day-old male…

  1. Why Are Seizures Rare in Rapid Eye Movement Sleep? Review of the Frequency of Seizures in Different Sleep Stages

    Directory of Open Access Journals (Sweden)

    Marcus Ng

    2013-01-01

    Full Text Available Since the formal characterization of sleep stages, there have been reports that seizures may preferentially occur in certain phases of sleep. Through ascending cholinergic connections from the brainstem, rapid eye movement (REM sleep is physiologically characterized by low voltage fast activity on the electroencephalogram, REMs, and muscle atonia. Multiple independent studies confirm that, in REM sleep, there is a strikingly low proportion of seizures (~1% or less. We review a total of 42 distinct conventional and intracranial studies in the literature which comprised a net of 1458 patients. Indexed to duration, we found that REM sleep was the most protective stage of sleep against focal seizures, generalized seizures, focal interictal discharges, and two particular epilepsy syndromes. REM sleep had an additional protective effect compared to wakefulness with an average 7.83 times fewer focal seizures, 3.25 times fewer generalized seizures, and 1.11 times fewer focal interictal discharges. In further studies REM sleep has also demonstrated utility in localizing epileptogenic foci with potential translation into postsurgical seizure freedom. Based on emerging connectivity data in sleep, we hypothesize that the influence of REM sleep on seizures is due to a desynchronized EEG pattern which reflects important connectivity differences unique to this sleep stage.

  2. Small platform sleep deprivation selectively increases the average duration of rapid eye movement sleep episodes during sleep rebound.

    Science.gov (United States)

    Kitka, Tamas; Katai, Zita; Pap, Dorottya; Molnar, Eszter; Adori, Csaba; Bagdy, Gyorgy

    2009-12-28

    The single platform-on-water (flower pot) method is extensively used for depriving rapid eye movement sleep (REMS). Detailed comparison of sleep-wake architecture, recorded during the rebound period after spending three days on either a small or large platform, could separate the effects of REMS deficit from other stress factors caused by the procedure. A further aim of the study was to find the most characteristic REMS parameter of the rebound originating from REMS deficit. Rats were kept on a small or large platform for 72 h. Their fronto-parietal electroencephalogram, electromyogram and motility were recorded during the 24 h rebound at the beginning of the passive phase. A similar period of a home cage group was also recorded. The most typical differences between the two rebound groups were the increased cumulative time and longer average duration of REMS episodes without significant change in the number of these episodes of the small platform animals during the passive phase. Results obtained by cosinor analysis were in accordance with the findings above. Since we did not find any difference in the average duration of REMS episodes comparing the large platform rebound group and the home cage group, we concluded that the increased mean duration of REMS episodes is a selective marker for the rebound caused by small platform sleep deprivation, while other changes in sleep architecture may be the consequence of stress and also some sleep deficit.

  3. Selective REM sleep deprivation in narcolepsy.

    Science.gov (United States)

    Vu, Manh Hoang; Hurni, Christoph; Mathis, Johannes; Roth, Corinne; Bassetti, Claudio L

    2011-03-01

    Narcolepsy is characterized by excessive daytime sleepiness and rapid eye movement (REM) sleep abnormalities, including cataplexy. The aim of this study was to assess REM sleep pressure and homeostasis in narcolepsy. Six patients with narcolepsy and six healthy controls underwent a REM sleep deprivation protocol, including one habituation, one baseline, two deprivation nights (D1, D2) and one recovery night. Multiple sleep latency tests (MSLTs) were performed during the day after baseline and after D2. During D1 and D2 REM sleep was prevented by awakening the subjects at the first polysomnographic signs of REM sleep for 2 min. Mean sleep latency and number of sleep-onset REM periods (SOREMs) were determined on all MSLT. More interventions were required to prevent REM sleep in narcoleptics compared with control subjects during D1 (57 ± 16 versus 24 ± 10) and D2 (87 ± 22 versus 35 ± 8, P = 0.004). Interventions increased from D1 to D2 by 46% in controls and by 53% in narcoleptics (P REM sleep deprivation was successful in both controls (mean reduction of REM to 6% of baseline) and narcoleptics (11%). Both groups had a reduction of total sleep time during the deprivation nights (P = 0.03). Neither group had REM sleep rebound in the recovery night. Narcoleptics had, however, an increase in the number of SOREMs on MSLT (P = 0.005). There was no increase in the number of cataplexies after selective REM sleep deprivation. We conclude that: (i) REM sleep pressure is higher in narcoleptics; (ii) REM sleep homeostasis is similar in narcoleptics and controls; (iii) in narcoleptics selective REM sleep deprivation may have an effect on sleep propensity but not on cataplexy.

  4. Mechanisms of REM sleep in health and disease.

    Science.gov (United States)

    Fraigne, Jimmy J; Grace, Kevin P; Horner, Richard L; Peever, John

    2014-11-01

    Our understanding of rapid eye movement (REM) sleep and how it is generated remains a topic of debate. Understanding REM sleep mechanisms is important because several sleep disorders result from disturbances in the neural circuits that control REM sleep and its characteristics. This review highlights recent work concerning how the central nervous system regulates REM sleep, and how the make up and breakdown of these REM sleep-generating circuits contribute to narcolepsy, REM sleep behaviour disorder and sleep apnea. A complex interaction between brainstem REM sleep core circuits and forebrain and hypothalamic structures is necessary to generate REM sleep. Cholinergic activation and GABAergic inhibition trigger the activation of subcoeruleus neurons, which form the core of the REM sleep circuit. Untimely activation of REM sleep circuits leads to cataplexy - involuntary muscle weakness or paralysis - a major symptom of narcolepsy. Degeneration of the REM circuit is associated with excessive muscle activation in REM sleep behaviour disorder. Inappropriate arousal from sleep during obstructive sleep apnea repeatedly disturbs the activity of sleep circuits, particularly the REM sleep circuit.

  5. Persistence in eye movement during visual search

    Science.gov (United States)

    Amor, Tatiana A.; Reis, Saulo D. S.; Campos, Daniel; Herrmann, Hans J.; Andrade, José S.

    2016-02-01

    As any cognitive task, visual search involves a number of underlying processes that cannot be directly observed and measured. In this way, the movement of the eyes certainly represents the most explicit and closest connection we can get to the inner mechanisms governing this cognitive activity. Here we show that the process of eye movement during visual search, consisting of sequences of fixations intercalated by saccades, exhibits distinctive persistent behaviors. Initially, by focusing on saccadic directions and intersaccadic angles, we disclose that the probability distributions of these measures show a clear preference of participants towards a reading-like mechanism (geometrical persistence), whose features and potential advantages for searching/foraging are discussed. We then perform a Multifractal Detrended Fluctuation Analysis (MF-DFA) over the time series of jump magnitudes in the eye trajectory and find that it exhibits a typical multifractal behavior arising from the sequential combination of saccades and fixations. By inspecting the time series composed of only fixational movements, our results reveal instead a monofractal behavior with a Hurst exponent , which indicates the presence of long-range power-law positive correlations (statistical persistence). We expect that our methodological approach can be adopted as a way to understand persistence and strategy-planning during visual search.

  6. Role of norepinephrine in the regulation of rapid eye movement sleep

    Indian Academy of Sciences (India)

    Birendra N Mallick; Sudipta Majumdar; Mohd Faisal; Vikas Yadav; Vibha Madan; Dinesh Pal

    2002-09-01

    Sleep and wakefulness are instinctive behaviours that are present across the animal species. Rapid eye movement (REM) sleep is a unique biological phenomenon expressed during sleep. It evolved about 300 million years ago and is noticed in the more evolved animal species. Although it has been objectively identified in its present characteristic form about half a century ago, the mechanics of how REM is generated, and what happens upon its loss are not known. Nevertheless, extensive research has shown that norepinephrine plays a crucial role in its regulation. The present knowledge that has been reviewed in this manuscript suggests that neurons in the brain stem are responsible for controlling this state and presence of excess norepinephrine in the brain does not allow its generation. Furthermore, REM sleep loss increases levels of norepinephrine in the brain that affects several factors including an increase in Na-K ATPase activity. It has been argued that such increased norepinephrine is ultimately responsible for REM sleep deprivation, associated disturbances in at least some of the physiological conditions leading to alteration in behavioural expression and settling into pathological conditions.

  7. Short REM latency in impotence without depression.

    Science.gov (United States)

    Schmidt, H S; Nofzinger, E A

    1988-05-01

    In a retrospective study, the presence of depression was studied in a group of 14 impotent patients who were selected on the basis of the similarity between their electroencephalographic (EEG) sleep patterns and those of patients with endogenous depression. Specifically, the value of rapid eye movement (REM) latency plus age less than 100 was used as a selection criterion. Sleep continuity disturbances, increased REM time, and increased REM% were noted in the short REM latency impotent group. On the basis of MMPI and psychiatric history and interview, only one of these impotent patients showed major depression. The authors conclude that impotent patients with a short REM latency are not, as a group, depressed and that the incidence of depression in impotent men should be determined irrespective of EEG sleep findings.

  8. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep.

    Science.gov (United States)

    Van Dort, Christa J; Zachs, Daniel P; Kenny, Jonathan D; Zheng, Shu; Goldblum, Rebecca R; Gelwan, Noah A; Ramos, Daniel M; Nolan, Michael A; Wang, Karen; Weng, Feng-Ju; Lin, Yingxi; Wilson, Matthew A; Brown, Emery N

    2015-01-13

    Rapid eye movement (REM) sleep is an important component of the natural sleep/wake cycle, yet the mechanisms that regulate REM sleep remain incompletely understood. Cholinergic neurons in the mesopontine tegmentum have been implicated in REM sleep regulation, but lesions of this area have had varying effects on REM sleep. Therefore, this study aimed to clarify the role of cholinergic neurons in the pedunculopontine tegmentum (PPT) and laterodorsal tegmentum (LDT) in REM sleep generation. Selective optogenetic activation of cholinergic neurons in the PPT or LDT during non-REM (NREM) sleep increased the number of REM sleep episodes and did not change REM sleep episode duration. Activation of cholinergic neurons in the PPT or LDT during NREM sleep was sufficient to induce REM sleep.

  9. Quantitative linking hypotheses for infant eye movements.

    Directory of Open Access Journals (Sweden)

    Daniel Yurovsky

    Full Text Available The study of cognitive development hinges, largely, on the analysis of infant looking. But analyses of eye gaze data require the adoption of linking hypotheses: assumptions about the relationship between observed eye movements and underlying cognitive processes. We develop a general framework for constructing, testing, and comparing these hypotheses, and thus for producing new insights into early cognitive development. We first introduce the general framework--applicable to any infant gaze experiment--and then demonstrate its utility by analyzing data from a set of experiments investigating the role of attentional cues in infant learning. The new analysis uncovers significantly more structure in these data, finding evidence of learning that was not found in standard analyses and showing an unexpected relationship between cue use and learning rate. Finally, we discuss general implications for the construction and testing of quantitative linking hypotheses. MATLAB code for sample linking hypotheses can be found on the first author's website.

  10. Eye movements in ataxia-telangiectasia.

    Science.gov (United States)

    Baloh, R W; Yee, R D; Boder, E

    1978-11-01

    The spectrum of eye movement disorders in six patients with ataxia-telangiectasia at different stages of progression was assessed quantitatively by electrooculography. All patients demonstrated abnormalities of voluntary and involuntary saccades. The youngest and least involved patient had significantly increased reaction times of voluntary saccades, but normal accuracy and velocity. The other patients demonstrated increased reaction times and marked hypometria of horizontal and vertical voluntary saccades. Saccade velocity remained normal. Vestibular and optokinetic fast components (involuntary saccades) had normal amplitude and velocity but the eyes deviated tonically in the direction of the slow component. We conclude that patients with ataxia-telangiectasia have a defect in the initiation of voluntary and involuntary saccades in the earliest stages. These findings are distinctly different from those in other familial cerebellar atrophy syndromes.

  11. Eye Movements and Visual Search: A Bibliography,

    Science.gov (United States)

    1983-01-01

    0D, rOK 221 Feinstein, R.; Williams , W.J. An al.orithmic nodel for aspects of visual information processing and eye movements. Proceedings of the 23rd...RR-4-SER-B, 7-3, June 1981. INS, RED 320 Hochberg, J. Components of literacy: speculations and exploratory research. In H. Levin & J.P. Williams (Eds...selection accuracy and exgosure in visual search. Perception, 1975, 4, 411-41. VIS, TAC, REC 652 Spady , Jr.; A.A. Airline pilots’ scan behaviour

  12. Analyzing Head and Eye Movement System with CORBA

    Directory of Open Access Journals (Sweden)

    Wang Changyuan

    2013-11-01

    Full Text Available In order to study the vestibular system in different organs of movement as well as their collaboration between working mechanism, this paper designs a model of the common object request broker architecture (CORBA for the head and eye movement system based on the vestibular function. By analyzing physiological characteristics of the head and eye movement model, and further introducing the structure features of CORBA. It focus on the component composition and the model design of CORBA components library. According to the physiology work model of head and eye movement, the CORBA model of head and eye movement is established. As well as the structure of the model is designed in real application of head and eye movement measurement system. This paper provides a new way to research the head and eye movement system through using mathematical modeling and application structure which is based on vestibular function.    

  13. Loss of REM sleep features across nighttime in REM sleep behavior disorder

    OpenAIRE

    Arnaldi, Dario; Latimier, Alice; Leu-Semenescu, Smaranda; VIDAILHET, Marie; Arnulf, Isabelle

    2016-01-01

    International audience; ObjectivesMelatonin is a chronobiotic treatment which also alleviates rapid eye movement (REM) sleep behavior disorder (RBD). Because the mechanisms of this benefit are unclear, we evaluated the clock-dependent REM sleep characteristics in patients with RBD, whether idiopathic (iRBD) or associated with Parkinson's Disease (PD), and we compared findings with PD patients without RBD and with healthy subjects.MethodsAn overnight videopolysomnography was performed in ten i...

  14. Eye movement-invariant representations in the human visual system.

    Science.gov (United States)

    Nishimoto, Shinji; Huth, Alexander G; Bilenko, Natalia Y; Gallant, Jack L

    2017-01-01

    During natural vision, humans make frequent eye movements but perceive a stable visual world. It is therefore likely that the human visual system contains representations of the visual world that are invariant to eye movements. Here we present an experiment designed to identify visual areas that might contain eye-movement-invariant representations. We used functional MRI to record brain activity from four human subjects who watched natural movies. In one condition subjects were required to fixate steadily, and in the other they were allowed to freely make voluntary eye movements. The movies used in each condition were identical. We reasoned that the brain activity recorded in a visual area that is invariant to eye movement should be similar under fixation and free viewing conditions. In contrast, activity in a visual area that is sensitive to eye movement should differ between fixation and free viewing. We therefore measured the similarity of brain activity across repeated presentations of the same movie within the fixation condition, and separately between the fixation and free viewing conditions. The ratio of these measures was used to determine which brain areas are most likely to contain eye movement-invariant representations. We found that voxels located in early visual areas are strongly affected by eye movements, while voxels in ventral temporal areas are only weakly affected by eye movements. These results suggest that the ventral temporal visual areas contain a stable representation of the visual world that is invariant to eye movements made during natural vision.

  15. Eye movements in ephedrone-induced parkinsonism.

    Directory of Open Access Journals (Sweden)

    Cecilia Bonnet

    Full Text Available Patients with ephedrone parkinsonism (EP show a complex, rapidly progressive, irreversible, and levodopa non-responsive parkinsonian and dystonic syndrome due to manganese intoxication. Eye movements may help to differentiate parkinsonian syndromes providing insights into which brain networks are affected in the underlying disease, but they have never been systematically studied in EP. Horizontal and vertical eye movements were recorded in 28 EP and compared to 21 Parkinson's disease (PD patients, and 27 age- and gender-matched healthy subjects using standardized oculomotor tasks with infrared videooculography. EP patients showed slow and hypometric horizontal saccades, an increased occurrence of square wave jerks, long latencies of vertical antisaccades, a high error rate in the horizontal antisaccade task, and made more errors than controls when pro- and antisaccades were mixed. Based on oculomotor performance, a direct differentiation between EP and PD was possible only by the velocity of horizontal saccades. All remaining metrics were similar between both patient groups. EP patients present extensive oculomotor disturbances probably due to manganese-induced damage to the basal ganglia, reflecting their role in oculomotor system.

  16. Improvement of Reading Speed and Eye Movements

    Directory of Open Access Journals (Sweden)

    Kenji Yokoi

    2011-05-01

    Full Text Available Although many studies have examined eye movements in reading, little is known which factors differentiate slow and fast readers. Recently, Rayner et al. (2010 reported that fast readers had a larger effective visual field than did slow readers by using the gaze-contingent window method. The fast readers they selected, however, may have acquired better attentional skills inherently or through long experience, and this visual superiority would improve reading performance. To clarify this issue, we investigated eye movements in reading while practicing speed reading. Participants (approx. 600 letters per minute in Japanese exercised speed reading programs for half an hour per day for about 30 days. Reading performance of Japanese editorial articles was recorded every five days of training by the gaze-contingent window method. Our results showed that the size of the effective visual field did not increase in the same manner as reading speed (up to 1000 lpm. Instead, we found that saccadic length became longer and less varied. Fixation duration and the number of regressions were also reduced. These findings suggest that efficiency of comprehension at a single gaze may be the important factor for reading speed.

  17. Saccadic Eye Movements in Anorexia Nervosa.

    Science.gov (United States)

    Phillipou, Andrea; Rossell, Susan Lee; Gurvich, Caroline; Hughes, Matthew Edward; Castle, David Jonathan; Nibbs, Richard Grant; Abel, Larry Allen

    2016-01-01

    Anorexia Nervosa (AN) has a mortality rate among the highest of any mental illness, though the factors involved in the condition remain unclear. Recently, the potential neurobiological underpinnings of the condition have become of increasing interest. Saccadic eye movement tasks have proven useful in our understanding of the neurobiology of some other psychiatric illnesses as they utilise known brain regions, but to date have not been examined in AN. The aim of this study was to investigate whether individuals with AN differ from healthy individuals in performance on a range of saccadic eye movements tasks. 24 females with AN and 25 healthy individuals matched for age, gender and premorbid intelligence participated in the study. Participants were required to undergo memory-guided and self-paced saccade tasks, and an interleaved prosaccade/antisaccade/no-go saccade task while undergoing functional magnetic resonance imaging (fMRI). AN participants were found to make prosaccades of significantly shorter latency than healthy controls. AN participants also made an increased number of inhibitory errors on the memory-guided saccade task. Groups did not significantly differ in antisaccade, no-go saccade or self-paced saccade performance, or fMRI findings. The results suggest a potential role of GABA in the superior colliculus in the psychopathology of AN.

  18. Saccadic Eye Movements in Anorexia Nervosa.

    Directory of Open Access Journals (Sweden)

    Andrea Phillipou

    Full Text Available Anorexia Nervosa (AN has a mortality rate among the highest of any mental illness, though the factors involved in the condition remain unclear. Recently, the potential neurobiological underpinnings of the condition have become of increasing interest. Saccadic eye movement tasks have proven useful in our understanding of the neurobiology of some other psychiatric illnesses as they utilise known brain regions, but to date have not been examined in AN. The aim of this study was to investigate whether individuals with AN differ from healthy individuals in performance on a range of saccadic eye movements tasks.24 females with AN and 25 healthy individuals matched for age, gender and premorbid intelligence participated in the study. Participants were required to undergo memory-guided and self-paced saccade tasks, and an interleaved prosaccade/antisaccade/no-go saccade task while undergoing functional magnetic resonance imaging (fMRI.AN participants were found to make prosaccades of significantly shorter latency than healthy controls. AN participants also made an increased number of inhibitory errors on the memory-guided saccade task. Groups did not significantly differ in antisaccade, no-go saccade or self-paced saccade performance, or fMRI findings.The results suggest a potential role of GABA in the superior colliculus in the psychopathology of AN.

  19. Cerebral O2 metabolism and cerebral blood flow in humans during deep and rapid-eye-movement sleep

    DEFF Research Database (Denmark)

    Madsen, P L; Schmidt, J F; Wildschiødtz, Gordon

    1991-01-01

    It could be expected that the various stages of sleep were reflected in variation of the overall level of cerebral activity and thereby in the magnitude of cerebral metabolic rate of oxygen (CMRO2) and cerebral blood flow (CBF). The elusive nature of sleep imposes major methodological restrictions...... on examination of this question. We have now measured CBF and CMRO2 in young healthy volunteers using the Kety-Schmidt technique with 133Xe as the inert gas. Measurements were performed during wakefulness, deep sleep (stage 3/4), and rapid-eye-movement (REM) sleep as verified by standard polysomnography...... associated with light anesthesia. During REM sleep (dream sleep) CMRO2 was practically the same as in the awake state. Changes in CBF paralleled changes in CMRO2 during both deep and REM sleep....

  20. Vasoactive intestinal polypeptide excites medial pontine reticular formation neurons in the brainstem rapid eye movement sleep-induction zone

    DEFF Research Database (Denmark)

    Kohlmeier, Kristi Anne; Reiner, P B

    1999-01-01

    Although it has long been known that microinjection of the cholinergic agonist carbachol into the medial pontine reticular formation (mPRF) induces a state that resembles rapid eye movement (REM) sleep, it is likely that other transmitters contribute to mPRF regulation of behavioral states. A key...... candidate is the peptide vasoactive intestinal polypeptide (VIP), which innervates the mPRF and induces REM sleep when injected into this region of the brainstem. To begin understanding the cellular mechanisms underlying this phenomenon, we examined the effects of VIP on mPRF cells using whole-cell patch...... conclude that VIP excites mPRF neurons by activation of a sodium current. This effect is mediated at least in part by G-protein stimulation of adenylyl cyclase, cAMP, and protein kinase A. These data suggest that VIP may play a physiological role in REM induction by its actions on mPRF neurons....

  1. Eye movement identification based on accumulated time feature

    Science.gov (United States)

    Guo, Baobao; Wu, Qiang; Sun, Jiande; Yan, Hua

    2017-06-01

    Eye movement is a new kind of feature for biometrical recognition, it has many advantages compared with other features such as fingerprint, face, and iris. It is not only a sort of static characteristics, but also a combination of brain activity and muscle behavior, which makes it effective to prevent spoofing attack. In addition, eye movements can be incorporated with faces, iris and other features recorded from the face region into multimode systems. In this paper, we do an exploring study on eye movement identification based on the eye movement datasets provided by Komogortsev et al. in 2011 with different classification methods. The time of saccade and fixation are extracted from the eye movement data as the eye movement features. Furthermore, the performance analysis was conducted on different classification methods such as the BP, RBF, ELMAN and SVM in order to provide a reference to the future research in this field.

  2. Spatial and Reversal Learning in the Morris Water Maze Are Largely Resistant to Six Hours of REM Sleep Deprivation Following Training

    Science.gov (United States)

    Walsh, Christine M.; Booth, Victoria; Poe, Gina R.

    2011-01-01

    This first test of the role of REM (rapid eye movement) sleep in reversal spatial learning is also the first attempt to replicate a much cited pair of papers reporting that REM sleep deprivation impairs the consolidation of initial spatial learning in the Morris water maze. We hypothesized that REM sleep deprivation following training would impair…

  3. Spatial and Reversal Learning in the Morris Water Maze Are Largely Resistant to Six Hours of REM Sleep Deprivation Following Training

    Science.gov (United States)

    Walsh, Christine M.; Booth, Victoria; Poe, Gina R.

    2011-01-01

    This first test of the role of REM (rapid eye movement) sleep in reversal spatial learning is also the first attempt to replicate a much cited pair of papers reporting that REM sleep deprivation impairs the consolidation of initial spatial learning in the Morris water maze. We hypothesized that REM sleep deprivation following training would impair…

  4. Dopamine agonist suppression of rapid-eye-movement sleep is secondary to sleep suppression mediated via limbic structures

    Energy Technology Data Exchange (ETDEWEB)

    Miletich, R.S.

    1985-01-01

    The effects of pergolide, a direct dopamine receptor agonist, on sleep and wakefulness, motor behavior and /sup 3/H-spiperone specific binding in limbic structures and striatum in rats was studied. The results show that pergolide induced a biphasic dose effect, with high doses increasing wakefulness and suppressing sleep while low dose decreased wakefulness, but increased sleep. It was shown that pergolide-induced sleep suppression was blocked by ..cap alpha..-glupenthixol and pimozide, two dopamine receptor antagonists. It was further shown that pergolide merely delayed the rebound resulting from rapid-eye-movement (REM) sleep deprivation, that dopamine receptors stimulation had no direct effect on the period, phase or amplitude of the circadian rhythm of REM sleep propensity and that there was no alteration in the coupling of REM sleep episodes with S/sub 2/ episodes. Rapid-eye-movement sleep deprivation resulted in increased sensitivity to the pergolide-induced wakefulness stimulation and sleep suppression and pergolide-induced motor behaviors of locomotion and head bobbing. /sup 3/H-spiperone specific binding to dopamine receptors was shown to be altered by REM sleep deprivation in the subcortical limbic structures. It is concluded that the REM sleep suppressing action of dopamine receptor stimulation is secondary to sleep suppression per se and not secondary to a unique effect on the REM sleep. Further, it is suggested that the wakefulness stimulating action of dopamine receptor agonists is mediated by activation of the dopamine receptors in the terminal areas of the mesolimbocortical dopamine projection system.

  5. The Recording of Eye-movements during Sleep

    Institute of Scientific and Technical Information of China (English)

    赵明

    2005-01-01

    An American scientist named William Dement published experiments dealing with the recording of eye -movements during sleep.He showed that the common person's sleep is interrupted from time to time by special eye-movements,some floating and slow,others quick and rapid.People woken during these periods of eye-movements generally reported that they had been dreaming. When woken at other times they reported no dreams.

  6. Revisiting the relationship between hand preference and lateral eye movement

    OpenAIRE

    Indiwar Misra; Damodar Suar; Manas K. Mandal

    2010-01-01

    The study examines the relationship between hand preference and conjugate lateral eye movements. The sample comprised of 224 persons. The hand preference was assessed using a handedness inventory. Conjugate lateral eye movements were elicited in response to verbal and spatial questions among left-, mixed- and right-handers. The left- and mixed-handers exhibit significantly greater number of conjugate lateral eye movements than the right-handers. On the verbal task, right-handers exhibit right...

  7. REM sleep dysregulation in depression: state of the art.

    Science.gov (United States)

    Palagini, Laura; Baglioni, Chiara; Ciapparelli, Antonio; Gemignani, Angelo; Riemann, Dieter

    2013-10-01

    Disturbances of sleep are typical for most depressed patients and belong to the core symptoms of the disorder. Since the 1960s polysomnographic sleep research has demonstrated that besides disturbances of sleep continuity, depression is associated with altered sleep architecture, i.e., a decrease in slow wave sleep (SWS) production and disturbed rapid eye movement (REM) sleep regulation. Shortened REM latency (i.e., the interval between sleep onset and the occurrence of the first REM period), increased REM sleep duration and increased REM density (i.e., the frequency of rapid eye movements per REM period) have been considered as biological markers of depression which might predict relapse and recurrence. High risk studies including healthy relatives of patients with depression demonstrate that REM sleep alterations may precede the clinical expression of depression and may thus be useful in identifying subjects at high risk for the illness. Several models have been developed to explain REM sleep abnormalities in depression, like the cholinergic-aminergic imbalance model or chronobiologically inspired theories, which are reviewed in this overview. Moreover, REM sleep alterations have been recently considered not only as biological "scars" but as true endophenotypes of depression. This review discusses the genetic, neurochemical and neurobiological factors that have been implicated to play a role in the complex relationships between REM sleep and depression. We hypothesize on the one hand that REM sleep dysregulation in depression may be linked to a genetic predisposition/vulnerability to develop the illness; on the other hand it is conceivable that REM sleep disinhibition in itself is a part of a maladaptive stress reaction with increased allostatic load. We also discuss whether the REM sleep changes in depression may contribute themselves to the development of central symptoms of depression such as cognitive distortions including negative self-esteem and the

  8. Essential roles of GABA transporter-1 in controlling rapid eye movement sleep and in increased slow wave activity after sleep deprivation.

    Directory of Open Access Journals (Sweden)

    Xin-Hong Xu

    Full Text Available GABA is the major inhibitory neurotransmitter in the mammalian central nervous system that has been strongly implicated in the regulation of sleep. GABA transporter subtype 1 (GAT1 constructs high affinity reuptake sites for GABA and regulates GABAergic transmission in the brain. However, the role of GAT1 in sleep-wake regulation remains elusive. In the current study, we characterized the spontaneous sleep-wake cycle and responses to sleep deprivation in GAT1 knock-out (KO mice. GAT1 KO mice exhibited dominant theta-activity and a remarkable reduction of EEG power in low frequencies across all vigilance stages. Under baseline conditions, spontaneous rapid eye movement (REM sleep of KO mice was elevated both during the light and dark periods, and non-REM (NREM sleep was reduced during the light period only. KO mice also showed more state transitions from NREM to REM sleep and from REM sleep to wakefulness, as well as more number of REM and NREM sleep bouts than WT mice. During the dark period, KO mice exhibited more REM sleep bouts only. Six hours of sleep deprivation induced rebound increases in NREM and REM sleep in both genotypes. However, slow wave activity, the intensity component of NREM sleep was briefly elevated in WT mice but remained completely unchanged in KO mice, compared with their respective baselines. These results indicate that GAT1 plays a critical role in the regulation of REM sleep and homeostasis of NREM sleep.

  9. Essential roles of GABA transporter-1 in controlling rapid eye movement sleep and in increased slow wave activity after sleep deprivation.

    Science.gov (United States)

    Xu, Xin-Hong; Qu, Wei-Min; Bian, Min-Juan; Huang, Fang; Fei, Jian; Urade, Yoshihiro; Huang, Zhi-Li

    2013-01-01

    GABA is the major inhibitory neurotransmitter in the mammalian central nervous system that has been strongly implicated in the regulation of sleep. GABA transporter subtype 1 (GAT1) constructs high affinity reuptake sites for GABA and regulates GABAergic transmission in the brain. However, the role of GAT1 in sleep-wake regulation remains elusive. In the current study, we characterized the spontaneous sleep-wake cycle and responses to sleep deprivation in GAT1 knock-out (KO) mice. GAT1 KO mice exhibited dominant theta-activity and a remarkable reduction of EEG power in low frequencies across all vigilance stages. Under baseline conditions, spontaneous rapid eye movement (REM) sleep of KO mice was elevated both during the light and dark periods, and non-REM (NREM) sleep was reduced during the light period only. KO mice also showed more state transitions from NREM to REM sleep and from REM sleep to wakefulness, as well as more number of REM and NREM sleep bouts than WT mice. During the dark period, KO mice exhibited more REM sleep bouts only. Six hours of sleep deprivation induced rebound increases in NREM and REM sleep in both genotypes. However, slow wave activity, the intensity component of NREM sleep was briefly elevated in WT mice but remained completely unchanged in KO mice, compared with their respective baselines. These results indicate that GAT1 plays a critical role in the regulation of REM sleep and homeostasis of NREM sleep.

  10. Blockade of GABA, type A, receptors in the rat pontine reticular formation induces rapid eye movement sleep that is dependent upon the cholinergic system.

    Science.gov (United States)

    Marks, G A; Sachs, O W; Birabil, C G

    2008-09-22

    The brainstem reticular formation is an area important to the control of rapid eye movement (REM) sleep. The antagonist of GABA-type A (GABA(A)) receptors, bicuculline methiodide (BMI), injected into the rat nucleus pontis oralis (PnO) of the reticular formation resulted in a long-lasting increase in REM sleep. Thus, one factor controlling REM sleep appears to be the number of functional GABA(A) receptors in the PnO. The long-lasting effect produced by BMI may result from secondary influences on other neurotransmitter systems known to have long-lasting effects. To study this question, rats were surgically prepared for chronic sleep recording and additionally implanted with guide cannulas aimed at sites in the PnO. Multiple, 60 nl, unilateral injections were made either singly or in combination. GABA(A) receptor antagonists, BMI and gabazine (GBZ), produced dose-dependent increases in REM sleep with GBZ being approximately 35 times more potent than BMI. GBZ and the cholinergic agonist, carbachol, produced very similar results, both increasing REM sleep for about 8 h, mainly through increased period frequency, with little reduction in REM latency. Pre-injection of the muscarinic antagonist, atropine, completely blocked the REM sleep-increase by GBZ. GABAergic control of REM sleep in the PnO requires the cholinergic system and may be acting through presynaptic modulation of acetylcholine release.

  11. Selective Rapid Eye Movement Sleep Deprivation Affects Cell Size and Number in Kitten Locus Coeruleus

    Directory of Open Access Journals (Sweden)

    James P Shaffery

    2012-05-01

    Full Text Available Cells in the locus coeruleus (LC constitute the sole source of norepinephrine (NE in the brain, and change their discharge rates according to vigilance state. In addition to its well established role in vigilance, NE affects synaptic plasticity in the postnatal critical period (CP of development. One form of CP synaptic plasticity affected by NE results from monocular occlusion, which leads to physiological and cytoarchitectural alterations in central visual areas. Selective suppression of rapid eye movement sleep (REMS in the CP kitten enhances the central effects of monocular occlusion. The mechanisms responsible for heightened cortical plasticity following REMS deprivation (REMSD remain undetermined. One possible mediator of an increase in plasticity is continuous NE outflow, which presumably persists during extended periods of REMSD. Tyrosine hydroxylase (TH is the rate-limiting enzyme in the synthesis of NE and serves as a marker for NE-producing cells. We selectively suppressed REMS in kittens for one week during the CP. The number and size of LC cells expressing immunoreactivity to tyrosine hydroxylase (TH-ir was assessed in age-matched REMS-deprived (RD-, treatment-control (TXC-, and home cage-reared (HCC animals. Sleep amounts and slow wave activity (SWA were also examined relative to baseline. Time spent in REMS during the study was lower in RD compared to TXC animals, and RD kittens increased SWA delta power in the latter half of the REMSD period. The estimated total number of TH-ir cells in LC was significantly lower in the RD- than in the TXC kittens and numerically lower than in HCC animals. The size of LC cells expressing TH-ir was greatest in the HCC group. They were significantly larger than the cells in the RD kittens. These data are consistent with a possible reduction in NE in forebrain areas, including visual cortex, caused by one week of REMSD.

  12. Impaired Saccadic Eye Movement in Primary Open-angle Glaucoma

    DEFF Research Database (Denmark)

    Lamirel, Cédric; Milea, Dan; Cochereau, Isabelle

    2013-01-01

    PURPOSE:: Our study aimed at investigating the extent to which saccadic eye movements are disrupted in patients with primary open-angle glaucoma (POAG). This approach followed upon the discovery of differences in the eye-movement behavior of POAG patients during the exploration of complex visual...... scenes. METHODS:: The eye movements of 8 POAG patients and 4 healthy age-matched controls were recorded. Four of the patients had documented visual field scotoma, and 4 had no identifiable scotoma on visual field testing. The eye movements were monitored as the observers watched static and kinetic...

  13. Control of REM sleep by ventral medulla GABAergic neurons.

    Science.gov (United States)

    Weber, Franz; Chung, Shinjae; Beier, Kevin T; Xu, Min; Luo, Liqun; Dan, Yang

    2015-10-15

    Rapid eye movement (REM) sleep is a distinct brain state characterized by activated electroencephalogram and complete skeletal muscle paralysis, and is associated with vivid dreams. Transection studies by Jouvet first demonstrated that the brainstem is both necessary and sufficient for REM sleep generation, and the neural circuits in the pons have since been studied extensively. The medulla also contains neurons that are active during REM sleep, but whether they play a causal role in REM sleep generation remains unclear. Here we show that a GABAergic (γ-aminobutyric-acid-releasing) pathway originating from the ventral medulla powerfully promotes REM sleep in mice. Optogenetic activation of ventral medulla GABAergic neurons rapidly and reliably initiated REM sleep episodes and prolonged their durations, whereas inactivating these neurons had the opposite effects. Optrode recordings from channelrhodopsin-2-tagged ventral medulla GABAergic neurons showed that they were most active during REM sleep (REMmax), and during wakefulness they were preferentially active during eating and grooming. Furthermore, dual retrograde tracing showed that the rostral projections to the pons and midbrain and caudal projections to the spinal cord originate from separate ventral medulla neuron populations. Activating the rostral GABAergic projections was sufficient for both the induction and maintenance of REM sleep, which are probably mediated in part by inhibition of REM-suppressing GABAergic neurons in the ventrolateral periaqueductal grey. These results identify a key component of the pontomedullary network controlling REM sleep. The capability to induce REM sleep on command may offer a powerful tool for investigating its functions.

  14. Saccadic eye movement applications for psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Bittencourt J

    2013-09-01

    Med/Medline, ISI Web of Knowledge, Cochrane, and SciELO databases were reviewed. Results: Saccadic eye movement appears to be heavily involved in psychiatric diseases covered in this review via a direct mechanism. The changes seen in the execution of eye movement tasks in patients with psychopathologies of various studies confirm that eye movement is associated with the cognitive and motor system. Conclusion: Saccadic eye movement changes appear to be heavily involved in the psychiatric disorders covered in this review and may be considered a possible marker of some disorders. The few existing studies that approach the topic demonstrate a need to improve the experimental paradigms, as well as the methods of analysis. Most of them report behavioral variables (latency/reaction time, though electrophysiological measures are absent. Keywords: depression, bipolar disorder, attention-deficit hyperactivity disorder, schizophrenia, anxiety disorder

  15. Fixational eye movements predict visual sensitivity.

    Science.gov (United States)

    Scholes, Chris; McGraw, Paul V; Nyström, Marcus; Roach, Neil W

    2015-10-22

    During steady fixation, observers make small fixational saccades at a rate of around 1-2 per second. Presentation of a visual stimulus triggers a biphasic modulation in fixational saccade rate-an initial inhibition followed by a period of elevated rate and a subsequent return to baseline. Here we show that, during passive viewing, this rate signature is highly sensitive to small changes in stimulus contrast. By training a linear support vector machine to classify trials in which a stimulus is either present or absent, we directly compared the contrast sensitivity of fixational eye movements with individuals' psychophysical judgements. Classification accuracy closely matched psychophysical performance, and predicted individuals' threshold estimates with less bias and overall error than those obtained using specific features of the signature. Performance of the classifier was robust to changes in the training set (novel subjects and/or contrasts) and good prediction accuracy was obtained with a practicable number of trials. Our results indicate a tight coupling between the sensitivity of visual perceptual judgements and fixational eye control mechanisms. This raises the possibility that fixational saccades could provide a novel and objective means of estimating visual contrast sensitivity without the need for observers to make any explicit judgement.

  16. TMS pulses on the frontal eye fields break coupling between visuospatial attention and eye movements

    NARCIS (Netherlands)

    Neggers, S.F.W.; Huijbers, W.; Vrijlandt, C.M.; Vlaskamp, B.N.S.; Schutter, D.J.L.G.; Kenemans, J.L.

    2007-01-01

    While preparing a saccadic eye movement, visual processing of the saccade goal is prioritized. Here, we provide evidence that the frontal eye fields (FEFs) are responsible for this coupling between eye movements and shifts of visuospatial attention. Functional magnetic resonance imaging ( fMRI)-guid

  17. Pharmacologically induced/exacerbated restless legs syndrome, periodic limb movements of sleep, and REM behavior disorder/REM sleep without atonia: literature review, qualitative scoring, and comparative analysis.

    Science.gov (United States)

    Hoque, Romy; Chesson, Andrew L

    2010-02-15

    Pharmacologically induced/exacerbated restless legs syndrome (RLS), periodic limb movements in sleep (PLMS), and REM behavior disorder/REM sleep without atonia (RSWA) are increasingly recognized in clinical sleep medicine. A scoring system to evaluate the literature was created and implemented. The aim was to identify the evidence with the least amount of confound, allowing for more reliable determinations of iatrogenic etiology. Points were provided for the following criteria: manuscript type (abstract, peer-reviewed paper); population size studied (large retrospective study, small case series, case report); explicitly stated dosage timing; identification of peak symptoms related to time of medication administration (i.e., medication was ingested in the evening or at bedtime); initiation of a treatment plan; symptoms subsided or ceased with decreased dosage or drug discontinuation (for RLS articles only); negative personal history for RLS prior to use of the medication; exclusion of tobacco/alcohol/excessive caffeine use; exclusion of sleep disordered breathing by polysomnography (PSG); and PSG documentation of presence or absence of PLMS. For RLS and PLMS articles were also given points for the following criteria: each 2003 National Institutes of Health (NIH) RLS criteria met; exclusion of low serum ferritin; and exclusion of peripheral neuropathy by neurological examination. Thirty-two articles on drug-induced RLS, 6 articles on drug-induced PLMS, and 15 articles on drug-induced RBD/ RSWA were analyzed. Based on scores or = 10 are for the following drugs: bupropion, citalopram, fluoxetine, paroxetine, sertraline, and venlafaxine. Based on scores > or = 10 and/or trials of medication cessation, the strongest evidence for drug induced RBD/ RSWA is for the following drugs: clomipramine, selegiline, and phenelzine.

  18. Detection and removal of ocular artifacts from EEG signals for an automated REM sleep analysis.

    Science.gov (United States)

    Betta, Monica; Gemignani, Angelo; Landi, Alberto; Laurino, Marco; Piaggi, Paolo; Menicucci, Danilo

    2013-01-01

    Rapid eye movements (REMs) are a prominent feature of REM sleep, and their distribution and time density over the night represent important physiological and clinical parameters. At the same time, REMs produce substantial distortions on the electroencephalographic (EEG) signals, which strongly affect the significance of normal REM sleep quantitative study. In this work a new procedure for a complete and automated analysis of REM sleep is proposed, which includes both a REMs detection algorithm and an ocular artifact removal system. The two steps, based respectively on Wavelet Transform and adaptive filtering, are fully integrated and their performance is evaluated using REM simulated signals. Thanks to the integration with the detection algorithm, the proposed artifact removal system shows an enhanced accuracy in the recovering of the true EEG signal, compared to a system based on the adaptive filtering only. Finally the artifact removal system is applied to physiological data and an estimation of the actual distortion induced by REMs on EEG signals is supplied.

  19. Measuring miniature eye movements by means of a SQUID magnetometer

    NARCIS (Netherlands)

    Peters, M.J.; Dunajski, Z.; Meijzssen, T.E.M.; Breukink, E.W.; Wevers-Henke, J.J.

    1982-01-01

    A new technique to measure small eye movements is reported. The precise recording of human eye movements is necessary for research on visual fatigue induced by visual display units.1 So far all methods used have disadvantages: especially those which are sensitive or are rather painful.2,3 Our method

  20. Measuring miniature eye movements by means of a SQUID magnetometer

    NARCIS (Netherlands)

    Peters, M.J.; Dunajski, Z.; Meijzssen, T.E.M.; Breukink, E.W.; Wevers-Henke, J.J.

    1982-01-01

    A new technique to measure small eye movements is reported. The precise recording of human eye movements is necessary for research on visual fatigue induced by visual display units.1 So far all methods used have disadvantages: especially those which are sensitive or are rather painful.2,3 Our method

  1. Neurophysiological basis of rapid eye movement sleep behavior disorder: informing future drug development

    Directory of Open Access Journals (Sweden)

    Jennum P

    2016-04-01

    Full Text Available Poul Jennum, Julie AE Christensen, Marielle Zoetmulder Department of Clinical Neurophysiology, Faculty of Health Sciences, Danish Center for Sleep Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark Abstract: Rapid eye movement (REM sleep behavior disorder (RBD is a parasomnia characterized by a history of recurrent nocturnal dream enactment behavior and loss of skeletal muscle atonia and increased phasic muscle activity during REM sleep: REM sleep without atonia. RBD and associated comorbidities have recently been identified as one of the most specific and potentially sensitive risk factors for later development of any of the alpha-synucleinopathies: Parkinson’s disease, dementia with Lewy bodies, and other atypical parkinsonian syndromes. Several other sleep-related abnormalities have recently been identified in patients with RBD/Parkinson’s disease who experience abnormalities in sleep electroencephalographic frequencies, sleep–wake transitions, wake and sleep stability, occurrence and morphology of sleep spindles, and electrooculography measures. These findings suggest a gradual involvement of the brainstem and other structures, which is in line with the gradual involvement known in these disorders. We propose that these findings may help identify biomarkers of individuals at high risk of subsequent conversion to parkinsonism. Keywords: motor control, brain stem, hypothalamus, hypocretin

  2. Paroxysmal eye-head movements in Glut1 deficiency syndrome.

    Science.gov (United States)

    Pearson, Toni S; Pons, Roser; Engelstad, Kristin; Kane, Steven A; Goldberg, Michael E; De Vivo, Darryl C

    2017-04-25

    To describe a characteristic paroxysmal eye-head movement disorder that occurs in infants with Glut1 deficiency syndrome (Glut1 DS). We retrospectively reviewed the medical charts of 101 patients with Glut1 DS to obtain clinical data about episodic abnormal eye movements and analyzed video recordings of 18 eye movement episodes from 10 patients. A documented history of paroxysmal abnormal eye movements was found in 32/101 patients (32%), and a detailed description was available in 18 patients, presented here. Episodes started before age 6 months in 15/18 patients (83%), and preceded the onset of seizures in 10/16 patients (63%) who experienced both types of episodes. Eye movement episodes resolved, with or without treatment, by 6 years of age in 7/8 patients with documented long-term course. Episodes were brief (usually <5 minutes). Video analysis revealed that the eye movements were rapid, multidirectional, and often accompanied by a head movement in the same direction. Eye movements were separated by clear intervals of fixation, usually ranging from 200 to 800 ms. The movements were consistent with eye-head gaze saccades. These movements can be distinguished from opsoclonus by the presence of a clear intermovement fixation interval and the association of a same-direction head movement. Paroxysmal eye-head movements, for which we suggest the term aberrant gaze saccades, are an early symptom of Glut1 DS in infancy. Recognition of the episodes will facilitate prompt diagnosis of this treatable neurodevelopmental disorder. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  3. Eye Movement Trajectories and What They Tell Us

    NARCIS (Netherlands)

    Stigchel, van der S.

    2007-01-01

    The present thesis is concerned with how our eyes move trough space. Since the pioneering work of Yarbus it is known that the trajectories of the eyes can tell a great deal about the underlying cognitive processes. The current thesis is not just concerned with eye movement trajectories in general

  4. Acting without seeing: eye movements reveal visual processing without awareness.

    Science.gov (United States)

    Spering, Miriam; Carrasco, Marisa

    2015-04-01

    Visual perception and eye movements are considered to be tightly linked. Diverse fields, ranging from developmental psychology to computer science, utilize eye tracking to measure visual perception. However, this prevailing view has been challenged by recent behavioral studies. Here, we review converging evidence revealing dissociations between the contents of perceptual awareness and different types of eye movement. Such dissociations reveal situations in which eye movements are sensitive to particular visual features that fail to modulate perceptual reports. We also discuss neurophysiological, neuroimaging, and clinical studies supporting the role of subcortical pathways for visual processing without awareness. Our review links awareness to perceptual-eye movement dissociations and furthers our understanding of the brain pathways underlying vision and movement with and without awareness.

  5. Cutamesine Overcomes REM Sleep Deprivation-Induced Memory Loss : Relationship to Sigma-1 Receptor Occupancy

    NARCIS (Netherlands)

    Kuzhuppilly Ramakrishnan, Nisha; Schepers, Marianne; Luurtsema, Gert; Nyakas, Csaba J.; Elsinga, Philip H.; Ishiwata, Kiichi; Dierckx, Rudi A. J. O.; van Waarde, Aren

    2015-01-01

    Rapid eye movement (REM) sleep deprivation (SD) decreases cerebral sigma-1 receptor expression and causes cognitive deficits. Sigma-1 agonists are cognitive enhancers. Here, we investigate the effect of cutamesine treatment in the REM SD model. Sigma-1 receptor occupancy (RO) in the rat brain by cut

  6. Cutamesine Overcomes REM Sleep Deprivation-Induced Memory Loss : Relationship to Sigma-1 Receptor Occupancy

    NARCIS (Netherlands)

    Kuzhuppilly Ramakrishnan, Nisha; Schepers, Marianne; Luurtsema, Gert; Nyakas, Csaba J.; Elsinga, Philip H.; Ishiwata, Kiichi; Dierckx, Rudi A. J. O.; van Waarde, Aren

    Rapid eye movement (REM) sleep deprivation (SD) decreases cerebral sigma-1 receptor expression and causes cognitive deficits. Sigma-1 agonists are cognitive enhancers. Here, we investigate the effect of cutamesine treatment in the REM SD model. Sigma-1 receptor occupancy (RO) in the rat brain by

  7. Delayed saccadic eye movements in glaucoma

    Directory of Open Access Journals (Sweden)

    Kanjee R

    2012-11-01

    Full Text Available Raageen Kanjee,1 Yeni H Yücel,1,2 Martin J Steinbach,3,4 Esther G González,3,4 Neeru Gupta1,2,51Ophthalmology and Vision Sciences, Laboratory Medicine and Pathobiology, St Michael's Hospital, University of Toronto, 2Keenan Research Centre at the Li Ka Shing Knowledge Institute of St Michael's Hospital, 3Toronto Western Hospital, University Health Network, 4Centre for Vision Research, York University, 5Glaucoma and Nerve Protection Unit, St Michael's Hospital, Toronto, ON, CanadaPurpose: To determine whether saccadic eye movements are altered in glaucoma patients.Patients and methods: Sixteen patients with glaucoma and 21 control subjects were prospectively studied. Patients participated in a pro-saccade step task. Saccades were recorded using a noninvasive infrared oculometric device with head-mounted target projection. Medians of saccade reaction time, duration, amplitude, and peak velocity; frequency of express saccades; and percentage of trials with direction error were recorded. t-tests were used to compare the glaucoma and age-matched control groups. A correlation analysis of saccade parameters with visual field loss was also performed.Results: Median saccade reaction times were significantly prolonged in glaucoma patients compared with controls (220.9 ± 49.02 ms vs 192.1 ± 31.24 ms; t-test: P = 0.036. Median duration, median amplitude, and median peak velocity of saccades did not show significant differences between glaucoma and control groups (P > 0.05. Frequency of express saccades was significantly decreased in glaucoma patients compared with controls (1.75 ± 2.32 vs 7.0 ± 6.99; t-test: P = 0.007. Saccade parameters in glaucoma patients showed no significant correlation with visual field loss.Conclusion: Saccadic eye movements are significantly delayed in patients with early, moderate, or advanced glaucoma. Determination of median saccade reaction time may offer a novel functional test to quantify visual function in glaucoma

  8. The Eyes Have It: Hippocampal Activity Predicts Expression of Memory in Eye Movements

    National Research Council Canada - National Science Library

    Hannula, Deborah E; Ranganath, Charan

    2009-01-01

    ...) with concurrent indirect, eye-movement-based memory measures, we obtained evidence that hippocampal activity predicted expressions of relational memory in subsequent patterns of viewing, even when...

  9. Evaluating the evidence surrounding pontine cholinergic involvement in REM sleep generation

    Directory of Open Access Journals (Sweden)

    Kevin P Grace

    2015-09-01

    Full Text Available Rapid eye movement (REM sleep - characterized by vivid dreaming, motor paralysis, and heightened neural activity - is one of the fundamental states of the mammalian central nervous system. Initial theories of rapid eye movement (REM sleep generation posited that induction of the state required activation of the ‘pontine REM sleep generator’ by cholinergic inputs. Here we review and evaluate the evidence surrounding cholinergic involvement in REM sleep generation. We submit that: (i the capacity of pontine cholinergic neurotransmission to generate REM sleep has been firmly established by gain-of-function experiments, (ii the function of endogenous cholinergic input to REM sleep generating sites cannot be determined by gain-of-function experiments; rather, loss-of-function studies are required, (iii loss-of-function studies show that endogenous cholinergic input to the PFT is not required for REM sleep generation, and (iv Cholinergic input to the pontine REM sleep generating sites serve an accessory role in REM sleep generation: reinforcing non-REM-to-REM sleep transitions making them quicker and less likely to fail.

  10. Analyzing Head and Eye Movement System with CORBA

    OpenAIRE

    Wang Changyuan; Zhang Jing; Chen YuLong

    2013-01-01

    In order to study the vestibular system in different organs of movement as well as their collaboration between working mechanism, this paper designs a model of the common object request broker architecture (CORBA) for the head and eye movement system based on the vestibular function. By analyzing physiological characteristics of the head and eye movement model, and further introducing the structure features of CORBA. It focus on the component composition and the model design of CORBA compon...

  11. Translational evaluation of JNJ-18038683, a 5-hydroxytryptamine type 7 receptor antagonist, on rapid eye movement sleep and in major depressive disorder.

    Science.gov (United States)

    Bonaventure, Pascal; Dugovic, Christine; Kramer, Michelle; De Boer, Peter; Singh, Jaskaran; Wilson, Sue; Bertelsen, Kirk; Di, Jianing; Shelton, Jonathan; Aluisio, Leah; Dvorak, Lisa; Fraser, Ian; Lord, Brian; Nepomuceno, Diane; Ahnaou, Abdellah; Drinkenburg, Wilhelmus; Chai, Wenying; Dvorak, Curt; Sands, Steve; Carruthers, Nicholas; Lovenberg, Timothy W

    2012-08-01

    In rodents 5-hydroxytryptamine type 7 (5-HT(7)) receptor blockade has been shown to be effective in models of depression and to increase the latency to rapid eye movement (REM) sleep and decrease REM duration. In the clinic, the REM sleep reduction observed with many antidepressants may serve as a biomarker. We report here the preclinical and clinical evaluation of a 5-HT(7) receptor antagonist, (3-(4-chlorophenyl)-1,4,5,6,7,8-hexahydro-1-(phenylmethyl)pyrazolo[3,4-d]azepine 2-hydroxy-1,2,3-propanetricarboxylate) (JNJ-18038683). In rodents, JNJ-18038683 increased the latency to REM sleep and decreased REM duration, and this effect was maintained after repeated administration for 7 days. The compound was effective in the mouse tail suspension test. JNJ-18038683 enhanced serotonin transmission, antidepressant-like behavior, and REM sleep suppression induced by citalopram in rodents. In healthy human volunteers JNJ-18038683 prolonged REM latency and reduced REM sleep duration, demonstrating that the effect of 5-HT(7) blockade on REM sleep translated from rodents to humans. Like in rats, JNJ-18038683 enhanced REM sleep suppression induced by citalopram in humans, although a drug-drug interaction could not be ruled out. In a double-blind, active, and placebo-controlled clinical trial in 225 patients suffering from major depressive disorder, neither treatment with pharmacologically active doses of JNJ-18038683 or escitalopram separated from placebo, indicating a failed study lacking assay sensitivity. Post hoc analyses using an enrichment window strategy, where all the efficacy data from sites with an implausible high placebo response [placebo group Montgomery-Åsberg Depression Rating Scale (MADRS) = 28) are removed, there was a clinically meaningful difference between JNJ-18038683 and placebo. Further clinical studies are required to characterize the potential antidepressant efficacy of JNJ-18038683.

  12. REM sleep Behaviour Disorder.

    Science.gov (United States)

    Ferini-Strambi, Luigi; Rinaldi, Fabrizio; Giora, Enrico; Marelli, Sara; Galbiati, Andrea

    2016-01-01

    Rapid Eye Movement (REM) sleep Behaviour Disorder (RBD) is a REM sleep parasomnia characterized by loss of the muscle atonia that typically occurs during REM sleep, therefore allowing patients to act out their dreams. RBD manifests itself clinically as a violent behaviour occurring during the night, and is detected at the polysomnography by phasic and/or tonic muscle activity on the electromyography channel. In absence of neurological signs or central nervous system lesions, RBD is defined as idiopathic. Nevertheless, in a large number of cases the development of neurodegenerative diseases in RBD patients has been described, with the duration of the follow-up representing a fundamental aspect. A growing number of clinical, neurophysiologic and neuropsychological studies aimed to detect early markers of neurodegenerative dysfunction in RBD patients. Anyway, the evidence of impaired cortical activity, subtle neurocognitive dysfunction, olfactory and autonomic impairment and neuroimaging brain changes in RBD patients is challenging the concept of an idiopathic form of RBD, supporting the idea of RBD as an early manifestation of a more complex neurodegenerative process.

  13. Forward models and state estimation in compensatory eye movements

    NARCIS (Netherlands)

    M.A. Frens (Maarten); O. Donchin (Opher)

    2009-01-01

    textabstractThe compensatory eye movement (CEM) system maintains a stable retinal image, integrating information from different sensory modalities to compensate for head movements. Inspired by recent models of the physiology of limb movements, we suggest that CEM can be modeled as a control system w

  14. Forward models and state estimation in compensatory eye movements

    NARCIS (Netherlands)

    M.A. Frens (Maarten); O. Donchin (Opher)

    2009-01-01

    textabstractThe compensatory eye movement (CEM) system maintains a stable retinal image, integrating information from different sensory modalities to compensate for head movements. Inspired by recent models of the physiology of limb movements, we suggest that CEM can be modeled as a control system

  15. MODELLING SYNERGISTIC EYE MOVEMENTS IN THE VISUAL FIELD

    Directory of Open Access Journals (Sweden)

    BARITZ Mihaela

    2015-06-01

    Full Text Available Some theoretical and practical considerations about eye movements in visual field are presented in the first part of this paper. These movements are developed into human body to be synergistic and are allowed to obtain the visual perception in 3D space. The theoretical background of the eye movements’ analysis is founded on the establishment of movement equations of the eyeball, as they consider it a solid body with a fixed point. The exterior actions, the order and execution of the movements are ensured by the neural and muscular external system and thus the position, stability and movements of the eye can be quantified through the method of reverse kinematic. The purpose of these researches is the development of a simulation model of human binocular visual system, an acquisition methodology and an experimental setup for data processing and recording regarding the eye movements, presented in the second part of the paper. The modeling system of ocular movements aims to establish the binocular synergy and limits of visual field changes in condition of ocular motor dysfunctions. By biomechanical movements of eyeball is established a modeling strategy for different sort of processes parameters like convergence, fixation and eye lens accommodation to obtain responses from binocular balance. The results of modelling processes and the positions of eye ball and axis in visual field are presented in the final part of the paper.

  16. Role of corticosterone on sleep homeostasis induced by REM sleep deprivation in rats.

    Science.gov (United States)

    Machado, Ricardo Borges; Tufik, Sergio; Suchecki, Deborah

    2013-01-01

    Sleep is regulated by humoral and homeostatic processes. If on one hand chronic elevation of stress hormones impair sleep, on the other hand, rapid eye movement (REM) sleep deprivation induces elevation of glucocorticoids and time of REM sleep during the recovery period. In the present study we sought to examine whether manipulations of corticosterone levels during REM sleep deprivation would alter the subsequent sleep rebound. Adult male Wistar rats were fit with electrodes for sleep monitoring and submitted to four days of REM sleep deprivation under repeated corticosterone or metyrapone (an inhibitor of corticosterone synthesis) administration. Sleep parameters were continuously recorded throughout the sleep deprivation period and during 3 days of sleep recovery. Plasma levels of adrenocorticotropic hormone and corticosterone were also evaluated. Metyrapone treatment prevented the elevation of corticosterone plasma levels induced by REM sleep deprivation, whereas corticosterone administration to REM sleep-deprived rats resulted in lower corticosterone levels than in non-sleep deprived rats. Nonetheless, both corticosterone and metyrapone administration led to several alterations on sleep homeostasis, including reductions in the amount of non-REM and REM sleep during the recovery period, although corticosterone increased delta activity (1.0-4.0 Hz) during REM sleep deprivation. Metyrapone treatment of REM sleep-deprived rats reduced the number of REM sleep episodes. In conclusion, reduction of corticosterone levels during REM sleep deprivation resulted in impairment of sleep rebound, suggesting that physiological elevation of corticosterone levels resulting from REM sleep deprivation is necessary for plentiful recovery of sleep after this stressful event.

  17. Sleep board review questions: sleep disordered breathing that improves in REM

    Directory of Open Access Journals (Sweden)

    Budhiraja R

    2012-08-01

    Full Text Available No abstract available. Article truncated at end of question. Which of the following breathing disorders is usually less severe in rapid eye movement (REM sleep compared to non-rapid eye movement (NREM sleep?1.Sleep-related hypoxemia in COPD2.Obstructive Sleep Apnea3.Cheyne Stokes Breathing4.Hypoxemia in Pulmonary Hypertension

  18. Optimal Control of the Compensatory Eye Movement System

    NARCIS (Netherlands)

    T.M. Sibindi (Tafadzwa)

    2015-01-01

    markdownabstractIn this thesis, we utilized behavioural, electrophysiological, computational and stimulation techniques to delve our knowledge further into the functional neural network of the compensatory eye movement system (CEM). We first investigated the superposition violations and non-lineari

  19. Understanding eye movements in face recognition using hidden Markov models.

    Science.gov (United States)

    Chuk, Tim; Chan, Antoni B; Hsiao, Janet H

    2014-09-16

    We use a hidden Markov model (HMM) based approach to analyze eye movement data in face recognition. HMMs are statistical models that are specialized in handling time-series data. We conducted a face recognition task with Asian participants, and model each participant's eye movement pattern with an HMM, which summarized the participant's scan paths in face recognition with both regions of interest and the transition probabilities among them. By clustering these HMMs, we showed that participants' eye movements could be categorized into holistic or analytic patterns, demonstrating significant individual differences even within the same culture. Participants with the analytic pattern had longer response times, but did not differ significantly in recognition accuracy from those with the holistic pattern. We also found that correct and wrong recognitions were associated with distinctive eye movement patterns; the difference between the two patterns lies in the transitions rather than locations of the fixations alone.

  20. Human REM sleep: influence on feeding behaviour, with clinical implications.

    Science.gov (United States)

    Horne, James A

    2015-08-01

    Rapid eye movement (REM) sleep shares many underlying mechanisms with wakefulness, to a much greater extent than does non-REM, especially those relating to feeding behaviours, appetite, curiosity, exploratory (locomotor) activities, as well as aspects of emotions, particularly 'fear extinction'. REM is most evident in infancy, thereafter declining in what seems to be a dispensable manner that largely reciprocates increasing wakefulness. However, human adults retain more REM than do other mammals, where for us it is most abundant during our usual final REM period (fREMP) of the night, nearing wakefulness. The case is made that our REM is unusual, and that (i) fREMP retains this 'dispensability', acting as a proxy for wakefulness, able to be forfeited (without REM rebound) and substituted by physical activity (locomotion) when pressures of wakefulness increase; (ii) REM's atonia (inhibited motor output) may be a proxy for this locomotion; (iii) our nocturnal sleep typically develops into a physiological fast, especially during fREMP, which is also an appetite suppressant; (iv) REM may have 'anti-obesity' properties, and that the loss of fREMP may well enhance appetite and contribute to weight gain ('overeating') in habitually short sleepers; (v) as we also select foods for their hedonic (emotional) values, REM may be integral to developing food preferences and dislikes; and (vii) REM seems to have wider influences in regulating energy balance in terms of exercise 'substitution' and energy (body heat) retention. Avenues for further research are proposed, linking REM with feeding behaviours, including eating disorders, and effects of REM-suppressant medications.

  1. The lateral paragigantocellular nucleus modulates parasympathetic cardiac neurons: a mechanism for rapid eye movement sleep-dependent changes in heart rate.

    Science.gov (United States)

    Dergacheva, Olga; Wang, Xin; Lovett-Barr, Mary R; Jameson, Heather; Mendelowitz, David

    2010-08-01

    Rapid eye movement (REM) sleep is generally associated with a withdrawal of parasympathetic activity and heart rate increases; however, episodic vagally mediated heart rate decelerations also occur during REM sleep. This alternating pattern of autonomic activation provides a physiological basis for REM sleep-induced cardiac arrhythmias. Medullary neurons within the lateral paragigantocellular nucleus (LPGi) are thought to be active after REM sleep recovery and play a role in REM sleep control. In proximity to the LPGi are parasympathetic cardiac vagal neurons (CVNs) within the nucleus ambiguus (NA), which are critical for controlling heart rate. This study examined brain stem pathways that may mediate REM sleep-related reductions in parasympathetic cardiac activity. Electrical stimulation of the LPGi evoked inhibitory GABAergic postsynaptic currents in CVNs in an in vitro brain stem slice preparation in rats. Because brain stem cholinergic mechanisms are involved in REM sleep regulation, we also studied the role of nicotinic neurotransmission in modulation of GABAergic pathway from the LGPi to CVNs. Application of nicotine diminished the GABAergic responses evoked by electrical stimulation. This inhibitory effect of nicotine was prevented by the alpha7 nicotinic receptor antagonist alpha-bungarotoxin. Moreover, hypoxia/hypercapnia (H/H) diminished LPGi-evoked GABAergic current in CVNs, and this inhibitory effect was also prevented by alpha-bungarotoxin. In conclusion, stimulation of the LPGi evokes an inhibitory pathway to CVNs, which may constitute a mechanism for the reduced parasympathetic cardiac activity and increase in heart rate during REM sleep. Inhibition of this pathway by nicotinic receptor activation and H/H may play a role in REM sleep-related and apnea-associated bradyarrhythmias.

  2. The relationship between eye movement and vision develops before birth

    OpenAIRE

    Veronika eSchöpf; Thomas eSchlegl; Andras eJakab; Gregor eKasprian; Ramona eWoitek; Daniela ePrayer; Georg eLangs

    2014-01-01

    While the visuomotor system is known to develop rapidly after birth, studies have observed spontaneous activity in vertebrates in visually excitable cortical areas already before extrinsic stimuli are present. Resting state networks and fetal eye movements were observed independently in utero, but no functional brain activity coupled with visual stimuli could be detected using fetal fMRI. This study closes this gap and links in utero eye movement with corresponding functional networks.BOLD re...

  3. Eye Movements in Reading as Rational Behavior

    Science.gov (United States)

    Bicknell, Klinton

    2011-01-01

    Moving one's eyes while reading is one of the most complex everyday tasks humans face. To perform efficiently, readers must make decisions about when and where to move their eyes every 200-300ms. Over the past decades, it has been demonstrated that these fine-grained decisions are influenced by a range of linguistic properties of the text, and…

  4. Automatic REM Sleep Detection Associated with Idiopathic REM Sleep Behavior Disorder

    DEFF Research Database (Denmark)

    Kempfner, Jacob; Sørensen, Gertrud Laura; Sørensen, Helge Bjarup Dissing

    2011-01-01

    Rapid eye movement sleep Behavior Disorder (RBD) is a strong early marker of later development of Parkinsonism. Currently there are no objective methods to identify and discriminate abnormal from normal motor activity during REM sleep. Therefore, a REM sleep detection without the use of chin...... electromyography (EMG) is useful. This is addressed by analyzing the classification performance when implementing two automatic REM sleep detectors. The first detector uses the electroencephalography (EEG), electrooculography (EOG) and EMG to detect REM sleep, while the second detector only uses the EEG and EOG....... Method: Ten normal controls and ten age matched patients diagnosed with RBD were enrolled. All subjects underwent one polysomnographic (PSG) recording, which was manual scored according to the new sleep-scoring standard from the American Academy of Sleep Medicine. Based on the manual scoring...

  5. The effect of cataract on eye movement perimetry

    NARCIS (Netherlands)

    G. Thepass; J.J.M. Pel (Johan); K.A. Vermeer (Koen); O. Creten; S. Bryan (Stirling); H.G. Lemij (Hans); J. van der Steen (Hans)

    2015-01-01

    textabstractPurpose. To determine how different grades of cataract affect sensitivity threshold and saccadic reaction time (SRT) in eye movement perimetry (EMP). Methods. In EMP, the visual field is tested by assessing the saccades that a subject makes towards peripheral stimuli using an eye

  6. Eye movement and pupil size constriction under discomfort glare.

    Science.gov (United States)

    Lin, Yandan; Fotios, Steve; Wei, Minchen; Liu, Yihong; Guo, Weihong; Sun, Yaojie

    2015-01-29

    Involuntary physiological responses offer an alternative means to psychophysical procedures for objectively evaluating discomfort glare. This study examined eye movement and pupil size responses to glare discomfort using new approaches to analysis: relative pupil size and speed of eye movement. Participants evaluated glare discomfort using the standard de Boer rating scale under various conditions manipulated to influence glare discomfort. Eye movement was recorded using an electro-oculogram (EOG), and pupil size was recorded using Tobii glasses. Ten young (mean age: 24.5 years old) and 10 senior (mean age: 61 years old) participants were recruited for this experiment. Subjective evaluation of glare discomfort was highly correlated with eye movement (multiple correlation coefficient [R(2)] of >0.94, P < 0.001) and pupil constriction (R(2) = 0.38, P < 0.001). Severe glare discomfort increased the speed of eye movement and caused larger pupil constriction. Larger variations of eye movement were found among seniors. The two physiological responses studied here to characterize discomfort glare under various lighting conditions had significant correlation with the subjective evaluation. The correlation between discomfort glare and physiological responses suggests an objective way to characterize and evaluate discomfort glare that may overcome the problems of conventional subjective evaluation. It also offers an explanation as to why long-term exposure to discomfort glare leads to visual fatigue and eyestrain. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  7. Sleep stability and transitions in patients with idiopathic REM sleep behavior disorder and patients with Parkinson's disease

    DEFF Research Database (Denmark)

    Christensen, Julie Anja Engelhard; Jennum, Poul; Koch, Henriette;

    2016-01-01

    Objective: Patients with idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) are at high risk of developing Parkinson's disease (PD). As wake/sleep-regulation is thought to involve neurons located in the brainstem and hypothalamic areas, we hypothesize that the neurodegeneration in i...... with periodic leg movement disorder (PLMD) and 23 controls. Measures were computed based on manual scorings and data-driven labeled sleep staging. Results: Patients with PD showed significantly lower REM stability than controls and patients with PLMD. Patients with iRBD had significantly lower REM stability......RBD/PD is likely to affect wake/sleep and REM/non-REM (NREM) sleep transitions. Methods: We determined the frequency of wake/sleep and REM/NREM sleep transitions and the stability of wake (W), REM and NREM sleep as measured by polysomnography (PSG) in 27 patients with PD, 23 patients with iRBD, 25 patients...

  8. Selective REM Sleep Deprivation Improves Expectation-Related Placebo Analgesia.

    Science.gov (United States)

    Chouchou, Florian; Chauny, Jean-Marc; Rainville, Pierre; Lavigne, Gilles J

    2015-01-01

    The placebo effect is a neurobiological and psychophysiological process known to influence perceived pain relief. Optimization of placebo analgesia may contribute to the clinical efficacy and effectiveness of medication for acute and chronic pain management. We know that the placebo effect operates through two main mechanisms, expectations and learning, which is also influenced by sleep. Moreover, a recent study suggested that rapid eye movement (REM) sleep is associated with modulation of expectation-mediated placebo analgesia. We examined placebo analgesia following pharmacological REM sleep deprivation and we tested the hypothesis that relief expectations and placebo analgesia would be improved by experimental REM sleep deprivation in healthy volunteers. Following an adaptive night in a sleep laboratory, 26 healthy volunteers underwent classical experimental placebo analgesic conditioning in the evening combined with pharmacological REM sleep deprivation (clonidine: 13 volunteers or inert control pill: 13 volunteers). Medication was administered in a double-blind manner at bedtime, and placebo analgesia was tested in the morning. Results revealed that 1) placebo analgesia improved with REM sleep deprivation; 2) pain relief expectations did not differ between REM sleep deprivation and control groups; and 3) REM sleep moderated the relationship between pain relief expectations and placebo analgesia. These results support the putative role of REM sleep in modulating placebo analgesia. The mechanisms involved in these improvements in placebo analgesia and pain relief following selective REM sleep deprivation should be further investigated.

  9. Selective REM Sleep Deprivation Improves Expectation-Related Placebo Analgesia.

    Directory of Open Access Journals (Sweden)

    Florian Chouchou

    Full Text Available The placebo effect is a neurobiological and psychophysiological process known to influence perceived pain relief. Optimization of placebo analgesia may contribute to the clinical efficacy and effectiveness of medication for acute and chronic pain management. We know that the placebo effect operates through two main mechanisms, expectations and learning, which is also influenced by sleep. Moreover, a recent study suggested that rapid eye movement (REM sleep is associated with modulation of expectation-mediated placebo analgesia. We examined placebo analgesia following pharmacological REM sleep deprivation and we tested the hypothesis that relief expectations and placebo analgesia would be improved by experimental REM sleep deprivation in healthy volunteers. Following an adaptive night in a sleep laboratory, 26 healthy volunteers underwent classical experimental placebo analgesic conditioning in the evening combined with pharmacological REM sleep deprivation (clonidine: 13 volunteers or inert control pill: 13 volunteers. Medication was administered in a double-blind manner at bedtime, and placebo analgesia was tested in the morning. Results revealed that 1 placebo analgesia improved with REM sleep deprivation; 2 pain relief expectations did not differ between REM sleep deprivation and control groups; and 3 REM sleep moderated the relationship between pain relief expectations and placebo analgesia. These results support the putative role of REM sleep in modulating placebo analgesia. The mechanisms involved in these improvements in placebo analgesia and pain relief following selective REM sleep deprivation should be further investigated.

  10. Hypothesized eye movements of neurolinguistic programming: a statistical artifact.

    Science.gov (United States)

    Farmer, A; Rooney, R; Cunningham, J R

    1985-12-01

    Neurolinguistic programming's hypothesized eye-movements were measured independently from videotapes of 30 subjects, aged 15 to 76 yr., who were asked to recall visual pictures, recorded audio sounds, and textural objects. chi 2 indicated that subjects' responses were significantly different from those predicted. When chi 2 comparisons were weighted by number of eye positions assigned to each modality (3 visual, 3 auditory, 1 kinesthetic), subjects' responses did not differ significantly from the expected pattern. These data indicate that the eye-movement hypothesis may represent randomly occurring rather than sensory-modality-related positions.

  11. Coordinated control of eye and hand movements in dynamic reaching

    NARCIS (Netherlands)

    Neggers, S.F.W.; Bekkering, H.

    2002-01-01

    In the present study, we integrated two recent, at first sight contradictory findings regarding the question whether saccadic eye movements can be generated to a newly presented target during an ongoing hand movement. Saccades were measured during so-called adaptive and sustained pointing

  12. Coordinated control of eye and hand movements in dynamic reaching

    NARCIS (Netherlands)

    Neggers, SFW; Bekkering, H

    2002-01-01

    In the present study, we integrated two recent, at first sight contradictory findings regarding the question whether saccadic eye movements can be generated to a newly presented target during an ongoing hand movement. Saccades were measured during so-called adaptive and sustained pointing conditions

  13. The utility of respiratory inductance plethysmography in REM sleep scoring during multiple sleep latency testing.

    Science.gov (United States)

    Drakatos, Panagis; Higgins, Sean; Duncan, Iain; Bridle, Kate; Briscoe, Sam; Leschziner, Guy D; Kent, Brian D; Williams, Adrian J

    2016-08-01

    Rapid eye movement sleep (REM) presents with a characteristic erratic breathing pattern. We investigated the feasibility of using respiration, derived from respiratory inductance plethysmography (RIP), in conjunction with chin electromyography, electrocardiography and pulse oximetry to facilitate the identification of REM sleep (RespREM) during nocturnal polysomnography (NPSG) and Multiple Sleep Latency Testing (MSLT). The Cohen's weighted kappa for the presence of REM and its duration in 20 consecutive NPSGs, using RespREM and compared to the current guidelines, ranged between 0.74-0.93 and 0.68-0.73 respectively for 5 scorers. The respective intraclass correlation coefficients were above 0.89. In 97.7% of the Sleep-Onset-REM-Periods (SOREMPs) during 41 consecutive MSLTs with preserved RIP, the RespREM was present and in 46.6% it coincided with the REM onset, while in the majority of the remainder RespREM preceded conventional REM onset. The erratic breathing pattern during REM, derived from RIP, is present and easily recognisable during SOREMPs in the MSLTs and may serve as a useful adjunctive measurement in identifying REM sleep.

  14. H-reflex suppression and autonomic activation during lucid REM sleep: a case study.

    Science.gov (United States)

    Brylowski, A; Levitan, L; LaBerge, S

    1989-08-01

    A single subject, a proficient lucid dreamer experienced with signaling the onset of lucidity (reflective consciousness of dreaming) by means of voluntary eye movements, spent 4 nonconsecutive nights in the sleep laboratory. The subject reported becoming lucid and signaling in 8 of the 18 rapid-eye movement (REM) periods recorded. Ten lucid dream reports were verified by polygraphic examination of signals, providing a total of 12.5 min of signal-verified lucid REM. H-Reflex amplitude was recorded every 5 s, along with continuous recording of electroencephalogram, electrooculogram, electromyogram, electrocardiogram, finger pulse, and respiration. Significant findings included greater mean H-reflex suppression during lucid REM sleep than during nonlucid REM and correlations of H-reflex suppression with increased eye movement density, heart rate, and respiration rate. These results support previous studies reporting that lucid REM is not, as might be supposed, a state closer to awakening than ordinary, or nonlucid, REM; rather, lucid dreaming occurs during unequivocal REM sleep and is characteristically associated with phasic REM activation.

  15. Blurring emotional memories using eye movements: individual differences and speed of eye movements

    Directory of Open Access Journals (Sweden)

    Kevin van Schie

    2016-07-01

    Full Text Available Background: In eye movement desensitization and reprocessing (EMDR, patients make eye movements (EM while recalling traumatic memories. Making EM taxes working memory (WM, which leaves less resources available for imagery of the memory. This reduces memory vividness and emotionality during future recalls. WM theory predicts that individuals with small working memory capacities (WMCs benefit more from low levels of taxing (i.e., slow EM whereas individuals with large WMC benefit more from high levels of taxing (i.e., fast EM. Objective: We experimentally examined and tested four prespecified hypotheses regarding the role of WMC and EM speed in reducing emotionality and vividness ratings: 1 EM—regardless of WMC and EM speed—are more effective compared to no dual task, 2 increasing EM speed only affects the decrease in memory ratings irrespective of WMC, 3 low-WMC individuals—compared to high-WMC individuals—benefit more from making either type of EM, 4 the EM intervention is most effective when—as predicted by WM theory—EM are adjusted to WMC. Method: Undergraduates with low (n=31 or high (n=35 WMC recalled three emotional memories and rated vividness and emotionality before and after each condition (recall only, recall + slow EM, and recall + fast EM. Results: Contrary to the theory, the data do not support the hypothesis that EM speed should be adjusted to WMC (hypothesis 4. However, the data show that a dual task in general is more effective in reducing memory ratings than no dual task (hypothesis 1, and that a more cognitively demanding dual task increases the intervention's effectiveness (hypothesis 2. Conclusions: Although adjusting EM speed to an individual's WMC seems a straightforward clinical implication, the data do not show any indication that such a titration is helpful.

  16. Blurring emotional memories using eye movements: individual differences and speed of eye movements

    Science.gov (United States)

    van Schie, Kevin; van Veen, Suzanne C.; Engelhard, Iris M.; Klugkist, Irene; van den Hout, Marcel A.

    2016-01-01

    Background In eye movement desensitization and reprocessing (EMDR), patients make eye movements (EM) while recalling traumatic memories. Making EM taxes working memory (WM), which leaves less resources available for imagery of the memory. This reduces memory vividness and emotionality during future recalls. WM theory predicts that individuals with small working memory capacities (WMCs) benefit more from low levels of taxing (i.e., slow EM) whereas individuals with large WMC benefit more from high levels of taxing (i.e., fast EM). Objective We experimentally examined and tested four prespecified hypotheses regarding the role of WMC and EM speed in reducing emotionality and vividness ratings: 1) EM—regardless of WMC and EM speed—are more effective compared to no dual task, 2) increasing EM speed only affects the decrease in memory ratings irrespective of WMC, 3) low-WMC individuals—compared to high-WMC individuals—benefit more from making either type of EM, 4) the EM intervention is most effective when—as predicted by WM theory—EM are adjusted to WMC. Method Undergraduates with low (n=31) or high (n=35) WMC recalled three emotional memories and rated vividness and emotionality before and after each condition (recall only, recall + slow EM, and recall + fast EM). Results Contrary to the theory, the data do not support the hypothesis that EM speed should be adjusted to WMC (hypothesis 4). However, the data show that a dual task in general is more effective in reducing memory ratings than no dual task (hypothesis 1), and that a more cognitively demanding dual task increases the intervention's effectiveness (hypothesis 2). Conclusions Although adjusting EM speed to an individual's WMC seems a straightforward clinical implication, the data do not show any indication that such a titration is helpful. PMID:27387843

  17. Affect Intensity and Phasic REM Sleep in Depressed Men before and after Treatment with Cognitive-Behavioral Therapy.

    Science.gov (United States)

    Nofzinger, Eric A.; And Others

    1994-01-01

    Explored relationship between daytime affect and REM (rapid eye movement) sleep in 45 depressed men before and after treatment with cognitive-behavioral therapy and in control group of 43 healthy subjects. For depressed subjects only, intensity of daytime affect correlated significantly and positively with phasic REM sleep measures at pre- and…

  18. A window into the invisible wound of war: functional neuroimaging of REM sleep in returning combat veterans with PTSD.

    Science.gov (United States)

    Germain, Anne; James, Jeffrey; Insana, Salvatore; Herringa, Ryan J; Mammen, Oommen; Price, Julie; Nofzinger, Eric

    2013-02-28

    Relative regional cerebral metabolic rate of glucose in rapid eye movement (REM) sleep and wakefulness was explored in combat veterans with and without posttraumatic stress disorder PTSD, using positron emission tomography. Hypermetabolism in brain regions involved in arousal regulation, fear responses, and reward processing persist during REM sleep in combat veterans with PTSD.

  19. A Window into the invisible wound of war: Functional neuroimaging of REM sleep in returning combat veterans with PTSD

    OpenAIRE

    Germain, Anne; James, Jeffrey; Insana, Salvatore; Herringa, Ryan J; Mammen, Oommen; Price, Julie; Nofzinger, Eric

    2012-01-01

    Relative regional cerebral metabolic rate of glucose in rapid eye movement (REM) sleep and wakefulness was explored in combat veterans with and without PTSD, using positron emission tomography. Hypermetabolism in brain regions involved in arousal regulation, fear responses, and reward processing persist during REM sleep in combat veterans with PTSD.

  20. REM sleep behavior disorder in Parkinson′s disease: A case from India confirmed with polysomnographic data

    Directory of Open Access Journals (Sweden)

    Ravi Gupta

    2013-01-01

    Full Text Available Rapid eye movement (REM sleep behavior disorder is a condition characterized by dream enactment. This condition may accompany neurodegenerative disorders. However, only a few reports from India are available, that too, without any polysomnographic evidence. We are reporting a case of REM sleep behavior disorder with polysomnographic evidence.

  1. Urotensin II modulates rapid eye movement sleep through activation of brainstem cholinergic neurons

    DEFF Research Database (Denmark)

    Huitron-Resendiz, Salvador; Kristensen, Morten Pilgaard; Sánchez-Alavez, Manuel

    2005-01-01

    Urotensin II (UII) is a cyclic neuropeptide with strong vasoconstrictive activity in the peripheral vasculature. UII receptor mRNA is also expressed in the CNS, in particular in cholinergic neurons located in the mesopontine tegmental area, including the pedunculopontine tegmental (PPT) and lateral...... dorsal tegmental nuclei. This distribution suggests that the UII system is involved in functions regulated by acetylcholine, such as the sleep-wake cycle. Here, we tested the hypothesis that UII influences cholinergic PPT neuron activity and alters rapid eye movement (REM) sleep patterns in rats. Local...... blood flow. Moreover, whole-cell recordings from rat-brain slices show that UII selectively excites cholinergic PPT neurons via an inward current and membrane depolarization that were accompanied by membrane conductance decreases. This effect does not depend on action potential generation or fast...

  2. Efficient Avoidance of the Penalty Zone in Human Eye Movements

    Science.gov (United States)

    Theeuwes, Jan

    2016-01-01

    People use eye movements extremely effectively to find objects of interest in a cluttered visual scene. Distracting, task-irrelevant attention capturing regions in the visual field should be avoided as they jeopardize the efficiency of search. In the current study, we used eye tracking to determine whether people are able to avoid making saccades to a predetermined visual area associated with a financial penalty, while making fast and accurate saccades towards stimuli placed near the penalty area. We found that in comparison to the same task without a penalty area, the introduction of a penalty area immediately affected eye movement behaviour: the proportion of saccades to the penalty area was immediately reduced. Also, saccadic latencies increased, but quite modestly, and mainly for saccades towards stimuli near the penalty area. We conclude that eye movement behaviour is under efficient cognitive control and thus quite flexible: it can immediately be adapted to changing environmental conditions to improve reward outcome. PMID:27930724

  3. [Systematic deviations of saccadic eye movements in Wallenberg syndrome].

    Science.gov (United States)

    Hamann, K U

    1979-01-01

    A patient suffering from lateral medullary infarction (Wallenberg's syndrome) is presented, exhibiting a striking bias of all saccadic eye movements toward the side of the lesion. Oculographic tracings demonstrate this oculomotor disorder. Other disturbances of ocular motility which resemble this one superficially are discussed. Interruption of fixation leads to a gliding movement veeringly to the side of the infarction. Since all saccades generated under different circumstances are affected, it is contemplated where the pathological signal is intruded into the prenuclear level, to adulterate all saccades causing lateropulsion of saccadic eye movements.

  4. Smooth pursuit eye movements and schizophrenia: literature review.

    Science.gov (United States)

    Franco, J G; de Pablo, J; Gaviria, A M; Sepúlveda, E; Vilella, E

    2014-09-01

    To review the scientific literature about the relationship between impairment on smooth pursuit eye movements and schizophrenia. Narrative review that includes historical articles, reports about basic and clinical investigation, systematic reviews, and meta-analysis on the topic. Up to 80% of schizophrenic patients have impairment of smooth pursuit eye movements. Despite the diversity of test protocols, 65% of patients and controls are correctly classified by their overall performance during this pursuit. The smooth pursuit eye movements depend on the ability to anticipate the target's velocity and the visual feedback, as well as on learning and attention. The neuroanatomy implicated in smooth pursuit overlaps to some extent with certain frontal cortex zones associated with some clinical and neuropsychological characteristics of the schizophrenia, therefore some specific components of smooth pursuit anomalies could serve as biomarkers of the disease. Due to their sedative effect, antipsychotics have a deleterious effect on smooth pursuit eye movements, thus these movements cannot be used to evaluate the efficacy of the currently available treatments. Standardized evaluation of smooth pursuit eye movements on schizophrenia will allow to use specific aspects of that pursuit as biomarkers for the study of its genetics, psychopathology, or neuropsychology. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  5. Eye Movement Desensitization and Reprocessing (EMDR as a Neurorehabilitation Method

    Directory of Open Access Journals (Sweden)

    Afsaneh Zarghi

    2013-01-01

    Full Text Available   A variety of nervous system components such as medulla, pons, midbrain, cerebellum, basal ganglia, parietal, frontal and occipital lobes have role in Eye Movement Desensitization and Reprocessing (EMDR processes. The eye movement is done simultaneously for attracting client's attention to an external stimulus while concentrating on a certain internal subject. Eye movement guided by therapist is the most common attention stimulus. The role of eye movement has been documented previously in relation with cognitive processing mechanisms. A series of systemic experiments have shown that the eyes’ spontaneous movement is associated with emotional and cognitive changes and results in decreased excitement, flexibility in attention, memory processing, and enhanced semantic recalling. Eye movement also decreases the memory's image clarity and the accompanying excitement. By using EMDR, we can reach some parts of memory which were inaccessible before and also emotionally intolerable. Various researches emphasize on the effectiveness of EMDR in treating and curing phobias, pains, and dependent personality disorders. Consequently, due to the involvement of multiple neural system components, this palliative method of treatment can also help to rehabilitate the neuro-cognitive system.

  6. Quantification of vestibular-induced eye movements in zebrafish larvae

    Directory of Open Access Journals (Sweden)

    Mo Weike

    2010-09-01

    Full Text Available Abstract Background Vestibular reflexes coordinate movements or sensory input with changes in body or head position. Vestibular-evoked responses that involve the extraocular muscles include the vestibulo-ocular reflex (VOR, a compensatory eye movement to stabilize retinal images. Although an angular VOR attributable to semicircular canal stimulation was reported to be absent in free-swimming zebrafish larvae, recent studies reveal that vestibular-induced eye movements can be evoked in zebrafish larvae by both static tilts and dynamic rotations that tilt the head with respect to gravity. Results We have determined herein the basis of sensitivity of the larval eye movements with respect to vestibular stimulus, developmental stage, and sensory receptors of the inner ear. For our experiments, video recordings of larvae rotated sinusoidally at 0.25 Hz were analyzed to quantitate eye movements under infrared illumination. We observed a robust response that appeared as early as 72 hours post fertilization (hpf, which increased in amplitude over time. Unlike rotation about an earth horizontal axis, rotation about an earth vertical axis at 0.25 Hz did not evoke eye movements. Moreover, vestibular-induced responses were absent in mutant cdh23 larvae and larvae lacking anterior otoliths. Conclusions Our results provide evidence for a functional vestibulo-oculomotor circuit in 72 hpf zebrafish larvae that relies upon sensory input from anterior/utricular otolith organs.

  7. Non-intrusive eye gaze tracking under natural head movements.

    Science.gov (United States)

    Kim, S; Sked, M; Ji, Q

    2004-01-01

    We propose an eye gaze tracking system under natural head movements. The system consists of one CCD camera and two mirrors. Based on geometric and linear algebra calculations, the mirrors rotate to follow head movements in order to keep the eyes within the view of the camera. Our system allows the subjects head to move 30 cm horizontally and 20 cm vertically, with spatial gaze resolutions about 6 degree and 7 degree, respectively and a frame rate about 10 Hz. We also introduce a hierarchical generalized regression neural networks (H-GRNN) scheme to map eye and mirror parameters to gaze, achieving a gaze estimation accuracy of 92% under head movements. The use of H-GRNN also eliminates the need for personal calibration for new subjects since H-GRNN can generalize. Preliminary experiments show our system is accurate and robust in gaze tracking under large head movements.

  8. Does consolidation of visuospatial sequence knowledge depend on eye movements?

    Science.gov (United States)

    Coomans, Daphné; Vandenbossche, Jochen; Homblé, Koen; Van den Bussche, Eva; Soetens, Eric; Deroost, Natacha

    2014-01-01

    In the current study, we assessed whether visuospatial sequence knowledge is retained over 24 hours and whether this retention is dependent on the occurrence of eye movements. Participants performed two sessions of a serial reaction time (SRT) task in which they had to manually react to the identity of a target letter pair presented in one of four locations around a fixation cross. When the letter pair 'XO' was presented, a left response had to be given, when the letter pair 'OX' was presented, a right response was required. In the Eye Movements (EM) condition, eye movements were necessary to perform the task since the fixation cross and the target were separated by at least 9° visual angle. In the No Eye Movements (NEM) condition, on the other hand, eye movements were minimized by keeping the distance from the fixation cross to the target below 1° visual angle and by limiting the stimulus presentation to 100 ms. Since the target identity changed randomly in both conditions, no manual response sequence was present in the task. However, target location was structured according to a deterministic sequence in both the EM and NEM condition. Learning of the target location sequence was determined at the end of the first session and 24 hours after initial learning. Results indicated that the sequence learning effect in the SRT task diminished, yet remained significant, over the 24 hour interval in both conditions. Importantly, the difference in eye movements had no impact on the transfer of sequence knowledge. These results suggest that the retention of visuospatial sequence knowledge occurs alike, irrespective of whether this knowledge is supported by eye movements or not.

  9. Does consolidation of visuospatial sequence knowledge depend on eye movements?

    Directory of Open Access Journals (Sweden)

    Daphné Coomans

    Full Text Available In the current study, we assessed whether visuospatial sequence knowledge is retained over 24 hours and whether this retention is dependent on the occurrence of eye movements. Participants performed two sessions of a serial reaction time (SRT task in which they had to manually react to the identity of a target letter pair presented in one of four locations around a fixation cross. When the letter pair 'XO' was presented, a left response had to be given, when the letter pair 'OX' was presented, a right response was required. In the Eye Movements (EM condition, eye movements were necessary to perform the task since the fixation cross and the target were separated by at least 9° visual angle. In the No Eye Movements (NEM condition, on the other hand, eye movements were minimized by keeping the distance from the fixation cross to the target below 1° visual angle and by limiting the stimulus presentation to 100 ms. Since the target identity changed randomly in both conditions, no manual response sequence was present in the task. However, target location was structured according to a deterministic sequence in both the EM and NEM condition. Learning of the target location sequence was determined at the end of the first session and 24 hours after initial learning. Results indicated that the sequence learning effect in the SRT task diminished, yet remained significant, over the 24 hour interval in both conditions. Importantly, the difference in eye movements had no impact on the transfer of sequence knowledge. These results suggest that the retention of visuospatial sequence knowledge occurs alike, irrespective of whether this knowledge is supported by eye movements or not.

  10. Combining EEG and eye tracking: Identification, characterization and correction of eye movement artifacts in electroencephalographic data

    Directory of Open Access Journals (Sweden)

    Michael ePlöchl

    2012-10-01

    Full Text Available Eye movements introduce large artifacts to electroencephalographic recordings (EEG and thus render data analysis difficult or even impossible. Trials contaminated by eye movement and blink artifacts have to be discarded, hence in standard EEG-paradigms subjects are required to fixate on the screen. To overcome this restriction, several correction methods including regression and blind source separation have been proposed. Yet, there is no automated standard procedure established. By simultaneously recording eye movements and 64-channel-EEG during a guided eye movement paradigm, we show that eye movement artifacts consist of several components, which arise from different sources. These include corneo-retinal dipole changes, saccadic spike potentials and eyelid movements. Moreover, we demonstrate that depending on electrode site, gaze direction and choice of reference these components contribute differently to the measured signal. Therefore they cannot be removed by regression-based correction methods, as these inevitably over- or under-correct individual artifact components. Finally we propose a correction procedure based on Independent Component Analysis (ICA. This procedure uses eye tracker information to reliably and objectively identify eye-artifact related ICA-components in an automated manner. We demonstrate that this approach allows removing or substantially reducing ocular artifacts including microsaccades without affecting the signal originating from brain sources. In conclusion the proposed method does not only provide a tool for detecting and correcting eye artifacts in standard EEG-paradigms but it also permits to study EEG-activity during eye tracking experiments and thus to investigate neural mechanisms of eye movement control and visual attention under natural conditions.

  11. A review on eye movement studies in childhood and adolescent psychiatry.

    NARCIS (Netherlands)

    Lambregts-Rommelse, N.N.J.; Stigchel, S Van der; Sergeant, J.A.

    2008-01-01

    The neural substrates of eye movement measures are largely known. Therefore, measurement of eye movements in psychiatric disorders may provide insight into the underlying neuropathology of these disorders. Visually guided saccades, antisaccades, memory guided saccades, and smooth pursuit eye movemen

  12. Do common systems control eye movements and motion extrapolation?

    Science.gov (United States)

    Makin, Alexis D J; Poliakoff, Ellen

    2011-07-01

    People are able to judge the current position of occluded moving objects. This operation is known as motion extrapolation. It has previously been suggested that motion extrapolation is independent of the oculomotor system. Here we revisited this question by measuring eye position while participants completed two types of motion extrapolation task. In one task, a moving visual target travelled rightwards, disappeared, then reappeared further along its trajectory. Participants discriminated correct reappearance times from incorrect (too early or too late) with a two-alternative forced-choice button press. In the second task, the target travelled rightwards behind a visible, rectangular occluder, and participants pressed a button at the time when they judged it should reappear. In both tasks, performance was significantly different under fixation as compared to free eye movement conditions. When eye movements were permitted, eye movements during occlusion were related to participants' judgements. Finally, even when participants were required to fixate, small changes in eye position around fixation (<2°) were influenced by occluded target motion. These results all indicate that overlapping systems control eye movements and judgements on motion extrapolation tasks. This has implications for understanding the mechanism underlying motion extrapolation.

  13. Fixational eye movements in the earliest stage of metazoan evolution.

    Directory of Open Access Journals (Sweden)

    Jan Bielecki

    Full Text Available All known photoreceptor cells adapt to constant light stimuli, fading the retinal image when exposed to an immobile visual scene. Counter strategies are therefore necessary to prevent blindness, and in mammals this is accomplished by fixational eye movements. Cubomedusae occupy a key position for understanding the evolution of complex visual systems and their eyes are assumedly subject to the same adaptive problems as the vertebrate eye, but lack motor control of their visual system. The morphology of the visual system of cubomedusae ensures a constant orientation of the eyes and a clear division of the visual field, but thereby also a constant retinal image when exposed to stationary visual scenes. Here we show that bell contractions used for swimming in the medusae refresh the retinal image in the upper lens eye of Tripedalia cystophora. This strongly suggests that strategies comparable to fixational eye movements have evolved at the earliest metazoan stage to compensate for the intrinsic property of the photoreceptors. Since the timing and amplitude of the rhopalial movements concur with the spatial and temporal resolution of the eye it circumvents the need for post processing in the central nervous system to remove image blur.

  14. Coupled flip-flop model for REM sleep regulation in the rat.

    Directory of Open Access Journals (Sweden)

    Justin R Dunmyre

    Full Text Available Recent experimental studies investigating the neuronal regulation of rapid eye movement (REM sleep have identified mutually inhibitory synaptic projections among REM sleep-promoting (REM-on and REM sleep-inhibiting (REM-off neuronal populations that act to maintain the REM sleep state and control its onset and offset. The control mechanism of mutually inhibitory synaptic interactions mirrors the proposed flip-flop switch for sleep-wake regulation consisting of mutually inhibitory synaptic projections between wake- and sleep-promoting neuronal populations. While a number of synaptic projections have been identified between these REM-on/REM-off populations and wake/sleep-promoting populations, the specific interactions that govern behavioral state transitions have not been completely determined. Using a minimal mathematical model, we investigated behavioral state transition dynamics dictated by a system of coupled flip-flops, one to control transitions between wake and sleep states, and another to control transitions into and out of REM sleep. The model describes the neurotransmitter-mediated inhibitory interactions between a wake- and sleep-promoting population, and between a REM-on and REM-off population. We proposed interactions between the wake/sleep and REM-on/REM-off flip-flops to replicate the behavioral state statistics and probabilities of behavioral state transitions measured from experimental recordings of rat sleep under ad libitum conditions and after 24 h of REM sleep deprivation. Reliable transitions from REM sleep to wake, as dictated by the data, indicated the necessity of an excitatory projection from the REM-on population to the wake-promoting population. To replicate the increase in REM-wake-REM transitions observed after 24 h REM sleep deprivation required that this excitatory projection promote transient activation of the wake-promoting population. Obtaining the reliable wake-nonREM sleep transitions observed in the data

  15. Coupled flip-flop model for REM sleep regulation in the rat.

    Science.gov (United States)

    Dunmyre, Justin R; Mashour, George A; Booth, Victoria

    2014-01-01

    Recent experimental studies investigating the neuronal regulation of rapid eye movement (REM) sleep have identified mutually inhibitory synaptic projections among REM sleep-promoting (REM-on) and REM sleep-inhibiting (REM-off) neuronal populations that act to maintain the REM sleep state and control its onset and offset. The control mechanism of mutually inhibitory synaptic interactions mirrors the proposed flip-flop switch for sleep-wake regulation consisting of mutually inhibitory synaptic projections between wake- and sleep-promoting neuronal populations. While a number of synaptic projections have been identified between these REM-on/REM-off populations and wake/sleep-promoting populations, the specific interactions that govern behavioral state transitions have not been completely determined. Using a minimal mathematical model, we investigated behavioral state transition dynamics dictated by a system of coupled flip-flops, one to control transitions between wake and sleep states, and another to control transitions into and out of REM sleep. The model describes the neurotransmitter-mediated inhibitory interactions between a wake- and sleep-promoting population, and between a REM-on and REM-off population. We proposed interactions between the wake/sleep and REM-on/REM-off flip-flops to replicate the behavioral state statistics and probabilities of behavioral state transitions measured from experimental recordings of rat sleep under ad libitum conditions and after 24 h of REM sleep deprivation. Reliable transitions from REM sleep to wake, as dictated by the data, indicated the necessity of an excitatory projection from the REM-on population to the wake-promoting population. To replicate the increase in REM-wake-REM transitions observed after 24 h REM sleep deprivation required that this excitatory projection promote transient activation of the wake-promoting population. Obtaining the reliable wake-nonREM sleep transitions observed in the data required that

  16. Hawk eyes I: diurnal raptors differ in visual fields and degree of eye movement.

    Directory of Open Access Journals (Sweden)

    Colleen T O'Rourke

    Full Text Available BACKGROUND: Different strategies to search and detect prey may place specific demands on sensory modalities. We studied visual field configuration, degree of eye movement, and orbit orientation in three diurnal raptors belonging to the Accipitridae and Falconidae families. METHODOLOGY/PRINCIPAL FINDINGS: We used an ophthalmoscopic reflex technique and an integrated 3D digitizer system. We found inter-specific variation in visual field configuration and degree of eye movement, but not in orbit orientation. Red-tailed Hawks have relatively small binocular areas (∼33° and wide blind areas (∼82°, but intermediate degree of eye movement (∼5°, which underscores the importance of lateral vision rather than binocular vision to scan for distant prey in open areas. Cooper's Hawks' have relatively wide binocular fields (∼36°, small blind areas (∼60°, and high degree of eye movement (∼8°, which may increase visual coverage and enhance prey detection in closed habitats. Additionally, we found that Cooper's Hawks can visually inspect the items held in the tip of the bill, which may facilitate food handling. American Kestrels have intermediate-sized binocular and lateral areas that may be used in prey detection at different distances through stereopsis and motion parallax; whereas the low degree eye movement (∼1° may help stabilize the image when hovering above prey before an attack. CONCLUSIONS: We conclude that: (a there are between-species differences in visual field configuration in these diurnal raptors; (b these differences are consistent with prey searching strategies and degree of visual obstruction in the environment (e.g., open and closed habitats; (c variations in the degree of eye movement between species appear associated with foraging strategies; and (d the size of the binocular and blind areas in hawks can vary substantially due to eye movements. Inter-specific variation in visual fields and eye movements can influence

  17. The influence of gravity on REM sleep

    OpenAIRE

    Gonfalone, Alain; Jha,Sushil

    2015-01-01

    Alain A Gonfalone,1 Sushil K Jha2 1European Space Agency, Paris, France; 2School of Life Sciences, Jawaharlal Nehru University, New Delhi, India Abstract: It is suggested that environmental variables, and gravity in particular, are the main determinants of sleep duration. Assuming that the rapid eye movement (REM) sleep state depends on the influence of gravity allows a better understanding of sleep across the animal world. This paper is based on numerous results already published on sleep b...

  18. Shrimps that pay attention: saccadic eye movements in stomatopod crustaceans.

    Science.gov (United States)

    Marshall, N J; Land, M F; Cronin, T W

    2014-01-01

    Discovering that a shrimp can flick its eyes over to a fish and follow up by tracking it or flicking back to observe something else implies a 'primate-like' awareness of the immediate environment that we do not normally associate with crustaceans. For several reasons, stomatopods (mantis shrimp) do not fit the general mould of their subphylum, and here we add saccadic, acquisitional eye movements to their repertoire of unusual visual capabilities. Optically, their apposition compound eyes contain an area of heightened acuity, in some ways similar to the fovea of vertebrate eyes. Using rapid eye movements of up to several hundred degrees per second, objects of interest are placed under the scrutiny of this area. While other arthropod species, including insects and spiders, are known to possess and use acute zones in similar saccadic gaze relocations, stomatopods are the only crustacean known with such abilities. Differences among species exist, generally reflecting both the eye size and lifestyle of the animal, with the larger-eyed more sedentary species producing slower saccades than the smaller-eyed, more active species. Possessing the ability to rapidly look at and assess objects is ecologically important for mantis shrimps, as their lifestyle is, by any standards, fast, furious and deadly.

  19. Contact-Free Cognitive Load Recognition Based on Eye Movement

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2016-01-01

    Full Text Available The cognitive overload not only affects the physical and mental diseases, but also affects the work efficiency and safety. Hence, the research of measuring cognitive load has been an important part of cognitive load theory. In this paper, we proposed a method to identify the state of cognitive load by using eye movement data in a noncontact manner. We designed a visual experiment to elicit human’s cognitive load as high and low state in two light intense environments and recorded the eye movement data in this whole process. Twelve salient features of the eye movement were selected by using statistic test. Algorithms for processing some features are proposed for increasing the recognition rate. Finally we used the support vector machine (SVM to classify high and low cognitive load. The experimental results show that the method can achieve 90.25% accuracy in light controlled condition.

  20. A moderate increase of physiological CO2 in a critical range during stable NREM sleep episode: A potential gateway to REM sleep

    Directory of Open Access Journals (Sweden)

    Vibha eMadan

    2012-02-01

    Full Text Available Sleep is characterized as rapid eye movement (REM and non-rapid eye movement (NREM sleep. Studies suggest that wake-related neurons in the basal forebrain, posterior hypothalamus and brainstem and NREM sleep-related neurons in the anterior-hypothalamic area inhibit each other, thus alternating sleep-wakefulness. Similarly, pontine REM-ON and REM-OFF neurons reciprocally inhibit each other for REM sleep modulation. It has been proposed that inhibition of locus coeruleus (LC REM-OFF neurons is pre-requisite for REM sleep genesis, but it remains ambiguous how REM-OFF neurons are hyperpolarized at REM sleep onset. The frequency of breathing pattern remains high during wake, slows down during NREM sleep but further escalates during REM sleep. As a result, brain CO2 level increases during NREM sleep, which may alter REM sleep manifestation. It has been reported that hypocapnia decreases REM sleep while hypercapnia increases REM sleep periods. The groups of brainstem chemosensory neurons, including those present in LC, sense the alteration in CO2 level and respond accordingly. For example; one group of LC neurons depolarize while other hyperpolarize during hypercapnia. In another group, hypercapnia initially depolarizes but later hyperpolarizes LC neurons. Besides chemosensory functions, LC’s REM-OFF neurons are an integral part of REM sleep executive machinery. We reason that increased CO2 level during a stable NREM sleep period may hyperpolarize LC neurons including REM-OFF, which may help initiate REM sleep. We propose that REM sleep might act as a sentinel to help maintain normal CO2 level for unperturbed sleep.

  1. Inverting faces does not abolish cultural diversity in eye movements.

    Science.gov (United States)

    Rodger, Helen; Kelly, David J; Blais, Caroline; Caldara, Roberto

    2010-01-01

    Face processing is widely understood to be a basic, universal visual function effortlessly achieved by people from all cultures and races. The remarkable recognition performance for faces is markedly and specifically affected by picture-plane inversion: the so-called face-inversion effect (FIE), a finding often used as evidence for face-specific mechanisms. However, it has recently been shown that culture shapes the way people deploy eye movements to extract information from faces. Interestingly, the comparable lack of experience with inverted faces across cultures offers a unique opportunity to establish the extent to which such cultural perceptual biases in eye movements are robust, but also to assess whether face-specific mechanisms are universally tuned. Here we monitored the eye movements of Western Caucasian (WC) and East Asian (EA) observers while they learned and recognised WC and EA inverted faces. Both groups of observers showed a comparable impairment in recognising inverted faces of both races. WC observers deployed a scattered inverted triangular scanpath with a bias towards the mouth, whereas EA observers uniformly extended the focus of their fixations from the centre towards the eyes. Overall, our data show that cultural perceptual differences in eye movements persist during the FIE, questioning the universality of face-processing mechanisms.

  2. Eye movement analysis for activity recognition using electrooculography.

    Science.gov (United States)

    Bulling, Andreas; Ward, Jamie A; Gellersen, Hans; Tröster, Gerhard

    2011-04-01

    In this work, we investigate eye movement analysis as a new sensing modality for activity recognition. Eye movement data were recorded using an electrooculography (EOG) system. We first describe and evaluate algorithms for detecting three eye movement characteristics from EOG signals-saccades, fixations, and blinks-and propose a method for assessing repetitive patterns of eye movements. We then devise 90 different features based on these characteristics and select a subset of them using minimum redundancy maximum relevance (mRMR) feature selection. We validate the method using an eight participant study in an office environment using an example set of five activity classes: copying a text, reading a printed paper, taking handwritten notes, watching a video, and browsing the Web. We also include periods with no specific activity (the NULL class). Using a support vector machine (SVM) classifier and person-independent (leave-one-person-out) training, we obtain an average precision of 76.1 percent and recall of 70.5 percent over all classes and participants. The work demonstrates the promise of eye-based activity recognition (EAR) and opens up discussion on the wider applicability of EAR to other activities that are difficult, or even impossible, to detect using common sensing modalities.

  3. Eye movement targets are released from visual crowding.

    Science.gov (United States)

    Harrison, William J; Mattingley, Jason B; Remington, Roger W

    2013-02-13

    Our ability to recognize objects in peripheral vision is impaired when other objects are nearby (Bouma, 1970). This phenomenon, known as crowding, is often linked to interactions in early visual processing that depend primarily on the retinal position of visual stimuli (Pelli, 2008; Pelli and Tillman, 2008). Here we tested a new account that suggests crowding is influenced by spatial information derived from an extraretinal signal involved in eye movement preparation. We had human observers execute eye movements to crowded targets and measured their ability to identify those targets just before the eyes began to move. Beginning ∼50 ms before a saccade toward a crowded object, we found that not only was there a dramatic reduction in the magnitude of crowding, but the spatial area within which crowding occurred was almost halved. These changes in crowding occurred despite no change in the retinal position of target or flanking stimuli. Contrary to the notion that crowding depends on retinal signals alone, our findings reveal an important role for eye movement signals. Eye movement preparation effectively enhances object discrimination in peripheral vision at the goal of the intended saccade. These presaccadic changes may enable enhanced recognition of visual objects in the periphery during active search of visually cluttered environments.

  4. Evaluating the Evidence Surrounding Pontine Cholinergic Involvement in REM Sleep Generation.

    Science.gov (United States)

    Grace, Kevin P; Horner, Richard L

    2015-01-01

    Rapid eye movement (REM) sleep - characterized by vivid dreaming, motor paralysis, and heightened neural activity - is one of the fundamental states of the mammalian central nervous system. Initial theories of REM sleep generation posited that induction of the state required activation of the "pontine REM sleep generator" by cholinergic inputs. Here, we review and evaluate the evidence surrounding cholinergic involvement in REM sleep generation. We submit that: (i) the capacity of pontine cholinergic neurotransmission to generate REM sleep has been firmly established by gain-of-function experiments, (ii) the function of endogenous cholinergic input to REM sleep generating sites cannot be determined by gain-of-function experiments; rather, loss-of-function studies are required, (iii) loss-of-function studies show that endogenous cholinergic input to the PTF is not required for REM sleep generation, and (iv) cholinergic input to the pontine REM sleep generating sites serve an accessory role in REM sleep generation: reinforcing non-REM-to-REM sleep transitions making them quicker and less likely to fail.

  5. Central crosstalk for somatic tinnitus: abnormal vergence eye movements.

    Directory of Open Access Journals (Sweden)

    Qing Yang

    Full Text Available BACKGROUND: Frequent oulomotricity problems with orthoptic testing were reported in patients with tinnitus. This study examines with objective recordings vergence eye movements in patients with somatic tinnitus patients with ability to modify their subjective tinnitus percept by various movements, such as jaw, neck, eye movements or skin pressure. METHODS: Vergence eye movements were recorded with the Eyelink II video system in 15 (23-63 years control adults and 19 (36-62 years subjects with somatic tinnitus. FINDINGS: 1 Accuracy of divergence but not of convergence was lower in subjects with somatic tinnitus than in control subjects. 2 Vergence duration was longer and peak velocity was lower in subjects with somatic tinnitus than in control subjects. 3 The number of embedded saccades and the amplitude of saccades coinciding with the peak velocity of vergence were higher for tinnitus subjects. Yet, saccades did not increase peak velocity of vergence for tinnitus subjects, but they did so for controls. 4 In contrast, there was no significant difference of vergence latency between these two groups. INTERPRETATION: The results suggest dysfunction of vergence areas involving cortical-brainstem-cerebellar circuits. We hypothesize that central auditory dysfunction related to tinnitus percept could trigger mild cerebellar-brainstem dysfunction or that tinnitus and vergence dysfunction could both be manifestations of mild cortical-brainstem-cerebellar syndrome reflecting abnormal cross-modality interactions between vergence eye movements and auditory signals.

  6. REM Sleep at its Core – Circuits, Neurotransmitters, and Pathophysiology

    Science.gov (United States)

    Fraigne, Jimmy J.; Torontali, Zoltan A.; Snow, Matthew B.; Peever, John H.

    2015-01-01

    Rapid eye movement (REM) sleep is generated and maintained by the interaction of a variety of neurotransmitter systems in the brainstem, forebrain, and hypothalamus. Within these circuits lies a core region that is active during REM sleep, known as the subcoeruleus nucleus (SubC) or sublaterodorsal nucleus. It is hypothesized that glutamatergic SubC neurons regulate REM sleep and its defining features such as muscle paralysis and cortical activation. REM sleep paralysis is initiated when glutamatergic SubC cells activate neurons in the ventral medial medulla, which causes release of GABA and glycine onto skeletal motoneurons. REM sleep timing is controlled by activity of GABAergic neurons in the ventrolateral periaqueductal gray and dorsal paragigantocellular reticular nucleus as well as melanin-concentrating hormone neurons in the hypothalamus and cholinergic cells in the laterodorsal and pedunculo-pontine tegmentum in the brainstem. Determining how these circuits interact with the SubC is important because breakdown in their communication is hypothesized to underlie narcolepsy/cataplexy and REM sleep behavior disorder (RBD). This review synthesizes our current understanding of mechanisms generating healthy REM sleep and how dysfunction of these circuits contributes to common REM sleep disorders such as cataplexy/narcolepsy and RBD. PMID:26074874

  7. Rapid eye movement sleep behavior disorder as an outlier detection problem

    DEFF Research Database (Denmark)

    Kempfner, Jacob; Sørensen, Gertrud Laura; Nikolic, M.

    2014-01-01

    : Sixteen healthy control subjects, 16 subjects with idiopathic REM sleep behavior disorder, and 16 subjects with periodic limb movement disorder were enrolled. Different combinations of five surface electromyographic channels, including the EOG, were tested. A muscle activity score was automatically...... for quantitative methods to establish objective criteria. This study proposes a semiautomatic algorithm for the early detection of Parkinson's disease. This is achieved by distinguishing between normal REM sleep and REM sleep without atonia by considering muscle activity as an outlier detection problem. METHODS...... computed from manual scored REM sleep. This was accomplished by the use of subject-specific features combined with an outlier detector (one-class support vector machine classifier). RESULTS: It was possible to correctly separate idiopathic REM sleep behavior disorder subjects from healthy control subjects...

  8. Motor-behavioral episodes in REM sleep behavior disorder and phasic events during REM sleep.

    Science.gov (United States)

    Manni, Raffaele; Terzaghi, Michele; Glorioso, Margaret

    2009-02-01

    To investigate if sudden-onset motor-behavioral episodes in REM sleep behavior disorder (RBD) are associated with phasic events of REM sleep, and to explore the potential meaning of such an association. Observational review analysis. Tertiary sleep center. Twelve individuals (11 males; mean age 67.6 +/- 7.4 years) affected by idiopathic RBD, displaying a total of 978 motor-behavioral episodes during nocturnal in-laboratory video-PSG. N/A. The motor activity displayed was primitive in 69.1% and purposeful/semi-purposeful in 30.9% of the motor-behavioral episodes recorded. Sleeptalking was significantly more associated with purposeful/semi-purposeful motor activity than crying and/or incomprehensible muttering (71.0% versus 21.4%, P<0.005). In 58.2% of the motor-behavioral episodes, phasic EEG-EOG events (rapid eye movements [REMs], alpha bursts, or sawtooth waves [STWs]) occurred simultaneously. Each variable (REMs, STWs, alpha bursts) was associated more with purposefullsemi-purposeful than with primitive movements (P<0.05). Motor-behavioral episodes in RBD were significantly more likely to occur in association with phasic than with tonic periods of REM sleep. The presence of REMs, alpha bursts and STWs was found to be more frequent in more complex episodes. We hypothesize that motor-behavioral episodes in RBD are likely to occur when the brain, during REM sleep, is in a state of increased instability (presence of alpha bursts) and experiencing stronger stimulation of visual areas (REMs).

  9. Head and eye movement as pointing modalities for eyewear computers

    DEFF Research Database (Denmark)

    Jalaliniya, Shahram; Mardanbeigi, Diako; Pederson, Thomas

    2014-01-01

    While the new generation of eyewear computers have increased expectations of a wearable computer, providing input to these devices is still challenging. Hand-held devices, voice commands, and hand gestures have already been explored to provide input to the wearable devices. In this paper, we...... examined using head and eye movements to point on a graphical user interface of a wearable computer. The performance of users in head and eye pointing has been compared with mouse pointing as a baseline method. The result of our experiment showed that the eye pointing is significantly faster than head...

  10. Head and eye movement as pointing modalities for eyewear computers

    DEFF Research Database (Denmark)

    Jalaliniya, Shahram; Mardanbeigi, Diako; Pederson, Thomas

    2014-01-01

    While the new generation of eyewear computers have increased expectations of a wearable computer, providing input to these devices is still challenging. Hand-held devices, voice commands, and hand gestures have already been explored to provide input to the wearable devices. In this paper, we...... examined using head and eye movements to point on a graphical user interface of a wearable computer. The performance of users in head and eye pointing has been compared with mouse pointing as a baseline method. The result of our experiment showed that the eye pointing is significantly faster than head...

  11. Minimal dynamical description of eye movements

    Science.gov (United States)

    Specht, Juan I.; Dimieri, Leonardo; Urdapilleta, Eugenio; Gasaneo, Gustavo

    2017-02-01

    In this paper we have addressed the question of whether a simple set of functions being the solution of a model, namely the damped harmonic oscillator with a general driving force, can satisfactorily describe data corresponding to ocular movements produced during a visual search task. Taking advantage of its mathematical tractability, we first focused on the simplest driving force compatible to the experimental data, a step-like activation. Under this hypothesis we were able to further simplify the system, once data from several experiments were fitted, producing an essentially parameter-free model that we plan to use in future applications. To increase the quality of the description of individual movements, we expanded the complexity in the forcing term and solved the inverse problem by using a proper mathematical formalism. Furthermore, additional terms, those arising from ocular drift and tremor, may be included within the same mathematical approach.

  12. Eye movements characteristics of Chinese dyslexic children in picture searching

    Institute of Scientific and Technical Information of China (English)

    HUANG Xu; JING Jin; ZOU Xiao-bing; WANG Meng-long; LI Xiu-hong; LIN Ai-hua

    2008-01-01

    Background Reading Chinese,a kind of ideogram,relies more on visual cognition.The visuospatial cognitive deficit of Chinese dyslexia is an interesting topic that has received much attention.The purpose of current research was to explore the visuopatial cognitive characteristics of Chinese dyslexic children by studying their eye movements via a picture searching test.Methods According to the diagnostic criteria defined by ICD-10,twenty-eight dyslexic children (mean age (10.12+1.42)years) were enrolled from the Clinic of Children Behavioral Disorder in the third affiliated hospital of Sun Yat-sen University.And 28 normally reading children (mean age (10.06±1.29) years),1:1 matched by age,sex,grade and family condition were chosen from an elementary school in Guangzhou as a control group.Four groups of pictures (cock,accident,canyon,meditate) from Picture Vocabulary Test were chosen as eye movement experiment targets.All the subjects carried out the picture searching task and their eye movement data were recorded by an Eyelink Ⅱ High-Speed Eye Tracker.The duration time,average fixation duration,average saccade amplitude,fixation counts and saccade counts were compared between the two groups of children.Results The dyslexic children had longer total fixation duration and average fixation duration (F=7.711,P<0.01;F=4.520,P<0.05),more fixation counts and saccade counts (F=7.498,P<0.01;F=11.040,P<0.01),and a smaller average saccade amplitude (F=29.743,P<0.01) compared with controls.But their performance in the picture vocabulary test was the same as those of the control group.The eye movement indexes were affected by the difficulty of the pictures and words,all eye movement indexes,except saccade amplitude,had a significant difference within groups (P<0.05).Conclusions Chinese dyslexic children have abnormal eye movements in picture searching,applying slow fixations,more fixations and small and frequent saccades.Their abnormal eye movement mode reflects the

  13. Culture shapes eye movements for visually homogeneous objects

    Directory of Open Access Journals (Sweden)

    David J Kelly

    2010-04-01

    Full Text Available Culture affects the way people move their eyes to extract information in their visual world. Adults from Eastern societies (e.g., China display a disposition to process information holistically, whereas individuals from Western societies (e.g., Britain process information analytically. In terms of face processing, adults from Western cultures typically fixate the eyes and mouth, while adults from Eastern cultures fixate centrally on the nose region, yet face recognition accuracy is comparable across populations. A potential explanation for the observed differences relates to social norms concerning eye gaze avoidance/engagement when interacting with conspecifics. Furthermore, it has been argued that faces represent a ‘special’ stimulus category and are processed holistically, with the whole face processed as a single unit. The extent to which the holistic eye movement strategy deployed by East Asian observers is related to holistic processing for faces is undetermined. To investigate these hypotheses, we recorded eye movements of adults from Western and Eastern cultural backgrounds while learning and recognizing visually homogeneous objects: human faces, sheep faces and greebles. Both group of observers recognized faces better than any other visual category, as predicted by the specificity of faces. However, East Asian participants deployed central fixations across all the visual categories. This cultural perceptual strategy was not specific to faces, discarding any parallel between the eye movements of Easterners with the holistic processing specific to faces. Cultural diversity in the eye movements used to extract information from visual homogenous objects is rooted in more general and fundamental mechanisms.

  14. Effects of aging on eye movements in the real world.

    Science.gov (United States)

    Dowiasch, Stefan; Marx, Svenja; Einhäuser, Wolfgang; Bremmer, Frank

    2015-01-01

    The effects of aging on eye movements are well studied in the laboratory. Increased saccade latencies or decreased smooth-pursuit gain are well established findings. The question remains whether these findings are influenced by the rather untypical environment of a laboratory; that is, whether or not they transfer to the real world. We measured 34 healthy participants between the age of 25 and 85 during two everyday tasks in the real world: (I) walking down a hallway with free gaze, (II) visual tracking of an earth-fixed object while walking straight-ahead. Eye movements were recorded with a mobile light-weight eye tracker, the EyeSeeCam (ESC). We find that age significantly influences saccade parameters. With increasing age, saccade frequency, amplitude, peak velocity, and mean velocity are reduced and the velocity/amplitude distribution as well as the velocity profile become less skewed. In contrast to laboratory results on smooth pursuit, we did not find a significant effect of age on tracking eye-movements in the real world. Taken together, age-related eye-movement changes as measured in the laboratory only partly resemble those in the real world. It is well-conceivable that in the real world additional sensory cues, such as head-movement or vestibular signals, may partially compensate for age-related effects, which, according to this view, would be specific to early motion processing. In any case, our results highlight the importance of validity for natural situations when studying the impact of aging on real-life performance.

  15. Forward models and state estimation in compensatory eye movements

    Directory of Open Access Journals (Sweden)

    Maarten A Frens

    2009-11-01

    Full Text Available The compensatory eye movement system maintains a stable retinal image, integrating information from different sensory modalities to compensate for head movements. Inspired by recent models of physiology of limb movements, we suggest that compensatory eye movements (CEM can be modeled as a control system with three essential building blocks: a forward model that predicts the effects of motor commands; a state estimator that integrates sensory feedback into this prediction; and, a feedback controller that translates a state estimate into motor commands. We propose a specific mapping of nuclei within the CEM system onto these control functions. Specifically, we suggest that the Flocculus is responsible for generating the forward model prediction and that the Vestibular Nuclei integrate sensory feedback to generate an estimate of current state. Finally, the brainstem motor nuclei – in the case of horizontal compensation this means the Abducens Nucleus and the Nucleus Prepositus Hypoglossi – implement a feedback controller, translating state into motor commands. While these efforts to understand the physiological control system as a feedback control system are in their infancy, there is the intriguing possibility that compensatory eye movements and targeted voluntary movements use the same cerebellar circuitry in fundamentally different ways.

  16. Impaired extinction of fear conditioning after REM deprivation is magnified by rearing in an enriched environment.

    Science.gov (United States)

    Hunter, Amy Silvestri

    2015-07-01

    Evidence from both human and animal studies indicates that rapid eye movement sleep (REM) is essential for the acquisition and retention of information, particularly of an emotional nature. Learning and memory can also be impacted by manipulation of housing condition such as exposure to an enriched environment (EE). This study investigated the effects of REM deprivation and EE, both separately and combined, on the extinction of conditioned fear in rats. Consistent with prior studies, conditioning was enhanced in EE-reared rats and extinction was impaired in REM deprived rats. In addition, rats exposed to both REM deprivation and EE showed the greatest impairment in extinction, with effects persisting through the first two days of extinction training. This study is the first to explore the combination of REM deprivation and EE and suggests that manipulations that alter sleep, particularly REM, can have persisting deleterious effects on emotional memory processing.

  17. Rapid eye movement sleep disturbances in Huntington disease

    DEFF Research Database (Denmark)

    Arnulf, I.; Nielsen, J.; Lohmann, E.

    2008-01-01

    with very mild HD and worsened with disease severity. In contrast to narcoleptic patients, HD patients had no cataplexy, hypnagogic hallucinations, or sleep paralysis. Four HD patients had abnormally low (sleep latencies, but none had multiple sleep-onset REM periods. Conclusions......Background: Sleep disorders including insomnia, movements during sleep, and daytime sleepiness are common but poorly studied in Huntington disease (HD). Objective: To evaluate the HD sleep-wake phenotype (including abnormal motor activity during sleep) in patients with various HD stages...... interview, nighttime video and sleep monitoring, and daytime multiple sleep latency tests. Their results were compared with those of patients with narcolepsy and control patients. Results: The HD patients had frequent insomnia, earlier sleep onset, lower sleep efficiency, increased stage I sleep, delayed...

  18. Covert anti-compensatory quick eye movements during head impulses.

    Directory of Open Access Journals (Sweden)

    Maria Heuberger

    Full Text Available BACKGROUND: Catch-up saccades during passive head movements, which compensate for a deficient vestibulo-ocular reflex (VOR, are a well-known phenomenon. These quick eye movements are directed toward the target in the opposite direction of the head movement. Recently, quick eye movements in the direction of the head movement (covert anti-compensatory quick eye movements, CAQEM were observed in older individuals. Here, we characterize these quick eye movements, their pathophysiology, and clinical relevance during head impulse testing (HIT. METHODS: Video head impulse test data from 266 patients of a tertiary vertigo center were retrospectively analyzed. Forty-three of these patients had been diagnosed with vestibular migraine, and 35 with Menière's disease. RESULTS: CAQEM occurred in 38% of the patients. The mean CAQEM occurrence rate (per HIT trial was 11±10% (mean±SD. Latency was 83±30 ms. CAQEM followed the saccade main sequence characteristics and were compensated by catch-up saccades in the opposite direction. Compensatory saccades did not lead to more false pathological clinical head impulse test assessments (specificity with CAQEM: 87%, and without: 85%. CAQEM on one side were associated with a lower VOR gain on the contralateral side (p<0.004 and helped distinguish Menière's disease from vestibular migraine (p = 0.01. CONCLUSION: CAQEM are a common phenomenon, most likely caused by a saccadic/quick phase mechanism due to gain asymmetries. They could help differentiate two of the most common causes of recurrent vertigo: vestibular migraine and Menière's disease.

  19. Endogenous cholinergic input to the pontine REM sleep generator is not required for REM sleep to occur.

    Science.gov (United States)

    Grace, Kevin P; Vanstone, Lindsay E; Horner, Richard L

    2014-10-22

    Initial theories of rapid eye movement (REM) sleep generation posited that induction of the state required activation of the pontine subceruleus (SubC) by cholinergic inputs. Although the capacity of cholinergic neurotransmission to contribute to REM sleep generation has been established, the role of cholinergic inputs in the generation of REM sleep is ultimately undetermined as the critical test of this hypothesis (local blockade of SubC acetylcholine receptors) has not been rigorously performed. We used bilateral microdialysis in freely behaving rats (n = 32), instrumented for electroencephalographic and electromyographic recording, to locally manipulate neurotransmission in the SubC with select drugs. As predicted, combined microperfusion of D-AP5 (glutamate receptor antagonist) and muscimol (GABAA receptor agonist) in the SubC virtually eliminated REM sleep. However, REM sleep was not reduced by scopolamine microperfusion in this same region, at a concentration capable of blocking the effects of cholinergic receptor stimulation. This result suggests that transmission of REM sleep drive to the SubC is acetylcholine-independent. Although SubC cholinergic inputs are not majorly involved in REM sleep generation, they may perform a minor function in the reinforcement of transitions into REM sleep, as evidenced by increases in non-REM-to-REM sleep transition duration and failure rate during cholinergic receptor blockade. Cholinergic receptor antagonism also attenuated the normal increase in hippocampal θ oscillations that characterize REM sleep. Using computational modeling, we show that our in vivo results are consistent with a mutually excitatory interaction between the SubC and cholinergic neurons where, importantly, cholinergic neuron activation is gated by SubC activity.

  20. Eye Movement Desensitization and Reprocessing: A Critical Analysis.

    Science.gov (United States)

    Erwin, Terry McVannel

    Since Shapiro's introduction of Eye Movement Desensitization and Reprocessing (EMDR) in 1989, it has been a highly controversial therapeutic technique. Critical reviews of Shapiro's initial study have highlighted many methodological shortcomings in her work. And early empirical research that followed Shapiro's original study has been criticized…

  1. Vowel Processing During Silent Reading: Evidence from Eye Movements

    Science.gov (United States)

    Ashby, Jane; Treiman, Rebecca; Kessler, Brett; Rayner, Keith

    2006-01-01

    Two eye movement experiments examined whether skilled readers include vowels in the early phonological representations used in word recognition during silent reading. Target words were presented in sentences preceded by parafoveal previews in which the vowel phoneme was concordant or discordant with the vowel phoneme in the target word. In…

  2. Individual differences in impulsivity predict anticipatory eye movements.

    Directory of Open Access Journals (Sweden)

    Laetitia Cirilli

    Full Text Available Impulsivity is the tendency to act without forethought. It is a personality trait commonly used in the diagnosis of many psychiatric diseases. In clinical practice, impulsivity is estimated using written questionnaires. However, answers to questions might be subject to personal biases and misinterpretations. In order to alleviate this problem, eye movements could be used to study differences in decision processes related to impulsivity. Therefore, we investigated correlations between impulsivity scores obtained with a questionnaire in healthy subjects and characteristics of their anticipatory eye movements in a simple smooth pursuit task. Healthy subjects were asked to answer the UPPS questionnaire (Urgency Premeditation Perseverance and Sensation seeking Impulsive Behavior scale, which distinguishes four independent dimensions of impulsivity: Urgency, lack of Premeditation, lack of Perseverance, and Sensation seeking. The same subjects took part in an oculomotor task that consisted of pursuing a target that moved in a predictable direction. This task reliably evoked anticipatory saccades and smooth eye movements. We found that eye movement characteristics such as latency and velocity were significantly correlated with UPPS scores. The specific correlations between distinct UPPS factors and oculomotor anticipation parameters support the validity of the UPPS construct and corroborate neurobiological explanations for impulsivity. We suggest that the oculomotor approach of impulsivity put forth in the present study could help bridge the gap between psychiatry and physiology.

  3. Eye Movement Analysis of Information Processing under Different Testing Conditions.

    Science.gov (United States)

    Dillon, Ronna F.

    1985-01-01

    Undergraduates were given complex figural analogies items, and eye movements were observed under three types of feedback: (1) elaborate feedback; (2) subjects verbalized their thinking and application of rules; and (3) no feedback. Both feedback conditions enhanced the rule-governed information processing during inductive reasoning. (Author/GDC)

  4. The Relationship Between Eye Movement and Vision Develops Before Birth

    Directory of Open Access Journals (Sweden)

    Veronika eSchöpf

    2014-10-01

    Full Text Available While the visuomotor system is known to develop rapidly after birth, studies have observed spontaneous activity in vertebrates in visually excitable cortical areas already before extrinsic stimuli are present. Resting state networks and fetal eye movements were observed independently in utero, but no functional brain activity coupled with visual stimuli could be detected using fetal fMRI. This study closes this gap and links in utero eye movement with corresponding functional networks.BOLD resting-state fMRI data were acquired from seven singleton fetuses between gestational weeks 30 – 36 with normal brain development. During the scan time, fetal eye movements were detected and tracked in the functional MRI data. We show that already in utero spontaneous fetal eye movements are linked to simultaneous networks in visual- and frontal cerebral areas. In our small but in terms of gestational age homogenous sample, evidence across the population suggests that the preparation of the human visuomotor system links visual and motor areas already prior to birth.

  5. The relationship between eye movement and vision develops before birth.

    Science.gov (United States)

    Schöpf, Veronika; Schlegl, Thomas; Jakab, Andras; Kasprian, Gregor; Woitek, Ramona; Prayer, Daniela; Langs, Georg

    2014-01-01

    While the visuomotor system is known to develop rapidly after birth, studies have observed spontaneous activity in vertebrates in visually excitable cortical areas already before extrinsic stimuli are present. Resting state networks and fetal eye movements were observed independently in utero, but no functional brain activity coupled with visual stimuli could be detected using fetal fMRI. This study closes this gap and links in utero eye movement with corresponding functional networks. BOLD resting-state fMRI data were acquired from seven singleton fetuses between gestational weeks 30-36 with normal brain development. During the scan time, fetal eye movements were detected and tracked in the functional MRI data. We show that already in utero spontaneous fetal eye movements are linked to simultaneous networks in visual- and frontal cerebral areas. In our small but in terms of gestational age homogenous sample, evidence across the population suggests that the preparation of the human visuomotor system links visual and motor areas already prior to birth.

  6. The relationship between eye movement and vision develops before birth

    Science.gov (United States)

    Schöpf, Veronika; Schlegl, Thomas; Jakab, Andras; Kasprian, Gregor; Woitek, Ramona; Prayer, Daniela; Langs, Georg

    2014-01-01

    While the visuomotor system is known to develop rapidly after birth, studies have observed spontaneous activity in vertebrates in visually excitable cortical areas already before extrinsic stimuli are present. Resting state networks and fetal eye movements were observed independently in utero, but no functional brain activity coupled with visual stimuli could be detected using fetal fMRI. This study closes this gap and links in utero eye movement with corresponding functional networks. BOLD resting-state fMRI data were acquired from seven singleton fetuses between gestational weeks 30–36 with normal brain development. During the scan time, fetal eye movements were detected and tracked in the functional MRI data. We show that already in utero spontaneous fetal eye movements are linked to simultaneous networks in visual- and frontal cerebral areas. In our small but in terms of gestational age homogenous sample, evidence across the population suggests that the preparation of the human visuomotor system links visual and motor areas already prior to birth. PMID:25324764

  7. Abnormal Spontaneous Eye Movements as Initial Presentation of Organophosphate Poisoning

    Science.gov (United States)

    De Lima Teixeira, Igor; Bazan, Silméia Garcia Zanati; Schelp, Arthur Oscar; Luvizutto, Gustavo José; De Lima, Fabrício Diniz; Bazan, Rodrigo

    2017-01-01

    Background Atypical ocular bobbing may result from an intentional poisoning from an organophosphate compound. Phenomenology Shown The patient exhibited conjugated, slow, arrhythmic, unpredictable eye movements in all directions, diagnosed as atypical ocular bobbing. Educational Value This is a rare, well‐documented, clinically relevant case for medical students for correct diagnosis and appropriate treatment of organophosphate intoxication. PMID:28243486

  8. Reading Spaced and Unspaced Chinese Text: Evidence from Eye Movements

    Science.gov (United States)

    Bai, Xuejun; Yan, Guoli; Liversedge, Simon P.; Zang, Chuanli; Rayner, Keith

    2008-01-01

    Native Chinese readers' eye movements were monitored as they read text that did or did not demark word boundary information. In Experiment 1, sentences had 4 types of spacing: normal unspaced text, text with spaces between words, text with spaces between characters that yielded nonwords, and finally text with spaces between every character. The…

  9. Development of Text Reading in Japanese: An Eye Movement Study

    Science.gov (United States)

    Jincho, Nobuyuki; Feng, Gary; Mazuka, Reiko

    2014-01-01

    This study examined age-group differences in eye movements among third-grade, fifth-grade, and adult Japanese readers. In Experiment 1, Japanese children, but not adults, showed a longer fixation time on logographic kanji words than on phonologically transparent hiragana words. Further, an age-group difference was found in the first fixation…

  10. Conceptual Change, Text Comprehension and Eye Movements during Reading

    Science.gov (United States)

    Penttinen, Marjaana; Anto, Erkki; Mikkilä-Erdmann, Mirjamaija

    2013-01-01

    In the two studies presented in this article, we examine the interplay of conceptual change, text comprehension, and eye-movements during reading and develop and test methods suitable for such explorations. In studies 1 and 2, university students (N = 15 and 23) read a text on photosynthesis, explained their reading processes retrospectively cued…

  11. Social experience does not abolish cultural diversity in eye movements

    Directory of Open Access Journals (Sweden)

    David J Kelly

    2011-05-01

    Full Text Available Adults from Eastern (e.g., China and Western (e.g., USA cultural groups display pronounced differences in a range of visual processing tasks. For example, the eye movement strategies used for information extraction during a variety of face processing tasks (e.g., identification and facial expressions of emotion categorization differs across cultural groups. Currently, many of the differences reported in previous studies have asserted that culture itself is responsible for shaping the way we process visual information, yet this has never been directly investigated. In the current study, we assessed the relative contribution of genetic and cultural factors by testing face processing in a population of British Born Chinese (BBC adults using face recognition and expression classification tasks. Contrary to predictions made by the cultural differences framework, the majority of BBC adults deployed ‘Eastern’ eye movement strategies, while approximately 25% of participants displayed ‘Western’ strategies. Furthermore, the cultural eye movement strategies used by individuals were consistent across recognition and expression tasks. These findings suggest that ‘culture’ alone cannot straightforwardly account for diversity in eye movement patterns. Instead a more complex understanding of how the environment and individual experiences can influence the mechanisms that govern visual processing is required.

  12. Perceptual Specificity Effects in Rereading: Evidence from Eye Movements

    Science.gov (United States)

    Sheridan, Heather; Reingold, Eyal M.

    2012-01-01

    The present experiments examined perceptual specificity effects using a rereading paradigm. Eye movements were monitored while participants read the same target word twice, in two different low-constraint sentence frames. The congruency of perceptual processing was manipulated by either presenting the target word in the same distortion typography…

  13. Eye movement evidence for an immediate Ganong effect.

    Science.gov (United States)

    Kingston, John; Levy, Joshua; Rysling, Amanda; Staub, Adrian

    2016-12-01

    Listeners tend to categorize an ambiguous speech sound so that it forms a word with its context (Ganong, 1980). This effect could reflect feedback from the lexicon to phonemic activation (McClelland & Elman, 1986), or the operation of a task-specific phonemic decision system (Norris, McQueen, & Cutler, 2000). Because the former account involves feedback between lexical and phonemic levels, it predicts that the lexicon's influence on phonemic decisions should be delayed and should gradually increase in strength. Previous response time experiments have not delivered a clear verdict as to whether this is the case, however. In 2 experiments, listeners' eye movements were tracked as they categorized phonemes using visually displayed response options. Lexically relevant information in the signal, the timing of which was confirmed by separate gating experiments, immediately increased eye movements toward the lexically supported response. This effect on eye movements then diminished over the course of the trial rather than continuing to increase. These results challenge the lexical feedback account. The present work also introduces a novel method for analyzing data from 'visual-world' type tasks, designed to assess when an experimental manipulation influences the probability of an eye movement toward the target. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. Eye-Movement Analysis Demonstrates Strategic Influences on Intelligence

    Science.gov (United States)

    Vigneau, Francois; Caissie, Andre F.; Bors, Douglas A.

    2006-01-01

    Taking into account various models and findings pertaining to the nature of analogical reasoning, this study explored quantitative and qualitative individual differences in intelligence using latency and eye-movement data. Fifty-five university students were administered 14 selected items of the Raven's Advanced Progressive Matrices test. Results…

  15. Perceptual Specificity Effects in Rereading: Evidence from Eye Movements

    Science.gov (United States)

    Sheridan, Heather; Reingold, Eyal M.

    2012-01-01

    The present experiments examined perceptual specificity effects using a rereading paradigm. Eye movements were monitored while participants read the same target word twice, in two different low-constraint sentence frames. The congruency of perceptual processing was manipulated by either presenting the target word in the same distortion typography…

  16. Eye movements during visual search in patients with glaucoma

    Directory of Open Access Journals (Sweden)

    Smith Nicholas D

    2012-08-01

    Full Text Available Abstract Background Glaucoma has been shown to lead to disability in many daily tasks including visual search. This study aims to determine whether the saccadic eye movements of people with glaucoma differ from those of people with normal vision, and to investigate the association between eye movements and impaired visual search. Methods Forty patients (mean age: 67 [SD: 9] years with a range of glaucomatous visual field (VF defects in both eyes (mean best eye mean deviation [MD]: –5.9 (SD: 5.4 dB and 40 age-related people with normal vision (mean age: 66 [SD: 10] years were timed as they searched for a series of target objects in computer displayed photographs of real world scenes. Eye movements were simultaneously recorded using an eye tracker. Average number of saccades per second, average saccade amplitude and average search duration across trials were recorded. These response variables were compared with measurements of VF and contrast sensitivity. Results The average rate of saccades made by the patient group was significantly smaller than the number made by controls during the visual search task (P = 0.02; mean reduction of 5.6% (95% CI: 0.1 to 10.4%. There was no difference in average saccade amplitude between the patients and the controls (P = 0.09. Average number of saccades was weakly correlated with aspects of visual function, with patients with worse contrast sensitivity (PR logCS; Spearman’s rho: 0.42; P = 0.006 and more severe VF defects (best eye MD; Spearman’s rho: 0.34; P = 0.037 tending to make less eye movements during the task. Average detection time in the search task was associated with the average rate of saccades in the patient group (Spearman’s rho = −0.65; P  Conclusions The average rate of saccades made during visual search by this group of patients was fewer than those made by people with normal vision of a similar average age. There was wide variability in saccade rate in the patients

  17. Eye movements during mental time travel follow a diagonal line.

    Science.gov (United States)

    Hartmann, Matthias; Martarelli, Corinna S; Mast, Fred W; Stocker, Kurt

    2014-11-01

    Recent research showed that past events are associated with the back and left side, whereas future events are associated with the front and right side of space. These spatial-temporal associations have an impact on our sensorimotor system: thinking about one's past and future leads to subtle body sways in the sagittal dimension of space (Miles, Nind, & Macrae, 2010). In this study we investigated whether mental time travel leads to sensorimotor correlates in the horizontal dimension of space. Participants were asked to mentally displace themselves into the past or future while measuring their spontaneous eye movements on a blank screen. Eye gaze was directed more rightward and upward when thinking about the future than when thinking about the past. Our results provide further insight into the spatial nature of temporal thoughts, and show that not only body, but also eye movements follow a (diagonal) "time line" during mental time travel.

  18. The eyes know: eye movements as a veridical index of memory.

    Science.gov (United States)

    Hannula, Deborah E; Baym, Carol L; Warren, David E; Cohen, Neal J

    2012-03-01

    In two experiments, we examined whether observers' eye movements distinguish studied faces from highly similar novel faces. Participants' eye movements were monitored while they viewed three-face displays. Target-present displays contained a studied face and two morphed faces that were visually similar to it; target-absent displays contained three morphed faces that were visually similar to a studied, but not tested, face. On each trial in a test session, participants were instructed to choose the studied face if it was present or a random face if it was not and then to indicate whether the chosen face was studied. Whereas manipulating visual similarity in target-absent displays influenced the rate of false endorsements of nonstudied items as studied, eye movements proved impervious to this manipulation. Studied faces were viewed disproportionately from 1,000 to 2,000 ms after display onset and from 1,000 to 500 ms before explicit identification. Early viewing also distinguished studied faces from faces incorrectly endorsed as studied. Our findings show that eye movements provide a relatively pure index of past experience that is uninfluenced by explicit response strategies, and suggest that eye movement measures may be of practical use in applied settings.

  19. Eye movement monitoring reveals differential influences of emotion on memory

    Directory of Open Access Journals (Sweden)

    Lily Riggs

    2010-11-01

    Full Text Available Research shows that memory for emotional aspects of an event may be enhanced at the cost of impaired memory for surrounding peripheral details. However, this has only been assessed directly via verbal reports which reveal the outcome of a long stream of processing but cannot shed light on how/when emotion may affect the retrieval process. In the present experiment, eye movement monitoring was used as an indirect measure of memory as it can reveal aspects of online memory processing. For example, do emotions modulate the nature of memory representations or the speed with which such memories can be accessed? Participants viewed central negative and neutral scenes surrounded by three neutral objects and after a brief delay, memory was assessed indirectly via eye movement monitoring and then directly via verbal reports. Consistent with the previous literature, emotion enhanced central and impaired peripheral memory as indexed by eye movement scanning and verbal reports. This suggests that eye movement scanning may contribute and/or is related to conscious access of memory. However, the central/peripheral tradeoff effect was not observed in an early measure of eye movement behavior, i.e. participants were faster to orient to a critical region of change in the periphery irrespective of whether it was previously studied in a negative or neutral context. These findings demonstrate emotion’s differential influences on different aspects of retrieval. In particular, emotion appears to affect the detail within, and/or the evaluation of, stored memory representations, but it may not affect the initial access to those representations.

  20. Interaction between the premotor processes of eye and hand movements: possible mechanism underlying eye-hand coordination.

    Science.gov (United States)

    Hiraoka, Koichi; Kurata, Naoatsu; Sakaguchi, Masato; Nonaka, Kengo; Matsumoto, Naoto

    2014-03-01

    Interaction between the execution process of eye movement and that of hand movement must be indispensable for eye-hand coordination. The present study investigated corticospinal excitability in the hand muscles during the premotor processes of eye and/or hand movement to elucidate interaction between these processes. Healthy humans performed a precued reaction task of eye and/or finger movement and motor-evoked potentials in the hand muscles were evoked in the reaction time. Leftward eye movement suppressed corticospinal excitability in the right abductor digiti minimi muscle only when little finger abduction was simultaneously executed. Corticospinal excitability in the first dorsal interosseous muscle was not suppressed by eye movement regardless of whether or not it was accompanied by finger movement. Suppression of corticospinal excitability in the hand muscles induced by eye movement in the premotor period depends on the direction of eye movement, the muscle tested, and the premotor process of the tested muscle. The suppression may reflect interaction between the motor process of eye movement and that of hand movement particularly active during eye-hand coordination tasks during which both processes proceed.

  1. Template aging in eye movement-driven biometrics

    Science.gov (United States)

    Komogortsev, Oleg V.; Holland, Corey D.; Karpov, Alex

    2014-05-01

    This paper presents a template aging study of eye movement biometrics, considering three distinct biometric techniques on multiple stimuli and eye tracking systems. Short-to-midterm aging effects are examined over two-weeks, on a highresolution eye tracking system, and seven-months, on a low-resolution eye tracking system. We find that, in all cases, aging effects are evident as early as two weeks after initial template collection, with an average 28% (±19%) increase in equal error rates and 34% (±12%) reduction in rank-1 identification rates. At seven months, we observe an average 18% (±8%) increase in equal error rates and 44% (±20%) reduction in rank-1 identification rates. The comparative results at two-weeks and seven-months suggests that there is little difference in aging effects between the two intervals; however, whether the rate of decay increases more drastically in the long-term remains to be seen.

  2. Seeing via miniature eye movements: A dynamic hypothesis for vision

    Directory of Open Access Journals (Sweden)

    Ehud eAhissar

    2012-11-01

    Full Text Available During natural viewing, the eyes are never still. Even during fixation, miniature movements of the eyes move the retinal image across tens of foveal photoreceptors. Most theories of vision implicitly assume that the visual system ignores these movements and somehow overcomes the resulting smearing. However, evidence has accumulated to indicate that fixational eye movements cannot be ignored by the visual system if fine spatial details are to be resolved. We argue that the only way the visual system can achieve its high resolution given its fixational movements is by seeing via these movements. Seeing via eye movements also eliminates the instability of the image, which would be induced by them otherwise. Here we present a hypothesis for vision, in which coarse details are spatially-encoded in gaze-related coordinates, and fine spatial details are temporally-encoded in relative retinal coordinates. The temporal encoding presented here achieves its highest resolution by encoding along the elongated axes of simple cell receptive fields and not across these axes as suggested by spatial models of vision. According to our hypothesis, fine details of shape are encoded by inter-receptor temporal phases, texture by instantaneous intra-burst rates of individual receptors, and motion by inter-burst temporal frequencies. We further describe the ability of the visual system to readout the encoded information and recode it internally. We show how reading out of retinal signals can be facilitated by neuronal phase-locked loops (NPLLs, which lock to the retinal jitter; this locking enables recoding of motion information and temporal framing of shape and texture processing. A possible implementation of this locking-and-recoding process by specific thalamocortical loops is suggested. Overall it is suggested that high-acuity vision is based primarily on temporal mechanisms of the sort presented here and low-acuity vision is based primarily on spatial mechanisms.

  3. CUE: counterfeit-resistant usable eye movement-based authentication via oculomotor plant characteristics and complex eye movement patterns

    Science.gov (United States)

    Komogortsev, Oleg V.; Karpov, Alexey; Holland, Corey D.

    2012-06-01

    The widespread use of computers throughout modern society introduces the necessity for usable and counterfeit-resistant authentication methods to ensure secure access to personal resources such as bank accounts, e-mail, and social media. Current authentication methods require tedious memorization of lengthy pass phrases, are often prone to shouldersurfing, and may be easily replicated (either by counterfeiting parts of the human body or by guessing an authentication token based on readily available information). This paper describes preliminary work toward a counterfeit-resistant usable eye movement-based (CUE) authentication method. CUE does not require any passwords (improving the memorability aspect of the authentication system), and aims to provide high resistance to spoofing and shoulder-surfing by employing the combined biometric capabilities of two behavioral biometric traits: 1) oculomotor plant characteristics (OPC) which represent the internal, non-visible, anatomical structure of the eye; 2) complex eye movement patterns (CEM) which represent the strategies employed by the brain to guide visual attention. Both OPC and CEM are extracted from the eye movement signal provided by an eye tracking system. Preliminary results indicate that the fusion of OPC and CEM traits is capable of providing a 30% reduction in authentication error when compared to the authentication accuracy of individual traits.

  4. Slow waves, sharp waves, ripples, and REM in sleeping dragons.

    Science.gov (United States)

    Shein-Idelson, Mark; Ondracek, Janie M; Liaw, Hua-Peng; Reiter, Sam; Laurent, Gilles

    2016-04-29

    Sleep has been described in animals ranging from worms to humans. Yet the electrophysiological characteristics of brain sleep, such as slow-wave (SW) and rapid eye movement (REM) activities, are thought to be restricted to mammals and birds. Recording from the brain of a lizard, the Australian dragon Pogona vitticeps, we identified SW and REM sleep patterns, thus pushing back the probable evolution of these dynamics at least to the emergence of amniotes. The SW and REM sleep patterns that we observed in lizards oscillated continuously for 6 to 10 hours with a period of ~80 seconds. The networks controlling SW-REM antagonism in amniotes may thus originate from a common, ancient oscillator circuit. Lizard SW dynamics closely resemble those observed in rodent hippocampal CA1, yet they originate from a brain area, the dorsal ventricular ridge, that has no obvious hodological similarity with the mammalian hippocampus.

  5. Eye Movements Affect Postural Control in Young and Older Females.

    Science.gov (United States)

    Thomas, Neil M; Bampouras, Theodoros M; Donovan, Tim; Dewhurst, Susan

    2016-01-01

    Visual information is used for postural stabilization in humans. However, little is known about how eye movements prevalent in everyday life interact with the postural control system in older individuals. Therefore, the present study assessed the effects of stationary gaze fixations, smooth pursuits, and saccadic eye movements, with combinations of absent, fixed and oscillating large-field visual backgrounds to generate different forms of retinal flow, on postural control in healthy young and older females. Participants were presented with computer generated visual stimuli, whilst postural sway and gaze fixations were simultaneously assessed with a force platform and eye tracking equipment, respectively. The results showed that fixed backgrounds and stationary gaze fixations attenuated postural sway. In contrast, oscillating backgrounds and smooth pursuits increased postural sway. There were no differences regarding saccades. There were also no differences in postural sway or gaze errors between age groups in any visual condition. The stabilizing effect of the fixed visual stimuli show how retinal flow and extraocular factors guide postural adjustments. The destabilizing effect of oscillating visual backgrounds and smooth pursuits may be related to more challenging conditions for determining body shifts from retinal flow, and more complex extraocular signals, respectively. Because the older participants matched the young group's performance in all conditions, decreases of posture and gaze control during stance may not be a direct consequence of healthy aging. Further research examining extraocular and retinal mechanisms of balance control and the effects of eye movements, during locomotion, is needed to better inform fall prevention interventions.

  6. Driving experience and special skills reflected in eye movements

    Science.gov (United States)

    Paeglis, Roberts; Bluss, Kristaps; Atvars, Aigars

    2011-10-01

    When driving a vehicle, people use the central vision both to plan ahead and monitor their performance feedback (research by Donges, 1978 [1], and after). Discussion is ongoing if making eye movements do more than gathering information. Moving eyes may also prepare the following body movements like steering. Different paradigms exist to explore vision in driving. Our perspective was to quantify eye movements and fixation patterns of different proficiency individuals, a driving learner, a novice, an experienced driver and a European level car racer. Thus for safety reasons we started by asking them to follow a video tour through a known city, remote from an infrared eye tracker sampling at 250 Hz. We report that gaze strategy of an experienced driver differs qualitatively from that of an automobile sports master. Quantitative differences only were found between the latter and a driving learner or a novice driver. Experience in a motor action provides skills different from sports training. We are aiming at testing this finding in real world driving.

  7. Association between the activation of MCH and orexin immunorective neurons and REM sleep architecture during REM rebound after a three day long REM deprivation.

    Science.gov (United States)

    Kitka, Tamas; Adori, Csaba; Katai, Zita; Vas, Szilvia; Molnar, Eszter; Papp, Rege S; Toth, Zsuzsanna E; Bagdy, Gyorgy

    2011-10-01

    Rapid eye movement (REM) sleep rebound following REM deprivation using the platform-on-water method is characterized by increased time spent in REM sleep and activation of melanin-concentrating hormone (MCH) expressing neurons. Orexinergic neurons discharge reciprocally to MCH-ergic neurons across the sleep-wake cycle. However, the relation between REM architecture and the aforementioned neuropeptides remained unclear. MCH-ergic neurons can be divided into two subpopulations regarding their cocaine- and amphetamine-regulated transcript (CART) immunoreactivity, and among them the activation of CART-immunoreactive subpopulation is higher during the REM rebound. However, the possible role of stress in this association has not been elucidated. Our aims were to analyze the relationship between the architecture of REM rebound and the activation of hypothalamic MCH-ergic and orexinergic neurons. We also intended to separate the effect of stress and REM deprivation on the subsequent activation of subpopulations of MCH-ergic neurons. In order to detect neuronal activity, we performed MCH/cFos and orexin/cFos double immunohistochemistry on home cage, sleep deprived and sleep-rebound rats using the platform-on-water method with small and large (stress control) platforms. Furthermore, REM architecture was analyzed and a triple MCH/CART/cFos immunohistochemistry was also performed on the rebound groups in the same animals. We found that the activity of MCH- and orexin-immunoreactive neurons during REM rebound was positively and negatively correlated with the number of REM bouts, respectively. A negative reciprocal correlation was also found between the activation of MCH- and orexin-immunoreactive neurons during REM rebound. Furthermore, difference between the activation of CART-immunoreactive (CART-IR) and non-CART-immunoreactive MCH-ergic neuron subpopulations was found only after selective REM deprivation, it was absent in the large platform (stress control) rebound group

  8. Fixational eye movements during viewing of dynamic natural scenes.

    Science.gov (United States)

    Roberts, James A; Wallis, Guy; Breakspear, Michael

    2013-01-01

    Even during periods of fixation our eyes undergo small amplitude movements. These movements are thought to be essential to the visual system because neural responses rapidly fade when images are stabilized on the retina. The considerable recent interest in fixational eye movements (FEMs) has thus far concentrated on idealized experimental conditions with artificial stimuli and restrained head movements, which are not necessarily a suitable model for natural vision. Natural dynamic stimuli, such as movies, offer the potential to move beyond restrictive experimental settings to probe the visual system with greater ecological validity. Here, we study FEMs recorded in humans during the unconstrained viewing of a dynamic and realistic visual environment, revealing that drift trajectories exhibit the properties of a random walk with memory. Drifts are correlated at short time scales such that the gaze position diverges from the initial fixation more quickly than would be expected for an uncorrelated random walk. We propose a simple model based on the premise that the eye tends to avoid retracing its recent steps to prevent photoreceptor adaptation. The model reproduces key features of the observed dynamics and enables estimation of parameters from data. Our findings show that FEM correlations thought to prevent perceptual fading exist even in highly dynamic real-world conditions.

  9. Fixational eye movements during viewing of dynamic natural scenes

    Directory of Open Access Journals (Sweden)

    James A. Roberts

    2013-10-01

    Full Text Available Even during periods of fixation our eyes undergo small amplitude movements. These movements are thought to be essential to the visual system because neural responses rapidly fade when images are stabilized on the retina. The considerable recent interest in fixational eye movements (FEMs has thus far concentrated on idealized experimental conditions with artificial stimuli and restrained head movements, which are not necessarily a suitable model for natural vision. Natural dynamic stimuli, such as movies, offer the potential to move beyond restrictive experimental settings to probe the visual system with greater ecological validity. Here, we study FEMs recorded in humans during the unconstrained viewing of a dynamic and realistic visual environment, revealing that drift trajectories exhibit the properties of a random walk with memory. Drifts are correlated at short time scales such that the gaze position diverges from the initial fixation more quickly than would be expected for an uncorrelated random walk. We propose a simple model based on the premise that the eye tends to avoid retracing its recent steps to prevent photoreceptor adaptation. The model reproduces key features of the observed dynamics and enables estimation of parameters from data. Our findings show that FEM correlations thought to prevent perceptual fading exist even in highly dynamic real-world conditions.

  10. Detection of cortical activities on eye movement using functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Masaki; Kawai, Kazushige; Kitahara, Kenji [Jikei Univ., Tokyo (Japan). School of Medicine; Soulie, D.; Cordoliani, Y.S.; Iba-Zizen, M.T.; Cabanis, E.A.

    1997-11-01

    Cortical activity during eye movement was examined with functional magnetic resonance imaging. Horizontal saccadic eye movements and smooth pursuit eye movements were elicited in normal subjects. Activity in the frontal eye field was found during both saccadic and smooth pursuit eye movements at the posterior margin of the middle frontal gyrus and in parts of the precentral sulcus and precentral gyrus bordering the middle frontal gyrus (Brodmann`s areas 8, 6, and 9). In addition, activity in the parietal eye field was found in the deep, upper margin of the angular gyrus and of the supramarginal gyrus (Brodmann`s areas 39 and 40) during saccadic eye movement. Activity of V5 was found at the intersection of the ascending limb of the inferior temporal sulcus and the lateral occipital sulcus during smooth pursuit eye movement. Our results suggest that functional magnetic resonance imaging is useful for detecting cortical activity during eye movement. (author)

  11. The cholinergic REM induction test with RS 86 after scopolamine pretreatment in healthy subjects.

    Science.gov (United States)

    Riemann, D; Hohagen, F; Fleckenstein, P; Schredl, M; Berger, M

    1991-09-01

    A shortened latency of rapid eye movement (REM) sleep is one of the most stable biological abnormalities described in depressive patients. According to the reciprocal interaction model of non-REM and REM sleep regulation, REM sleep disinhibition at the beginning of the night in depression is a consequence of heightened central nervous system cholinergic transmitter activity in relation to aminergic transmitter activity. A recent study has indicated that muscarinic supersensitivity, rather than quantitatively enhanced cholinergic activity, may be the primary cause of REM sleep abnormalities in depression. The present study tested this hypothesis by treating healthy volunteers for 3 days with a cholinergic antagonist (scopolamine) in the morning, in an effort to induce muscarinic receptor supersensitivity. On the last day of scopolamine administration, RS 86, an orally active cholinergic agonist, was administered before bedtime to test whether this procedure would induce sleep onset REM periods. Whereas scopolamine treatment tended to advance REM sleep and to heighten REM density in healthy controls in comparison to NaCl administration, the additional cholinergic stimulation did not provoke further REM sleep disinhibition. This result underlines the need to take a hypofunction of aminergic transmitter systems into account in attempts to explain the pronounced advance of REM sleep typically seen in depressives.

  12. Comparing neural correlates of REM sleep in posttraumatic stress disorder and depression: a neuroimaging study.

    Science.gov (United States)

    Ebdlahad, Sommer; Nofzinger, Eric A; James, Jeffrey A; Buysse, Daniel J; Price, Julie C; Germain, Anne

    2013-12-30

    Rapid eye movement (REM) sleep disturbances predict poor clinical outcomes in posttraumatic stress disorder (PTSD) and major depressive disorder (MDD). In MDD, REM sleep is characterized by activation of limbic and paralimbic brain regions compared to wakefulness. The neural correlates of PTSD during REM sleep remain scarcely explored, and comparisons of PTSD and MDD have not been conducted. The present study sought to compare brain activity patterns during wakefulness and REM sleep in 13 adults with PTSD and 12 adults with MDD using [¹⁸F]-fluoro-2-deoxy-D-glucose positron emission tomography (PET). PTSD was associated with greater increase in relative regional cerebral metabolic rate of glucose (rCMRglc) in limbic and paralimbic structures in REM sleep compared to wakefulness. Post-hoc comparisons indicated that MDD was associated with greater limbic and paralimbic rCMRglc during wakefulness but not REM sleep compared to PTSD. Our findings suggest that PTSD is associated with increased REM sleep limbic and paralimbic metabolism, whereas MDD is associated with wake and REM hypermetabolism in these areas. These observations suggest that PTSD and MDD disrupt REM sleep through different neurobiological processes. Optimal sleep treatments between the two disorders may differ: REM-specific therapy may be more effective in PTSD.

  13. Post-learning REM sleep deprivation impairs long-term memory: reversal by acute nicotine treatment.

    Science.gov (United States)

    Aleisa, A M; Alzoubi, K H; Alkadhi, K A

    2011-07-15

    Rapid eye movement sleep deprivation (REM-SD) is associated with spatial learning and memory impairment. During REM-SD, an increase in nicotine consumption among habitual smokers and initiation of tobacco use by non-smokers have been reported. We have shown recently that nicotine treatment prevented learning and memory impairments associated with REM-SD. We now report the interactive effects of post-learning REM-SD and/or nicotine. The animals were first trained on the radial arm water maze (RAWM) task, then they were REM-sleep deprived using the modified multiple platform paradigm for 24h. During REM-SD period, the rats were injected with saline or nicotine (1mg/kg s.c. every 12h: a total of 3 injections). The animals were tested for long-term memory in the RAWM at the end of the REM-SD period. The 24h post-learning REM-SD significantly impaired long-term memory. However, nicotine treatment reversed the post-learning REM-SD-induced impairment of long-term memory. On the other hand, post-learning treatment of normal rats with nicotine for 24h enhanced long-term memory. These results indicate that post-learning acute nicotine treatment prevented the deleterious effect of REM-SD on cognitive abilities.

  14. Sertraline and rapid eye movement sleep without atonia: an 8-week, open-label study of depressed patients.

    Science.gov (United States)

    Zhang, Bin; Hao, Yanli; Jia, Fujun; Tang, Yi; Li, Xueli; Liu, Wuhan; Arnulf, Isabelle

    2013-12-02

    Previous studies have reported that selective serotonin reuptake inhibitors (SSRIs) may induce or exacerbate rapid eye movement (REM) sleep without atonia (RSWA) and increase the risk of developing REM sleep behavior disorder (RBD). However, most of these studies are retrospective and cross-sectional and employed small sample sizes and a mixture of SSRIs. In this 8-week open-label trial of sertraline in depressed patients (n = 31), depressed patients were administered 50mg sertraline at 8 am on the 1st day and subsequently titrated up to a maximum of 200mg/day. All patients underwent repeated video-polysomnography (vPSG) (baseline, 1st day, 14th day, 28th day, and 56th day). Both tonic (submental) and phasic (submental and anterior tibialis) RSWA events were visually counted. Tonic RSWA increased from 3.2 ± 1.8% at baseline to 5.1 ± 2.3% on the 1st day and 10.4 ± 2.7% on the 14th day; after that, measurements were stable until the 56th day. A similar profile was observed for phasic RSWA. The increases in tonic RSWA (r = 0.56, P = 0.004) and phasic RSWA (submental: r = -0.51, P = 0.02; anterior tibialis: r = 0.41, P = 0.04) were correlated with the degree of the prolonging of REM latency. All of RSWAs were not correlated with patients' demographic and clinical characteristics. Sertraline may induce or exacerbate RSWA. In contrast to idiopathic RBD, sertraline-related RSWA had the specific characteristics of being correlated with the degree of the prolonging of REM latency and no predominance of male sex and elder age, suggesting different pathophysiological mechanisms. The antidepressant-related RSWA should be a potential public health problem in the depressed patients.

  15. Senior Vipassana Meditation practitioners exhibit distinct REM sleep organization from that of novice meditators and healthy controls.

    Science.gov (United States)

    Maruthai, Nirmala; Nagendra, Ravindra P; Sasidharan, Arun; Srikumar, Sulekha; Datta, Karuna; Uchida, Sunao; Kutty, Bindu M

    2016-06-01

    Abstract/Summary The present study is aimed to ascertain whether differences in meditation proficiency alter rapid eye movement sleep (REM sleep) as well as the overall sleep-organization. Whole-night polysomnography was carried out using 32-channel digital EEG system. 20 senior Vipassana meditators, 16 novice Vipassana meditators and 19 non-meditating control subjects participated in the study. The REM sleep characteristics were analyzed from the sleep-architecture of participants with a sleep efficiency index >85%. Senior meditators showed distinct changes in sleep-organization due to enhanced slow wave sleep and REM sleep, reduced number of intermittent awakenings and reduced duration of non-REM stage 2 sleep. The REM sleep-organization was significantly different in senior meditators with more number of REM episodes and increased duration of each episode, distinct changes in rapid eye movement activity (REMA) dynamics due to increased phasic and tonic activity and enhanced burst events (sharp and slow bursts) during the second and fourth REM episodes. No significant differences in REM sleep organization was observed between novice and control groups. Changes in REM sleep-organization among the senior practitioners of meditation could be attributed to the intense brain plasticity events associated with intense meditative practices on brain functions.

  16. Origin, development, and evolution of eye movement desensitization and reprocessing

    Directory of Open Access Journals (Sweden)

    Carolina Marín

    2016-12-01

    Full Text Available Eye movement desensitization and reprocessing (EMDR has led to a great number of studies since its appearance in 1989. The aim of this article is to describe EMDR development and evolution to the present day. With this purpose a search was carried out on MEDLINE and PsycINFO with the entry "eye movement desensitization". After revising the resulting 797 articles, those that because of their relevance explained best the development and evolution of the technique were chosen and shaped into a lifeline graphically representing the history of EMDR. Despite the fact that during the first years the focus of research was on the validation of the technique for post-traumatic disorder (PTSD, it was soon applied to other areas. Only 14% of the articles found account for controlled studies. Up to date, in spite of the effectiveness of EMDR for the treatment of PTSD that has been proven, many different explanatory hypotheses are still up for discussion.

  17. Levels of processing and Eye Movements: A Stimulus driven approach

    DEFF Research Database (Denmark)

    Mulvey, Fiona Bríd

    2014-01-01

    . This series of studies attempts to provide explanatory information for previous findings that saccade amplitude and fixation duration are indicative of levels of processing and to isolate top down influences on eye movements with a stimulus driven approach. This approach involves developing measures suitable...... for studying individual differences in attention in large sample groups, using stimulus pairs which are similar in terms of bottom up properties but different in terms of higher level processing. These methods are presented in study 1, stimuli are developed and tested in Study 2. Study 3 uses these stimuli...... to investigate individual differences in levels of processing within the normal population using existing constructs and tests of cognitive style. Study 4 investigates these stimuli and the eye movements of a clinical group with known interruption to the dorsal stream of processing, and subsequent isolated...

  18. A Review on Eye Movement Studies in Childhood and Adolescent Psychiatry

    Science.gov (United States)

    Rommelse, Nanda N. J.; Van der Stigchel, Stefan; Sergeant, Joseph A.

    2008-01-01

    The neural substrates of eye movement measures are largely known. Therefore, measurement of eye movements in psychiatric disorders may provide insight into the underlying neuropathology of these disorders. Visually guided saccades, antisaccades, memory guided saccades, and smooth pursuit eye movements will be reviewed in various childhood…

  19. A Review on Eye Movement Studies in Childhood and Adolescent Psychiatry

    Science.gov (United States)

    Rommelse, Nanda N. J.; Van der Stigchel, Stefan; Sergeant, Joseph A.

    2008-01-01

    The neural substrates of eye movement measures are largely known. Therefore, measurement of eye movements in psychiatric disorders may provide insight into the underlying neuropathology of these disorders. Visually guided saccades, antisaccades, memory guided saccades, and smooth pursuit eye movements will be reviewed in various childhood…

  20. Eye movements of patients with schizophrenia in a natural environment.

    Science.gov (United States)

    Dowiasch, Stefan; Backasch, Bianca; Einhäuser, Wolfgang; Leube, Dirk; Kircher, Tilo; Bremmer, Frank

    2016-02-01

    Alterations of eye movements in schizophrenia patients have been widely described for laboratory settings. For example, gain during smooth tracking is reduced, and fixation patterns differ between patients and healthy controls. The question remains, whether such results are related to the specifics of the experimental environment, or whether they transfer to natural settings. Twenty ICD-10 diagnosed schizophrenia patients and 20 healthy age-matched controls participated in the study, each performing four different oculomotor tasks corresponding to natural everyday behavior in an indoor environment: (I) fixating stationary targets, (II) sitting in a hallway with free gaze, (III) walking down the hallway, and (IV) visually tracking a target on the floor while walking straight-ahead. In all conditions, eye movements were continuously recorded binocularly by a mobile lightweight eye tracker (EyeSeeCam). When patients looked at predefined targets, they showed more fixations with reduced durations than controls. The opposite was true when participants were sitting in a hallway with free gaze. During visual tracking, patients showed a significantly greater root-mean-square error (representing the mean deviation from optimal) of retinal target velocity. Different from previous results on smooth-pursuit eye movements obtained in laboratory settings, no such difference was found for velocity gain. Taken together, we have identified significant differences in fundamental oculomotor parameters between schizophrenia patients and healthy controls during natural behavior in a real environment. Moreover, our data provide evidence that in natural settings, patients overcome some impairments, which might be present only in laboratory studies, by as of now unknown compensatory mechanisms or strategies.

  1. Eye movement monitoring reveals differential influences of emotion on memory

    OpenAIRE

    Lily Riggs; McQuiggan, Douglas A.; Anderson, Adam K.; Ryan, Jennifer D.

    2010-01-01

    Research shows that memory for emotional aspects of an event may be enhanced at the cost of impaired memory for surrounding peripheral details. However, this has only been assessed directly via verbal reports which reveal the outcome of a long stream of processing but cannot shed light on how/when emotion may affect the retrieval process. In the present experiment, eye movement monitoring was used as an indirect measure of memory as it can reveal aspects of online memory processing. For ex...

  2. Eye Movement Monitoring Reveals Differential Influences of Emotion on Memory

    OpenAIRE

    Riggs, Lily; McQuiggan, Douglas A.; Anderson, Adam K.; Ryan, Jennifer D.

    2010-01-01

    Research shows that memory for emotional aspects of an event may be enhanced at the cost of impaired memory for surrounding peripheral details. However, this has only been assessed directly via verbal reports which reveal the outcome of a long stream of processing but cannot shed light on how/when emotion may affect the retrieval process. In the present experiment, eye movement monitoring (EMM) was used as an indirect measure of memory as it can reveal aspects of online memory processing. For...

  3. Eye movement monitoring reveals differential influences of emotion on memory.

    Science.gov (United States)

    Riggs, Lily; McQuiggan, Douglas A; Anderson, Adam K; Ryan, Jennifer D

    2010-01-01

    Research shows that memory for emotional aspects of an event may be enhanced at the cost of impaired memory for surrounding peripheral details. However, this has only been assessed directly via verbal reports which reveal the outcome of a long stream of processing but cannot shed light on how/when emotion may affect the retrieval process. In the present experiment, eye movement monitoring (EMM) was used as an indirect measure of memory as it can reveal aspects of online memory processing. For example, do emotions modulate the nature of memory representations or the speed with which such memories can be accessed? Participants viewed central negative and neutral scenes surrounded by three neutral objects and after a brief delay, memory was assessed indirectly via EMM and then directly via verbal reports. Consistent with the previous literature, emotion enhanced central and impaired peripheral memory as indexed by eye movement scanning and verbal reports. This suggests that eye movement scanning may contribute and/or is related to conscious access of memory. However, the central/peripheral tradeoff effect was not observed in an early measure of eye movement behavior, i.e., participants were faster to orient to a critical region of change in the periphery irrespective of whether it was previously studied in a negative or neutral context. These findings demonstrate emotion's differential influences on different aspects of retrieval. In particular, emotion appears to affect the detail within, and/or the evaluation of, stored memory representations, but it may not affect the initial access to those representations.

  4. Eye movement desensitization and reprocessing (EMDR): a meta-analysis.

    Science.gov (United States)

    Davidson, P R; Parker, K C

    2001-04-01

    Eye movement desensitization and reprocessing (EMDR), a controversial treatment suggested for posttraumatic stress disorder (PTSD) and other conditions, was evaluated in a meta-analysis of 34 studies that examined EMDR with a variety of populations and measures. Process and outcome measures were examined separately. and EMDR showed an effect on both when compared with no treatment and with therapies not using exposure to anxiety-provoking stimuli and in pre post EMDR comparisons. However, no significant effect was found when EMDR was compared with other exposure techniques. No incremental effect of eye movements was noted when EMDR was compared with the same procedure without them. R. J. DeRubeis and P. Crits-Christoph (1998) noted that EMDR is a potentially effective treatment for noncombat PTSD. but studies that examined such patient groups did not give clear support to this. In sum, EMDR appears to be no more effective than other exposure techniques, and evidence suggests that the eye movements integral to the treatment, and to its name, are unnecessary.

  5. Eye movements during listening reveal spontaneous grammatical processing

    Directory of Open Access Journals (Sweden)

    Stephanie eHuette

    2014-05-01

    Full Text Available Recent research using eye-tracking typically relies on constrained visual contexts in particular goal-oriented contexts, viewing a small array of objects on a computer screen and performing some overt decision or identification. Eyetracking paradigms that use pictures as a measure of word or sentence comprehension are sometimes touted as ecologically invalid because pictures and explicit tasks are not always present during language comprehension. This study compared the comprehension of sentences with two different grammatical forms: the past progressive (e.g., was walking, which emphasizes the ongoing nature of actions, and the simple past (e.g., walked, which emphasizes the end-state of an action. The results showed that the distribution and timing of eye movements mirrors the underlying conceptual structure of this linguistic difference in the absence of any visual stimuli or task constraint: Fixations were shorter and saccades were more dispersed across the screen, as if thinking about more dynamic events when listening to the past progressive stories. Thus, eye movement data suggest that visual inputs or an explicit task are unnecessary to solicit analogue representations of features such as movement, that could be a key perceptual component to grammatical comprehension.

  6. Suppression of Face Perception during Saccadic Eye Movements

    Directory of Open Access Journals (Sweden)

    Mehrdad Seirafi

    2014-01-01

    Full Text Available Lack of awareness of a stimulus briefly presented during saccadic eye movement is known as saccadic omission. Studying the reduced visibility of visual stimuli around the time of saccade—known as saccadic suppression—is a key step to investigate saccadic omission. To date, almost all studies have been focused on the reduced visibility of simple stimuli such as flashes and bars. The extension of the results from simple stimuli to more complex objects has been neglected. In two experimental tasks, we measured the subjective and objective awareness of a briefly presented face stimuli during saccadic eye movement. In the first task, we measured the subjective awareness of the visual stimuli and showed that in most of the trials there is no conscious awareness of the faces. In the second task, we measured objective sensitivity in a two-alternative forced choice (2AFC face detection task, which demonstrated chance-level performance. Here, we provide the first evidence of complete suppression of complex visual stimuli during the saccadic eye movement.

  7. A complex choreography of cell movements shapes the vertebrate eye.

    Science.gov (United States)

    Kwan, Kristen M; Otsuna, Hideo; Kidokoro, Hinako; Carney, Keith R; Saijoh, Yukio; Chien, Chi-Bin

    2012-01-01

    Optic cup morphogenesis (OCM) generates the basic structure of the vertebrate eye. Although it is commonly depicted as a series of epithelial sheet folding events, this does not represent an empirically supported model. Here, we combine four-dimensional imaging with custom cell tracking software and photoactivatable fluorophore labeling to determine the cellular dynamics underlying OCM in zebrafish. Although cell division contributes to growth, we find it dispensable for eye formation. OCM depends instead on a complex set of cell movements coordinated between the prospective neural retina, retinal pigmented epithelium (RPE) and lens. Optic vesicle evagination persists for longer than expected; cells move in a pinwheel pattern during optic vesicle elongation and retinal precursors involute around the rim of the invaginating optic cup. We identify unanticipated movements, particularly of central and peripheral retina, RPE and lens. From cell tracking data, we generate retina, RPE and lens subdomain fate maps, which reveal novel adjacencies that might determine corresponding developmental signaling events. Finally, we find that similar movements also occur during chick eye morphogenesis, suggesting that the underlying choreography is conserved among vertebrates.

  8. Eye movements during object recognition in visual agnosia.

    Science.gov (United States)

    Charles Leek, E; Patterson, Candy; Paul, Matthew A; Rafal, Robert; Cristino, Filipe

    2012-07-01

    This paper reports the first ever detailed study about eye movement patterns during single object recognition in visual agnosia. Eye movements were recorded in a patient with an integrative agnosic deficit during two recognition tasks: common object naming and novel object recognition memory. The patient showed normal directional biases in saccades and fixation dwell times in both tasks and was as likely as controls to fixate within object bounding contour regardless of recognition accuracy. In contrast, following initial saccades of similar amplitude to controls, the patient showed a bias for short saccades. In object naming, but not in recognition memory, the similarity of the spatial distributions of patient and control fixations was modulated by recognition accuracy. The study provides new evidence about how eye movements can be used to elucidate the functional impairments underlying object recognition deficits. We argue that the results reflect a breakdown in normal functional processes involved in the integration of shape information across object structure during the visual perception of shape.

  9. Word length effects on novel words: evidence from eye movements.

    Science.gov (United States)

    Lowell, Randy; Morris, Robin K

    2014-01-01

    The present study investigated the effects of word length on eye movement behavior during initial processing of novel words while reading. Adult skilled readers' eye movements were monitored as they read novel or known target words in sentence frames with neutral context preceding the target word. Comparable word length effects on all single-fixation measures for novel and known words suggested that both types of words were subject to similar initial encoding strategies. The impact of the absence of an existing lexical entry emerged in multiple first-pass fixation measures in the form of interactions between word length (long and short) and word type (novel and known). Specifically, readers spent significantly more first-pass time refixating long novel targets than short novel targets; however, the first-pass time spent refixating known controls did not differ as a function of length. Implications of these findings for models of eye movement control while reading, as well as for vocabulary acquisition in reading, are discussed.

  10. Language-driven anticipatory eye movements in virtual reality.

    Science.gov (United States)

    Eichert, Nicole; Peeters, David; Hagoort, Peter

    2017-08-08

    Predictive language processing is often studied by measuring eye movements as participants look at objects on a computer screen while they listen to spoken sentences. This variant of the visual-world paradigm has revealed that information encountered by a listener at a spoken verb can give rise to anticipatory eye movements to a target object, which is taken to indicate that people predict upcoming words. The ecological validity of such findings remains questionable, however, because these computer experiments used two-dimensional stimuli that were mere abstractions of real-world objects. Here we present a visual-world paradigm study in a three-dimensional (3-D) immersive virtual reality environment. Despite significant changes in the stimulus materials and the different mode of stimulus presentation, language-mediated anticipatory eye movements were still observed. These findings thus indicate that people do predict upcoming words during language comprehension in a more naturalistic setting where natural depth cues are preserved. Moreover, the results confirm the feasibility of using eyetracking in rich and multimodal 3-D virtual environments.

  11. Medical image of the week: REM without atonia

    Directory of Open Access Journals (Sweden)

    Bartell J

    2015-03-01

    Full Text Available No abstract available. Article truncated after 150 words. A 78 year-old man with a past medical history of Parkinson’s disease (PD presented to the sleep medicine clinic for evaluation of obstructive sleep apnea (OSA. An overnight polysomnogram (PSG study was consistent with sleep apnea and revealed frequent leg and arm movements and sleep-talking during rapid eye movement (REM sleep. REM sleep behavior disorder (RBD is a parasomnia characterized by repeated episodes of abnormal behavior occurring during REM sleep (1,2. On PSG, REM sleep without atonia is seen while features of “normal REM” such as number of REM periods and REM cycling remain intact (2. RBD emerges most often in the context of alpha-synucleinopathies, and occurs in up to 60% of PD patients (3. The presence of RBD may be an important preclinical symptom prior to the onset of PD. Cases of PD with RBD are associated with a unique phenotype with an older age of onset, longer disease ...

  12. Human regional cerebral glucose metabolism during non-rapid eye movement sleep in relation to waking.

    Science.gov (United States)

    Nofzinger, Eric A; Buysse, Daniel J; Miewald, Jean M; Meltzer, Carolyn C; Price, Julie C; Sembrat, Robert C; Ombao, Hernando; Reynolds, Charles F; Monk, Timothy H; Hall, Martica; Kupfer, David J; Moore, Robert Y

    2002-05-01

    Sleep is an essential human function. Although the function of sleep has generally been regarded to be restorative, recent data indicate that it also plays an important role in cognition. The neurobiology of human sleep is most effectively analysed with functional imaging, and PET studies have contributed substantially to our understanding of both rapid eye movement (REM) and non-rapid eye movement (NREM) sleep. In this study, PET was used to determine patterns of regional glucose metabolism in NREM sleep compared with waking. We hypothesized that brain structures related to waking cognitive function would show a persistence of function into the NREM sleep state. Fourteen healthy subjects (age range 21-49 years; 10 women, 4 men) underwent concurrent EEG sleep studies and [(18)F]fluoro-2-deoxy-D-glucose PET scans during waking and NREM sleep. Whole-brain glucose metabolism declined significantly from waking to NREM sleep. Relative decreases in regional metabolism from waking to NREM sleep occurred in wide areas of frontal, parietal, temporal and occipital association cortex, primary visual cortex, and in anterior/dorsomedial thalamus. After controlling for the whole-brain declines in absolute metabolism, relative increases in regional metabolism from waking to NREM were found bilaterally in the dorsal pontine tegmentum, hypothalamus, basal forebrain, ventral striatum, anterior cingulate cortex and extensive regions of the mesial temporal lobe, including the amygdala and hippocampus, and in the right dorsal parietal association cortex and primary somatosensory and motor cortices. The reductions in relative metabolism in NREM sleep compared with waking are consistent with prior findings from blood flow studies. The relative increases in glucose utilization in the basal forebrain, hypothalamus, ventral striatum, amygdala, hippocampus and pontine reticular formation are new observations that are in accordance with the view that NREM sleep is important to brain

  13. The Effect of Cataract on Eye Movement Perimetry

    Directory of Open Access Journals (Sweden)

    G. Thepass

    2015-01-01

    Full Text Available Purpose. To determine how different grades of cataract affect sensitivity threshold and saccadic reaction time (SRT in eye movement perimetry (EMP. Methods. In EMP, the visual field is tested by assessing the saccades that a subject makes towards peripheral stimuli using an eye tracker. Forty-eight cataract patients underwent pre- and postoperative EMP examination in both eyes. The subjects had to fix a central stimulus presented on the eye tracker monitor and to look at any detected peripheral stimulus upon its appearance. A multilevel mixed model was used to determine the factors that affected the sensitivity threshold and the SRT as a function of cataract grade. Results. We found no effect of cataract severity (LOCS III grades I through IV on SRT and the sensitivity thresholds. In cataract of LOCS III grade V, however, we found an increase by 27% and 21% (p<0.001, respectively, compared to the SRT and the sensitivity threshold in LOCS III grade I. Eyes that underwent cataract surgery showed no change in mean SRTs and sensitivity thresholds after surgery in LOCS III grade IV and lower. Conclusion. The present study shows that EMP can be readily used in patients with cataract with LOCS III grade IV and below.

  14. Role of corticosterone on sleep homeostasis induced by REM sleep deprivation in rats.

    Directory of Open Access Journals (Sweden)

    Ricardo Borges Machado

    Full Text Available Sleep is regulated by humoral and homeostatic processes. If on one hand chronic elevation of stress hormones impair sleep, on the other hand, rapid eye movement (REM sleep deprivation induces elevation of glucocorticoids and time of REM sleep during the recovery period. In the present study we sought to examine whether manipulations of corticosterone levels during REM sleep deprivation would alter the subsequent sleep rebound. Adult male Wistar rats were fit with electrodes for sleep monitoring and submitted to four days of REM sleep deprivation under repeated corticosterone or metyrapone (an inhibitor of corticosterone synthesis administration. Sleep parameters were continuously recorded throughout the sleep deprivation period and during 3 days of sleep recovery. Plasma levels of adrenocorticotropic hormone and corticosterone were also evaluated. Metyrapone treatment prevented the elevation of corticosterone plasma levels induced by REM sleep deprivation, whereas corticosterone administration to REM sleep-deprived rats resulted in lower corticosterone levels than in non-sleep deprived rats. Nonetheless, both corticosterone and metyrapone administration led to several alterations on sleep homeostasis, including reductions in the amount of non-REM and REM sleep during the recovery period, although corticosterone increased delta activity (1.0-4.0 Hz during REM sleep deprivation. Metyrapone treatment of REM sleep-deprived rats reduced the number of REM sleep episodes. In conclusion, reduction of corticosterone levels during REM sleep deprivation resulted in impairment of sleep rebound, suggesting that physiological elevation of corticosterone levels resulting from REM sleep deprivation is necessary for plentiful recovery of sleep after this stressful event.

  15. The dream-lag effect: Selective processing of personally significant events during Rapid Eye Movement sleep, but not during Slow Wave Sleep.

    Science.gov (United States)

    van Rijn, E; Eichenlaub, J-B; Lewis, P A; Walker, M P; Gaskell, M G; Malinowski, J E; Blagrove, M

    2015-07-01

    Incorporation of details from waking life events into Rapid Eye Movement (REM) sleep dreams has been found to be highest on the night after, and then 5-7 nights after events (termed, respectively, the day-residue and dream-lag effects). In experiment 1, 44 participants kept a daily log for 10 days, reporting major daily activities (MDAs), personally significant events (PSEs), and major concerns (MCs). Dream reports were collected from REM and Slow Wave Sleep (SWS) in the laboratory, or from REM sleep at home. The dream-lag effect was found for the incorporation of PSEs into REM dreams collected at home, but not for MDAs or MCs. No dream-lag effect was found for SWS dreams, or for REM dreams collected in the lab after SWS awakenings earlier in the night. In experiment 2, the 44 participants recorded reports of their spontaneously recalled home dreams over the 10 nights following the instrumental awakenings night, which thus acted as a controlled stimulus with two salience levels, high (sleep lab) and low (home awakenings). The dream-lag effect was found for the incorporation into home dreams of references to the experience of being in the sleep laboratory, but only for participants who had reported concerns beforehand about being in the sleep laboratory. The delayed incorporation of events from daily life into dreams has been proposed to reflect REM sleep-dependent memory consolidation. However, an alternative emotion processing or emotional impact of events account, distinct from memory consolidation, is supported by the finding that SWS dreams do not evidence the dream-lag effect. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Characterization of GABAergic neurons in rapid-eye-movement sleep controlling regions of the brainstem reticular formation in GAD67-green fluorescent protein knock-in mice.

    Science.gov (United States)

    Brown, Ritchie E; McKenna, James T; Winston, Stuart; Basheer, Radhika; Yanagawa, Yuchio; Thakkar, Mahesh M; McCarley, Robert W

    2008-01-01

    Recent experiments suggest that brainstem GABAergic neurons may control rapid-eye-movement (REM) sleep. However, understanding their pharmacology/physiology has been hindered by difficulty in identification. Here we report that mice expressing green fluorescent protein (GFP) under the control of the GAD67 promoter (GAD67-GFP knock-in mice) exhibit numerous GFP-positive neurons in the central gray and reticular formation, allowing on-line identification in vitro. Small (10-15 microm) or medium-sized (15-25 microm) GFP-positive perikarya surrounded larger serotonergic, noradrenergic, cholinergic and reticular neurons, and > 96% of neurons were double-labeled for GFP and GABA, confirming that GFP-positive neurons are GABAergic. Whole-cell recordings in brainstem regions important for promoting REM sleep [subcoeruleus (SubC) or pontine nucleus oralis (PnO) regions] revealed that GFP-positive neurons were spontaneously active at 3-12 Hz, fired tonically, and possessed a medium-sized depolarizing sag during hyperpolarizing steps. Many neurons also exhibited a small, low-threshold calcium spike. GFP-positive neurons were tested with pharmacological agents known to promote (carbachol) or inhibit (orexin A) REM sleep. SubC GFP-positive neurons were excited by the cholinergic agonist carbachol, whereas those in the PnO were either inhibited or excited. GFP-positive neurons in both areas were excited by orexins/hypocretins. These data are congruent with the hypothesis that carbachol-inhibited GABAergic PnO neurons project to, and inhibit, REM-on SubC reticular neurons during waking, whereas carbachol-excited SubC and PnO GABAergic neurons are involved in silencing locus coeruleus and dorsal raphe aminergic neurons during REM sleep. Orexinergic suppression of REM during waking is probably mediated in part via excitation of acetylcholine-inhibited GABAergic neurons.

  17. Psychological correlates of electrodermal activity during REM sleep.

    Science.gov (United States)

    Kushniruk, A; Rustenburg, J; Ogilvie, R

    1985-01-01

    Eight subjects each spent 2 nights in the sleep laboratory during which electrodermal activity (EDA) was recorded in addition to standard sleep monitoring. On the experimental night, following an adaptation night, subjects were awakened four times from REM sleep: in the presence of phasic EDA and eye movements; in the presence of phasic EDA without eye movements; in the presence of eye movements without phasic EDA; and in the absence of both eye movements and phasic EDA. Detailed mentation reports were obtained, coded, and rated on scales of emotionality and bizarreness. EDA was found to be associated with bizarre mentation. Implications for the study of nocturnal phasic activity in general and for the study of EDA are discussed. An improved circuit for the long-term recording of EDA is described in sufficient detail to allow its duplication.

  18. The eye of the beholder: Can patterns in eye movement reveal aptitudes for spatial reasoning?

    Science.gov (United States)

    Roach, Victoria A; Fraser, Graham M; Kryklywy, James H; Mitchell, Derek G V; Wilson, Timothy D

    2016-07-08

    Mental rotation ability (MRA) is linked to academic success in the spatially complex Science, Technology, Engineering, Medicine, and Mathematics (STEMM) disciplines, and anatomical sciences. Mental rotation literature suggests that MRA may manifest in the movement of the eyes. Quantification of eye movement data may serve to distinguish MRA across individuals, and serve as a consideration when designing visualizations for instruction. It is hypothesized that high-MRA individuals will demonstrate fewer eye fixations, conduct shorter average fixation durations (AFD), and demonstrate shorter response times, than low-MRA individuals. Additionally, individuals with different levels of MRA will attend to different features of the block-figures presented in the electronic mental rotations test (EMRT). All participants (n = 23) completed the EMRT while metrics of eye movement were collected. The test required participants view pairs of three-dimensional (3D) shapes, and identify if the pair is rotated but identical, or two different structures. Temporal analysis revealed no significant correlations between response time, average fixation durations, or number of fixations and mental rotation ability. Further analysis of within-participant variability yielded a significant correlation for response time variability, but no correlation between AFD variability and variability in the number of fixations. Additional analysis of salience revealed that during problem solving, individuals of differing MRA attended to different features of the block images; suggesting that eye movements directed at salient features may contribute to differences in mental rotations ability, and may ultimately serve to predict success in anatomy. Anat Sci Educ 9: 357-366. © 2015 American Association of Anatomists.

  19. Rapid eye movement sleep behaviour disorder in patients with narcolepsy is associated with hypocretin-1 deficiency

    DEFF Research Database (Denmark)

    Knudsen, Stine; Gammeltoft, Steen; Jennum, Poul J

    2010-01-01

    Rapid eye movement sleep behaviour disorder is characterized by dream-enacting behaviour and impaired motor inhibition during rapid eye movement sleep. Rapid eye movement sleep behaviour disorder is commonly associated with neurodegenerative disorders, but also reported in narcolepsy with cataplexy....... Most narcolepsy with cataplexy patients lack the sleep-wake, and rapid eye movement sleep, motor-regulating hypocretin neurons in the lateral hypothalamus. In contrast, rapid eye movement sleep behaviour disorder and hypocretin deficiency are rare in narcolepsy without cataplexy. We hypothesized...... that rapid eye movement sleep behaviour disorder coexists with cataplexy in narcolepsy due to hypocretin deficiency. In our study, rapid eye movement sleep behaviour disorder was diagnosed by the International Classification of Sleep Disorders (2nd edition) criteria in 63 narcolepsy patients with or without...

  20. Eye Movements Index Implicit Memory Expression in Fear Conditioning.

    Directory of Open Access Journals (Sweden)

    Lauren S Hopkins

    Full Text Available The role of contingency awareness in simple associative learning experiments with human participants is currently debated. Since prior work suggests that eye movements can index mnemonic processes that occur without awareness, we used eye tracking to better understand the role of awareness in learning aversive Pavlovian conditioning. A complex real-world scene containing four embedded household items was presented to participants while skin conductance, eye movements, and pupil size were recorded. One item embedded in the scene served as the conditional stimulus (CS. One exemplar of that item (e.g. a white pot was paired with shock 100 percent of the time (CS+ while a second exemplar (e.g. a gray pot was never paired with shock (CS-. The remaining items were paired with shock on half of the trials. Participants rated their expectation of receiving a shock during each trial, and these expectancy ratings were used to identify when (i.e. on what trial each participant became aware of the programmed contingencies. Disproportionate viewing of the CS was found both before and after explicit contingency awareness, and patterns of viewing distinguished the CS+ from the CS-. These observations are consistent with "dual process" models of fear conditioning, as they indicate that learning can be expressed in patterns of viewing prior to explicit contingency awareness.

  1. Efficient feature for classification of eye movements using electrooculography signals

    Directory of Open Access Journals (Sweden)

    Phukpattaranont Pornchai

    2016-01-01

    Full Text Available Electrooculography (EOG signal is widely and successfully used to detect activities of human eye. The advantages of the EOG-based interface over other conventional interfaces have been presented in the last two decades; however, due to a lot of information in EOG signals, the extraction of useful features should be done before the classification task. In this study, an efficient feature extracted from two directional EOG signals: vertical and horizontal signals has been presented and evaluated. There are the maximum peak and valley amplitude values, the maximum peak and valley position values, and slope, which are derived from both vertical and horizontal signals. In the experiments, EOG signals obtained from five healthy subjects with ten directional eye movements were employed: up, down, right, left, up-right, up-left, down-right down-left clockwise and counterclockwise. The mean feature values and their standard deviations have been reported. The difference between the mean values of the proposed feature from different eye movements can be clearly seen. Using the scatter plot, the differences in features can be also clearly observed. Results show that classification accuracy can approach 100% with a simple distinction feature rule. The proposed features can be useful for various advanced human-computer interface applications in future researches.

  2. The effect of glare on eye movements when reading.

    Science.gov (United States)

    Glimne, S; Brautaset, R L; Seimyr, G Öqvist

    2015-01-01

    Glare is a very common source of image degradation when performing computer work. Since reading is a task that is very sensitive to image degradation induced disability glare affects reading performance. To assess the effect of different glare conditions on eye movements when reading on a computer screen. Glare conditions have an impact on reading. This observation is based on the results from a study where we investigated how reading eye movements were affected by glare. Sixteen subjects with normal vision participated in this study. In a balanced repeated-measurement study, all subjects performed equal near-vision reading tasks. In addition to the condition of no glare three controlled conditions of glare were used: direct light, indirect light, and desk luminary. The subjects read three texts under each condition: First a short standardized text (IReST), secondly a longer newspaper text, and finally an additional IReST text. The texts were read on a Tobii T120 eye tracker. The results show that glare does have a negative effect on reading performance. The more adverse the lighting condition was, the slower the reading speed became. The decrease was primarily a result of increased fixation durations. Both glare conditions of direct and indirect glare increased the fixation durations significantly (p < 0.05). This study shows that even moderate glare conditions can have an impact on reading. The results show that it is important to follow recommendations of lighting design in computer work environment in order to avoid disability glare.

  3. Eye Movements Index Implicit Memory Expression in Fear Conditioning.

    Science.gov (United States)

    Hopkins, Lauren S; Schultz, Douglas H; Hannula, Deborah E; Helmstetter, Fred J

    2015-01-01

    The role of contingency awareness in simple associative learning experiments with human participants is currently debated. Since prior work suggests that eye movements can index mnemonic processes that occur without awareness, we used eye tracking to better understand the role of awareness in learning aversive Pavlovian conditioning. A complex real-world scene containing four embedded household items was presented to participants while skin conductance, eye movements, and pupil size were recorded. One item embedded in the scene served as the conditional stimulus (CS). One exemplar of that item (e.g. a white pot) was paired with shock 100 percent of the time (CS+) while a second exemplar (e.g. a gray pot) was never paired with shock (CS-). The remaining items were paired with shock on half of the trials. Participants rated their expectation of receiving a shock during each trial, and these expectancy ratings were used to identify when (i.e. on what trial) each participant became aware of the programmed contingencies. Disproportionate viewing of the CS was found both before and after explicit contingency awareness, and patterns of viewing distinguished the CS+ from the CS-. These observations are consistent with "dual process" models of fear conditioning, as they indicate that learning can be expressed in patterns of viewing prior to explicit contingency awareness.

  4. Smooth pursuit eye movements improve temporal resolution for color perception.

    Directory of Open Access Journals (Sweden)

    Masahiko Terao

    Full Text Available Human observers see a single mixed color (yellow when different colors (red and green rapidly alternate. Accumulating evidence suggests that the critical temporal frequency beyond which chromatic fusion occurs does not simply reflect the temporal limit of peripheral encoding. However, it remains poorly understood how the central processing controls the fusion frequency. Here we show that the fusion frequency can be elevated by extra-retinal signals during smooth pursuit. This eye movement can keep the image of a moving target in the fovea, but it also introduces a backward retinal sweep of the stationary background pattern. We found that the fusion frequency was higher when retinal color changes were generated by pursuit-induced background motions than when the same retinal color changes were generated by object motions during eye fixation. This temporal improvement cannot be ascribed to a general increase in contrast gain of specific neural mechanisms during pursuit, since the improvement was not observed with a pattern flickering without changing position on the retina or with a pattern moving in the direction opposite to the background motion during pursuit. Our findings indicate that chromatic fusion is controlled by a cortical mechanism that suppresses motion blur. A plausible mechanism is that eye-movement signals change spatiotemporal trajectories along which color signals are integrated so as to reduce chromatic integration at the same locations (i.e., along stationary trajectories on the retina that normally causes retinal blur during fixation.

  5. Analysis of automated quantification of motor activity in REM sleep behaviour disorder

    DEFF Research Database (Denmark)

    Frandsen, Rune; Nikolic, Miki; Zoetmulder, Marielle

    2015-01-01

    were validated on PD patients. Automatic baseline estimation improved characterization of atonia during REM sleep, as it eliminates inter/intra-observer variability and can be standardized across diagnostic centres. We found an optimized method for quantifying motor activity during REM sleep......Rapid eye movement (REM) sleep behaviour disorder (RBD) is characterized by dream enactment and REM sleep without atonia. Atonia is evaluated on the basis of visual criteria, but there is a need for more objective, quantitative measurements. We aimed to define and optimize a method for establishing...... baseline and all other parameters in automatic quantifying submental motor activity during REM sleep. We analysed the electromyographic activity of the submental muscle in polysomnographs of 29 patients with idiopathic RBD (iRBD), 29 controls and 43 Parkinson's (PD) patients. Six adjustable parameters...

  6. Emotional arousal modulates oscillatory correlates of targeted memory reactivation during NREM, but not REM sleep

    Science.gov (United States)

    Lehmann, Mick; Schreiner, Thomas; Seifritz, Erich; Rasch, Björn

    2016-01-01

    Rapid eye movement (REM) sleep is considered to preferentially reprocess emotionally arousing memories. We tested this hypothesis by cueing emotional vs. neutral memories during REM and NREM sleep and wakefulness by presenting associated verbal memory cues after learning. Here we show that cueing during NREM sleep significantly improved memory for emotional pictures, while no cueing benefit was observed during REM sleep. On the oscillatory level, successful memory cueing during NREM sleep resulted in significant increases in theta and spindle oscillations with stronger responses for emotional than neutral memories. In contrast during REM sleep, solely cueing of neutral (but not emotional) memories was associated with increases in theta activity. Our results do not support a preferential role of REM sleep for emotional memories, but rather suggest that emotional arousal modulates memory replay and consolidation processes and their oscillatory correlates during NREM sleep. PMID:27982120

  7. Selective REM-sleep deprivation does not diminish emotional memory consolidation in young healthy subjects.

    Directory of Open Access Journals (Sweden)

    Jarste Morgenthaler

    Full Text Available Sleep enhances memory consolidation and it has been hypothesized that rapid eye movement (REM sleep in particular facilitates the consolidation of emotional memory. The aim of this study was to investigate this hypothesis using selective REM-sleep deprivation. We used a recognition memory task in which participants were shown negative and neutral pictures. Participants (N=29 healthy medical students were separated into two groups (undisturbed sleep and selective REM-sleep deprived. Both groups also worked on the memory task in a wake condition. Recognition accuracy was significantly better for negative than for neutral stimuli and better after the sleep than the wake condition. There was, however, no difference in the recognition accuracy (neutral and emotional between the groups. In summary, our data suggest that REM-sleep deprivation was successful and that the resulting reduction of REM-sleep had no influence on memory consolidation whatsoever.

  8. Selective REM-sleep deprivation does not diminish emotional memory consolidation in young healthy subjects.

    Science.gov (United States)

    Morgenthaler, Jarste; Wiesner, Christian D; Hinze, Karoline; Abels, Lena C; Prehn-Kristensen, Alexander; Göder, Robert

    2014-01-01

    Sleep enhances memory consolidation and it has been hypothesized that rapid eye movement (REM) sleep in particular facilitates the consolidation of emotional memory. The aim of this study was to investigate this hypothesis using selective REM-sleep deprivation. We used a recognition memory task in which participants were shown negative and neutral pictures. Participants (N=29 healthy medical students) were separated into two groups (undisturbed sleep and selective REM-sleep deprived). Both groups also worked on the memory task in a wake condition. Recognition accuracy was significantly better for negative than for neutral stimuli and better after the sleep than the wake condition. There was, however, no difference in the recognition accuracy (neutral and emotional) between the groups. In summary, our data suggest that REM-sleep deprivation was successful and that the resulting reduction of REM-sleep had no influence on memory consolidation whatsoever.

  9. Rapid eye movement sleep deprivation revives a form of developmentally regulated synaptic plasticity in the visual cortex of post-critical period rats.

    Science.gov (United States)

    Shaffery, James P; Lopez, Jorge; Bissette, Garth; Roffwarg, Howard P

    2006-01-01

    The critical period for observing a developmentally regulated form of synaptic plasticity in the visual cortex of young rats normally ends at about postnatal day 30. This developmentally regulated form of in vitro long-term potentiation (LTP) can be reliably induced in layers II-III by aiming high frequency, theta burst stimulation (TBS) at the white matter situated directly below visual cortex (LTPWM-III). Previous work has demonstrated that suppression of sensory activation of visual cortex, achieved by rearing young rats in total darkness from birth, delays termination of the critical period for inducing LTPWM-III. Subsequent data also demonstrated that when rapid eye movement sleep (REMS) is suppressed, thereby reducing REMS cortical activation, just prior to the end of the critical period, termination of this developmental phase is delayed, and LTPWM-III can still be reliably produced in the usual post-critical period. Here, we report that for approximately 3 weeks immediately following the usual end of the critical period, suppression of REMS disrupts the maturational processes that close the critical period, and LTPWM-III is readily induced in brain slices taken from these somewhat older animals. Insofar as in vitro LTP is a model for the cellular and molecular changes that underlie developmental synaptic plasticity, these results suggest that mechanisms of synaptic plasticity, which participate in brain development and perhaps also in learning and memory processes, remain susceptible to the effects of REMS deprivation during the general period of adolescence in the rat.

  10. The role of REM sleep theta activity in emotional memory.

    Science.gov (United States)

    Hutchison, Isabel C; Rathore, Shailendra

    2015-01-01

    While non-REM (NREM) sleep has been strongly implicated in the reactivation and consolidation of memory traces, the role of rapid-eye movement (REM) sleep remains unclear. A growing body of research on humans and animals provide behavioral evidence for a role of REM sleep in the strengthening and modulation of emotional memories. Theta activity-which describes low frequency oscillations in the local field potential within the hippocampus, amygdala and neocortex-is a prominent feature of both wake and REM sleep in humans and rodents. Theta coherence between the hippocampus and amygdala drives large-scale pontine-geniculo-occipital (PGO) waves, the density of which predicts increases in plasticity-related gene expression. This could potentially facilitate the processing of emotional memory traces within the hippocampus during REM sleep. Further, the timing of hippocampal activity in relation to theta phase is vital in determining subsequent potentiation of neuronal activity. This could allow the emotionally modulated strengthening of novel and gradual weakening of consolidated hippocampal memory traces during REM sleep. Hippocampal theta activity is also correlated with REM sleep levels of achetylcholine - which is thought to reduce hippocampal inputs in the neocortex. The additional low levels of noradrenaline during REM sleep, which facilitate feedback within the neocortex, could allow the integration of novel memory traces previously consolidated during NREM sleep. We therefore propose that REM sleep mediates the prioritized processing of emotional memories within the hippocampus, the integration of previously consolidated memory traces within the neocortex, as well as the disengagement of consolidated neocortical memory traces from the hippocampus.

  11. REM sleep modulation by perifornical orexinergic inputs to the pedunculo-pontine tegmental neurons in rats.

    Science.gov (United States)

    Khanday, M A; Mallick, B N

    2015-11-12

    Rapid eye movement sleep (REMS) is regulated by the interaction of the REM-ON and REM-OFF neurons located in the pedunculo-pontine-tegmentum (PPT) and the locus coeruleus (LC), respectively. Many other brain areas, particularly those controlling non-REMS (NREMS) and waking, modulate REMS by modulating these REMS-related neurons. Perifornical (PeF) orexin (Ox)-ergic neurons are reported to increase waking and reduce NREMS as well as REMS; dysfunction of the PeF neurons are related to REMS loss-associated disorders. Hence, we were interested in understanding the neural mechanism of PeF-induced REMS modulation. As a first step we have recently reported that PeF Ox-ergic neurons modulate REMS by influencing the LC neurons (site for REM-OFF neurons). Thereafter, in this in vivo study we have explored the role of PeF inputs on the PPT neurons (site for REM-ON neurons) for the regulation of REMS. Chronic male rats were surgically prepared with implanted bilateral cannulae in PeF and PPT and electrodes for recording sleep-waking patterns. After post-surgical recovery sleep-waking-REMS were recorded when bilateral PeF neurons were stimulated by glutamate and simultaneously bilateral PPT neurons were infused with either saline or orexin receptor1 (OX1R) antagonist. It was observed that PeF stimulation increased waking and decreased NREMS as well as REMS, which were prevented by OX1R antagonist into the PPT. We conclude that the PeF stimulation-induced reduction in REMS was likely to be due to inhibition of REM-ON neurons in the PPT. As waking and NREMS are inversely related, subject to confirmation, the reduction in NREMS could be due to increased waking or vice versa. Based on our findings from this and earlier studies we have proposed a model showing connections between PeF- and PPT-neurons for REMS regulation.

  12. REM sleep rescues learning from interference.

    Science.gov (United States)

    McDevitt, Elizabeth A; Duggan, Katherine A; Mednick, Sara C

    2015-07-01

    Classical human memory studies investigating the acquisition of temporally-linked events have found that the memories for two events will interfere with each other and cause forgetting (i.e., interference; Wixted, 2004). Importantly, sleep helps consolidate memories and protect them from subsequent interference (Ellenbogen, Hulbert, Stickgold, Dinges, & Thompson-Schill, 2006). We asked whether sleep can also repair memories that have already been damaged by interference. Using a perceptual learning paradigm, we induced interference either before or after a consolidation period. We varied brain states during consolidation by comparing active wake, quiet wake, and naps with either non-rapid eye movement sleep (NREM), or both NREM and REM sleep. When interference occurred after consolidation, sleep and wake both produced learning. However, interference prior to consolidation impaired memory, with retroactive interference showing more disruption than proactive interference. Sleep rescued learning damaged by interference. Critically, only naps that contained REM sleep were able to rescue learning that was highly disrupted by retroactive interference. Furthermore, the magnitude of rescued learning was correlated with the amount of REM sleep. We demonstrate the first evidence of a process by which the brain can rescue and consolidate memories damaged by interference, and that this process requires REM sleep. We explain these results within a theoretical model that considers how interference during encoding interacts with consolidation processes to predict which memories are retained or lost.

  13. Eye movement desensitization and reprocessing: a conceptual framework.

    Science.gov (United States)

    Menon, Sukanya B; Jayan, C

    2010-07-01

    Eye movement desensitization and reprocessing (EMDR) is a method which was initially used for the treatment of post-traumatic stress disorder. But it is now being used in different therapeutic situations. EMDR is an eight-phase treatment method. History taking, client preparation, assessment, desensitization, installation, body scan, closure and reevaluation of treatment effect are the eight phases of this treatment which are briefly described. A case report is also depicted which indicates the efficacy of EMDR. The areas where EMDR is used and the possible ways through which it is working are also described.

  14. Sexual violence: psychiatric healing with eye movement reprocessing and desensitization.

    Science.gov (United States)

    Posmontier, Bobbie; Dovydaitis, Tiffany; Lipman, Kenneth

    2010-08-01

    Sexual violence, which affects one in three women worldwide, can result in significant psychiatric morbidity and suicide. Eye movement desensitization and reprocessing (EMDR) offers health care providers the option of a brief psychiatric intervention that can result in psychiatric healing in as few as four sessions. Because health care providers often hear stories of sexual violence from their patients, they are in an ideal position to make recommendations for treatment. The purpose of this article is to introduce health care providers to the technique of EMDR, review safety and appropriateness, and discuss clinical and research implications.

  15. Neuregulin-1 genotypes and eye movements in schizophrenia

    DEFF Research Database (Denmark)

    Haraldsson, H.M.; Ettinger, U.; Magnusdottir, B.B.;

    2010-01-01

    Neuregulin-1 (NRG-1) is a putative susceptibility gene for schizophrenia but the neurocognitive processes that may involve NRG-1 in schizophrenia are unknown. Deficits in antisaccade (AS) and smooth pursuit eye movements (SPEM) are promising endophenotypes, which may be associated with brain...... dysfunctions underlying the pathophysiology of schizophrenia. The aim of this study was to investigate the associations of NRG-1 genotypes with AS and SPEM in schizophrenia patients and healthy controls. Patients (N = 113) and controls (N = 106) were genotyped for two NRG-1 single nucleotide polymorphisms...... findings of impaired AS and SPEM performance in schizophrenia patients (all P

  16. Eye movement desensitization and reprocessing: A conceptual framework

    Directory of Open Access Journals (Sweden)

    Menon Sukanya

    2010-01-01

    Full Text Available Eye movement desensitization and reprocessing (EMDR is a method which was initially used for the treatment of post-traumatic stress disorder. But it is now being used in different therapeutic situations. EMDR is an eight-phase treatment method. History taking, client preparation, assessment, desensitization, installation, body scan, closure and reevaluation of treatment effect are the eight phases of this treatment which are briefly described. A case report is also depicted which indicates the efficacy of EMDR. The areas where EMDR is used and the possible ways through which it is working are also described.

  17. CERN's eagle-eyed movement hunters in action

    CERN Multimedia

    2007-01-01

    Vibrations, movements, strains - nothing escapes the eagle eyes of CERN's Mechanical Measurements Laboratory, which helps groups needing mechanical testing and delicate transport operations. Graphical representation of the natural mode shape of one of the end-caps of the ATLAS inner detector, determined through experimentation.After installation of sensors on one of the end-caps of the ATLAS inner detector, CERN's Mechanical Measurements team performs remote checks to ensure the sensors are working properly before transport. They are on the look-out for anything that moves, shakes or changes shape. The slightest movement, however minute, will attract their attention. The Mechanical Measurements team, which is part of the Installation Coordination Group (TS-IC), specialises in all kinds of vibration studies, for design projects as well as for the transport of fragile objects. The Mechanical Measurements Laboratory was created in 1973 and, after a lull at the end of the century, was given a new lease of life ...

  18. Fooling the eyes: the influence of a sound-induced visual motion illusion on eye movements.

    Directory of Open Access Journals (Sweden)

    Alessio Fracasso

    Full Text Available The question of whether perceptual illusions influence eye movements is critical for the long-standing debate regarding the separation between action and perception. To test the role of auditory context on a visual illusion and on eye movements, we took advantage of the fact that the presence of an auditory cue can successfully modulate illusory motion perception of an otherwise static flickering object (sound-induced visual motion effect. We found that illusory motion perception modulated by an auditory context consistently affected saccadic eye movements. Specifically, the landing positions of saccades performed towards flickering static bars in the periphery were biased in the direction of illusory motion. Moreover, the magnitude of this bias was strongly correlated with the effect size of the perceptual illusion. These results show that both an audio-visual and a purely visual illusion can significantly affect visuo-motor behavior. Our findings are consistent with arguments for a tight link between perception and action in localization tasks.

  19. CEFR and Eye Movement Characteristics during EFL Reading: The Case of Intermediate Readers

    Science.gov (United States)

    Dolgunsöz, Emrah; Sariçoban, Arif

    2016-01-01

    This study primarily aims to (1) examine the relationship between foreign language reading proficiency and eye movements during reading, and (2) to describe eye movement differences between two CEFR proficiency groups (B1 and B2) by using eye tracking technique. 57 learners of EFL were tested under two experimental conditions: Natural L2 reading…

  20. Perceived visual motion as effective stimulus to pursuit eye movement system

    Science.gov (United States)

    Yasui, S.; Young, L. R.

    1975-01-01

    Human eye tracking of a foveal afterimage during angular head oscillation in the dark produced smooth eye movements exceeding those for normal vestibular nystagmus, and a reduction in the frequency of the fast phase component of nystagmus eye movements. These results may support a closed loop extension of the corollary discharge theory, with oculomotor commands based on perceived object velocity.

  1. EMDR: eye movements superior to beeps in taxing working memory and reducing vividness of recollections.

    Science.gov (United States)

    van den Hout, Marcel A; Engelhard, Iris M; Rijkeboer, Marleen M; Koekebakker, Jutte; Hornsveld, Hellen; Leer, Arne; Toffolo, Marieke B J; Akse, Nienke

    2011-02-01

    Posttraumatic stress disorder (PTSD) is effectively treated with eye movement desensitization and reprocessing (EMDR) with patients making eye movements during recall of traumatic memories. Many therapists have replaced eye movements with bilateral beeps, but there are no data on the effects of beeps. Experimental studies suggest that eye movements may be beneficial because they tax working memory, especially the central executive component, but the presence/degree of taxation has not been assessed directly. Using discrimination Reaction Time (RT) tasks, we found that eye movements slow down RTs to auditive cues (experiment I), but binaural beeps do not slow down RTs to visual cues (experiment II). In an arguably more sensitive "Random Interval Repetition" task using tactile stimulation, working memory taxation of beeps and eye movements were directly compared. RTs slowed down during beeps, but the effects were much stronger for eye movements (experiment III). The same pattern was observed in a memory experiment with healthy volunteers (experiment IV): vividness of negative memories was reduced after both beeps and eye movements, but effects were larger for eye movements. Findings support a working memory account of EMDR and suggest that effects of beeps on negative memories are inferior to those of eye movements.

  2. Reduction in ultrasonic vocalizations in pups born to rapid eye movement sleep restricted mothers in rat model.

    Directory of Open Access Journals (Sweden)

    Kamalesh K Gulia

    Full Text Available The effects of rapid eye movement sleep restriction (REMSR in rats during late pregnancy were studied on the ultrasonic vocalizations (USVs made by the pups. USVs are distress calls inaudible to human ears. Rapid eye movement (REM sleep was restricted in one group of pregnant rats for 22 hours, starting from gestational day 14 to 20, using standard single platform method. The USVs of male pups were recorded after a brief isolation from their mother for two minutes on alternate post-natal days, from day one till weaning. The USVs were recorded using microphones and were analysed qualitatively and quantitatively using SASPro software. Control pups produced maximum vocalization on post-natal days 9 to 11. In comparison, the pups born to REMSR mothers showed not only a reduction in vocalization but also a delay in peak call making days. The experimental group showed variations in the types and characteristics of call types, and alteration in temporal profile. The blunting of distress call making response in these pups indicates that maternal sleep plays a role in regulating the neural development involved in vocalizations and possibly in shaping the emotional behaviour in neonates. It is suggested that the reduced ultrasonic vocalizations can be utilized as a reliable early marker for affective state in rat pups. Such impaired vocalization responses could provide an important lead in understanding mother-child bonding for an optimal cognitive development during post-partum life. This is the first report showing a potential link between maternal REM sleep deprivation and the vocalization in neonates and infants.

  3. Are smooth pursuit eye movements altered in chronic whiplash-associated disorders? A cross-sectional study

    DEFF Research Database (Denmark)

    Kongsted, Alice; Jørgensen, L V; Bendix, T

    2007-01-01

    To evaluate whether smooth pursuit eye movements differed between patients with long-lasting whiplash-associated disorders and controls when using a purely computerized method for the eye movement analysis.......To evaluate whether smooth pursuit eye movements differed between patients with long-lasting whiplash-associated disorders and controls when using a purely computerized method for the eye movement analysis....

  4. Forebrain activation in REM sleep: an FDG PET study.

    Science.gov (United States)

    Nofzinger, E A; Mintun, M A; Wiseman, M; Kupfer, D J; Moore, R Y

    1997-10-03

    Rapid eye movement (REM) sleep is a behavioral state characterized by cerebral cortical activation with dreaming as an associated behavior. The brainstem mechanisms involved in the generation of REM sleep are well-known, but the forebrain mechanisms that might distinguish it from waking are not well understood. We report here a positron emission tomography (PET) study of regional cerebral glucose utilization in the human forebrain during REM sleep in comparison to waking in six healthy adult females using the 18F-deoxyglucose method. In REM sleep, there is relative activation, shown by increased glucose utilization, in phylogenetically old limbic and paralimbic regions which include the lateral hypothalamic area, amygdaloid complex, septal-ventral striatal areas, and infralimbic, prelimbic, orbitofrontal, cingulate, entorhinal and insular cortices. The largest area of activation is a bilateral, confluent paramedian zone which extends from the septal area into ventral striatum, infralimbic, prelimbic, orbitofrontal and anterior cingulate cortex. There are only small and scattered areas of apparent deactivation. These data suggest that an important function of REM sleep is the integration of neocortical function with basal forebrain-hypothalamic motivational and reward mechanisms. This is in accordance with views that alterations in REM sleep in psychiatric disorders, such as depression, may reflect dysregulation in limbic and paralimbic structures.

  5. A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study.

    Science.gov (United States)

    Sabater, Lidia; Gaig, Carles; Gelpi, Ellen; Bataller, Luis; Lewerenz, Jan; Torres-Vega, Estefanía; Contreras, Angeles; Giometto, Bruno; Compta, Yaroslau; Embid, Cristina; Vilaseca, Isabel; Iranzo, Alex; Santamaría, Joan; Dalmau, Josep; Graus, Francesc

    2014-06-01

    Autoimmunity might be associated with or implicated in sleep and neurodegenerative disorders. We aimed to describe the features of a novel neurological syndrome associated with prominent sleep dysfunction and antibodies to a neuronal antigen. In this observational study, we used clinical and video polysomnography to identify a novel sleep disorder in three patients referred to the Sleep Unit of Hospital Clinic, University of Barcelona, Spain, for abnormal sleep behaviours and obstructive sleep apnoea. These patients had antibodies against a neuronal surface antigen, which were also present in five additional patients referred to our laboratory for antibody studies. These five patients had been assessed with polysomnography, which was done in our sleep unit in one patient and the recording reviewed in a second patient. Two patients underwent post-mortem brain examination. Immunoprecipitation and mass spectrometry were used to characterise the antigen and develop an assay for antibody testing. Serum or CSF from 298 patients with neurodegenerative, sleep, or autoimmune disorders served as control samples. All eight patients (five women; median age at disease onset 59 years [range 52-76]) had abnormal sleep movements and behaviours and obstructive sleep apnoea, as confirmed by polysomnography. Six patients had chronic progression with a median duration from symptom onset to death or last visit of 5 years (range 2-12); in four the sleep disorder was the initial and most prominent feature, and in two it was preceded by gait instability followed by dysarthria, dysphagia, ataxia, or chorea. Two patients had a rapid progression with disequilibrium, dysarthria, dysphagia, and central hypoventilation, and died 2 months and 6 months, respectively, after symptom onset. In five of five patients, video polysomnography showed features of obstructive sleep apnoea, stridor, and abnormal sleep architecture (undifferentiated non-rapid-eye-movement [non-REM] sleep or poorly structured

  6. Universality in eye movements and reading: A trilingual investigation.

    Science.gov (United States)

    Liversedge, Simon P; Drieghe, Denis; Li, Xin; Yan, Guoli; Bai, Xuejun; Hyönä, Jukka

    2016-02-01

    Universality in language has been a core issue in the fields of linguistics and psycholinguistics for many years (e.g., Chomsky, 1965). Recently, Frost (2012) has argued that establishing universals of process is critical to the development of meaningful, theoretically motivated, cross-linguistic models of reading. In contrast, other researchers argue that there is no such thing as universals of reading (e.g., Coltheart & Crain, 2012). Reading is a complex, visually mediated psychological process, and eye movements are the behavioural means by which we encode the visual information required for linguistic processing. To investigate universality of representation and process across languages we examined eye movement behaviour during reading of very comparable stimuli in three languages, Chinese, English and Finnish. These languages differ in numerous respects (character based vs. alphabetic, visual density, informational density, word spacing, orthographic depth, agglutination, etc.). We used linear mixed modelling techniques to identify variables that captured common variance across languages. Despite fundamental visual and linguistic differences in the orthographies, statistical models of reading behaviour were strikingly similar in a number of respects, and thus, we argue that their composition might reflect universality of representation and process in reading.

  7. Eye movements reveal epistemic curiosity in human observers.

    Science.gov (United States)

    Baranes, Adrien; Oudeyer, Pierre-Yves; Gottlieb, Jacqueline

    2015-12-01

    Saccadic (rapid) eye movements are primary means by which humans and non-human primates sample visual information. However, while saccadic decisions are intensively investigated in instrumental contexts where saccades guide subsequent actions, it is largely unknown how they may be influenced by curiosity - the intrinsic desire to learn. While saccades are sensitive to visual novelty and visual surprise, no study has examined their relation to epistemic curiosity - interest in symbolic, semantic information. To investigate this question, we tracked the eye movements of human observers while they read trivia questions and, after a brief delay, were visually given the answer. We show that higher curiosity was associated with earlier anticipatory orienting of gaze toward the answer location without changes in other metrics of saccades or fixations, and that these influences were distinct from those produced by variations in confidence and surprise. Across subjects, the enhancement of anticipatory gaze was correlated with measures of trait curiosity from personality questionnaires. Finally, a machine learning algorithm could predict curiosity in a cross-subject manner, relying primarily on statistical features of the gaze position before the answer onset and independently of covariations in confidence or surprise, suggesting potential practical applications for educational technologies, recommender systems and research in cognitive sciences. With this article, we provide full access to the annotated database allowing readers to reproduce the results. Epistemic curiosity produces specific effects on oculomotor anticipation that can be used to read out curiosity states.

  8. Covert tracking: a combined ERP and fixational eye movement study.

    Directory of Open Access Journals (Sweden)

    Alexis D J Makin

    Full Text Available Attention can be directed to particular spatial locations, or to objects that appear at anticipated points in time. While most work has focused on spatial or temporal attention in isolation, we investigated covert tracking of smoothly moving objects, which requires continuous coordination of both. We tested two propositions about the neural and cognitive basis of this operation: first that covert tracking is a right hemisphere function, and second that pre-motor components of the oculomotor system are responsible for driving covert spatial attention during tracking. We simultaneously recorded event related potentials (ERPs and eye position while participants covertly tracked dots that moved leftward or rightward at 12 or 20°/s. ERPs were sensitive to the direction of target motion. Topographic development in the leftward motion was a mirror image of the rightward motion, suggesting that both hemispheres contribute equally to covert tracking. Small shifts in eye position were also lateralized according to the direction of target motion, implying covert activation of the oculomotor system. The data addresses two outstanding questions about the nature of visuospatial tracking. First, covert tracking is reliant upon a symmetrical frontoparietal attentional system, rather than being right lateralized. Second, this same system controls both pursuit eye movements and covert tracking.

  9. Large pupils predict goal-driven eye movements.

    Science.gov (United States)

    Mathôt, Sebastiaan; Siebold, Alisha; Donk, Mieke; Vitu, Françoise

    2015-06-01

    Here we report that large pupils predict fixations of the eye on low-salient, inconspicuous parts of a visual scene. We interpret this as showing that mental effort, reflected by a dilation of the pupil, is required to guide gaze toward objects that are relevant to current goals, but that may not be very salient. When mental effort is low, reflected by a constriction of the pupil, the eyes tend to be captured by high-salient parts of the image, irrespective of top-down goals. The relationship between pupil size and visual saliency was not driven by luminance or a range of other factors that we considered. Crucially, the relationship was strongest when mental effort was invested exclusively in eye-movement control (i.e., reduced in a dual-task setting), which suggests that it is not due to general effort or arousal. Our finding illustrates that goal-driven control during scene viewing requires mental effort, and that pupil size can be used as an online measure to track the goal-drivenness of behavior. (c) 2015 APA, all rights reserved).

  10. Covert tracking: a combined ERP and fixational eye movement study.

    Science.gov (United States)

    Makin, Alexis D J; Poliakoff, Ellen; Ackerley, Rochelle; El-Deredy, Wael

    2012-01-01

    Attention can be directed to particular spatial locations, or to objects that appear at anticipated points in time. While most work has focused on spatial or temporal attention in isolation, we investigated covert tracking of smoothly moving objects, which requires continuous coordination of both. We tested two propositions about the neural and cognitive basis of this operation: first that covert tracking is a right hemisphere function, and second that pre-motor components of the oculomotor system are responsible for driving covert spatial attention during tracking. We simultaneously recorded event related potentials (ERPs) and eye position while participants covertly tracked dots that moved leftward or rightward at 12 or 20°/s. ERPs were sensitive to the direction of target motion. Topographic development in the leftward motion was a mirror image of the rightward motion, suggesting that both hemispheres contribute equally to covert tracking. Small shifts in eye position were also lateralized according to the direction of target motion, implying covert activation of the oculomotor system. The data addresses two outstanding questions about the nature of visuospatial tracking. First, covert tracking is reliant upon a symmetrical frontoparietal attentional system, rather than being right lateralized. Second, this same system controls both pursuit eye movements and covert tracking.

  11. Macular degeneration affects eye movement behaviour during visual search

    Directory of Open Access Journals (Sweden)

    Stefan eVan Der Stigchel

    2013-09-01

    Full Text Available Patients with a scotoma in their central vision (e.g. due to macular degeneration, MD commonly adopt a strategy to direct the eyes such that the image falls onto a peripheral location on the retina. This location is referred to as the preferred retinal locus (PRL. Although previous research has investigated the characteristics of this PRL, it is unclear whether eye movement metrics are modulated by peripheral viewing with a PRL as measured during a visual search paradigm. To this end, we tested four MD patients in a visual search paradigm and contrasted their performance with a healthy control group and a healthy control group performing the same experiment with a simulated scotoma. The experiment contained two conditions. In the first condition the target was an unfilled circle hidden among c-shaped distractors (serial condition and in the second condition the target was a filled circle (pop-out condition. Saccadic search latencies for the MD group were significantly longer in both conditions compared to both control groups. Results of a subsequent experiment indicated that this difference between the MD and the control groups could not be explained by a difference in target selection sensitivity. Furthermore, search behaviour of MD patients was associated with saccades with smaller amplitudes towards the scotoma, an increased intersaccadic interval and an increased number of eye movements necessary to locate the target. Some of these characteristics, such as the increased intersaccadic interval, were also observed in the simulation group, which indicate that these characteristics are related to the peripheral viewing itself. We suggest that the combination of the central scotoma and peripheral viewing can explain the altered search behaviour and no behavioural evidence was found for a possible reorganization of the visual system associated with the use of a PRL. Thus the switch from a fovea-based to a PRL-based reference frame impairs search

  12. Ictal SPECT in patients with rapid eye movement sleep behaviour disorder.

    Science.gov (United States)

    Mayer, Geert; Bitterlich, Marion; Kuwert, Torsten; Ritt, Philipp; Stefan, Hermann

    2015-05-01

    Rapid eye movement sleep behaviour disorder is a rapid eye movement parasomnia clinically characterized by acting out dreams due to disinhibition of muscle tone in rapid eye movement sleep. Up to 80-90% of the patients with rapid eye movement sleep behaviour disorder develop neurodegenerative disorders within 10-15 years after symptom onset. The disorder is reported in 45-60% of all narcoleptic patients. Whether rapid eye movement sleep behaviour disorder is also a predictor for neurodegeneration in narcolepsy is not known. Although the pathophysiology causing the disinhibition of muscle tone in rapid eye movement sleep behaviour disorder has been studied extensively in animals, little is known about the mechanisms in humans. Most of the human data are from imaging or post-mortem studies. Recent studies show altered functional connectivity between substantia nigra and striatum in patients with rapid eye movement sleep behaviour disorder. We were interested to study which regions are activated in rapid eye movement sleep behaviour disorder during actual episodes by performing ictal single photon emission tomography. We studied one patient with idiopathic rapid eye movement sleep behaviour disorder, one with Parkinson's disease and rapid eye movement sleep behaviour disorder, and two patients with narcolepsy and rapid eye movement sleep behaviour disorder. All patients underwent extended video polysomnography. The tracer was injected after at least 10 s of consecutive rapid eye movement sleep and 10 s of disinhibited muscle tone accompanied by movements registered by an experienced sleep technician. Ictal single photon emission tomography displayed the same activation in the bilateral premotor areas, the interhemispheric cleft, the periaqueductal area, the dorsal and ventral pons and the anterior lobe of the cerebellum in all patients. Our study shows that in patients with Parkinson's disease and rapid eye movement sleep behaviour disorder-in contrast to wakefulness

  13. Edge Detection Model Based on Involuntary Eye Movements of the Eye-Retina System

    Directory of Open Access Journals (Sweden)

    András Róka

    2007-03-01

    Full Text Available Traditional edge-detection algorithms in image processing typically convolute afilter operator and the input image, and then map overlapping input image regions tooutput signals. Convolution also serves as a basis in biologically inspired (Sobel, Laplace,Canny algorithms. Recent results in cognitive retinal research have shown that ganglioncell receptive fields cover the mammalian retina in a mosaic arrangement, withinsignificant amounts of overlap in the central fovea. This means that the biologicalrelevance of traditional and widely adapted edge-detection algorithms with convolutionbasedoverlapping operator architectures has been disproved. However, using traditionalfilters with non-overlapping operator architectures leads to considerable losses in contourinformation. This paper introduces a novel, tremor-based retina model and edge-detectionalgorithm that reconciles these differences between the physiology of the retina and theoverlapping architectures used by today's widely adapted algorithms. The algorithm takesinto consideration data convergence, as well as the dynamic properties of the retina, byincorporating a model of involuntary eye tremors and the impulse responses of ganglioncells. Based on the evaluation of the model, two hypotheses are formulated on the highlydebated role of involuntary eye tremors: 1 The role of involuntary eye tremors hasinformation theoretical implications 2 From an information processing point of view, thefunctional role of involuntary eye-movements extends to more than just the maintenance ofaction potentials. Involuntary eye-movements may be responsible for the compensation ofinformation losses caused by a non-overlapping receptive field architecture. In support ofthese hypotheses, the article provides a detailed analysis of the model's biologicalrelevance, along with numerical simulations and a hardware implementation.

  14. The effect of task difficulty on eye movement sequences in multiple dimensions

    NARCIS (Netherlands)

    Dewhurst, Richard; Nyström, Marcus; Jarodzka, Halszka; Foulsham, Tom; Johansson, Roger; Holmqvist, Kenneth

    2012-01-01

    Dewhurst, R., Nyström, M., Jarodzka, H., Foulsham, T., Johansson, R., & Holmqvist, K. (2012, May). The effect of task difficulty on eye movement sequences in multiple dimensions. Presentation at the Scandinavian Workshop on Applied Eye Tracking, Stockholm, Sweden.

  15. Rapid eye movement sleep behaviour disorder in patients with narcolepsy is associated with hypocretin-1 deficiency

    DEFF Research Database (Denmark)

    Knudsen, Stine; Gammeltoft, Steen; Jennum, Poul J

    2010-01-01

    variables were analysed in relation to cataplexy and hypocretin deficiency with uni- and multivariate logistic/linear regression models, controlling for possible rapid eye movement sleep behaviour disorder biasing factors (age, gender, disease duration, previous anti-cataplexy medication). Only hypocretin......Rapid eye movement sleep behaviour disorder is characterized by dream-enacting behaviour and impaired motor inhibition during rapid eye movement sleep. Rapid eye movement sleep behaviour disorder is commonly associated with neurodegenerative disorders, but also reported in narcolepsy with cataplexy....... Most narcolepsy with cataplexy patients lack the sleep-wake, and rapid eye movement sleep, motor-regulating hypocretin neurons in the lateral hypothalamus. In contrast, rapid eye movement sleep behaviour disorder and hypocretin deficiency are rare in narcolepsy without cataplexy. We hypothesized...

  16. Continuous Auditory Feedback of Eye Movements: An Exploratory Study toward Improving Oculomotor Control

    Directory of Open Access Journals (Sweden)

    Eric O. Boyer

    2017-04-01

    Full Text Available As eye movements are mostly automatic and overtly generated to attain visual goals, individuals have a poor metacognitive knowledge of their own eye movements. We present an exploratory study on the effects of real-time continuous auditory feedback generated by eye movements. We considered both a tracking task and a production task where smooth pursuit eye movements (SPEM can be endogenously generated. In particular, we used a visual paradigm which enables to generate and control SPEM in the absence of a moving visual target. We investigated whether real-time auditory feedback of eye movement dynamics might improve learning in both tasks, through a training protocol over 8 days. The results indicate that real-time sonification of eye movements can actually modify the oculomotor behavior, and reinforce intrinsic oculomotor perception. Nevertheless, large inter-individual differences were observed preventing us from reaching a strong conclusion on sensorimotor learning improvements.

  17. Involuntary Eye Movement during Fixation is Influenced by Spatio-Temporal Frequency of Visual Stimuli

    Directory of Open Access Journals (Sweden)

    Masae Yokota

    2011-05-01

    Full Text Available Involuntary eye movement during fixation is essential for visual information acquisition. Previous studies have suggested that such eye movement depends on the attributes of visual stimuli (e.g. Yokota, APCV2010. In this study, we focus on spatio-temporal frequency, as an attribute of visual stimuli in order to understand spatio-temporal frequency property in the pathway of human vision. We measured eye movement during fixation for three subjects when 16 random-dot dynamic textures that have various frequency bands in spatially and temporally, are presented to the subjects as visual stimuli. The result shows that eye movement depends on the spatio-temporal frequency of visual stimuli. The eye movement includes higher frequency components, in other words, higher velocity components, when visual stimulus has higher spatial frequency and/or higher temporal frequency. Future detailed experiments will show that involuntary eye movement during fixation might be influenced by spatio-temporal frequency sensitivity in vision.

  18. Actigraphy as a diagnostic aid for REM sleep behavior disorder in Parkinson's disease

    NARCIS (Netherlands)

    Louter, M.; Arends, J.B.; Bloem, B.R.; Overeem, S.

    2014-01-01

    BACKGROUND: Rapid eye movement (REM) sleep behavior disorder (RBD) is a common parasomnia in Parkinson's disease (PD) patients. The current International Classification of Sleep Disorders (ICSD-II) requires a clinical interview combined with video polysomnography (video-PSG) to diagnose. The latter

  19. Effect of two GABA-ergic drugs on the cognitive functions of rapid eye movement in sleep-deprived and recovered rats.

    Science.gov (United States)

    Bao, Lidao; Si, Lengge; Wang, Yuehong; Wuyun, Gerile; Bo, Agula

    2016-08-01

    Rapid eye movement (REM) sleep is closely associated with nervous functions. The present study aimed to evaluate the effects of gabazine and tiagabine on the cognitive functions (CF) of REM sleep-deprived and sleep recovered rats. Rats were divided into REM sleep deprivation, blank control (CC) and environmental groups. The REM sleep deprivation group was further divided into non-operation (nonOP), sham-operated (Sham), gabazine (SR) and tiagabine groups. Each group was evaluated over five time points: Sleep deprived for 1 day (SD 1 day), SD 3 day, SD 5 day, sleep recovery 6 h (RS 6 h) and RS 12 h. A rat model of REM sleep deprivation was established by a modified multi-platform water method, with CF assessed by Morris water maze. Hypothalamic γ-aminobutyric acid (GABA) and glutamic acid contents were measured via high performance liquid chromatography. The number and morphology of hypocretin (Hcrt) neurons and Fos in the hypothalamus, and GABAARα1-induced integral optical density were detected by immunofluorescence. Compared to the CC group, the nonOP and Sham group rats CF were significantly diminished, Fos-positive and Fos-Hcrt double positive cells were significantly increased, and GABA content and GABAARα1 expression levels were significantly elevated (Psleep deprivation diminished CF, increased the number of Hcrt neurons, GABA content and GABAARα1 expression. Furthermore, all alterations were positively correlated with deprivation time and corrected by sleep recovery, as demonstrated by single-factor multi-level variance analysis at the various time points in each group. Therefore, the Hcrt nervous system may be an eligible therapeutic target for the treatment of insomnia.

  20. Eye tracking detects disconjugate eye movements associated with structural traumatic brain injury and concussion.

    Science.gov (United States)

    Samadani, Uzma; Ritlop, Robert; Reyes, Marleen; Nehrbass, Elena; Li, Meng; Lamm, Elizabeth; Schneider, Julia; Shimunov, David; Sava, Maria; Kolecki, Radek; Burris, Paige; Altomare, Lindsey; Mehmood, Talha; Smith, Theodore; Huang, Jason H; McStay, Christopher; Todd, S Rob; Qian, Meng; Kondziolka, Douglas; Wall, Stephen; Huang, Paul

    2015-04-15

    Disconjugate eye movements have been associated with traumatic brain injury since ancient times. Ocular motility dysfunction may be present in up to 90% of patients with concussion or blast injury. We developed an algorithm for eye tracking in which the Cartesian coordinates of the right and left pupils are tracked over 200 sec and compared to each other as a subject watches a short film clip moving inside an aperture on a computer screen. We prospectively eye tracked 64 normal healthy noninjured control subjects and compared findings to 75 trauma subjects with either a positive head computed tomography (CT) scan (n=13), negative head CT (n=39), or nonhead injury (n=23) to determine whether eye tracking would reveal the disconjugate gaze associated with both structural brain injury and concussion. Tracking metrics were then correlated to the clinical concussion measure Sport Concussion Assessment Tool 3 (SCAT3) in trauma patients. Five out of five measures of horizontal disconjugacy were increased in positive and negative head CT patients relative to noninjured control subjects. Only one of five vertical disconjugacy measures was significantly increased in brain-injured patients relative to controls. Linear regression analysis of all 75 trauma patients demonstrated that three metrics for horizontal disconjugacy negatively correlated with SCAT3 symptom severity score and positively correlated with total Standardized Assessment of Concussion score. Abnormal eye-tracking metrics improved over time toward baseline in brain-injured subjects observed in follow-up. Eye tracking may help quantify the severity of ocular motility disruption associated with concussion and structural brain injury.

  1. Eye movement responses to health messages on cigarette packages

    Directory of Open Access Journals (Sweden)

    TE Kessels Loes

    2012-07-01

    Full Text Available Abstract Background While the majority of the health messages on cigarette packages contain threatening health information, previous studies indicate that risk information can trigger defensive reactions, especially when the information is self-relevant (i.e., smokers. Providing coping information, information that provides help for quitting smoking, might increase attention to health messages instead of triggering defensive reactions. Methods Eye-movement registration can detect attention preferences for different health education messages over a longer period of time during message exposure. In a randomized, experimental study with 23 smoking and 41 non-smoking student volunteers, eye-movements were recorded for sixteen self-created cigarette packages containing health texts that presented either high risk or coping information combined with a high threat or a low threat smoking-related photo. Results Results of the eye movement data showed that smokers tend to spend more time looking (i.e., more unique fixations and longer dwell time at the coping information than at the high risk information irrespective of the content of the smoking-related photo. Non-smokers tend to spend more time looking at the high risk information than at the coping information when the information was presented in combination with a high threat smoking photo. When a low threat photo was presented, non-smokers paid more attention to the coping information than to the high risk information. Results for the smoking photos showed more attention allocation for low threat photos that were presented in combination with high risk information than for low threat photos in combination with coping information. No attention differences were found for the high threat photos. Conclusions Non-smokers demonstrated an attention preference for high risk information as opposed to coping information, but only when text information was presented in combination with a high threat photo

  2. Increased Motor Activity During REM Sleep Is Linked with Dopamine Function in Idiopathic REM Sleep Behavior Disorder and Parkinson Disease

    DEFF Research Database (Denmark)

    Zoetmulder, Marielle; Nikolic, Miki; Biernat, Heidi B

    2016-01-01

    STUDY OBJECTIVES: Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by impaired motor inhibition during REM sleep, and dream-enacting behavior. RBD is especially associated with α-synucleinopathies, such as Parkinson disease (PD). Follow-up studies have shown...... that patients with idiopathic RBD (iRBD) have an increased risk of developing an α-synucleinopathy in later life. Although abundant studies have shown that degeneration of the nigrostriatal dopaminergic system is associated with daytime motor function in Parkinson disease, only few studies have investigated......-FP-CIT uptake in the putamen. In PD patients, EMG-activity was correlated to anti-Parkinson medication. CONCLUSIONS: Our results support the hypothesis that increased EMG-activity during REM sleep is at least partly linked to the nigrostriatal dopamine system in iRBD, and with dopamine function in PD....

  3. Increased Motor Activity During REM Sleep Is Linked with Dopamine Function in Idiopathic REM Sleep Behaviour Disorder and Parkinson Disease

    DEFF Research Database (Denmark)

    Zoetmulder, Marielle; Nikolic, Miki; Biernat, Heidi

    2016-01-01

    STUDY OBJECTIVES: Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by impaired motor inhibition during REM sleep, and dream-enacting behavior. RBD is especially associated with α-synucleinopathies, such as Parkinson disease (PD). Follow-up studies have shown...... that patients with idiopathic RBD (iRBD) have an increased risk of developing an α-synucleinopathy in later life. Although abundant studies have shown that degeneration of the nigrostriatal dopaminergic system is associated with daytime motor function in Parkinson disease, only few studies have investigated...... in the putamen. In PD patients, EMG-activity was correlated to anti-Parkinson medication. CONCLUSIONS: Our results support the hypothesis that increased EMG-activity during REM sleep is at least partly linked to the nigrostriatal dopamine system in iRBD, and with dopamine function in PD....

  4. Eye movement prediction by oculomotor plant Kalman filter with brainstem control

    Institute of Scientific and Technical Information of China (English)

    Oleg V.KOMOGORTSEV; Javed I.KHAN

    2009-01-01

    Our work addresses one of the core issues related to Human Computer Interaction (HCI) systems that use eye gaze as an input.This issue is the sensor,transmission and other delays that exist in any eye tracker-based system,reducing its performance.A delay effect can be compensated by an accurate prediction of the eye movement trajectories.This paper introduces a mathematical model of the human eye that uses anatomical properties of the Human Visual System to predict eye movement trajectories.The eye mathematical model is transformed into a Kalman filter form to provide continuous eye position signal prediction during all eye movement types.The model presented in this paper uses brainstem control properties employed during transitions between fast (saccade) and slow (fixations,pursuit) eye movements.Results presented in this paper indicate that the proposed eye model in a Kalman filter form improves the accuracy of eye move-ment prediction and is capable of a real-time performance.In addition to the HCI systems with the direct eye gaze input,the proposed eye model can be immediately applied for a bit-rate/computational reduction in real-time gaze-contingent systems.

  5. Enhanced emotional reactivity after selective REM sleep deprivation in humans: an fMRI study.

    Science.gov (United States)

    Rosales-Lagarde, Alejandra; Armony, Jorge L; Del Río-Portilla, Yolanda; Trejo-Martínez, David; Conde, Ruben; Corsi-Cabrera, Maria

    2012-01-01

    Converging evidence from animal and human studies suggest that rapid eye movement (REM) sleep modulates emotional processing. The aim of the present study was to explore the effects of selective REM sleep deprivation (REM-D) on emotional responses to threatening visual stimuli and their brain correlates using functional magnetic resonance imaging (fMRI). Twenty healthy subjects were randomly assigned to two groups: selective REM-D, by awakening them at each REM sleep onset, or non-rapid eye movement sleep interruptions (NREM-I) as control for potential non-specific effects of awakenings and lack of sleep. In a within-subject design, a visual emotional reactivity task was performed in the scanner before and 24 h after sleep manipulation. Behaviorally, emotional reactivity was enhanced relative to baseline (BL) in the REM deprived group only. In terms of fMRI signal, there was, as expected, an overall decrease in activity in the NREM-I group when subjects performed the task the second time, particularly in regions involved in emotional processing, such as occipital and temporal areas, as well as in the ventrolateral prefrontal cortex, involved in top-down emotion regulation. In contrast, activity in these areas remained the same level or even increased in the REM-D group, compared to their BL level. Taken together, these results suggest that lack of REM sleep in humans is associated with enhanced emotional reactivity, both at behavioral and neural levels, and thus highlight the specific role of REM sleep in regulating the neural substrates for emotional responsiveness.

  6. Enhanced emotional reactivity after selective REM sleep deprivation in humans: an fMRI study

    Science.gov (United States)

    Rosales-Lagarde, Alejandra; Armony, Jorge L.; del Río-Portilla, Yolanda; Trejo-Martínez, David; Conde, Ruben; Corsi-Cabrera, Maria

    2012-01-01

    Converging evidence from animal and human studies suggest that rapid eye movement (REM) sleep modulates emotional processing. The aim of the present study was to explore the effects of selective REM sleep deprivation (REM-D) on emotional responses to threatening visual stimuli and their brain correlates using functional magnetic resonance imaging (fMRI). Twenty healthy subjects were randomly assigned to two groups: selective REM-D, by awakening them at each REM sleep onset, or non-rapid eye movement sleep interruptions (NREM-I) as control for potential non-specific effects of awakenings and lack of sleep. In a within-subject design, a visual emotional reactivity task was performed in the scanner before and 24 h after sleep manipulation. Behaviorally, emotional reactivity was enhanced relative to baseline (BL) in the REM deprived group only. In terms of fMRI signal, there was, as expected, an overall decrease in activity in the NREM-I group when subjects performed the task the second time, particularly in regions involved in emotional processing, such as occipital and temporal areas, as well as in the ventrolateral prefrontal cortex, involved in top-down emotion regulation. In contrast, activity in these areas remained the same level or even increased in the REM-D group, compared to their BL level. Taken together, these results suggest that lack of REM sleep in humans is associated with enhanced emotional reactivity, both at behavioral and neural levels, and thus highlight the specific role of REM sleep in regulating the neural substrates for emotional responsiveness. PMID:22719723

  7. The supramammillary nucleus and the claustrum activate the cortex during REM sleep.

    Science.gov (United States)

    Renouard, Leslie; Billwiller, Francesca; Ogawa, Keiko; Clément, Olivier; Camargo, Nutabi; Abdelkarim, Mouaadh; Gay, Nadine; Scoté-Blachon, Céline; Touré, Rouguy; Libourel, Paul-Antoine; Ravassard, Pascal; Salvert, Denise; Peyron, Christelle; Claustrat, Bruno; Léger, Lucienne; Salin, Paul; Malleret, Gael; Fort, Patrice; Luppi, Pierre-Hervé

    2015-04-01

    Evidence in humans suggests that limbic cortices are more active during rapid eye movement (REM or paradoxical) sleep than during waking, a phenomenon fitting with the presence of vivid dreaming during this state. In that context, it seemed essential to determine which populations of cortical neurons are activated during REM sleep. Our aim in the present study is to fill this gap by combining gene expression analysis, functional neuroanatomy, and neurochemical lesions in rats. We find in rats that, during REM sleep hypersomnia compared to control and REM sleep deprivation, the dentate gyrus, claustrum, cortical amygdaloid nucleus, and medial entorhinal and retrosplenial cortices are the only cortical structures containing neurons with an increased expression of Bdnf, FOS, and ARC, known markers of activation and/or synaptic plasticity. Further, the dentate gyrus is the only cortical structure containing more FOS-labeled neurons during REM sleep hypersomnia than during waking. Combining FOS staining, retrograde labeling, and neurochemical lesion, we then provide evidence that FOS overexpression occurring in the cortex during REM sleep hypersomnia is due to projections from the supramammillary nucleus and the claustrum. Our results strongly suggest that only a subset of cortical and hippocampal neurons are activated and display plasticity during REM sleep by means of ascending projections from the claustrum and the supramammillary nucleus. Our results pave the way for future studies to identify the function of REM sleep with regard to dreaming and emotional memory processing.

  8. REM sleep deprivation inhibits LTP in vivo in area CA1 of rat hippocampus.

    Science.gov (United States)

    Kim, Eun Young; Mahmoud, Ghada S; Grover, Lawrence M

    2005-11-18

    Rapid eye movement (REM) sleep deprivation has previously been shown to interfere with normal learning and memory and to inhibit long-term potentiation (LTP) in vitro. Previous studies on REM sleep deprivation and LTP have relied on in vitro analysis in isolated brain slices taken from animals following several days of sleep deprivation. LTP in the hippocampus in situ may differ from LTP in vitro due to modulatory inputs from other brain regions, which are altered after REM sleep deprivation. Here, we examined LTP in unanesthetized, behaving animals on the first and second recovery days following REM sleep deprivation to determine if similar effects are seen in vivo as previously reported in vitro. We found that LTP was significantly impaired in REM sleep-deprived animals on the second recovery day but not the first recovery day. Our results extend previous findings by showing that REM sleep deprivation continues to affect hippocampal function for more than 24h following the end of deprivation. Our results also suggest the presence of a modulatory process not present in vitro. Our findings are not explained by stress during REM sleep deprivation because equivalent circulating corticosterone levels (an index of stress) were found during both REM sleep deprivation and control treatment.

  9. Eye movements when reading text messaging (txt msgng).

    Science.gov (United States)

    Perea, Manuel; Acha, Joana; Carreiras, Manuel

    2009-08-01

    The growing popularity of mobile-phone technology has led to changes in the way people--particularly younger people--communicate. A clear example of this is the advent of Short Message Service (SMS) language, which includes orthographic abbreviations (e.g., omitting vowels, as in wk, week) and phonetic respelling (e.g., using u instead of you). In the present study, we examined the pattern of eye movements during reading of SMS sentences (e.g., my hols wr gr8), relative to normally written sentences, in a sample of skilled "texters". SMS sentences were created by using (mostly) orthographic or phonological abbreviations. Results showed that there is a reading cost--both at a local level and at a global level--for individuals who are highly expert in SMS language. Furthermore, phonological abbreviations resulted in a greater cost than orthographic abbreviations.

  10. Lexical Processes and Eye Movements in Neglect Dyslexia

    Directory of Open Access Journals (Sweden)

    Giuseppe di Pellegrino

    2002-01-01

    Full Text Available Neglect dyslexia is a disturbance in the allocation of spatial attention over a letter string following unilateral brain damage. Patients with this condition may fail to read letters on the contralesional side of an orthographic string. In some of these cases, reading is better with words than with non-words. This word superiority effect has received a variety of explanations that differ, among other things, with regard to the spatial distribution of attention across the letter string during reading. The primary goal of the present study was to explore the interaction between attention and lexical processes by recording eye movements in a patient (F.C. with severe left neglect dyslexia who was required to read isolated word and non-word stimuli of various length.

  11. Contextual override of pragmatic anomalies: evidence from eye movements.

    Science.gov (United States)

    Filik, Ruth

    2008-02-01

    Readers typically experience processing difficulty when they encounter a word that is anomalous within the local context, such as 'The mouse picked up the dynamite...'. The research reported here demonstrates that by placing a sentence in a fictional scenario that is already well known to the reader (e.g., a Tom and Jerry cartoon, as a context for the example sentence above), the difficulty usually associated with these pragmatic anomalies can be immediately eliminated, as reflected in participants' eye movement behaviour. This finding suggests that readers can rapidly integrate information from their common ground, specifically, their cultural knowledge, whilst interpreting incoming text, and provides further evidence that incoming words are immediately integrated within the global discourse.

  12. Fight or flight? Dream content during sleepwalking/sleep terrors vs. rapid eye movement sleep behavior disorder.

    Science.gov (United States)

    Uguccioni, Ginevra; Golmard, Jean-Louis; de Fontréaux, Alix Noël; Leu-Semenescu, Smaranda; Brion, Agnès; Arnulf, Isabelle

    2013-05-01

    Dreams enacted during sleepwalking or sleep terrors (SW/ST) may differ from those enacted during rapid eye movement sleep behavior disorder (RBD). Subjects completed aggression, depression, and anxiety questionnaires. The mentations associated with SW/ST and RBD behaviors were collected over their lifetime and on the morning after video polysomnography (PSG). The reports were analyzed for complexity, length, content, setting, bizarreness, and threat. Ninety-one percent of 32 subjects with SW/ST and 87.5% of 24 subjects with RBD remembered an enacted dream (121 dreams in a lifetime and 41 dreams recalled on the morning). These dreams were more complex and less bizarre, with a higher level of aggression in the RBD than in SW/ST subjects. In contrast, we found low aggression, anxiety, and depression scores during the daytime in both groups. As many as 70% of enacted dreams in SW/ST and 60% in RBD involved a threat, but there were more misfortunes and disasters in the SW/ST dreams and more human and animal aggressions in the RBD dreams. The response to these threats differed, as the sleepwalkers mostly fled from a disaster (and 25% fought back when attacked), while 75% of RBD subjects counterattacked when assaulted. The dreams setting included their bedrooms in 42% SW/ST dreams, though this finding was exceptional in the RBD dreams. Different threat simulations and modes of defense seem to play a role during dream-enacted behaviors (e.g., fleeing a disaster during SW/ST, counterattacking a human or animal assault during RBD), paralleling and exacerbating the differences observed between normal dreaming in nonrapid eye movement (NREM) vs rapid eye movement (REM) sleep. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Voluntary Saccadic Eye Movements Ride the Attentional Rhythm.

    Science.gov (United States)

    Hogendoorn, Hinze

    2016-10-01

    Visual perception seems continuous, but recent evidence suggests that the underlying perceptual mechanisms are in fact periodic-particularly visual attention. Because visual attention is closely linked to the preparation of saccadic eye movements, the question arises how periodic attentional processes interact with the preparation and execution of voluntary saccades. In two experiments, human observers made voluntary saccades between two placeholders, monitoring each one for the presentation of a threshold-level target. Detection performance was evaluated as a function of latency with respect to saccade landing. The time course of detection performance revealed oscillations at around 4 Hz both before the saccade at the saccade origin and after the saccade at the saccade destination. Furthermore, oscillations before and after the saccade were in phase, meaning that the saccade did not disrupt or reset the ongoing attentional rhythm. Instead, it seems that voluntary saccades are executed as part of an ongoing attentional rhythm, with the eyes in flight during the troughs of the attentional wave. This finding for the first time demonstrates that periodic attentional mechanisms affect not only perception but also overt motor behavior.

  14. Imagined motor action and eye movements in schizophrenia

    Directory of Open Access Journals (Sweden)

    Céline eDelerue

    2013-07-01

    Full Text Available Visual exploration and planning of actions are reported to be abnormal in schizophrenia. Most of the studies monitoring eye movements in patients with schizophrenia have been performed under free-viewing condition. The present study was designed to assess whether mentally performing an action modulates the visuomotor behavior in patients with schizophrenia and in healthy controls.Visual scan paths were monitored in eighteen patients with schizophrenia and in eighteen healthy controls. Participants performed two tasks in which they were asked either to (1 look at a scene on a computer screen (free viewing, or (2 picture themselves making a sandwich in front of a computer screen (active viewing. The scenes contained both task-relevant and task-irrelevant objects. Temporal and spatial characteristics of scan paths were compared for each group and each task.The results indicate that patients with schizophrenia exhibited longer fixation durations, and fewer fixations, than healthy controls in the free viewing condition. The patients’ visual exploration improved in the active viewing condition. However, patients looked less at task-relevant objects and looked more at distractors than controls in the active viewing condition in which they were asked to picture themselves making a sandwich in moving their eyes to task-relevant objects on an image.These results are consistent with the literature on deficits in motor imagery in patients with schizophrenia and it extends the impairment to visual exploration in an action imagery task.

  15. Eye and Hand Movements during Reconstruction of Spatial Memory

    Directory of Open Access Journals (Sweden)

    Melanie Rose Burke

    2012-05-01

    Full Text Available Recent behavioural and biological evidence indicates common mechanisms serving working memory and attention (eg, Awh et al 2006, Trends in Cognitive Sciences 10, 124–130. This study explored the role of spatial attention and visual search in an adapted Corsi spatial memory task. Eye movements and touch responses were recorded from participants who recalled locations (signalled by colour or shape change from an array presented either simultaneously or sequentially. The time delay between target presentation and recall (0, 5, or 10s and the number of locations to be remembered (2–5 were also manipulated. Analysis of the response phase revealed subjects were less accurate (touch data and fixated longer (eye data when responding to sequentially presented targets. Fixation duration was also influenced by whether spatial location was initially signalled by colour or shape change. We conclude that attention and temporal delays during retention of a target play a minor role in motor behaviour during a corsi spatial memory task. In contrast, the type of memory required (ie, location and/or memory and number of items plays a key role on subject performance and behaviour.

  16. Predicting rhesus monkey eye movements during natural-image search.

    Science.gov (United States)

    Segraves, Mark A; Kuo, Emory; Caddigan, Sara; Berthiaume, Emily A; Kording, Konrad P

    2017-03-01

    There are three prominent factors that can predict human visual-search behavior in natural scenes: the distinctiveness of a location (salience), similarity to the target (relevance), and features of the environment that predict where the object might be (context). We do not currently know how well these factors are able to predict macaque visual search, which matters because it is arguably the most popular model for asking how the brain controls eye movements. Here we trained monkeys to perform the pedestrian search task previously used for human subjects. Salience, relevance, and context models were all predictive of monkey eye fixations and jointly about as precise as for humans. We attempted to disrupt the influence of scene context on search by testing the monkeys with an inverted set of the same images. Surprisingly, the monkeys were able to locate the pedestrian at a rate similar to that for upright images. The best predictions of monkey fixations in searching inverted images were obtained by rotating the results of the model predictions for the original image. The fact that the same models can predict human and monkey search behavior suggests that the monkey can be used as a good model for understanding how the human brain enables natural-scene search.

  17. Conceptual Change, Text Comprehension and Eye Movements During Reading

    Science.gov (United States)

    Penttinen, Marjaana; Anto, Erkki; Mikkilä-Erdmann, Mirjamaija

    2013-08-01

    In the two studies presented in this article, we examine the interplay of conceptual change, text comprehension, and eye-movements during reading and develop and test methods suitable for such explorations. In studies 1 and 2, university students (N = 15 and 23) read a text on photosynthesis, explained their reading processes retrospectively cued with their own gaze videos, and answered written pre- and posttests. In Study 1, a case study demonstrated connections between re-readings and high-level cognitive processing. Out of all of the participants' retrospective reports, categories were formed based on the expressions referring to either situation model or textbase construction during reading. In Study 2, conceptual change learners differed from other learner groups in terms of prolonged overall reading time and a relatively high amount of expressing textbase construction at the beginning of the retrospective reporting. The results emphasise the importance of careful construction of the textbase in conceptual change and point to the benefits of complementing the eye tracking with cued retrospective reporting when examining high-level cognitive processes during reading.

  18. How detrimental is eye movement during photorefractive keratectomy to the patient's postoperative vision?

    Science.gov (United States)

    Taylor, Natalie M.; van Saarloos, Paul P.; Eikelboom, Robert H.

    2000-06-01

    This study aimed to gauge the effect of the patient's eye movement during Photo Refractive Keratectomy (PRK) on post- operative vision. A computer simulation of both the PRK procedure and the visual outcome has been performed. The PRK simulation incorporated the pattern of movement of the laser beam to perform a given correction, the beam characteristics, an initial corneal profile, and an eye movement scenario; and generated the corrected corneal profile. The regrowth of the epithelium was simulated by selecting the smoothing filter which, when applied to a corrected cornea with no patient eye movement, produced similar ray tracing results to the original corneal model. Ray tracing several objects, such as letters of various contrast and sizes was performed to assess the quality of the post-operative vision. Eye movement scenarios included no eye movement, constant decentration and normally distributed random eye movement of varying magnitudes. Random eye movement of even small amounts, such as 50 microns reduces the contrast sensitivity of the image. Constant decentration decenters the projected image on the retina, and in extreme cases can lead to astigmatism. Eye movements of the magnitude expected during laser refractive surgery have minimal effect on the final visual outcome.

  19. The coeruleus/subcoeruleus complex in rapid eye movement sleep behaviour disorders in Parkinson's disease.

    Science.gov (United States)

    García-Lorenzo, Daniel; Longo-Dos Santos, Clarisse; Ewenczyk, Claire; Leu-Semenescu, Smaranda; Gallea, Cecile; Quattrocchi, Graziella; Pita Lobo, Patricia; Poupon, Cyril; Benali, Habib; Arnulf, Isabelle; Vidailhet, Marie; Lehericy, Stéphane

    2013-07-01

    In Parkinson's disease, rapid eye movement sleep behaviour disorder is an early non-dopaminergic syndrome with nocturnal violence and increased muscle tone during rapid eye movement sleep that can precede Parkinsonism by several years. The neuronal origin of rapid eye movement sleep behaviour disorder in Parkinson's disease is not precisely known; however, the locus subcoeruleus in the brainstem has been implicated as this structure blocks muscle tone during normal rapid eye movement sleep in animal models and can be damaged in Parkinson's disease. Here, we studied the integrity of the locus coeruleus/subcoeruleus complex in patients with Parkinson's disease using combined neuromelanin-sensitive, structural and diffusion magnetic resonance imaging approaches. We compared 24 patients with Parkinson's disease and rapid eye movement sleep behaviour disorder, 12 patients without rapid eye movement sleep behaviour disorder and 19 age- and gender-matched healthy volunteers. All subjects underwent clinical examination and characterization of rapid eye movement sleep using video-polysomnography and multimodal imaging at 3 T. Using neuromelanin-sensitive imaging, reduced signal intensity was evident in the locus coeruleus/subcoeruleus area in patients with Parkinson's disease that was more marked in patients with than those without rapid eye movement sleep behaviour disorder. Reduced signal intensity correlated with the percentage of abnormally increased muscle tone during rapid eye movement sleep. The results confirmed that this complex is affected in Parkinson's disease and showed a gradual relationship between damage to this structure, presumably the locus subcoeruleus, and abnormal muscle tone during rapid eye movement sleep, which is the cardinal marker of rapid eye movement sleep behaviour disorder. In longitudinal studies, the technique may also provide early markers of non-dopaminergic Parkinson's disease pathology to predict the occurrence of Parkinson's disease.

  20. 快速眼动睡眠产生的神经机制:蓝斑核神经元停止发放是一个必要的条件%Neural mechanism of rapid eye movement sleep generation: Cessation of locus coeruleus neurons is a necessity

    Institute of Scientific and Technical Information of China (English)

    Dinesh; Pal; Vibha; Madan; Birendra; Nath; Mallick

    2005-01-01

    两种类型的神经元参与了快速眼动(rapid eye movement,REM)睡眠的调节:快速眼动-发放(REM-ON)神经元和快速眼动-沉寂神经元(REM-OFF).快速眼动-沉寂神经元属去甲肾上腺素能神经元,正如名字表示的那样--在快速眼动睡眠期间停止发放.已有研究表明,这些神经元放电活动的停止是导致快速眼动睡眠的前提条件,γ-氨基丁酸(γ-aminobutyric acid,GABA)可使它们停止发放.如果这些神经元不停止发放,脑中的去甲肾上腺素水平将升高,不出现快速眼动睡眠.剥夺快速眼动睡眠所引起的去甲肾上腺素增加,至少是快速眼动睡眠丧失引起Na+-K+ ATP酶活性增加的原因,而这可能是导致快速眼动睡眠剥夺所引发的各种效应的主要因素.%Two types of neurons are involved in the regulation of rapid eye movement (REM) sleep, the REM-ON and the REM-OFF neurons: As the name suggests, the REM-OFF neurons cease firing during REM sleep and they are norepinephrinergic. It has been shown that cessation of these neurons is a pre-requisite for the generation of REM sleep and GABA shuts them off. Further, if these neurons do not shut off, there is increased levels of norepinephrine in the brain and loss of REM sleep. The REM sleep deprivation induced increase in norepinephrine is responsible for mediating at least REM sleep loss induced increase in Na+-K+ ATPase activity,which is likely to be the primary factor for causing REM sleep deprivation induced effects.

  1. Rapid eye movement sleep loss induces neuronal apoptosis in the rat brain by noradrenaline acting on alpha 1-adrenoceptor and by triggering mitochondrial intrinsic pathway

    Directory of Open Access Journals (Sweden)

    Bindu I Somarajan

    2016-03-01

    Full Text Available Many neurodegenerative disorders are associated with rapid eye movement sleep (REMS-loss, however the mechanism was unknown. As REMS-loss elevates noradrenaline (NA level in the brain as well as induces neuronal apoptosis and degeneration, in this study we have delineated the intracellular molecular pathway involved in REMS deprivation (REMSD associated NA-induced neuronal apoptosis. Rats were REMS deprived for 6 days by the classical flower-pot method, suitable controls were conducted and the effects on apoptosis markers evaluated. Further, the role of NA was studied by one, intraperitoneal (i.p. injection of NA-ergic alpha1-adrenoceptor antagonist prazosin (PRZ and two, by down-regulation of NA synthesis in locus coeruleus (LC neurons by local microinjection of tyrosine hydroxylase siRNA (TH-siRNA. Immunoblot estimates showed that the expressions of pro-apoptotic proteins viz. Bcl2-associated death promoter (BAD protein, apoptotic protease activating factor-1 (Apaf-1, cytochrome c, caspase9, caspase3 were elevated in the REMS-deprived rat brains, while caspase8 level remained unaffected; PRZ treatment did not allow elevation of these pro-apoptotic factors. Further, REMSD increased cytochrome c expression, which was prevented if the NA synthesis from the LC neurons was blocked by microinjection of TH-siRNA in vivo into the LC during REMSD in freely moving normal rats. Mitochondrial damage was re-confirmed by transmission electron microscopy (TEM, which showed distinctly swollen mitochondria with disintegrated cristae, chromosomal condensation and clumping along the nuclear membrane and all these changes were prevented in PRZ treated rats. Combining findings of this study along with earlier reports we propose that upon REMSD NA level increases in the brain as the LC NA-ergic REM-OFF neurons do not cease firing and TH is up-regulated in those neurons. This elevated NA acting on alpha1-adrenoceptors damages mitochondria causing release of

  2. Nocturnal agitation in Huntington disease is caused by arousal-related abnormal movements rather than by rapid eye movement sleep behavior disorder.

    Science.gov (United States)

    Neutel, Dulce; Tchikviladzé, Maya; Charles, Perrine; Leu-Semenescu, Smaranda; Roze, Emmanuel; Durr, Alexandra; Arnulf, Isabelle

    2015-06-01

    Patients with Huntington disease (HD) and their spouses often complain of agitation during sleep, but the causes are mostly unknown. To evaluate sleep and nocturnal movements in patients with various HD stages and CAG repeats length. The clinical features and sleep studies of 29 patients with HD were retrospectively collected (11 referred for genotype-phenotype correlations and 18 for agitation during sleep) and compared with those of 29 age- and sex-matched healthy controls. All patients had videopolysomnography, but the movements during arousals were re-analyzed in six patients with HD with stored video. The patients had a longer total sleep period and REM sleep onset latency, but no other differences in sleep than controls. There was no correlation between CAG repeat length and sleep measures, but total sleep time and sleep efficiency were lower in the subgroup with moderate than milder form of HD. Periodic limb movements and REM sleep behavior disorders were excluded, although 2/29 patients had abnormal REM sleep without atonia. In contrast, they had clumsy and opisthotonos-like movements during arousals from non-REM or REM sleep. Some movements were violent and harmful. They might consist of voluntary movements inappropriately involving the proximal part of the limbs on a background of exaggerated hypotonia. Giant (>65 mcV) sleep spindles were observed in seven (24%) patients with HD and one control. The nocturnal agitation in patients with HD seems related to anosognostic voluntary movements on arousals, rather than to REM sleep behavior disorder and other sleep problems. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Acute enhancement of non-rapid eye movement sleep in rats after drinking water contaminated with cadmium chloride.

    Science.gov (United States)

    Unno, Katsuya; Yamoto, Kurumi; Takeuchi, Kouhei; Kataoka, Aya; Ozaki, Tomoya; Mochizuki, Takatoshi; Honda, Kazuki; Miura, Nobuhiko; Ikeda, Masayuki

    2014-02-01

    Cadmium (Cd) is a heavy metal widely used or effused by industries. Serious environmental Cd pollution has been reported over the past two centuries, whereas the mechanisms underlying Cd-mediated diseases are not fully understood. Interestingly, an increase in reactive oxygen species (ROS) after Cd exposure has been shown. Our group has demonstrated that sleep is triggered via accumulation of ROS during neuronal activities, and we thus hypothesize the involvement of Cd poisoning in sleep-wake irregularities. In the present study, we analyzed the effects of Cd intake (1-100 ppm CdCl₂ in drinking water) on rats by monitoring sleep encephalograms and locomotor activities. The results demonstrated that 100 ppm CdCl₂ administration for 28 h was sufficient to increase non-rapid-eye-movement (non-REM) sleep and reduce locomotor activities during the night (the rat active phase). In contrast, free-running locomotor rhythms under constant dim red light and their re-entrainment to 12:12-h light/dark cycles were intact under chronic (1 month) 100 ppm CdCl₂ administrations, suggesting a limited influence on circadian clock movements at this dosage. The relative amount of oxidized glutathione increased in the brain after the 28-h 100 ppm CdCl₂ administrations similar to the levels in cultured astrocytes receiving H₂O₂ or CdCl₂ in culture medium. Therefore, we propose Cd-induced sleep as a consequence of oxidative stress. As oxidized glutathione is an endogenous sleep substance, we suggest that Cd rapidly induces sleepiness and influences activity performance by occupying intrinsic sleep-inducing mechanisms. In conclusion, we propose increased non-REM sleep during the active phase as an index of acute Cd exposure.

  4. Opposite Impact of REM Sleep on Neurobehavioral Functioning in Children with Common Psychiatric Disorders Compared to Typically Developing Children

    Science.gov (United States)

    Kirov, Roumen; Brand, Serge; Banaschewski, Tobias; Rothenberger, Aribert

    2017-01-01

    Rapid eye movement (REM) sleep has been shown to be related to many adaptive cognitive and behavioral functions. However, its precise functions are still elusive, particularly in developmental psychiatric disorders. The present study aims at investigating associations between polysomnographic (PSG) REM sleep measurements and neurobehavioral functions in children with common developmental psychiatric conditions compared to typically developing children (TDC). Twenty-four children with attention-deficit/hyperactivity disorder (ADHD), 21 with Tourette syndrome/tic disorder (TD), 21 with ADHD/TD comorbidity, and 22 TDC, matched for age and gender, underwent a two-night PSG, and their psychopathological scores and intelligence quotient (IQ) were assessed. Major PSG findings showed more REM sleep and shorter REM latency in the children with psychiatric disorders than in the TDC. Multiple regression analyses revealed that in groups with developmental psychopathology, REM sleep proportion correlated positively with scores of inattention and negatively with performance IQ. In contrast, in the group of TDC, REM sleep proportion correlated negatively with scores of inattention and positively with performance IQ. Whilst shorter REM latency was associated with greater inattention scores in children with psychopathology, no such an association existed in the group of TDC. Altogether, these results indicate an opposite impact of REM sleep on neurobehavioral functioning, related to presence or absence of developmental psychiatric disorders. Our findings suggest that during development, REM sleep functions may interact dissimilarly with different pathways of brain maturation.

  5. Sleep disturbances in Parkinson's disease with emphasis on rapid eye movement sleep behavior disorder.

    Science.gov (United States)

    Barber, Anthony; Dashtipour, Khashayar

    2012-08-01

    Sleep disturbances are common in patients with Parkinson's disease (PD). These disturbances can primarily affect the patient's quality of life and may worsen the symptoms of PD. Among the multiple sleep disturbances in PD patients, there has been a marked growing interest in rapid eye movement (REM) sleep behavior disorder (RBD). This is likely due to the fact that RBD has been proven to precede the motor symptoms of PD by many years. The aim of this article is to examine the sleep disturbances found in PD, with special attention to RBD as a premotor symptom of PD, as well as to assess its proposed related pathophysiology. MEDLINE (1966-March 2010), American Academy of Sleep Medicine's, The International Classification of Sleep Disorders, and current textbooks of sleep medicine were searched for relevant information. Search terms: RBD, sleep disturbances, Parkinson's disease, and pre-motor were used. Excessive daytime sleepiness (EDS), sleep attack, insomnia, restless leg syndrome (RLS), sleep-disordered breathing (SDB), and RBD are sleep disturbances commonly found in the literature related to PD. Sleep benefit has been proven to lessen PD motor symptoms. RBD has been described as a premotor symptom of PD in several prospective, retrospective, and cross-sectional studies. Sleep disturbances in PD can result secondarily to natural disease progression, as a side effect of the medications used in PD, or in result of pre-clinical pathology. Treatment of sleep disturbances in PD patients is crucial, as what is termed as, "sleep benefit effect" has been shown to improve the symptoms of PD.

  6. Vestibulo-tactile interactions regarding motion perception and eye movements in yaw

    NARCIS (Netherlands)

    Bos, J.E.; Erp, J.B.F. van; Groen, E.L.; Veen, H.J. van

    2005-01-01

    This paper shows that tactile stimulation can override vestibular information regarding spinning sensations and eye movements. However, we conclude that the current data do not support the hypothesis that tactile stimulation controls eye movements directly. To this end, twenty-four subjects were pas

  7. Validity of Eye Movement Methods and Indices for Capturing Semantic (Associative) Priming Effects

    Science.gov (United States)

    Odekar, Anshula; Hallowell, Brooke; Kruse, Hans; Moates, Danny; Lee, Chao-Yang

    2009-01-01

    Purpose: The purpose of this investigation was to evaluate the usefulness of eye movement methods and indices as a tool for studying priming effects by verifying whether eye movement indices capture semantic (associative) priming effects in a visual cross-format (written word to semantically related picture) priming paradigm. Method: In the…

  8. How eye movements in EMDR work : Changes in memory vividness and emotionality

    NARCIS (Netherlands)

    Leer, Arne; Engelhard, Iris M.; Van Den Hout, Marcel A.

    2014-01-01

    Background and objectives Eye movements (EM) during recall of an aversive memory is a treatment element unique to Eye Movement Desensitization and Reprocessing (EMDR). Experimental studies have shown that EM reduce memory vividness and/or emotionality shortly after the intervention. However, it is

  9. Eye movements in patients with Whiplash Associated Disorders: A systematic review

    NARCIS (Netherlands)

    B.K. Ischebeck (B.); J. de Vries (Jurryt); J.N. van der Geest (Jos); M. Janssen (Malou); J.-P. van Wingerden (Jan-Paul); G.J. Kleinrensink (Gert Jan); M.A. Frens (Maarten)

    2016-01-01

    textabstractBackground: Many people with Whiplash Associated Disorders (WAD) report problems with vision, some of which may be due to impaired eye movements. Better understanding of such impaired eye movements could improve diagnostics and treatment strategies. This systematic review surveys the

  10. Showing a model's eye movements in examples does not improve learning of problem-solving tasks

    NARCIS (Netherlands)

    van Marlen, Tim; van Wermeskerken, Margot; Jarodzka, Halszka; van Gog, Tamara

    2016-01-01

    Eye movement modeling examples (EMME) are demonstrations of a computer-based task by a human model (e.g., a teacher), with the model's eye movements superimposed on the task to guide learners' attention. EMME have been shown to enhance learning of perceptual classification tasks; however, it is an

  11. Showing a model's eye movements in examples does not improve learning of problem-solving tasks

    NARCIS (Netherlands)

    van Marlen, Tim; van Wermeskerken, Margot; Jarodzka, Halszka; van Gog, Tamara

    2016-01-01

    Eye movement modeling examples (EMME) are demonstrations of a computer-based task by a human model (e.g., a teacher), with the model's eye movements superimposed on the task to guide learners' attention. EMME have been shown to enhance learning of perceptual classification tasks; however, it is an o

  12. The Neural Basis of Smooth Pursuit Eye Movements in the Rhesus Monkey Brain

    Science.gov (United States)

    Ilg, Uwe J.; Thier, Peter

    2008-01-01

    Smooth pursuit eye movements are performed in order to prevent retinal image blur of a moving object. Rhesus monkeys are able to perform smooth pursuit eye movements quite similar as humans, even if the pursuit target does not consist in a simple moving dot. Therefore, the study of the neuronal responses as well as the consequences of…

  13. Vestibulo-tactile interactions regarding motion perception and eye movements in yaw

    NARCIS (Netherlands)

    Bos, J.E.; Erp, J.B.F. van; Groen, E.L.; Veen, H.J. van

    2005-01-01

    This paper shows that tactile stimulation can override vestibular information regarding spinning sensations and eye movements. However, we conclude that the current data do not support the hypothesis that tactile stimulation controls eye movements directly. To this end, twenty-four subjects were

  14. Exploring Cultural Variation in Eye Movements on a Web Page between Americans and Koreans

    Science.gov (United States)

    Yang, Changwoo

    2009-01-01

    This study explored differences in eye movement on a Web page between members of two different cultures to provide insight and guidelines for implementation of global Web site development. More specifically, the research examines whether differences of eye movement exist between the two cultures (American vs. Korean) when viewing a Web page, and…

  15. Mental Imagery as Revealed by Eye Movements and Spoken Predicates: A Test of Neurolinguistic Programming.

    Science.gov (United States)

    Elich, Matthew; And Others

    1985-01-01

    Tested Bandler and Grinder's proposal that eye movement direction and spoken predicates are indicative of sensory modality of imagery. Subjects reported images in the three modes, but no relation between imagery and eye movements or predicates was found. Visual images were most vivid and often reported. Most subjects rated themselves as visual,…

  16. Secondary-Task Effects on Learning with Multimedia: An Investigation through Eye-Movement Analysis

    Science.gov (United States)

    Acarturk, Cengiz; Ozcelik, Erol

    2017-01-01

    This study investigates secondary-task interference on eye movements through learning with multimedia. We focus on the relationship between the influence of the secondary task on the eye movements of learners, and the learning outcomes as measured by retention, matching, and transfer. Half of the participants performed a spatial tapping task while…

  17. Head movement compensation and multi-modal event detection in eye-tracking data for unconstrained head movements.

    Science.gov (United States)

    Larsson, Linnéa; Schwaller, Andrea; Nyström, Marcus; Stridh, Martin

    2016-12-01

    The complexity of analyzing eye-tracking signals increases as eye-trackers become more mobile. The signals from a mobile eye-tracker are recorded in relation to the head coordinate system and when the head and body move, the recorded eye-tracking signal is influenced by these movements, which render the subsequent event detection difficult. The purpose of the present paper is to develop a method that performs robust event detection in signals recorded using a mobile eye-tracker. The proposed method performs compensation of head movements recorded using an inertial measurement unit and employs a multi-modal event detection algorithm. The event detection algorithm is based on the head compensated eye-tracking signal combined with information about detected objects extracted from the scene camera of the mobile eye-tracker. The method is evaluated when participants are seated 2.6m in front of a big screen, and is therefore only valid for distant targets. The proposed method for head compensation decreases the standard deviation during intervals of fixations from 8° to 3.3° for eye-tracking signals recorded during large head movements. The multi-modal event detection algorithm outperforms both an existing algorithm (I-VDT) and the built-in-algorithm of the mobile eye-tracker with an average balanced accuracy, calculated over all types of eye movements, of 0.90, compared to 0.85 and 0.75, respectively for the compared algorithms. The proposed event detector that combines head movement compensation and information regarding detected objects in the scene video enables for improved classification of events in mobile eye-tracking data. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Eye-Movement Patterns Are Associated with Communicative Competence in Autistic Spectrum Disorders

    Science.gov (United States)

    Norbury, Courtenay Frazier; Brock, Jon; Cragg, Lucy; Einav, Shiri; Griffiths, Helen; Nation, Kate

    2009-01-01

    Background: Investigations using eye-tracking have reported reduced fixations to salient social cues such as eyes when participants with autism spectrum disorders (ASD) view social scenes. However, these studies have not distinguished different cognitive phenotypes. Methods: The eye-movements of 28 teenagers with ASD and 18 typically developing…

  19. Tracking Students' Cognitive Processes during Program Debugging--An Eye-Movement Approach

    Science.gov (United States)

    Lin, Yu-Tzu; Wu, Cheng-Chih; Hou, Ting-Yun; Lin, Yu-Chih; Yang, Fang-Ying; Chang, Chia-Hu

    2016-01-01

    This study explores students' cognitive processes while debugging programs by using an eye tracker. Students' eye movements during debugging were recorded by an eye tracker to investigate whether and how high- and low-performance students act differently during debugging. Thirty-eight computer science undergraduates were asked to debug two C…

  20. Eye-Movement Patterns Are Associated with Communicative Competence in Autistic Spectrum Disorders

    Science.gov (United States)

    Norbury, Courtenay Frazier; Brock, Jon; Cragg, Lucy; Einav, Shiri; Griffiths, Helen; Nation, Kate

    2009-01-01

    Background: Investigations using eye-tracking have reported reduced fixations to salient social cues such as eyes when participants with autism spectrum disorders (ASD) view social scenes. However, these studies have not distinguished different cognitive phenotypes. Methods: The eye-movements of 28 teenagers with ASD and 18 typically developing…

  1. Bilateral Saccadic Eye Movements and Tactile Stimulation, but Not Auditory Stimulation, Enhance Memory Retrieval

    Science.gov (United States)

    Nieuwenhuis, Sander; Elzinga, Bernet M.; Ras, Priscilla H.; Berends, Floris; Duijs, Peter; Samara, Zoe; Slagter, Heleen A.

    2013-01-01

    Recent research has shown superior memory retrieval when participants make a series of horizontal saccadic eye movements between the memory encoding phase and the retrieval phase compared to participants who do not move their eyes or move their eyes vertically. It has been hypothesized that the rapidly alternating activation of the two hemispheres…

  2. Bilateral saccadic eye movements and tactile stimulation, but not auditory stimulation, enhance memory retrieval

    NARCIS (Netherlands)

    Nieuwenhuis, S.; Elzinga, B.M.; Ras, P.H.; Berends, F.; Duijs, P.; Samara, Z.; Slagter, H.A.

    2013-01-01

    Recent research has shown superior memory retrieval when participants make a series of horizontal saccadic eye movements between the memory encoding phase and the retrieval phase compared to participants who do not move their eyes or move their eyes vertically. It has been hypothesized that the rapi

  3. Differential modulation of global and local neural oscillations in REM sleep by homeostatic sleep regulation

    Science.gov (United States)

    Kim, Bowon; Kocsis, Bernat; Hwang, Eunjin; Kim, Youngsoo; Strecker, Robert E.; McCarley, Robert W.; Choi, Jee Hyun

    2017-01-01

    Homeostatic rebound in rapid eye movement (REM) sleep normally occurs after acute sleep deprivation, but REM sleep rebound settles on a persistently elevated level despite continued accumulation of REM sleep debt during chronic sleep restriction (CSR). Using high-density EEG in mice, we studied how this pattern of global regulation is implemented in cortical regions with different functions and network architectures. We found that across all areas, slow oscillations repeated the behavioral pattern of persistent enhancement during CSR, whereas high-frequency oscillations showed progressive increases. This pattern followed a common rule despite marked topographic differences. The findings suggest that REM sleep slow oscillations may translate top-down homeostatic control to widely separated brain regions whereas fast oscillations synchronizing local neuronal ensembles escape this global command. These patterns of EEG oscillation changes are interpreted to reconcile two prevailing theories of the function of sleep, synaptic homeostasis and sleep dependent memory consolidation. PMID:28193862

  4. Breaking object correspondence across saccadic eye movements deteriorates object recognition

    Directory of Open Access Journals (Sweden)

    Christian H. Poth

    2015-12-01

    Full Text Available Visual perception is based on information processing during periods of eye fixations that are interrupted by fast saccadic eye movements. The ability to sample and relate information on task-relevant objects across fixations implies that correspondence between presaccadic and postsaccadic objects is established. Postsaccadic object information usually updates and overwrites information on the corresponding presaccadic object. The presaccadic object representation is then lost. In contrast, the presaccadic object is conserved when object correspondence is broken. This helps transsaccadic memory but it may impose attentional costs on object recognition. Therefore, we investigated how breaking object correspondence across the saccade affects postsaccadic object recognition. In Experiment 1, object correspondence was broken by a brief postsaccadic blank screen. Observers made a saccade to a peripheral object which was displaced during the saccade. This object reappeared either immediately after the saccade or after the blank screen. Within the postsaccadic object, a letter was briefly presented (terminated by a mask. Observers reported displacement direction and letter identity in different blocks. Breaking object correspondence by blanking improved displacement identification but deteriorated postsaccadic letter recognition. In Experiment 2, object correspondence was broken by changing the object’s contrast-polarity. There were no object displacements and observers only reported letter identity. Again, breaking object correspondence deteriorated postsaccadic letter recognition. These findings identify transsaccadic object correspondence as a key determinant of object recognition across the saccade. This is in line with the recent hypothesis that breaking object correspondence results in separate representations of presaccadic and postsaccadic objects which then compete for limited attentional processing resources (Schneider, 2013. Postsaccadic

  5. Experimental and computational analysis of monkey smooth pursuit eye movements.

    Science.gov (United States)

    Churchland, M M; Lisberger, S G

    2001-08-01

    Smooth pursuit eye movements are guided by visual feedback and are surprisingly accurate despite the time delay between visual input and motor output. Previous models have reproduced the accuracy of pursuit either by using elaborate visual signals or by adding sources of motor feedback. Our goal was to constrain what types of signals drive pursuit by obtaining data that would discriminate between these two modeling approaches, represented by the "image motion model" and the "tachometer feedback" model. Our first set of experiments probed the visual properties of pursuit with brief square-pulse and sine-wave perturbations of target velocity. Responses to pulse perturbations increased almost linearly with pulse amplitude, while responses to sine wave perturbations showed strong saturation with increasing stimulus amplitude. The response to sine wave perturbations was strongly dependent on the baseline image velocity at the time of the perturbation. Responses were much smaller if baseline image velocity was naturally large, or was artificially increased by superimposing sine waves on pulse perturbations. The image motion model, but not the tachometer feedback model, could reproduce these features of pursuit. We used a revision of the image motion model that was, like the original, sensitive to both image velocity and image acceleration. Due to a saturating nonlinearity, the sensitivity to image acceleration declined with increasing image velocity. Inclusion of this nonlinearity was motivated by our experimental results, was critical in accounting for the responses to perturbations, and provided an explanation for the unexpected stability of pursuit in the presence of perturbations near the resonant frequency. As an emergent property, the revised image motion model was able to reproduce the frequency and damping of oscillations recorded during artificial feedback delays. Our second set of experiments replicated prior recordings of pursuit responses to multiple

  6. Corticospinal Excitability in the Hand Muscles is Decreased During Eye Movement with Visual Occlusion.

    Science.gov (United States)

    Chujo, Yuta; Jono, Yasutomo; Tani, Keisuke; Nomura, Yoshifumi; Hiraoka, Koichi

    2016-02-01

    Corticospinal excitability in the hand muscles decreases during smooth pursuit eye movement. The present study tested a hypothesis that the decrease in corticospinal excitability in the hand muscles at rest during eye movement is not caused by visual feedback but caused by motor commands to the eye muscles. Healthy men (M age = 28.4 yr., SD = 5.2) moved their eyes to the right with visual occlusion (dark goggles) while their arms and hands remained at rest. The motor-evoked potential in the hand muscles was suppressed by 19% in the third quarter of the eye-movement period, supporting a view that motor commands to the eye muscles are the cause of the decrease in corticospinal excitability in the hand muscles. The amount of the suppression was not significantly different among the muscles, indicating that modulation of corticospinal excitability in one muscle induced by eye movement is not dependent on whether eye movement direction and the direction of finger movement when the muscle contracts are identical. Thus, the finding failed to support a hypothetical view that motor commands to the eye muscles concomittantly produce motor commands to the hand muscles. Moreover, the amount of the suppression was not significantly different between the forearm positions, indicating that the suppression was not affected by proprioception of the forearm muscles when visual feedback is absent. © The Author(s) 2016.

  7. Basal ganglia neuronal activity during scanning eye movements in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Tomáš Sieger

    Full Text Available The oculomotor role of the basal ganglia has been supported by extensive evidence, although their role in scanning eye movements is poorly understood. Nineteen Parkinsońs disease patients, which underwent implantation of deep brain stimulation electrodes, were investigated with simultaneous intraoperative microelectrode recordings and single channel electrooculography in a scanning eye movement task by viewing a series of colored pictures selected from the International Affective Picture System. Four patients additionally underwent a visually guided saccade task. Microelectrode recordings were analyzed selectively from the subthalamic nucleus, substantia nigra pars reticulata and from the globus pallidus by the WaveClus program which allowed for detection and sorting of individual neurons. The relationship between neuronal firing rate and eye movements was studied by crosscorrelation analysis. Out of 183 neurons that were detected, 130 were found in the subthalamic nucleus, 30 in the substantia nigra and 23 in the globus pallidus. Twenty percent of the neurons in each of these structures showed eye movement-related activity. Neurons related to scanning eye movements were mostly unrelated to the visually guided saccades. We conclude that a relatively large number of basal ganglia neurons are involved in eye motion control. Surprisingly, neurons related to scanning eye movements differed from neurons activated during saccades suggesting functional specialization and segregation of both systems for eye movement control.

  8. The Effect of Viscosity of PDMS Based Silicone-Oil Tamponade Agents on the Movement Relative to the Eye Wall during Eye Movements

    Directory of Open Access Journals (Sweden)

    Chan Yau Kei

    2011-05-01

    Full Text Available Silicone oil tamponade is used as vitreous substitute to treat complicated retinal diseases. It provides support to the retina and acts against contraction of the retina and as such plays a vital role in preventing eyes from certain blindness. Silicone oil however has a tendency to emulsify and is accountable to inflammation and glaucoma. In in-vitro study, it was found that using silicone-oil with higher viscosity reduce the occurrences of emulsifications. In this study, an eye model chamber was used to capture the movement of silicone oil bubbles inside the model eye chamber by rapid serial photography. A few tamponades derived from the same material but with different shear viscosities were used. Our objective of this experiment is to investigate the effect of viscosity of tamponade to the movement of tamponade relative to retinal phase in model eye chambers mimicking saccadic eye movements. Our experiment confirms that shear viscosity determines the relative movement between the silicone bubble and the chamber wall. The higher the viscosity, the smaller the movement of tamponade relative to the chamber wall. We suggested that using much viscous tamponade may reduce the onset of emulsification due to the reduction of relative movement.

  9. REM sleep deprivation induces changes of down regulatory antagonist modulator (DREAM) expression in the ventrobasal thalamic nuclei of sprague-dawley rats.

    Science.gov (United States)

    Siran, Rosfaiizah; Ahmad, Asma Hayati; Abdul Aziz, Che Badariah; Ismail, Zalina

    2014-12-01

    REM sleep is a crucial component of sleep. Animal studies indicate that rapid eye movement (REM) sleep deprivation elicits changes in gene expression. Down regulatory antagonist modulator (DREAM) is a protein which downregulates other gene transcriptions by binding to the downstream response element site. The aim of this study is to examine the effect of REM sleep deprivation on DREAM expression in ventrobasal thalamic nuclei (VB) of rats. Seventy-two male Sprague-Dawley rats were divided into four major groups consisting of free-moving control rats (FMC) (n = 18), 72-h REM sleep-deprived rats (REMsd) (n = 18), 72-h REM sleep-deprived rats with 72-h sleep recovery (RG) (n = 18), and tank control rats (TC) (n = 18). REM sleep deprivation was elicited using the inverted flower pot technique. DREAM expression was examined in VB by immunohistochemical, Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR) studies. The DREAM-positive neuronal cells (DPN) were decreased bilaterally in the VB of rats deprived of REM sleep as well as after sleep recovery. The nuclear DREAM extractions were increased bilaterally in animals deprived of REM sleep. The DREAM messenger RNA (mRNA) levels were decreased after sleep recovery. The results demonstrated a link between DREAM expression and REM sleep deprivation as well as sleep recovery which may indicate potential involvement of DREAM in REM sleep-induced changes in gene expression, specifically in nociceptive processing.

  10. Assessing the dream-lag effect for REM and NREM stage 2 dreams.

    Science.gov (United States)

    Blagrove, Mark; Fouquet, Nathalie C; Henley-Einion, Josephine A; Pace-Schott, Edward F; Davies, Anna C; Neuschaffer, Jennifer L; Turnbull, Oliver H

    2011-01-01

    This study investigates evidence, from dream reports, for memory consolidation during sleep. It is well-known that events and memories from waking life can be incorporated into dreams. These incorporations can be a literal replication of what occurred in waking life, or, more often, they can be partial or indirect. Two types of temporal relationship have been found to characterize the time of occurrence of a daytime event and the reappearance or incorporation of its features in a dream. These temporal relationships are referred to as the day-residue or immediate incorporation effect, where there is the reappearance of features from events occurring on the immediately preceding day, and the dream-lag effect, where there is the reappearance of features from events occurring 5-7 days prior to the dream. Previous work on the dream-lag effect has used spontaneous home recalled dream reports, which can be from Rapid Eye Movement Sleep (REM) and from non-Rapid Eye Movement Sleep (NREM). This study addresses whether the dream-lag effect occurs only for REM sleep dreams, or for both REM and NREM stage 2 (N2) dreams. 20 participants kept a daily diary for over a week before sleeping in the sleep laboratory for 2 nights. REM and N2 dreams collected in the laboratory were transcribed and each participant rated the level of correspondence between every dream report and every diary record. The dream-lag effect was found for REM but not N2 dreams. Further analysis indicated that this result was not due to N2 dream reports being shorter, in terms of number of words, than the REM dream reports. These results provide evidence for a 7-day sleep-dependent non-linear memory consolidation process that is specific to REM sleep, and accord with proposals for the importance of REM sleep to emotional memory consolidation.

  11. Lithium prevents REM sleep deprivation-induced impairments on memory consolidation.

    Science.gov (United States)

    Ota, Simone M; Moreira, Karin Di Monteiro; Suchecki, Deborah; Oliveira, Maria Gabriela M; Tiba, Paula A

    2013-11-01

    Pre-training rapid eye movement sleep (REMS) deprivation affects memory acquisition and/or consolidation. It also produces major REMS rebound at the cost of waking and slow wave sleep (SWS). Given that both SWS and REMS appear to be important for memory processes, REMS rebound after training may disrupt the organization of sleep cycles, i.e., excessive amount of REMS and/or little SWS after training could be harmful for memory formation. To examine whether lithium, a drug known to increase SWS and reduce REMS, could prevent the memory impairment induced by pre-training sleep deprivation. Animals were divided in 2 groups: cage control (CC) and REMS-deprived (REMSDep), and then subdivided into 4 subgroups, treated either with vehicle or 1 of 3 doses of lithium (50, 100, and 150 mg/kg) 2 h before training on the multiple trial inhibitory avoidance task. Animals were tested 48 h later to make sure that the drug had been already metabolized and eliminated. Another set of animals was implanted with electrodes and submitted to the same experimental protocol for assessment of drug-induced sleep-wake changes. Wistar male rats weighing 300-400 g. Sleep deprived rats required more trials to learn the task and still showed a performance deficit during test, except from those treated with 150 mg/kg of lithium, which also reduced the time spent in REM sleep during sleep recovery. Lithium reduced rapid eye movement sleep and prevented memory impairment induced by sleep deprivation. These results indicate that these phenomena may be related, but cause-effect relationship cannot be ascertained.

  12. The categories, frequencies, and stability of idiosyncratic eye-movement patterns to faces.

    Science.gov (United States)

    Arizpe, Joseph; Walsh, Vincent; Yovel, Galit; Baker, Chris I

    2016-12-16

    The spatial pattern of eye-movements to faces considered typical for neurologically healthy individuals is a roughly T-shaped distribution over the internal facial features with peak fixation density tending toward the left eye (observer's perspective). However, recent studies indicate that striking deviations from this classic pattern are common within the population and are highly stable over time. The classic pattern actually reflects the average of these various idiosyncratic eye-movement patterns across individuals. The natural categories and respective frequencies of different types of idiosyncratic eye-movement patterns have not been specifically investigated before, so here we analyzed the spatial patterns of eye-movements for 48 participants to estimate the frequency of different kinds of individual eye-movement patterns to faces in the normal healthy population. Four natural clusters were discovered such that approximately 25% of our participants' fixation density peaks clustered over the left eye region (observer's perspective), 23% over the right eye-region, 31% over the nasion/bridge region of the nose, and 20% over the region spanning the nose, philthrum, and upper lips. We did not find any relationship between particular idiosyncratic eye-movement patterns and recognition performance. Individuals' eye-movement patterns early in a trial were more stereotyped than later ones and idiosyncratic fixation patterns evolved with time into a trial. Finally, while face inversion strongly modulated eye-movement patterns, individual patterns did not become less distinct for inverted compared to upright faces. Group-averaged fixation patterns do not represent individual patterns well, so exploration of such individual patterns is of value for future studies of visual cognition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Comparison for aphasic and control subjects of eye movements hypothesized in neurolinguistic programming.

    Science.gov (United States)

    Dooley, K O; Farmer, A

    1988-08-01

    Neurolinguistic programming's hypothesized eye movements were measured independently using videotapes of 10 nonfluent aphasic and 10 control subjects matched for age and sex. Chi-squared analysis indicated that eye-position responses were significantly different for the groups. Although earlier research has not supported the hypothesized eye positions for normal subjects, the present findings support the contention that eye-position responses may differ between neurologically normal and aphasic individuals.

  14. Eye movement desensitization and reprocessing for adolescent depression.

    Science.gov (United States)

    Bae, Hwallip; Kim, Daeho; Park, Yong Chon

    2008-03-01

    While cognitive behavior therapy is considered to be the first-line therapy for adolescent depression, there are limited data on whether other psychotherapeutic techniques are also effective in treating adolescents with depression. This report suggests the potential application of eye movement desensitization and reprocessing (EMDR) for treatment of depressive disorder related, not to trauma, but to stressful life events. At present, EMDR has only been empirically validated for only trauma-related disorders such as posttraumatic stress disorder. Two teenagers with major depressive disorder (MDD) underwent three and seven sessions of EMDR aimed at memories of stressful life events. After treatment, their depressive symptoms decreased to the level of full remission, and the therapeutic gains were maintained after two and three months of follow up. The effectiveness of EMDR for depression is explained by the model of adaptive information processing. Given the powerful effects observed within a brief period of time, the authors suggest that further investigation of EMDR for depressive disorders is warranted.

  15. Exploring the Relationship Between Eye Movements and Electrocardiogram Interpretation Accuracy

    Science.gov (United States)

    Davies, Alan; Brown, Gavin; Vigo, Markel; Harper, Simon; Horseman, Laura; Splendiani, Bruno; Hill, Elspeth; Jay, Caroline

    2016-12-01

    Interpretation of electrocardiograms (ECGs) is a complex task involving visual inspection. This paper aims to improve understanding of how practitioners perceive ECGs, and determine whether visual behaviour can indicate differences in interpretation accuracy. A group of healthcare practitioners (n = 31) who interpret ECGs as part of their clinical role were shown 11 commonly encountered ECGs on a computer screen. The participants’ eye movement data were recorded as they viewed the ECGs and attempted interpretation. The Jensen-Shannon distance was computed for the distance between two Markov chains, constructed from the transition matrices (visual shifts from and to ECG leads) of the correct and incorrect interpretation groups for each ECG. A permutation test was then used to compare this distance against 10,000 randomly shuffled groups made up of the same participants. The results demonstrated a statistically significant (α  0.05) result in 5 of the 11 stimuli demonstrating that the gaze shift between the ECG leads is different between the groups making correct and incorrect interpretations and therefore a factor in interpretation accuracy. The results shed further light on the relationship between visual behaviour and ECG interpretation accuracy, providing information that can be used to improve both human and automated interpretation approaches.

  16. The existence of a hypnotic state revealed by eye movements.

    Directory of Open Access Journals (Sweden)

    Sakari Kallio

    Full Text Available Hypnosis has had a long and controversial history in psychology, psychiatry and neurology, but the basic nature of hypnotic phenomena still remains unclear. Different theoretical approaches disagree as to whether or not hypnosis may involve an altered mental state. So far, a hypnotic state has never been convincingly demonstrated, if the criteria for the state are that it involves some objectively measurable and replicable behavioural or physiological phenomena that cannot be faked or simulated by non-hypnotized control subjects. We present a detailed case study of a highly hypnotizable subject who reliably shows a range of changes in both automatic and volitional eye movements when given a hypnotic induction. These changes correspond well with the phenomenon referred to as the "trance stare" in the hypnosis literature. Our results show that this 'trance stare' is associated with large and objective changes in the optokinetic reflex, the pupillary reflex and programming a saccade to a single target. Control subjects could not imitate these changes voluntarily. For the majority of people, hypnotic induction brings about states resembling normal focused attention or mental imagery. Our data nevertheless highlight that in some cases hypnosis may involve a special state, which qualitatively differs from the normal state of consciousness.

  17. Neuregulin-1 genotypes and eye movements in schizophrenia

    DEFF Research Database (Denmark)

    Haraldsson, H.M.; Ettinger, U.; Magnusdottir, B.B.;

    2010-01-01

    Neuregulin-1 (NRG-1) is a putative susceptibility gene for schizophrenia but the neurocognitive processes that may involve NRG-1 in schizophrenia are unknown. Deficits in antisaccade (AS) and smooth pursuit eye movements (SPEM) are promising endophenotypes, which may be associated with brain dysf...... performance. However, the power of the sample to identify small effects is limited and the possibility of a type II error must be kept in mind. Larger samples may be needed to reliably investigate such gene effects on oculomotor endophenotypes...... dysfunctions underlying the pathophysiology of schizophrenia. The aim of this study was to investigate the associations of NRG-1 genotypes with AS and SPEM in schizophrenia patients and healthy controls. Patients (N = 113) and controls (N = 106) were genotyped for two NRG-1 single nucleotide polymorphisms...... (SNPs); SNP8NRG222662, a surrogate marker for the originally described Icelandic NRG-1 risk haplotype, and SNP8NRG243177, which has recently been associated with individual differences in brain function. Subjects underwent infrared oculographic assessment of AS and SPEM. The study replicates previous...

  18. Treatment of Intrusive Suicidal Imagery Using Eye Movements

    Directory of Open Access Journals (Sweden)

    Jaël S. van Bentum

    2017-06-01

    Full Text Available Suicide and suicidal behavior are major public health concerns, and affect 3–9% of the population worldwide. Despite increased efforts for national suicide prevention strategies, there are still few effective interventions available for reducing suicide risk. In this article, we describe various theoretical approaches for suicide ideation and behavior, and propose to examine the possible effectiveness of a new and innovative preventive strategy. A model of suicidal intrusion (mental imagery related to suicide, also referred to as suicidal flash-forwards is presented describing one of the assumed mechanisms in the etiology of suicide and the mechanism of therapeutic change. We provide a brief rationale for an Eye Movement Dual Task (EMDT treatment for suicidal intrusions, describing techniques that can be used to target these suicidal mental images and thoughts to reduce overall behavior. Based on the available empirical evidence for the mechanisms of suicidal intrusions, this approach appears to be a promising new treatment to prevent suicidal behavior as it potentially targets one of the linking pins between suicidal ideation and suicidal actions.

  19. Continuous perception of motion and shape across saccadic eye movements.

    Science.gov (United States)

    Fracasso, Alessio; Caramazza, Alfonso; Melcher, David

    2010-11-24

    Although our naïve experience of visual perception is that it is smooth and coherent, the actual input from the retina involves brief and discrete fixations separated by saccadic eye movements. This raises the question of whether our impression of stable and continuous vision is merely an illusion. To test this, we examined whether motion perception can "bridge" a saccade in a two-frame apparent motion display in which the two frames were separated by a saccade. We found that transformational apparent motion, in which an object is seen to change shape and even move in three dimensions during the motion trajectory, continues across saccades. Moreover, participants preferred an interpretation of motion in spatial, rather than retinal, coordinates. The strength of the motion percept depended on the temporal delay between the two motion frames and was sufficient to give rise to a motion-from-shape aftereffect, even when the motion was defined by a second-order shape cue ("phantom transformational apparent motion"). These findings suggest that motion and shape information are integrated across saccades into a single, coherent percept of a moving object.

  20. Newness, Givenness and Discourse Updating: Evidence from Eye Movements.

    Science.gov (United States)

    Benatar, Ashley; Clifton, Charles

    2014-02-01

    Three experiments examined the effect of contextual givenness on eye movements in reading, following Schwarzschild's (1999) analysis of givenness and focus-marking in which relations among entities as well as the entities themselves can be given. In each study, a context question was followed by an answer in which a critical word was either given, new, or contrastively (correctively) focused. Target words were read faster when the critical word provided given information than when it provided new information, and faster when it provided new information than when it corrected prior information. Repetition of target words was controlled in two ways: by mentioning a non-given target word in the context in a relation other than that in which it occurred as a target, and by using a synonym or subordinate of a given target to refer to it in the context question. Verbatim repetition was not responsible for the observed effects of givenness and contrastiveness. Besides clarifying previous inconsistent results of the effects of focus and givenness on reading speed, these results indicate that reading speed can be influenced essentially immediately by a reader's discourse representation, and that the extent of the influence is graded, with corrections to a representation having a larger effect than simple additions.

  1. Eye movement desensitization in fibromyalgia: a pilot study.

    Science.gov (United States)

    Friedberg, Fred

    2004-11-01

    The purpose of this study was to investigate the effectiveness of eye movement desensitization (EMD) for the relief of pain, fatigue and anxiety and depression in fibromyalgia patients. Six Caucasian female patients (mean age=43.2 yr) participated in two treatment sessions. Outcome assessments included the Fibromyalgia Impact Questionnaire, Fatigue Scale, Beck Anxiety Inventory, and Beck Depression Inventory. In-session process measures included thermal biofeedback monitoring and subjective units of discomfort ratings of pain, stress, and fatigue. Four out of six subjects were considered treatment responders. Thermal biofeedback monitoring revealed an average increase in hand temperature of 5.4 degrees indicating a relaxation effect. At treatment termination, average scores decreased on the measures of anxiety (28.6%), depression (29.9%), fibromyalgia impact (12.6%), and fatigue (11.5%). At the 3-month follow-up assessment, total reductions in average scores from pre-treatment baseline reflected further improvements on measures of anxiety (45.8%), depression (31.6%), fibromyalgia impact (19.2%), and fatigue (26.7%). Because EMD produced a somewhat automatic relaxation response with minimal patient participation, it may be especially useful when standard relaxation techniques fail.

  2. The eyes have it: hippocampal activity predicts expression of memory in eye movements.

    Science.gov (United States)

    Hannula, Deborah E; Ranganath, Charan

    2009-09-10

    Although there is widespread agreement that the hippocampus is critical for explicit episodic memory retrieval, it is controversial whether this region can also support indirect expressions of relational memory when explicit retrieval fails. Here, using functional magnetic resonance imaging (fMRI) with concurrent indirect, eye-movement-based memory measures, we obtained evidence that hippocampal activity predicted expressions of relational memory in subsequent patterns of viewing, even when explicit, conscious retrieval failed. Additionally, activity in the lateral prefrontal cortex and functional connectivity between the hippocampus and prefrontal cortex were greater for correct than for incorrect trials. Together, these results suggest that hippocampal activity can support the expression of relational memory even when explicit retrieval fails and that recruitment of a broader cortical network may be required to support explicit associative recognition.

  3. Desensitizing Addiction : Using Eye Movements to Reduce the Intensity of Substance-Related Mental Imagery and Craving

    NARCIS (Netherlands)

    Littel, M.; van den Hout, M.A.; Engelhard, I.M.

    2016-01-01

    Eye movement desensitization and reprocessing (EMDR) is an effective treatment for posttraumatic stress disorder. During this treatment, patients recall traumatic memories while making horizontal eye movements (EM). Studies have shown that EM not only desensitize negative memories but also positive

  4. Desensitizing Addiction : Using Eye Movements to Reduce the Intensity of Substance-Related Mental Imagery and Craving

    NARCIS (Netherlands)

    Littel, M.; van den Hout, M.A.; Engelhard, I.M.

    2016-01-01

    Eye movement desensitization and reprocessing (EMDR) is an effective treatment for posttraumatic stress disorder. During this treatment, patients recall traumatic memories while making horizontal eye movements (EM). Studies have shown that EM not only desensitize negative memories but also positive

  5. In your eyes only: deficits in executive functioning after frontal TMS reflect in eye movements.

    Science.gov (United States)

    Lüthi, Mathias; Henke, Katharina; Gutbrod, Klemens; Nyffeler, Thomas; Chaves, Silvia; Müri, René M

    2014-01-01

    This study investigated the roles of the right and left dorsolateral prefrontal (rDLPFC, lDLPFC) and the medial frontal cortex (MFC) in executive functioning using a theta burst transcranial magnetic stimulation (TMS) approach. Healthy subjects solved two visual search tasks: a number search task with low cognitive demands, and a number and letter search task with high cognitive demands. To observe how subjects solved the tasks, we assessed their behavior with and without TMS using eye movements when subjects were confronted with specific executive demands. To observe executive functions, we were particularly interested in TMS-induced changes in visual exploration strategies found to be associated with good or bad performance in a control condition without TMS stimulation. TMS left processing time unchanged in both tasks. Inhibition of the rDLPFC resulted in a decrease in anticipatory fixations in the number search task, i.e., a decrease in a good strategy in this low demand task. This was paired with a decrease in stimulus fixations. Together, these results point to a role of the rDLPFC in planning and response selection. Inhibition of the lDLPFC and the MFC resulted in an increase in anticipatory fixations in the number and letter search task, i.e., an increase in the application of a good strategy in this task. We interpret these results as a compensatory strategy to account for TMS-induced deficits in attentional switching when faced with high switching demands. After inhibition of the lDLPFC, an increase in regressive fixations was found in the number and letter search task. In the context of high working memory demands, this strategy appears to support TMS-induced working memory deficits. Combining an experimental TMS approach with the recording of eye movements proved sensitive to discrete decrements of executive functions and allows pinpointing the functional organization of the frontal lobes.

  6. Infant and Adult Perceptions of Possible and Impossible Body Movements: An Eye-Tracking Study

    Science.gov (United States)

    Morita, Tomoyo; Slaughter, Virginia; Katayama, Nobuko; Kitazaki, Michiteru; Kakigi, Ryusuke; Itakura, Shoji

    2012-01-01

    This study investigated how infants perceive and interpret human body movement. We recorded the eye movements and pupil sizes of 9- and 12-month-old infants and of adults (N = 14 per group) as they observed animation clips of biomechanically possible and impossible arm movements performed by a human and by a humanoid robot. Both 12-month-old…

  7. P1-26: Influence of Depth from Luminance Contrast on Vergence Eye Movements

    Directory of Open Access Journals (Sweden)

    Akinori Hiratani

    2012-10-01

    Full Text Available A vergence eye movement is the simultaneous movement of both eyes in opposite directions to obtain or maintain single binocular vision. It has been shown that a vergence movement is induced not only by binocular depth but also by the changing size of the stimuli, which produces perception of motion in depth. That is, a monocular depth cue influences the direction of the eye movement, even when the eye movement contradicts depth from the disparity cue. Despite that a number of monocular depth cues are known, the influence on the vergence movement is known only with changing size. In this study, we focused on luminance contrast as a monocular depth cue and examined whether it influences the vergence movement. The stimuli were a Gabor patch with contrast changing sinusoidally in time at a given temporal frequency. When the observer looks at the stimuli, apparent depth changes with the contrast change. Eye movement measurements showed vergence movements synchronizing with luminance changes. Change in perceived depth caused by change of the luminance contrast influences vergence movement.

  8. Slow oscillating transcranial direct current stimulation during non-rapid eye movement sleep improves behavioral inhibition in attention-deficit/ hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Manuel Tobias Munz

    2015-08-01

    Full Text Available Background: Behavioral inhibition, which is a later-developing executive function (EF and anatomically located in prefrontal areas, is impaired in attention-deficit and hyperactivity disorder (ADHD. While optimal EFs have been shown to depend on efficient sleep in healthy subjects, the impact of sleep problems, frequently reported in ADHD, remains elusive. Findings of macroscopic sleep changes in ADHD are inconsistent, but there is emerging evidence for distinct microscopic changes with a focus on prefrontal cortical regions and non-rapid eye movement (non-REM slow-wave sleep. Recently, slow oscillations (SO during non-REM sleep were found to be less functional and, as such, may be involved in sleep-dependent memory impairments in ADHD. Objective: By augmenting slow-wave power through bilateral, slow oscillating transcranial direct current stimulation (so-tDCS, frequency = 0.75 Hz during non-REM sleep, we aimed to improve daytime behavioral inhibition in children with ADHD. Methods: 14 boys (10-14 yrs diagnosed with ADHD were included. In a randomized, double-blind, cross-over design, patients received so-tDCS either in the first or in the second experimental sleep night. Inhibition control was assessed with a visuomotor go/no-go task. Intrinsic alertness was assessed with a simple stimulus response task. To control for visuomotor performance, motor memory was assessed with a finger sequence tapping task. Results: SO-power was enhanced during early non-REM sleep, accompanied by slowed reaction times and decreased standard deviations of reaction times, in the go/no-go task after so-tDCS. In contrast, intrinsic alertness and motor memory performance were not improved by so-tDCS. Conclusion: Since behavioral inhibition but not intrinsic alertness or motor memory was improved by so-tDCS, our results suggest that lateral prefrontal slow oscillations during sleep might play a specific role for executive functioning in ADHD.

  9. The effect of REM sleep deprivation on motivation for food reward.

    Science.gov (United States)

    Hanlon, Erin C; Andrzejewski, Matthew E; Harder, Bridgette K; Kelley, Ann E; Benca, Ruth M

    2005-08-30

    Prolonged sleep deprivation in rats produces a characteristic syndrome consisting of an increase in food intake yet a decrease in weight. Moreover, the increase in food intake generally precedes the weight loss, suggesting that sleep deprivation may affect appetitive behaviors. Using the multiple platform method to produce rapid eye movement (REM) sleep deprivation, we investigated the effect of REM sleep deprivation (REMSD) on motivation for food reward utilizing food-reinforced operant tasks. In acquisition or maintenance of an operant task, REM sleep-deprived rats, with or without simultaneous food restriction, decreased responding for sucrose pellet reward in comparison to controls, despite the fact that all REM sleep-deprived rats lost weight. Furthermore, the overall response deficit of the REM sleep-deprived rats was due to a within-session decline in responding. REM sleep-deprived rats showed evidence of understanding the contingency of the task comparable to controls throughout deprivation period, suggesting that the decrements in responding were not primarily related to deficits in learning or memory. Rather, REM sleep deprivation appears to alter systems involved in motivational processes, reward, and/or attention.

  10. REM Sleep-Dependent Bidirectional Regulation of Hippocampal-Based Emotional Memory and LTP.

    Science.gov (United States)

    Ravassard, Pascal; Hamieh, Al Mahdy; Joseph, Mickaël Antoine; Fraize, Nicolas; Libourel, Paul-Antoine; Lebarillier, Léa; Arthaud, Sébastien; Meissirel, Claire; Touret, Monique; Malleret, Gaël; Salin, Paul-Antoine

    2016-04-01

    Prolonged rapid-eye-movement (REM) sleep deprivation has long been used to study the role of REM sleep in learning and memory processes. However, this method potentially induces stress and fatigue that may directly affect cognitive functions. Here, by using a short-term and nonstressful REM sleep deprivation (RSD) method we assessed in rats the bidirectional influence of reduced and increased REM sleep amount on hippocampal-dependent emotional memory and plasticity. Our results indicate that 4 h RSD impaired consolidation of contextual fear conditioning (CFC) and induction of long-term potentiation (LTP), while decreasing density of Egr1/Zif268-expressing neurons in the CA1 region of the dorsal hippocampus. LTP and Egr1 expression were not affected in ventral CA1. Conversely, an increase in REM sleep restores and further facilitates CFC consolidation and LTP induction, and also increases Egr1 expression in dorsal CA1. Moreover, CFC consolidation, Egr1 neuron density, and LTP amplitude in dorsal CA1 show a positive correlation with REM sleep amount. Altogether, these results indicate that mild changes in REM sleep amount bidirectionally affect memory and synaptic plasticity mechanisms occurring in the CA1 area of the dorsal hippocampus.

  11. Analysis of automated quantification of motor activity in REM sleep behaviour disorder.

    Science.gov (United States)

    Frandsen, Rune; Nikolic, Miki; Zoetmulder, Marielle; Kempfner, Lykke; Jennum, Poul

    2015-10-01

    Rapid eye movement (REM) sleep behaviour disorder (RBD) is characterized by dream enactment and REM sleep without atonia. Atonia is evaluated on the basis of visual criteria, but there is a need for more objective, quantitative measurements. We aimed to define and optimize a method for establishing baseline and all other parameters in automatic quantifying submental motor activity during REM sleep. We analysed the electromyographic activity of the submental muscle in polysomnographs of 29 patients with idiopathic RBD (iRBD), 29 controls and 43 Parkinson's (PD) patients. Six adjustable parameters for motor activity were defined. Motor activity was detected and quantified automatically. The optimal parameters for separating RBD patients from controls were investigated by identifying the greatest area under the receiver operating curve from a total of 648 possible combinations. The optimal parameters were validated on PD patients. Automatic baseline estimation improved characterization of atonia during REM sleep, as it eliminates inter/intra-observer variability and can be standardized across diagnostic centres. We found an optimized method for quantifying motor activity during REM sleep. The method was stable and can be used to differentiate RBD from controls and to quantify motor activity during REM sleep in patients with neurodegeneration. No control had more than 30% of REM sleep with increased motor activity; patients with known RBD had as low activity as 4.5%. We developed and applied a sensitive, quantitative, automatic algorithm to evaluate loss of atonia in RBD patients.

  12. Constraining eye movement when redirecting walking trajectories alters turning control in healthy young adults.

    Science.gov (United States)

    Pradeep Ambati, V N; Murray, Nicholas G; Saucedo, Fabricio; Powell, Douglas W; Reed-Jones, Rebecca J

    2013-05-01

    Humans use a specific steering synergy, where the eyes and head lead rotation to the new direction, when executing a turn or change in direction. Increasing evidence suggests that eye movement is critical for turning control and that when the eyes are constrained, or participants have difficulties making eye movements, steering control is disrupted. The purpose of the current study was to extend previous research regarding eye movements and steering control to a functional walking and turning task. This study investigated eye, head, trunk, and pelvis kinematics of healthy young adults during a 90° redirection of walking trajectory under two visual conditions: Free Gaze (the eyes were allowed to move naturally in the environment), and Fixed Gaze (participants were required to fixate the eyes on a target in front). Results revealed significant differences in eye, head, and trunk coordination between Free Gaze and Fixed Gaze conditions (p segments moved together with no significant differences between segment onset times. In addition, the sequence of segment rotation during Fixed Gaze suggested a bottom-up postural perturbation control strategy in place of top-down steering control seen in Free Gaze. The results of this study support the hypothesis that eye movement is critical for the release of the steering synergy for turning control.

  13. Blockage of dopaminergic D(2) receptors produces decrease of REM but not of slow wave sleep in rats after REM sleep deprivation.

    Science.gov (United States)

    Lima, Marcelo M S; Andersen, Monica L; Reksidler, Angela B; Silva, Andressa; Zager, Adriano; Zanata, Sílvio M; Vital, Maria A B F; Tufik, Sergio

    2008-04-01

    Dopamine (DA) has, as of late, become singled out from the profusion of other neurotransmitters as what could be called a key substance, in the regulation of the sleep-wake states. We have hypothesized that dopaminergic D(2) receptor blockage induced by haloperidol could generate a reduction or even an ablation of rapid eye movement (REM) sleep. Otherwise, the use of the selective D(2) agonist, piribedil, could potentiate REM sleep. Electrophysiological findings demonstrate that D(2) blockage produced a dramatic reduction of REM sleep during the rebound (REB) period after 96 h of REM sleep deprivation (RSD). This reduction of REM sleep was accompanied by an increment in SWS, which is possibly accounted for the observed increase in the sleep efficiency. Conversely, our findings also demonstrate that the administration of piribedil did not generate additional increase of REM sleep. Additionally, D(2) receptors were found down-regulated, in the haloperidol group, after RSD, and subsequently up-regulated after REB group, contrasting to the D(1) down-regulation at the same period. In this sense, the current data indicate a participation of the D(2) receptor for REM sleep regulation and consequently in the REM sleep/SWS balance. Herein, we propose that the mechanism underlying the striatal D(2) up-regulation is due to an effect as consequence of RSD which originally produces selective D(2) supersensitivity, and after its period probably generates a surge in D(2) expression. In conclusion we report a particular action of the dopaminergic neurotransmission in REM sleep relying on D(2) activation.

  14. Antidepressant suppression of non-REM sleep spindles and REM sleep impairs hippocampus-dependent learning while augmenting striatum-dependent learning.

    Science.gov (United States)

    Watts, Alain; Gritton, Howard J; Sweigart, Jamie; Poe, Gina R

    2012-09-26

    Rapid eye movement (REM) sleep enhances hippocampus-dependent associative memory, but REM deprivation has little impact on striatum-dependent procedural learning. Antidepressant medications are known to inhibit REM sleep, but it is not well understood if antidepressant treatments impact learning and memory. We explored antidepressant REM suppression effects on learning by training animals daily on a spatial task under familiar and novel conditions, followed by training on a procedural memory task. Daily treatment with the antidepressant and norepinephrine reuptake inhibitor desipramine (DMI) strongly suppressed REM sleep in rats for several hours, as has been described in humans. We also found that DMI treatment reduced the spindle-rich transition-to-REM sleep state (TR), which has not been previously reported. DMI REM suppression gradually weakened performance on a once familiar hippocampus-dependent maze (reconsolidation error). DMI also impaired learning of the novel maze (consolidation error). Unexpectedly, learning of novel reward positions and memory of familiar positions were equally and oppositely correlated with amounts of TR sleep. Conversely, DMI treatment enhanced performance on a separate striatum-dependent, procedural T-maze task that was positively correlated with the amounts of slow-wave sleep (SWS). Our results suggest that learning strategy switches in patients taking REM sleep-suppressing antidepressants might serve to offset sleep-dependent hippocampal impairments to partially preserve performance. State-performance correlations support a model wherein reconsolidation of hippocampus-dependent familiar memories occurs during REM sleep, novel information is incorporated and consolidated during TR, and dorsal striatum-dependent procedural learning is augmented during SWS.

  15. Sawtooth waves during REM sleep after administration of haloperidol combined with total sleep deprivation in healthy young subjects

    Directory of Open Access Journals (Sweden)

    Pinto Jr. L.R.

    2002-01-01

    Full Text Available We sought to examine the possible participation of dopaminergic receptors in the phasic events that occur during rapid eye movement (REM sleep, known as sawtooth waves (STW. These phasic phenomena of REM sleep exhibit a unique morphology and, although they represent a characteristic feature of REM sleep, little is known about the mechanisms which generate them and which are apparently different from rapid eye movements. STW behavior was studied in 10 male volunteers aged 20 to 35 years, who were submitted to polysomnographic monitoring (PSG. On the adaptation night they were submitted to the first PSG and on the second night, to the basal PSG. On the third night the volunteers received placebo or haloperidol and spent the whole night awake. On the fourth night they were submitted to the third PSG. After a 15-day rest period, the volunteers returned to the sleep laboratory and, according to a double-blind crossover randomized design, received haloperidol or placebo and spent the whole night awake, after which they were submitted to the fourth PSG. The volunteers who were given haloperidol combined with sleep deprivation exhibited an elevation of the duration and density of the STW, without significant alterations of the other REM sleep phasic phenomena such as rapid eye movement. These findings suggest that sawtooth waves must have their own generating mechanisms and that the dopaminergic receptors must exert a modulating role since REM sleep deprivation, as well as administration of neuroleptics, produces supersensitivity of dopaminergic receptors.

  16. Post-saccadic oscillations in eye movement data recorded with pupil-based eye trackers reflect motion of the pupil inside the iris.

    Science.gov (United States)

    Nyström, Marcus; Hooge, Ignace; Holmqvist, Kenneth

    2013-11-01

    Current video eye trackers use information about the pupil center to estimate orientation and movement of the eye. While dual Purkinje eye trackers suffer from lens wobble and scleral search coils may be influenced by contact lens slippage directly after saccades, it is not known whether pupil-based eye trackers produces similar artifacts in the data. We recorded eye movements from participants making repetitive, horizontal saccades and compared the movement in the data with pupil- and iris movements extracted from the eye images. Results showed that post-saccadic instabilities clearly exist in data recorded with a pupil-based eye tracker. They also exhibit a high degree of reproducibility across saccades and within participants. While the recorded eye movement data correlated well with the movement of the pupil center, the iris center showed only little post-saccadic movement. This means that the pupil moves relative to the iris during post-saccadic eye movements, and that the eye movement data reflect pupil movement rather than eyeball rotation. Besides introducing inaccuracies and additional variability in the data, the pupil movement inside the eyeball influences the decision of when a saccade should end and the subsequent fixation should begin, and consequently higher order analyses based on fixations and saccades.

  17. Sleep and Arousal Mechanisms in Experimental Epilepsy: Epileptic Components of NREM and Antiepileptic Components of REM Sleep

    Science.gov (United States)

    Shouse, M. N.; Scordato, J. C.; Farber, P. R.

    2004-01-01

    Neural generators related to different sleep components have different effects on seizure discharge. These sleep-related systems can provoke seizure discharge propagation during nonrapid eye movement (NREM) sleep and can suppress propagation during REM sleep. Experimental manipulations of discrete physiological components were conducted in feline…

  18. Eye Movement Impairment Recovery in a Gaucher Patient Treated with Miglustat

    Directory of Open Access Journals (Sweden)

    Agostino Accardo

    2010-01-01

    Two sisters, presenting the same genotype (R353G/R353G, were diagnosed as suffering from GD; one of them later developed neurological alterations identified by quantitative saccadic eye movements analysis. The aim of the study was to quantitatively measure the miglustat effects in this GD neurological patient. Eye movement analysis during subsequent controls was performed by estimating the characteristic parameters of saccadic main sequence. The study demonstrates that the SRT alone can be effective in GD3. Moreover, it confirms that quantitative eye movement analysis is able to precociously identify also slight neurological alterations, permitting more accurate GD classification.

  19. The effects of crowding on eye movement patterns in reading.

    Science.gov (United States)

    Bricolo, Emanuela; Salvi, Carola; Martelli, Marialuisa; Arduino, Lisa S; Daini, Roberta

    2015-09-01

    Crowding is a phenomenon that characterizes normal periphery limiting letter identification when other letters surround the signal. We investigated the nature of the reading limitation of crowding by analyzing eye-movement patterns. The stimuli consisted of two items varying across trials for letter spacing (spaced, unspaced and increased size), lexicality (words or pseudowords), number of letters (4, 6, 8), and reading modality (oral and silent). In Experiments 1 and 2 (oral and silent reading, respectively) the results show that an increase in letter spacing induced an increase in the number of fixations and in gaze duration, but a reduction in the first fixation duration. More importantly, increasing letter size (Experiment 3) produced the same first fixation duration advantage as empty spacing, indicating that, as predicted by crowding, only center-to-center letter distance, and not spacing per se, matters. Moreover, when the letter size was enlarged the number of fixations did not increase as much as in the previous experiments, suggesting that this measure depends on visual acuity rather than on crowding. Finally, gaze duration, a measure of word recognition, did not change with the letter size enlargement. No qualitative differences were found between oral and silent reading experiments (1 and 2), indicating that the articulatory process did not influence the outcome. Finally, a facilitatory effect of lexicality was found in all conditions, indicating an interaction between perceptual and lexical processing. Overall, our results indicate that crowding influences normal word reading by means of an increase in first fixation duration, a measure of word encoding, which we interpret as a modulatory effect of attention on critical spacing.

  20. Eye movements in chameleons are not truly independent - evidence from simultaneous monocular tracking of two targets.

    Science.gov (United States)

    Katz, Hadas Ketter; Lustig, Avichai; Lev-Ari, Tidhar; Nov, Yuval; Rivlin, Ehud; Katzir, Gadi

    2015-07-01

    Chameleons perform large-amplitude eye movements that are frequently referred to as independent, or disconjugate. When prey (an insect) is detected, the chameleon's eyes converge to view it binocularly and 'lock' in their sockets so that subsequent visual tracking is by head movements. However, the extent of the eyes' independence is unclear. For example, can a chameleon visually track two small targets simultaneously and monocularly, i.e. one with each eye? This is of special interest because eye movements in ectotherms and birds are frequently independent, with optic nerves that are fully decussated and intertectal connections that are not as developed as in mammals. Here, we demonstrate that chameleons presented with two small targets moving in opposite directions can perform simultaneous, smooth, monocular, visual tracking. To our knowledge, this is the first demonstration of such a capacity. The fine patterns of the eye movements in monocular tracking were composed of alternating, longer, 'smooth' phases and abrupt 'step' events, similar to smooth pursuits and saccades. Monocular tracking differed significantly from binocular tracking with respect to both 'smooth' phases and 'step' events. We suggest that in chameleons, eye movements are not simply 'independent'. Rather, at the gross level, eye movements are (i) disconjugate during scanning, (ii) conjugate during binocular tracking and (iii) disconjugate, but coordinated, during monocular tracking. At the fine level, eye movements are disconjugate in all cases. These results support the view that in vertebrates, basic monocular control is under a higher level of regulation that dictates the eyes' level of coordination according to context. © 2015. Published by The Company of Biologists Ltd.

  1. Using E-Z Reader to Simulate Eye Movements in Nonreading Tasks: A Unified Framework for Understanding the Eye-Mind Link

    Science.gov (United States)

    Reichle, Erik D.; Pollatsek, Alexander; Rayner, Keith

    2012-01-01

    Nonreading tasks that share some (but not all) of the task demands of reading have often been used to make inferences about how cognition influences when the eyes move during reading. In this article, we use variants of the E-Z Reader model of eye-movement control in reading to simulate eye-movement behavior in several of these tasks, including…

  2. Worth a glance: Using eye movements to investigate the cognitive neuroscience of memory.

    Directory of Open Access Journals (Sweden)

    Deborah E Hannula

    2010-10-01

    Full Text Available Results of several investigations indicate that eye movements can reveal memory for elements of previous experience. These effects of memory on eye movement behavior can emerge very rapidly, changing the efficiency and even the nature of visual processing without appealing to verbal reports and without requiring conscious recollection. This aspect of eye-movement based memory investigations is particularly useful when eye movement methods are used with special populations (e.g., young children, elderly individuals, and patients with severe amnesia, and also permits use of comparable paradigms in animals and humans, helping to bridge different memory literatures and permitting cross-species generalizations. Unique characteristics of eye movement methods have produced findings that challenge long-held views about the nature of memory, its organization in the brain, and its failures in special populations. Recently, eye movement methods have been successfully combined with neuroimaging techniques such as fMRI, single-unit recording, and MEG, permitting more sophisticated investigations of memory. Ultimately, combined use of eye-tracking with neuropsychological and neuroimaging methods promises to provide a more comprehensive account of brain-behavior relationships and adheres to the “converging evidence” approach to cognitive neuroscience.

  3. Worth a glance: using eye movements to investigate the cognitive neuroscience of memory.

    Science.gov (United States)

    Hannula, Deborah E; Althoff, Robert R; Warren, David E; Riggs, Lily; Cohen, Neal J; Ryan, Jennifer D

    2010-01-01

    Results of several investigations indicate that eye movements can reveal memory for elements of previous experience. These effects of memory on eye movement behavior can emerge very rapidly, changing the efficiency and even the nature of visual processing without appealing to verbal reports and without requiring conscious recollection. This aspect of eye movement based memory investigations is particularly useful when eye movement methods are used with special populations (e.g., young children, elderly individuals, and patients with severe amnesia), and also permits use of comparable paradigms in animals and humans, helping to bridge different memory literatures and permitting cross-species generalizations. Unique characteristics of eye movement methods have produced findings that challenge long-held views about the nature of memory, its organization in the brain, and its failures in special populations. Recently, eye movement methods have been successfully combined with neuroimaging techniques such as fMRI, single-unit recording, and magnetoencephalography, permitting more sophisticated investigations of memory. Ultimately, combined use of eye-tracking with neuropsychological and neuroimaging methods promises to provide a more comprehensive account of brain-behavior relationships and adheres to the "converging evidence" approach to cognitive neuroscience.

  4. The role of REM sleep in the processing of emotional memories: evidence from behavior and event-related potentials.

    Science.gov (United States)

    Groch, S; Wilhelm, I; Diekelmann, S; Born, J

    2013-01-01

    Emotional memories are vividly remembered for the long-term. Rapid eye movement (REM) sleep has been repeatedly proposed to support the superior retention of emotional memories. However, its exact contribution and, specifically, whether its effect is mainly on the consolidation of the contents or the processing of the affective component of emotional memories is not clear. Here, we investigated the effects of sleep rich in slow wave sleep (SWS) or REM sleep on the consolidation of emotional pictures and the accompanying changes in affective tone, using event-related potentials (ERPs) together with subjective ratings of valence and arousal. Sixteen healthy, young men learned 50 negative and 50 neutral pictures before 3-h retention sleep intervals that were filled with either SWS-rich early or REM sleep-rich late nocturnal sleep. In accordance with our hypothesis, recognition was better for emotional pictures than neutral pictures after REM compared to SWS-rich sleep. This emotional enhancement after REM-rich sleep expressed itself in an increased late positive potential of the ERP over the frontal cortex 300-500 ms after stimulus onset for correctly classified old emotional pictures compared with new emotional and neutral pictures. Valence and arousal ratings of emotional pictures were not differentially affected by REM or SWS-rich sleep after learning. Our results corroborate that REM sleep contributes to the consolidation of emotional contents in memory, but suggest that the affective tone is preserved rather than reduced by the processing of emotional memories during REM sleep.

  5. The effect of selective REM-sleep deprivation on the consolidation and affective evaluation of emotional memories.

    Science.gov (United States)

    Wiesner, Christian D; Pulst, Julika; Krause, Fanny; Elsner, Marike; Baving, Lioba; Pedersen, Anya; Prehn-Kristensen, Alexander; Göder, Robert

    2015-07-01

    Emotion boosts the consolidation of events in the declarative memory system. Rapid eye movement (REM) sleep is believed to foster the memory consolidation of emotional events. On the other hand, REM sleep is assumed to reduce the emotional tone of the memory. Here, we investigated the effect of selective REM-sleep deprivation, SWS deprivation, or wake on the affective evaluation and consolidation of emotional and neutral pictures. Prior to an 9-h retention interval, sixty-two healthy participants (23.5 ± 2.5 years, 32 female, 30 male) learned and rated their affect to 80 neutral and 80 emotionally negative pictures. Despite rigorous deprivation of REM sleep or SWS, the residual sleep fostered the consolidation of neutral and negative pictures. Furthermore, emotional arousal helped to memorize the pictures. The better consolidation of negative pictures compared to neutral ones was most pronounced in the SWS-deprived group where a normal amount of REM sleep was present. This emotional memory bias correlated with REM sleep only in the SWS-deprived group. Furthermore, emotional arousal to the pictures decreased over time, but neither sleep nor wake had any differential effect. Neither the comparison of the affective ratings (arousal, valence) during encoding and recognition, nor the affective ratings of the recognized targets and rejected distractors supported the hypothesis that REM sleep dampens the emotional reaction to remembered stimuli. The data suggest that REM sleep fosters the consolidation of emotional memories but has no effect on the affective evaluation of the remembered contents.

  6. Replay of conditioned stimuli during late REM and stage N2 sleep influences affective tone rather than emotional memory strength.

    Science.gov (United States)

    Rihm, Julia S; Rasch, Björn

    2015-07-01

    Emotional memories are reprocessed during sleep, and it is widely assumed that this reprocessing occurs mainly during rapid eye movement (REM) sleep. In support for this notion, vivid emotional dreams occur mainly during REM sleep, and several studies have reported emotional memory enhancement to be associated with REM sleep or REM sleep-related parameters. However, it is still unknown whether reactivation of emotional memories during REM sleep strengthens emotional memories. Here, we tested whether re-presentation of emotionally learned stimuli during REM sleep enhances emotional memory. In a split-night design, participants underwent Pavlovian conditioning after the first half of the night. Neutral sounds served as conditioned stimuli (CS) and were either paired with a negative odor (CS+) or an odorless vehicle (CS-). During sound replay in subsequent late REM or N2 sleep, half of the CS+ and half of the CS- were presented again. In contrast to our hypothesis, replay during sleep did not affect emotional memory as measured by the differentiation between CS+ and CS- in expectancy, arousal and valence ratings. However, replay unspecifically decreased subjective arousal ratings of both emotional and neutral sounds and increased positive valence ratings also for both CS+ and CS- sounds, respectively. These effects were slightly more pronounced for replay during REM sleep. Our results suggest that re-exposure to previously conditioned stimuli during late sleep does not affect emotional memory strength, but rather influences the affective tone of both emotional and neutral memories.

  7. Constraining eye movement in individuals with Parkinson's disease during walking turns.

    Science.gov (United States)

    Ambati, V N Pradeep; Saucedo, Fabricio; Murray, Nicholas G; Powell, Douglas W; Reed-Jones, Rebecca J

    2016-10-01

    Walking and turning is a movement that places individuals with Parkinson's disease (PD) at increased risk for fall-related injury. However, turning is an essential movement in activities of daily living, making up to 45 % of the total steps taken in a given day. Hypotheses regarding how turning is controlled suggest an essential role of anticipatory eye movements to provide feedforward information for body coordination. However, little research has investigated control of turning in individuals with PD with specific consideration for eye movements. The purpose of this study was to examine eye movement behavior and body segment coordination in individuals with PD during walking turns. Three experimental groups, a group of individuals with PD, a group of healthy young adults (YAC), and a group of healthy older adults (OAC), performed walking and turning tasks under two visual conditions: free gaze and fixed gaze. Whole-body motion capture and eye tracking characterized body segment coordination and eye movement behavior during walking trials. Statistical analysis revealed significant main effects of group (PD, YAC, and OAC) and visual condition (free and fixed gaze) on timing of segment rotation and horizontal eye movement. Within group comparisons, revealed timing of eye and head movement was significantly different between the free and fixed gaze conditions for YAC (p  0.05). In addition, while intersegment timings (reflecting segment coordination) were significantly different for YAC and OAC during free gaze (p segment coordination during turning. As such, eye movements may be an important addition to training programs for those with PD, possibly promoting better coordination during turning and potentially reducing the risk of falls.

  8. Retinal image smear as a source of information about magnitude of eye movement.

    Science.gov (United States)

    Festinger, L; Holtzman, J D

    1978-11-01

    A number of experiments were conducted to determine to what extent retinal image smearing during saccades provides information about the eye movement magnitude to the perceptual system. The technique involved obtaining measures of perceived movement when the total visual field was displaced in conjunction with saccadic eye movements. Trials with normal retinal smear were compared with trials on which smearing was greatly reduced or eliminated. The results are interpreted as showing that the absence of normal retinal smear during a saccade increases the uncertainty in the information available to the perceptual system and that this uncertainty results in a tendency to perceive smaller than veridical amounts of movement.

  9. EyeGrip: Detecting Targets in a Series of Uni-directional Moving Objects Using Optokinetic Nystagmus Eye Movements

    DEFF Research Database (Denmark)

    Jalaliniya, Shahram; Mardanbeigi, Diako

    2016-01-01

    computers. In this paper, we demonstrate the rich capabilities of EyeGrip with two example applications: 1) a mind reading game, and 2) a picture selection system. Our study shows that by selecting an appropriate speed and maximum number of visible images in the screen the proposed method can be used...... the user looks at a sequence of images moving horizontally on the display while the user's eye movements are tracked by an eye tracker. We conducted an experiment that shows the performance of the proposed approach. We also investigated the influence of the speed and maximum number of visible images...

  10. Geometry and Gesture-Based Features from Saccadic Eye-Movement as a Biometric in Radiology

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Tracy [Texas A& M University, College Station; Tourassi, Georgia [ORNL; Yoon, Hong-Jun [ORNL; Alamudun, Folami T. [ORNL

    2017-07-01

    In this study, we present a novel application of sketch gesture recognition on eye-movement for biometric identification and estimating task expertise. The study was performed for the task of mammographic screening with simultaneous viewing of four coordinated breast views as typically done in clinical practice. Eye-tracking data and diagnostic decisions collected for 100 mammographic cases (25 normal, 25 benign, 50 malignant) and 10 readers (three board certified radiologists and seven radiology residents), formed the corpus for this study. Sketch gesture recognition techniques were employed to extract geometric and gesture-based features from saccadic eye-movements. Our results show that saccadic eye-movement, characterized using sketch-based features, result in more accurate models for predicting individual identity and level of expertise than more traditional eye-tracking features.

  11. Automatic removal of eye movement artifacts from the EEG using ICA and the dipole model

    Institute of Scientific and Technical Information of China (English)

    Weidong Zhou; Jean Gotman

    2009-01-01

    12 patients were analyzed.The experimental results indicate that ICA with the dipole model is very efficient at automatically subtracting the eye movement artifacts,while retaining the EEG slow waves and making their interpretation easier.

  12. Foveating dynamic scenes based on expert's eye movements to convey perceptual skills

    NARCIS (Netherlands)

    Jarodzka, Halszka; Balslev, Thomas; Holmqvist, Kenneth; Nyström, Marcus; Scheiter, Katharina; Gerjets, Peter; Eika, Berit

    2011-01-01

    Jarodzka, H., Balslev, T., Holmqvist, K., Scheiter, K., Nyström, M., Gerjets, P., & Eika, B. (2011, August). Foveating dynamic scenes based on expert’s eye movements to convey perceptual skills. Presentation at ECEM, Marseille, France.

  13. The effects of eye movements on emotional memories : using an objective measure of cognitive load

    NARCIS (Netherlands)

    van Veen, Suzanne C.; Engelhard, Iris M.; van den Hout, Marcel A.

    2016-01-01

    Background: Eyemovement desensitization and reprocessing (EMDR) is an effective treatment for posttraumatic stress disorder. The workingmemory (WM) theory explains its efficacy: recall of an aversivememory and making eye movements (EM) both produce cognitive load, and competition for the limited WM

  14. Foveating dynamic scenes based on expert's eye movements to convey perceptual skills

    NARCIS (Netherlands)

    Jarodzka, Halszka; Balslev, Thomas; Holmqvist, Kenneth; Nyström, Marcus; Scheiter, Katharina; Gerjets, Peter; Eika, Berit

    2011-01-01

    Jarodzka, H., Balslev, T., Holmqvist, K., Scheiter, K., Nyström, M., Gerjets, P., & Eika, B. (2011, August). Foveating dynamic scenes based on expert’s eye movements to convey perceptual skills. Presentation at ECEM, Marseille, France.

  15. 快动眼睡眠相关阻塞性睡眠呼吸暂停低通气综合征的睡眠监测特点%Polysomnographic features of obstructive sleep apnea and hypopnea syndrome associated with rapid eye movement

    Institute of Scientific and Technical Information of China (English)

    郑雪松; 后农生; 郝锐

    2010-01-01

    目的 探讨与快动眼(rapid eye movement,REM)睡眠期密切相关的阻塞性睡眠呼吸暂停低通气综合征(OSAHS),即REM OSAHS患者的临床及睡眠监测特点.方法 回顾在我院进行多道睡眠图(PSG)监测诊断为OSAHS的患者,根据REM睡眠期呼吸暂停低通气指数(AHIREM)和慢动眼睡眠期(non-rapid eye movement,NREM)呼吸暂停低通气指数(AHINREM)将其分为两组,AHIREM/AHINREM>2为REM OSAHS组,AHIREM/AHINREM≤2为NREM OSAHS组,比较REM OSAHS与NREM OSAHS临床睡眠监测指标的差异.结果 159例OSAHS患者中,REM OSAHS占19.5%,其中男性占58.1%,女性占41.9%:REM OSAHS组与NREM OSAHS组年龄比较差异具有显著性[(34.9±13.5)岁vs(39.6±9.6)岁];两组体块指数(BMI)比较,差异无显著性[(28.1±2.5)kg/m2 vs(28.8±3.4)kg/m2];两组总睡眠呼吸暂停低通气指数(AHITST)比较,差异具有显著性[(32.2±29.8)次/h vs(53.0±27.5)次/h].结论 REM OSAHS女性与男性发病率相近,且年龄较轻,病情较轻.

  16. Treatment of dysfunctionally stored experiences with the method Eye Movement Desensitization and Reprocessing – EMDR

    OpenAIRE

    Robert Cvetek

    2002-01-01

    In this paper a new therapeutic method called EMDR (Eye Movement Desensitization and Reprocessing) is described. The method was formed mainly for treatment of posttraumatic stress disorder, but there are also some reports about success with other mental disorders. The theoretical base of EMDR and especially the accelerated information processing model, the concept of memory networks and the explanations of effects of eye movements are presented. The process of EMDR is also described.

  17. Treatment of dysfunctionally stored experiences with the method Eye Movement Desensitization and Reprocessing – EMDR

    Directory of Open Access Journals (Sweden)

    Robert Cvetek

    2002-09-01

    Full Text Available In this paper a new therapeutic method called EMDR (Eye Movement Desensitization and Reprocessing is described. The method was formed mainly for treatment of posttraumatic stress disorder, but there are also some reports about success with other mental disorders. The theoretical base of EMDR and especially the accelerated information processing model, the concept of memory networks and the explanations of effects of eye movements are presented. The process of EMDR is also described.

  18. Rate of entrance of benzodiazepines into the brain determined by eye movement recording.

    OpenAIRE

    1983-01-01

    1 Peak saccadic velocity of horizontal eye movements, saccade duration at 30 degrees of amplitude and saccade reaction time were measured in six drug free male subjects. 2 In two separate experiments, intravenous doses of diazepam (5 mg), lorazepam (2 mg), chlordiazepoxide (25 mg) and placebo were given, and eye movement recordings were made before and at frequent intervals after drug administration. 3 All the benzodiazepines produced a significant impairment of peak saccadic velocity and sac...

  19. Eye Movements during Information Processing Tasks: Individual Differences and Cultural Effects

    OpenAIRE

    2007-01-01

    The eye movements of native English speakers, native Chinese speakers, and bilingual Chinese/English speakers who were either born in China (and moved to the US at an early age) or in the US were recorded during six tasks: (1) reading, (2) face processing, (3) scene perception, (4) visual search, (5) counting Chinese characters in a passage of text, and (6) visual search for Chinese characters. Across the different groups, there was a strong tendency for consistency in eye movement behavior; ...

  20. The efficacy and psychophysiological correlates of dual-attention tasks in eye movement desensitization and reprocessing (EMDR).

    Science.gov (United States)

    Schubert, Sarah J; Lee, Christopher W; Drummond, Peter D

    2011-01-01

    This study aimed to investigate the psychophysiological correlates and the effectiveness of different dual-attention tasks used during eye movement desensitization and reprocessing (EMDR). Sixty-two non-clinical participants with negative autobiographical memories received a single session of EMDR without eye movements, or EMDR that included eye movements of either varied or fixed rate of speed. Subjective units of distress and vividness of the memory were recorded at pre-treatment, post-treatment, and 1 week follow-up. EMDR-with eye movements led to greater reduction in distress than EMDR-without eye movements. Heart rate decreased significantly when eye movements began; skin conductance decreased during eye movement sets; heart rate variability and respiration rate increased significantly as eye movements continued; and orienting responses were more frequent in the eye movement than no-eye movement condition at the start of exposure. Findings indicate that the eye movement component in EMDR is beneficial, and is coupled with distinct psychophysiological changes that may aid in processing negative memories.

  1. Exploring the Eye-Movement Patterns as Chinese Children Read Texts: A Developmental Perspective

    Science.gov (United States)

    Chen, Minglei; Ko, Hwawei

    2011-01-01

    This study was to investigate Chinese children's eye patterns while reading different text genres from a developmental perspective. Eye movements were recorded while children in the second through sixth grades read two expository texts and two narrative texts. Across passages, overall word frequency was not significantly different between the two…

  2. Eye Movements Reveal the Influence of Event Structure on Reading Behavior

    Science.gov (United States)

    Swets, Benjamin; Kurby, Christopher A.

    2016-01-01

    When we read narrative texts such as novels and newspaper articles, we segment information presented in such texts into discrete events, with distinct boundaries between those events. But do our eyes reflect this event structure while reading? This study examines whether eye movements during the reading of discourse reveal how readers respond…

  3. Visual Data Mining: An Exploratory Approach to Analyzing Temporal Patterns of Eye Movements

    Science.gov (United States)

    Yu, Chen; Yurovsky, Daniel; Xu, Tian

    2012-01-01

    Infant eye movements are an important behavioral resource to understand early human development and learning. But the complexity and amount of gaze data recorded from state-of-the-art eye-tracking systems also pose a challenge: how does one make sense of such dense data? Toward this goal, this article describes an interactive approach based on…

  4. Saccadic Eye Movements Impose a Natural Bottleneck on Visual Short-Term Memory

    Science.gov (United States)

    Ohl, Sven; Rolfs, Martin

    2017-01-01

    Visual short-term memory (VSTM) is a crucial repository of information when events unfold rapidly before our eyes, yet it maintains only a fraction of the sensory information encoded by the visual system. Here, we tested the hypothesis that saccadic eye movements provide a natural bottleneck for the transition of fragile content in sensory memory…

  5. Recording three-dimensional eye movements: scleral search coils versus video-oculography

    NARCIS (Netherlands)

    Houben, M.M.J.; Goumans, J.; Steen, J. van der

    2006-01-01

    PURPOSE. This study compared the performance of a videobased infrared three-dimensional eye tracker device (Chronos) with the scleral search coil method. METHODS. Three-dimensional eye movements were measured simultaneously with both systems during fixation, saccades, optokinetic stimulation, and ve

  6. Visual Data Mining: An Exploratory Approach to Analyzing Temporal Patterns of Eye Movements

    Science.gov (United States)

    Yu, Chen; Yurovsky, Daniel; Xu, Tian

    2012-01-01

    Infant eye movements are an important behavioral resource to understand early human development and learning. But the complexity and amount of gaze data recorded from state-of-the-art eye-tracking systems also pose a challenge: how does one make sense of such dense data? Toward this goal, this article describes an interactive approach based on…

  7. Methodological Aspects of Cognitive Rehabilitation with Eye Movement Desensitization and Reprocessing (EMDR).

    Science.gov (United States)

    Zarghi, Afsaneh; Zali, Alireza; Tehranidost, Mehdi

    2013-01-01

    A variety of nervous system components such as medulla, pons, midbrain, cerebellum, basal ganglia, parietal, frontal and occipital lobes have role in Eye Movement Desensitization and Reprocessing (EMDR) processes. The eye movement is done simultaneously for attracting client's attention to an external stimulus while concentrating on a certain internal subject. Eye movement guided by therapist is the most common attention stimulus. The role of eye movement has been documented previously in relation with cognitive processing mechanisms. A series of systemic experiments have shown that the eyes' spontaneous movement is associated with emotional and cognitive changes and results in decreased excitement, flexibility in attention, memory processing, and enhanced semantic recalling. Eye movement also decreases the memory's image clarity and the accompanying excitement. By using EMDR, we can reach some parts of memory which were inaccessible before and also emotionally intolerable. Various researches emphasize on the effectiveness of EMDR in treating and curing phobias, pains, and dependent personality disorders. Consequently, due to the involvement of multiple neural system components, this palliative method of treatment can also help to rehabilitate the neuro-cognitive system.

  8. Rapid eye movement-related and none rapid eye movement-related classification in obstructive sleep apnea hypopnea syndrome%阻塞性睡眠呼吸暂停低通气综合征快动眼与非快动眼分型的多道睡眠图分析

    Institute of Scientific and Technical Information of China (English)

    柴丽萍; 谢绚; 曾宇慧; 王章锋; 涂秀平

    2010-01-01

    目的 通过比较阻塞性睡眠呼吸暂停低通气综合征(OSAHS)快动眼(REM)与非快动眼(NREM)分型的多道睡眠图(PSG)分析,探讨OSHAS的发生机制.方法 采用Siddiqui方法,将137例成年OSAHS患者根据不同睡眠期的呼吸暂停低通气指数(AHI)分为REM型(REM期AHI/NREM期AHI>1)及NREM型(REM期AHI/NREM期AHI0.05).OSAHS轻、中、重3组中,REM型的构成比呈下降趋势,分别为77.8%、61.5%、37.3%;NREM型的构成比则逐渐升高,分别为22.7%、38.5%、62.7%(x~2=16.996,P0.05).重度组中NREM型患者的AHI高于REM型,而LSaO_2、REM期LSaO_2及NREM期LSaO_2则低于REM型,差异均有统计学意义(t值分别为-4.943、2.574、1.996和3.571,P值均≤0.05).两型OSAHS患者的睡眠潜伏期、睡眠有效率差异均无统计学意义(P值均>0.05).结论 REM型主要分布于轻、中度OSAHS,而NREM型主要分布于重度OSAHS,NREM型患者的呼吸事件发生率、缺氧情况可能更重些.发生于不同睡眠分期的呼吸暂停可能对患者的睡眠结构、睡眠效率及睡眠潜伏期影响不大.%Objective To study the value of a new measurement that divided obstructive sleep apnea-hypopnea syndrome (OSAHS) into rapid-eye-movement (REM) related and non-rapid-eye-movement (NREM) related subgroups.Methods According to Siddiqui classification, 137 adult patients with OSHAS were diagnosed as REM-related OSAHS [REM apnea hyponea index (AHI)/NREM AHI > 1] or NREM-related OSAHS (REM AHI/NREM AHI 0.05).③Given the severity of OSHAS, the constituent ratio of REM-related OSAHS decreased (77.8% ,61.5%, 37.3%) from mild to severe OSAHS, while that of NREM-related OSAHS rose (22.7% ,38.5% ,62.7% ; X~2 = 16.996, P < 0.01). In mild and moderate groups, REM LSaO_2 of REM-related OSAHS was significantly lower than those in NREM-related OSAHS (t were -4.273 and -2.136, P < 0.05), while the differences of total AHI and LSaO_2 ,NREM LSaO_2 between these two types were not significant.In severe group

  9. Rapid Eye Movement Sleep Behavior Disorder Symptoms Correlate with Domains of Cognitive Impairment in Parkinson's Disease

    Institute of Scientific and Technical Information of China (English)

    Jin-Ru Zhang; Jing Chen; Zi-Jiao Yang; Hui-Jun Zhang; Yun-Ting Fu; Yun Shen; Pei-Cheng He

    2016-01-01

    Background: Rapid eye movement (REM) sleep behavior disorder (RBD) may be a risk factor for cognitive impairment in patients with Parkinson's disease (PD).However, little is known regarding the relation between the severity of RBD and the different domains of cognitive impairment.The aim of this study was: (1) to investigate the domains of cognitive impairment in patients with PD and RBD, and (2) to explore risk factors for PD-mild cognitive impairment (PD-MCI) and the relationship between RBD severity and impairment in different cognitive domains in PD.Methods: The participants were grouped as follows: PD without RBD (PD-RBD;n =42), PD with RBD (PD + RBD;n =32), idiopathic RBD (iRBD;n =15), and healthy controls (HCs;n =36).All participants completed a battery of neuropsychological assessment of attention and working memory, executive function, language, memory, and visuospatial function.The information of basic demographics, diseases and medication history, and motor and nonmotor manifestations was obtained and compared between PD-RBD and PD + RBD groups.Particular attention was paid to the severity of RBD assessed by the RBD Questionnaire-Hong Kong (RBDQ-HK) and the RBD Screening Questionnaire (RBDSQ), then we further examined associations between the severity of RBD symptoms and cognitive levels via correlation analysis.Results: Compared to PD-RBD subjects, PD + RBD patients were more likely to have olfactory dysfunction and their Epworth Sleepiness Scale scores were higher (P < 0.05).During neuropsychological testing, PD + RBD patients performed worse than PD-RBD patients, including delayed memory function, especially.The MCI rates were 33%, 63%, 33%, and 8% for PD-RBD, PD + RBD, iRBD, and HC groups, respectively.RBD was an important factor for the PD-MCI variance (odds ratio =5.204, P =0.018).During correlation analysis, higher RBDSQ and RBDQ-HK scores were significantly associated with poorer performance on the Trail Making Test-B (errors) and

  10. Eye Tracking in the Cockpit: a Review of the Relationships between Eye Movements and the Aviators Cognitive State

    Science.gov (United States)

    2014-12-01

    frequency. In particular, Spady (1978) examined eye movements during simulated landing approach under instrument flight rules ( IFR ). Simulated turbulence...al. (2007) found that NNI varied across phases of simulated IFR flight, showing the least random (most clustered) distribution of fixations during...decreased for visually demanding flight segments ( IFR vs. VFR, landing vs. cruise). This general pattern has been replicated across several studies

  11. Brainstem circuitry regulating phasic activation of trigeminal motoneurons during REM sleep.

    Directory of Open Access Journals (Sweden)

    Christelle Anaclet

    Full Text Available BACKGROUND: Rapid eye movement sleep (REMS is characterized by activation of the cortical and hippocampal electroencephalogram (EEG and atonia of non-respiratory muscles with superimposed phasic activity or twitching, particularly of cranial muscles such as those of the eye, tongue, face and jaw. While phasic activity is a characteristic feature of REMS, the neural substrates driving this activity remain unresolved. Here we investigated the neural circuits underlying masseter (jaw phasic activity during REMS. The trigeminal motor nucleus (Mo5, which controls masseter motor function, receives glutamatergic inputs mainly from the parvocellular reticular formation (PCRt, but also from the adjacent paramedian reticular area (PMnR. On the other hand, the Mo5 and PCRt do not receive direct input from the sublaterodorsal (SLD nucleus, a brainstem region critical for REMS atonia of postural muscles. We hypothesized that the PCRt-PMnR, but not the SLD, regulates masseter phasic activity during REMS. METHODOLOGY/PRINCIPAL FINDINGS: To test our hypothesis, we measured masseter electromyogram (EMG, neck muscle EMG, electrooculogram (EOG and EEG in rats with cell-body specific lesions of the SLD, PMnR, and PCRt. Bilateral lesions of the PMnR and rostral PCRt (rPCRt, but not the caudal PCRt or SLD, reduced and eliminated REMS phasic activity of the masseter, respectively. Lesions of the PMnR and rPCRt did not, however, alter the neck EMG or EOG. To determine if rPCRt neurons use glutamate to control masseter phasic movements, we selectively blocked glutamate release by rPCRt neurons using a Cre-lox mouse system. Genetic disruption of glutamate neurotransmission by rPCRt neurons blocked masseter phasic activity during REMS. CONCLUSIONS/SIGNIFICANCE: These results indicate that (1 premotor glutamatergic neurons in the medullary rPCRt and PMnR are involved in generating phasic activity in the masseter muscles, but not phasic eye movements, during REMS; and (2

  12. Estimation of mental workload using saccadic eye movements in a free-viewing task.

    Science.gov (United States)

    Tokuda, Satoru; Obinata, Goro; Palmer, Evan; Chaparro, Alex

    2011-01-01

    This study proposes a new method to automatically estimate a person's mental workload (MWL) using a specific type of eye movements called saccadic intrusions (SI). Previously, the most accurate existing method to estimate MWL was the pupil diameter measure [1]. However, pupil diameter is not practical in a vehicle driving environment because it is overly sensitive to brightness changes. A new method should be independent from environment brightness changes, robust in most driving environments, and accurately reflect MWL. This study used SI as an indicator of MWL because eye movements, including SI, are independent from brightness changes. SI are a specific type of eye-gaze deviations. SI are known to be closely related to cognitive activities [2], [3]. This means that SI may be also closely related to MWL. Eye movements were recorded using a non-intrusive eye tracking camera, located 550 mm away from a participant. Participants were instructed to move their eye gaze to examine a highway driving scenery picture. In the data set of the recorded eye movements, our new algorithm detected SI and quantified SI behavior into a SI measure. Participants were also engaged in a secondary N-back task. The N-back task is a popular task used in cognitive sciences to systematically control a MWL level of participants. In our results, all 14 participants exhibited more SI eye movements when their MWL level was high compared to when their MWL level was low. Moreover, our results showed that the SI measure was a more accurate measure of MWL than the pupil diameter measure. This finding indicates that MWL of the person can be estimated by observation of SI eye movements. This new method has a wide range of applications. One of them is to predict a person's MWL, thus predicting when a person is capable of driving a vehicle in a safe or dangerous manner.

  13. Roles of eyes, leg proprioceptors and statocysts in the compensatory eye movements of freely walking land crabs (Cardisoma guanhumi)

    Science.gov (United States)

    Paul; Barnes; Varju

    1998-12-01

    The compound eyes, the canal organs of the statocysts and proprioceptors in the legs all generate compensatory eye movements in the horizontal plane in the land crab Cardisoma guanhumi. Frequency analyses of the compensatory eye reflexes elicited by each of these inputs show that visual (V) and proprioceptive (P) reflexes respond best below 0.1 Hz, while statocyst (S) reflexes only achieve a high gain above this frequency. They thus increase the range of frequencies over which compensation can occur. Eye and body movements were recorded in an arena under all possible combinations of crabs seeing or blind (V+ or V-), with or without statocysts (S+ or S-) and freely walking or passively transported on a trolley (P+ or P-). Intact crabs (V+S+P+) show good stabilisation of the eyes in space, the only movements with respect to external coordinates being saccadic resetting movements (fast phases of nystagmus). The eyes thus compensate well for body turns, but are unaffected by translatory movements of the body and turns that are not accompanied by a change in the orientation of the long axis of the body in space. In the absence of any one sense, compensation for rotation is significantly impaired, whether measured by the increase in the width of the histograms of changes in the angular positions of the eyes in space ( capdelta &phgr; E), by the mean angular velocity of the eyes (slope of regression line, mE) with respect to the angular velocity of the body (mB) or by response gain plotted against angular acceleration of body turn (a). The absence of two senses reduces the crab's ability to compensate still further, with the statocyst-only condition (V-S+P-) being little better than the condition when all three senses are absent (V-S-P-).Such multisensory control of eye compensation for body rotation is discussed both in terms of making use of every available cue for reducing retinal slip and in making available the information content of the optic flow field.

  14. Orexin-1 receptor blockade dysregulates REM sleep in the presence of orexin-2 receptor antagonism

    Directory of Open Access Journals (Sweden)

    Christine eDugovic

    2014-02-01

    Full Text Available In accordance with the prominent role of orexins in the maintenance of wakefulness via activation of orexin-1 (OX1R and orexin-2 (OX2R receptors, various dual OX1/2R antagonists have been shown to promote sleep in animals and humans. While selective blockade of OX2R seems to be sufficient to initiate and prolong sleep, the beneficial effect of additional inhibition of OX1R remains controversial. The relative contribution of OX1R and OX2R to the sleep effects induced by a dual OX1/2R antagonist was further investigated in the rat, and specifically on rapid eye movement (REM sleep since a deficiency of the orexin system is associated with narcolepsy/cataplexy based on clinical and pre-clinical data. As expected, the dual OX1/2R antagonist SB-649868 was effective in promoting non-REM (NREM and REM sleep following oral dosing (10 and 30 mg/kg at the onset of the dark phase. However, a disruption of REM sleep was evidenced by a more pronounced reduction in the onset of REM as compared to NREM sleep, a marked enhancement of the REM/total sleep ratio, and the occurrence of a few episodes of direct wake to REM sleep transitions (REM intrusion. When administered subcutaneously, the OX2R antagonist JNJ-10397049 (10 mg/kg increased NREM duration whereas the OX1R antagonist GSK-1059865 (10 mg/kg did not alter sleep. REM sleep was not affected either by OX2R or OX1R blockade alone, but administration of the OX1R antagonist in combination with the OX2R antagonist induced a significant reduction in REM sleep latency and an increase in REM sleep duration at the expense of the time spent in NREM sleep. These results indicate that additional blockade of OX1R to OX2R antagonism elicits a dysregulation of REM sleep by shifting the balance in favor of REM sleep at the expense of NREM sleep that may increase the risk of adverse events. Translation of this hypothesis remains to be tested in the clinic.

  15. Eye Movements: a Window on Sensory and Motor Deficits : Oogbewegingen: inzicht in sensorische en motorische aandoeningen

    NARCIS (Netherlands)

    I. Montfoort (Inger)

    2009-01-01

    markdownabstract__Abstract__ Eye movements can be used as a tool for investigating neural mechanisms of both sensory and motor deficits. Not only does the oculomotor system comprise the entire transformation from sensory input to the generation of movement, also its accessibility, its ability

  16. Eye-movement patterns are associated with communicative competence in autistic spectrum disorders.

    Science.gov (United States)

    Norbury, Courtenay Frazier; Brock, Jon; Cragg, Lucy; Einav, Shiri; Griffiths, Helen; Nation, Kate

    2009-07-01

    Investigations using eye-tracking have reported reduced fixations to salient social cues such as eyes when participants with autism spectrum disorders (ASD) view social scenes. However, these studies have not distinguished different cognitive phenotypes. The eye-movements of 28 teenagers with ASD and 18 typically developing peers were recorded as they watched videos of peers interacting in familiar situations. Within ASD, we contrasted the viewing patterns of those with and without language impairments. The proportion of time spent viewing eyes, mouths and other scene details was calculated, as was latency of first fixation to eyes. Finally, the association between viewing patterns and social-communicative competence was measured. Individuals with ASD and age-appropriate language abilities spent significantly less time viewing eyes and were slower to fixate the eyes than typically developing peers. In contrast, there were no differences in viewing patterns between those with language impairments and typically developing peers. Eye-movement patterns were not associated with social outcomes for either language phenotype. However, increased fixations to the mouth were associated with greater communicative competence across the autistic spectrum. Attention to both eyes and mouths is important for language development and communicative competence. Differences in fixation time to eyes may not be sufficient to disrupt social competence in daily interactions. A multiple cognitive deficit model of ASD, incorporating different language phenotypes, is advocated.

  17. Identification of Information-Seeking Behaviors from Air Traffic Controllers′Eye Movements

    Institute of Scientific and Technical Information of China (English)

    Wang Yanjun; LiuYinxin; Cong Wei; Xu Xinhua; HuMinghua

    2016-01-01

    Air traffic controllers are the important parts of air traffic management system who are responsible for the safety and efficiency of the system.They make traffic management decisions based on information acquired from various sources.The understanding of their information seeking behaviors is still limited.We aim to identify controllers′behavior through the examination of the correlations between controllers′eye movements and air traf-fic.Sixteen air traffic controllers were invited to participate real-time simulation experiments,during which the da-ta of their eye ball movements and air traffic were recorded.Tweny-three air traffic complexity metrics and six eye movements metrics were calculated to examine their relationships.Two correlational methods,Pearson′s correla-tion and Spearman′s correlation,were tested between every eye-traffic pair of metrics.The results indicate that controllers′two kinds of information-seeking behaviors can be identified from their eye movements:Targets track-ing,and confliction recognition.The study on controllers′eye movements may contribute to the understanding of information-seeking mechanisms leading to the development of more intelligent automations in the future.

  18. Disk space and load time requirements for eye movement biometric databases

    Science.gov (United States)

    Kasprowski, Pawel; Harezlak, Katarzyna

    2016-06-01

    Biometric identification is a very popular area of interest nowadays. Problems with the so-called physiological methods like fingerprints or iris recognition resulted in increased attention paid to methods measuring behavioral patterns. Eye movement based biometric (EMB) identification is one of the interesting behavioral methods and due to the intensive development of eye tracking devices it has become possible to define new methods for the eye movement signal processing. Such method should be supported by an efficient storage used to collect eye movement data and provide it for further analysis. The aim of the research was to check various setups enabling such a storage choice. There were various aspects taken into consideration, like disk space usage, time required for loading and saving whole data set or its chosen parts.

  19. Increases in cAMP, MAPK activity, and CREB phosphorylation during REM sleep: implications for REM sleep and memory consolidation.

    Science.gov (United States)

    Luo, Jie; Phan, Trongha X; Yang, Yimei; Garelick, Michael G; Storm, Daniel R

    2013-04-10

    The cyclic adenosine monophosphate (cAMP), mitogen-activated protein kinase (MAPK), and cAMP response element-binding protein (CREB) transcriptional pathway is required for consolidation of hippocampus-dependent memory. In mice, this pathway undergoes a circadian oscillation required for memory persistence that reaches a peak during the daytime. Because mice exhibit polyphasic sleep patterns during the day, this suggested the interesting possibility that cAMP, MAPK activity, and CREB phosphorylation may be elevated during sleep. Here, we report that cAMP, phospho-p44/42 MAPK, and phospho-CREB are higher in rapid eye movement (REM) sleep compared with awake mice but are not elevated in non-REM sleep. This peak of activity during REM sleep does not occur in mice lacking calmodulin-stimulated adenylyl cyclases, a mouse strain that learns but cannot consolidate hippocampus-dependent memory. We conclude that a preferential increase in cAMP, MAPK activity, and CREB phosphorylation during REM sleep may contribute to hippocampus-dependent memory consolidation.

  20. Picture perception in Chinese dyslexic children: an eye-movement study

    Institute of Scientific and Technical Information of China (English)

    LI Xiu-hong; JING Jin; ZOU Xiao-bing; HUANG Xu; JIN Yu; WANG Qing-xiong; CHEN Xue-bin; YANG Bin-rang; YANG Si-yuan

    2009-01-01

    Background Currently, whether or not there is visuospatial impairments in Chinese dyslexic children is still a matter of discussion. The relatively recent application of an eye-tracking paradigm may offer an opportunity to address this issue. In China, in comparison with reading studies, there have not been nearly as many eye movement studies dealing with nonreading tasks such as picture identification and whether Chinese children with dyslexia have a picture processing deficit is not clear. The purposes of the present study were to determine whether or not there is visuospatial impairments in Chinese dyslexic children. Moreover, we attempted to discuss whether or not the abnormal eye movement pattern that dyslexic subjects show during reading of text appropriate for their age is a consequence of their linguistic difficulties.Methods An eye-link Ⅱ High-Speed Eye Tracker was used to track the series of eye-movement of 19 Chinese dyslexic children and 19 Chinese normal children. All of the subjects were presented with three pictures for this eye-tracking task and 6 relative eye-movement parameters, first fixation duration, average fixation duration, average saccade amplitude, mean saccade distance, fixation frequency and saccade frequency were recorded for analysis.Results Analyzing the relative parameter among three pictures, except for the fixation frequency and the saccade frequency, other eye-movement parameters were significantly different among the three pictures (P 0.05).Conclusions The characteristics of the pictures can significantly influence the visuospatial cognitive processing capability of the Chinese children. There is a detectable disability for the Chinese dyslexic children in the visuospatial cognitive processing: their saccade amplitude and mean saccade distance are shorter, which may be interpreted as specific for their reading disability.

  1. Test of the neurolinguistic programming hypothesis that eye-movements relate to processing imagery.

    Science.gov (United States)

    Wertheim, E H; Habib, C; Cumming, G

    1986-04-01

    Bandler and Grinder's hypothesis that eye-movements reflect sensory processing was examined. 28 volunteers first memorized and then recalled visual, auditory, and kinesthetic stimuli. Changes in eye-positions during recall were videotaped and categorized by two raters into positions hypothesized by Bandler and Grinder's model to represent visual, auditory, and kinesthetic recall. Planned contrast analyses suggested that visual stimulus items, when recalled, elicited significantly more upward eye-positions and stares than auditory and kinesthetic items. Auditory and kinesthetic items, however, did not elicit more changes in eye-position hypothesized by the model to represent auditory and kinesthetic recall, respectively.

  2. Identification of cholinergic and non-cholinergic neurons in the pons expressing phosphorylated cyclic adenosine monophosphate response element-binding protein as a function of rapid eye movement sleep.

    Science.gov (United States)

    Datta, S; Siwek, D F; Stack, E C

    2009-09-29

    Recent studies have shown that in the pedunculopontine tegmental nucleus (PPT), increased neuronal activity and kainate receptor-mediated activation of intracellular protein kinase A (PKA) are important physiological and molecular steps for the generation of rapid eye movement (REM) sleep. In the present study performed on rats, phosphorylated cyclic AMP response element-binding protein (pCREB) immunostaining was used as a marker for increased intracellular PKA activation and as a reflection of increased neuronal activity. To identify whether activated cells were either cholinergic or noncholinergic, the PPT and laterodorsal tegmental nucleus (LDT) cells were immunostained for choline acetyltransferase (ChAT) in combination with pCREB or c-Fos. The results demonstrated that during high rapid eye movement sleep (HR, approximately 27%), significantly higher numbers of cells expressed pCREB and c-Fos in the PPT, of which 95% of pCREB-expressing cells were ChAT-positive. With HR, the numbers of pCREB-positive cells were also significantly higher in the medial pontine reticular formation (mPRF), pontine reticular nucleus oral (PnO), and dorsal subcoeruleus nucleus (SubCD) but very few in the locus coeruleus (LC) and dorsal raphe nucleus (DRN). Conversely, with low rapid eye movement sleep (LR, approximately 2%), the numbers of pCREB expressing cells were very few in the PPT, mPRF, PnO, and SubCD but significantly higher in the LC and DRN. The results of regression analyses revealed significant positive relationships between the total percentages of REM sleep and numbers of ChAT+/pCREB+ (Rsqr=0.98) cells in the PPT and pCREB+ cells in the mPRF (Rsqr=0.88), PnO (Rsqr=0.87), and SubCD (Rsqr=0.84); whereas significantly negative relationships were associated with the pCREB+ cells in the LC (Rsqr=0.70) and DRN (Rsqr=0.60). These results provide evidence supporting the hypothesis that during REM sleep, the PPT cholinergic neurons are active, whereas the LC and DRN neurons are

  3. Sleep in depression: the influence of age, gender and diagnostic subtype on baseline sleep and the cholinergic REM induction test with RS 86.

    Science.gov (United States)

    Riemann, D; Hohagen, F; Bahro, M; Berger, M

    1994-01-01

    One hundred and eight healthy controls and 178 patients with a major depressive disorder according to DSM-III were investigated in the sleep laboratory after a 7-day drug wash-out period. Subsamples of 36 healthy controls and 56 patients additionally took part in the cholinergic rapid eye movement (REM) sleep induction test with RS 86. Data analysis revealed that age exerted powerful influences on sleep in control subjects and depressed patients. Sleep efficiency and amount of slow wave sleep (SWS) decreased with age, whereas the number of awakenings, early morning awakening, and amounts of wake time and stage 1 increased with age. REM latency was negatively correlated with age only in the group of patients with a major depression. Statistical analysis revealed group differences for almost all parameters of sleep continuity with disturbed indices in the depressed group. Differences in SWS were not detected. REM latency and REM density were altered in depression compared to healthy subjects. Sex differences existed for the amounts of stage 1 and SWS. The cholinergic REM induction test resulted in a significantly more pronounced induction of REM sleep in depressed patients compared with healthy controls, provoking sleep onset REM periods as well in those depressed patients showing baseline REM latencies in the normal range. Depressed patients with or without melancholia (according to DSM-III) did not differ from each other, either concerning baseline sleep or with respect to the results of the cholinergic REM induction test. The results stress the importance of age when comparing sleep patterns of healthy controls with those of depressed patients. Furthermore they underline the usefulness of the cholinergic REM induction test for differentiating depressed patients from healthy controls and support the reciprocal interaction model of nonREM-REM regulation and the cholinergic-aminergic imbalance hypothesis of affective disorders.

  4. Differential effects of the muscarinic M1 receptor agonist RS-86 and the acetylcholine-esterase inhibitor donepezil on REM sleep regulation in healthy volunteers.

    Science.gov (United States)

    Nissen, Christoph; Nofzinger, Eric A; Feige, Bernd; Waldheim, Bernhard; Radosa, Marc-Philipp; Riemann, Dieter; Berger, Mathias

    2006-06-01

    Broad evidence from preclinical and clinical research indicates that cholinergic neurotransmission contributes significantly to the generation of rapid eye movement (REM) sleep. However, a potential role of different acetylcholine receptor (AChR) subtypes for the regulation of three main aspects of REM sleep, (1) REM onset, (2) REM maintenance, and (3) generation of REMs, are not clear. In the present double-blind, randomized and placebo-controlled study, we investigated the differential effects of the M1 muscarinic AChR (mAChR) agonist RS-86 and the ACh-esterase inhibitor donepezil to further specify the AChR subtype function on REM sleep regulation in n = 20 healthy volunteers. We found that RS-86 selectively shortened REM latency (multivariate analysis of variance post hoc contrast p = 0.024 compared to placebo, not significant for donepezil) and that donepezil specifically enhanced the duration of REM sleep (% sleep period time, p = 0.000 compared to placebo; p = 0.003 compared to RS-86) and the number of REMs (p = 0.000 compared to placebo; p = 0.000 compared to RS-86). These results provide evidence that the onset of REM sleep is, in part, mediated by M1 mAChR activity, whereas the maintenance of REM sleep and the number of REMs are mediated by non-M1, but presumably M2 mAChR activity. These findings are of interest for the understanding of sleep regulation and of neuropsychiatric disorders, such as Alzheimer's dementia and depressive disorders, whose etiopathology may involve alterations in cholinergic neurotransmission.

  5. Dissociated vertical deviation: an exaggerated normal eye movement used to damp cyclovertical latent nystagmus.

    Science.gov (United States)

    Guyton, D L; Cheeseman, E W; Ellis, F J; Straumann, D; Zee, D S

    1998-01-01

    PURPOSE: Dissociated vertical deviation (DVD) has eluded explanation for more than a century. The purpose of this study has been to elucidate the etiology and mechanism of DVD. METHODS: Eye movement recordings of six young adults with DVD were made with dual-coil scleral search coils under various conditions of fixation, illumination, and head tilt. Horizontal, vertical, and torsional eye movements were recorded for both eyes simultaneously. Analyses of the simultaneous vertical and torsional movements occurring during the DVD response were used to separate and identify the component vergence and version eye movements involved. RESULTS: Typically, both horizontal and cyclovertical latent nystagmus developed upon occlusion of either eye. A cycloversion then occurred, with the fixing eye intorting and tending to depress, the covered eye extorting and elevating. Simultaneously, upward versions occurred for the maintenance of fixation, consisting variously of saccades and smooth eye movements, leading to further elevation of the eye behind the cover. The cyclovertical component of the latent nystagmus became partially damped as the DVD developed. CONCLUSIONS: In patients with an early-onset defect of binocular function, the occlusion of one eye, or even concentration on fixing with one eye, produces unbalanced input to the vestibular system. This results in latent nystagmus, sometimes seen only with magnification. The cyclovertical component of the latent nystagmus, when present, is similar to normal vestibular nystagmus induced by dynamic head tilting about an oblique axis. Such vestibular nystagmus characteristically produces a hyperdeviation of the eyes. In the case of cyclovertical latent nystagmus, the analogous hyperdeviation will persist unless corrected by a vertical vergence. A normal, oblique-muscle-mediated, cycloversion/vertical vergence is called into play. This occurs in the proper direction to correct the hyperdeviation, but it occurs in an exaggerated

  6. Eyes Do Not Have it: A Collinear Salient Line Interferes with Visual Search Responses but Not Eye Movements

    Directory of Open Access Journals (Sweden)

    Li Jingling

    2011-05-01

    Full Text Available Our previous study found that a task-irrelevant salient line impaired visual search when the salient line was composite of collinear bars (Jingling, 2010. In this study, we further investigated whether this inhibition can be observed in eye movements. The search display was a lattice of 21 by 27 bars. The task was to discriminate the orientation of a target, which was presented on one of seven bars in the central of search display. One of the columns of the bars was vertical, thus bars on this line were collinear to each other. The other bars were horizontal, making the collinear line salient. The target was on the bars at salient line by chance. Eight participants were recruited, and eye movements were recorded by EyeLink 1,000 with 250 Hz sampling rate. Results of hand response times replicated our previous findings: Responses were slower for targets on the bars at the salient line than that in the background. However, saccadic duration was not statistically different for these two types of targets. Our data showed that a collinear salient line interferes with key press but not eye movements, suggesting that the inhibitory effect emerged later than sensory information process.

  7. Quantitative differences among EMG activities of muscles innervated by subpopulations of hypoglossal and upper spinal motoneurons during non-REM sleep - REM sleep transitions: a window on neural processes in the sleeping brain.

    Science.gov (United States)

    Rukhadze, I; Kamani, H; Kubin, L

    2011-12-01

    In the rat, a species widely used to study the neural mechanisms of sleep and motor control, lingual electromyographic activity (EMG) is minimal during non-rapid eye movement (non-REM) sleep and then phasic twitches gradually increase after the onset of REM sleep. To better characterize the central neural processes underlying this pattern, we quantified EMG of muscles innervated by distinct subpopulations of hypoglossal motoneurons and nuchal (N) EMG during transitions from non-REM sleep to REM sleep. In 8 chronically instrumented rats, we recorded cortical EEG, EMG at sites near the base of the tongue where genioglossal and intrinsic muscle fibers predominate (GG-I), EMG of the geniohyoid (GH) muscle, and N EMG. Sleep-wake states were identified and EMGs quantified relative to their mean levels in wakefulness in successive 10 s epochs. During non-REM sleep, the average EMG levels differed among the three muscles, with the order being N>GH>GG-I. During REM sleep, due to different magnitudes of phasic twitches, the order was reversed to GG-I>GH>N. GG-I and GH exhibited a gradual increase of twitching that peaked at 70-120 s after the onset of REM sleep and then declined if the REM sleep episode lasted longer. We propose that a common phasic excitatory generator impinges on motoneuron pools that innervate different muscles, but twitching magnitudes are different due to different levels of tonic motoneuronal hyperpolarization. We also propose that REM sleep episodes of average durations are terminated by intense activity of the central generator of phasic events, whereas long REM sleep episodes end as a result of a gradual waning of the tonic disfacilitatory and inhibitory processes.

  8. The independence of eye movements in a stomatopod crustacean is task dependent.

    Science.gov (United States)

    Daly, Ilse M; How, Martin J; Partridge, Julian C; Roberts, Nicholas W

    2017-04-01

    Stomatopods have an extraordinary visual system, incorporating independent movement of their eyes in all three degrees of rotational freedom. In this work, we demonstrate that in the peacock mantis shrimp, Odontodactylus scyllarus, the level of ocular independence is task dependent. During gaze stabilization in the context of optokinesis, there is weak but significant correlation between the left and right eyes in the yaw degree of rotational freedom, but not in pitch and torsion. When one eye is completely occluded, the uncovered eye does not drive the covered eye during gaze stabilization. However, occluding one eye does significantly affect the uncovered eye, lowering its gaze stabilization performance. There is a lateral asymmetry, with the magnitude of the effect depending on the eye (left or right) combined with the direction of motion of the visual field. In contrast, during a startle saccade, the uncovered eye does drive a covered eye. Such disparate levels of independence between the two eyes suggest that responses to individual visual tasks are likely to follow different neural pathways. © 2017. Published by The Company of Biologists Ltd.

  9. Eye-movement study during visual search in Chinese children with developmental dyslexia

    Institute of Scientific and Technical Information of China (English)

    LI Xiu-hong; JING Jin; YANG De-sheng; WANG Hui; WANG Qing-xiong; SONG Shan-shan; FAN Fang

    2013-01-01

    Background Developmental dyslexia (DD) is a disorder in which children with normal intelligence and sensory abilities show learning deficits in reading.Abnormal eye movements have been found in DD.However,eye-movement abnormalities during visual search among Chinese children with DD remain unknown.We aimed to identify the eyemovement characteristics and search efficiency of Chinese children with DD during visual search for targets of different conceptual categories,under same-category conditions.Methods We compared 32 Chinese dyslexic children and 39 non-dyslexic children in visual search tasks,which were assessed using EyeLink Ⅱ High-Speed Eye Tracker (SR Research Ltd.,Canada).Letters,single Chinese characters,digits,Chinese phrases,figures and facial expressions were used as stimuli.Targets were similar to distractors in meaning,phonology and/or shape.Results A main effect of task on visual search scores and all eye-movement parameters were found.Search scores,average saccade amplitude and saccade distance were significantly smaller in the DD group than in the controls.An interaction between group and task was found for pupil diameter.Conclusions Unlike normal readers,children with DD had a reduction in the visual attention span and search accuracy.Besides,children with DD could not increase their mental workload with increase in task difficulty.The conceptual category of the stimulus materials significantly impacts search speed,accuracy and eye-movement parameters.

  10. Rapid Nonconjugate Adaptation of Vertical Voluntary Pursuit Eye Movements

    Science.gov (United States)

    1991-01-01

    applied to the post-adaptation data from the left eye magnification condition: YRpost(Transformed) = (2 * YRpre) - YRPost (6) For example, if the pie ...nonconjugate adaptation with spectacle- mounted plano -cylindrical lenses, Lemij (1990) demonstrated that nonconjugate pursuit adaptation was

  11. Vestibulo-Cervico-Ocular Responses and Tracking Eye Movements after Prolonged Exposure to Microgravity

    Science.gov (United States)

    Kornilova, L. N.; Naumov, I. A.; Azarov, K. A.; Sagalovitch, S. V.; Reschke, Millard F.; Kozlovskaya, I. B.

    2007-01-01

    The vestibular function and tracking eye movements were investigated in 12 Russian crew members of ISS missions on days 1(2), 4(5-6), and 8(9-10) after prolonged exposure to microgravity (126 to 195 days). The spontaneous oculomotor activity, static torsional otolith-cervico-ocular reflex, dynamic vestibulo-cervico-ocular responses, vestibular reactivity, tracking eye movements, and gaze-holding were studied using videooculography (VOG) and electrooculography (EOG) for parallel eye movement recording. On post-flight days 1-2 (R+1-2) some cosmonauts demonstrated: - an increased spontaneous oculomotor activity (floating eye movements, spontaneous nystagmus of the typical and atypical form, square wave jerks, gaze nystagmus) with the head held in the vertical position; - suppressed otolith function (absent or reduced by one half amplitude of torsional compensatory eye counter-rolling) with the head inclined statically right- or leftward by 300; - increased vestibular reactivity (lowered threshold and increased intensity of the vestibular nystagmus) during head turns around the longitudinal body axis at 0.125 Hz; - a significant change in the accuracy, velocity, and temporal characteristics of the eye tracking. The pattern, depth, dynamics, and velocity of the vestibular function and tracking eye movements recovery varied with individual participants in the investigation. However, there were also regular responses during readaptation to the normal gravity: - suppression of the otolith function was typically accompanied by an exaggerated vestibular reactivity; - the structure of visual tracking (the accuracy of fixational eye rotations, smooth tracking, and gaze-holding) was disturbed (the appearance of correcting saccades, the transition of smooth tracking to saccadic tracking) only in those cosmonauts who, in parallel to an increased reactivity of the vestibular input, also had central changes in the oculomotor system (spontaneous nystagmus, gaze nystagmus).

  12. The role of eye movements in depth from motion parallax during infancy.

    Science.gov (United States)

    Nawrot, Elizabeth; Nawrot, Mark

    2013-12-18

    Motion parallax is a motion-based, monocular depth cue that uses an object's relative motion and velocity as a cue to relative depth. In adults, and in monkeys, a smooth pursuit eye movement signal is used to disambiguate the depth-sign provided by these relative motion cues. The current study investigates infants' perception of depth from motion parallax and the development of two oculomotor functions, smooth pursuit and the ocular following response (OFR) eye movements. Infants 8 to 20 weeks of age were presented with three tasks in a single session: depth from motion parallax, smooth pursuit tracking, and OFR to translation. The development of smooth pursuit was significantly related to age, as was sensitivity to motion parallax. OFR eye movements also corresponded to both age and smooth pursuit gain, with groups of infants demonstrating asymmetric function in both types of eye movements. These results suggest that the development of the eye movement system may play a crucial role in the sensitivity to depth from motion parallax in infancy. Moreover, describing the development of these oculomotor functions in relation to depth perception may aid in the understanding of certain visual dysfunctions.

  13. Correlation of climbing perception and eye movements during daytime and nighttime takeoffs using a flight simulator.

    Science.gov (United States)

    Tamura, Atsushi; Wada, Yoshiro; Shimizu, Naoki; Inui, Takuo; Shiotani, Akihiro

    2016-01-01

    This study suggests that the subjective climbing perception can be quantitatively evaluated using values calculated from induced eye movements, and the findings may aid in the detection of pilots who are susceptible to spatial disorientation in a screening test. The climbing perception experienced by a pilot during takeoff at night is stronger than that experienced during the day. To investigate this illusion, this study assessed eye movements and analyzed their correlation with subjective climbing perception during daytime and nighttime takeoffs. Eight male volunteers participated in this study. A simulated aircraft takeoff environment was created using a flight simulator and the maximum slow-phase velocities and vestibulo-ocular reflex gain of vertical eye movements were calculated during takeoff simulation. Four of the eight participants reported that their perception of climbing at night was stronger, while the other four reported that there was no difference between day and night. These perceptions were correlated with eye movements; participants with a small difference in the maximum slow-phase velocities of their downward eye movements between daytime and nighttime takeoffs indicated that their perception of climbing was the same under the two conditions.

  14. Visual processing and social cognition in schizophrenia: relationships among eye movements, biological motion perception, and empathy.

    Science.gov (United States)

    Matsumoto, Yukiko; Takahashi, Hideyuki; Murai, Toshiya; Takahashi, Hidehiko

    2015-01-01

    Schizophrenia patients have impairments at several levels of cognition including visual attention (eye movements), perception, and social cognition. However, it remains unclear how lower-level cognitive deficits influence higher-level cognition. To elucidate the hierarchical path linking deficient cognitions, we focused on biological motion perception, which is involved in both the early stage of visual perception (attention) and higher social cognition, and is impaired in schizophrenia. Seventeen schizophrenia patients and 18 healthy controls participated in the study. Using point-light walker stimuli, we examined eye movements during biological motion perception in schizophrenia. We assessed relationships among eye movements, biological motion perception and empathy. In the biological motion detection task, schizophrenia patients showed lower accuracy and fixated longer than healthy controls. As opposed to controls, patients exhibiting longer fixation durations and fewer numbers of fixations demonstrated higher accuracy. Additionally, in the patient group, the correlations between accuracy and affective empathy index and between eye movement index and affective empathy index were significant. The altered gaze patterns in patients indicate that top-down attention compensates for impaired bottom-up attention. Furthermore, aberrant eye movements might lead to deficits in biological motion perception and finally link to social cognitive impairments. The current findings merit further investigation for understanding the mechanism of social cognitive training and its development. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  15. Individual Differences in Eye-Movements During Reading: Working Memory and Speed-of-Processing Effects.

    Science.gov (United States)

    Traxler, Matthew J; Long, Debra L; Tooley, Kristen M; Johns, Clinton L; Zirnstein, Megan; Jonathan, Eunike

    Theories of eye-movement control in reading should ultimately describe how differences in knowledge and cognitive abilities affect reading and comprehension. Current mathematical models of eye-movement control do not yet incorporate individual differences as a source of variation in reading, although developmental and group-difference effects have been studied. These models nonetheless provide an excellent foundation for describing and explaining how and why patterns of eye-movements differ across readers (e.g., Rayner, Chace, & Ashby, 2006). Our focus in this article is on two aspects of individual variation: global processing speed (e.g., Salthouse, 1996) and working-memory capacity (e.g., Just & Carpenter, 1992). Using Hierarchical Linear Modeling (HLM) (Raudenbush & Bryk, 2001), we tested the extent to which overall reading speed and working-memory capacity moderate the degree to which syntactic and semantic information affect fixation times. Previous published data (Traxler et al., 2005) showed that working memory capacity and syntactic complexity interacted to determine fixation times in an eye-movement monitoring experiment. In a new set of models based on this same data set, we found that working-memory capacity interacted with sentence-characteristic variables only when processing speed was not included in the model. We interpret these findings with respect to current accounts of sentence processing and suggest how they might be incorporated into eye-movement control models.

  16. EEG sleep in depression and in remission and the REM sleep response to the cholinergic agonist RS 86.

    Science.gov (United States)

    Riemann, D; Berger, M

    1989-06-01

    A comparison of the sleep EEG patterns of patients with a major depressive disorder intraindividually between remitted and depressed state revealed an improvement of parameters of sleep continuity and a tendency for normalization of rapid eye movement (REM) latency and REM density in the former. Additional application of the cholinergic agonist RS 86 prior to sleep did not reveal a heightened sensitivity of the REM sleep system in the remitted sample. Whereas a group of presently ill depressives displayed a drastic reduction of REM latency, results of the remitted patients were comparable to healthy controls. Furthermore, RS 86 significantly reduced slow-wave sleep in all groups investigated and had a differential impact on the density of the first REM period and early morning awakening in actively ill patients as compared to remitted patients. The results do not favor the hypothesis of a trait specificity of REM sleep abnormalities for depressive disorders. Furthermore they support the model of a cholinergic supersensitivity, as measured by REM induction after RS 86, as a state but not a trait marker of affective illness. Generalization of the present study may, however, be limited by the fact that the remitted patients were free of symptomatology and psychoactive medication for a long period (mean 3 years), therefore constituting an untypical group of formerly depressed patients with a seemingly low risk of relapse.

  17. Slow wave and REM sleep deprivation effects on explicit and implicit memory during sleep.

    OpenAIRE

    Casey, Sarah; Solomons, Luke C.; Steier, Joerg Sebastian; Kabra, Neeraj; Burnside, Anna; Pengo, Martino F.; Moxham, John; Goldstein, Laura Hilary; Kopelman, Michael David

    2016-01-01

    Objective: It has been debated whether different stages in the human sleep cycle preferentially mediate the consolidation of explicit and implicit memories, or whether all of the stages in succession are necessary for optimal consolidation. Here we investigated whether the selective deprivation of slow wave sleep (SWS) or rapid eye movement (REM) sleep over an entire night would have a specific effect on consolidation in explicit and implicit memory tasks. Method: Participants completed a set...

  18. Did Immanuel Kant have dementia with Lewy bodies and REM behavior disorder?

    Science.gov (United States)

    Miranda, Marcelo; Slachevsky, Andrea; Garcia-Borreguero, Diego

    2010-06-01

    Immanuel Kant, one of the most brilliant minds of the XVIII century and of western philosophy, suffered from dementia in his late years. Based on the analysis of testimonies of his close friends, in this report we describe his neurological disorder which, after 8years of evolution, led to his death. His cognitive decline was strongly associated with a parasomnia compatible with a severe rapid eye movement (REM) behavior disorder (RBD) and dementia with Lewy bodies.

  19. EALab (Eye Activity Lab): a MATLAB Toolbox for Variable Extraction, Multivariate Analysis and Classification of Eye-Movement Data.

    Science.gov (United States)

    Andreu-Perez, Javier; Solnais, Celine; Sriskandarajah, Kumuthan

    2016-01-01

    Recent advances in the reliability of the eye-tracking methodology as well as the increasing availability of affordable non-intrusive technology have opened the door to new research opportunities in a variety of areas and applications. This has raised increasing interest within disciplines such as medicine, business and education for analysing human perceptual and psychological processes based on eye-tracking data. However, most of the currently available software requires programming skills and focuses on the analysis of a limited set of eye-movement measures (e.g., saccades and fixations), thus excluding other measures of interest to the classification of a determined state or condition. This paper describes 'EALab', a MATLAB toolbox aimed at easing the extraction, multivariate analysis and classification stages of eye-activity data collected from commercial and independent eye trackers. The processing implemented in this toolbox enables to evaluate variables extracted from a wide range of measures including saccades, fixations, blinks, pupil diameter and glissades. Using EALab does not require any programming and the analysis can be performed through a user-friendly graphical user interface (GUI) consisting of three processing modules: 1) eye-activity measure extraction interface, 2) variable selection and analysis interface, and 3) classification interface.

  20. On-line analysis of eye movements using a digital computer.

    Science.gov (United States)

    Baloh, R W; Langhofer, L; Honrubia, V; Yee, R D

    1980-06-01

    We describe a microcomputer system for on-line analysis of eye movement recordings. Quantitative data from the patient and statistical comparison with normative data is available within seconds of test completion. Three types of eye movements are analyzed--voluntary saccades, smooth pursuit, and nystagmus. The first two are induced by a computer-controlled laser dot projected onto a screen and the third by a computer-controlled optokinetic drum, caloric infusion, and rotatory chair. The computer algorithm differentiates the eye position signal to yield an instantaneous eye velocity record. Saccades are identified based on their characteristic velocity profile. For pursuit and nystagmus. The first two are induced by a computer-controlled laser dot projected onto a screen and the third by a computer-controlled optokinetic drum, caloric infusion, and rotatory chair. The computer algorithm differentiates the eye position signal to yield an instaneous eye velocity record. Saccades are identified based on their characteristic velocity profile. For pursuit and nystagmus, the velocity record is modified by linearly interpolating across segments in which saccades occurred. The gain (output eye velocity/input eye velocity) is calculated after Fourier analysis of the data.

  1. The pupil is faster than the corneal reflection (CR): are video based pupil-CR eye trackers suitable for studying detailed dynamics of eye movements?

    NARCIS (Netherlands)

    Hooge, I.T.C.; Holmqvist, K.; Nyström, Marcus

    2016-01-01

    Most modern video eye trackers use the p-CR (pupil minus CR) technique to deal with small relative movements between the eye tracker camera and the eye. We question whether the p-CR technique is appropriate to investigate saccade dynamics. In two experiments we investigated the dynamics of pupil, CR

  2. Subliminal gait initiation deficits in rapid eye movement sleep behavior disorder: A harbinger of freezing of gait?

    Science.gov (United States)

    Alibiglou, Laila; Videnovic, Aleksandar; Planetta, Peggy J; Vaillancourt, David E; MacKinnon, Colum D

    2016-11-01

    Muscle activity during rapid eye movement sleep is markedly increased in people with rapid eye movement sleep behavior disorder and people with Parkinson's disease (PD) who have freezing of gait. This study examined whether individuals with rapid eye movement sleep behavior disorder who do not have a diagnosis of PD show abnormalities in gait initiation that resemble the impairments observed in PD and whether there is a relationship between these deficits and the level of rapid eye movement sleep without atonia. Gait initiation and polysomnography studies were conducted in 4 groups of 10 participants: rapid eye movement sleep behavior disorder, PD with and without freezing of gait, and controls. Significant reductions were seen in the posterior shift of the center of pressure during the propulsive phase of gait initiation in the groups with rapid eye movement sleep behavior disorder and PD with freezing of gait when compared with controls and PD nonfreezers. These reductions negatively correlated with the amount of rapid eye movement sleep without atonia. The duration of the initial dorsiflexor muscle burst during gait initiation was significantly reduced in both PD groups and the rapid eye movement sleep behavior disorder cohort. These results provide evidence that people with rapid eye movement sleep behavior disorder, prior to a diagnosis of a degenerative neurologic disorder, show alterations in the coupling of posture and gait similar to those seen in PD. The correlation between increased rapid eye movement sleep without atonia and deficits in forward propulsion during the push-off phase of gait initiation suggests that abnormities in the regulation of muscle tone during rapid eye movement sleep may be related to the pathogenesis of freezing of gait. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  3. Arousal state feedback as a potential physiological generator of the ultradian REM/NREM sleep cycle.

    Science.gov (United States)

    Phillips, A J K; Robinson, P A; Klerman, E B

    2013-02-21

    Human sleep episodes are characterized by an approximately 90-min ultradian oscillation between rapid eye movement (REM) and non-REM (NREM) sleep stages. The source of this oscillation is not known. Pacemaker mechanisms for this rhythm have been proposed, such as a reciprocal interaction network, but these fail to account for documented homeostatic regulation of both sleep stages. Here, two candidate mechanisms are investigated using a simple model that has stable states corresponding to Wake, REM sleep, and NREM sleep. Unlike other models of the ultradian rhythm, this model of sleep dynamics does not include an ultradian pacemaker, nor does it invoke a hypothetical homeostatic process that exists purely to drive ultradian rhythms. Instead, only two inputs are included: the homeostatic drive for Sleep and the circadian drive for Wake. These two inputs have been the basis for the most influential Sleep/Wake models, but have not previously been identified as possible ultradian rhythm generators. Using the model, realistic ultradian rhythms are generated by arousal state feedback to either the homeostatic or circadian drive. For the proposed 'homeostatic mechanism', homeostatic pressure increases in Wake and REM sleep, and decreases in NREM sleep. For the proposed 'circadian mechanism', the circadian drive is up-regulated in Wake and REM sleep, and is down-regulated in NREM sleep. The two mechanisms are complementary in the features they capture. The homeostatic mechanism reproduces experimentally observed rebounds in NREM sleep duration and intensity following total sleep deprivation, and rebounds in both NREM sleep intensity and REM sleep duration following selective REM sleep deprivation. The circadian mechanism does not reproduce sleep state rebounds, but more accurately reproduces the temporal patterns observed in a normal night of sleep. These findings have important implications in terms of sleep physiology and they provide a parsimonious explanation for the

  4. Melanin-concentrating hormone (MCH: role in REM sleep and depression

    Directory of Open Access Journals (Sweden)

    Pablo eTorterolo

    2015-12-01

    Full Text Available The melanin-concentrating hormone (MCH is a peptidergic neuromodulator synthesized by neurons of the lateral hypothalamus and incerto-hypothalamic area. MCHergic neurons project throughout the central nervous system, including areas such as the dorsal (DR and median (MR raphe nuclei, which are involved in the control of sleep and mood.Major Depression (MD is a prevalent psychiatric disease diagnosed on the basis of symptomatic criteria such as sadness or melancholia, guilt, irritability and anhedonia. A short REM sleep latency (i.e. the interval between sleep onset and the first REM sleep period, as well as an increase in the duration of REM sleep and the density of rapid-eye movements during this state, are considered important biological markers of depression. The fact that the greatest firing rate of MCHergic neurons occurs during REM sleep and that optogenetic stimulation of these neurons induces sleep, tends to indicate that MCH plays a critical role in the generation and maintenance of sleep, especially REM sleep. In addition, the acute microinjection of MCH into the DR promotes REM sleep, while immunoneutralization of this peptide within the DR decreases the time spent in this state. Moreover, microinjections of MCH into either the DR or MR promote a depressive-like behavior. In the DR, this effect is prevented by the systemic administration of antidepressant drugs (either fluoxetine or nortriptyline and blocked by the intra-DR microinjection of a specific MCH receptor antagonist. Using electrophysiological and microdialysis techniques we demonstrated also that MCH decreases the activity of serotonergic DR neurons.Therefore, there are substantive experimental data suggesting that the MCHergic system plays a role in the control of REM sleep and, in addition, in the pathophysiology of depression. Consequently, in the present report, we summarize and evaluate the current data and hypotheses related to the role of MCH in REM sleep and MD.

  5. The predictive value of Muller maneuver in REM-dependent obstructive sleep apnea.

    Science.gov (United States)

    Ozcan, Kursat Murat; Ozcan, Muge; Ozdogan, Fatih; Hizli, Omer; Dere, Huseyin; Unal, Adnan

    2013-09-01

    To our knowledge, no studies up to date have investigated the correlation of rapid eye movement (REM) dependent obstructive sleep apnea syndrome (OSAS) and Muller maneuver. The aim of this study is to investigate whether REM-dependent OSAS is predicted by the findings of the Muller maneuver. The study was conducted on 149 patients with witnessed apnea and daytime sleepiness. Muller maneuver was performed to all patients and the obstruction site was determined using a five-point scale. Then, polysomnography of the patient was obtained and the apnea-hypopnea indexes were determined in total sleep time, REM-dependent sleep and non-REM-dependent sleep. The correlations between the Muller maneuver findings and polysomnographic data were analyzed. The ages of the patients included in the study ranged between 25 and 73 years with a mean age of 49.3 ± 10.1 years. Their mean body mass index was 30.8 ± 5.1 kg/m(2) (range 21.9-55.4 kg/m(2)). The patients' mean apnea-hypopnea indexes in total sleep time was 28.1 and ranged between 5.4 and 124.3. REM-dependent OSAS was determined in 49 patients. When the data were analyzed, it was determined that there were no statistically significant correlations between tongue base or lateral pharyngeal band obstruction at the level of hypopharynx and the REM-dependent OSAS. At the level of the soft palate, the obstruction caused by the lateral pharyngeal bands or soft palate and REM dependency did not show any statistically significant correlation (p > 0.05). In conclusion, Muller maneuver does not provide useful data to predict REM dependency of OSAS.

  6. Phenothiazine effects on cerebral-evoked potentials and eye movements in acute schizophrenics.

    Science.gov (United States)

    Rappaport, M; Hopkins, H K; Hall, K; Belleza, T

    1975-01-01

    An investigation was made of the effects of phenothiazine medication on the averaged visual-evoked potentials (AVEP) and on eye movements in hospitalized, young, acute schizophrenic patients. These results were compared with those of normal subjects who were not given medication. AVEP measures included maximum amplitude (Am), frequency of peaks (FOP'S), variability (V) and peak latencies for an early negative peak (N1) and a later positive peak (P6). Eye movement measures included percent of time looking at a stimulus slide, percent of time looking at a figure on the slide, the number of fixations and the percent of cells entered in which fixations occurred. For schizophrenics off and on phenothiazine medication, there were no consistently significant drug effects on any measure except frequency of peaks. Schizophrenics compared to normals had lower amplitudes, greater frequency of peaks, greater variability and lower eye movement scores.

  7. Anticipatory Eye Movements While Watching Continuous Action Across Shots in Video Sequences: A Developmental Study.

    Science.gov (United States)

    Kirkorian, Heather L; Anderson, Daniel R

    2017-07-01

    Eye movements were recorded as 12-month-olds (n = 15), 4-year-olds (n = 17), and adults (n = 19) watched a 15-min video with sequences of shots conveying continuous motion. The central question was whether, and at what age, viewers anticipate the reappearance of objects following cuts to new shots. Adults were more likely than younger viewers to make anticipatory eye movements. Four-year-olds responded to transitions more slowly and tended to fixate the center of the screen. Infants' eye movement patterns reflected a tendency to react rather than anticipate. Findings are consistent with the hypothesis that adults integrate content across shots and understand how space is represented in edited video. Results are interpreted with respect to a developing understanding of film editing due to experience and cognitive maturation. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  8. Advanced statistical methods for eye movement analysis and modeling: a gentle introduction

    CERN Document Server

    Boccignone, Giuseppe

    2015-01-01

    In this Chapter we show that by considering eye movements, and in particular, the resulting sequence of gaze shifts, a stochastic process, a wide variety of tools become available for analyses and modelling beyond conventional statistical methods. Such tools encompass random walk analyses and more complex techniques borrowed from the pattern recognition and machine learning fields. After a brief, though critical, probabilistic tour of current computational models of eye movements and visual attention, we lay down the basis for gaze shift pattern analysis. To this end, the concepts of Markov Processes, the Wiener process and related random walks within the Gaussian framework of the Central Limit Theorem will be introduced. Then, we will deliberately violate fundamental assumptions of the Central Limit Theorem to elicit a larger perspective, rooted in statistical physics, for analysing and modelling eye movements in terms of anomalous, non-Gaussian, random walks and modern foraging theory. Eventually, by resort...

  9. Impulse processing: a dynamical systems model of incremental eye movements in the visual world paradigm.

    Science.gov (United States)

    Kukona, Anuenue; Tabor, Whitney

    2011-08-01

    The Visual World Paradigm (VWP) presents listeners with a challenging problem: They must integrate two disparate signals, the spoken language and the visual context, in support of action (e.g., complex movements of the eyes across a scene). We present Impulse Processing, a dynamical systems approach to incremental eye movements in the visual world that suggests a framework for integrating language, vision, and action generally. Our approach assumes that impulses driven by the language and the visual context impinge minutely on a dynamical landscape of attractors corresponding to the potential eye-movement behaviors of the system. We test three unique predictions of our approach in an empirical study in the VWP, and describe an implementation in an artificial neural network. We discuss the Impulse Processing framework in relation to other models of the VWP.

  10. Impulse processing: A dynamical systems model of incremental eye movements in the visual world paradigm

    Science.gov (United States)

    Kukona, Anuenue; Tabor, Whitney

    2011-01-01

    The visual world paradigm presents listeners with a challenging problem: they must integrate two disparate signals, the spoken language and the visual context, in support of action (e.g., complex movements of the eyes across a scene). We present Impulse Processing, a dynamical systems approach to incremental eye movements in the visual world that suggests a framework for integrating language, vision, and action generally. Our approach assumes that impulses driven by the language and the visual context impinge minutely on a dynamical landscape of attractors corresponding to the potential eye-movement behaviors of the system. We test three unique predictions of our approach in an empirical study in the visual world paradigm, and describe an implementation in an artificial neural network. We discuss the Impulse Processing framework in relation to other models of the visual world paradigm. PMID:21609355

  11. Ultradian cycles in mice: definitions and links with REMS and NREMS.

    Science.gov (United States)

    Le Bon, O; Popa, D; Streel, E; Alexandre, C; Lena, C; Linkowski, P; Adrien, J

    2007-10-01

    Sleep can be organized in two quite different ways across homeothermic species: either in one block (monophasic), or in several bouts across the 24 h (polyphasic). Yet, the main relationships between variables, as well as regulating mechanisms, are likely to be similar. Correlations and theories on sleep regulation should thus be examined on both types of sleepers. In previous studies on monophasic humans, we have shown preferential links between the number of ultradian cycles and the rapid eye movement sleep (REMS) time, rather than with its counterpart non-rapid eye movement sleep (NREMS). Here, the sleep of 26 polyphasic mice was examined, both to better describe the NREMS distribution, which is far more complex than in humans, and to replicate the analyses performed on humans. As in humans, the strongest links with the number of cycles were with REMS. Links were not significant with NREMS taken as a whole, although positive correlations were found with the NREMS immediately preceding REMS episodes and inversely significant with the residue. This convergence between monophasic and polyphasic patterns supports the central role played by REMS in sleep alternation.

  12. Inspection time as mental speed in mildly mentally retarded adults: analysis of eye gaze, eye movement, and orientation.

    Science.gov (United States)

    Nettelbeck, T; Robson, L; Walwyn, T; Downing, A; Jones, N

    1986-07-01

    The effect of eye movements away from a target on accuracy of visual discrimination was examined. In Experiment I inspection time was measured for 10 mildly mentally retarded and 10 nonretarded adults under two conditions, with each trial initiated by the subject or under experimental control. Retarded subjects did not gain any advantage from controlling trial onset. Video records of eye movements revealed that retarded subjects glanced off-target more than did nonretarded controls, but this was not sufficient to explain appreciably slower inspection time of the retarded group. Experiment 2 supported this conclusion; the same subjects completed a letter-discrimination task with direction of gaze monitored automatically. Although retarded subjects' eye gaze was more scattered early during a trial, gaze was appropriately directed by the time that the target appeared. Results from both experiments supported the hypothesis that speed of central, perceptual processing is slower among retarded persons, over and above the influence of distractibility. Results from three experiments in Part II were consistent with this interpretation. Experiment 3 was designed to eradicate trials among retarded subjects in which gaze was not properly directed, but results showed that too few such events occurred to influence accuracy. Experiment 4 demonstrated that the preparatory procedure in the previous studies resulted in efficient eye gaze among retarded subjects. Experiment 5 confirmed that lower discriminative accuracy among 10 retarded adults (compared with 10 nonretarded controls) was not due to less-efficient orientation prior to discrimination.

  13. Saccadic and Postsaccadic Disconjugacy in Zebrafish Larvae Suggests Independent Eye Movement Control

    Science.gov (United States)

    Chen, Chien-Cheng; Bockisch, Christopher J.; Straumann, Dominik; Huang, Melody Ying-Yu

    2016-01-01

    Spontaneous eye movements of zebrafish larvae in the dark consist of centrifugal saccades that move the eyes from a central to an eccentric position and postsaccadic centripetal drifts. In a previous study, we showed that the fitted single-exponential time constants of the postsaccadic drifts are longer in the temporal-to-nasal (T->N) direction than in the nasal-to-temporal (N->T) direction. In the present study, we further report that saccadic peak velocities are higher and saccadic amplitudes are larger in the N->T direction than in the T->N direction. We investigated the underlying mechanism of this ocular disconjugacy in the dark with a top-down approach. A mathematic ocular motor model, including an eye plant, a set of burst neurons and a velocity-to-position neural integrator (VPNI), was built to simulate the typical larval eye movements in the dark. The modeling parameters, such as VPNI time constants, neural impulse signals generated by the burst neurons and time constants of the eye plant, were iteratively adjusted to fit the average saccadic eye movement. These simulations suggest that four pools of burst neurons and four pools of VPNIs are needed to explain the disconjugate eye movements in our results. A premotor mechanism controls the synchronous timing of binocular saccades, but the pools of burst and integrator neurons in zebrafish larvae seem to be different (and maybe separate) for both eyes and horizontal directions, which leads to the observed ocular disconjugacies during saccades and postsaccadic drifts in the dark. PMID:27761109

  14. Classification of visual and linguistic tasks using eye-movement features.

    Science.gov (United States)

    Coco, Moreno I; Keller, Frank

    2014-03-07

    The role of the task has received special attention in visual-cognition research because it can provide causal explanations of goal-directed eye-movement responses. The dependency between visual attention and task suggests that eye movements can be used to classify the task being performed. A recent study by Greene, Liu, and Wolfe (2012), however, fails to achieve accurate classification of visual tasks based on eye-movement features. In the present study, we hypothesize that tasks can be successfully classified when they differ with respect to the involvement of other cognitive domains, such as language processing. We extract the eye-movement features used by Greene et al. as well as additional features from the data of three different tasks: visual search, object naming, and scene description. First, we demonstrated that eye-movement responses make it possible to characterize the goals of these tasks. Then, we trained three different types of classifiers and predicted the task participants performed with an accuracy well above chance (a maximum of 88% for visual search). An analysis of the relative importance of features for classification accuracy reveals that just one feature, i.e., initiation time, is sufficient for above-chance performance (a maximum of 79% accuracy in object naming). Crucially, this feature is independent of task duration, which differs systematically across the three tasks we investigated. Overall, the best task classification performance was obtained with a set of seven features that included both spatial information (e.g., entropy of attention allocation) and temporal components (e.g., total fixation on objects) of the eye-movement record. This result confirms the task-dependent allocation of visual attention and extends previous work by showing that task classification is possible when tasks differ in the cognitive processes involved (purely visual tasks such as search vs. communicative tasks such as scene description).

  15. Hidden Markov model analysis reveals the advantage of analytic eye movement patterns in face recognition across cultures.

    Science.gov (United States)

    Chuk, Tim; Crookes, Kate; Hayward, William G; Chan, Antoni B; Hsiao, Janet H

    2017-12-01

    It remains controversial whether culture modulates eye movement behavior in face recognition. Inconsistent results have been reported regarding whether cultural differences in eye movement patterns exist, whether these differences affect recognition performance, and whether participants use similar eye movement patterns when viewing faces from different ethnicities. These inconsistencies may be due to substantial individual differences in eye movement patterns within a cultural group. Here we addressed this issue by conducting individual-level eye movement data analysis using hidden Markov models (HMMs). Each individual's eye movements were modeled with an HMM. We clustered the individual HMMs according to their similarities and discovered three common patterns in both Asian and Caucasian participants: holistic (looking mostly at the face center), left-eye-biased analytic (looking mostly at the two individual eyes in addition to the face center with a slight bias to the left eye), and right-eye-based analytic (looking mostly at the right eye in addition to the face center). The frequency of participants adopting the three patterns did not differ significantly between Asians and Caucasians, suggesting little modulation from culture. Significantly more participants (75%) showed similar eye movement patterns when viewing own- and other-race faces than different patterns. Most importantly, participants with left-eye-biased analytic patterns performed significantly better than those using either holistic or right-eye-biased analytic patterns. These results suggest that active retrieval of facial feature information through an analytic eye movement pattern may be optimal for face recognition regardless of culture. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Development of Instrument Control System Using Biosignals Created by the Change of Eyes Movement Sequence

    Institute of Scientific and Technical Information of China (English)

    XIAO Yun-xiang(肖云翔); LI Gang(李刚); NOGATA Fumio

    2003-01-01

    A new biosignal control system that offers the disables the opportunities to control electric appliances is proposed. The four types of signals created by the eyes movements in four directions ( up, down, left, and right) ,which are taken as four basic signals, are detected at the forehead. Permutation of 2 signals out of them creates 16 different signals. Permutation of 3 signals out of them creates 64 signals. They all amounts to 84 control signals. They are thought to be applicable for the operation of some instruments. Furthermore, the dynamic biosignals created by the slow eyes movement is speculated to be applicable for the more convenient control of them.

  17. OCT corneal topography within ¼ diopter in the presence of saccadic eye movements

    Science.gov (United States)

    Sayegh, Samir I.

    2013-03-01

    Refractive surgeons and cataract surgeons need accurate measurements of corneal curvature/power. Increased expectations of patients, the increasing number of patients having undergone prior surgeries and patients with corneal pathologies dictate the need for reliable curvature measurements to enhance the predictability and the quality of surgical outcomes. Eye movements can negatively influence these measurements. We present a model of eye movements based on peak saccade velocities and formulate criteria for obtaining OCT topography within ¼ of a diopter. Using these criteria we illustrate how next generation MHz systems will allow full corneal OCT topography in both healthy and pathological corneas

  18. Tectal codification of eye movements in goldfish studied by electrical microstimulation. f.

    Science.gov (United States)

    Salas, C; Herrero, L; Rodriguez, F; Torres, B

    1997-05-01

    This work compares the tectal codification of eye movements in goldfish with those reported for other vertebrate groups. Focal electrical stimulation was applied in various tectal zones and the characteristics of evoked eye movements were examined as a function of (i) the position of the stimulation over the tectal surface, (ii) the initial position of the eyes and (iii) the parameters (pulse rate, current strength, duration) of the stimulus. In a large medial zone, stimulation within the intermediate and deep layers of the tectum evoked contraversive saccades of both eyes, whose direction and amplitude were roughly congruent with the retinotopic representation of the visual world within overlying layers. These saccades were minimally influenced by the initial position of the eye in the orbit. The topographical arrangement of evoked saccades and body movements suggests that this tectal zone triggers orienting responses in a similar way to those described in other vertebrates. Stimulations applied within the caudal tectum also evoked contraversive saccades, but in disagreement with the overlying retinotopic map--the vertical component was absent. Taken together with electrically evoked body movements reported in free-swimming fish, these saccades could reveal that this zone is involved in escape responses. When stimulations were applied within the anteromedial zone of the tectum, contraversive movements of both eyes appeared much more dependent on initial eye position. Saccades elicited from this area displayed characteristics of "goal-directed saccades" which were similar to those described in the cat. The generation of goal-directed movements from the anteromedial zone suggests that this portion of the goldfish optic tectum has a different intrinsic organization or is connected with the brainstem saccade generator in a different fashion than the medial zone. Finally, stimulation of the extreme anteromedial zone evoked convergent eye movements. These movements and

  19. Normal Speed and Accuracy of Saccade and Vergence Eye Movements in Dyslexic Reader Children

    Directory of Open Access Journals (Sweden)

    Maria Pia Bucci

    2009-01-01

    Full Text Available Objective. Latency of eye movements depends on cortical structures while speed of execution and accuracy depends mostly on subcortical brainstem structures. Prior studies reported in dyslexic reader children abnormalities of latencies of saccades (isolated and combined with vergence; such abnormalities were attributed to deficits of fixation control and of visual attention. In this study we examine speed and accuracy characteristics of horizontal eye movements in natural space (saccades, vergence and combined movements in dyslexic reader children. Methods. Two paradigms are tested: gap paradigm (fixation offset 200 ms prior to target onset, producing shorter latencies, in both non-dyslexic reader and dyslexic reader children and simultaneous paradigm. Seventeen dyslexic reader children (mean age: 12±0.08 years and thirteen non-dyslexic reader children (mean age: 12±1 years were tested. Horizontal eye movements from both eyes were recorded simultaneously by a photoelectric device (Oculometer, Dr. Bouis. Results. For all movements tested (saccades, vergence, isolated or combined and for both paradigms, the mean velocity and accuracy were similar in dyslexic readers and non-dyslexic readers; no significant difference was found. Conclusion. This negative but important result, suggests no dysfunction of brainstem ocular motor circuits in dyslexic readers. It contrasts results on latencies related to visual attention dysfunction at cortical level.

  20. Eye movement analysis of reading from computer displays, eReaders and printed books.

    Science.gov (United States)

    Zambarbieri, Daniela; Carniglia, Elena

    2012-09-01

    To compare eye movements during silent reading of three eBooks and a printed book. The three different eReading tools were a desktop PC, iPad tablet and Kindle eReader. Video-oculographic technology was used for recording eye movements. In the case of reading from the computer display the recordings were made by a video camera placed below the computer screen, whereas for reading from the iPad tablet, eReader and printed book the recording system was worn by the subject and had two cameras: one for recording the movement of the eyes and the other for recording the scene in front of the subject. Data analysis provided quantitative information in terms of number of fixations, their duration, and the direction of the movement, the latter to distinguish between fixations and regressions. Mean fixation duration was different only in reading from the computer display, and was similar for the Tablet, eReader and printed book. The percentage of regressions with respect to the total amount of fixations was comparable for eReading tools and the printed book. The analysis of eye movements during reading an eBook from different eReading tools suggests that subjects' reading behaviour is similar to reading from a printed book. © 2012 The College of Optometrists.

  1. An initial investigation of radiologist eye movements in vascular imaging

    Science.gov (United States)

    Toomey, R. J.; Hodgins, S.; Evanoff, M. E.; Rainford, L. A.

    2013-03-01

    Eye tracking has been used by many researchers to try to shed light on the perceptual processes involved in medical image perception. Despite a large volume of data having been published regarding radiologist viewing patterns for static images, and more recently for stacked imaging modalities, little has been produced concerning angiographic images, which commonly have substantially different characteristics. A study was performed in which 7 expert radiologists viewed a range of digital subtraction angiograms of the peripheral vascular system. Initial results are presented. The observers were free to control the rate at which they viewed the images. Eye position data was recorded for each participant using Tobii TX300 eyetrackers. Analysis was performed in Tobii Studio software and included qualitative analysis of gaze pattern and analysis of metrics including first and total fixation duration etc. for areas of clinical interest. Early results indicate that experts briefly fixate on lesions but do not dwell in the area, rather continuing to inspect the more distal vascular segments before returning. Some individual variation was noted. Further research is required and ongoing.

  2. The "hypnotic state" and eye movements: Less there than meets the eye?

    Science.gov (United States)

    Nordhjem, Barbara; Marcusson-Clavertz, David; Holmqvist, Kenneth

    2017-01-01

    Responsiveness to hypnotic procedures has been related to unusual eye behaviors for centuries. Kallio and collaborators claimed recently that they had found a reliable index for "the hypnotic state" through eye-tracking methods. Whether or not hypnotic responding involves a special state of consciousness has been part of a contentious debate in the field, so the potential validity of their claim would constitute a landmark. However, their conclusion was based on 1 highly hypnotizable individual compared with 14 controls who were not measured on hypnotizability. We sought to replicate their results with a sample screened for High (n = 16) or Low (n = 13) hypnotizability. We used a factorial 2 (high vs. low hypnotizability) x 2 (hypnosis vs. resting conditions) counterbalanced order design with these eye-tracking tasks: Fixation, Saccade, Optokinetic nystagmus (OKN), Smooth pursuit, and Antisaccade (the first three tasks has been used in Kallio et al.'s experiment). Highs reported being more deeply in hypnosis than Lows but only in the hypnotic condition, as expected. There were no significant main or interaction effects for the Fixation, OKN, or Smooth pursuit tasks. For the Saccade task both Highs and Lows had smaller saccades during hypnosis, and in the Antisaccade task both groups had slower Antisaccades during hypnosis. Although a couple of results suggest that a hypnotic condition may produce reduced eye motility, the lack of significant interactions (e.g., showing only Highs expressing a particular eye behavior during hypnosis) does not support the claim that eye behaviors (at least as measured with the techniques used) are an indicator of a "hypnotic state.” Our results do not preclude the possibility that in a more spontaneous or different setting the experience of being hypnotized might relate to specific eye behaviors. PMID:28846696

  3. Levels of Interference in Long and Short-Term Memory Differentially Modulate Non-REM and REM Sleep.

    Science.gov (United States)

    Fraize, Nicolas; Carponcy, Julien; Joseph, Mickaël Antoine; Comte, Jean-Christophe; Luppi, Pierre-Hervé; Libourel, Paul-Antoine; Salin, Paul-Antoine; Malleret, Gaël; Parmentier, Régis

    2016-12-01

    It is commonly accepted that sleep is beneficial to memory processes, but it is still unclear if this benefit originates from improved memory consolidation or enhanced information processing. It has thus been proposed that sleep may also promote forgetting of undesirable and non-essential memories, a process required for optimization of cognitive resources. We tested the hypothesis that non-rapid eye movement sleep (NREMS) promotes forgetting of irrelevant information, more specifically when processing information in working memory (WM), while REM sleep (REMS) facilitates the consolidation of important information. We recorded sleep patterns of rats trained in a radial maze in three different tasks engaging either the long-term or short-term storage of information, as well as a gradual level of interference. We observed a transient increase in REMS amount on the day the animal learned the rule of a long-term/reference memory task (RM), and, in contrast, a positive correlation between the performance of rats trained in a WM task involving an important processing of interference and the amount of NREMS or slow wave activity. Various oscillatory events were also differentially modulated by the type of training involved. Notably, NREMS spindles and REMS rapid theta increase with RM training, while sharp-wave ripples increase with all types of training. These results suggest that REMS, but also rapid oscillations occurring during NREMS would be specifically implicated in the long-term memory in RM, whereas NREMS and slow oscillations could be involved in the forgetting of irrelevant information required for WM.

  4. Comparison Study of Polysomnographic Features in Multiple System Atrophy-cerebellar Types Combined with and without Rapid Eye Movement Sleep Behavior Disorder

    Institute of Scientific and Technical Information of China (English)

    Yan Ding; Yue-Qing Hu; Shu-Qin Zhan; Cun-Jiang Li; Hong-Xing Wang; Yu-Ping Wang

    2016-01-01

    Background:The brain stem is found to be impaired in multiple system atrophy-cerebellar types (MSA-C).Rapid eye movement (REM) sleep behavior disorder (RBD) is reported as a marker of progressive brain stem dysfunction.Few systematic studies about the sleep disturbances in MSA-C patients combined with or without RBD were reported.This study aimed to explore the polysomnographic (PSG) features of sleep disturbances between MSA-C patients with and without RBD.Methods:Totally,46 MSA-C patients (23 with RBD,and 23 without RBD) were enrolled in this study.All patients underwent a structured interview for their demographic data,history of sleep pattern,and movement disorders;and then,overnight video-PSG was performed in each patient.All the records were evaluated by specialists at the Sleep Medicine Clinic for RBD and the Movement Disorder Clinic for MSA-C.The Student's t-test,Mann-Whitney U-test for continuous variables,and the Chi-square test for categorical variables were used in this study.Results:MSA-C patients with RBD had younger visiting age (52.6 ± 7.4 vs.56.7 ± 6.0 years,P =0.046) and shorter duration of the disease (12.0 [12.0,24.0] vs.24.0 [14.0,36.0] months,P =0.009) than MSA-C patients without RBD.MSA-C with RBD had shorter REM sleep latency (111.7 ± 48.2 vs.157.0 ± 68.8 min,P =0.042),higher percentage of REM sleep (14.9% ±4.0% vs.10.0% ± 3.2%,P =0.019),and lower Stage Ⅰ (9.5% ±7.2% vs.15.9% ±8.0%,P =0.027) than MSA-C without RBD.Moreover,MSA-C patients with RBD had more decreased sleep efficiency (52.4% ±12.6% vs.65.8% ±15.9%,P =0.029) than that without RBD.Conclusions:In addition to the RBD,MSA-C patients with RBD had other more severe sleep disturbances than those without RBD.The sleep disorders of MSA patients might be associated with the progress of the disease.

  5. Comparison Study of Polysomnographic Features in Multiple System Atrophy-cerebellar Types Combined with and without Rapid Eye Movement Sleep Behavior Disorder

    Science.gov (United States)

    Ding, Yan; Hu, Yue-Qing; Zhan, Shu-Qin; Li, Cun-Jiang; Wang, Hong-Xing; Wang, Yu-Ping

    2016-01-01

    Background: The brain stem is found to be impaired in multiple system atrophy-cerebellar types (MSA-C). Rapid eye movement (REM) sleep behavior disorder (RBD) is reported as a marker of progressive brain stem dysfunction. Few systematic studies about the sleep disturbances in MSA-C patients combined with or without RBD were reported. This study aimed to explore the polysomnographic (PSG) features of sleep disturbances between MSA-C patients with and without RBD. Methods: Totally, 46 MSA-C patients (23 with RBD, and 23 without RBD) were enrolled in this study. All patients underwent a structured interview for their demographic data, history of sleep pattern, and movement disorders; and then, overnight video-PSG was performed in each patient. All the records were evaluated by specialists at the Sleep Medicine Clinic for RBD and the Movement Disorder Clinic for MSA-C. The Student's t-test, Mann-Whitney U-test for continuous variables, and the Chi-square test for categorical variables were used in this study. Results: MSA-C patients with RBD had younger visiting age (52.6 ± 7.4 vs. 56.7 ± 6.0 years, P = 0.046) and shorter duration of the disease (12.0 [12.0, 24.0] vs. 24.0 [14.0, 36.0] months, P = 0.009) than MSA-C patients without RBD. MSA-C with RBD had shorter REM sleep latency (111.7 ± 48.2 vs. 157.0 ± 68.8 min, P = 0.042), higher percentage of REM sleep (14.9% ±4.0% vs. 10.0% ± 3.2%, P = 0.019), and lower Stage I (9.5% ±7.2% vs. 15.9% ±8.0%, P = 0.027) than MSA-C without RBD. Moreover, MSA-C patients with RBD had more decreased sleep efficiency (52.4% ±12.6% vs. 65.8% ±15.9%, P = 0.029) than that without RBD. Conclusions: In addition to the RBD, MSA-C patients with RBD had other more severe sleep disturbances than those without RBD. The sleep disorders of MSA patients might be associated with the progress of the disease. PMID:27625088

  6. Capturing learning effects on eye movements in repeated measures experiments

    DEFF Research Database (Denmark)

    Bagger, Martin; Orquin, Jacob Lund; Fiedler, Susann

    We propose and illustrate that repeated exposure to stimuli sets increases the size of the saccade amplitudes. Saccadic amplitudes are closely related to the perceptual span and therefore used as a measure for the information intake in an experiment. Studies on expertise have shown that experts...... experiment in which 68 participants made choices between four alternatives with three different between subject conditions varying in presentation format (verbal matrix, a pictorial matrix, and a realistic product representation). The results consistently demonstrate an increase of the saccade amplitude over...... the course of the experiment independent of condition. We conclude by discussing our results in the light of the possible increase of the perceptual span and its implications for the research procedure in eye-tracking experiments with a repeated measurement design....

  7. Information fusion control with time delay for smooth pursuit eye movement.

    Science.gov (United States)

    Zhang, Menghua; Ma, Xin; Qin, Bin; Wang, Guangmao; Guo, Yanan; Xu, Zhigang; Wang, Yafang; Li, Yibin

    2016-05-01

    Smooth pursuit eye movement depends on prediction and learning, and is subject to time delays in the visual pathways. In this paper, an information fusion control method with time delay is presented, implementing smooth pursuit eye movement with prediction and learning as well as solving the problem of time delays in the visual pathways. By fusing the soft constraint information of the target trajectory of eyes and the ideal control strategy, and the hard constraint information of the eye system state equation and the output equation, optimal estimations of the co-state sequence and the control variable are obtained. The proposed control method can track not only constant velocity, sinusoidal target motion, but also arbitrary moving targets. Moreover, the absolute value of the retinal slip reaches steady state after 0.1 sec. Information fusion control method elegantly describes in a function manner how the brain may deal with arbitrary target velocities, how it implements the smooth pursuit eye movement with prediction, learning, and time delays. These two principles allowed us to accurately describe visually guided, predictive and learning smooth pursuit dynamics observed in a wide variety of tasks within a single theoretical framework. The tracking control performance of the proposed information fusion control with time delays is verified by numerical simulation results.

  8. Hybrid EEG—Eye Tracker: Automatic Identification and Removal of Eye Movement and Blink Artifacts from Electroencephalographic Signal

    Directory of Open Access Journals (Sweden)

    Malik M. Naeem Mannan

    2016-02-01

    Full Text Available Contamination of eye movement and blink artifacts in Electroencephalogram (EEG recording makes the analysis of EEG data more difficult and could result in mislead findings. Efficient removal of these artifacts from EEG data is an essential step in improving classification accuracy to develop the brain-computer interface (BCI. In this paper, we proposed an automatic framework based on independent component analysis (ICA and system identification to identify and remove ocular artifacts from EEG data by using hybrid EEG and eye tracker system. The performance of the proposed algorithm is illustrated using experimental and standard EEG datasets. The proposed algorithm not only removes the ocular artifacts from artifactual zone but also preserves the neuronal activity related EEG signals in non-artifactual zone. The comparison with the two state-of-the-art techniques namely ADJUST based ICA and REGICA reveals the significant improved performance of the proposed algorithm for removing eye movement and blink artifacts from EEG data. Additionally, results demonstrate that the proposed algorithm can achieve lower relative error and higher mutual information values between corrected EEG and artifact-free EEG data.

  9. Hybrid EEG--Eye Tracker: Automatic Identification and Removal of Eye Movement and Blink Artifacts from Electroencephalographic Signal.

    Science.gov (United States)

    Mannan, Malik M Naeem; Kim, Shinjung; Jeong, Myung Yung; Kamran, M Ahmad

    2016-02-19

    Contamination of eye movement and blink artifacts in Electroencephalogram (EEG) recording makes the analysis of EEG data more difficult and could result in mislead findings. Efficient removal of these artifacts from EEG data is an essential step in improving classification accuracy to develop the brain-computer interface (BCI). In this paper, we proposed an automatic framework based on independent component analysis (ICA) and system identification to identify and remove ocular artifacts from EEG data by using hybrid EEG and eye tracker system. The performance of the proposed algorithm is illustrated using experimental and standard EEG datasets. The proposed algorithm not only removes the ocular artifacts from artifactual zone but also preserves the neuronal activity related EEG signals in non-artifactual zone. The comparison with the two state-of-the-art techniques namely ADJUST based ICA and REGICA reveals the significant improved performance of the proposed algorithm for removing eye movement and blink artifacts from EEG data. Additionally, results demonstrate that the proposed algorithm can achieve lower relative error and higher mutual information values between corrected EEG and artifact-free EEG data.

  10. Using Eye Movement Desensitization and Reprocessing To Enhance Treatment of Couples.

    Science.gov (United States)

    Protinsky, Howard; Sparks, Jennifer; Flemke, Kimberly

    2001-01-01

    Eye Movement Desensitization and Reprocessing (EMDR) as a clinical technique may enhance treatment effectiveness when applied in couple therapy that is emotionally and experientially oriented. Clinical experience indicates EMDR-based interventions are useful for accessing and reprocessing intense emotions in couple interactions. EMDR can amplify…

  11. A Review of Eye Movement Desensitization and Reprocessing (EMDR): Research Findings and Implications for Counsellors.

    Science.gov (United States)

    MacCluskie, Kathryn C.

    1998-01-01

    States that within the last six years a new therapeutic technique for the treatment of posttraumatic stress disorder, Eye Movement Desensitization and Reprocessing (EMDR), has emerged. Examines the strengths and weaknesses of published studies concerning EMDR, describes the nature of the debate about the efficacy of EMDR, and reviews implications…

  12. Eye Movement Desensitization and Reprocessing (EMDR) Treatment for Psychologically Traumatized Individuals.

    Science.gov (United States)

    Wilson, Sandra A.; And Others

    1995-01-01

    Studies the effects of 3 90-minute Eye Movement Desensitization and Reprocessing (EMDR) treatment sessions on traumatic memories of 80 participants. Participants receiving EMDR showed decreases in complaints and anxiety, and increases in positive cognition. Participants in the delayed-treatment condition showed no improvement in any measures in…

  13. Relation between dream content and eye movements tested by lucid dreams.

    Science.gov (United States)

    Tholey, P

    1983-06-01

    This experiment illustrates that systematic observations in lucid dreams can be used to test hypotheses concerning the relation between dream content and eye movements. The observations were carried out by 5 students who had learned to induce lucid dreams by using the reflection technique developed by the author. Several hypotheses concerning the relation in question could be rejected.

  14. Reading Ahead: Adult Music Students' Eye Movements in Temporally Controlled Performances of a Children's Song

    Science.gov (United States)

    Penttinen, Marjaana; Huovinen, Erkki; Ylitalo, Anna-Kaisa

    2015-01-01

    In the present study, education majors minoring in music education (n = 24) and music performance majors (n =14) read and performed the original version and melodically altered versions of a simple melody in a given tempo. Eye movements during music reading and piano performances were recorded. Errorless trials were analyzed to explore the…

  15. Classification of iRBD and Parkinson's disease patients based on eye movements during sleep

    DEFF Research Database (Denmark)

    Christensen, Julie Anja Engelhard; Koch, Henriette; Frandsen, Rune;

    2013-01-01

    Patients suffering from the sleep disorder idiopathic rapid-eye-movement sleep behavior disorder (iRBD) have been observed to be in high risk of developing Parkinson's disease (PD). This makes it essential to analyze them in the search for PD biomarkers. This study aims at classifying patients...

  16. Conveying clinical reasoning based on visual observation via eye-movement modelling examples

    NARCIS (Netherlands)

    Jarodzka, Halszka; Balslev, Thomas; Holmqvist, Kenneth; Nyström, Marcus; Scheiter, Katharina; Gerjets, Peter; Eika, Berit

    2012-01-01

    Jarodzka, H., Balslev, T., Holmqvist, K., Nyström, M., Scheiter, K., Gerjets, P., & Eika, B. (2012). Conveying clinical reasoning based on visual observation via eye-movement modelling examples. Instructional Science, 40(5), 813-827. doi:10.1007/s11251-012-9218-5

  17. Eye-Movement Patterns of Readers with Down Syndrome during Sentence-Processing: An Exploratory Study

    Science.gov (United States)

    Frenck-Mestre, Cheryl; Zardan, Nathalie; Colas, Annie; Ghio, Alain

    2010-01-01

    Eye movements were examined to determine how readers with Down syndrome process sentences online. Participants were 9 individuals with Down syndrome ranging in reading level from Grades 1 to 3 and a reading-level-matched control group. For syntactically simple sentences, the pattern of reading times was similar for the two groups, with longer…

  18. Using Stroke Removal to Investigate Chinese Character Identification during Reading: Evidence from Eye Movements