WorldWideScience

Sample records for extruded az31 magnesium

  1. Two stage S-N curve in corrosion fatigue of extruded magnesium alloy AZ31

    Directory of Open Access Journals (Sweden)

    Yoshiharu Mutoh

    2009-11-01

    Full Text Available Tension-compression fatigue tests of extruded AZ31 magnesium alloys were carried out under corrosive environments:(a high humidity environment (80 %RH and (b 5 wt. %NaCl environment. It was found that the reduction rate of fatiguestrength due to corrosive environment was 0.12 under a high humidity and 0.53 under a NaCl environment. It was alsoobserved that under corrosive environments, the S-N curve was not a single curve but a two-stage curve. Above the fatiguelimit under low humidity, the crack nucleation mechanism was due to a localized slip band formation mechanism. Below thefatigue limit under low humidity, the reduction in fatigue strength was attributed to the corrosion pit formation and growth to the critical size for fatigue crack nucleation under the combined effect of cyclic load and the corrosive environment. The critical size was attained when the stress intensity factor range reached the threshold value for crack growth.

  2. Microstructure damage evolution associated with cyclic deformation for extruded AZ31B magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ying, E-mail: yxiong@zjut.edu.cn [Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China)

    2016-10-15

    Fatigue damage evolution of extruded AZ31B magnesium (Mg) alloy is investigated under strain-controlled tension-compression loading along the extrusion direction at various strain amplitudes, and the different cyclic deformation behaviors are observed. At the strain amplitude of 2%, the tensile peak stress displays significant cyclic softening, whereas the compressive peak stress shows consistent cyclic hardening. At 1%, moderate cyclic hardening is observed at both the tensile peak and compressive peak stresses. At 0.5%, the tensile peak stress presents stable cyclic hardening, whereas the compressive peak stress almost keeps constant. The microstructure morphologies associated with the cyclic deformation are analyzed by scanning electronic microscope (SEM). The degree of deformation twins is evaluated by analyzing X-ray diffraction (XRD) using a normalized parameter λ. The results show the fatigue crack initiation modes and its propagation modes are dependent on the strain amplitude. At 2%, grain boundary (GB) cracking and triple joint cracking are detected after 1st loading cycle. At 1%, fatigue crack initiates at grain boundary (GB cracking), twin boundary (TB cracking) and triple joint of three neighboring grains. Both grain boundary induced (GB-induced) intergranular and persistent slip band induced (PSB-induced) transgranular propagation modes play an important role in the early-stage crack growth. At 0.5%, crack initiation modes are similar to that at 1%, but GB-induced intergranular propagation mode dominates the early-stage crack growth. The effects of the microstructure (texture, grain size and uniformity) on the fatigue damage behavior are discussed.

  3. Study on hot deformation behavior and microstructure evolution of cast-extruded AZ31B magnesium alloy and nanocomposite using processing map

    International Nuclear Information System (INIS)

    Srinivasan, M.; Loganathan, C.; Narayanasamy, R.; Senthilkumar, V.; Nguyen, Q.B.; Gupta, M.

    2013-01-01

    Highlights: ► Hot deformation behavior of AZ31B Mg alloy and nanocomposite were studied. ► Activation energy of AZ31B Mg alloy and nanocomposite were determined. ► Twining, shear bands and flow localization were observed. - Abstract: The hot deformation behavior and microstructural evolution of cast-extruded AZ31B magnesium alloy and nanocomposite have been studied using processing-maps. Compression tests were conducted in the temperature range of 250–400 °C and strain rate range of 0.01–1.0 s −1 . The three-dimensional (3D) processing maps developed in this work, describe the variations of the efficiency of power dissipation and flow instability domains in the strain rate (ε) and temperature (T) space. The deformation mechanisms namely dynamic recrystallization (DRX), dynamic recovery (DRY) and instability regions were identified using processing maps. The deformation mechanisms were also correlated with transmission electron microscopy (TEM) and optical microscopy (OM). The optimal region for hot working has been observed at a strain rate (ε) of 0.01 s −1 and the temperature (T) of 400 °C for both magnesium alloy and nanocomposite. Few instability regimes have been identified in this study at higher strain rate (ε) and temperature (T). The stability domains have been identified in the lower strain rate regimes

  4. Friction welding of AZ31 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tsujino, R.; Ochi, H. [Osaka Inst. of Tech., Osaka (Japan); Kawai, G. [Osaka Sangyo Univ., Osaka (Japan); Yamaguchi, H.; Ogawa, K. [Osaka Prefecture Univ., Osaka (Japan); Suga, Y. [Keio Univ., Kanagawa (Japan)

    2003-07-01

    In this paper, for an acceleration of utilization of magnesium alloy which is being interested in recent years, friction welding of AZ31 magnesium alloy was carried out, and the joint performance was discussed in relation to the deformation heat input in the upset stage and upset loss as a evaluation factor. Where, the deformation heat input in the upset stage is mechanical work represented by the product of upset speed and axial pressure. As a result, it was made clear that the friction welding of AZ31 magnesium alloy was easy in the atmosphere, and good welded joints without a non- adhesion area at the weld interface could de obtained. Moreover, the evaluation factors discussed were possible to evaluate to joint performance. (orig.)

  5. Grain refinement of AZ31 magnesium alloy by electromagnetic ...

    Indian Academy of Sciences (India)

    Low-frequency electromagnetic field; AZ31 magnesium alloy; Al4C3; grain refinement. Abstract. The effects of electromagnetic stirring and Al4C3 grain refiner on the grain refinement of semicontinuously cast AZ31 magnesium alloy were discussed in this investigation. The results indicate that electromagnetic stirring has an ...

  6. Evolution of twinning in extruded AZ31 alloy with bimodal grain structure

    Energy Technology Data Exchange (ETDEWEB)

    Garcés, G., E-mail: ggarces@cenim.csic.es [Department of Physical Metallurgy, National Centre for Metallurgical Research CENIM-CSIC, Av. De Gregorio del Amo 8, 28040 Madrid (Spain); Oñorbe, E. [CIEMAT, Division of Structural Materials, Avenida Complutense, 40, 28040 Madrid (Spain); Gan, W. [German Engineering Materials Science Centre at MLZ, Helmholtz-Zentrum Geesthacht, Lichtebergstr. 1, D-85747 Garching (Germany); Máthis, K. [Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University, KeKarlovu 5, 121 16 Praha 2 (Czech Republic); Tolnai, D. [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht (Germany); Horváth, K. [Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University, KeKarlovu 5, 121 16 Praha 2 (Czech Republic); Pérez, P.; Adeva, P. [Department of Physical Metallurgy, National Centre for Metallurgical Research CENIM-CSIC, Av. De Gregorio del Amo 8, 28040 Madrid (Spain)

    2017-04-15

    Twinning in extruded AZ31 alloy with a bimodal grain structure is studied under compression along the extrusion direction. This study has combined in-situ measurements during the compression tests by Synchrotron Radiation Diffraction and Acoustic Emission techniques and the evaluation of the microstructure and texture in post-mortem compression samples deformed at different strains. The microstructure of the alloy is characterized by the coexistence of large areas of fine dynamic recrystallized grains and coarse non-recrystallized grains elongated along extrusion direction. Twinning occurs initially in large elongated grains before the macroscopic yield stress which is controlled by the twinning in equiaxed dynamically recrystallized grains. - Highlights: • The AZ31 extruded at low temperature exhibits a bimodal grains structure. • Twinning takes place before macroscopic yielding in coarse non-DRXed grains. • DRXed grains controls the beginning of plasticity in magnesium alloys with bimodal grain structure.

  7. The Corrosion Protection of Magnesium Alloy AZ31B

    Science.gov (United States)

    Danford, M. D.; Mendrek, M. J.; Mitchell, M. L.; Torres, P. D.

    1997-01-01

    Corrosion rates for bare and coated Magnesium alloy AZ31B have been measured. Two coatings, Dow-23(Trademark) and Tagnite(Trademark), have been tested by electrochemical methods and their effectiveness determined. Electrochemical methods employed were the scanning reference electrode technique (SRET), the polarization resistance technique (PR) and the electrochemical impedance spectroscopy technique (EIS). In addition, general corrosion and stress corrosion methods were employed to examine the effectiveness of the above coatings in 90 percent humidity. Results from these studies are presented.

  8. Anticorrosive magnesium hydroxide coating on AZ31 magnesium alloy by hydrothermal method

    International Nuclear Information System (INIS)

    Zhu Yanying; Wu Guangming; Xing Guangjian; Li Donglin; Zhao Qing; Zhang Yunhong

    2009-01-01

    Magnesium alloys are potential biodegradable biomaterials in orthopedic surgery. However, the rapid degradation rate has limited their application in biomedical field. A great deal of studies have been done to improve the resistance of magnesium alloys. In this article, An anticorrosive magnesium hydroxide coating with a thickness of approximately 100μm was formed on an AZ31 magnesium alloy by hydrothermal method. The morphology of the coatings were observed by an optical microscope and SEM. And the samples were soaked in hank's solution (37 deg. C) to investigate the corrosion resistance. Magnesium alloy AZ31 with magnesium hydroxide coatings present superior corrosion resistance than untreated samples.

  9. High speed cutting of AZ31 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Liwei Lu

    2016-06-01

    Full Text Available Using LBR-370 numerical control lathe, high speed cutting was applied to AZ31 magnesium alloy. The influence of cutting parameters on microstructure, surface roughness and machining hardening were investigated by using the methods of single factor and orthogonal experiment. The results show that the cutting parameters have an important effect on microstructure, surface roughness and machine hardening. The depth of stress layer, roughness and hardening present a declining tendency with the increase of the cutting speed and also increase with the augment of the cutting depth and feed rate. Moreover, we established a prediction model of the roughness, which has an important guidance on actual machining process of magnesium alloy.

  10. Development of a Ballistic Specification for Magnesium Alloy AZ31B

    National Research Council Canada - National Science Library

    Jones, Tyrone L; DeLorme, Richard D

    2008-01-01

    The U.S. Army Research Laboratory (ARL) and Magnesium Elektron North America (MENA) have conducted a joint effort to develop and evaluate rolled plate in commercially available magnesium alloy-temper AZ31B-H24...

  11. Microstructure and corrosion resistance of Ce–V conversion coating on AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Jiang, Xiao; Guo, Ruiguang; Jiang, Shuqin

    2015-01-01

    Highlights: • Through simple chemical conversion process, a Ce–V conversion coating is prepared on AZ31 magnesium alloy. The coating (∼2 μm thick) has a duplex structure and is composed of Mg, Al, Ce, V and O in the outer layer and Mg, Al, V, F and O in the inner layer. • The Ce–V conversion coating can increase the E corr by 157 mV and decrease the i corr by 80 times compared to AZ31 magnesium alloy substrate. Moreover, the performance of the Ce–V conversion coating excels the chromate conversion coating on AZ31 magnesium alloy. • The EIS results of Ce–V conversion coating indicate an increase of 10× in the corrosion resistance and a delay in the corrosion process kinetics compared to uncoated AZ31 magnesium alloy in 3.5 wt.% NaCl solution. • The ball cratering is a simple and effective technique of thickness measurement for chemical conversion coating. - Abstract: A Ce–V conversion coating was developed to improve the corrosion resistance of AZ31 magnesium alloy. Scanning electronic microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectrometer (XPS), grazing incidence X-ray diffraction (GIXRD) and the ball cratering test were adopted to study the morphology, chemical composition, structure and thickness of the coating. The coating has duplex structure with network and its thickness is about 2 μm. The coating contains high contents of Ce and V, which exhibits amorphous structure. Potentiodynamic polarization shows the coating can increase the corrosion potential and reduce the corrosion current density of AZ31 magnesium alloy. Moreover, the electrochemical impedance spectra exhibit the coating significantly improves the corrosion resistance of AZ31 magnesium alloy. Results indicate that the Ce–V conversion coating can provide effective protection to AZ31 magnesium alloy

  12. Microstructure and corrosion resistance of Ce–V conversion coating on AZ31 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiao, E-mail: xiaoxiao217@126.com; Guo, Ruiguang; Jiang, Shuqin

    2015-06-30

    Highlights: • Through simple chemical conversion process, a Ce–V conversion coating is prepared on AZ31 magnesium alloy. The coating (∼2 μm thick) has a duplex structure and is composed of Mg, Al, Ce, V and O in the outer layer and Mg, Al, V, F and O in the inner layer. • The Ce–V conversion coating can increase the E{sub corr} by 157 mV and decrease the i{sub corr} by 80 times compared to AZ31 magnesium alloy substrate. Moreover, the performance of the Ce–V conversion coating excels the chromate conversion coating on AZ31 magnesium alloy. • The EIS results of Ce–V conversion coating indicate an increase of 10× in the corrosion resistance and a delay in the corrosion process kinetics compared to uncoated AZ31 magnesium alloy in 3.5 wt.% NaCl solution. • The ball cratering is a simple and effective technique of thickness measurement for chemical conversion coating. - Abstract: A Ce–V conversion coating was developed to improve the corrosion resistance of AZ31 magnesium alloy. Scanning electronic microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectrometer (XPS), grazing incidence X-ray diffraction (GIXRD) and the ball cratering test were adopted to study the morphology, chemical composition, structure and thickness of the coating. The coating has duplex structure with network and its thickness is about 2 μm. The coating contains high contents of Ce and V, which exhibits amorphous structure. Potentiodynamic polarization shows the coating can increase the corrosion potential and reduce the corrosion current density of AZ31 magnesium alloy. Moreover, the electrochemical impedance spectra exhibit the coating significantly improves the corrosion resistance of AZ31 magnesium alloy. Results indicate that the Ce–V conversion coating can provide effective protection to AZ31 magnesium alloy.

  13. Influence of inorganic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Blawert, C.; Scharnagl, N.

    2009-01-01

    Surface contaminants as a result of thermo-mechanical processing of magnesium alloys, e.g. sheet rolling, can have a negative effect on the corrosion resistance of magnesium alloys. Especially contaminants such as Fe, Ni and Cu, left on the surface of magnesium alloys result in the formation...... of micro-galvanic couples and can therefore increase corrosion attack on these alloys. Due to this influence they should be removed to obtain good corrosion resistance. In this study, the effect of inorganic acid pickling on the corrosion behaviour of a commercial AZ31 magnesium alloy sheet...... cleaning the AZ31 sheet. However, to obtain reasonable corrosion resistance at least 5 mu m of the surface of AZ31 magnesium alloy sheet have to be removed....

  14. A Comparative Electrochemical Study of AZ31 and AZ91 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    S. A. Salman

    2010-01-01

    Full Text Available A comparative study has been carried out on AZ31 and AZ91 magnesium alloys in order to understand the electrochemical behavior in both alkaline and chloride containing solutions. The open circuit potential (OCP was examined in 1 M NaOH and 3.5 mass % NaCl solutions. AZ31 magnesium alloy shows several potential drops throughout the immersion in 1 M NaOH solution, though AZ91 does not show this phenomenon. The specimens were anodized at a constant potential of 3 V for 30 minutes at 298 K in 1 M NaOH solution. The anticorrosion behavior of the anodized specimens was better than those of nonanodized specimens. The anodized AZ91 has better corrosion resistance compared to nonanodized specimen and anodized AZ31 magnesium alloy.

  15. Rapid coating of AZ31 magnesium alloy with calcium deficient hydroxyapatite using microwave energy

    International Nuclear Information System (INIS)

    Ren, Yufu; Zhou, Huan; Nabiyouni, Maryam; Bhaduri, Sarit B.

    2015-01-01

    Due to their unique biodegradability, magnesium alloys have been recognized as suitable metallic implant materials for degradable bone implants and bioresorbable cardiovascular stents. However, the extremely high degradation rate of magnesium alloys in physiological environment has restricted its practical application. This paper reports the use of a novel microwave assisted coating technology to improve the in vitro corrosion resistance and biocompatibility of Mg alloy AZ31. Results indicate that a dense calcium deficient hydroxyapatite (CDHA) layer was uniformly coated on a AZ31 substrate in less than 10 min. Weight loss measurement and SEM were used to evaluate corrosion behaviors in vitro of coated samples and of non-coated samples. It was seen that CDHA coatings remarkably reduced the mass loss of AZ31 alloy after 7 days of immersion in SBF. In addition, the prompt precipitation of bone-like apatite layer on the sample surface during immersion demonstrated a good bioactivity of the CDHA coatings. Proliferation of osteoblast cells was promoted in 5 days of incubation, which indicated that the CDHA coatings could improve the cytocompatibility of the AZ31 alloy. All the results suggest that the CDHA coatings, serving as a protective layer, can enhance the corrosion resistance and biological response of magnesium alloys. Furthermore, this microwave assisted coating technology could be a promising method for rapid surface modification of biomedical materials. - Highlights: • A microwave assisted coating process for biodegradable Mg alloy. • CDHA coatings were successfully developed on AZ31 alloy in minutes. • The as-deposited CDHA coatings significantly reduced the degradation rate of AZ31 alloy. • The CDHA coated AZ31 alloy showed good bioactivity and biocompatibility in vitro. • The microwave assisted coating process can be used as rapid surface modification for bioimplants

  16. Rapid coating of AZ31 magnesium alloy with calcium deficient hydroxyapatite using microwave energy

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yufu, E-mail: Yufu.Ren@rockets.utoledo.edu [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Zhou, Huan [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu (China); Nabiyouni, Maryam [Department of Bioengineering, The University of Toledo, Toledo, OH (United States); Bhaduri, Sarit B. [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Division of Dentistry, The University of Toledo, Toledo, OH (United States)

    2015-04-01

    Due to their unique biodegradability, magnesium alloys have been recognized as suitable metallic implant materials for degradable bone implants and bioresorbable cardiovascular stents. However, the extremely high degradation rate of magnesium alloys in physiological environment has restricted its practical application. This paper reports the use of a novel microwave assisted coating technology to improve the in vitro corrosion resistance and biocompatibility of Mg alloy AZ31. Results indicate that a dense calcium deficient hydroxyapatite (CDHA) layer was uniformly coated on a AZ31 substrate in less than 10 min. Weight loss measurement and SEM were used to evaluate corrosion behaviors in vitro of coated samples and of non-coated samples. It was seen that CDHA coatings remarkably reduced the mass loss of AZ31 alloy after 7 days of immersion in SBF. In addition, the prompt precipitation of bone-like apatite layer on the sample surface during immersion demonstrated a good bioactivity of the CDHA coatings. Proliferation of osteoblast cells was promoted in 5 days of incubation, which indicated that the CDHA coatings could improve the cytocompatibility of the AZ31 alloy. All the results suggest that the CDHA coatings, serving as a protective layer, can enhance the corrosion resistance and biological response of magnesium alloys. Furthermore, this microwave assisted coating technology could be a promising method for rapid surface modification of biomedical materials. - Highlights: • A microwave assisted coating process for biodegradable Mg alloy. • CDHA coatings were successfully developed on AZ31 alloy in minutes. • The as-deposited CDHA coatings significantly reduced the degradation rate of AZ31 alloy. • The CDHA coated AZ31 alloy showed good bioactivity and biocompatibility in vitro. • The microwave assisted coating process can be used as rapid surface modification for bioimplants.

  17. Qualitative Research of AZ31 Magnesium Alloy Aircraft Brackets Produced by a New Forging Method

    Directory of Open Access Journals (Sweden)

    Dziubińska A.

    2016-06-01

    Full Text Available The paper reports a selection of numerical and experimental results of a new closed-die forging method for producing AZ31 magnesium alloy aircraft brackets with one rib. The numerical modelling of the new forming process was performed by the finite element method.The distributions of stresses, strains, temperature and forces were examined. The numerical results confirmed that the forgings produced by the new forming method are correct. For this reason, the new forming process was verified experimentally. The experimental results showed good agreement with the numerical results. The produced forgings of AZ31 magnesium alloy aircraft brackets with one rib were then subjected to qualitative tests.

  18. Effect of aluminum coatings on corrosion properties of AZ31 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chiu Liuho; Lin Hsingan; Chen Chunchin; Yang Chihfu [Dept. of materials engineering, Tatung Univ., Taipei (Taiwan); Chang Chiahua; Wu Jenchin [Physical chemistry section, chemical systems research div., Chung-Shan Inst. of Science and Technology, Tao-Yuan (Taiwan)

    2003-07-01

    This investigation aimed to increase the corrosion resistance of an AZ31 magnesium alloy by an aluminum arc spray coating and a post-treatment consisted of hot pressing and anodizing. It was found that the aluminum arc spraying alone was incapable of protection against corrosion due to the high amount of pores present in the coating layer. In order to solve the problem, densification of the Al arc-sprayed layer was carried out by hot pressing the coated AZ31 Mg alloy plate under an appropriate range of temperature, time and pressure. After hot pressing the Al coated AZ31 Mg alloy plate exhibited a much improved corrosion resistance. A final anodizing treatment applied to the AZ31 alloy with the dense Al coating further improved its resisting to corrosion. The results showed that, by adopting the Al arc spraying, hot pressing and anodizing process, the corrosion current density of the AZ31 alloy in a 3.5 wt% NaCl solution was from 2.1 x 10{sup -6} A/cm{sup 2} (original AZ31) to 3.7 x 10{sup -7} A/cm{sup 2} (after the surface treatment), which value is close to that of an anodized aluminum plate. (orig.)

  19. Biodegradable behaviors of AZ31 magnesium alloy in simulated body fluid

    International Nuclear Information System (INIS)

    Song Yingwei; Shan Dayong; Chen Rongshi; Zhang Fan; Han Enhou

    2009-01-01

    Magnesium alloys have unique advantages to act as biodegradable implants for clinical application. The biodegradable behaviors of AZ31 in simulated body fluid (SBF) for various immersion time intervals were investigated by electrochemical impedance spectroscopy (EIS) tests and scanning electron microscope (SEM) observation, and then the biodegradable mechanisms were discussed. It was found that a protective film layer was formed on the surface of AZ31 in SBF. With increasing of immersion time, the film layer became more compact. If the immersion time was more than 24 h, the film layer began to degenerate and emerge corrosion pits. In the meantime, there was hydroxyapatite particles deposited on the film layer. The hydroxyapatite is the essential component of human bone, which indicates the perfect biocompatibility of AZ31 magnesium alloy.

  20. Fault-tolerant epoxy-silane coating for corrosion protection of magnesium alloy AZ31

    NARCIS (Netherlands)

    Lamaka, S.V.; Xue, H.B.; Meis, N.N.A.H.; Esteves, A.C.C.; Ferreira, M.G.S.

    2015-01-01

    In this work, a hybrid epoxy-silane coating was developed for corrosion protection of magnesium alloy AZ31. The average thickness of the film produced by dip-coating procedure was 14 µm. The adhesion strength of the epoxy-silane coating to the Mg substrate was evaluated by pull-off tests and was

  1. Initiation and strain compatibility of connected extension twins in AZ31 magnesium alloy at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiao, E-mail: liuxiao0105@163.com [Key Laboratory of High Temperature Wear Resistant Materials Preparation Technology of Hunan Province, Hunan University of Science and Technology, Xiangtan, Hunan 411201 (China); State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan 410082 (China); Zhu, Biwu [Key Laboratory of High Temperature Wear Resistant Materials Preparation Technology of Hunan Province, Hunan University of Science and Technology, Xiangtan, Hunan 411201 (China); Huang, Guangjie [College of Materials Science and Engineering, Chongqing University, Chongqing, Chongqing 400045 (China); Li, Luoxing, E-mail: luoxing_li@yahoo.com [State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan 410082 (China); Xie, Chao [Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211 (China); Tang, Changping [Key Laboratory of High Temperature Wear Resistant Materials Preparation Technology of Hunan Province, Hunan University of Science and Technology, Xiangtan, Hunan 411201 (China)

    2016-12-15

    Uniaxial compression tests were carried out at 350 °C and a strain rate of 0.3 s{sup −1} on as-extruded AZ31 magnesium alloy samples. At a true strain of − 0.1, extension twin pairs in a grain and twin chains across adjacent grains were detected. The orientation of selected twins and their host grains were determined by electron backscattered diffraction (EBSD) techniques. The Schmid factors (SFs), accommodation strains and geometric compatibility factors (m{sup ′}) were calculated. Analysis of the data indicated that the formation of twin pair and twin chain was related to the SF and m{sup ′}. Regarding to twin chain across adjacent grains, accommodation strain was also involved. The selection of twin variants in twin chain was generally determined by m{sup ′}. When the twins required the operation of pyramidal slip or twinning in adjacent grain, the corresponding connected twins with a relative high m{sup ′} were selected in this adjacent grain. - Highlights: •The formation of paired twins is studied during high temperature deformation. •The initiation of twinning in twin pair and twin chain obeys the Schmid law. •The twin variants' selection in twin chain is related to the geometric compatibility factor. •The accommodation strain plays an important role on the formation of twin chain.

  2. Effects of organic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Blawert, C.; Scharnagl, N.

    2010-01-01

    mu m of the contaminated surface was required to reach corrosion rates less than 1 mm/year in salt spray condition. Among the three organic acids examined, acetic acid is the best choice. Oxalic acid can be an alternative while citric acid is not suitable for cleaning AZ31 sheet, because......Organic acids were used to clean AZ31 magnesium alloy sheet and the effect of the cleaning processes on the surface condition and corrosion performance of the alloy was investigated. Organic acid cleanings reduced the surface impurities and enhanced the corrosion resistance. Removal of at least 4...

  3. Microstructures of friction welded joints of AZ31 to AM60 magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, S.; Ono, T.; Tanaka, S.; Tsubakino, H. [Graduate School of Engineering, Himeji Inst. of Tech., Hyogo (Japan); Tomita, T.; Aritoshi, M. [Hyogo Prefectural Inst. of Industrial Research, Kobe, Hyogo (Japan); Okita, K. [Inst. of Industrial Research, Osaka Sangyo Univ., Osaka (Japan)

    2003-07-01

    AZ31 magnesium alloy was friction-welded to AM60 and the microstructures and the friction welding process were studied. The microstructures changed near the weld interface. The AZ31 was refined to a grain size of several {mu}m near the weld interface. The nucleation occurred in the shear bands that were introduced during the welding process. On the other hand, the eutectic structure was deformed and the lamellar structure which was composed of {alpha}-Mg and Mg{sub 17}Al{sub 12} was formed near the weld interface in AM60 alloy. In the friction process, the adhesion and peel off occurred alternately between AZ31 and AM60. Eventually, bonding was completed during upset process. (orig.)

  4. Influence of Heat Treatment on the Corrosion Behavior of Purified Magnesium and AZ31 Alloy

    OpenAIRE

    Khalifeh, Sohrab; Burleigh, T. David

    2017-01-01

    Magnesium and its alloys are ideal for biodegradable implants due to their biocompatibility and their low-stress shielding. However, they can corrode too rapidly in the biological environment. The objective of this research was to develop heat treatments to slow the corrosion of high purified magnesium and AZ31 alloy in simulated body fluid at 37{\\deg}C. Heat treatments were performed at different temperatures and times. Hydrogen evolution, weight loss, PDP, and EIS methods were used to measu...

  5. Orientation dependent slip and twinning during compression and tension of strongly textured magnesium AZ31 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Al-Samman, T., E-mail: al-samman@imm.rwth-aachen.de [Institut fuer Metallkunde und Metallphysik, RWTH Aachen, Kopernikusstr. 14, D-52064 Aachen (Germany); Li, X. [Institut fuer Metallkunde und Metallphysik, RWTH Aachen, Kopernikusstr. 14, D-52064 Aachen (Germany); Chowdhury, S. Ghosh [CSIR National Metallurgical Laboratory, MST Division, Jamshedpur 831007 (India)

    2010-06-15

    Over recent years there have been a remarkable number of studies dealing with compression of magnesium. A literature search, however, shows a noticeably less number of papers concerned with tension and a very few papers comparing both modes, systematically, in one study. The current investigation reports the anisotropic deformation behavior and concomitant texture and microstructure evolution investigated in uniaxial tension and compression tests in two sample directions performed on an extruded commercial magnesium alloy AZ31 at different Z conditions. For specimens with the loading direction parallel to the extrusion axis, the tension-compression strength anisotropy was pronounced at high Z conditions. Loading at 45{sup o} from the extrusion axis yielded a tension-compression strength behavior that was close to isotropic. During tensile loading along the extrusion direction the extrusion texture resists twinning and favors prismatic slip (contrary to compression). This renders the shape change maximum in the basal plane and equal to zero along the c-axis, which resulted in the orientation of individual grains remaining virtually intact during all tension tests at different Z conditions. For the other investigated sample direction, straining was accommodated along the c-axis, which was associated with a lattice rotation, and thus, a change of crystal orientation. Uniaxial compression at a low Z condition (400 deg. C/10{sup -4} s{sup -1}) yielded a desired texture degeneration, which was explained on the basis of a more homogeneous partitioning of slip systems that reduces anisotropy and enhanced dynamic recrystallization (DRX), which counteracts the strong deformation texture. The critical strains for the nucleation of DRX in tensiled specimens at the highest investigated Z condition (200 deg. C/10{sup -2} s{sup -1}) were found to range between 4% and 5.6%.

  6. Grain refinement of AZ31 magnesium alloy by electromagnetic ...

    Indian Academy of Sciences (India)

    to improve the mechanical properties of magnesium alloys. (Lahaie and Bouchard 2001; ... superheating, carbon inoculation, addition of solute elements ... microscope (SEM) for morphological characterization. 3. Results and ... C. Figures 2(d), (e) and (f) show the ... It is widely appreciated that the microstructure of a casting.

  7. Surface roughness optimization in machining of AZ31 magnesium alloy using ABC algorithm

    Directory of Open Access Journals (Sweden)

    Abhijith

    2018-01-01

    Full Text Available Magnesium alloys serve as excellent substitutes for materials traditionally used for engine block heads in automobiles and gear housings in aircraft industries. AZ31 is a magnesium alloy finds its applications in orthopedic implants and cardiovascular stents. Surface roughness is an important parameter in the present manufacturing sector. In this work optimization techniques namely firefly algorithm (FA, particle swarm optimization (PSO and artificial bee colony algorithm (ABC which are based on swarm intelligence techniques, have been implemented to optimize the machining parameters namely cutting speed, feed rate and depth of cut in order to achieve minimum surface roughness. The parameter Ra has been considered for evaluating the surface roughness. Comparing the performance of ABC algorithm with FA and PSO algorithm, which is a widely used optimization algorithm in machining studies, the results conclude that ABC produces better optimization when compared to FA and PSO for optimizing surface roughness of AZ 31.

  8. Notch sensitivity of cast AZ31 magnesium alloy

    Czech Academy of Sciences Publication Activity Database

    Kunz, Ludvík; Lukáš, Petr; Estrin, Y.; Zúberová, Z.

    2005-01-01

    Roč. 12, č. 3 (2005), s. 88-91 ISSN 1335-0803. [Degradácia konštrukčných materiálov 2005. Terchová - Biely Potok, 05.09.2005-07.09.2005] R&D Projects: GA MŠk(CZ) 1P05ME804 Institutional research plan: CEZ:AV0Z20410507 Keywords : notch sensitivity * magnesium alloy * fatigue lifetime Subject RIV: JG - Metallurgy

  9. Development of Rolling Schedules for AZ31 Magnesium Alloy Sheets

    Science.gov (United States)

    2015-06-01

    Materials 2 2.2 Hot Rolling 3 2.2 Sample Characterization: Microstructure and Tensile Properties 3 3. Rolling Experiments 5 3.1 High-Temperature...material systems for protective and structural applications, especially in ground vehicles. Magnesium (Mg), due to its low density (~25% that of steel ...applications, wrought Mg is difficult to produce in thin sheets because of its inherently low ductility . As a result, Mg sheet is often produced at

  10. Wire Arc Additive Manufacturing of AZ31 Magnesium Alloy: Grain Refinement by Adjusting Pulse Frequency

    Directory of Open Access Journals (Sweden)

    Jing Guo

    2016-10-01

    Full Text Available Wire arc additive manufacturing (WAAM offers a potential approach to fabricate large-scale magnesium alloy components with low cost and high efficiency, although this topic is yet to be reported in literature. In this study, WAAM is preliminarily applied to fabricate AZ31 magnesium. Fully dense AZ31 magnesium alloy components are successfully obtained. Meanwhile, to refine grains and obtain good mechanical properties, the effects of pulse frequency (1, 2, 5, 10, 100, and 500 Hz on the macrostructure, microstructure and tensile properties are investigated. The results indicate that pulse frequency can result in the change of weld pool oscillations and cooling rate. This further leads to the change of the grain size, grain shape, as well as the tensile properties. Meanwhile, due to the resonance of the weld pool at 5 Hz and 10 Hz, the samples have poor geometry accuracy but contain finer equiaxed grains (21 μm and exhibit higher ultimate tensile strength (260 MPa and yield strength (102 MPa, which are similar to those of the forged AZ31 alloy. Moreover, the elongation of all samples is above 23%.

  11. The High Strain Rate Deformation Behavior of High Purity Magnesium and AZ31B Magnesium Alloy

    Science.gov (United States)

    Livescu, Veronica; Cady, Carl M.; Cerreta, Ellen K.; Henrie, Benjamin L.; Gray, George T.

    The deformation in compression of pure magnesium and AZ31B magnesium alloy, both with a strong basal pole texture, has been investigated as a function of temperature, strain rate, and specimen orientation. The mechanical response of both metals is highly dependent upon the orientation of loading direction with respect to the basal pole. Specimens compressed along the basal pole direction have a high sensitivity to strain rate and temperature and display a concave down work hardening behavior. Specimens loaded perpendicularly to the basal pole have a yield stress that is relatively insensitive to strain rate and temperature and a work hardening behavior that is parabolic and then linearly upwards. Both specimen orientations display a mechanical response that is sensitive to temperature and strain rate. Post mortem characterization of the pure magnesium was conducted on a subset of specimens to determine the microstructural and textural evolution during deformation and these results are correlated with the observed work hardening behavior and strain rate sensitivities were calculated.

  12. Stamping of Thin-Walled Structural Components with Magnesium Alloy AZ31 Sheets

    International Nuclear Information System (INIS)

    Chen, F.-K.; Chang, C.-K.

    2005-01-01

    In the present study, the stamping process for manufacturing cell phone cases with magnesium alloy AZ31 sheets was studied using both the experimental approach and the finite element analysis. In order to determine the proper forming temperature and set up a fracture criterion, tensile tests and forming limit tests were first conducted to obtain the mechanical behaviors of AZ31 sheets at various elevated temperatures. The mechanical properties of Z31 sheets obtained from the experiments were then adopted in the finite element analysis to investigate the effects of the process parameters on the formability of the stamping process of cell phone cases. The finite element simulation results revealed that both the fracture and wrinkle defects could not be eliminated at the same time by adjusting blank-holder force or blank size. A drawbead design was then performed using the finite element simulations to determine the size and the location of drawbead required to suppress the wrinkle defect. An optimum stamping process, including die geometry, forming temperature, and blank dimension, was then determined for manufacturing the cell phone cases. The finite element analysis was validated by the good agreement between the simulation results and the experimental data. It confirms that the cell phone cases can be produced with magnesium alloy AZ31 sheet by the stamping process at elevated temperatures

  13. Flow behaviour of magnesium alloy AZ31B processed by equal-channel angular pressing

    International Nuclear Information System (INIS)

    Arun, M S; Chakkingal, U

    2014-01-01

    Magnesium alloys are characterised by their low density, high specific strength and stiffness. But, the potential application of Mg is limited by its low room-temperature ductility and formability. Formability can be improved by developing an ultrafine grained (UFG) structure. Equal channel angular pressing (ECAP) is a well known process that can be used to develop an ultrafine grained microstructure. The aim of this study was to investigate the flow behaviour of AZ31B magnesium alloy after ECAP. The specimen was subjected to three passes of ECAP with a die angle of 120° using processing route Bc. The processing temperature was 523 K for the first pass and 423 K for the subsequent two passes. The microstructure characterisation was done. Compression tests of ECAPed and annealed specimens were carried out at strain rates of 0.01 – 1s −1 and deformation temperatures of 200 – 300°C using computer servo-controlled Gleeble-3800 system. The value of activation energy Q and the empirical materials constants of A and n were determined. The equations relating flow stress and Zener-Hollomon parameter were proposed. In the case annealed AZ31, the activation energy was determined to be 154 kJ/mol, which was slightly higher than the activation energy of 144 kJ/mol for ECAPed AZ31

  14. Flow behaviour of magnesium alloy AZ31B processed by equal-channel angular pressing

    Science.gov (United States)

    Arun, M. S.; Chakkingal, U.

    2014-08-01

    Magnesium alloys are characterised by their low density, high specific strength and stiffness. But, the potential application of Mg is limited by its low room-temperature ductility & formability. Formability can be improved by developing an ultrafine grained (UFG) structure. Equal channel angular pressing (ECAP) is a well known process that can be used to develop an ultrafine grained microstructure. The aim of this study was to investigate the flow behaviour of AZ31B magnesium alloy after ECAP. The specimen was subjected to three passes of ECAP with a die angle of 120° using processing route Bc. The processing temperature was 523 K for the first pass and 423 K for the subsequent two passes. The microstructure characterisation was done. Compression tests of ECAPed and annealed specimens were carried out at strain rates of 0.01 - 1s-1 and deformation temperatures of 200 - 300°C using computer servo-controlled Gleeble-3800 system. The value of activation energy Q and the empirical materials constants of A and n were determined. The equations relating flow stress and Zener-Hollomon parameter were proposed. In the case annealed AZ31, the activation energy was determined to be 154 kJ/mol, which was slightly higher than the activation energy of 144 kJ/mol for ECAPed AZ31.

  15. Dry Sliding Wear Charactristics of Aluminum 6061-T6, Magnesium AZ31 and Rock Dust Composite

    Science.gov (United States)

    Balachandar, R.; Balasundaram, R.; Rajkumar, G.

    2018-02-01

    In recent years, the use of aluminum composite is gaining popularity in a wide range of applications like automobiles, aerospace and constructions (both interior & exterior) panels etc., due to its high strength, low density characteristics. Various reinforcing materials are used with aluminum 6061-T6 in order to have better mechanical properties. The addition of 0.3% of magnesium AZ31 will increase the ultimate tensile strength by 25 %. The reinforcement of rock dust will decrease the density. Hence, in order to have an advantages of magnesium AZ31 and rock dust, in this work, these two constitutes are varied from 1% to 2% on the base material of Al6061-T6 in stir casting. To evaluate the wear characteristics, Pin on disc is used in these composites. The input parameters are speed, time & load. The output response is wear. To minimize the number of experiments, L9 orthogonal array is used. The test results showed that a composite of 97% of Al (6061-T6), 1% Mg (AZ31) & 2 % of rock dust produced less wear. To find the best value of operating parameter for each sample, ANN-GA is used.

  16. Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability

    Science.gov (United States)

    Feliu, S.; Llorente, I.

    2015-08-01

    This paper studies the chemical composition of the corrosion product layers formed on magnesium alloys AZ31 and AZ61 following immersion in 0.6 M NaCl, with a view to better understanding their protective action. Relative differences in the chemical nature of the layers were quantified by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDX) and low-angle X-ray diffraction (XRD). Corrosion behavior was investigated by Electrochemical Impedance Spectroscopy (EIS) and hydrogen evolution measurement. An inhibitive effect from the corrosion product layers was observed from EIS, principally in the case of AZ31, as confirmed by hydrogen evolution tests. A link was found between carbonate enrichment observed by XPS in the surface of the corrosion product layer, concomitant with the increase in the protective properties observed by EIS.

  17. Structure and Mechanical Properties of Friction Stir Weld Joints of Magnesium Alloy AZ31

    Science.gov (United States)

    Nagasawa, T.; Otsuka, M.; Yokota, T.; Ueki, T.

    The applicability of friction stir welding to hot rolled sheet of commercial magnesium alloy AZ31 plates has been investigated. Friction stir weld joint showed mechanical strength comparable to that of base material, though the ductility remained at one half of that of the latter. The results are consistent with the microstructure which is characterized by a fine grained bond layer bounded by-intermediate grained base metals. It is found that both anodizing treatment and insertion of aluminum foil between batting faces do not degrade the joint properties at all. The results suggest that friction stir welding can be potentially applied to magnesium alloy.

  18. Microstructure and properties of friction stir butt-welded AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Wang Xunhong; Wang Kuaishe

    2006-01-01

    Friction stir welding (FSW) is a relatively new joining technique particularly for magnesium and aluminum alloys that are difficult to fusion weld. In this paper, an excellent friction stir weld of AZ31 magnesium alloy was obtained at proper parameter. In the friction stir zone (FSZ), the microstructure of the base material (BM) is replaced by fine grains and small particles of intermetallic compounds. The average microhardness of the friction stir zone is higher than that of the base material. The maximum tensile strength of joint can reach 93% that of the base material. And the failure locations are almost at the heating affected zone

  19. Corrosion characterization of micro-arc oxidization composite electrophoretic coating on AZ31B magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Congjie [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Jiang, Bailing [School of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816 (China); Liu, Ming [General Motors China Science Lab, Shanghai 201206 (China); Ge, Yanfeng [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China)

    2015-02-05

    Highlights: • A new protective composite coatings were prepared on AZ31B Mg alloy. • The E-coat locked into MAO coat by discharge channels forming a smoother and compact surface without defects. • Comparing with MAO coat, the MAOE composite coat could provide an excellent barrier for bare Mg against corrosion attack. - Abstract: A two layer composite coating system was applied on the surface of AZ31B magnesium alloy by Micro-arc Oxidation (MAO) plus electrophoretic coat (E-coat) technique. The Mg sample coated with MAO plus E-coat (MAOE) was compared with bare Mg and Mg sample coated by MAO only. The surface microstructure and cross section of bare and coated Mg before and after corrosion were examined by Scanning Electron Microscopy (SEM). The corrosion performance of bare and coated Mg was evaluated using electrochemical measurement and hydrogen evolution test. The results indicated that the corrosion resistance of AZ31B Mg alloy was significantly improved by MAOE composite coating. The corrosion mechanism of bare and coated Mg is discussed.

  20. Mechanical behaviour of biodegradable AZ31 magnesium alloy after long term in vitro degradation.

    Science.gov (United States)

    Adekanmbi, Isaiah; Mosher, Christopher Z; Lu, Helen H; Riehle, Mathis; Kubba, Haytham; Tanner, K Elizabeth

    2017-08-01

    Biodegradable magnesium alloys including AZ31 are exciting candidates for temporary implants as they eliminate the requirement for surgical removal, yet have higher mechanical properties than degradable polymers. However, the very long term mechanical properties and degradation of these alloys have not been fully characterized. The tensile, bending and corrosion behaviour of biodegradable AZ31 Mg alloy specimens have been investigated for up to 9months in vitro in phosphate buffered saline (PBS). Small AZ31 Mg specimens showed a significant drop in bend yield strength and modulus after 3months in vitro degradation and an average mass loss of 6.1%. Larger dumbbell specimens showed significant drops in tensile strength from 251.96±3.53MPa to 73.5±20.2MPa and to 6.43±0.9MPa and in modulus from 47.8±5.6GPa to 25.01±3.4GPa and 2.36±0.89GPa after 3 and 9months respectively. These reductions were accompanied by an average mass loss of 18.3% in 9months. Degradation rate for the small and large specimens followed similar profiles with immersion time, with peak degradation rates of 0.1747gm -2 h - 1 and 0.0881gm -2 h - 1 , and average rates of 0.1038gm -2 h - 1 and 0.0397gm -2 h - 1 respectively. SEM fractography and polished specimen cross-sections revealed corrosion pits, cracks and corrosion induced defects. These data indicate the potential of AZ31 Mg for use in implants that require medium term degradation with load bearing mechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Corrosion of magnesium alloy AZ31 screws is dependent on the implantation site

    Energy Technology Data Exchange (ETDEWEB)

    Willbold, E. [Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Strasse 1-7, D - 30625 Hannover (Germany); Kaya, A.A. [Mugla University, Engineering Faculty, Metallurgy and Materials Engineering Department, Mugla (Turkey); Kaya, R.A. [MedicalPark Hospital, Kueltuer Sok No:1, 34160 Bahcelievler, Istanbul (Turkey); Beckmann, F. [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Max-Planck-Str.1, D - 21502 Geesthacht (Germany); Witte, F., E-mail: witte.frank@mh-hannover.de [Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Strasse 1-7, D - 30625 Hannover (Germany)

    2011-12-15

    The corrosion of biodegradable materials is a crucial issue in implant development. Among other materials, magnesium and magnesium based alloys are one of the most promising candidates. Since the corrosion of biodegradable materials depends on different physiological parameters like pH or ion concentrations, the corrosion might be different in different biological environments. To investigate this issue, we produced screws from magnesium alloy AZ31 and implanted them into the hip bone of 14 sheep. After 3 and 6 months, the screws were explanted and analyzed with synchrotron-radiation based micro-computed tomography and hard tissue histology. We found considerable differences in the corrosion behavior of the magnesium screws with respect to its original tissue location. However, we could detect a normal immunological tissue response.

  2. Pengaruh waktu kontak terhadap kualitas sambungan hasil las gesek (Friction Welding Magnesium AZ-31

    Directory of Open Access Journals (Sweden)

    Solihin Solihin

    2018-01-01

    Full Text Available Abstrak: Pengelasan merupakan salah suatu proses penyambungan dua atau lebih bahan teknik, dengan atau tanpa peroses pencairan logam dasarnya. Teknologi Las Gesek (Friction Welding, FW merupakan salah satu teknik pengelasan padat atau pengelasan tanpa proses pencairan (solid-state welding. Pembangkitan panas dalam proses FW dihasilkan dengan cara menggesekkan permukaan material las (base metal hingga mencapai temperatur penyambungannya (semi-solid temperature atau sekitar 80% dari temperature cair bahan, dan dalam hal Magnesium AZ31 adalah sekitar temperatur 5500C. Setelah bahan mencapai temperatur semi-solid tersebut, kemudian diberi tekanan agar terjadi proses penyambungan. Penelitian ini bertujuan untuk mengetahui pengaruh variasi proses terhadap kualitas hasil pengelasan gesek, yang meliputi: kekuatan tarik, struktur makro, dan nilai kekerasan bahan hasil las. Parameter pengujiannya adalah variasi waktu kontak las, yaitu selama 3, 5, dan 10 menit. Kecepatan putar spindle selama proses pengelasan ditetapkan 1400 rpm. Hasil pengelasan menunjukkan bahwa waktu kontak gesek 3 menit menghasilkan kekuatan tarik tertinggi (16,78 MPa, bila dibandingkan dengan dua parameter lain. Hasil uji keras pada daerah las (stir zone menunjukkan angka kekerasan rata-rata yang relative konsisten, atau sebesar 60 HRE untuk semua parameter, sedangkan angka kekerasan rata-rata di daerah terpengaruh panas (heat affected zone, HAZ untuk waktu kontak gesek 3, 5 dan 10 menit secara berturut-turut adalah sebesar 69,6; 64,6; dan 60,6 HRE. Hasil penelitian awal ini memberikan potensi studi lanjutan pada berbagai parameter pengelasan lain agar didapatkan kualitas sambungan las gesek yang optimum untuk proses pengelasan gesek Magnesium AZ-31. Kata Kunci: Las gesek, Magnesium AZ-31, struktur makro, cacat void. Abstract: Welding is a process technology aiming to join two or more materials. Friction Welding (FW is including in a solid-state technology cluster, where the heat is

  3. Effect of the Strain Rate on the Tensile Properties of the AZ31 Magnesium Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Seunghun; Park, Jiyoun; Choi, Ildong [Korea Maritime University, Busan (Korea, Republic of); Park, Sung Hyuk [Korea Institute of Materials Science, Changwon (Korea, Republic of)

    2013-10-15

    The effect of the strain rate at a range of 10‒4 ⁓ 3 × 10{sup 2}s{sup -}1 on the tensile characteristics of a rolled AZ31 magnesium alloy was studied. The normal tensile specimens were tested using a high rate hydraulic testing machine. Specimens were machined from four sheets with different thicknesses, 1, 1.5, 2 and 3 mm, along three directions, 0°, 45°, and 90° to the rolling direction. The results revealed that all the specimens had a positive strain rate sensitivity of strength, that is, the strength increased with increasing strain rate. This is the same tendency as other automotive steels have. Our results suggest that the AZ31 magnesium alloy has better collision characteristics at high strain rates because of improved strength with an increasing strain rate. Ductility decreased with an increasing strain rate with a strain rate under 1 s{sup -}1, but it increased with an increasing strain rate over 1 s{sup -}1. The mechanical properties of the AZ31 magnesium alloy depend on the different microstructures according to the thickness. Two and 3 mm thickness specimens with a coarse and non-uniform grain structure exhibited worse mechanical properties while the 1.5 mm thickness specimens with a fine and uniform grain structure had better mechanical properties. Specimens machined at 0° and 45° to the rolling direction had higher absorbed energy than that of the 90° specimen. Thus, we demonstrate it is necessary to choose materials with proper thickness and machining direction for use in automotive applications.

  4. Effect of the Strain Rate on the Tensile Properties of the AZ31 Magnesium Alloy

    International Nuclear Information System (INIS)

    Jeong, Seunghun; Park, Jiyoun; Choi, Ildong; Park, Sung Hyuk

    2013-01-01

    The effect of the strain rate at a range of 10‒4 ⁓ 3 × 10"2s"-1 on the tensile characteristics of a rolled AZ31 magnesium alloy was studied. The normal tensile specimens were tested using a high rate hydraulic testing machine. Specimens were machined from four sheets with different thicknesses, 1, 1.5, 2 and 3 mm, along three directions, 0°, 45°, and 90° to the rolling direction. The results revealed that all the specimens had a positive strain rate sensitivity of strength, that is, the strength increased with increasing strain rate. This is the same tendency as other automotive steels have. Our results suggest that the AZ31 magnesium alloy has better collision characteristics at high strain rates because of improved strength with an increasing strain rate. Ductility decreased with an increasing strain rate with a strain rate under 1 s"-1, but it increased with an increasing strain rate over 1 s"-1. The mechanical properties of the AZ31 magnesium alloy depend on the different microstructures according to the thickness. Two and 3 mm thickness specimens with a coarse and non-uniform grain structure exhibited worse mechanical properties while the 1.5 mm thickness specimens with a fine and uniform grain structure had better mechanical properties. Specimens machined at 0° and 45° to the rolling direction had higher absorbed energy than that of the 90° specimen. Thus, we demonstrate it is necessary to choose materials with proper thickness and machining direction for use in automotive applications.

  5. Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Lamaka, S.V.; Montemor, M.F.; Galio, A.F.; Zheludkevich, M.L.; Trindade, C.; Dick, L.F.; Ferreira, M.G.S.

    2008-01-01

    This work aims to develop and study new anticorrosion films for AZ31B magnesium alloy based on the sol-gel coating approach. Hybrid organic-inorganic sols were synthesized by copolymerization of epoxy-siloxane and titanium or zirconium alkoxides. Tris(trimethylsilyl) phosphate was also used as additive to confer additional corrosion protection to magnesium-based alloy. A sol-gel coating, about 5-μm thick, shows good adhesion to the metal substrate and prevents corrosion attack in 0.005 M NaCl solution for 2 weeks. The sol-gel coating system doped with tris(trimethylsilyl)-phosphate revealed improved corrosion protection of the magnesium alloy due to formation of hydrolytically stable Mg-O-P chemical bonds. The structure and the thickness of the sol-gel film were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The corrosion behaviour of AZ31B substrates pre-treated with the sol-gel derived hybrid coatings was tested by electrochemical impedance spectroscopy (EIS). The chemical composition of the silylphosphate-containing sol-gel film at different depths was investigated by X-ray photoelectron spectroscopy (XPS) with depth profiling

  6. Corrosion behaviors in physiological solution of cerium conversion coatings on AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Cui Xiufang; Yang Yuyun; Liu Erbao; Jin Guo; Zhong Jinggao; Li Qingfen

    2011-01-01

    In this paper, a non-toxic Ce-based conversion coating was obtained on the surface of bio-medical AZ31 magnesium alloys. The micro-morphology of the coating prepared with optimal technical parameters and immersed in physiological solution (Hank's solution) in different time was observed by scanning electron microscopy (SEM), composition of the cerium conversion coating and corrosion products in Hank's solution were characterized by X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS), respectively. In addition, the corrosion property in Hank's solution was studied by electrochemical experiment and immersion test. The results show that the dense Ce-based conversion coating is obtained on the surface of AZ31 magnesium alloys in optimal technical parameters and the conversion coating consists of a mass of trivalent and tetravalent cerium oxides. The cerium conversion coating can provide obvious protection of magnesium alloys and can effectively reduce the degradation speed in Hank's solution. Also the degradation products have little influence on human body.

  7. Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability

    International Nuclear Information System (INIS)

    Feliu, S.; Llorente, I.

    2015-01-01

    Highlights: • Surface chemistry of the corrosion product layers on magnesium alloys. • Influence of the type of alloy on the carbonate surface enrichment. • Relation between surface composition and protection properties. - Abstract: This paper studies the chemical composition of the corrosion product layers formed on magnesium alloys AZ31 and AZ61 following immersion in 0.6 M NaCl, with a view to better understanding their protective action. Relative differences in the chemical nature of the layers were quantified by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDX) and low-angle X-ray diffraction (XRD). Corrosion behavior was investigated by Electrochemical Impedance Spectroscopy (EIS) and hydrogen evolution measurement. An inhibitive effect from the corrosion product layers was observed from EIS, principally in the case of AZ31, as confirmed by hydrogen evolution tests. A link was found between carbonate enrichment observed by XPS in the surface of the corrosion product layer, concomitant with the increase in the protective properties observed by EIS

  8. Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability

    Energy Technology Data Exchange (ETDEWEB)

    Feliu, S., E-mail: sfeliu@cenim.csic.es; Llorente, I.

    2015-08-30

    Highlights: • Surface chemistry of the corrosion product layers on magnesium alloys. • Influence of the type of alloy on the carbonate surface enrichment. • Relation between surface composition and protection properties. - Abstract: This paper studies the chemical composition of the corrosion product layers formed on magnesium alloys AZ31 and AZ61 following immersion in 0.6 M NaCl, with a view to better understanding their protective action. Relative differences in the chemical nature of the layers were quantified by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDX) and low-angle X-ray diffraction (XRD). Corrosion behavior was investigated by Electrochemical Impedance Spectroscopy (EIS) and hydrogen evolution measurement. An inhibitive effect from the corrosion product layers was observed from EIS, principally in the case of AZ31, as confirmed by hydrogen evolution tests. A link was found between carbonate enrichment observed by XPS in the surface of the corrosion product layer, concomitant with the increase in the protective properties observed by EIS.

  9. Thermal Microstructural Stability of AZ31 Magnesium after Severe Plastic Deformation

    Energy Technology Data Exchange (ETDEWEB)

    Young, John P.; Askari, Hesam A.; Hovanski, Yuri; Heiden, Michael J.; Field, David P.

    2015-03-01

    Both equal channel angular pressing and friction stir processing have the ability to refine the grain size of twin roll cast AZ31 magnesium and potentially improve its superplastic properties. This work used isochronal and isothermal heat treatments to investigate the microstructural stability of twin roll cast, equal channel angular pressed and friction stir processed AZ31 magnesium. For both heat treatment conditions, it was found that the twin roll casted and equal channel angular pressed materials were more stable than the friction stir processed material. Calculations of the grain growth kinetics showed that severe plastic deformation processing decreased the activation energy for grain boundary motion with the equal channel angular pressed material having the greatest Q value of the severely plastically deformed materials and that increasing the tool travel speed of the friction stir processed material improved microstructural stability. The Hollomon-Jaffe parameter was found to be an accurate means of identifying the annealing conditions that will result in substantial grain growth and loss of potential superplastic properties in the severely plastically deformed materials. In addition, Humphreys’s model of cellular microstructural stability accurately predicted the relative microstructural stability of the severely plastically deformed materials and with some modification, closely predicted the maximum grain size ratio achieved by the severely plastically deformed materials.

  10. Microstructure control during twin roll casting of an AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Huang, Y; Bayandorian, I; Fan, Z

    2012-01-01

    The existing twin roll casting technique for magnesium alloys suffers heterogeneity in both microstructure and chemistry and downstream processing is required to improve the strip quality, resulting in cost rise. In the present work, twin roll casting was carried out using an AZ31 magnesium alloy, with the application of intensive shearing melt conditioning prior to casting. The effect of process parameters such as pouring temperature and casting speed on microstructure control during casting and subsequent downstream processing was studied. Experimental results showed that the melt conditioning treatment allowed the production of AZ31 strips with uniform and refined microstructure free of centreline segregations. It was also shown that an optimized combination of pouring temperature and casting speed, in conjunction with a strip thickness control operation, resulted in uniformly distributed stored energies due to enhanced plastic deformation, which promoted recrystallization during casting and subsequent heat treatment. Strips prepared by twin roll casting and homogenization developed similar microstructural features to those prepared by twin roll casting followed by lengthy downstream processing by homogenization, hot rolling and annealing and displayed a weaker basal texture, exhibiting a potentially better formability.

  11. Microstructure of AZ31 Magnesium Alloy deformed by indentation-flattening compound deformation technology

    Science.gov (United States)

    Wang, Minghao; Wang, Zhongtang; Yu, Xiaolin

    2018-03-01

    Characteristic of indentation-flattening compound deformation technology (IFCDT) is discussed, and the parameters of IFCDT are defined. Performance of magnesium alloy AZ31 sheet deformed by IFCDT is researched. The effect of IFCDT coefficient, temperature and reduction ratio on the microstructure of magnesium alloy sheet is analyzed. The research results show that the volume fraction of the twin crystal decreases gradually and the average grain size increases with increasing of coefficient of IFCDT. With increase of the reduction ratio, the volume fraction of the twin crystal gradually increases, and the average grain size also increases. With increase of deformation temperature, the volume fraction of the twin crystal decreases gradually, and the twin crystal grain size increases.

  12. Application of YAG Laser TIG Arc Hybrid Welding to Thin AZ31B Magnesium Alloy Sheet

    Science.gov (United States)

    Kim, Taewon; Kim, Jongcheol; Hasegawa, Yu; Suga, Yasuo

    A magnesium alloy is said to be an ecological material with high ability of recycling and lightweight property. Especially, magnesium alloys are in great demand on account of outstanding material property as a structural material. Under these circumstances, research and development of welding process to join magnesium alloy plates are of great significance for wide industrial application of magnesium. In order to use it as a structure material, the welding technology is very important. TIG arc welding process is the most ordinary process to weld magnesium alloy plates. However, since the heat source by the arc welding process affects the magnesium alloy plates, HAZ of welded joint becomes wide and large distortion often occurs. On the other hand, a laser welding process that has small diameter of heat source seems to be one of the possible means to weld magnesium alloy in view of the qualitative improvement. However, the low boiling point of magnesium generates some weld defects, including porosity and solidification cracking. Furthermore, precise edge preparation is very important in butt-welding by the laser welding process, due to the small laser beam diameter. Laser/arc hybrid welding process that combines the laser beam and the arc is an effective welding process in which these two heat sources influence and assist each other. Using the hybrid welding, a synegistic effect is achievable and the disadvantages of the respective processes can be compensated. In this study, YAG laser/TIG arc hybrid welding of thin magnesium alloy (AZ31B) sheets was investigated. First of all, the effect of the irradiation point and the focal position of laser beam on the quality of a weld were discussed in hybrid welding. Then, it was confirmed that a sound weld bead with sufficient penetration is obtained using appropriate welding conditions. Furthermore, it was made clear that the heat absorption efficiency is improved with the hybrid welding process. Finally, the tensile tests

  13. Effect of Mucin and Bicarbonate Ion on Corrosion Behavior of AZ31 Magnesium Alloy for Airway Stents

    Directory of Open Access Journals (Sweden)

    Yongseok Jang

    2014-08-01

    Full Text Available The biodegradable ability of magnesium alloys is an attractive feature for tracheal stents since they can be absorbed by the body through gradual degradation after healing of the airway structure, which can reduce the risk of inflammation caused by long-term implantation and prevent the repetitive surgery for removal of existing stent. In this study, the effects of bicarbonate ion (HCO3− and mucin in Gamble’s solution on the corrosion behavior of AZ31 magnesium alloy were investigated, using immersion and electrochemical tests to systematically identify the biodegradation kinetics of magnesium alloy under in vitro environment, mimicking the epithelial mucus surfaces in a trachea for development of biodegradable airway stents. Analysis of corrosion products after immersion test was performed using scanning electron microscopy (SEM, energy dispersive X-ray spectroscopy (EDX and X-ray diffraction (XRD. Electrochemical impedance spectroscopy (EIS was used to identify the effects of bicarbonate ions and mucin on the corrosion behavior of AZ31 magnesium alloys with the temporal change of corrosion resistance. The results show that the increase of the bicarbonate ions in Gamble’s solution accelerates the dissolution of AZ31 magnesium alloy, while the addition of mucin retards the corrosion. The experimental data in this work is intended to be used as foundational knowledge to predict the corrosion behavior of AZ31 magnesium alloy in the airway environment while providing degradation information for future in vivo studies.

  14. Effect of Mucin and Bicarbonate Ion on Corrosion Behavior of AZ31 Magnesium Alloy for Airway Stents.

    Science.gov (United States)

    Jang, Yongseok; Owuor, Daniel; Waterman, Jenora T; White, Leon; Collins, Boyce; Sankar, Jagannathan; Gilbert, Thomas W; Yun, Yeoheung

    2014-08-15

    The biodegradable ability of magnesium alloys is an attractive feature for tracheal stents since they can be absorbed by the body through gradual degradation after healing of the airway structure, which can reduce the risk of inflammation caused by long-term implantation and prevent the repetitive surgery for removal of existing stent. In this study, the effects of bicarbonate ion (HCO₃ - ) and mucin in Gamble's solution on the corrosion behavior of AZ31 magnesium alloy were investigated, using immersion and electrochemical tests to systematically identify the biodegradation kinetics of magnesium alloy under in vitro environment, mimicking the epithelial mucus surfaces in a trachea for development of biodegradable airway stents. Analysis of corrosion products after immersion test was performed using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). Electrochemical impedance spectroscopy (EIS) was used to identify the effects of bicarbonate ions and mucin on the corrosion behavior of AZ31 magnesium alloys with the temporal change of corrosion resistance. The results show that the increase of the bicarbonate ions in Gamble's solution accelerates the dissolution of AZ31 magnesium alloy, while the addition of mucin retards the corrosion. The experimental data in this work is intended to be used as foundational knowledge to predict the corrosion behavior of AZ31 magnesium alloy in the airway environment while providing degradation information for future in vivo studies.

  15. TiO2 Deposition on AZ31 Magnesium Alloy Using Plasma Electrolytic Oxidation

    Directory of Open Access Journals (Sweden)

    Leon White

    2013-01-01

    Full Text Available Plasma electrolytic oxidation (PEO has been used in the past as a useful surface treatment technique to improve the anticorrosion properties of Mg alloys by forming protective layer. Coatings were prepared on AZ31 magnesium alloy in phosphate electrolyte with the addition of TiO2 nanoparticles using plasma electrolytic oxidation (PEO. This present work focuses on developing a TiO2 functional coating to create a novel electrophotocatalyst while observing the surface morphology, structure, composition, and corrosion resistance of the PEO coating. Microstructural characterization of the coating was investigated by X-ray diffraction (XRD and scanning electron microscopy (SEM followed by image analysis and energy dispersive spectroscopy (EDX. The corrosion resistance of the PEO treated samples was evaluated with electrochemical impedance spectroscopy (EIS and DC polarization tests in 3.5 wt.% NaCl. The XRD pattern shows that the components of the oxide film include Mg from the substrate as well as MgO and Mg2TiO4 due to the TiO2 nanoparticle addition. The results show that the PEO coating with TiO2 nanoparticles did improve the corrosion resistance when compared to the AZ31 substrate alloy.

  16. Room Temperature Shear Band Development in Highly Twinned Wrought Magnesium AZ31B Sheet

    Science.gov (United States)

    Scott, Jon; Miles, Michael; Fullwood, David; Adams, Brent; Khosravani, Ali; Mishra, Raja K.

    2013-01-01

    Failure mechanisms were studied in wrought AZ31B magnesium alloy after forming under different strain paths. Optical micrographs were used to observe the shear band formation and regions of high twin density in samples strained under uniaxial, biaxial, and plane strain conditions. Interrupted testing at 4 pct effective strain increments, until failure, was used to observe the evolution of the microstructure. The results showed that shear bands, with a high percentage of twinned grains, appeared early in the samples strained under biaxial or plane strain tension. These bands are similar to those seen in uniaxial tension specimens just prior to failure where the uniaxial tensile ductility was much greater than that observed for plane strain or biaxial tension conditions. A forming limit diagram for AZ31B, which was developed from the strain data, showed that plane strain and biaxial tension had very similar limit strains; this contrasts with materials like steel or aluminum alloys, which typically have greater ductility in biaxial tension compared to plane strain tension.

  17. Microstructural characterization and finite element modeling of AZ31 magnesium alloys welded joints

    Directory of Open Access Journals (Sweden)

    José A. Segarra

    2018-03-01

    Full Text Available In this article, it has been studied how the microstructure of AZ31 magnesium alloy can be affected by the thermic cycles produced by welding processes, trying to modeling by element finite software the thermic cycles in this material. The AZ31 samples tested were welded using Gas Tugsten Arc Welding (GTAW and different filler materials. For this investigation, optic microscopy, scanning electronic microscopy, and finite elements method software has been used. This work indicates in one hand that in this type of alloys the microconstituyentes are Al-Mn o Al-Mn-Mg compounds, the presence of β-phase cannot be found at room temperature in this research at room, on the other hand the obtained simulation models indicate that the recrystallization takes place in the areas which reach maximum temperatures around 550 °C, this value is also the limit of the dissolution area for the Al-Mn o Al-Mn-Mg precipitated particles which are very likely to act as inhibitors of the corrosion in NaCl electrolytes.

  18. Laser assisted self-pierce riveting of AZ31 magnesium alloy strips

    International Nuclear Information System (INIS)

    Durandet, Y.; Deam, R.; Beer, A.; Song, W.; Blacket, S.

    2010-01-01

    Laser assisted self-piercing riveting (LSPR) is a new solid state process that enables low ductility materials to be mechanically joined without cracking. A simple but effective thermal analysis of LSPR is presented that enabled both the absorption of the laser radiation and heat transfer between plies to be determined. The approach was applied to experimental data for LSPR joining of AZ31B-H24 magnesium alloy sheets. It is shown that by using this analytical approach, the temperature at the onset of joining could be estimated and related to observations of joint quality. It was found that crack-free joints were produced at strip temperatures above 200 o C at the time of rivet insertion.

  19. Study on hybrid heat source overlap welding of magnesium alloy AZ31B

    International Nuclear Information System (INIS)

    Liang, G.L.; Zhou, G.; Yuan, S.Q.

    2009-01-01

    The magnesium alloy AZ31B was overlap welded by hybrid welding (laser-tungsten inert gas arc). According to the hybrid welding interaction principle, a new heat source model, hybrid welding heat source model, was developed with finite element analysis. At the same time, using a high-temperature metallographical microscope, the macro-appearance and microstructure characteristics of the joint after hybrid overlap welding were studied. The results indicate that the hybrid welding was superior to the single tungsten inert gas welding or laser welding on the aspects of improving the utilized efficiency of the arc and enhancing the absorptivity of materials to laser energy. Due to the energy characteristics of hybrid overlap welding the macro-appearance of the joint was cup-shaped, the top weld showed the hybrid welding microstructure, while, the lower weld showed the typical laser welding microstructure

  20. Study on hybrid heat source overlap welding of magnesium alloy AZ31B

    Energy Technology Data Exchange (ETDEWEB)

    Liang, G.L. [Department of Electromechanical Engineering, Tangshan College, Tangshan 063000 (China)], E-mail: guoliliang@sohu.com; Zhou, G. [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yuan, S.Q. [Department of Electromechanical Engineering, Tangshan College, Tangshan 063000 (China)

    2009-01-15

    The magnesium alloy AZ31B was overlap welded by hybrid welding (laser-tungsten inert gas arc). According to the hybrid welding interaction principle, a new heat source model, hybrid welding heat source model, was developed with finite element analysis. At the same time, using a high-temperature metallographical microscope, the macro-appearance and microstructure characteristics of the joint after hybrid overlap welding were studied. The results indicate that the hybrid welding was superior to the single tungsten inert gas welding or laser welding on the aspects of improving the utilized efficiency of the arc and enhancing the absorptivity of materials to laser energy. Due to the energy characteristics of hybrid overlap welding the macro-appearance of the joint was cup-shaped, the top weld showed the hybrid welding microstructure, while, the lower weld showed the typical laser welding microstructure.

  1. Chitosan coatings crosslinked with genipin for corrosion protection of AZ31 magnesium alloy sheets.

    Science.gov (United States)

    de Y Pozzo, Ludmila; da Conceição, Thiago F; Spinelli, Almir; Scharnagl, Nico; Pires, Alfredo T N

    2018-02-01

    In this study, coatings of chitosan crosslinked with genipin were prepared on sheets of AZ31 magnesium alloy and their corrosion protection properties were characterized by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The coatings were also characterized by means of FTIR and XPS. It was observed that the crosslinking process decreases the corrosion current and shifts the corrosion potential of the alloy to less negative values. The EIS analysis demonstrated that the crosslinking process increases the maximum impedance after short and long exposure times. The superior performance of the crosslinked coatings is related to a lower degree of swelling, as observed in the swelling tests carried out on free-standing films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Microstructural evolution of AZ31 magnesium alloy subjected to sliding friction treatment

    Science.gov (United States)

    Zhang, Wei; Lu, Jinwen; Huo, Wangtu; Zhang, Yusheng; Wei, Q.

    2018-06-01

    Microstructural evolution and grain refinement mechanism in AZ31 magnesium alloy subjected to sliding friction treatment were investigated by means of transmission electron microscopy. The process of grain refinement was found to involve the following stages: (I) coarse grains were divided into fine twin plates through mechanical twinning; then the twin plates were transformed to lamellae with the accumulation of residual dislocations at the twin boundaries; (II) the lamellae were separated into subgrains with increasing grain boundary misorientation and evolution of high angle boundaries into random boundaries by continuous dynamic recrystallisation (cDRX); (III) the formation of nanograins. The mechanisms for the final stage, the formation of nanograins, can be classified into three types: (i) cDRX; (ii) discontinuous dynamic recrystallisation (dDRX); (iii) a combined mechanism of prior shear-band and subsequent dDRX. Stored strain energy plays an important role in determining deformation mechanisms during plastic deformation.

  3. Grain boundary sliding mechanism during high temperature deformation of AZ31 Magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Roodposhti, Peiman Shahbeigi, E-mail: pshahbe@ncsu.edu [North Carolina State University (United States); University of Connecticut (United States); Sarkar, Apu; Murty, Korukonda Linga [North Carolina State University (United States); Brody, Harold [University of Connecticut (United States); Scattergood, Ronald [North Carolina State University (United States)

    2016-07-04

    High temperature tensile creep tests were conducted on AZ31 Magnesium alloy at low stress range of 1–13 MPa to clarify the existence of grain boundary sliding (GBS) mechanism during creep deformation. Experimental data within the GBS regime shows the stress exponent is ~2 and the activation energy value is close to that for grain boundary diffusion. Analyses of the fracture surface of the sample revealed that the GBS provides many stress concentrated sites for diffusional cavities formation and leads to premature failure. Scanning electron microscopy images show the appearances of both ductile and brittle type fracture mechanism. X-ray diffraction line profile analysis (based on Williamson-Hall technique) shows a reduction in dislocation density due to dynamic recovery (DRV). A correlation between experimental data and Langdon's model for GBS was also demonstrated.

  4. Twinning behaviors of a rolled AZ31 magnesium alloy under multidirectional loading

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Dewen [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Liu, Tianmo, E-mail: tmliu@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Luo, Longjing [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Lu, Liwei [College of Mechanical and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan (China); Chen, Huicong; Shi, Dongfeng [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China)

    2017-02-15

    The microstructure and texture evolution of an AZ31 magnesium rolled sheet during quasi-static compression at strain rates of 10{sup −3} s{sup −1} has been investigated by in situ electron backscattered diffraction. The influence of the initial and pre-deformed texture on the predominant deformation mechanisms during compression has been examined. It has been found that extensive grain reorientation due to (10 − 12) tensile twinning appeared when compressed along transverse direction. Tensile twin variants were observed under this loading condition, and different variants will cause an effect to the following deformation. Several twinning modes occurred with continuative loading along rolling direction. - Highlights: •Twinning behaviors were investigated through in situ multidirectional compressive tests. •Deformation behavior was affected by the twin variants. •Four types of twinning behaviors were observed during deformation process.

  5. CO2 and diode laser welding of AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Zhu Jinhong; Li Lin; Liu Zhu

    2005-01-01

    Magnesium alloys are being increasingly used in automotive and aerospace structures. Laser welding is an important joining method in such applications. There are several kinds of industrial lasers available at present, including the conventional CO 2 and Nd:YAG lasers as well as recently available high power diode lasers. A 1.5 kW diode laser and a 2 kW CO 2 laser are used in the present study for the welding of AZ31 alloys. It is found that different welding modes exist, i.e., keyhole welding with the CO 2 laser and conduction welding with both the CO 2 and the diode lasers. This paper characterizes welds in both welding modes. The effect of beam spot size on the weld quality is analyzed. The laser processing parameters are optimized to obtain welds with minimum defects

  6. Effect of fiber laser parameters on laser welded AZ31B Magnesium alloys

    Directory of Open Access Journals (Sweden)

    Mat Salleh Naqiuddin

    2017-01-01

    Full Text Available Recently, the usage of Magnesium (Mg alloys has been hugely applied in the industrial application such as in automotive, marine, and electronic due to its advantages of recyclability and lightweight. This alloys required low heat input to be weld since it is easily evaporated due to the Magnesium Oxide (MgO at the surface and it also possesses lower melting point compared to steel. Laser welding is more convenient to weld Mg alloys due to its high power and lower heat input. AZ31B was selected since it has strong mechanical properties among others Mg alloys due to the major alloying elements; Aluminium (Al and Zinc (Zn. Low power fiber laser machine with wavelength of 900 nm was used in this experiment. The intention of this work was to investigate the effect of low power fiber laser parameters and effect of shielding gas on weld penetration and microstructure. Another aim in this work was to produce the joint for this thin sheets metal. Penetration depth and microstructure evaluation were emphasized in the analysis section. Bead-on-Plate (BOP and laser lap welding was conducted on AZ31B with thicknesses of 1.0 mm and 0.6 mm for feasibility study using pulsed wave (PW mode. Defocusing features was used in order to find better focal position, which has less occurrence of evaporation (underfill. The effect of different angle of irradiation was also investigated. Two types of shielding gases, Argon (Ar and Nitrogen (N2 were used in order to study the effect of shielding gas. Lastly, the effect of pulsed energy on penetration types and depth of BOP welded samples was investigated. Focus point was found at focal length of 156 mm with 393.75 μm. For BOP experiment, higher pulsed energy used contributes to melt through defect. Meanwhile, Ns shielding gas proved to be better shielding gas in laser welding the AZ31B. Higher angle of irradiation could reduce the underfill defect. Fillet Lap joint of similar metal was successfully done where 2.0 J of

  7. Characteristic values for the forming of the magnesium alloy AZ31

    International Nuclear Information System (INIS)

    Doege, E.; Janssen, S.; Wieser, J.

    2001-01-01

    The aim of investigation and development at the institute for metal forming and metal forming machine tools (IFUM) at the University of Hanover, Germany is to advance magnesium forming scientifically which has so far been based on experience and empirically determined process data only. Optimized process parameter with a sound material scientific and process control base have to be determined for the deformation of magnesium wrought alloys in order to broaden the technical use of such alloys. Aim of the investigations introduced in this paper is the determination of characteristic values as well-founded basis for the forming technological processing of magnesium wrought alloys in massive forming processes. The basic data for the description of the deformation ability in the form of friction factor and flow curve is to be detected, especially in connection with the integration into an FEM-simulation. In order to achieve such data for the magnesium wrought alloy AZ31 the flow curve at temperatures between 250 and 300 C and the deformation ratio 1, 10, 20 and 30 are presented. On the other hand a ring upsetting test for the determination of the friction factor at altitude reductions of 30, 50, 70%, a tool temperature of 200 C, a work piece temperature between 300 and 400 C and different lubricants are shown for the said alloy. (orig.)

  8. Warm Deep Drawing of Rectangular Parts of AZ31 Magnesium Alloy Sheet Adopting Variable Blank Holder Force

    International Nuclear Information System (INIS)

    Peng Yinghong; Chang Qunfeng; Li Dayong; Zeng Xiaoqin

    2007-01-01

    AZ31 magnesium alloy sheet with good shape and formability is fabricated by warm cross rolling. Uniaxial tensile tests are conducted using a Gleeble 3500 thermal - mechanical simulator, and the mechanical properties of AZ31 magnesium alloy sheet are analyzed. A warm deep drawing process of square part is also simulated by the finite element method. The influences of blank holder force on the formability are numerically investigated. A double-action hydraulic press that can realize adjustable blank holder forces is developed and its working principle and control system are introduced. Some warm deep drawing experiments of square parts of AZ31 magnesium alloy sheet are also performed. Different variation schemes of the blank holder force with the stroke of the punch are tested, and the experiment results are compared. Results show that the suitable blank holder force variation scheme is a ladder curve with the punch stroke. Adopting the variable blank holder force technique can improve 13.2% of the drawing depth of square parts of AZ31 magnesium alloy sheet

  9. Microstructure and mechanical properties of extruded and ECAPed AZ31 Mg alloy, grain refined with Al-Ti-C master alloy

    Energy Technology Data Exchange (ETDEWEB)

    Torbati-Sarraf, S.A. [School of Metallurgical and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Mahmudi, R., E-mail: mahmudi@ut.ac.ir [School of Metallurgical and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2010-06-15

    Different amounts of Al-3Ti-0.15C master alloy (TiCAl), as grain refiner, were added to the AZ31 magnesium alloy (Mg-3Al-1Zn-0.3Mn) and the resulting microstructure, grain size distributions, texture, and mechanical properties were studied after extrusion and equal channel angular pressing (ECAP). Results showed that the addition of 1.0 wt.% TiCAl had the strongest grain refinement effect, reducing the grain sizes by 51.2 and 38.4% in the extruded and ECAPed conditions, respectively. The observed grain refinement was in part due to the presence of the thermally stable micron- and submicron-sized particles in the melt which act as nucleation sites during solidification. During the high-temperature extrusion and ECAP processes, dynamic recrystallization (DRX) and grain growth are likely to occur. However, second phase particles will help in reducing the grain size by the particle stimulated nucleation (PSN) mechanism. Furthermore, the pinning effect of these particles can oppose grain growth by reducing the grain boundary migration. These two phenomena together with the partitioning of the grains imposed by the severe plastic deformation in the ECAP process have all contributed to the achieved fine-grained structure in the AZ31 alloy with enhanced mechanical properties. The enhancement in the shear yield stress (SYS) and ultimate shear strengths (USS) were, respectively, 11.2 and 6.1% in the extruded state, and 7.6 and 3.9% in the ECAPed conditions. The weaker strengthening effect of grain refinement in the ECAPed alloys can be attributed to the textural modifications which partly offset the achieved grain boundary strengthening.

  10. Plastic Deformation Characteristics Of AZ31 Magnesium Alloy Sheets At Elevated Temperature

    International Nuclear Information System (INIS)

    Park, Jingee; Lee, Jongshin; You, Bongsun; Choi, Seogou; Kim, Youngsuk

    2007-01-01

    Using lightweight materials is the emerging need in order to reduce the vehicle's energy consumption and pollutant emissions. Being a lightweight material, magnesium alloys are increasingly employed in the fabrication of automotive and electronic parts. Presently, magnesium alloys used in automotive and electronic parts are mainly processed by die casting. The die casting technology allows the manufacturing of parts with complex geometry. However, the mechanical properties of these parts often do not meet the requirements concerning the mechanical properties (e.g. endurance strength and ductility). A promising alternative can be forming process. The parts manufactured by forming could have fine-grained structure without porosity and improved mechanical properties such as endurance strength and ductility. Because magnesium alloy has low formability resulted form its small slip system at room temperature it is usually formed at elevated temperature. Due to a rapid increase of usage of magnesium sheets in automotive and electronic industry it is necessary to assure database for sheet metal formability and plastic yielding properties in order to optimize its usage. Especially, plastic yielding criterion is a critical property to predict plastic deformation of sheet metal parts in optimizing process using CAE simulation. Von-Mises yield criterion generally well predicts plastic deformation of steel sheets and Hill'1979 yield criterion predicts plastic deformation of aluminum sheets. In this study, using biaxial tensile test machine yield loci of AZ31 magnesium alloy sheet were obtained at elevated temperature. The yield loci ensured experimentally were compared with the theoretical predictions based on the Von-Mises, Hill, Logan-Hosford, and Barlat model

  11. High-Speed Rolling of AZ31 Magnesium Alloy Having Different Initial Textures

    Science.gov (United States)

    Onuki, Yusuke; Hara, Kenichiro; Utsunomiya, Hiroshi; Szpunar, Jerzy A.

    2015-02-01

    It is known that magnesium alloys can be rolled up to a large thickness reduction and develop a unique texture when the rolling speed is high (>1000 m/min). In order to understand the texture formation mechanism during high-strain-rate deformation, high-speed rolling of AZ31 magnesium alloy samples having different initial textures was conducted. The main components of the textures after the rolling were the RD-split basal, which consisted of 10°-20° inclining basal poles from the normal direction toward the rolling direction of the sheet, regardless of the different initial textures. With preheating at 473 K, all the samples were rolled without cracking while all were cracked when preheating was not applied. The optical micrographs and EBSD measurements showed a significant amount of twins and the cracks that developed along the shear bands consisted with laminated twins. Based on the texture simulation using the visco-plastic self-consistent model, it is concluded that the rapid development of the RD-split basal component from the initial basal alignment along the transverse direction was attributable to the tension twinning, The effect of the initial texture on the crack formation can be explained by the activation of the twinning system.

  12. On numerical modeling of low-head direct chill ingot caster for magnesium alloy AZ31

    Directory of Open Access Journals (Sweden)

    Mainul Hasan

    2014-12-01

    Full Text Available A comprehensive 3D turbulent CFD study has been carried out to simulate a Low-Head (LH vertical Direct Chill (DC rolling ingot caster for the common magnesium alloy AZ31. The model used in this study takes into account the coupled laminar/turbulent melt flow and solidification aspects of the process and is based on the control-volume finite-difference approach. Following the aluminum/magnesium DC casting industrial practices, the LH mold is taken as 30 mm with a hot top of 60 mm. The previously verified in-house code has been modified to model the present casting process. Important quantitative results are obtained for four casting speeds, for three inlet melt pouring temperatures (superheats and for three metal-mold contact heat transfer coefficients for the steady state operational phase of the caster. The variable cooling water temperatures reported by the industry are considered for the primary and secondary cooling zones during the simulations. Specifically, the temperature and velocity fields, sump depth and sump profiles, mushy region thickness, solid shell thickness at the exit of the mold and axial temperature profiles at the center and at three strategic locations at the surface of the slab are presented and discussed.

  13. Systematic understanding of corrosion behavior of plasma electrolytic oxidation treated AZ31 magnesium alloy using a mouse model of subcutaneous implant.

    Science.gov (United States)

    Jang, Yongseok; Tan, Zongqing; Jurey, Chris; Collins, Boyce; Badve, Aditya; Dong, Zhongyun; Park, Chanhee; Kim, Cheol Sang; Sankar, Jagannathan; Yun, Yeoheung

    2014-12-01

    This study was conducted to identify the differences between corrosion rates, corrosion types, and corrosion products in different physiological environments for AZ31 magnesium alloy and plasma electrolytic oxidation (PEO) treated AZ31 magnesium alloy. In vitro and in vivo tests were performed in Hank's Balanced Salt Solution (HBSS) and mice for 12 weeks, respectively. The corrosion rates of both AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy were calculated based on DC polarization curves, volume of hydrogen evolution, and the thickness of corrosion products formed on the surface. Micro X-ray computed tomography (Micro-CT), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were used to analyze morphological and chemical characterizations of corrosion products. The results show that there is more severe localized corrosion after in vitro test in HBSS; however, the thicknesses of corrosion products formed on the surface for AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy in vivo were about 40% thicker than the thickness of corrosion products generated in vitro. The ratio of Ca and P (Ca/P) in the corrosion products also differed. The Ca deficient region and higher content of Al in corrosion product than AZ31 magnesium alloy were identified after in vivo test in contrast with the result of in vitro test. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Microstructure and mechanical property of dual-directional-extruded Mg alloy AZ31

    International Nuclear Information System (INIS)

    Lu Liwei; Liu Tianmo; Jiang Shan; Pan Fushen; Liu Qing; Wang Zhongchang

    2010-01-01

    We report microstructure evolution and mechanical property of Mg alloy AZ31 processed by a new deformation technique, dual-directional extrusion (DDE). Using optical microscopy, scanning electron microscopy, and electron back scatter diffraction technique, we attribute the significant refinement of original coarse grains in the DDE-processed alloy to the occurrence of dynamic recrystallization. Moreover, we find that low temperature is crucial for yielding fine grain, which consequently results in high micro-hardness and yield stress, large fracture strain, and enhanced elongation. The improved mechanical properties are comparable or even superior to those of the alloy subjected to other deformation techniques, rendering the DDE a promising way for further tailoring properties of Mg-based alloys.

  15. Wettability and corrosion of alumina embedded nanocomposite MAO coating on nanocrystalline AZ31B magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gheytani, M.; Aliofkhazraei, M., E-mail: maliofkh@gmail.com; Bagheri, H.R.; Masiha, H.R.; Rouhaghdam, A. Sabour

    2015-11-15

    In this paper, micro- and nanocrystalline AZ31B magnesium alloy were coated by micro-arc oxidation method. In order to fabricate nanocrystalline surface layer, surface mechanical attrition treatment was performed and nano-grains with average size of 5–10 nm were formed on the surface of the samples. Coating process was carried out at different conditions including two coating times and two types of electrolyte. Alumina nanoparticles were utilized as suspension in electrolyte to form nanocomposite coatings by micro-arc oxidation method. Potentiodynamic polarization, percentage of porosity, and wettability tests were performed to study various characteristics of the coated samples. The results of scanning electron microscope imply that samples coated in silicate-based electrolyte involve much lower surface porosity (∼25%). Besides, the results of wettability test indicated that the maximum surface tension with deionized water is for nanocrystalline sample. In this regard, the sample coated in silicate-based suspension was 4 times more hydrophilic than the microcrystalline sample. - Highlights: • MAO in phosphate electrolyte needs higher energy as compared to silicate electrolyte. • Less porosity and finer grain size on free surface of the silicate-based coatings. • Observed porosity from top surface of coating shows the effect of the final MAO sparks. • SMAT affects surface roughness and accelerates growth kinetics.

  16. Workability Limits of Magnesium Alloy AZ31B Subjected to Equal Channel Angular Pressing

    Science.gov (United States)

    Arun, M. S.; Chakkingal, Uday

    2018-03-01

    Equal channel angular pressing (ECAP) is an important severe plastic deformation process to produce ultrafine grained microstructures in metals and alloys. Magnesium and its alloys generally possess poor workability at temperatures below 250 °C. This investigation examines the influence of different passes and processing routes of ECAP on improving the workability of Mg alloy AZ31B. ECAP was carried out for three passes using a die of angle 120° using processing routes Bc and C. The operating temperature was 523 K for the first pass and 423 K for the subsequent two passes. The resultant microstructure and mechanical properties were determined. Workability of the alloy at 423 K (150 °C) was determined using upsetting experiments on cylindrical specimens machined from the annealed and ECAPed samples. Workability limit diagrams have been constructed for the various processed conditions. The workability data generated were also analyzed using five different workability criteria (also referred to as ductile fracture models) and the material constants for these five models were evaluated. Specimens processed by two passes through route C (pass 2C) exhibits better workability compared to other passes since the workability limit line after this pass shows maximum safe working area and lies above the other workability lines. Among the five different workability criteria investigated, the Freudenthal workability criterion is more suitable for prediction of failure in this alloy.

  17. Development of liquid-nitrogen-cooling friction stir spot welding for AZ31 magnesium alloy joints

    Science.gov (United States)

    Wu, Dong; Shen, Jun; Zhou, Meng-bing; Cheng, Liang; Sang, Jia-xing

    2017-10-01

    A liquid-nitrogen-cooling friction stir spot welding (C-FSSW) technology was developed for welding AZ31 magnesium alloy sheets. The liquid-nitrogen cooling degraded the deformability of the welded materials such that the width of interfacial cracks increased with increasing cooling time. The grain size of the stirred zone (SZ) and the heat-affected zone (HAZ) of the C-FSSW-welded joints decreased, whereas that of the thermomechanically affected zone (TMAZ) increased with increasing cooling time. The maximum tensile shear load of the C-FSSW-welded joints welded with a cooling time of 5 or 7 s was larger than that of the friction stir spot welding (FSSW)-welded joint, and the tensile shear load decreased with increasing cooling time. The microhardness of the C-FSSW-welded joints was greater than that of the FSSW-welded joint. Moreover, the microhardness of the SZ and the HAZ of the C-FSSW-welded joints increased, whereas that of the TMAZ decreased, with increasing cooling time.

  18. Effects of CH3OH Addition on Plasma Electrolytic Oxidation of AZ31 Magnesium Alloys

    Science.gov (United States)

    He, Yongyi; Chen, Li; Yan, Zongcheng; Zhang, Yalei

    2015-09-01

    Plasma electrolytic oxidation (PEO) films on AZ31 magnesium alloys were prepared in alkaline silicate electrolytes (base electrolyte) with the addition of different volume concentrations of CH3OH, which was used to adjust the thickness of the vapor sheath. The compositions, morphologies, and thicknesses of ceramic layers formed with different CH3OH concentrations were determined via X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and scanning electron microscopy (SEM). Corrosion behavior of the oxide films was evaluated in 3.5 wt.% NaCl solution using potentiodynamic polarization tests. PEO coatings mainly comprised Mg, MgO, and Mg2SiO4. The addition of CH3OH in base electrolytes affected the thickness, pores diameter, and Mg2SiO4 content in the films. The films formed in the electrolyte containing 12% CH3OH exhibited the highest thickness. The coatings formed in the electrolyte containing different concentrations of CH3OH exhibited similar corrosion resistance. The energy consumption of PEO markedly decreased upon the addition of CH3OH to the electrolytes. The result is helpful for energy saving in the PEO process. supported by National Natural Science Foundation of China (No. 21376088), the Project of Production, Education and Research, Guangdong Province and Ministry of Education (Nos. 2012B09100063, 2012A090300015), and Guangzhou Science and Technology Plan Projects of China (No. 2014Y2-00042)

  19. Material flow and microstructural evolution during friction stir spot welding of AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Yuan, W.; Mishra, R.S.; Carlson, B.; Verma, R.; Mishra, R.K.

    2012-01-01

    Material flow and local texture evolution during friction stir spot welding (FSSW) of AZ31 magnesium alloy was characterized by varying tool rotation rates. Texture at various locations of the welded region was measured using electron backscatter diffraction (EBSD). Material flow is significantly influenced by tool rotation rate with a conical step spiral pin tool, and FSSW introduces a unique basal fiber texture in the welded region. Results indicate that local texture evolution is dominated by shear deformation through material flow. The tool shoulder applies both shear and compressive deformation to the upper region material; however, the rotating pin introduces only shear deformation to the adjacent material. As the tool rotation rate increases, the effect of both tool shoulder and pin becomes more prominent by introducing a higher degree of basal pole tilt with respect to the initial rolling texture at the periphery of the pin, but less tilt in the upper region beneath the tool shoulder undersurface. The equiaxed fine grain structure in the stir zone appears to result from the twinning-induced dynamic recrystallization and discontinuous dynamic recrystallization.

  20. The oxidation resistance and ignition temperature of AZ31 magnesium alloy with additions of La2O3 and La

    International Nuclear Information System (INIS)

    Zhao, Shizhe; Zhou, Hong; Zhou, Ti; Zhang, Zhihui; Lin, Pengyu; Ren, Luquan

    2013-01-01

    Highlights: ► Using lanthanum and lanthanum oxide (La 2 O 3 ) can improve oxidation resistance of magnesium alloy. ► La 2 O 3 is as effective as La in affecting both alloy microstructure and oxidation resistance. ► The optimum La concentration in alloy is ∼0.7 wt.%. ► We analyzed the oxidation kinetics of AZ31 alloy with both additions. - Abstract: We investigate the oxidation resistance of AZ31 magnesium alloy with additions of La and La oxide (La 2 O 3 ). The contributor is the practical La content in alloy. Both La and La 2 O 3 are effective in improving the oxidation resistance of Mg alloys. The samples with La content of ∼ 0.7 wt.% possess the best resistance to oxidation of all. Oxide scale, ignition temperature and oxidation kinetics are analyzed. However, higher La content is detrimental to the oxidation resistance.

  1. Evaluation of self-healing ability of Ce–V conversion coating on AZ31 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Xiao Jiang

    2016-09-01

    Full Text Available This study investigated the influence of cerium nitrate in vanadate solutions on the properties of Ce–V conversion coatings on AZ31 magnesium alloys, and evaluated the self-healing behavior of the Ce–V conversion coating for AZ31 magnesium alloy. The results showed that the additions of cerium nitrate prevented pentavalent vanadium from reducing to tetravalent vanadium in the coatings during conversion reaction process. Adding appropriate cerium nitrate to vanadate solution led to a thicker coating with a more compact CeVO4 layer. The corrosion behavior of the Ce–V conversion coating was investigated by the electrochemical tests and the scratch immersion test in 3.5 wt.% NaCl solution. The self-healing ability of the coating was confirmed from all tests. The surface analysis revealed that the self-healing effect of the Ce–V conversion coating was only provided by the release and migration of vanadium compounds.

  2. The research on the effect of MgCO{sub 3} on the grain refinement in AZ31 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gao, S.Y.; Cui, J.Z.; Li, Q.C.; Zhang, Z.Q. [Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang (China)

    2010-08-15

    The effect of MgCO{sub 3} addition on the as-cast microstructure of AZ31 magnesium alloy has been widely investigated. The results show that the average grain size of the {alpha}-Mg grain in AZ31 magnesium alloy decreases from about 570 {mu}m to 100 {mu}m by the addition of 0.6 wt.% MgCO{sub 3} as gain refiner at 760 C. Based on the analysis of EDS, theoretical calculation of E{sub bind} and Gibbs free energy, we esteem that grain refiner mechanism is mainly attributed to the generation of Al{sub 4}C{sub 3}, which can be serviced as nucleation site and restrain grain boundary from growing and transferring. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  3. A Study on Compressive Anisotropy and Nonassociated Flow Plasticity of the AZ31 Magnesium Alloy in Hot Rolling

    Directory of Open Access Journals (Sweden)

    Guoqiang Wang

    2014-01-01

    Full Text Available Effect of anisotropy in compression is studied on hot rolling of AZ31 magnesium alloy with a three-dimensional constitutive model based on the quadratic Hill48 yield criterion and nonassociated flow rule (non-AFR. The constitutive model is characterized by compressive tests of AZ31 billets since plastic deformations of materials are mostly caused by compression during rolling processes. The characterized plasticity model is implemented into ABAQUS/Explicit as a user-defined material subroutine (VUMAT based on semi-implicit backward Euler's method. The subroutine is employed to simulate square-bar rolling processes. The simulation results are compared with rolled specimens and those predicted by the von Mises and the Hill48 yield function under AFR. Moreover, strip rolling is also simulated for AZ31 with the Hill48 yield function under non-AFR. The strip rolling simulation demonstrates that the lateral spread generated by the non-AFR model is in good agreement with experimental data. These comparisons between simulation and experiments validate that the proposed Hill48 yield function under non-AFR provides satisfactory description of plastic deformation behavior in hot rolling for AZ31 alloys in case that the anisotropic parameters in the Hill48 yield function and the non-associated flow rule are calibrated by the compressive experimental results.

  4. In vitro and in vivo studies of biodegradable fine grained AZ31 magnesium alloy produced by equal channel angular pressing.

    Science.gov (United States)

    Ratna Sunil, B; Sampath Kumar, T S; Chakkingal, Uday; Nandakumar, V; Doble, Mukesh; Devi Prasad, V; Raghunath, M

    2016-02-01

    The objective of the present work is to investigate the role of different grain sizes produced by equal channel angular pressing (ECAP) on the degradation behavior of magnesium alloy using in vitro and in vivo studies. Commercially available AZ31 magnesium alloy was selected and processed by ECAP at 300°C for up to four passes using route Bc. Grain refinement from a starting size of 46μm to a grain size distribution of 1-5μm was successfully achieved after the 4th pass. Wettability of ECAPed samples assessed by contact angle measurements was found to increase due to the fine grain structure. In vitro degradation and bioactivity of the samples studied by immersing in super saturated simulated body fluid (SBF 5×) showed rapid mineralization within 24h due to the increased wettability in fine grained AZ31 Mg alloy. Corrosion behavior of the samples assessed by weight loss and electrochemical tests conducted in SBF 5× clearly showed the prominent role of enhanced mineral deposition on ECAPed AZ31 Mg in controlling the abnormal degradation. Cytotoxicity studies by MTT colorimetric assay showed that all the samples are viable. Additionally, cell adhesion was excellent for ECAPed samples particularly for the 3rd and 4th pass samples. In vivo experiments conducted using New Zealand White rabbits clearly showed lower degradation rate for ECAPed sample compared with annealed AZ31 Mg alloy and all the samples showed biocompatibility and no health abnormalities were noticed in the animals after 60days of in vivo studies. These results suggest that the grain size plays an important role in degradation management of magnesium alloys and ECAP technique can be adopted to achieve fine grain structures for developing degradable magnesium alloys for biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Corrosion performance of atmospheric plasma sprayed alumina coatings on AZ31B magnesium alloy under immersion environment

    OpenAIRE

    D. Thirumalaikumarasamy; K. Shanmugam; V. Balasubramanian

    2014-01-01

    Plasma sprayed ceramic coatings are successfully used in many industrial applications, where high wear and corrosion resistance with thermal insulation are required. The alumina powders were plasma sprayed on AZ31B magnesium alloy with three different plasma spraying parameters. In the present work, the influence of plasma spray parameters on the corrosion behavior of the coatings was investigated. The corrosion behavior of the coated samples was evaluated by immersion corrosion test in 3.5 w...

  6. Development of mechanical properties in a CaO added AZ31 magnesium alloy processed by equal-channel angular pressing

    International Nuclear Information System (INIS)

    Bae, Seong-Hwan; Jung, Ki Ho; Shin, Young-Chul; Yoon, Duk Jae; Kawasaki, Megumi

    2016-01-01

    Processing through the application of equal-channel angular pressing (ECAP) is recognized as one of the attractive severe plastic deformation techniques where the processed bulk metals generally achieve ultrafine-grained microstructure leading to improved physical characteristics and mechanical properties. Magnesium has received much attention to date for its lightweight, high strength and excellent elasticity. Mg alloys with addition of CaO is reported to provide the successful casting procedure without usage of greenhouse gas, SF 6 , whereas it is generally used for preventing the oxidation of Mg during casting. In the present investigation, a CaO added AZ31 (AZ31-CaO) magnesium alloy was processed by ECAP at elevated temepratures with a few steps of reduction which result in significant grain refinement to ~ 1.5 μm after 6 passes. Compression testing at room temperature demonstrated the AZ31-CaO alloy after ECAP showed enhanced yield strength more than the as-processed commercial AZ31 alloy while both alloys maintained ductility in spite of significant reduction in grain size. The improved strength in the AZ31-CaO alloy was attributed to the formation of fine Al 2 Ca precipitates which experience breaking-up through ECAP and accelerate the microstructural refinement. Moreover, the preservation of ductility was attributed to the enhancement of strain hardening capability in the AZ31 alloy at room temperature. This study discusses the feasibility of using ECAP to improve both strength and ductility on magnesium alloys by applying the diagram describing the paradox of strength and ductility. - Highlights: • AZ31 and AZ31-CaO magnesium alloys were processed by ECAP up to 6 passes. • AZ31-CaO alloy after ECAP showed improved yield strength without losing ductility. • CaO in AZ31 forms fine Al 2 Ca accelerating microstructural refinement during ECAP. • Feasibility of using ECAP was shown to improve both strength and ductility in Mg.

  7. Systematic understanding of corrosion behavior of plasma electrolytic oxidation treated AZ31 magnesium alloy using a mouse model of subcutaneous implant

    International Nuclear Information System (INIS)

    Jang, Yongseok; Tan, Zongqing; Jurey, Chris; Collins, Boyce; Badve, Aditya; Dong, Zhongyun; Park, Chanhee; Kim, Cheol Sang; Sankar, Jagannathan; Yun, Yeoheung

    2014-01-01

    This study was conducted to identify the differences between corrosion rates, corrosion types, and corrosion products in different physiological environments for AZ31 magnesium alloy and plasma electrolytic oxidation (PEO) treated AZ31 magnesium alloy. In vitro and in vivo tests were performed in Hank's Balanced Salt Solution (HBSS) and mice for 12 weeks, respectively. The corrosion rates of both AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy were calculated based on DC polarization curves, volume of hydrogen evolution, and the thickness of corrosion products formed on the surface. Micro X-ray computed tomography (Micro-CT), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were used to analyze morphological and chemical characterizations of corrosion products. The results show that there is more severe localized corrosion after in vitro test in HBSS; however, the thicknesses of corrosion products formed on the surface for AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy in vivo were about 40% thicker than the thickness of corrosion products generated in vitro. The ratio of Ca and P (Ca/P) in the corrosion products also differed. The Ca deficient region and higher content of Al in corrosion product than AZ31 magnesium alloy were identified after in vivo test in contrast with the result of in vitro test. - Highlights: • Effects of plasma electrolytic oxidation on AZ31 in vitro and in vivo • Retardation of degradation via plasma electrolytic oxidation in vitro and in vivo • Differentiation of in vitro and in vivo corrosion types and products

  8. Systematic understanding of corrosion behavior of plasma electrolytic oxidation treated AZ31 magnesium alloy using a mouse model of subcutaneous implant

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Yongseok [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC, 27411 (United States); Tan, Zongqing [Internal Medicine, College of Medicine, University of Cincinnati, OH 45211 (United States); Jurey, Chris [Luke Engineering, Wadsworth, OH 44282 (United States); Collins, Boyce [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC, 27411 (United States); Badve, Aditya [Business and Biology, The University of North Carolina at Chapel Hill, NC 27514 (United States); Dong, Zhongyun [Internal Medicine, College of Medicine, University of Cincinnati, OH 45211 (United States); Park, Chanhee; Kim, Cheol Sang [Department of Bio-nano System Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Sankar, Jagannathan [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC, 27411 (United States); Yun, Yeoheung, E-mail: yyun@ncat.edu [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC, 27411 (United States)

    2014-12-01

    This study was conducted to identify the differences between corrosion rates, corrosion types, and corrosion products in different physiological environments for AZ31 magnesium alloy and plasma electrolytic oxidation (PEO) treated AZ31 magnesium alloy. In vitro and in vivo tests were performed in Hank's Balanced Salt Solution (HBSS) and mice for 12 weeks, respectively. The corrosion rates of both AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy were calculated based on DC polarization curves, volume of hydrogen evolution, and the thickness of corrosion products formed on the surface. Micro X-ray computed tomography (Micro-CT), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were used to analyze morphological and chemical characterizations of corrosion products. The results show that there is more severe localized corrosion after in vitro test in HBSS; however, the thicknesses of corrosion products formed on the surface for AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy in vivo were about 40% thicker than the thickness of corrosion products generated in vitro. The ratio of Ca and P (Ca/P) in the corrosion products also differed. The Ca deficient region and higher content of Al in corrosion product than AZ31 magnesium alloy were identified after in vivo test in contrast with the result of in vitro test. - Highlights: • Effects of plasma electrolytic oxidation on AZ31 in vitro and in vivo • Retardation of degradation via plasma electrolytic oxidation in vitro and in vivo • Differentiation of in vitro and in vivo corrosion types and products.

  9. Optimization of process factors for self-healing vanadium-based conversion coating on AZ31 magnesium alloy

    Science.gov (United States)

    Li, Kun; Liu, Junyao; Lei, Ting; Xiao, Tao

    2015-10-01

    A self-healing vanadium-based conversion coating was prepared on AZ31 magnesium alloy. The optimum operating conditions including vanadia solution concentration, pH and treating temperature for obtaining the best corrosion protective vanadia coatings and improved localized corrosion resistance to the magnesium substrate were determined by an orthogonal experiment design. Surface morphology and composition of the resultant conversion coatings were investigated by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The self-healing behavior of the coating was investigated by cross-cut immersion test and electrochemical impedance spectroscopy (EIS) measurements in 3.5% NaCl solution.

  10. Preparation and corrosion resistance of magnesium phytic acid/hydroxyapatite composite coatings on biodegradable AZ31 magnesium alloy.

    Science.gov (United States)

    Zhang, Min; Cai, Shu; Zhang, Feiyang; Xu, Guohua; Wang, Fengwu; Yu, Nian; Wu, Xiaodong

    2017-06-01

    In this work, a magnesium phytic acid/hydroxyapatite composite coating was successfully prepared on AZ31 magnesium alloy substrate by chemical conversion deposition technology with the aim of improving its corrosion resistance and bioactivity. The influence of hydroxyapatite (HA) content on the microstructure and corrosion resistance of the coatings was investigated. The results showed that with the increase of HA content in phytic acid solution, the cracks on the surface of the coatings gradually reduced, which subsequently improved the corrosion resistance of these coated magnesium alloy. Electrochemical measurements in simulated body fluid (SBF) revealed that the composite coating with 45 wt.% HA addition exhibited superior surface integrity and significantly improved corrosion resistance compared with the single phytic acid conversion coating. The results of the immersion test in SBF showed that the composite coating could provide more effective protection for magnesium alloy substrate than that of the single phytic acid coating and showed good bioactivity. Magnesium phytic acid/hydroxyapatite composite, with the desired bioactivity, can be synthesized through chemical conversion deposition technology as protective coatings for surface modification of the biodegradable magnesium alloy implants. The design idea of the new type of biomaterial is belong to the concept of "third generation biomaterial". Corrosion behavior and bioactivity of coated magnesium alloy are the key issues during implantation. In this study, preparation and corrosion behavior of magnesium phytic acid/hydroxyapatite composite coatings on magnesium alloy were studied. The basic findings and significance of this paper are as follows: 1. A novel environmentally friendly, homogenous and crack-free magnesium phytic acid/hydroxyapatite composite coating was fabricated on AZ31 magnesium alloy via chemical conversion deposition technology with the aim of enhancing its corrosion resistance and

  11. Investigation on the Effect of Pulsed Energy on Strength of Fillet Lap Laser Welded AZ31B Magnesium Alloys

    Science.gov (United States)

    Salleh, M. N. M.; Ishak, M.; Aiman, M. H.; Idris, S. R. A.; Romlay, F. R. M.

    2017-09-01

    AZ31B magnesium alloy have been hugely applied in the aerospace, automotive, and electronic industries. However, welding thin sheet AZ31B was challenging due to its properties which is easily to evaporated especially using conventional fusion welding method such as metal inert gas (MIG). Laser could be applied to weld this metal since it produces lower heat input. The application of fiber laser welding has been widely since this type of laser could produce better welding product especially in the automotive sectors. Low power fiber laser was used to weld this non-ferrous metal where pulse wave (PW) mode was used. Double fillet lap joint was applied to weld as thin as 0.6 mm thick of AZ31B and the effect of pulsed energy on the strength was studied. Bond width, throat length, and penetration depth also was studied related to the pulsed energy which effecting the joint. Higher pulsed energy contributes to the higher fracture load with angle of irradiation lower than 3 °

  12. In vitro corrosion of magnesium alloy AZ31 — a synergetic influence of glucose and Tris

    Science.gov (United States)

    Li, Ling-Yu; Liu, Bin; Zeng, Rong-Chang; Li, Shuo-Qi; Zhang, Fen; Zou, Yu-Hong; Jiang, Hongwei George; Chen, Xiao-Bo; Guan, Shao-Kang; Liu, Qing-Yun

    2018-05-01

    Biodegradable Mg alloys have generated great interest for biomedical applications. Accurate predictions of in vivo degradation of Mg alloys through cost-effective in vivo evaluations require the latter to be conducted in an environment close to that of physiological scenarios. However, the roles of glucose and buffering agents in regulating the in vivo degradation performance of Mg alloys has not been elucidated. Herein, degradation behavior of AZ31 alloy is investigated by hydrogen evolution measurements, pH monitoring and electrochemical tests. Results indicate that glucose plays a content-dependent role in degradation of AZ31 alloy in buffer-free saline solution. The presence of a low concentration of glucose, i.e. 1.0 g/L, decreases the corrosion rate of Mg alloy AZ31, whereas the presence of 2.0 and 3.0 g/L glucose accelerates the corrosion rate during long term immersion in saline solution. In terms of Tris-buffered saline solution, the addition of glucose increases pH value and promotes pitting corrosion or general corrosion of AZ31 alloy. This study provides a novel perspective to understand the bio-corrosion of Mg alloys in buffering agents and glucose containing solutions.

  13. Nanomechanical analysis of AZ31 magnesium alloy and pure magnesium correlated with crystallographic orientation

    Czech Academy of Sciences Publication Activity Database

    Bočan, Jiří; Maňák, Jan; Jäger, Aleš

    2015-01-01

    Roč. 644, Sep (2015), s. 114-120 ISSN 0921-5093 R&D Projects: GA ČR GBP108/12/G043 Institutional support: RVO:68378271 Keywords : EBSD * electron microscopy * hardness measurement * magnesium alloys * mechanical characterization * nanoindentation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.647, year: 2015

  14. Metallurgical characterization of pulsed current gas tungsten arc, friction stir and laser beam welded AZ31B magnesium alloy joints

    International Nuclear Information System (INIS)

    Padmanaban, G.; Balasubramanian, V.

    2011-01-01

    This paper reports the influences of welding processes such as friction stir welding (FSW), laser beam welding (LBW) and pulsed current gas tungsten arc welding (PCGTAW) on mechanical and metallurgical properties of AZ31B magnesium alloy. Optical microscopy, scanning electron microscopy, transmission electron microscopy and X-Ray diffraction technique were used to evaluate the metallurgical characteristics of welded joints. LBW joints exhibited superior tensile properties compared to FSW and PCGTAW joints due to the formation of finer grains in weld region, higher fusion zone hardness, the absence of heat affected zone, presence of uniformly distributed finer precipitates in weld region.

  15. Effects of benzotriazole on anodized film formed on AZ31B magnesium alloy in environmental-friendly electrolyte

    International Nuclear Information System (INIS)

    Guo Xinghua; An Maozhong; Yang Peixia; Li Haixian; Su Caina

    2009-01-01

    An environmental-friendly electrolyte of silicate and borate, which contained an addition agent of 1H-benzotriazole (BTA) with low toxicity (LD50 of 965 mg/kg), was used to prepare an anodized film on AZ31B magnesium alloy under the constant current density of 1.5 A/dm 2 at room temperature. Effects of BTA on the properties of the anodized film were studied by scanning electron microscopy (SEM), energy dispersion spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), loss weight measurement, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS), respectively. The results demonstrated that anodized growth process, surface morphology, thickness, phase structure and corrosion resistance of the anodized film were strongly dependant on the BTA concentration, which might be attributed to the formation of an BTA adsorption layer on magnesium substrate surface. When the BTA concentration was 5 g/L in the electrolyte, a compact and thick anodized film could provide excellent corrosion resistance for AZ31B magnesium alloy.

  16. Dynamic behaviors of a Ca–P coated AZ31B magnesium alloy during in vitro and in vivo degradations

    International Nuclear Information System (INIS)

    Wang Qiang; Tan Lili; Xu Wenli; Zhang Bingchun; Yang Ke

    2011-01-01

    Surface modification can be an effective way to control the biodegradation behavior of magnesium alloys and even improve their biological properties. Much attention has been paid to the initial protection ability and biological properties of magnesium alloys coating. In this work, the dynamic behaviors of a Ca–P coated AZ31B magnesium alloy during the degradations in vitro and in vivo, including hemolysis, mechanical loading capability and implantation in animals, were investigated. The hemolytic rates of the alloy with and without coating were all declined to be lower than 5% after more than 20 days immersion in PBS, though an increase happened to the alloy at the early immersion of 3–7 days. Reduction of the mechanical loading capacity was gradually evolved for the coated alloy and the peak load retention of 85% was still maintained after 120 days degradation. The in vivo implantation indicated that the Ca–P coated AZ31B alloy showed a more suitable time dependent degradation behavior which was favorable for growth of the new tissue and the healing dynamics of bones, making it a promising choice for medical application.

  17. Corrosion protection and improved cytocompatibility of biodegradable polymeric layer-by-layer coatings on AZ31 magnesium alloys.

    Science.gov (United States)

    Ostrowski, Nicole; Lee, Boeun; Enick, Nathan; Carlson, Benjamin; Kunjukunju, Sangeetha; Roy, Abhijit; Kumta, Prashant N

    2013-11-01

    Composite coatings of electrostatically assembled layer-by-layer anionic and cationic polymers combined with an Mg(OH)2 surface treatment serve to provide a protective coating on AZ31 magnesium alloy substrates. These ceramic conversion coating and layer-by-layer polymeric coating combinations reduced the initial and long-term corrosion progression of the AZ31 alloy. X-ray diffraction and Fourier transform infrared spectroscopy confirmed the successful application of coatings. Potentiostatic polarization tests indicate improved initial corrosion resistance. Hydrogen evolution measurements over a 2 week period and magnesium ion levels over a 1 week period indicate longer range corrosion protection and retention of the Mg(OH)2 passivation layer in comparison to the uncoated substrates. Live/dead staining and DNA quantification were used as measures of biocompatibility and proliferation while actin staining and scanning electron microscopy were used to observe the cellular morphology and integration with the coated substrates. The coatings simultaneously provided improved biocompatibility, cellular adhesion and proliferation in comparison to the uncoated alloy surface utilizing both murine pre-osteoblast MC3T3 cells and human mesenchymal stem cells. The implementation of such coatings on magnesium alloy implants could serve to improve the corrosion resistance and cellular integration of these implants with the native tissue while delivering vital drugs or biological elements to the site of implantation. Copyright © 2013. Published by Elsevier Ltd.

  18. Electrodeposition of Al-Mn alloy on AZ31B magnesium alloy in molten salts

    International Nuclear Information System (INIS)

    Zhang Jifu; Yan Chuanwei; Wang Fuhui

    2009-01-01

    The Al-Mn alloy coatings were electrodeposited on AZ31B Mg alloy in AlCl 3 -NaCl-KCl-MnCl 2 molten salts at 170 deg. C aiming to improve the corrosion resistance. However, in order to prevent AZ31B Mg alloy from corrosion during electrodeposition in molten salts and to ensure excellent adhesion of coatings to the substrate, AZ31B Mg alloy should be pre-plated with a thin zinc layer as intermediate layer. Then the microstructure, composition and phase constituents of the coatings were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD). It was indicated that, by adjusting the MnCl 2 content in the molten salts from 0.5 wt% to 2 wt%, the Mn content in the alloy coating was increased and the phase constituents were changed from f.c.c Al-Mn solid solution to amorphous phase. The corrosion resistance of the coatings was evaluated by potentiodynamic polarization measurements in 3.5% NaCl solution. It was confirmed that the Al-Mn alloy coatings exhibited good corrosion resistance with a chear passive region and significantly reduced corrosion current density at anodic potentiodynamic polarization. The corrosion resistance of the alloy coatings was also related with the microstructure and Mn content of the coatings.

  19. Hybrid laser-TIG welding, laser beam welding and gas tungsten arc welding of AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Liu Liming; Wang Jifeng; Song Gang

    2004-01-01

    Welding of AZ31B magnesium alloy was carried out using hybrid laser-TIG (LATIG) welding, laser beam welding (LBW) and gas tungsten arc (TIG) welding. The weldability and microstructure of magnesium AZ31B alloy welded using LATIG, LBW and TIG were investigated by OM and EMPA. The experimental results showed that the welding speed of LATIG was higher than that of TIG, which was caught up with LBW. Besides, the penetration of LATIG doubles that of TIG, and was four times that of LBW. In addition, arc stability was improved in hybrid of laser-TIG welding compared with using the TIG welding alone, especially at high welding speed and under low TIG current. It was found that the heat affect zone of joint was only observed in TIG welding, and the size of grains in it was evidently coarse. In fusion zone, the equiaxed grains exist, whose size was the smallest welded by LBW, and was the largest by TIG welding. It was also found that Mg concentration of the fusion zone was lower than that of the base one by EPMA in three welding processes

  20. Optimization of process factors for self-healing vanadium-based conversion coating on AZ31 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kun; Liu, Junyao [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Lei, Ting, E-mail: tlei@mail.csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Xiao, Tao [2nd Xiangya Hospital, Central South University, Changsha 410011 (China)

    2015-10-30

    Highlights: • The optimum operating conditions were determined by an orthogonal experiment. • The coating is composed of oxides and hydroxides of V{sup 5+}, V{sup 4+} and Mg(OH){sub 2}. • The self-healing performance was investigated by cross-cut immersion test. • The vanadia conversion coating provided active corrosion protection to AZ31 alloy. - Abstract: A self-healing vanadium-based conversion coating was prepared on AZ31 magnesium alloy. The optimum operating conditions including vanadia solution concentration, pH and treating temperature for obtaining the best corrosion protective vanadia coatings and improved localized corrosion resistance to the magnesium substrate were determined by an orthogonal experiment design. Surface morphology and composition of the resultant conversion coatings were investigated by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The self-healing behavior of the coating was investigated by cross-cut immersion test and electrochemical impedance spectroscopy (EIS) measurements in 3.5% NaCl solution.

  1. Optimization of process factors for self-healing vanadium-based conversion coating on AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Li, Kun; Liu, Junyao; Lei, Ting; Xiao, Tao

    2015-01-01

    Highlights: • The optimum operating conditions were determined by an orthogonal experiment. • The coating is composed of oxides and hydroxides of V"5"+, V"4"+ and Mg(OH)_2. • The self-healing performance was investigated by cross-cut immersion test. • The vanadia conversion coating provided active corrosion protection to AZ31 alloy. - Abstract: A self-healing vanadium-based conversion coating was prepared on AZ31 magnesium alloy. The optimum operating conditions including vanadia solution concentration, pH and treating temperature for obtaining the best corrosion protective vanadia coatings and improved localized corrosion resistance to the magnesium substrate were determined by an orthogonal experiment design. Surface morphology and composition of the resultant conversion coatings were investigated by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The self-healing behavior of the coating was investigated by cross-cut immersion test and electrochemical impedance spectroscopy (EIS) measurements in 3.5% NaCl solution.

  2. Ratcheting Strain and Microstructure Evolution of AZ31B Magnesium Alloy under a Tensile-Tensile Cyclic Loading.

    Science.gov (United States)

    Yan, Zhifeng; Wang, Denghui; Wang, Wenxian; Zhou, Jun; He, Xiuli; Dong, Peng; Zhang, Hongxia; Sun, Liyong

    2018-03-28

    In this paper, studies were conducted to investigate the deformation behavior and microstructure change in a hot-rolled AZ31B magnesium alloy during a tensile-tensile cyclic loading. The relationship between ratcheting effect and microstructure change was discussed. The ratcheting effect in the material during current tensile-tensile fatigue loading exceeds the material's fatigue limit and the development of ratcheting strain in the material experienced three stages: initial sharp increase stage (Stage I); steady stage (Stage II); and final abrupt increase stage (Stage III). Microstructure changes in Stage I and Stage II are mainly caused by activation of basal slip system. The Extra Geometrically Necessary Dislocations (GNDs) were also calculated to discuss the relationship between the dislocation caused by the basal slip system and the ratcheting strain during the cyclic loading. In Stage III, both the basal slip and the {11-20} twins are found active during the crack propagation. The fatigue crack initiation in the AZ31B magnesium alloy is found due to the basal slip and the {11-20} tensile twins.

  3. Surface morphology, microstructure and properties of as-cast AZ31 magnesium alloy irradiated by high intensity pulsed ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xuesong [State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080 (China); The Fourth Hospital of Harbin Medical University, Harbin 150001 (China); Zhang, Gang [Sino-Russia Joint Lab for High Energy Beam, Shenyang Ligong University, Shenyang 110159 (China); Wang, Guotian [School of Automobile and Traffic Engineering, Heilongjiang Institute of Technology, Harbin 150050 (China); Zhu, Guoliang, E-mail: glzhu1983@hotmail.com [Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, Shanghai Jiao Tong University, Dongchuan Road 800, 200240 Shanghai (China); Zhou, Wei, E-mail: wzhou@sjtu.edu.cn [Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, Shanghai Jiao Tong University, Dongchuan Road 800, 200240 Shanghai (China); Wang, Jun; Sun, Baode [Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, Shanghai Jiao Tong University, Dongchuan Road 800, 200240 Shanghai (China); The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Dongchuan Road 800, 200240 Shanghai (China)

    2014-08-30

    Highlights: • High intensity pulsed ion beam (HIPIB) irradiation were performed to improve the properties of as-cast AZ31 magnesium alloy. • After 10 shots HIPIB irradiation, the average microhardness was increased by 27.1% and wear rate was reduced by 38.5%. • After 10 shots HIPIB irradiation, the corrosion rate was reduced by 24.8%, and the corrosion rate was decreased from 23.15 g m{sup −2} h{sup −1} to 17.4 g m{sup −2} h{sup −1}. - Abstract: High intensity pulsed ion beam (HIPIB) irradiation was performed as surface modification to improve the properties of as-cast AZ31 magnesium (Mg) alloys. The surface morphology and microstructure of the irradiated Mg alloys were characterized and their microhardness, wear resistance and corrosion resistance before and after HIPIB irradiation were measured. The results show that the formation of crater on the surface was attributed to the particles impacted from the irradiated cathode material. HIPIB irradiation resulted in more vacancy defects on the surface of the material. Moreover, new dislocations were generated by the reaction between vacancies, and the dislocation configuration was also changed. These variations caused by the HIPIB are beneficial for improving the material properties. After 10 shots of irradiation, the average microhardness increased by 27.1% but the wear rate decreased by 38.5%. The corrosion rate was reduced by 24.8% according to the salt spray corrosion experiment.

  4. Effect of tool pin profile on microstructure and mechanical properties of friction stir welded AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Motalleb-nejad, P.; Saeid, T.; Heidarzadeh, A.; Darzi, Kh.; Ashjari, M.

    2014-01-01

    Highlights: • FSW conditions for defect free joints of AZ31B magnesium alloy were reached. • The effect of FSW factors such pin design on the features of the welds was studied. • Taper pin caused to finest grains and highest mechanical properties. • The superior properties of the joints were achieved at the condition of ω 2 /υ = 6300. • All the tensile fractures occurred at the interface of the SZ and base metal. - Abstract: In this investigation the effect of friction stir welding pin geometry on the microstructure and mechanical properties of AZ31B magnesium alloy joints is studied. The considered pin geometries are simple cylindrical, screw threaded cylindrical and taper. The joints are friction stir welded at different traverse and rotational speeds. Microstructures of the joints are examined using the optical and scanning electron microscopes. Also, the tensile properties and hardness of the joints are measured. The results show that taper and screw threaded cylindrical pins produce defect free joints. In addition, the taper pin results in finest microstructure and highest mechanical properties. Furthermore, it is found that rotational speed has a more significant role on the final microstructure and mechanical properties of the joints, compared to the traverse speed

  5. Loss of mechanical properties in vivo and bone-implant interface strength of AZ31B magnesium alloy screws with Si-containing coating.

    Science.gov (United States)

    Tan, Lili; Wang, Qiang; Lin, Xiao; Wan, Peng; Zhang, Guangdao; Zhang, Qiang; Yang, Ke

    2014-05-01

    In this study the loss of mechanical properties and the interface strength of coated AZ31B magnesium alloy (a magnesium-aluminum alloy) screws with surrounding host tissues were investigated and compared with non-coated AZ31B, degradable polymer and biostable titanium alloy screws in a rabbit animal model after 1, 4, 12 and 21weeks of implantation. The interface strength was evaluated in terms of the extraction torque required to back out the screws. The loss of mechanical properties over time was indicated by one-point bending load loss of the screws after these were extracted at different times. AZ31B samples with a silicon-containing coating had a decreased degradation rate and improved biological properties. The extraction torque of Ti6Al4V, poly-l-lactide (PLLA) and coated AZ31B increased significantly from 1week to 4weeks post-implantation, indicating a rapid osteosynthesis process over 3weeks. The extraction torque of coated AZ31B increased with implantation time, and was higher than that of PLLA after 4weeks of implantation, equalling that of Ti6Al4V at 12weeks and was higher at 21weeks. The bending loads of non-coated AZ31B and PLLA screws degraded sharply after implantation, and that of coated AZ31B degraded more slowly. The biodegradation mechanism, the coating to control the degradation rate and the bioactivity of magnesium alloys influencing the mechanical properties loss over time and bone-implant interface strength are discussed in this study and it is concluded that a suitable degradation rate will result in an improvement in the mechanical performance of magnesium alloys, making them more suitable for clinical application. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Development of mechanical properties in a CaO added AZ31 magnesium alloy processed by equal-channel angular pressing

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Seong-Hwan [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Metal Forming Technology R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Jung, Ki Ho; Shin, Young-Chul; Yoon, Duk Jae [Metal Forming Technology R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Kawasaki, Megumi, E-mail: megumi@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States)

    2016-02-15

    Processing through the application of equal-channel angular pressing (ECAP) is recognized as one of the attractive severe plastic deformation techniques where the processed bulk metals generally achieve ultrafine-grained microstructure leading to improved physical characteristics and mechanical properties. Magnesium has received much attention to date for its lightweight, high strength and excellent elasticity. Mg alloys with addition of CaO is reported to provide the successful casting procedure without usage of greenhouse gas, SF{sub 6}, whereas it is generally used for preventing the oxidation of Mg during casting. In the present investigation, a CaO added AZ31 (AZ31-CaO) magnesium alloy was processed by ECAP at elevated temepratures with a few steps of reduction which result in significant grain refinement to ~ 1.5 μm after 6 passes. Compression testing at room temperature demonstrated the AZ31-CaO alloy after ECAP showed enhanced yield strength more than the as-processed commercial AZ31 alloy while both alloys maintained ductility in spite of significant reduction in grain size. The improved strength in the AZ31-CaO alloy was attributed to the formation of fine Al{sub 2}Ca precipitates which experience breaking-up through ECAP and accelerate the microstructural refinement. Moreover, the preservation of ductility was attributed to the enhancement of strain hardening capability in the AZ31 alloy at room temperature. This study discusses the feasibility of using ECAP to improve both strength and ductility on magnesium alloys by applying the diagram describing the paradox of strength and ductility. - Highlights: • AZ31 and AZ31-CaO magnesium alloys were processed by ECAP up to 6 passes. • AZ31-CaO alloy after ECAP showed improved yield strength without losing ductility. • CaO in AZ31 forms fine Al{sub 2}Ca accelerating microstructural refinement during ECAP. • Feasibility of using ECAP was shown to improve both strength and ductility in Mg.

  7. Correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys

    International Nuclear Information System (INIS)

    Feliu, S.; Pardo, A.; Merino, M.C.; Coy, A.E.; Viejo, F.; Arrabal, R.

    2009-01-01

    X-ray photoelectron spectroscopy (XPS) was used in order to investigate the correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys exposed to 98% relative humidity at 50 deg. C. Commercially pure magnesium, used as the reference material, revealed MgO, Mg(OH) 2 and tracers of magnesium carbonate in the air-formed film. For the AZ80 and AZ91D alloys, the amount of magnesium carbonate formed on the surface reached similar values to those of MgO and Mg(OH) 2 . A linear relation between the amount of magnesium carbonate formed on the surface and the subsequent corrosion behaviour in the humid environment was found. The AZ80 alloy revealed the highest amount of magnesium carbonate in the air-formed film and the highest atmospheric corrosion resistance, even higher than the AZ91D alloy, indicating that aluminium distribution in the alloy microstructure influenced the amount of magnesium carbonate formed.

  8. Enhancement of tensile ductility and stretch formability of AZ31 magnesium alloy sheet processed by cross-wavy bending

    International Nuclear Information System (INIS)

    Huo, Qinghuan; Yang, Xuyue; Sun, Huan; Li, Bin; Qin, Jia; Wang, Jun; Ma, Jijun

    2013-01-01

    Highlights: •The AZ31 Mg alloy sheet is deformed to 4 passes at 673 K by cross-wavy bending. •A fine-grained microstructure and a weak and random texture are achieved. •Different softening mechanisms significantly affect the microstructure evolution. •The tensile ductility and stretch formability enhance dramatically. -- Abstract: The microstructure and texture evolution in the sheets of AZ31 magnesium alloy was studied by means of cross-wavy bending for 4 passes at 673 K. The bended samples were examined by optical microscopy and electron backscatter diffraction analysis. Finite element analysis suggested an inhomogeneous deformation at each pass. Following cross-wavy bending, a fine-grained microstructure with an average grain size of ∼8 μm and a weak and random basal texture were achieved. Accumulative effective strain was almost equal in the whole sheet at the end. Different work softening mechanisms significantly affected the evolution of the microstructure. Dynamic recovery played an important role during the first three bending passes whereas, in contrast, dynamic recrystallization dominated the evident grain refinement during the last pass. The tensile ductility and stretch formability of the 4-pass sheet at room temperature were distinctly enhanced compared to the initial sheet (1.55 and 2 times larger, respectively). These prominent increases were mainly attributed to texture randomizing rather than texture weakening alone

  9. Study of deformation texture in an AZ31 magnesium alloy rolled at wide range of rolling speed and reductions

    International Nuclear Information System (INIS)

    Sanjari, M; Su, J; Kabir, A S; Yue, S; Tamimi, S; Hara, K; Utsunomiya, H; Petrov, R; Kestens, L

    2015-01-01

    The plasticity of Mg is restricted at low temperatures because: (a) only a small number of deformation mechanisms can be activated, and (b) a preferred crystallographic orientation (texture) develops in wrought alloys, especially in flat-rolled sheets. This causes problems in thin sheet processing as well as component manufacturing from the sheet. In this study, different rolling speeds from 15 to 1000 m/min were employed to warm-roll AZ31B magnesium alloy to different reductions. The results show that AZ31B sheets rolled at 15 m/min and 100 °C has fractured for reductions of more than 30% per pass. However, by increasing the rolling speed to 1000 m/min the rollability was improved significantly and the material can be rolled to reductions of more than 70% per pass. The results show that with increasing strain rate at 100°C, the splitting of basal poles was observed, indicating the activation of more contraction twins and secondary twins. (paper)

  10. Preliminary research on a novel bioactive silicon doped calcium phosphate coating on AZ31 magnesium alloy via electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xun [Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Wan, Peng, E-mail: pwan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Tan, LiLi [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Fan, XinMin [Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang, Ke [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China)

    2014-03-01

    A silicon doped calcium phosphate coating was obtained successfully on AZ31 alloy substrate via pulse electrodeposition. A novel dual-layer structure was observed with a porous lamellar-like and outer block-like apatite layer. In vitro immersion tests were adopted in simulated body fluid within 28 days of immersion. Slow degradation rate obtained from weight loss was observed for the Si-doped Ca–P coating, which was also consistent with the results of electrochemical experiments showing an enhanced corrosion resistance for the coating. Further formation of an apatite-like layer on the surface after immersion proved better integrity and biomineralization performance of the coating. Biological characterization was carried out for viability, proliferation and differentiation of MG63 osteoblast-like cells. The coating showed a good cell growth and an enhanced cell proliferation. Moreover, an increased activity of osteogenic marker ALP was found. All the results demonstrated that the Si-doped calcium phosphate was perspective to be used as a coating for magnesium alloy implants to control the degradation rate and enhance the bioactivity, which would facilitate the rapidity of bone tissue repair. - Highlights: • A Si-doped calcium phosphate coating was achieved via pulse ED on AZ31 alloy. • The coating was composed of a porous lamellar-like layer and outer block-like apatite. • The coating showed slow degradation rate and better biomineralization property. • The coating improved cell proliferation and activity of osteogenic marker ALP.

  11. Preliminary research on a novel bioactive silicon doped calcium phosphate coating on AZ31 magnesium alloy via electrodeposition

    International Nuclear Information System (INIS)

    Qiu, Xun; Wan, Peng; Tan, LiLi; Fan, XinMin; Yang, Ke

    2014-01-01

    A silicon doped calcium phosphate coating was obtained successfully on AZ31 alloy substrate via pulse electrodeposition. A novel dual-layer structure was observed with a porous lamellar-like and outer block-like apatite layer. In vitro immersion tests were adopted in simulated body fluid within 28 days of immersion. Slow degradation rate obtained from weight loss was observed for the Si-doped Ca–P coating, which was also consistent with the results of electrochemical experiments showing an enhanced corrosion resistance for the coating. Further formation of an apatite-like layer on the surface after immersion proved better integrity and biomineralization performance of the coating. Biological characterization was carried out for viability, proliferation and differentiation of MG63 osteoblast-like cells. The coating showed a good cell growth and an enhanced cell proliferation. Moreover, an increased activity of osteogenic marker ALP was found. All the results demonstrated that the Si-doped calcium phosphate was perspective to be used as a coating for magnesium alloy implants to control the degradation rate and enhance the bioactivity, which would facilitate the rapidity of bone tissue repair. - Highlights: • A Si-doped calcium phosphate coating was achieved via pulse ED on AZ31 alloy. • The coating was composed of a porous lamellar-like layer and outer block-like apatite. • The coating showed slow degradation rate and better biomineralization property. • The coating improved cell proliferation and activity of osteogenic marker ALP

  12. Interfacial Reaction Characteristics and Mechanical Properties of Welding-brazing Bonding Between AZ31B Magnesium Alloy and PRO500 Ultra-high Strength Steel

    Directory of Open Access Journals (Sweden)

    CHEN Jian-hua

    2017-11-01

    Full Text Available Experiments were carried out with TIG welding-brazing of AZ31B magnesium alloy to PRO500 steel using TIG arc as heat source. The interfacial reaction characteristics and mechanical properties of the welding-brazing bonding were investigated. The results show that an effective bonding is achieved between AZ31B magnesium alloy and PRO500 steel by using TIG welding-brazing method. Some spontaneous oxidation reactions result in the formation of a transition zone containing AlFe3 phase with rich oxide. The micro-hardness value of the interfacial transition zone is between that of the AZ31B and the PRO500. Temper softening zone appears due to the welding thermal cycle nearby the bonding position in the interface. A higher heat input makes an increase of the brittle phases and leads to an obvious decrease of the bonding strength.

  13. Improving the corrosion properties of magnesium AZ31 alloy GTA weld metal using microarc oxidation process

    Institute of Scientific and Technical Information of China (English)

    M.Siva Prasad; M.Ashfaq; N.Kishore Babu; A.Sreekanth; K.Sivaprasad; V.Muthupandi

    2017-01-01

    In this work,the morphology,phase composition,and corrosion properties of microarc oxidized (MAO) gas tungsten arc (GTA) weldments of AZ31 alloy were investigated.Autogenous gas tungsten arc welds were made as full penetration bead-on-plate welding under the alternating-current mode.A uniform oxide layer was developed on the surface of the specimens with MAO treatment in silicate-based alkaline electrolytes for different oxidation times.The corrosion behavior of the samples was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy.The oxide film improved the corrosion resistance substantially compared to the uncoated specimens.The sample coated for 10 min exhibited better corrosion properties.The corrosion resistance of the coatings was concluded to strongly depend on the morphology,whereas the phase composition and thickness were concluded to only slightly affect the corrosion resistance.

  14. Evolution processes of the corrosion behavior and structural characteristics of plasma electrolytic oxidation coatings on AZ31 magnesium alloy

    Science.gov (United States)

    Chen, Dong; Wang, Ruiqiang; Huang, Zhiquan; Wu, Yekang; Zhang, Yi; Wu, Guorui; Li, Dalong; Guo, Changhong; Jiang, Guirong; Yu, Shengxue; Shen, Dejiu; Nash, Philip

    2018-03-01

    Evolution processes of the corrosion behavior and structural characteristics of the plasma electrolytic oxidation (PEO) coated AZ31 magnesium alloy were investigated by using scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), potentio-dynamic polarization curves and electrochemical impedance spectroscopy (EIS) measurements. Detached coating samples were fabricated by an electrochemical method and more details of the internal micro-structure of coatings were clearly observed on the fractured cross-section morphologies of the samples compared to general polished cross-section morphologies. Evolution mechanisms of the coating corrosion behavior in relation to the evolution of micro-structural characteristics were discussed in detail.

  15. Dual-beam laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration

    Science.gov (United States)

    Harooni, Masoud; Carlson, Blair; Kovacevic, Radovan

    2014-03-01

    Porosity within laser welds of magnesium alloys is one of the main roadblocks to achieving high quality joints. One of the causes of pore formation is the presence of pre-existing coatings on the surface of magnesium alloy such as oxide or chromate layers. In this study, single-beam and dual-beam laser heat sources are investigated in relation to mitigation of pores resulting from the presence of the as-received oxide layer on the surface of AZ31B-H24 magnesium alloy during the laser welding process. A fiber laser with a power of up to 4 kW is used to weld samples in a zero-gap lap joint configuration. The effect of dual-beam laser welding with different beam energy ratios is studied on the quality of the weld bead. The purpose of this paper is to identify the beam ratio that best mitigates pore formation in the weld bead. The laser molten pool and the keyhole condition, as well as laser-induced plasma plume are monitored in real-time by use of a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source. Tensile and microhardness tests were used to measure the mechanical properties of the laser welded samples. Results showed that a dual-beam laser configuration can effectively mitigate pore formation in the weld bead by a preheating-welding mechanism.

  16. Surface composition, microstructure and corrosion resistance of AZ31 magnesium alloy irradiated by high-intensity pulsed ion beam

    International Nuclear Information System (INIS)

    Li, P.; Lei, M.K.; Zhu, X.P.

    2011-01-01

    High-intensity pulsed ion beam (HIPIB) irradiation of AZ31 magnesium alloy is performed and electrochemical corrosion experiment of irradiated samples is carried out by using potentiodynamic polarization technology in order to explore the effect of HIPIB irradiation on corrosion resistance of magnesium alloy. The surface composition, cross-sectional morphology and microstructure are characterized by using electron probe microanalyzer, optical microscope and transmission electron microscope, respectively. The results indicated that HIPIB irradiation leads to a significant improvement in corrosion resistance of magnesium alloy, in terms of the considerable increase in both corrosion potential and pitting breakdown potential. The microstructural refinement and surface purification induced by HIPIB irradiation are responsible for the improved corrosion resistance. - Research Highlights: → A modified layer about 30 μm thick is obtained by HIPIB irradiation. → Selective ablation of element/impurity phase having lower melting point is observed. → More importantly, microstructural refinement occurred on the irradiated surface. → The modified layer exhibited a significantly improved corrosion resistance. → Improved corrosion resistance is ascribed to the combined effect induced by HIPIB.

  17. Development of a Ballistic Specification for Magnesium Alloy AZ31B

    National Research Council Canada - National Science Library

    Jones, Tyrone L; DeLorme, Richard D

    2008-01-01

    .... The magnesium alloy plates were parametrically compared with the minimum performance requirements of aluminum alloy 5083-H131 temper rolled plate using various armor-piercing and fragment-simulating projectiles (FSPs...

  18. Formation of a Spinel Coating on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation

    Science.gov (United States)

    Sieber, Maximilian; Simchen, Frank; Scharf, Ingolf; Lampke, Thomas

    2016-03-01

    Plasma electrolytic oxidation (PEO) is a common means for the surface modification of light metals. However, PEO of magnesium substrates in dilute electrolytes generally leads to the formation of coatings consisting of unfavorable MgO magnesium oxide. By incorporation of electrolyte components, the phase constitution of the oxide coatings can be modified. Coatings consisting exclusively of MgAl2O4 magnesium-aluminum spinel are produced by PEO in an electrolyte containing hydroxide, aluminate, and phosphate anions. The hardness of the coatings is 3.5 GPa on Martens scale on average. Compared to the bare substrate, the coatings reduce the corrosion current density in dilute sodium chloride solution by approx. one order of magnitude and slightly shift the corrosion potential toward more noble values.

  19. Influence of the Composition of the Hank’s Balanced Salt Solution on the Corrosion Behavior of AZ31 and AZ61 Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Jakub Tkacz

    2017-11-01

    Full Text Available The electrochemical corrosion characteristics of AZ31 and AZ61 magnesium alloys were analyzed in terms of potentiodynamic tests and electrochemical impedance spectroscopy. The influence of the solution composition and material surface finish was examined also through the analysis of corrosion products created on the samples’ surface after electrochemical measurements in terms of scanning electron microscopy using energy-dispersive spectroscopy. Obtained data revealed the differences in the response of the magnesium alloys to enriched Hank’s Balanced Salt Solution—HBSS+ (with Mg2+ and Ca2+ ions and Hank’s Balanced Salt Solution—HBSS (without Mg2+ and Ca2+ ions. Both examined alloys exhibited better corrosion resistance from the thermodynamic and kinetic point of view in the enriched HBSS+. AZ61 magnesium alloy reached higher values of polarization resistance than AZ31 magnesium alloy in both the used corrosion solutions. Phosphate-based corrosion products were characteristic for the AZ31 and AZ61 alloys tested in the HBSS (without Mg2+ and Ca2+ ions. The combination of phosphate-based corrosion products and clusters of MgO and Mg(OH2 was typical for the surface of samples tested in the enriched HBSS+ (with Mg2+ and Ca2+ ions. Pitting corrosion attack was observed only in the case of enriched HBSS+.

  20. Distinguishing between slip and twinning events during nanoindentation of magnesium alloy AZ31

    Czech Academy of Sciences Publication Activity Database

    Guo, T.; Šiška, Filip; Barnett, M.R.

    2016-01-01

    Roč. 110, JAN (2016), s. 10-13 ISSN 1359-6462 R&D Projects: GA MŠk EE2.3.20.0197 Institutional support: RVO:68081723 Keywords : Magnesium alloy * Nanoindentation * AFM * CPFEM Subject RIV: JG - Metallurgy Impact factor: 3.747, year: 2016

  1. Characterization of high-strain rate mechanical behavior of AZ31 magnesium alloy using 3D digital image correlation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanli; Xu, Hanbing; Erdman, Donald L.; Starbuck, Michael J.; Simunovic, Srdjan [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2011-10-15

    Characterization of the material mechanical behavior at sub-Hopkinson regime (0.1 to 1 000 s{sup -1}) is very challenging due to instrumentation limitations and the complexity of data analysis involved in dynamic loading. In this study, AZ31 magnesium alloy sheet specimens are tested using a custom designed servo-hydraulic machine in tension at nominal strain rates up to 1 000 s{sup -1}. In order to resolve strain measurement artifacts, the specimen displacement is measured using 3D Digital Image correlation instead from actuator motion. The total strain is measured up to {approx} 30%, which is far beyond the measurable range of electric resistance strain gages. Stresses are calculated based on the elastic strains in the tab of a standard dog-bone shaped specimen. Using this technique, the stresses measured for strain rates of 100 s{sup -1} and lower show little or no noise comparing to load cell signals. When the strain rates are higher than 250 s{sup -1}, the noises and oscillations in the stress measurements are significantly decreased from {approx} 250 to 50 MPa. Overall, it is found that there are no significant differences in the elongation, although the material exhibits slight work hardening when the strain rate is increased from 1 to 100 s{sup -1}. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Corrosion performance of atmospheric plasma sprayed alumina coatings on AZ31B magnesium alloy under immersion environment

    Directory of Open Access Journals (Sweden)

    D. Thirumalaikumarasamy

    2014-12-01

    Full Text Available Plasma sprayed ceramic coatings are successfully used in many industrial applications, where high wear and corrosion resistance with thermal insulation are required. The alumina powders were plasma sprayed on AZ31B magnesium alloy with three different plasma spraying parameters. In the present work, the influence of plasma spray parameters on the corrosion behavior of the coatings was investigated. The corrosion behavior of the coated samples was evaluated by immersion corrosion test in 3.5 wt% NaCl solution. Empirical relationship was established to predict the corrosion rate of plasma sprayed alumina coatings by incorporating process parameters. The experiments were conducted based on a three factor, five-level, central composite rotatable design matrix. The developed relationship can be effectively used to predict the corrosion rate of alumina coatings at 95% confidence level. The results indicate that the input power has the greatest influence on corrosion rate, followed by stand-off distance and powder feed rate.

  3. Effect of current frequency on the mechanical properties, microstructure and texture evolution in AZ31 magnesium alloy strips during electroplastic rolling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaopei [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Beijing National Center for Electron Microscopy, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084 (China); Tang, Guoyi; Kuang, Jie; Li, Xiaohui [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Zhu, Jing, E-mail: jzhu@tsinghua.edu.cn [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Beijing National Center for Electron Microscopy, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084 (China)

    2014-08-26

    The effect of electroplastic rolling (ER) on the mechanical properties, microstructure and texture in the AZ31 magnesium alloy strips has been investigated by tensile testing and electron back scattered diffraction (EBSD) methods. It is shown that the mechanical properties, microstructure, and texture are highly current frequency-dependent. Best mechanical properties are obtained from the 500 Hz ER specimen by carrying out tensile tests for all the rolled strips. Besides, the frequencies of twin boundaries, which are reduced to the minimum at 500 Hz, vary with the current frequency. Moreover, it can be seen from the calculated (0001) and (101{sup ¯}0) pole figures that texture evolved into an obvious off-basal texture, and non-basal slip systems are activated under 500 Hz. The mechanisms of twinning growth and texture evolution in AZ31 magnesium alloy strips during ER are considered to be responsible for the experimental results.

  4. Effects of TiO2 coating on the microstructures and mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joints

    International Nuclear Information System (INIS)

    Wang Linzhi; Shen Jun; Xu Nan

    2011-01-01

    Highlights: → The weld penetration and the D/W ratio could be improved dramatically by increasing of the amount of the TiO 2 coating. → The average grain size of the α-Mg grains increased and the β-Mg 17 Al 12 IMC transformed from granular structure to continuous structure with an increase of the amount of the TiO 2 coating. → With an increase of the amount of the TiO 2 coating, the microhardness of the FZ of the AZ31 magnesium alloy welded joints decreased slightly at first and then decreased sharply. → The UTS value of the welded joints increased with an increase of the amount of the TiO 2 coating. → However, too much TiO 2 coating caused a significant decrease of the UTS value of the welded joints. - Abstract: The effects of TiO 2 coating on the macro-morphologies, microstructures and mechanical properties of tungsten inert gas (TIG) welded AZ31 magnesium alloy joints were investigated by microstructural observations, microhardness tests and tensile tests. The results showed that an increase in the amount of the TiO 2 coating resulted in an increase in the weld penetration and the depth/width (D/W) ratio of the TIG welded AZ31 magnesium alloy seams. Moreover, the average grain size of the α-Mg grains increased and the β-Mg 17 Al 12 intermetallic compound (IMC) was coarser in the case of higher amount of the TiO 2 coating. With an increase in the amount of the TiO 2 coating, the microhardness of the fusion zone (FZ) of the AZ31 magnesium alloy welded joints decreased slightly initially and then decreased sharply. In addition, with an increase in the amount of the TiO 2 coating, the ultimate tensile strength (UTS) value and elongation of the welded joints increased at first and then decreased sharply.

  5. Influence of the Composition of the Hank’s Balanced Salt Solution on the Corrosion Behavior of AZ31 and AZ61 Magnesium Alloys

    Czech Academy of Sciences Publication Activity Database

    Tkacz, J.; Slouková, K.; Minda, J.; Drábiková, J.; Fintová, Stanislava; Doležal, P.; Wasserbauer, J.

    2017-01-01

    Roč. 7, č. 11 (2017), č. článku 465. ISSN 2075-4701 Institutional support: RVO:68081723 Keywords : magnesium alloy * AZ31 * AZ61 * HBSS * HBSS+ * EIS * potentiodynamic test Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 1.984, year: 2016 http://www.mdpi.com/2075-4701/7/11/465

  6. The machined surface of magnesium AZ31 after rotary turning at air cooling condition

    Science.gov (United States)

    Akhyar, G.; Purnomo, B.; Hamni, A.; Harun, S.; Burhanuddin, Y.

    2018-04-01

    Magnesium is a lightweight metal that is widely used as an alternative to iron and steel. Magnesium has been applied in the automotive industry to reduce the weight of a component, but the machining process has the disadvantage that magnesium is highly flammable because it has a low flash point. High temperature can cause the cutting tool wear and contributes to the quality of the surface roughness. The purpose of this study is to obtain the value of surface roughness and implement methods of rotary cutting tool and air cooling output vortex tube cooler to minimize the surface roughness values. Machining parameters that is turning using rotary cutting tool at speed the workpiece of (Vw) 50, 120, 160 m/min, cutting speed of rotary tool of (Vt) 25, 50, 75 m/min, feed rate of (f) 0.1, 0.15, 0.2 mm/rev, and depth of cut of 0.3 mm. Type of tool used is a carbide tool diameter of 16 mm and air cooling pressure of 6 bar. The results show the average value of the lowest surface roughness on the speed the workpiece of 80 m/min, cutting speed of rotary tool of 50 m/min, feed rate of 0.2 mm/rev, and depth of cut of 0.3 mm. While the average value of the highest surface roughness on the speed the workpiece of 160 m/min, cutting speed of rotary tool of 50 m/min, feed rate of 0.2 mm/rev, and depth of cut of 0.3 mm. The influence of machining parameters concluded the higher the speed of the workpiece the surface roughness value higher. Otherwise the higher cutting speed of rotary tool then the lower the surface roughness value. The observation on the surface of the rotary tool, it was found that no uniform tool wear which causes non-uniform surface roughness. The use of rotary cutting tool contributing to lower surface roughness values generated.

  7. Anodizing of magnesium alloy AZ31 in alkaline solutions with silicate under continuous sparking

    International Nuclear Information System (INIS)

    Chai Liyuan; Yu Xia; Yang Zhihui; Wang Yunyan; Okido, Masazumi

    2008-01-01

    Anodization is a useful technique for forming protective films on magnesium alloys and improves its corrosion resistance. Based on the alkaline electrolyte solution with primary oxysalt developed previously, the optimum secondary oxysalt was selected by comparing the anti-corrosion property of anodic film. The structure, component and surface morphology of anodic film and cross-section were analyzed using energy dispersion spectrometer (EDS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The corrosion process was detected by electrochemical impedance spectroscopy (EIS). The results showed that secondary oxysalt addition resulted in different anodizing processes, sparking or non-sparking. Sodium silicate was the most favorable additive of electrolyte, in which anodic film with the strongest corrosion resistance was obtained. The effects of process parameters, such as silicate concentration, applied current density and temperature, were also investigated. High temperature did not improve anti-property of anodic film, while applying high current density resulted in more porous surface of film

  8. A novel simple strategy for in situ deposition of apatite layer on AZ31B magnesium alloy for bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Mousa, Hamouda M. [Department of Bionanosystem Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena 83523 (Egypt); Lee, Do Hee [Department of Bionanosystem Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Park, Chan Hee, E-mail: biochan@jbnu.ac.kr [Department of Bionanosystem Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Division of Mechanical Design Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Kim, Cheol Sang, E-mail: chskim@jbnu.ac.kr [Department of Bionanosystem Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Division of Mechanical Design Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of)

    2015-10-01

    Graphical abstract: - Highlights: • Anodizing process was used for the surface modification of AZ31B magnesium alloy. • An appetite-like film was deposited on the surface of AZ31B magnesium alloy. • Ceramic film was investigated by XRD and XPS. • Nano-plates growth are observed though the implemented experimental design. • Significant increase in the substrate hardness and surface roughness was observed. - Abstract: In this study, for the first time, the degradation performance of AZ31B Mg alloy was tuned by an in situ deposition of apatite thin layer within a short time in one step. Using Taguchi method for experimental design, anodization process was designed under control conditions (time and voltage), and simulated body fluid (SBF) was used as the electrolyte to nucleate apatite-like compounds. The coated alloy was characterized through field emission scanning electron microscopy (FE-SEM), EDS, X-ray diffraction and XPS analysis. The results show that the applied voltage has a significant effect on the formation of apatite-like layers. Compared to the uncoated samples, microhardness and surface roughness of the coated samples showed remarkably different values. The potentiodynamic polarization results demonstrate that the polarization resistance of the anodized samples is higher than the substrate polarization resistance, thus improving the alloy corrosion resistant. Based on the experimental results, the proposed nanostructure apatite-like coating can offer a promising way to improve the biocompatibility and degradability properties of the Mg alloy for bone tissue regeneration.

  9. Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro-arc oxidation and a solution treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tang Hui [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Yu Dezhen [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Luo Yan [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Wang Fuping, E-mail: hitth001@yahoo.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. Black-Right-Pointing-Pointer The corrosion resistance of the magnesium alloy has been enhanced by micro-arc oxidation and solution treatment. Black-Right-Pointing-Pointer The coating fabricated by micro-arc oxidation and solution treatment exhibits a high ability to form apatite. - Abstract: Magnesium and its alloys are potential biodegradable implant materials due to their attractive biological properties. But the use of magnesium is still hampered by its poor corrosion resistance in physiological fluids. In this work, hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. The microstructure and composition are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The potentiodynamic polarization and electrochemical impedance spectroscopy are studied in simulated body fluid (SBF) solution, and the apatite-forming ability is studied also. The results show that the corrosion resistance of the magnesium alloy has been enhanced by MAO coating. And the solution treatment can improve the corrosion resistance of the MAO sample, by forming a barrier layer on the surface of the MAO coating, and by penetrating into the outer layer of the MAO film, sealing the micropores and micro-cracks existed in the MAO coating. In addition, the MAO-ST coating also exhibits a high ability to form apatite.

  10. Effect of Thickness on the Morphology and Corrosion Behavior of Cerium-Based Conversion Coatings on AZ31B Magnesium Alloy

    Science.gov (United States)

    Castano, Carlos E.; Maddela, Surender; O'Keefe, Matthew J.; Wang, Yar-Ming

    Cerium-based conversion coatings (CeCCs) were deposited onto AZ31B magnesium alloy substrates using a spontaneous reaction of CeCl3, H2O2 and gelatin in a water-based solution. The coating thickness was adjusted by controlling the immersion time in the deposition solution. Prior to deposition, the AZ31B substrates were treated using an acid pickling in nitric acid and then an alkaline cleaning in sodium metasilicate pentahydrate. After deposition, the coated samples were immersed in a phosphate bath that converted cerium oxide/hydroxide into cerium phosphate. Electrochemical impedance spectroscopy, potentiodynamic polarization and neutral salt spray testing studies indicated that 100 nm thick CeCC had better corrosion performance than 400 nm coatings. Characterization of the CeCCs by transmission electron microscopy (TEM) revealed a three layer structure with different compositions.

  11. Properties of Rolled AZ31 Magnesium Alloy Sheet Fabricated by Continuous Variable Cross-Section Direct Extrusion

    Science.gov (United States)

    Liu, Yang; Li, Feng; Li, Xue Wen; Shi, Wen Yong

    2018-03-01

    Rolling is currently a widely used method for manufacturing and processing high-performance magnesium alloy sheets and has received widespread attention in recent years. Here, we combined continuous variable cross-section direct extrusion (CVCDE) and rolling processes. The microstructure and mechanical properties of the resulting sheets rolled at different temperatures from CVCDE extrudate were investigated by optical microscopy, scanning electron microscope, transmission electron microscopy and electron backscatter diffraction. The results showed that a fine-grained microstructure was present with an average grain size of 3.62 μm in sheets rolled from CVCDE extrudate at 623 K. Dynamic recrystallization and a large strain were induced by the multi-pass rolling, which resulted in grain refinement. In the 573-673 K range, the yield strength, tensile strength and elongation initially increased and then declined as the CVCDE temperature increased. The above results provide an important scientific basis of processing, manufacturing and the active control on microstructure and property for high-performance magnesium alloy sheet.

  12. Effects of nano-particles strengthening activating flux on the microstructures and mechanical properties of TIG welded AZ31 magnesium alloy joints

    International Nuclear Information System (INIS)

    Xie, Xiong; Shen, Jun; Cheng, Liang; Li, Yang; Pu, Yayun

    2015-01-01

    Highlights: • Increased nano-particles strengthening activating flux degraded TIGed seams. • The reaction between SiC particles and Mg alloy produced Al 4 C 3 and Mg 2 Si phases. • Al 4 C 3 and SiC particles promoted the nucleation and suppressed the growth of α-Mg. • Refined α-Mg grains, precipitated phase and SiC particles enhanced TIGed joints. - Abstract: In this paper, AZ31 magnesium alloy joints were processed by nano-particles strengthening activating flux tungsten inert gas (NSA-TIG) welding, which was achieved by the mixed TiO 2 and nano-SiC particles coated on the samples before welding tests. The macro/micro structural observation and mechanical properties evaluation of the welding joints were conducted by using optical microscope, scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffraction and tension and microhardness tests. The results showed that nano-particles strengthening activating flux effective improved the microstructure, microhardness in fusion zone, ultimate tensile strength of the TIG welding joints. In addition, the chemical reaction between part of SiC particles and AZ31 magnesium alloy produced Al 4 C 3 and Mg 2 Si in the joints. The Al 4 C 3 performed as nucleating agents for α-Mg and the dispersed Mg 2 Si and SiC particles enhanced the mechanical properties of the NSA-TIG welding joints. However, large heat input induced by the increase of the surface coating density of the nano-particles strengthening activating flux, increased the α-Mg grain sizes and weakened the mechanical properties of the welded joints. Therefore, the grain size of α-Mg, distribution of β-Mg 17 Al 12 , Mg 2 Si and SiC particles together influenced the evolution of the mechanical properties of the NSA-TIG welded AZ31 magnesium alloy joints

  13. Enhanced mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joint using two-pass friction stir processing with rapid cooling

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Nan, E-mail: xunan@hhu.edu.cn; Bao, Yefeng

    2016-02-08

    In this study, tungsten inert gas (TIG) welded AZ31 magnesium alloy joint was subjected to two-pass rapid cooling friction stir processing (RC-FSP). The main results show that, two-pass RC-FSP causes the significant dissolution of the coarse eutectic β-Mg{sub 17}Al{sub 12} phase into the magnesium matrix and the remarkable grain refinement in the stir zone. The low-hardness region which frequently located at heat-affected zone was eliminated. The stir zone showed ultrafine grains of 3.1 μm, and exhibited a good combination of ultrahigh tensile strength of 284 MPa and large elongation of 7.1%. This work provides an effective strategy to enhance the strength of TIG welded magnesium alloy joint without ductility loss.

  14. Enhanced mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joint using two-pass friction stir processing with rapid cooling

    International Nuclear Information System (INIS)

    Xu, Nan; Bao, Yefeng

    2016-01-01

    In this study, tungsten inert gas (TIG) welded AZ31 magnesium alloy joint was subjected to two-pass rapid cooling friction stir processing (RC-FSP). The main results show that, two-pass RC-FSP causes the significant dissolution of the coarse eutectic β-Mg_1_7Al_1_2 phase into the magnesium matrix and the remarkable grain refinement in the stir zone. The low-hardness region which frequently located at heat-affected zone was eliminated. The stir zone showed ultrafine grains of 3.1 μm, and exhibited a good combination of ultrahigh tensile strength of 284 MPa and large elongation of 7.1%. This work provides an effective strategy to enhance the strength of TIG welded magnesium alloy joint without ductility loss.

  15. High-compactness coating grown by plasma electrolytic oxidation on AZ31 magnesium alloy in the solution of silicate–borax

    International Nuclear Information System (INIS)

    Shen, M.J.; Wang, X.J.; Zhang, M.F.

    2012-01-01

    Highlights: ► The MgO ceramic coating has been prepared on the surface of AZ31 magnesium alloy by plasma electrolytic oxidation in the borax-doped silicate system. ► Boron element exists in the PEO films in the form of noncrystal. ► The microhardness and compactness of doped ceramic coating are much higher than that of the substrate and undoped ceramic coating, and this doped coated sample shows better wear-resisting property. - Abstract: A ceramic coating was formed on the surface of AZ31 magnesium alloy by plasma electrolytic oxidation (PEO) in the silicate solution with and without borax doped. The composition, morphology, elements and roughness as well as mechanical property of the coating were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and reciprocal-sliding tribometer. The results show that the PEO coating is mainly composed of magnesia. When using borax dope, boron element is permeating into the coating and the boron containing phase exist in the form of amorphous. In addition, the microhardness and compactness of the PEO coating are improved significantly due to doped borax.

  16. Effect of Sn4+ Additives on the Microstructure and Corrosion Resistance of Anodic Coating Formed on AZ31 Magnesium Alloy in Alkaline Solution

    Science.gov (United States)

    Salman, S. A.; Kuroda, K.; Saito, N.; Okido, M.

    Magnesium is the lightest structural metal with high specific strength and good mechanical properties. However, poor corrosion resistance limits its widespread use in many applications. Magnesium is usually treated with Chromate conversion coatings. However, due to changing environmental regulations and pollution prevention requirements, a significant push exists to find new, alternative for poisonous Cr6+. Therefore, we aim to improve corrosion resistance of anodic coatings on AZ31 alloys using low cost non-chromate electrolyte. Anodizing was carried out in alkaline solutions with tin additives. The effect of tin additives on the coating film was characterized by SEM and XRD. The corrosion resistance was evaluated using anodic and cathodic polarizations and electrochemical impedance spectroscopy (EIS). Corrosion resistance property was improved with tin additives and the best anti-corrosion property was obtained with addition of 0.03 M Na2SnO3.3H2O to anodizing solution.

  17. Study of Dissimilar Welding AA6061 Aluminium Alloy and AZ31B Magnesium Alloy with ER5356 Filler Using Friction Stir Welding

    Science.gov (United States)

    Mahamud, M. I. I.; Ishak, M.; Halil, A. M.

    2017-09-01

    This paper is to study of dissimilar welding AA6061 aluminium alloy and AZ31B magnesium alloy with ER5356 filler using friction stir welding. 2 mm thick plates of aluminium and magnesium were used. Friction stir welding operations were performed at different rotation and travel speeds and used the fixed tilt angle which is 3°. The rotation speeds varied from 800 to 1100 rpm, and the travel speed varied from 80 to 100 mm/min. In the range rotation speed of 800 to 1000 rpm and welding speed of 80 to 100 mm/min there are no defect at the weld. Tensile test show the higher tensile strength is 198 MPa and the welding efficiency is about 76%.

  18. The fluoride coated AZ31B magnesium alloy improves corrosion resistance and stimulates bone formation in rabbit model

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei; Zhang, Guangdao [Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang 110001 (China); Tan, Lili; Yang, Ke [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Ai, Hongjun, E-mail: aihongjuna@sina.com [Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang 110001 (China)

    2016-06-01

    This study aimed to evaluate the effect of fluorine coated Mg alloy and clarify its mechanism in bone formation. We implanted the fluorine coated AZ31B Mg alloy screw (group F) in rabbit mandibular and femur in vivo. Untreated AZ31B Mg alloy screw (group A) and titanium screw (group T) were used as control. Then, scanning electron microscopy, the spectral energy distribution analysis, hard and decalcified bone tissues staining were performed. Immunohistochemistry was employed to examine the protein expressions of bone morphogenetic protein 2 (BMP-2) and collagen type I in the vicinity of the implant. Compared with the group A, the degradation of the alloy was reduced, the rates of Mg corrosion and Mg ion release were slowed down, and the depositions of calcium and phosphate increased in the group F in the early stage of implantation. Histological results showed that fluorine coated Mg alloy had well osteogenic activity and biocompatibility. Moreover, fluoride coating obviously up-regulated the expressions of collagen type I and BMP-2. This study confirmed that the fluorine coating might improve the corrosion resistance of AZ31B Mg alloy and promote bone formation by up-regulated the expressions of collagen type I and BMP-2. - Highlights: • Fluoride coating inhibited the degradation of the alloy in the early implantation. • Fluorine coating could slow down the rate of Mg corrosion and Mg ion release. • Fluorine coating could promote the deposition of Ca and P in vivo. • Fluorine coated Mg alloy had well osteogenic activity and biocompatibility. • Fluorine coating up-regulated the expression of BMP-2 and collagen type I protein.

  19. Darkening effect on AZ31B magnesium alloy surface induced by nanosecond pulse Nd:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Y.C., E-mail: guan0013@e.ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); Zhou, W. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); Zheng, H.Y.; Li, Z.L. [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore)

    2013-09-01

    Permanent darkening effect was achieved on surface of AZ31B Mg alloy irradiated with nanosecond pulse Nd:YAG laser, and special attention was made to examine how surface structure as well as oxidation affect the darkening effect. Experiments were carried out to characterize morphological evolution and chemical composition of the irradiated areas by optical reflection spectrometer, Talysurf surface profiler, SEM, EDS, and XPS. The darkening effect was found to be occurred at the surface under high laser energy. Optical spectra showed that the induced darkening surface was uniform over the spectral range from 200 nm to 1100 nm. SEM and surface profiler showed that surface morphology of darkening areas consisted of large number of micron scale cauliflower-like clusters and protruding particles. EDS and XPS showed that compared to non-irradiated area, oxygen content at the darkening areas increased significantly. It was proposed a mechanism that involved trapping of light in the surface morphology and chemistry variation of irradiated areas to explain the laser-induced darkening effect on AZ31B Mg alloy.

  20. Effects of combined organic and inorganic corrosion inhibitors on the nanostructure cerium based conversion coating performance on AZ31 magnesium alloy: Morphological and corrosion studies

    International Nuclear Information System (INIS)

    Saei, E.; Ramezanzadeh, B.; Amini, R.; Kalajahi, M. Salami

    2017-01-01

    Highlights: •Cn-Mn-polyvinyl alcohol conversion coating led to more uniform and crack free film deposition. •The corrosion resistance of Ce film was noticeably improved by using combination of polyvinyl alchol and Mn2+ cations. •A synergistic effect between polyvinyl alchol-Mn2+ resulted in Ce film with enhanced morphology and corrosion resistance. -- Abstract: Magnesium (Mg) AZ31 samples were chemically treated by a series of room temperature nanostructure cerium based conversion coatings containing Mn(NO 3 ) 2 ·4H 2 O, Co(NO 3 ) 2 ·6H 2 O, and polyvinyl alcohol (PVA). The microstructure and corrosion protection properties of different samples were studied by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS) and polarization test in 3.5 wt.% NaCl solution. Results demonstrated that the AZ31 Mg alloy sample treated by Ce-Mn-PVA showed the highest corrosion resistance. A denser Ce film with lower crack was precipitated on the sample treated by Ce-Mn-PVA conversion coating.

  1. Texture evolution in Nd:YAG-laser welds of AZ31 magnesium alloy hot rolled sheets and its influence on mechanical properties

    International Nuclear Information System (INIS)

    Commin, Lorelei; Dumont, Myriam; Rotinat, Rene; Pierron, Fabrice; Masse, Jean-Eric; Barrallier, Laurent

    2011-01-01

    Research highlights: → AZ31 LBW fusion zone results in Mg 17 (Al-Zn) 12 precipitation, twins formation and {0 0 2} texture modification. → The mechanical properties were reduced after LBW but the fracture occurred in the base metal. → The mechanical properties were reduced after LBW but the fracture occurred in the base metal. → A recovery of elongation and UTS can be achieved by a 300 deg. C/1 h heat treatment. The texture evolution is mainly responsible for the yield strength reduction in the fusion zone. - Abstract: AZ31 hot rolled magnesium alloy presents a strong basal texture. Using laser beam welding (LBW) as a joining process induces high temperature gradients leading to major texture changes. Electron back scattered diffraction (EBSD) was used to study the texture evolution, and tensile tests coupled with speckle interferometry were performed to understand its influence on mechanical properties. The random texture obtained in the LBW fusion zone is mainly responsible for the yield strength reduction.

  2. Corrosion behaviors of Zn/Al-Mn alloy composite coatings deposited on magnesium alloy AZ31B (Mg-Al-Zn)

    International Nuclear Information System (INIS)

    Zhang Jifu; Zhang Wei; Yan Chuanwei; Du Keqin; Wang Fuhui

    2009-01-01

    After being pre-plated a zinc layer, an amorphous Al-Mn alloy coating was applied onto the surface of AZ31B magnesium alloy with a bath of molten salts. Then the corrosion performance of the coated magnesium alloy was examined in 3.5% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the single Zn layer was active in the test solution with a high corrosion rate while the Al-Mn alloy coating could effectively protect AZ31B magnesium alloy from corrosion in the solution. The high corrosion resistance of Al-Mn alloy coating was ascribed to an intact and stable passive film formed on the coating. The performances of the passive film on Al-Mn alloy were further investigated by Mott-Schottky curve and X-ray photoelectron spectroscopy (XPS) analysis. It was confirmed that the passive film exhibited n-type semiconducting behavior in 3.5% NaCl solution with a carrier density two orders of magnitude less than that formed on pure aluminum electrode. The XPS analysis indicated that the passive film was mainly composed of AlO(OH) after immersion for long time and the content of Mn was negligible in the outer part of the passive film. Based on the EIS measurement, electronic structure and composition analysis of the passive film, a double-layer structure, with a compact inner oxide and a porous outer layer, of the film was proposed for understanding the corrosion process of passive film, with which the experimental observations might be satisfactorily interpreted.

  3. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    Science.gov (United States)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-08-01

    The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  4. Fabrication of ZIF-8@SiO2 Micro/Nano Hierarchical Superhydrophobic Surface on AZ31 Magnesium Alloy with Impressive Corrosion Resistance and Abrasion Resistance.

    Science.gov (United States)

    Wu, Cuiqing; Liu, Qi; Chen, Rongrong; Liu, Jingyuan; Zhang, Hongsen; Li, Rumin; Takahashi, Kazunobu; Liu, Peili; Wang, Jun

    2017-03-29

    Superhydrophobic coatings are highly promising for protecting material surfaces and for wide applications. In this study, superhydrophobic composites, comprising a rhombic-dodecahedral zeolitic imidazolate framework (ZIF-8@SiO 2 ), have been manufactured onto AZ31 magnesium alloy via chemical etching and dip-coating methods to enhance stability and corrosion resistance. Herein, we report on a simple strategy to modify hydrophobic hexadecyltrimethoxysilan (HDTMS) on ZIF-8@SiO 2 to significantly improve the property of repelling water. We show that various liquids can be stable on its surface and maintain a contact angle higher than 150°. The morphologies and chemical composition were characterized by means of scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FI-IR). In addition, the anticorrosion and antiattrition properties of the film were assessed by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization and HT, respectively. Such a coating shows promising potential as a material for large-scale fabrication.

  5. High-compactness coating grown by plasma electrolytic oxidation on AZ31 magnesium alloy in the solution of silicate-borax

    Science.gov (United States)

    Shen, M. J.; Wang, X. J.; Zhang, M. F.

    2012-10-01

    A ceramic coating was formed on the surface of AZ31 magnesium alloy by plasma electrolytic oxidation (PEO) in the silicate solution with and without borax doped. The composition, morphology, elements and roughness as well as mechanical property of the coating were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and reciprocal-sliding tribometer. The results show that the PEO coating is mainly composed of magnesia. When using borax dope, boron element is permeating into the coating and the boron containing phase exist in the form of amorphous. In addition, the microhardness and compactness of the PEO coating are improved significantly due to doped borax.

  6. Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro-arc oxidation and a solution treatment

    Science.gov (United States)

    Tang, Hui; Yu, Dezhen; Luo, Yan; Wang, Fuping

    2013-01-01

    Magnesium and its alloys are potential biodegradable implant materials due to their attractive biological properties. But the use of magnesium is still hampered by its poor corrosion resistance in physiological fluids. In this work, hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. The microstructure and composition are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The potentiodynamic polarization and electrochemical impedance spectroscopy are studied in simulated body fluid (SBF) solution, and the apatite-forming ability is studied also. The results show that the corrosion resistance of the magnesium alloy has been enhanced by MAO coating. And the solution treatment can improve the corrosion resistance of the MAO sample, by forming a barrier layer on the surface of the MAO coating, and by penetrating into the outer layer of the MAO film, sealing the micropores and micro-cracks existed in the MAO coating. In addition, the MAO-ST coating also exhibits a high ability to form apatite.

  7. Experimental Characterization and Material Modelling of an AZ31 Magnesium Sheet Alloy at Elevated Temperatures under Consideration of the Tension-Compression Asymmetry

    Science.gov (United States)

    Behrens, B.-A.; Bouguecha, A.; Bonk, C.; Dykiert, M.

    2017-09-01

    Magnesium sheet alloys have a great potential as a construction material in the aerospace and automotive industry. However, the current state of research regarding temperature dependent material parameters for the description of the plastic behaviour of magnesium sheet alloys is scarce in literature and accurate statements concerning yield criteria and appropriate characterization tests to describe the plastic behaviour of a magnesium sheet alloy at elevated temperatures in deep drawing processes are to define. Hence, in this paper the plastic behaviour of the well-established magnesium sheet alloy AZ31 has been characterized by means of convenient mechanical tests (e. g. tension, compression and biaxial tests) at temperatures between 180 and 230 °C. In this manner, anisotropic and hardening behaviour as well as differences between the tension-compression asymmetry of the yield locus have been estimated. Furthermore, using the evaluated data from the above mentioned tests, two different yield criteria have been parametrized; the commonly used Hill’48 and an orthotropic yield criterion, CPB2006, which was developed especially for materials with hexagonal close packed lattice structure and is able to describe an asymmetrical yielding behaviour regarding tensile and compressive stress states. Numerical simulations have been finally carried out with both yield functions in order to assess the accuracy of the material models.

  8. Detection of defects in laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration by a real-time spectroscopic analysis

    Science.gov (United States)

    Harooni, Masoud; Carlson, Blair; Kovacevic, Radovan

    2014-05-01

    The effect of surface oxide layer existing at the lap-joint faying surface of magnesium sheets is investigated on the keyhole dynamics of the weld pool and weld bead qualities. It is observed that by removing the oxide layer from the faying surface of the lap joint, a high quality weld can be achieved in the laser welding process. However, the presence of an oxide layer deteriorates the quality of the weld by forming pores at the interface of the two overlapped sheets. The purpose of this paper is to identify the correlation between the integrity of the weld and the interaction between the laser and material. A spectroscopy sensor was applied to detect the spectra emitted from a plasma plume during the laser welding of AZ31B magnesium alloy in a zero-gap lap joint configuration. The electron temperature was calculated by applying a Boltzmann plot method based on the detected spectra, and the correlation between the pore formation and the spectral signals was studied. The laser molten pool and the keyhole condition were monitored in real-time by a high speed charge-coupled device (CCD) camera. A green laser was used as an illumination source in order to detect the influence of the oxide layer on the dynamic behavior of the molten pool. Results revealed that the detected spectrum and weld defects had a meaningful correlation for real-time monitoring of the weld quality during laser welding of magnesium alloys.

  9. The corrosion properties of phosphate coating on AZ31 magnesium alloy: The effect of sodium dodecyl sulfate (SDS) as an eco-friendly accelerating agent

    Energy Technology Data Exchange (ETDEWEB)

    Amini, R. [Department of Polymer Engineering and Color Technology, AmirKabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sarabi, A.A., E-mail: sarabi@aut.ac.ir [Department of Polymer Engineering and Color Technology, AmirKabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of)

    2011-06-01

    Sodium nitrite has been used as an accelerating agent in phosphating bath to improve its properties. However, it is well known that sodium nitrite is a carcinogenic component in phosphating sludge. In this study, it has been aimed to replace sodium nitrite by an environmentally friendly accelerating agent. To this end, sodium dodecyl sulfate (SDS) was used in phosphating bath to improve the phosphate coating formation on an AZ31 magnesium alloy. The effect of SDS/sodium nitrite ratio on the phosphated samples properties was also studied. Using field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), direct current (DC) polarization and electrochemical impedance spectroscopy (EIS) the properties of phosphated magnesium samples were studied. Results showed uniform phosphate coating formation on the magnesium sample mostly in hopeite phase composition. In addition, a denser and less permeable coating can be obtained at these conditions. The corrosion resistance of the phosphated samples was superiorly improved using higher SDS concentration in the phosphating bath.

  10. The corrosion properties of phosphate coating on AZ31 magnesium alloy: The effect of sodium dodecyl sulfate (SDS) as an eco-friendly accelerating agent

    International Nuclear Information System (INIS)

    Amini, R.; Sarabi, A.A.

    2011-01-01

    Sodium nitrite has been used as an accelerating agent in phosphating bath to improve its properties. However, it is well known that sodium nitrite is a carcinogenic component in phosphating sludge. In this study, it has been aimed to replace sodium nitrite by an environmentally friendly accelerating agent. To this end, sodium dodecyl sulfate (SDS) was used in phosphating bath to improve the phosphate coating formation on an AZ31 magnesium alloy. The effect of SDS/sodium nitrite ratio on the phosphated samples properties was also studied. Using field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), direct current (DC) polarization and electrochemical impedance spectroscopy (EIS) the properties of phosphated magnesium samples were studied. Results showed uniform phosphate coating formation on the magnesium sample mostly in hopeite phase composition. In addition, a denser and less permeable coating can be obtained at these conditions. The corrosion resistance of the phosphated samples was superiorly improved using higher SDS concentration in the phosphating bath.

  11. Corrosion resistance of Zn-Al layered double hydroxide/poly(lactic acid) composite coating on magnesium alloy AZ31

    Science.gov (United States)

    Zeng, Rong-Chang; Li, Xiao-Ting; Liu, Zhen-Guo; Zhang, Fen; Li, Shuo-Qi; Cui, Hong-Zhi

    2015-12-01

    A Zn-Al layered double hydroxide (ZnAl-LDH) coating consisted of uniform hexagonal nano-plates was firstly synthesized by co-precipitation and hydrothermal treatment on the AZ31 alloy, and then a poly(lactic acid) (PLA) coating was sealed on the top layer of the ZnAl-LDH coating using vacuum freeze-drying. The characteristics of the ZnAl-LDH/PLA composite coatings were investigated by means of XRD, SEM, FTIR and EDS. The corrosion resistance of the coatings was assessed by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the ZnAl-LDH coating contained a compact inner layer and a porous outer layer, and the PLA coating with a strong adhesion to the porous outer layer can prolong the service life of the ZnAl-LDH coating. The excellent corrosion resistance of this composite coating can be attributable to its barrier function, ion-exchange and self-healing ability.

  12. A study on the relationships between corrosion properties and chemistry of thermally oxidised surface films formed on polished commercial magnesium alloys AZ31 and AZ61

    International Nuclear Information System (INIS)

    Feliu, Sebastián; Samaniego, Alejandro; Barranco, Violeta; El-Hadad, A.A.; Llorente, Irene; Serra, Carmen; Galván, J.C.

    2014-01-01

    Highlights: • Surface chemistry of heat treated magnesium alloys. • Relation between heat treatment and aluminium subsurface enrichment. • Relation between surface composition and corrosion behaviour. - Abstract: This paper studies the changes in chemical composition of the thin oxide surface films induced by heating in air at 200 °C for time intervals from 5 min to 60 min on the freshly polished commercial AZ31 and AZ61 alloys with a view to better understanding their protective properties. This thermal treatment resulted in the formation of layers enriched in metallic aluminium at the interface between the outer MgO surface films and the bulk material. A strong link was found between the degree of metallic Al enrichment in the subsurface layer (from 10 to 15 at.%) observed by XPS (X-ray photoelectron spectroscopy) in the AZ61 treated samples and the increase in protective properties observed by EIS (electrochemical impedance spectroscopy) in the immersion test in 0.6 M NaCl. Heating for 5–60 min in air at 200 °C seems to be an effective, easy to perform and inexpensive method for increasing the corrosion resistance of the AZ61 alloy by approximately two or three times

  13. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    International Nuclear Information System (INIS)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-01-01

    Highlights: • Corrosion behaviors of a PEO coating was investigated after the salt spray test. • Corrosion products have significant effects on corrosion behaviors of the coating. • An electrochemical corrosion model is proposed. - Abstract: The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  14. A study on the relationships between corrosion properties and chemistry of thermally oxidised surface films formed on polished commercial magnesium alloys AZ31 and AZ61

    Energy Technology Data Exchange (ETDEWEB)

    Feliu, Sebastián, E-mail: sfeliu@cenim.csic.es [Centro Nacional de Investigaciones Metalúrgicas CSIC, Avda. Gregorio del Amo 8, 28040 Madrid (Spain); Samaniego, Alejandro [Centro Nacional de Investigaciones Metalúrgicas CSIC, Avda. Gregorio del Amo 8, 28040 Madrid (Spain); Barranco, Violeta [Instituto de Ciencias de Materiales de Madrid, ICMM, Consejo Superior de Investigaciones Científicas, CSIC, Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049, Madrid (Spain); El-Hadad, A.A. [Physics Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo (Egypt); Llorente, Irene [Centro Nacional de Investigaciones Metalúrgicas CSIC, Avda. Gregorio del Amo 8, 28040 Madrid (Spain); Serra, Carmen [Servicio de Nanotecnologia y Análisis de Superficies, CACTI, Universidade de Vigo, 36310 Vigo (Spain); Galván, J.C. [Centro Nacional de Investigaciones Metalúrgicas CSIC, Avda. Gregorio del Amo 8, 28040 Madrid (Spain)

    2014-03-01

    Highlights: • Surface chemistry of heat treated magnesium alloys. • Relation between heat treatment and aluminium subsurface enrichment. • Relation between surface composition and corrosion behaviour. - Abstract: This paper studies the changes in chemical composition of the thin oxide surface films induced by heating in air at 200 °C for time intervals from 5 min to 60 min on the freshly polished commercial AZ31 and AZ61 alloys with a view to better understanding their protective properties. This thermal treatment resulted in the formation of layers enriched in metallic aluminium at the interface between the outer MgO surface films and the bulk material. A strong link was found between the degree of metallic Al enrichment in the subsurface layer (from 10 to 15 at.%) observed by XPS (X-ray photoelectron spectroscopy) in the AZ61 treated samples and the increase in protective properties observed by EIS (electrochemical impedance spectroscopy) in the immersion test in 0.6 M NaCl. Heating for 5–60 min in air at 200 °C seems to be an effective, easy to perform and inexpensive method for increasing the corrosion resistance of the AZ61 alloy by approximately two or three times.

  15. Study of the effect of Pyrophosphate in low voltage Plasma Electrolytic Oxidation on the corrosion resistance of AZ31B Magnesium alloy

    International Nuclear Information System (INIS)

    Yun, Jae Gon; Kim, Eng Chan; Kim, Ki Hong

    2016-01-01

    In this study, low voltage Plasma Electrolytic Oxidation (PEO) was utilized to eliminate the drawbacks of high voltage PEO such as high cost, dimensional deformation, and porosity. Low voltage PEO produces a thin coating, which leads to low corrosion resistance. In order to solve this problem, 0.1⁓0.6 M pyrophosphates were added to a bath containing 1.4 M NaOH and 0.35 M Na_2SiO_3.PEO at 70V was conducted at 25℃ for 3 minutes. The chemical composition, morphology, and corrosion resistance of the anodized coating were analyzed. The anodized film was composed of MgO, Mg_2SiO_4, and Mg_2O_7P_2. Themorphology of the film showed a inappropriately dense structure and low porosity in the anodized layers. It is found that low voltage Plasma Electrolytic Oxidation in cooperation with phosphating treatment can provide good corrosion protection for the AZ31B magnesium alloy.

  16. Study of the effect of Pyrophosphate in low voltage Plasma Electrolytic Oxidation on the corrosion resistance of AZ31B Magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Jae Gon; Kim, Eng Chan [Yeungnam University, Gyeongsan (Korea, Republic of); Kim, Ki Hong [Catholic University of Daegu, Gyeongsan (Korea, Republic of)

    2016-01-15

    In this study, low voltage Plasma Electrolytic Oxidation (PEO) was utilized to eliminate the drawbacks of high voltage PEO such as high cost, dimensional deformation, and porosity. Low voltage PEO produces a thin coating, which leads to low corrosion resistance. In order to solve this problem, 0.1⁓0.6 M pyrophosphates were added to a bath containing 1.4 M NaOH and 0.35 M Na{sub 2}SiO{sub 3}.PEO at 70V was conducted at 25℃ for 3 minutes. The chemical composition, morphology, and corrosion resistance of the anodized coating were analyzed. The anodized film was composed of MgO, Mg{sub 2}SiO{sub 4}, and Mg{sub 2}O{sub 7}P{sub 2}. Themorphology of the film showed a inappropriately dense structure and low porosity in the anodized layers. It is found that low voltage Plasma Electrolytic Oxidation in cooperation with phosphating treatment can provide good corrosion protection for the AZ31B magnesium alloy.

  17. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Guo, Changhong; Jiang, Guirong [College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004 (China); Shen, Dejiu, E-mail: DejiuShen@163.com [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2016-08-15

    Highlights: • Corrosion behaviors of a PEO coating was investigated after the salt spray test. • Corrosion products have significant effects on corrosion behaviors of the coating. • An electrochemical corrosion model is proposed. - Abstract: The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  18. Reversible motion of twin boundaries in AZ31 alloy and new design of magnesium alloys as smart materials

    Czech Academy of Sciences Publication Activity Database

    Molnár, Peter; Ostapovets, Andriy; Jäger, Aleš

    2014-01-01

    Roč. 56, APR (2014), s. 509-516 ISSN 0261-3069 R&D Projects: GA ČR GBP108/12/G043; GA MŠk(CZ) LM2011026; GA ČR GPP108/12/P054 Institutional support: RVO:68378271 Keywords : magnesium alloy * twinning * texture * smart material Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.501, year: 2014

  19. Effect of keyhole characteristics on porosity formation during pulsed laser-GTA hybrid welding of AZ31B magnesium alloy

    Science.gov (United States)

    Chen, Minghua; Xu, Jiannan; Xin, Lijun; Zhao, Zuofu; Wu, Fufa; Ma, Shengnan; Zhang, Yue

    2017-06-01

    This paper experimentally investigates the relationship between laser keyhole characteristics on the porosity formation during pulsed laser-GTA welding of magnesium alloy. Based on direct observations during welding process, the influences of laser keyhole state on the porosity formation were studied. Results show that the porosities in the joint are always at the bottom of fusion zone of the joint, which is closely related to the keyhole behavior. A large depth to wide ratio always leads to the increase of porosity generation chance. Keeping the keyhole outlet open for a longer time benefits the porosity restriction. Overlap of adjacent laser keyhole can effectively decrease the porosity generation, due to the cutting effect between adjacent laser keyholes. There are threshold overlap rate values for laser keyholes in different state.

  20. The influence of laser pulse waveform on laser-TIG hybrid welding of AZ31B magnesium alloy

    Science.gov (United States)

    Song, Gang; Luo, Zhimin

    2011-01-01

    By dividing laser pulse duration into two parts, three kinds of laser waveforms are designed, including a high power density pulse (HPDP) laser in a short duration set at the beginning of the laser waveform. This paper aims to find out the laser pulse waveform and idiographic critical values of HPDP, which can affect the magnesium penetration in laser-tungsten inert gas (TIG) hybrid welding. Results show that when the laser pulse duration of HPDP is not more than 0.4 ms, the welding penetration values of lasers with HPDP are larger than otherwise. Also, the welding penetration values of laser with HPDP have increased by up to 26.1%. It has been found that with HPDP, the laser can form the keyhole more easily because the interaction between laser and the plate is changed, when the TIG arc preheats the plate. Besides, the laser with high power density and short duration strikes on the plates so heavily that the corresponding background power can penetrate into the bottom of the keyhole and maintain the keyhole open, which facilitates the final welding penetration.

  1. Tensile properties and strain-hardening behavior of double-sided arc welded and friction stir welded AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Chowdhury, S.M.; Chen, D.L.; Bhole, S.D.; Cao, X.; Powidajko, E.; Weckman, D.C.; Zhou, Y.

    2010-01-01

    Microstructures, tensile properties and work hardening behavior of double-sided arc welded (DSAWed) and friction stir welded (FSWed) AZ31B-H24 magnesium alloy sheet were studied at different strain rates. While the yield strength was higher, both the ultimate tensile strength and ductility were lower in the FSWed samples than in the DSAWed samples due to welding defects present at the bottom surface in the FSWed samples. Strain-hardening exponents were evaluated using the Hollomon relationship, the Ludwik equation and a modified equation. After welding, the strain-hardening exponents were nearly twice that of the base metal. The DSAWed samples exhibited stronger strain-hardening capacity due to the larger grain size coupled with the divorced eutectic structure containing β-Mg 17 Al 12 particles in the fusion zone, compared to the FSWed samples and base metal. Kocks-Mecking type plots were used to show strain-hardening stages. Stage III hardening occurred after yielding in both the base metal and the welded samples. At lower strains a higher strain-hardening rate was observed in the base metal, but it decreased rapidly with increasing net flow stress. At higher strains the strain-hardening rate of the welded samples became higher, because the recrystallized grains in the FSWed and the larger re-solidified grains coupled with β particles in the DSAWed provided more space to accommodate dislocation multiplication during plastic deformation. The strain-rate sensitivity evaluated via Lindholm's approach was observed to be higher in the base metal than in the welded samples.

  2. Fusion welding of Fe-added lap joints between AZ31B magnesium alloy and 6061 aluminum alloy by hybrid laser-tungsten inert gas welding technique

    International Nuclear Information System (INIS)

    Qi, Xiao-dong; Liu, Li-ming

    2012-01-01

    Highlights: → Hybrid Laser-TIG fusion welding technique was used for joining Mg to Al alloys. → Laser defocusing amount determined penetration depth inside Al alloy of joints. → The addition of Fe interlayer suppressed Mg-Al intermetallics greatly in joints. → A maximum joint strength with optimum thickness of Fe interlayer was obtained. → Excessive addition of Fe interlayer was adverse for the strength improvement. -- Abstract: AZ31B magnesium alloy and 6061-T6 aluminum alloy were lap joined together with the addition of Fe interlayer by fusion welding of hybrid laser-tungsten inert gas (TIG) technique. The influence of location of laser focal spot (LFS) on joint penetration depth and that of the depth on joint strength were investigated. The results showed that when the LFS was just on the surface of Al plate, the deepest penetration could be obtained, which contributed to the improvement of shear strength of Fe-added joints, but not to the elevation of the strength of Mg/Al direct joints. The addition of Fe interlayer suppressed massive production of Mg-Al intermetallics but produced Fe-Al intermetallics in the fusion zone of the joints, whose micro-hardness was extremely high and was also adverse for the enhancement of joint shear strength. The effect of Fe-interlayer thickness on the joint shear strength was also examined, and the maximum shear strength of Fe-added joint could achieve 100 MPa with 0.13 mm thick Fe interlayer. The fracture modes of 0.07 and 0.13 mm Fe-interlayer-added joints were both quasi-cleavage, while those of direct and 0.22 mm interlayer-added joints were completely cleavage. The theoretical shear strength of the Fe-added joints was also discussed.

  3. Hydro mechanical deep-drawing and high pressure sheet metal forming as forming technologies for the production of complex parts made of magnesium sheet metal AZ31B-0; Hydromechanisches Tiefziehen und Hochdruckblechumformung als Verfahren zur Herstellung komplexer Bauteile aus Magnesiumfeinblechen des Typs AZ31B-0

    Energy Technology Data Exchange (ETDEWEB)

    Viehweger, B.; Richter, G.; Duering, M.; Karabet, A. [Lehrstuhlleiter, BTU Cottbus, Lehrstuhl Konstruktion und Fertigung, Konrad-Wachsmann Allee 1, 03046 Cottbus (Germany); Sviridov, A.; Hartmann, H.; Richter, U. [Forschungs- und Qualitaetszentrum Oderbruecke gGmbH Eisenhuettenstadt (Germany)

    2004-07-01

    Semi - finished sheet - metal products made of magnesium alloys such as AZ31B are known as better deformable at temperatures in the range of 175 C - 240 C. By means of hydroforming technologies, as there are hydro mechanical deep-drawing and high pressure sheet metal forming, the influence of different forming parameters on the forming results has been investigated. A more complex experimental geometry was deformed applying forming temperatures of 175 C, 200 C, 225 C and 240 C and accordingly adjusted forces of the blank holder. Concerning the applied forming - methods and experimental parameters the forming results have been evaluated and compared regarding the decrease of sheet thickness and the development of small radii. For some experimental parts, which have been deformed by means of high pressure sheet metal forming at temperatures of 175 C and 225 C, supplementary investigations have been carried out in order to determine the evolution of characteristic surface values in dependence on the forming operation. On the basis of these results practical recommendations for the limits of application of aforementioned forming technologies for AZ31B-0 magnesium sheet metal are given. (Abstract Copyright [2004], Wiley Periodicals, Inc.) [German] Eine gute Umformbarkeit von Blechhalbzeugen aus Magnesiumknetlegierungen stellt sich bekanntlich bei Anwendung von Umformtemperaturen im Bereich von 175 C - 240 C ein. Anhand der wirkmedienbasierten Umformverfahren hydromechanisches Tiefziehen und Hochdruckblechumformung ist an handelsueblichen AZ31B-0 Feinblechen die Einstellung unterschiedlicher Umformparameter erprobt worden. Unter Verwendung von Umformtemperaturen von 175 C, 200 C, 225 C und 240 C und entsprechend angepassten Niederhalterdruecken ist eine praxisnahe Versuchsgeometrie ''Minihood'' ausgeformt worden. Im Hinblick auf angewendete Umformverfahren und Versuchsparameter wurde an den Versuchsbauteilen die Blechdickenabnahme und die

  4. Biofunctional composite coating architectures based on polycaprolactone and nanohydroxyapatite for controlled corrosion activity and enhanced biocompatibility of magnesium AZ31 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zomorodian, A., E-mail: amir.zomorodian@ist.utl.pt [ICEMS-DEQ, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Garcia, M.P. [Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto (Portugal); Moura e Silva, T. [ICEMS-DEQ, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); ISEL, Department of Mechanical Engineering, 1959-007 Lisboa (Portugal); Fernandes, J.C.S. [ICEMS-DEQ, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Fernandes, M.H. [Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto (Portugal); Montemor, M.F. [ICEMS-DEQ, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2015-03-01

    In this work a biofunctional composite coating architecture for controlled corrosion activity and enhanced cellular adhesion of AZ31 Mg alloys is proposed. The composite coating consists of a polycaprolactone (PCL) matrix modified with nanohydroxyapatite (HA) applied over a nanometric layer of polyetherimide (PEI). The protective properties of the coating were studied by electrochemical impedance spectroscopy (EIS), a non-disturbing technique, and the coating morphology was investigated by field emission scanning electron microscopy (FE-SEM). The results show that the composite coating protects the AZ31 substrate. The barrier properties of the coating can be optimized by changing the PCL concentration. The presence of nanohydroxyapatite particles influences the coating morphology and decreases the corrosion resistance. The biocompatibility was assessed by studying the response of osteoblastic cells on coated samples through resazurin assay, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results show that the polycaprolactone to hydroxyapatite ratio affects the cell behavior and that the presence of hydroxyapatite induces high osteoblastic differentiation. - Highlights: • A biofunctional coating architecture for bioresorbable AZ31 Mg alloys is proposed. • The composite coating provides corrosion protection of the bare material. • The coating enhances alkaline phosphatase activity of osteoblastic cells. • The presence of hydroxyapatite results in higher osteoblastic differentiation.

  5. Biofunctional composite coating architectures based on polycaprolactone and nanohydroxyapatite for controlled corrosion activity and enhanced biocompatibility of magnesium AZ31 alloy

    International Nuclear Information System (INIS)

    Zomorodian, A.; Garcia, M.P.; Moura e Silva, T.; Fernandes, J.C.S.; Fernandes, M.H.; Montemor, M.F.

    2015-01-01

    In this work a biofunctional composite coating architecture for controlled corrosion activity and enhanced cellular adhesion of AZ31 Mg alloys is proposed. The composite coating consists of a polycaprolactone (PCL) matrix modified with nanohydroxyapatite (HA) applied over a nanometric layer of polyetherimide (PEI). The protective properties of the coating were studied by electrochemical impedance spectroscopy (EIS), a non-disturbing technique, and the coating morphology was investigated by field emission scanning electron microscopy (FE-SEM). The results show that the composite coating protects the AZ31 substrate. The barrier properties of the coating can be optimized by changing the PCL concentration. The presence of nanohydroxyapatite particles influences the coating morphology and decreases the corrosion resistance. The biocompatibility was assessed by studying the response of osteoblastic cells on coated samples through resazurin assay, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results show that the polycaprolactone to hydroxyapatite ratio affects the cell behavior and that the presence of hydroxyapatite induces high osteoblastic differentiation. - Highlights: • A biofunctional coating architecture for bioresorbable AZ31 Mg alloys is proposed. • The composite coating provides corrosion protection of the bare material. • The coating enhances alkaline phosphatase activity of osteoblastic cells. • The presence of hydroxyapatite results in higher osteoblastic differentiation

  6. Biofunctional composite coating architectures based on polycaprolactone and nanohydroxyapatite for controlled corrosion activity and enhanced biocompatibility of magnesium AZ31 alloy.

    Science.gov (United States)

    Zomorodian, A; Garcia, M P; Moura E Silva, T; Fernandes, J C S; Fernandes, M H; Montemor, M F

    2015-03-01

    In this work a biofunctional composite coating architecture for controlled corrosion activity and enhanced cellular adhesion of AZ31 Mg alloys is proposed. The composite coating consists of a polycaprolactone (PCL) matrix modified with nanohydroxyapatite (HA) applied over a nanometric layer of polyetherimide (PEI). The protective properties of the coating were studied by electrochemical impedance spectroscopy (EIS), a non-disturbing technique, and the coating morphology was investigated by field emission scanning electron microscopy (FE-SEM). The results show that the composite coating protects the AZ31 substrate. The barrier properties of the coating can be optimized by changing the PCL concentration. The presence of nanohydroxyapatite particles influences the coating morphology and decreases the corrosion resistance. The biocompatibility was assessed by studying the response of osteoblastic cells on coated samples through resazurin assay, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results show that the polycaprolactone to hydroxyapatite ratio affects the cell behavior and that the presence of hydroxyapatite induces high osteoblastic differentiation. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. “In-vitro” corrosion behaviour of the magnesium alloy with Al and Zn (AZ31) protected with a biodegradable polycaprolactone coating loaded with hydroxyapatite and cephalexin

    International Nuclear Information System (INIS)

    Zomorodian, A.; Santos, C.; Carmezim, M.J.; Silva, T.Moura e; Fernandes, J.C.S.; Montemor, M.F.

    2015-01-01

    Mg alloys are very susceptible to corrosion in physiological media. This behaviour limits its widespread use in biomedical applications as bioresorbable implants, but it can be controlled by applying protective coatings. On one hand, coatings must delay and control the degradation process of the bare alloy and, on the other hand, they must be functional and biocompatible. In this study a biocompatible polycaprolactone (PCL) coating was functionalised with nano hydroxyapatite (HA) particles for enhanced biocompatibility and with an antibiotic, cephalexin, for anti-bacterial purposes and applied on the AZ31 alloy. The chemical composition and the surface morphology of the coated samples, before and after the corrosion tests, were studied by scanning electron microscopy (SEM) coupled with energy dispersive x-ray analysis (EDX) and Raman. The results showed that the presence of additives induced the formation of agglomerates and defects in the coating that resulted in the formation of pores during immersion in Hanks' solution. The corrosion resistance of the coated samples was studied in Hank's solution by electrochemical impedance spectroscopy (EIS). The results evidenced that all the coatings can provide corrosion protection of the bare alloy. However, in the presence of the additives, corrosion protection decreased. The wetting behaviour of the coating was evaluated by the static contact angle method and it was found that the presence of both hydroxyapatite and cephalexin increased the hydrophilic behaviour of the surface. The results showed that it is possible to tailor a composite coating that can store an antibiotic and nano hydroxyapatite particles, while allowing to control the in-vitro corrosion degradation of the bioresorbable Mg alloy AZ31.

  8. Comportamiento de la corrosión de aleaciones de magnesio AZ31-B en ambiente marino, modificadas por el proceso de fricción-agitación Corrosion behavior in marine environment of magnesium alloy AZ31-B welded by friction-agitation process

    Directory of Open Access Journals (Sweden)

    Willian Aperador Chaparro

    2012-04-01

    Full Text Available En el presente artículo se estudia el comportamiento de la corrosión de la aleación de magnesio AZ31-B en ambiente marino simulado, modificada mediante el proceso de fricción-agitación (PFA, con el fin de determinar el efecto de las variables del proceso, velocidad de rotación y velocidad de avance. Se llevaron a cabo análisis mediante espectroscopia de impedancia electroquímica y curvas de polarización potencio-dinámicas (Tafel. Adicionalmente, se determinó la microestructura en las zonas del cordón de soldadura a través de metalografía óptica. Finalmente, se analizaron los productos de corrosión formados en la superficie de las muestras por medio del microscopio electrónico de barrido (SEM equipado con el analizador químico por EDS. Se observó que una relación de velocidad de avance/velocidad de rotación mayor produce menor velocidad de corrosión y con ello mayor resistencia a la corrosión en medios salinos, al parecer relacionados con el gran tamaño de grano en la zona agitada, que corresponde a más entrada de calor.The corrosion behavior of AZ31B magnesium alloy modified by friction stir processing (FSP was studied in simulated marine environment, in order to determine the effect of process variables rotation speed and travel speed. The corrosion analysis was carried upon by means of electrochemical impedance spectroscopy and potentiodynamic polarization curves (Tafel, metallographic analysis of the welded zones was done by optical microscopy and the chemical analysis of the corrosion products were done by using scanning electron microscope (SEM, equipped with EDS analyzer. It was observed that the increase of the rate rotation speed/travel speed of the process produces a decrease in the corrosion rate and the corresponding increase of the corrosion resistance in marine environment, apparently related to the higher grain size found in the stir zone, corresponding to a higher heat input.

  9. Microstructural Characteristics and Mechanical Properties of 2205/AZ31B Laminates Fabricated by Explosive Welding

    Directory of Open Access Journals (Sweden)

    Yan Li

    2017-04-01

    Full Text Available A bimetal composite of 2205 duplex stainless steel and AZ31B magnesium alloy was cladded successfully through the method of explosive welding. The microstructural characteristics and mechanical properties of 2205/AZ31B bimetal composite are discussed. The interface of 2205/AZ31B bimetallic composite was a less regular wavy morphology with locally melted pockets. Adiabatic shear bands occurred only in the AZ31B side near explosive welding interface. The microstructure observed with EBSD showed a strong refinement near the interface zones. Line scan confirmed that the interface had a short element diffusion zone which would contribute to the metallurgical bonding between 2205 duplex stainless steel and AZ31B magnesium alloy. The value of micro-hardness near the bonding interface of composite plate increased because of work hardening and grain refinement. The tensile shear strength of bonding interface of 2205/AZ31B composite was 105.63 MPa. Tensile strength of 2205/AZ31B composite material was higher than the base AZ31B. There were two abrupt drops in stress in the stress–strain curves of the 2205/AZ31B composite materials.

  10. In Vitro Studies on the Degradability, Bioactivity, and Cell Differentiation of PRP/AZ31B Mg Alloys Composite Scaffold

    Directory of Open Access Journals (Sweden)

    Jian Zou

    2017-01-01

    Full Text Available In recent years, more and more methods have been developed to improve the bioactivity of the biodegradable materials in bone tissue regeneration. In present study, we used rat mesenchymal stem cells (rMSCs to evaluate the outcomes of Mg alloys (AZ31B, Magnesium, and Aluminum and Platelet-rich plasma (PRP/Mg alloys on rMSCs biocompatibility and osteogenic differentiation. Water absorption experiments indicated that both bare AZ31B and PRP/AZ31B were capable of absorbing large amounts of water. But the water absorption ratio for PRP/AZ31B was significantly higher than that for bare AZ31B. The degradability experiments implied that both samples degraded at same speed. rMSCs on the surface of AZ31B distributed more and better than those on the AZ31B scaffold. In ALP activity experiment, the activity of rMSCs on the PRP/AZ31B was markedly higher than that on the AZ31B scaffolds on the 7th day and 14th day. qRT-PCR also showed that OPN and OCN were expressed in both samples. OPN and OCN expression in PRP/AZ31B sample were higher than those in bare AZ31B samples. In summary, the in vitro study implied that AZ31B combined with PRP could remarkably improve cell seeding, attachment, proliferation, and differentiation.

  11. A study on the relationships between corrosion properties and chemistry of thermally oxidised surface films formed on polished commercial magnesium alloys AZ31 and AZ61

    Science.gov (United States)

    Feliu, Sebastián; Samaniego, Alejandro; Barranco, Violeta; El-Hadad, A. A.; Llorente, Irene; Serra, Carmen; Galván, J. C.

    2014-03-01

    This paper studies the changes in chemical composition of the thin oxide surface films induced by heating in air at 200 °C for time intervals from 5 min to 60 min on the freshly polished commercial AZ31 and AZ61 alloys with a view to better understanding their protective properties. This thermal treatment resulted in the formation of layers enriched in metallic aluminium at the interface between the outer MgO surface films and the bulk material. A strong link was found between the degree of metallic Al enrichment in the subsurface layer (from 10 to 15 at.%) observed by XPS (X-ray photoelectron spectroscopy) in the AZ61 treated samples and the increase in protective properties observed by EIS (electrochemical impedance spectroscopy) in the immersion test in 0.6 M NaCl. Heating for 5-60 min in air at 200 °C seems to be an effective, easy to perform and inexpensive method for increasing the corrosion resistance of the AZ61 alloy by approximately two or three times.

  12. Parameters optimization for friction spot welding of AZ31 magnesium alloy by Taguchi method Otimização dos parâmetros de soldagem por fricção por ponto da liga de magnésio AZ31 pelo método de Taguchi

    Directory of Open Access Journals (Sweden)

    Leonardo Contri Campanelli

    2012-03-01

    Full Text Available Friction spot welding (FSpW is a solid state welding process suitable for producing spot-like joints, especially in lightweight materials, which are particularly interesting due to the weight saving potential. The plunging of an especially designed non-consumable and rotating tool creates a connection between overlapped sheets through frictional heat and plastic deformation. Minimum material loss is observed, and therefore a fully consolidated joint with flat surface (no keyhole is obtained. In the current study, the effect of FSpW parameters, such as rotational speed, plunge depth and dwell time, on lap shear strength of AZ31 magnesium alloy joints was investigated. The optimization of input process parameters was carried out through Taguchi approach of DOE. Analysis of variance was applied to determine the individual importance of each parameter. Main effect plots were used to indicate the best levels for maximizing lap shear strength. The results show that tool plunge depth has the higher effect on the weld strength, followed by rotational speed and dwell time.A soldagem por fricção por ponto (FSpW é um processo de soldagem no estado sólido adequado para a produção de juntas pontuais, especialmente em materiais leves, que são particularmente interessantes devido ao potencial de redução de peso. A penetração de uma ferramenta não-consumível e rotacional especialmente desenvolvida cria uma junção entre as placas sobrepostas através de calor por fricção e deformação plástica. A perda de material é mínima, obtendo-se, portanto, uma junta totalmente consolidada com superfície plana (sem furo. Neste trabalho, investigou-se o efeito dos parâmetros do FSpW, tais como velocidade de rotação, profundidade de penetração e tempo de residência, na resistência ao cisalhamento das juntas de liga de magnésio AZ31. A otimização dos parâmetros de entrada do processo foi realizada através do método de Taguchi de DOE. A an

  13. Film growth and alloy enrichment during anodizing AZ31 magnesium alloy in fluoride/glycerol electrolytes of a range of water contents

    Czech Academy of Sciences Publication Activity Database

    Němcová, A.; Galal, O.; Skeldon, P.; Kuběna, Ivo; Šmíd, Miroslav; Briand, E.; Vickridge, I.; Ganem, J.-J.; Habazaki, H.

    2016-01-01

    Roč. 219, NOV (2016), s. 28-37 ISSN 0013-4686 Institutional support: RVO:68081723 Keywords : magnesium * anodic film * enrichment Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 4.798, year: 2016

  14. Friction stir welding joint of dissimilar materials between AZ31B magnesium and 6061 aluminum alloys: Microstructure studies and mechanical characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, J. [Department of Materials Science and Engineering, Science and Research Branch, Islamic Azad University, Tehran 141554933 (Iran, Islamic Republic of); Behnamian, Y. [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada); Mostafaei, A., E-mail: amir.mostafaei@gmail.com [Young Researchers and Elites Club, Tehran North Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Izadi, H. [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada); Saeid, T. [Faculty of Materials Engineering, Sahand University of Technology, Tabriz 513351996 (Iran, Islamic Republic of); Kokabi, A.H. [Department of Materials Science and Engineering, Sharif University of Technology, Tehran 113659466 (Iran, Islamic Republic of); Gerlich, A.P., E-mail: adrian.gerlich@uwaterloo.ca [Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2015-03-15

    Friction stir welding is an efficient manufacturing method for joining dissimilar alloys, which can dramatically reduce grain sizes and offer high mechanical joint efficiency. Lap FSW joints between dissimilar AZ31B and Al 6061 alloy sheets were made at various tool rotation and travel speeds. Rotation and travel speeds varied between 560–1400 r/min and 16–40 mm/min respectively, where the ratio between these parameters was such that nearly constant pitch distances were applied during welding. X-ray diffraction pattern (XRD), optical microscopy images (OM), electron probe microanalysis (EPMA) and scanning electron microscopy equipped with an energy-dispersive X-ray spectroscopy (SEM-EDS) were used to investigate the microstructures of the joints welded. Intermetallic phases including Al{sub 12}Mg{sub 17} (γ) and Al{sub 3}Mg{sub 2} (β) were detected in the weld zone (WZ). For different tool rotation speeds, the morphology of the microstructure in the stir zone changed significantly with travel speed. Lap shear tensile test results indicated that by simultaneously increasing the tool rotation and travel speeds to 1400 r/min and 40 mm/min, the joint tensile strength and ductility reached a maximum. Microhardness measurements and tensile stress–strain curves indicated that mechanical properties were affected by FSW parameters and mainly depended on the formation of intermetallic compounds in the weld zone. In addition, a debonding failure mode in the Al/Mg dissimilar weld nugget was investigated by SEM and surface fracture studies indicated that the presence of intermetallic compounds in the weld zone controlled the failure mode. XRD analysis of the fracture surface indicated the presence of brittle intermetallic compounds including Al{sub 12}Mg{sub 17} (γ) and Al{sub 3}Mg{sub 2} (β). - Highlights: • Dissimilar Al/Mg joint was obtained by lap friction stir welding technique. • Effect of rotation and travel speeds on the formation of intermetallic

  15. Friction stir welding joint of dissimilar materials between AZ31B magnesium and 6061 aluminum alloys: Microstructure studies and mechanical characterizations

    International Nuclear Information System (INIS)

    Mohammadi, J.; Behnamian, Y.; Mostafaei, A.; Izadi, H.; Saeid, T.; Kokabi, A.H.; Gerlich, A.P.

    2015-01-01

    Friction stir welding is an efficient manufacturing method for joining dissimilar alloys, which can dramatically reduce grain sizes and offer high mechanical joint efficiency. Lap FSW joints between dissimilar AZ31B and Al 6061 alloy sheets were made at various tool rotation and travel speeds. Rotation and travel speeds varied between 560–1400 r/min and 16–40 mm/min respectively, where the ratio between these parameters was such that nearly constant pitch distances were applied during welding. X-ray diffraction pattern (XRD), optical microscopy images (OM), electron probe microanalysis (EPMA) and scanning electron microscopy equipped with an energy-dispersive X-ray spectroscopy (SEM-EDS) were used to investigate the microstructures of the joints welded. Intermetallic phases including Al 12 Mg 17 (γ) and Al 3 Mg 2 (β) were detected in the weld zone (WZ). For different tool rotation speeds, the morphology of the microstructure in the stir zone changed significantly with travel speed. Lap shear tensile test results indicated that by simultaneously increasing the tool rotation and travel speeds to 1400 r/min and 40 mm/min, the joint tensile strength and ductility reached a maximum. Microhardness measurements and tensile stress–strain curves indicated that mechanical properties were affected by FSW parameters and mainly depended on the formation of intermetallic compounds in the weld zone. In addition, a debonding failure mode in the Al/Mg dissimilar weld nugget was investigated by SEM and surface fracture studies indicated that the presence of intermetallic compounds in the weld zone controlled the failure mode. XRD analysis of the fracture surface indicated the presence of brittle intermetallic compounds including Al 12 Mg 17 (γ) and Al 3 Mg 2 (β). - Highlights: • Dissimilar Al/Mg joint was obtained by lap friction stir welding technique. • Effect of rotation and travel speeds on the formation of intermetallic compounds • Microstructure and chemical

  16. Corrosion behaviour and in vitro/in vivo biocompatibility of surface-modified AZ31 alloy; Comportamiento frente a la corrosion y biocompatibilidad in vitrolin vivo de la aleacion AZ31 modificada superficialmente

    Energy Technology Data Exchange (ETDEWEB)

    Carboneras, M.; Iglesias, C.; Perez-Maceda, B. T.; Valle, J. A. de; Garcia-Alonso, M. C.; Alobera, M. A.; Clemente, C.; Rubio, J. C.; Escudero, M. I.; Lozano, R. M.

    2011-07-01

    The present work evaluates the corrosion behaviour and the in vitro/in vivo biocompatibility of the AZ31 magnesium alloy, which fulfills the mechanical requirements of bone. The corrosion kinetic of as-received AZ31 alloy was not compatible with the cell growth. To improve its performance, the AZ31 alloy was surface modified by a chemical conversion treatment in hydrofluoric acid. The magnesium fluoride layer generated by the surface treatment of AZ31 alloy enhances its corrosion behaviour, allowing the in vitro growth of osteoblastic cells over the surface and the in vivo formation of a highly compact layer of new bone tissue. These results lead to consider the magnesium fluoride coating as necessary for potential use of the AZ31 alloy as biodegradable and absorbable implant for bone repair. (Author) 18 refs.

  17. Comportamiento frente a la corrosión y biocompatibilidad in vitro/in vivo de la aleación AZ31 modificada superficialmente

    OpenAIRE

    Escudero, M. L.; Clemente, C.; Rubio, J. C.; Alobera, M. A.; García-Alonso, M. C.; del Valle, J. A.; Iglesias, C.; Pérez-Maceda, B. T.; Carboneras, M.; Lozano, R. M.

    2011-01-01

    The present work evaluates the corrosion behaviour and the in vitro/in vivo biocompatibility of the AZ31 magnesium alloy, which fulfills the mechanical requirements of bone. The corrosion kinetic of as-received AZ31 alloy was not compatible with the cell growth. To improve its performance, the AZ31 alloy was surface modified by a chemical conversion treatment in hydrofluoric acid. The magnesium fluoride layer generated by the surface treatment of AZ31 alloy enhances its corrosion behaviour, a...

  18. Properties of the AZ31 Magnesium Alloy Round Bars Obtained in Different Rolling Processes / Własności Prętów Okrągłych Ze Stopu Magnezu AZ31 Otrzymanych W Różnych Procesach Walcowania

    Directory of Open Access Journals (Sweden)

    Stefanik A.

    2015-12-01

    Full Text Available Currently magnesium alloy bars are manufactured mainly in the extrusion process. This method has some drawbacks, which include: low process capacity, considerable energy demand, small length of finished products. Therefore it is purposeful to develop efficient methods for manufacturing of Mg alloy products in the form of bars, such methods include groove rolling and three-high skew rolling processes. Modified stretching passes provide change in material plastic flow, which contributes to the occurrence of the better distribution of stress and strain state than in the case of rolling in classical stretching passes. One of the modern method of Mg alloy bars production is rolling in a three-high skew rolling mill, which allows to set in a single pass a larger deformation compared to the rolling in the stretching passes.

  19. Corrosion behavior of biodegradable material AZ31 coated with beeswax-colophony resin

    Science.gov (United States)

    Gumelar, Muhammad Dikdik; Putri, Nur Ajrina; Anggaravidya, Mahendra; Anawati, Anawati

    2018-05-01

    Magnesium (Mg) and its alloys are potential candidates for biodegradable implant materials owing to their ability to degrade spontaneously in a physiological environment. However, the degradation rate is still considered too fast in human body solution. A coating is typically applied to slowdown corrosion rate of Mg alloys. In this work, an organic coating of mixture beeswax-colophony with ratios of 40-60, 50-50, and 60-40 in wt% was synthesized and applied on commercial magnesium alloyAZ31. The coated specimens were then characterized with SEM and XRF. The corrosion behavior of the coated specimens was evaluated by immersion test in 0.9 wt% NaCl solution at 37°C for 14 days. The results indicated that the coating material improved the corrosion resistance of the AZ31 alloy.

  20. Effects of sintering temperature on the corrosion behavior of AZ31 alloy with Ca–P sol–gel coating

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Bo [School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning Province, 121001 (China); Shi, Ping, E-mail: p_shi@sohu.com [School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning Province, 121001 (China); Wei, Donghua [School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning Province, 121001 (China); E, Shanshan [School of Mathematics and Physics, Bohai University, Jinzhou, Liaoning Province, 121013 (China); Li, Qiang; Chen, Yang [School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning Province, 121001 (China)

    2016-04-25

    To slow down the initial biodegradation rate of magnesium alloy, calcium phosphate (Ca–P) coatings were prepared on AZ31 magnesium alloy by a sol–gel technique. To study the effects of sintering temperature on microstructure, bonding strength and corrosion behavior of the coatings, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and an adhesive strength test were used to characterize the coatings. The corrosion resistance of the coatings was investigated by immersion test and electrochemical corrosion techniques in simulated body fluid (SBF) solution. It shows that the sol–gel coatings consist of Ca{sub 2}P{sub 2}O{sub 7}, mixture of Ca{sub 2}P{sub 2}O{sub 7}, Ca{sub 3}(PO{sub 4}){sub 2} and hydroxyapatite, and hydroxyapatite, by sintering respectively at 300 °C, 400 °C and 500 °C. There are major cracks on the coatings. The crack area portion on the coating and the bonding strength at the interface between the calcium phosphate coating and the bare AZ31 increases, and the corrosion resistance of the coated AZ31 in SBF decreases with increasing sintering temperatures from 300 °C to 500 °C. Based on our investigations, the corrosion resistance of the coated AZ31 in SBF depends mainly on the crack area portion on the coatings, rather than on the coating phase stability. - Highlights: • Ca–P coating was prepared on AZ31 alloy by a sol–gel technique. • Crack area portion in the coating increases with temperatures. • Bonding strength between Ca–P coating and substrate increases with temperatures. • Corrosion resistance of the coated AZ31 in SBF decreases with temperatures. • Corrosion resistance of the coated AZ31 depends mainly on the crack area portion.

  1. Effect of thermal tempering on microstructure and mechanical properties of Mg-AZ31/Al-6061 diffusion bonding

    Energy Technology Data Exchange (ETDEWEB)

    Jafarian, Mojtaba [Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Rizi, Mohsen Saboktakin, E-mail: M.saboktakin@Pa.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111 (Iran, Islamic Republic of); Department of Industrial Engineering, Lenjan Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Jafarian, Morteza [Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Honarmand, Mehrdad [Department of Mechanical Engineering, Tiran Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Javadinejad, Hamid Reza; Ghaheri, Ali [Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111 (Iran, Islamic Republic of); Department of Industrial Engineering, Lenjan Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Bahramipour, Mohammad Taghi [Materials Engineering Department, Hakim Sabzevari University, Sabzevar, 397 (Iran, Islamic Republic of); Ebrahimian, Marzieh [Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111 (Iran, Islamic Republic of); Department of Industrial Engineering, Lenjan Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of)

    2016-06-01

    The objective of this study is to investigate the effect of the types thermal tempering of aluminum alloy on microstructure and mechanical properties of AZ31-O Mg and Al 6061-T6 diffusion bonding. Using Optical Microscope (OM) and Scanning Electron Microscopes (SEM) equipped with EDS analysis and line scan the interfaces of joints were evaluated. The XRD analysis was carried out to characterize phase constitution near the interface zone. The mechanical properties of joints were measured using Vickers micro-hardness and shear strength. According to the results in bonding of AZ31-Mg/Al-6061-O, in less plastic deformation in magnesium alloy, diffusion rate of most magnesium atoms occurred to aluminum alloy and formation of diffusion zone with minimum micro-hardness (140 HV) and maximum shear strength (32 MPa) compared to Al 6061-T6/Mg-AZ31 bonding. Evaluation of fracture surfaces indicates an occurrence of failure from the brittle intermetallic phases. - Highlights: • Diffusion bonding AZ31 to Al-6061withoutany interlayer was successful. • Thermal tempered aluminum alloy plays a vital role in the mechanical properties of joint. • Less thickness of reaction layers and micro-hardness in bonding annealed Al- 6061 layers to AZ31 was achieved. • Fracture surfaces indicated that the onset of fracture from intermetallic compounds resulted in fracture of the cleavage.

  2. Effect of thermal tempering on microstructure and mechanical properties of Mg-AZ31/Al-6061 diffusion bonding

    International Nuclear Information System (INIS)

    Jafarian, Mojtaba; Rizi, Mohsen Saboktakin; Jafarian, Morteza; Honarmand, Mehrdad; Javadinejad, Hamid Reza; Ghaheri, Ali; Bahramipour, Mohammad Taghi; Ebrahimian, Marzieh

    2016-01-01

    The objective of this study is to investigate the effect of the types thermal tempering of aluminum alloy on microstructure and mechanical properties of AZ31-O Mg and Al 6061-T6 diffusion bonding. Using Optical Microscope (OM) and Scanning Electron Microscopes (SEM) equipped with EDS analysis and line scan the interfaces of joints were evaluated. The XRD analysis was carried out to characterize phase constitution near the interface zone. The mechanical properties of joints were measured using Vickers micro-hardness and shear strength. According to the results in bonding of AZ31-Mg/Al-6061-O, in less plastic deformation in magnesium alloy, diffusion rate of most magnesium atoms occurred to aluminum alloy and formation of diffusion zone with minimum micro-hardness (140 HV) and maximum shear strength (32 MPa) compared to Al 6061-T6/Mg-AZ31 bonding. Evaluation of fracture surfaces indicates an occurrence of failure from the brittle intermetallic phases. - Highlights: • Diffusion bonding AZ31 to Al-6061withoutany interlayer was successful. • Thermal tempered aluminum alloy plays a vital role in the mechanical properties of joint. • Less thickness of reaction layers and micro-hardness in bonding annealed Al- 6061 layers to AZ31 was achieved. • Fracture surfaces indicated that the onset of fracture from intermetallic compounds resulted in fracture of the cleavage.

  3. Diffusion Bonding and Post-Weld Heat Treatment of Extruded AZ91 Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Fei LIN

    2015-11-01

    Full Text Available The grain size of as-extruded AZ91 magnesium alloys was refined to 12.31 μm from 21.41 μm by recrystallization annealing. The vacuum diffusion welding of as-annealed AZ91 magnesium alloys was researched. The results showed that the maximum shear strength of joints reached 64.70 MPa in the situation of 10 MPa bonding pressure, 18 Pa vacuum degree, 470 °C bonding temperature and 90 min bonding time; both bonding temperature and time are the main influence factors on as-extruded AZ91 magnesium alloys diffusion welding. Then the diffusion welded specimens were annealed, and the shear strength of joints was further improved to 76.93 MPa.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9699

  4. Nano grained AZ31 alloy achieved by equal channel angular rolling process

    International Nuclear Information System (INIS)

    Hassani, F.Z.; Ketabchi, M.

    2011-01-01

    Equal channel angular rolling (ECAR) is a severe plastic deformation process which is carried out on large, thin sheets. The grain size could be significantly decreased by this process. The main purpose of this study is to investigate the possibility of grain refinement of AZ31 magnesium alloy sheet by this process to nanometer. The effect of the number of ECAR passes on texture evolution of AZ31 magnesium alloy was investigated. ECAR temperature was controlled to maximize the grain refinement efficiency along with preventing cracking. The initial microstructure of as-received AZ31 sheet showed an average grain size of about 21 μm. The amount of grain refinement increased with increasing the pass number. After 10 passes of the process, significant grain refinement occurred and the field emission scanning electron microscopic (FESEM) micrographs showed that the size of grains were decreased significantly to about 14-70 nm. These grains were formed at the grain boundaries and inside some of the previous larger micrometer grains. Observation of optical microstructures and X-ray diffraction patterns (XRD) showed the formation of twins after ECAR process. Micro-hardness of material was studied at room temperature. There was a continuous enhancement of hardness by increasing the pass number of ECAR process. At the 8th pass, hardness values increased by 53%. At final passes hardness reduced slightly, which was attributed to saturation of strain in high number of passes.

  5. Grain Refinement and Enhancement of Mechanical Properties of Hot Extruded Rare-Earth Containing Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Bita Pourbahari

    2017-12-01

    Full Text Available The effects of rare earth addition and hot extrusion process on the grain refinement of magnesium alloy were studied. The as-cast Mg-6Al-1Zn (AZ61 alloy had the average grain size of ~ 64 µm and its microstructure consisted of α-Mg and Mg17Al12 phase. By partial substitution of Al with Gd to reach Mg-4.8Gd-1.2Al-1Zn alloy, it was observed that the Mg17Al12 phase disappeared and two new intermetallic phases, i.e. (Mg,Al3Gd and Al2Gd, were identified. The extrusion process showed significant effects on the shape and size of intermetallics and grain size of the matrix. The grain size of the extruded Mg-6Al-1Zn alloy was refined from 64 µm to 13.4 µm as a result of recrystallization. Regarding the Mg-4.8Gd-1.2Al-1Zn alloy, the grain refinement was much more pronounced, where the extruded grain size has been refined from 698 µm to 2.4 µm (extruded at 385 °C and 1.3 µm (extruded at 320 °C. This was related to the presence of fine and widely dispersed intermetallic phases. Tensile strength and total elongation of extruded alloys were much higher than their as-cast counterparts and the extruded Mg-6Zn-1Al alloy showed magnificent mechanical properties. The latter was related to the absence of intermetallic particles, which act as stress risers.

  6. Research on the drawing process with a large total deformation wires of AZ31 alloy

    International Nuclear Information System (INIS)

    Bajor, T; Muskalski, Z; Suliga, M

    2010-01-01

    Magnesium and their alloys have been extensively studied in recent years, not only because of their potential applications as light-weight engineering materials, but also owing to their biodegradability. Due to their hexagonal close-packed crystallographic structure, cold plastic processing of magnesium alloys is difficult. The preliminary researches carried out by the authors have indicated that the application of the KOBO method, based on the effect of cyclic strain path change, for the deformation of magnesium alloys, provides the possibility of obtaining a fine-grained structure material to be used for further cold plastic processing with large total deformation. The main purpose of this work is to present research findings concerning a detailed analysis of mechanical properties and changes occurring in the structure of AZ31 alloy wire during the multistage cold drawing process. The appropriate selection of drawing parameters and the application of multistep heat treatment operations enable the deformation of the AZ31 alloy in the cold drawing process with a total draft of about 90%.

  7. Analysis of the Deformability of Two-Layer Materials AZ31/Eutectic / Analiza Możliwości Odkształcania Plastycznego Materiału Dwuwarstwowego AZ31/Eutektyka

    Directory of Open Access Journals (Sweden)

    Mola R.

    2015-12-01

    Full Text Available The paper present the results of physical simulation of the deformation of the two-layered AZ31/eutectic material using the Gleeble 3800 metallurgical processes simulator. The eutectic layer was produced on the AZ31 substrate using thermochemical treatment. The specimens of AZ31 alloy were heat treated in contact with aluminium powder at 445°C in a vacuum furnace. Depending on the heating time, Al-enriched surface layers with a thickness of 400, 700 and 1100 μm were fabricated on a substrate which was characterized by an eutectic structure composed of the Mg17Al12 phase and a solid solution of aluminium in magnesium. In the study, physical simulation of the fabricated two-layered specimens with a varying thickness of the eutectic layer were deformed using the plane strain compression test at various values of strain rates. The testing results have revealed that it is possible to deform the two-layered AZ31/eutectic material at low strain rates and small deformation values.

  8. Cytotoxicity studies of AZ31D alloy and the effects of carbon dioxide on its biodegradation behavior in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiali, E-mail: wangjialicsu@yahoo.cn [Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Chinese Academy of Sciences, Shenzhen 518055 (China); Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR (China); Qin, Ling [Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Chinese Academy of Sciences, Shenzhen 518055 (China); Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR (China); Wang, Kai [School of Humanities and Social Sciences, Hunan University of Chinese Medicine, Changsha 410208 (China); Wang, Jue; Yue, Ye [Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Chinese Academy of Sciences, Shenzhen 518055 (China); Li, Yangde [Guangdong Innovation Team for Biodegradable Magnesium and Medical Implants, E-ande, Dongguan 523660 (China); Tang, Jian [Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Chinese Academy of Sciences, Shenzhen 518055 (China); Li, Weirong [Guangdong Innovation Team for Biodegradable Magnesium and Medical Implants, E-ande, Dongguan 523660 (China)

    2013-10-01

    Magnesium alloys have been advocated as potential artificial bone materials due to their biocompatibility and biodegradability. The understanding of their corrosive mechanism in physiological environments is therefore essential for making application-orientated designs. Thus, this in vitro study was designed to assess the effects of CO{sub 2} on corrosive behavior of AZ31D to mimic in vivo special ingredient. Electrochemical technologies accompanied with Scanning electron microscope, Fourier transform infrared, X-ray diffraction, Energy dispersive spectroscopy and hydrogen evolution measurement were employed to analyze corrosive rates and mechanisms of AZ31D. Moreover, the biocompatibility of AZ31D was assessed with a direct cell attachment assay and an indirect cytotoxicity test in different diluted extracts. The ion concentrations in extracts were measured using inductively coupled plasma mass spectrometry to offer explanations on the differences of cell viability in the indirect test. The results of the direct cytotoxicity assay showed that the corrosive rate of AZ31D was too rapid to allow for cell adhesion. Extracts diluted less than 20 times would cause adverse effects on cell proliferation, likely due to excessive ions and gas release. Moreover, the presence of CO{sub 2} did not cause significant differences on corrosive behavior of AZ31D according to the results of electrochemical testing and hydrogen evolution measurement. This might be caused by the simultaneous process of precipitation and dissolution of MgCO{sub 3} due to the penetration role of CO{sub 2}. This analysis of corrosive atmospheres on the degradation behavior of magnesium alloys would contribute to the design of more scientific in vitro testing systems in the future. - Highlights: • We evaluate the effects of CO{sub 2} on corrosion behavior of magnesium alloys. • We assess the feasibility of commercial AZ31D alloy as potential implants. • CO{sub 2} is not the key factor to minimize

  9. Investigation of the chemical vicinity of defects in Mg and AZ31 with positron coincident Doppler boarding spectroscopy

    International Nuclear Information System (INIS)

    Stadlbauer, Martin

    2008-01-01

    Within the scope of the present work, two main goals have been achieved: Firstly, the coincident Doppler broadening spectrometer (CDBS) at the high intense positron source NEPOMUC has been elaborately improved in order to increase the spatial resolution for defect mapping measurements and to investigate samples with shallow positron trapping sites which are present e. g. in magnesium. Secondly, as an application, the chemical vicinity of defects in the industrially used magnesium based alloy AZ31 has been examined by means of the detailed investigation of ion-irradiated specimen with positron annihilation spectroscopy. Detailed simulations with the finite-element simulation tool COMSOL were used to optimize the focal diameter of the positron beam at the sample position in order to increase the spatial resolution. With a value of 0.3 mm, sub-mm resolution has now been reached. The CDBS has been furthermore equipped with a sample cooling unit in order to reach liquid nitrogen temperature, maintaining the feature of scanning the sample for defect mapping. Defects and their chemical surrounding in ion irradiated magnesium and the magnesium based alloy AZ31 were then investigated on an atomic scale with the CDBS. In the respective spectra the chemical information and the defect contribution have been thoroughly separated. For this purpose, samples of annealed Mg were irradiated with Mg-ions in order to create exclusively defects. In addition Al- and Zn-ion irradiations on Mg-samples were performed in order to create samples with both defects and impurity atoms. The ion irradiated area on the samples was investigated with laterally and depth resolved positron Doppler broadening spectroscopy (DBS) and compared with SRIM-simulations of the vacancy distribution. The investigation of the chemical vicinity of crystal defects in AZ31 was performed with CDBS on Mg-ion irradiated AZ31 with Mg-ion irradiated Mg. The outer tail of the energy distribution in the annihilation

  10. Investigation of the chemical vicinity of defects in Mg and AZ31 with positron coincident Doppler boarding spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stadlbauer, Martin

    2008-03-10

    Within the scope of the present work, two main goals have been achieved: Firstly, the coincident Doppler broadening spectrometer (CDBS) at the high intense positron source NEPOMUC has been elaborately improved in order to increase the spatial resolution for defect mapping measurements and to investigate samples with shallow positron trapping sites which are present e. g. in magnesium. Secondly, as an application, the chemical vicinity of defects in the industrially used magnesium based alloy AZ31 has been examined by means of the detailed investigation of ion-irradiated specimen with positron annihilation spectroscopy. Detailed simulations with the finite-element simulation tool COMSOL were used to optimize the focal diameter of the positron beam at the sample position in order to increase the spatial resolution. With a value of 0.3 mm, sub-mm resolution has now been reached. The CDBS has been furthermore equipped with a sample cooling unit in order to reach liquid nitrogen temperature, maintaining the feature of scanning the sample for defect mapping. Defects and their chemical surrounding in ion irradiated magnesium and the magnesium based alloy AZ31 were then investigated on an atomic scale with the CDBS. In the respective spectra the chemical information and the defect contribution have been thoroughly separated. For this purpose, samples of annealed Mg were irradiated with Mg-ions in order to create exclusively defects. In addition Al- and Zn-ion irradiations on Mg-samples were performed in order to create samples with both defects and impurity atoms. The ion irradiated area on the samples was investigated with laterally and depth resolved positron Doppler broadening spectroscopy (DBS) and compared with SRIM-simulations of the vacancy distribution. The investigation of the chemical vicinity of crystal defects in AZ31 was performed with CDBS on Mg-ion irradiated AZ31 with Mg-ion irradiated Mg. The outer tail of the energy distribution in the annihilation

  11. Tailoring degradation of AZ31 alloy by surface pre-treatment and electrospun PCL fibrous coating

    Energy Technology Data Exchange (ETDEWEB)

    Hanas, T. [Medical Materials Laboratory, Indian Institute of Technology Madras, Chennai 600036 (India); School of Nano Science and Technology, National Institute of Technology Calicut, Calicut, Kerala 673601 (India); Sampath Kumar, T.S., E-mail: tssk@iitm.ac.in [Medical Materials Laboratory, Indian Institute of Technology Madras, Chennai 600036 (India); Perumal, Govindaraj; Doble, Mukesh [Department of Biotechnology - Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036 (India)

    2016-08-01

    AZ31 magnesium alloy was coated with polycaprolactone (PCL) nano-fibrous layer using electrospinning technique so as to control degradation in physiological environment. Before coating, the alloy was treated with HNO{sub 3} to have good adhesion between the coating and substrate. To elucidate the role of pre-treatment and coating, samples only with PCL coating as well as HNO{sub 3} treatment only were prepared for comparison. Best coating adhesion of 4B grade by ASTM D3359–09 tape test was observed for pre-treated samples. The effect of coating on in vitro degradation and biomineralization was studied using supersaturated simulated body fluid (SBF 5 ×). The weight loss and corrosion results obtained by immersion test showed that the combination of HNO{sub 3} pre-treatment and PCL coating is very effective in controlling the degradation rate and improving bioactivity. Cytotoxicity studies using L6 cells showed that PCL coated sample has better cell adhesion and proliferation compared to uncoated samples. Nano-fibrous PCL coating combined with prior acid treatment seems to be a promising method to tailor degradation rate with enhanced bioactivity of Mg alloys. - Highlights: • PCL electrospun coating on HNO{sub 3} pre-treated AZ31 alloy controls biodegradation. • Acid pre-treatment stabilizes the substrate - coating interface. • Electrospun porous coating improves biomineralization. • Coating similar to extracellular matrix enhances cell adhesion.

  12. Joining of AZ31 and AZ91 Mg alloys by friction stir welding

    Directory of Open Access Journals (Sweden)

    B. Ratna Sunil

    2015-12-01

    Full Text Available Two dissimilar magnesium (Mg alloy sheets, one with low aluminium (AZ31 and another with high aluminium (AZ91 content, were successfully joined by friction stir welding (FSW. The effect of process parameters on the formation of hot cracks was investigated. A sound metallurgical joint was obtained at optimized process parameters (1400 rpm with 25 mm/min feed which contained fine grains and distributed β (Mg17Al12 phase within the nugget zone. An increasing trend in the hardness measurements has also confirmed more amount of dissolution of aluminium within the nugget zone. A sharp interface between nugget zone and thermo mechanical affected zone (TMAZ was clearly noticed at the AZ31 Mg alloy side (advancing but not on the AZ91 Mg alloy side (retreating. From the results it can be concluded that FSW can be effectively used to join dissimilar metals, particularly difficult to process metals such as Mg alloys, and hot cracking can be completely eliminated by choosing appropriate process parameters to achieve sound joint.

  13. Korozní odolnost tvářených hořčíkových slitin AZ31 a AZ61 v Hankovì roztoku

    Czech Academy of Sciences Publication Activity Database

    Tkacz, J.; Slouková, K.; Minda, J.; Drábiková, J.; Fintová, Stanislava; Doležal, P.; Wasserbauer, J.

    2016-01-01

    Roč. 60, č. 4 (2016), s. 101-106 ISSN 1804-1213 Institutional support: RVO:68081723 Keywords : corrosion * AZ31 magnesium alloy * AZ61 magnesium alloy Subject RIV: JK - Corrosion ; Surface Treatment of Materials https://www.degruyter.com/view/j/kom.2016.60.issue-4/kom-2016-0016/kom-2016-0016.xml?format=INT

  14. Comportamiento frente a la corrosión y biocompatibilidad in vitro/in vivo de la aleación AZ31 modificada superficialmente

    Directory of Open Access Journals (Sweden)

    Escudero, M. L.

    2011-06-01

    Full Text Available The present work evaluates the corrosion behaviour and the in vitro/in vivo biocompatibility of the AZ31 magnesium alloy, which fulfills the mechanical requirements of bone. The corrosion kinetic of as-received AZ31 alloy was not compatible with the cell growth. To improve its performance, the AZ31 alloy was surface modified by a chemical conversion treatment in hydrofluoric acid. The magnesium fluoride layer generated by the surface treatment of AZ31 alloy enhances its corrosion behaviour, allowing the in vitro growth of osteoblastic cells over the surface and the in vivo formation of a highly compact layer of new bone tissue. These results lead to consider the magnesium fluoride coating as necessary for potential use of the AZ31 alloy as biodegradable and absorbable implant for bone repair.En el presente trabajo se ha estudiado el comportamiento frente a la corrosión y la biocompatibilidad in vitro/in vivo de la aleación de magnesio AZ31, cuyas propiedades mecánicas son superiores a los requisitos mecánicos del hueso. La aleación en estado de recepción ha mostrado una cinética de corrosión no compatible con el crecimiento celular. Para mejorar su comportamiento, el material ha sido modificado superficialmente mediante tratamiento de conversión química en ácido fluorhídrico. La capa de fluoruro de magnesio generada tras este tratamiento mejora el comportamiento del material frente a la corrosión, permitiendo el crecimiento in vitro de células osteoblásticas sobre su superficie y la formación in vivo de una capa de nuevo tejido óseo muy compacta. Estos resultados permiten concluir que el recubrimiento de fluoruro de magnesio es necesario para que el material AZ31 pueda ser potencialmente aplicado como implante biodegradable y reabsorbible en reparaciones óseas.

  15. Influence of artificial biological fluid composition on the biocorrosion of potential orthopedic Mg-Ca, AZ31, AZ91 alloys

    International Nuclear Information System (INIS)

    Gu, X N; Zheng, Y F; Chen, L J

    2009-01-01

    The electrochemical behavior of potential orthopedic Mg-Ca, AZ31 and AZ91 alloys was studied in Hank's solution, Dulbecco's Modified Eagle's Medium (DMEM) and serum-containing medium (DMEM adding 10% fetal bovine serum (DMEM+FBS)) over a 7 day immersion period. The biocorrosion of the above three alloys for various immersion time intervals was investigated by linear polarization and electrochemical impedance spectroscopy (EIS). After 7 day immersion, potentiodynamic polarization tests were carried out and the surface morphologies of experimental samples were examined by scanning electron microscopy (SEM) observation complemented by energy-disperse spectrometer (EDS) analysis. It was shown that the corrosion of magnesium alloys was influenced by the composition of the solution. The results indicated that chloride ion could reduce the corrosion resistance and the hydrocarbonate ions could induce rapid surface passivation. The adsorbed amino acid on the experimental magnesium alloys' surface increased their polarization resistance and reduced current densities. The influence of the serum protein on corrosion was found to be associated with the magnesium alloy compositions. A Mg-Ca alloy exhibited an increased corrosion rate in the presence of serum protein. An AZ31 alloy showed an increased corrosion rate in DMEM+FBS in the initial 3 day immersion and the corrosion rate decreased thereafter. An AZ91 alloy, with high Al content, showed a reduced corrosion rate with the addition of FBS into DMEM.

  16. Influence of artificial biological fluid composition on the biocorrosion of potential orthopedic Mg-Ca, AZ31, AZ91 alloys.

    Science.gov (United States)

    Gu, X N; Zheng, Y F; Chen, L J

    2009-12-01

    The electrochemical behavior of potential orthopedic Mg-Ca, AZ31 and AZ91 alloys was studied in Hank's solution, Dulbecco's Modified Eagle's Medium (DMEM) and serum-containing medium (DMEM adding 10% fetal bovine serum (DMEM+FBS)) over a 7 day immersion period. The biocorrosion of the above three alloys for various immersion time intervals was investigated by linear polarization and electrochemical impedance spectroscopy (EIS). After 7 day immersion, potentiodynamic polarization tests were carried out and the surface morphologies of experimental samples were examined by scanning electron microscopy (SEM) observation complemented by energy-disperse spectrometer (EDS) analysis. It was shown that the corrosion of magnesium alloys was influenced by the composition of the solution. The results indicated that chloride ion could reduce the corrosion resistance and the hydrocarbonate ions could induce rapid surface passivation. The adsorbed amino acid on the experimental magnesium alloys' surface increased their polarization resistance and reduced current densities. The influence of the serum protein on corrosion was found to be associated with the magnesium alloy compositions. A Mg-Ca alloy exhibited an increased corrosion rate in the presence of serum protein. An AZ31 alloy showed an increased corrosion rate in DMEM+FBS in the initial 3 day immersion and the corrosion rate decreased thereafter. An AZ91 alloy, with high Al content, showed a reduced corrosion rate with the addition of FBS into DMEM.

  17. Influence of artificial biological fluid composition on the biocorrosion of potential orthopedic Mg-Ca, AZ31, AZ91 alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gu, X N; Zheng, Y F [State Key Laboratory for Turbulence and Complex System and Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871 (China); Chen, L J, E-mail: yfzheng@pku.edu.c [School of Material Science and Engineering, Shengyang University of Technology, Shenyang 110023 (China)

    2009-12-15

    The electrochemical behavior of potential orthopedic Mg-Ca, AZ31 and AZ91 alloys was studied in Hank's solution, Dulbecco's Modified Eagle's Medium (DMEM) and serum-containing medium (DMEM adding 10% fetal bovine serum (DMEM+FBS)) over a 7 day immersion period. The biocorrosion of the above three alloys for various immersion time intervals was investigated by linear polarization and electrochemical impedance spectroscopy (EIS). After 7 day immersion, potentiodynamic polarization tests were carried out and the surface morphologies of experimental samples were examined by scanning electron microscopy (SEM) observation complemented by energy-disperse spectrometer (EDS) analysis. It was shown that the corrosion of magnesium alloys was influenced by the composition of the solution. The results indicated that chloride ion could reduce the corrosion resistance and the hydrocarbonate ions could induce rapid surface passivation. The adsorbed amino acid on the experimental magnesium alloys' surface increased their polarization resistance and reduced current densities. The influence of the serum protein on corrosion was found to be associated with the magnesium alloy compositions. A Mg-Ca alloy exhibited an increased corrosion rate in the presence of serum protein. An AZ31 alloy showed an increased corrosion rate in DMEM+FBS in the initial 3 day immersion and the corrosion rate decreased thereafter. An AZ91 alloy, with high Al content, showed a reduced corrosion rate with the addition of FBS into DMEM.

  18. Enhancing Microstructure and Mechanical Properties of AZ31-MWCNT Nanocomposites through Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    J. Jayakumar

    2013-01-01

    Full Text Available Multiwall carbon nanotubes (MWCNTs reinforced Mg alloy AZ31 nanocomposites were fabricated by mechanical alloying and powder metallurgy technique. The reinforcement material MWCNTs were blended in three weight fractions (0.33%, 0.66%, and 1% with the matrix material AZ31 (Al-3%, zinc-1% rest Mg and blended through mechanical alloying using a high energy planetary ball mill. Specimens of monolithic AZ31 and AZ31-MWCNT composites were fabricated through powder metallurgy technique. The microstructure, density, hardness, porosity, ductility, and tensile properties of monolithic AZ31 and AZ31-MWCNT nano composites were characterized and compared. The characterization reveals significant reduction in CNT (carbon nanoTube agglomeration and enhancement in microstructure and mechanical properties due to mechanical alloying through ball milling.

  19. Research on Extruded Products of Mgalzn Alloys – Microstructure and Mechanical Properties / Badania Wyrobów Wyciskanych Ze Stopów Mgalzn – Mikrostruktura I Właściwości Mechaniczne

    Directory of Open Access Journals (Sweden)

    Płonka B.

    2015-12-01

    Full Text Available The aim of the study was to test and assess products extruded from the magnesium alloys type MgAlZn: AZ31, AZ61 and AZ80A alloys in the form of Ø35mm round bars and 80x15mm flat bars. The test material was extruded in a direct system with the ram feed speed of 1 mm/s and the extrusion ratio λ = 7 ÷ 9. The extruded bars were examined in as-extruded state and after heat treatment to the T5 temper and T6 temper. The strength properties were tested and microstructure was examined with calculation of the average grain size.

  20. Mechanical properties of AZ31 alloy processed by a green metallurgy route; Propiedades mecanicas de la aleacion AZ31 procesada por una ruta eco-sostenible

    Energy Technology Data Exchange (ETDEWEB)

    D' Enrico, F.; Garces, G.; Hofer, M.; Kim, S. K.; Perez, P.; Cabeza, S.; Adeva, P.

    2013-07-01

    Recently it has been proved that molding of defect-free components of various commercial alloys of magnesium can be carried out successfully when small amounts of CaO are added to the melt, making unnecessary the use of SF{sub 6} coverage. In the case of AZ alloys, this process also remarkably improves their mechanical properties not only by the greater cleaning of alloys but also by the formation of CaAl{sub 2} phase. This work, part of the Green project Metallurgy (http://www.green-metallurgy.eu) funded by the European Union (LIFE+2009), studies the influence of different CaO additions on the microstructure and mechanical properties of AZ31 Eco-Mg alloy. The alloy was processed by a conventional route involving extrusion of as-cast rods as well as by a powder metallurgy route (PM) using chips as starting material. The objective was to analyze the viability of recycling machining chips to manufacture components for the automobile industry and transportation in general, because of its low cost and environmental impact. It has been demonstrated that alloys processed from chips exhibit the highest tensile stress values, close to 320 MPa. (Author)

  1. Analysis of metallic traces from the biodegradation of endomedullary AZ31 alloy temporary implants in rat organs after long implantation times.

    Science.gov (United States)

    Bodelón, O G; Iglesias, C; Garrido, J; Clemente, C; Garcia-Alonso, M C; Escudero, M L

    2015-08-04

    AZ31 alloy has been tested as a biodegradable material in the form of endomedullary implants in female Wistar rat femurs. In order to evaluate the accumulation of potentially toxic elements from the biodegradation of the implant, magnesium (Mg), aluminium (Al), zinc (Zn), manganese (Mn) and fluorine (F) levels have been measured in different organs such as kidneys, liver, lungs, spleen and brain. Several factors that may influence accumulation have been taken into account: how long the implant has been in place, whether or not the bone is fractured, and the presence of an MgF2 protective coating on the implant. The main conclusions and the clinical relevance of the study have been that AZ31 endomedullary implants have a degradation rate of about 60% after 13 months, which is fully compatible with fracture consolidation. Neither bone fracture nor an MgF2 coating seems to influence the accumulation of trace elements in the studied organs. Aluminium is the only alloying element in this study that requires special attention. The increase in Al recovered from the sampled organs represents 3.95% of the amount contained in the AZ31 implant. Al accumulates in a statistically significant way in all the organs except the brain. All of this suggests that in long-term tests AZ31 may be a suitable material for osteosynthesis.

  2. Microstructure and corrosion behavior of laser surface-treated AZ31B Mg bio-implant material.

    Science.gov (United States)

    Wu, Tso-Chang; Ho, Yee-Hsien; Joshi, Sameehan S; Rajamure, Ravi S; Dahotre, Narendra B

    2017-05-01

    Although magnesium and magnesium alloys are considered biocompatible and biodegradable, they suffer from poor corrosion performance in the human body environment. In light of this, surface modification via rapid surface melting of AZ31B Mg alloy using a continuous-wave Nd:YAG laser was conducted. Laser processing was performed with laser energy ranging from 1.06 to 3.18 J/mm 2 . The corrosion behavior in simulated body fluid of laser surface-treated and untreated AZ31B Mg alloy samples was evaluated using electrochemical technique. The effect of laser surface treatment on phase and microstructure evolution was evaluated using X-ray diffraction and scanning electron microscopy. Microstructure examination revealed grain refinement as well as formation and uniform distribution of Mg 17 Al 12 phase along the grain boundary for laser surface-treated samples. Evolution of such unique microstructure during laser surface treatment indicated enhancement in the corrosion resistance of laser surface-treated samples compared to untreated alloy.

  3. Constitutive behavior and microstructure evolution of the as-extruded AE21 magnesium alloy during hot compression testing

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.-X. [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Fang, G., E-mail: fangg@tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Leeflang, M.A.; Duszczyk, J.; Zhou, J. [Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands)

    2015-02-15

    Highlights: • Constitutive equation of magnesium alloy AE21 for hot deformation is established. • Material processing history affects the activation energy for deformation. • Zener-Hollomon parameter is used to distinguish the shapes of flow stress curves. • Kink band plays an important role in causing a concave shape of the flow curve of AE21. - Abstract: Magnesium alloys containing rare earth elements possess improved corrosion resistance and mechanical properties and therefore have great potential for a wide range of applications including biomedical applications. Hot forming is meant not only for shaping but also for microstructure modification and performance enhancement. It is of great importance to define optimum forming conditions on the basis of a fundamental understanding of the response of magnesium alloys to deformation. The present study aimed at characterizing the hot deformation behavior of the as-extruded AE21 magnesium alloy by performing isothermal compression tests over a temperature range of 350-480 °C and a strain rate range of 0.001-10 s{sup -1}. Flow stress data obtained were intended for establishing a constitutive equation, which would be indispensable for the prediction of the response of the material to hot deformation, for example, by means of numerical simulation. The true stress-strain curves obtained from the experiments were analyzed, considering different mechanisms of microstructure evolution operating during compression testing at different stages. The Sellar and Tegart model was used to establish the constitutive equation of the alloy during the steady-state deformation. The differences in activation energy value between the present as-extruded magnesium alloy and other wrought magnesium alloys were found and attributed to materials processing history. The Zener-Hollomon parameter was used to correlate the deformation condition with the response of the material to deformation, reflected in the shape of the true stress

  4. Fibre Laser Cutting and Chemical Etching of AZ31 for Manufacturing Biodegradable Stents

    Directory of Open Access Journals (Sweden)

    Ali Gökhan Demir

    2013-01-01

    Full Text Available The use of magnesium-alloy stents shows promise as a less intrusive solution for the treatment of cardiovascular pathologies as a result of the high biocompatibility of the material and its intrinsic dissolution in body fluids. However, in addition to requiring innovative solutions in material choice and design, these stents also require a greater understanding of the manufacturing process to achieve the desired quality with improved productivity. The present study demonstrates the manufacturing steps for the realisation of biodegradable stents in AZ31 magnesium alloy. These steps include laser microcutting with a Q-switched fibre laser for the generation of the stent mesh and subsequent chemical etching for the cleaning of kerf and surface finish. Specifically, for the laser microcutting step, inert and reactive gas cutting conditions were compared. The effect of chemical etching on the reduction in material thickness, as well as on spatter removal, was also evaluated. Prototype stents were produced, and the material composition and surface quality were characterised. The potentialities of combining nanosecond laser microcutting and chemical etching are shown and discussed.

  5. Microstructures and mechanical responses of powder metallurgy non-combustive magnesium extruded alloy by rapid solidification process in mass production

    International Nuclear Information System (INIS)

    Kondoh, Katsuyoshi; Hamada, EL-Sayed Ayman; Imai, Hisashi; Umeda, Junko; Jones, Tyrone

    2010-01-01

    Spinning Water Atomization Process (SWAP), which was one of the rapid solidification processes, promised to produce coarse non-combustible magnesium alloy powder with 1-4 mm length, having fine α-Mg grains and Al 2 Ca intermetallic compounds. It had economical and safe benefits in producing coarse Mg alloy powders with very fine microstructures in the mass production process due to its extreme high solidification rate compared to the conventional atomization process. AMX602 (Mg-6%Al-0.5%Mn-2%Ca) powders were compacted at room temperature. Their green compacts with a relative density of about 85% were heated at 573-673 K for 300 s in Ar gas atmosphere, and immediately consolidated by hot extrusion. Microstructure observation and evaluation of mechanical properties of the extruded AMX602 alloys were carried out. The uniform and fine microstructures with grains less than 0.45-0.8 μm via dynamic recrystallization during hot extrusion were observed, and were much small compared to the extruded AMX602 alloy fabricated by using cast ingot. The extremely fine intermetallic compounds 200-500 nm diameter were uniformly distributed in the matrix of powder metallurgy (P/M) extruded alloys. These microstructures caused excellent mechanical properties of the wrought alloys. For example, in the case of AMX602 alloys extruded at 573 K, the tensile strength (TS) of 447 MPa, yield stress (YS) of 425 MPa and 9.6% elongation were obtained.

  6. Experimental and numerical analyses of magnesium alloy hot workability

    Directory of Open Access Journals (Sweden)

    F. Abbassi

    2016-12-01

    Full Text Available Due to their hexagonal crystal structure, magnesium alloys have relatively low workability at room temperature. In this study, the hot workability behavior of cast-extruded AZ31B magnesium alloy is studied through hot compression testing, numerical modeling and microstructural analyses. Hot deformation tests are performed at temperatures of 250 °C to 400 °C under strain rates of 0.01 to 1.0 s−1. Transmission electron microscopy is used to reveal the presence of dynamic recrystallization (DRX, dynamic recovery (DRY, cracks and shear bands. To predict plastic instabilities during hot compression tests of AZ31B magnesium alloy, the authors use Johnson–Cook damage model in a 3D finite element simulation. The optimal hot workability of magnesium alloy is found at a temperature (T of 400 °C and strain rate (ε˙ of 0.01 s−1. Stability is found at a lower strain rate, and instability is found at a higher strain rate.

  7. A systematic study of mechanical properties, corrosion behavior and biocompatibility of AZ31B Mg alloy after ultrasonic nanocrystal surface modification.

    Science.gov (United States)

    Hou, Xiaoning; Qin, Haifeng; Gao, Hongyu; Mankoci, Steven; Zhang, Ruixia; Zhou, Xianfeng; Ren, Zhencheng; Doll, Gary L; Martini, Ashlie; Sahai, Nita; Dong, Yalin; Ye, Chang

    2017-09-01

    Magnesium alloys have tremendous potential for biomedical applications due to their good biocompatibility, osteoconductivity, and degradability, but can be limited by their poor mechanical properties and fast corrosion in the physiological environment. In this study, ultrasonic nanocrystal surface modification (UNSM), a recently developed surface processing technique that utilizes ultrasonic impacts to induce plastic strain on metal surfaces, was applied to an AZ31B magnesium (Mg) alloy. The mechanical properties, corrosion resistance, and biocompatibility of the alloy after UNSM treatment were studied systematically. Significant improvement in hardness, yield stress and wear resistance was achieved after the UNSM treatment. In addition, the corrosion behavior of UNSM-treated AZ31B was not compromised compared with the untreated samples, as demonstrated by the weight loss and released element concentrations of Mg and Al after immersion in alpha-minimum essential medium (α-MEM) for 24h. The in vitro biocompatibility of the AZ31B Mg alloys toward adipose-derived stem cells (ADSCs) before and after UNSM processing was also evaluated using a cell culture study. Comparable cell attachments were achieved between the two groups. These studies showed that UNSM could significantly improve the mechanical properties of Mg alloys without compromising their corrosion rate and biocompatibility in vitro. These findings suggest that UNSM is a promising method to treat biodegradable Mg alloys for orthopaedic applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Mechanical properties of AZ31 alloy processed by a green metallurgy route

    International Nuclear Information System (INIS)

    D'Enrico, F.; Garces, G.; Hofer, M.; Kim, S. K.; Perez, P.; Cabeza, S.; Adeva, P.

    2013-01-01

    Recently it has been proved that molding of defect-free components of various commercial alloys of magnesium can be carried out successfully when small amounts of CaO are added to the melt, making unnecessary the use of SF 6 coverage. In the case of AZ alloys, this process also remarkably improves their mechanical properties not only by the greater cleaning of alloys but also by the formation of CaAl 2 phase. This work, part of the Green project Metallurgy (http://www.green-metallurgy.eu) funded by the European Union (LIFE+2009), studies the influence of different CaO additions on the microstructure and mechanical properties of AZ31 Eco-Mg alloy. The alloy was processed by a conventional route involving extrusion of as-cast rods as well as by a powder metallurgy route (PM) using chips as starting material. The objective was to analyze the viability of recycling machining chips to manufacture components for the automobile industry and transportation in general, because of its low cost and environmental impact. It has been demonstrated that alloys processed from chips exhibit the highest tensile stress values, close to 320 MPa. (Author)

  9. Mono-carboxylate conversion coatings for AZ31 Mg alloy protection

    Energy Technology Data Exchange (ETDEWEB)

    Frignani, A.; Grassi, V.; Zucchi, F.; Zanotto, F. [Corrosion Study Centre A. Dacco, University of Ferrara (Italy)

    2011-11-15

    Conversion coatings on a magnesium alloy were obtained by dipping AZ31 specimens in aqueous solutions of sodium salts of mono-carboxylic acids (stearic, palmitic, myristic, lauric, mono-carboxylate ion concentration from 1 to 5 mM, depending on the salt solubility) for 24 and 72 h at room temperature, or 24 h at 50 C. The influence exerted by the treatment time, bath temperature and alkyl chain length on the efficiency of these coatings was studied. The performances of the coatings were evaluated by potentiodynamic polarization curve recording after 1 h immersion in 0.05 M Na{sub 2}SO{sub 4} solution, while their temporal evolution was monitored by electrochemical impedance spectroscopy (EIS) spectra during 24 h. Further and long lasting tests were carried out also in 0.1 M NaCl solution. The efficiency of the coatings depended on the aliphatic chain length, and increased as the treatment time and the bath temperature were increased. The coating of lower homologue only hindered the cathodic process, while those of the higher homologues markedly inhibited the anodic process too. The best performances were displayed by 24 h-50 C stearic conversion coating, which maintained a very high efficiency for over 800 h immersion in 0.05 M sulphate solution. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Corrosion Behavior of PEO Coatings Formed on AZ31 Alloy in Phosphate-Based Electrolytes with Calcium Acetate Additive

    Science.gov (United States)

    Ziyaei, E.; Atapour, M.; Edris, H.; Hakimizad, A.

    2017-07-01

    The PEO coating started on magnesium AZ31 using a unipolar DC power source. The coating was generated in the electrolyte based on Na3PO4·12H2O and KOH with calcium acetate as additive. The x-ray diffraction method showed some phases containing calcium and phosphate, which was created in the presence of additive. Also, the EDS tests of the sample's surfaces proved the existence of calcium on the surface. Based on the electrochemical tests results, the most corrosion resistance belongs to the sample with calcium acetate additive. In fact, the results of the EIS tests showed the coating with calcium acetate has the highest resistance but the lowest capacitance. However, this state belongs to the surface morphology, the lower porosity, and surface chemical composition.

  11. THE EFFECT OF SEVERE PLASTIC DEFORMATION ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AS-CAST AZ31

    Directory of Open Access Journals (Sweden)

    S. Khani

    2016-09-01

    Full Text Available The evolution of microstructure and mechanical properties of a magnesium cast alloy (AZ31 processed by equal channel angular pressing (ECAP at two different temperatures were investigated. The as-cast alloy with an average grain size of 360  was significantly refined to about 5  after four ECAP passes at 543 K. Grain refinement was achieved through dynamic recrystallization (DRX during the ECAP process in which the formation of necklace-type structure and bulging of original grain boundaries would be the main mechanisms. ECAP processing at lower temperature resulted in finer recrystallized grains and also a more homogenous microstructure. The mechanical behavior was investigated at room temperature by tensile tests. The obtained results showed that the ECAP processing can basically improve both strength and ductility of the cast alloy. However, the lower working temperature led to higher yield and ultimate strength of the alloy.

  12. Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Rashad, Muhammad, E-mail: rashadphy87@gmail.com [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Pan, Fusheng, E-mail: fspan@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Chongqing Academy of Science and Technology, Chongqing, Chongqing 401123 (China); Zhang, Jianyue [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Asif, Muhammad [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2015-10-15

    Graphene nanoplatelets (few layer graphene) and carbon nanotubes were used as reinforcement fillers to enhance the mechanical properties of AZ31 magnesium alloy through high energy ball milling, sintering, and hot extrusion techniques. Experimental results revealed that tensile fracture strain of AZ31 magnesium alloy was enhanced by +49.6% with 0.3 wt.% graphene nanoplatelets compared to −8.3% regression for 0.3 wt.% carbon nanotubes. The tensile strength of AZ31 magnesium alloy was decreased (−11.2%) with graphene nanoplatelets addition, while increased (+7.7%) with carbon nanotubes addition. Unlike tensile test, compression tests showed different trend. The compression strength of carbon nanotubes-AZ31 composite was +51.2% greater than AZ31 magnesium alloy as compared to +0.6% increase for graphene nanoplatelets. The compressive fracture strain of carbon nanotubes-AZ31 composite was decreased (−14.1%) while no significant change in fracture strain of graphene nanoplatelets-AZ31 composite was observed. The X-ray diffraction results revealed that addition of reinforcement particles weaken the basal textures which affect the composite's yield asymmetry. Microstructure evaluation revealed the absence of intermetallic phase formation between reinforcements and matrix. The carbon reinforcements in AZ31 magnesium alloy dissolve and isolate β phases throughout the matrix. The increased fracture strain and mechanical strength of graphene nanoplatelets and carbon nanotubes-AZ31 composites are attributed to large specific surface area of graphene nanoplatelets and stiffer nature of carbon nanotubes respectively. - Highlights: • Powder metallurgy method was used to fabricate magnesium composites. • The AZ31-carbon materials composite were blended using ball milling. • The reinforcement particles weaken the basal texture which affects yield asymmetry of composites. • AZ31-graphene nanoplatelets composite exhibited impressive increase in tensile elongation

  13. Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy

    International Nuclear Information System (INIS)

    Rashad, Muhammad; Pan, Fusheng; Zhang, Jianyue; Asif, Muhammad

    2015-01-01

    Graphene nanoplatelets (few layer graphene) and carbon nanotubes were used as reinforcement fillers to enhance the mechanical properties of AZ31 magnesium alloy through high energy ball milling, sintering, and hot extrusion techniques. Experimental results revealed that tensile fracture strain of AZ31 magnesium alloy was enhanced by +49.6% with 0.3 wt.% graphene nanoplatelets compared to −8.3% regression for 0.3 wt.% carbon nanotubes. The tensile strength of AZ31 magnesium alloy was decreased (−11.2%) with graphene nanoplatelets addition, while increased (+7.7%) with carbon nanotubes addition. Unlike tensile test, compression tests showed different trend. The compression strength of carbon nanotubes-AZ31 composite was +51.2% greater than AZ31 magnesium alloy as compared to +0.6% increase for graphene nanoplatelets. The compressive fracture strain of carbon nanotubes-AZ31 composite was decreased (−14.1%) while no significant change in fracture strain of graphene nanoplatelets-AZ31 composite was observed. The X-ray diffraction results revealed that addition of reinforcement particles weaken the basal textures which affect the composite's yield asymmetry. Microstructure evaluation revealed the absence of intermetallic phase formation between reinforcements and matrix. The carbon reinforcements in AZ31 magnesium alloy dissolve and isolate β phases throughout the matrix. The increased fracture strain and mechanical strength of graphene nanoplatelets and carbon nanotubes-AZ31 composites are attributed to large specific surface area of graphene nanoplatelets and stiffer nature of carbon nanotubes respectively. - Highlights: • Powder metallurgy method was used to fabricate magnesium composites. • The AZ31-carbon materials composite were blended using ball milling. • The reinforcement particles weaken the basal texture which affects yield asymmetry of composites. • AZ31-graphene nanoplatelets composite exhibited impressive increase in tensile elongation

  14. Volta potential of second phase particles in extruded AZ80 magnesium alloy

    NARCIS (Netherlands)

    Andreatta, F.; Apachitei, I.; Kodentsov, A.; Dzwonczyk, J.; Duszcyk, J.

    2006-01-01

    Magnesium alloys show strong susceptibility to localized corrosion when immersed in aggressive solutions (e.g. chlorides). The existence of second phase particles in the microstructure might represent initiation sites for localized corrosion. This is due to the formation of galvanic couples between

  15. Electrochemical polymerization of pyrrole over AZ31 Mg alloy for biomedical applications

    International Nuclear Information System (INIS)

    Srinivasan, A.; Ranjani, P.; Rajendran, N.

    2013-01-01

    Highlights: ► Polymerization of pyrrole over AZ31 Mg was carried out using cyclic voltammetry. ► Pyrrole concentration was optimized to accomplish the adherent and uniform coating. ► Effect of monomer concentration on the surface morphology was discussed. ► Corrosion resistance of AZ31 Mg in SBF was studied as a function of Py concentration. ► PPy coated AZ31 Mg alloy exhibited enhanced corrosion resistance at 0.25 M of Py. -- Abstract: Electrochemical polymerization of pyrrole (Py) from aqueous salicylate solution over AZ31 Mg alloy was carried out using cyclic voltammetry (CV). The effect of monomer concentration on the surface and electrochemical corrosion in simulated body fluid (SBF) were analysed. Attenuated total reflection-infrared (ATR-IR) spectra showed the characteristic ring stretching peaks for polypyrrole (PPy). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies exhibited typical cauliflower morphology with rough surface for PPy coated AZ31 Mg alloy. Open circuit potential measurement and potentiodynamic polarization studies revealed that the coating prepared using 0.25 M of Py had positive shift of about 120 mV in corrosion potential and lower corrosion current density (0.03 mA/cm 2 ) compared to other concentrations and uncoated AZ31 Mg alloy (0.25 mA/cm 2 ). Electrochemical impedance spectroscopic (EIS) studies of uncoated and PPy coated Mg alloy in SBF revealed three-time constants behaviour with about one order of increment in impedance value for 0.25 M of Py

  16. Enhanced corrosion resistance and biocompatibility of AZ31 Mg alloy using PCL/ZnO NPs via electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinwoo [Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Mousa, Hamouda M. [Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena 83523 (Egypt); Park, Chan Hee, E-mail: biochan@jbnu.ac.kr [Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Division of Mechanical Design Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Kim, Cheol Sang, E-mail: chskim@jbnu.ac.kr [Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Division of Mechanical Design Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of)

    2017-02-28

    Highlights: • PCL/ZnO composite coating layer by electrospinning techniques showed the nano-scaled and porous surface structure. • Addition of zinc oxide NPs in the PCL fibers led to enhanced coating adhesion and corrosion resistance. • The composite coated surfaces on Mg substrates improved cell attachment and proliferation. - Abstract: In the efforts to improve corrosion resistance and biocompatibility of magnesium alloys, polycarprolactone (PCL) and zinc oxide nanoparticles (ZnO NPs) composite coatings were applied onto AZ31 Mg alloys via electrospinning technique in this study. The PCL/ZnO composite coatings on Mg alloys were characterized by using FE-SEM, EDX, XPS, and FT-IR. Moreover, coating adhesion test, electrochemical corrosion test, and biocompatibility test in vitro were performed to measure coating performance. Our results revealed that the increase in the content of ZnO NPs in the composite coatings not only improved the coating adhesion of composite coatings on Mg alloys, but also increased the corrosion resistance. Furthermore, the biocompatibility of MC3T3-E1 osteoblasts of the PCL/ZnO composite coated samples was superior to the biocompatibility of the bare samples. Such data suggest that applying PCL/ZnO composite coating to the magnesium alloys has suitable potential in biomedical applications.

  17. Enhanced corrosion resistance and biocompatibility of AZ31 Mg alloy using PCL/ZnO NPs via electrospinning

    International Nuclear Information System (INIS)

    Kim, Jinwoo; Mousa, Hamouda M.; Park, Chan Hee; Kim, Cheol Sang

    2017-01-01

    Highlights: • PCL/ZnO composite coating layer by electrospinning techniques showed the nano-scaled and porous surface structure. • Addition of zinc oxide NPs in the PCL fibers led to enhanced coating adhesion and corrosion resistance. • The composite coated surfaces on Mg substrates improved cell attachment and proliferation. - Abstract: In the efforts to improve corrosion resistance and biocompatibility of magnesium alloys, polycarprolactone (PCL) and zinc oxide nanoparticles (ZnO NPs) composite coatings were applied onto AZ31 Mg alloys via electrospinning technique in this study. The PCL/ZnO composite coatings on Mg alloys were characterized by using FE-SEM, EDX, XPS, and FT-IR. Moreover, coating adhesion test, electrochemical corrosion test, and biocompatibility test in vitro were performed to measure coating performance. Our results revealed that the increase in the content of ZnO NPs in the composite coatings not only improved the coating adhesion of composite coatings on Mg alloys, but also increased the corrosion resistance. Furthermore, the biocompatibility of MC3T3-E1 osteoblasts of the PCL/ZnO composite coated samples was superior to the biocompatibility of the bare samples. Such data suggest that applying PCL/ZnO composite coating to the magnesium alloys has suitable potential in biomedical applications.

  18. Friction stir welded AM50 and AZ31 Mg alloys: Microstructural evolution and improved corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Templeman, Yael [Department of Materials Engineering, Ben Gurion University of the Negev, PO Box 653, Beer Sheva 84105 (Israel); Ben Hamu, Guy [Department of Mechanical Engineering, Sami Shamoon College of Engineering, Ashdod 77245 (Israel); Meshi, Louisa, E-mail: Louisa@bgu.ac.il [Department of Materials Engineering, Ben Gurion University of the Negev, PO Box 653, Beer Sheva 84105 (Israel)

    2017-04-15

    One of the major drawbacks of Mg alloys is poor weldability, caused by porosity formation during conventional fusion welding processes. Friction Stir Welding (FSW) is promising technique in this context since it is a solid state technique. Contradicting results were published in the literature regarding the FSWed Mg alloys joint's properties. Current research was performed in order to investigate the microstructure and corrosion properties of FSWed Mg alloys, studying representatives of two commercial families: wrought AZ31-H24 and die cast AM50. It was found that in both alloys recrystallization occurred during the FSW. In AM50 the mechanism of the recrystallization was continuous, manifested by dislocation rearrangement into sub grain boundaries. In AZ31 discontinuous recrystallization had occurred through grain boundaries migration - twins rotated with respect to the matrix, turning into low angle grain boundaries. Corrosion resistance has improved during the FSW in both alloys to different extents. In the AM50 alloy, the nugget exhibited significantly higher surface potential than the base metal mainly due to the higher Al concentration in the matrix of the nugget, resulting from the dissolution of Al-enrichment and β-Mg{sub 17}Al{sub 12} phase. In the AZ31 alloy, no change in Al concentration had occurred, and the surface potential measured in the nugget was only slightly higher than in the base metal. These results underline the appropriateness of the FSW for Mg alloys since during the conventional welding deterioration of the corrosion resistance occurs. - Highlights: • Following FSW, AZ31-H24 experienced discontinuous recrystallization. • In AZ31 grain boundaries migration occurred, thus twins rotated. • In die cast AM50 continuous recrystallization occurred during the FSW. • In AM50 - dislocations rearranged into sub grain boundaries. • Corrosion resistance has improved during the FSW in both alloys to different extent.

  19. Friction stir welded AM50 and AZ31 Mg alloys: Microstructural evolution and improved corrosion resistance

    International Nuclear Information System (INIS)

    Templeman, Yael; Ben Hamu, Guy; Meshi, Louisa

    2017-01-01

    One of the major drawbacks of Mg alloys is poor weldability, caused by porosity formation during conventional fusion welding processes. Friction Stir Welding (FSW) is promising technique in this context since it is a solid state technique. Contradicting results were published in the literature regarding the FSWed Mg alloys joint's properties. Current research was performed in order to investigate the microstructure and corrosion properties of FSWed Mg alloys, studying representatives of two commercial families: wrought AZ31-H24 and die cast AM50. It was found that in both alloys recrystallization occurred during the FSW. In AM50 the mechanism of the recrystallization was continuous, manifested by dislocation rearrangement into sub grain boundaries. In AZ31 discontinuous recrystallization had occurred through grain boundaries migration - twins rotated with respect to the matrix, turning into low angle grain boundaries. Corrosion resistance has improved during the FSW in both alloys to different extents. In the AM50 alloy, the nugget exhibited significantly higher surface potential than the base metal mainly due to the higher Al concentration in the matrix of the nugget, resulting from the dissolution of Al-enrichment and β-Mg 17 Al 12 phase. In the AZ31 alloy, no change in Al concentration had occurred, and the surface potential measured in the nugget was only slightly higher than in the base metal. These results underline the appropriateness of the FSW for Mg alloys since during the conventional welding deterioration of the corrosion resistance occurs. - Highlights: • Following FSW, AZ31-H24 experienced discontinuous recrystallization. • In AZ31 grain boundaries migration occurred, thus twins rotated. • In die cast AM50 continuous recrystallization occurred during the FSW. • In AM50 - dislocations rearranged into sub grain boundaries. • Corrosion resistance has improved during the FSW in both alloys to different extent.

  20. Comportamiento mecánico de la aleación AZ31 reforzada con nanofibras de carbono

    Directory of Open Access Journals (Sweden)

    Adeva, P.

    2010-12-01

    Full Text Available The aim of this study is to investigate the effect of reinforcing AZ31 with carbon nanofibres. The materials AZ31, AZ31-1 % C y AZ31-2 % C were produced by a conventional powder metallurgy route consisting of mechanical mixing of nanofibres and powders of AZ31, cool compactation and extrusion at 350 °C. After extrusion the three materials exhibited a recrystallized microstructure of similar grain size, fine and rather inhomogeneous. Furthermore, they presented a weak fibre texture with basal plane parallel to the extrusion direction. The tensile properties were affected by the nanofibres presence only at 100 °C. At this temperature, yield strength and tensile strength were 30% higher than in the unreinforced alloy.

    En este trabajo se ha estudiado el efecto de la adición de nanofibras de carbono en las propiedades mecánicas de la aleación AZ31 procesada por una ruta pulvimetalúrgica convencional. Se prepararon tres materiales, AZ31, AZ31- 1 % C y AZ31-2 % C. Tras una mezcla mecánica de las nanofibras con los polvos de AZ31, se precompactaron en frío y se extruyeron a 350 °C. Los tres presentan una microestructura recristalizada con un tamaño de grano similar, fino aunque algo heterogéneo. Los tres materiales presentan una débil textura de fibra con el plano basal paralelo a la dirección de extrusión. Las propiedades mecánicas a tracción únicamente se ven afectadas por la presencia de nanofibras a 100 °C superando los materiales reforzados en un 30 % a los valores de límite elástico y resistencia de la aleación sin reforzar.

  1. Mechanical Behavior of AZ31B Mg Alloy Sheets under Monotonic and Cyclic Loadings at Room and Moderately Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Ngoc-Trung Nguyen

    2014-02-01

    Full Text Available Large-strain monotonic and cyclic loading tests of AZ31B magnesium alloy sheets were performed with a newly developed testing system, at different temperatures, ranging from room temperature to 250 °C. Behaviors showing significant twinning during initial in-plane compression and untwinning in subsequent tension at and slightly above room temperature were recorded. Strong yielding asymmetry and nonlinear hardening behavior were also revealed. Considerable Bauschinger effects, transient behavior, and variable permanent softening responses were observed near room temperature, but these were reduced and almost disappeared as the temperature increased. Different stress–strain responses were inherent to the activation of twinning at lower temperatures and non-basal slip systems at elevated temperatures. A critical temperature was identified to account for the transition between the twinning-dominant and slip-dominant deformation mechanisms. Accordingly, below the transition point, stress–strain curves of cyclic loading tests exhibited concave-up shapes for compression or compression following tension, and an unusual S-shape for tension following compression. This unusual shape disappeared when the temperature was above the transition point. Shrinkage of the elastic range and variation in Young’s modulus due to plastic strain deformation during stress reversals were also observed. The texture-induced anisotropy of both the elastic and plastic behaviors was characterized experimentally.

  2. Corrosion behavior of friction stir welded AZ31B Mg alloy - Al6063 alloy joint

    Directory of Open Access Journals (Sweden)

    B. Ratna Sunil

    2016-12-01

    Full Text Available In the present work, AZ31B Mg alloy and Al6063 alloy-rolled sheets were successfully joined by friction stir welding. Microstructural studies revealed a sound joint with good mechanical mixing of both the alloys at the nugget zone. Corrosion performance of the joint was assessed by immersing in 3.5% NaCl solution for different intervals of time and the corrosion rate was calculated. The joint has undergone severe corrosion attack compared with both the base materials (AZ31B and Al6063 alloys. The predominant corrosion mechanism behind the high corrosion rate of the joint was found to be high galvanic corrosion. From the results, it can be suggested that the severe corrosion of dissimilar Mg–Al joints must be considered as a valid input while designing structures intended to work in corroding environment.

  3. Propiedades mecánicas de la aleación AZ31 procesada por una ruta eco-sostenible

    Directory of Open Access Journals (Sweden)

    D’Errico, F.

    2013-12-01

    Full Text Available Recently it has been proved that molding of defect-free components of various commercial alloys of magnesium can be carried out succesfully when small amounts of CaO are added to the melt, making unnecessary the use of SF6 coverage. In the case of AZ alloys, this process also remarkably improves their mechanical properties not only by the greater cleaning of alloys but also by the formation of CaAl2 phase. This work, part of the Green project Metallurgy (http://www.green-metallurgy.eu funded by the European Union (LIFE+2009, studies the influence of different CaO additions on the microstructure and mechanical properties of AZ31 Eco-Mg alloy. The alloy was processed by a conventional route involving extrusion of as-cast rods as well as by a powder metallurgy route (PM using chips as starting material. The objective was to analyze the viability of recycling machining chips to manufacture components for the automobile industry and transportation in general, because of its low cost and environmental impact. It has been demostrated that alloys processed from chips exhibit the highest tensile stress values, close to 320 MPa.Recientemente se ha demostrado la posibilidad de fabricar por moldeo, componentes libres de defectos de diferentes aleaciones comerciales de magnesio, añadiendo CaO al caldo, sin emplear SF6. En el caso de las aleaciones AZ este proceso, además, mejora notablemente las propiedades mecánicas, no sólo por la mayor limpieza de las aleaciones sino también por la presencia de la fase CaAl2 que se forma por la incorporación de calcio al caldo. Este trabajo, enmarcado dentro del proyecto Green Metallurgy (http://www.green-metallurgy.eu financiado por la Unión Europea (Programa LIFE+2009, estudia la influencia de diferentes adiciones de CaO en la microestructura y propiedades mecánicas de la aleación Eco-Mg AZ31. El estudio se lleva a cabo en aleaciones AZ31 con 0,5, 1 y 1,5% CaO procesadas por dos rutas diferentes, aleaciones

  4. Characteristics of AZ31 Mg alloy joint using automatic TIG welding

    Science.gov (United States)

    Liu, Hong-tao; Zhou, Ji-xue; Zhao, Dong-qing; Liu, Yun-teng; Wu, Jian-hua; Yang, Yuan-sheng; Ma, Bai-chang; Zhuang, Hai-hua

    2017-01-01

    The automatic tungsten-inert gas welding (ATIGW) of AZ31 Mg alloys was performed using a six-axis robot. The evolution of the microstructure and texture of the AZ31 auto-welded joints was studied by optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electron backscatter diffraction. The ATIGW process resulted in coarse recrystallized grains in the heat affected zone (HAZ) and epitaxial growth of columnar grains in the fusion zone (FZ). Substantial changes of texture between the base material (BM) and the FZ were detected. The {0002} basal plane in the BM was largely parallel to the sheet rolling plane, whereas the c-axis of the crystal lattice in the FZ inclined approximately 25° with respect to the welding direction. The maximum pole density increased from 9.45 in the BM to 12.9 in the FZ. The microhardness distribution, tensile properties, and fracture features of the AZ31 auto-welded joints were also investigated.

  5. Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg-Nd-Zn-Zr alloy with different extrusion ratios.

    Science.gov (United States)

    Zhang, Xiaobo; Yuan, Guangyin; Niu, Jialin; Fu, Penghuai; Ding, Wenjiang

    2012-05-01

    Recently, commercial magnesium (Mg) alloys containing Al (such as AZ31 and AZ91) or Y (such as WE43) have been studied extensively for biomedical applications. However, these Mg alloys were developed as structural materials, not as biomaterials. In this study, a patented Mg-Nd-Zn-Zr (denoted as JDBM) alloy was investigated as a biomedical material. The microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of the alloy extruded at 320 °C with extrusion ratios of 8 and 25 were studied. The results show that the lower extrusion ratio results in finer grains and higher strength, but lower elongation, while the higher extrusion ratio results in coarser grains and lower strength, but higher elongation. The biocorrosion behavior of the alloy was investigated by hydrogen evolution and mass loss tests in simulated body fluid (SBF). The results show that the alloy extruded with lower extrusion ratio exhibits better corrosion resistance. The corrosion mode of the alloy is uniform corrosion, which is favorable for biomedical applications. Aging treatment on the as-extruded alloy improves the strength and decreases the elongation at room temperature, and has a small positive influence on the corrosion resistance in SBF. The cytotoxicity test indicates that the as-extruded JDBM alloy meets the requirement of cell toxicity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. A Limited Dynamic Investigation of Magnesium Alloy AZ31B in 3 Orientations

    Science.gov (United States)

    2016-09-01

    and rolling direction. Semi- infinite impacts from penetrators in each direction are shown. The targets were sectioned and machined using electrical... infinite , penetration characterization, WAPEN, effective flow stress (EFS) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18...a method for determining pitch or yaw. Since the X-ray system worked for all tests, the data from this backup system were not used. Semi- infinite

  7. Development of Rolling Schedules for Equal Channel Angular Extrusion (ECAE)-Processed AZ31 Magnesium Alloy

    Science.gov (United States)

    2016-04-01

    specimens were mounted in an epoxy resin and prepared using conventional metallographic techniques. A final etching, using diluted picric acid, was...additional pass, the shearing texture is exaggerated and, unless reversed , an acicular texture in the material could result. The function of route C

  8. Microstructural Effects on the Spall Properties of ECAE-Processed AZ31B Magnesium Alloy

    Science.gov (United States)

    2016-10-01

    stresses using 51 mm and 105 mm bore gas guns . The Hugoniot Elastic Limit (HEL) was measured to be approximately 181 ± 3 MPa. The spall strengths...MD 21218, USA b Institute of Shock Physics, Imperial College London, London SW7 2AZ, UK c U.S. Army Research Laboratory, Aberdeen Proving Ground, MD...21005, USA d Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA A R T I C L E I N F O Article history: Received

  9. An Analysis of Magnesium Alloy AZ31B-H24 for Ballistic Applications

    Science.gov (United States)

    2007-12-01

    CELIUS MATERIAL TEKNIK KARLSKOGA AB L HELLNER S 69180 KARLSKOGA SWEDEN 3 CENTRE D’ETUDES GRAMAT J CAGNOUX C GALLIC J TRANCHET... GRAMAT 46500 FRANCE 1 MINISTRY OF DEFENCE DGA DSP STTC G BRAULT 4 RUE DE LA PORTE D’ISSY 00460 ARMEES F 75015 PARIS FRANCE 1

  10. Mechanical properties and microstructural evaluation of AA1100 to AZ31 dissimilar friction stir welds

    Energy Technology Data Exchange (ETDEWEB)

    Azizieh, M., E-mail: azizieh@gmail.com [Department of Materials Science and Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz (Iran, Islamic Republic of); Sadeghi Alavijeh, A. [School of Mechatronic Systems Engineering, Simon Fraser University, 250-13450 102 Avenue, Surrey, BC V3T 0A3 (Canada); Abbasi, M. [High Temperature Energy Materials, Korea Institute of Science and Technology, Seoul, 136-791 (Korea, Republic of); Balak, Z. [Department of Materials Science and Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz (Iran, Islamic Republic of); Kim, H.S. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of)

    2016-02-15

    In this paper, microstructure and mechanical properties of dissimilar friction stir welds of AA1100 and AZ31 were investigated to understand the effects of rotational and travel speed as well as pin position. The tensile results of welded samples revealed that the sound welds were formed when the stirring pin deviated from the centreline to the AZ31 side. The X-ray diffraction shows that Al{sub 3}Mg{sub 2} and Al{sub 12}Mg{sub 17} intermetallics formation occurs in the stir zone during the welding process. High hardness of these intermetallic phases increased the hardness of the stir zone to 110 Hv. The best tensile results were obtained in the sample processed in the range of 28–32 (rev/mm) rotational to travel speed ratio. - Highlights: • For Al to Mg friction stir welding, tool offset must be to Mg side. • There is an optimum rotational speed for obtain the highest strength. • Intermetallics form in any welding condition. • The volume fraction of intermetallic is directly related to FSW peak temperature.

  11. Enhanced mechanical properties and increased corrosion resistance of a biodegradable magnesium alloy by plasma electrolytic oxidation (PEO)

    International Nuclear Information System (INIS)

    White, Leon; Koo, Youngmi; Neralla, Sudheer; Sankar, Jagannathan; Yun, Yeoheung

    2016-01-01

    Highlights: • Plasma electrolytic oxidation (PEO) method was developed to control corrosion, porosity, and mechanical property. • Mechanical properties of PEO-coated AZ31 alloys were affected by the different electrolyte. • Mechanical properties and corrosion resistance of PEO-coated AZ31 alloys were compared with uncoated one. - Abstract: We report the enhanced mechanical properties of AZ31 magnesium alloys by plasma electrolytic oxidation (PEO) coating in NaOH, Na_2SiO_3, KF and NaH_2PO_4·2H_2O containing electrolytes. Mechanical properties including wear resistance, surface hardness and elastic modulus were increased for PEO-coated AZ31 Mg alloys (PEO-AZ31). DC polarization in Hank's solution indicating that the corrosion resistance significantly increased for PEO-coating in KF-contained electrolyte. Based on these results, the PEO coating method shows promising potential for use in biodegradable implant applications where tunable corrosion and mechanical properties are needed.

  12. Strain rate dependence of twinning at 450 Degree-Sign C and its effect on microstructure of an extruded magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Q., E-mail: qma@cavs.msstate.edu [Center for Advanced Vehicular Systems, Mississippi State University, Starkville, MS 39759 (United States); Li, B.; Oppedal, A.L.; Whittington, W.R.; Horstemeyer, S.J.; Marin, E.B.; Wang, P.T. [Center for Advanced Vehicular Systems, Mississippi State University, Starkville, MS 39759 (United States); Horstemeyer, M.F. [Center for Advanced Vehicular Systems, Mississippi State University, Starkville, MS 39759 (United States); Department of Mechanical Engineering, Mississippi State University, Starkville, MS 39762 (United States)

    2013-01-01

    Deformation twinning in magnesium alloys at elevated temperatures has received relatively little attention because it is generally deemed that dislocation slip dominates plastic deformation. In this work, twinning at 450 Degree-Sign C in an extruded Mg-Al-Mn magnesium alloy (AM30) was studied by interrupted compression tests at various strain rates within a practical range for lab-scale extrusion (<1.0 s{sup -1}). Microstructure and texture evolution were examined by electron backscatter diffraction (EBSD) at different strain levels. The results show that sporadic twins started to appear at strain rate of 0.1 s{sup -1}, whereas profuse twinning was activated at strain rates of 0.5 and 0.8 s{sup -1}. The deformation twins quickly lost original morphology because of dynamic recrystallization. These results show that deformation twinning has a significant effect on microstructural and texture evolution of wrought Mg alloys at elevated temperatures within practical strain rate range.

  13. Double fillet lap of laser welding of thin sheet AZ31B Mg alloy

    Science.gov (United States)

    Ishak, Mahadzir; Salleh, M. N. M.

    2018-05-01

    In this paper, we describe the experimental laser welding of thin sheet AZ31B using double fillet lap joint method. Laser welding is capable of producing high quality weld seams especially for small weld bead on thin sheet product. In this experiment, both edges for upper and lower sheets were subjected to the laser beam from the pulse wave (PW) mode of fiber laser. Welded sample were tested their joint strength by tensile-shear strength method and the fracture loads were studied. Strength for all welded samples were investigated and the effect of laser parameters on the joint strength and appearances were studied. Pulsed energy (EP) from laser process give higher effect on joint strength compared to the welding speed (WS) and angle of irradiation (AOI). Highest joint strength was possessed by sample with high EP with the same value of WS and AOI. The strength was low due to the crack defect at the centre of weld region.

  14. Semiconducting behavior of the anodically passive films formed on AZ31B alloy

    Directory of Open Access Journals (Sweden)

    A. Fattah-alhosseini

    2014-12-01

    Full Text Available This work includes determination of the semiconductor character and estimation of the dopant levels in the passive film formed on AZ31B alloy in 0.01 M NaOH, as well as the estimation of the passive film thickness as a function of the film formation potential. Mott–Schottky analysis revealed that the passive films displayed n-type semiconductive characteristics, where the oxygen vacancies and interstitials preponderated. Based on the Mott–Schottky analysis, it was shown that the calculated donor density increases linearly with increasing the formation potential. Also, the electrochemical impedance spectroscopy (EIS results indicated that the thickness of the passive film was decreased linearly with increasing the formation potential. The results showed that decreasing the formation potential offer better conditions for forming the passive films with higher protection behavior, due to the growth of a much thicker and less defective films.

  15. Grain refinement of AZ31 by (SiC)P: Theoretical calculation and experiment

    International Nuclear Information System (INIS)

    Guenther, R.; Hartig, Ch.; Bormann, R.

    2006-01-01

    Grain refinement of gravity die-cast Mg-alloys can be achieved via two methods: in situ refinement by primary precipitated metallic or intermetallic phases, and inoculation of the melt via ceramic particles that remain stable in the melt due to their high thermodynamic stability. In order to clarify grain refinement mechanisms and optimize possible potent refiners in Mg-alloys, a simulation method for heterogeneous nucleation based on a free growth model has been developed. It allows the prediction of the grain size as a function of the particle size distribution, the volumetric content of ceramic inoculants, the cooling rate and the alloy constitution. The model assumptions were examined experimentally by a study of the grain refinement of (SiC) P in AZ31. Additions of (SiC) P result in significant grain refinement, if appropriate parameters for ceramic particles are chosen. The model makes quantitatively correct predictions for the grain size and its variation with cooling rate

  16. Enhanced mechanical properties and increased corrosion resistance of a biodegradable magnesium alloy by plasma electrolytic oxidation (PEO).

    Science.gov (United States)

    White, Leon; Koo, Youngmi; Neralla, Sudheer; Sankar, Jagannathan; Yun, Yeoheung

    2016-06-01

    We report the enhanced mechanical properties of AZ31 magnesium alloys by plasma electrolytic oxidation (PEO) coating in NaOH, Na 2 SiO 3 , KF and NaH 2 PO 4 ·2H 2 O containing electrolytes. Mechanical properties including wear resistance, surface hardness and elastic modulus were increased for PEO-coated AZ31 Mg alloys (PEO-AZ31). DC polarization in Hank's solution indicating that the corrosion resistance significantly increased for PEO-coating in KF-contained electrolyte. Based on these results, the PEO coating method shows promising potential for use in biodegradable implant applications where tunable corrosion and mechanical properties are needed.

  17. Investigation of the passive behaviour of AZ31B alloy in alkaline solutions

    Directory of Open Access Journals (Sweden)

    A. Fattah-alhosseini

    2014-06-01

    Full Text Available In this work, the passivity of AZ31B alloy in NaOH solutions was studied by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS and Mott–Schottky analysis. Potentiodynamic polarization results indicated that decreasing NaOH concentration leads to decrease the corrosion rate of this alloy. EIS results showed that the reciprocal capacitance (1/C of the passive film is directly proportional to its thickness which increases with decreasing NaOH concentration. Therefore, it is clear that dilute NaOH solutions offer better conditions for forming the passive films with higher protection behaviour, due to the growth of a much thicker and less defective films. The Mott–Schottky analysis revealed that the passive films displayed n-type semiconductive characteristics, where the oxygen vacancies and interstitials (over the cation vacancies preponderated. Also, Mott–Schottky results showed that the donor densities evaluated from Mott–Schottky plots are in the range of 1020 cm−3 and decreased with decreasing NaOH concentration.

  18. Influence of pulsed current on deformation mechanism of AZ31B sheets during tension

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kai [National Die & Mold CAD Engineering Research Center, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030 (China); Dong, Xianghuai, E-mail: dongxh@sjtu.edu.cn [National Die & Mold CAD Engineering Research Center, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030 (China); Xie, Huanyang [Shanghai Superior Die Technology Co., Ltd, 775 Jinsui Road, Shanghai 201209 (China); Wu, Yunjian; Peng, Fang [National Die & Mold CAD Engineering Research Center, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030 (China)

    2016-08-15

    The tensile tests of AZ31B sheets were carried out under pulsed current (PC) of different frequencies, and then the deformation mechanism at different conditions was analyzed by X-Ray Diffraction. The results show that PC does not change the initial yield stress, but reduces the work hardening rate and induces softening effect. Furthermore, electroplasticity effect is controlled by thermal activation. When Z (Zener-Hollomon parameter) is high, the effect of PC is limited, causing a relatively weak electroplasticity effect. With the increasing of Z, the effect of PC strengthens. When Z reaches the critical condition, the activated slip systems obviously change because of PC, which induces the change of texture evolution and the discontinuous change of the intensity of electroplasticity. When Z is low, electroplasticity effect reaches a saturate condition and does not change with Z. Moreover, higher frequency contributes to the dislocation annihilation at all the slip systems, and then increasing frequency can strengthen the extra softening effect of PC. - Highlights: • Pulsed current does not change the initial yield stress, but reduce the work hardening rate and cause softening effect. • Increasing frequency can strengthen the softening effect. • The rules of the softening effect at different deformation condition are different. • The influence of current on deformation mechanism was analyzed by XRD.

  19. A study of strontium doped calcium phosphate coatings on AZ31

    International Nuclear Information System (INIS)

    Singh, Satish S.; Roy, Abhijit; Lee, Boeun E.; Ohodnicki, John; Loghmanian, Autrine; Banerjee, Ipsita; Kumta, Prashant N.

    2014-01-01

    Calcium phosphate (CaP) coatings have been studied to tailor the uncontrolled non-uniform corrosion of Mg based alloys while simultaneously enhancing bioactivity. The use of immersion techniques to deposit CaP coatings is attractive due to the ability of the approach to coat complex structures. In the current study, AZ31 substrates were subjected to various pretreatment conditions prior to depositing Sr 2+ doped and undoped CaP coatings. It was hypothesized that the bioactivity and corrosion protection of CaP coatings could be improved by doping with Sr 2+ . Heat treatment to elevated temperatures resulted in the diffusion of alloying elements, Mg and Zn, into the pretreated layer. Sr 2+ doped and undoped CaP coatings formed on the pretreated substrates consisted of biphasic mixtures of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA). Electrochemical corrosion experiments indicated that the extent of Sr 2+ doping and pretreatment both influenced the corrosion protection. Cytotoxicity was evaluated with MC3T3-E1 mouse preosteoblasts and human mesenchymal stem cells (hMSCs). For both cell types, proliferation decreased upon increasing the Sr 2+ concentration. However, both osteogenic gene and protein expression significantly increased upon increasing Sr 2+ concentration. These results suggest that Sr 2+ doped coatings are capable of promoting osteogenic differentiation on degradable Mg alloys, while also enhancing corrosion protection, in comparison to undoped CaP coatings

  20. The Effects of Carbon Nanotubes on the Mechanical and Wear Properties of AZ31 Alloy

    Directory of Open Access Journals (Sweden)

    Mingyang Zhou

    2017-12-01

    Full Text Available Carbon nanotube (CNT-reinforced AZ31 matrix nanocomposites were successfully fabricated using a powder metallurgy method followed by hot extrusion. The influence of CNTs on microstructures, mechanical properties, and wear properties were systematically investigated by optical microscope (OM, scanning electron microscope (SEM, X-ray diffraction (XRD, hardness test, tensile test, and wear test. The results revealed that the nanocomposites showed a slightly smaller grain size compared with the matrix and uniform distribution that CNTs could achieve at proper content. As a result, the addition of CNTs could weaken basal plane texture. However, the yield strength and ultimate tensile strength of the composites were enhanced as the amount of CNTs increased up to 2.0 wt. %, reaching maximum values of 241 MPa (+28.2% and 297 MPa (+6.1%, respectively. The load transfer mechanism, Orowan mechanism, and thermal mismatch mechanism played important roles in the enhancement of the yield strength, and several classical models were employed to predict the theoretical values. The effect of CNT content on the friction coefficient and weight loss of the nanocomposites was also studied. The relationships between the amount of CNTs, the friction coefficient, and weight loss could be described by the exponential decay model and the Boltzmann model, respectively.

  1. In-process tool rotational speed variation with constant heat input in friction stir welding of AZ31 sheets with variable thickness

    Science.gov (United States)

    Buffa, Gianluca; Campanella, Davide; Forcellese, Archimede; Fratini, Livan; Simoncini, Michela

    2017-10-01

    In the present work, friction stir welding experiments on AZ31 magnesium alloy sheets, characterized by a variable thickness along the welding line, were carried out. The approach adapted during welding consisted in maintaining constant the heat input to the joint. To this purpose, the rotational speed of the pin tool was increased with decreasing thickness and decreased with increasing thickness in order to obtain the same temperatures during welding. The amount by which the rotational speed was changed as a function of the sheet thickness was defined on the basis of the results given by FEM simulations of the FSW process. Finally, the effect of the in-process variation of the tool rotational speed on the mechanical and microstructural properties of FSWed joints was analysed by comparing both the nominal stress vs. nominal strain curves and microstructure of FSWed joints obtained in different process conditions. It was observed that FSW performed by keeping constant the heat input to the joint leads to almost coincident results both in terms of the curve shape, ultimate tensile strength and ultimate elongation values, and microstructure.

  2. Corrosion mechanism and model of pulsed DC microarc oxidation treated AZ31 alloy in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Gu Yanhong, E-mail: ygu2@alaska.edu [Department of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Chen Chengfu [Department of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Bandopadhyay, Sukumar [Department of Mining Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Ning Chengyun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Zhang Yongjun [Department of Mining Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Guo Yuanjun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2012-06-01

    This paper addresses the effect of pulse frequency on the corrosion behavior of microarc oxidation (MAO) coatings on AZ31 Mg alloys in simulated body fluid (SBF). The MAO coatings were deposited by a pulsed DC mode at four different pulse frequencies of 300 Hz, 500 Hz, 1000 Hz and 3000 Hz with a constant pulse ratio. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were used for corrosion rate and electrochemical impedance evaluation. The corroded surfaces were examined by X-ray diffraction (XRD), X-ray fluorescence (XRF) and optical microscopy. All the results exhibited that the corrosion resistance of MAO coating produced at 3000 Hz is superior among the four frequencies used. The XRD spectra showed that the corrosion products contain hydroxyapatite, brucite and quintinite. A model for corrosion mechanism and corrosion process of the MAO coating on AZ31 Mg alloy in the SBF is proposed.

  3. Corrosion mechanism and model of pulsed DC microarc oxidation treated AZ31 alloy in simulated body fluid

    International Nuclear Information System (INIS)

    Gu Yanhong; Chen Chengfu; Bandopadhyay, Sukumar; Ning Chengyun; Zhang Yongjun; Guo Yuanjun

    2012-01-01

    This paper addresses the effect of pulse frequency on the corrosion behavior of microarc oxidation (MAO) coatings on AZ31 Mg alloys in simulated body fluid (SBF). The MAO coatings were deposited by a pulsed DC mode at four different pulse frequencies of 300 Hz, 500 Hz, 1000 Hz and 3000 Hz with a constant pulse ratio. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were used for corrosion rate and electrochemical impedance evaluation. The corroded surfaces were examined by X-ray diffraction (XRD), X-ray fluorescence (XRF) and optical microscopy. All the results exhibited that the corrosion resistance of MAO coating produced at 3000 Hz is superior among the four frequencies used. The XRD spectra showed that the corrosion products contain hydroxyapatite, brucite and quintinite. A model for corrosion mechanism and corrosion process of the MAO coating on AZ31 Mg alloy in the SBF is proposed.

  4. A comparative corrosion behavior of Mg, AZ31 and AZ91 alloys in 3.5% NaCl solution

    Directory of Open Access Journals (Sweden)

    I.B. Singh

    2015-06-01

    Full Text Available The corrosion behavior of Mg, AZ31 and AZ91 has been evaluated in 3.5% NaCl solution using weight loss, electrochemical polarization and impedance measurements. Corrosion rate derived from the weight losses demonstrated the occurrence of steeply fast corrosion reaction on AZ91 alloy after three hours of immersion, indicating the start of galvanic corrosion. An increase of corrosion rate with immersion time was also observed for AZ31 but with lesser extent than AZ91 alloy. Whereas Mg metals showed a decrease of corrosion rate with immersion time, suggesting the formation of a protective layer on their surfaces. In contrast, the corrosion current density (Icorr derived from the Tafel plots, exhibited their corrosion resistances in order of Mg > AZ91 > AZ31. Electrochemical charge transfer resistance (Rct and double layer capacitance measured by electrochemical impedance spectroscopy (EIS, are well in accordance with the measured Icorr. EIS measurements with time and microstructural examination of the corroded and uncorroded samples are helpful in elucidation of results measured by electrochemical polarization.

  5. Microstructure and mechanical properties of an extruded Mg-8Bi-1Al-1Zn (wt%) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Shuaiju [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Yu, Hui, E-mail: yuhuidavid@gmail.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Materials Commercialization Center, Korea Institute of Materials Science, Changwon 51508 (Korea, Republic of); Zhang, Huixing [Mechanical and Material School, Tianjin Sino-German University of Applied Sciences, Tianjin 300350 (China); Cui, Hongwei [School of Materials Science and Engineering, Shangdong University of Technology, Zibo 255049 (China); Park, Sung Hyuk [School of Materials Science and Engineering, Kyungpook National University, Daegu 702701 (Korea, Republic of); Zhao, Weiming [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); You, Bong Sun [Materials Commercialization Center, Korea Institute of Materials Science, Changwon 51508 (Korea, Republic of)

    2017-04-06

    In this study, the microstructural evolution and mechanical properties of a newly developed rare earth free Mg-8Bi-1Al-1Zn (BAZ811, in wt%) alloy were investigated and compared with those of a commercial AZ31 alloy. The as-extruded BAZ811 alloy with much finer grain size shows more homogeneous dynamical recrystallized (DRXed) microstructure and weaker basal texture than those of AZ31 alloy. In addition, compared with bimodal structure AZ31 alloy containing only relatively coarse and sparse Al{sub 8}Mn{sub 5} phases, the coexistence of strip-like fragmented Mg{sub 3}Bi{sub 2} precipitate and nano-size Mg{sub 3}Bi{sub 2} particles in the microstructure was observed in BAZ811 alloy. Moreover, the BAZ811 alloy exhibits a tensile yield stress of 291 MPa, an ultimate tensile strength of 331 MPa, an elongation to failure of 14.6% as well as a reduction in yield asymmetry, which is mainly attributed to the combined effects of grain refinement and micro-scale broken Mg{sub 3}Bi{sub 2} particles together with nano-scale spherical Mg{sub 3}Bi{sub 2} precipitates. The strain hardening behavior of both BAZ811 and AZ31 alloys were also discussed in terms of microstructure variation.

  6. Laser Welding-Brazing of Immiscible AZ31B Mg and Ti-6Al-4V Alloys Using an Electrodeposited Cu Interlayer

    Science.gov (United States)

    Zhang, Zequn; Tan, Caiwang; Wang, Gang; Chen, Bo; Song, Xiaoguo; Zhao, Hongyun; Li, Liqun; Feng, Jicai

    2018-03-01

    Metallurgical bonding between immiscible system AZ31B magnesium (Mg) and Ti-6Al-4V titanium (Ti) was achieved by adding Cu interlayer using laser welding-brazing process. Effect of the laser power on microstructure evolution and mechanical properties of Mg/Cu-coated Ti joints was studied. Visually acceptable joints were obtained at the range of 1300 to 1500 W. The brazed interface was divided into three parts due to temperature gradient: direct irradiation zone, intermediate zone and seam head zone. Ti3Al phase was produced along the interface at the direct irradiation zone. Ti-Al reaction layer grew slightly with the increase in laser power. A small amount of Ti2(Cu,Al) interfacial compounds formed at the intermediate zone and the ( α-Mg + Mg2Cu) eutectic structure dispersed in the fusion zone instead of gathering when increasing the laser power at this zone. At the seam head zone, Mg-Cu eutectic structure was produced in large quantities under all cases. Joint strength first increased and then decreased with the variation of the laser power. The maximum fracture load of Mg/Cu-coated Ti joint reached 2314 N at the laser power of 1300 W, representing 85.7% joint efficiency when compared with Mg base metal. All specimens fractured at the interface. The feature of fracture surface at the laser power of 1100 W was characterized by overall smooth surface. Obvious tear ridge and Ti3Al particles were observed at the fracture surface with increase in laser power. It suggested atomic diffusion was accelerated with more heat input giving rise to the enhanced interfacial reaction and metallurgical bonding in direct irradiation zone, which determined the mechanical properties of the joint.

  7. Numerical study of stress distribution and size effect during AZ31 nanoindentation

    Czech Academy of Sciences Publication Activity Database

    Šiška, Filip; Guo, T.; Stratil, Luděk; Čížek, J.; Barnett, M.

    2017-01-01

    Roč. 126, JAN (2017), s. 393-399 ISSN 0927-0256 R&D Projects: GA ČR GJ15-21292Y Institutional support: RVO:68081723 Keywords : Crystal plasticity * FEM * Magnesium alloys * Nano indentation * Twinning Subject RIV: JG - Metallurgy OBOR OECD: Materials engineering Impact factor: 2.292, year: 2016

  8. Magnesium Tube Hydroforming

    International Nuclear Information System (INIS)

    Liewald, M.; Pop, R.; Wagner, S.

    2007-01-01

    Magnesium alloys can be considered as alternative materials towards achieving light weight structures with high material stiffness. The formability of two magnesium alloys, viz. AZ31 and ZM21 has been experimentally tested using the IHP forming process. A new die set up for hot IHP forming has been designed and the process experimentally investigated for temperatures up to 400 deg. C. Both alloys exhibit an increase in formability with increasing forming temperature. The effect of annealing time on materials forming properties shows a fine grained structure for sufficient annealing times as well as deterioration with a large increase at the same time. The IHP process has also been used to demonstrate practicability and feasibility for real parts from manufacture a technology demonstrator part using the magnesium alloy ZM21

  9. An electron back-scattered diffraction study on the microstructure evolution of AZ31 Mg alloy during equal channel angular extrusion

    International Nuclear Information System (INIS)

    Jin Li; Lin Dongliang; Mao Dali; Zeng Xiaoqin; Ding Wenjiang

    2006-01-01

    Microstructure evolution of AZ31 Mg alloy during equal channel angular extrusion (ECAE) was investigated by electron back-scattered diffraction (EBSD). The grains of AZ31 Mg alloy were refined significantly after ECAE 1-8 passes at 498 K and the distributions of grain size tended to be more uniform with pass number increasing. Frequency of sub-boundaries and low angle grain boundaries (LAGBs) increased at initial stage of deformation, and sub-boundaries and LAGBs evolved into high angle grain boundaries (HAGBs) with further deformation, which resulted in the high frequency of HAGBs in the alloy after ECAE 8 passes. Preferred misorientation angle with frequency peak near 30 deg. and 90 deg. were observed. The frequency peaks were weak after ECAE 1 pass but became stronger with the increase of pass numbers. Micro-textures were formed in AZ31 microstructure during ECAE and were stronger with the pass number increasing

  10. Micromorphological effect of calcium phosphate coating on compatibility of magnesium alloy with osteoblast

    Science.gov (United States)

    Hiromoto, Sachiko; Yamazaki, Tomohiko

    2017-12-01

    Octacalcium phosphate (OCP) and hydroxyapatite (HAp) coatings were developed to control the degradation speed and to improve the biocompatibility of biodegradable magnesium alloys. Osteoblast MG-63 was cultured directly on OCP- and HAp-coated Mg-3Al-1Zn (wt%, AZ31) alloy (OCP- and HAp-AZ31) to evaluate cell compatibility. Cell proliferation was remarkably improved with OCP and HAp coatings which reduced the corrosion and prevented the H2O2 generation on Mg alloy substrate. OCP-AZ31 showed sparse distribution of living cell colonies and dead cells. HAp-AZ31 showed dense and homogeneous distribution of living cells, with dead cells localized over and around corrosion pits, some of which were formed underneath the coating. These results demonstrated that cells were dead due to changes in the local environment, and it is necessary to evaluate the local biocompatibility of magnesium alloys. Cell density on HAp-AZ31 was higher than that on OCP-AZ31 although there was not a significant difference in the amount of Mg ions released in medium between OCP- and HAp-AZ31. The outer layer of OCP and HAp coatings consisted of plate-like crystal with a thickness of around 0.1 μm and rod-like crystals with a diameter of around 0.1 μm, respectively, which grew from a continuous inner layer. Osteoblasts formed focal contacts on the tips of plate-like OCP and rod-like HAp crystals, with heights of 2-5 μm. The spacing between OCP tips of 0.8-1.1 μm was wider than that between HAp tips of 0.2-0.3 μm. These results demonstrated that cell proliferation depended on the micromorphology of the coatings which governed spacing of focal contacts. Consequently, HAp coating is suitable for improving cell compatibility and bone-forming ability of the Mg alloy.

  11. Corrosion performance of MAO coatings on AZ31 Mg alloy in simulated body fluid vs. Earle's Balance Salt Solution

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, Benjamin M. [Department of Mechanical Engineering, PO Box 755905, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Zhang, Lei, E-mail: lzhang14@alaska.edu [Department of Mechanical Engineering, PO Box 755905, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Li, Weiping; Ning, Chengyun [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Chen, Cheng-fu [Department of Mechanical Engineering, PO Box 755905, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Gu, Yanhong [College of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617 (China)

    2016-02-15

    Graphical abstract: - Highlights: • MAO coating is deposited on AZ31 Mg alloy by microarc oxidation. • Corrosion performance of MAO-coated AZ31 in EBSS vs. c-SBF is studied. • MAO-coated AZ31 exhibits enhanced corrosion resistance compared to bare AZ31. • Samples in EBSS show slower corrosion progression than the samples in c-SBF. • CO{sub 2} buffer and less chloride in EBSS cause corrosion rate gap in c-SBF and EBSS. - Abstract: Earle's Balance Salt Solution (EBSS) provides an alternative to the conventional simulated body fluids (c-SBF) and has been shown to better simulate the corrosion conditions in vivo. In this work, a series of tests were conducted to explore the corrosion performance of MAO-coated AZ31 samples in EBSS vs. c-SBF. Samples were produced by varying MAO process parameters and then immersed up to 21 days in both EBSS and c-SBF. The corrosion rates were evaluated by the electrochemical impedance spectroscopy and potentiodynamic scanning. Scanning electron microscope (SEM) was used to compare the progression of microcracks across the surface of the coatings. The evaluation of cross-sectional thickness showed an increase in MAO coating thickness with the process voltage. MAO samples with a thicker coating generally have higher impedance and lower current density at the initial immersion time point of 0.5 h. Samples in EBSS showed higher initial impedance and lower current density values as compared to c-SBF counterparts for all process groups. Samples in EBSS demonstrated a much slower corrosion rate than c-SBF samples because of the decreased chloride content and CO{sub 2} buffering mechanism of the EBSS.

  12. Corrosion performance of MAO coatings on AZ31 Mg alloy in simulated body fluid vs. Earle's Balance Salt Solution

    International Nuclear Information System (INIS)

    Wilke, Benjamin M.; Zhang, Lei; Li, Weiping; Ning, Chengyun; Chen, Cheng-fu; Gu, Yanhong

    2016-01-01

    Graphical abstract: - Highlights: • MAO coating is deposited on AZ31 Mg alloy by microarc oxidation. • Corrosion performance of MAO-coated AZ31 in EBSS vs. c-SBF is studied. • MAO-coated AZ31 exhibits enhanced corrosion resistance compared to bare AZ31. • Samples in EBSS show slower corrosion progression than the samples in c-SBF. • CO 2 buffer and less chloride in EBSS cause corrosion rate gap in c-SBF and EBSS. - Abstract: Earle's Balance Salt Solution (EBSS) provides an alternative to the conventional simulated body fluids (c-SBF) and has been shown to better simulate the corrosion conditions in vivo. In this work, a series of tests were conducted to explore the corrosion performance of MAO-coated AZ31 samples in EBSS vs. c-SBF. Samples were produced by varying MAO process parameters and then immersed up to 21 days in both EBSS and c-SBF. The corrosion rates were evaluated by the electrochemical impedance spectroscopy and potentiodynamic scanning. Scanning electron microscope (SEM) was used to compare the progression of microcracks across the surface of the coatings. The evaluation of cross-sectional thickness showed an increase in MAO coating thickness with the process voltage. MAO samples with a thicker coating generally have higher impedance and lower current density at the initial immersion time point of 0.5 h. Samples in EBSS showed higher initial impedance and lower current density values as compared to c-SBF counterparts for all process groups. Samples in EBSS demonstrated a much slower corrosion rate than c-SBF samples because of the decreased chloride content and CO 2 buffering mechanism of the EBSS.

  13. Intelligent Extruder

    Energy Technology Data Exchange (ETDEWEB)

    AlperEker; Mark Giammattia; Paul Houpt; Aditya Kumar; Oscar Montero; Minesh Shah; Norberto Silvi; Timothy Cribbs

    2003-04-24

    ''Intelligent Extruder'' described in this report is a software system and associated support services for monitoring and control of compounding extruders to improve material quality, reduce waste and energy use, with minimal addition of new sensors or changes to the factory floor system components. Emphasis is on process improvements to the mixing, melting and de-volatilization of base resins, fillers, pigments, fire retardants and other additives in the :finishing'' stage of high value added engineering polymer materials. While GE Plastics materials were used for experimental studies throughout the program, the concepts and principles are broadly applicable to other manufacturers materials. The project involved a joint collaboration among GE Global Research, GE Industrial Systems and Coperion Werner & Pleiderer, USA, a major manufacturer of compounding equipment. Scope of the program included development of a algorithms for monitoring process material viscosity without rheological sensors or generating waste streams, a novel detection scheme for rapid detection of process upsets and an adaptive feedback control system to compensate for process upsets where at line adjustments are feasible. Software algorithms were implemented and tested on a laboratory scale extruder (50 lb/hr) at GE Global Research and data from a production scale system (2000 lb/hr) at GE Plastics was used to validate the monitoring and detection software. Although not evaluated experimentally, a new concept for extruder process monitoring through estimation of high frequency drive torque without strain gauges is developed and demonstrated in simulation. A plan to commercialize the software system is outlined, but commercialization has not been completed.

  14. Influence of welding parameter on texture distribution and plastic deformation behavior of as-rolled AZ31 Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Renlong, E-mail: rlxin@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing (China); State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing (China); Liu, Dejia; Shu, Xiaogang; Li, Bo; Yang, Xiaofang; Liu, Qing [College of Materials Science and Engineering, Chongqing University, Chongqing (China)

    2016-06-15

    Friction stir welding (FSW) has promising application potential for Mg alloys. However, softening was frequently occurred in FSW Mg joints because of the presence of a β-type fiber texture. The present study aims to understand the influence of texture distribution in stir zone (SZ) on deformation behavior and joint strength of FSW Mg welds. AZ31 Mg alloy joints were obtained by FSW with two sets of welding speed and rotation rate. Detailed microstructure and texture evolutions were examined on Mg welds by electron backscatter diffraction (EBSD) techniques. It was found that the changes of welding parameters can affect texture distribution and the characteristic of texture in the transition region between SZ and thermal-mechanical affected zone (TMAZ). As a consequence, the activation ability of basal slip and extension twinning was changed, which therefore influenced joint strength, inhomogeneous plastic deformation and fracture behaviors. The present work provided some insights into understanding the texture–property relationship in FSW Mg welds and indicated that it is effective to tailor the joint performance by texture control. - Highlights: • Welding parameters largely affect the inclination angle of SZ/TMAZ boundary. • Fracture morphology is associated with the characteristic of SZ/TMAZ boundary. • The characteristic of plastic deformation is explained from the activation of basal slip.

  15. Evolution of the Corrosion Morphology on AZ31B Tracked Electrochemically and by In Situ Microscopy in Chloride-Containing Media

    Science.gov (United States)

    Melia, M. A.; Cain, T. W.; Briglia, B. F.; Scully, J. R.; Fitz-Gerald, J. M.

    2017-11-01

    The evolution of open-circuit corrosion morphology as a function of immersion time for Mg alloy AZ31B in 0.6-M NaCl solution was investigated. Real-time optical microscopy accompanied by simultaneous electrochemical characterization was used to characterize the filiform corrosion (FFC) of AZ31B. Specifically, the behavior of propagating corrosion filaments on the metal surface was observed, and correlations among polarization resistance, filament propagation rates, open-circuit potential, and active coverage of local corrosion sites were revealed. Three distinct stages of corrosion were observed in 0.6-M NaCl. An initial passive region, during which a slow potential rise occurred (termed stage I), a second FFC region (termed stage II) with shallow penetrating, distinct filaments, and a final FFC region (termed stage III) with deeper penetrating filaments, aligned to form a linear front. The electrochemical properties of each stage are discussed, providing insights into the penetration rates and corrosion model.

  16. Effect of interlayer configurations on joint formation in TLP bonding of Ti-6AI-4V to Mg-AZ31

    International Nuclear Information System (INIS)

    Atieh, A. M.; Khan, T. I.

    2013-01-01

    In this research work, the transient liquid phase (TLP) bonding process was utilized to fabricate joints using thin (20 micro m) nickel and copper foils placed between two bonding surfaces to help facilitate joint formation. Two joint configurations were investigated, first, Ti-6Al-4V/CuNi/Mg-AZ31 and second, Ti-6Al-4V/NiCu/Mg-AZ3L The effect of bonding time on microstructural developments across the joint and the changes in mechanical properties were studied as a function of bonding temperature and pressure. The bonded specimens were examined by metallographic analysis, scanning electron microscopy (SEM), and X-ray diffraction (XRD). In both cases, intermetallic phase of CuMg/sub 2/ and Mg/sub 3/AlNi/sub 2/ was observed inside the joint region. The results show that joint shear strengths for the Ti-6Al-4V/CuNi/Mg-AZ31 setup produce joints with shear strength of 57 MPa compared to 27MPa for joints made using the Ti-6Al-4V/NiCu/Mg-AZ31 layer arrangement. (author)

  17. Effect of interlayer configurations on joint formation in TLP bonding of Ti-6Al-4V to Mg-AZ31

    International Nuclear Information System (INIS)

    Atieh, A M; Khan, T I

    2014-01-01

    In this research work, the transient liquid phase (TLP) bonding process was utilized to fabricate joints using thin (20μm) nickel and copper foils placed between two bonding surfaces to help facilitate joint formation. Two joint configurations were investigated, first, Ti-6Al-4V/CuNi/Mg-AZ31 and second, Ti-6Al-4V/NiCu/Mg-AZ3L The effect of bonding time on microstructural developments across the joint and the changes in mechanical properties were studied as a function of bonding temperature and pressure. The bonded specimens were examined by metallographic analysis, scanning electron microscopy (SEM), and X-ray diffraction (XRD). In both cases, intermetallic phase of CuMg 2 and Mg 3 AlNi 2 was observed inside the joint region. The results show that joint shear strengths for the Ti-6Al-4V/CuNi/Mg-AZ31 setup produce joints with shear strength of 57 MPa compared to 27MPa for joints made using the Ti-6Al-4V/NiCu/Mg-AZ31 layer arrangement

  18. Long-term corrosion inhibition mechanism of microarc oxidation coated AZ31 Mg alloys for biomedical applications

    International Nuclear Information System (INIS)

    Gu, Yanhong; Bandopadhyay, Sukumar; Chen, Cheng-fu; Ning, Chengyun; Guo, Yuanjun

    2013-01-01

    Highlights: ► The corrosion behavior is significantly affected by the long-term immersion. ► The degradation is inhibited due to the corrosion product layer. ► The corrosion resistance is enhanced by optimized MAO electrolyte concentrations. ► The corrosion inhibition mechanism is presented by a Flash animation. - Abstract: This paper addresses the long-term corrosion behavior of microarc oxidation coated Mg alloys immersed in simulated body fluid for 28 days. The coatings on AZ31 Mg alloys were produced in the electrolyte of sodium phosphate (Na 3 PO 4 ) at the concentration of 20 g/L, 30 g/L and 40 g/L, respectively. Scanning electron microscope (SEM) and optical micrograph were used to observe the microstructure of the samples before and after corrosion. The composition of the MAO coating and corrosion products were determined by X-Ray Diffraction (XRD). Corrosion product identification showed that hydroxyapatite (HA) was formed on the surface of the corroded samples. The ratio of Ca/P in HA determined by the X-ray Fluorescence (XRF) technique showed that HA is an acceptable biocompatible implant material. The potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were employed to characterize the corrosion rate and the electrochemical impedance. The corrosion resistance of the coated Mg alloys can be enhanced by optimizing the electrolyte concentrations for fabricating samples, and is enhanced after immersing the coated samples in simulated body fluid for more than 14 days. The enhanced corrosion resistance after long-term immersion is attributed to a corrosion product layer formed on the sample surface. The inhibition mechanism of the corrosion process is discussed and presented with an animation

  19. Effect of implantation of biodegradable magnesium alloy on BMP-2 expression in bone of ovariectomized osteoporosis rats

    International Nuclear Information System (INIS)

    Guo, Yue; Ren, Ling; Liu, Chang; Yuan, Yajiang; Lin, Xiao; Tan, Lili; Chen, Shurui; Yang, Ke; Mei, Xifan

    2013-01-01

    The study was focused on the implantation of a biodegradable AZ31 magnesium alloy into the femoral periosteal of the osteoporosis modeled rats. The experimental results showed that after 4 weeks implantation of AZ31 alloy in the osteoporosis modeled rats, the expression of BMP-2 in bone tissues of the rats was much enhanced, even higher than the control group, which should promote the bone formation and be beneficial for reducing the harmful effect of osteoporosis. Results of HE stains showed that the implantation of AZ31 alloy did not have obvious pathological changes on both the liver and kidney of the animal. - Highlights: • Mg alloy greatly increased expression of BMP-2 in osteoporosis modeled rat bone. • Mg alloy showed good biological safety. • Mg alloy is beneficial for reducing the symptom of osteoporosis

  20. Enhanced mechanical properties and increased corrosion resistance of a biodegradable magnesium alloy by plasma electrolytic oxidation (PEO)

    Energy Technology Data Exchange (ETDEWEB)

    White, Leon; Koo, Youngmi [FIT BEST Laboratory, Engineering Research Center, Department of Chemical, Biological, and Bio Engineering, North Carolina A& T State University, Greensboro, NC 27411 (United States); Neralla, Sudheer [Jet-Hot LLC, Burlington, NC 27215 (United States); Sankar, Jagannathan [FIT BEST Laboratory, Engineering Research Center, Department of Chemical, Biological, and Bio Engineering, North Carolina A& T State University, Greensboro, NC 27411 (United States); Yun, Yeoheung, E-mail: yyun@ncat.edu [FIT BEST Laboratory, Engineering Research Center, Department of Chemical, Biological, and Bio Engineering, North Carolina A& T State University, Greensboro, NC 27411 (United States)

    2016-06-15

    Highlights: • Plasma electrolytic oxidation (PEO) method was developed to control corrosion, porosity, and mechanical property. • Mechanical properties of PEO-coated AZ31 alloys were affected by the different electrolyte. • Mechanical properties and corrosion resistance of PEO-coated AZ31 alloys were compared with uncoated one. - Abstract: We report the enhanced mechanical properties of AZ31 magnesium alloys by plasma electrolytic oxidation (PEO) coating in NaOH, Na{sub 2}SiO{sub 3}, KF and NaH{sub 2}PO{sub 4}·2H{sub 2}O containing electrolytes. Mechanical properties including wear resistance, surface hardness and elastic modulus were increased for PEO-coated AZ31 Mg alloys (PEO-AZ31). DC polarization in Hank's solution indicating that the corrosion resistance significantly increased for PEO-coating in KF-contained electrolyte. Based on these results, the PEO coating method shows promising potential for use in biodegradable implant applications where tunable corrosion and mechanical properties are needed.

  1. Magnesium and its alloys as degradable biomaterials: corrosion studies using potentiodynamic and EIS electrochemical techniques

    Directory of Open Access Journals (Sweden)

    Wolf Dieter Müller

    2007-03-01

    Full Text Available Magnesium is potentially useful for orthopaedic and cardiovascular applications. However, the corrosion rate of this metal is so high that its degradation occurs before the end of the healing process. In industrial media the behaviour of several magnesium alloys have been probed to be better than magnesium performance. However, the information related to their corrosion behaviour in biological media is insufficient. The aim of this work is to study the influence of the components of organic fluids on the corrosion behaviour of Mg and AZ31 and LAE442 alloys using potentiodynamic, potentiostatic and EIS techniques. Results showed localized attack in chloride containing media. The breakdown potential decreased when chloride concentration increased. The potential range of the passivation region was extended in the presence of albumin. EIS measurements showed that the corrosion behaviour of the AZ31 was very different from that of LAE442 alloy in chloride solutions.

  2. Retardation of surface corrosion of biodegradable magnesium-based materials by aluminum ion implantation

    Science.gov (United States)

    Wu, Guosong; Xu, Ruizhen; Feng, Kai; Wu, Shuilin; Wu, Zhengwei; Sun, Guangyong; Zheng, Gang; Li, Guangyao; Chu, Paul K.

    2012-07-01

    Aluminum ion implantation is employed to modify pure Mg as well as AZ31 and AZ91 magnesium alloys and their surface degradation behavior in simulated body fluids is studied. Polarization tests performed in conjunction with scanning electron microscopy (SEM) reveal that the surface corrosion resistance after Al ion implantation is improved appreciably. This enhancement can be attributed to the formation of a gradient surface structure with a gradual transition from an Al-rich oxide layer to Al-rich metal layer. Compared to the high Al-content magnesium alloy (AZ91), a larger reduction in the degradation rate is achieved from pure magnesium and AZ31. Our results reveal that the surface corrosion resistance of Mg alloys with no or low Al content can be improved by Al ion implantation.

  3. Retardation of surface corrosion of biodegradable magnesium-based materials by aluminum ion implantation

    International Nuclear Information System (INIS)

    Wu Guosong; Xu Ruizhen; Feng Kai; Wu Shuilin; Wu Zhengwei; Sun Guangyong; Zheng Gang; Li Guangyao; Chu, Paul K.

    2012-01-01

    Aluminum ion implantation is employed to modify pure Mg as well as AZ31 and AZ91 magnesium alloys and their surface degradation behavior in simulated body fluids is studied. Polarization tests performed in conjunction with scanning electron microscopy (SEM) reveal that the surface corrosion resistance after Al ion implantation is improved appreciably. This enhancement can be attributed to the formation of a gradient surface structure with a gradual transition from an Al-rich oxide layer to Al-rich metal layer. Compared to the high Al-content magnesium alloy (AZ91), a larger reduction in the degradation rate is achieved from pure magnesium and AZ31. Our results reveal that the surface corrosion resistance of Mg alloys with no or low Al content can be improved by Al ion implantation.

  4. Comportamiento frente a la corrosión y biocompatibilidad in vitro/in vivo de la aleación AZ31 modificada superficialmente

    OpenAIRE

    Carboneras, M.; Pérez-Maceda, B. T.; Valle, Jorge del; García-Alonso, M. C.; Alobera, M. A.; Clemente, Carmen; Rubio, J. C.; Escudero Rincón, María Lorenza; Lozano, R.M.

    2011-01-01

    [ES] En el presente trabajo se ha estudiado el comportamiento frente a la corrosión y la biocompatibilidad in vitro/in vivo de la aleación de magnesio AZ31, cuyas propiedades mecánicas son superiores a los requisitos mecánicos del hueso. La aleación en estado de recepción ha mostrado una cinética de corrosión no compatible con el crecimiento celular. Para mejorar su comportamiento, el material ha sido modificado superficialmente mediante tratamiento de conversión química en ácido fluorhídr...

  5. Deformation behaviour of a new magnesium ternary alloy

    Science.gov (United States)

    Guglielmi, P.; Kaya, A. Arslan; Sorgente, D.; Palumbo, G.

    2018-05-01

    Magnesium based alloys are yet to fill a greater niche especially in the automotive and aeronautical industry. In fact, such alloys have a big weight saving potential, together with good damping characteristics. However, nowadays about 90% of Magnesium products are produced by casting, mainly using two alloy systems, namely Mg-Al-Zn (AZ91D) and Mg-Al (AM50, AM60). Now the emphasis, especially after having achieved considerable success in creep resistance and understanding of the deformation behaviour of Magnesium, has been shifted towards wrought alloys; AZ31, in this case, is the most popular. In this work a multi-element Magnesium alloy, developed to improve the deformation capacity of such a lightweight material, has been investigated and compared to a commercial AZ31B. The possibility of adopting such a multi-element Magnesium alloy for manufacturing components via unconventional sheet forming (such as superplastic forming, warm hydroforming, incremental forming) has been proved in the present work focusing the attention on the superplastic field. Free inflation tests were thus conducted at 450°C setting constant pressure to investigate the superplastic behaviour (in terms of dome height and strain rate sensitivity index) of both the multi-element Magnesium alloy (Mg-2Zn-Ce) and the commercial one (AZ31B). To enhance information on the thickness distribution and investigate the microstructure evolution, metallographic analyses on the samples used to carry out free inflation tests were also performed. The developed ternary alloy manifested quite a good deformation behaviour (high strain rate sensitivity index), even being tested in the as cast condition; in addition a limited grain coarsening was observed in the specimens after deformation.

  6. Effectivity of fluoride treatment on hydrogen and corrosion product generation in temporal implants for different magnesium alloys.

    Science.gov (United States)

    Trinidad, Javier; Arruebarrena, Gurutze; Marco, Iñigo; Hurtado, Iñaki; Sáenz de Argandoña, Eneko

    2013-12-01

    The increasing interest on magnesium alloys relies on their biocompatibility, bioabsorbility and especially on their mechanical properties. Due to these characteristics, magnesium alloys are becoming a promising solution to be used, as temporary implants. However, magnesium alloys must overcome their poor corrosion resistance. This article analyses the corrosion behaviour in phosphate-buffered saline solution of three commercial magnesium alloys (AZ31B, WE43 and ZM21) as well as the influence of fluoride treatment on their corrosion behaviour. It is shown that the corrosion rate of all the alloys is decreased by fluoride treatment. However, fluoride treatment affects each alloy differently.

  7. Microstructural development of diffusion-brazed austenitic stainless steel to magnesium alloy using a nickel interlayer

    International Nuclear Information System (INIS)

    Elthalabawy, Waled M.; Khan, Tahir I.

    2010-01-01

    The differences in physical and metallurgical properties of stainless steels and magnesium alloys make them difficult to join using conventional fusion welding processes. Therefore, the diffusion brazing of 316L steel to magnesium alloy (AZ31) was performed using a double stage bonding process. To join these dissimilar alloys, the solid-state diffusion bonding of 316L steel to a Ni interlayer was carried out at 900 deg. C followed by diffusion brazing to AZ31 at 510 deg. C. Metallographic and compositional analyses show that a metallurgical bond was achieved with a shear strength of 54 MPa. However, during the diffusion brazing stage B 2 intermetallic compounds form within the joint and these intermetallics are pushed ahead of the solid/liquid interface during isothermal solidification of the joint. These intermetallics had a detrimental effect on joint strengths when the joint was held at the diffusion brazing temperature for longer than 20 min.

  8. Effect of surface treatment on the corrosion properties of magnesium-based fibre metal laminate

    Science.gov (United States)

    Zhang, X.; Zhang, Y.; Ma, Q. Y.; Dai, Y.; Hu, F. P.; Wei, G. B.; Xu, T. C.; Zeng, Q. W.; Wang, S. Z.; Xie, W. D.

    2017-02-01

    The surface roughness, weight of phosphating film and wettability of magnesium alloy substrates after abrasion and phosphating treatment were investigated in this work. The interfacial bonding and corrosion properties of a magnesium-based fibre metal laminate (MgFML) were analysed. The results showed that the wettability of the magnesium alloy was greatly influenced by the surface roughness, and the rough surface possessed a larger surface energy and better wettability. The surface energy and wettability of the magnesium alloy were significantly improved by the phosphating treatment. After phosphating for 5 min, a phosphating film with a double-layer structure was formed on the magnesium substrate, and the weight of the phosphating film and the surface energy reached their maximum values. The surface energies of the phosphated substrate after abrasion with #120 and #3000 grit abrasive papers were 84.31 mJ/m2 and 83.65 mJ/m2, respectively. The wettability of the phosphated magnesium was significantly better than the abraded magnesium. The phosphated AZ31B sheet had a better corrosion resistance than the abraded AZ31B sheet within short times. The corrosion resistance of the magnesium alloy was greatly increased by being composited with glass fibre/epoxy prepregs.

  9. Microstructure, Residual Stress, Corrosion and Wear Resistance of Vacuum Annealed TiCN/TiN/Ti Films Deposited on AZ31

    Directory of Open Access Journals (Sweden)

    Haitao Li

    2016-12-01

    Full Text Available Composite titanium carbonitride (TiCN thin films deposited on AZ31 by DC/RF magnetron sputtering were vacuum annealed at different temperatures. Vacuum annealing yields the following on the structure and properties of the films: the grain grows and the roughness increases with an increase of annealing temperature, the structure changes from polycrystalline to single crystal, and the distribution of each element becomes more uniform. The residual stress effectively decreases compared to the as-deposited film, and their corrosion resistance is much improved owing to the change of structure and fusion of surface defects, whereas the wear-resistance is degraded due to the grain growth and the increase of surface roughness under a certain temperature.

  10. Measuring the stress field around an evolving crack in tensile deformed Mg AZ31 using three-dimensional X-ray diffraction

    DEFF Research Database (Denmark)

    Oddershede, Jette; Camin, Bettina; Schmidt, Søren

    2012-01-01

    The stress field around a notch in a coarse grained Mg AZ31 sample has been measured under tensile load using the individual grains as probes in an in situ high energy synchrotron diffraction experiment. The experimental set-up, a variant of three-dimensional X-ray diffraction microscopy, allows...... the position, orientation and full stress tensor of each illuminated grain to be determined and, hence, enables the study of evolving stress fields in coarse grained materials with a spatial resolution equal to the grain size. Grain resolved information like this is vital for understanding what happens when...... the traditional continuum mechanics approach breaks down and fracture is governed by local heterogeneities (e.g. phase or stress differences) between grains. As a first approximation the results obtained were averaged through the thickness of the sample and compared with an elastic–plastic continuum finite...

  11. Effect of the chemistry and structure of the native oxide surface film on the corrosion properties of commercial AZ31 and AZ61 alloys

    Energy Technology Data Exchange (ETDEWEB)

    Feliu, Sebastian, E-mail: sfeliu@cenim.csic.es [Centro Nacional de Investigaciones Metalurgicas CSIC, Avda. Gregorio del Amo 8, 28040 Madrid (Spain); Maffiotte, C. [CIEMAT-DT edificio 30, Avda. Complutense, 22, 28040 Madrid (Spain); Samaniego, A.; Galvan, Juan Carlos [Centro Nacional de Investigaciones Metalurgicas CSIC, Avda. Gregorio del Amo 8, 28040 Madrid (Spain); Barranco, Violeta [Centro Nacional de Investigaciones Metalurgicas CSIC, Avda. Gregorio del Amo 8, 28040 Madrid (Spain); Instituto de Ciencias de Materiales de Madrid, ICMM, Consejo Superior de Investigaciones Cientificas, CSIC, Sor Juana Ines de la Cruz, 3, Cantoblanco, 28049, Madrid (Spain)

    2011-08-01

    The purpose of this study has been to advance in knowledge of the chemical composition, structure and thickness of the thin native oxide film formed spontaneously in contact with the laboratory atmosphere on the surface of freshly polished commercial AZ31 and AZ61 alloys with a view to furthering the understanding of protection mechanisms. For comparative purposes, and to more fully describe the behaviour of the native oxide film, the external oxide films formed as a result of the manufacturing process (as-received condition) have been characterised. The technique applied in this research to study the thin oxide films (thickness of just a few nanometres) present on the surface of the alloys has basically been XPS (X-ray photoelectron spectroscopy) in combination with ion sputtering. Corrosion properties of the alloys were studied in 0.6 M NaCl by measuring charge transfer resistance values, which are deduced from EIS (electrochemical impedance spectroscopy) measurements after 1 h of exposure. Alloy AZ61 generally showed better corrosion resistance than AZ31, and the freshly polished alloys showed better corrosion resistance than the alloys in as-received condition. This is attributed to a combination of (1) higher thickness of the native oxide film on the AZ61 alloy and (2) greater uniformity of the oxide film in the polished condition. The formation of an additional oxide layer composed by a mixture of spinel (MgAl{sub 2}O{sub 4}) and MgO seems to diminish the protective properties of the passive layer on the surface of the alloys in as-received condition.

  12. Effect of the chemistry and structure of the native oxide surface film on the corrosion properties of commercial AZ31 and AZ61 alloys

    International Nuclear Information System (INIS)

    Feliu, Sebastian; Maffiotte, C.; Samaniego, A.; Galvan, Juan Carlos; Barranco, Violeta

    2011-01-01

    The purpose of this study has been to advance in knowledge of the chemical composition, structure and thickness of the thin native oxide film formed spontaneously in contact with the laboratory atmosphere on the surface of freshly polished commercial AZ31 and AZ61 alloys with a view to furthering the understanding of protection mechanisms. For comparative purposes, and to more fully describe the behaviour of the native oxide film, the external oxide films formed as a result of the manufacturing process (as-received condition) have been characterised. The technique applied in this research to study the thin oxide films (thickness of just a few nanometres) present on the surface of the alloys has basically been XPS (X-ray photoelectron spectroscopy) in combination with ion sputtering. Corrosion properties of the alloys were studied in 0.6 M NaCl by measuring charge transfer resistance values, which are deduced from EIS (electrochemical impedance spectroscopy) measurements after 1 h of exposure. Alloy AZ61 generally showed better corrosion resistance than AZ31, and the freshly polished alloys showed better corrosion resistance than the alloys in as-received condition. This is attributed to a combination of (1) higher thickness of the native oxide film on the AZ61 alloy and (2) greater uniformity of the oxide film in the polished condition. The formation of an additional oxide layer composed by a mixture of spinel (MgAl 2 O 4 ) and MgO seems to diminish the protective properties of the passive layer on the surface of the alloys in as-received condition.

  13. Biofunctionalized anti-corrosive silane coatings for magnesium alloys.

    Science.gov (United States)

    Liu, Xiao; Yue, Zhilian; Romeo, Tony; Weber, Jan; Scheuermann, Torsten; Moulton, Simon; Wallace, Gordon

    2013-11-01

    Biodegradable magnesium alloys are advantageous in various implant applications, as they reduce the risks associated with permanent metallic implants. However, a rapid corrosion rate is usually a hindrance in biomedical applications. Here we report a facile two step procedure to introduce multifunctional, anti-corrosive coatings on Mg alloys, such as AZ31. The first step involves treating the NaOH-activated Mg with bistriethoxysilylethane to immobilize a layer of densely crosslinked silane coating with good corrosion resistance; the second step is to impart amine functionality to the surface by treating the modified Mg with 3-amino-propyltrimethoxysilane. We characterized the two-layer anticorrosive coating of Mg alloy AZ31 by Fourier transform infrared spectroscopy, static contact angle measurement and optical profilometry, potentiodynamic polarization and AC impedance measurements. Furthermore, heparin was covalently conjugated onto the silane-treated AZ31 to render the coating haemocompatible, as demonstrated by reduced platelet adhesion on the heparinized surface. The method reported here is also applicable to the preparation of other types of biofunctional, anti-corrosive coatings and thus of significant interest in biodegradable implant applications. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Prediction and optimization of process variables to maximize the Young's modulus of plasma sprayed alumina coatings on AZ31B magnesium alloy

    Directory of Open Access Journals (Sweden)

    D. Thirumalaikumarasamy

    2017-03-01

    Full Text Available Like other manufacturing techniques, plasma spraying has also a non-linear behavior because of the contribution of many coating variables. This characteristic results in finding optimal factor combination difficult. Subsequently, the issue can be solved through effective and strategic statistical procedures integrated with systematic experimental data. Plasma spray parameters such as power, stand-off distance and powder feed rate have significant influence on coating characteristics like Young's modulus. This paper presents the use of statistical techniques in specifically response surface methodology (RSM, analysis of variance, and regression analysis to develop empirical relationship to predict Young's modulus of plasma-sprayed alumina coatings. The developed empirical relationships can be effectively used to predict Young's modulus of plasma-sprayed alumina coatings at 95% confidence level. Response graphs and contour plots were constructed to identify the optimum plasma spray parameters to attain maximum Young's modulus in alumina coatings. A linear regression relationship was established between porosity and Young's modulus of the alumina coatings.

  15. Establishing empirical relationships to predict porosity level and corrosion rate of atmospheric plasma-sprayed alumina coatings on AZ31B magnesium alloy

    Directory of Open Access Journals (Sweden)

    D. Thirumalaikumarasamy

    2014-06-01

    Full Text Available Plasma sprayed ceramic coatings are successfully used in many industrial applications, where high wear and corrosion resistance with thermal insulation are required. In this work, empirical relationships were developed to predict the porosity and corrosion rate of alumina coatings by incorporating independently controllable atmospheric plasma spray operational parameters (input power, stand-off distance and powder feed rate using response surface methodology (RSM. A central composite rotatable design with three factors and five levels was chosen to minimize the number of experimental conditions. Within the scope of the design space, the input power and the stand-off distance appeared to be the most significant two parameters affecting the responses among the three investigated process parameters. A linear regression relationship was also established between porosity and corrosion rate of the alumina coatings. Further, sensitivity analysis was carried out and compared with the relative impact of three process parameters on porosity level and corrosion rate to verify the measurement errors on the values of the uncertainty in estimated parameters.

  16. Effect of melt conditioning on heat treatment and mechanical properties of AZ31 alloy strips produced by twin roll casting

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sanjeev, E-mail: sanjeevdas80@gmail.com [The EPSRC Centre ‐ LiME, BCAST, Brunel University, Uxbridge UB8 3PH (United Kingdom); Barekar, N.S. [The EPSRC Centre ‐ LiME, BCAST, Brunel University, Uxbridge UB8 3PH (United Kingdom); El Fakir, Omer; Wang, Liliang [Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Prasada Rao, A.K.; Patel, J.B.; Kotadia, H.R.; Bhagurkar, A. [The EPSRC Centre ‐ LiME, BCAST, Brunel University, Uxbridge UB8 3PH (United Kingdom); Dear, John P. [Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Fan, Z. [The EPSRC Centre ‐ LiME, BCAST, Brunel University, Uxbridge UB8 3PH (United Kingdom)

    2015-01-03

    In the present investigation, magnesium strips were produced by twin roll casting (TRC) and melt conditioned twin roll casting (MC-TRC) processes. Detailed optical microscopy studies were carried out on as-cast and homogenized TRC and MC-TRC strips. The results showed uniform, fine and equiaxed grain structure was observed for MC-TRC samples in as-cast condition. Whereas, coarse columnar grains with centreline segregation were observed in the case of as-cast TRC samples. The solidification mechanisms for TRC and MC-TRC have been found completely divergent. The homogenized TRC and MC-TRC samples were subjected to tensile test at elevated temperature (250–400 °C). At 250 °C, MC-TRC sample showed significant improvement in strength and ductility. However, at higher temperatures the tensile properties were almost comparable, despite of TRC samples having larger grains compared to MC-TRC samples. The mechanism of deformation has been explained by detailed fractures surface and sub-surface analysis carried out by scanning electron and optical microscopy. Homogenized MC-TRC samples were formed (hot stamping) into engineering component without any trace of crack on its surface. Whereas, TRC samples cracked in several places during hot stamping process.

  17. Flow-induced corrosion behavior of absorbable magnesium-based stents.

    Science.gov (United States)

    Wang, Juan; Giridharan, Venkataraman; Shanov, Vesselin; Xu, Zhigang; Collins, Boyce; White, Leon; Jang, Yongseok; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2014-12-01

    The aim of this work was to study corrosion behavior of magnesium (Mg) alloys (MgZnCa plates and AZ31 stents) under varied fluid flow conditions representative of the vascular environment. Experiments revealed that fluid hydrodynamics, fluid flow velocity and shear stress play essential roles in the corrosion behavior of absorbable magnesium-based stent devices. Flow-induced shear stress (FISS) accelerates the overall corrosion (including localized, uniform, pitting and erosion corrosions) due to the increased mass transfer and mechanical force. FISS increased the average uniform corrosion rate, the localized corrosion coverage ratios and depths and the removal rate of corrosion products inside the corrosion pits. For MgZnCa plates, an increase of FISS results in an increased pitting factor but saturates at an FISS of ∼0.15Pa. For AZ31 stents, the volume loss ratio (31%) at 0.056Pa was nearly twice that (17%) at 0Pa before and after corrosion. Flow direction has a significant impact on corrosion behavior as more severe pitting and erosion corrosion was observed on the back ends of the MgZnCa plates, and the corrosion product layer facing the flow direction peeled off from the AZ31 stent struts. This study demonstrates that flow-induced corrosion needs be understood so that Mg-based stents in vascular environments can be effectively designed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Changes in hardness of magnesium alloys due to precipitation hardening

    Directory of Open Access Journals (Sweden)

    Tatiana Oršulová

    2018-04-01

    Full Text Available This paper deals with the evaluation of changes in hardness of magnesium alloys during precipitation hardening that are nowadays widely used in different fields of industry. It focuses exactly on AZ31, AZ61 and AZ91 alloys. Observing material hardness changes serves as an effective tool for determining precipitation hardening parameters, such as temperature and time. Brinell hardness measurement was chosen based on experimental needs. There was also necessary to make chemical composition analysis and to observe the microstructures of tested materials. The obtained results are presented and discussed in this paper.

  19. Effect of ultrasonic cold forging technology as the pretreatment on the corrosion resistance of MAO Ca/P coating on AZ31B Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lingling, E-mail: daisy_chenlingling@163.com [College of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617 (China); College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Gu, Yanhong, E-mail: gu_yanhong@163.com [College of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617 (China); Liu, Lu, E-mail: liulu@bipt.edu.cn [College of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617 (China); Liu, Shujing, E-mail: liushujing@bipt.edu.cn [College of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617 (China); Hou, Binbin, E-mail: sohu19880815@126.com [School of Engineering and Technology, China University of Geosciences, Beijing 100083 (China); Liu, Qi, E-mail: 13521196884@sina.cn [College of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617 (China); Ding, Haiyang, E-mail: dinghaiyang@bipt.edu.cn [College of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617 (China)

    2015-06-25

    Highlights: • Ultrasonic cold forging technology was used as the pretreatment for MAO coating. • Nano layer with the grain size of 30–80 nm was formed on the UCFT treated surface. • Calcium phosphate contained coating was obtained by MAO process. • The remained nano layer underlying MAO coating could impact the corrosion resistance greatly. - Abstract: A calcium phosphate contained (Ca/P) coating was obtained on AZ31B Mg alloy by micro-arc oxidation (MAO) process under the pretreatment of ultrasonic cold forging technology (UCFT). The surface nanograins were introduced after UCFT pretreatment on AZ31B Mg alloy. Optical microscope (OM) was employed to observe the microstructures of the untreated and UCFT treated samples. Transmission electron microscopy (TEM) and atomic force microscope (AFM) were employed to observe the microstructures of nanograins and the surface roughness of the UCFT treated Mg alloys. The grain size of the UCFT treated Mg alloy is 48.67 nm and the surface roughness is 17.03 nm. The microstructures and the phase compositions of MAO samples were observed and analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The XRD results show that the coating include Ca/P phase, including hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}), HA), tertiary calcium phosphate (Ca{sub 3}(PO{sub 4}){sub 2}, TCP) and calcium phosphate dehydrate (CaHPO{sub 4}⋅2H{sub 2}O, DCPD). The hardness of the samples was measured by the micro-hardness tester under the loads of 10 g, 25 g and 50 g. 3D topographies of hardness indenter were characterized by 3D profiler. The immersion tests and potentiodynamic polarization tests were used to evaluate the weight loss rate and corrosion current density in simulated body fluid (SBF). The results show that the corrosion resistance of Ca/P MAO coating on Mg alloy was improved greatly by the pretreatment of UCFT.

  20. Study on Hydroforming of Magnesium Alloy Tube under Temperature Condition

    Science.gov (United States)

    Wang, Xinsong; Wang, Shouren; Zhang, Yongliang; Wang, Gaoqi; Guo, Peiquan; Qiao, Yang

    2018-01-01

    First of all, under 100 °C, 150 °C, 200 °C, 250 °C, 300 °C and 350 °C, respectively do the test of magnesium alloy AZ31B temperature tensile and the fracture of SEM electron microscopic scanning, studying the plastic forming ability under six different temperature. Secondly, observe and study the real stress-strain curves and fracture topography. Through observation and research can concluded that with the increase of temperature, the yield strength and tensile strength of AZ31B was increased, and the elongation rate and the plastic deformation capacity are increased obviously. Taking into account the actual production, energy consumption, and mold temperature resistance, 250 °Cwas the best molding temperature. Finally, under the temperature condition of 250 °C, the finite element simulation and simulation of magnesium alloy profiled tube were carried out by Dynaform, and the special wall and forming limit diagram of magnesium alloy were obtained. According to the forming wall thickness and forming limit diagram, the molding experiment can be optimized continuously.

  1. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys

    Science.gov (United States)

    Guo, Lian; Zhang, Fen; Lu, Jun-Cai; Zeng, Rong-Chang; Li, Shuo-Qi; Song, Liang; Zeng, Jian-Min

    2018-04-01

    The magnesium aluminum and zinc aluminum layered double hydroxides intercalated with NO3 -(MgAl-NO3-LDH and ZnAl-NO3-LDH) were prepared by the coprecipitation method, and the magnesium aluminum and the zinc aluminum layered double hydroxides intercalated with VO x -(MgAl-VO x -LDH and ZnAl-VO x -LDH) were prepared by the anion-exchange method. Morphologies, microstructures and chemical compositions of LDHs were investigated by SEM, EDS, XRD, FTIR, Raman and TG analyses. The immersion tests were carried to determine the corrosion inhibition properties of MgAl-VO x -LDH and ZnAl-VO x -LDH on AZ31 Mg alloys. The results showed that ZnAl-VO x -LDH possesses the best anion-exchange and inhibition abilities. The influence of treatment parameters on microstructures of LDHs were discussed. Additionally, an inhibition mechanism for ZnAl-VO x -LDH on the AZ31 magnesium alloy was proposed and discussed.

  2. Microstructural and mechanical responses to various rolling speeds determined in multi-pass break-down rolling of AZ31B alloy

    Science.gov (United States)

    Jia, Weitao; Tang, Yan; Ning, Fangkun; Le, Qichi; Cui, Jianzhong

    2018-04-01

    Different rolling operations of as-cast AZ31B alloy were performed under different rolling speed (18 ∼ 72 m min‑1) and rolling pass conditions at 400 °C. Microstructural studies, tensile testing and formability evaluation relevant to each rolling operation were investigated. For 1-pass rolling, coarse average grain size (CAGS) region gradually approached the center layer as the rolling speed increased. Moreover, twins, shear bands and coarse-grain structures were the dominant components in the microstructure of plates rolled at 18, 48 and 72 m min‑1, respectively, indicating the severe deformation inhomogeneity under the high reduction per pass condition. For 2-pass rolling and 4-pass rolling, dynamic recrystallization was observed to be well and CAGS region has substantially disappeared, indicating the significant improvement in deformation uniformity and further the grain homogenization under the conditions. Microstructure uniformity degree of 2-pass rolled plates did not vary much as the rolling speed varied. On this basis, shear band distribution dominated the deformation behavior during the uniaxial tension of the 2-pass rolled plates. However, microstructure uniformity accompanied by twin distribution played a leading role in stretching the 4-pass rolled plates.

  3. Biaxial vent extruder

    International Nuclear Information System (INIS)

    Idemoto, A.; Maki, Y.; Oda, N.

    1981-01-01

    A biaxial vent extruder is described for processing of slurry-like waste fluids or radioactive waste fluids which have a hopper cylinger, a solidifying substance port and a solidified substance port. A plurality of vent cylinders each having a vent port are provided with a plunger type scraper. An extruding cylinder having a single opening for a main screw is connected to the assembled vent cylinders. The main screw extends to the upstream end of the extruding cylinder and a sub-screw extends to the extruding cylinder. The screws each having a full flight engaging the other and a set of rings are mounted on the screws near the respective vent port inlets. The screws are rotated in different directions and inwardly with respect to the vent ports. Rotors may be mounted on the screws to break down solid particles

  4. Characterization and corrosion behavior of phytic acid coatings, obtained by chemical conversion on magnesium substrates in physiological solution; Caracterizacion y comportamiento frente a la corrosion de recubrimientos de acido fitico, obtenidos por conversion quimica, sobre substratos de magnesio en solucion fisiologica

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Alvarado, L. A.; Lomeli, M. A.; Hernandez, L. S.; Miranda, J. M.; Narvaez, L.; Diaz, I.; Garcia-Alonso, M. C.; Escudero, M. L.

    2014-10-01

    In order to improve the corrosion resistance of biodegradable magnesium and AZ31 magnesium alloy implants, a phytic acid coating has been applied on both substrates and their protective effect against corrosion has been assessed. The morphology and the chemical nature of the conversion coating were analyzed by SEM/EDX, XRD and FTIR. The spectra showed that the conversion coating was amorphous, and it was composed of Mg, O, and P on magnesium surface, along with Al, Zn and C on AZ31 alloy. The main coating components were chelate compounds formed by phytic acid and metallic ions. The corrosion resistance of bare and coated samples was evaluated by potentiodynamic polarization technique in Hank's solution at 37 degree centigrade. The results indicate that phytic acid conversion coatings provided a very effective protection to the magnesium substrates studied. (Author)

  5. The interrupted properties of an extruded Mg alloy

    International Nuclear Information System (INIS)

    Xu, Shun; Liu, Tianmo; He, Jiejun; Lu, Liwei; Zeng, Wen

    2013-01-01

    Highlights: ► The reinforcement effect of {101 ¯ 2} twins on yield stress is reflected at low deformation. ► The recompressive yield stress equals to the stress when it is unloaded. ► The stress–strain curve of recompression seems like that without interruption. ► Twins generated in precompression could become thicker in recompression. -- Abstract: The current paper investigates the effect of {101 ¯ 2} extension twins identified by using electron backscattered diffraction on the interrupted properties of an extruded Mg–3Al–1Zn (AZ31) alloy. Compressive and recompressive tests are conducted along extrusion direction (ED). It is discovered that the yield strength of recompression is enhanced due to grain refinement by {101 ¯ 2} extension twins. The reinforcement effect of {101 ¯ 2} extension twins on the yield stress of recompression is mainly reflected at the stage of small deformation while the improvement of yield strength is mainly attributed to the pile-up and intersection of dislocations as large deformation occurs. Furthermore, the yield stress of recompression is identical to the interrupted stress of precompression. In situ observation reveals that some twins generated in precompression could also become thicker in the following recompression.

  6. A new method for grain refinement in magnesium alloy: High speed extrusion machining

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yao, E-mail: liuyao@ustb.edu.cn [School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083 (China); Cai, Songlin [China Electric Power Research Institute, State Grid Corporation of China, Beijing 100192 (China); Dai, Lanhong [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Science, Beijing 100190 (China)

    2016-01-10

    Magnesium alloys have received broad attentions in industry due to their competitive strength to density ratio, but the poor ductility and strength limit their wide range of applications as engineering materials. A novel severe plastic deformation (SPD) technique of high speed extrusion machining (HSEM) was used here. This method could improve the aforementioned disadvantages of magnesium alloys by one single processing step. In this work, systematic HSEM experiments with different chip thickness ratios were conducted for magnesium alloy AZ31B. The microstructure of the chips reveals that HSEM is an effective SPD method for attaining magnesium alloys with different grain sizes and textures. The magnesium alloy with bimodal grain size distribution has increased mechanical properties than initial sample. The electron backscatter diffraction (EBSD) analysis shows that the dynamic recrystallization (DRX) affects the grain refinement and resulting hardness in AZ31B. Based on the experimental observations, a new theoretical model is put forward to describe the effect of DRX on materials during HSEM. Compared with the experimental measurements, the theoretical model is effective to predict the mechanical property of materials after HSEM.

  7. Measuring the stress field around an evolving crack in tensile deformed Mg AZ31 using three-dimensional X-ray diffraction

    International Nuclear Information System (INIS)

    Oddershede, Jette; Camin, Bettina; Schmidt, Søren; Mikkelsen, Lars P.; Sørensen, Henning Osholm; Lienert, Ulrich; Poulsen, Henning Friis; Reimers, Walter

    2012-01-01

    The stress field around a notch in a coarse grained Mg AZ31 sample has been measured under tensile load using the individual grains as probes in an in situ high energy synchrotron diffraction experiment. The experimental set-up, a variant of three-dimensional X-ray diffraction microscopy, allows the position, orientation and full stress tensor of each illuminated grain to be determined and, hence, enables the study of evolving stress fields in coarse grained materials with a spatial resolution equal to the grain size. Grain resolved information like this is vital for understanding what happens when the traditional continuum mechanics approach breaks down and fracture is governed by local heterogeneities (e.g. phase or stress differences) between grains. As a first approximation the results obtained were averaged through the thickness of the sample and compared with an elastic–plastic continuum finite element simulation. It was found that a full three-dimensional simulation was required to account for the measured transition from the overall plane stress case away from the notch to the essentially plane strain case observed near the notch tip. The measured and simulated stress contours were shown to be in good agreement except at the highest applied load, at which stress relaxation at the notch tip was observed in the experimental data. This stress relaxation is attributed to the initiation and propagation of a crack. Finally, it was demonstrated that the measured lattice rotations could be used as a qualitative measure of the shape and extent of the plastic deformation zone.

  8. Tribological Behaviour of the Ceramic Coating Formed on Magnesium Alloy

    International Nuclear Information System (INIS)

    Chen Fei; Zhou Hai; Chen Qiang; Ge Yuanjing; Lv Fanxiu

    2007-01-01

    Micro-arc oxidation is a recently developed surface treatment technology under anodic oxidation. Through micro-arc oxidation, a ceramic coating is directly formed on the surface of magnesium alloy, by which its surface property is significantly improved. In this paper, a dense ceramic oxide coating was prepared on an AZ31 magnesium alloy by micro-arc oxidation in a NaOH-Na 2 SiO 3 -NaB 4 O 7 -(NaPO 3 ) 6 electrolytic solution. Micro-structure, surface morphology and phase composition were analysed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The tribological behavior of the micro-arc oxidation ceramic coating under dry sliding against GCr15 steel was evaluated on a ball-on-disc test rig. The results showed that the AZ31 alloy was characterized by adhesion wear and scuffing under dry sliding against the steel, while the surface micro-arc oxidation ceramic coating experienced much abated adhesion wear and scuffing under the same testing conditions. The micro-arc oxidation ceramic coating showed good friction-reducing and fair antiwear ability in dry sliding against the steel

  9. A kinematic hardening constitutive model for the uniaxial cyclic stress-strain response of magnesium sheet alloys at room temperature

    Science.gov (United States)

    He, Zhitao; Chen, Wufan; Wang, Fenghua; Feng, Miaolin

    2017-11-01

    A kinematic hardening constitutive model is presented, in which a modified form of von Mises yield function is adopted, and the initial asymmetric tension and compression yield stresses of magnesium (Mg) alloys at room temperature (RT) are considered. The hardening behavior was classified into slip, twinning, and untwinning deformation modes, and these were described by two forms of back stress to capture the mechanical response of Mg sheet alloys under cyclic loading tests at RT. Experimental values were obtained for AZ31B-O and AZ31B sheet alloys under both tension-compression-tension (T-C-T) and compression-tension (C-T) loadings to calibrate the parameters of back stresses in the proposed model. The predicted parameters of back stresses in the twinning and untwinning modes were expressed as a cubic polynomial. The predicted curves based on these parameters showed good agreement with the tests.

  10. Friction welding; Magnesium; Finite element; Shear test.

    Directory of Open Access Journals (Sweden)

    Leonardo Contri Campanelli

    2013-06-01

    Full Text Available Friction spot welding (FSpW is one of the most recently developed solid state joining technologies. In this work, based on former publications, a computer aided draft and engineering resource is used to model a FSpW joint on AZ31 magnesium alloy sheets and subsequently submit the assembly to a typical shear test loading, using a linear elastic model, in order to conceive mechanical tests results. Finite element analysis shows that the plastic flow is concentrated on the welded zone periphery where yield strength is reached. It is supposed that “through the weld” and “circumferential pull-out” variants should be the main failure behaviors, although mechanical testing may provide other types of fracture due to metallurgical features.

  11. Corrosion assessment and enhanced biocompatibility analysis of biodegradable magnesium-based alloys

    Science.gov (United States)

    Pompa, Luis Enrique

    Magnesium alloys have raised immense interest to many researchers because of its evolution as a new third generation material. Due to their biocompatibility, density, and mechanical properties, magnesium alloys are frequently reported as prospective biodegradable implant materials. Moreover, magnesium based alloys experience a natural phenomena to biodegrade in aqueous solutions due to its corrosive activity, which is excellent for orthopedic and cardiovascular applications. However, major concerns with such alloys are fast and non-uniform corrosion degradation. Controlling the degradation rate in the physiological environment determines the success of an implant. In this investigation, three grades of magnesium alloys: AZ31B, AZ91E and ZK60A were studied for their corrosion resistance and biocompatibility. Scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy and contact angle meter are used to study surface morphology, chemistry, roughness and wettability, respectively. Additionally, the cytotoxicity of the leached metal ions was evaluated by a tetrazolium based bio-assay, MTS.

  12. A study on microstructure and corrosion resistance of ZrO{sub 2}-containing PEO coatings formed on AZ31 Mg alloy in phosphate-based electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, J.J.; Guo, Y.Q.; Xiang, N. [Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China); Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China); Xiong, Y.; Hu, Q. [Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China); College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Song, R.G., E-mail: songrg@hotmail.com [Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China); Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China)

    2015-12-01

    Graphical abstract: - Highlights: • PEO coatings were formed in K{sub 2}ZrF{sub 6}-containing electrolyte. • K{sub 2}ZrF{sub 6} is capable to optimize the microstructure of PEO coating. • Corrosion resistance of PEO coatings is effected by K{sub 2}ZrF{sub 6} concentration in the electrolyte. • Potentiodynamic polarization results are well matched with the EIS test results. • Long time immersion test confirmed the electrochemical results. - Abstract: ZrO{sub 2}-containing ceramic coatings formed on the AZ31 Mg alloy were fabricated in an alkaline electrolyte containing sodium phosphate and potassium fluorozirconate (K{sub 2}ZrF{sub 6}) by plasma electrolytic oxidation (PEO). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) techniques were used to study the phase structure and composition of the coatings. It is indicated that the coatings formed in the K{sub 2}ZrF{sub 6}-containing electrolyte were composed of MgO, MgF{sub 2} and t-ZrO{sub 2}. Morphological investigation carried out by scanning electron microscopy (SEM) and stereoscopic microscopy, revealed that the uniformity of coatings increased and roughness of coatings decreased after the addition of K{sub 2}ZrF{sub 6}. Electrochemical investigation was achieved by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) test. The results showed that the PEO coating formed in K{sub 2}ZrF{sub 6}-containing electrolyte exhibited an improved corrosion resistance than that of the coating formed in K{sub 2}ZrF{sub 6}-free electrolyte. In addition, the polarization and EIS tests results both showed that the suitable concentration (2.5 g/l) of K{sub 2}ZrF{sub 6} is of significant ability to improve the corrosion resistance of coatings. However, 5 g/l and 10 g/l K{sub 2}ZrF{sub 6} has a negative effect on improving the corrosion resistance of PEO coatings compared with the coating formed in 2.5 g/l K{sub 2}ZrF{sub 6}-containing electrolyte.

  13. A study on microstructure and corrosion resistance of ZrO2-containing PEO coatings formed on AZ31 Mg alloy in phosphate-based electrolyte

    International Nuclear Information System (INIS)

    Zhuang, J.J.; Guo, Y.Q.; Xiang, N.; Xiong, Y.; Hu, Q.; Song, R.G.

    2015-01-01

    Graphical abstract: - Highlights: • PEO coatings were formed in K 2 ZrF 6 -containing electrolyte. • K 2 ZrF 6 is capable to optimize the microstructure of PEO coating. • Corrosion resistance of PEO coatings is effected by K 2 ZrF 6 concentration in the electrolyte. • Potentiodynamic polarization results are well matched with the EIS test results. • Long time immersion test confirmed the electrochemical results. - Abstract: ZrO 2 -containing ceramic coatings formed on the AZ31 Mg alloy were fabricated in an alkaline electrolyte containing sodium phosphate and potassium fluorozirconate (K 2 ZrF 6 ) by plasma electrolytic oxidation (PEO). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) techniques were used to study the phase structure and composition of the coatings. It is indicated that the coatings formed in the K 2 ZrF 6 -containing electrolyte were composed of MgO, MgF 2 and t-ZrO 2 . Morphological investigation carried out by scanning electron microscopy (SEM) and stereoscopic microscopy, revealed that the uniformity of coatings increased and roughness of coatings decreased after the addition of K 2 ZrF 6 . Electrochemical investigation was achieved by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) test. The results showed that the PEO coating formed in K 2 ZrF 6 -containing electrolyte exhibited an improved corrosion resistance than that of the coating formed in K 2 ZrF 6 -free electrolyte. In addition, the polarization and EIS tests results both showed that the suitable concentration (2.5 g/l) of K 2 ZrF 6 is of significant ability to improve the corrosion resistance of coatings. However, 5 g/l and 10 g/l K 2 ZrF 6 has a negative effect on improving the corrosion resistance of PEO coatings compared with the coating formed in 2.5 g/l K 2 ZrF 6 -containing electrolyte.

  14. Magnesium Gluconate

    Science.gov (United States)

    Magnesium gluconate is used to treat low blood magnesium. Low blood magnesium is caused by gastrointestinal disorders, prolonged vomiting or ... disease, or certain other conditions. Certain drugs lower magnesium levels as well.This medication is sometimes prescribed ...

  15. Semi-solid twin-roll casting process of magnesium alloy sheets

    International Nuclear Information System (INIS)

    Watari, H.; Davey, K.; Rasgado, M.T. Alonso; Haga, T.; Koga, N.

    2004-01-01

    An experimental approach has been performed to ascertain the effectiveness of semi-solid strip casting using a horizontal twin roll caster. The demand for light-weight products with high strength has grown recently due to the rapid development of automobile and aircraft technology. One key to such development has been utilization of magnesium alloys, which can potentially reduce the total product weight. However, the problems of utilizing magnesium alloys are still mainly related to high manufacturing cost. One of the solutions to this problem is to develop magnesium casting-rolling technology in order to produce magnesium sheet products at competitive cost for commercial applications. In this experiment, magnesium alloy AZ31B was used to ascertain the effectiveness of semi-solid roll strip casting for producing magnesium alloy sheets. The temperature of the molten magnesium, and the roll speeds of the upper and lower rolls, (which could be changed independently), were varied to find an appropriate manufacturing condition. Rolling and heat treatment conditions were changed to examine which condition would be appropriate for producing wrought magnesium alloys with good formability. Microscopic observation of the crystals of the manufactured wrought magnesium alloys was performed. It has been found that a limiting drawing ratio of 2.7 was possible in a warm deep drawing test of the cast magnesium alloy sheets after being hot rolled

  16. Effect of Hydraulic Pressure on Warm Hydro Mechanical Deep Drawing of Magnesium Alloy Sheet

    Science.gov (United States)

    Liu, Wei; Wu, Linzhi; Yuan, Shijian

    The uniaxial tensile test and hydraulic bulging test of AZ31 magnesium alloy sheets were applied to study the influence of temperature on the material properties and obtain the forming limit curves at different temperatures. Numerical simulations of warm hydro mechanical deep drawing were carried out to investigate the effect of hydraulic pressure on the formability of a cylindrical cup, and the simplified hydraulic pressure profiles were used to simulate the loading procedure of hydraulic pressure. The optimal hydraulic pressure at different temperatures were given and verified by experimental studies at temperature 100°C and 170V.

  17. Interactions between laser and arc plasma during laser-arc hybrid welding of magnesium alloy

    Science.gov (United States)

    Liu, Liming; Chen, Minghua

    2011-09-01

    This paper presents the results of the investigation on the interactions between laser and arc plasma during laser-arc hybrid welding on magnesium alloy AZ31B using the spectral diagnose technique. By comparably analyzing the variation in plasma information (the shape, the electron temperature and density) of single tungsten inert gas (TIG) welding with the laser-arc hybrid welding, it is found that the laser affects the arc plasma through the keyhole forming on the workpiece. Depending on the welding parameters there are three kinds of interactions taking place between laser and arc plasma.

  18. Effect of materials and temperature on the forward extrusion of magnesium alloys

    International Nuclear Information System (INIS)

    Chandrasekaran, Margam; John, Yong Ming Shyan

    2004-01-01

    Magnesium alloys are being extensively used in weight-saving applications and as a potential replacement for plastics in electronic and computer applications. However, processing of magnesium has always been a challenge for manufacturing industries owing to their high brittleness despite their good EMI shielding property and high specific strength. Despite these advantages, they are limited by their processability. The present work aims to evaluate lower temperature formability of magnesium alloys. Three different materials were selected for axisymmetric extrusion tests, namely AZ31, AZ61 and the forging alloy, ZK 60. To establish the size and capacity of the press required to perform these forming trials and to know the formability, simulation using finite element analysis was carried on a representative material AZ31 using the properties established based on earlier work. A die set with a die shoe was designed to perform the forward extrusion trials. The area reduction ratio for forward extrusion was fixed at 41% for the die design and simulation. The maximum strain is given as ln(A o /A f ) ∼ 0.88 in the case of forward extrusion. The temperature was varied with a temperature controller built in-house from room temperature (RT) to 300 deg.C. However, the results provided below only include the tests carried out at RT, 100, 150, 175 and 200 deg.C. Although the forming trials were successful above 200 deg.C, there was difficulty in removing the specimens from the die cavity. Secondly, the process of removing the samples in the case of AZ31 and ZK 60 resulted in cracking, so it was difficult to evaluate the samples and the process. However, AZ61 samples did not show any evidence of crack formation during ejection of the formed sample. Simulation results and experimental trials showed that magnesium (AZ31) could be easily formed at elevated temperatures of 300 deg.C. Though there was a good correlation on the yield point prediction between simulation and

  19. Enhanced corrosion resistance of magnesium alloy by a silane-based solution treatment after an in-situ formation of the Mg(OH)2 layer

    Science.gov (United States)

    Gong, Fubao; Shen, Jun; Gao, Runhua; Xie, Xiong; Luo, Xiong

    2016-03-01

    A novel organic-inorganic Mg(OH)2/silane surface layer has been developed for corrosion protection of AZ31 magnesium alloy. The results of electrochemical impedance spectroscopy (EIS), the immersion tests, Fourier-transform infrared spectroscopy (FTIR) and sellotape tests showed that the Mg(OH)2/silane-based composite surface layer possessed excellent corrosion resistance and very good adhesion due to the formation of Si-O-Mg bond between Mg(OH)2 layer and silane layer. Electrochemical impedance spectroscopy tests results indicated that for the long-term corrosion protection of AZ31 the increase of the curing temperature improved the impedance of the composited layer when the curing temperature was lower than 130 °С. However, the impedance of the composited layer deceased when the curing temperature was more than 130 °С due to the carbonization of the silane layer.

  20. Silica-Based Sol-Gel Coating on Magnesium Alloy with Green Inhibitors

    Directory of Open Access Journals (Sweden)

    Vinod Upadhyay

    2017-06-01

    Full Text Available In this work, the performances of several natural organic inhibitors were investigated in a sol-gel system (applied on the magnesium alloy Mg AZ31B substrate. The inhibitors were quinaldic acid (QDA, betaine (BET, dopamine hydrochloride (DOP, and diazolidinyl urea (DZU. Thin, uniform, and defect-free sol-gel coatings were prepared with and without organic inhibitors, and applied on the Mg AZ31B substrate. SEM and EDX were performed to analyze the coating surface properties, the adhesion to the substrate, and the thickness. Electrochemical measurements, including electrochemical impedance spectroscopy (EIS and anodic potentiodynamic polarization scan (PDS, were performed on the coated samples to characterize the coatings’ protective properties. Also, hydrogen evolution measurement—an easy method to measure magnesium corrosion—was performed in order to characterize the efficiency of coating protection on the magnesium substrate. Moreover, scanning vibrating electrode technique (SVET measurements were performed to examine the efficiency of the coatings loaded with inhibitors in preventing and containing corrosion events in defect areas. From the testing results it was observed that the formulated sol-gel coatings provided a good barrier to the substrate, affording some protection even without the presence of inhibitors. Finally, when the inhibitors’ performances were compared, the QDA-doped sol-gel was able to contain the corrosion event at the defect.

  1. Influence of Nickel Particle Reinforcement on Cyclic Fatigue and Final Fracture Behavior of a Magnesium Alloy Composite

    Directory of Open Access Journals (Sweden)

    Manoj Gupta

    2012-06-01

    Full Text Available The microstructure, tensile properties, cyclic stress amplitude fatigue response and final fracture behavior of a magnesium alloy, denoted as AZ31, discontinuously reinforced with nano-particulates of aluminum oxide and micron size nickel particles is presented and discussed. The tensile properties, high cycle fatigue and final fracture behavior of the discontinuously reinforced magnesium alloy are compared with the unreinforced counterpart (AZ31. The elastic modulus and yield strength of the dual particle reinforced magnesium alloy is marginally higher than of the unreinforced counterpart. However, the tensile strength of the composite is lower than the monolithic counterpart. The ductility quantified by elongation to failure over 0.5 inch (12.7 mm gage length of the test specimen showed minimal difference while the reduction in specimen cross-section area of the composite is higher than that of the monolithic counterpart. At the microscopic level, cyclic fatigue fractures of both the composite and the monolithic alloy clearly revealed features indicative of the occurrence of locally ductile and brittle mechanisms. Over the range of maximum stress and at two different load ratios the cyclic fatigue resistance of the magnesium alloy composite is superior to the monolithic counterpart. The mechanisms responsible for improved cyclic fatigue life and resultant fracture behavior of the composite microstructure are highlighted.

  2. Erosion in extruder flow

    Science.gov (United States)

    Kaufman, Miron; Fodor, Petru S.

    A detailed analysis of the fluid flow in Tadmor's unwound channel model of the single screw extruder is performed by combining numerical and analytical methods. Using the analytical solution for the longitudinal velocity field (in the limit of zero Reynolds number) allows us to devote all the computational resources solely for a detailed numerical solution of the transversal velocity field. This high resolution 3D model of the fluid flow in a single-screw extruder allows us to identify the position and extent of Moffatt eddies that impede mixing. We further consider the erosion of particles (e.g. carbon-black agglomerates) advected by the polymeric flow. We assume a particle to be made of primary fragments bound together. In the erosion process a primary fragment breaks out of a given particle. Particles are advected by the laminar flow and they disperse because of the shear stresses imparted by the fluid. The time evolution of the numbers of particles of different sizes is described by the Bateman coupled differential equations used to model radioactivity. Using the particle size distribution we compute an entropic fragmentation index which varies from 0 for a monodisperse system to 1 for an extreme poly-disperse system.

  3. Corrosion resistance and durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution.

    Science.gov (United States)

    Ishizaki, Takahiro; Masuda, Yoshitake; Sakamoto, Michiru

    2011-04-19

    The corrosion resistant performance and durability of the superhydrophobic surface on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution were investigated using electrochemical and contact angle measurements. The durability of the superhydrophobic surface in corrosive 5 wt% NaCl aqueous solution was elucidated. The corrosion resistant performance of the superhydrophobic surface formed on magnesium alloy was estimated by electrochemical impedance spectroscopy (EIS) measurements. The EIS measurements and appropriate equivalent circuit models revealed that the superhydrophobic surface considerably improved the corrosion resistant performance of magnesium alloy AZ31. American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test was performed to investigate the adhesion of the superhydrophobic film to the magnesium alloy surface. The corrosion formation mechanism of the superhydrophobic surface formed on the magnesium alloy was also proposed. © 2011 American Chemical Society

  4. Surface characterization and cytotoxicity response of biodegradable magnesium alloys

    International Nuclear Information System (INIS)

    Pompa, Luis; Rahman, Zia Ur; Munoz, Edgar; Haider, Waseem

    2015-01-01

    Magnesium alloys have raised an immense amount of interest to many researchers because of their evolution as a new kind of third generation materials. Due to their biocompatibility, density, and mechanical properties, magnesium alloys are frequently reported as prospective biodegradable implant materials. Moreover, magnesium alloys experience a natural phenomenon to biodegrade in aqueous solutions due to its corrosion activity, which is excellent for orthopedic and cardiovascular applications. However, a major concern with such alloys is fast and non-uniform corrosion degradation. Controlling the degradation rate in the physiological environment determines the success of biodegradable implants. In this investigation, three different grades of magnesium alloys: AZ31B, AZ91E and ZK60A were studied for their corrosion resistance and biocompatibility. Scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy and contact angle meter are used to study surface morphology, chemistry, roughness and wettability, respectively. Additionally, the cytotoxicity of the leached metal ions was evaluated by using a tetrazolium based bio-assay, MTS. - Highlights: • Micro-textured features formed after the anodization of magnesium alloys. • Contact angle increased and surface free energy decreased by anodization. • Corrosion rate increased for anodized surfaces compared to untreated samples. • Cell viability was greater than 75% implying the cytocompatibility of Mg alloys

  5. Surface characterization and cytotoxicity response of biodegradable magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pompa, Luis; Rahman, Zia Ur; Munoz, Edgar; Haider, Waseem, E-mail: haiderw@utpa.edu

    2015-04-01

    Magnesium alloys have raised an immense amount of interest to many researchers because of their evolution as a new kind of third generation materials. Due to their biocompatibility, density, and mechanical properties, magnesium alloys are frequently reported as prospective biodegradable implant materials. Moreover, magnesium alloys experience a natural phenomenon to biodegrade in aqueous solutions due to its corrosion activity, which is excellent for orthopedic and cardiovascular applications. However, a major concern with such alloys is fast and non-uniform corrosion degradation. Controlling the degradation rate in the physiological environment determines the success of biodegradable implants. In this investigation, three different grades of magnesium alloys: AZ31B, AZ91E and ZK60A were studied for their corrosion resistance and biocompatibility. Scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy and contact angle meter are used to study surface morphology, chemistry, roughness and wettability, respectively. Additionally, the cytotoxicity of the leached metal ions was evaluated by using a tetrazolium based bio-assay, MTS. - Highlights: • Micro-textured features formed after the anodization of magnesium alloys. • Contact angle increased and surface free energy decreased by anodization. • Corrosion rate increased for anodized surfaces compared to untreated samples. • Cell viability was greater than 75% implying the cytocompatibility of Mg alloys.

  6. Friction phenomena in hydrostatic extrusion of magnesium

    NARCIS (Netherlands)

    Moodij, Ellen

    2014-01-01

    When magnesium is hydrostatically extruded an inconsistent and sometimes bad surface quality is encountered. In hydrostatic extrusion the billet is surrounded by a lubricant, usually castor oil. The required pressure to deform the material is applied onto this lubricant and not directly to the

  7. Biodegradable, elastomeric coatings with controlled anti-proliferative agent release for magnesium-based cardiovascular stents.

    Science.gov (United States)

    Gu, Xinzhu; Mao, Zhongwei; Ye, Sang-Ho; Koo, Youngmi; Yun, Yeoheung; Tiasha, Tarannum R; Shanov, Vesselin; Wagner, William R

    2016-08-01

    Vascular stent design continues to evolve to further improve the efficacy and minimize the risks associated with these devices. Drug-eluting coatings have been widely adopted and, more recently, biodegradable stents have been the focus of extensive evaluation. In this report, biodegradable elastomeric polyurethanes were synthesized and applied as drug-eluting coatings for a relatively new class of degradable vascular stents based on Mg. The dynamic degradation behavior, hemocompatibility and drug release were investigated for poly(carbonate urethane) urea (PCUU) and poly(ester urethane) urea (PEUU) coated magnesium alloy (AZ31) stents. Poly(lactic-co-glycolic acid) (PLGA) coated and bare stents were employed as control groups. The PCUU coating effectively slowed the Mg alloy corrosion in dynamic degradation testing compared to PEUU-coated, PLGA-coated and bare Mg alloy stents. This was confirmed by electron microscopy, energy-dispersive x-ray spectroscopy and magnesium ion release experiments. PCUU-coating of AZ31 was also associated with significantly reduced platelet adhesion in acute blood contact testing. Rat vascular smooth muscle cell (rSMC) proliferation was successfully inhibited when paclitaxel was released from pre-loaded PCUU coatings. The corrosion retardation, low thrombogenicity, drug loading capacity, and high elasticity make PCUU an attractive option for drug eluting coating on biodegradable metallic cardiovascular stents. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Estimación de la corrosión intergranular en la aleación de magnesio AZ31B soldada por fricción - agitación

    Directory of Open Access Journals (Sweden)

    Willian Aperador Chaparro

    2013-12-01

    Full Text Available En este trabajo se evalúa la corrosión intergranular, que se presenta en las soldaduras de la aleación de magnesio AZ31B unidas por los procesos de fricción-agitación y comparada con la soldadura con arco de tungsteno y gas, con el fin de evaluar y comparar el comportamiento a la corrosión de ambas soldaduras por medio la técnica de Espectroscopia de Impedancias Electroquímica. Adicionalmente se realizaron análisis microestructurales de los límites de grano por medio del microscopio. Los resultados obtenidos en esta investigación muestran una mayor resistencia a la corrosión de las muestras obtenidas con el proceso de fricción-agitación.

  9. Magnesium, magnesium alloys, and magnesium composites

    National Research Council Canada - National Science Library

    Gupta, M; Sharon, Nai Mui Ling

    2011-01-01

    "Properties of Magnesium Composites for Material Scientists, Engineers and Selectors is the first book-length reference to provide an insight into current and future magnesium-based materials in terms...

  10. Degradation of magnesium and its alloys: dependence on the composition of the synthetic biological media.

    Science.gov (United States)

    Mueller, Wolf-Dieter; de Mele, Monica Fernández Lorenzo; Nascimento, Maria Lucia; Zeddies, Miriam

    2009-08-01

    Magnesium and its alloys are highly degradable metals that are potentially useful as biomaterials, especially in orthopaedic and cardiovascular applications. However, the in vivo corrosion has proved to be too high. Because of the complexity of in vivo conditions, a careful study of the corrosion of magnesium in synthetic solutions that simulate the in vivo environment is necessary as a first approach to predict the actual in vivo situation. The aim of this work was to evaluate the influence of the electrolyte composition on the corrosion behavior of magnesium and two Mg-alloys in synthetic biological media. Pure magnesium and its alloys (AZ31 and LAE442) were employed in the experiments. Electrochemical potentiodynamic polarization curves were recorded in sodium chloride and PBS electrolytes with different chloride ion and albumin concentration. Optical and SEM observations complemented by EDX analysis were made. The results showed that magnesium corrosion is localized in chloride- and albumin-containing buffer solutions. They also showed that the chloride concentration and the presence of buffer and protein strongly affect the electrochemical behavior of magnesium and magnesium alloys.

  11. Infrared temperature measurement and interference analysis of magnesium alloys in hybrid laser-TIG welding process

    International Nuclear Information System (INIS)

    Huang, R.-S.; Liu, L.-M.; Song, G.

    2007-01-01

    Infrared (IR) temperature measurement, as a convenient, non-contact method for making temperature field measurements, has been widely used in the fields of welding, but the problem of interference from radiant reflection is a complicating factor in applying IR temperature sensing to welding. The object of this research is to make a deep understand about the formation of interference, explore a new method to eliminate the interfering radiation during laser-TIG hybrid welding of magnesium alloys and to obtain the distribution of temperature field accurately. The experimental results showed that the interferences caused by radiant specular reflection of arc light, ceramic nozzle, electrode and laser nozzle were transferred out of welding seam while the IR thermography system was placed perpendicularly to welding seam. And the welding temperature distribution captured by IR termography system which had been calibrated by thermocouple was reliable by using this method in hybrid laser-TIG welding process of AZ31B magnesium alloy

  12. Corrosion behavior of magnesium-graphene composites in sodium chloride solutions

    Directory of Open Access Journals (Sweden)

    Muhammad Rashad

    2017-09-01

    Full Text Available Coating of graphene and graphene/polymer composites on metals improves the corrosion resistance of metal substrates. On other hand, graphene embedded inside metal (especially Mg matrices increases or decreases corrosion, is a crucial factor and must be explored. In present study, electrochemical behaviors of magnesium alloys (AZ31 and AZ61 and their composites reinforced with graphene nanoplatelets (GNPs were carried out in 3.5% NaCl solution by polarization method. The surface morphology of composites before and after corrosion tests were analyzed using scanning electron microscopy. Experimental results revealed that presence of graphene nanoplatelets in different matrices decrease corrosion resistance of composites. This may be attributed to presence of graphene nanoplatelets which activates the corrosion of magnesium/alloys due to the occurrence of galvanic corrosion and this effect increases with increasing graphene nanoplatelets content. Further, an appropriate model describing the corrosion mechanism was proposed.

  13. Metallization of Extruded Briquettes (BREX in Midrex Process

    Directory of Open Access Journals (Sweden)

    Aitber Bizhanov

    2017-07-01

    Full Text Available The results of the full-scale testing of the Extruded Briquettes (BREX as the charge components of the industrial Midrex reactor are discussed. The influence of the type of binder on the degree of metallization of BREX is analyzed. Magnesium sulfate-based binder helps to reach highest metallization degree of BREX. Mineralogical study shows the difference in the iron-silicate phase’s development as well as in the porosity change during metallization depending on the binder used.

  14. Sub-micrometric surface texturing of AZ31 Mg-alloy through two-beam direct laser interference patterning with a ns-pulsed green fiber laser

    Science.gov (United States)

    Furlan, Valentina; Biondi, Marco; Demir, Ali Gökhan; Pariani, Giorgio; Previtali, Barbara; Bianco, Andrea

    2017-11-01

    Two-beam direct laser interference patterning (DLIP) is the method that employs two beams and provides control over the pattern geometry by regulating the angle between the beams and the wavelength of the beam. Despite the simplistic optical arrangement required for the method, the feasibility of sub-micrometric patterning of a surface depends on the correct manipulation of the process parameters, especially in the case of metallic materials. Magnesium alloys, from this point of view, exhibit further difficulty in processability due to low melting point and high reactivity. With biocompatibility and biodegradability features, Mg-alloy implants can take further advantage of surface structuring for tailoring the biological behaviour. In this work, a two-beam DLIP setup has been developed employing an industrial grade nanosecond-pulsed fiber laser emitting at 532 nm. The high repetition rate and ramped pulse profile provided by the laser were exploited for a more flexible control over the energy content deposited over the heat-sensitive Mg-alloy. The paper describes the strategies developed for controlling ramped laser emission at 20 kHz repetition rate. The process feasibility window was assessed within a large range of parameters. Within the feasibility window, a complete experimental plan was applied to investigate the effect of main laser process parameters on the pattern dimensions. Periodic surface structures with good definition down to 580 nm ± 20 nm spacing were successfully produced.

  15. Corrosion resistance of multilayered magnesium phosphate/magnesium hydroxide film formed on magnesium alloy using steam-curing assisted chemical conversion method

    International Nuclear Information System (INIS)

    Ishizaki, Takahiro; Kudo, Ruriko; Omi, Takeshi; Teshima, Katsuya; Sonoda, Tsutomu; Shigematsu, Ichinori; Sakamoto, Michiru

    2012-01-01

    Anticorrosive multilayered films were successfully prepared on magnesium alloy AZ31 by chemical conversion treatment, followed by steam curing treatment. The crystal structures, chemical composition, surface morphologies, chemical bonding states of the film was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscope (FE-SEM) measurements. All the films had thicknesses of ranging from 24 to 32 μm. The film had two layers that were composed of crystalline NH 4 MgPO 4 ·H 2 O, Mg 2 PO 4 OH·3H 2 O, Mg(OH) 2 and amorphous MgO. The outer layers include magnesium, oxygen, and phosphorous, and the inner layers include magnesium and oxygen. The corrosion resistant performances of the multilayered films in 5 wt% NaCl aqueous solution were investigated by electrochemical and gravimetric measurements. The potentiodynamic polarization curves revealed that the corrosion current density (j corr ) of all the film coated magnesium alloys decreased by more than four orders of magnitude as compared to that of the bare magnesium alloy, indicating that all the films had an inhibiting effect of corrosion reaction. Gravimetric measurements showed that the average corrosion rates obtained from the weight loss rates were estimated to be in the ranges of ca. 0.085–0.129 mm/y. American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test revealed that the adhesion of our anticorrosive multilayered film to the magnesium alloy surface was very good.

  16. Magnesium Hydroxide

    Science.gov (United States)

    Magnesium hydroxide is used on a short-term basis to treat constipation.This medication is sometimes prescribed ... Magnesium hydroxide come as a tablet and liquid to take by mouth. It usually is taken as ...

  17. Magnesium Oxide

    Science.gov (United States)

    Magnesium is an element your body needs to function normally. Magnesium oxide may be used for different reasons. Some people use it as ... one to four times daily depending on which brand is used and what condition you have. Follow ...

  18. Mechanical Behavior of an Ultrafine/Nano Grained Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Seyed Mahmood Fatemi

    2017-06-01

    Full Text Available The application of magnesium alloys is greatly limited because of their relatively low strength and ductility. An effective way to improve the mechanical properties of magnesium alloy is to refine the grains. As the race for better materials performance is never ending, attempts to develop viable techniques for microstructure refinement continue. Further refining of grain size requires, however, application of extreme value of plastic deformation on material. In this work, an AZ31 wrought magnesium alloy was processed by employing multipass accumulative back extrusion process. The obtained microstructure, texture, and room temperature compressive properties were characterized and discussed. The results indicated that grains of 80 nm to 1 μm size were formed during accumulative back extrusion, where the mean grain size of the experimental material was reduced by applying successive ABE passes. The fraction of DRX increased and the mean grain size of the ABEed alloy markedly lowered, as subsequent passes were applied. This helped to explain the higher yield stress govern the occurrence of twinning during compressive loading. Compressive yield and maximum compressive strengths were measured to increase by applying successive extrusion passes, while the strain-to-fracture dropped. The evolution of mechanical properties was explained relying on the grain refinement effect as well as texture change.

  19. Extruding plastic scintillator at Fermilab

    International Nuclear Information System (INIS)

    Pla-Dalmau, Anna; Bross, Alain D.; Rykalin, Viktor V.

    2003-01-01

    An understanding of the costs involved in the production of plastic scintillators and the development of a less expensive material have become necessary with the prospects of building very large plastic scintillation detectors. Several factors contribute to the high cost of plastic scintillating sheets, but the principal reason is the labor-intensive nature of the manufacturing process. In order to significantly lower the costs, the current casting procedures had to be abandoned. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. This concept was tested and high quality extruded plastic scintillator was produced. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. This paper will discuss the characteristics of extruded plastic scintillator and its raw materials, the different manufacturing techniques and the current R andD program at Fermilab

  20. Effect of shoulder to pin ratio on magnesium alloy Friction Stir Welding

    Science.gov (United States)

    Othman, N. H.; Ishak, M.; Shah, L. H.

    2017-09-01

    This study focuses on the effect of shoulder to pin diameter ratio on friction stir welding of magnesium alloy AZ31. Two pieces of AZ31 alloy with thickness of 2 mm were friction stir welded by using conventional milling machine. The shoulder to pin diameter ratio used in this experiment are 2.25, 2.5, 2.75, 3, 3.33, 3.66, 4.5, 5 and 5.5. The rotational speed and welding speed used in this study are 1000 rpm and 100 mm/min, respectively. Microstructure observation of welded area was studied by using optical microscope. Equiaxed grains were observed at the TMAZ and stir zone indicating fully plastic deformation. The grain size of stir zone increased with decreasing shoulder to pin ratio from ratio 3.33 to 5.5 due to higher heat input. It is observed that, surface galling and faying surface defect is produced when excessive heat input is applied. To evaluate the mechanical properties of this specimen, tensile test was used in this study. Shoulder to pin ratio 5.5 shows lowest tensile strength while shoulder to pin diameter ratio 3.33 shows highest tensile strength with weld efficiency 91 % from based metal.

  1. Magnesium Alloys as a Biomaterial for Degradable Craniofacial Screws

    Science.gov (United States)

    Henderson, Sarah E.; Verdelis, Konstantinos; Maiti, Spandan; Pal, Siladitya; Chung, William L.; Chou, Da-Tren; Kumta, Prashant N.; Almarza, Alejandro J.

    2014-01-01

    Recently, magnesium (Mg) alloys have received significant attention as a potential biomaterial for degradable implants, and this study was directed at evaluating the suitability of Mg for craniofacial bone screws. The objective was to implant screws fabricated from commercially available Mg-alloys (pure Mg and AZ31) in-vivo in a rabbit mandible. First, Mg-alloy screws were compared to stainless steel screws in an in-vitro pull-out test and determined to have a similar holding strength (~40N). A finite element model of the screw was created using the pull-out test data, and the model can be used for future Mg-alloy screw design. Then, Mg-alloy screws were implanted for 4, 8, and 12 weeks, with two controls of an osteotomy site (hole) with no implant and a stainless steel screw implanted for 12 weeks. MicroCT (computed tomography) was used to assess bone remodeling and Mg-alloy degradation, both visually and qualitatively through volume fraction measurements for all time points. Histologic analysis was also completed for the Mg-alloys at 12 weeks. The results showed that craniofacial bone remodeling occurred around both Mg-alloy screw types. Pure Mg had a different degradation profile than AZ31, however bone growth occurred around both screw types. The degradation rate of both Mg-alloy screw types in the bone marrow space and the muscle were faster than in the cortical bone space at 12 weeks. Furthermore, it was shown that by alloying Mg, the degradation profile could be changed. These results indicate the promise of using Mg-alloys for craniofacial applications. PMID:24384125

  2. Use of an AC/DC/AC Electrochemical Technique to Assess the Durability of Protection Systems for Magnesium Alloys

    Science.gov (United States)

    Song, Sen; McCune, Robert C.; Shen, Weidian; Wang, Yar-Ming

    One task under the U.S. Automotive Materials Partnership (USAMP) "Magnesium Front End Research and Development" (MFERD) Project has been the evaluation of methodologies for the assessment of protective capability for a variety of proposed protection schemes for this hypothesized multi-material, articulated structure. Techniques which consider the entire protection system, including both pretreatments and topcoats are of interest. In recent years, an adaptation of the classical electrochemical impedance spectroscopy (EIS) approach using an intermediate cathodic DC polarization step (viz. AC/DC/AC) has been employed to accelerate breakdown of coating protection, specifically at the polymer-pretreatment interface. This work reports outcomes of studies to employ the AC/DC/AC approach for comparison of protective coatings to various magnesium alloys considered for front end structures. In at least one instance, the protective coating system breakdown could be attributed to the poorer intrinsic corrosion resistance of the sheet material (AZ31) relative to die-cast AM60B.

  3. Magnesium, magnesium alloys, and magnesium composites

    National Research Council Canada - National Science Library

    Gupta, M; Sharon, Nai Mui Ling

    2011-01-01

    .... With the popularity of magnesium-based materials in the automotive, aerospace, electronics, and sports equipment industries, and its unique role as a lightweight, energy-saving and high-performance...

  4. Magnesium, magnesium alloys, and magnesium composites

    National Research Council Canada - National Science Library

    Gupta, M; Sharon, Nai Mui Ling

    2011-01-01

    ... of science, characteristics, and applications. It emphasizes the properties of magnesium-based composites and the effects of different types of reinforcements, from micron length to nanometer scale, on the properties of the resulting composites...

  5. Evaluation of magnesium alloys with alternative surface finishing for the proliferation and chondro-differentiation of human mesenchymal stem cells

    International Nuclear Information System (INIS)

    Trinidad, J; Arruebarrena, G; De Argandona, E Saenz; De Eguino, G Ruiz; Infante, A; RodrIguez, C I

    2010-01-01

    Articular cartilage has little capacity for self-repair. As a result, continuous mechanical stress can lead to the degradation of articular cartilage, culminating in progressive damage and joint degeneration. Tissue engineering has arisen as a promising therapeutic approach to cartilage repair. Magnesium alloys are one of the most important metallic biomaterials emerging in this area due to their biocompatibility, bio-absorbability and especially to their mechanical properties. These properties make magnesium alloys a promising biomaterial in the regeneration of cartilage tissue. Objective. This study was undertaken to analyze the influence of surface characteristics of magnesium alloys in the adhesion, proliferation and differentiation of human mesenchymal stem cells (MSCs). Methods. Two commercial magnesium alloys (AZ31B and ZM21) were subjected to different treatments in order to obtain four different surfaces in each alloy. Human MSCs were seeded into the magnesium alloys and analyzed for their proliferation and chondrogenesis differentiation ability. Results. Human MSCs showed a greater proliferation and chondro-differentiation when cultured in the ZM21 magnesium alloy with a surface finishing of fine sanding, polishing, and etching.

  6. Extension twin variant selection during uniaxial compression of a magnesium alloy

    DEFF Research Database (Denmark)

    Pei, Y.; Godfrey, A.; Jiang, J.

    2012-01-01

    is also observed in that smaller grains are less likely to contain lower ranked twin variants. For both 5% and 10% compression no clear relationship exists between the volume fraction of each twin variant in a given grain population and the Schmid factor for the twin variant. A positive linear......Samples of the magnesium alloy AZ31 have been deformed by compression to strains of 5% and 10% and microstructural observations made to investigate the activation of specific {1 0 1¯ 2} extension twin variants. The twinning has been analyzed on a grain-by-grain basis for more than 260 grains...... to determine both the number of extension twin variants in each grain, and the volume fraction of each. At 5% strain approx. 30% of the grains contain twins corresponding to variants with the third or lower ranked Schmid factor, with the fraction increasing to 40% after 10% compression. A grain size effect...

  7. Punchless Drawing of Magnesium Alloy Sheet under Cold Condition and its Computation

    International Nuclear Information System (INIS)

    Yamashita, Minoru; Hattori, Toshio; Sato, Joji

    2011-01-01

    The punchless drawing with Maslennikov's technique was applied to the circular cup drawing of magnesium alloy AZ31B sheet under cold condition. The elastic rubber ring was used instead of the 'hard' punch, where the compressed ring dragged the sheet inward the die cavity. Attainable circumferential strain of the blank was increased by this technique with repetitive drawing operation. Thickness of the rubber pad affected little the attainable strain. The shape appearance became better when a harder rubber was used. The cup forming by single drawing operation was also tested using a small die shoulder radius. The LDR of 1.250 was obtained with the straight cup wall. Further, the computation of the punchless drawing was also conducted for the single drawing operation. The computed deformation pattern was well consistent with the corresponding experimental result.

  8. The effect of axial external magnetic field on tungsten inert gas welding of magnesium alloy

    Science.gov (United States)

    Li, Caixia; Zhang, Xiaofeng; Wang, Jing

    2018-04-01

    The influences of axial external magnetic field on the microstructure and mechanical property of the AZ31 magnesium (Mg) alloy joints were studied. The microstructure of Mg alloy joint consisted of the weld seam, heat affected zone and base metal zone. The average grain size of weld seam welded with magnetic field is 39 μm, which is 38% smaller than that of the joint welded with absence of magnetic field. And the microhardness of weld seam increases with the help of magnetic field treatment, owing to the coarse grain refinement. With coil current of 2.0A, the maximum mechanical property of joint increases 6.7% to 255 MPa over the specimen without magnetic field treatment. Furthermore, fracture location is near heat affected area and the fracture surface is characterized with ductile fracture.

  9. Magnesium nitride phase formation by means of ion beam implantation technique

    International Nuclear Information System (INIS)

    Hoeche, Daniel; Blawert, Carsten; Cavellier, Matthieu; Busardo, Denis; Gloriant, Thierry

    2011-01-01

    Nitrogen implantation technique (Hardion + ) has been applied in order to modify the surface properties of magnesium and Mg-based alloys (AM50, AZ31). Nitrogen ions with an energy of approximately 100 keV were used to form the Mg 3 N 2 phase leading to improved surface properties. The samples were investigated using various characterization methods. Mechanical properties have been tested by means of nanoindention, the electrochemical behavior was measured by potentiodynamic polarization and impedance spectroscopy, phase formation by using grazing incidence Xray diffraction, the chemical state was determined by means of Xray induced photoelectron spectroscopy (XPS) and depth profiling by using secondary ions mass spectroscopy (SIMS). Additionally, the results were compared to calculated depth profiles using SRIM2008. The correlation of the results shows the nitride formation behavior to a depth of about 600 nm.

  10. Processing of a magnesium alloy by equal-channel angular pressing using a back-pressure

    International Nuclear Information System (INIS)

    Xu Cheng; Xia Kenong; Langdon, Terence G.

    2009-01-01

    Experiments were conducted on the magnesium AZ31 alloy to evaluate the significance of conducting equal-channel angular pressing (ECAP) with a back-pressure. Following processing by ECAP, the values of the Vickers microhardness were recorded on the cross-sectional planes and microstructural observations were undertaken using transmission electron microscopy. The results show an increase in the hardness in the first pass with significant microstructural inhomogeneity and a transition towards a more homogeneous structure with subsequent passes. The grain size was measured as ∼0.9 μm after 8 passes. A comparison with published data on the same alloy processed by ECAP without a back-pressure suggests several advantages in incorporating a back-pressure into ECAP. These advantages include the ability to achieve greater grain refinement, a potential for pressing at lower temperatures and the development of a more rapid evolution towards a homogeneous microstructure.

  11. One-step method for the fabrication of superhydrophobic surface on magnesium alloy and its corrosion protection, antifouling performance

    International Nuclear Information System (INIS)

    Zhao, Lin; Liu, Qi; Gao, Rui; Wang, Jun; Yang, Wanlu; Liu, Lianhe

    2014-01-01

    Highlights: •The myristic acid iron superhydrophobic surface was formatted on AZ31. •Two procedures to build a super-hydrophobic were simplified to one step. •The superhydrophobic surface shows good anticorrosion, antifouling properties. •We report a new approach for the superhydrophobic surface protection on AZ31. -- Abstract: Inspired by the lotus leaf, various methods to fabricate artificial superhydrophobic surfaces have been developed. Our purpose is to create a simple, one-step and environment-friendly method to construct a superhydrophobic surface on a magnesium alloy substrate. The substrate was immersed in a solution containing ferric chloride (FeCl 3 ·6H 2 O), deionized water, tetradecanoic acid (CH 3 (CH 2 ) 12 COOH) and ethanol. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier transformed infrared (FT-IR) were employed to characterize the substrate surface. The obtained surface showed a micron rough structure, a high contact angle (CA) of 165° ± 2° and desirable corrosion protection and antifouling properties

  12. Production of magnesium metal

    Science.gov (United States)

    Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA

    2010-02-23

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  13. Properties of extrudates from sorghum varieties | Byaruhanga ...

    African Journals Online (AJOL)

    Physical-chemical properties of the extrudates including, lateral expansion, bulk density, hardness, water absorption index, water solubility index, as well as proximate composition were determined. The extrudates exhibited 240-300% lateral expansion and 0.067-0.095 g cm-3 bulk density. The water absorption index was ...

  14. Microstructures and mechanical properties of magnesium alloy and stainless steel weld-joint made by friction stir lap welding

    International Nuclear Information System (INIS)

    Wei, Yanni; Li, Jinglong; Xiong, Jiangtao; Huang, Fu; Zhang, Fusheng

    2012-01-01

    Highlights: → Friction stir lap welding technology with cutting pin was successfully employed to form lap joint of magnesium and steel. → The cutting pin made the lower steel participate in deformation and the interface was no longer flat. → A saw-toothed structure formed due to a mechanical mixing of the magnesium and steel was found at the interface. → A high-strength joint was produced which fractured in the magnesium side. -- Abstract: Friction stir lap welding was conducted on soft/hard metals. A welding tool was designed with a cutting pin of rotary burr made of tungsten carbide, which makes the stirring pin possible to penetrate and cut the surface layer of the hard metal. Magnesium alloy AZ31 and stainless steel SUS302 were chosen as soft/hard base metals. The structures of the joining interface were analyzed by scanning electron microscopy (SEM). The joining strength was evaluated by tensile shear test. The results showed that flower-like interfacial morphologies were presented with steel flashes and scraps, which formed bonding mechanisms of nail effect by long steel flashes, zipper effect by saw-tooth structure and metallurgical bonding. The shear strength of the lap joint falls around the shear strength of butt joint of friction stir welded magnesium alloy.

  15. Magnesium compounds

    Science.gov (United States)

    Kramer, D.A.

    2012-01-01

    Seawater and natural brines accounted for about 57 percent of magnesium compounds produced in the United States in 2011. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties LLC from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia LLC in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash Wendover LLC and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma Inc. in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its brine operation in Michigan.

  16. Extruded plastic scintillator for MINERvA

    International Nuclear Information System (INIS)

    Pla-Dalmau, Anna; Bross, Alan D.; FermilabRykalin, Victor V.; Wood, Brian M.; NICADD, DeKalb

    2005-01-01

    An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. A new experiment at Fermilab is pursuing the use of extruded plastic scintillator. A new plastic scintillator strip is being tested and its properties characterized. The initial results are presented here

  17. TEXTURE ANALYSIS OF EXTRUDED APPLE POMACE - WHEAT SEMOLINA BLENDS

    Directory of Open Access Journals (Sweden)

    Ivan Bakalov

    2016-03-01

    Full Text Available Apple pomace - wheat semolina blends were extruded in a laboratory single screw extruder (Brabender 20 DN, Germany. Effects apple pomace content, moisture content, screw speed, and temperature of final cooking zone on texture of extrudates were studied applying response surface methodology. The texture characteristics of the extrudates were measured using a TA.XT Plus Texture Analyser, Stable Micro Systems.

  18. Grain size and microhardness evolution during annealing of a magnesium alloy processed by high-pressure torsion

    Directory of Open Access Journals (Sweden)

    Livia Raquel C. Malheiros

    2015-01-01

    Full Text Available High-pressure torsion (HPT was used to impose severe plastic deformation on a magnesium alloy AZ31. The material was processed for 0.5, 1, 2, 3, 5 and 7 turns at room temperature under a pressure of 6.0 GPa. Samples were annealed for 1800 s at temperatures of 373 K, 423 K, 473 K, 573 K and 673 K. Microhardness tests and metallography were used to determine the evolution of strength and grain size as a function of the annealing temperature. The results show that recrystallization takes place at temperatures higher than 423 K. The annealing behavior is independent of the number of turns in HPT.

  19. Influence of the microstructural changes and induced residual stresses on tensile properties of wrought magnesium alloy friction stir welds

    International Nuclear Information System (INIS)

    Commin, Loreleï; Dumont, Myriam; Rotinat, René; Pierron, Fabrice; Masse, Jean-Eric; Barrallier, Laurent

    2012-01-01

    Highlights: ► Study of AZ31 FSW mechanical behaviour. ► Early yielding occurs in the TMAZ, the nugget and base metal zones undergo almost no plastic strains. ► Texture gradient in the TMAZ localises the deformations in this area. ► Residual stresses have a major influence in FSW mechanical behaviour. - Abstract: Friction stir welding induces a microstructural evolution and residual stresses that will influence the resulting mechanical properties. Friction stir welds produced from magnesium alloy hot rolled plates were studied. Electron back scattered diffraction was used to determine the texture evolution, residual stresses were analysed using X ray diffraction and tensile tests coupled with speckle interferometry were performed. The residual stresses induced during friction stir welding present a major influence on the final mechanical properties.

  20. Composition of highly concentrated silicate electrolytes and ultrasound influencing the plasma electrolytic oxidation of magnesium

    Science.gov (United States)

    Simchen, F.; Rymer, L.-M.; Sieber, M.; Lampke, T.

    2017-03-01

    Magnesium and its alloys are increasingly in use as lightweight construction materials. However, their inappropriate corrosion and wear resistance often prevent their direct practical use. The plasma electrolytic oxidation (PEO) is a promising, environmentally friendly method to improve the surface characteristics of magnesium materials by the formation of oxide coatings. These PEO layers contain components of the applied electrolyte and can be shifted in their composition by increasing the concentration of the electrolyte constituents. Therefore, in contrast to the use of conventional low concentrated electrolytes, the process results in more stable protective coatings, in which electrolyte species are the dominating constitutes. In the present work, the influence of the composition of highly concentrated alkaline silicate electrolytes with additives of phosphate and glycerol on the quality of PEO layers on the magnesium alloy AZ31 was examined. The effect of ultrasound coupled into the electrolyte bath was also considered. The process was monitored by recording the electrical process variables with a transient recorder and by observation of the discharge phenomena on the sample surface with a camera. The study was conducted on the basis of a design of experiments. The effects of the process parameter variation are considered with regard to the coatings thickness, hardness and corrosion resistance. Information about the statistical significance of the effects of the parameters on the considered properties is obtained by an analysis of variance (ANOVA).

  1. Microstructure and Properties of Selected Magnesium-Aluminum Alloys Prepared for SPD Processing Technology

    Directory of Open Access Journals (Sweden)

    Cizek L.

    2017-12-01

    Full Text Available A growing interest in wrought magnesium alloys has been noticed recently, mainly due to development of various SPD (severe plastic deformation methods that enable significant refinement of the microstructure and – as a result – improvement of various functional properties of products. However, forming as-cast magnesium alloys with the increased aluminum content at room temperature is almost impossible. Therefore, application of heat treatment before forming or forming at elevated temperature is recommended for these alloys. The paper presents the influence of selected heat treatment conditions on the microstructure and the mechanical properties of the as-cast AZ91 alloy. Deformation behaviour of the as-cast AZ61 alloy at elevated temperatures was analysed as well. The microstructure analysis was performed by means of both light microscopy and SEM. The latter one was used also for fracture analysis. Moreover, the effect of chemical composition modification by lithium addition on the microstructure of the AZ31-based alloy is presented. The test results can be helpful in preparation of the magnesium-aluminum alloys for further processing by means of SPD methods.

  2. Magnesium compounds

    Science.gov (United States)

    Kramer, D.A.

    2007-01-01

    Seawater and natural brines accounted for about 52 percent of U.S. magnesium compounds production in 2006. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from sea-water by Premier Chemicals in Florida; from well brines in Michigan by Martin Marietta and Rohm and Haas; and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from brucite by Applied Chemical Magnesias in Texas, from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta and Rohm and Haas from their operations mentioned above. About 59 percent of the magnesium compounds consumed in the United States was used for refractories that are used mainly to line steelmaking furnaces. The remaining 41 percent was consumed in agricultural, chemical, construction, environmental and industrial applications.

  3. An in vivo model to assess magnesium alloys and their biological effect on human bone marrow stromal cells.

    Science.gov (United States)

    Yoshizawa, Sayuri; Chaya, Amy; Verdelis, Kostas; Bilodeau, Elizabeth A; Sfeir, Charles

    2015-12-01

    Magnesium (Mg) alloys have many unique qualities which make them ideal candidates for bone fixation devices, including biocompatibility and degradation in vivo. Despite a rise in Mg alloy production and research, there remains no standardized system to assess their degradation or biological effect on human stem cells in vivo. In this study, we developed a novel in vivo model to assess Mg alloys for craniofacial and orthopedic applications. Our model consists of a collagen sponge seeded with human bone marrow stromal cells (hBMSCs) around a central Mg alloy rod. These scaffolds were implanted subcutaneously in mice and analyzed after eight weeks. Alloy degradation and biological effect were determined by microcomputed tomography (microCT), histological staining, and immunohistochemistry (IHC). MicroCT showed greater volume loss for pure Mg compared to AZ31 after eight weeks in vivo. Histological analysis showed that hBMSCs were retained around the Mg implants after 8 weeks. Furthermore, immunohistochemistry showed the expression of dentin matrix protein 1 and osteopontin around both pure Mg and AZ31 with implanted hBMSCs. In addition, histological sections showed a thin mineral layer around all degrading alloys at the alloy-tissue interface. In conclusion, our data show that degrading pure Mg and AZ31 implants are cytocompatible and do not inhibit the osteogenic property of hBMSCs in vivo. These results demonstrate that this model can be used to efficiently assess the biological effect of corroding Mg alloys in vivo. Importantly, this model may be modified to accommodate additional cell types and clinical applications. Magnesium (Mg) alloys have been investigated as ideal candidates for bone fixation devices due to high biocompatibility and degradation in vivo, and there is a growing need of establishing an efficient in vivo material screening system. In this study, we assessed degradation rate and biological effect of Mg alloys by transplanting Mg alloy rod with

  4. In vitro and in vivo studies on biodegradable magnesium alloy

    Directory of Open Access Journals (Sweden)

    Lida Hou

    2014-10-01

    Full Text Available The microstructure, mechanical property, electrochemical behavior and biocompatibility of magnesium alloy (BioDe MSM™ were studied in the present work. The experimental results demonstrated that grain refining induced by extrusion improves the alloy strength significantly from 162 MPa for the as-cast alloy to 241 MPa for the as-extruded one. The anticorrosion properties of the as-extruded alloy also increased. Furthermore, the hemolysis ratio was decreased from 4.7% for the as-cast alloy to 2.9% for the as-extruded one, both below 5%. BioDe MSM™ alloy shows good biocompatibility after being implanted into the dorsal muscle and the femoral shaft of the New Zealand rabbit, respectively, and there are no abnormalities after short-term implantation. In vivo observation indicated that the corrosion rate of this alloy varies with different implantation positions, with higher degradation rate in the femur than in the muscle.

  5. The extrusion of AZ-series magnesium alloys - extending the processing limits by hydrostatic extrusion; Erweiterung der Prozessgrenzen beim Strangpressen von Magnesiumknetlegierungen der AZ-Reihe durch das hydrostatische Strangpressverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Swiostek, J. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    2008-12-04

    The present study is concerned with the analysis of the influence of hydrostatic extrusion on the microstructural development and mechanical properties of extruded profiles of the AZ-series magnesium alloys. This work also deals with the correlation between the microstructure and resulting mechanical properties for the case extruded profiles. (orig.)

  6. Low magnesium level

    Science.gov (United States)

    Low magnesium level is a condition in which the amount of magnesium in the blood is lower than normal. The medical ... that convert or use energy ( metabolism ). When the level of magnesium in the body drops below normal, ...

  7. Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets

    International Nuclear Information System (INIS)

    Rashad, Muhammad; Pan, Fusheng; Hu, Huanhuan; Asif, Muhammad; Hussain, Shahid; She, Jia

    2015-01-01

    The aim of this study is to fabricate magnesium reinforced metal matrix composites using graphene nanoplatelets (GNPs) via powder metallurgy processing in order to enhance room temperature mechanical properties. The microstructural evaluation and mechanical behaviors of composite powders and extruded bulk materials were examined by X-ray diffraction (XRD), differential scanning calorimetry (DSC), Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with energy-dispersive spectrometer and mechanical tests. The uniform dispersion and large specific surface area per volume of GNPs embedded in magnesium matrix led to increament in microhardness, tensile strength and fracture strains of the composites. For example, when employing the pure magnesium reinforced with 0.30 wt% GNPs, the increase of Young's modulus, yield strength, and failure strain of extruded nanocomposite was +131%, +49.5% and +74.2% respectively, compared to those of extruded materials with no GNPs additive. Additionally, mechanical properties of synthesized composites were compared with previously reported Mg–CNTs composites. It was found that GNPs outperform CNTs due their high specific surface area

  8. Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Rashad, Muhammad, E-mail: rashadphy87@gmail.com [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Pan, Fusheng, E-mail: fspan@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Chongqing Academy of Science and Technology, Chongqing 401123 (China); Hu, Huanhuan [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Asif, Muhammad [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Hussain, Shahid [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); She, Jia [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China)

    2015-04-10

    The aim of this study is to fabricate magnesium reinforced metal matrix composites using graphene nanoplatelets (GNPs) via powder metallurgy processing in order to enhance room temperature mechanical properties. The microstructural evaluation and mechanical behaviors of composite powders and extruded bulk materials were examined by X-ray diffraction (XRD), differential scanning calorimetry (DSC), Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with energy-dispersive spectrometer and mechanical tests. The uniform dispersion and large specific surface area per volume of GNPs embedded in magnesium matrix led to increament in microhardness, tensile strength and fracture strains of the composites. For example, when employing the pure magnesium reinforced with 0.30 wt% GNPs, the increase of Young's modulus, yield strength, and failure strain of extruded nanocomposite was +131%, +49.5% and +74.2% respectively, compared to those of extruded materials with no GNPs additive. Additionally, mechanical properties of synthesized composites were compared with previously reported Mg–CNTs composites. It was found that GNPs outperform CNTs due their high specific surface area.

  9. Mechanical properties of carbon fibre-reinforced polymer/magnesium alloy hybrid laminates

    Science.gov (United States)

    Zhou, Pengpeng; Wu, Xuan; Pan, Yingcai; Tao, Ye; Wu, Guoqing; Huang, Zheng

    2018-04-01

    In this study, we prepared fibre metal laminates (FMLs) consisting of high-modulus carbon fibre-reinforced polymer (CFRP) prepregs and thin AZ31 alloy sheets by using hot-pressing technology. Tensile and low-velocity impact tests were performed to evaluate the mechanical properties and fracture behaviour of the magnesium alloy-based FMLs (Mg-FMLs) and to investigate the differences in the fracture behaviour between the Mg-FMLs and traditional Mg-FMLs. Results show that the Mg-FMLs exhibit higher specific tensile strength and specific tensile modulus than traditional Mg-FMLs and that the tensile behaviour of the Mg-FMLs is mainly governed by the CFRP because of the combination of high interlaminar shear properties and thin magnesium alloy layers. The Mg-FMLs exhibit excellent bending stiffness. Hence, no significant difference between the residual displacement d r and indentation depth d i , and the permanent deformation is mainly limited to a small zone surrounding the impact location after the impact tests.

  10. Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels

    Energy Technology Data Exchange (ETDEWEB)

    Wu Wei [Laboratory of Biological Structure Mechanics, Structural Engineering Department, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan (Italy); Gastaldi, Dario, E-mail: dario.gastaldi@polimi.it [Laboratory of Biological Structure Mechanics, Structural Engineering Department, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan (Italy); Yang Ke; Tan Lili [Division of Specialized Materials and Devices, Institute of Metal Research, Chinese Academy of Sciences, Shenyang (China); Petrini, Lorenza; Migliavacca, Francesco [Laboratory of Biological Structure Mechanics, Structural Engineering Department, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan (Italy)

    2011-12-15

    Biodegradable magnesium alloy stents (MAS) can provide a great benefit for diseased vessels and avoid the long-term incompatible interactions between vessels and permanent stent platforms. However, the existing MAS showed insufficient scaffolding to the target vessels due to short degradation time. In this study, a three dimensional finite element model combined with a degradable material model of AZ31 (Al 0.03, Zn 0.01, Mn 0.002 and Mg balance, mass percentage) was applied to three different MAS designs including an already implanted stent (Stent A), an optimized design (Stent B) and a patented stent design (Stent C). One ring of each design was implanted through a simulation in a vessel model then degraded with the changing interaction between outer stent surface and the vessel. Results showed that a proper stent design (Stent B) can lead to an increase of nearly 120% in half normalized recoil time of the vessel compared to the Stent A; moreover, the expectation that the MAS design, with more mass and optimized mechanical properties, can increase scaffolding time was verified numerically. The Stent C has more materials than Stent B; however, it only increased the half normalized recoil time of the vessel by nearly 50% compared to the Stent A because of much higher stress concentration than that of Stent B. The 3D model can provide a convenient design and testing tool for novel magnesium alloy stents.

  11. Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels

    International Nuclear Information System (INIS)

    Wu Wei; Gastaldi, Dario; Yang Ke; Tan Lili; Petrini, Lorenza; Migliavacca, Francesco

    2011-01-01

    Biodegradable magnesium alloy stents (MAS) can provide a great benefit for diseased vessels and avoid the long-term incompatible interactions between vessels and permanent stent platforms. However, the existing MAS showed insufficient scaffolding to the target vessels due to short degradation time. In this study, a three dimensional finite element model combined with a degradable material model of AZ31 (Al 0.03, Zn 0.01, Mn 0.002 and Mg balance, mass percentage) was applied to three different MAS designs including an already implanted stent (Stent A), an optimized design (Stent B) and a patented stent design (Stent C). One ring of each design was implanted through a simulation in a vessel model then degraded with the changing interaction between outer stent surface and the vessel. Results showed that a proper stent design (Stent B) can lead to an increase of nearly 120% in half normalized recoil time of the vessel compared to the Stent A; moreover, the expectation that the MAS design, with more mass and optimized mechanical properties, can increase scaffolding time was verified numerically. The Stent C has more materials than Stent B; however, it only increased the half normalized recoil time of the vessel by nearly 50% compared to the Stent A because of much higher stress concentration than that of Stent B. The 3D model can provide a convenient design and testing tool for novel magnesium alloy stents.

  12. Physicochemical Properties of Flaxseed Fortified Extruded Bean Snack

    OpenAIRE

    Vadukapuram, Naveen; Hall, CliffordIII; Tulbek, Mehmet; Niehaus, Mary

    2014-01-01

    Milled flaxseed was incorporated (0?20%) into a combination of bean-corn flours and extruded in a twin screw extruder using corn curl method. Physicochemical parameters such as water activity, color, expansion ratio, bulk density, lipid content, and peroxide values of extruded snack were analyzed. Scanning electron micrographs were taken. Peroxide values and propanal contents were measured over four months of storage. Rancidity scores of extruded snack were measured using a trained panel. As ...

  13. Experiment using laboratory scale extruder. Fluid behavior in twin-screw extruder

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Miura, Akihiko

    1999-09-01

    All evidences and chemical data suggest non-chemical heating mechanism raised the filling temperature of the bituminized product. But they indicate the filling temperature was higher than before at the incident. We estimated the physical heat mechanism in the extruder. It is well known that the viscous-heating occurs in mixing process in extruders. In order to confirm the behavior of the torque and temperature, some experiment using laboratory scale extruder were performed. The result of the experiment using laboratory scale extruder showed that the phenomena of salt enrichment and salt accumulation were observed and they raised mixture temperature at the decreased feed rate. These phenomena depend on the feed rate. It is considered that they have large contribution to heat transportation and operational torque due to the friction between screw and mixture. In this report, all experiment result are explained. (author)

  14. A phenomenological study on twin screw extruders

    NARCIS (Netherlands)

    Janssen, L.P.B.M.

    1976-01-01

    Although more and more twin screw extruders are being used in the polymer industry, the theoretical background is relatively undeveloped. The literature abounds in contradictions and often informs the reader that all extrusion problems can be solved if a certain new design is considered. The

  15. Properties of extruded teff-oat composites

    Science.gov (United States)

    Teff is an ancient grain that is becoming more popular since it is gluten-free and a good source of vitamins, minerals and protein. Relatively little is known about the properties of extruded teff, although the high insoluble fiber and protein contents have been shown to limit expansion. The health ...

  16. The extrudate swell of HDPE: Rheological effects

    Science.gov (United States)

    Konaganti, Vinod Kumar; Ansari, Mahmoud; Mitsoulis, Evan; Hatzikiriakos, Savvas G.

    2017-05-01

    The extrudate swell of an industrial grade high molecular weight high-density polyethylene (HDPE) in capillary dies is studied experimentally and numerically using the integral K-BKZ constitutive model. The non-linear viscoelastic flow properties of the polymer resin are studied for a broad range of large step shear strains and high shear rates using the cone partitioned plate (CPP) geometry of the stress/strain controlled rotational rheometer. This allowed the determination of the rheological parameters accurately, in particular the damping function, which is proven to be the most important in simulating transient flows such as extrudate swell. A series of simulations performed using the integral K-BKZ Wagner model with different values of the Wagner exponent n, ranging from n=0.15 to 0.5, demonstrates that the extrudate swell predictions are extremely sensitive to the Wagner damping function exponent. Using the correct n-value resulted in extrudate swell predictions that are in excellent agreement with experimental measurements.

  17. Study on profile measurement of extruding tire tread by laser

    Science.gov (United States)

    Wang, LiangCai; Zhang, Wanping; Zhu, Weihu

    1996-10-01

    This paper presents a new 2D measuring system-profile measurement of extruding tire tread by laser. It includes the thickness measurement of extruding tire tread by laser and the width measurement of extruding tire tread using Moire Fringe. The system has been applied to process line of extruding tire tread. Two measuring results have been obtained. One is a standard profile picture of extruding tire tread including seven measuring values. Another one is a series of thickness and width values. When the scanning speed thickness range is thickness < +/- 0.1mm.

  18. Oxide films on magnesium and magnesium alloys

    International Nuclear Information System (INIS)

    Shih, T.-S.; Liu, J.-B.; Wei, P.-S.

    2007-01-01

    Magnesium alloys are very active and readily ignite during heating and melting. In this study, we discuss the combustion of magnesium and magnesium alloys and propose prospective anti-ignition mechanisms for magnesium alloys during the heating process. When magnesium and magnesium alloys were heated in air, the sample surfaces produced layers of thermally formed oxides. These thermally formed oxides played an important role in affecting the combustion of the magnesium and magnesium alloys. When magnesium was heated in air, brucite that formed in the early stage was then transformed into periclase by dehydroxylation. By extending the heating time, more periclase formed and increased in thickness which was associated with microcracks formation. When magnesium was heated in a protective atmosphere (SF 6 ), a film of MgF 2 formed at the interface between the oxide layer and the Mg substrate. This film generated an anti-ignition behavior which protected the substrate from oxidation. When solution-treated AZ80 alloy was heated, spinel developed at the interface between the thermally formed oxide layer and the Mg substrate, improving the anti-ignition properties of the substrate. In addition, we also explain the effects of beryllium in an AZB91 alloy on the ignition-proofing behavior

  19. Effect of cold rolling on microstructure and mechanical property of extruded Mg–4Sm alloy during aging

    Energy Technology Data Exchange (ETDEWEB)

    Li, Rongguang, E-mail: lirongguang1980@126.com [School of Mechanical Engineering, Shenyang University of Chemical Technology, Shenyang 110142 (China); Xin, Renlong; Chapuis, Adrien; Liu, Qing [School of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); Fu, Guangyan; Zong, Lin; Yu, Yongmei; Guo, Beitao; Guo, Shuguo [School of Mechanical Engineering, Shenyang University of Chemical Technology, Shenyang 110142 (China)

    2016-02-15

    Microstructure and mechanical properties of the Mg–4Sm (wt.%) alloy, prepared via combined processes of extrusion, cold rolling and aging, have been investigated. The hot extruded alloy exhibits a weak rare earth magnesium alloy texture with < 11 − 21 >//ED, while the cold-rolled alloy shows a stronger basal texture with < 0001 >//ND. Many tensile twins and double twins are observed in grains after rolling. The cold-rolled alloy shows a weak age-hardening response compared with the extruded alloy, which is the result of more precipitation in the twin boundary during aging. The rolled alloy exhibits almost no precipitate free zone during aging compared with the extruded alloy. The higher proof stress of the rolled alloy in peak-aged condition is attributed to the presence of twin boundaries, stronger basal texture, higher dislocation density, and the suppression of precipitate free zone compared with the extruded alloy. - Highlights: • No precipitate free zone appears in cold-rolled alloy after aging. • Segregation and precipitates are observed in twin boundaries and grain boundaries. • Cold-rolled alloy shows a weak age-hardening response.

  20. Effects of self-assembly of 3-phosphonopropionic acid, 3-aminopropyltrimethoxysilane and dopamine on the corrosion behaviors and biocompatibility of a magnesium alloy

    International Nuclear Information System (INIS)

    Pan, Chang-Jiang; Hou, Yu; Wang, Ya-Nan; Gao, Fei; Liu, Tao; Hou, Yan-Hua; Zhu, Yu-Fu; Ye, Wei; Wang, Ling-Ren

    2016-01-01

    Magnesium based alloys are attracting tremendous interests as the novel biodegradable metallic biomaterials. However, the rapid in vivo degradation and the limited surface biocompatibility restrict their clinical applications. Surface modification represents one of the important approaches to control the corrosion rate of Mg based alloys and to enhance the biocompatibility. In the present study, in order to improve the corrosion resistance and surface biocompatibility, magnesium alloy (AZ31B) was modified by the alkali heating treatment followed by the self-assembly of 3-phosphonopropionic acid, 3-aminopropyltrimethoxysilane (APTMS) and dopamine, respectively. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) indicated that the molecules were successfully immobilized on the magnesium alloy surface by the self-assembly. An excellent hydrophilic surface was obtained after the alkali heating treatment and the water contact angle increased to some degree after the self-assembly of dopamine, APTMS and 3-phosphonopropionic acid, however, the hydrophilicity of the modified samples was better than that of the pristine magnesium substrate. Due to the formation of the passivation layer after the alkali heating treatment, the corrosion resistance of the magnesium alloy was obviously improved. The corrosion rate further decreased to varying degrees after the self-assembly surface modification. The blood compatibility of the pristine magnesium was significantly improved after the surface modification. The hemolysis rate was reduced from 56% of the blank magnesium alloy to 18% of the alkali heating treated sample and the values were further reduced to about 10% of dopamine-modified sample and 7% of APTMS-modified sample. The hemolysis rate was below 5% for the 3-phosphonopropionic acid modified sample. As compared to the pristine magnesium alloy, fewer platelets were attached and activated on the

  1. Effects of self-assembly of 3-phosphonopropionic acid, 3-aminopropyltrimethoxysilane and dopamine on the corrosion behaviors and biocompatibility of a magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Chang-Jiang, E-mail: swjtupcj@163.com [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China); Hou, Yu; Wang, Ya-Nan [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China); Gao, Fei [Zhejiang Zylox Medical Devices Co., Ltd., Hangzhou 310000 (China); Liu, Tao; Hou, Yan-Hua; Zhu, Yu-Fu; Ye, Wei; Wang, Ling-Ren [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China)

    2016-10-01

    Magnesium based alloys are attracting tremendous interests as the novel biodegradable metallic biomaterials. However, the rapid in vivo degradation and the limited surface biocompatibility restrict their clinical applications. Surface modification represents one of the important approaches to control the corrosion rate of Mg based alloys and to enhance the biocompatibility. In the present study, in order to improve the corrosion resistance and surface biocompatibility, magnesium alloy (AZ31B) was modified by the alkali heating treatment followed by the self-assembly of 3-phosphonopropionic acid, 3-aminopropyltrimethoxysilane (APTMS) and dopamine, respectively. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) indicated that the molecules were successfully immobilized on the magnesium alloy surface by the self-assembly. An excellent hydrophilic surface was obtained after the alkali heating treatment and the water contact angle increased to some degree after the self-assembly of dopamine, APTMS and 3-phosphonopropionic acid, however, the hydrophilicity of the modified samples was better than that of the pristine magnesium substrate. Due to the formation of the passivation layer after the alkali heating treatment, the corrosion resistance of the magnesium alloy was obviously improved. The corrosion rate further decreased to varying degrees after the self-assembly surface modification. The blood compatibility of the pristine magnesium was significantly improved after the surface modification. The hemolysis rate was reduced from 56% of the blank magnesium alloy to 18% of the alkali heating treated sample and the values were further reduced to about 10% of dopamine-modified sample and 7% of APTMS-modified sample. The hemolysis rate was below 5% for the 3-phosphonopropionic acid modified sample. As compared to the pristine magnesium alloy, fewer platelets were attached and activated on the

  2. EFFECT OF ADDITION OF PROTEIN PREPARATIONS ON THE QUALITY OF EXTRUDED MAIZE EXTRUDATES

    Directory of Open Access Journals (Sweden)

    Elżbieta Rytel

    2013-02-01

    Full Text Available The method of extrusion enables enrichment of snacking products with protein preparation simultaneously providing a high quality of end products. Maize semolina with particle size of 500-1250 μm was used as raw material and as additives soybean protein isolate, distillery yeast Safethanol 3035 and laboratory obtained potato protein preparation. Snacks were determined for contents of dry matter, protein, fat as well as for texture, volume weight, bulk density and sensory traits. The application of 3% and 6% additions of protein preparations in extruded snacks production was found to exert a beneficial effect on their chemical composition without deteriorating sensory characteristics. The higher, 6%, addition of proteins to extrudates turned out to significantly reduce content of fat (by 18% and ash (by 50%, and to increase total protein content by 26%, on average, in the products examined as compared to the samples free of additives. The addition of potato protein to extrudates, especially at the higher dose (6%, significantly improved their consistency and texture, simultaneously diminishing the expansion ratio of ready products. The higher (6% addition of yeast protein applied in the production of extrudates resulted in slight deterioration of their taste and aroma, yet had a positive effect on the structure and expansion ratio of the ready products. The extrudates produced with the addition of soybean protein were characterized by a good expansion ratio, uniform structure, irrespective of preparation dose and simultaneously demonstrated lower bulk mass as compared to the other products obtained in the experiment.

  3. Fabrication and properties of high-strength extruded brass using elemental mixture of Cu-40% Zn alloy powder and Mg particle

    Energy Technology Data Exchange (ETDEWEB)

    Atsumi, Haruhiko, E-mail: atsumi-h@jwri.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Imai, Hisashi; Li, Shufeng; Kondoh, Katsuyoshi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Kousaka, Yoshiharu; Kojima, Akimichi [San-etsu Metals Co. Ltd., 1892 Ohta, Tonami, Toyama 939-1315 (Japan)

    2012-08-15

    In this paper, high-strength brass (Cu-40% Zn) alloy with magnesium (Mg) element was fabricated via powder technology process, and the effect of the additive Mg element on microstructural and mechanical properties of extruded brass alloys with {alpha}-{beta} duplex phases was investigated. Pre-mixed Cu-40% Zn alloy powder with 0.5-1.5 mass% pure Mg powder (Cu-40% Zn + Mg) was consolidated using a spark plasma sintering (SPS) equipment. SPSed Cu-40% Zn + Mg specimens consisted of {alpha}-{beta} duplex phases containing Mg(Cu{sub 1-x}Zn{sub x}){sub 2} intermetallic compounds (IMCs) with a mean particle size of 10-30 {mu}m in diameter. The IMCs were completely dissolved in the {alpha}-{beta} duplex phases by a heat-treatment at 973 K for 15 min; thus, in order to disperse fine IMCs on {alpha}-{beta} duplex phase matrix, the SPSed Cu-40% Zn + Mg specimens were pre-heated at the solid solutionizing condition, and immediately extruded. The extruded specimen exhibited fine {alpha}-{beta} duplex phases, containing very fine precipitates of the above Mg(Cu{sub 1-x}Zn{sub x}){sub 2} IMCs with 0.5-3.0 {mu}m in diameter. In particular, a mean grain size of the extruded Cu-40% Zn + 1.0% Mg specimen was 3.32 {mu}m analyzed using an electron back-scattered diffraction. Tensile properties of the extruded Cu-40% Zn + 1.0% Mg specimen were an average value of yield strength (YS): 328 MPa, ultimate tensile strength (UTS): 553 MPa, and 25% elongation. This indicated that the extruded Cu-40% Zn + 1.0% Mg specimen revealed the significantly high-strength properties compared to a conventional binary brass alloy with 229 MPa YS and 464 MPa UTS. A high strengthening mechanism of this wrought brass alloy was mainly due to the grain refinement because of a pinning effect by the fine Mg(Cu{sub 1-x}Zn{sub x}){sub 2} precipitates at the boundaries of each phase. -- Highlights: Black-Right-Pointing-Pointer New high-strength extruded brass alloy with Mg was fabricated via powder metallurgy. Black

  4. Manufacturing and characterization of magnesium alloy foils for use as anode materials in rechargeable magnesium ion batteries

    Science.gov (United States)

    Schloffer, Daniel; Bozorgi, Salar; Sherstnev, Pavel; Lenardt, Christian; Gollas, Bernhard

    2017-11-01

    The fabrication of thin foils of magnesium for use as anode material in rechargeable magnesium ion batteries is described. In order to improve its workability, the magnesium was alloyed by melting metallurgy with zinc and/or gadolinium, producing saturated solid solutions. The material was extruded to thin foils and rolled to a thickness of approximately 100 μm. The electrochemical behavior of Mg-1.63 wt% Zn, Mg-1.55 wt% Gd and Mg-1.02 wt% Zn-1.01 wt% Gd was studied in (PhMgCl)2-AlCl3/THF electrolyte by cyclic voltammetry and galvanostatic cycling in symmetrical cells. Analysis of the current-potential curves in the Tafel region and the linear region close to the equilibrium potential show almost no effect of the alloying elements on the exchange current densities (5-45 μA/cm2) and the transfer coefficients. Chemical analyses of the alloy surfaces and the electrolyte demonstrate that the alloying elements not only dissolve with the magnesium during the anodic half-cycles, but also re-deposit during the cathodic half-cycles together with the magnesium and aluminum from the electrolyte. Given the negligible corrosion rate in aprotic electrolytes under such conditions, no adverse effects of alloying elements are expected for the performance of magnesium anodes in secondary batteries.

  5. Physicochemical Properties of Flaxseed Fortified Extruded Bean Snack

    Directory of Open Access Journals (Sweden)

    Naveen Vadukapuram

    2014-01-01

    Full Text Available Milled flaxseed was incorporated (0–20% into a combination of bean-corn flours and extruded in a twin screw extruder using corn curl method. Physicochemical parameters such as water activity, color, expansion ratio, bulk density, lipid content, and peroxide values of extruded snack were analyzed. Scanning electron micrographs were taken. Peroxide values and propanal contents were measured over four months of storage. Rancidity scores of extruded snack were measured using a trained panel. As expected, omega-3 fatty acids and bulk density increased with increasing flaxseed fortification levels. Extrudates with more flaxseed had decreased lightness values and expansion ratios. However, only the 15 and 20% flaxseed containing extrudates had expansion ratios that were significantly (P≤0.05 different from the control. In general, no significant difference (P>0.05 in water activity values was observed in the flaxseed fortified extrudates, except in the navy-corn based extrudates. Peroxide values increased with increased flaxseed levels and over a storage period. However, propanal values did not change significantly in the 5–10% flaxseed fortified extrudates but increased in extrudates with higher levels of flaxseed. Rancidity scores were correlated with peroxide values and did not increase significantly during storage under nitrogen flushed conditions.

  6. Physicochemical Properties of Flaxseed Fortified Extruded Bean Snack.

    Science.gov (United States)

    Vadukapuram, Naveen; Hall, Clifford; Tulbek, Mehmet; Niehaus, Mary

    2014-01-01

    Milled flaxseed was incorporated (0-20%) into a combination of bean-corn flours and extruded in a twin screw extruder using corn curl method. Physicochemical parameters such as water activity, color, expansion ratio, bulk density, lipid content, and peroxide values of extruded snack were analyzed. Scanning electron micrographs were taken. Peroxide values and propanal contents were measured over four months of storage. Rancidity scores of extruded snack were measured using a trained panel. As expected, omega-3 fatty acids and bulk density increased with increasing flaxseed fortification levels. Extrudates with more flaxseed had decreased lightness values and expansion ratios. However, only the 15 and 20% flaxseed containing extrudates had expansion ratios that were significantly (P ≤ 0.05) different from the control. In general, no significant difference (P > 0.05) in water activity values was observed in the flaxseed fortified extrudates, except in the navy-corn based extrudates. Peroxide values increased with increased flaxseed levels and over a storage period. However, propanal values did not change significantly in the 5-10% flaxseed fortified extrudates but increased in extrudates with higher levels of flaxseed. Rancidity scores were correlated with peroxide values and did not increase significantly during storage under nitrogen flushed conditions.

  7. Magnesium oxychloride cement concrete

    Indian Academy of Sciences (India)

    TECS

    exposure to water and salt attack by replacing 10% magnesium chloride solution by magnesium sulphate solution ... Having tremendous load bearing capacity, it can withstand .... retention coefficients for similar concrete compositions.

  8. Calcium and magnesium determination

    International Nuclear Information System (INIS)

    Bhattacharya, S.K.

    1982-01-01

    The roles of calcium and magnesium in human health and disease have been extensively studied. Calcium and magnesium have been determined in biological specimens by atomic absorption spectroscopy using stiochiometric nitrous oxide-acetylene flame

  9. Choline Magnesium Trisalicylate

    Science.gov (United States)

    Choline magnesium trisalicylate is used to relieve the pain, tenderness, inflammation (swelling), and stiffness caused by arthritis and painful ... used to relieve pain and lower fever. Choline magnesium trisalicylate is in a class of nonsteroidal anti- ...

  10. Magnesium and Space Flight

    Directory of Open Access Journals (Sweden)

    Scott M. Smith

    2015-12-01

    Full Text Available Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female, 35 ± 7 years old. We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions.

  11. Magnesium and Space Flight

    Science.gov (United States)

    Smith, Scott M.; Zwart, Sara R.

    2015-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions. PMID:26670248

  12. Hot Roll Bonding of Aluminum to Twin-Roll Cast (TRC) Magnesium and Its Subsequent Deformation Behavior

    Science.gov (United States)

    Saleh, H.; Schmidtchen, M.; Kawalla, R.

    2018-02-01

    In an experiment in which twin-roll cast AZ31 magnesium alloy and commercial purity aluminum (AA 1050) sheets were bonded by hot rolling as Al/Mg/Al laminate composites, it was found that increasing the preheating temperatures up to 400 °C enhances the bonding strength of composites. Further increases in the preheating temperatures accelerate the magnesium oxide growth and thus reduce the bonding strength. The influence of the reduction ratio on the bonding properties was also studied, whereby it was observed that increasing the rolling reduction led to an increase in the bonding strength. The experimental results show that the optimum bonding strength can be obtained at rolling temperatures of 375-400 °C with a 50-60% reduction in thickness. On the other hand, the subsequent deformation behavior of composite was assessed using plane strain compression and deep drawing tests. We demonstrate that the composites produced using the optimum roll bonding conditions exhibited sufficient bonding during subsequent deformation and did not reveal any debonding at the bonding interface.

  13. An exponential material model for prediction of the flow curves of several AZ series magnesium alloys in tension and compression

    International Nuclear Information System (INIS)

    Fereshteh-Saniee, F.; Barati, F.; Badnava, H.; Fallah Nejad, Kh.

    2012-01-01

    Highlights: ► The exponential model can represent flow behaviors of AZ series Mg alloys very well. ► Strain rate sensitivities of AZ series Mg alloys in compression are nearly the same. ► Effect of zinc element on tensile activation energy is higher than on compressive one. ► Activation energies of AZ80 and AZ81 in tension were greater than in compression. ► Tensile and compressive rate sensitivities of AZ80 are not close to each other. -- Abstract: This paper is concerned with flow behaviors of several magnesium alloys, such as AZ31, AZ80 and AZ81, in tension and compression. The experiments were performed at elevated temperatures and for various strain rates. In order to eliminate the effect of inhomogeneous deformation in tensile and compression tests, the Bridgeman’s and numerical correction factors were respectively employed. A two-section exponential mathematical model was also utilized for prediction of flow stresses of different magnesium alloys in tension and compression. Moreover, based on the compressive flow model proposed, the peak stress and the relevant true strain could be estimated. The true stress and strain of the necking point can also be predicted using the corresponding relations. It was found that the flow behaviors estimated by the exponential flow model were encouragingly in very good agreement with experimental findings.

  14. Properties of extruded snacks supplemented with amaranth grain grits

    Directory of Open Access Journals (Sweden)

    Hadnađev Miroslav S.

    2009-01-01

    Full Text Available Extruded amaranth grain products have specific aroma and can be used as snack food, supplement in breakfast cereals, or as raw material for further processing. Extruded products of corn-amaranth grits blends, containing 20% or 50% amaranth grain grits, were produced by extrusion-cooking using a laboratory Brabender single screw extruder 20 DN. Extrudates with various texture were obtained. During extrusion process starch granules are partially degraded, hence rheological properties were examined. All samples exhibited thixotropic flow behavior. Those samples in which part of the corn grits was replaced with amaranth one had lower viscosity and exhibited lower level of structuration during storage.

  15. Preparation of an extruded fish snack using twin screw extruder and the storage characteristics of the product

    OpenAIRE

    Sharma, S.K.; Basu, S.

    2003-01-01

    A value-added extruded fish product was prepared with corn flour (80%) and fish (sciaenid) powder (20%), using a twin-screw extruder. The effect of different parameters like moisture, temperature, fish powder concentration, speed of the extruder and die-diameter on expansion ratio and crisp texture were studied. The storage characteristics of the final product were studied using three different types of packaging under nitrogen flushing. The study revealed that aluminum foil is the best packa...

  16. The nutritional properties of extruded and non-extruded corn fiber isolate.

    Science.gov (United States)

    Artz, W E; Warren, C C; Erdman, J W; Villota, R

    1990-01-01

    The feed efficiency and selected organ weights of rats fed diets containing 3 or 7% corn fiber, extruded corn fiber or silica were compared to rats fed a fiber-free diet. No significant differences were found in feed efficiency, spleen, lung or liver weights for any of the treatments relative to the fiber-free control diet.

  17. Fuzzy logic application for extruders replacement problem

    Directory of Open Access Journals (Sweden)

    Edison Conde Perez dos Santos

    2017-03-01

    Full Text Available In a scenario of uncertainty and imprecision, before taking the replacement analysis, a manager needs to consider the uncertain reality of a problem. In this scenario, the fuzzy logic makes an excellent option. Therefore, it is necessary to make a decision based on the fuzzy model. This study is based on the comparison of two methodologies used in the problem of asset replacement. The study, thus, was based on a comparison between two extruders for polypropylene yarn bibliopegy, comparing mainly the costs involved in maintaining the equipment.

  18. Interfacial Reaction During Dissimilar Joining of Aluminum Alloy to Magnesium and Titanium Alloys

    Science.gov (United States)

    Robson, J. D.; Panteli, A.; Zhang, C. Q.; Baptiste, D.; Cai, E.; Prangnell, P. B.

    Ultrasonic welding (USW), a solid state joining process, has been used to produce welds between AA6111 aluminum alloy and AZ31 magnesium alloys or titanium alloy Ti-6Al-4V. The mechanical properties of the welds have been assessed and it has been shown that it is the nature and thickness of the intermetallic compounds (IMCs) at the joint line that are critical in determining joint strength and particularly fracture energy. Al-Mg welds suffer from a very low fracture energy, even when strength is comparable with that of similar metal Mg-Mg welds, due to a thick IMC layer always being formed. It is demonstrated that in USW of Al-Ti alloy the slow interdiffusion kinetics means that an IMC layer does not form during welding, and fracture energy is greater. A model has been developed to predict IMC formation during welding and provide an understanding of the critical factors that determine the IMC thickness. It is predicted that in Al-Mg welds, most of the lMC thickening occurs whilst the IMC regions grow as separate islands, prior to the formation of a continuous layer.

  19. The Effect of Interlayer Materials on the Joint Properties of Diffusion-Bonded Aluminium and Magnesium

    Directory of Open Access Journals (Sweden)

    Stefan Habisch

    2018-02-01

    Full Text Available Diffusion bonding is a well-known technology for a wide range of advanced joining applications, due to the possibility of bonding different materials within a defined temperature-time-contact pressure regime in solid state. For this study, aluminium alloys AA 6060, AA 6082, AA 7020, AA 7075 and magnesium alloy AZ 31 B are used to produce dissimilar metal joints. Titanium and silver were investigated as interlayer materials. SEM and EDXS-analysis, micro-hardness measurements and tensile testing were carried out to examine the influence of the interlayers on the diffusion zone microstructures and to characterize the joint properties. The results showed that the highest joint strength of 48 N/mm2 was reached using an aluminium alloy of the 6000 series with a titanium interlayer. For both interlayer materials, intermetallic Al-Mg compounds were still formed, but the width and the level of hardness across the diffusion zone was significantly reduced compared to Al-Mg joints without interlayer.

  20. Texture and microstructure development during hot deformation of ME20 magnesium alloy: Experiments and simulations

    International Nuclear Information System (INIS)

    Li, X.; Al-Samman, T.; Mu, S.; Gottstein, G.

    2011-01-01

    Highlights: → Second phase precipitates in ME20 hindered activation of tensile twinning at 300 deg. C. → New off-basal sheet texture during c-axis compression at low Z conditions. → Ce amplifies the role of pyramidal -slip over prismatic slip at 0.3T m . → Prismatic slip becomes equally important to deformation at 0.6T m . → Accurate texture predictions using a cluster-type Taylor model with grain interaction. - Abstract: The influence of deformation conditions and starting texture on the microstructure and texture evolution during hot deformation of a commercial rare earth (RE)-containing magnesium alloy sheet ME20 was investigated and compared with a conventional Mg sheet alloy AZ31. For all the investigated conditions, the two alloys revealed obvious distinctions in the flow behavior and the development of texture and microstructure, which was primarily attributed to the different chemistry of the two alloys. The presence of precipitates in the fine microstructure of the ME20 sheet considerably increased the recrystallization temperature and suppressed tensile twinning. This gave rise to an uncommon Mg texture development during deformation. Texture simulation using an advanced cluster-type Taylor approach with consideration of grain interaction was employed to correlate the unique texture development in the ME20 alloy with the activation scenarios of different deformation modes.

  1. Synthesis of biphasic calcium phosphate containing nanostructured films by micro arc oxidation on magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Seyfoori, A., E-mail: klm.1985@yahoo.com [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, 16846-13114 Tehran (Iran, Islamic Republic of); National Cell Bank, Pasteur Institute of Iran, 13164 Tehran (Iran, Islamic Republic of); Mirdamadi, Sh.; Seyedraoufi, Z.S.; Khavandi, A. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, 16846-13114 Tehran (Iran, Islamic Republic of); Aliofkhazraei, M. [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, 14115-143 Tehran (Iran, Islamic Republic of)

    2013-10-01

    The present research reports the synthesis of an innovative nanostructured composite film containing biphasic calcium phosphate (BCP) by the micro arc oxidation (MAO) method on AZ31 magnesium alloy. Nanometric structure of the used hydroxyapatite powder and the coatings were characterized by means of transmission and field-emission scanning electron microscope, respectively. Electrochemical behaviors of the pure MAO and nanocomposite films were also evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization tests in simulated body fluid (SBF) environment. The results showed higher corrosion resistance of nanocomposite film compared to pure MAO coating, which was related to the blocking feature of the nanoparticles from the diffusing of the corrosive medium through the substrate. In addition, by immersing the specimens in simulated body fluid, greater apatite forming ability of the nanocomposite coating was proved. - Highlights: • Synthesis of innovative biphasic calcium phosphate containing nanostructured films via micro arc oxidation. • Nanocomposite film has lower degradation rate than pure MAO film. • Greater apatite forming ability for nanocomposite coating compared with pure MAO film is obtained.

  2. Layer-by-Layer Assembly of a Self-Healing Anticorrosion Coating on Magnesium Alloys.

    Science.gov (United States)

    Fan, Fan; Zhou, Chunyu; Wang, Xu; Szpunar, Jerzy

    2015-12-16

    Fabrication of self-healing anticorrosion coatings has attracted attention as it has the ability to extend the service life and prevent the substrate from corrosive attack. However, a coating system with a rapid self-healing ability and an improved corrosion resistance is rarely reported. In this work, we developed a self-healing anticorrosion coating on a magnesium alloy (AZ31). The coating comprises a cerium-based conversion layer, a graphene oxide layer, and a branched poly(ethylene imine) (PEI)/poly(acrylic acid) (PAA) multilayer. We incorporated the graphene oxide as corrosion inhibitors and used the PEI/PAA multilayers to provide the self-healing ability to the coating systems. X-ray diffraction (XRD) and Raman spectroscopy were used to characterize the composition of the multilayers, and scanning electron microscopy (SEM) was used to analyze the surface morphology. The electrochemical impedance spectroscopy (EIS) results illustrate the improved corrosion resistance of the coating. The proposed coating also has a rapid self-healing ability in the presence of water.

  3. Synthesis of biphasic calcium phosphate containing nanostructured films by micro arc oxidation on magnesium alloy

    International Nuclear Information System (INIS)

    Seyfoori, A.; Mirdamadi, Sh.; Seyedraoufi, Z.S.; Khavandi, A.; Aliofkhazraei, M.

    2013-01-01

    The present research reports the synthesis of an innovative nanostructured composite film containing biphasic calcium phosphate (BCP) by the micro arc oxidation (MAO) method on AZ31 magnesium alloy. Nanometric structure of the used hydroxyapatite powder and the coatings were characterized by means of transmission and field-emission scanning electron microscope, respectively. Electrochemical behaviors of the pure MAO and nanocomposite films were also evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization tests in simulated body fluid (SBF) environment. The results showed higher corrosion resistance of nanocomposite film compared to pure MAO coating, which was related to the blocking feature of the nanoparticles from the diffusing of the corrosive medium through the substrate. In addition, by immersing the specimens in simulated body fluid, greater apatite forming ability of the nanocomposite coating was proved. - Highlights: • Synthesis of innovative biphasic calcium phosphate containing nanostructured films via micro arc oxidation. • Nanocomposite film has lower degradation rate than pure MAO film. • Greater apatite forming ability for nanocomposite coating compared with pure MAO film is obtained

  4. Magnesium alloys: predicting in vivo corrosion with in vitro immersion testing.

    Science.gov (United States)

    Walker, Jemimah; Shadanbaz, Shaylin; Kirkland, Nicholas T; Stace, Edward; Woodfield, Tim; Staiger, Mark P; Dias, George J

    2012-05-01

    Magnesium (Mg) and its alloys have been proposed as degradable replacements to commonly used orthopedic biomaterials such as titanium alloys and stainless steel. However, the corrosion of Mg in a physiological environment remains a difficult characteristic to accurately assess with in vitro methods. The aim of this study was to identify a simple in vitro immersion test that could provide corrosion rates similar to those observed in vivo. Pure Mg and five alloys (AZ31, Mg-0.8Ca, Mg-1Zn, Mg-1Mn, Mg-1.34Ca-3Zn) were immersed in either Earle's balanced salt solution (EBSS), minimum essential medium (MEM), or MEM-containing 40 g/L bovine serum albumin (MEMp) for 7, 14, or 21 days before removal and assessment of corrosion by weight loss. This in vitro data was compared to in vivo corrosion rates of the same materials implanted in a subcutaneous environment in Lewis rats for equivalent time points. The results suggested that, for the alloys investigated, the EBSS buffered with sodium bicarbonate provides a rate of degradation comparable to those observed in vivo. In contrast, the addition of components such as (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (HEPES), vitamins, amino acids, and albumin significantly increased corrosion rates. Based on these findings, it is proposed that with this in vitro protocol, immersion of Mg alloys in EBSS can be used as a predictor of in vivo corrosion. Copyright © 2012 Wiley Periodicals, Inc.

  5. Microstructural characterizations and mechanical properties in underwater friction stir welding of aluminum and magnesium dissimilar alloys

    International Nuclear Information System (INIS)

    Zhao, Yong; Lu, Zhengping; Yan, Keng; Huang, Linzhao

    2015-01-01

    Highlights: • Aluminum and magnesium alloys were joined by underwater friction stir welding. • Underwater FSW was conducted to improve properties of joint with lower heat input. • Microstructures and mechanical properties of dissimilar joint were investigated. • Intermetallic compounds developed in the fracture interface were analyzed. • Fracture features of the tensile samples were analyzed. - Abstract: Formation of intermetallic compounds in the stir zone of dissimilar welds affects the mechanical properties of the joints significantly. In order to reduce heat input and control the amount and morphological characteristics of brittle intermetallic compounds underwater friction stir welding of 6013 Al alloy and AZ31 Mg alloy was carried out. Microstructures, mechanical properties, elements distribution, and the fracture surface of the joints were analyzed by optical microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy, etc. The result shows that sound dissimilar joint with good mechanical properties can be obtained by underwater friction stir welding. Al and Mg alloys were stirred together and undergone the process of recrystallization, forming complex intercalated flow patterns in the stir zone. Tensile strength of the dissimilar joint was up to 152.3 MPa. Maximum hardness (142HV) appeared in the middle of the centerline of the specimen. Intermetallic compounds layer consisting of Al 3 Mg 2 and Mg 17 Al 12 formed in the Al/Mg interface and resulted in the fracture of the joint

  6. Magnesium and Osteoporosis

    Directory of Open Access Journals (Sweden)

    Ferda Özdemir

    2004-03-01

    Full Text Available Osteoporosis (OP is a condition of bone fragility resulting from micro-architectural deterioration and decreased bone mass. OP depends on the interaction of genetic, hormonal, environmental and nutritional factors. Chronic low intakes of vitamin D and possibly magnesium, zinc, fluoride and vitamins K, B12, B6 and folic acid may predispose to osteoporosis. Magnesium is a mineral needed by every cell of your body. It helps maintain normal muscle and nerve function, keeps heart rhythm steady, and bones strong. Mg serves as co-factors for enzymes that help build bone matrix. Magnesium deficiency occurs due to excessive loss of magnesium in urine, gastrointestinal system disorders that cause a loss of magnesium or limit magnesium absorption, or a chronic low intake of magnesium. Signs of magnesium deficiency include confusion, disorientation, loss of appetite, depression, muscle contractions and cramps, tingling, numbness, abnormal heart rhythms, coronary spasm, and seizures. Magnesium deficiency alters calcium metabolism and the hormones that regulates calcium. Several studies have suggested that magnesium supplementation may improve bone mineral density and prevent fractures.

  7. Method and apparatus for extruding thermoplastic material

    International Nuclear Information System (INIS)

    McKelvey, J.M.

    1985-01-01

    A gear pump assisted screw conveyor extrusion system utilizing a cartridge heating device disposed axially within the screw and having the drives for the gear pump and the screw correlated in speed to create relatively little pressure in the thermoplastic material being extruded such that relatively little mechanical working thereof occurs. The thermoplastic material is melted in the screw conveyor primarily by heat transfer from the cartridge heater and the gear pump is utilized for conveying the melted material under pressure to a subsequent work station. A relatively deep material-conveying spiral channel is provided in the screw for maximized extrusion output per revolution of the screw and minimized mechanical energy generation by the screw. A motionless mixer may be employed intermediate the screw and the work station to homogenize the melted material for reducing temperature gradients therein. The system advantageously is capable of extruding material at a substantially greater rate and a lower material temperature and with substantially increased power economy than conventional systems utilizing a high pressure, externally heated screw conveyor portion

  8. Preparation and evaluation of enteric coated tablets of hot-melt extruded lansoprazole.

    Science.gov (United States)

    Alsulays, Bader B; Kulkarni, Vijay; Alshehri, Sultan M; Almutairy, Bjad K; Ashour, Eman A; Morott, Joseph T; Alshetaili, Abdullah S; Park, Jun-Bom; Tiwari, Roshan V; Repka, Michael A

    2017-05-01

    The objective of this work was to use hot-melt extrusion (HME) technology to improve the physiochemical properties of lansoprazole (LNS) to prepare stable enteric coated LNS tablets. For the extrusion process, we chose Kollidon ® 12 PF (K12) polymeric matrix. Lutrol ® F 68 was selected as the plasticizer and magnesium oxide (MgO) as the alkalizer. With or without the alkalizer, LNS at 10% drug load was extruded with K12 and F68. LNS changed to the amorphous phase and showed better release compared to that of the pure crystalline drug. Inclusion of MgO improved LNS extrudability and release and resulted in over 80% drug release in the buffer stage. Hot-melt extruded LNS was physically and chemically stable after 12 months of storage. Both formulations were studied for compatibility with Eudragit ® L100-55. The optimized formulation was compressed into a tablet followed by coating process utilizing a pan coater using L100-55 as an enteric coating polymer. In a two-step dissolution study, the release profile of the enteric coated LNS tablets in the acidic stage was less than 10% of the LNS, while that in the buffer stage was more than 80%. Drug content analysis revealed the LNS content to be 97%, indicating the chemical stability of the enteric coated tablet after storage for six months. HME, which has not been previously used for LNS, is a valuable technique to reduce processing time in the manufacture of enteric coated formulations of an acid-sensitive active pharmaceutical ingredient as compared to the existing methods.

  9. Microstructures, mechanical properties and corrosion resistances of extruded Mg-Zn-Ca-xCe/La alloys.

    Science.gov (United States)

    Tong, L B; Zhang, Q X; Jiang, Z H; Zhang, J B; Meng, J; Cheng, L R; Zhang, H J

    2016-09-01

    Magnesium alloys are considered as good candidates for biomedical applications, the influence of Ce/La microalloying on the microstructure, mechanical property and corrosion performance of extruded Mg-5.3Zn-0.6Ca (wt%) alloy has been investigated in the current study. After Ce/La addition, the conventional Ca2Mg6Zn3 phases are gradually replaced by new Mg-Zn-Ce/La-(Ca) phases (T1'), which can effectively divide the Ca2Mg6Zn3 phase. The Ca2Mg6Zn3/T1' structure in Mg-Zn-Ca-0.5Ce/La alloy is favorably broken into small particles during the extrusion, resulting in an obvious refinement of secondary phase. The dynamic recrystallized grain size is dramatically decreased after 0.5Ce/La addition, and the tensile yield strength is improved, while further addition reverses the effect, due to the grain coarsening. However, the corrosion resistance of extruded Mg-Zn-Ca alloy deteriorates after Ce/La addition, because the diameter of secondary phase particle is remarkably decreased, which increases the amount of cathodic sites and accelerates the galvanic corrosion process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Magnesium motorcycle applications

    International Nuclear Information System (INIS)

    Jianyong Cao; Zonghe Zhang; Dongxia Xiang; Jun Wang

    2005-01-01

    Magnesium, the lightest engineering structural metal, has been comprehensively used in castings of aviation and aerospace, communication and transportation, and IT components. This paper introduced the history, advantages and difficulties of magnesium castings for motorcycle application as well as its application state in China. It also indicated the production situation of magnesium motorcycle components in CQMST and difficulties need to overcome for further development. (orig.)

  11. Magnesium in pregnancy.

    Science.gov (United States)

    Dalton, Lynne M; Ní Fhloinn, Deirdre M; Gaydadzhieva, Gergana T; Mazurkiewicz, Ola M; Leeson, Heather; Wright, Ciara P

    2016-09-01

    Magnesium deficiency is prevalent in women of childbearing age in both developing and developed countries. The need for magnesium increases during pregnancy, and the majority of pregnant women likely do not meet this increased need. Magnesium deficiency or insufficiency during pregnancy may pose a health risk for both the mother and the newborn, with implications that may extend into adulthood of the offspring. The measurement of serum magnesium is the most widely used method for determining magnesium levels, but it has significant limitations that have both hindered the assessment of deficiency and affected the reliability of studies in pregnant women. Thus far, limited studies have suggested links between magnesium inadequacy and certain conditions in pregnancy associated with high mortality and morbidity, such as gestational diabetes, preterm labor, preeclampsia, and small for gestational age or intrauterine growth restriction. This review provides recommendations for further study and improved testing using measurement of red cell magnesium. Pregnant women should be counseled to increase their intake of magnesium-rich foods such as nuts, seeds, beans, and leafy greens and/or to supplement with magnesium at a safe level. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Effect of heat treatment on elevated temperature tensile and creep properties of the extruded Mg–6Gd–4Y–Nd–0.7Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Lin, E-mail: yuanlin@hit.edu.cn; Shi, Wenchao; Jiang, WenMao; Zhao, Zhe; Shan, Debin

    2016-03-21

    The light and heavy rare earth elements are added to the magnesium alloys to improve the strengths and the creep resistance. The age hardening behaviors of the extruded Mg–6Gd–4Y–Nd–0.7Zr alloy aged at 200, 225 and 250 °C were investigated. Tensile tests and creep tests of the extruded and extruded-T5 Mg–6Gd–4Y–Nd–0.7Zr were carried out at 150–300 °C. The relationship between the microstructure and the properties of the extruded-T5 Mg–6Gd–4Y–Nd–0.7Zr alloy was studied. The result shows that the extruded Mg–6Gd–4Y–Nd–0.7Zr (contained less than 10 wt% Gd) peak aged at 225 °C for 72 h has the excellent creep resistance and high strengths with the UTS more than 350 MPa from room temperature to 200 °C, which are correlative with the precipitates. The high dense and uniform distribution of β′ phase with good heat stability precipitates inhibiting the dislocation motion contributes to age hardening, accelerates the ageing hardening response and increases the creep resistance. The artificially aged (T5) at low temperature further creep tested and tensile tested at higher temperatures decreases the resistance to the dislocation motion and the grain boundary sliding, resulting in the reduction in creep properties and strengths of the extruded-T5 Mg–6Gd–4Y–Nd–0.7Zr alloy above 225 °C.

  13. Mechanism and Microstructure of Oxide Fluxes for Gas Tungsten Arc Welding of Magnesium Alloy

    Science.gov (United States)

    Liu, L. M.; Zhang, Z. D.; Song, G.; Wang, L.

    2007-03-01

    Five single oxide fluxes—MgO, CaO, TiO2, MnO2, and Cr2O3—were used to investigate the effect of active flux on the depth/width ratio in AZ31B magnesium alloy. The microstructure and mechanical property of the tungsten inert gas (TIG) welding seam were studied. The oxygen content in the weld seam and the arc images during the TIG welding process were analyzed. A series of emission spectroscopy of weld arc for TIG welding for magnesium with and without flux were developed. The results showed that for the five single oxide fluxes, all can increase the weld penetration effectively and grain size in the weld seam of alternating current tungsten inert gas (ACTIG) welding of the Mg alloy. The oxygen content of the welds made without flux is not very different from those produced with oxide fluxes not considering trapped oxide. However, welds that have the best penetration have a relatively higher oxygen content among those produced with flux. It was found that the arc images with the oxide fluxes were only the enlarged form of the arc images without flux; the arc constriction was not observed. The detection of arc spectroscopy showed that the metal elements in the oxides exist as the neutral atom or the first cation in the weld arc. This finding would influence the arc properties. When TIG simulation was carried out on a plate with flux applied only on one side, the arc image video showed an asymmetric arc, which deviated toward the flux free side. The thermal stability, the dissociation energy, and the electrical conductivity of oxide should be considered when studying the mechanism for increased TIG flux weld penetration.

  14. Magnesium Technology : Preface

    NARCIS (Netherlands)

    Sillekens, W.H.; Agnew, S.R.; Neelameggham, N.R.; Mathaudhu, S.N.

    2011-01-01

    The Magnesium Technology Symposium, which takes place every year at the TMS Annual Meeting & Exhibition, is one of the largest yearly gatherings of magnesium specialists in the world. Papers are presented in all aspects of the field, ranging from primary production to applications to recycling.

  15. Nutrition and magnesium absorption

    NARCIS (Netherlands)

    Brink, E.J.

    1992-01-01

    The influence of various nutrients present in dairy products and soybean-based products on absorption of magnesium has been investigated. The studies demonstrate that soybean protein versus casein lowers apparent magnesium absorption in rats through its phytate component. However, true

  16. Corrosion resistance and biocompatibility of magnesium alloy modified by alkali heating treatment followed by the immobilization of poly (ethylene glycol), fibronectin and heparin

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Changjiang, E-mail: panchangjiang@hyit.edu.cn [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China); Hu, Youdong [Department of Geriatrics, The Affiliated Huai' an Hospital of Xuzhou Medical College, Huai' an 223003 (China); Hou, Yu; Liu, Tao; Lin, Yuebin; Ye, Wei; Hou, Yanhua; Gong, Tao [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China)

    2017-01-01

    In recent years, magnesium alloys are attracting more and more attention as a kind of biodegradable metallic biomaterials, however, their uncontrollable biodegradation speed in vivo and the limited surface biocompatibility hinder their clinical applications. In the present study, with the aim of improving the corrosion resistance and biocompatibility, the magnesium alloy (AZ31B) surface was modified by alkali heating treatment followed by the self-assembly of 3-aminopropyltrimethoxysilane (APTMS). Subsequently, poly (ethylene glycol) (PEG) and fibronectin or fibronectin/heparin complex were sequentially immobilized on the modified surface. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed that the above molecules were successfully immobilized on the magnesium alloy surface. An excellent hydrophilic surface was obtained after the alkali heating treatment while the hydrophilicity decreased to some degree after the self-assembly of APTMS, the surface hydrophilicity was gradually improved again after the immobilization of PEG, fibronectin or fibronectin/heparin complex. The corrosion resistance of the control magnesium alloy was significantly improved by the alkali heating treatment. The self-assembly of APTMS and the following immobilization of PEG further enhanced the corrosion resistance of the substrates, however, the grafting of fibronectin or fibronectin/heparin complex slightly lowered the corrosion resistance. As compared to the pristine magnesium alloy, the samples modified by the immobilization of PEG and fibronectin/heparin complex presented better blood compatibility according to the results of hemolysis assay and platelet adhesion as well as the activated partial thromboplastin time (APTT). In addition, the modified substrates had better cytocompatibility to endothelial cells due to the improved anticorrosion and the introduction of fibronectin. The substrates

  17. On the deformation twinning of Mg AZ31B

    DEFF Research Database (Denmark)

    Abdolvand, Hamidreza; Majkut, Marta; Oddershede, Jette

    2015-01-01

    and grain volumes are used to construct various 3D microstructures and model them with a Crystal Plasticity Finite Element (CPFE) code. It is observed that the average grain-resolved stress did not always select the highest ranked Schmid factor twin variant. In fact, the contribution of lower ranked......Crystals with a hexagonal close-packed (HCP) structure are inherently anisotropic, and have a limited number of independent slip systems, which leads to strong deformation textures and reduced formability in polycrystalline products. Tension along the c-axis of the crystal ideally activates......-ray diffraction (3DXRD) was used to map the center-of-mass positions, volumes, orientations, elastic strains, and stress tensors of over 1400 grains in-situ up to a true strain of 1.4%. More than 700 tensile twins were observed to form in the mapped volume under deformation. The measured center-of-mass positions...

  18. Evaluation of the amount of apically extruded debris during ...

    African Journals Online (AJOL)

    2015-04-06

    Apr 6, 2015 ... Objective: To evaluate the amount of apically extruded debris during retreatment (with or without solvent) of root canals filled by two ... These filling materials can be used with several obturation .... The tip of the master cone.

  19. Acceptability and characterization of extruded pinto, navy and black beans.

    Science.gov (United States)

    Simons, Courtney W; Hall, Clifford; Tulbek, Mehmet; Mendis, Mihiri; Heck, Taylor; Ogunyemi, Samuel

    2015-08-30

    Consumption of dry beans has been relatively flat over the last decade. Creating new bean products may increase the consumption of beans and allow more consumers to obtain the health benefits of beans. In this study, pinto, navy and black beans were milled and the resulting flours extruded into puffs. Unflavored extruded puffs were evaluated by untrained panelists using a hedonic scale for appearance, flavor, texture and overall acceptability. The compositions of raw flours and extrudates were characterized. Sensory results indicated that all beans met or exceeded the minimum requirement for acceptability. Overall acceptability of navy and pinto beans was not significantly different, while acceptability of black bean puffs was significantly lower. Total protein (198-217 g kg(-1)) in extrudates was significantly different among the three beans. Total starch ranged from 398 to 406 g kg(-1) and was not significantly different. Resistant starch, total extractable lipid and raffinose contents were significantly reduced by extrusion. Extrusion did not affect crude fiber and phytic acid contents. The minimal effects on protein and fiber contents, the significant reduction in raffinose content and the acceptability of the unflavored extruded puffs support using various bean flours as ingredients in extruded puffed products. © 2014 Society of Chemical Industry.

  20. Optimization and Numerical Simulation of Outlet of Twin Screw Extruder

    Directory of Open Access Journals (Sweden)

    Zhang Yuan

    2018-01-01

    Full Text Available In view of the unreasonable design of non-intermeshing counter-rotating twin screw extruder die, the problem of productivity reduction was discussed. Firstly, the mathematical model of extruder productivity was established. The extruder die model was improved. Secondly, the force analysis of twin screw extruder physical model was carried out. Meanwhile, A combination of mechanical analysis and numerical simulation was adopted. The velocity field, pressure field and viscosity field were calculated by Mini-Element interpolation method, linear interpolation method and Picard iterative convergence method respectively. The influence of die model on the quantity of each field before and after improvement was analyzed. The results show that the improved model had increased the rheological parameters of the flow field, the leakage and reverse flow decreased. Through post-processing calculation, the productivity of the third dies extruder was 10% higher than before. The research results provide a theoretical basis for the design and optimization of die model of non intermeshing counter-rotating twin screw extruder.

  1. Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Guo, H.F. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: Guohf@hit.edu.cn; An, M.Z. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: mzan@hit.edu.cn; Huo, H.B. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Xu, S. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Wu, L.J. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2006-09-15

    Micro-arc oxidation (MAO) of AZ31B magnesium alloys was studied in alkaline silicate solutions at constant applied current densities. The microstructure, phase composition and elemental distribution of ceramic coatings were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDX). There are two inflections in the voltage-time response, three regions were identifiable and each of the regions was almost linear. The pores with different shapes distributed all over the coating surface, the number of the pores was decreasing, while the diameter was apparently increasing with prolonged MAO treatment time. There were also cracks on the coating surface, resulting from the rapid solidification of the molten oxide. The ceramic coating was comprised of two layers, an outer loose layer and an inner dense layer. The ceramic coating was mainly composed of forsterite phase Mg{sub 2}SiO{sub 4} and MgO; the formation of MgO was similar to conversional anodizing technology, while formation of Mg{sub 2}SiO{sub 4} was attributed to a high temperature phase transformation reaction. Presence of Si and O indicated that the electrolyte components had intensively incorporated into coatings.

  2. Magnesium in diet

    Science.gov (United States)

    ... sources of magnesium: Fruits or vegetables (such as bananas, dried apricots, and avocados) Nuts (such as almonds ... deficiency: Low blood calcium level (hypocalcemia) Low blood potassium level (hypokalemia) Recommendations These are the recommended daily ...

  3. Replacement of steel parts with extruded aluminum alloys in an automobile

    Science.gov (United States)

    Daggula, Manikantha Reddy

    Over the past years, vehicle emissions have shown a negative impact on environment and human health. A new strategy has been used by automakers to reduce a vehicle's weight which significantly reduce fuel consumption and C02 emissions. A very light car consumes very less fuel as it needs to overcome less inertia, decreasing the required power to movie the vehicle. Reducing weight is the easiest way to increase fuel economy and making it by just 10% can increase its efficiency 6 to 8 percent. For a normal scale 80% of vehicles weight is shared among chassis, power train and other exterior components. Almost 60% of the vehicles weight is comprised of steel and the remaining is with cast and extruded aluminum and magnesium alloys. Our main aim is to look for the parts like Fuel tank holder, Fuel filler neck, Turbo inlet assembly, and Brake lines, Dash board frame which are made from steel and replace them with extruded aluminum alloys, to analyze a conventional rear wheel aluminum drive shaft and replace it with a new design and with a new aluminum alloy. The current project involves dismantling an automobile and looking for feasible steel parts and making samples, analyzing the hardness of the samples. These parts are optimally analyzed using Ansys Finite element analysis tool, these parts are subjected to the constraints such as three-point bending, tensile testing, hydrostatic pressure and also torsional stress action on the drive shaft, the deformation and stress are observed in these parts. The results show the current steel parts can be replaced with 3000 series aluminum alloy and the drive shaft can be replaced with new design with 6061-T6 Al-alloy which decreases 25% of the shaft weight.

  4. Apically-extruded debris using the ProTaper system.

    Science.gov (United States)

    Azar, Nasim Gheshlaghi; Ebrahimi, Gholamreza

    2005-04-01

    The purpose of this in vitro study was to determine the quantity of debris and irrigant extruded apically using the ProTaper system compared to ProFiles and K-Flexofiles. Thirty-six mesio-buccal root canals of human mandibular molars were selected and divided into three groups of twelve canals. Two groups were instrumented with ProFiles and ProTapers according to the manufacturer's instructions. The other group was instrumented with K-Flexofiles using the step-back technique. A standard amount of irrigant was used for each canal. Apically-extruded debris and irrigant was collected in pre-weighed vials. The mean weight of extruded debris and irrigant for each group was statistically analysed using Student's t-test and one-way ANOVA. All instrumentation techniques produced extruded debris and irrigant. Although the mean amount of extrusion with the step-back technique was higher than the two rotary systems, there was no significant difference between the three groups (p > 0.05). NiTi rotary systems were associated with less apical extrusion, but were not significantly better than hand file instrumentation. All techniques extruded debris.

  5. Bio rapid prototyping by extruding/aspirating/refilling thermoreversible hydrogel

    International Nuclear Information System (INIS)

    Iwami, K; Noda, T; Ishida, K; Umeda, N; Morishima, K; Nakamura, M

    2010-01-01

    This paper reports a method for rapid prototyping of cell tissues, which is based on a system that extrudes, aspirates and refills a mixture of cells and thermoreversible hydrogel as a scaffold. In the extruding mode, a cell-mixed scaffold solution in the sol state is extruded from a cooled micronozzle into a temperature-controlled substrate, which keeps the scaffold in the gel state. In the aspiration mode, the opposite process is performed by Bernoulli suction. In the refilling mode, the solution is extruded into a groove created in the aspiration mode. The minimum width of extruded hydrogel pattern is 114 ± 15 μm by employing a nozzle of diameter 100 μm, and that of aspirated groove was 355 ± 10 μm using a 500 μm-diameter nozzle. Gum arabic is mixed with the scaffold solution to avoid peeling-off of the gel pattern from the substrate. Patterning of Sf-9 cell tissue is demonstrated, and the stability of the patterned cell is investigated. This system offers a procedure for rapid prototyping and local modification of cell scaffolds for tissue engineering.

  6. Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery**

    OpenAIRE

    Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S; Hwang, Son-Jong

    2012-01-01

    Beyond hydrogen storage: The first example of reversible magnesium deposition/stripping onto/from an inorganic salt was seen for a magnesium borohydride electrolyte. High coulombic efficiency of up to 94 % was achieved in dimethoxyethane solvent. This Mg(BH_4)_2 electrolyte was utilized in a rechargeable magnesium battery.

  7. INVESTIGATION OF MAGNESIUM ALLOYS MACHINABILITY

    Directory of Open Access Journals (Sweden)

    Berat Barıs BULDUM

    2013-01-01

    Full Text Available Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminum, copper and steel. Magnesium alloy developments have traditionally been driven by industry requirements for lightweight materials to operate under increasingly demanding conditions. Magnesium alloys have always been attractive to designers due to their low density, only two thirds that of aluminium and its alloys [1]. The element and its alloys take a big part of modern industry needs. Especially nowadays magnesium alloys are used in automotive and mechanical (trains and wagons manufacture, because of its lightness and other features. Magnesium and magnesium alloys are the easiest of all metals to machine, allowing machining operations at extremely high speed. All standard machining operations such as turning, drilling, milling, are commonly performed on magnesium parts.

  8. Aluminum Hydroxide and Magnesium Hydroxide

    Science.gov (United States)

    Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...

  9. Analysis of the Retained Gas Sample (RGS) Extruder Assembly

    International Nuclear Information System (INIS)

    Coverdell, B.L.

    1995-09-01

    In order for the Retained Gas Sample (RGS) Extruder Assembly to be safely used it was determined by the cognizant engineer that analysis was necessary. The use of the finite-element analysis (FEA) progarm COSMOS/M version 1.71 permitted a quick, easy, and detailed stress analysis of the RGS Extruder Assembly. The FEA model is a three dimensional model using the SHELL4T element type. From the results of the FEA, the cognizant engineer determined that the RGS extruder would be rated at 10,000 lbf and load tested to 12,000 lbf. The respective input and output files for the model are EXTR02.GFM and EXTR02.OUT and can be found on the attached tape

  10. Chemical modification and blending of polymers in an extruder reactor

    International Nuclear Information System (INIS)

    Prut, Eduard V; Zelenetskii, Alexandr N

    2001-01-01

    Chemical modification and blending of polymers in an extruder reactor are discussed. Relationships between the parameters affecting the reaction kinetics, viz., mixing time, duration of a chemical reaction and the residence time of the system in the extruder reactor, and the structure of the materials produced are analysed. The mechanisms of (i) grafting of low-molecular-mass compounds onto polymers; (ii) reactions between terminal groups of different polymers and (iii) transesterification and interchange reactions are considered. The factors affecting the mechanism of dynamic vulcanisation and the properties of thermoplastic elastomers are identified. Solid-phase reactions of polysaccharides in an extruder are discussed. The priority aspects of studies on the chemical modification and blending of polymers are noted. The bibliography includes 90 references.

  11. Extruder system and method for treatment of a gaseous medium

    Energy Technology Data Exchange (ETDEWEB)

    Silvi, Norberto; Perry, Robert James; Singh, Surinder Prabhjot; Balch, Gary Stephen; Westendorf, Tiffany Elizabeth Pinard

    2016-04-05

    A system for treatment of a gaseous medium, comprises an extruder having a barrel. The extruder further comprises a first inlet port, a second inlet port, and a plurality of outlet ports coupled to the barrel. The first inlet port is configured for feeding a lean sorbent, the second inlet port is configured for feeding a gaseous medium, and the plurality of outlet ports are configured for releasing a plurality of components removed from the gaseous medium. Further, the extruder comprises a plurality of helical elements coupled to a plurality of kneading elements, mounted on a shaft, and disposed within the barrel. The barrel and the plurality of helical and kneading elements together form an absorption unit and a desorption unit. The first and second inlet ports are formed in the absorption unit and the plurality of outlet ports are formed in the absorption and desorption units.

  12. Quality improvement of melt extruded laminar systems using mixture design.

    Science.gov (United States)

    Hasa, D; Perissutti, B; Campisi, B; Grassi, M; Grabnar, I; Golob, S; Mian, M; Voinovich, D

    2015-07-30

    This study investigates the application of melt extrusion for the development of an oral retard formulation with a precise drug release over time. Since adjusting the formulation appears to be of the utmost importance in achieving the desired drug release patterns, different formulations of laminar extrudates were prepared according to the principles of Experimental Design, using a design for mixtures to assess the influence of formulation composition on the in vitro drug release from the extrudates after 1h and after 8h. The effect of each component on the two response variables was also studied. Ternary mixtures of theophylline (model drug), monohydrate lactose and microcrystalline wax (as thermoplastic binder) were extruded in a lab scale vertical ram extruder in absence of solvents at a temperature below the melting point of the binder (so that the crystalline state of the drug could be maintained), through a rectangular die to obtain suitable laminar systems. Thanks to the desirability approach and a reliability study for ensuring the quality of the formulation, a very restricted optimal zone was defined within the experimental domain. Among the mixture components, the variation of microcrystalline wax content played the most significant role in overall influence on the in vitro drug release. The formulation theophylline:lactose:wax, 57:14:29 (by weight), selected based on the desirability zone, was subsequently used for in vivo studies. The plasma profile, obtained after oral administration of the laminar extruded system in hard gelatine capsules, revealed the typical trend of an oral retard formulation. The application of the mixture experimental design associated to a desirability function permitted to optimize the extruded system and to determine the composition space that ensures final product quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Physical and functional properties of arrowroot starch extrudates.

    Science.gov (United States)

    Jyothi, A N; Sheriff, J T; Sajeev, M S

    2009-03-01

    Arrowroot starch, a commercially underexploited tuber starch but having potential digestive and medicinal properties, has been subjected to extrusion cooking using a single screw food extruder. Different levels of feed moisture (12%, 14%, and 16%) and extrusion temperatures (140, 150, 160, 170, 180, and 190 degrees C) were used for extrusion. The physical properties--bulk density, true density, porosity, and expansion ratio; functional properties such as water absorption index, water solubility index, oil absorption index, pasting, rheological, and textural properties; and in vitro enzyme digestibility of the extrudates were determined. The expansion ratio of the extrudates ranged from 3.22 to 6.09. The water absorption index (6.52 to 8.85 g gel/g dry sample), water solubility index (15.92% to 41.31%), and oil absorption index (0.50 to 1.70 g/g) were higher for the extrudates in comparison to native starch (1.81 g gel/g dry sample, 1.16% and 0.60 g/g, respectively). The rheological properties, storage modulus, and loss modulus of the gelatinized powdered extrudates were significantly lower (P extruded at higher feed moisture and lower extrusion temperature, whereas snap force and energy were higher at lower feed moisture and temperature. There was a significant decrease in the percentage digestibility of arrowroot starch (30.07% after 30 min of incubation with the enzyme) after extrusion (25.27% to 30.56%). Extrusion cooking of arrowroot starch resulted in products with very good expansion, color, and lower digestibility, which can be exploited for its potential use as a snack food.

  14. Dealloying, Microstructure and the Corrosion/Protection of Cast Magnesium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sieradzki, Karl [Arizona State Univ., Mesa, AZ (United States); Aiello, Ashlee [Arizona State Univ., Mesa, AZ (United States); McCue, Ian [Arizona State Univ., Mesa, AZ (United States)

    2017-12-15

    The purpose of this project was to develop a greater understanding of micro-galvanic corrosion effects in cast magnesium alloys using both experimental and computational methods. Experimental accomplishments have been made in the following areas of interest: characterization, aqueous free-corrosion, atmospheric corrosion, ionic liquid dissolution, rate kinetics of oxide dissolution, and coating investigation. Commercial alloys (AZ91D, AM60, and AZ31B), binary-phase alloys (αMg-2at.%Al, αMg-5at.%Al, and Mg-8at.%Al), and component phases (Mg, Al, β-Mg, β-1%Zn, MnAl3) were obtained and characterized using energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Full immersion in aqueous chloride was used to characterize the corrosion behavior of alloys. Rotating disc electrodes (RDEs) were used to observe accelerated long-term corrosion behavior. Al surface redistribution for freely corroded samples was analyzed using SEM, EDS, and lithium underpotential deposition (Li UPD). Atmospheric corrosion was observed using contact angle evolution, overnight pH monitoring, and surface pH evolution studies. Ionic liquid corrosion characterization was performed using linear sweep voltammetry and potentiostatic dissolution in 150° choline chloride-urea (cc-urea). Two surface coatings were investigated: (1) Li-carbonate and (2) cc-urea. Li-carbonate coatings were characterized using X-ray photoelectron spectroscopy (XPS), SEM, and aqueous free corrosion potential monitoring. Hydrophobic cc-urea coatings were characterized using contact angle measurements and electrochemical impedance spectroscopy. Oxide dissolution rate kinetics were studied using inductively coupled plasma mass spectroscopy (ICP-MS). Computational accomplishments have been made through the development of Kinetic Monte Carlo (KMC) simulations which model time- and composition-dependent effects on the microstructure due to spatial redistribution of alloying

  15. Magnesium for Hydrogen Storage

    DEFF Research Database (Denmark)

    Vigeholm, B.; Kjøller, John; Larsen, Bent

    1980-01-01

    The reaction of hydrogen with commercially pure magnesium powder (above 99.7%) was investigated in the temperature range 250–400 °C. Hydrogen is readily sorbed above the dissociation pressure. During the initial exposure the magnesium powder sorbs hydrogen slowly below 400 °C but during the second...... that the particles do not disintegrate is explained by a sintering process at the working temperatures. Exposure to air does not impair the sorption ability; on the contrary, it appears that surface oxidation plays an important role in the reaction. Some handling problems, e.g. the reaction of the hydride with water...

  16. An in vitro comparison of apically extruded debris using three rotary nickel-titanium instruments

    Directory of Open Access Journals (Sweden)

    Tamer Tasdemir

    2010-09-01

    Conclusion: According to this study, all instrumentation techniques apically extruded debris through the apical foramen. However, the BioRaCe instruments induced less extruded debris than the ProTaper Universal and Mtwo rotary systems.

  17. Magnesium fluoride recovery method

    International Nuclear Information System (INIS)

    Gay, R.L.; McKenzie, D.E.

    1989-01-01

    A method of obtaining magnesium fluoride substantially free from radioactive uranium from a slag formed in the production of metallic uranium by the reduction of depleted uranium tetrafluoride with metallic magnesium in a retort wherein the slag contains the free metals magnesium and uranium and also oxides and fluorides of the metals. The slag having a radioactivity level of at least about 7,000 rhoCi/gm. The method comprises the steps of: grinding the slag to a median particle size of about 200 microns; contacting the ground slag in a reaction zone with an acid having a strength of from about 0.5 to 1.5 N for a time of from about 4 to about 20 hours in the presence of a catalytic amount of iron; removing the liquid product; treating the particulate solid product; repeating the last two steps at least one more time to produce a solid residue consisting essentially of magnesium fluoride substantially free of uranium and having a residual radioactivity level of less than about 1000 rhoCi/gm

  18. High-strength wrought magnesium alloy with dense nano-scale spherical precipitate

    Institute of Scientific and Technical Information of China (English)

    YU WenBin; CHEN ZhiQian; CHENG NanPu; GAN BingTai; HE Hong; LI XueLian; HU JinZhu

    2007-01-01

    This paper reported the influences of Yb addition on the precipitate and mechanical properties of wrought magnesium alloy ZK60. The ingots of ZK60-1.78Yb (wt%,0.26 at%) alloys were cast using permanent mould and extruded at 370℃. By means of TEM and HRTEM,it was observed that Yb affected the precipitate and precipitation of ZK60-1.78Yb alloys significantly. Dynamic precipitation occurred in the as-extruded alloy and spherical nano-scale precipitate with high density and homogeneity exhibited in the aged alloys. The precipitate particles were about 5-20 nm in diameter,10-30 nm in average space length. The tensile test results showed that the ZK60-1.78Yb alloy had excellent precipitation strengthening response with the maximum tensile strength 417.5 MPa at ambient temperature.

  19. Forgeability test of extruded Mg–Sn–Al–Zn alloys under warm forming conditions

    International Nuclear Information System (INIS)

    Yoon, Jonghun; Park, Sunghyuk

    2014-01-01

    Highlights: • We compared forgeability of new developed TAZ alloys with conventional AZ alloys. • Forgeability was evaluated with a T-shape forging under hot forming condition. • TAZ alloys show the best performance in forgeability under hot forging condition. • Microstructures of the forged part were investigated with EBSD experiments. • YS and UTS of forged part with TAZ alloy are enhanced compared with AZ alloy. - Abstract: Magnesium (Mg) alloys have been thoroughly researched to replace steel or aluminum parts in automotives for reducing weight without sacrificing their strength. The widespread use of Mg alloys has been limited by its insufficient formability, which results from a lack of active slip systems at room temperature. It leads to a hot forming process for Mg alloys to enhance the formability and plastic workability. In addition, forged or formed parts of Mg alloys should have the reliable initial yield and ultimate tensile strength after hot working processes since its material properties should be compatible with other parts thereby guaranteeing structural safety against external load and crash. In this research, an optimal warm forming condition for applying extruded Mg–Sn–Al–Zn (TAZ) Mg alloys into automotive parts is proposed based on T-shape forging tests and the feasibility of forged parts is evaluated by measuring the initial yield strength and investigating the grain size in orientation imaging microscopy (OIM) maps

  20. FOCUS ON MAGNESIUM BASED DRUGS

    Directory of Open Access Journals (Sweden)

    I. I. Esenova

    2011-01-01

    Full Text Available Magnesium deficiency in the organism is one of the most common human deficiency states. The prevalence of magnesium deficiency is about 15%, and suboptimal magnesium level is observed more than in 30% of people in the general population. Clinical signs of hypomagnesaemia are observed in 40% of patients in general care hospitals, in 70% of patients - in intensive care units, and magnesium deficiency occurs in 90% of patients with acute coronary syndrome. Magnesium metabolic disorders in the organism accelerate significantly development of complications of coronary heart disease, hypertension, type 2 diabetes, asthma and a number of neurological and psychiatric diseases. The value of this macro in the body is well studied, and its daily need is identified depending on age and sex. It is known that magnesium intake with the food does not cover an organism need. It is a rationale for preventive and therapeutic use of magnesium based drugs in various diseases. Organic salts of magnesium are recommended for these purposes. Magnesium metabolic disorders, approaches to pharmacotherapeutic correction of magnesium deficiency, advantages of magnesium salts of orotic acid are reviewed.

  1. Residence time distribution in twin-screw extruders

    NARCIS (Netherlands)

    Jager, T.

    1992-01-01

    For the twin-screw extruders used in the food industry at short time high temperature processes the knowledge of their reactor properties is incomplete for mass- and heat flow. Therefore each process change such as: scale-up or product development requires a great number of measurements

  2. Studies on positive conveying in helically channeled single screw extruders

    Directory of Open Access Journals (Sweden)

    L. Pan

    2012-07-01

    Full Text Available A solids conveying theory called double-flight driving theory was proposed for helically channeled single screw extruders. In the extruder, screw channel rotates against static barrel channel, which behaves as cooperative embedded twin-screws for the positive conveying. They turn as two parallel arc plates, between which an arc-plate solid-plug was assumed. By analyzing the forces on the solid-plug in the barrel channel and screw channel, the boundary conditions when the solid-plug is waived of being cut off on barrel wall, were found to have the capacity of the positive conveying. Experimental data were obtained using a specially designed extruder with a helically channeled barrel in the feeding zone and a pressure-adjustable die. The effects of the barrel channel geometry and friction coefficients on the conveying mechanism were presented and compared with the experimental results. The simulations showed that the positive conveying could be achieved after optimizing extruder designs. Compared with the traditional design with the friction-drag conveying, the throughput is higher while screw torque and energy consumption are decreased. Besides, the design criteria of the barrel channel were also discussed.

  3. Alfalfa silage ratios and full fat extruded soybeans on milk

    African Journals Online (AJOL)

    USER

    2010-08-16

    Aug 16, 2010 ... Treatments were arranged in a 2 × 3 factorial with 0 or 5% full fat extruded soybeans meal (dry matter basis) and ... Milk fat and lactose were not affected by replacing corn .... The oven temperature was initially 180°C for 45.

  4. [Significance of extruded feeds for trout nutrition and water protection].

    Science.gov (United States)

    Steffens, W

    1993-01-01

    Extruded feeds exhibit an improved starch digestibility and are more firmly bound due to the almost complete gelatinization of the starch. This results in fewer fines and longer water stability than pelleted feeds. Extruded pellets also have the advantage that they can soak up more oil than a conventional pellet. It is therefore possible to increase the maximum oil content to more than 20%. On the other hand extruding feeds is more expensive than steam pelleting. Gelatinized starch is a useful energy source in trout diets helping to reduce feed conversion ratios. Proportions up to 35-40% in the diet are tolerable. Using high dietary levels of both gelatinized starch and oil the non-protein energy of feed may be increased and thus a protein-sparing effect results. High-energy diets enable to reduce excretion of faeces and of nitrogen via gills. In addition a decrease of phosphorus level in feeds and thus of phosphorus excretion by fish is possible. Extruded high-energy diets therefore make a contribution to improve water quality.

  5. Weight analyses and nitrogen balance assay in rats fed extruded ...

    African Journals Online (AJOL)

    Weight analyses and nitrogen balance assay in adult rats in raw and extruded African breadfruit (Treculia africana) based diets were carried out using response surface methodology in a central composite design. Process variables were feed composition (40 - 100 % African breadfruit, 0 - 5 % corn and 0 - 55 % soybean, ...

  6. Modeling The Effect Of Extruder Screw Speed On The Mechanical ...

    African Journals Online (AJOL)

    Modeling The Effect Of Extruder Screw Speed On The Mechanical Properties Of High Density Polyethylene Blown Film. ... Journal of Modeling, Design and Management of Engineering Systems ... Two sets of multiple linear regression models were developed to predict impact failure weight and tenacity respectively.

  7. exploration the extrudability of aluminum matrix composite (lm6/tic)

    African Journals Online (AJOL)

    lanez

    2017-11-24

    Nov 24, 2017 ... Aluminum matrix composites (LM6/TiC) is a mix of excellent properties of aluminum casting alloy (LM6), and particles of (TiC) which make it the first choice in many applications like airplane and marine industries. During this research the extrudability and mechanical specifications of this composite ...

  8. Investigation of heat transfer for extruded polymers cooled in water

    CSIR Research Space (South Africa)

    Kumar, R

    2015-10-01

    Full Text Available . The temperature of still water after 1, 5 and 10 min were determined experimentally using the digital temperature sensor. The temperature gains for the water after the immersion of the extruded polymers were determined at different time intervals. In the second...

  9. Integrated Computational Materials Engineering for Magnesium in Automotive Body Applications

    Science.gov (United States)

    Allison, John E.; Liu, Baicheng; Boyle, Kevin P.; Hector, Lou; McCune, Robert

    This paper provides an overview and progress report for an international collaborative project which aims to develop an ICME infrastructure for magnesium for use in automotive body applications. Quantitative processing-micro structure-property relationships are being developed for extruded Mg alloys, sheet-formed Mg alloys and high pressure die cast Mg alloys. These relationships are captured in computational models which are then linked with manufacturing process simulation and used to provide constitutive models for component performance analysis. The long term goal is to capture this information in efficient computational models and in a web-centered knowledge base. The work is being conducted at leading universities, national labs and industrial research facilities in the US, China and Canada. This project is sponsored by the U.S. Department of Energy, the U.S. Automotive Materials Partnership (USAMP), Chinese Ministry of Science and Technology (MOST) and Natural Resources Canada (NRCan).

  10. Control of lipid oxidation in extruded salmon jerky snacks.

    Science.gov (United States)

    Kong, Jian; Perkins, L Brian; Dougherty, Michael P; Camire, Mary Ellen

    2011-01-01

    A shelf-life study was conducted to evaluate the effect of antioxidants on oxidative stability of extruded jerky-style salmon snacks. Deterioration of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) due to lipid oxidation is a major concern for this healthy snack. A control jerky with no added antioxidants and 4 jerkies with antioxidants (rosemary, mixed tocopherols, tertiary butylhydroquinone, and ascorbyl palmitate) added as 0.02% of the lipid content were extruded in duplicate in a Coperion ZSK-25 twin screw extruder. Salmon jerkies from each formulation were placed in 3 mil barrier pouches, flushed with nitrogen, and stored at 35 °C and 75% relative humidity. Lipid oxidation was evaluated as by peroxide value and malonaldehyde content. Other chemical analyses included total fatty acid composition, lipid content, moisture, water activity, pH, and salt. Astaxanthin and CIE L*, a*, b* color were also analyzed at 4-wk intervals. Rosemary inhibited peroxide formation better than did other antioxidants at week 8; no treatment inhibited malonaldehyde levels. All jerkies had lower astaxanthin levels after 8 wk, but rosemary-treated jerky had higher pigment concentrations than did the control at weeks 4 and 8. Protection of omega-3 lipids in these extruded jerkies must be improved to offer consumers a convenient source of these healthful lipids. Practical Application: Salmon flesh can be extruded to produce a jerky that provides 410 mg of omega-3 lipids per serving. Natural antioxidants such as rosemary should be added at levels over 0.02% of the lipid content to help control lipid oxidation. Astaxanthin and CIE a* values correlated well with lipid stability and could be used to monitor quality during storage if initial values are known.

  11. Improving Joint Formation and Tensile Properties of Dissimilar Friction Stir Welding of Aluminum and Magnesium Alloys by Solving the Pin Adhesion Problem

    Science.gov (United States)

    Liu, Zhenlei; Ji, Shude; Meng, Xiangchen

    2018-03-01

    Friction stir welding (FSW), as a solid-state welding technology invented by TWI in 1991, has potential to join dissimilar Al/Mg alloys. In this study, the pin adhesion phenomenon affecting joint quality during FSW of 6061-T6 aluminum and AZ31B magnesium alloys was investigated. The adhesion phenomenon induced by higher heat input easily transformed the tapered-and-screwed pin into a tapered pin, which greatly reduced the tool's ability to drive the plasticized materials and further deteriorated joint formation. Under the condition without the pin adhesion, the complex intercalated interlayer at the bottom of stir zone was beneficial to mechanical interlocking of Al/Mg alloys, improving tensile properties. However, the formation of intermetallic compounds was still the main reason of the joint fracture, significantly deteriorating tensile properties. Under the welding speed of 60 mm/min without the pin adhesion phenomenon, the maximum tensile strength of 107 MPa and elongation of 1.2% were achieved.

  12. Influence of extruder screws speed and process temperature on the extrudate shape changes of the maize-spelt blends

    Directory of Open Access Journals (Sweden)

    Tomasz Żelaziński

    2018-01-01

    Full Text Available The objective of the study was examination of changes in the shape factors of extruded products, which occur as a result of different settings of the extrusion process variables. Samples analysed included products created by means of the extrusion process from a mixture of spelt flour and cornmeal, with the share of spelt at 70 to 100%. The samples were made with the use of a co-rotating twin screw extruder. Two speeds of extruder screw rotation (300 and 350 rpm as well as two levels of temperature (120 and 140°C were set during the investigation. The samples obtained were photographed in a light box, following which they underwent an image analysis with the use of specialist vision software. Four shape-related factors were determined: area, elongation factor, Heywood circularity factor and compactness factor. It was determined that the product shape changed significantly depending on the share of spelt flour in the mixture. Moreover, it was observed that change in the screw rotation speed within the analysed range may cause material changes in the shape of particular extrudates.

  13. Extrudates of starch-xanthan gum mixtures as affected by chemical agents and irradiation

    International Nuclear Information System (INIS)

    Hanna, M.A.; Chinnaswamy, R.; Gray, D.R.; Miladinov, V.D.

    1997-01-01

    Mixtures of starch, xanthan gum and either polyvinyl alcohol, epichlorohydrin, valeric acid or adipoyl chloride were extruded. Properties of extrudates including apparent viscosity, water solubility, water absorption indices and extrudate expansion were measured for different proportions of xanthan gum, 70% amylose starch (with or without irradiation) and chemical agents. Extrusion with chemical agents and irradiation changed physical properties of both starch and xanthan gum. Expansions of extrudates were higher than that of starch. Viscosity of extrudates increased with xanthan gum concentration. The addition of 1% (w/w) polyvinyl alcohol had the greatest effect of the chemical agents. Irradiation increased the apparent viscosity of starch-xanthan gum mixtures

  14. Magnesium borohydride: from hydrogen storage to magnesium battery.

    Science.gov (United States)

    Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S; Hwang, Son-Jong

    2012-09-24

    Beyond hydrogen storage: The first example of reversible magnesium deposition/stripping onto/from an inorganic salt was seen for a magnesium borohydride electrolyte. High coulombic efficiency of up to 94 % was achieved in dimethoxyethane solvent. This Mg(BH(4))(2) electrolyte was utilized in a rechargeable magnesium battery. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Evolution of Microstructure in Rolled Mg-Based Alloy. Textural Aspect / Ewolucja Mikrostruktury W Walcowanym Stopie Na Bazie Mg. Aspekt Teksturowy

    Directory of Open Access Journals (Sweden)

    Drzymała P.

    2015-12-01

    Full Text Available Magnesium alloys are the lightest structural materials, which makes them particularly suitable for use in the aircraft and automotive industry. However, due to hexagonal close-packed crystal structure, resulting in insufficient number of independent slip systems, magnesium alloys exhibit poor formability at room temperature. Conventional methods of work hardening of magnesium alloys requires the temperature about 300°C, which favours simultaneously processes of thermal recovery and grain growth, but decreases beneficial microstructure strengthening effect. Thus, it is a crucial to undertake development of a technology for semi-finished magnesium alloys elements, which will ensure better mechanical properties of the final products by forming desirable microstructure. In the paper we present the development of crystallographic texture of the Mg-based alloy (Mg-AZ31 in the form of pipe extruded at 430°C and subjected to pilger rolling at relatively low temperature.

  16. Magnesium borate radiothermoluminescent detectors

    International Nuclear Information System (INIS)

    Kazanskaya, V.A.; Kuzmin, V.V.; Minaeva, E.E.; Sokolov, A.D.

    1974-01-01

    In the report the technology of obtaining polycrystalline magnesium borate activated by dysprosium is described briefly and the method of preparing the tabletted detectors from it is presented. The dependence of the light sum of the samples on the proportion of the components and on the sintering regime has shown that the most sensitive material is obtained at the proportion of boric anhydride and magnesium oxide 2.2-2.4 and at the dysprosium concentration about 1 milligram-atom per gram molecule of the base. The glow curve of such a material has a simple form with one peak the maximum of which is located at 190-200 0 C. The measurement of the main dosimetric characteristics of the magnesium borate tabletted detectors and the comparison with similar parmaeters of the lithium fluoride tabletted detectors have shown that at practically identical effective number the former detectors have the following substantial advantages: the sensitivity is ten-twenty times as large, they are substantially more technological on synthesis of the radiothermoluminophor and during the production of the tabletted detectors, they have a simple glow curve, they do not require the utilization of the thermocycling during the use. (author)

  17. Characteristics of hydrostatically extruded Zr-2.5Nb alloy

    International Nuclear Information System (INIS)

    Jie, Z.; Jiaqi, D.; Tieqi, Y.; Wenxian, H.; Yan, L.; Yunxia, Z.; Zhenhe, L.

    1984-01-01

    Hydrostatic extrusion is a new production technology. Zr-2.5Nb alloy tubes cold hydrostatically extruded possess excellent mechanical properties similar to heat-treated tubes and better than cold-worked tubes. Examination by transmission electron microscope shows that the alloy is of a uniform cell substructure containing the (α + β) phases, which is one of important factors improving properties of the alloy. The study of texture, stress, and reorientation of the hydride shows that hydrostatically extruded tubes with basal plane normals in the radial direction have obviously higher hydride reorientation threshold stress than tubes with basal plane normals in the circumferential direction. Moreover, investigation of fracture toughness reveals that hydride distributed perpendicular to the crack propagation direction restrains further propagation of the crack. It is favorable for preserving the fracture resistance of the material

  18. Comparison of Extruder Systems for 3D Printer Filament Fabrication

    Science.gov (United States)

    Ramirez, Adriana

    Additive Manufacturing (AM) has grown in popularity over the past thirty years, due to its versatility, short design to product cycle, and capability to fabricate complex geometries, which cannot otherwise be produced. There exist several platforms that are able to print objects composed of different materials, making this technology significant in different fields such as: automotive, aerospace, medical, electronics, amongst others. Though several types of AM technologies are available, the expiration of the patents on fused deposition modeling (FDM) in 2009 has led to a widespread use of this platform in academia and home use settings. Widespread use of FDM-type AM platforms has led to a demand to fabricate feedstock materials for this AM platform. Particularly, in the home do it yourself (DIY) community there has been a widespread interest for users to manufacture their own feedstock filament leading to a large growth in home-use extrusion systems. The low cost of these desktop-grade systems has also made them attractive to academics, but there has not been a widespread effort into determining the efficacy of these small scale extrusion systems as compared to industrial quality extruders which are typically used to manufacture feedstock for FDM platforms. The aim of this study was to compare two extrusion processes: 1) a desktop grade single-screw extruder; and 2) an industrial scale twin-screw extruder. In order to understand differences between their performance and quality of mixing, a rubberized blend of acrylonitrile butadiene styrene (ABS) mixed with styrene ethylene butylene styrene with a maleic anhydride graft (SEBS-g-MA) at different ratios was compounded on each extrusion system. Melt flow index, and mechanical properties were compared. In addition, a raster pattern sensitivity study was performed to evaluate the effect of the extruder system on 3D printed objects. Finally, scanning electron microscopy (SEM) was used to examine the fracture surfaces

  19. Extrudability and Consolidation of Blends between CGM and DDGS

    Directory of Open Access Journals (Sweden)

    C. J. R. Verbeek

    2016-01-01

    Full Text Available During the last decade, the global biofuels industry has experienced exponential growth. By-products such as high protein corn gluten meal (CGM and high fibre distillers dried grains with solubles (DDGS have grown in parallel. CGM has been shown to be suitable as a biopolymer; the high fibre content of DDGS reduces its effectiveness, although it is considerably cheaper. In this study, the processing behaviour of CGM and DDGS blends was evaluated and resulting extrudate properties were determined. Prior to processing, urea was used as a denaturant. DDGS : CGM ratios of 0, 33, 50, 66, and 100% were processed in a single screw extruder, which solely used dissipative heating. Blends containing DDGS were less uniformly consolidated and resulted in more dissipative heating. Blends showed multiple glass transitions, which is characteristic of mechanically compatible blends. Transmission electron microscopy revealed phase separation on a microscale, although distinct CGM or DDGS phases could not be identified. On a macroscale, optical microscopy suggested that CGM-rich blends were better consolidated, supported by visual observations of a more continuous extrudate formed during extrusion. Future work should aim to also characterize the mechanical properties of these blends to assess their suitability as either bioplastic feedstock or pelletized livestock feed.

  20. Diclofenac sodium sustained release hot melt extruded lipid matrices.

    Science.gov (United States)

    Vithani, K; Cuppok, Y; Mostafa, S; Slipper, I J; Snowden, M J; Douroumis, D

    2014-08-01

    Sustained release diclofenac sodium (Df-Na) solid lipid matrices with Compritol® 888 ATO were developed in this study. The drug/lipid powders were processed via cold and hot melt extrusion at various drug loadings. The influence of the processing temperatures, drug loading and the addition of excipients on the obtained dissolution rates was investigated. The physicochemical characterization of the extruded batches showed the existence of crystalline drug in the extrudates with a small amount being solubilized in the lipid matrix. The drug content and uniformity on the tablet surface were also investigated by using energy dispersive X-ray microanalysis. The dissolution rates were found to depend on the actual Df-Na loading and the nature of the added excipients, while the effect of the processing temperatures was negligible. The dissolution mechanism of all extruded formulations followed Peppas-Korsemeyer law, based on the estimated determination coefficients and the dissolution constant rates, indicating drug diffusion from the lipid matrices.

  1. Enrichment of extruded snack products with whey protein

    Directory of Open Access Journals (Sweden)

    Mladen Brnčić

    2008-08-01

    Full Text Available Highest share in products with whey proteins addition belongs to aromatised drinks, aromatised protein bars and various dietetic preparations. In the last few years, there is increased use of the extrusion process for production of food products. This process is, besides other things, used for obtaining directly expanded products, which are immediately packed and sent on market after mechanical and thermal treatment in extruder, or after drying for a short time. One of these food products is “snack” food. Snack food is made with twin corotating screw extruders, in which raw materials are submitted to high temperatures and short time, with intensive expansion and rapid pressure drop. For the production of this category of food products, basic ingredients like corn, wheat, rye and rice, with the maximum of 9 % of proteins, are used. With the development of extrusion technology, special attention is focused on the enrichment of extruded products with different types of proteins, including proteins. In this paper, review of the newest research and achievements in embedding various types of whey concentrates in snack food will be represented. This category of food products for direct consummation is constantly increasing, and addition of whey protein concentrate adds better nutritional value and increased functionality.

  2. Function of magnesium aluminate hydrate and magnesium nitrate ...

    Indian Academy of Sciences (India)

    MgO was added both as spinel (MgAl2O4) forming precursor i.e. magnesium aluminate hydrate, and magnesium nitrate. Sintering investigations were conducted in the temperature range 1500–1600°C with 2 h soaking. Structural study of sintered pellets was carried out by extensive XRD analysis. Scanning electron mode ...

  3. Magnesium Hall Thruster

    Science.gov (United States)

    Szabo, James J.

    2015-01-01

    This Phase II project is developing a magnesium (Mg) Hall effect thruster system that would open the door for in situ resource utilization (ISRU)-based solar system exploration. Magnesium is light and easy to ionize. For a Mars- Earth transfer, the propellant mass savings with respect to a xenon Hall effect thruster (HET) system are enormous. Magnesium also can be combusted in a rocket with carbon dioxide (CO2) or water (H2O), enabling a multimode propulsion system with propellant sharing and ISRU. In the near term, CO2 and H2O would be collected in situ on Mars or the moon. In the far term, Mg itself would be collected from Martian and lunar regolith. In Phase I, an integrated, medium-power (1- to 3-kW) Mg HET system was developed and tested. Controlled, steady operation at constant voltage and power was demonstrated. Preliminary measurements indicate a specific impulse (Isp) greater than 4,000 s was achieved at a discharge potential of 400 V. The feasibility of delivering fluidized Mg powder to a medium- or high-power thruster also was demonstrated. Phase II of the project evaluated the performance of an integrated, highpower Mg Hall thruster system in a relevant space environment. Researchers improved the medium power thruster system and characterized it in detail. Researchers also designed and built a high-power (8- to 20-kW) Mg HET. A fluidized powder feed system supporting the high-power thruster was built and delivered to Busek Company, Inc.

  4. Magnesium for Hydrogen Storage

    DEFF Research Database (Denmark)

    Pedersen, Allan Schrøder; Kjøller, John; Larsen, B.

    1983-01-01

    A study of the hydrogenation characteristics of fine magnesium powder during repeated cycling has been performed using a high-pressure microbalance facility. No effect was found from the cycling regarding kinetics and storage capacity. The reaction rate of the absorption process was fast...... at temperatures around 600 K and above, but the reversed reaction showed somewhat slower kinetics around 600 K. At higher temperatures the opposite was found. The enthalpy and entropy change by the hydrogenation, derived from pressure-concentration isotherms, agree fairly well with those reported earlier....

  5. Electrolytes for magnesium electrochemical cells

    Science.gov (United States)

    Burrell, Anthony K.; Sa, Niya; Proffit, Danielle Lee; Lipson, Albert; Liao, Chen; Vaughey, John T.; Ingram, Brian J.

    2017-07-04

    An electrochemical cell includes a high voltage cathode configured to operate at 1.5 volts or greater; an anode including Mg.sup.0; and an electrolyte including an ether solvent and a magnesium salt; wherein: a concentration of the magnesium salt in the ether is 1 M or greater.

  6. Hydrostatic extrusion of magnesium alloys

    NARCIS (Netherlands)

    Sillekens, W.H.; Bohlen, J.

    2012-01-01

    This chapter deals with the capabilities and limitations of the hydrostatic extrusion process for the manufacturing of magnesium alloy sections. Firstly, the process basics for the hydrostatic extrusion of materials in general and of magnesium in particular are introduced. Next, some recent research

  7. Innovative Vacuum Distillation for Magnesium Recycling

    Science.gov (United States)

    Zhu, Tianbai; Li, Naiyi; Mei, Xiaoming; Yu, Alfred; Shang, Shixiang

    Magnesium recycling now becomes a very important subject as magnesium consumption increases fast around the world. All commonly used magnesium die-casting alloys can be recycled and recovered to the primary metal quality. The recycled materials may be comprised of biscuits, sprues, runners, flash, overflows, dross, sludge, scrap parts, and old parts that are returned from service, An innovative magnesium recycle method, vacuum distillation, is developed and proved out to be able to recycle magnesium scraps, especially machining chips, oily magnesium, smelting sludge, dross or the mixture. With this process at a specific temperature and environment condition, magnesium in scraps can be gasified and then solidified to become crystal magnesium crown. This `recycled' magnesium crown is collected and used as the raw material of magnesium alloys. The experimental results show the vacuum distillation is a feasible and plausible method to recycle magnesium. Further, the cost analysis will be addressed in this paper.

  8. Magnesium in Prevention and Therapy

    Science.gov (United States)

    Gröber, Uwe; Schmidt, Joachim; Kisters, Klaus

    2015-01-01

    Magnesium is the fourth most abundant mineral in the body. It has been recognized as a cofactor for more than 300 enzymatic reactions, where it is crucial for adenosine triphosphate (ATP) metabolism. Magnesium is required for DNA and RNA synthesis, reproduction, and protein synthesis. Moreover, magnesium is essential for the regulation of muscular contraction, blood pressure, insulin metabolism, cardiac excitability, vasomotor tone, nerve transmission and neuromuscular conduction. Imbalances in magnesium status—primarily hypomagnesemia as it is seen more common than hypermagnesemia—might result in unwanted neuromuscular, cardiac or nervous disorders. Based on magnesium’s many functions within the human body, it plays an important role in prevention and treatment of many diseases. Low levels of magnesium have been associated with a number of chronic diseases, such as Alzheimer’s disease, insulin resistance and type-2 diabetes mellitus, hypertension, cardiovascular disease (e.g., stroke), migraine headaches, and attention deficit hyperactivity disorder (ADHD). PMID:26404370

  9. Magnesium degradation influenced by buffering salts in concentrations typical of in vitro and in vivo models

    International Nuclear Information System (INIS)

    Agha, Nezha Ahmad; Feyerabend, Frank; Mihailova, Boriana; Heidrich, Stefanie; Bismayer, Ulrich; Willumeit-Römer, Regine

    2016-01-01

    Magnesium and its alloys have considerable potential for orthopedic applications. During the degradation process the interface between material and tissue is continuously changing. Moreover, too fast or uncontrolled degradation is detrimental for the outcome in vivo. Therefore in vitro setups utilizing physiological conditions are promising for the material/degradation analysis prior to animal experiments. The aim of this study is to elucidate the influence of inorganic salts contributing to the blood buffering capacity on degradation. Extruded pure magnesium samples were immersed under cell culture conditions for 3 and 10 days. Hank's balanced salt solution without calcium and magnesium (HBSS) plus 10% of fetal bovine serum (FBS) was used as the basic immersion medium. Additionally, different inorganic salts were added with respect to concentration in Dulbecco's modified Eagle's medium (DMEM, in vitro model) and human plasma (in vivo model) to form 12 different immersion media. Influences on the surrounding environment were observed by measuring pH and osmolality. The degradation interface was analyzed by electron-induced X-ray emission (EIXE) spectroscopy, including chemical-element mappings and electron microprobe analysis, as well as Fourier transform infrared reflection micro-spectroscopy (FTIR). - Highlights: • Influence of blood buffering salts on magnesium degradation was studied. • CaCl_2 reduced the degradation rate by Ca–PO_4 layer formation. • MgSO_4 influenced the morphology of the degradation interface. • NaHCO_3 induced the formation of MgCO_3 as a degradation product

  10. Microstructural and mechanical properties of titanium particulate reinforced magnesium composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, Junko; Kawakami, Masashi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaragi, Osaka 567-0047 (Japan); Kondoh, Katsuyoshi, E-mail: kondoh@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaragi, Osaka 567-0047 (Japan); Ayman, El-Sayed; Imai, Hisashi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaragi, Osaka 567-0047 (Japan)

    2010-10-01

    Pure titanium (Ti) particulate reinforced pure magnesium (Mg) composite materials were fabricated via powder metallurgy route, and their microstructural and mechanical properties were evaluated. When using the elemental mixture of pure Mg and pure Ti powders and consolidating them by solid-state sintering process, no significant increase in tensile strength of the composites was obtained, because of poor bonding strength at the interface between {alpha}-Mg matrix and Ti particles. In particular, coarse magnesium oxide (MgO) particles of about 100 nm were formed via thermite reaction between TiO{sub 2} surface films of Ti particles and Mg raw powders and resulted in preventing the improvement of the mechanical properties of the composite material. On the other hand, when using the atomized pure Mg composite powders reinforced with Ti particulates, their extruded composite material showed obviously improved tensile strength and good elongation, compared to the extruded pure Mg powder material including no Ti particle. The obvious improvement in the tensile strength was due to the restriction of dislocation movement by Ti reinforcements under applied tensile load.

  11. Combustion and extinction of magnesium fires

    International Nuclear Information System (INIS)

    Malet, J.C.; Duverger de Cuy, G.

    1988-01-01

    The studies made in France on magnesium combustion and extinguishing means are associated at the nuclear fuel of the graphite-gas reactor. Safety studies are made for ameliorate our knowledge on: - magnesium combustion - magnesium fire propagation - magnesium fire extinguishing [fr

  12. 21 CFR 184.1443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization...

  13. Mineral resource of the month: magnesium

    Science.gov (United States)

    Kramer, Deborah A.

    2012-01-01

    Magnesium is the eighthmost abundant element in Earth’s crust, and the second-most abundant metal ion in seawater. Although magnesium is found in more than 60 minerals, only brucite, dolomite, magnesite and carnallite are commercially important for their magnesium content. Magnesium and its compounds also are recovered from seawater, brines found in lakes and wells, and bitterns (salts).

  14. 21 CFR 184.1431 - Magnesium oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium oxide. 184.1431 Section 184.1431 Food and... Substances Affirmed as GRAS § 184.1431 Magnesium oxide. (a) Magnesium oxide (MgO, CAS Reg. No. 1309-48-4... powder (light) or a relatively dense white powder (heavy) by heating magnesium hydroxide or carbonate...

  15. 21 CFR 184.1426 - Magnesium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS... hydrochloric acid solution and crystallizing out magnesium chloride hexahydrate. (b) The ingredient meets the...

  16. Magnesium deficiency: What is our status

    Science.gov (United States)

    Low magnesium intake has been implicated in a broad range of cardiometabolic conditions, including diabetes, hypertension, and cardiovascular disease. Dietary magnesium and total body magnesium status have a widely-used but imperfect biomarker in serum magnesium. Despite serum magnesium’s limitation...

  17. Development of an extruder-feeder biomass direct liquefaction process

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.; Wolf, D. (Arizona Univ., Tucson, AZ (United States). Dept. of Chemical Engineering)

    1991-10-01

    As an abundant, renewable, domestic energy resource, biomass could help the United States reduce its dependence on imported oil. Biomass is the only renewable energy technology capable of addressing the national need for liquid transportation fuels. Thus, there is an incentive to develop economic conversion processes for converting biomass, including wood, into liquid fuels. Through research sponsored by the US DOE's Biomass Thermochemical Conversion Program, the University of Arizona has developed a unique biomass direct liquefaction system. The system features a modified single-screw extruder capable of pumping solid slurries containing as high as 60 wt% wood flour in wood oil derived vacuum bottoms at pressures up to 3000 psi. The extruder-feeder has been integrated with a unique reactor by the University to form a system which offers potential for improving high pressure biomass direct liquefaction technology. The extruder-feeder acts simultaneously as both a feed preheater and a pumping device for injecting wood slurries into a high pressure reactor in the biomass liquefaction process. An experimental facility was constructed and following shakedown operations, wood crude oil was produced by mid-1985. By July 1988, a total of 57 experimental continuous biomass liquefaction runs were made using White Birch wood feedstock. Good operability was achieved at slurry feed rates up to 30 lb/hr, reactor pressures from 800 to 3000 psi and temperatures from 350{degree}C to 430{degree}C under conditions covering a range of carbon monoxide feed rates and sodium carbonate catalyst addition. Crude wood oils containing as little as 6--10 wt% residual oxygen were produced. 38 refs., 82 figs., 26 tabs.

  18. Utilization of smoked salmon trim in extruded smoked salmon jerky.

    Science.gov (United States)

    Kong, J; Dougherty, M P; Perkins, L B; Camire, M E

    2012-06-01

    During smoked salmon processing, the dark meat along the lateral line is removed before packaging; this by-product currently has little economic value. In this study, the dark meat trim was incorporated into an extruded jerky. Three formulations were processed: 100% smoked trim, 75% : 25% smoked trim : fresh salmon fillet, and 50% : 50% smoked trim : fresh salmon blends (w/w basis). The base formulation contained salmon (approximately 83.5%), tapioca starch (8%), pregelatinized potato starch (3%), sucrose (4%), salt (1.5%), sodium nitrate (0.02%), and ascorbyl palmitate (0.02% of the lipid content). Blends were extruded in a laboratory-scale twin-screw extruder and then hot-smoked for 5 h. There were no significant differences among formulations in moisture, water activity, and pH. Protein was highest in the 50 : 50 blend jerky. Ash content was highest in the jerky made with 100% trim. Total lipids and salt were higher in the 100% trim jerky than in the 50 : 50 blend. Hot smoking did not adversely affect docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) content in lipids from 100% smoked trim jerky. Servings of salmon jerky made with 75% and 100% smoked trim provided at least 500 mg of EPA and DHA. The 50 : 50 formulation had the highest Intl. Commission on Illumination (CIE) L*, a*, and b* color values. Seventy consumers rated all sensory attributes as between "like slightly" and "like moderately." With some formulation and processing refinements, lateral line trim from smoked salmon processors has potential to be incorporated into acceptable, healthful snack products. Dark meat along the lateral line is typically discarded by smoked salmon processors. This omega-3 fatty acid rich by-product can be used to make a smoked salmon jerky that provides a convenient source of these healthful lipids for consumers. © 2012 Institute of Food Technologists®

  19. Study of the cooling process of an extruded aluminium profile

    International Nuclear Information System (INIS)

    Bouffioux, C.; Habraken, A.M.; Carton, M.; Lecomte-Beckers, J.

    2004-01-01

    The prediction of the final axial stresses and the residual strains of complex extruded aluminium profiles requires a good knowledge of the material behavior and of the industrial process. This paper is focused on the methods required to provide the whole set of data: material ones and process ones. Scanning differential calorimetry, dilatometry and diffusivity tests identify thermophysic material properties and hot tensile tests identify parameters of the elasto-visco-plastic Norton-Hoff law. The description of the industrial process and its simulations are described. Then a sensitivity analyzis provides the cooling key parameters causing the undesired final curvature during the industrial process

  20. Extrude Hone deburring with X-base media

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1973-09-01

    Small precision mechanisms must have burr-free, sharp-edged parts to operate well. Controlling the size of burrs can lower burr removal costs and improve edge repeatability. Study results indicated that with conventional tooling approaches, Extrude Hone deburring with x-base media removes more material from the hole than desired and is less repeatable than required on precision miniature parts. With this media, the process is most applicable to precision miniature parts with burrs less than 25.4 ..mu..m thick, allowable hole size changes equal to burr thickness, and allowable hole size repeatability of +-0.2 times the actual average hole size change.

  1. Continuous thickness control of extruded pipes with assistance of microcomputers

    International Nuclear Information System (INIS)

    Breil, J.

    1983-06-01

    Because of economic and quality securing reasons a constant wall thickness of extruded pipes in circumference and extrusion direction is an important production aim. Therefore a microcomputer controlled system was developed, which controls die centering with electric motors. The control of wall thickness distribution; was realized with two conceptions: a dead time subjected control with a rotating on line wall thickness measuring instrument and an adaptive control with sensors in the pipe die. With a PI-algorithm excentricities of 30% of the wall thickness could be controlled below a trigger level of 2% within three dead times. (orig.) [de

  2. Effect of equal channel angular pressing on in vitro degradation of LAE442 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Minárik, Peter, E-mail: peter.minarik@mff.cuni.cz [Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Jablonská, Eva [Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6 (Czech Republic); Král, Robert [Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Lipov, Jan; Ruml, Tomáš [Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6 (Czech Republic); Blawert, Carsten [Helmholtz-Zentrum Geesthacht, Zentrum für Material- und Küstenforschung GmbH, Institut für Werkstoffforschung, Max-Planck-Straße 1, Geesthacht (Germany); Hadzima, Branislav [University of Žilina, Univerzitná 8215/1, 010 26 Žilina (Slovakia); Chmelík, František [Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic)

    2017-04-01

    Effect of processing by equal channel angular pressing (ECAP) on the degradation behaviour of extruded LAE442 magnesium alloy was investigated in a 0.1 M NaCl solution, Kirkland's biocorrosion medium (KBM) and Minimum Essential Medium (MEM), both with and without 10% of foetal bovine serum (FBS). Uniform degradation of as extruded and ECAP processed samples in NaCl solution was observed, nevertheless higher corrosion resistance was found in the latter material. The increase of corrosion resistance due to ECAP was observed also after 14-days immersion in all media used. Higher compactness of the corrosion layer formed on the samples after ECAP was responsible for the observed decrease of corrosion resistance, which was proven by scanning electron microscope investigation. Lower corrosion rate in media with FBS was observed and was explained by additional effect of protein incorporation on the corrosion layer stability. A cytotoxicity test using L929 cells was carried out to investigate possible effect of processing on the cell viability. Sufficient cytocompatibility of the extruded samples was observed with no adverse effects of the subsequent ECAP processing. In conclusion, this in vitro study proved that the degradation behaviour of the LAE442 alloy could be improved by subsequent ECAP processing and this material is a good candidate for future in vivo investigation. - Highlights: • ECAP processing decelerates the corrosion rate of the LAE442 magnesium alloy. • Corrosion layers formed on the samples after ECAP have higher compactness. • No cytotoxic effect of extracts prepared from LAE442 after both types of processing was observed.

  3. Effect of equal channel angular pressing on in vitro degradation of LAE442 magnesium alloy

    International Nuclear Information System (INIS)

    Minárik, Peter; Jablonská, Eva; Král, Robert; Lipov, Jan; Ruml, Tomáš; Blawert, Carsten; Hadzima, Branislav; Chmelík, František

    2017-01-01

    Effect of processing by equal channel angular pressing (ECAP) on the degradation behaviour of extruded LAE442 magnesium alloy was investigated in a 0.1 M NaCl solution, Kirkland's biocorrosion medium (KBM) and Minimum Essential Medium (MEM), both with and without 10% of foetal bovine serum (FBS). Uniform degradation of as extruded and ECAP processed samples in NaCl solution was observed, nevertheless higher corrosion resistance was found in the latter material. The increase of corrosion resistance due to ECAP was observed also after 14-days immersion in all media used. Higher compactness of the corrosion layer formed on the samples after ECAP was responsible for the observed decrease of corrosion resistance, which was proven by scanning electron microscope investigation. Lower corrosion rate in media with FBS was observed and was explained by additional effect of protein incorporation on the corrosion layer stability. A cytotoxicity test using L929 cells was carried out to investigate possible effect of processing on the cell viability. Sufficient cytocompatibility of the extruded samples was observed with no adverse effects of the subsequent ECAP processing. In conclusion, this in vitro study proved that the degradation behaviour of the LAE442 alloy could be improved by subsequent ECAP processing and this material is a good candidate for future in vivo investigation. - Highlights: • ECAP processing decelerates the corrosion rate of the LAE442 magnesium alloy. • Corrosion layers formed on the samples after ECAP have higher compactness. • No cytotoxic effect of extracts prepared from LAE442 after both types of processing was observed.

  4. Effect of Some Extrusion Variables on Rheological Properties and Physicochemical Changes of Cornmeal Extruded by Twin Screw Extruder

    OpenAIRE

    Chang Y.K.; Martínez-Bustos f.; Lara h.

    1998-01-01

    The effect of extrusion variables, such as barrel temperature (100 to 170ºC), feed rate (100 to 500 g/min), feed moisture (20 to 40 g/100 g wet basis), screw speed rate (from 100 to 500 rpm), and slit die rheometer configuration (0.15 and 0.30 cm height) were studied using a co-rotating intermeshing twin-screw extruder coupled to a slit die rheometer on the rheological properties of yellow cornmeal. An increase in feed rate decreased WAI and WSI, but increased the viscosity values. The temper...

  5. Large volume syringe pump extruder for desktop 3D printers

    Directory of Open Access Journals (Sweden)

    Kira Pusch

    2018-04-01

    Full Text Available Syringe pump extruders are required for a wide range of 3D printing applications, including bioprinting, embedded printing, and food printing. However, the mass of the syringe becomes a major challenge for most printing platforms, requiring compromises in speed, resolution and/or volume. To address these issues, we have designed a syringe pump large volume extruder (LVE that is compatible with low-cost, open source 3D printers, and herein demonstrate its performance on a PrintrBot Simple Metal. Key aspects of the LVE include: (1 it is open source and compatible with open source hardware and software, making it inexpensive and widely accessible to the 3D printing community, (2 it utilizes a standard 60 mL syringe as its ink reservoir, effectively increasing print volume of the average bioprinter, (3 it is capable of retraction and high speed movements, and (4 it can print fluids using nozzle diameters as small as 100 μm, enabling the printing of complex shapes/objects when used in conjunction with the freeform reversible embedding of suspended hydrogels (FRESH 3D printing method. Printing performance of the LVE is demonstrated by utilizing alginate as a model biomaterial ink to fabricate parametric CAD models and standard calibration objects. Keywords: Additive manufacturing, 3D bioprinting, Embedded printing, FRESH, Soft materials extrusion

  6. Magnesium Repair by Cold Spray

    National Research Council Canada - National Science Library

    Champagne, V. K; Leyman, P.F; Helfritch, D. J

    2008-01-01

    .... Army Research Laboratory has developed a cold spray process to reclaim magnesium components that shows significant improvement over existing methods and is in the process of qualification for use on rotorcraft...

  7. Magnesium - distribution and basic metabolism

    African Journals Online (AJOL)

    losses of water, sodium, chloride and potassium are concerned. However, it has ... (calcium and magnesium carbonate), although only 10% of the element in soil is ... DNA transcription, RNA aggregation, protein synthesis and various cell ...

  8. Effect of rare earth elements on deformation behavior of an extruded Mg–10Gd–3Y–0.5Zr alloy during compression

    International Nuclear Information System (INIS)

    Mirza, F.A.; Chen, D.L.; Li, D.J.; Zeng, X.Q.

    2013-01-01

    Highlights: ► The alloy studied has threefold higher compressive yield strength than AM30 alloy. ► Formation of twins is less extensive than that in the RE-free extruded Mg alloys. ► Deformation of the RE-containing Mg alloy is characterized by three distinct stages. ► Rare earth elements effectively increase the strain hardening rate in stage A. ► Fairly flat and linear strain hardening occurs in stage B over an extended range. - Abstract: The aim of this study was to identify the influence of rare-earth (RE) elements on the strain hardening behavior in an extruded Mg–10Gd–3Y–0.5Zr magnesium alloy via compression in the extrusion direction at room temperature. The plastic deformation behavior of this RE-containing alloy was characterized by a rapidly decreasing strain hardening rate up to a strain level of about 4% (stage A), followed by a fairly flat linear strain hardening rate over an extended strain range from ∼4% to ∼18% (stage B). Stage C was represented by a decreasing strain hardening rate just before failure. The extent of twinning in this alloy was observed to be considerably less extensive than that in the RE-free extruded Mg alloys. The weaker crystallographic texture, refined grain size, and second-phase particles arising from the addition of RE elements were responsible for the much higher strain hardening rate in stage A due to the increased difficulty on the formation of twins and the slip of dislocations at lower strains, and for the occurrence of quite flat linear strain hardening in stage B at higher strains which was likely related to the dislocation debris and twin debris (or residual twins) stemming from dislocation–twin interactions as well as the interactions between dislocations/twins and second-phase particles and grain boundaries

  9. Effect of magnesium deficiency on renal magnesium and calcium transport in the rat.

    OpenAIRE

    Carney, S L; Wong, N L; Quamme, G A; Dirks, J H

    1980-01-01

    Recollection of micropuncture experiments were performed on acutely thyroparathyroidectomized rats rendered magnesium deficient by dietary deprivation. Urinary magnesium excretion fell from a control of 15 to 3% of the filtered load after magnesium restriction. The loop of Henle, presumably the thick ascending limb, was the major modulator for renal magnesium homeostasis. The transport capacity for magnesium, however, was less in deficient rats than control animals. Absolute magnesium reabsor...

  10. Use of Red Cactus Pear (Opuntia ficus-indica Encapsulated Powder to Pigment Extruded Cereal

    Directory of Open Access Journals (Sweden)

    Martha G. Ruiz-Gutiérrez

    2017-01-01

    Full Text Available Encapsulated powder of the red cactus pear is a potential natural dye for the food industry and a known antioxidant. Although the use of this powder is possible, it is not clear how it alters food properties, thus ensuing commercial acceptability. The aim of this study was to evaluate the effect of encapsulated powder of the red cactus pear on the physicochemical properties of extruded cereals. The powder was mixed (2.5, 5.0, and 7.5% w/w with maize grits and extruded (mix moisture 22%, temperature 100°C, and screw speed 325 rpm. The physical, chemical, and sensory characteristics of the extruded cereal were evaluated; extruded cereal without encapsulated powder was used as a control. All cereal extrudates pigmented with the encapsulated powder showed statistically significant differences (P<0.05 in expansion, water absorption, color, density, and texture compared to the control. The encapsulated powder had a positive effect on expansion and water absorption indices, as well as color parameters, but a negative effect on density and texture. Extruded cereal properties were significantly (P<0.05 correlated. Sensorially, consumers accepted the extruded cereal with a lower red cactus pear powder content (2.5% w/w, because this presented characteristics similar to extruded cereal lacking pigment.

  11. THE GRAFTING OF MALEIC-ANHYDRIDE ON HIGH-DENSITY POLYETHYLENE IN AN EXTRUDER

    NARCIS (Netherlands)

    GANZEVELD, KJ; JANSSEN, LPBM

    The grafting of maleic anhydride (MAH) on high density polyethylene in a counter-rotating twin screw extruder has been studied. As the reaction kinetics appear to be affected by mass transfer, good micro mixing in the extruder is important. Due to the competing mechanisms of increasing mixing and

  12. Modelling extrudate expansion in a twin-screw food extrusion cooking process through dimensional analysis methodology

    DEFF Research Database (Denmark)

    Cheng, Hongyuan; Friis, Alan

    2010-01-01

    A new phenomenological model is proposed to correlate extrudate expansion and extruder operation parameters in a twin-screw food extrusion cooking process. Buckingham's pi dimensional analysis method is applied to establish the model. Three dimensionless groups, i.e. pump efficiency, water content...

  13. Production and characterization of cornstarch/cellulose acetate/silver sulfadiazine extrudate matrices

    Energy Technology Data Exchange (ETDEWEB)

    Zepon, Karine Modolon [CIMJECT, Departamento de Engenharia Mecânica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); TECFARMA, Universidade do Sul de Santa Catarina, 88704-900 Tubarão, SC (Brazil); Petronilho, Fabricia [FICEXP, Universidade do Sul de Santa Catarina, 88704-900 Tubarão, SC (Brazil); Soldi, Valdir [POLIMAT, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Salmoria, Gean Vitor [CIMJECT, Departamento de Engenharia Mecânica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Kanis, Luiz Alberto, E-mail: luiz.kanis@unisul.br [TECFARMA, Universidade do Sul de Santa Catarina, 88704-900 Tubarão, SC (Brazil)

    2014-11-01

    The production and evaluation of cornstarch/cellulose acetate/silver sulfadiazine extrudate matrices are reported herein. The matrices were melt extruded under nine different conditions, altering the temperature and the screw speed values. The surface morphology of the matrices was examined by scanning electron microscopy. The micrographs revealed the presence of non-melted silver sulfadiazine microparticles in the matrices extruded at lower temperature and screw speed values. The thermal properties were evaluated and the results for both the biopolymer and the drug indicated no thermal degradation during the melt extrusion process. The differential scanning analysis of the extrudate matrices showed a shift to lower temperatures for the silver sulfadiazine melting point compared with the non-extruded drug. The starch/cellulose acetate matrices containing silver sulfadiazine demonstrated significant inhibition of the growth of Pseudomonas aeruginosa and Staphylococcus aureus. In vivo inflammatory response tests showed that the extrudate matrices, with or without silver sulfadiazine, did not trigger chronic inflammatory processes. - Highlights: • Melt extruded bio-based matrices containing silver sulfadiazine was produced. • The silver sulfadiazine is stable during melt-extrusion. • The extrudate matrices shown bacterial growth inhibition. • The matrices obtained have potential to development wound healing membranes.

  14. Parametric analysis and design of a screw extruder for slightly non-Newtonian (pseudoplastic materials

    Directory of Open Access Journals (Sweden)

    J.I. Orisaleye

    2018-04-01

    Full Text Available Extruders have found application in the food, polymer and pharmaceutical industries. Rheological characteristics of materials are important in the specification of design parameters of screw extruders. Biopolymers, which consist of proteins, nucleic acids and polysaccharides, are shear-thinning (pseudoplastic within normal operating ranges. However, analytical models to predict and design screw extruders for non-Newtonian pseudoplastic materials are rare. In this study, an analytical model suitable to design a screw extruder for slightly non-Newtonian materials was developed. The model was used to predict the performance of the screw extruder while processing materials with power law indices slightly deviating from unity (the Newtonian case. Using non-dimensional analysis, the effects of design and operational parameters were investigated. Expressions to determine the optimum channel depth and helix angle were also derived. The model is capable of predicting the performance of the screw extruder within the range of power law indices considered (1/2⩽n⩽1. The power law index influences the choice of optimum channel depth and helix angle of the screw extruder. Keywords: Screw extruder, Slightly non-Newtonian, Shear-thinning, Pseudoplastic, Biopolymer, Power law

  15. Timeline (Bioavailability) of Magnesium Compounds in Hours: Which Magnesium Compound Works Best?

    Science.gov (United States)

    Uysal, Nazan; Kizildag, Servet; Yuce, Zeynep; Guvendi, Guven; Kandis, Sevim; Koc, Basar; Karakilic, Aslı; Camsari, Ulas M; Ates, Mehmet

    2018-04-21

    Magnesium is an element of great importance functioning because of its association with many cellular physiological functions. The magnesium content of foods is gradually decreasing due to food processing, and magnesium supplementation for healthy living has become increasingly popular. However, data is very limited on the bioavailability of various magnesium preparations. The aim of this study is to investigate the bioavailability of five different magnesium compounds (magnesium sulfate, magnesium oxide, magnesium acetyl taurate, magnesium citrate, and magnesium malate) in different tissues. Following a single dose 400 mg/70 kg magnesium administration to Sprague Dawley rats, bioavailability was evaluated by examining time-dependent absorption, tissue penetration, and the effects on the behavior of the animals. Pharmacokinetically, the area under the curve calculation is highest in the magnesium malate. The magnesium acetyl taurate was found to have the second highest area under the curve calculation. Magnesium acetyl taurate was rapidly absorbed, able to pass through to the brain easily, had the highest tissue concentration level in the brain, and was found to be associated with decreased anxiety indicators. Magnesium malate levels remained high for an extended period of time in the serum. The commonly prescribed dietary supplements magnesium oxide and magnesium citrate had the lowest bioavailability when compared to our control group. More research is needed to investigate the bioavailability of magnesium malate and acetyl taurate compounds and their effects in specific tissues and on behavior.

  16. Corrosion Resistance of the Superhydrophobic Mg(OH2/Mg-Al Layered Double Hydroxide Coatings on Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Fen Zhang

    2016-04-01

    Full Text Available Coatings of the Mg(OH2/Mg-Al layered double hydroxide (LDH composite were formed by a combined co-precipitation method and hydrothermal process on the AZ31 alloy substrate in alkaline condition. Subsequently, a superhydrophobic surface was successfully constructed to modify the composite coatings on the AZ31 alloy substrate using stearic acid. The characteristics of the composite coatings were investigated by means of X-ray diffractometer (XRD, Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, scanning electronic microscope (SEM and contact angle (CA. The corrosion resistance of the coatings was assessed by potentiodynamic polarization, the electrochemical impedance spectrum (EIS, the test of hydrogen evolution and the immersion test. The results showed that the superhydrophobic coatings considerably improved the corrosion resistant performance of the LDH coatings on the AZ31 alloy substrate.

  17. Instrumental and sensory properties of pea protein-fortified extruded rice snacks.

    Science.gov (United States)

    Philipp, Claudia; Buckow, Roman; Silcock, Pat; Oey, Indrawati

    2017-12-01

    Characteristic attributes of pea-protein fortified, extruded rice snacks were evaluated by mechanical, acoustic and descriptive sensory analysis. The addition of pea protein isolate (0 to 45% (w/w)) to rice flour and extruder screw speed strongly affected the expansion behaviour and therefore, textural attributes of extruded snack products. The sensory panel described the texture of highly expanded extrudates as crisp, while low expanded extrudates were perceived as hard, crunchy and non-crisp. Results of the instrumental and sensory analysis were compared and showed a high correlation between mechanical and sensory hardness (r=0.98), as well as acoustic and sensory crispness (r=0.88). However, poor and/or negative correlations between acoustic and sensory hardness and crunchiness were observed (r=-0.35 and -0.84, respectively). Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Lycopene bioaccessibility and starch digestibility for extruded snacks enriched with tomato derivatives.

    Science.gov (United States)

    Dehghan-Shoar, Zeinab; Mandimika, Tafadzwa; Hardacre, Allan K; Reynolds, Gordon W; Brennan, Charles S

    2011-11-23

    To improve the nutritional value of energy-dense extruded snacks, corn grits were replaced with tomato paste and/or tomato skin powder at ratios of 5, 10, and 20% and extruded to make expanded snack foodlike products. Using a model digestion system, lycopene bioaccessibility and uptake from the snacks into Caco-2 cells were determined. The digestibility of the starch, the main nutrient component of the snacks, was also investigated. While extrusion cooking reduced the lycopene content of the snacks, the proportion of bioaccessible lycopene increased. Lycopene uptake by the Caco-2 cells from the extruded snacks exceeded that of the control in which the lycopene was not extruded, by 5% (p snacks varied depending on the type of tomato derivative and its concentration. Optimization of the extrusion cooking process and the ingredients can yield functional extruded snack products that contain bioavailable lycopene.

  19. THE MODELING OF COUNTER-ROTATING TWIN-SCREW EXTRUDERS AS REACTORS FOR SINGLE-COMPONENT REACTIONS

    NARCIS (Netherlands)

    GANZEVELD, KJ; CAPEL, JE; VANDERWAL, DJ; JANSSEN, LPBM

    Numerical models are useful to study the behaviour of the extruder as a polymerization reactor. With a correct numerical model a theoretical analysis of the influence of several reaction and extruder parameters can be made, the limitations of the use of the extruder reactor can be determined and the

  20. 21 CFR 862.1495 - Magnesium test system.

    Science.gov (United States)

    2010-04-01

    ... magnesium levels in serum and plasma. Magnesium measurements are used in the diagnosis and treatment of hypomagnesemia (abnormally low plasma levels of magnesium) and hypermagnesemia (abnormally high plasma levels of magnesium). (b) Classification. Class I. ...

  1. On the dynamic mechanical property and deformation mechanism of as-extruded Mg-Sn-Ca alloys under tension

    International Nuclear Information System (INIS)

    Huang, Qiuyan; Pan, Hucheng; Tang, Aitao; Ren, Yuping; Song, Bo; Qin, Gaowu; Zhang, Mingxing; Pan, Fusheng

    2016-01-01

    To further understand the deformation mechanism of magnesium alloys and expand their applications under dynamic conditions, the newly developed Mg-2Sn-1Ca alloy (TX21) is selected as the representative sample and tested under wide loading rate ranging from quasi-static to dynamic level (10"−"3–500/s). Both ultimate tensile strength and elongation of the as-extruded TX21 alloys increase with strain rate. Although twinning is accompanied due to the enhanced activity at higher strain rate, the preferential activation of dislocations is readily clarified and confirmed as the dominant deformation modes. Active interactions of pyramidal dislocations result in the higher strain hardening ability and could be correlated to the obviously positive strain-rate sensitivity for mechanical properties. Moreover, it is observed that the larger grain size and higher content of solute atoms dissolved in matrix would lead to the more active dislocations and twinning formations. The present results would provide insight into further understanding the deformation mechanism under dynamic rate loading and designing Mg alloy suitable for impact conditions.

  2. On the dynamic mechanical property and deformation mechanism of as-extruded Mg-Sn-Ca alloys under tension

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qiuyan [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Pan, Hucheng [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Tang, Aitao, E-mail: tat@cqu.edu.cn [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Ren, Yuping [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Song, Bo [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China); Qin, Gaowu, E-mail: qingw@smm.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Zhang, Mingxing [School of Mechanical and Mining Engineering, University of Queensland, St Lucia, QLD 4072 (Australia); Pan, Fusheng [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China)

    2016-05-10

    To further understand the deformation mechanism of magnesium alloys and expand their applications under dynamic conditions, the newly developed Mg-2Sn-1Ca alloy (TX21) is selected as the representative sample and tested under wide loading rate ranging from quasi-static to dynamic level (10{sup −3}–500/s). Both ultimate tensile strength and elongation of the as-extruded TX21 alloys increase with strain rate. Although twinning is accompanied due to the enhanced activity at higher strain rate, the preferential activation of dislocations is readily clarified and confirmed as the dominant deformation modes. Active interactions of pyramidal dislocations result in the higher strain hardening ability and could be correlated to the obviously positive strain-rate sensitivity for mechanical properties. Moreover, it is observed that the larger grain size and higher content of solute atoms dissolved in matrix would lead to the more active dislocations and twinning formations. The present results would provide insight into further understanding the deformation mechanism under dynamic rate loading and designing Mg alloy suitable for impact conditions.

  3. Study of the corrosion behavior of magnesium alloy weddings in NaCl solutions by gravimetric tests

    Energy Technology Data Exchange (ETDEWEB)

    Segarra, J. A.; Calderon, B.; Portoles, A.

    2015-07-01

    In this article, the corrosion behavior of commercial AZ31 welded plates in aqueous chloride media was investigated by means of gravimetric techniques and Neutral Salt Spray tests (NSS). The AZ31 samples tested were welded using Gas Tugsten Arc Welding (GTAW) and different filler materials. Material microstructures were investigated by optical microscopy to stablish the influence of those microstructures in the corrosion behavior. Gravimetric and NSS tests indicate that the use of more noble filler alloys for the sample welding, preventing the reduction of aluminum content in weld beads, does not imply a better corrosion behavior. (Author)

  4. Fire resistance of extruded hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa

    2017-01-01

    to the structural codes with data derived from a standard fire test and from a thorough examination of the comprehensive test documentation available on fire exposed hollow-core slabs. Findings – Mechanisms for loss of load-bearing capacity are clarified, and evidence of the fire resistance is found. Originality......Purpose – Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60 and 120 min found...... in most national building regulations. The paper aims to present a detailed analysis of the mechanisms responsible for the loss of loadbearing capacity of hollow-core slabs when exposed to fire. Design/methodology/approach – Furthermore, it compares theoretica calculation and assessment according...

  5. Fire resistance of extruded hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Giuliani, Luisa; Sørensen, Lars Schiøtt

    2016-01-01

    Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60- and 120 minutes found in most...... a standard fire test and from a thorough examination of the comprehensive test documentation available on fire exposed hollow-core slabs. Mechanisms for loss of load-bearing capacity are clarified, and evidence of the fire resistance is found. For the first time the mechanisms responsible for loss of load......-bearing capacity are identified and test results and calculation approach are for the first time Applied in accordance with each other for assessment of fire resistance of the structure....

  6. Myth or Reality-Transdermal Magnesium?

    Science.gov (United States)

    Gröber, Uwe; Werner, Tanja; Vormann, Jürgen; Kisters, Klaus

    2017-07-28

    In the following review, we evaluated the current literature and evidence-based data on transdermal magnesium application and show that the propagation of transdermal magnesium is scientifically unsupported. The importance of magnesium and the positive effects of magnesium supplementation are extensively documented in magnesium deficiency, e.g., cardiovascular disease and diabetes mellitus. The effectiveness of oral magnesium supplementation for the treatment of magnesium deficiency has been studied in detail. However, the proven and well-documented oral magnesium supplementation has become questioned in the recent years through intensive marketing for its transdermal application (e.g., magnesium-containing sprays, magnesium flakes, and magnesium salt baths). In both, specialist and lay press as well as on the internet, there are increasing numbers of articles claiming the effectiveness and superiority of transdermal magnesium over an oral application. It is claimed that the transdermal absorption of magnesium in comparison to oral application is more effective due to better absorption and fewer side effects as it bypasses the gastrointestinal tract.

  7. Centralization of extruded medial meniscus delays cartilage degeneration in rats.

    Science.gov (United States)

    Ozeki, Nobutake; Muneta, Takeshi; Kawabata, Kenichi; Koga, Hideyuki; Nakagawa, Yusuke; Saito, Ryusuke; Udo, Mio; Yanagisawa, Katsuaki; Ohara, Toshiyuki; Mochizuki, Tomoyuki; Tsuji, Kunikazu; Saito, Tomoyuki; Sekiya, Ichiro

    2017-05-01

    Meniscus extrusion often observed in knee osteoarthritis has a strong correlation with the progression of cartilage degeneration and symptom in the patients. We recently reported a novel procedure "arthroscopic centralization" in which the capsule was sutured to the edge of the tibial plateau to reduce meniscus extrusion in the human knee. However, there is no animal model to study the efficacy of this procedure. The purposes of this study were [1] to establish a model of centralization for the extruded medial meniscus in a rat model; and [2] to investigate the chondroprotective effect of this procedure. Medial meniscus extrusion was induced by the release of the anterior synovial capsule and the transection of the meniscotibial ligament. Centralization was performed by the pulled-out suture technique. Alternatively, control rats had only the medial meniscus extrusion surgery. Medial meniscus extrusion was evaluated by micro-CT and macroscopic findings. Cartilage degeneration of the medial tibial plateau was evaluated macroscopically and histologically. By micro-CT analysis, the medial meniscus extrusion was significantly improved in the centralization group in comparison to the extrusion group throughout the study. Both macroscopically and histologically, the cartilage lesion of the medial tibial plateau was prevented in the centralization group but was apparent in the control group. We developed medial meniscus extrusion in a rat model, and centralization of the extruded medial meniscus by the pull-out suture technique improved the medial meniscus extrusion and delayed cartilage degeneration, though the effect was limited. Centralization is a promising treatment to prevent the progression of osteoarthritis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Resistance Element Welding of Magnesium Alloy/austenitic Stainless Steel

    Science.gov (United States)

    Manladan, S. M.; Yusof, F.; Ramesh, S.; Zhang, Y.; Luo, Z.; Ling, Z.

    2017-09-01

    Multi-material design is increasingly applied in the automotive and aerospace industries to reduce weight, improve crash-worthiness, and reduce environmental pollution. In the present study, a novel variant of resistance spot welding technique, known as resistance element welding was used to join AZ31 Mg alloy to 316 L austenitic stainless steel. The microstructure and mechanical properties of the joints were evaluated. It was found that the nugget consisted of two zones, including a peripheral fusion zone on the stainless steel side and the main fusion zone. The tensile shear properties of the joints are superior to those obtained by traditional resistance spot welding.

  9. Effect of oxygen on the hydrogenation properties of magnesium films

    DEFF Research Database (Denmark)

    Ostenfeld, Christopher Worsøe; Chorkendorff, Ib

    2006-01-01

    The effect of magnesium oxide on the magnesium and hydrogen desorption properties of magnesium films have been investigated. We find that by capping metallic magnesium films with oxide overlayers the apparent desorption energy of magnesium is increased from 146 kJ/mol to 314 kJ/mol. The results...... are discussed in light of previous investigations of ball-milled magnesium powders....

  10. Alkoxide-based magnesium electrolyte compositions for magnesium batteries

    Science.gov (United States)

    Dai, Sheng; Sun, Xiao-Guang; Liao, Chen; Guo, Bingkun

    2018-01-30

    Alkoxide magnesium halide compounds having the formula: RO--Mg--X (1) wherein R is a saturated or unsaturated hydrocarbon group that is unsubstituted, or alternatively, substituted with one or more heteroatom linkers and/or one or more heteroatom-containing groups comprising at least one heteroatom selected from fluorine, nitrogen, oxygen, sulfur, and silicon; and X is a halide atom. Also described are electrolyte compositions containing a compound of Formula (1) in a suitable polar aprotic or ionic solvent, as well as magnesium batteries in which such electrolytes are incorporated.

  11. System and process for production of magnesium metal and magnesium hydride from magnesium-containing salts and brines

    Science.gov (United States)

    McGrail, Peter B.; Nune, Satish K.; Motkuri, Radha K.; Glezakou, Vassiliki-Alexandra; Koech, Phillip K.; Adint, Tyler T.; Fifield, Leonard S.; Fernandez, Carlos A.; Liu, Jian

    2016-11-22

    A system and process are disclosed for production of consolidated magnesium metal products and alloys with selected densities from magnesium-containing salts and feedstocks. The system and process employ a dialkyl magnesium compound that decomposes to produce the Mg metal product. Energy requirements and production costs are lower than for conventional processing.

  12. Apically extruded debris with three contemporary Ni-Ti instrumentation systems: an ex vivo comparative study.

    Science.gov (United States)

    Log