WorldWideScience

Sample records for extrinsic fracture behavior

  1. Evaluation of the Intrinsic and Extrinsic Fracture Behavior of Iron Aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, B.R.

    2001-01-11

    In this paper, we first present the status of our computational modeling study of the thermal expansion coefficient of Fe/Al over a wide range of temperature and evaluate its dependence on selected additives. This will be accomplished by applying an isobaric Monte Carlo technique. The required total energy of the sample will be computed by using a tight-binding (TB) method that allows us to significantly increase the size of the computational data base without reducing the accuracy of the calculations. The parameters of the TB Hamiltonian are fitted to reproduce the band structure obtained by our quantum mechanical full-potential LMTO calculations. The combination of the three methods mentioned above creates an effective approach to the computation of the physical properties of the transition-metal aluminides and it can be extended to alloys with more than two components. At present, we are using a simplified approach for a first-round of results; and as a test of the simplified approach, have obtained excellent agreement with experiment for aluminum. Our previous experimental results showed that, because of their smaller grain size, FA-187 and FA-189 are extrinsically more susceptible to environmental embrittlement than FA-186 under low strain loading condition. To further investigate the grain boundary size effect as related to the susceptibility of hydrogen embrittlement, we conducted comparative finite element modeling simulations of initial intergranular fracture of two iron aluminides (FA186 and FA189) due to hydrogen embrittlement. Sequentially coupled stress and mass diffusion analyses are carried out to determine crack-tip stress state and the extent of hydrogen diffusion at the crack tip region, and a proper failure criteria is then adopted to simulate the intergranular fracture. Good qualitative agreement between the modeling predictions and experimental results is observed.

  2. Evaluation of the intrinsic and extrinsic fracture behavior of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, B.R.; Kang, B.S. [West Virginia Univ., Morgantown, WV (United States)

    1998-07-27

    Iron aluminides have excellent corrosion resistance in high-temperature oxidizing-sulfidizing environments; however, there are problems at room and medium temperatures with hydrogen embrittlement as related to exposure to moisture. In this research, a coordinated computational modeling/experimental study of mechanisms related to environmental-assisted fracture behavior of selected iron aluminides has been undertaken. The modeling and the experimental work connect at the level of coordinated understanding of the mechanisms for hydrogen penetration and for loss of strength and susceptibility to fracture. The focus of the modeling component has been on the challenging question of accurately predicting the iron vacancy formation energy in Fe{sub 3}Al and the subsequent tendency, if present, for vacancy clustering. The authors have successfully performed, on an ab initio basis, the first calculation of the vacancy formation energy in Fe{sub 3}Al. These calculations include lattice relaxation effects which are quite large for one of the two types of iron sites. This has significant implications for vacancy clustering effects with consequences for hydrogen diffusion. Indeed, the ab-initio-based estimate of the divacancy binding energy indicates a likely tendency toward such clustering for iron vacancies on the sites with large lattice relaxation. The experimental work has focused on the relationship of the choice and concentration of additives to the improvement of resistance to hydrogen embrittlement and hence to the fracture behavior.

  3. Evaluation of the intrinsic and extrinsic fracture behavior of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Kang, B.S.; Yao, Qizhou; Cooper, B.R. [West Virginia Univ., Morgantown, WV (United States)

    1996-08-01

    Comparative creep crack growth tests of FA-186 and FA-187 iron aluminides under either dry oxygen or air environment showed that both alloys are susceptible to room temperature hydrogen embrittlement. Test results also revealed that FA-187 is intrinsically a more brittle material than FA-186. Atomistic computational modeling is being undertaken to find the preferred geometries, structures and formation energies of iron vacancies and vacancy pairs (Fe-Fe) in FeAl and Fe{sub 3}Al. An indication of vacancy clustering in Fe{sub 3}Al, with consequences for dislocation behavior, may be important for understanding the role of dislocation assisted diffusion in the hydrogen embrittlement mechanism.

  4. Intrinsic and extrinsic motivation for stereotypic and repetitive behavior.

    Science.gov (United States)

    Joosten, Annette V; Bundy, Anita C; Einfeld, Stewart L

    2009-03-01

    This study provides evidence for intrinsic and extrinsic motivators for stereotypical and repetitive behavior in children with autism and intellectual disability and children with intellectual disability alone. We modified the Motivation Assessment Scale (MAS) (1988b); dividing it into intrinsic and extrinsic measures and adding items to assess anxiety as an intrinsic motivator. Rasch analysis of data from 279 MASs (74 children) revealed that the items formed two unidimensional scales. Anxiety was a more likely intrinsic motivator than sensory seeking for children with dual diagnoses; the reverse was true for children with intellectual disability only. Escape and gaining a tangible object were the most common extrinsic motivators for those with dual diagnoses and attention and escape for children with intellectual disability.

  5. Perceived extrinsic mortality risk and reported effort in looking after health: testing a behavioral ecological prediction.

    Science.gov (United States)

    Pepper, Gillian V; Nettle, Daniel

    2014-09-01

    Socioeconomic gradients in health behavior are pervasive and well documented. Yet, there is little consensus on their causes. Behavioral ecological theory predicts that, if people of lower socioeconomic position (SEP) perceive greater personal extrinsic mortality risk than those of higher SEP, they should disinvest in their future health. We surveyed North American adults for reported effort in looking after health, perceived extrinsic and intrinsic mortality risks, and measures of SEP. We examined the relationships between these variables and found that lower subjective SEP predicted lower reported health effort. Lower subjective SEP was also associated with higher perceived extrinsic mortality risk, which in turn predicted lower reported health effort. The effect of subjective SEP on reported health effort was completely mediated by perceived extrinsic mortality risk. Our findings indicate that perceived extrinsic mortality risk may be a key factor underlying SEP gradients in motivation to invest in future health.

  6. The Extrinsic Coagulation Pathway: a Biomarker for Suicidal Behavior in Major Depressive Disorder.

    Science.gov (United States)

    Yang, Yongtao; Chen, Jin; Liu, Chengyu; Fang, Liang; Liu, Zhao; Guo, Jing; Cheng, Ke; Zhou, Chanjuan; Zhan, Yuan; Melgiri, Narayan D; Zhang, Liang; Zhong, Jiaju; Chen, Jianjun; Rao, Chenglong; Xie, Peng

    2016-09-08

    Although an association between major depressive disorder (MDD) and suicide exists, most depressed patients never attempt suicide. An improved understanding of the factors contributing to suicidal risk in MDD can provide direction for suicide predictor development. In MDD suicide attempters (MDD-SA), MDD non-attempters (MDD-NA), and healthy controls (HC) (n = 12 each group), complementary plasma proteomics identified 45 differential proteins mapped to coagulation and inflammation, 25 of which underwent Western blotting. In another cohort including antidepressant-treated patients (n = 49 each group), seven additional extrinsic pathway proteins were selected for ELISA. Two inflammatory proteins and eight coagulatory proteins demonstrated alterations in MDD-SA relative to MDD-NA and HC. Applying a relative mass-action ratio, MDD-SA subjects displayed a higher relative prothrombinase activity than MDD-NA subjects, while healthy controls displayed higher relative prothrombinase activity than both MDD-SA and MDD-NA subjects. Consistent with our human findings, we found that heparin treatment significantly increased forced swimming test (FST) immobility time in rodents. MDD, independent of suicidality, is associated with a proinflammatory state accompanied by a hypothrombotic state. Suicidal behavior in MDD is associated with a more pronounced proinflammatory and prothrombotic phenotype accompanied by extrinsic pathway activation, revealing an extrinsic pathway biomarker that can be applied in predicting and monitoring suicidal risk.

  7. Interactive Impact of Intrinsic Motivators and Extrinsic Rewards on Behavior and Motivation Outcomes

    Science.gov (United States)

    Xiang, Ping; Bruene, April; Chen, Ang

    2005-01-01

    In this study we examined the interrelationship among extrinsic rewards and achievement goals (including a work-avoidance goal), competence beliefs, and task values associated with health-enhancing running tasks over a school year. A group of elementary school students (n = 119) from a program that promoted running for running's sake and another…

  8. Fracture opening/propagation behavior and their significance on pressure-time records during hydraulic fracturing

    Energy Technology Data Exchange (ETDEWEB)

    Takashi Kojima; Yasuhiko Nakagawa; Koji Matsuki; Toshiyuki Hashida

    1992-01-01

    Hydraulic fracturing with constant fluid injection rate was numerically modeled for a pair of rectangular longitudinal fractures intersecting a wellbore in an impermeable rock mass, and numerical calculations have been performed to investigate the relations among the form of pressure-time curves, fracture opening/propagation behavior and permeability of the mechanically closed fractures. The results have shown that both permeability of the fractures and fluid injection rate significantly influence the form of the pressure-time relations on the early stage of fracture opening. Furthermore it has been shown that wellbore pressure during fracture propagation is affected by the pre-existing fracture length.

  9. Thrombin induced by the extrinsic pathway and PAR-1 regulated inflammation at the site of fracture repair.

    Science.gov (United States)

    Sato, Nobutaka; Ichikawa, Jiro; Wako, Masanori; Ohba, Tetsuro; Saito, Masanori; Sato, Hironao; Koyama, Kensuke; Hagino, Tetsuo; Schoenecker, Jonathan G; Ando, Takashi; Haro, Hirotaka

    2016-02-01

    Thrombin (coagulation factor IIa) is a serine protease encoded by the F2 gene. Pro-thrombin (coagulation factor II) is cut to generate thrombin in the coagulation cascade that results in a reduction of blood loss. Procoagulant states that lead to activation of thrombin are common in bone fracture sites. However, its physiological roles and relationship with osteoblasts in bone fractures are largely unknown. We herein report various effects of thrombin on mouse osteoblastic MC3T3-E1 cells. MC3T3-E1 cells expressed proteinase-activated receptor 1 (PAR1), also known as the coagulation factor II receptor. They also produced monocyte chemoattractant protein (MCP-1), tissue factor (TF), MCSF and IL-6 upon thrombin stimulation through the PI3K-Akt and MEK-Erk1/2 pathways. Furthermore, MCP-1 obtained from thrombin-stimulated MC3T3-E1 cells induced migration by macrophage RAW264 cells. All these effects of thrombin on MC3T3-E1 cells were abolished by the selective non-peptide thrombin receptor inhibitor SCH79797. We also found that thrombin, PAR-1, MCP-1, TF as well as phosphorylated AKT and p42/44 were significantly expressed at the fracture site of mouse femoral bone. Collectively, thrombin/PAR-1 interaction regulated MCP-1, TF, MCSF and IL-6 production by MC3T3-E1 cells. Furthermore, MCP-1 induced RAW264 cell migration. Thrombin may thus be a novel cytokine that regulates several aspects of osteoblast function and fracture healing. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Integrated Theory of Planned Behavior with Extrinsic Motivation to Predict Intention Not to Use Illicit Drugs by Fifth-Grade Students in Taiwan

    Science.gov (United States)

    Liao, Jung-Yu; Chang, Li-Chun; Hsu, Hsiao-Pei; Huang, Chiu-Mieh; Huang, Su-Fei; Guo, Jong-Long

    2017-01-01

    This study assessed the effects of a model that integrated the theory of planned behavior (TPB) with extrinsic motivation (EM) in predicting the intentions of fifth-grade students to not use illicit drugs. A cluster-sampling design was adopted in a cross-sectional survey (N = 571). The structural equation modeling results showed that the model…

  11. Using Extrinsic Motivation to Influence Student Attitude and Behavior toward State Assessments at an Urban High School

    Science.gov (United States)

    Emmett, Joshua

    2013-01-01

    The purpose of this qualitative research study was to discover the influence of a student achievement program implemented at one large urban high school that employed extrinsic motivation to promote student achievement on state assessments. Using organismic integration theory as the theoretical framework, 19 randomly selected students participated…

  12. Inelastic material behavior and fracture mechanics a variational approach

    CERN Document Server

    Bruno, L

    1999-01-01

    A variational principle is presented, which relates the macroscopic fracture response of a mechanical component to its microscopic, inelastic material behavior. The principle allows a comparison between the crack driving force, expressed by the J-integral, and an integral expression of the fracture resistance. On this basis, the critical values of J are calculated for a Griffith crack under mixed- mode loading. The preliminary check with data available in literature shows a fairly good agreement. (8 refs).

  13. Fracture toughness and fracture behavior of SA508-III steel at different temperatures

    Science.gov (United States)

    Liu, Jia-hua; Wang, Lei; Liu, Yang; Song, Xiu; Luo, Jiong; Yuan, Dan

    2014-12-01

    The fracture toughness of SA508-III steel was studied in the temperature range from room temperature to 320°C using the J-integral method. The fracture behavior of the steel was also investigated. It was found that the conditional fracture toughness ( J Q) of the steel first decreased and then increased with increasing test temperature. The maximum and minimum values of J Q were 517.4 kJ/m2 at 25°C and 304.5 kJ/m2 at 180°C, respectively. Dynamic strain aging (DSA) was also observed to occur when the temperature exceeded 260°C with a certain strain rate. Both the dislocation density and the number of small dislocation cells effectively increased because of the occurrence of DSA; as a consequence, crack propagation was more strongly inhibited in the steel. Simultaneously, an increasing number of fine carbides precipitated under high stress at temperatures greater than 260°C. Thus, the deformation resistance of the steel was improved and the J Q was enhanced.

  14. The Relational-Behavior Model: The Relationship between Intrinsic Motivational Instruction and Extrinsic Motivation in Psychologically Based Instruction

    Science.gov (United States)

    Chandler, Donald S., Jr.

    2008-01-01

    This pilot study examined the relational-behavior model (RBM) as a method of intrinsic motivational instruction in psychology courses. Among a sample of 33 college students enrolled in two undergraduate psychology courses, a Spearman rho analysis revealed a significant relationship between the intrinsic motivational factors (e.g. student/class…

  15. Fatigue crack growth and fracture behavior of bainitic rail steels.

    Science.gov (United States)

    2011-09-01

    "The microstructuremechanical properties relationships, fracture toughness, fatigue crack growth and fracture surface morphology of J6 bainitic, manganese, and pearlitic rail steels were studied. Microstructuremechanical properties correlation ...

  16. Fatigue crack growth and fracture behavior of bainitic rail steels.

    Science.gov (United States)

    2011-08-01

    "The microstructuremechanical properties relationships, fracture toughness, fatigue crack growth and fracture surface morphology of J6 bainitic, manganese, and pearlitic rail steels were studied. Microstructuremechanical properties correlation ...

  17. A study on the fracture behavior in tensile and fracture toughness tests of CFRP by acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Guk; Oh, Sae Kyoo; Nam, Ki Woo; Kim, Og Gyun [Bukyung National University, Pusan (Korea, Republic of)

    1994-05-15

    This study was carried out to analyze the fracture behavior and the acoustic emission(AE) characteristics, and to find relationship between tensile strength, fracture toughness and cure pressure in cure process of the carbon fiber reinforced composites of two types, [0 degree/90 degree]{sub 2s} and [0 degree{sub 2}/90 degree{sub 2}]{sub s}. AE signals were detected during the curing process, tensile tests and fracture toughness tests by acoustic emission(AE) measurements, respectively. Tensile strengths showed that the less cure pressurizing steps and the side of [0 degree/90 degree]{sub 2s} specimens had the higher strengths than those of the others. Fracture toughness showed nearly same values in the same temperature region, but the higher test temperature had the lower fracture toughness values. In order to examine between fracture behavior of tensile and fracture toughness test and post processing for AE parameters of AE data and observations of microscopy, SEM are carried out respectively.

  18. A study on the fracture behavior of CFRP in tensile and fracture toughness tests by acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Guk; Oh, Sae Kyoo; Nam, Ki Woo; Kim, Og Gyun [National Fishery University of Pusan, Pusan (Korea, Republic of)

    1995-01-01

    The Study was carried out to analyze the fracture behavior and the acoustic emission(AE) characteristics and to find the relationship among tensile strength, fracture toughness and cure pressure in cure process of the carbon fiber reinforced composites of two types, [0 deg/90 deg]{sub 2s} and [0 deg{sub 2}/90 deg{sub 2}]{sub s}. AE signals were detected during the curing process, tensile tests and fracture toughness tests by acoustic emission(AE) measurements, respectively. Tensile strengths showed that the less cure pressurizing steps and the side of [0 deg/90 deg]{sub 2s} specimens had the higher strengths than those of the others. Fracture toughness by the change of test temperature showed nearly same values in the same temperature region, but the higher test temperature had the lower fracture toughness values. In order to examine the relationship between fracture behavior of CFRP in tensile and fracture toughness tests and AE signals, the post processing for AE parameters of AE data and the observations of microscope and SEM have been carried out respectively. (author)

  19. A Study on the Fracture Behavior of CFRP in Tensile and Fracture Toughness Tests by Acoustic Emission

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Guk; Oh, Sae Kyoo; Nam, Ki Woo; Kim, Og Gyun [Fisheries University of Pusan , Busan (Korea, Republic of)

    1995-06-15

    The study was carried out to analyze the fracture behavior and the acoustic emission(AE) characteristics and to find the relationship among tensile strength, fracture toughness and cure pressure in owe process of the carbon fiber reinforced composites of two types, [0 .deg. /90 .deg. ]{sub 2s} and [0 .deg. {sub 2}/90 .deg. {sub 2}]. AE signals were detected during the curing process, tensile tests and fracture toughness tests by acoustic emission(AE) measurements, respectively. Tensile strengths showed that the less cure pressurizing steps and the side of [0 .deg. /90 .deg. ]{sub 2s} specimens had the higher strengths than those of the others. Fracture toughness by the change of test temperature showed nearly same values in the same temperature region, but the higher test temperature had the lower fracture toughness values. In order to examine the relationship between fracture behavior of CFRP in tensile and fracture toughness tests and AE signals, the post processing for AE parameters of AE data and the observations of microscope and SEM have been carried out respectively

  20. Intrinsic and extrinsic mortality reunited

    DEFF Research Database (Denmark)

    Koopman, Jacob J E; Wensink, Maarten J; Rozing, Maarten P

    2015-01-01

    Intrinsic and extrinsic mortality are often separated in order to understand and measure aging. Intrinsic mortality is assumed to be a result of aging and to increase over age, whereas extrinsic mortality is assumed to be a result of environmental hazards and be constant over age. However......, allegedly intrinsic and extrinsic mortality have an exponentially increasing age pattern in common. Theories of aging assert that a combination of intrinsic and extrinsic stressors underlies the increasing risk of death. Epidemiological and biological data support that the control of intrinsic as well...... as extrinsic stressors can alleviate the aging process. We argue that aging and death can be better explained by the interaction of intrinsic and extrinsic stressors than by classifying mortality itself as being either intrinsic or extrinsic. Recognition of the tight interaction between intrinsic and extrinsic...

  1. INTRINSIC AND EXTRINSIC MOTIVATION IN THE SELECTION ...

    African Journals Online (AJOL)

    A psychological perspective is considered that applies intrinsic and extrinsic motivational concepts to communication phenomena. The paper also tries to develop an analytical understanding of human communication-related behavior with respect to the two types of motives. Proposals are also put forward to communication ...

  2. Thermal-Hydrologic-Mechanical Behavior of Single Fractures in EGS Reservoirs

    Science.gov (United States)

    Zyvoloski, G.; Kelkar, S.; Yoshioka, K.; Rapaka, S.

    2010-12-01

    Enhanced Geothermal Systems (EGS) rely on the creation a connected fracture system or the enhancement of existing (natural) fractures by hydraulic and chemical treatments. EGS studies at Fenton Hill (New Mexico, USA) and Hijiori (Japan) have revealed that only a limited number of fractures contribute to the effective heat transfer surface area. Thus, the economic viability of EGS depends strongly on the creation and spacing of single fractures in order to efficiently mine heat from given volume of rock. Though there are many similarities between EGS and natural geothermal reservoirs, a major difference between the reservoir types is the (typically) high pumping pressures and induced thermal stresses at the injection wells of an EGS reservoir. These factors can be responsible for fracture dilation/extension and thermal short circuiting and depend strongly on the surrounding state of stress in the reservoir and mechanical properties. We will present results from our study of the thermal-hydrologic-mechanical (THM) behavior of a single fracture in a realistic subsurface stress field. We will show that fracture orientation, the stress environment, fracture permeability structure, and the relationship between permeability changes in a fracture resulting from mechanical displacement are all important when designing and managing an EGS reservoir. Lastly, we present a sensitivity analysis of the important parameters that govern fracture behavior with respect to field measurements. Temperature in high permeability fracture in an EGS reservoir

  3. Psychological-behavioral characteristics and fractures in children are closely related.

    Science.gov (United States)

    Zheng, Pengfei; Ju, Li; Ma, Xiaoming; Lou, Yue

    2014-11-01

    This work aimed to study the relationship between psychological-behavioral characteristics and fractures in children to provide a basis for development of preventive strategies. The study included 84 children hospitalized for fractures (fracture group) and 78 children without fractures (control group). The following questionnaires were utilized: temperament questionnaire, Eysenck Personality Questionnaire, and the Achenbach Child Behavior Checklist (CBCL). There were more children with problem behaviors in the fracture group than in the control group (Pfractures (Pfracture group than the control group (Pfracture group than the control group in 4-5-year and/or 6-11-year olds. In addition, in 6-11-year olds, boys in the fracture group had higher scores for restlessness, aggression, and violation of discipline and girls in the fracture group had higher scores for aggression and depression than those in the control group (PChildren with fractures had more psychological and behavioral problems. Psychological intervention measures could be adopted to reduce the occurrence of fractures in children.

  4. Extrinsic Rewards: An Adventist Curriculum Perspective for Classroom Management

    OpenAIRE

    Nadine A. Joseph

    2014-01-01

    Extrinsic rewards refer to gifts used as a form of motivation for students’ to attain an academic goal, or given when that particular goal is reached. Though the use of extrinsic rewards have been proven to have some impact on’ behavior change, such as academic performance, the absence of rewards can cause students’ to revert to the initial unwanted behavior. Consequently, the curricula focus in the Adventist classroom should address the deeper issues that affect behavior and implement the us...

  5. Experimental investigation on the effects of recycled aggregate on fracture behavior of polymer concrete

    Directory of Open Access Journals (Sweden)

    João Marciano Laredo dos Reis

    2011-09-01

    Full Text Available The sustainable management of solid wastes stimulates metallurgic and metal mechanics industries to look for safety applications for these wastes. The present paper examines the fracture behavior of polymer concrete (PC manufactured with recycled foundry waste in substitution of fresh one. The recycled foundry sand is contaminated with polymer resin from the mold making process. Epoxy and unsaturated polyester resins were used as binder as cement substitute. The fracture results are analyzed by fracture energy; Gf, fracture toughness, K Ic, and the crack tip opening displacement, CTOD. It is found that the use of recycled foundry sand significantly influences the fracture properties. The use of recycled sand increase fracture toughness and similar fracture energy is observed. These results show that recycled sand is an excellent alternative as raw material.

  6. Engagement in Classroom Learning: Creating Temporal Participation Incentives for Extrinsically Motivated Students through Bonus Credits

    Science.gov (United States)

    Rassuli, Ali

    2012-01-01

    Extrinsic inducements to adjust students' learning motivations have evolved within 2 opposing paradigms. Cognitive evaluation theories claim that controlling factors embedded in extrinsic rewards dissipate intrinsic aspirations. Behavioral theorists contend that if engagement is voluntary, extrinsic reinforcements enhance learning without ill…

  7. Fracture Behavior of Dielectric Elastomer under Pure Shear Loading

    Science.gov (United States)

    Ahmad, D.; Patra, K.

    2017-09-01

    Dielectric elastomer has become a very important material for many emerging applications areas like optics, micro fluidics, sensors, actuators and energy harvesting. However, these elastomer components are prone to fracture or catastrophic failure because of defects likes notches, flaws, and fatigue crack, impurities which occur during production or during service. To make better use of this material, it is important to investigate fracture characteristics under different operating conditions. This study experimentally investigated the effects of notch length and strain rate on the fracture toughness, failure stretch and failure stress of acrylic elastomer under pure shear deformation mode. It is observed that failure stretch depends on notch length and independent of strain rate, but failure stress decreases with increasing notch length and increases with increasing strain rate. It is also found that fracture toughness is independent of notch lengths. However, fracture toughness is found to increase with strain rate.

  8. Measuring Stress-dependent Fluid Flow Behavior in Fractured Porous Media

    Science.gov (United States)

    Huo, Da; Benson, Sally

    2014-05-01

    Maintaining long-term storage of CO2 is one of the most important factors for selecting the site for a geological CO2 storage project. Nevertheless, it is important to be prepared for possible leakage due to leaking wells or leakage pathways through the seal of a storage reservoir. This research project is motivated by the need to understand unexpected CO2 leakage. The goal of this research is to investigate stress-dependent fracture permeability and relative permeability of CO2/brine systems. Laboratory measurements of fracture permeability and fracture apertures have been made as a function of effective stress. The phenomenon that permeability decreases with effective pressure increase is observed. Due to deformation of the fracture surface during periods with high effective stress, hysteretic behavior of fractured rock permeability is also observed in core flood experiments. A series of experiments are conducted to investigate permeability hysteresis. A single saw-cut fracture is created in the rock sample to simplify the problem and to focus on the fracture itself. Permeability is measured using a high pressure core flood apparatus with X-Ray CT scanning to measure the fracture aperture distributions. Two permeability data sets, including a high permeability fractured Berea Sandstone and a low permeability fractured Israeli Zenifim Formation sandstone, show clear hysteretic behavior in both permeability and fracture aperture in repeated cycles of compression and decompression. Due to closure of the fracture aperture, when a fractured rock is compressed axially, the permeability has an exponential decline with effective pressure, as expected from stress-dependent permeability theory. When the fractured rock is decompressed afterwards, permeability increases, but not along the compression pathway and never returns to the original value. Depending on the nature of the fracture and host rock, permeability can decrease from a factor of 2 to 40. After one or more

  9. Mechanical and hydraulic behavior of a rock fracture under shear deformation

    National Research Council Canada - National Science Library

    Nishiyama, Satoshi; Ohnishi, Yuzo; Ito, Hisao; Yano, Takao

    2014-01-01

    ...-scale hydraulic behavior. To this end, a simultaneous permeability and shear test device is developed, and shear-flow coupling tests are conducted on specimens having fractures with varied levels of surface roughness...

  10. Muscle Fiber Orientation Angle Dependence of the Tensile Fracture Behavior of Frozen Fish Muscle

    Science.gov (United States)

    Hagura, Yoshio; Okamoto, Kiyoshi; Suzuki, Kanichi; Kubota, Kiyoshi

    We have proposed a new cutting method for frozen fish named "cryo-cutting". This method applied tensile fracture force or bending fracture force to the frozen fish at appropriate low temperatures. In this paper, to clarify cryo-cutting mechanism, we analyzed tensile fracture behavior of the frozen fish muscle. In the analysis, the frozen fish muscle was considered unidirectionally fiber-reinforced composite material which consisted of fiber (muscle fiber) and matrix (connective tissue). Fracture criteria (maximum stress criterion, Tsai-Hill criterion) for the unidirectionally fiber-reinforced composite material were used. The following results were obtained: (1) By using Tsai-Hill criterion, muscle fiber orientation angle dependence of the tensile fracture stress could be calculated. (2) By using the maximum stress theory jointly with Tsai-Hill criterion, muscle fiber orientation angle dependence of the fracture mode of the frozen fish muscle could be estimated.

  11. Study on fracture behavior of surface treated montmorillonite/epoxy nanocomposites.

    Science.gov (United States)

    Ha, Sung-Rok; Rhee, Kyong-Yop; Kim, Hee-Cheul; Kim, Jeong-Tai; Park, Soo-Jin

    2007-11-01

    It is known that the mechanical properties of clay-reinforced nanocomposites are significantly affected by the dispersion of clay particles in the matrix. In this study, the effect of surface-treatment of Montmorillonite (MMT) on the fracture behavior of MMT/epoxy nanocomposite was investigated. For this purpose, fracture tests were performed using samples with three different clay concentration level. After fracture tests, SEM analysis was made on the fracture surfaces to examine the fracture mechanism. It was found that the MMT treatment using 3-aminopropyltriethoxysilane enhanced the fracture toughness increased of the MMT/epoxy nanocomposite. This is due to the improved intercalation effect and interfacial strength between MMT and epoxy matrix.

  12. Effect of loading rate on the fracture behavior of nuclear piping materials under cyclic loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Weon; Choi, Myung Rak [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of); Kim, Yun Jae [Dept. of Mechanical Engineering, Korea University, Seoul (Korea, Republic of)

    2016-12-15

    This study investigated the loading rate effect on the fracture resistance under cyclic loading conditions to understand clearly the fracture behavior of piping materials under seismic conditions. J-R fracture toughness tests were conducted under monotonic and cyclic loading conditions at various displacement rates at room temperature and the operating temperature of nuclear power plants (i.e., 316°C). SA508 Gr.1a low-alloy steel and SA312 TP316 stainless steel piping materials were used for the tests. The fracture resistance under a reversible cyclic load was considerably lower than that under monotonic load regardless of test temperature, material, and loading rate. Under both cyclic and monotonic loading conditions, the fracture behavior of SA312 TP316 stainless steel was independent of the loading rate at both room temperature and 316°C. For SA508 Gr.1a low-alloy steel, the loading rate effect on the fracture behavior was appreciable at 316°C under cyclic and monotonic loading conditions. However, the loading rate effect diminished when the cyclic load ratio of the load (R) was -1. Thus, it was recognized that the fracture behavior of piping materials, including seismic loading characteristics, can be evaluated when tested under a cyclic load of R = -1 at a quasistatic loading rate.

  13. Effect of Loading Rate on the Fracture Behavior of Nuclear Piping Materials Under Cyclic Loading Conditions

    Directory of Open Access Journals (Sweden)

    Jin Weon Kim

    2016-12-01

    Full Text Available This study investigated the loading rate effect on the fracture resistance under cyclic loading conditions to understand clearly the fracture behavior of piping materials under seismic conditions. J–R fracture toughness tests were conducted under monotonic and cyclic loading conditions at various displacement rates at room temperature and the operating temperature of nuclear power plants (i.e., 316°C. SA508 Gr.1a low-alloy steel and SA312 TP316 stainless steel piping materials were used for the tests. The fracture resistance under a reversible cyclic load was considerably lower than that under monotonic load regardless of test temperature, material, and loading rate. Under both cyclic and monotonic loading conditions, the fracture behavior of SA312 TP316 stainless steel was independent of the loading rate at both room temperature and 316°C. For SA508 Gr.1a low-alloy steel, the loading rate effect on the fracture behavior was appreciable at 316°C under cyclic and monotonic loading conditions. However, the loading rate effect diminished when the cyclic load ratio of the load (R was −1. Thus, it was recognized that the fracture behavior of piping materials, including seismic loading characteristics, can be evaluated when tested under a cyclic load of R = −1 at a quasistatic loading rate.

  14. Fracture behavior of single phase iron titanate laminate composites

    Science.gov (United States)

    Baskin, Donald Matthew

    1999-11-01

    The study of single phase iron titanate (Fe2TiO5) laminates was undertaken to explore a novel technique for producing tough ceramics without the use of multiple phases. Iron titanate is an orthorhombic, microcracking ceramic whose single crystals exhibit anisotropie thermal contraction and magnetic behavior. Due to the latter anisotropy, it was possible to produce crystallographically textured material, and thereby transfer the thermal anisotropy of the single crystal to bulk materials. Magnetic-assisted gelcasting was exploited to form laminates of alternating layers of crystallographically textured and nontextured material. Aggregates of non-textured material were discovered within textured layers that lead to a population of "aggregate cracks" in the microstructure. These cracks were always oriented normal to the direction of alignment. By changing the orientation of alignment and textured strength in the textured layers, it was possible to produce a spectrum of residual stresses within the laminates. Many spontaneous types of cracking were observed, ranging from tunnel cracks to complete delamination. Laminates were machined into single-edge notch-beam specimens and tested for toughness. Depending on the stacking sequence chosen, test crack trajectories ranged from penetration of all the layers, to large scale (>4 mm) interlaminar bifurcation. The maximum peak toughness observed in mixed layer laminates was 2.4 +/- 0.4 MPa.m1/2, which was an improvement over the toughnesses measured in laminates consisting of all non-textured layers (1.6 +/- 0.1 MPa.m1/2 ). Maximum toughnesses did not correspond to instances of crack bifurcation. Instead, x-ray tomography results and finite element simulations indicated that the aggregate cracks were responsible for the observed toughness enhancements. As the variety of different cracking behaviors observed during this study corresponded closely with the spectrum of residual stresses produced, it was possible to draw a fracture

  15. Modeling of material orientation effects on AHSS crush and fracture behavior in axial crush tests.

    Science.gov (United States)

    Chen, Guofei; Link, Todd M; Shi, Ming F; Tyan, Tau

    2013-01-01

    Due to the rolling manufacturing process, most advanced high-strength steels (AHSS) demonstrate in-plane anisotropic material behavior. This study investigates the effects of material orientation on the axial crush behavior and fracture of AHSS with axial crush tests and computer simulations. Crush simulation models considering material anisotropy and damage evolution were developed in LS-DYNA based on the drop-tower crush test results and coupon characterization test data for DP780 steel. The modified Mohr-Coulomb (MMC) isotropic fracture model was employed in the crush simulation models for fracture prediction. The 12-sided components fabricated in the transverse (T) direction of the sheet exhibited slightly higher crush loads and reduced crush distances compared to those in the longitudinal (L) direction. The crush behavior in each direction was generally proportional to ultimate tensile strength. All of the materials investigated in this study showed some cracking in the crush tests for both component orientations, but only DP780 showed significant anisotropy in fracture behavior with more cracking for the T direction compared to the L direction. Overall, the amount of cracking observed in the tests had little or no significant effect on the axial crush performance. The MMC fracture loci in both the L and T directions were determined using a reverse engineering approach, and the stress-strain curves beyond the uniform elongation point were extended using an optimization method. Both material models MAT103 and MAT224 predicted the crush and fracture behavior with reasonably good accuracy. The predicted fracture mode and force-displacement curves agreed well with the test data for both the L and T directions in axial crush tests of the 12-sided components. The simple isotropic material model MAT224 is adequate for crush simulations to predict material orientation effects on AHSS component crush performance and fracture behavior.

  16. Effects of forced cooling on mechanical properties and fracture behavior of heavy section ductile iron

    Directory of Open Access Journals (Sweden)

    Er-jun Guo

    2015-11-01

    Full Text Available To develop materials suitable for spent-nuclear-fuel containers, the effect of forced cooling on mechanical properties and fracture toughness of heavy section ductile iron was investigated. Two cubic castings with different cooling processes were prepared: casting A was prepared in a totally sand mold, and casting B was prepared in a sand mold with two chilling blocks placed on the left and right sides of the mold. Three positions in each casting with different solidification cooling rates were chosen. In-situ SEM tensile experiment was used to observe the dynamic tensile process. Fracture analysis was conducted to study the influence of vermicular and slightly irregular spheroidal graphite on the fracture behavior of heavy section ductile iron. Results show that the tensile strength, elongation, impact toughness and fracture toughness at different positions of the two castings all decrease with decreasing cooling rate. With the increase of solidification time, the fracture mechanism of conventional casting A changes from ductile fracture to brittle fracture, and that of casting B with forced cooling changes from ductile fracture to a mixture of ductile-brittle fracture.

  17. Effect of processing induced particle alignment on the fracture toughness and fracture behavior of multiphase dental ceramics.

    Science.gov (United States)

    Gonzaga, Carla C; Okada, Cristina Yuri; Cesar, Paulo F; Miranda, Walter G; Yoshimura, Humberto N

    2009-11-01

    To investigate the processing induced particle alignment on fracture behavior of four multiphase dental ceramics (one porcelain, two glass-ceramics and a glass-infiltrated-alumina composite). Disks (Ø12 mm x 1.1mm-thick) and bars (3 mm x 4 mm x 20 mm) of each material were processed according to manufacturer instructions, machined and polished. Fracture toughness (K(Ic)) was determined by the indentation strength method using 3-point bending and biaxial flexure fixtures for the fracture of bars and disks, respectively. Microstructural and fractographic analyses were performed with scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The isotropic microstructure of the porcelain and the leucite-based glass-ceramic resulted in similar fracture toughness values regardless of the specimen geometry. On the other hand, materials containing second-phase particles with high aspect ratio (lithium disilicate glass-ceramic and glass-infiltrated-alumina composite) showed lower fracture toughness for disk specimens compared to bars. For the lithium disilicate glass-ceramic disks, it was demonstrated that the occurrence of particle alignment during the heat-pressing procedure resulted in an unfavorable pattern that created weak microstructural paths during the biaxial test. For the glass-infiltrated-alumina composite, the microstructural analysis showed that the large alumina platelets tended to align their large surfaces perpendicularly to the direction of particle deposition during slip casting of green preforms. The fracture toughness of dental ceramics with anisotropic microstructure should be determined by means of biaxial testing, since it results in lower values.

  18. Integrated remodeling-to-fracture finite element model of human proximal femur behavior.

    Science.gov (United States)

    Hambli, Ridha; Lespessailles, Eric; Benhamou, Claude-Laurent

    2013-01-01

    The purpose of this work was to develop an integrated remodeling-to-fracture finite element model allowing for the combined simulation of (i) simulation of a human proximal femur remodeling under a given boundary conditions, (ii) followed by the simulation of its fracture behavior (force-displacement curve and fracture pattern) under quasi-static load. The combination of remodeling and fracture simulation into one unified model consists in considering that the femur properties resulting from the remodeling simulation correspond to the initial state for the fracture prediction. The remodeling model is based on phenomenological one based on a coupled strain and fatigue damage stimulus. The fracture model is based on continuum damage mechanics in order to predict the progressive fracturing process which allows to predict the fracture pattern and the complete force-displacement curve under quasi-static load. To prevent mesh-dependence that generally affects the damage propagation rate, regularization technique was applied in the current work. To investigate the potential of the proposed unified remodeling-to-fracture model, we performed remodeling simulations on a 3D proximal femur model for a duration of 365 days under five different daily loading conditions followed by a side fall fracture simulation reproducing previously published experimental tests (de Bakker et al. (2009), case C, male, 72 years old). We show here that the implementation of an integrated remodeling-to-fracture model provides more realistic prediction strategy to assess the bone remodeling effects on the fracture risk of bone. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Fracture behavior of C/SiC composites at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Dong Hyun; Lee, Jeong Won; Kim, Jae Hoon; Shin, Ihn Cheol; Lim, Byung Joo [Chungnam National University, Daejeon (Korea, Republic of)

    2017-08-15

    The fracture behavior of carbon fiber-reinforced silicon carbide (C/SiC) composites used in rocket nozzles has been investigated under tension, compression, and fracture conditions at room temperature, 773 K and 1173 K. The C/SiC composites used in this study were manufactured by liquid silicon infiltration process at ~1723 K. All experiments were conducted using two types of specimens, considering fiber direction and oxidation condition. Experimental results show that temperature, fiber direction, and oxidation condition affect the behavior of C/SiC composites. Oxidation was found to be the main factor that changes the strength of C/SiC composites. By applying an anti-oxidation coating, the tensile and compressive strengths of the C/SiC composites increased with temperature. The fracture toughness of the C/SiC composites also increased with increase temperature. A fractography analysis of the fractured specimens was conducted using a scanning electron microscope.

  20. Fracture behavior of zirconia implant abutments is influenced by superstructure-geometry.

    Science.gov (United States)

    Nothdurft, Frank P; Neumann, Konrad; Knauber, Andreas W

    2014-01-01

    The purpose of this in vitro study was to evaluate the influence of the superstructure-geometry on the fracture behavior of zirconia abutments (Compartis, DeguDent GmbH, Hanau, G). Four different groups (n = 8) representing anterior single crown replacement were prepared. In groups 1 and 2, the implants were restored with customized all-ceramic abutments and anatomically shaped crowns (chromium cobalt alloy). Groups 3 and 4 received crowns with a geometry according to the international standard ISO 14801 (dynamic fatigue test for endosseous dental implants) with a spherical contact area. Groups 2 and 4 were subjected to mechanical aging in a chewing simulator (50 N × 1,200,000 cycles). Static loading until fracture was performed using a universal testing device at an angle of 30° to the implant axis. Fracture patterns were analyzed using SEM. In group 2, only one specimen survived mechanical aging. In group 4, one specimen fractured during the chewing simulation. Groups 1 and 2 showed significantly lower load-bearing capacity than groups 3 and 4. Artificial aging did not influence the fracture resistance. The SEM analysis revealed fatigue-related fracture patterns in those specimens, which failed during artificial aging. Drawing conclusions from ISO testing concerning clinical performance appears to be critical as anatomic superstructure geometries induce different fracture behaviors. ISO testing of zirconia abutments should be accompanied by load-bearing capacity testing under simulated clinical conditions to predict clinical performance.

  1. Investigation of the Fracture Behavior of Scaled HY-130 Weldments

    Science.gov (United States)

    1990-06-01

    gaiaed from the s-zin gage records. C-21 NA VS WC TR90-360 (a) Overall view ýb) DEctail vil-)w ot fracture regior’ RP-261 2102 Figure C-10. Positest...POSTGRADUATE SCHOOL RESEARCH OFFICE MONTEREY, CA 93940 CARDEROCK DIVISION NAVAL SURFACE WARFARE CENTER ATTN: TECHNICAL LIBRARY PORTSMOUTH, VA 23709 PRESIDENT

  2. Modelling the Fracture Behavior of a 350WT Steel

    Science.gov (United States)

    2014-05-01

    stress vs. temperature data obtained from Bouchard [2]. The notched test data was examined, and it was determined that all failures were ductile...Steel 43 TR-14-56 7.0 REFERENCES (1) Bayley, C. (2013). Private Communication. (2) Bouchard . R. (2004). A Study of the Fracture Process and Factors That

  3. Tensile properties and fracturing behavior of weld joints in the CLAM at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Yucheng [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Xiao, Chengwen, E-mail: emoryxiao@163.com [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Xu; Yue, Jiajia; Zhu, Qiang [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-06-15

    Highlights: • We use the stress triaxiality theory to explain the plastic deformation and facture behavior of the joints during the short term tensile tests at high temperature. • The tensile strength of CLAM welded joint at high temperature is lower compared with that at room temperature. • We explained the formation of crack and the reason of fracture. - Abstract: The tensile properties and fracturing behavior of weld joints in the Chinese low activation martensitic steel (CLAM) at high temperatures were studied. The result revealed that the cracks of weld joints in the base metal would appear in the heat-affected zone, after post-weld heat treatment for the high-temperature tensile test. The microstructure in the fractured frontier had different deformation and directions, and the fractured surface had different angles, a result associating with the normal faulting and shear fracturing. The tri-axial theory of stress can well explain the deformation and fracturing behavior of weld joints in the high-temperature tensile.

  4. Mechanical properties and fracture behavior of single-layer phosphorene at finite temperatures

    Science.gov (United States)

    Sha, Zhen-Dong; Pei, Qing-Xiang; Ding, Zhiwei; Jiang, Jin-Wu; Zhang, Yong-Wei

    2015-10-01

    Phosphorene, a new two-dimensional (2D) material beyond graphene, has attracted great attention in recent years due to its superior physical and electrical properties. However, compared to graphene and other 2D materials, phosphorene has a relatively low Young’s modulus and fracture strength, which may limit its applications due to possible structure failures. For the mechanical reliability of future phosphorene-based nanodevices, it is necessary to have a deep understanding of the mechanical properties and fracture behaviors of phosphorene. Previous studies on the mechanical properties of phosphorene were based on first principles calculations at 0 K. In this work, we employ molecular dynamics simulations to explore the mechanical properties and fracture behaviors of phosphorene at finite temperatures. It is found that temperature has a significant effect on the mechanical properties of phosphorene. The fracture strength and strain reduce by more than 65% when the temperature increases from 0 K to 450 K. Moreover, the fracture strength and strain in the zigzag direction is more sensitive to the temperature rise than that in the armchair direction. More interestingly, the failure crack propagates preferably along the groove in the puckered structure when uniaxial tension is applied in the armchair direction. In contrast, when the uniaxial tension is applied in the zigzag direction, multiple cracks are observed with rough fracture surfaces. Our present work provides useful information about the mechanical properties and failure behaviors of phosphorene at finite temperatures.

  5. Fracture toughness and leaching behavior of ion bombarded waste glasses

    Science.gov (United States)

    Matzke, Hj.; Linker, G.

    1984-02-01

    Fracture toughness Klc and fracture surface energy γ were measured on borosilicate waste glasses containing simulated fission products produced in the Institut für Nukleare Entsorgung, KFK. The Hertzian indentation technique with spherical indenters was shown to be a very powerful means with which to study mechanical and fracture properties of small highly radioactive samples. It was tested with Pu-ceramics as well as with Cm-doped glass ceramics. Radiation damage was produced by ion bombardment with Pb or Xe ions of energies up to 300 keV or with He 2+-ions (α-particles) of the cyclotron (KFK) with energies up to 77 MeV. The glasses were used either as-received or else following high-temperature, high-pressure autoclave leaching. The as-bombarded and the leached glasses were analyzed for surface composition and changes by Rutherford backscattering, RBS, with He-ions. In many cases, radiation damage caused an increase in fracture toughness, a very beneficial effect. The leached glasses that were investigated contained surface layers with thicknesses of up to ˜2 μm. RBS showed these layers to be similar in composition to thick layers analyzed by electron microprobe analysis (empa). There was no drastic influence of ion bombardment on the composition or thickness of these layers. The layers themselves caused changes of about ± 10% in the apparent fracture toughness, possibly by absorbing part of the applied energy by plastic deformation or by preventing pre-existing flaws from initiating crack formation.

  6. Mechanistic aspects of fracture and R-curve behavior in elk antler bone

    Energy Technology Data Exchange (ETDEWEB)

    Launey, Maximilien E.; Chen, Po-Yu; McKittrick, Joanna; Ritchie, Robert O.

    2009-11-23

    Bone is an adaptative material that is designed for different functional requirements; indeed, bones have a variety of properties depending on their role in the body. To understand the mechanical response of bone requires the elucidation of its structure-function relationships. Here, we examine the fracture toughness of compact bone of elk antler which is an extremely fast growing primary bone designed for a totally different function than human (secondary) bone. We find that antler in the transverse (breaking) orientation is one of the toughest biological materials known. Its resistance to fracture is achieved during crack growth (extrinsically) by a combination of gross crack deflection/twisting and crack bridging via uncracked 'ligaments' in the crack wake, both mechanisms activated by microcracking primarily at lamellar boundaries. We present an assessment of the toughening mechanisms acting in antler as compared to human cortical bone, and identify an enhanced role of inelastic deformation in antler which further contributes to its (intrinsic) toughness.

  7. Behavioral differences of laying hens with fractured keel bones within furnished cages

    Directory of Open Access Journals (Sweden)

    Teresa Marie Casey-Trott

    2016-05-01

    Full Text Available High prevalence of keel bone fractures in laying hens is reported in all housing systems. Keel fractures have been associated with pain and restricted mobility in hens in loose housing. The objective was to determine whether keel fractures were associated with activity of hens in furnished cages. Thirty-six pairs of LSL Lite hens (72 wk were enrolled in the study. One hen with a fractured keel and one hen without were identified by palpation in each of 36 groups of hens housed in either 30 or 60-bird cages stocked at 750cm2/hen. Behavioral activity of each hen was recorded by four observers blind to keel status using focal animal sampling for 10 min within a 2 hr period in the morning (08:00-10:00, afternoon (12:00-14:00, and evening (17:00-19:00. All hens were observed during each of the three sample periods for three days totaling 90 min, and individual hen data was summed for analysis. Hens were euthanized 48hr after final observations, dissected, and classified by keel status: F0 (no fracture, N=24; F1 (single fracture, N=17; F2 (multiple fractures, N=31. The percentages of time hens performed each behavior were analyzed using a mixed procedure in SAS with fracture severity, body weight, cage size, rearing environment, and tier in the model. Fracture severity affected the duration of perching (P=0.04 and standing (P=0.001, bout length of standing (P<0.0001, and location (floor vs perch of resting behaviors (P=0.01. F2 hens perched longer than F0 hens, 20.0% ± 2.9 and 11.6% ± 3.2. F2 hens spent less time standing, 15.2% ± 1.5, than F0 and F1 hens, 20.7% ± 1.6 and 21.6% ± 1.8. F2 hens had shorter standing bouts (22.0 sec ± 4.2 than both F0 and F1 hens, 33.1 sec ± 4.3 and 27.4 sec ± 4.4. Non-fractured hens spent 80.0% ± 6.9 of total resting time on the floor whereas F1 and F2 hens spent 56.9% ± 12.4 and 51.5% ± 7.7, resting on the floor. Behavioral differences reported here provide insight into possible causes of keel damage, or

  8. A study of fracture and inelastic behavior of bioactive glass-ceramics and glasses.

    Science.gov (United States)

    Hirao, K; Benino, Y; Soga, N

    1992-01-01

    The fracture and inelastic behavior of A-W glass-ceramics, phosphate glasses, silicate glasses, and borate glasses were determined in simulated body fluid (SBF), kerosene, and water. By using the stable crack growth technique, an inelastic behavior was observed on the diagram of load versus load-point displacement. From these studies, it was suggested that the inelastic behavior of bioactive glass-ceramics was produced by the plastic deformation of glassy phase on the grain boundary.

  9. Venlafaxine-induced REM sleep behavioral disorder presenting as two fractures

    Directory of Open Access Journals (Sweden)

    R. Ryan Williams

    2017-10-01

    Full Text Available Rapid eye movement (REM sleep behavioral disorder is characterized by the absence of muscular atonia during REM sleep. In this disorder, patients can violently act out their dreams, placing them at risk for traumatic fractures during these episodes. REM sleep behavioral disorder (RBD can be a sign of future neurodegenerative disease and has also been found to be a side effect of certain psychiatric medications. We present a case of venlafaxine-induced RBD in a 55 year old female who presented with a 13 year history of intermittent parasomnia and dream enactment in addition to a recent history of two fractures requiring intervention.

  10. Mechanical and hydraulic behavior of a rock fracture under shear deformation

    Science.gov (United States)

    Nishiyama, Satoshi; Ohnishi, Yuzo; Ito, Hisao; Yano, Takao

    2014-12-01

    With regard to crystalline rock that constitutes deep geology, attempts have been made to explore its hydraulic characteristics by focusing on the network of numerous fractures within. As the hydraulic characteristics of a rock are the accumulation of hydraulic characteristics of each fracture, it is necessary to develop the hydraulic model of a single fracture to predict the large-scale hydraulic behavior. To this end, a simultaneous permeability and shear test device is developed, and shear-flow coupling tests are conducted on specimens having fractures with varied levels of surface roughness in the constant normal stiffness conditions. The results show that the permeability characteristics in the relation between shear displacement and transmissivity change greatly at the point where the stress path reaches the Mohr-Coulomb failure curve. It is also found that there exists a range in which transmissivity is not proportional to the cube of mechanical aperture width, which seems to be because of the occurrence of channeling phenomenon at small mechanical aperture widths. This channeling flow disappears with increasing shear and is transformed into a uniform flow. We develop a simulation technique to evaluate the macroscopic permeability characteristics by the lattice gas cellular automaton method, considering the microstructure of fracture, namely the fracture surface roughness. With this technique, it is shown that the formation of the Hagen-Poiseuille flow is affected by the fracture microstructure under shear, which as a result determines the relationship between the mechanical aperture width and transmissivity.

  11. Dynamic Response in Transient Stress-Field Behavior Induced by Hydraulic Fracturing

    Science.gov (United States)

    Jenkins, Andrew

    magnitude. These types of shifts are of great concern because they can impact subsequent fracture development causing non-uniform fracture propagation and the potential overlapping of fracture paths as they extend from the wellbore at the point of injection. The dynamics of stress variation that occur with respect to hydraulic fracturing is a somewhat new area of study. In order to accomplish the goals of this thesis and continue future research in this area a new transient model has been developed in order to asses these dynamic systems and determine their influence on fracture behavior. This applies the use of a fully coupled finite element method in 2-D using linear elastic fracture mechanics which is then expanded using displacement discontinuity to a cohesive zone model in 3-D. A static boundary element model was also used to determine stress fields surrounding static, predetermined fracture geometries. These models have been verified against analytical solutions for simple cases and are now being applied to more detailed case studies and analysis. These models have been briefly discussed throughout this thesis in order to give insight on their current capabilities and application as well as their future potential within this area of research. The majority of this work introduces transient stress field prediction to cases of single and multiple hydraulic fractures. The static assessment of these stresses is determined for verification of results to those found in publication which leads into these transient stress field variations. A new method has been developed and applied to the stress state prediction for the first time in a transient fracture model which is partly based upon a critical distance theory. These dynamic interactions can provide useful insight to pertinent issues within the petroleum and natural gas industry such as those to hydraulic fracturing fluid loss and induced seismic events, as well as to applications of efficiency and optimization of the

  12. Strain hardening and fracture behavior during tension of directionally solidified high-nitrogen austenitic steel

    Science.gov (United States)

    Maier, Galina; Astafurova, Elena; Melnikov, Eugene; Moskvina, Valentina; Galchenko, Nina

    2017-12-01

    The effect of grain orientation relative to tensile load on the strain hardening behavior and fracture mechanism of directionally solidified high-nitrogen steel Fe-20Cr-22Mn-1.5V-0.2C-0.6N (in wt %) was studied. The tensile samples oriented along the longitudinal direction of columnar grains demonstrated the improved mechanical properties compared to specimens with the transversal directions of columnar grains: the values of tensile strength and strain-to-fracture were as high as 1080 MPa and 22%, respectively, for tension along the columnar grains and 870 MPa and 11%, respectively, for the tension transversal to the columnar grains. The change in the grain orientation relative to the tensile load varies a fracture mode of the steel. The fraction of the transgranular fracture was higher in the samples with longitudinal directions of the columnar grains compared to the transversal ones.

  13. Fracture behavior of nickel-based alloys in water

    Energy Technology Data Exchange (ETDEWEB)

    Mills, W.J.; Brown, C.M.

    1999-08-01

    The cracking resistance of Alloy 600, Alloy 690 and their welds, EN82H and EN52, was characterized by conducting J{sub IC} tests in air and hydrogenated water. All test materials displayed excellent toughness in air and high temperature water, but Alloy 690 and the two welds were severely embrittled in low temperature water. In 54 C water with 150 cc H{sub 2}/kg H{sub 2}O, J{sub IC} values were typically 70% to 95% lower than their air counterparts. The toughness degradation was associated with a fracture mechanism transition from microvoid coalescence to intergranular fracture. Comparison of the cracking response in water with that for hydrogen-precharged specimens tested in air demonstrated that susceptibility to low temperature cracking is due to hydrogen embrittlement of grain boundaries. The effects of water temperature, hydrogen content and loading rate on low temperature crack propagation were studied. In addition, testing of specimens containing natural weld defects and as-machined notches was performed to determine if low temperature cracking can initiate at these features. Unlike the other materials, Alloy 600 is not susceptible to low temperature cracking as the toughness in 54 C water remained high and a microvoid coalescence mechanism was operative in both air and water.

  14. Intrinsic vs Extrinsic Motivation in Learning Disabled Children.

    Science.gov (United States)

    Reeve, Peggy Tarpley; Loper, Ann Booker

    1983-01-01

    Forty-four children identified as learning disabled were administered Harter's Scale of Intrinsic versus Extrinsic Orientation in the Classroom. Scores were correlated with several indices of school behavior, standardized achievement test scores, report-card grades, and teachers' behavioral ratings. No pattern was evidenced between the scale and…

  15. Effect of water uptake on the fracture behavior of low-k organosilicate glass

    Science.gov (United States)

    Xiangyu Guo; Joseph E. Jakes; Samer Banna; Yoshio Nishi; J. Leon Shohet

    2014-01-01

    Water uptake in porous low-k dielectrics has become a significant challenge for both back-end-of-the-line integration and circuit reliability. This work examines the effects of water uptake on the fracture behavior of nanoporous low-k organosilicate glass. By using annealing dehydration and humidity conditioning, the roles of different water types...

  16. Investigating Fracture Behaviors of Polymer and Polymeric Composite Materials Using Spiral Notch Torsion Test

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Ren, Fei [ORNL; Tan, Ting [ORNL; Lara-Curzio, Edgar [ORNL; Agastra, Pancasatya [Montana State University; Mandell, John [Montana State University; Bertelsen, Williams D. [Gougeon Brothers, Inc.; LaFrance, Carl M. [Molded Fiber Glass Companies

    2011-01-01

    Wind turbine blades are usually fabricated from fiber reinforced polymeric (FRP) materials, which are subject to complex loading conditions during service. The reliability of the blades thus depends on the mechanical behaviors of the FRP under various loading conditions. Specifically, the fracture behavior of FRP is of great importance to both the scientific research community and the wind industry. In the current project, a new testing technique is proposed based on the spiral notch torsion test (SNTT) to study the fracture behavior of composite structures under mixed mode loading conditions, particularly under combined Mode I (flexural or normal tensile stress) and Mode III (torsional shear stress) loading. For the SNTT test method, round-rod specimens with V-grooved spiral lines are subjected to pure torsion. Depending on the pitch angle of the spiral lines, pure Mode I, pure Mode III, or mixed Mode I/Mode III loading conditions can be simulated. A three dimensional finite element analysis is then used to evaluate the fracture toughness and energy release rate of SNTT specimens. In the current study, both epoxy and fiberglass reinforced epoxy materials are investigated using the SNTT technique. This paper will discuss the fracture behaviors of mode I and mixed mode samples, with or without fatigue precrack. In addition, results from fractographic study and finite element analysis will be presented and discussed in detail.

  17. Scaling of sound emission energy and fracture behavior of cellular solid foods

    NARCIS (Netherlands)

    Meinders, M.B.J.; Vliet, van T.

    2008-01-01

    A detailed study was performed of the fracture behavior of toasted rusk rolls, a cellular solid food, at different water activities and morphologies. We find that the energies of the emitted sound pulses follow Gutenberg-Richter power laws with characteristic exponents b~1.5. The scaling exponents

  18. Dynamic Fracturing Behavior of Layered Rock with Different Inclination Angles in SHPB Tests

    Directory of Open Access Journals (Sweden)

    Jiadong Qiu

    2017-01-01

    Full Text Available The fracturing behavior of layered rocks is usually influenced by bedding planes. In this paper, five groups of bedded sandstones with different bedding inclination angles θ are used to carry out impact compression tests by split Hopkinson pressure bar. A high-speed camera is used to capture the fracturing process of specimens. Based on testing results, three failure patterns are identified and classified, including (A splitting along bedding planes; (B sliding failure along bedding planes; (C fracturing across bedding planes. The failure pattern (C can be further classified into three subcategories: (C1 fracturing oblique to loading direction; (C2 fracturing parallel to loading direction; (C3 mixed fracturing across bedding planes. Meanwhile, a numerical model of layered rock and SHPB system are established by particle flow code (PFC. The numerical results show that the shear stress is the main reason for inducing the damage along bedding plane at θ = 0°~75°. Both tensile stress and shear stress on bedding planes contribute to the splitting failure along bedding planes when the inclination angle is 90°. Besides, tensile stress is the main reason that leads to the damage in rock matrixes at θ = 0°~90°.

  19. Plastic damage induced fracture behaviors of dental ceramic layer structures subjected to monotonic load.

    Science.gov (United States)

    Wang, Raorao; Lu, Chenglin; Arola, Dwayne; Zhang, Dongsheng

    2013-08-01

    The aim of this study was to compare failure modes and fracture strength of ceramic structures using a combination of experimental and numerical methods. Twelve specimens with flat layer structures were fabricated from two types of ceramic systems (IPS e.max ceram/e.max press-CP and Vita VM9/Lava zirconia-VZ) and subjected to monotonic load to fracture with a tungsten carbide sphere. Digital image correlation (DIC) and fractography technology were used to analyze fracture behaviors of specimens. Numerical simulation was also applied to analyze the stress distribution in these two types of dental ceramics. Quasi-plastic damage occurred beneath the indenter in porcelain in all cases. In general, the fracture strength of VZ specimens was greater than that of CP specimens. The crack initiation loads of VZ and CP were determined as 958 ± 50 N and 724 ± 36 N, respectively. Cracks were induced by plastic damage and were subsequently driven by tensile stress at the elastic/plastic boundary and extended downward toward to the veneer/core interface from the observation of DIC at the specimen surface. Cracks penetrated into e.max press core, which led to a serious bulk fracture in CP crowns, while in VZ specimens, cracks were deflected and extended along the porcelain/zirconia core interface without penetration into the zirconia core. The rupture loads for VZ and CP ceramics were determined as 1150 ± 170 N and 857 ± 66 N, respectively. Quasi-plastic deformation (damage) is responsible for crack initiation within porcelain in both types of crowns. Due to the intrinsic mechanical properties, the fracture behaviors of these two types of ceramics are different. The zirconia core with high strength and high elastic modulus has better resistance to fracture than the e.max core. © 2013 by the American College of Prosthodontists.

  20. Fracture

    OpenAIRE

    Bourdin, Blaise; Francfort, Gilles A.

    2011-01-01

    These notes begin with a review of the mainstream theory of brittle fracture, as it has emerged from the works of Griffi th and Irwin. We propose a re-formulation of that theory within the confi nes of the calculus of variations, focussing on crack path prediction. We then illustrate the various possible minimality criteria in a simple 1d-case as well as in a tearing experiment and discuss in some details the only complete mathematical formulation so far, that is that where global minimality ...

  1. Research of quasi-solid fracture behavior of casting AI-4.5Cu alloys

    Directory of Open Access Journals (Sweden)

    Shengquan DONG

    2005-02-01

    Full Text Available The influencing mechanisms of elements Ti and Ce and their interactions on fracture behaviors of casting alloys AI-4.5Cu-0.6Mn were studied by observing tensile fracture behavior in quasi-solid zone under SEM and EDX instruments.The results indicate that the resistance stress against hot cracking can be improved obviously by addition of Ti, because of its grain refining function. It is also found that, when Ce is added into the alloys, besides its effect in refining crystalline, the mechanical behavior of lower melting point eutectic phase in quasi-solid zone can be improved efficiently by some compounds with Ce formed and deposited between dendrites. Therefore, a colligating effect of Ti and Ce on improving resistance stress against hot cracking is more efficient than that only single alloy element is applied. When hot cracking occurs, grains yield at first, and then crack spreads. Both inter-grain and trans-grain fractures are observed, but the major fracture manner is brittleness.

  2. Mechanical Behavior and Fracture Properties of NiAl Intermetallic Alloy with Different Copper Contents

    Directory of Open Access Journals (Sweden)

    Tao-Hsing Chen

    2016-03-01

    Full Text Available The deformation behavior and fracture characteristics of NiAl intermetallic alloy containing 5~7 at% Cu are investigated at room temperature under strain rates ranging from 1 × 10−3 to 5 × 103 s−1. It is shown that the copper contents and strain rate both have a significant effect on the mechanical behavior of the NiAl alloy. Specifically, the flow stress increases with an increasing copper content and strain rate. Moreover, the ductility also improves as the copper content increases. The change in the mechanical response and fracture behavior of the NiAl alloy given a higher copper content is thought to be the result of the precipitation of β-phase (Ni,CuAl and γ'-phase (Ni,Cu3Al in the NiAl matrix.

  3. A sophisticated simulation for the fracture behavior of concrete material using XFEM

    Science.gov (United States)

    Zhai, Changhai; Wang, Xiaomin; Kong, Jingchang; Li, Shuang; Xie, Lili

    2017-07-01

    The development of a powerful numerical model to simulate the fracture behavior of concrete material has long been one of the dominant research areas in earthquake engineering. A reliable model should be able to adequately represent the discontinuous characteristics of cracks and simulate various failure behaviors under complicated loading conditions. In this paper, a numerical formulation, which incorporates a sophisticated rigid-plastic interface constitutive model coupling cohesion softening, contact, friction and shear dilatation into the XFEM, is proposed to describe various crack behaviors of concrete material. An effective numerical integration scheme for accurately assembling the contribution to the weak form on both sides of the discontinuity is introduced. The effectiveness of the proposed method has been assessed by simulating several well-known experimental tests. It is concluded that the numerical method can successfully capture the crack paths and accurately predict the fracture behavior of concrete structures. The infl uence of mode-II parameters on the mixed-mode fracture behavior is further investigated to better determine these parameters.

  4. A sophisticated simulation for the fracture behavior of concrete material using XFEM

    Science.gov (United States)

    Zhai, Changhai; Wang, Xiaomin; Kong, Jingchang; Li, Shuang; Xie, Lili

    2017-10-01

    The development of a powerful numerical model to simulate the fracture behavior of concrete material has long been one of the dominant research areas in earthquake engineering. A reliable model should be able to adequately represent the discontinuous characteristics of cracks and simulate various failure behaviors under complicated loading conditions. In this paper, a numerical formulation, which incorporates a sophisticated rigid-plastic interface constitutive model coupling cohesion softening, contact, friction and shear dilatation into the XFEM, is proposed to describe various crack behaviors of concrete material. An effective numerical integration scheme for accurately assembling the contribution to the weak form on both sides of the discontinuity is introduced. The effectiveness of the proposed method has been assessed by simulating several well-known experimental tests. It is concluded that the numerical method can successfully capture the crack paths and accurately predict the fracture behavior of concrete structures. The influence of mode-II parameters on the mixed-mode fracture behavior is further investigated to better determine these parameters.

  5. Combined loading effects on the fracture mechanics behavior of line pipes

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, R.E.; Cravero, S.; Ernst, H.A. [Tenaris Group, Campana (Argentina). SIDERCA R and D Center

    2009-12-19

    For certain applications, pipelines may be submitted to biaxial loading situations. In these cases, it is not clear the influence of the biaxial loading on the fracture mechanics behavior of cracked pipelines. For further understanding of biaxial loading effects, this work presents a numerical simulation of ductile tearing in a circumferentially surface cracked pipe under biaxial loading using the computational cell methodology. The model was adjusted with experimental results obtained in laboratory using single edge cracked under tension (SENT) specimens. These specimens appear as the better alternative to conventional fracture specimens to characterize fracture toughness of cracked pipes. The negligible effect of biaxial loadings on resistance curves was demonstrated. To guarantee the similarities of stress and strains fields between SENT specimens and cracked pipes subjected to biaxial loading, a constraint study using the J-Q methodology and the h parameter was used. The constraint study gives information about the characteristics of the crack-tip conditions. (author)

  6. Metallographic investigation of fracture behavior in ITER-style Nb$_{3}$Sn superconducting strands

    CERN Document Server

    Jewell, M C; Larbalestier, D C; Nijhuis, A

    2009-01-01

    In this work we specify the extent to which fracture in two ITER-style Nb3Sn composite strands occurs in a collective or individual manner, under mechanical tension and bending from the TARSIS apparatus at the University of Twente. A bronze-route strand from European Advanced Superconductors (EAS), which has very uniform, well-spaced filaments, has a widely distributed (200 μm) fracture field and exhibits a composite of individual and collective cracks. An internal tin strand from Oxford Instruments – Superconducting Technology (OST) demonstrates much more localized, collective fracture behavior. The filaments in this strand are about four times larger (in area) than the filaments in the EAS strand, and also agglomerate significantly during heat treatment upon conversion of the Nb to Nb3Sn. These results demonstrate that the architecture of the strand can play a significant role in determining the mechanical toughness of the composite, and that strand design should incorporate mechanical considerations in ...

  7. In situ observation of fracture behavior of canine cortical bone under bending

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zilan X. [Department of Orthopaedics, Medical University of South Carolina, 96 Jonathan Lucas Street Suite 708 MSC 622, Charleston, SC 29425 (United States); Department of Mechanical Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States); Xu, Zhi-Hui [Department of Mechanical Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States); An, Yuehuei H. [Department of Orthopaedics, Medical University of South Carolina, 96 Jonathan Lucas Street Suite 708 MSC 622, Charleston, SC 29425 (United States); Department of Orthopaedic Surgery, Southside Hospital, North Shore-LIJ Health System, 217 East Main Street, Bay Shore, NY 11706 (United States); Li, Xiaodong, E-mail: xl3p@virginia.edu [Department of Mechanical Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States); Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer' s Way, Charlottesville, VA 22904 (United States)

    2016-05-01

    Cortical bone provides many important body functions and maintains the rigidness and elasticity of bone. A common failure mode for bone structure is fracture under a bending force. In the current study, the fracture behavior of canine cortical bone under three-point bending was observed in situ using an atomic force microscope (AFM), a scanning electron microscope (SEM), and an optical microscope to examine the fracture process in detail. Nanoindentation was carried out to determine the elastic modulus and hardness of different building blocks of the canine cortical bone. The results have shown that the special structure of Haversian systems has significant effects on directing crack propagation. Although Haversian systems contain previously believed weak points, and micro-cracks initiate within Haversian systems, our findings have demonstrated that macro-cracks typically form around the boundaries of Haversian systems, i.e. the cement lines. Micro-cracks that developed inside Haversian systems have the functions of absorbing and dissipating energy and slow down on expanding when interstitial tissue cannot hold any more pressure, then plastic deformation and fracture occur. - Highlights: • Macro- and micro-cracks occur in unique patterns in the bone fracturing process under a bending force. • Early developed micro-cracks inside Haversian systems absorb and dissipate energy in order to delay fracture initiation. • The mechanical properties of Haverisan systems and its surrounding structures influence the developments of macro- and micro-crack formation. • Previously believed weak spots in the bone matrix are not necessarily the origins of fracture development.

  8. Influence of veneer application on fracture behavior of lithium-disilicate-based ceramic crowns.

    Science.gov (United States)

    Zhao, Ke; Pan, Yu; Guess, Petra C; Zhang, Xin-Ping; Swain, Michael V

    2012-06-01

    To assess the influence of veneer application on fracture behavior, namely failure load and failure mode, of standardized lithium-disilicate-based crowns. Forty molar crowns (IPS e.max Press, IvoclarVivadent) were fabricated in full anatomic (without veneer, 1.5-2.0mm at occlusal surface) and bi-layer (the occlusal surface is 0.7 mm of veneer and 0.8-1.3mm core) contour representing two groups. Crown specimens were seated and adhered on composite resin dies. All specimens were loaded with a 6mm diameter steatite sphere over the central fissure to failure. Failure modes and fractographic patterns were analyzed by optical stereo and scanning electron microscopy (SEM). Fracture loads of the two groups were compared by the t-test, while the failure modes were analyzed by Pearson Chi-square test. There was a statistically significant difference in mean fracture load values (N±S.D.) between full anatomic [(2665.4±759.2)N] and veneered crowns [(1431.1±404.3)N] (pveneered specimens predominately showed cohesive veneer and ceramic interface failure (75%); solely cohesive veneer failure (20%); and bulk fracture (5%). Within the limitations of this study, veneer application resulted in significant lower fracture load values compared to full anatomic crowns. Fracture initiated from occlusal fissures near the load application site. A combination of cohesive veneer and ceramic interface failure represents the main failure mode of lithium-disilicate-based bi-layered crowns, whereas full anatomic crowns failed mainly from ceramic bulk fracture at the occlusal fissures. Copyright © 2012 Academy of Dental Materials. All rights reserved.

  9. Fracture behavior of a commercial starch/polycaprolactone blend reinforced with different layered silicates.

    Science.gov (United States)

    Pérez, E; Pérez, C J; Alvarez, V A; Bernal, C

    2013-09-12

    In the present work, composites based on a commercial starch/PCL blend (MaterBi-Z) reinforced with three different nanoclays: natural montmorillonite (Cloisite Na(+) (MMT)) and two modified montmorillonites (Cloisite 30B (C30B) and Cloisite 10A (C10A)) were prepared in an intensive mixer. The aim of this investigation was to determine the effect of the different nanoclays on the quasi-static fracture behavior of MaterBi-Z nanocomposites. An improvement in the fracture behavior for the composite with low contents of C30B was obtained, probably due to the easy debonding of clay achieved from a relatively weak filler-matrix interaction. On the other hand, a strong interaction had a detrimental effect on the material fracture toughness for the MaterBi-Z/C10A composites as a result of the higher compatibility of this organo-modified clay with the hydrophobic matrix. Intermediate values of fracture toughness, determined using the J-integral approach (Jc), were found for the composites with MMT due to its intermediate interaction with the matrix. The different filler-matrix interactions observed were also confirmed from the application of Pukánszky and Maurer model. In addition, multifractal analysis was applied to describe the topography of fracture surfaces. Thus, the complex fracture process could be successfully described by both experimental and theoretical tools. The obtained results suggest that it is possible to tailor the mechanical properties of the studied composites taking into account their further application. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Mineralized collagen fibril network spatial arrangement influences cortical bone fracture behavior.

    Science.gov (United States)

    Wang, Yaohui; Ural, Ani

    2018-01-03

    Bone is a hierarchical material exhibiting different fracture mechanisms at each length scale. At the submicroscale, the bone is composed of mineralized collagen fibrils (MCF). At this scale, the fracture processes in cortical bone have not been extensively studied in the literature. In this study, the influence of MCF size and orientation on the fracture behavior of bone under both transverse and longitudinal loading was investigated using novel 3D models of MCF networks with explicit representation of extra-fibrillar matrix. The simulation results showed that separation between MCFs was the main cause of damage and failure under transverse loading whereas under longitudinal loading, the main damage and failure mechanism was MCF rupture. When the MCF network was loaded in the transverse direction the mechanical properties increased as the orientation of fibrils deviated farther from the main fibril orientation whereas the opposite trend was observed under longitudinal loading. The fracture energy was much larger in longitudinal than transverse loading. MCF diameter variation did not affect the mechanical properties under longitudinal loading but led to higher mechanical properties with increasing MCF diameter under transverse loading. The new modeling framework established in this study generate unique information on the effect of MCF network spatial arrangement on the fracture behavior of bone at the submicroscale which is not currently possible to measure via experiments. This unique information may improve the understanding of how structural alterations at the submicroscale due to disease, age-related changes, and treatments affect the fracture processes at larger length scales. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Reading: Intrinsic versus Extrinsic Motivation.

    Science.gov (United States)

    Ediger, Marlow

    Much debate centers on motivating student in reading achievement. Should students feel motivated from within (intrinsic motivation), or is it better to have extrinsic motivation whereby external stimuli are used to help learners achieve optimally in reading? This paper aims to analyze the two points of view about motivating students in reading…

  12. Fracture behavior of circumferentially surface-cracked elbows. Technical report, October 1993--March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kilinski, T.; Mohan, R.; Rudland, D.; Fleming, M. [and others

    1996-12-01

    This report presents the results from Task 2 of the Second International Piping Integrity Research Group (IPIRG-2) program. The focus of the Task 2 work was directed towards furthering the understanding of the fracture behavior of long-radius elbows. This was accomplished through a combined analytical and experimental program. J-estimation schemes were developed for both axial and circumferential surface cracks in elbows. Large-scale, quasi-static and dynamic, pipe-system, elbow fracture experiments under combined pressure and bending loads were performed on elbows containing an internal surface crack at the extrados. In conjunction with the elbow experiments, material property data were developed for the A106-90 carbon steel and WP304L stainless steel elbow materials investigated. A comparison of the experimental data with the maximum stress predictions using existing straight pipe fracture prediction analysis methods, and elbow fracture prediction methods developed in this program was performed. This analysis was directed at addressing the concerns regarding the validity of using analysis predictions developed for straight pipe to predict the fracture stresses of cracked elbows. Finally, a simplified fitting flaw acceptance criteria incorporating ASME B2 stress indices and straight pipe, circumferential-crack analysis was developed.

  13. Fracture behavior of reinforced aluminum alloy matrix composites using thermal imaging tools

    Science.gov (United States)

    Avdelidis, N. P.; Exarchos, D.; Vazquez, P.; Ibarra-Castanedo, C.; Sfarra, S.; Maldague, X. P. V.; Matikas, T. E.

    2016-05-01

    In this work the influence of the microstructure at the vicinity of the interface on the fracture behavior of particulate-reinforced aluminum alloy matrix composites (Al/SiCp composites) is studied by using thermographic tools. In particular, infrared thermography was used to monitor the plane crack propagation behavior of the materials. The deformation of solid materials is almost always accompanied by heat release. When the material becomes deformed or is damaged and fractured, a part of the energy necessary to initiate and propagate the damage is transformed in an irreversible way into heat. The thermal camera detects the heat wave, generated by the thermo-mechanical coupling and the intrinsic dissipated energy during mechanical loading of the sample. By using an adapted detector, thermography records the two dimensional "temperature" field as it results from the infrared radiation emitted by the object. The principal advantage of infrared thermography is its noncontact, non-destructive character. This methodology is being applied to characterise the fracture behavior of the particulate composites. Infrared thermography is being used to monitor the plane crack propagation behavior of such materials. Furthermore, an innovative approach to use microscopic measurements using IR microscopic lenses was attempted, in order to enable smaller features (in the micro scale) to be imaged with accuracy and assurance.

  14. Tensile Fracture Behavior and Failure Mechanism of Additively-Manufactured AISI 4140 Low Alloy Steel by Laser Engineered Net Shaping

    National Research Council Canada - National Science Library

    Hoyeol Kim; Zhichao Liu; Weilong Cong; Hong-Chao Zhang

    2017-01-01

    ...) to investigate the compatibility of a LENS-deposited part with the substrate. Tensile testing at room temperature was performed to evaluate the interface bond performance and fracture behavior of the test specimens...

  15. Flow and fracture behavior of aluminum alloy 6082-T6 at different tensile strain rates and triaxialities.

    Science.gov (United States)

    Chen, Xuanzhen; Peng, Yong; Peng, Shan; Yao, Song; Chen, Chao; Xu, Ping

    2017-01-01

    This study aims to investigate the flow and fracture behavior of aluminum alloy 6082-T6 (AA6082-T6) at different strain rates and triaxialities. Two groups of Charpy impact tests were carried out to further investigate its dynamic impact fracture property. A series of tensile tests and numerical simulations based on finite element analysis (FEA) were performed. Experimental data on smooth specimens under various strain rates ranging from 0.0001~3400 s-1 shows that AA6082-T6 is rather insensitive to strain rates in general. However, clear rate sensitivity was observed in the range of 0.001~1 s-1 while such a characteristic is counteracted by the adiabatic heating of specimens under high strain rates. A Johnson-Cook constitutive model was proposed based on tensile tests at different strain rates. In this study, the average stress triaxiality and equivalent plastic strain at facture obtained from numerical simulations were used for the calibration of J-C fracture model. Both of the J-C constitutive model and fracture model were employed in numerical simulations and the results was compared with experimental results. The calibrated J-C fracture model exhibits higher accuracy than the J-C fracture model obtained by the common method in predicting the fracture behavior of AA6082-T6. Finally, the Scanning Electron Microscope (SEM) of fractured specimens with different initial stress triaxialities were analyzed. The magnified fractographs indicate that high initial stress triaxiality likely results in dimple fracture.

  16. Extrinsic incentives and tax compliance

    OpenAIRE

    Sour, Laura; Gutiérrez Andrade, Miguel Ángel

    2011-01-01

    This paper models the impact of extrinsic incentives in a tax compliance model. It also provides experimental evidence that confirms the existence of a positive relationship between rewards and tax compliance. If individuals are audited, rewards for honest taxpayers are effective in increasing the level of tax compliance. These results are particularly relevant in countries where there is little respect for tax law since rewards can contribute to crowding in the intrinsic motivation to comply.

  17. Estimation of brittle fracture behavior of SA508 carbon steel by considering temperature dependence of damage model

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Shin Beom; Jeong, Jae Uk; Choi, Jae Boong [Sungkyunkwan Univ., Seoul (Korea, Republic of); Chang, Yoon Suk [Kyunghee Univ., Seoul (Korea, Republic of); Kim, Min Chul [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    The aim of this study was to determine the brittle fracture behavior of reactor pressure vessel steel by considering the temperature dependence of a damage model. A multi island genetic algorithm was linked to a Weibull stress model, which is the model typically used for brittle fracture evaluation, to improve the calibration procedure. The improved calibration procedure and fracture toughness test data for SA508 carbon steel at the temperatures -60 .deg. C, -80 .deg. C, and -100 .deg. C were used to decide the damage parameters required for the brittle fracture evaluation. The model was found to show temperature dependence, similar to the case of NUREG/CR 6930. Finally, on the basis of the quantification of the difference between 2- and 3-parameter Weibull stress models, an engineering equation that can help obtain more realistic fracture behavior by using the simpler 2-parameter Weibull stress model was proposed.

  18. Wide Bandgap Extrinsic Photoconductive Switches

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, James S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-07-03

    Semi-insulating Gallium Nitride, 4H and 6H Silicon Carbide are attractive materials for compact, high voltage, extrinsic, photoconductive switches due to their wide bandgap, high dark resistance, high critical electric field strength and high electron saturation velocity. These wide bandgap semiconductors are made semi-insulating by the addition of vanadium (4H and 6HSiC) and iron (2H-GaN) impurities that form deep acceptors. These deep acceptors trap electrons donated from shallow donor impurities. The electrons can be optically excited from these deep acceptor levels into the conduction band to transition the wide bandgap semiconductor materials from a semi-insulating to a conducting state. Extrinsic photoconductive switches with opposing electrodes have been constructed using vanadium compensated 6H-SiC and iron compensated 2H-GaN. These extrinsic photoconductive switches were tested at high voltage and high power to determine if they could be successfully used as the closing switch in compact medical accelerators.

  19. Fatigue and Fracture Behavior of a Cold-Drawn Commercially Pure Aluminum Wire

    Directory of Open Access Journals (Sweden)

    Jia-Peng Hou

    2016-09-01

    Full Text Available Fatigue properties and cracking behavior of cold-drawn commercially pure aluminum wires (CPAWs widely used as the overhead transmission conductors were investigated. It was found that the fracture surface of the CPAWs shows an obvious four-stage fracture characteristic, i.e., crack initiation, planar crack propagation, 45°-inclined crack propagation and final rapid fracture. The crack growth mechanisms for the CPAWs were found quite different from those for the conventional coarse-grained materials. The cracks in the CPAWs firstly grow along the grain boundaries (Stage I crack growth, and then grow along the plane of maximum shear stress during the last stage of cycling (Stage II crack growth, leading to the distinctive fracture surfaces, i.e., the granular surface in the planar crack propagation region and the coarse fatigue striations in the 45°-inclined crack propagation region. The grain boundary migration was observed in the fatigued CPAWs. The increase in fatigue load enhances the dislocation recovery, increases the grain boundary migration rate, and thus promotes the occurrence of softening and damage localization up to the final failure.

  20. An investigation on directionally dependent fracture toughness behavior of monolithic nickel gradient material synthesized from electroplating

    Science.gov (United States)

    Farooq, Ahmad; El-Aty, Ali Abd; Ahmed, Tauseef; Tai-Chi, Chang

    2017-07-01

    Bulk sized continuous and monolithic pure Nickel gradient material is successfully developed using electroplating method. Great emphasis is given on controlling the direction of the gradient for the samples. The gradient belt for each Nickel gradient material consisted of grain size from maximum 4 µm to minimum 20nm, with the belt transcending from coarse towards ultrafine to finally nano-grain structure. Crack is propagated from Coarse to Nano-grain gradient Nickel and vice versa in order to procure the J-integral (Jic) for each sample according to ASTM standard E-1820 and deduce the fracture properties under each condition. Under such conditions when crack propagated from coarse to nano direction, Jmax is found to be 215kJ/m2 while crack propagating from Nano to Coarse direction, Jmax is found to be 62kJ/m2. Such dual polarized Jic within a single material is unique, especially for nickel whose Jicin literature for coarse grain (95 µm) was around 225kJ/m2 and ultrafine grain (300nm) was 100 kJ/m2, meaning the nickel gradient material consisting the grain gradient belt between 4 µm-20nm exhibits similar fracture toughness as pure coarse grain almost 20 times larger. Such gradient material exhibiting directionally dependent fracture toughness behavior can most certainly be much stronger under tensile conditions while keeping high fracture toughness.

  1. Experimental study of the mechanical behavior of self-compacting concrete based on fracture mechanics

    Directory of Open Access Journals (Sweden)

    G. O. RIBEIRO

    Full Text Available ABSTRACT Considering the physical nonlinearity of concrete and the fundamentals of fracture mechanics for quasi-brittle materials, the objective of this study was to determine the fracture energy and the length of the fracture process zone (FPZ as well as the modulus of elasticity, the tensile strength and the compressive strength of self-compacting concrete (SCC to characterize its mechanical behavior. A series of tests, including a three-point bending test of SCC and conventional vibrated concrete (CVC specimens, with a notch at mid-span, and tensile and compressive tests were performed. The mechanical parameters obtained from the CVC specimens were considered as a comparative reference. The effect of the following variables was evaluated and considered at two levels: compressive strength (30 and 50 MPa, granular composition (fine and coarse particle size and maximum diameter of the aggregate (12 and 20 mm. The effect of these variables on the mechanical behaviors of the SCC specimens was evaluated based on the test results of specimens of four types of concrete, which were obtained from the combination of the variables. The bending tests were performed according to the RILEM TC 89-FMT recommendations, which are based on the size-effect method.

  2. Superplastic Grade Titanium Alloy: Comparative Evaluation of Mechanical Properties, Microstructure, and Fracture Behavior

    Directory of Open Access Journals (Sweden)

    K. V. Sudhakar

    2016-01-01

    Full Text Available In this investigation, static fracture, microstructure, and the mechanical behavior of SP-700 alloy (a superplastic grade were evaluated and compared with two other titanium alloys. The comparisons were made in terms of suitably designed heat treatment cycles. The heat treatment cycles included annealing and a combination of solutionizing and aging treatments for all three alloys. Tensile properties were determined using MTS Landmark Servohydraulic Test System. Tensile tested samples’ fracture surfaces were investigated with LEO-VP SEM instrument. Ti-15-3-3-3 alloy exhibited relatively a higher combination of strength and ductility in comparison to the other two alloys. All three types of titanium alloys demonstrated a very good level of tensile strength and ductility suitable for applications in military and biomedical fields.

  3. Effect of reclaimed sand additions on mechanical properties and fracture behavior of furan no-bake resin sand

    Directory of Open Access Journals (Sweden)

    Yan-lei Li

    2017-03-01

    Full Text Available In this work, the effects of reclaimed sand additions on the microstructure characteristics, mechanical properties and fracture behavior of furan no-bake resin sand have been investigated systematically within the temperature range from 25 to 600 篊. The addition of 20%-100% reclaimed sand showed dramatic strength deterioration effect at the same temperature, which is associated with the formation of bonding bridges. Both the ultimate tensile strength (UTS and compressive strength (CS of the moulding sand initially increase with the increase of temperature, and then sharply decrease with the further increase of temperature, which is attributed to the thermal decomposition of furan resin. The addition amount of reclaimed sand has a remarkable effect on the room temperature fracture mode, i.e., with the addition of 0-20% reclaimed sand, the fracture mode was mainly cohesive fracture; the fracture mode converts to be mixture fracture mode as the addition of reclaimed sand increases to 35%-70%; further increasing the addition to 100% results in the fracture mode of typical adhesive fracture. The fracture surface of the bonding bridge changes from a semblance of cotton or holes to smooth with the increase of test temperature.

  4. Effect of sputter deposited YSZ thin films on the fracture behavior of dental bioceramics

    Science.gov (United States)

    Teixeira, Erica Cappelletto Nogueira

    The fracture behavior of dental bioceramic materials was evaluated under physiologic conditions when modified by yttria stabilized zirconia (YSZ) thin film deposition. It was hypothesized that changing the YSZ thin film properties will produce a significant enhancement in the strength of bioceramic materials, ultimately promoting a more fatigue resistant construct. Porcelain, alumina, and zirconia were evaluated in terms of dynamic fatigue for an initial characterization of their fracture behavior. Data showed that strength degradation occurred in all three materials, most drastically in porcelain. Initial strength measurements, focused on depositing YSZ thin films on three unique substrates; porcelain, alumina, and zirconia, were carried out. A significant increase in strength was observed for alumina and porcelain. Since strength alone is not enough to characterize the fracture behavior of brittle materials, coated specimens of porcelain and zirconia were subjected to dynamic fatigue and Weibull analysis. Coated YSZ porcelain specimens showed a significant increase in strength at all tested stressing rates. YSZ coated zirconia specimens showed similar strength values at all stressing rates. The effect of film thickness on porcelain was also evaluated. Data demonstrated that film thickness alone does not appear to control increases in the flexural strength of a modified substrate. It is expected that deposition induced stress in YSZ sputtered films does not change with film thickness. However, a thicker film will generate a larger force at the film/substrate interface, contributing to delamination of the film. It was clear that in order to have a significant improvement in the fracture behavior of porcelain, changing the thickness of the film is not enough. The columnar structure of the YSZ films developed seems to favor an easy path for crack propagation limiting the benefits expected by the coating. The effect of a multilayered film, composed by brittle

  5. On the fracture toughness of advanced materials

    Energy Technology Data Exchange (ETDEWEB)

    Launey, Maximilien E.; Ritchie, Robert O.

    2008-11-24

    Few engineering materials are limited by their strength; rather they are limited by their resistance to fracture or fracture toughness. It is not by accident that most critical structures, such as bridges, ships, nuclear pressure vessels and so forth, are manufactured from materials that are comparatively low in strength but high in toughness. Indeed, in many classes of materials, strength and toughness are almost mutually exclusive. In the first instance, such resistance to fracture is a function of bonding and crystal structure (or lack thereof), but can be developed through the design of appropriate nano/microstructures. However, the creation of tough microstructures in structural materials, i.e., metals, polymers, ceramics and their composites, is invariably a compromise between resistance to intrinsic damage mechanisms ahead of the tip of a crack (intrinsic toughening) and the formation of crack-tip shielding mechanisms which principally act behind the tip to reduce the effective 'crack-driving force' (extrinsic toughening). Intrinsic toughening is essentially an inherent property of a specific microstructure; it is the dominant form of toughening in ductile (e.g., metallic) materials. However, for most brittle (e.g., ceramic) solids, and this includes many biological materials, it is largely ineffective and toughening conversely must be developed extrinsically, by such shielding mechanisms as crack bridging. From a fracture mechanics perspective, this results in toughening in the form of rising resistance-curve behavior where the fracture resistance actually increases with crack extension. The implication of this is that in many biological and high-strength advanced materials, toughness is developed primarily during crack growth and not for crack initiation. This is an important realization yet is still rarely reflected in the way that toughness is measured, which is invariably involves the use of single-value (crack-initiation) parameters such as

  6. Experiments and evaluation of chaotic behavior of dripping waterin fracture models

    Energy Technology Data Exchange (ETDEWEB)

    Geller, Jil T.; Borglin, Sharon E.; Faybishenko, Boris A.

    2001-06-01

    Laboratory experiments of water seepage in smooth and rough-walled, inclined fracture models were performed and the monitoring data analyzed for evidence of chaos. One fracture model consisted of smooth, parallel glass plates separated by 0.36 mm. The second model was made with textured glass plates. The fracture model was inclined 60{sup o} from the horizontal. Water was delivered to the fracture model through a capillary tube in contact with the top fracture edge at constant flow rates. Three types of capillary tubes were used: (1) a stainless steel blunt needle of 0.18 mm ID for flow rates of 0.25 to 4 mL/hr, (2) a nylon tube of 0.8 mm ID for flow rates of 0.25 to 10 mL/hr, and (3) a glass tube of 0.75 mm ID for flow rates of 0.5 to 20 mL/hr. Liquid pressure was monitored upstream of the capillary tube. Visual observations showed that water seeped through the fracture models in discrete channels that underwent cycles of snapping and reforming. Observations also showed that liquid segments, or drips, detached at different points along the water channel. The measured liquid pressure responded to the growth and detachment of drips. Separate experiments were carried out to measure pressure time-trends for dripping into open air to compare these data with those obtained in fracture models. Analysis of the pressure time-trends included determination of the time lag from the minimum of the average mutual information function, the local and global embedding dimensions, Lyapunov exponents and the Lyapunov dimension, the Hurst exponent and the entropy as a function of the embedding dimension for each data set. Most of the water pressure data contain oscillations exhibiting chaotic behavior, with local embedding dimensions ranging from 3 to 10, and global embedding dimensions one to two units higher. The higher dimensionality of some of the data sets indicates either the presence of high-dimensional chaos or a significant random component. It was determined that the flow

  7. Brittle Fracture Behaviors of Large Die Holders Used in Hot Die Forging

    Directory of Open Access Journals (Sweden)

    Weifang Zhang

    2017-05-01

    Full Text Available Brittle fracture of large forging equipment usually leads to catastrophic consequences. To avoid this kind of accident, the brittle fracture behaviors of a large die holder were studied by simulating the practical application. The die holder is used on the large die forging press, and it is made of 55NiCrMoV7 hot-work tool steel. Detailed investigations including mechanical properties analysis, metallographic observation, fractography, transmission electron microscope (TEM analysis and selected area electron diffraction (SAED were conducted. The results reveal that the material generated a large quantity of large size polyhedral M23C6 (M: Fe and Cr mainly and elongated M3C (M: Fe mainly carbides along the martensitic lath boundaries when the die holder was recurrently tempered and water-cooled at 250 °C during the service. The large size carbides lead to the material embrittlement and impact toughness degradation, and further resulted in the brittle fracture of the die holder. Therefore, the operation specification must be emphasized to avoid the die holder being cooled by using water, which is aimed at accelerating the cooling.

  8. Sedentary Behavior and Physical Activity Patterns in Older Adults After Hip Fracture: A Call to Action.

    Science.gov (United States)

    Fleig, Lena; McAllister, Megan M; Brasher, Penny; Cook, Wendy L; Guy, Pierre; Puyat, Joseph H; Khan, Karim M; McKay, Heather A; Ashe, Maureen C

    2016-01-01

    To characterize patterns of sedentary behavior and physical activity in older adults recovering from hip fracture and to determine characteristics associated with activity. Community-dwelling, Canadian adults (65 years+) who sustained hip fracture wore an accelerometer at the waist for seven days and provided information on quality of life, falls self-efficacy, cognitive functioning, and mobility. There were 53 older adults (mean age [SD] 79.5 [7.8] years) enrolled in the study; 49 had valid data and demonstrated high levels of sedentary time (median [p10, p90] 591.3 [482.2, 707.2] minutes/day), low levels of light activity (186.6 [72.6, 293.7]), and MVPA (2 [0.1, 27.6]), as well as few daily steps (2467.7 [617.1, 6820.4]). Regression analyses showed that age, gender, gait speed, and time since fracture were associated with outcomes. Older adults have long periods of sedentary time with minimal activity. Results are a call to action to encourage people to sit less and move more.

  9. Fracture Toughness and Slow Crack Growth Behavior of Ni-YSZ and YSZ as a Function of Porosity and Temperature.

    Energy Technology Data Exchange (ETDEWEB)

    Radovic, Miladin [ORNL; Lara-Curzio, Edgar [ORNL; Nelson, George [Georgia Institute of Technology

    2006-01-01

    In this paper we report on the fracture toughness of YSZ and Ni-YSZ and slow-crack growth behavior of Ni-YSZ at 20C and 800C. Results are presented for tests carried out in air for YSZ and in a gas mixture of 4%H2 and 96%Ar for Ni-YSZ containing various levels of porosity. The double-torsion test method was utilized to determine the fracture toughness from the peak load obtained during fast loading test specimens that had been precracked, while crack velocity versus stress intensity curves were obtained in the double torsion using hte load relaxation method. It was found that fracture toughness of these materials decreases with temperature and int he case of Ni-YSZ it also decreases with increasing porosity. The effect of temperature and microstructure, which was characterized by Scanning Electron Microscopy, on the fracture behavior of these materials, is discussed.

  10. Do people differentiate between intrinsic and extrinsic goals for physical activity?

    Science.gov (United States)

    McLachlan, Sarah; Hagger, Martin S

    2011-04-01

    The distinction between intrinsic and extrinsic goals, and between goal pursuit for intrinsically and extrinsically motivated reasons, is a central premise of self-determination theory. Proponents of the theory have proposed that the pursuit of intrinsic goals and intrinsically motivated goal striving each predict adaptive psychological and behavioral outcomes relative to the pursuit of extrinsic goals and extrinsically motivated goal striving. Despite evidence to support these predictions, research has not explored whether individuals naturally differentiate between intrinsic and extrinsic goals. Two studies tested whether people make this differentiation when recalling goals for leisure-time physical activity. Using memory-recall methods, participants in Study 1 were asked to freely generate physical activity goals. A subsample (N = 43) was asked to code their freely generated goals as intrinsic or extrinsic. In Study 2, participants were asked to recall intrinsic and extrinsic goals after making a decision regarding their future physical activity. Results of these studies revealed that individuals' goal generation and recall exhibited significant clustering by goal type. Participants encountered some difficulties when explicitly coding goals. Findings support self-determination theory and indicate that individuals discriminate between intrinsic and extrinsic goals.

  11. Aging in the Male Face: Intrinsic and Extrinsic Factors.

    Science.gov (United States)

    Keaney, Terrence C

    2016-07-01

    Gender is one of the most significant factors that influence facial anatomy and behavior, both key factors in the aging process. To review male facial anatomy, physiology, and behavior and how it contributes to sexual dimorphism in facial aging. A MEDLINE search was performed for publications on gender differences in facial anatomy, aging, cutaneous physiology, and behavior. There are differences in both intrinsic and extrinsic aging factors in men. Men have a thicker epidermis and dermis with more active cutaneous appendages including hair growth. Male skin has a reduced antioxidant capacity and increased ultraviolet-induced immunosuppression. The male face is larger and has a unique square shape with less subcutaneous soft tissue, especially at the medial cheek. Men are also more prone to smoking and exhibiting poor sun-protective behavior. The differences in intrinsic and extrinsic aging factors contribute to poor facial aging in men. Men develop more severe rhytides in a unique pattern, show increased periocular aging changes, and are more prone to hair loss. This review provides insight into the factors contributing to accelerated male facial aging. Understanding gender differences in aging will help physicians tailor cosmetic treatments for men and minimize extrinsic aging factors.

  12. Experimental Characterization and Modeling of the Fracturing Behavior of Marcellus Shale

    Science.gov (United States)

    Jin, C.; Li, W.; Sageman, B. B.; Cusatis, G.

    2014-12-01

    Adequate knowledge and prediction of mechanical properties of shale are pivotal to the design of hydraulic fractures. The urgent technical challenge of such an endeavor is how to translate the highly heterogeneous nature of shale into a predictive model of the mechanical properties. Our group addressed this challenge by adopting a combined experimental and numerical approach to investigate fracture processes and failure mechanisms of shale.Lattice Discrete Particle Model (LDPM), having shown superior capabilities in predicting qualitative and quantitative behavior of concrete and concrete-like materials, as shown in Fig. 1, has been adopted to simulate mesoscale behavior of shale. The polyhedral cell system defining the geometric attributes of the rock microstructure is built via a 3D tessellation procedure based on X-ray microtomography results of microstructure and grain size distribution of shale specimens. The adopted tessellation procedure makes use of well-established packing algorithms for no-contact spherical particle placement and non-overlapping volume tessellation. The polyhedral particles interact through triangular facets where appropriate measure of stresses and strains are defined. Especially, LDPM is extended to simulate transversely isotropic materials by using orientation-dependent and strain-dependent strength limits coupled with orientation-dependent normal and shear stiffnesses on each facet. Appropriate interface constitutive equations are formulated to simulate all phenomena occurring at a scale that is smaller than the resolution of LDPM system, including microscopic fracture, frictional contact, particle breakage, pore collapse, and distributed damage. Bedding planes and natural joints are characterized by greatly decreased strength limits for facets within that region. To calibrate/validate the LDPM model, microscopic and mesoscopic experiments, including Brazilian tests, uniaxial compression tests, and three point-bending tests, are

  13. Mechanisms of defect complex formation and environmental-assisted fracture behavior of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, B.R.; Muratov, L.S.; Kang, B.S.J.; Li, K.Z. [West Virginia Univ., Morgantown, WV (United States)

    1997-12-01

    Iron aluminide has excellent corrosion resistance in high-temperature oxidizing-sulfidizing environments; however, there are problems at room and medium temperature with hydrogen embrittlement as related to exposure to moisture. In this research, a coordinated computational modeling/experimental study of mechanisms related to environmental-assisted fracture behavior of selected iron aluminides is being undertaken. The modeling and the experimental work will connect at the level of coordinated understanding of the mechanisms for hydrogen penetration and for loss of strength and susceptibility to fracture. The focus of the modeling component at this point is on the challenging question of accurately predicting the iron vacancy formation energy in Fe{sub 3}A{ell} and the subsequent tendency, if present, for vacancy clustering. The authors have successfully performed, on an ab initio basis, the first calculation of the vacancy formation energy in Fe{sub 3}A{ell}. These calculations include lattice relaxation effects which are quite large. This has significant implications for vacancy clustering effects with consequences to be explored for hydrogen diffusion. The experimental work at this stage has focused on the relationship of the choice and concentration of additives to the improvement of resistance to hydrogen embrittlement and hence to the fracture behavior. For this reason, comparative crack growth tests of FA-186, FA-187, and FA-189 iron aluminides (all with basic composition of Fe-28A{ell}-5Cr, at % with micro-alloying additives of Zr, C or B) under, air, oxygen, or water environment have been performed. These tests showed that the alloys are susceptible to room temperature hydrogen embrittlement in both B2 and DO{sub 3} conditions. Test results indicated that FA-187, and FA-189 are intrinsically more brittle than FA-186.

  14. Fracture and strain rate behavior of airplane fuselage materials under blast loading

    Science.gov (United States)

    Mediavilla Varas, J.; Soetens, F.; Kroon, E.; van Aanhold, J. E.; van der Meulen, O. R.; Sagimon, M.

    2010-06-01

    The dynamic behavior of three commonly used airplane fuselage materials is investigated, namely of Al2024-T3, Glare-3 and CFRP. Dynamic tensile tests using a servo-hydraulic and a light weight shock testing machine (LSM) have been performed. The results showed no strain rate effect on Al2024-T3 and an increase in the failure strain and failure strength of Glare-3, but no stiffening. The LSM results on CFRP were inconclusive. Two types of fracture tests were carried out to determine the dynamic crack propagation behavior of these materials, using prestressed plates and pressurized barrels, both with the help of explosives. The prestressed plates proved to be not suitable, whereas the barrel tests were quite reliable, allowing to measure the crack speeds. The tougher, more ductile materials, Al2024-T3 and Glare-3, showed lower crack speeds than CFRP, which failed in a brittle manner.

  15. Fracture and strain rate behavior of airplane fuselage materials under blast loading

    Directory of Open Access Journals (Sweden)

    van der Meulen O.R.

    2010-06-01

    Full Text Available The dynamic behavior of three commonly used airplane fuselage materials is investigated, namely of Al2024-T3, Glare-3 and CFRP. Dynamic tensile tests using a servo-hydraulic and a light weight shock testing machine (LSM have been performed. The results showed no strain rate effect on Al2024-T3 and an increase in the failure strain and failure strength of Glare-3, but no stiffening. The LSM results on CFRP were inconclusive. Two types of fracture tests were carried out to determine the dynamic crack propagation behavior of these materials, using prestressed plates and pressurized barrels, both with the help of explosives. The prestressed plates proved to be not suitable, whereas the barrel tests were quite reliable, allowing to measure the crack speeds. The tougher, more ductile materials, Al2024-T3 and Glare-3, showed lower crack speeds than CFRP, which failed in a brittle manner.

  16. Orientation-specific transgranular fracture behavior of CVD-grown monolayer MoS2 single crystal

    Science.gov (United States)

    Hao, Song; Yang, Bingchu; Gao, Yongli

    2017-04-01

    In recent times, there has been a rapidly growing interest in fracture behavior of two-dimensional materials since it is crucial for device performances. Here, we report an orientation-specific transgranular fracture behavior of a CVD-grown monolayer MoS2 single crystal investigated by various means. The underlying mechanism proposed that micro-cracks nucleated at sulfur vacancies propagate along the energy-favored zigzag directions upon fast quenching induced thermal strain, which results in an orientation-specific fracture behavior. The corresponding photoluminescence characteristic peaks undergo a blue-shift by ˜165 meV, suggesting compressive strain resided, in sharp contrast to tensile strain in a normal CVD-grown MoS2 single crystal. In addition, the combined photoemission electron microscopy and kelvin force microscopy results show the obvious surface potential variation between fractured MoS2 microflakes in some regions, ascribed to inhomogeneous interactions between MoS2 and the underlying substrate. The results reported here deepen the understanding of the fracture behavior of monolayer single crystalline MoS2, which is also adoptable in other transition metal dichalcogenide materials.

  17. Bridging the gap between extrinsic and intrinsic motivation in the cognitive remediation of schizophrenia.

    Science.gov (United States)

    Silverstein, Steven M

    2010-09-01

    An important development in cognitive remediation of schizophrenia is a focus on motivation. However, following a distinction between the concepts of intrinsic motivation (IM) and extrinsic motivation, discussions of IM-based methods have downplayed or misrepresented the role that extrinsic rewards can, and actually do, serve to promote positive treatment outcomes in cognitive remediation. Therefore, the purpose of this article is to explore the rationale for using techniques incorporating extrinsic rewards into cognitive treatment of people with schizophrenia. To do this, evidence is presented on each of the following points: (1) there is a long history of research demonstrating that delivery of extrinsic reward is associated with positive outcomes in both behavioral and cognitive rehabilitation; (2) basic human brain systems respond strongly to tangible rewards, and this can directly enhance attention, working memory, and other cognitive functions; (3) nearly all data on the negative effects of extrinsic reward on IM have come from studies of healthy children and adults in school or work settings who have adequate IM for target tasks; these findings do not generalize well to cognitive remediation settings for people with schizophrenia, who often have abnormally low levels of IM and low base rates of attentive behaviors; and (4) in real-world situations, cognitive remediation interventions already utilize a combination of intrinsic and extrinsic reinforcers. Future studies are needed to clarify state and trait factors responsible for individual differences in the extent to which extrinsic rewards are necessary to set the conditions under which IM can develop.

  18. Mechanical Behavior and Fracture Toughness Evaluation of Multiphase Polymer Nanocomposites Using Impact and J-Integral via Locus Method

    Directory of Open Access Journals (Sweden)

    Bishnu P. Panda

    2013-01-01

    Full Text Available Fracture behaviors of fibrillar silicate clay (MMT filled thermoplastic polyolefin (TPO containing polypropylene (PP blended with ethylene-propylene-diene monomer (EPDM were systematically investigated using impact test method and J-integral by locus method. Drastic increase in impact strength is observed for all developed compositions and generally shows higher value for the selected phases containing dispersed nanoclay in PP matrix. A fracture mechanics approach has been adopted by mode I test, and the effects of specimen geometry have been investigated. Increase in interlaminar fracture energy value, Gc, and J-integral value, Jc, is marked as the crack propagated through the composite; that is, a rising “R-curve” is observed. Toughness measurements revealed that the fracture toughness increased with increasing clay content reaching maximum at 3 wt% of clay than pure PP. Moreover, enhancement of fracture toughness was more remarkable than that of stiffness. The fracture surfaces taken from different specimens were observed for exploring the fracture mechanisms using transmission electron microscopy (TEM revealed a strong particle-matrix adhesion.

  19. Consolidation power of extrinsic rewards: reward cues enhance long-term memory for irrelevant past events.

    Science.gov (United States)

    Murayama, Kou; Kitagami, Shinji

    2014-02-01

    Recent research suggests that extrinsic rewards promote memory consolidation through dopaminergic modulation processes. However, no conclusive behavioral evidence exists given that the influence of extrinsic reward on attention and motivation during encoding and consolidation processes are inherently confounded. The present study provides behavioral evidence that extrinsic rewards (i.e., monetary incentives) enhance human memory consolidation independently of attention and motivation. Participants saw neutral pictures, followed by a reward or control cue in an unrelated context. Our results (and a direct replication study) demonstrated that the reward cue predicted a retrograde enhancement of memory for the preceding neutral pictures. This retrograde effect was observed only after a delay, not immediately upon testing. An additional experiment showed that emotional arousal or unconscious resource mobilization cannot explain the retrograde enhancement effect. These results provide support for the notion that the dopaminergic memory consolidation effect can result from extrinsic reward.

  20. The relationship of microstructure to fracture and corrosion behavior of a directionally solidified superalloy

    Science.gov (United States)

    Trexler, Matthew D.

    GTD-111 DS is a directionally solidified superalloy currently used in turbine engines. To accurately predict the life of engine components it is essential to examine and characterize the microstructural evolution of the material and its effects on material properties. The as-cast microstructure of GTD-111 is highly inhomogeneous as a result of coring. The current post-casting heat treatments do not effectively eliminate the inhomogeneity. This inhomogeneity affects properties including tensile strength, fracture toughness, fracture path, and corrosion behavior, primarily in terms of the number of grains per specimen. The goal of this work was to link microstructural features to these properties. Quantitative fractography was used to determine that the path of cracks during failure of tensile specimens is influenced by the presence of carbides, which are located in the interdendritic regions of the material as dictated by segregation. The solvus temperature of the precipitate phase, Ni3(Al, Ti), was determined to be 1200°C using traditional metallography, differential thermal analysis, and dilatometry. A heat-treatment was designed to homogenize the microstructure for tensile testing that isolates the carbide by dissolving all of the "eutectic" Ni3(Al, Ti) precipitate phase, which is also found in the interdendritic areas. High temperature oxidation/sulfidation tests were conducted to investigate the corrosion processes involved when GTD-111 DS is utilized in steam and gas combustion turbine engines. The kinetics of corrosion in both oxidizing and sulfidizing atmospheres were determined using thermogravimetric analysis. Additionally, metallography of these samples after TGA revealed a correlation between the presence of grain boundaries and sulfur attack, which led to catastrophic failure of the material under stress-free conditions in a sulfur bearing environment. In summary, this work correlates the inhomogeneous microstructure of GTD-111 DS to tensile fracture

  1. Mechanical properties and fracture behavior of flowable fiber reinforced composite restorations.

    Science.gov (United States)

    Lassila, Lippo; Keulemans, Filip; Säilynoja, Eija; Vallittu, Pekka K; Garoushi, Sufyan

    2018-01-20

    The aim was to evaluate the effect of short glass-fiber/filler particles proportion on fracture toughness (FT) and flexural strength (FS) of an experimental flowable fiber-reinforced composite (Exp-SFRC) with two methacrylate resin formulations. In addition, we wanted to investigate how the fracture-behavior of composite restorations affected by FT values of SFRC-substructure. Exp-SFRC was prepared by mixing 50wt% of dimethacrylate based resin matrix (bisGMA or UDMA based) to 50wt% of various weight fractions of glass-fiber/particulate filler (0:50, 10:40, 20:30, 30:20, 40:10, 50:0wt%, respectively). FT and FS were determined for each experimental material following standards. Specimens (n=8) were dry stored (37°C for 2 days) before they were tested. Four groups of posterior composite crowns (n=6) composed of different Exp-SFRCs as substructure and surface layer of commercial particulate filler composite were fabricated. Crowns were statically loaded until fracture. Failure modes were visually examined. The results were statistically analysed using ANOVA followed by post hoc Tukey's test. ANOVA revealed that ratio of glass-fiber/particulate filler had significant effect (p<0.05) on tested mechanical properties of the Exp-SFRC with both monomer systems. Exp-SFRC (50wt%) had significantly higher FT (2.6MPam1/2) and FS (175.5MPa) (p<0.05) compared to non-reinforced material (1.3MPam1/2, 123MPa). Failure mode analysis of crown restorations revealed that FT value of the substructure directly influenced the failure mode. This study shows that short glass-fibers can significantly reinforce flowable composite resin and the FT value of SFRC-substructure has prior importance, as it influences the crack arresting mechanism. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Experimental and Model Studies on Loading Path-Dependent and Nonlinear Gas Flow Behavior in Shale Fractures

    Science.gov (United States)

    Li, Honglian; Lu, Yiyu; Zhou, Lei; Tang, Jiren; Han, Shuaibin; Ao, Xiang

    2018-01-01

    Interest in shale gas as an energy source is growing worldwide. Because the rock's natural fracture system can contribute to gas production, it is important to understand the flow behavior of natural fractures in shale. Previous studies on the flow characteristics in shale fractures were limited and did not consider the effect of nonlinearity. To understand the basic mechanics of the gas flow behavior in shale fractures, laboratory investigations with consideration of the fluid pressure gradient, the confining stress, the loading history and the fracture geometry were conducted in this paper. Izbash's equation was used to analyze the nonlinearity of the flow. The results show that the behavior of the friction factors is similar to that shown in flow tests in smooth and rough pipes. The increase of the confining stress and the irreversible damage to the shale decreased the hydraulic aperture and increased the relative roughness. Thus, turbulent flow could appear at a low Reynolds number, resulting in a significant pressure loss. The limits of the cubic law and the existing correction factor for transmissivity are discussed. It is found that the previous friction models overestimate the friction factor in the laminar regime and underestimate the friction factor in the turbulent regime. For this reason, a new friction model based on a linear combination of the Reynolds number and the relative roughness was developed.

  3. Effects of H content on the tensile properties and fracture behavior of SA508-III steel

    Science.gov (United States)

    Liu, Jia-hua; Wang, Lei; Liu, Yang; Song, Xiu; Luo, Jiong; Yuan, Dan

    2015-08-01

    SA508-III steel was charged with different hydrogen (H) contents using a high-pressure thermal charging method to study the effects of H content on the tensile properties and evaluate the H embrittlement behavior of the steel. The results indicate that the ultimate tensile strength remains nearly unchanged with the addition of H. In contrast, the yielding strength slightly increases, and the elongation significantly decreases with increasing H content, especially at concentrations exceeding 5.6 × 10-6. On the basis of fractographic analysis, it is clear that the addition of H changes the fracture mode from microvoid coalescence to a mixture of river patterns and dimples. Carbides are strong traps for H; thus, the H atoms easily migrate in the form of Cottrell atmosphere toward the carbides following moving dislocations during tensile deformation. In addition, stress-induced H atoms accumulate at the interface between carbides and the matrix after necking under three-dimensional stress, which weakens the interfacial bonding force. Consequently, when the local H concentration reaches a critical value, microcracks occur at the interface, resulting in fracture.

  4. Age hardening, fracture behavior and mechanical properties of QE22 Mg alloy

    Directory of Open Access Journals (Sweden)

    F. Khan MD

    2015-09-01

    Full Text Available The microstructure, mechanical properties and fracture behavior of an as-received QE22 alloy have been investigated under different thermal conditions, including solution treated (ST, under aged (UA, peak aged (PA and over aged (OA conditions. A significant increase in hardness of 27%, yield strength of 60% and ultimate tensile strength of 19% was observed in peak aged sample as compared to solution treated sample. The improvements of mechanical strength properties are mainly associated with the metastable λ and β′ precipitates. Grain growth was not observed in the ST samples after subjecting to UA and PA treatments due to the presence of eutectic Mg12Nd particles along the grain boundaries. In over aged sample, significant grain growth occurred because of dissolution of eutectic phase particles. Different natures of crack initiation and propagation were observed under different thermal conditions during tensile testing at room temperature. The mode of failure of solution treated sample is transgranular, cleavage and twin boundary fractures. A mixed mode of transgranular, intergranular, cleavage and twin boundary failure is observed in both peak aged and over aged samples.

  5. The interfacial fracture behavior of foam core composite sandwich structures by a viscoelastic cohesive model

    Science.gov (United States)

    Sun, Shiyong; Chen, Haoran

    2011-08-01

    A sandwich beam model consisting of two face sheets and a foam core bonded by a viscoelastic adhesive layer is considered in order to investigate interfacial fracture behavior. Firstly, a cohesive zone model in conjunction with a Maxwell element in parallel, or with a Kelvin element in series, respectively, is employed to describe the characteristics of viscoelasticity for the adhesive layer. The models can be implemented into the implicit finite element code. Next, the parametric study shows that the influences of loading rates on the cohesive zone energy and strength are quite different for different models. Finally, a sandwich double cantilever beam model is adopted to simulate the interface crack growth between the face sheet and core. Numerical examples are presented for various loading rates to demonstrate the efficacy of the rate-dependent cohesive models.

  6. Computational Simulation of Fracture Behavior Due to Mechanical and Constituent Properties of CFCCs

    Science.gov (United States)

    Kwon, Oh Heon; Yun, Yu Seong

    Continuous fiber reinforced ceramic matrix composites (CFCCs) are recently a subject of a lot of research interest due to advantages which are high specific stiffness and strength, high toughness and nonbrittle failure as compared to monolithic ceramics. The basic purpose of the present study is to describe graphically the fracture behavior of CFCCs according to a dependence on constituent properties. In CFCCs, following matrix cracking, intact fibers bridge effects impose closure tractions behind the crack tip that reduce the driving force for further cracking. Thus matrix cracking stress and bridging stress are important. Then the change of fiber volume fraction is given for the matrix cracking stress by the numerical simulation. Numerical simulation are carried out by using a finite element analysis code ANSYS. The double mesh concept is applied to account for fiber and matrix material properties.

  7. Deformation Behavior between Hydraulic and Natural Fractures Using Fully Coupled Hydromechanical Model with XFEM

    Directory of Open Access Journals (Sweden)

    Fei Liu

    2017-01-01

    Full Text Available There has been a growing consensus that preexisting natural fractures play an important role during stimulation. A novel fully coupled hydromechanical model using extended finite element method is proposed. This directly coupled scheme avoids the cumbersome process during calculating the fluid pressure in complicated fracture networks and translating into an equivalent nodal force. Numerical examples are presented to simulate the hydraulic fracture propagation paths for simultaneous multifracture treatments with properly using the stress shadow effects for horizontal wells and to reveal the deformation response and interaction mechanism between hydraulic induced fracture and nonintersected natural fractures at orthotropic and nonorthotropic angles. With the stress shadow effects, the induced hydraulic flexural fracture deflecting to wellbore rather than transverse fracture would be formed during the progress of simultaneous fracturing for a horizontal well. The coupled hydromechanical simulation reveals that the adjacent section to the intersection is opened and the others are closed for orthogonal natural fracture, while the nonorthogonal natural fracture is activated near the intersection firstly and along the whole section with increasing perturbed stresses. The results imply that the induced hydraulic fracture tends to cross orthotropic natural fracture, while it is prior to being arrested by the nonorthotropic natural fracture.

  8. Mixed-Mode Fracture Behavior and Related Surface Topography Feature of a Typical Sandstone

    Science.gov (United States)

    Ren, L.; Xie, L. Z.; Xie, H. P.; Ai, T.; He, B.

    2016-08-01

    The geo-mechanical properties of reservoirs, especially the morphology of the rock surface and the fracture properties of rocks, are of great importance in the modeling and simulation of hydraulic processes. To better understand these fundamental issues, five groups of mixed-mode fracture tests were conducted on sandstone using edge-cracked semi-circular bend specimens. Accordingly, the fracture loads, growth paths and fracture surfaces for different initial mixities of the mixed-mode loadings from pure mode I to pure mode II were then determined. A surface topography measurement for each rough fracture surface was conducted using a laser profilometer, and the fractal properties of these surfaces were then investigated. The fracture path evolution mechanism was also investigated via optical microscopy. Moreover, the mixed-mode fracture strength envelope and the crack propagation trajectories of sandstone were theoretically modeled using three widely accepted fracture criteria (i.e., the MTS, MSED and MERR criterions). The published test results in Hasanpour and Choupani (World Acad Sci Eng Tech 41:764-769, 2008) for limestone were also theoretically investigated to further examine the effectiveness of the above fracture criteria. However, none of these criteria could accurately predict the fracture envelopes of both sandstone and limestone. To better estimate the fracture strength of mixed-mode fractures, an empirical maximum tensile stress (EMTS) criterion was proposed and found to achieve good agreement with the test results. Finally, a uniformly pressurized fracture model was simulated for low pressurization rates using this criterion.

  9. Fracture behavior of structurally compromised non-vital maxillary premolars restored using experimental fiber reinforced composite crowns.

    NARCIS (Netherlands)

    Fokkinga, W.A.; Kreulen, C.M.; Bell-Ronnlof, A.M. Le; Lassila, L.V.; Vallittu, P.K.; Creugers, N.H.J.

    2006-01-01

    PURPOSE: To study the fracture behavior of direct resin composite crowns with or without experimental fiber reinforcement. METHODS: Clinical crowns of single-rooted maxillary premolars were cut off at the cemento-enamel junction. Canals were prepared with Gates Glidden drills up to size 4. No

  10. In vitro fracture behavior of maxillary premolars with metal crowns and several post-and-core systems.

    NARCIS (Netherlands)

    Fokkinga, W.A.; Kreulen, C.M.; Bell-Ronnlof, A.M. Le; Lassila, L.V.; Vallittu, P.K.; Creugers, N.H.J.

    2006-01-01

    The in vitro fracture behavior of severely damaged premolars, restored with metal crowns with limited ferrule and several post-and-core systems, was investigated. Crowns of maxillary premolars were removed and canals were prepared with Gates Glidden drills and with Parapost drills. Groups of 11

  11. Microstructural effects on constitutive and fatigue fracture behavior of TinSilverCopper solder

    Science.gov (United States)

    Tucker, Jonathon P.

    As microelectronic package construction becomes more diverse and complex, the need for accurate, geometry-independent material constitutive and failure models increases. Evaluations of packages based on accelerated environmental tests (such as accelerated thermal cycling or power cycling) only provide package-dependent reliability information. In addition, extrapolations of such test data to life predictions under field conditions are often empirical. Besides geometry, accelerated environmental test data must account for microstructural factors such as alloy composition or isothermal aging condition, resulting in expensive experimental variation. In this work, displacement-controlled, creep, and fatigue lap shear tests are conducted on specially designed SnAgCu test specimens with microstructures representative to those found in commercial microelectronic packages. The data are used to develop constitutive and fatigue fracture material models capable of describing deformation and fracture behavior for the relevant temperature and strain rate ranges. Furthermore, insight is provided into the microstructural variation of solder joints and the subsequent effect on material behavior. These models are appropriate for application to packages of any geometrical construction. The first focus of the thesis is on Pb-mixed SnAgCu solder alloys. During the transition from Pb-containing solders to Pb-free solders, joints composed of a mixture of SnPb and SnAgCu often result from either mixed assemblies or rework. Three alloys of 1, 5 and 20 weight percent Pb were selected so as to represent reasonable ranges of Pb contamination expected from different 63Sn37Pb components mixed with Sn3.0Ag0.5Cu. Displacement-controlled (constant strain rate) and creep tests were performed at temperatures of 25°C, 75°C, and 125°C using a double lap shear test setup that ensures a nearly homogeneous state of plastic strain at the joint interface. Rate-dependent constitutive models for Pb

  12. Master curve characterization of the fracture toughness behavior in SA508 Gr.4N low alloy steels

    Science.gov (United States)

    Lee, Ki-Hyoung; Kim, Min-Chul; Lee, Bong-Sang; Wee, Dang-Moon

    2010-08-01

    The fracture toughness properties of the tempered martensitic SA508 Gr.4N Ni-Mo-Cr low alloy steel for reactor pressure vessels were investigated by using the master curve concept. These results were compared to those of the bainitic SA508 Gr.3 Mn-Mo-Ni low alloy steel, which is a commercial RPV material. The fracture toughness tests were conducted by 3-point bending with pre-cracked charpy (PCVN) specimens according to the ASTM E1921-09c standard method. The temperature dependency of the fracture toughness was steeper than those predicted by the standard master curve, while the bainitic SA508 Gr.3 steel fitted well with the standard prediction. In order to properly evaluate the fracture toughness of the Gr.4N steels, the exponential coefficient of the master curve equation was changed and the modified curve was applied to the fracture toughness test results of model alloys that have various chemical compositions. It was found that the modified curve provided a better description for the overall fracture toughness behavior and adequate T0 determination for the tempered martensitic SA508 Gr.4N steels.

  13. Master curve characterization of the fracture toughness behavior in SA508 Gr.4N low alloy steels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki-Hyoung, E-mail: shirimp@kaist.ac.k [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Kim, Min-Chul; Lee, Bong-Sang [Nuclear Materials Research Division, KAERI, Daejeon 305-353 (Korea, Republic of); Wee, Dang-Moon [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2010-08-15

    The fracture toughness properties of the tempered martensitic SA508 Gr.4N Ni-Mo-Cr low alloy steel for reactor pressure vessels were investigated by using the master curve concept. These results were compared to those of the bainitic SA508 Gr.3 Mn-Mo-Ni low alloy steel, which is a commercial RPV material. The fracture toughness tests were conducted by 3-point bending with pre-cracked charpy (PCVN) specimens according to the ASTM E1921-09c standard method. The temperature dependency of the fracture toughness was steeper than those predicted by the standard master curve, while the bainitic SA508 Gr.3 steel fitted well with the standard prediction. In order to properly evaluate the fracture toughness of the Gr.4N steels, the exponential coefficient of the master curve equation was changed and the modified curve was applied to the fracture toughness test results of model alloys that have various chemical compositions. It was found that the modified curve provided a better description for the overall fracture toughness behavior and adequate T{sub 0} determination for the tempered martensitic SA508 Gr.4N steels.

  14. Modified maximum tangential stress criterion for fracture behavior of zirconia/veneer interfaces.

    Science.gov (United States)

    Mirsayar, M M; Park, P

    2016-06-01

    The veneering porcelain sintered on zirconia is widely used in dental prostheses, but repeated mechanical loadings may cause a fracture such as edge chipping or delamination. In order to predict the crack initiation angle and fracture toughness of zirconia/veneer bi-layered components subjected to mixed mode loadings, the accuracy of a new and traditional fracture criteria are investigated. A modified maximum tangential stress criterion considering the effect of T-stress and critical distance theory is introduced, and compared to three traditional fracture criteria. Comparisons to the recently published fracture test data show that the traditional fracture criteria are not able to properly predict the fracture initiation conditions in zirconia/veneer bi-material joints. The modified maximum tangential stress criterion provides more accurate predictions of the experimental results than the traditional fracture criteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Influence of surface roughness on nonlinear flow behaviors in 3D self-affine rough fractures: Lattice Boltzmann simulations

    Science.gov (United States)

    Wang, Min; Chen, Yi-Feng; Ma, Guo-Wei; Zhou, Jia-Qing; Zhou, Chuang-Bing

    2016-10-01

    This study investigates the impacts of surface roughness on the nonlinear fluid flow through three-dimensional (3D) self-affine rock fractures, whose original surface roughness is decomposed into primary roughness (i.e. the large-scale waviness of the fracture morphology) and secondary roughness (i.e. the small-scale unevenness) with a wavelet analysis technique. A 3D Lattice Boltzmann method (LBM) is adopted to predict the flow physics in rock fractures numerically created with and without consideration of the secondary roughness, respectively. The simulation results show that the primary roughness mostly controls the pressure distribution and fracture flow paths at a large scale, whereas the secondary roughness determines the nonlinear properties of the fluid flow at a local scale. As the pressure gradient increases, the secondary roughness enhances the local complexity of velocity distribution by generating and expanding the eddy flow and back flow regions in the vicinity of asperities. It was found that the Forchheimer's law characterizes well the nonlinear flow behavior in fractures of varying roughness. The inertial effects induced by the primary roughness differ only marginally in fractures with the roughness exponent varying from 0.5 to 0.8, and it is the secondary roughness that significantly enhances the nonlinear flow and leads to earlier onset of nonlinearity. Further examined were the effects of surface roughness on the transmissivity, hydraulic aperture and the tortuosity of flow paths, demonstrating again the dominant role of the secondary roughness, especially for the apparent transmissivity and the equivalent hydraulic aperture at high pressure gradient or high Reynolds number. The results may enhance our understanding of the role of surface roughness in the nonlinear flow behaviors in natural rock fractures.

  16. On the effect of x-ray irradiation on the deformation and fracture behavior of human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Holly D.; Launey, Maximilien E.; McDowell, Alastair A.; Ager III, Joel W.; Ritchie, Robert O.

    2010-01-10

    In situ mechanical testing coupled with imaging using high-energy synchrotron x-ray diffraction or tomography imaging is gaining in popularity as a technique to investigate micrometer and even sub-micrometer deformation and fracture mechanisms in mineralized tissues, such as bone and teeth. However, the role of the irradiation in affecting the nature and properties of the tissue is not always taken into account. Accordingly, we examine here the effect of x-ray synchrotron-source irradiation on the mechanistic aspects of deformation and fracture in human cortical bone. Specifically, the strength, ductility and fracture resistance (both work-of-fracture and resistance-curve fracture toughness) of human femoral bone in the transverse (breaking) orientation were evaluated following exposures to 0.05, 70, 210 and 630 kGy irradiation. Our results show that the radiation typically used in tomography imaging can have a major and deleterious impact on the strength, post-yield behavior and fracture toughness of cortical bone, with the severity of the effect progressively increasing with higher doses of radiation. Plasticity was essentially suppressed after as little as 70 kGy of radiation; the fracture toughness was decreased by a factor of five after 210 kGy of radiation. Mechanistically, the irradiation was found to alter the salient toughening mechanisms, manifest by the progressive elimination of the bone's capacity for plastic deformation which restricts the intrinsic toughening from the formation 'plastic zones' around crack-like defects. Deep-ultraviolet Raman spectroscopy indicated that this behavior could be related to degradation in the collagen integrity.

  17. Fitness, Extrinsic Complexity and Informing Science

    Directory of Open Access Journals (Sweden)

    Grandon Gill

    2017-03-01

    We raise concerns about society’s continuing investment in academic research that discounts the extrinsic complexity of the domains under study. Future Research We highlight a need for research to operationalize the concepts of fitness and complexity in practice.

  18. Hygrothermal effects on dynamic mechanical snalysis and fracture behavior of polymeric composites

    Directory of Open Access Journals (Sweden)

    Michelle Leali Costa

    2005-09-01

    Full Text Available Polymer composites used above their glass transition temperatures Tg present a substantial degradation of physical properties; therefore a material's glass transition temperature and its change with moisture absorption are of practical importance. Little attention has been paid to the role of the adhesive bonding between the reinforcing fiber and matrix, particularly for BMI matrix. In this work the effect of moisture on the dynamic mechanical behavior and the fiber/matrix interface was investigated. Two systems were evaluated: carbon fabric/epoxy and carbon fabric/bismaleimide laminates. The results demonstrated that the moisture absorbed by the laminates causes either reversible or irreversible plasticization of the matrix. The humidity combined with the temperature effects may cause significant changes in the Tg matrix and toughness affecting the laminate strength. Moisture absorption was correlated to the fracture mode of the laminate demonstrating the deleterious effect of moisture on the interface. This leads to debonding between fiber and matrix. This behavior was investigated by scanning electron microscopy and dynamic mechanical analysis.

  19. Fractured Identity: A Framework for Understanding Young Asian American Women's Self-harm and Suicidal Behaviors.

    Science.gov (United States)

    Hahm, Hyeouk Chris; Gonyea, Judith G; Chiao, Christine; Koritsanszky, Luca Anna

    2014-01-01

    Despite the high suicide rate among young Asian American women, the reasons for this phenomenon remain unclear. This qualitative study explored the family experiences of 16 young Asian American women who are children of immigrants and report a history of self-harm and/or suicidal behaviors. Our findings suggest that the participants experienced multiple types of "disempowering parenting styles" that are characterized as: abusive, burdening, culturally disjointed, disengaged, and gender-prescriptive parenting. Tied to these family dynamics is the double bind that participants suffer. Exposed to multiple types of negative parenting, the women felt paralyzed by opposing forces, caught between a deep desire to satisfy their parents' expectations as well as societal expectations and to simultaneously rebel against the image of "the perfect Asian woman." Torn by the double bind, these women developed a "fractured identity," which led to the use of "unsafe coping" strategies. Trapped in a "web of pain," the young women suffered alone and engaged in self-harm and suicidal behaviors.

  20. Fracture Behavior and Delamination Toughening of Molybdenum in Charpy Impact Tests

    Science.gov (United States)

    Babinsky, K.; Primig, S.; Knabl, W.; Lorich, A.; Stickler, R.; Clemens, H.

    2016-11-01

    This study combines advanced characterization techniques with conventional Charpy impact tests to relate the mechanical properties to the microstructure of technically pure molybdenum, especially regarding its toughness. V-notched samples with different orientations were prepared from a rolled molybdenum plate in stress-relieved and recrystallized condition. The ductile-to-brittle transition-temperature was analyzed in terms of the delamination behavior influenced by the microstructure. A pronounced increase of toughness was found for specific oriented samples, which can be explained by macroscopic delamination. Elongated grains led to enhanced delamination in Charpy impact tests with variations for different orientations. In general, delamination occurs as a result of brittle fracture; however, an increase in toughness in the Charpy impact test can be provoked. This mechanism is called thin sheet toughening or delamination toughening. Electron backscatter diffraction measurements were performed to get a deeper knowledge about crack propagation and delamination behavior in the rolled plate. Recrystallization shifts the transition region to significantly higher temperatures, which is explained by the globular grain shape as well as grain boundary segregation. The occurrence of delamination is discussed, taking texture, grain shape and segregation effects into account.

  1. Are competition and extrinsic motivation reliable predictors of academic cheating?

    Directory of Open Access Journals (Sweden)

    Gábor eOrosz

    2013-02-01

    Full Text Available Previous studies suggest that extrinsic motivation and competition are reliable predictors of academic cheating. The aim of the present questionnaire study was to separate the effects of motivation- and competition-related variables on academic cheating by Hungarian high school students (N = 620, M = 264, F = 356. Structural equation modeling showed that intrinsic motivation has a negative effect, and amotivation has a positive indirect effect on self-reported academic cheating. In contrast, extrinsic motivation had no significant effect. Indirect positive influence on cheating, based on some characteristics of hypercompetition, was also found, whereas attitudes towards self-developmental competition had a mediated negative influence. Neither constructive nor destructive competitive classroom climate had a significant impact on academic dishonesty. Acceptance of cheating and guilt has significant and direct effect on self-reported cheating. In comparison with them, the effects of motivational and competition-related variables are relatively small, even negligible. These results suggest that extrinsic motivation and competition are not amongst the most reliable predictors of academic cheating behavior.

  2. Are Competition and Extrinsic Motivation Reliable Predictors of Academic Cheating?

    Science.gov (United States)

    Orosz, Gábor; Farkas, Dávid; Roland-Lévy, Christine

    2013-01-01

    Previous studies suggest that extrinsic motivation and competition are reliable predictors of academic cheating. The aim of the present questionnaire study was to separate the effects of motivation- and competition-related variables on academic cheating by Hungarian high school students (N = 620, M = 264, F = 356). Structural equation modeling showed that intrinsic motivation has a negative effect, and amotivation has a positive indirect effect on self-reported academic cheating. In contrast, extrinsic motivation had no significant effect. Indirect positive influence on cheating, based on some characteristics of hypercompetition, was also found, whereas attitudes toward self-developmental competition had a mediated negative influence. Neither constructive nor destructive competitive classroom climate had a significant impact on academic dishonesty. Acceptance of cheating and guilt has significant and direct effect on self-reported cheating. In comparison with them, the effects of motivational and competition-related variables are relatively small, even negligible. These results suggest that extrinsic motivation and competition are not amongst the most reliable predictors of academic cheating behavior. PMID:23450676

  3. Are competition and extrinsic motivation reliable predictors of academic cheating?

    Science.gov (United States)

    Orosz, Gábor; Farkas, Dávid; Roland-Lévy, Christine

    2013-01-01

    Previous studies suggest that extrinsic motivation and competition are reliable predictors of academic cheating. The aim of the present questionnaire study was to separate the effects of motivation- and competition-related variables on academic cheating by Hungarian high school students (N = 620, M = 264, F = 356). Structural equation modeling showed that intrinsic motivation has a negative effect, and amotivation has a positive indirect effect on self-reported academic cheating. In contrast, extrinsic motivation had no significant effect. Indirect positive influence on cheating, based on some characteristics of hypercompetition, was also found, whereas attitudes toward self-developmental competition had a mediated negative influence. Neither constructive nor destructive competitive classroom climate had a significant impact on academic dishonesty. Acceptance of cheating and guilt has significant and direct effect on self-reported cheating. In comparison with them, the effects of motivational and competition-related variables are relatively small, even negligible. These results suggest that extrinsic motivation and competition are not amongst the most reliable predictors of academic cheating behavior.

  4. Tensile Fracture Behavior and Failure Mechanism of Additively-Manufactured AISI 4140 Low Alloy Steel by Laser Engineered Net Shaping

    Directory of Open Access Journals (Sweden)

    Hoyeol Kim

    2017-11-01

    Full Text Available AISI 4140 powder was directly deposited on AISI 4140 wrought substrate using laser engineered net shaping (LENS to investigate the compatibility of a LENS-deposited part with the substrate. Tensile testing at room temperature was performed to evaluate the interface bond performance and fracture behavior of the test specimens. All the samples failed within the as-deposited zone, indicating that the interfacial bond is stronger than the interlayer bond inside the deposit. The fracture surfaces were analyzed using scanning electron microscopy (SEM and energy disperse X-ray spectrometry (EDS. Results show that the tensile fracture failure of the as-deposited part is primarily affected by lack-of-fusion defects, carbide precipitation, and oxide particles inclusions, which causes premature failure of the deposit by deteriorating the mechanical properties and structural integrity.

  5. Effect of dynamic monotonic and cyclic loading on fracture behavior for Japanese carbon steel pipe STS410

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Kanji; Murayama, Kouichi; Ogata, Hiroyuki [and others

    1997-04-01

    The fracture behavior for Japanese carbon steel pipe STS410 was examined under dynamic monotonic and cyclic loading through a research program of International Piping Integrity Research Group (EPIRG-2), in order to evaluate the strength of pipe during the seismic event The tensile test and the fracture toughness test were conducted for base metal and TIG weld metal. Three base metal pipe specimens, 1,500mm in length and 6-inch diameter sch.120, were employed for a quasi-static monotonic, a dynamic monotonic and a dynamic cyclic loading pipe fracture tests. One weld joint pipe specimen was also employed for a dynamic cyclic loading test In the dynamic cyclic loading test, the displacement was controlled as applying the fully reversed load (R=-1). The pipe specimens with a circumferential through-wall crack were subjected four point bending load at 300C in air. Japanese STS410 carbon steel pipe material was found to have high toughness under dynamic loading condition through the CT fracture toughness test. As the results of pipe fracture tests, the maximum moment to pipe fracture under dynamic monotonic and cyclic loading condition, could be estimated by plastic collapse criterion and the effect of dynamic monotonic loading and cyclic loading was a little on the maximum moment to pipe fracture of the STS410 carbon steel pipe. The STS410 carbon steel pipe seemed to be less sensitive to dynamic and cyclic loading effects than the A106Gr.B carbon steel pipe evaluated in IPIRG-1 program.

  6. Prediction and Monitoring Systems of Creep-Fracture Behavior of 9Cr-1Mo Steels for Teactor Pressure Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Potirniche, Gabriel [Univ. of Idaho, Moscow, ID (United States); Barlow, Fred D. [Univ. of Idaho, Moscow, ID (United States); Charit, Indrajit [Univ. of Idaho, Moscow, ID (United States); Rink, Karl [Univ. of Idaho, Moscow, ID (United States)

    2013-11-26

    A recent workshop on next-generation nuclear plant (NGNP) topics underscored the need for research studies on the creep fracture behavior of two materials under consideration for reactor pressure vessel (RPV) applications: 9Cr-1Mo and SA-5XX steels. This research project will provide a fundamental understanding of creep fracture behavior of modified 9Cr-1Mo steel welds for through modeling and experimentation and will recommend a design for an RPV structural health monitoring system. Following are the specific objectives of this research project: Characterize metallurgical degradation in welded modified 9Cr-1Mo steel resulting from aging processes and creep service conditions; Perform creep tests and characterize the mechanisms of creep fracture process; Quantify how the microstructure degradation controls the creep strength of welded steel specimens; Perform finite element (FE) simulations using polycrystal plasticity to understand how grain texture affects the creep fracture properties of welds; Develop a microstructure-based creep fracture model to estimate RPVs service life; Manufacture small, prototypic, cylindrical pressure vessels, subject them to degradation by aging, and measure their leak rates; Simulate damage evolution in creep specimens by FE analyses; Develop a model that correlates gas leak rates from welded pressure vessels with the amount of microstructural damage; Perform large-scale FE simulations with a realistic microstructure to evaluate RPV performance at elevated temperatures and creep strength; Develop a fracture model for the structural integrity of RPVs subjected to creep loads; and Develop a plan for a non-destructive structural health monitoring technique and damage detection device for RPVs.

  7. Influences of hydraulic gradient, surface roughness, intersecting angle, and scale effect on nonlinear flow behavior at single fracture intersections

    Science.gov (United States)

    Li, Bo; Liu, Richeng; Jiang, Yujing

    2016-07-01

    Fluid flow tests were conducted on two crossed fracture models for which the geometries of fracture segments and intersections were measured by utilizing a visualization technique using a CCD (charged coupled device) camera. Numerical simulations by solving the Navier-Stokes equations were performed to characterize the fluid flow at fracture intersections. The roles of hydraulic gradient, surface roughness, intersecting angle, and scale effect in the nonlinear fluid flow behavior through single fracture intersections were investigated. The simulation results of flow rate agreed well with the experimental results for both models. The experimental and simulation results showed that with the increment of the hydraulic gradient, the ratio of the flow rate to the hydraulic gradient, Q/J, decreases and the relative difference of Q/J between the calculation results employing the Navier-Stokes equations and the cubic law, δ, increases. When taking into account the fracture surface roughness quantified by Z2 ranging 0-0.42 for J = 1, the value of δ would increase by 0-10.3%. The influences of the intersecting angle on the normalized flow rate that represents the ratio of the flow rate in a segment to the total flow rate, Ra, and the ratio of the hydraulic aperture to the mechanical aperture, e/E, are negligible when J 10-2. Based on the regression analysis on simulation results, a mathematical expression was proposed to quantify e/E, involving variables of J and Rr, where Rr is the radius of truncating circles centered at an intersection. For E/Rr > 10-2, e/E varies significantly and the scale of model has large impacts on the nonlinear flow behavior through intersections, while for E/Rr fracture intersections is suggested as J < 10-3, E/Rr < 10-3, and Z2 = 0.

  8. The influence of coarse aggregate size and volume on the fracture behavior and brittleness of self-compacting concrete

    Energy Technology Data Exchange (ETDEWEB)

    Beygi, Morteza H.A., E-mail: M.beygi@nit.ac.ir [Department of Civil Engineering, Babol University of Technology (Iran, Islamic Republic of); Kazemi, Mohammad Taghi, E-mail: Kazemi@sharif.edu [Department of Civil Engineering, Sharif University of Technology, P.O. Box 11155-9313 (Iran, Islamic Republic of); Nikbin, Iman M., E-mail: nikbin@iaurasht.ac.ir [Faculty of Civil Engineering, Islamic Azad University, Rasht Branch, Rasht (Iran, Islamic Republic of); Vaseghi Amiri, Javad, E-mail: Vaseghi@nit.ac.ir [Department of Civil Engineering, Babol University of Technology (Iran, Islamic Republic of); Rabbanifar, Saeed, E-mail: Saeed.rabbanifar@yahoo.com [Department of Civil Engineering, Babol University of Technology (Iran, Islamic Republic of); Rahmani, Ebrahim, E-mail: Ebrahim.rahmani84@gmail.com [Department of Civil Engineering, Babol University of Technology (Iran, Islamic Republic of)

    2014-12-15

    This paper presents the results of an experimental investigation on fracture characteristics and brittleness of self-compacting concrete (SCC), involving the tests of 185 three point bending beams with different coarse aggregate size and content. Generally, the parameters were analyzed by the work of fracture method (WFM) and the size effect method (SEM). The results showed that with increase of size and content of coarse aggregate, (a) the fracture energy increases which is due to the change in fractal dimensions, (b) behavior of SCC beams approaches strength criterion, (c) characteristic length, which is deemed as an index of brittleness, increases linearly. It was found with decrease of w/c ratio that fracture energy increases which may be explained by the improvement in structure of aggregate-paste transition zone. Also, the results showed that there is a correlation between the fracture energy measured by WFM (G{sub F}) and the value measured through SEM (G{sub f}) (G{sub F} = 3.11G{sub f})

  9. Extrinsic Mechanisms Involved in Age-Related Defective Bone Formation

    DEFF Research Database (Denmark)

    Trinquier, Anne Marie-Pierre Emilie; Kassem, Moustapha

    2011-01-01

    in the alterations of osteoblastogenesis and the resulting decline in bone formation with aging. Notably, the age-related osteoblast dysfunctions and defective bone formation are caused by a number of extrinsic clinical factors that inhibit anabolic signaling pathways in bone. Thus, targeting these pathways can......Context: Age-related bone loss is associated with progressive changes in bone remodeling characterized by decreased bone formation relative to bone resorption. Both trabecular and periosteal bone formation decline with age in both sexes, which contributes to bone fragility and increased risk...... of fractures. Studies in rodents and humans revealed that, independent of sex hormone deficiency, the age-related decline in bone formation is characterized by decreased osteoblast number and lifespan and reduced bone-forming capacity of individual osteoblasts. An important clinical question is to identify...

  10. The research on delayed fracture behavior of high-strength bolts in steel structure

    Science.gov (United States)

    Li, Guo dong; Li, Nan

    2017-07-01

    High-strength bolts have been widely used in power plants. However, the high-strength bolts which being employed in pumping station, steel structure and pipeline anti-whip structure have been found delayed fracture for many times in a power plant, this will affect the reliability of steel fracture and bring blow risk caused by falling objects. The high-strength bolt with delayed fracture was carried out fracture analysis, metallurgical analysis, chemical analysis, mechanical analysis, as well as bolts installation analysis, it can be comprehensively confirmed that the direct cause of high-strength bolts delayed fracture is the stress corrosion, and the root cause of high-strength bolts delayed fracture should be the improper installation at the initial and the imperfect routine anti-corrosion maintenance.

  11. Treatment of stress fractures: the fundamentals.

    Science.gov (United States)

    Raasch, William Glenn; Hergan, David J

    2006-01-01

    This article is an introduction to the fundamentals of stress fracture management. Extrinsic and intrinsic factors, that may play a role in the development of stress fractures, are discussed and incorporated as possible treatment options. Different treatment modalities including ultrasound and electromagnetic fields are addressed, with an emphasis on literature support.

  12. Effect of meshing element on J-integral value for homogenous crown fracture behavior

    Science.gov (United States)

    Khasnulhadi, K.; Daud, R.; Mat, F.; Basaruddin, K. S.; Sulaiman, M. H.; Ariffin, A. K.

    2017-09-01

    This paper presents the meshing strategy schemes to solve the inconsistency of J-integral value for stress intensity factor (SIF) evaluation using finite element (FE) analysis. The effect of meshing element types on homogenous crown fracture behavior is investigated using developed ANSYS APDL code. For simplicity of the analysis, complex geometry of the dental crown was simplified into four point bending model. Two-dimensional FE single edge notch four-point bending model on In-Ceram Alumina was implemented in this study. A series of convergence analysis was performed to reveal the effect of various element types and combination quadrilateral and triangular elements on J-Integral for 10 contours. The meshing region was divided by two; non-critical part was set as global region and the critical part which is the pre-cracked area was set as local region. The effect of meshing size and combination of meshing shape were observed. For validation, the results of SIF through FE analysis using J-Integral have been compared and proved to have the good agreement with published theoretical result. It can be concluded that the smallest the meshing size at local region, the highest the number of contour of integration can be drawn.

  13. Deformation and fracture behavior of composite structured Ti-Nb-Al-Co(-Ni) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Okulov, I. V., E-mail: i.okulov@ifw-dresden.de; Marr, T.; Schultz, L.; Eckert, J. [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Institut für Werkstoffwissenschaft, Technische Universität Dresden, D-01062 Dresden (Germany); Kühn, U. [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Freudenberger, J. [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Institut für Werkstoffwissenschaft, Technische Universität Bergakademie Freiberg, Gustav-Zeuner-Str. 5, D-09599 Freiberg (Germany); Oertel, C.-G.; Skrotzki, W. [Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany)

    2014-02-17

    Tensile ductility of the Ti-based composites, which consist of a β-Ti phase surrounded by ultrafine structured intermetallics, is tunable through the control of intermetallics. The two Ti-based alloys studied exhibit similar compressive yield strength (about 1000 MPa) and strain (about 35%–40%) but show a distinct difference in their tensile plasticity. The alloy Ti{sub 71.8}Nb{sub 14.1}Ni{sub 7.4}Al{sub 6.7} fractures at the yield stress while the alloy Ti{sub 71.8}Nb{sub 14.1}Co{sub 7.4}Al{sub 6.7} exhibits about 4.5% of tensile plastic deformation. To clarify the effect of microstructure on the deformation behavior of these alloys, tensile tests were carried out in the scanning electron microscope. It is shown that the distribution as well as the type of intermetallics affects the tensile ductility of the alloys.

  14. The pipeline fracture behavior and pressure assessment under HIC (Hydrogen induced cracking) environment

    Energy Technology Data Exchange (ETDEWEB)

    Shaohua, Dong [China National Petroleum Corporation (CNPC), Beijing (China); Lianwei, Wang [University of Science and Technology Beijing (USTB), Beijing (China)

    2009-07-01

    As Hydrogen's transmit and diffuse, after gestating for a while, the density of hydrogen around crack tip of pipeline will get to the critical density, and the pipeline material will descend, make critical stress factor, the reason of pipeline Hydrogen Induced Cracking is Hydrogen's transmit and diffuse. The stress factor of Hydrogen Induced Cracking under surroundings-condition of stress is the key that estimate material's rupture behavior. The paper study the relationship among hydrogen concentrate, crack tip stress, stain field, hydrogen diffusion and inner pressure for crack tip process zone, then determined the length of HIC (hydrogen induced cracking) process zone. Based on the theory of propagation which reason micro-crack making core, dislocation model is produced for fracture criteria of HIC, the influence between material and environments under the HIC is analyzed, step by step pipeline maximum load pressure and threshold of J-integrity ( J{sub ISCC} ) is calculated, which is very significant for pipeline safety operation. (author)

  15. Comparison of migration behavior between single and dual lag screw implants for intertrochanteric fracture fixation

    Directory of Open Access Journals (Sweden)

    Katonis Pavlos G

    2009-05-01

    Full Text Available Abstract Background Lag screw cut-out failure following fixation of unstable intertrochanteric fractures in osteoporotic bone remains an unsolved challenge. This study tested if resistance to cut-out failure can be improved by using a dual lag screw implant in place of a single lag screw implant. Migration behavior and cut-out resistance of a single and a dual lag screw implant were comparatively evaluated in surrogate specimens using an established laboratory model of hip screw cut-out failure. Methods Five dual lag screw implants (Endovis, Citieffe and five single lag screw implants (DHS, Synthes were tested in the Hip Implant Performance Simulator (HIPS of the Legacy Biomechanics Laboratory. This model simulated osteoporotic bone, an unstable fracture, and biaxial rocking motion representative of hip loading during normal gait. All constructs were loaded up to 20,000 cycles of 1.45 kN peak magnitude under biaxial rocking motion. The migration kinematics was continuously monitored with 6-degrees of freedom motion tracking system and the number of cycles to implant cut-out was recorded. Results The dual lag screw implant exhibited significantly less migration and sustained more loading cycles in comparison to the DHS single lag screw. All DHS constructs failed before 20,000 cycles, on average at 6,638 ± 2,837 cycles either by cut-out or permanent screw bending. At failure, DHS constructs exhibited 10.8 ± 2.3° varus collapse and 15.5 ± 9.5° rotation around the lag screw axis. Four out of five dual screws constructs sustained 20,000 loading cycles. One dual screw specimens sustained cut-out by medial migration of the distal screw after 10,054 cycles. At test end, varus collapse and neck rotation in dual screws implants advanced to 3.7 ± 1.7° and 1.6 ± 1.0°, respectively. Conclusion The single and double lag screw implants demonstrated a significantly different migration resistance in surrogate specimens under gait loading simulation with

  16. Study of the fracture behavior of mortar and concretes with crushed rock or pebble aggregates

    Directory of Open Access Journals (Sweden)

    Sebastião Ribeiro

    2011-03-01

    Full Text Available The objective of this work was to compare the fracture energy of mortar and concretes produced with crushed rock and pebble aggregates using zero, 10, 20, 30 and 40% of aggregates mixed with standard mortar and applying the wedge splitting method to achieve stable crack propagation. The samples were cast in a special mold and cured for 28 days, after which they were subjected to crack propagation tests by the wedge splitting method to determine the fracture energies of the mortar and concrete. The concretes showed higher fracture energy than the mortar, and the concretes containing crushed rock showed higher resistance to crack propagation than all the compositions containing pebbles. The fracture energy varied from 38 to 55 J.m-2. A comparison of the number of aggregates that separated from the two concrete matrices with the highest fracture energies indicated that the concrete containing pebbles crumbled more easily and was therefore less resistant to crack propagation.

  17. The effect of manufacturing conditions on discontinuity population and fatigue fracture behavior in carbon/epoxy composites

    Science.gov (United States)

    Hakim, Issa; Laquai, Rene; Walter, David; Mueller, Bernd; Graja, Paul; Meyendorf, Norbert; Donaldson, Steven

    2017-02-01

    Carbon fiber composites have been increasingly used in aerospace, military, sports, automotive and other fields due to their excellent properties, including high specific strength, high specific modulus, corrosion resistance, fatigue resistance, and low thermal expansion coefficient. Interlaminar fracture is a serious failure mode leading to a loss in composite stiffness and strength. Discontinuities formed during manufacturing process degrade the fatigue life and interlaminar fracture resistance of the composite. In his study, three approaches were implemented and their results were correlated to quantify discontinuities effecting static and fatigue interlaminar fracture behavior of carbon fiber composites. Samples were fabricated by hand layup vacuum bagging manufacturing process under three different vacuum levels, indicated High (-686 mmHg), Moderate (-330 mmHg) and Poor (0 mmHg). Discontinuity content was quantified through-thickness by destructive and nondestructive techniques. Eight different NDE methods were conducted including imaging NDE methods: X-Ray laminography, ultrasonic, high frequency eddy current, pulse thermography, pulse phase thermography and lock-in-thermography, and averaging NDE techniques: X-Ray refraction and thermal conductivity measurements. Samples were subsequently destructively serial sectioned through-thickness into several layers. Both static and fatigue interlaminar fracture behavior under Mode I were conducted. The results of several imaging NDE methods revealed the trend in percentages of discontinuity. However, the results of averaging NDE methods showed a clear correlation since they gave specific values of discontinuity through-thickness. Serial sectioning exposed the composite's internal structure and provided a very clear idea about the type, shape, size, distribution and location of most discontinuities included. The results of mechanical testing showed that discontinuities lead to a decrease in Mode I static interlaminar

  18. Tensile Properties and Fracture Behavior of a Powder-Thixoformed 2024Al/SiCp Composite at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Pubo Li

    2017-10-01

    Full Text Available In the present work, the tensile properties and fracture behavior of a 2024Al composite reinforced with 10 vol % SiCp and fabricated via powder thixoforming (PT were studied at temperatures ranging from 25 °C to 300 °C with a strain rate of 0.05 s−1, as well as the PT 2024 alloy. The results indicated that the tensile strengths of both the PT materials were all decreased with increasing the temperature, but the decrease rate of the composite was smaller than that of the 2024 alloy, and the composite exhibited higher tensile strength than that of the 2024 alloy at all of the employed testing temperatures due to the strengthening role of SiCp. Increasing temperature was beneficial for enhancing the ductility of materials, and the maximum elongation was reached at 250 °C. The elongation decrease over 250 °C was attributed to the cavity formation due to the debonding of the SiCp/Al interface and the fracturing of the matrix between SiCp. The fracture of the composite at room temperature initiated from the fracture of SiCp and the debonding of the SiCp/Al interface, but that at high temperatures was dominated by void nucleation and growth in the matrix besides the interface debonding.

  19. Fracture behavior of all-ceramic, implant-supported, and tooth-implant-supported fixed dental prostheses.

    Science.gov (United States)

    Alkharrat, Abdul Rahman; Schmitter, Marc; Rues, Stefan; Rammelsberg, Peter

    2017-12-02

    In vitro investigation of the effects of fixed dental prosthesis (FDP) support and loading conditions on the fracture behavior of all-ceramic, zirconia-based FDP veneered with computer-aided design/computer-aided manufacturing (CAD/CAM)-manufactured lithium disilicate ceramic. Based on a model for a 3-unit FDP in the molar region (tooth in region 15, implant in region 17), 16 identical zirconia frameworks were fabricated and veneered with milled lithium disilicate ceramic. Another 16 FDPs were manufactured similarly, using a model in which the tooth was replaced by an implant. The specimens underwent 10,000 thermal cycles between 6.5 and 60 °C and 1,200,000 chewing cycles with a force magnitude of 100 N. All were then subsequently loaded until fracture in a universal testing device. Half of the FDPs were subjected to centric and axial loading on the pontic, the others to eccentric and oblique loading on one cusp of the pontic. No failures were observed after artificial aging. Fracture loads of tooth-implant-supported restorations were 1636 ± 158 and 1086 ± 156 N for axial and oblique loading, respectively; implant-supported FDPs fractured at 1789 ± 202 and 1200 ± 68 N, respectively. Differences were significant for load application (P veneered implant-supported all-ceramics restorations might be reduced by use of CAD/CAM-manufactured lithium disilicate veneers. FDPs veneered with lithium disilicate resist occlusal forces of 500 N, irrespective of load application and support type. The fracture resistance of implant-supported FDPs was, however, higher than that of combined tooth-implant-supported FDPs. Their clinical use seems to be justified.

  20. Acoustic emission analysis of crack resistance and fracture behavior of 20GL steel having the gradient microstructure and strength

    Science.gov (United States)

    Nikulin, S.; Nikitin, A.; Belov, V.; Rozhnov, A.; Turilina, V.; Anikeenko, V.; Khatkevich, V.

    2017-07-01

    The crack resistances as well as fracture behavior of 20GL steel quenched with a fast-moving water stream and having gradient microstructure and strength are analyzed. Crack resistance tests with quenched and normalized flat rectangular specimens having different cut lengths loaded by three-point bending with acoustic emission measurements have been performed. The critical J-integral has been used as the crack resistance parameter of the material. Quenching with a fast moving water stream leads to gradient (along a specimen wall thickness) strengthening of steel due to highly refined gradient microstructure formation of the troostomartensite type. Quenching with a fast-moving water stream increases crack resistance Jc , of 20GL steel by a factor of ∼ 1.5. The fracture accrues gradually with the load in the normalized specimens while the initiated crack is hindered in the variable ductility layer and further arrested in the more ductile core in the quenched specimens.

  1. Analysis of stress-strain, fracture and ductility behavior of aluminum matrix composites containing discontinuous silicon carbide reinforcement

    Science.gov (United States)

    Mcdanels, D. L.

    1984-01-01

    Mechanical properties and stress-strain behavior for several types of commercially fabricated aluminum matrix composites, containing up to 40 vol % discontinuous SiC whisker, nodule, or particulate reinforcement were evaluated. It was found that the elastic modulus of the composites was isotropic, to be independent of type of reinforcement, and to be controlled solely by the volume percentage of SiC reinforcement present. The yield/tensile strengths and ductility were controlled primarily by the matrix alloy and temper condition. Ductility decreased with increasing reinforcement content, however, the fracture strains observed were higher than those reported in the literature for this type of composite. This increase in fracture strain is attributed to cleaner matrix powder and increased mechanical working during fabrication. Conventional aluminum and titanium structural alloys were compared and have shown that the properties of these low cost, lightweight composites have good potential for application to aerospace structures.

  2. Nose fracture

    Science.gov (United States)

    Fracture of the nose; Broken nose; Nasal fracture; Nasal bone fracture; Nasal septal fracture ... A fractured nose is the most common fracture of the face. It most ... occurs with other fractures of the face. Nose injuries and neck ...

  3. Fracture Behavior Investigation of a Typical Sandstone Under Mixed-Mode I/II Loading Using the Notched Deep Beam Bending Method

    Science.gov (United States)

    Luo, Y.; Ren, L.; Xie, L. Z.; Ai, T.; He, B.

    2017-08-01

    The brittle fracture behavior of rocks under mixed-mode loading is important in rock engineering. First, a new configuration called the notched deep beam (NDB) specimen was introduced for the fracture testing of rock materials under mixed-mode I/II loading, and a series of finite element analyses were performed to calibrate the dimensionless fracture parameters (i.e., Y I, Y II and T^{*}). The results showed that an NDB specimen subjected to three-point bending is able to generate pure mode I loading, pure mode II loading, and any mixed-mode loading in between. Then, several NDB specimens made of sandstone were used to investigate the brittle fracture behavior of rock under mixed-mode I/II loading. The fracture surfaces were theoretically described using a statistical method, and the results indicated that all the fracture surfaces generated under different mixed-mode loading were statistically identical; to some extent, these results experimentally showed that only tensile fracture occurs under mixed-mode I/II loading. The obtained fracture strengths were then analyzed using several brittle fracture criteria. The empirical criterion, maximum energy release rate criterion, generalized maximum tangential stress (GMTS) criterion, and improved R-criterion accurately predicted the fracture strength envelope of the sandstone. Finally, based on the concepts of point stress and mean stress, the micro-crack zones (MCZs) under different mixed-mode loading were theoretically estimated based on the MTS and GMTS criteria. The critical radius of MCZ in the crack propagation direction was not a constant for all mixed-mode loading conditions regardless of whether the T-stress was considered. This result suggests that the size of the core region used to predict the crack initiation direction and fracture strength based on the GMTS criterion should be chosen more carefully.

  4. Extrinsic and intrinsic performance effects on the electrical property in few-layer graphene

    Science.gov (United States)

    Lin, Yow-Jon; Hung, Cheng-Chun; Zeng, Jian-Jhou; Chang, Hsing-Cheng

    2016-02-01

    The effects of extrinsic and intrinsic performances on the electrical property of few-layer graphene (FLG) are investigated. This study uses the ultraviolet irradiation technique to tune the electrical parameters of FLG for analyzing the extrinsic/intrinsic contribution to the electrical conductivity. A correlation between the temperature-dependent electrical properties, phonon and impurity scatterings, and thermal activation of charge carriers is identified. The observed temperature evolution of resistivity is understood from the competition among the effects of phonon and impurity scatterings and thermal activation of charge carriers. It is important to identify the carrier transport behavior for enhancing the FLG-based device performance.

  5. Ends, fundamental tones and capacity of minimal submanifolds via extrinsic comparison theory

    DEFF Research Database (Denmark)

    Gimeno, Vicent; Markvorsen, Steen

    2015-01-01

    We study the volume of extrinsic balls and the capacity of extrinsic annuli in minimal submanifolds which are properly immersed with controlled radial sectional curvatures into an ambient manifold with a pole. The key results are concerned with the comparison of those volumes and capacities with ...... with the corresponding entities in a rotationally symmetric model manifold. Using the asymptotic behavior of the volumes and capacities we then obtain upper bounds for the number of ends as well as estimates for the fundamental tone of the submanifolds in question....

  6. Extrinsic Contribution and Instability Properties in Lead-Based and Lead-Free Piezoceramics

    Directory of Open Access Journals (Sweden)

    José Eduardo García

    2015-11-01

    Full Text Available Piezoceramic materials generally exhibit a notable instability of their functional properties when they work under real external conditions. This undesirable effect, known as nonlinear behavior, is mostly associated with the extrinsic contribution to material response. In this article, the role of the ferroelectric domain walls’ motion in the nonlinear response in the most workable lead-based and lead-free piezoceramics is reviewed. Initially, the extrinsic origin of the nonlinear response is discussed in terms of the temperature dependence of material response. The influence of the crystallographic phase and of the phase boundaries on the material response are then reviewed. Subsequently, the impact of the defects created by doping in order to control the extrinsic contribution is discussed as a way of tuning material properties. Finally, some aspects related to the grain-size effect on the nonlinear response of piezoceramics are surveyed.

  7. The Path Taken: Consequences of Attaining Intrinsic and Extrinsic Aspirations in Post-College Life.

    Science.gov (United States)

    Niemiec, Christopher P; Ryan, Richard M; Deci, Edward L

    2009-06-01

    Life goals, or aspirations, organize and direct behavior over extended periods of time. The present study, guided by self-determination theory, examined the consequences of pursuing and attaining aspirations over a one-year period in a post-college sample. Results indicated that placing importance on either intrinsic or extrinsic aspirations related positively to attainment of those goals. Yet, whereas attainment of intrinsic aspirations related positively to psychological health, attainment of extrinsic aspirations did not; indeed, attainment of extrinsic aspirations related positively to indicators of ill-being. Also as predicted, the association between change in attainment of intrinsic aspirations and change in psychological health was mediated by change in the satisfaction of the basic psychological needs for autonomy, competence, and relatedness. Discussion focuses on the idea that not all goal attainment is beneficial; rather, attainment of aspirations with different contents relates differentially to psychological health.

  8. Study of Fatigue and Fracture Behavior of Cr-Based Alloys and Intermetallic Materials

    Energy Technology Data Exchange (ETDEWEB)

    He, YH

    2001-01-31

    The microhardness, and tensile and fracture-toughness properties of drop-cast and directionally-solidified Cr-9.25 at.% (atomic percent) Ta alloys have been investigated. Directional solidification was found to soften the alloy, which could be related to the development of equilibrium and aligned microstructures. It was observed that the tensile properties of the Cr-Ta alloys at room and elevated temperatures could be improved by obtaining aligned microstructures. The directionally-solidified alloy also showed increased fracture toughness at room temperature. This trend is mainly associated with crack deflection and the formation of shear ribs in the samples with aligned microstructures. The sample with better-aligned lamellar exhibits greater fracture toughness.

  9. Fracture behavior of single-structure fiber-reinforced composite restorations

    Science.gov (United States)

    Nagata, Kohji; Garoushi, Sufyan K.; Vallittu, Pekka K.; Wakabayashi, Noriyuki; Takahashi, Hidekazu; Lassila, Lippo V. J.

    2016-01-01

    Abstract Objective: The applications of single-structure fiber-reinforced composite (FRC) in restorative dentistry have not been well reported. This study aimed to clarify the static mechanical properties of anterior crown restorations prepared using two types of single-structure FRC. Materials and methods : An experimental crown restoration was designed for an upper anterior incisor. The restorations were made from IPS Empress CAD for CEREC (Emp), IPS e.max® CAD (eMx), experimental single-structure all-FRC (a-FRC), Filtek™ Supreme XTE (XTE), and commercially available single-structure short-FRC (everX Posterior™) (n = 8 for each material) (s-FRC). The a-FRC restorations were prepared from an experimental FRC blank using a computer-aided design and manufacturing (CAD/CAM) device. A fracture test was performed to assess the fracture load, toughness, and failure mode. The fracture loads were vertically applied on the restorations. The surface micromorphology of the FRC restorations was observed by scanning electron microscopy (SEM). The data were analyzed by analysis of variance (p = .05) followed by Tukey's test. Results : s-FRC showed the highest mean fracture load (1145.0 ± 89.6 N) and toughness (26.2 ± 5.8 Ncm) among all the groups tested. With regard to the micromorphology of the prosthetic surface, local crushing of the fiberglass was observed in s-FRC, whereas chopped fiberglass was observed in a-FRC. Conclusions : The restorations made of short-FRC showed a higher load-bearing capacity than those made of the experimental all-FRC blanks for CAD/CAM. The brittle-like fractures were exhibited in the recent dental esthetic materials, while local crushing fractures were shown for single-structure FRC restorations. PMID:28642921

  10. Three-Point Bending Fracture Behavior of Single Oriented Crossed-Lamellar Structure in Scapharca broughtonii Shell.

    Science.gov (United States)

    Ji, Hong-Mei; Zhang, Wen-Qian; Wang, Xu; Li, Xiao-Wu

    2015-09-15

    The three-point bending strength and fracture behavior of single oriented crossed-lamellar structure in Scapharca broughtonii shell were investigated. The samples for bending tests were prepared with two different orientations perpendicular and parallel to the radial ribs of the shell, which corresponds to the tiled and stacked directions of the first-order lamellae, respectively. The bending strength in the tiled direction is approximately 60% higher than that in the stacked direction, primarily because the regularly staggered arrangement of the second-order lamellae in the tiled direction can effectively hinder the crack propagation, whereas the cracks can easily propagate along the interfaces between lamellae in the stacked direction.

  11. The mechanics of delamination in fiber-reinforced composite materials. II - The delamination behavior and fracture mechanics parameters

    Science.gov (United States)

    Wang, S. S.; Choi, I.

    1983-01-01

    Based on theories of laminate anisotropic elasticity and interlaminar fracture, the complete solution structure associated with a composite delamination is determined. Fracture mechanics parameters characterizing the interlaminar crack behavior are defined from asymptotic stress solutions for delaminations with different crack-tip deformation configurations. A numerical method employing singular finite elements is developed to study delaminations in fiber composites with any arbitrary combinations of lamination, material, geometric, and crack variables. The special finite elements include the exact delamination stress singularity in its formulation. The method is shown to be computationally accurate and efficient, and operationally simple. To illustrate the basic nature of composite delamination, solutions are shown for edge-delaminated (0/-0/-0/0) and (+ or - 0/+ or - 0/90/90 deg) graphite-epoxy systems under uniform axial extension. Three-dimensional crack-tip stress intensity factors, associated energy release rates, and delamination crack-closure are determined for each individual case. The basic mechanics and mechanisms of composite delamination are studied, and fundamental characteristics unique to recently proposed tests for interlaminar fracture toughness of fiber composite laminates are examined. Previously announced in STAR as N84-13222

  12. The mechanics of delamination in fiber-reinforced composite materials. Part 2: Delamination behavior and fracture mechanics parameters

    Science.gov (United States)

    Wang, S. S.; Choi, I.

    1983-01-01

    Based on theories of laminate anisotropic elasticity and interlaminar fracture, the complete solution structure associated with a composite delamination is determined. Fracture mechanics parameters characterizing the interlaminar crack behavior are defined from asymptotic stress solutions for delaminations with different crack-tip deformation configurations. A numerical method employing singular finite elements is developed to study delaminations in fiber composites with any arbitrary combinations of lamination, material, geometric, and crack variables. The special finite elements include the exact delamination stress singularity in its formulation. The method is shown to be computationally accurate and efficient, and operationally simple. To illustrate the basic nature of composite delamination, solutions are shown for edge-delaminated (0/-0/-0/0) and (+ or - 0/+ or - 0/90/90 deg) graphite-epoxy systems under uniform axial extenstion. Three-dimensional crack-tip stress intensity factors, associated energy release rates, and delamination crack-closure are determined for each individual case. The basic mechanics and mechanisms of composite delamination are studied, and fundamental characteristics unique to recently proposed tests for interlaminar fracture toughness of fiber composite laminates are examined.

  13. Intrinsic-extrinsic factors in sport motivation.

    Science.gov (United States)

    Pedersen, Darhl M

    2002-10-01

    Participants were 83 students (36 men and 47 women). 10 intrinsic-extrinsic factors involved in sport motivation were obtained. The factors were generated from items obtained from the participants rather than items from the experimenter. This was done to avoid the possible influence of preconceptions on the part of the experimenter regarding what the final dimensions may be. Obtained motivational factors were Social Reinforcement, Fringe Benefits, Fame and Fortune, External Forces, Proving Oneself, Social Benefits, Mental Enrichment, Expression of Self, Sense of Accomplishment, and Self-enhancement. Each factor was referred to an intrinsic-extrinsic dimension to describe its relative position on that dimension. The order of the factors as listed indicates increasing intrinsic motivation. i.e., the first four factors were rated in the extrinsic range, whereas the remaining six were rated to be in the intrinsic range. Next, the participants rated the extent to which each of the various factors was involved in their decision to participate in sport activities. The pattern of use of the motivational factors was the same for both sexes except that men indicated greater use of the Fringe Benefits factor. Overall, the more intrinsic a sport motivation factor was rated, the more likely it was to be rated as a factor in actual sport participation.

  14. A study of hydrogen effects on fracture behavior of radioactive waste storage tanks. Final report, October 1992--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    Murty, K.L.; Elleman, T.S.

    1994-12-31

    The processing of high-level radioactive wastes now stored at Hanford and Savannah River Laboratories will continue over many years and it will be necessary for some of the liquids to remain in the tanks until well into the next century. Continued tank integrity is therefore an issue of prime importance and it will be necessary to understand any processes which could lead to tank failure. Hydrogen embrittlement resulting from absorption of radiolytic hydrogen could alter tank fracture behavior and be an issue in evaluating the effect of stresses on the tanks from rapid chemical oxidation-reduction reactions. The intense radiation fields in some of the tanks could be a factor in increasing the hydrogen permeation rates through protective oxide films on the alloy surface and be an additional factor in contributing to embrittlement. The project was initiated in October 1992 for a two year period to evaluate hydrogen uptake in low carbon steels that are representative of storage tanks. Steel specimens were exposed to high gamma radiation fields to generate radiolytic hydrogen and to potentially alter the protective surface films to increase hydrogen uptake. Direct measurements of hydrogen uptake were made using tritium as a tracer and fracture studies were undertaken to determine any alloy embrittlement. The rates of hydrogen uptake were noted to be extremely low in the experimental steels. Gamma radiation did not reveal any significant changes in the mechanical and fracture characteristics following exposures as long as a month. It is highly desirable to investigate further the tritium diffusion under stress in a cracked body where stress-assisted diffusion is expected to enhance these rates. More importantly, since welds are the weakest locations in the steel structures, the mechanical and fracture tests should be performed on welds exposed to tritium with and without stressed crack-fronts.

  15. Radiologic study of disc behavior following compression fracture of the thoracolumbar hinge managed by kyphoplasty: A 52-case series.

    Science.gov (United States)

    Teyssédou, S; Saget, M; Gayet, L E; Pries, P; Brèque, C; Vendeuvre, T

    2016-02-01

    Kyphoplasty has proved effective for durable correction of traumatic vertebral deformity following Magerl A fracture, but subsequent behavior of the adjacent discs is unclear. The objective of the present study was to analyze evolution according to severity of initial kyphosis and quality of fracture reduction. A single-center prospective study included cases of single compression fracture of the thoracolumbar hinge managed by Kyphon Balloon Kyphoplasty with polymethylmethacrylate bone cement. Radiology focused on traumatic vertebral kyphosis (VK), disc angulation (DA) and disc height index (DHI) in the adjacent discs. Linear regression assessed the correlation between superior disc height index (SupDHI) and postoperative VK on the one hand and correction gain on the other, using the Student t test for matched pairs and Pearson correlation coefficient. Fifty-two young patients were included, with mean follow-up of 18.6 months. VK fell from 13.9° preoperatively to 8.2° at last follow-up. DHI found significant superior disc subsidence (P=0.0001) and non-significant inferior disc subsidence (P=0.116). DA showed significantly reduced superior disc lordosis (P=4*10(-5)). SupDHI correlated with VK correction (r=0.32). Preoperative VK did not correlate with radiologic degeneration of the adjacent discs. Correction of traumatic vertebral deformity avoids subsidence and loss of mechanical function in the superior adjacent disc. The underlying disc compensates for residual deformity. Balloon kyphoplasty is useful in compression fracture, providing significant reduction of traumatic vertebral deformity while conserving free and healthy adjacent discs. IV. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    Science.gov (United States)

    Byun, Thak Sang; Hoelzer, David T.; Kim, Jeoung Han; Maloy, Stuart A.

    2017-02-01

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This study aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide a comparative assessment of their high-temperature structural performance. The KJQ versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures ≥600 °C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement.

  17. The concept of fatigue fracture toughness in fatigue delamination growth behavior

    NARCIS (Netherlands)

    Yao, L.; Alderliesten, R.C.; Benedictus, R.

    2015-01-01

    This paper provides a study on mode I fatigue delamination growth in composite laminates using energy principles. Experimental data has been obtained from fatigue tests conducted on Double Cantilever Beam (DCB) specimens at various stress ratios. A concept of fatigue fracture toughness is proposed

  18. Fracture mechanics

    CERN Document Server

    Perez, Nestor

    2017-01-01

    The second edition of this textbook includes a refined presentation of concepts in each chapter, additional examples; new problems and sections, such as conformal mapping and mechanical behavior of wood; while retaining all the features of the original book. The material included in this book is based upon the development of analytical and numerical procedures pertinent to particular fields of linear elastic fracture mechanics (LEFM) and plastic fracture mechanics (PFM), including mixed-mode-loading interaction. The mathematical approach undertaken herein is coupled with a brief review of several fracture theories available in cited references, along with many color images and figures. Dynamic fracture mechanics is included through the field of fatigue and Charpy impact testing. Explains computational and engineering approaches for solving crack-related problems using straightforward mathematics that facilitate comprehension of the physical meaning of crack growth processes; Expands computational understandin...

  19. Long-term memory and response generalization in mushroom body extrinsic neurons in the honeybee Apis mellifera.

    Science.gov (United States)

    Haehnel, Melanie; Menzel, Randolf

    2012-02-01

    Honeybees learn to associate an odor with sucrose reward under conditions that allow the monitoring of neural activity by imaging Ca(2+) transients in morphologically identified neurons. Here we report such recordings from mushroom body extrinsic neurons - which belong to a recurrent tract connecting the output of the mushroom body with its input, potentially providing inhibitory feedback - and other extrinsic neurons. The neurons' responses to the learned odor and two novel control odors were measured 24 h after learning. We found that calcium responses to the learned odor and an odor that was strongly generalized with it were enhanced compared with responses to a weakly generalized control. Thus, the physiological responses measured in these extrinsic neurons accurately reflect what is observed in behavior. We conclude that the recorded recurrent neurons feed information back to the mushroom body about the features of learned odor stimuli. Other extrinsic neurons may signal information about learned odors to different brain regions.

  20. Characterization of fracture behavior of human atherosclerotic fibrous caps using a miniature single edge notched tensile test.

    Science.gov (United States)

    Davis, Lindsey A; Stewart, Samantha E; Carsten, Christopher G; Snyder, Bruce A; Sutton, Michael A; Lessner, Susan M

    2016-10-01

    One well-established cause of ischemic stroke is atherosclerotic plaque rupture in the carotid artery. Rupture occurs when a tear in the fibrous cap exposes highly thrombogenic material in the lipid core. Though some fibrous cap material properties have been measured, such as ultimate tensile strength and stress-strain responses, there has been very little, if any, data published regarding the fracture behavior of atherosclerotic fibrous caps. This study aims to characterize the qualitative and quantitative fracture behavior of human atherosclerotic plaque tissue obtained from carotid endarterectomy samples using two different metrics. Uniaxial tensile experiments along with miniature single edge notched tensile (MSENT) experiments were performed on strips of isolated fibrous cap. Crack tip opening displacement (CTOD) and stress in the un-cracked segment (UCS) were measured at failure in fibrous cap MSENT specimens subjected to uniaxial tensile loading. Both CTOD and the degree of crack blunting, measured as the radius of curvature of the crack tip, increased as tearing propagated through the tissue. Higher initial stress in the UCS is significantly correlated with higher collagen content and lower macrophage content in the fibrous cap (ρ=0.77, P=0.009; ρ=-0.64, P=0.047; respectively). Trends in the data show that higher CTOD is inversely related to collagen content, though the sample size in this study is insufficient to statistically substantiate this relationship. To the authors' knowledge, this is the pioneering study examining the fracture behavior of fibrous caps and the first use of the CTOD metric in vascular tissue. A tear in the fibrous cap of atherosclerotic plaque can lead to ischemic stroke or myocardial infarction. While there is some information in the literature regarding quantitative measures of fibrous cap failure, there is little information regarding the behavior of the tissue during failure. This study examines the failure behavior of fibrous

  1. Mode I fracture toughness behavior of hydro-thermally aged carbon fibre reinforced DGEBA-HHPA-PES systems

    Science.gov (United States)

    Alessi, Sabina; Pitarresi, Giuseppe; Spadaro, Giuseppe; Tumino, Davide

    2012-07-01

    In this work the Mode I fracture toughness behavior of unidirectional CFRP laminates is investigated by means of Double Cantilever Beam (DCB) tests. The composite samples were manufactured by thermal curing after impregnation of a Carbon fabric with a DGEBA epoxy and anhydride HHPA curing agent. One resin batch was also mixed with a PES thermoplastic monomer to enhance the matrix toughness. Two lots of samples, toughened and untoughened, were then left to soak in hot water to achieve various degrees of aging. The influence of matrix toughening and hydrothermal aging on the delamination behavior of the composite have then been assessed and correlated with characterization data from Dynamic Mechanical Thermal Analysis (DMTA) and Scanning Electron Microscopy (SEM).

  2. Fracture behavior of block copolymer and graphene nanoplatelet modified epoxy and fiber reinforced/epoxy polymer composites

    Science.gov (United States)

    Kamar, Nicholas T.

    Glass and carbon fiber reinforced/epoxy polymer composites (GFRPs and CFRPs) have high strength-to-weight and stiffness-to-weight ratios. Thus, GFRPs and CFRPs are used to lightweight aircraft, marine and ground vehicles to reduce transportation energy utilization and cost. However, GFRP and CFRP matrices have a low resistance to crack initiation and propagation; i.e. they have low fracture toughness. Current methods to increase fracture toughness of epoxy and corresponding GFRP and CFRPs often reduce composite mechanical and thermomechanical properties. With the advent of nanotechnology, new methods to improve the fracture toughness and impact properties of composites are now available. The goal of this research is to identify the fracture behavior and toughening mechanisms of nanoparticle modified epoxy, GFRPs and CFRPs utilizing the triblock copolymer poly(styrene)-block-poly(butadiene)-block-poly(methylmethacrylate) (SBM) and graphene nanoplatelets (GnPs) as toughening agents. The triblock copolymer SBM was used to toughen the diglycidyl ether of bisphenol-A (DGEBA) resin cured with m-phenylenediamine (mPDA) and corresponding AS4-12k CFRPs. SBM self assembled in epoxy to form nanostructured domains leading to larger increases in fracture toughness, KQ (MPa*m 1/2) than the traditional, phase separating carboxyl-terminated butadiene-acrylonitrile (CTBN) rubber. Additionally, SBM increased the mode-I fracture toughness, GIc (J/m2) of CFRPs without corresponding reductions in composite three-point flexural properties and glass transition temperature (Tg). Fractography of SBM modified epoxy and CFRPs via scanning electron microscopy (SEM) showed that sub 100 nm spherical micelles cavitated to induce void growth and matrix shear yielding toughening mechanisms. Furthermore, SBM did not suppress epoxy Tg, while CTBN decreased Tg with both increasing concentration and acrylonitrile content. Graphene nanoplatelets (GnPs) consist of a few layers of graphene sheets, which

  3. Skull fracture

    Science.gov (United States)

    Basilar skull fracture; Depressed skull fracture; Linear skull fracture ... Skull fractures may occur with head injuries . The skull provides good protection for the brain. However, a severe impact ...

  4. Observation of fracture behavior of 3-D printed specimens under rolling contact fatigue in water

    Directory of Open Access Journals (Sweden)

    Mizobe Koshiro

    2017-01-01

    Full Text Available Polymer bearing was widely used in the corrosive conditions because of its high corrosion durability. The polymer bearing had been formed using molding and machining until the new 3-D printing method was developed. In this study, we performed the rolling contact fatigue tests of the 3-D printed specimens in water and observed the fracture behaviour of the specimens. We found that the surface cracks are related to both the rolling direction and the lamination directions.

  5. Preliminary assessment of the fracture behavior of weld material in full-thickness clad beams

    Energy Technology Data Exchange (ETDEWEB)

    Keeney, J.A.; Bass, B.R.; McAfee, W.J.; Iskander, S.K. [Oak Ridge National Lab., TN (United States)

    1994-10-01

    This report describes a testing program that utilizes full-thickness clad beam specimens to quantify fracture toughness for shallow cracks in material for which metallurgical conditions are prototypic of those found in reactor pressure vessels (RPVs). The beam specimens are fabricated from a section of an RPV wall (removed from a canceled nuclear plant) that includes weld, plate, and clad material. Metallurgical factors potentially influencing fracture toughness for shallow cracks in the beam specimens include material gradients due to welding and cladding applications, as well as material inhomogeneities in welded regions due to reheating in multiple weld passes. A summary of the testing program includes a description of the specimen geometry, material properties, the testing procedure, and the experimental results form three specimens. The yield strength of the weld material was determined to be 36% higher than the yield strength of the base material. An irradiation-induced increase in yield strength of the weld material could result in a yield stress that exceeds the upper limit where code curves are valid. The high yield strength for prototypic weld material may have implications for RPV structural integrity assessments. Analyses of the test data are discussed, including comparisons of measured displacements with finite-element analysis results, applications of toughness estimation techniques, and interpretations of constraint conditions implied by stress-based constraint methodologies. Metallurgical conditions in the region of the cladding heat-affected zone are proposed as a possible explanation for the lower-bound fracture toughness measured with one of the shallow-crack clad beam specimens. Fracture toughness data from the three clad beam specimens are compared with other shallow- and deep-crack uniaxial beam and cruciform data generated previously from A 533 Grade B plate material.

  6. Ratio between mature and immature enzymatic cross-links correlates with post-yield cortical bone behavior: An insight into greenstick fractures of the child fibula.

    Science.gov (United States)

    Berteau, Jean-Philippe; Gineyts, Evelyne; Pithioux, Martine; Baron, Cécile; Boivin, Georges; Lasaygues, Philippe; Chabrand, Patrick; Follet, Hélène

    2015-10-01

    As a determinant of skeletal fragility, the organic matrix is responsible for the post-yield and creep behavior of bone and for its toughness, while the mineral apatite acts on stiffness. Specific to the fibula and ulna in children, greenstick fractures show a plastic in vivo mechanical behavior before bone fracture. During growth, the immature form of collagen enzymatic cross-links gradually decreases, to be replaced by the mature form until adolescence, subsequently remaining constant throughout adult life. However, the link between the cortical bone organic matrix and greenstick fractures in children remains to be explored. Here, we sought to determine: 1) whether plastic bending fractures can occur in vitro, by testing cortical bone samples from children's fibula and 2) whether the post-yield behavior (ωp plastic energy) of cortical bone before fracture is related to total quantity of the collagen matrix, or to the quantity of mature and immature enzymatic cross-links and the quantity of non-enzymatic cross-links. We used a two-step approach; first, a 3-point microbending device tested 22 fibula machined bone samples from 7 children and 3 elderly adults until fracture. Second, biochemical analysis by HPLC was performed on the sample fragments. When pooling two groups of donors, children and elderly adults, results show a rank correlation between total energy dissipated before fracture and age and a linear correlation between plastic energy dissipated before fracture and ratio of immature/mature cross-links. A collagen matrix with more immature cross-links (i.e. a higher immature/mature cross-link ratio) is more likely to plastically deform before fracture. We conclude that this ratio in the sub-nanostructure of the organic matrix in cortical bone from the fibula may go some way towards explaining the variance in post-yield behavior. From a clinical point of view, therefore, our results provide a potential explanation of the presence of greenstick fractures in

  7. Fracture Behavior of Minimally Invasive, Posterior, and Fixed Dental Prostheses Manufactured from Monolithic Zirconia.

    Science.gov (United States)

    Bömicke, Wolfgang; Rues, Stefan; Hlavacek, Verena; Rammelsberg, Peter; Schmitter, Marc

    2016-11-12

    To compare ultimate fracture load (Fu ), load at first damage (F1d ), and fracture pattern for posterior fixed dental prostheses (FDPs) manufactured from translucent, yttria-stabilized zirconia polycrystal. Premolar-size FDPs in 4 test groups (n = 16/group) were constructed as veneered complete crown-retained (group 1), monolithic complete crown-retained (group 2), monolithic partial veneer crown-retained (group 3), or monolithic resin-bonded (group 4) prostheses with minimum zirconia wall thickness (0.5 mm). Adhesively cemented to metal abutments, half of the prostheses were artificially aged by use of 10,000 thermocycles (6.5°C/60°C) and 1,200,000 chewing cycles (F = 108 N), before fracture loading. Statistics included two-way non-parametric ANOVA and Dunn-Bonferroni post-hoc tests (α = 0.05). None of the restorations failed during artificial aging. Fu was affected by test group (p dental prostheses (FDP) manufactured from monolithic zirconia, with a retainer wall thickness of 0.5 mm, might be suitable for use as a conservative alternative to their veneered counterparts in the rehabilitation of posterior tooth loss. Monolithic zirconia resin-bonded FDP might, moreover, be a viable alternative to resin-bonded FDPs with metal adhesive retainers in posterior arches, with improved esthetics and biocompatibility. The performance of both should, however, be verified in clinical trials. (J Esthet Restor Dent 28:367-381, 2016). © 2016 Wiley Periodicals, Inc.

  8. Analysis of stress-strain, fracture, and ductility behavior of aluminum maxtrix composites containing discontinuous silicon carbide reinforcement

    Science.gov (United States)

    Mcdanels, D. L.

    1985-01-01

    Mechanical properties and stress-strain behavior were evaluated for several types of commercially fabricated aluminum matrix composites, containing up to 40 vol pct discontinuous SiC whisker, nodule, or particulate reinforcement. The elastic modulus of the composites was found to be isotropic, to be independent of type of reinforcement, and to be controlled solely by the volume percentage of SiC reinforcement present. The yield/tensile strengths and ductility were controlled primarily by the matrix alloy and temper condition. Type and orientation of reinforcement had some effect on the strengths of composites, but only for those in which the whisker reinforcement was highly oriented. Ductility decreased with increasing reinforcement content; however, the fracture strains observed were higher than those reported in the literature for this type of composite. This increase in fracture strain was probably attributable to cleaner matrix powder, better mixing, and increased mechanical working during fabrication. Comparison of properties with conventional aluminum and titanium structural alloys showed that the properties of the low-cost, lightweight composites demonstrated very good potential for application to aerospace structures.

  9. Effects of polar solvents on the fracture resistance of dentin: Role of water hydration

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, R O; Nalla, R K; Balooch, M; Ager III, J W; Kruzic, J J; Kinney, J H

    2004-12-10

    Although healthy dentin is invariably hydrated in vivo, from a perspective of examining the mechanisms of fracture in dentin, it is interesting to consider the role of water hydration. Furthermore, it is feasible that exposure to certain polar solvents, e.g., those found in clinical adhesives, can induce dehydration. In the present study, in vitro deformation and fracture experiments, the latter involving a resistance-curve (R-curve) approach (i.e., toughness evolution with crack extension), were conducted in order to assess changes in the constitutive and fracture behavior induced by three common solvents - acetone, ethanol and methanol. In addition, nanoindentation-based experiments to evaluate the deformation behavior at the level of individual collagen fibers and ultraviolet Raman spectroscopy to evaluate changes in bonding were performed. The results indicate a reversible effect of chemical dehydration, with increased fracture resistance, strength, and stiffness associated with lower hydrogen bonding ability of the solvent. These results are analyzed both in terms of intrinsic and extrinsic toughening phenomena to further understand the micromechanisms of fracture in dentin and the specific role of water hydration.

  10. Mechanical behavior of materials engineering methods for deformation, fracture, and fatigue

    CERN Document Server

    Dowling, Norman E

    2012-01-01

    For upper-level undergraduate engineering courses in Mechanical Behavior of Materials. Mechanical Behavior of Materials, 4/e introduces the spectrum of mechanical behavior of materials, emphasizing practical engineering methods for testing structural materials to obtain their properties, and predicting their strength and life when used for machines, vehicles, and structures. With its logical treatment and ready-to-use format, it is ideal for upper-level undergraduate students who have completed elementary mechanics of materials courses.

  11. Dynamic Fracture Behavior of Steel Fiber Reinforced Self-Compacting Concretes (SFRSCCs

    Directory of Open Access Journals (Sweden)

    Xiaoxin Zhang

    2017-11-01

    Full Text Available Three-point bending tests on notched beams of three types of steel fiber-reinforced self-compacting concrete (SFRSCC have been performed by using both a servo-hydraulic machine and a drop-weight impact instrument. The lo ading rates had a range of six orders of magnitude from 2.20 × 10−3 mm/s (quasi-static to 2.66 × 103 mm/s. These SFRSCCs had the same matrix, but various types of steel fiber (straight and hooked-end and contents (volume ratios, 0.51%, 0.77% and 1.23%, respectively. The results demonstrate that the fracture energy and the flexural strength increase as the loading rate increases. Moreover, such tendency is relatively moderate at low rates. However, at high rates it is accentuated. For the 0.51% fiber content, the dynamic increase factors of the flexural strength and the fracture energy are approximately 6 and 3, while for the 1.23% fiber content, they are around 4 and 2, respectively. Thus, the higher the fiber content the less rate sensitivity there is.

  12. Beyond the Big Five: the role of extrinsic life aspirations in compulsive buying.

    Science.gov (United States)

    Otero-López, José M; Villardefrancos Pol, Estíbaliz; Castro Bolaño, Cristina

    2017-11-01

    The integration of units of differing natures which are found in different parts of some multilevel personality models is one of the most thought-provoking paths in contemporary research. In the field of compulsive buying, little is known about the interrelationships between the comparative and stable units such as personality traits (basic tendencies or Level I units) and goals (a kind of middle-level unit) which are more related to motivational processes and intentions governing people’s behavior. Self-reporting measures of compulsive buying, Big Five personality traits, and extrinsic life aspirations were administered to a general population sample consisting of 2,159 participants aged 15 to 65 (48.1% males; Mage= 35.4, SD= 13.24). Our results confirmed statistically significant associations with compulsive buying for the traits as well as the extrinsic goals. Furthermore, an important relationship between both levels in personality – traits vs . extrinsic life aspirations – was found. Finally, extrinsic life aspirations (specially, image, popularity, and conformity) contribute to the potentiation of the prediction of compulsive buying beyond the Five Factor Model. Current findings emphasize the advisability of considering both levels in personality, traits and middle-level units like life aspirations, not only in the prediction of compulsive buying, but also as potential targets for preventive and treatment programs.

  13. Intrinsic mechanical behavior of femoral cortical bone in young, osteoporotic and bisphosphonate-treated individuals in low- and high energy fracture conditions

    Science.gov (United States)

    Zimmermann, Elizabeth A.; Schaible, Eric; Gludovatz, Bernd; Schmidt, Felix N.; Riedel, Christoph; Krause, Matthias; Vettorazzi, Eik; Acevedo, Claire; Hahn, Michael; Püschel, Klaus; Tang, Simon; Amling, Michael; Ritchie, Robert O.; Busse, Björn

    2016-02-01

    Bisphosphonates are a common treatment to reduce osteoporotic fractures. This treatment induces osseous structural and compositional changes accompanied by positive effects on osteoblasts and osteocytes. Here, we test the hypothesis that restored osseous cell behavior, which resembles characteristics of younger, healthy cortical bone, leads to improved bone quality. Microarchitecture and mechanical properties of young, treatment-naïve osteoporosis, and bisphosphonate-treated cases were investigated in femoral cortices. Tissue strength was measured using three-point bending. Collagen fibril-level deformation was assessed in non-traumatic and traumatic fracture states using synchrotron small-angle x-ray scattering (SAXS) at low and high strain rates. The lower modulus, strength and fibril deformation measured at low strain rates reflects susceptibility for osteoporotic low-energy fragility fractures. Independent of age, disease and treatment status, SAXS revealed reduced fibril plasticity at high strain rates, characteristic of traumatic fracture. The significantly reduced mechanical integrity in osteoporosis may originate from porosity and alterations to the intra/extrafibrillar structure, while the fibril deformation under treatment indicates improved nano-scale characteristics. In conclusion, losses in strength and fibril deformation at low strain rates correlate with the occurrence of fragility fractures in osteoporosis, while improvements in structural and mechanical properties following bisphosphonate treatment may foster resistance to fracture during physiological strain rates.

  14. "Coveting thy neighbour's legs": a qualitative study of exercisers' experiences of intrinsic and extrinsic goal pursuit.

    Science.gov (United States)

    Sebire, Simon J; Standage, Martyn; Gillison, Fiona B; Vansteenkiste, Maarten

    2013-06-01

    Goals are central to exercise motivation, although not all goals (e.g., health vs. appearance goals) are equally psychologically or behaviorally adaptive. Within goal content theory (Vansteenkiste, Niemiec, & Soenens, 2010), goals are adaptive to the extent to which they satisfy psychological needs for autonomy, competence, and relatedness. However, little is known about what exercisers pursuing different goals are feeling, doing, thinking, and paying attention to that may help to explain the association between goal contents and need satisfaction. Using semistructured interviews and interpretative phenomenological analysis, we explored experiences of exercise among 11 adult exercisers who reported pursuing either predominantly intrinsic or extrinsic goals. Four themes emerged: (a) observation of others and resulting emotions, (b) goal expectations and time perspective, (c) markers of progress and (d) reactions to (lack of) goal achievement. Intrinsic and extrinsic goal pursuers reported divergent experiences within these four domains. The findings illuminate potential mechanisms by which different goals may influence psychological and behavioral outcomes in the exercise context.

  15. Fracture, aging and disease in bone

    Energy Technology Data Exchange (ETDEWEB)

    Ager, J.W.; Balooch, G.; Ritchie, R.O.

    2006-02-01

    From a public health perspective, developing a detailed mechanistic understanding of the well-known increase in fracture risk of human bone with age is essential. This also represents a challenge from materials science and fracture mechanics viewpoints. Bone has a complex, hierarchical structure with characteristic features ranging from nanometer to macroscopic dimensions; it is therefore significantly more complex than most engineering materials. Nevertheless, by examining the micro-/nano-structural changes accompanying the process of aging using appropriate multiscale experimental methods and relating them to fracture mechanics data, it is possible to obtain a quantitative picture of how bone resists fracture. As human cortical bone exhibits rising ex vivo crack-growth resistance with crack extension, its fracture toughness must be evaluated in terms of resistance-curve (R-curve) behavior. While the crack initiation toughness declines with age, the more striking finding is that the crack-growth toughness declines even more significantly and is essentially absent in bone from donors exceeding 85 years in age. To explain such an age-induced deterioration in the toughness of bone, we evaluate its fracture properties at multiple length scales, specifically at the molecular and nanodimensions using pico-force atomic-force microscopy, nanoindentation and vibrational spectroscopies, at the microscale using electron microscopy and hard/soft x-ray computed tomography, and at the macroscale using R-curve measurements. We show that the reduction in crack-growth toughness is associated primarily with a degradation in the degree of extrinsic toughening, in particular involving crack bridging, and that this occurs at relatively coarse size-scales in the range of tens to hundreds of micrometers. Finally, we briefly describe how specific clinical treatments, e.g., with steroid hormones to treat various inflammatory conditions, can prematurely damage bone, thereby reducing its

  16. [Progressive extrinsic ophthalmoplegia. Report of 3 cases].

    Science.gov (United States)

    Duro, L A; de Mattos, J P; de Carvalho, M A; Alencar, A A; Moreira, J B; de Lima, J M

    1982-12-01

    Three women with extrinsic oculo-muscular distrophy were studied. In two patients the symptoms were began at 25 and another one at 56 year-old. Non myogenic features were observed: in case one there was familial otosclerosis. This patient had impossibility to beget children. Her first menstruation was observed at 19 and the last at 40 year-old, like to case 2, which was the only to have electrocardiographic alterations. Romberg's signal and profound hyporeflexia was obtained in case 3, whose family had a lot of member with cataract. Biopsy of the non ocular muscles was made too, in spite of patient's symptoms had been concerning to ocular muscles only. All of non ocular muscles had myogenic features. In electromyogram examination of non ocular muscles the myogenic features were observed too. Therefore, we believe in diffuse myogenic process in spite of ocular manifestation had been the only patient's complaints.

  17. Asian International Graduate Students’ Extrinsic Motivation to Pursue Degrees

    Directory of Open Access Journals (Sweden)

    Naomi Takashiro

    2017-04-01

    Full Text Available The author examined the types of extrinsic motivation for Asian international graduate students pursuing graduate degrees. The theoretical framework used was extrinsic motivation within Self-Determination Theory. Even though the presence of Asian international graduate students is steadily increasing worldwide, research into their extrinsic motivation is scarce. It is important for educators to explore and understand Asian international graduate students’ extrinsic motivation since such students would provide unique, distinctive cultural aspects in the classroom in their host countries. The research design employed was qualitative. Semi-structured interviews were conducted with 10 graduate students from four Asian countries. The identified themes were a faculty influence, b personal recognition, and c utility for careers. Asian international graduate students expressed that their ultimate extrinsic motivation was to get professional jobs in academia. The author discussed the implications of these findings for instructors.

  18. Extrinsic local regression on manifold-valued data

    Science.gov (United States)

    Lin, Lizhen; St Thomas, Brian; Zhu, Hongtu; Dunson, David B.

    2017-01-01

    We propose an extrinsic regression framework for modeling data with manifold valued responses and Euclidean predictors. Regression with manifold responses has wide applications in shape analysis, neuroscience, medical imaging and many other areas. Our approach embeds the manifold where the responses lie onto a higher dimensional Euclidean space, obtains a local regression estimate in that space, and then projects this estimate back onto the image of the manifold. Outside the regression setting both intrinsic and extrinsic approaches have been proposed for modeling i.i.d manifold-valued data. However, to our knowledge our work is the first to take an extrinsic approach to the regression problem. The proposed extrinsic regression framework is general, computationally efficient and theoretically appealing. Asymptotic distributions and convergence rates of the extrinsic regression estimates are derived and a large class of examples are considered indicating the wide applicability of our approach. PMID:29225385

  19. The microstructure and fracture behavior of the dissimilar alloy 690-SUS 304L joint with various Nb addition

    Science.gov (United States)

    Lee, H. T.; Jeng, S. L.; Kuo, T. Y.

    2003-05-01

    This study investigates the microstructure and fracture behavior of dissimilar weldments of alloy 690 and SUS 304L for various additions of niobium (0.1, 1.03, 2.49, and 3.35 wt pct) in the flux. With identical parameters and procedures, weldments were butt welded by the shielding metal arc welding (SMAW) process using three layers, with each layer being deposited in a single pass. The results indicate that the microstructure of the fusion zone was primarily dendritic and that the contents of Ni, Cr, and Fe within this zone remain relatively constant and resemble alloy 690. With Nb addition, it is noted that the microstructure changes from a cellular to columnar dendrite and equiaxed dendrite. Meanwhile, the dendrite arm spacing reduces and the secondary arms grow longer. Moreover, the composition of the interdendritic phase, whose precipitate volume percentage increases from 5 to 25 pct, changes from Al-Ti-O to Nb rich. The spread of the interdendritic phase is less in the root bead than in the cap bead due to the greater influence of base metal dilution in this region. Mechanical tests indicate that Nb addition increases the average hardness of the weldment and reduces its elongation prior to rupture. However, the tensile strength is essentially unchanged by Nb addition. It is found that the average hardness of the root bead is generally lower than the cap bead, and that the tensile specimens all rupture in the fusion zone, with the fracture surfaces exhibiting ductile features. It is noted that the cap bead tends to rupture interdendritically with increasing Nb addition. Finally, fractography shows that the dimples in the root become larger and shallower with Nb addition and are rich with an interdendritic phase.

  20. Effect of weld metal toughness on fracture behavior under ultra-low cycle fatigue loading (earthquake)

    Energy Technology Data Exchange (ETDEWEB)

    Kermajani, M. [School of Materials Engineering, College of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ghaini, F. Malek, E-mail: Fmalek@modares.ac.ir [School of Materials Engineering, College of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Miresmaeili, R. [School of Materials Engineering, College of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Aghakouchak, A.A. [School of Civil Engineering, College of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Shadmand, M. [Department of Research and Development, MAPNA Electric and Control (MECO) Company, Karaj (Iran, Islamic Republic of)

    2016-06-21

    Results from 12 ultra-low cycle fatigue tests performed on the weld metals of both toughness and non-toughness rated grades are presented. Fracture resistance under these loadings seemed to be dependent on materials' toughness, displacement amplitude, and stress state triaxiality, while the toughness effect was more highlighted at high stress levels and concentrations. To study the effect of microstructures on these failures, supporting ancillary tests including all-weld tension coupons, Charpy V-notched impact tests, and optical and scanning electron microscope analyses were performed. The favored microstructures appeared to be those which absorbed energy by plastic deformation and, hence, hindered void formation and/or could avoid crack propagation by deflection. Considering the response of the tested materials to cyclic loadings and the requirements of the materials specified in AISC341 Provisions could question the adequacy of these requirements for weld metals. However, the role of microstructural features like inclusions would be the same in both the Charpy impact tests and ultra-low cycle loadings.

  1. Fracture and strain rate behavior of airplane fuselage materials under blast loading

    NARCIS (Netherlands)

    Mediavilla Varas, J.; Soetens, F.; Kroon, E.; Aanhold, J.E. van; Meulen, O.R. van der; Sagimon, M.

    2010-01-01

    The dynamic behavior of three commonly used airplane fuselage materials is investigated, namely of Al2024-T3, Glare-3 and CFRP. Dynamic tensile tests using a servo-hydraulic and a light weight shock testing machine (LSM) have been performed. The results showed no strain rate effect on Al2024-T3 and

  2. Effect of porosity and environment on the mechanical behavior of acrylic bone cement modified with acrylonitrile-butadiene-styrene particles: I. Fracture toughness.

    Science.gov (United States)

    Vila, M M; Ginebra, M P; Gil, F J; Planell, J A

    1999-01-01

    The elastomeric copolymer acrylonitrile-butadiene-styrene (ABS) was added to a conventional acrylic bone cement matrix. The results obtained show that although strength and stiffness decreased with an increasing second phase volume fraction, ductility and toughness both increased. The crack propagation became stable for specimens containing over a 5% volume fraction of the second phase. The fracture toughness increased up to 60% when the amount of ABS reached 20% (v/v). For larger amounts linear elastic fracture mechanics techniques could not be used properly. The effects of porosity and environmental conditions on the mechanical behavior were also studied. The mechanisms that control the fracture process were investigated by means of scanning electron microscopy.

  3. Intrinsic and Extrinsic Factors in Subduction Dynamics

    Science.gov (United States)

    Billen, Magali; Arredondo, Katrina

    2014-05-01

    Since the realization that tectonic plates sink into the mantle, in a process we now call subduction, our understanding of this process has improved dramatically through the combined application of observations, theory and modeling. During that time independent research groups focusing on different aspects of subduction have identified factors with a significant impact on subduction, such as three-dimensionality, slab rollback, rheology of the slab and mantle and magnitude of phase changes. However, as each group makes progress we often wonder how these different factors interact as we all strive to understand the real world subduction system. These factors can be divided in two groups: intrinsic factors, including the age of the slab, its thermal structure, composition, and rheology, and extrinsic factors including others forces on plates, overall mantle flow, structure of the overriding plate, rheology of the mantle and phase changes. In addition, while modeling has been a powerful tool for understanding subduction, all models make important (but often necessary) approximations, such as using two dimensions, imposed boundary conditions, and approximations of the conservation equations and material properties. Here we present results of a study in which the "training wheels" are systematically removed from 2D models of subduction to build a more realistic model of subduction and to better understand how combined effects of intrinsic and extrinsic factors contribute to the dynamics. We find that a change from the Boussinesq to the extended Boussinesq form of the conservation equations has a dramatic effect on slab evolution in particular when phase changes are included. Allowing for free (dynamically-driven) subduction and trench motion is numerically challenging, but also an important factor that allows for more direct comparison to observations of plate kinematics. Finally, compositional layering of the slab and compositionally-controlled phase changes also have

  4. Effect of specimen thickness of fatigue-crack-growth behavior and fracture toughness of 7075-T6 and 7178-T6 aluminum alloys

    Science.gov (United States)

    Hudson, C. M.; Newman, J. C., Jr.

    1973-01-01

    A study was made to determine the effects of specimen thickness on fatigue crack growth and fracture behavior of 7075-T6 and 7178-T6 aluminum alloy sheet and plate. Specimen thicknesses ranged from 5.1 to 12.7 mm (0.20 to 0.50 in.) for 7075-T6 and from 1.3 to 6.4 mm (0.05 to 0.25 in.) for 7178-T6. The stress ratios R used in the crack growth experiments were 0.02 and 0.50. For 7075-T6, specimen thickness had relatively little effect on fatigue-crack growth. However, the fracture toughness of the thickness of the thickest gage of 7075-T6 was about two-thirds of the fracture toughness of the thinner gages of 7075-T6. For 7178-T6, fatigue cracks generally grew somewhat faster in the thicker gages than in the thinnest gage. The fracture toughness of the thickest gage of 7178-T6 was about two-thirds of the fracture toughness of the thinner gages of 7178-T6. Stress intensity methods were used to analyze the experimental results. For a given thickness and value of R, the rate of fatigue crack growth was essentially a single-valued function of the stress intensity range for 7075-T6 and 7178-T6. An empirical equation developed by Forman, Kearney, and Engle fit the 7075-T6 and 7178-T6 crack growth data reasonably well.

  5. Emotional competence and extrinsic emotion regulation directed toward an ostracized person.

    Science.gov (United States)

    Nozaki, Yuki

    2015-12-01

    Positive interpersonal relationships hinge on individuals' competence in regulating others' emotions as well as their own. Nevertheless, little is known about the relationship between emotional competence and specific interpersonal behaviors. In particular, it is unclear which situations require emotional competence for extrinsic emotion regulation and whether emotionally competent individuals actually attempt to regulate others' emotions. To clarify these issues, the current investigation examined the relationship between emotional competence and extrinsic emotion regulation directed toward an ostracized person. The results of Study 1 (N = 39) indicated that interpersonal emotional competence (competence related to others' emotions) was positively associated with participants' efforts to relieve the ostracized person's sadness. In Study 2 (N = 120), this relationship was moderated by the ostracized person's emotional expression. In particular, participants with high interpersonal emotional competence were more likely to attempt to regulate the sadness of ostracized individuals who expressed neutral affect. In contrast, when the ostracized person expressed sadness, there were no significant relationships between high or low interpersonal emotional competence and extrinsic emotion regulation behavior. These results offer novel insight into how emotionally competent individuals use their competence to benefit others. (c) 2015 APA, all rights reserved).

  6. Plasma opening switch with extrinsic magnetic field

    CERN Document Server

    Dolgachev, G; Maslennikov, D

    2001-01-01

    Summary form only given, as follows. We have demonstrated in series of experiments that plasma opening switch (POS) switching voltage (UPOS) is defined by energy density (w) deposited in the POS plasma. If we then consider a plasma erosion mainly responsible for the effect of POS switching (the erosion effect could be described by Hall or Child-Langmuir models) the energy density (w) could be measured as a function of a system "macro-parameter" such as the initial charging voltage of the capacity storage system (the Marx pulsed voltage generator) UMarx. The POS voltage in this case could be given by UPOS"aw=aUMarx4/7, where a is a constant. This report demonstrates that for the high-impedance POS which has limited charge density transferred through the POS plasma a"2.5 (MV3/7) with no external magnetic field applied. The use of the extrinsic magnetic field allows to increase a up to 3.6 (MV3/7) and to achieve higher voltages at the opening phase - UPOS=3.6UMarx4/7. To verify this approach set of experimental ...

  7. The CNS stochastically selects motor plan utilizing extrinsic and intrinsic representations.

    Directory of Open Access Journals (Sweden)

    Jindrich Kodl

    Full Text Available Traditionally motor studies have assumed that motor tasks are executed according to a single plan characterized by regular patterns, which corresponds to the minimum of a cost function in extrinsic or intrinsic coordinates. However, the novel via-point task examined in this paper shows distinct planning and execution stages in motion production and demonstrates that subjects randomly select from several available motor plans to perform a task. Examination of the effect of pre-training and via-point orientation on subject behavior reveals that the selection of a plan depends on previous movements and is affected by constraints both intrinsic and extrinsic of the body. These results provide new insights into the hierarchical structure of motion planning in humans, which can only be explained if the current models of motor control integrate an explicit plan selection stage.

  8. Experimental Investigation on the Fracture Behavior of Black Shale by Acoustic Emission Monitoring and CT Image Analysis during Uniaxial Compression

    Science.gov (United States)

    Wang, Y.; Li, C. H.; Hu, Y. Z.

    2018-01-01

    Plenty of mechanical experiments have been done to investigate the deformation and failure characteristics of shale; however, the anisotropic failure mechanism has not been well studied. Here, laboratory Uniaxial Compressive Strength (UCS) tests on cylindrical shale samples obtained by drilling at different inclinations to bedding plane were performed. The failure behaviors of the shale samples were studied by real-time acoustic emission (AE) monitoring and post-test X-ray computer tomography (CT) analysis. The experimental results suggest that the pronounced bedding planes of shale have a great influence on the mechanical properties and AE patterns. The AE counts and AE cumulative energy release curves clearly demonstrate different morphology, and the `U' shaped curve relationship between the AE counts, AE cumulative energy release and bedding inclination was first documented. The post-test CT image analysis shows the crack patterns via 2D image reconstructions, an index of stimulated fracture density is defined to represent the anisotropic failure mode of shale. What is more, the most striking finding is that the AE monitoring results are in good agreement with the CT analysis. The structural difference in the shale sample is the controlling factor resulting in the anisotropy of AE patterns. The pronounced bedding structure in the shale formation results in an anisotropy of elasticity, strength, and AE information from which the changes in strength dominate the entire failure pattern of the shale samples.

  9. Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyosun, E-mail: paku08@zaiko.kyushu-u.ac.jp [Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Nishiyama, Masato, E-mail: nishiyama11@zaiko.kyushu-u.ac.jp [Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Nakada, Nobuo, E-mail: nakada@zaiko.kyushu-u.ac.jp [Department of Materials Science and Engineering, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Tsuchiyama, Toshihiro, E-mail: toshi@zaiko.kyushu-u.ac.jp [Department of Materials Science and Engineering, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Takaki, Setsuo, E-mail: takaki@zaiko.kyushu-u.ac.jp [Department of Materials Science and Engineering, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2014-05-01

    In order to clarify the effects of the martensite distribution on the mechanical properties of low-carbon dual-phase steel, four types of dual-phase steel with different ferrite grain sizes and martensite distributions were prepared using a thermomechanical treatment. The tensile properties of these steels were investigated; in particular, the strain hardening and the ductile fracture behaviors were discussed in terms of the strain partitioning between the ferrite and martensite and the formation and growth of micro-voids, respectively. When the martensite grains surround the ferrite grains and form a chain-like networked structure, the strain hardenability is greatly improved without a significant loss of elongation, while the necking deformability is considerably reduced. A digital-image correlation analysis revealed that the tensile strain in the martensite region in the chain-like networked dual-phase structure is markedly increased during tensile deformation, which leads to an improvement in the strain hardenability. On the other hand, the joint part of the martensite grains in the structure acts as a preferential formation site for micro-voids. The number density of the micro-voids rapidly increases with increasing tensile strain, which would cause the lower necking deformability.

  10. Neural plasticity and the development of attention: Intrinsic and extrinsic influences.

    Science.gov (United States)

    Swingler, Margaret M; Perry, Nicole B; Calkins, Susan D

    2015-05-01

    The development of attention has been strongly linked to the regulation of emotion and behavior and has therefore been of particular interest to researchers aiming to better understand precursors to behavioral maladjustment. In the current paper, we utilize a developmental psychopathology and neural plasticity framework to highlight the importance of both intrinsic (i.e., infant neural functioning) and extrinsic (i.e., caregiver behavior) factors for the development of attentional control across the first year. We begin by highlighting the importance of attention for children's emotion regulation abilities and mental health. We then review the development of attention behavior and underscore the importance of neural development and caregiver behavior for shaping attentional control. Finally, we posit that neural activation associated with the development of the executive attention network may be one mechanism through which maternal caregiving behavior influences the development of infants' attentional control and subsequent emotion regulation abilities known to be influential to childhood psychopathology.

  11. On the isoperimetric rigidity of extrinsic minimal balls

    DEFF Research Database (Denmark)

    Markvorsen, Steen; Palmer, V.

    2003-01-01

    We consider an m-dimensional minimal submanifold P and a metric R-sphere in the Euclidean space R-n. If the sphere has its center p on P, then it will cut out a well defined connected component of P which contains this center point. We call this connected component an extrinsic minimal R-ball of P....... The quotient of the volume of the extrinsic ball and the volume of its boundary is not larger than the corresponding quotient obtained in the space form standard situation, where the minimal submanifold is the totally geodesic linear subspace R-m. Here we show that if the minimal submanifold has dimension...... larger than 3, if P is not too curved along the boundary of an extrinsic minimal R-ball, and if the inequality alluded to above is an equality for the extrinsic minimal ball, then the minimal submanifold is totally geodesic....

  12. Extrinsic airway compression secondary to pulmonary arterial conduits: MR findings

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, L.F. [Dept. of Radiology and Div. of Cardiothoracic Surgery, Children`s Hospital Medical Center, Cincinnati, OH (United States); Strife, J.L. [Dept. of Radiology and Div. of Cardiothoracic Surgery, Children`s Hospital Medical Center, Cincinnati, OH (United States); Bailey, W.W. [Dept. of Radiology and Div. of Cardiothoracic Surgery, Children`s Hospital Medical Center, Cincinnati, OH (United States)

    1997-03-01

    Abnormal enlargement or malposition of any vascular structure or mass adjacent to the airway can cause extrinsic airway compression. In children with previous surgery for congenitial heart disease, mass effect from prosthetic devices or alteration in the anatomic position of normal structures can lead to extrinsic airway compression. Because many children have complex medical problems after cardiac surgery, wheezing may be attributed to cardiac causes and airway compression may not be investigated. Furthermore, the distal airway compression seen in these children often is not visualized on chest radiographys. MR imaging can be useful in evaluating extrinsic airway compression in these patients. We present the MR imaging of two patients with symptomatic extrinsic airway compression secondary to pulmonary arterial conduits. (orig.)

  13. The effect of extrinsic motivation on cycle time trial performance

    NARCIS (Netherlands)

    Hulleman, M.; de Koning, J.J.; Hettinga, F.J.; Foster, C.

    2007-01-01

    PURPOSE: Athletes occasionally follow pacing patterns that seem unreasonably aggressive compared with those of prerace performances, potentially because of the motivation provided by competition. This study evaluated the effect of extrinsic motivation on cyclists' time trial performance. METHODS:

  14. The effects of extrinsic rewards on children's intrinsic motivation

    OpenAIRE

    大槻, 千秋

    1981-01-01

    An experiment was conducted with preschool children to test whether a person's intrinsic motivation in an activity may be decreased by extrinsic salient rewards in Japan like in America. Children solved some jigsaw puzzles and received assorted candies, then they were observed how long they did other jigsaw puzzles. The results showed that the effects of extrinsic rewards on intrinsic motivation in an activity varied with the subject's social background. In uptown children's intrinsic motivat...

  15. The Effect of Extrinsic Motivational Factors Towards Iba Student Achievement

    OpenAIRE

    Pangemanan, Sifrid S.; Saerang, David Paul Elia; Rondonuwu, Mariska

    2014-01-01

    The reason students can facing the world of competition because they have a motivation. A thing that help students to get their motivation when they are not get a motivation by themself is through extrinsic motivational factors. There are two objectives of this research are to analyze the effect of extrinsic motivational factors towards student achievement and to identify the most influental factors on student achievement. The method is multiple linear regression analysis to examine the effec...

  16. Shaping human mortality patterns through intrinsic and extrinsic vitality processes

    Directory of Open Access Journals (Sweden)

    Ting Li

    2013-02-01

    Full Text Available BACKGROUND While historical declines in human mortality are clearly shaped by lifestyle and environmental improvements, modeling patterns is difficult because intrinsic and extrinsic processes shape mortality through complex stochastic interactions. OBJECTIVE To develop a stochastic model describing intrinsic and extrinsic mortality rates and quantify historical mortality trends in terms of parameters describing the rates. METHODS Based on vitality, a stochastic age-declining measure of survival capacity, extrinsic mortality occurs when an extrinsic challenge exceeds the remaining vitality and intrinsic mortality occurs with the complete loss of vitality by aging. Total mortality depends on the stochastic loss rate of vitality and the magnitude and frequency of extrinsic challenges. Parameters are estimated using maximum likelihood. RESULTS Fitting the model to two centuries of adult Swedish period data, intrinsic mortality dominated in old age and gradually declined over years. Extrinsic mortality increased with age and exhibited step-like decline over years driven by high-magnitude, low-frequency challenges in the 19th century and low-magnitude high-frequency challenges in the 20th century. CONCLUSIONS The Swedish mortality was driven by asynchronous intrinsic and extrinsic processes, coinciding with well-known epidemiological patterns involving lifestyle and health care. Because the processes are largely independent, predicting future mortality requires projecting trends of both processes. COMMENTS The model merges point-of-view and classical hazard rate mortality models and yields insights not available from either model individually. To obtain a closed form the intrinsic-extrinsic interactions were simplified, resulting in biased, but correctable, parameters estimates.

  17. Shaping human mortality patterns through intrinsic and extrinsic vitality processes

    OpenAIRE

    Ting Li; James Anderson

    2013-01-01

    BACKGROUND While historical declines in human mortality are clearly shaped by lifestyle and environmental improvements, modeling patterns is difficult because intrinsic and extrinsic processes shape mortality through complex stochastic interactions. OBJECTIVE To develop a stochastic model describing intrinsic and extrinsic mortality rates and quantify historical mortality trends in terms of parameters describing the rates. METHODS Based on vitality, a stochastic age-declining measure of survi...

  18. Activation of individual extrinsic thumb muscles and compartments of extrinsic finger muscles

    Science.gov (United States)

    Hargrove, Levi J.; Kuiken, Todd A.; Weir, Richard F. ff.

    2013-01-01

    Mechanical and neurological couplings exist between musculotendon units of the human hand and digits. Studies have begun to understand how these muscles interact when accomplishing everyday tasks, but there are still unanswered questions regarding the control limitations of individual muscles. Using intramuscular electromyographic (EMG) electrodes, this study examined subjects' ability to individually initiate and sustain three levels of normalized muscular activity in the index and middle finger muscle compartments of extensor digitorum communis (EDC), flexor digitorum profundus (FDP), and flexor digitorum superficialis (FDS), as well as the extrinsic thumb muscles abductor pollicis longus (APL), extensor pollicis brevis (EPB), extensor pollicis longus (EPL), and flexor pollicis longus (FPL). The index and middle finger compartments each sustained activations with significantly different levels of coactivity from the other finger muscle compartments. The middle finger compartment of EDC was the exception. Only two extrinsic thumb muscles, EPL and FPL, were capable of sustaining individual activations from the other thumb muscles, at all tested activity levels. Activation of APL was achieved at 20 and 30% MVC activity levels with significantly different levels of coactivity. Activation of EPB elicited coactivity levels from EPL and APL that were not significantly different. These results suggest that most finger muscle compartments receive unique motor commands, but of the four thumb muscles, only EPL and FPL were capable of individually activating. This work is encouraging for the neural control of prosthetic limbs because these muscles and compartments may potentially serve as additional user inputs to command prostheses. PMID:23803329

  19. Role of Chloride in the Corrosion and Fracture Behavior of Micro-Alloyed Steel in E80 Simulated Fuel Grade Ethanol Environment

    Directory of Open Access Journals (Sweden)

    Olufunmilayo O. Joseph

    2016-06-01

    Full Text Available In this study, micro-alloyed steel (MAS material normally used in the production of auto parts has been immersed in an E80 simulated fuel grade ethanol (SFGE environment and its degradation mechanism in the presence of sodium chloride (NaCl was evaluated. Corrosion behavior was determined through mass loss tests and electrochemical measurements with respect to a reference test in the absence of NaCl. Fracture behavior was determined via J-integral tests with three-point bend specimens at an ambient temperature of 27 °C. The mass loss of MAS increased in E80 with NaCl up to a concentration of 32 mg/L; beyond that threshold, the effect of increasing chloride was insignificant. MAS did not demonstrate distinct passivation behavior, as well as pitting potential with anodic polarization, in the range of the ethanol-chloride ratio. Chloride caused pitting in MAS. The fracture resistance of MAS reduced in E80 with increasing chloride. Crack tip blunting decreased with increasing chloride, thus accounting for the reduction in fracture toughness.

  20. Characterization of fracture behavior of 2024-O and 2024-T3 aluminum alloys; Caracterizacion de la respuesta a fractura de las aleaciones de aluminio 2024-O y 2024-T3

    Energy Technology Data Exchange (ETDEWEB)

    Monsalve, A.; Morales, R.

    2004-07-01

    The fracture behavior of 2024-O (annealed) and 2024-T3 (precipitation hardened) aluminum alloys used in aeronautical applications have been characterized. The study of the annealed alloy was carried out through the concept of Essential Specific Work of Fracture, using the ESIS protocol. DENT (Double Edge Notch Tension) samples were used, varying the ligament length in order to determine the relationship between the essential specific work of fracture and the thickness of the material. In the case of 2024-T3 alloy, the essential specific work of fracture was determined only for low thicknesses, where the predominant conditions are plane stress. However, for this alloy, the results were not conclusive because of the high fracture toughness of these hardened alloys. Finally, the fracture surface of these alloys was characterized finding a ductile mechanism in the case of the annealed alloy and ductile-brittle mechanism in the case of the hardened alloy. (Author) 9 refs.

  1. Tensile stress-dependent fracture behavior and its influences on photovoltaic characteristics in flexible PbS/CdS thin-film solar cells.

    Science.gov (United States)

    Lee, Seung Min; Yeon, Deuk Ho; Mohanty, Bhaskar Chandra; Cho, Yong Soo

    2015-03-04

    Tensile stress-dependent fracture behavior of flexible PbS/CdS heterojunction thin-film solar cells on indium tin oxide-coated polyethylene terephthalate (PET) substrates is investigated in terms of the variations of fracture parameters with applied strains and their influences on photovoltaic properties. The PbS absorber layer that exhibits only mechanical cracks within the applied strain range from ∼0.67 to 1.33% is prepared by chemical bath deposition at different temperatures of 50, 70, and 90 °C. The PbS thin films prepared at 50 °C demonstrate better mechanical resistance against the applied bending strain with the highest crack initiating bending strain of ∼1.14% and the lowest saturated crack density of 0.036 μm(-1). Photovoltaic properties of the cells depend on the deposition temperature and the level of applied tensile stress. The values of short-circuit current density and fill factor are dramatically reduced above a certain level of applied strain, while open-circuit voltage is nearly maintained. The dependency of photovoltaic properties on the progress of fractures is understood as related to the reduced fracture energy and toughness, which is limitedly controllable by microstructural features of the absorber layer.

  2. Extrinsic value orientation and affective forecasting: overestimating the rewards, underestimating the costs.

    Science.gov (United States)

    Sheldon, Kennon M; Gunz, Alexander; Nichols, Charles P; Ferguson, Yuna

    2010-02-01

    We examined affective forecasting errors as a possible explanation of the perennial appeal of extrinsic values and goals. Study 1 found that although people relatively higher in extrinsic (money, fame, image) compared to intrinsic (growth, intimacy, community) value orientation (REVO) are less happy, they nevertheless believe that attaining extrinsic goals offers a strong potential route to happiness. Study 2's longitudinal experimental design randomly assigned participants to pursue either 3 extrinsic or 3 intrinsic goals over 4 weeks, and REVO again predicted stronger forecasts regarding extrinsic goals. However, not even extrinsically oriented participants gained well-being benefits from attaining extrinsic goals, whereas all participants tended to gain in happiness from attaining intrinsic goals. Study 3 showed that the effect of REVO on forecasts is mediated by extrinsic individuals' belief that extrinsic goals will satisfy autonomy and competence needs. It appears that some people overestimate the emotional benefits of achieving extrinsic goals, to their potential detriment.

  3. INTRINSIC AND EXTRINSIC MOTIVATION - AN INVESTIGATION OF PERFORMANCE CORRELATION

    Directory of Open Access Journals (Sweden)

    Abrudan Maria-Madela

    2011-07-01

    Full Text Available A series of research untaken in the last decade have revealed some interesting aspects regarding the effects of different types of motivation on performance. Among the researchers who have shown interest in this field we can number: Richard Ryan, Edward Deci, Sam Glucksberg, Dan Ariely, Robert Eisenhower, Linda Shanock, analysts from London School of Economics, and others. Their findings suggest that extrinsic incentives may have a negative impact on overall performance, but a general agreement in this respect has not been reached. In this paper we intend to shed some light upon the relationship between intrinsic and extrinsic motivation and performance. Experts define intrinsic motivation as being the execution of a task or activity because of the inherent satisfaction arising from it rather than due to some separate outcome. In contrast with intrinsic motivation, we speak of extrinsic motivation whenever an activity is done in order to attain some separable outcome. With the purpose of contributing to the clarification of the links between concepts, we initiated and conducted an explanatory research. The research is based on the analysis of the relations between the results obtained by third year students and their predominant type of motivation. For this, we formulated and tested four work hypotheses using a combination of quantitative methods (investigation and qualitative methods (focus group. After the validation of the questionnaires, the respondents were divided into four categories: intrinsically motivated, extrinsically motivated, both intrinsically and extrinsically motivated and unmotivated. To analyze the collected data, we made use of Excel and SPSS. Some of the primary conclusions of the research are as follows: as the average increases, the percent of individuals having both extrinsic and intrinsic motivation is decreasing; the highest percentage of unmotivated students is concentrated in the highest average category; Female

  4. Fracture behavior and microstructure analysis of Al2O3-MgO-CaO castables for steel-ladle purging plugs

    Science.gov (United States)

    Long, Bin; Xu, Gui-ying; Li, Yong; Buhr, Andreas

    2016-11-01

    Three different castables based on the Al2O3-MgO-CaO system were prepared as steel-ladle purging plug refractories: corundum- based low-cement castable (C-LCC), corundum-spinel-based low-cement castable (C-S-LCC), and corundum-spinel no-cement castable (C-S-NCC) (hydratable alumina (ρ-Al2O3) bonded). The fracture behavior at room temperature was tested by the method of "wedge-splitting" on samples pre-fired at different temperatures; the specific fracture energy G f ' and notched tensile strength σNT were obtained from these tests. In addition, the Young's modulus E was measured by the method of resonance frequency of damping analysis (RFDA). The thermal stress resistance parameter R'''' calculated using the values of G f ' , σ NT, and E was used to evaluate the thermal shock resistance of the materials. According to the microstructure analysis results, the sintering effect and the bonding type of the matrix material were different among these three castables, which explains their different fracture behaviors.

  5. Fracture behavior analysis of EuBaCuO superconducting ring bulk reinforced by a stainless steel ring during field-cooled magnetization

    Science.gov (United States)

    Takahashi, K.; Fujishiro, H.; Naito, T.; Yanagi, Y.; Itoh, Y.; Nakamura, T.

    2017-11-01

    We have magnetized the EuBaCuO ring bulk reinforced by a stainless steel ring during field-cooled magnetization (FCM) at 50 K under the magnetic fields from 6.3, 7.3 or 8.3 T, in which the ring bulk was broken at the intermediate step of FCM from 8.3 T. To discuss the fracture behavior of the bulk, we have performed the numerical simulation using a three dimensional finite element method for the bulk with realistic superconducting characteristics, and obtained both the electromagnetic hoop stress, {{σ }θ }{{FCM}}, during FCM and thermal hoop stress, {{σ }θ }{{cool}}, under cooling from 300 to 50 K. The difference of the thermal contraction coefficient between the bulk and the stainless steel ring caused an inhomogeneous {{σ }θ }{{cool}} profile with a tensile stress at the outermost edge on the bulk surface under cooling process. The maximum of the total hoop stress, {{σ }θ }{{total}} (={{σ }θ }{{FCM}}+{{σ }θ }{{cool}}), was estimated to be +50 MPa and +59 MPa during FCM from 7.3 T and 8.3 T, respectively. These results suggest that the actual fracture strength of the present ring bulk is between 50 and 59 MPa. The {{σ }θ }{{total}} value should be reduced as low as possible in the whole area of the bulk to avoid the fracture behavior during FCM.

  6. The Influence of Fold and Fracture Development on Reservoir Behavior of the Lisburne Group of Northern Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, W.K.; Hanks, C.L.; Whalen, M.T.; Jensen, J.; Atkinson, P.K.; Brinton, J.S.

    2001-01-09

    The objectives of this study were to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of detachment folds and their truncation by thrust faults, (2) The influence of folding and lithostratigraphy on fracture patterns, (3) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics, and (4) The influence of lithostratigraphy and deformation on fluid flow.

  7. Extrinsic fiber optic displacement sensors and displacement sensing systems

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, K.A.; Gunther, M.F.; Vengsarkar, A.M.; Claus, R.O.

    1994-04-05

    An extrinsic Fizeau fiber optic sensor comprises a single-mode fiber, used as an input/output fiber, and a multimode fiber, used purely as a reflector, to form an air gap within a silica tube that acts as a Fizeau cavity. The Fresnel reflection from the glass/air interface at the front of the air gap (reference reflection) and the reflection from the air/glass interface at the far end of the air gap (sensing reflection) interfere in the input/output fiber. The two fibers are allowed to move in the silica tube, and changes in the air gap length cause changes in the phase difference between the reference reflection and the sensing reflection. This phase difference is observed as changes in intensity of the light monitored at the output arm of a fused biconical tapered coupler. The extrinsic Fizeau fiber optic sensor behaves identically whether it is surface mounted or embedded, which is unique to the extrinsic sensor in contrast to intrinsic Fabry-Perot sensors. The sensor may be modified to provide a quadrature phase shift extrinsic Fizeau fiber optic sensor for the detection of both the amplitude and the relative polarity of dynamically varying strain. The quadrature light signals may be generated by either mechanical or optical means. A plurality of the extrinsic sensors may connected in cascade and multiplexed to allow monitoring by a single analyzer. 14 figures.

  8. Extrinsic fiber optic displacement sensors and displacement sensing systems

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Kent A. (Roanoke, VA); Gunther, Michael F. (Blacksburg, VA); Vengsarkar, Ashish M. (Scotch Plains, NJ); Claus, Richard O. (Christiansburg, VA)

    1994-01-01

    An extrinsic Fizeau fiber optic sensor comprises a single-mode fiber, used as an input/output fiber, and a multimode fiber, used purely as a reflector, to form an air gap within a silica tube that acts as a Fizeau cavity. The Fresnel reflection from the glass/air interface at the front of the air gap (reference reflection) and the reflection from the air/glass interface at the far end of the air gap (sensing reflection) interfere in the input/output fiber. The two fibers are allowed to move in the silica tube, and changes in the air gap length cause changes in the phase difference between the reference reflection and the sensing reflection. This phase difference is observed as changes in intensity of the light monitored at the output arm of a fused biconical tapered coupler. The extrinsic Fizeau fiber optic sensor behaves identically whether it is surface mounted or embedded, which is unique to the extrinsic sensor in contrast to intrinsic Fabry-Perot sensors. The sensor may be modified to provide a quadrature phase shift extrinsic Fizeau fiber optic sensor for the detection of both the amplitude and the relative polarity of dynamically varying strain. The quadrature light signals may be generated by either mechanical or optical means. A plurality of the extrinsic sensors may connected in cascade and multiplexed to allow monitoring by a single analyzer.

  9. Effect of substructure on mechanical properties and fracture behavior of lath martensite in 0.1C–1.1Si–1.7Mn steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shengci [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhu, Guoming, E-mail: zhuguoming@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Kang, Yonglin, E-mail: kangylin@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-08-05

    The purpose of this study was to analyze the microstructure of lath martensite in 0.1C–1.1Si–1.7Mn (wt.%) steel and its effect on mechanical properties and fracture behavior. The microstructure was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and electron back scattering diffraction (EBSD). Charpy V-notch impact samples and compact tension (CT) samples were used to investigate the Charpy impact properties and fatigue crack growth behavior of the steel, respectively. The propagation of cleavage crack and fatigue crack were analyzed to figure out the effective grain size. The results showed that the typical hierarchical lath martensite structure contained prior austenite grains, packets, blocks and laths; packet size and block width were positively correlated to prior austenite grain size, while lath width was maintained at about 0.29 μm. Yield strength was related to prior austenite grain size, packet size and block width, and obeyed Hall–Petch relationship. Grain refinement was effective in improving the resistance to cleavage fracture by introducing barriers to crack propagation; packet boundaries and block boundaries hold similar ability to impede the propagation of crack. Paris model can well describe the FCG behavior of the investigated steel. Block width governs the effective grain size for strength, toughness and fatigue crack propagation. - Graphical abstract: Mechanical properties and fracture behavior of 0.1C–1.1Si–1.7Mn steel. - Highlights: • Hall–Petch relationship is obeyed between yield strength and martensite microstructure size. • Packet boundaries and block boundaries hold similar ability to impede the propagation of crack. • Block width is the effective grain size for strength, toughness and fatigue crack propagation.

  10. Microstructural characterization, formation mechanism and fracture behavior of the needle δ phase in Fe–Ni–Cr type superalloys with high Nb content

    Energy Technology Data Exchange (ETDEWEB)

    Ning, Yongquan, E-mail: luckyning@nwpu.edu.cn [School of Materials Science & Engineering, Northwestern Polytechnical University, Xi' an 710072 (China); Huang, Shibo [Anshan Iron & Steel Group Corporation Bayuquan Subsidiary Company, Bayuquan 115007 (China); Fu, M.W. [Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Dong, Jie [Inspection & Research Institute of Boiler & Pressure Vessel of Jiangxi Province, Nanchang 330029 (China)

    2015-11-15

    Microstructural characterization, formation mechanism and fracture behavior of the needle δ phase in Fe–Ni–Cr type superalloys with high Nb content (GH4169, equivalent to Inconel 718) have been quantitatively investigated in this research. The typical microstructures of δ phases with the stick, mixed and needle shapes obviously present in Inconel 718 after the isothermal upsetting at the temperature of 980–1060 °C with the initial strain rate of 10{sup −3}–10{sup −1} s{sup −1}. It is found that the shape of the δ phase has a great effect on the mechanical properties of the alloy, viz., the stick δ phase behaves good plasticity and the needle δ phase has good strength. In addition, the needle δ phase can be used to control the grain size as it can prevent grain growth. The combined effect of the localized necking and microvoid coalescence leads to the final ductile fracture of the GH4169 components with the needle δ phase. Both dislocation motion and atom diffusion are the root-cause for the needle δ phase to be firstly separated at grain boundary and then at sub-boundary. The formation mechanism of the needle δ phase is the new finding in this research. Furthermore, it is the primary mechanism for controlling the needle δ phase in Fe–Ni–Cr type superalloys with high Nb content. - Highlights: • Shape of the δ phase takes great effect on mechanical property. • Needle δ phase plays a great role to prevent grain growth. • Needle δ phase can enhance the fracture strength. • Microstructure mechanism of the needle δ phase has been investigated. • Fracture behavior of the needle δ phase has been studied.

  11. Fracture Behavior under Impact.

    Science.gov (United States)

    1982-01-01

    mit AUFFANGER Volumen I1 30 1 Lange 3m Longe 2m P-.. 200bat Kolober S0mm Volurncn 1201 Volumen 61 Prolektil Tre vershlunGetchwtridiqkedSs. VIPMA...of the magnitude of the stress. Utilizing this techni- que, a series of experiments has been performed to study the stress distribution in the

  12. Intrinsic and Extrinsic Spin Hall Effects of Dirac Electrons

    Science.gov (United States)

    Fukazawa, Takaaki; Kohno, Hiroshi; Fujimoto, Junji

    2017-09-01

    We investigate the spin Hall effect (SHE) of electrons described by the Dirac equation, which is used as an effective model near the L-points in bismuth. By considering short-range nonmagnetic impurities, we calculate the extrinsic as well as intrinsic contributions on an equal footing. The vertex corrections are taken into account within the ladder type and the so-called skew-scattering type. The intrinsic SHE which we obtain is consistent with that of Fuseya et al. [https://doi.org/10.1143/JPSJ.81.093704" xlink:type="simple">J. Phys. Soc. Jpn. 81, 093704 (2012)]. It is found that the extrinsic contribution dominates the intrinsic one when the system is metallic. The extrinsic SHE due to the skew scattering is proportional to Δ/niu, where 2Δ is the band gap, ni is the impurity concentration, and u is the strength of the impurity potential.

  13. Extrinsic Motivation Index: A New Tool for Managing Labor Productivity

    Directory of Open Access Journals (Sweden)

    Berumen, S.A.

    2016-07-01

    Full Text Available The objective of this paper is to provide a tool of practical significance for HR managers and firm executives. This tool, which is called Extrinsic Motivation Index (EMI, is meant to measure the extrinsic motivation of employees. By measuring employees' extrinsic motivation, managers are able to track job satisfaction and, subsequently, implement measures aiming both to raise job satisfaction and to improve organizational commitment. In order to test the validity of the model, we apply the EMI to Faculty members at Spanish and German universities. We also carry out simulation experiments in order to to address all possible situations an organization most probably will have to deal with. The results point out significant differences in the level of motivation and commitment of Faculty members. Additionally, the analysis shows several ways in which an organization may manage job satisfaction issues according to on its level of resources.

  14. The Effect of Intrinsic and Extrinsic Motivations on Academics’ Entrepreneurial Intention

    Directory of Open Access Journals (Sweden)

    Davide Antonioli

    2016-11-01

    Full Text Available This work investigates entrepreneurial intentions among academic scientists. Drawing from the literature on entrepreneurial behavior, it contributes to delineate the differences in motivations that are correlated with entrepreneurial intention to those that are considered to be linked to entrepreneurial behaviors. By disentangling the concept of motivations in its ultimately basic constructs of intrinsic and extrinsic motivations, we investigate how these two different types of motivations are related to the formation of entrepreneurial intention at the level of academic scientists. Through a survey conducted at the University of Ferrara—one of the leading universities in Italy in terms of technology transfer and scientific production—findings reveal that while academic entrepreneurial intention seems to be mostly driven by intrinsic motivations, the effect of extrinsic motivations, which are regarded as a main antecedent of entrepreneurial behavior among scientists, are largely mediated by academic positions, work environment and different combinations of these two factors. This work therefore highlights the importance of social norms in the investigation of entrepreneurial intention in academia.

  15. High-resolution ultrasound of the extrinsic carpal ligaments☆

    Science.gov (United States)

    Orlandi, D.; Fabbro, E.; Ferrero, G.; Martini, C.; Lacelli, F.; Serafini, G.; Silvestri, E.; Sconfienza, L.M.

    2012-01-01

    Thanks to its intrinsic high spatial resolution, ultrasound is an ideal imaging modality for examining very thin, superficial structures, and this makes it very helpful in the evaluation of extrinsic carpal ligaments. These structures, which arise from the radius and ulna and insert on the carpal bones, are extremely important for wrist stability. Previous studies have assessed the use of ultrasound to study the extrinsic carpal ligaments in cadavers, healthy asymptomatic subjects, and patients with rheumatoid arthritis. In the present report, we review the normal anatomy, biomechanics, and ultrasound appearance of these ligaments. PMID:23730393

  16. CONSUMER EVALUATIONS OF BEAUTIFICATION PRODUCTS: EFFECTS OF EXTRINSIC CUES

    Directory of Open Access Journals (Sweden)

    Md. Humayun Kabir Chowdhury

    2006-01-01

    Full Text Available This study investigates the influence of extrinsic cues, i.e. brand image, perceived price, perceived quality, and perceived country of origin on consumers' evaluative judgments for beautification products. Multi-item measures were used for data collection. Resultsrevealed that three extrinsic cues: brand image, perceived quality, and perceived country of origin have positive and significant influence on consumers' brand evaluation of beautification brands. Only perceived price has shown no such influence on consumers' brand evaluation. Finally, unanswered questions and future researchdirections are presented.

  17. The Effect of Si/Al on Mechanical Properties and Fracture Behavior of Stainless Steel Mesh/Crp Reinforced Geopolymer Composites

    Directory of Open Access Journals (Sweden)

    Yuan Jingkun

    2017-01-01

    Full Text Available In this study, a series stainless steel mesh/Crp reinforced geopolymer composites with different Si/Al molar ratio (N were designed and prepared, where N = 1.75, 2 and 2.25, respectively. The effect of Si/Al molar ratio in the geopolymer matrix on mechanical properties and fracture behavior of the geopolymer composites were investigated. The microstructure of geopolymer became more compact when Si/Al increased from 1.75 to 2, which was beneficial to the improvement of geopolymer’s mechanical properties. And continuing to rise to 2.25 for Si/Al, the completely curing of geopolymer composites required more time compared with lower Si/Al, which can be attributed to the different microstructure and chemical composition caused by the different Si/Al. The optimum Si/Al molar ratio was about 2 at which the composites samples present the best mechanical properties with the flexure strength of 115.3 MPa and elastic modulus of 11.0 GPa, respectively. The results of fracture behavior suggested that geopolymer composites with N is 2.25 displayed the behavior characteristics of metal materials, which can be attributed to a poor integrated condition in interface between reinforcements and geopolymer matrix.

  18. The Influence of Fold and Fracture Development on Reservoir Behavior of the Lisburne Group of Northern Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Wesley K.; Hanks, Catherine L.; Whalen, Michael T.; Jensen1, Jerry; Shackleton, J. Ryan; Jadamec, Margarete A.; McGee, Michelle M.; Karpov1, Alexandre V.

    2001-07-23

    The Carboniferous Lisburne Group is a major carbonate reservoir unit in northern Alaska. The lisburne is detachment folded where it is exposed throughout the northeastern Brooks Range, but is relatively underformed in areas of current production in the subsurface of the North Slope. The objectives of this study are to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of detachment folds and their truncation by thrust faults, (2) The influence of folding on fracture patterns, (3) The influence of deformation on fluid flow, and (4) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics.

  19. Lead induced intergranular fracture in aluminum alloy AA6262

    NARCIS (Netherlands)

    De Hosson, JTM

    2003-01-01

    The influence of lead on the fracture behavior of aluminum alloy AA6262 is investigated. Under certain conditions, the mode of fracture changes from transgranular microvoid coalescence to an intergranular mechanism. Three different intergranular fracture mechanisms are observed: liquid metal

  20. Tensile Properties and Fracture Behavior of Aluminum Alloy Foam Fabricated from Die Castings without Using Blowing Agent by Friction Stir Processing Route.

    Science.gov (United States)

    Hangai, Yoshihiko; Kamada, Hiroto; Utsunomiya, Takao; Kitahara, Soichiro; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2014-03-21

    Al foam has been used in a wide range of applications owing to its light weight, high energy absorption and high sound insulation. One of the promising processes for fabricating Al foam involves the use of a foamable precursor. In this study, ADC12 Al foams with porosities of 67%-78% were fabricated from Al alloy die castings without using a blowing agent by the friction stir processing route. The pore structure and tensile properties of the ADC12 foams were investigated and compared with those of commercially available ALPORAS. From X-ray computed tomography (X-ray CT) observations of the pore structure of ADC12 foams, it was found that they have smaller pores with a narrower distribution than those in ALPORAS. Tensile tests on the ADC12 foams indicated that as their porosity increased, the tensile strength and tensile strain decreased, with strong relation between the porosity, tensile strength, and tensile strain. ADC12 foams exhibited brittle fracture, whereas ALPORAS exhibited ductile fracture, which is due to the nature of the Al alloy used as the base material of the foams. By image-based finite element (FE) analysis using X-ray CT images corresponding to the tensile tests on ADC12 foams, it was shown that the fracture path of ADC12 foams observed in tensile tests and the regions of high stress obtained from FE analysis correspond to each other. Therefore, it is considered that the fracture behavior of ADC12 foams in relation to their pore structure distribution can be investigated by image-based FE analysis.

  1. Tensile Properties and Fracture Behavior of Aluminum Alloy Foam Fabricated from Die Castings without Using Blowing Agent by Friction Stir Processing Route

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2014-03-01

    Full Text Available Al foam has been used in a wide range of applications owing to its light weight, high energy absorption and high sound insulation. One of the promising processes for fabricating Al foam involves the use of a foamable precursor. In this study, ADC12 Al foams with porosities of 67%–78% were fabricated from Al alloy die castings without using a blowing agent by the friction stir processing route. The pore structure and tensile properties of the ADC12 foams were investigated and compared with those of commercially available ALPORAS. From X-ray computed tomography (X-ray CT observations of the pore structure of ADC12 foams, it was found that they have smaller pores with a narrower distribution than those in ALPORAS. Tensile tests on the ADC12 foams indicated that as their porosity increased, the tensile strength and tensile strain decreased, with strong relation between the porosity, tensile strength, and tensile strain. ADC12 foams exhibited brittle fracture, whereas ALPORAS exhibited ductile fracture, which is due to the nature of the Al alloy used as the base material of the foams. By image-based finite element (FE analysis using X-ray CT images corresponding to the tensile tests on ADC12 foams, it was shown that the fracture path of ADC12 foams observed in tensile tests and the regions of high stress obtained from FE analysis correspond to each other. Therefore, it is considered that the fracture behavior of ADC12 foams in relation to their pore structure distribution can be investigated by image-based FE analysis.

  2. Correlation of Fracture Behavior With Microstructure in Friction Stir Welded, and Spin Formed AI-Li 2195 Domes

    Science.gov (United States)

    Tayon, Wesley A.; Domack, Marcia S.; Hales, Stephen J.

    2012-01-01

    Single-piece, spin-formed domes manufactured from friction stir welded (FSW) plates of Al-Li alloy 2195 have the potential to reduce the cost of fabricating cryogenic propellant tanks. Mechanical properties in the completed domes can be related directly to the final material condition and the microstructures developed. However, these new fabrication techniques have resulted in unexpected material challenges, such as abnormal grain growth in the weld nugget and the propensity for fracture in the adjacent thermo-mechanically affected zone (TMAZ). In this study, the microstructure and texture transformations within the TMAZ are related to fracture location in the vicinity of the weldment. The texture variations in the TMAZ are caused primarily by the varying amounts of shear deformation introduced during the FSW process. Grain morphology and microtexture characteristics are examined as a function of location in the TMAZ via electron backscatter diffraction (EBSD). A strong correlation between fracture location and the presence of texture banding in the TMAZ is observed. The fracture path tends to follow a distinct region of low Taylor Factor (TF) grains.

  3. CT Accuracy of Extrinsic Tongue Muscle Invasion in Oral Cavity Cancer.

    Science.gov (United States)

    Junn, J C; Baugnon, K L; Lacayo, E A; Hudgins, P A; Patel, M R; Magliocca, K R; Corey, A S; El-Deiry, M; Wadsworth, J T; Beitler, J J; Saba, N F; Liu, Y; Aiken, A H

    2017-02-01

    Extrinsic tongue muscle invasion in oral cavity cancer upstages the primary tumor to a T4a. Despite this American Joint Committee on Cancer staging criterion, no studies have investigated the accuracy or prognostic importance of radiologic extrinsic tongue muscle invasion, the feasibility of standardizing extrinsic tongue muscle invasion reporting, or the degree of agreement across different disciplines: radiology, surgery, and pathology. The purpose of this study was to assess the agreement among radiology, surgery, and pathology for extrinsic tongue muscle invasion and to determine the imaging features most predictive of extrinsic tongue muscle invasion with surgical/pathologic confirmation. Thirty-three patients with untreated primary oral cavity cancer were included. Two head and neck radiologists, 3 otolaryngologists, and 1 pathologist prospectively evaluated extrinsic tongue muscle invasion. Fourteen of 33 patients had radiologic extrinsic tongue muscle invasion; however, only 8 extrinsic tongue muscle invasions were confirmed intraoperatively. Pathologists were unable to determine extrinsic tongue muscle invasion in post-formalin-fixed samples. Radiologic extrinsic tongue muscle invasion had 100% sensitivity, 76% specificity, 57% positive predictive value, and 100% negative predictive value with concurrent surgical-pathologic evaluation of extrinsic tongue muscle invasion as the criterion standard. On further evaluation, the imaging characteristic most consistent with surgical-pathologic evaluation positive for extrinsic tongue muscle invasion was masslike enhancement. Evaluation of extrinsic tongue muscle invasion is a subjective finding for all 3 disciplines. For radiology, masslike enhancement of extrinsic tongue muscle invasion most consistently corresponded to concurrent surgery/pathology evaluation positive for extrinsic tongue muscle invasion. Intraoperative surgical and pathologic evaluation should be encouraged to verify radiologic extrinsic tongue

  4. THE INFLUENCE OF FOLD AND FRACTURE DEVELOPMENT ON RESERVOIR BEHAVIOR OF THE LISBURNE GROUP OF NORTHERN ALASKA

    Energy Technology Data Exchange (ETDEWEB)

    Wesley K. Wallace; Catherine L. Hanks; Michael T. Whalen; Jerry Jensen; Paul K. Atkinson; Joseph S. Brinton

    2000-05-01

    The Lisburne Group is a major carbonate reservoir unit in northern Alaska. The Lisburne is detachment folded where it is exposed throughout the northeastern Brooks Range, but is relatively undeformed in areas of current production in the subsurface of the North Slope. The objectives of this study are to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of detachment folds and their truncation by thrust faults. (2) The influence of folding and lithostratigraphy on fracture patterns. (3) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics. (4) The influence of lithostratigraphy and deformation on fluid flow. The results of field work during the summer of 1999 offer some preliminary insights: The Lisburne Limestone displays a range of symmetrical detachment fold geometries throughout the northeastern Brooks Range. The variation in fold geometry suggests a generalized progression in fold geometry with increasing shortening: Straight-limbed, narrow-crested folds at low shortening, box folds at intermediate shortening, and folds with a large height-to-width ratio and thickened hinges at high shortening. This sequence is interpreted to represent a progressive change in the dominant shortening mechanism from flexural-slip at low shortening to bulk strain at higher shortening. Structural variations in bed thickness occur throughout this progression. Parasitic folding accommodates structural thickening at low shortening and is gradually succeeded by penetrative strain as shortening increases. The amount of structural thickening at low to intermediate shortening may be inversely related to the local amount of structural thickening of the Kayak Shale, the incompetent unit that underlies the Lisburne. The Lisburne Limestone displays a different structural style in the south, across the boundary between the northeastern Brooks Range and the main axis of the Brooks Range fold

  5. extrinsic factors that affect employee job satisfaction in faith based ...

    African Journals Online (AJOL)

    The general objective of this study was to identify the extrinsic factors affect employee job satisfaction at the Faith based organizations. For the research methodology, the study used the descriptive research design. The population for the study was the 161 employees of the Nairobi Chapel. Stratified random sampling ...

  6. Extrinsic motivation and job satisfaction of teachers' in public post ...

    African Journals Online (AJOL)

    This study was aimed at evaluating the relationship between extrinsic motivation and the job satisfaction of teachers' in public post primary schools in Cross River State, Nigeria. A sample of 125 teachers' was randomly drawn for the study. A four point likert-type questionnaire was used to gather data which was analyzed ...

  7. Visible Spectrum Circular Dichroism in Extrinsic Chirality Metamaterials

    CERN Document Server

    Lee, Seoungjun; Feng, Cheng; Jiao, Jiao; Khan, Ashfaq; Li, Lin

    2012-01-01

    We present the new planar extrinsic chirality metamaterial (ECM) design that manifests giant circular dichroism (CD) in the visible spectrum range rather than usual near-infrared and terahertz range. Effects of incident beam angles and meta-molecules unit sizes on the CD spectrums were theoretically analyzed; Physical mechanism was illustrated in new figures of asymmetrical current excitation in neighboring unit cells.

  8. Extrinsic Versus Intrinsic Uniformity Correction for γ-cameras.

    Science.gov (United States)

    Bolstad, Randy; Brown, Jody; Grantham, Vesper

    2011-09-01

    SPECT produces nuclear medicine images using a 3-dimensional diagnostic tool that eliminates the superimposition of adjacent structures, thus providing improved disease localization. Another method of uniformity correction-to use the complete capabilities of this tool-is discussed and evaluated in this article. The conventional method of intrinsic uniformity correction accounts only for nonuniformities within the γ-camera, excluding the collimator. If SPECT image quality is related to overall camera performance, then using an extrinsic uniformity correction method rather than an intrinsic method will improve image quality. SPECT uniformity images were obtained using a SPECT phantom with application of intrinsic and extrinsic uniformity correction tables with 2 different γ-imaging systems. The image results were qualitatively assessed. Even with acceptable nonuniformity analyses, significant ring artifacts within the intrinsic uniformity-corrected images are observed, whereas the artifacts are considerably less significant with the extrinsic uniformity correction and disappear completely in some of these images. Extrinsic uniformity correction may significantly improve the overall image quality by taking into account nonuniformities that arise from the collimator. This method will result in fewer image artifacts and improved image quality, thereby improving patient care.

  9. Gametic selection, developmental trajectories, and extrinsic heterogeneity in Haldane's rule.

    Science.gov (United States)

    Bundus, Joanna D; Alaei, Ravin; Cutter, Asher D

    2015-08-01

    Deciphering the genetic and developmental causes of the disproportionate rarity, inviability, and sterility of hybrid males, Haldane's rule, is important for understanding the evolution of reproductive isolation between species. Moreover, extrinsic and prezygotic factors can contribute to the magnitude of intrinsic isolation experienced between species with partial reproductive compatibility. Here, we use the nematodes Caenorhabditis briggsae and C. nigoni to quantify the sensitivity of hybrid male viability to extrinsic temperature and developmental timing, and test for a role of mito-nuclear incompatibility as a genetic cause. We demonstrate that hybrid male inviability manifests almost entirely as embryonic, not larval, arrest and is maximal at the lowest rearing temperatures, indicating an intrinsic-by-extrinsic interaction to hybrid inviability. Crosses using mitochondrial substitution strains that have reciprocally introgressed mitochondrial and nuclear genomes show that mito-nuclear incompatibility is not a dominant contributor to postzygotic isolation and does not drive Haldane's rule in this system. Crosses also reveal that competitive superiority of X-bearing sperm provides a novel means by which postmating prezygotic factors exacerbate the rarity of hybrid males. These findings highlight the important roles of gametic, developmental, and extrinsic factors in modulating the manifestation of Haldane's rule. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  10. Distinct molecular signatures of mild extrinsic and intrinsic atopic dermatitis

    DEFF Research Database (Denmark)

    Martel, Britta Cathrina; Litman, Thomas; Hald, Andreas

    2016-01-01

    Atopic dermatitis (AD) is a common inflammatory skin disease with underlying defects in epidermal function and immune responses. In this study, we used microarray analysis to investigate differences in gene expression in lesional skin from patients with mild extrinsic or intrinsic AD compared...

  11. The Effects of Extrinsic Rewards on Admissions Counselors' Performance

    Science.gov (United States)

    Gardner-Engel, Miriam

    2010-01-01

    This study examines the best ways to motivate college admissions counselors. A review of literature revealed multiple perspectives on intrinsic and extrinsic as well as tangible and intangible rewards. Primary research was designed to examine the impact of tangible rewards and verbal reinforcements with a convenience sample of nine college…

  12. Modelling of Extrinsic Fiber Optic Sagnac Ultrasound Interferometer ...

    African Journals Online (AJOL)

    Ultrasonic waves are used extensively in nondestructive testing both for characterization of material properties, in this paper, we describe a fiber optic sensor suitable for detection of ultrasonic waves. This sensor is based on an extrinsic fiber optic sagnac interferometer. The proposed sensor model can act as a conventional ...

  13. An investigation of the fatigue and fracture behavior of a Nb-12Al-44Ti-1.5Mo intermetallic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Soboyejo, W.O.; Dipasquale, J.; Ye, F.; Mercer, C. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering; Srivatsan, T.S. [Univ. of Akron, OH (United States). Dept. of Mechanical Engineering; Konitzer, D.G. [General Electric Aircraft Engines, Cincinnati, OH (United States)

    1999-04-01

    This article presents the results of a study of the fatigue and fracture behavior of a damage-tolerant Nb-12Al-44Ti-1.5Mo alloy. This partially ordered B2 + orthorhombic intermetallic alloy is shown to have attractive combinations of room-temperature ductility (11 to 14 pct), fracture toughness (60 to 92 MPa{radical}m), and comparable fatigue crack growth resistance to IN718, Ti-6Al-4V, and pure Nb at room temperature. The studies show that tensile deformation in the Nb-12Al-44Ti-1.5Mo alloy involves localized plastic deformation (microplasticity via slip-band formation) which initiates at stress levels that are significantly below the uniaxial yield stress ({approximately}9.6 pct of the 0.2 pct offset yield strength (YS)). The onset of bulk yielding is shown to correspond to the spread of microplasticity completely across the gage sections of the tensile specimen. Fatigue crack initiation is also postulated to occur by the accumulation of microplasticity (coarsening of slip bands). Subsequent fatigue crack growth then occurs by the unzipping of cracks along slip bands that form ahead of the dominant crack tip. The proposed mechanism of fatigue crack growth is analogous to the unzipping crack growth mechanism that was suggested originally by Neumann for crack growth in single-crystal copper. Slower near-threshold fatigue crack growth rates at 750 C are attributed to the shielding effects of oxide-induced crack closure. The fatigue and fracture behavior are also compared to those of pure Nb and emerging high-temperature niobium-based intermetallics.

  14. Fracture behavior of metal-ceramic fixed dental prostheses with frameworks from cast or a newly developed sintered cobalt-chromium alloy.

    Science.gov (United States)

    Krug, Klaus-Peter; Knauber, Andreas W; Nothdurft, Frank P

    2015-03-01

    The aim of this study was to investigate the fracture behavior of metal-ceramic bridges with frameworks from cobalt-chromium-molybdenum (CoCrMo), which are manufactured using conventional casting or a new computer-aided design/computer-aided manufacturing (CAD/CAM) milling and sintering technique. A total of 32 metal-ceramic fixed dental prostheses (FDPs), which are based on a nonprecious metal framework, was produced using a conventional casting process (n = 16) or a new CAD/CAM milling and sintering process (n = 16). Eight unveneered frameworks were manufactured using each of the techniques. After thermal and mechanical aging of half of the restorations, all samples were subjected to a static loading test in a universal testing machine, in which acoustic emission monitoring was performed. Three different critical forces were revealed: the fracture force (F max), the force at the first reduction in force (F decr1), and the force at the critical acoustic event (F acoust1). With the exception of the veneered restorations with cast or sintered metal frameworks without artificial aging, which presented a statistically significant but slightly different F max, no statistically significant differences between cast and CAD/CAM sintered and milled FDPs were detected. Thermal and mechanical loading did not significantly affect the resulting forces. Cast and CAD/CAM milled and sintered metal-ceramic bridges were determined to be comparable with respect to the fracture behavior. FDPs based on CAD/CAM milled and sintered frameworks may be an applicable and less technique-sensitive alternative to frameworks that are based on conventionally cast frameworks.

  15. Distinguishing subtypes of extrinsic motivation among people with mild to borderline intellectual disability

    NARCIS (Netherlands)

    Frielink, N.; Schuengel, C.; Embregts, P.J.C.M.

    Background According to self-determination theory, motivation is ordered in types, including amotivation, extrinsic motivation and intrinsic motivation. Self-determination theory defines four subtypes of extrinsic motivation: external motivation, introjected motivation, identified motivation and

  16. Progress report on the influence of test temperature and grain boundary chemistry on the fracture behavior of ITER copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Stubbins, J.F. [Univ. of Illinois, Urbana, IL (United States). Dept. of Nuclear Engineering; Edwards, D.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-09-01

    This collaborative study was initiated to determine mechanical properties at elevated temperatures of various copper alloys by University of Illinois and Pacific Northwestern National Lab (PNNL) with support of OMG Americas, Inc. and Brush Wellman, Inc. This report includes current experimental results on notch tensile tests and pre-cracked bend bar tests on these materials at room temperature, 200 and 300 C. The elevated temperature tests were performed in vacuum and indicate that a decrease in fracture resistance with increasing temperature, as seen in previous investigations. While the causes for the decreases in fracture resistance are still not clear, the current results indicate that environmental effects are likely less important in the process than formerly assumed.

  17. Influence of Fiber Orientation on Single-Point Cutting Fracture Behavior of Carbon-Fiber/Epoxy Prepreg Sheets

    Directory of Open Access Journals (Sweden)

    Yingying Wei

    2015-10-01

    Full Text Available The purpose of this article is to investigate the influences of carbon fibers on the fracture mechanism of carbon fibers both in macroscopic view and microscopic view by using single-point flying cutting method. Cutting tools with three different materials were used in this research, namely, PCD (polycrystalline diamond tool, CVD (chemical vapor deposition diamond thin film coated carbide tool and uncoated carbide tool. The influence of fiber orientation on the cutting force and fracture topography were analyzed and conclusions were drawn that cutting forces are not affected by cutting speeds but significantly influenced by the fiber orientation. Cutting forces presented smaller values in the fiber orientation of 0/180° and 15/165° but the highest one in 30/150°. The fracture mechanism of carbon fibers was studied in different cutting conditions such as 0° orientation angle, 90° orientation angle, orientation angles along fiber direction, and orientation angles inverse to the fiber direction. In addition, a prediction model on the cutting defects of carbon fiber reinforced plastic was established based on acoustic emission (AE signals.

  18. Numerical Analysis on the Formation of Fracture Network during the Hydraulic Fracturing of Shale with Pre-Existing Fractures

    Directory of Open Access Journals (Sweden)

    Jianming He

    2017-05-01

    Full Text Available In this paper, configurations of pre-existing fractures in cubic rock blocks were investigated and reconstructed for the modeling of experimental hydraulic fracturing. The fluid-rock coupling process of hydraulic fracturing was simulated based on the displacement discontinuities method. The numerical model was validated against the related laboratory experiments. The stimulated fracture configurations under different conditions can be clearly shown using the validated numerical model. First, a dominated fracture along the maximum principle stress direction is always formed when the stress difference is large enough. Second, there are less reopened pre-existing fractures, more newly formed fractures and less shear fractures with the increase of the cohesion value of pre-existing fractures. Third, the length of the stimulated shear fracture decreases rapidly with the increase of the friction coefficient, while the length of the tensile fracture has no correlation to the fiction coefficient. Finally, the increase of the fluid injection rate is favorable to the formation of a fracture network. The unfavorable effects of the large stress difference and the large cohesion of pre-existing fractures can be partly suppressed by an increase of the injection rate in the hydraulic fracturing treatment. The results of this paper are useful for understanding fracture propagation behaviors during the hydraulic fracturing of shale reservoirs with pre-existing fractures.

  19. Fracture mechanical behavior of red sandstone containing a single fissure and two parallel fissures after exposure to different high temperature treatments

    Science.gov (United States)

    Yang, Sheng-Qi; Jing, Hong-Wen; Huang, Yan-Hua; Ranjith, P. G.; Jiao, Yu-Yong

    2014-12-01

    A detailed understanding of the brittle deformation behavior of sandstone containing pre-existing flaws at elevated temperatures is a key concern in underground engineering. In this research, uniaxial compression tests were performed to evaluate the effect of high temperature treatments (300, 600 or 900 °C) on the strength, deformability and fracture coalescence behavior of a sandstone containing either a single fissure or two parallel fissures. All experiments focused on rectangular prismatic (80 × 160 × 30 mm) specimens of red sandstone. Constant strain rate experiments were performed on either: (1) specimens that contained a single 2 mm-wide fissure or (2) specimens that contained two 2 mm-wide parallel fissures. The specimens containing either one or two fissures were either left at room temperature (i.e., no heat treatment), or heat treated to 300, 600 or 900 °C prior to experimentation. The results demonstrated that, in all cases, the strength and stiffness of red sandstone was increased at 300 °C, before decreasing up to our maximum temperature of 900 °C. However, the peak strain at failure always showed an increase when the temperature was increased. The crack initiation, propagation and coalescence process were monitored during the deformation using both photographic monitoring and acoustic emission (AE) monitoring techniques. The monitoring results showed that the cracking process depended on both the fissure geometry and the heat treatment temperature. The potential mechanisms causing the differences in the mechanical behavior observed with increasing temperature are discussed, as is the influence of the single fissure and the two parallel fissures on the crack evolution process. These results are important and valuable to understand the fracture mechanism of rock engineering in deep underground mining excavations and nuclear waste depositories.

  20. Fracture Mechanisms For SiC Fibers And SiC/SiC Composites Under Stress-Rupture Conditions at High Temperatures

    Science.gov (United States)

    DiCarlo, James A.; Yun, Hee Mann; Hurst, Janet B.; Viterna, L. (Technical Monitor)

    2002-01-01

    The successful application of SiC/SiC ceramic matrix composites as high-temperature structural materials depends strongly on maximizing the fracture or rupture life of the load-bearing fiber and matrix constituents. Using high-temperature data measured under stress-rupture test conditions, this study examines in a mechanistic manner the effects of various intrinsic and extrinsic factors on the creep and fracture behavior of a variety of SiC fiber types. It is shown that although some fiber types fracture during a large primary creep stage, the fiber creep rate just prior to fracture plays a key role in determining fiber rupture time (Monkman-Grant theory). If it is assumed that SiC matrices rupture in a similar manner as fibers with the same microstructures, one can develop simple mechanistic models to analyze and optimize the stress-rupture behavior of SiC/SiC composites for applied stresses that are initially below matrix cracking.

  1. fracture criterion

    Indian Academy of Sciences (India)

    Fracture in metallic glasses. What are the connections between nano- and micro- mechanisms and toughness? Metallic glasses are schizophrenic in the fracture sense. PDF Create! 5 Trial www.nuance.com ...

  2. Shoulder Fractures

    Science.gov (United States)

    ... arm bone), the scapula (shoulder blade) and the clavicle (collarbone) (Figure 1). The upper end of the humerus ... age. Most fractures in children occur in the clavicle bone. In adults, the most common fracture is ...

  3. Hand Fractures

    Science.gov (United States)

    ... lead to arthritis down the road. In addition, fractures in children occasionally affect future growth of that bone. Figure 1: Examples of fractures in fingers Figure 2: Examples of plates, pins ...

  4. Evaluation of five fracture models in Taylor impact fracture

    Science.gov (United States)

    Zhang, Wei; Xiao, Xin-Ke; Wei, Gang; Guo, Zitao

    2012-03-01

    Taylor impact test presented in a previous study on a commercial high strength and super hard aluminum alloy 7A04-T6 are numerically evaluated using the finite element code ABAQUS/Explicit. In the present study, the influence of fracture criterion in numerical simulations of the deformation and fracture behavior of Taylor rod has been studied. Included in the paper are a modified version of Johnson-Cook, the Cockcroft-Latham(C-L), the constant fracture strain, the maximum shear stress and the maximum principle stress fracture models. Model constants for each criterion are calibrated from material tests. The modified version of Johnson-Cook fracture criterion with the stress triaxiality cut off idea is found to give good prediction of the Taylor impact fracture behavior. However, this study will also show that the C-L fracture criterion where only one simple material test is required for calibration is found to give reasonable predictions. Unfortunately, the other three criteria are not able to repeat the experimentally obtained fracture behavior. The study indicates that the stress triaxiality cut off idea is necessary to predict the Taylor impact fracture.

  5. Root fractures

    DEFF Research Database (Denmark)

    Andreasen, Jens Ove; Christensen, Søren Steno Ahrensburg; Tsilingaridis, Georgios

    2012-01-01

    The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed.......The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed....

  6. A comprehensive model combining Laplace-transform finite-difference and boundary-element method for the flow behavior of a two-zone system with discrete fracture network

    Science.gov (United States)

    Jia, Pin; Cheng, Linsong; Huang, Shijun; Xu, Zhongyi; Xue, Yongchao; Cao, Renyi; Ding, Guanyang

    2017-08-01

    This paper provides a comprehensive model for the flow behavior of a two-zone system with discrete fracture network. The discrete fracture network within the inner zone is represented explicitly by fracture segments. The Laplace-transform finite-difference method is used to numerically model discrete fracture network flow, with sufficient flexibility to consider arbitrary fracture geometries and conductivity distributions. Boundary-element method and line-source functions in the Laplace domain are employed to derive a semi-analytical flow solution for the two-zone system. By imposing the continuity of flux and pressure on discrete fracture surfaces, the semi-analytical two-zone system flow model and the numerical fracture flow model are coupled dynamically. The main advantage of the approach occurring in the Laplace domain is that simulation can be done with nodes only for discrete fractures and elements for boundaries and at predetermined, discrete times. Thus, stability and convergence problems caused by time discretization are avoided and the burden of gridding and computation is decreased without loss of important fracture characteristics. The model is validated by comparison with the results from an analytical solution and a fully numerical solution. Flow regime analysis shows that a two-zone system with discrete fracture network may develop six flow regimes: fracture linear flow, bilinear flow, inner zone linear flow, inner zone pseudosteady-state flow, outer zone pseudoradial flow and outer zone boundary-dominated flow. Especially, local solutions for the inner-zone linear flow have the same form with that of a finite conductivity planar fracture and can be correlated with the total length of discrete fractures and an intercept term. In the inner zone pseudosteady-state flow period, the discrete fractures, along with the boundary of the inner zone, will act as virtual closed boundaries, due to the pressure interference caused by fracture network and the

  7. Stress Fractures of the Pelvis and Legs in Athletes

    Science.gov (United States)

    Behrens, Steve B.; Deren, Matthew E.; Matson, Andrew; Fadale, Paul D.; Monchik, Keith O.

    2013-01-01

    Context: Stress fractures are common injuries in athletes, often difficult to diagnose. A stress fracture is a fatigue-induced fracture of bone caused by repeated applications of stress over time. Evidence Acquisition: PubMed articles published from 1974 to January 2012. Results: Intrinsic and extrinsic factors may predict the risk of stress fractures in athletes, including bone health, training, nutrition, and biomechanical factors. Based on their location, stress fractures may be categorized as low- or high-risk, depending on the likelihood of the injury developing into a complete fracture. Treatment for these injuries varies substantially and must account for the risk level of the fractured bone, the stage of fracture development, and the needs of the patient. High-risk fractures include the anterior tibia, lateral femoral neck, patella, medial malleolus, and femoral head. Low-risk fractures include the posteromedial tibia, fibula, medial femoral shaft, and pelvis. Magnetic resonance is the imaging test of choice for diagnosis. Conclusions: These injuries can lead to substantial lost time from participation. Treatment will vary by fracture location, but most stress fractures will heal with rest and modified weightbearing. Some may require more aggressive intervention, such as prolonged nonweightbearing movement or surgery. Contributing factors should also be addressed prior to return to sports. PMID:24427386

  8. Extrinsic anomalous Hall effect in epitaxial Mn4N films

    Science.gov (United States)

    Meng, M.; Wu, S. X.; Ren, L. Z.; Zhou, W. Q.; Wang, Y. J.; Wang, G. L.; Li, S. W.

    2015-01-01

    Anomalous Hall effect (AHE) in ferrimagnetic Mn4N epitaxial films grown by molecular-beam epitaxy is investigated. The longitudinal conductivity σx x is within the superclean regime, indicating Mn4N is a highly conducting material. We further demonstrate that the AHE signal in 40-nm-thick films is mainly due to the extrinsic contributions based on the analysis fitted by ρAH=a 'ρxx 0+b ρxx2 and σA H∝σx x . Our study not only provide a strategy for further theoretical work on antiperovskite manganese nitrides but also shed promising light on utilizing their extrinsic AHE to fabricate spintronic devices.

  9. Stress Fractures

    Science.gov (United States)

    Stress fractures Overview Stress fractures are tiny cracks in a bone. They're caused by repetitive force, often from overuse — such as repeatedly jumping up and down or running long distances. Stress fractures can also arise from normal use of ...

  10. Modeling a snap-action, variable-delay switch controlling extrinsic cell death.

    Directory of Open Access Journals (Sweden)

    John G Albeck

    2008-12-01

    Full Text Available When exposed to tumor necrosis factor (TNF or TNF-related apoptosis-inducing ligand (TRAIL, a closely related death ligand and investigational therapeutic, cells enter a protracted period of variable duration in which only upstream initiator caspases are active. A subsequent and sudden transition marks activation of the downstream effector caspases that rapidly dismantle the cell. Thus, extrinsic apoptosis is controlled by an unusual variable-delay, snap-action switch that enforces an unambiguous choice between life and death. To understand how the extrinsic apoptosis switch functions in quantitative terms, we constructed a mathematical model based on a mass-action representation of known reaction pathways. The model was trained against experimental data obtained by live-cell imaging, flow cytometry, and immunoblotting of cells perturbed by protein depletion and overexpression. The trained model accurately reproduces the behavior of normal and perturbed cells exposed to TRAIL, making it possible to study switching mechanisms in detail. Model analysis shows, and experiments confirm, that the duration of the delay prior to effector caspase activation is determined by initiator caspase-8 activity and the rates of other reactions lying immediately downstream of the TRAIL receptor. Sudden activation of effector caspases is achieved downstream by reactions involved in permeabilization of the mitochondrial membrane and relocalization of proteins such as Smac. We find that the pattern of interactions among Bcl-2 family members, the partitioning of Smac from its binding partner XIAP, and the mechanics of pore assembly are all critical for snap-action control.

  11. Near-UV laser treatment of extrinsic dental enamel stains.

    Science.gov (United States)

    Schoenly, J E; Seka, W; Featherstone, J D B; Rechmann, P

    2012-04-01

    The selective ablation of extrinsic dental enamel stains using a 400-nm laser is evaluated at several fluences for completely removing stains with minimal damage to the underlying enamel. A frequency-doubled Ti:sapphire laser (400-nm wavelength, 60-nanosecond pulse duration, 10-Hz repetition rate) was used to treat 10 extracted human teeth with extrinsic enamel staining. Each tooth was irradiated perpendicular to the surface in a back-and-forth motion over a 1-mm length using an ∼300-µm-diam 10th-order super-Gaussian beam with fluences ranging from 0.8 to 6.4 J/cm(2) . Laser triangulation determined stain depth and volume removed by measuring 3D surface images before and after irradiation. Scanning electron microscopy evaluated the surface roughness of enamel following stain removal. Fluorescence spectroscopy measured spectra of unbleached and photobleached stains in the spectral range of 600-800 nm. Extrinsic enamel stains are removed with laser fluences between 0.8 and 6.4 J/cm(2) . Stains removed on sound enamel leave behind a smooth enamel surface. Stain removal in areas with signs of earlier cariogenic acid attacks resulted in isolated and randomly located laser-induced, 50-µm-diam enamel pits. These pits contain 0.5-µm diam, smooth craters indicative of heat transfer from the stain to the enamel and subsequent melting and water droplet ejection. Ablation stalling of enamel stains is typically observed at low fluences (Laser ablation of extrinsic enamel stains at 400 nm is observed to be most efficient above 3 J/cm(2) with minimal damage to the underlying enamel. Unsound underlying enamel is also observed to be selectively removed after irradiation. Copyright © 2012 Wiley Periodicals, Inc.

  12. Influence and interpretation of intrinsic and extrinsic exercise motives

    OpenAIRE

    Ednie, Andrea; Stibor, Michael

    2017-01-01

    This study explores the relationships between, and perceptions of, various exercise motivations and exercise adherence. The application of self-determination theory to exercise motivations research has demonstrated the importance of intrinsic motivations, however, the influence of extrinsic motivations has not been thoroughly examined. This study placed exercise motive perceptions along the Organismic Integration Theory’s (OIT) spectrum of motivations, and identified associations between thos...

  13. Development of nondestructive evaluation methods and prediction of effects of flaws on the fracture behavior of structural ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ellingson, W.A.; Singh, J.P.; Holloway, D.L.; Dieckman, S.L.; Singh, D.; Sivers, E.A.

    1993-03-01

    Work emphasized continuous-fiber ceramic matrix composites (CFCCs) with 2-D lay-ups composed of chemical-vapor-infiltrated (CVI) SiC/SiC materials, mostly made of Nicalon plain weave with 16 [times] 16 tows/in. One sample examined comprised a 3-D SiC/SiC braid made by Techniweave. Using a new 1024[times]1024[times]14 bit detector, images from 3-D X-ray CT data with pixel sizes of <140 [mu]m and 2-D fast-Fourier transform (FFT) image processing, we have shown that fiber orientations can be measured to [plus minus]2-1/2[degree]. 3-D FFT analysis was used to determine 3-D braid/weave fiber spacing. Multinuclear ([sup l]H, [sup 13]C, and [sup 29]Si) NMR spectroscopy, is being studied. Surface chemistry of fibers and chemistry of interfacial regions in composites are being studied. We are also conducting initial studies to investigate the bulk composition of matrix materials ([alpha], [beta], amorphous phase, silica, and oxynitride concentration) and surface chemistry of Si[sub 3]N[sub 4] and SiC fibers. Fracture mechanics work to correlate with NDE data focused on strength distribution of as-fabricated Nicalon fibers obtained from bundle tests. Strength distribution of fractured Nicalon fibers in composites was assessed from fracture mirror radii. SEM was used to determine distribution of fiber pullout length distribution for fibers in composites, for their strength distribution. From the strength distribution plots, scale parameters were determined to be 3.45 GPa for as-fabricated fibers and 1.31 GPa for fibers in processed composites. However, the Weibull moduli for the two distributions were similar. Reduction in strength of the fibers in processed composites is believed to be due to surface flaws and defects. Effects of fiber misorientation on mechanical properties of NDE-tested CVI continuous-fiber composites are currently being investigated. 8 figs, 11 refs.

  14. Enhanced Compressive Strength of Nanostructured Aluminum Reinforced with SiC Nanoparticles and Investigation of Strengthening Mechanisms and Fracture Behavior

    Science.gov (United States)

    Akbarpour, M. R.; Torknik, F. S.; Manafi, S. A.

    2017-10-01

    In this study, microstructure and mechanical properties of nanostructured Al and Al reinforced with different volume fractions of SiC nanoparticles fabricated through a powder metallurgy route, including high-energy mechanical milling and hot pressing method, were examined. Nanostructured Al and the Al-8 vol.%SiC nanocomposite showed superior compressive strength of ≈300 and ≈412 MPa, respectively, with reasonable ductility. The high strength of the nanocomposite was attributed to the reduced grain size of the Al matrix and homogeneous dispersion of the nanoparticles in the matrix. The effects of nanoparticles on strengthening of Al and fracture mechanisms are presented and discussed.

  15. Effects of empathic paraphrasing - Extrinsic emotion regulation in social conflict

    Directory of Open Access Journals (Sweden)

    Maria eSeehausen

    2012-11-01

    Full Text Available In the present study, we investigated the effects of empathic paraphrasing as an extrinsic emotion regulation technique in social conflict. We hypothesized that negative emotions elicited by social conflict can be regulated extrinsically in a conversation by a listener following the narrator’s perspective and verbally expressing cognitive empathy.20 participants were interviewed on an ongoing or recently self-experienced social conflict. The interviewer utilized ten standardized open questions inviting participants to describe their perception of the conflict. After each of the ten descriptions, the interviewer responded by either paraphrasing or taking notes (control condition. Valence ratings pertaining to the current emotional state were assessed during the interview along with psychophysiological and voice recordings.Participants reported feeling less negative after hearing the interviewer paraphrase what they had said. In addition, we found a lower sound intensity of participants' voices when answering to questions following a paraphrase. At the physiological level, skin conductance response, as well as heart rate, was higher during paraphrasing than during taking notes, while blood volume pulse amplitude was lower during paraphrasing, indicating higher autonomic arousal.The results show that demonstrating cognitive empathy through paraphrasing can extrinsically regulate negative emotion on a short-term basis. Paraphrasing led to enhanced autonomic activation in recipients, while at the same time influencing emotional valence in the direction of feeling better. A possible explanation for these results is that being treated in an empathic manner may stimulate a more intense emotion processing helping to transform and resolve the conflict.

  16. Stochastic synchronization of neuronal populations with intrinsic and extrinsic noise.

    KAUST Repository

    Bressloff, Paul C

    2011-05-03

    We extend the theory of noise-induced phase synchronization to the case of a neural master equation describing the stochastic dynamics of an ensemble of uncoupled neuronal population oscillators with intrinsic and extrinsic noise. The master equation formulation of stochastic neurodynamics represents the state of each population by the number of currently active neurons, and the state transitions are chosen so that deterministic Wilson-Cowan rate equations are recovered in the mean-field limit. We apply phase reduction and averaging methods to a corresponding Langevin approximation of the master equation in order to determine how intrinsic noise disrupts synchronization of the population oscillators driven by a common extrinsic noise source. We illustrate our analysis by considering one of the simplest networks known to generate limit cycle oscillations at the population level, namely, a pair of mutually coupled excitatory (E) and inhibitory (I) subpopulations. We show how the combination of intrinsic independent noise and extrinsic common noise can lead to clustering of the population oscillators due to the multiplicative nature of both noise sources under the Langevin approximation. Finally, we show how a similar analysis can be carried out for another simple population model that exhibits limit cycle oscillations in the deterministic limit, namely, a recurrent excitatory network with synaptic depression; inclusion of synaptic depression into the neural master equation now generates a stochastic hybrid system.

  17. Extrinsic Factors Influencing Fetal Deformations and Intrauterine Growth Restriction

    Directory of Open Access Journals (Sweden)

    Wendy Moh

    2012-01-01

    Full Text Available The causes of intrauterine growth restriction (IUGR are multifactorial with both intrinsic and extrinsic influences. While many studies focus on the intrinsic pathological causes, the possible long-term consequences resulting from extrinsic intrauterine physiological constraints merit additional consideration and further investigation. Infants with IUGR can exhibit early symmetric or late asymmetric growth abnormality patterns depending on the fetal stage of development, of which the latter is most common occurring in 70–80% of growth-restricted infants. Deformation is the consequence of extrinsic biomechanical factors interfering with normal growth, functioning, or positioning of the fetus in utero, typically arising during late gestation. Biomechanical forces play a critical role in the normal morphogenesis of most tissues. The magnitude and direction of force impact the form of the developing fetus, with a specific tissue response depending on its pliability and stage of development. Major uterine constraining factors include primigravida, small maternal size, uterine malformation, uterine fibromata, early pelvic engagement of the fetal head, aberrant fetal position, oligohydramnios, and multifetal gestation. Corrective mechanical forces similar to those that gave rise to the deformation to reshape the deformed structures are often used and should take advantage of the rapid postnatal growth to correct form.

  18. FRACTURING FLUID CHARACTERIZATION FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Subhash Shah

    2000-08-01

    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

  19. Characterization the microstructure of pulsed Nd:YAG welding method in low frequencies; correlation with tensile and fracture behavior in laser-welded nitinol joints

    Science.gov (United States)

    Shojaei Zoeram, Ali; Rahmani, Aida; Asghar Akbari Mousavi, Seyed Ali

    2017-05-01

    The precise controllability of heat input in pulsed Nd:YAG welding method provided by two additional parameters, frequency and pulse duration, has made this method very promising for welding of alloys sensitive to heat input. The poor weldability of Ti-rich nitinol as a result of the formation of Ti2Ni IMC has deprived us of the unique properties of this alloy. In this study, to intensify solidification rate during welding of Ti-rich nitinol, pulsed Nd:YAG laser beam in low frequency was employed in addition to the employment of a copper substrate. Specific microstructure produced in this condition was characterized and the effects of this microstructure on tensile and fracture behavior of samples welded by two different procedures, full penetration and double-sided method with halved penetration depth for each side were investigated. The investigations revealed although the combination of low frequencies, the use of a high thermal conductor substrate and double-sided method eliminated intergranular fracture and increased tensile strength, the particular microstructure, built in the pulsed welding method in low frequencies, results to the formation of the longitudinal cracks during the first stages of tensile test at weld centerline. This degrades tensile strength of welded samples compared to base metal. The results showed samples welded in double-sided method performed much better than samples welded in full penetration mode.

  20. The Influence of fold and fracture development on reservoir behavior of the Lisburne Group of northern Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Wesley K. Wallace; Catherine L. Hanks; Jerry Jensen: Michael T. Whalen; Paul Atkinson; Joseph Brinton; Thang Bui; Margarete Jadamec; Alexandre Karpov; John Lorenz; Michelle M. McGee; T.M. Parris; Ryan Shackleton

    2004-07-01

    The Carboniferous Lisburne Group is a major carbonate reservoir unit in northern Alaska. The Lisburne is folded and thrust faulted where it is exposed throughout the Brooks Range, but is relatively undeformed in areas of current production in the subsurface of the North Slope. The objectives of this study were to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of folds and their truncation by thrust faults. (2) The influence of folding on fracture patterns. (3) The influence of deformation on fluid flow. (4) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics. Symmetrical detachment folds characterize the Lisburne in the northeastern Brooks Range. In contrast, Lisburne in the main axis of the Brooks Range is deformed into imbricate thrust sheets with asymmetrical hangingwall anticlines and footwall synclines. The Continental Divide thrust front separates these different structural styles in the Lisburne and also marks the southern boundary of the northeastern Brooks Range. Field studies were conducted for this project during 1999 to 2001 in various locations in the northeastern Brooks Range and in the vicinity of Porcupine Lake, immediately south of the Continental Divide thrust front. Results are summarized below for the four main subject areas of the study.

  1. [Talus fractures--fractures of the most important tarsal bone].

    Science.gov (United States)

    Klaue, K

    2004-07-01

    The talus is the key bone of the foot due to its location between the ankle and the subtalar joints. Through the flexion and extension of the ankle joint, the talus is the "propulsive bone" situated at the root of the first ray and the hallux. Through the subtalar and talo-navicular joints, the talus allows the foot to be "suspended" using a fancy spring mechanism involving ligaments and tendons. The talus thus transmits forces through two important joints without any direct muscular constraint. The talo-calcaneo-navicular joint may be called the "coxa pedis" due to the anatomical and functional similitudes with the coxofemoral joint ("coxa pelvis"). Fractures of the talus are rare. Talus fractures can be classified in "central" and "peripheral" fractures. Central fractures occur through a strong axial blow provided that the ankle and coxa pedis are locked by extrinsic muscular contraction. Peripheral fractures instead occur in an extreme position of the ankle or the coxa pedis, with a subluxation or complete dislocation of one or more of those joints. Central fractures produce a bony solution of continuity in between at least two of the ankle, subtalar and talo-navicular joints. Peripheral fractures mostly do implement joint surfaces which are sheared off. Aim of treating talus fractures is precise and stable reduction of the fragments because most often, the fractures cross the articular layers. The surgical approaches are critical, especially in displaced central fractures, because the reduction may require visual control all around the bone. There are three approaches which might be used as single approaches or combined simultaneously: the anteromedial approach along the subtalar joint from the navicular to the retro-malleolar region, the anterolateral approach centered on the sinus tarsi (Ollier) and the postero-lateral approach (Gallie). In many cases, a joint distraction device may help visualization of the different joint spaces as well as assist reduction

  2. Creep, Fatigue and Fracture Behavior of Environmental Barrier Coating and SiC-SiC Ceramic Matrix Composite Systems: The Role of Environment Effects

    Science.gov (United States)

    Zhu, Dongming; Ghosn, Louis J.

    2015-01-01

    Advanced environmental barrier coating (EBC) systems for low emission SiCSiC CMC combustors and turbine airfoils have been developed to meet next generation engine emission and performance goals. This presentation will highlight the developments of NASAs current EBC system technologies for SiC-SiC ceramic matrix composite combustors and turbine airfoils, their performance evaluation and modeling progress towards improving the engine SiCSiC component temperature capability and long-term durability. Our emphasis has also been placed on the fundamental aspects of the EBC-CMC creep and fatigue behaviors, and their interactions with turbine engine oxidizing and moisture environments. The EBC-CMC environmental degradation and failure modes, under various simulated engine testing environments, in particular involving high heat flux, high pressure, high velocity combustion conditions, will be discussed aiming at quantifying the protective coating functions, performance and durability, and in conjunction with damage mechanics and fracture mechanics approaches.

  3. Micromechanics-based modeling of stress–strain and fracture behavior of heat-treated boron steels for hot stamping process

    Energy Technology Data Exchange (ETDEWEB)

    Srithananan, P.; Kaewtatip, P.; Uthaisangsuk, V., E-mail: vitoon.uth@kmutt.ac.th

    2016-06-14

    In the automotive industry, hot stamped parts with tailored properties have shown advantageous safety performance. Such components are produced by applying different heat treatment conditions after forming for different zones in order to obtain various combinations of hard and soft microstructures. In this work, pure martensitic, pure bainitic, and three martensitic/bainitic phase microstructures were initially generated from the boron steel grade 22MnB5 by a two-step quenching procedure in which different holding times in the bainitic temperature range were varied. Increased phase fraction of bainite due to longer holding time led to decreased yield and tensile strength; however, elongation and resulting energy absorbability became significantly higher. To describe mechanical properties and failure behavior of hot stamped parts containing multiphase microstructures, influences of microstructure characteristics should be considered on the micro-scale. Using modeling, 2-D representative volume elements (RVE) were generated from observed real microstructures and flow curves of the individual single phases were defined, taking into account a dislocation theory based model and local chemical compositions. Then, effective stress–strain curves of the heat-treated boron steels were calculated by using the isostrain and non-isostrain methods and compared with tensile test results. Regarding fracture behavior, damage curves of fully martensitic and bainitic structures were determined by means of tensile tests of different notched samples and a hybrid digital image correlation (DIC)–finite element (FE) approach. 2-D RVE simulations of a martensite/bainite mixture were carried out under various states of stress, in which the obtained damage curves were individually applied for each phase. The predicted damage curve from RVE simulations for two-phase boron steel fairly agreed with experimental fracture strains. Moreover, correspondingly normalized Lode angle could be

  4. Development of nondestructive evaluation methods and prediction of effects of flaws on the fracture behavior of structural ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ellingson, W.A.; Singh, J.P.; Holloway, D.L.; Dieckman, S.L.; Singh, D.; Sivers, E.A.

    1993-03-01

    Work emphasized continuous-fiber ceramic matrix composites (CFCCs) with 2-D lay-ups composed of chemical-vapor-infiltrated (CVI) SiC/SiC materials, mostly made of Nicalon plain weave with 16 {times} 16 tows/in. One sample examined comprised a 3-D SiC/SiC braid made by Techniweave. Using a new 1024{times}1024{times}14 bit detector, images from 3-D X-ray CT data with pixel sizes of <140 {mu}m and 2-D fast-Fourier transform (FFT) image processing, we have shown that fiber orientations can be measured to {plus_minus}2-1/2{degree}. 3-D FFT analysis was used to determine 3-D braid/weave fiber spacing. Multinuclear ({sup l}H, {sup 13}C, and {sup 29}Si) NMR spectroscopy, is being studied. Surface chemistry of fibers and chemistry of interfacial regions in composites are being studied. We are also conducting initial studies to investigate the bulk composition of matrix materials ({alpha}, {beta}, amorphous phase, silica, and oxynitride concentration) and surface chemistry of Si{sub 3}N{sub 4} and SiC fibers. Fracture mechanics work to correlate with NDE data focused on strength distribution of as-fabricated Nicalon fibers obtained from bundle tests. Strength distribution of fractured Nicalon fibers in composites was assessed from fracture mirror radii. SEM was used to determine distribution of fiber pullout length distribution for fibers in composites, for their strength distribution. From the strength distribution plots, scale parameters were determined to be 3.45 GPa for as-fabricated fibers and 1.31 GPa for fibers in processed composites. However, the Weibull moduli for the two distributions were similar. Reduction in strength of the fibers in processed composites is believed to be due to surface flaws and defects. Effects of fiber misorientation on mechanical properties of NDE-tested CVI continuous-fiber composites are currently being investigated. 8 figs, 11 refs.

  5. Does Extrinsic Goal Framing Enhance Extrinsic Goal-Oriented Individuals' Learning and Performance? An Experimental Test of the Match Perspective versus Self-Determination Theory

    Science.gov (United States)

    Vansteenkiste, Maarten; Timmermans, Tinneke; Lens, Willy; Soenens, Bart; Van den Broeck, Anja

    2008-01-01

    Previous work within self-determination theory has shown that experimentally framing a learning activity in terms of extrinsic rather than intrinsic goals results in poorer conceptual learning and performance, presumably because extrinsic goal framing detracts attention from the learning activity and is less directly satisfying of basic…

  6. Hip fracture - discharge

    Science.gov (United States)

    Inter-trochanteric fracture repair - discharge; Subtrochanteric fracture repair - discharge; Femoral neck fracture repair - discharge; Trochanteric fracture repair - discharge; Hip pinning surgery - ...

  7. Acetabular Fracture

    Directory of Open Access Journals (Sweden)

    Chad Correa

    2017-09-01

    Full Text Available History of present illness: A 77-year-old female presented to her primary care physician (PCP with right hip pain after a mechanical fall. She did not lose consciousness or have any other traumatic injuries. She was unable to ambulate post-fall, so X-rays were ordered by her PCP. Her X-rays were concerning for a right acetabular fracture (see purple arrows, so the patient was referred to the emergency department where a computed tomography (CT scan was ordered. Significant findings: The non-contrast CT images show a minimally displaced comminuted fracture of the right acetabulum involving the acetabular roof, medial and anterior walls (red arrows, with associated obturator muscle hematoma (blue oval. Discussion: Acetabular fractures are quite rare. There are 37 pelvic fractures per 100,000 people in the United States annually, and only 10% of these involve the acetabulum. They occur more frequently in the elderly totaling an estimated 4,000 per year. High-energy trauma is the primary cause of acetabular fractures in younger individuals and these fractures are commonly associated with other fractures and pelvic ring disruptions. Fractures secondary to moderate or minimal trauma are increasingly of concern in patients of advanced age.1 Classification of acetabular fractures can be challenging. However, the approach can be simplified by remembering the three basic types of acetabular fractures (column, transverse, and wall and their corresponding radiologic views. First, column fractures should be evaluated with coronally oriented CT images. This type of fracture demonstrates a coronal fracture line running caudad to craniad, essentially breaking the acetabulum into two halves: a front half and a back half. Secondly, transverse fractures should be evaluated by sagittally oriented CT images. By definition, a transverse fracture separates the acetabulum into superior and inferior halves with the fracture line extending from anterior to posterior

  8. Effect of Nanocomposite Structures on Fracture Behavior of Epoxy-Clay Nanocomposites Prepared by Different Dispersion Methods

    Directory of Open Access Journals (Sweden)

    Mohammad Bashar

    2014-01-01

    Full Text Available The effects of organic modifier and processing method on morphology and mechanical properties of epoxy-clay nanocomposites were investigated. In this study, the preparation of nanocomposites by exfoliation-adsorption method involved an ultrasonic mixing procedure, and mechanical blending was used for in situ intercalative polymerization. The microstructure study revealed that the organoclay, which was ultrasonically mixed with the epoxy, partially exfoliated and intercalated. In contrast, organoclay remained in phase-separated and flocculated state after the mechanical blending process. Tensile stiffness increased significantly for the nanocomposite prepared by ultrasonic dispersion method through realizing the reinforcing potential of exfoliated silicate layers. Nanocomposites with exfoliated and intercalated nanoclay morphology were ineffective in enhancing the fracture toughness whereas nanocomposites with phase-separated and flocculated morphology have improved crack resistance predominantly by crack deflecting and pinning mechanisms.

  9. Mechanical Properties and Fracture Behaviors of GTA-Additive Manufactured 2219-Al After an Especial Heat Treatment

    Science.gov (United States)

    Bai, J. Y.; Fan, C. L.; Lin, S. B.; Yang, C. L.; Dong, B. L.

    2017-04-01

    2219-Al parts were produced by gas tungsten arc-additive manufacturing and sequentially processed by an especial heat treatment. In order to investigate the effects of heat treatment on its mechanical properties, multiple tests were conducted. Hardness tests were carried out on part scale and layer scale along with tensile tests which were performed on welding and building directions. Results show that compared to conventional casting + T6 2219-Al, the current deposit + T6 2219-Al exhibits satisfying properties with regard to strength but unsatisfying results in plasticity. Additionally, anisotropy is significant. Fractures were observed and the cracks' propagating paths in both directional specimens are described. The effects of heat treatment on the cracks' initiation and propagation were also investigated. Ultimately, a revised formula was developed to calculate the strength of the deposit + T6 2219-Al. The aforementioned formula, which takes into consideration the belt-like porosities-distributing feature, can scientifically describe the anisotropic properties in the material.

  10. THE INFLUENCE OF FOLD AND FRACTURE DEVELOPMENT ON RESERVOIR BEHAVIOR OF THE LISBURNE GROUP OF NORTHERN ALASKA

    Energy Technology Data Exchange (ETDEWEB)

    Wesley K. Wallace; Catherine L. Hanks; Jerry Jensen; Michael T. Whalen

    2002-01-01

    The Carboniferous Lisburne Group is a major carbonate reservoir unit in northern Alaska. The Lisburne is detachment folded where it is exposed throughout the northeastern Brooks Range, but is relatively undeformed in areas of current production in the subsurface of the North Slope. The objectives of this study are to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of detachment folds and their truncation by thrust faults. (2) The influence of folding on fracture patterns. (3) The influence of deformation on fluid flow. (4) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics. The Lisburne in the main axis of the Brooks Range is characteristically deformed into imbricate thrust sheets with asymmetrical hanging wall anticlines and footwall synclines. In contrast, the Lisburne in the northeastern Brooks Range is characterized by symmetrical detachment folds. The focus of our 2000 field studies was at the boundary between these structural styles in the vicinity of Porcupine Lake, in the Arctic National Wildlife Refuge. The northern edge of thrust-truncated folds in Lisburne is marked by a local range front that likely represents an eastward continuation of the central Brooks Range front. This is bounded to the north by a gently dipping panel of Lisburne with local asymmetrical folds. The leading edge of the flat panel is thrust over Permian to Cretaceous rocks in a synclinal depression. These younger rocks overlie symmetrically detachment-folded Lisburne, as is extensively exposed to the north. Six partial sections were measured in the Lisburne of the flat panel and local range front. The Lisburne here is about 700 m thick and is interpreted to consist primarily of the Wachsmuth and Alapah Limestones, with only a thin veneer of Wahoo Limestone. The Wachsmuth (200 m) is gradational between the underlying Missippian Kayak Shale and the overlying Mississippian Alapah, and

  11. The role of intrinsic and extrinsic rewards in committing violence during combat: A cross-sectional study with former combatants in the DR Congo.

    Science.gov (United States)

    Haer, Roos; Hermenau, Katharin; Elbert, Thomas; Moran, James K; Hecker, Tobias

    2017-05-01

    It has been postulated that the violent behavior that characterizes armed conflict is reinforced by the possibility of receiving rewards. The present study examined the potential influence of two types of rewards in an ongoing setting of conflict: extrinsic and intrinsic rewards. Former combatants active in the Democratic Republic of the Congo (N = 198) were interviewed and questioned about the way they were recruited, the offenses they committed during combat, their level of perceived intrinsic rewards (i.e., appetitive perception of violence), and the number of received extrinsic rewards during their time in the armed group (e.g., money, extra food, alcohol, or drugs). A moderated multiple regression analysis showed that the number of received extrinsic rewards and the level of intrinsic rewards were significantly positively related to the number of different types of offenses committed. In contrast to our expectations and previous findings, the recruitment type (forced conscription vs. voluntary enlistment) did not moderate this relation. Our findings suggest that both types of rewards play a role in committing violence during combat. We suggest, therefore, that reintegration programs should not only consider the influence of extrinsic rewards, but also need to address the influence of intrinsic rewards to counter violent behavior among former combatants. Aggr. Behav. 43:241-250, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Fracture Networks in Sea Ice

    Directory of Open Access Journals (Sweden)

    Jonas Nesland Vevatne

    2014-04-01

    Full Text Available Fracturing and refreezing of sea ice in the Kara sea are investigated using complex networkanalysis. By going to the dual network, where the fractures are nodes and their intersectionslinks, we gain access to topological features which are easy to measure and hence comparewith modeled networks. Resulting network reveal statistical properties of the fracturing process.The dual networks have a broad degree distribution, with a scale-free tail, high clusteringand efficiency. The degree-degree correlation profile shows disassortative behavior, indicatingpreferential growth. This implies that long, dominating fractures appear earlier than shorterfractures, and that the short fractures which are created later tend to connect to the longfractures.The knowledge of the fracturing process is used to construct growing fracture network (GFNmodel which provides insight into the generation of fracture networks. The GFN model isprimarily based on the observation that fractures in sea ice are likely to end when hitting existingfractures. Based on an investigation of which fractures survive over time, a simple model forrefreezing is also added to the GFN model, and the model is analyzed and compared to the realnetworks.

  13. Extrinsic Stain Removal Effectiveness of a New Whitening Dentifrice.

    Science.gov (United States)

    Ghassemi, A; Vorwerk, L; Hooper, W; Cirigliano, A; DeSciscio, P; Nathoo, S

    2015-01-01

    This study was conducted to evaluate the effectiveness of Arm & Hammer (A&H) Truly Radiant Rejuvenating toothpaste in removing extrinsic tooth stain compared to that of a conventional fluoride/silica-containing dentifrice. This was a randomized, examiner-blind, parallel-design study with two groups of subjects who brushed unsupervised with their assigned dentifrice for two minutes, twice daily, for five days. Extrinsic stain was measured on the labial surfaces of the eight incisor teeth by the Modified Lobene Stain Index (MLSI) at baseline and following five days of product use. After balancing for baseline MLSI, beverage and tobacco use, fifty-four healthy adults with existing stain were randomly distributed into two comparable groups: Arm and Hammer Truly Radiant Rejuvenating toothpaste or Colgate Cavity Protection toothpaste (negative control). Within-treatment comparisons between baseline and day five were made using matched-pair t-tests, and between-treatment comparisons of MSLI scores were performed using ANCOVA, with baseline scores as covariates. Twenty-eight subjects in the Truly Radiant Rejuvenating toothpaste group and twenty-six subjects in the negative control group completed the study. The groups had comparable mean scores at baseline (p > 0.05). The Truly Radiant Rejuvenating toothpaste produced a statistically significant 23.1% total (composite) stain reduction from baseline after five days of product use (p 0.05). Between-treatment analysis showed statistically significantly (p toothpaste compared to the Colgate control following five days of product use. There were no adverse events reported during the study. The A&H Truly Radiant Rejuvenating toothpaste is safe and effective in reducing extrinsic stain compared to a regular toothpaste control.

  14. The influence of extrinsic motivation on competition-based selection.

    Science.gov (United States)

    Sänger, Jessica; Wascher, Edmund

    2011-10-10

    The biased competition approach to visuo-spatial attention proposes that the selection of competing information is effected by the saliency of the stimulus as well as by an intention-based bias of attention towards behavioural goals. Wascher and Beste (2010) [32] showed that the detection of relevant information depends on its relative saliency compared to irrelevant conflicting stimuli. Furthermore the N1pc, N2pc and N2 of the EEG varied with the strength of the conflict. However, this system could also be modulated by rather global mechanisms like attentional effort. The present study investigates such modulations by testing the influence of extrinsic motivation on the selection of competing stimuli. Participants had to detect a luminance change in various conditions among others against an irrelevant orientation change. Half of the participants were motivated to maximize their performance by the announcement of a monetary reward for correct responses. Participants who were motivated had lower error rates than participants who were not motivated. The event-related lateralizations of the EEG showed no motivation-related effect on the N1pc, which reflects the initial saliency driven orientation of attention towards the more salient stimulus. The subsequent N2pc was enhanced in the motivation condition. Extrinsic motivation was also accompanied by enhanced fronto-central negativities. Thus, the data provide evidence that the improvement of selection performance when participants were extrinsically motivated by announcing a reward was not due to changes in the initial saliency based processing of information but was foremost mediated by improved higher-level mechanisms. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Hip Fractures.

    Science.gov (United States)

    Ramponi, Denise R; Kaufmann, Judith; Drahnak, Gwendolen

    Hip fractures are associated with significant morbidity and mortality and a major health problem in the United States (). Eighty percent of hip fractures are experienced by 80-year-old women. Plain radiographs usually confirm the diagnosis, but if there is a high level of suspicion of an occult hip fracture, magnetic resonance imaging or bone scan is the next step to confirm the diagnosis. Areas of the hip bone have varied bone strength and blood supply, making the femoral neck one of the most vulnerable areas for fracture. A consultation to an orthopedic surgeon will determine surgical interventions.

  16. Hamate fractures.

    Science.gov (United States)

    Sarabia Condés, J M; Ibañez Martínez, L; Sánchez Carrasco, M A; Carrillo Julia, F J; Salmerón Martínez, E L

    2015-01-01

    The purpose of this paper is to present our experience in the treatment of the fractures of the hamate and to make a review of the literature on this topic. We retrospectively reviewed 10 patients treated in our clinic between 2005-2012 suffering from fractures of the hamate. Six cases were fractures of the body and four were fractures of the hamate. Five cases were of associated injuries. Diagnostic delay ranged from 30 days to 2 years. Patient follow-up ranged from 1 to 10 years. Patient satisfaction was evaluated using the DASH questionnaire. Five patients with a fracture of the body underwent surgery, and one was treated conservatively. Two patients with fracture of the hook of the hamate were treated with immobilization, and two more patients had the fragment removed. The grip strength and the digital clip were reduced in 2 cases. Flexion and extension of the wrist was limited in 3 cases. The mobility of the fingers was normal in all the cases, except in one. The results obtained from the DASH questionnaire were normal in all the cases, except in one case of fracture of the hamate, and in two cases of fracture of the body. The surgical treatment should reduce the dislocation and stabilize the injuries with osteosynthesis. The fractures of the hamate are usually diagnosed late, and the most recommended treatment is removal of the fragment, although it cannot be deduced from this study. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.

  17. Colles Fracture

    OpenAIRE

    Sánchez León, Belisario; Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Perú

    2014-01-01

    Our expertise is the study of more than 2,000 cases of Colles' fractures. Colles name should in this case to synthesize the type of fractures of the lower end of the radius. There have been various proposed classifications according to the different fracture lines can be demonstrated radiologically in the region of the wrist. We believe that these ratings should only be retained if the concept of the articular fracture or not in the classical sense, since it has great value in the functional ...

  18. Older adults' intrinsic and extrinsic motivation toward physical activity.

    Science.gov (United States)

    Dacey, Marie; Baltzell, Amy; Zaichkowsky, Len

    2008-01-01

    To examine how motives discriminate 3 physical activity levels of inactive, active, and sustained maintainers. Six hundred forty-five adults (M age = 63.8) completed stage-of-change and Exercise Motivations Inventory (EMI-2) scales. Exploratory factor analysis established psychometric properties of the EMI-2 suitable for older adults. Six factors emerged in the EMI-2: health and fitness, social/emotional benefits, weight management, stress management, enjoyment, and appearance. Enjoyment contributed most to differentiating activity levels. Moderators of age and gender were delineated. Intrinsic motivation and self-determined extrinsic motivation distinguish older adults' activity levels.

  19. The effect of extrinsic motivation on cycle time trial performance.

    Science.gov (United States)

    Hulleman, Michiel; De Koning, Jos J; Hettinga, Florentina J; Foster, Carl

    2007-04-01

    Athletes occasionally follow pacing patterns that seem unreasonably aggressive compared with those of prerace performances, potentially because of the motivation provided by competition. This study evaluated the effect of extrinsic motivation on cyclists' time trial performance. Well-trained recreational cyclists (N=7) completed four 1500-m laboratory time trials including a practice trial, two self-paced trials, and a trial where a monetary reward was offered. Time, total power output, power output attributable to aerobic and anaerobic metabolic sources, VO2, and HR were measured. The time required for the second, third, and last (extrinsically motivated) time trials was 133.1 +/- 2.1, 134.1 +/- 3.4, and 133.6 +/- 3.0 s, respectively, and was not different (P>0.05). There were no differences for total (396 +/- 19, 397 +/- 23, and 401 +/- 17 W), aerobic (253 +/- 12, 254 +/- 10, and 246 +/- 13 W), and anaerobic (143 +/- 14, 143 +/- 21, and 155 +/- 11 W) power output. The highest VO2 was not different over consecutive time trials (3.76 +/- 0.19, 3.73 +/- 0.16, and 3.71 +/- 0.22 L x min(-1)). When ranked by performance, without reference to the extrinsic motivation (131.9 +/- 2.4, 133.4 +/- 2.4, and 135.4 +/- 2.5 s), there was a significant difference for the first 100 m and from 100 to 300 m in power output, with a larger total power (560 +/- 102, 491 +/- 82, and 493 +/- 93; and 571 +/- 94, 513 +/- 41, and 484 +/- 88 W) and power attributable to anaerobic sources (446 +/- 100, 384 +/- 80, and 324 +/- 43; and 381 +/- 87, 383 +/- 90, and 289 +/- 91 W) for the fastest trial. Extrinsic motivation did not change the time trial performance, suggesting that 1500-m performance is extremely stable and not readily changeable with simple external motivation. The results suggest that spontaneous improvement in performance for time trials of this duration is attributable to greater early power output, which is primarily attributable to anaerobic metabolic sources.

  20. Intrinsic and extrinsic magnetic properties of the naturally layered manganites

    Energy Technology Data Exchange (ETDEWEB)

    Berger, A.; Mitchell, J. F.; Miller, D. J.; Jiang, J. S.; Bader, S. D.

    1999-11-30

    Structural and magnetic properties of the two-layered Ruddlesden-Popper phase SrO(La{sub 1{minus}x}Sr{sub x}MnO{sub 3}){sub 2} with x = 0.3--0.5 are highlighted. Intrinsic properties of these naturally layered manganites include a colossal magnetoresistance, a composition-dependent magnetic anisotropy, and almost no remanence. Above the Curie temperature there is a non-vanishing extrinsic magnetization attributed to intergrowths (stacking faults in the layered structure). These lattice imperfections consist of additional or missing manganite layers, as observed in transmission electron microscopy. Their role in influencing the properties of the host material is highlighted.

  1. Relative permeability through fractures

    Energy Technology Data Exchange (ETDEWEB)

    Diomampo, Gracel, P.

    2001-08-01

    The mechanism of two-phase flow through fractures is of importance in understanding many geologic processes. Currently, two-phase flow through fractures is still poorly understood. In this study, nitrogen-water experiments were done on both smooth and rough parallel plates to determine the governing flow mechanism for fractures and the appropriate methodology for data analysis. The experiments were done using a glass plate to allow visualization of flow. Digital video recording allowed instantaneous measurement of pressure, flow rate and saturation. Saturation was computed using image analysis techniques. The experiments showed that gas and liquid phases flow through fractures in nonuniform separate channels. The localized channels change with time as each phase path undergoes continues breaking and reforming due to invasion of the other phase. The stability of the phase paths is dependent on liquid and gas flow rate ratio. This mechanism holds true for over a range of saturation for both smooth and rough fractures. In imbibition for rough-walled fractures, another mechanism similar to wave-like flow in pipes was also observed. The data from the experiments were analyzed using Darcy's law and using the concept of friction factor and equivalent Reynold's number for two-phase flow. For both smooth- and rough-walled fractures a clear relationship between relative permeability and saturation was seen. The calculated relative permeability curves follow Corey-type behavior and can be modeled using Honarpour expressions. The sum of the relative permeabilities is not equal one, indicating phase interference. The equivalent homogeneous single-phase approach did not give satisfactory representation of flow through fractures. The graphs of experimentally derived friction factor with the modified Reynolds number do not reveal a distinctive linear relationship.

  2. Extrinsic wrist ligaments: prevalence of injury by magnetic resonance imaging and association with intrinsic ligament tears.

    Science.gov (United States)

    Taneja, Atul K; Bredella, Miriam A; Chang, Connie Y; Joseph Simeone, F; Kattapuram, Susan V; Torriani, Martin

    2013-01-01

    The objective of this study was to determine the prevalence of extrinsic wrist ligament injury by magnetic resonance imaging and its association with intrinsic ligament tears. We reviewed conventional magnetic resonance images performed over a 5-year period from adult patients in the setting of wrist trauma. Two musculoskeletal radiologists examined the integrity of wrist ligaments and presence of bone abnormalities. In a cohort of 75 subjects, extrinsic ligament injury was present in 75%, with radiolunotriquetral being most frequently affected (45%). Intrinsic ligament injury was present in 60%. Almost half of subjects had combined intrinsic and extrinsic ligament injury. Bone abnormalities were seen in 69%. The rate of extrinsic injury was higher in subjects with bone injury (P = 0.008). There is high prevalence of extrinsic ligament injury in the setting of wrist trauma, especially in the presence of bone abnormalities, with combined injury of intrinsic and extrinsic ligaments in about half of cases.

  3. Effects of bonding temperature on microstructure, fracture behavior and joint strength of Ag nanoporous bonding for high temperature die attach

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Su, E-mail: mskim927@gmail.com [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nishikawa, Hiroshi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2015-10-01

    Ag nanoparticle sintering has received much attention as an alternative joining method to lead-based soldering for high temperature electronic applications. However, there are still certain issues with this method, such as difficulties of in controlling the joining layer thickness and the occurrence of unexpected voids resulting from solvent evaporation. In this study, the effect of bonding temperature (200–400 °C) and environment (air and N{sub 2}) on the joint strength of Ag nanoporous bonding (NPB) on electroless nickel/immersion gold finished Cu disks was investigated. A nanoporous Ag sheet fabricated using dealloying method from an Al–Ag precursor was adopted as the insert material. The NPB was conducted at various temperatures (200–400 °C) for 30 min at a pressure of 20 MPa in both air and N{sub 2} environments. The joint strength of NPB was closely related with the microstructure of the Ag layer and the fracture mode of the joint, and increased with increasing bonding temperature through the formation of strong interface and a coarsened Ag layer. The effect of the bonding environment was not significant, except in the case of bonding temperature of 400 °C.

  4. Effects of toughness anisotropy and combined tension, torsion, and bending loads on fracture behavior of ferritic nuclear pipe

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, R.; Marshall, C.; Ghadiali, N.; Wilkowski, G. [Battelle, Columbus, OH (United States)

    1997-04-01

    This paper summarizes work on angled through-wall-crack initiation and combined loading effects on ferritic nuclear pipe performed as part of the Nuclear Regulatory Commission`s research program entitled {open_quotes}Short Cracks In Piping an Piping Welds{close_quotes}. The reader is referred to Reference 1 for details of the experiments and analyses conducted as part of this program. The major impetus for this work stemmed from the observation that initially circumferentially oriented cracks in carbon steel pipes exhibited a high tendency to grow at a different angle when the cracked pipes were subjected to bending or bending plus pressure loads. This failure mode was little understood, and the effect of angled crack grown from an initially circumferential crack raised questions about how cracks in a piping system subjected to combined loading with torsional stresses would behave. There were three major efforts undertaken in this study. The first involved a literature review to assess the causes of toughness anisotropy in ferritic pipes and to develop strength and toughness data as a function of angle from the circumferential plane. The second effort was an attempt to develop a screening criterion based on toughness anisotropy and to compare this screening criterion with experimental pipe fracture data. The third and more significant effort involved finite element analyses to examine why cracks grow at an angle and what is the effect of combined loads with torsional stresses on a circumferentially cracked pipe. These three efforts are summarized.

  5. Microstructure and Mechanical Behavior of High-Entropy Alloys

    Science.gov (United States)

    Licavoli, Joseph J.; Gao, Michael C.; Sears, John S.; Jablonski, Paul D.; Hawk, Jeffrey A.

    2015-10-01

    High-entropy alloys (HEAs) have generated interest in recent years due to their unique positioning within the alloy world. By incorporating a number of elements in high proportion, usually of equal atomic percent, they have high configurational entropy, and thus, they hold the promise of interesting and useful properties such as enhanced strength and alloy stability. The present study investigates the mechanical behavior, fracture characteristics, and microstructure of two single-phase FCC HEAs CoCrFeNi and CoCrFeNiMn with some detailed attention given to melting, homogenization, and thermo-mechanical processing. Ingots approaching 8 kg in mass were made by vacuum induction melting to avoid the extrinsic factors inherent to small-scale laboratory button samples. A computationally based homogenization heat treatment was given to both alloys in order to eliminate any solidification segregation. The alloys were then fabricated in the usual way (forging, followed by hot rolling) with typical thermo-mechanical processing parameters employed. Transmission electron microscopy was subsequently used to assess the single-phase nature of the alloys prior to mechanical testing. Tensile specimens (ASTM E8) were prepared with tensile mechanical properties obtained from room temperature through 800 °C. Material from the gage section of selected tensile specimens was extracted to document room and elevated temperature deformation within the HEAs. Fracture surfaces were also examined to note fracture failure modes. The tensile behavior and selected tensile properties were compared with results in the literature for similar alloys.

  6. Extrinsic doping of the half-Heusler compounds.

    Science.gov (United States)

    Stern, Robin; Dongre, Bonny; Madsen, Georg K H

    2016-08-19

    Controlling the p- and n-type doping is a key tool to improve the power-factor of thermoelectric materials. In the present work we provide a detailed understanding of the defect thermochemistry in half-Heusler compounds. We calculate the formation energies of intrinsic and extrinsic defects in state of the art n-type TiNiSn and p-type TiCoSb thermoelectric materials. It is shown how the incorporation of online repositories can reduce the workload in these calculations. In TiNiSn we find that Ni- and Ti-interstitial defects play a crucial role in the carrier concentration of TiNiSn. Furthermore, we find that extrinsic doping with Sb can substantially enhance the carrier concentration, in agreement with experiment. In case of TiCoSb, we find ScTi, FeCo and SnSb being possible p-type dopants. While experimental work has mainly focussed on Sn-doping of the Sb site, the present result underlines the possibility to p-dope TiCoSb on all lattice sites.

  7. The effect of extrinsic attributes on liking of cottage cheese.

    Science.gov (United States)

    Hubbard, E M; Jervis, S M; Drake, M A

    2016-01-01

    Preference mapping studies with cottage cheese have demonstrated that cottage cheese liking is influenced by flavor, texture, curd size, and dressing content. However, extrinsic factors such as package, label claims, and brand name may also influence liking and have not been studied. The objective of this study was to evaluate the role of package attributes and brand on the liking of cottage cheese. A conjoint survey with Kano analysis (n=460) was conducted to explore the effect of extrinsic attributes (brand, label claim, milkfat content, and price) on liking. Following the survey, 150 consumers evaluated intrinsic attributes of 7 cottage cheeses with and without brand information in a 2-d crossover design. Results were evaluated by 2-way ANOVA and multivariate analyses. Milkfat content and price had the highest influence on liking by conjoint analysis. Cottage cheese with 2% milkfat and a low price was preferred. Specific label claims such as "excellent source of calcium (>10%)" were more attractive to consumers than "low sodium" or "extra creamy." Branding influenced overall liking and purchase intent for cottage cheeses to differing degrees. For national brands, acceptance scores were enhanced in the presence of the brand. An all-natural claim was more appealing than organic by conjoint analysis and this result was also confirmed with consumer acceptance testing. Findings from this study can help manufacturers, as well as food marketers, better target their products and brands with attributes that drive consumer choice. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Examining extrinsic factors that influence product acceptance: a review.

    Science.gov (United States)

    Li, X E; Jervis, S M; Drake, M A

    2015-05-01

    Drivers of liking (DOL) studies are useful for product development to formulate acceptable products; however, DOL alone are insufficient for understanding why a product is purchased and repurchased, which is ultimately the indication of a successful product. Ultimately sensory attributes drive product success (that is, repeat and continued purchase). However, ignoring the importance of extrinsic factors may neglect the vital product attributes responsible for the initial purchase, which may in turn, affect repeat purchase. The perception of sensory attributes assessed by DOL is mitigated by external perceptions of quality. If the sensory attributes do not deliver based upon the quality cues, the product will not be acceptable. Four key extrinsic factors that affect DOL are the perceived satiety, brand and labeling, price, and the emotional impact to decision making. In order to more thoroughly understand what the DOL for a product is, these 4 product cues should be considered in conjunction with sensory attribute perception to gain a holistic understanding of product acceptance. © 2015 Institute of Food Technologists®

  9. Intrinsic and Extrinsic Science: A Dialectic of Scientific Fame.

    Science.gov (United States)

    Feist, Gregory J

    2016-11-01

    In this article, I argue that scientific fame and impact exists on a continuum from the mundane to the transformative/revolutionary. Ideally, one achieves fame and impact in science by synthesizing two extreme career prototypes: intrinsic and extrinsic research. The former is guided by interest, curiosity, passion, gut, and intuition for important untapped topics. The latter is guided by money, grants, and/or what is being published in top-tier journals. Assessment of fame and impact in science ultimately rests on productivity (publication) and some variation of its impact (citations). In addition to those traditional measures of impact, there are some relatively new metrics (e.g., the h index and altmetrics). If psychology is to achieve consensual cumulative progress and better rates of replication, I propose that upcoming psychologists would do well to understand that success is not equal to fame and that individual career success is not necessarily the same as disciplinary success. Finally, if one is to have a successful and perhaps even famous career in psychological science, a good strategy would be to synthesize intrinsic and extrinsic motives for one's research. © The Author(s) 2016.

  10. Greenstick Fractures

    Science.gov (United States)

    ... small, "green" branch on a tree. Most greenstick fractures occur in children younger than 10 years of age. This type ... mistaken for sprains or bruises. More-severe greenstick fractures may cause an obvious ... your doctor if your child has persistent pain in an injured limb. Seek ...

  11. Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compression fractures.

    Science.gov (United States)

    Kurtz, S M; Villarraga, M L; Zhao, K; Edidin, A A

    2005-06-01

    The use of bone cement to treat vertebral compression fractures in a percutaneous manner requires placement of the cement under fluoroscopic image guidance. To enhance visualization of the flow during injection and to monitor and prevent leakage beyond the confines of the vertebral body, the orthopedic community has described increasing the amount of radiopacifier in the bone cement. In this study, static tensile and compressive testing, as well as fully reversed fatigue testing, was performed on three PMMA-based bone cements. Cements tested were SimplexP with 10% barium sulfate (Stryker Orthopedics, Mahwah, NJ) which served as a control; SimplexP with 36% barium sulfate prepared according to the clinical recommendation of Theodorou et al.; and KyphX HV-R with 30% barium sulfate (Kyphon Inc., Sunnyvale, CA). Static tensile and compressive testing was performed in accordance with ASTM F451-99a. Fatigue testing was conducted in accordance with ASTM F2118-01a under fully reversed, +/-10-, +/-15-, and +/-20-MPa stress ranges. Survival analysis was performed using three-parameter Weibull modeling techniques. KyphX HV-R was found to have comparable static mechanical properties and significantly greater fatigue life than either of the two control materials evaluated in the present study. The static tensile and compressive strengths for all three PMMA-based bone cements were found to be an order of magnitude greater than the expected stress levels within a treated vertebral body. The static and fatigue testing data collected in this study indicate that bone cement can be designed with barium sulfate levels sufficiently high to permit fluoroscopic visualization while retaining the overall mechanical profile of a conventional bone cement under typical in vivo loading conditions.

  12. Fracture Mechanics

    CERN Document Server

    Zehnder, Alan T

    2012-01-01

    Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge. Alan Zehnder joined the faculty at Cornell University in 1988. Since then he has served in a number of leadership roles including Chair of the Department of Theoretical and Applied Mechanics, and Director of the Sibley School of Mechanical and Aerospace Engineering.  He teaches applied mechanics and his research t...

  13. Ankle fracture - aftercare

    Science.gov (United States)

    Malleolar fracture; Tri-malleolar; Bi-malleolar; Distal tibia fracture; Distal fibula fracture; Malleolus fracture ... Some ankle fractures may require surgery when: The ends of the bone are out of line with each other (displaced). The ...

  14. Fractured Identity: A Framework for Understanding Young Asian American Women’s Self-harm and Suicidal Behaviors

    OpenAIRE

    Hahm, Hyeouk Chris; Gonyea, Judith G.; Chiao, Christine; Koritsanszky, Luca Anna

    2014-01-01

    Despite the high suicide rate among young Asian American women, the reasons for this phenomenon remain unclear. This qualitative study explored the family experiences of 16 young Asian American women who are children of immigrants and report a history of self-harm and/or suicidal behaviors. Our findings suggest that the participants experienced multiple types of “disempowering parenting styles” that are characterized as: abusive, burdening, culturally disjointed, disengaged, and gender-prescr...

  15. DEM Particle Fracture Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Boning [Univ. of Colorado, Boulder, CO (United States); Herbold, Eric B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homel, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Regueiro, Richard A. [Univ. of Colorado, Boulder, CO (United States)

    2015-12-01

    An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.

  16. Geometrically Frustrated Fracture Mechanics

    Science.gov (United States)

    Mitchell, Noah; Koning, Vinzenz; Vitelli, Vincenzo; Irvine, William T. M.

    2015-03-01

    When a flat elastic sheet is forced to conform to a surface with Gaussian curvature, stresses arise in the sheet. The mismatch between initial and final metrics gives rise to new fracture behavior which cannot be achieved by boundary loading alone. Using experiments of PDMS sheets frustrated on 3D-printed surfaces and a linearized analytical model, we demonstrate the ability of curvature to govern the sheets' fracture phenomenology. In this talk, we first show that curvature can both stimulate and suppress fracture initiation, depending on the position and orientation of the initial slit. Secondly, we show that curvature can steer the path of a crack as it propagates through the material. Lastly, the curvature can arrest cracks which would otherwise continue to propagate.

  17. Mixed-mode fracture of ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.

    1985-01-01

    The mixed-mode fracture behavior of ceramic materials is of importance for monolithic ceramics in order to predict the onset of fracture under generalized loading conditions and for ceramic composites to describe crack deflection toughening mechanisms. Experimental data on surface flaw mixed-mode fracture in various ceramics indicate that the flaw-plane normal stress at fracture decreases with increasing in-flaw-plane shear stress, although present data exhibit a fairly wide range in details of this sigma - tau relationship. Fracture from large cracks suggests that Mode II has a greater effect on Mode I fracture than Mode III. A comparison of surface flaw and large crack mixed-mode I-II fracture responses indicated that surface flaw behavior is influenced by shear resistance effects.

  18. Fracture fixation.

    Science.gov (United States)

    Taljanovic, Mihra S; Jones, Marci D; Ruth, John T; Benjamin, James B; Sheppard, Joseph E; Hunter, Tim B

    2003-01-01

    The basic goal of fracture fixation is to stabilize the fractured bone, to enable fast healing of the injured bone, and to return early mobility and full function of the injured extremity. Fractures can be treated conservatively or with external and internal fixation. Conservative fracture treatment consists of closed reduction to restore the bone alignment. Subsequent stabilization is then achieved with traction or external splinting by slings, splints, or casts. Braces are used to limit range of motion of a joint. External fixators provide fracture fixation based on the principle of splinting. There are three basic types of external fixators: standard uniplanar fixator, ring fixator, and hybrid fixator. The numerous devices used for internal fixation are roughly divided into a few major categories: wires, pins and screws, plates, and intramedullary nails or rods. Staples and clamps are also used occasionally for osteotomy or fracture fixation. Autogenous bone grafts, allografts, and bone graft substitutes are frequently used for the treatment of bone defects of various causes. For infected fractures as well as for treatment of bone infections, antibiotic beads are frequently used. Copyright RSNA, 2003

  19. Factors predicting perioperative delirium and acute exacerbation of behavioral and psychological symptoms of dementia based on admission data in elderly patients with proximal femoral fracture: A retrospective study.

    Science.gov (United States)

    Tanaka, Tomohiro

    2016-07-01

    To examine factors predicting the onset of perioperative delirium and acute exacerbation of behavioral and psychological symptoms of dementia (BPSD), based on patient background, operative background and laboratory data obtained on admission, in elderly patients with proximal femoral fracture. The participants were 152 patients (aged >70 years) who underwent surgery between 1 November 2012 and 31 March 2014. The participants were classified into group B (with onset of perioperative delirium or acute exacerbation of BPSD, n = 52), or group N, (without onset, n = 100), and risk factors were retrospectively examined. Onset was judged based on the presence or absence of common items; that is, "hallucination and delusion," "disturbing speech," "excitatory behavior" and "altered sleep-wake cycle." The participants were observed for 1 week after admission. The incidence of perioperative delirium or acute exacerbation of BPSD was 34.2% in total. In univariate analysis, the incidence was significantly higher (P < 0.005) in group B for the age, history of dementia and serum albumin level items. In multivariate analysis, history of dementia, serum albumin level and peripheral lymphocyte count (odds ratio 3.55, 0.17, 1.00, respectively) were identified as independent predictive factors. In the subanalysis, the incidence was 91.3% in the group with a history of dementia, serum albumin level <3.7 g/dL and peripheral lymphocyte count < 1200/μL. History of dementia, a low serum albumin level and low peripheral lymphocyte count were found to be useful factors for predicting the onset of perioperative delirium and acute exacerbation of BPSD. Geriatr Gerontol Int 2016; 16: 821-828. © 2015 Japan Geriatrics Society.

  20. Alberta Consumers' Valuation of Extrinsic and Intrinsic Red Meat Attributes

    DEFF Research Database (Denmark)

    Steiner, Bodo; Gao, Fei; Unterschultz, Jim

    2010-01-01

    , this study provides a “post-BSE” assessment of consumer perceptions toward selected bison meat attributes. The results from an attribute-based choice experiment provide little support that simple traceability assurance schemes have value to consumers of bison and beef steaks, thus confirming similar findings......This paper analyzes Alberta consumers’ perceptions toward extrinsic and intrinsic attributes of bison and beef steaks. In contrast to published Canadian consumer studies on bison meat that were undertaken prior to May 2003, before the first BSE case of Canadian origin was identified in beef cattle...... of earlier beef studies that have employed different methodological approaches. The results also suggest that consumers are willing to pay significant premiums for bison steaks that are certified as being produced without genetically modified organisms, an attribute that has so far been unexplored...

  1. MATERIAL ELEMENT MODEL FOR EXTRINSIC SEMICONDUCTORS WITH DEFECTS OF DISLOCATION

    Directory of Open Access Journals (Sweden)

    Maria Paola Mazzeo

    2011-07-01

    Full Text Available In a previous paper we outlined a geometric model for the thermodynamic description of extrinsic semiconductors with defects of dislocation.Applying a geometrization technique, within the rationalextended irreversible thermodynamics with internal variables, the dynamical system for simple material elements of these media, the expressions of the entropy function and the entropy 1-form were obtained. In this contribution we deepen the study of this geometric model. We give a detailed description of the defective media under consideration and of the dislocation core tensor, we introduce the transformation induced by the process and, applying the closure conditions for the entropy 1-form, we derive the necessary conditions for the existence of the entropy function. These and other results are new in the paper.The derivation of the relevant entropy 1-form is the starting point to introduce an extended thermodynamical phase space.

  2. Efficacy test of a toothpaste in reducing extrinsic dental stain

    Science.gov (United States)

    Agustanti, A.; Ramadhani, S. A.; Adiatman, M.; Rahardjo, A.; Callea, M.; Yavuz, I.; Maharani, D. A.

    2017-08-01

    This clinical trial compared the external dental stain reduction achieved by tested toothpaste versus placebo in adult patients. In this double-blind, parallel, randomised clinical trial, 45 female volunteers with a mean age of 20 years old were included. All study subjects front teeth were topically applicated with Silver Diamine Fluoride (SDF) to create external dental stains. Subjects were randomized into test (n=22) and control (n=23) groups. Toothpastes were used for two days to analyse the effects of removing external stains on the labial surfaces of all anterior teeth. VITA Easyshade Advance 4.0 was used to measure dental extrinsic stains changes. The analysis showed statistically significant efficacy of the tested toothpaste in reducing external dental stain caused by SDF, comparing to the placebo toothpaste, after one and two days of usage. The tested toothpaste was effective in reducing dental stain.

  3. Comparison of exit time moment spectra for extrinsic metric balls

    DEFF Research Database (Denmark)

    Hurtado, Ana; Markvorsen, Steen; Palmer, Vicente

    2012-01-01

    We prove explicit upper and lower bounds for the $L^1$-moment spectra for the Brownian motion exit time from extrinsic metric balls of submanifolds $P^m$ in ambient Riemannian spaces $N^n$. We assume that $P$ and $N$ both have controlled radial curvatures (mean curvature and sectional curvature......, respectively) as viewed from a pole in $N$. The bounds for the exit moment spectra are given in terms of the corresponding spectra for geodesic metric balls in suitably warped product model spaces. The bounds are sharp in the sense that equalities are obtained in characteristic cases. As a corollary we also...... obtain new intrinsic comparison results for the exit time spectra for metric balls in the ambient manifolds $N^n$ themselves....

  4. Extrinsic allergic alveolitis caused by esparto (Stipa tenacissima).

    Science.gov (United States)

    Gamboa, P M; de las Marinas, M D; Antépara, I; Jáuregui, I; Sanz, M M

    1990-01-01

    Extrinsic allergic alveolitis (EAA) are clinical entities of growing importance. The discovered etiological agents which can induce them, organic and inorganic substances of low molecular weight which are frequently found in the laboral environment, are every day more numerous. In the group of substances which are rarely implied in EAA etiology, we must mention esparto (Stipa tenacissima), a grass of the graminea family widely used in Spain. The EAA caused by Stipa tenacissima inhalation in known as stipatosis, a disease with poorly systematized clinical manifestations because of the few cases described in the literature so far. Our purpose in this report is to show the second case, in world literature, of EAA correctly characterized.

  5. Extrinsic Motivators Affecting Fourth-Grade Students' Interest and Enrollment in an Instrumental Music Program

    Science.gov (United States)

    Vasil, Martina

    2013-01-01

    The purpose of this study was to investigate fourth-grade students' extrinsic motivators for joining and continuing in a school instrumental music program. Three research questions were investigated: (a) What extrinsic motivators have influenced fourth-grade students' initial interest and continuing participation in an instrumental music program?…

  6. Intrinsic and Extrinsic School Motivation as a Function of Age: The Mediating Role of Autonomy Support

    Science.gov (United States)

    Gillet, Nicolas; Vallerand, Robert J.; Lafreniere, Marc-Andre K.

    2012-01-01

    The main purpose of the present research was to investigate school intrinsic and extrinsic motivation, and amotivation as a function of age in a sample of 1,600 elementary and high school students aged 9-17 years. First, results revealed a systematic decrease in intrinsic motivation and self-determined extrinsic motivation from age 9 to 12 years,…

  7. Creating Rich Portraits: A Mixed-Methods Approach to Understanding Profiles of Intrinsic and Extrinsic Motivations

    Science.gov (United States)

    Corpus, Jennifer Henderlong; Wormington, Stephanie V.; Haimovitz, Kyla

    2016-01-01

    A person-centered, mixed-methods approach (self-report surveys, semistructured interviews, school records) was used to characterize and evaluate profiles of intrinsic and extrinsic motivations among 243 third- through eighth-grade students. Cluster analysis suggested four distinct profiles: high quantity (high intrinsic, high extrinsic), primarily…

  8. Intrinsic and Extrinsic Interlay Factors in Saudi Graduate Students' Perception of Performance and Success

    Science.gov (United States)

    Maguire, Richard K.; Corbin, Thomas Philip, Jr.

    2015-01-01

    The natural symbiotic relationship between intrinsic and extrinsic factors and how they contribute to student success is undeniable. A plethora of work including self-determination, attribution, and social cognitive theories speak about academic achievement by students having a reciprocity relationship between the extrinsic factors that underline…

  9. Motor Memory Is Encoded as a Gain-Field Combination of Intrinsic and Extrinsic Action Representations

    Science.gov (United States)

    Brayanov, Jordan B.; Press, Daniel Z.; Smith, Maurice A.

    2013-01-01

    Actions can be planned in either an intrinsic (body-based) reference frame or an extrinsic (world-based) frame, and understanding how the internal representations associated with these frames contribute to the learning of motor actions is a key issue in motor control. We studied the internal representation of this learning in human subjects by analyzing generalization patterns across an array of different movement directions and workspaces after training a visuomotor rotation in a single movement direction in one workspace. This provided a dense sampling of the generalization function across intrinsic and extrinsic reference frames, which allowed us to dissociate intrinsic and extrinsic representations and determine the manner in which they contributed to the motor memory for a trained action. A first experiment showed that the generalization pattern reflected a memory that was intermediate between intrinsic and extrinsic representations. A second experiment showed that this intermediate representation could not arise from separate intrinsic and extrinsic learning. Instead, we find that the representation of learning is based on a gain-field combination of local representations in intrinsic and extrinsic coordinates. This gain-field representation generalizes between actions by effectively computing similarity based on the (Mahalanobis) distance across intrinsic and extrinsic coordinates and is in line with neural recordings showing mixed intrinsic-extrinsic representations in motor and parietal cortices. PMID:23100418

  10. Experimental Studies on the Bonding Strength and Fracture Behavior of Incompatible Materials Bonded by Mechanical Adhesion in Multilayer Rotational Molding

    Directory of Open Access Journals (Sweden)

    Martin Löhner

    2016-01-01

    Full Text Available Rotational molding is a plastic processing method that allows for the production of seamless, hollow parts. Defined shaping of the polymeric material only takes place on the outer surface where contact to the tooling is given. The inner surface forms by surface tension effects. By sequential adding of materials, complex multilayer build-up is possible. Besides pure, single materials, filled, or multiphase systems can be processed as well. In this work, possibilities to generate bonding between supposedly incompatible materials by adding a mix-material interlayer are investigated. Interlock mechanisms on a microscale dimension occur and result in mechanical bonding between the used materials, polyethylene (PE and thermoplastic polyurethane (TPE-U. The bonding strength between the materials was investigated to reveal the correlations between processing parameters, resulting layer build-up, and bonding strength. The failure behavior was analyzed and inferences to the influence of the varied parameters were drawn.

  11. Mechanical and fracture behavior of nuclear fuel cladding in terms of transport and temporary dry storage; Comportamiento mecanio y en fractura de vainas de combustible nuclear en condiciones de transporte y almacenamiento temporal en seco

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Hervias, J.; Martin Rengel, M. A.; Gomez, F. J.

    2012-11-01

    In this work, the most relevant results of a research project on the mechanical and fracture behavior of cladding in transport and dry storage conditions are summarized. the project is being carried out at Universidad Politecnica de Madrid in collaboration with ENUSA, ENRESA and CSN. Non-irradiated cladding is investigated. The main objective is to determine a failure criterion of cladding as a function of hydrogen content, temperature and strain rate. (Author)

  12. Supracondylar Fracture

    Directory of Open Access Journals (Sweden)

    Jessica Andrusaitis

    2017-07-01

    Full Text Available History of present illness: A 15-year-old male presented to the emergency department with right elbow pain after falling off a skateboard. The patient denied a decrease in strength or sensation but did endorse paresthesias to his hand. On exam, the patient had an obvious deformity of his right elbow with tenderness to palpation and decreased range of motion at the elbow. Sensation, motor function, and pulses were intact. Radiographic imaging was obtained. Significant findings: The pre-reduction films show a type III supracondylar fracture. There is complete displacement of the distal humerus anteriorly. Specific findings for supracondylar fracture include: a posterior fat pad (red arrow and a displaced anterior humeral line (yellow line.1 When no fracture is present, the anterior humeral line should intersect the middle third of the capitellum; in this X-ray, it does not intersect the capitellum at all. This X-ray demonstrates a normal radiocapitellar line (blue line that intersects the capitellum. The presence of a narrow anterior fat pad aka “sail sign” can be normal. Discussion: Supracondylar fractures of the humerus occur at the distal portion of the humerus without involving the growth plate.2 This is the second most common fracture in children overall. In children, it is the most common fracture of the elbow.3 This injury has a high risk of neurovascular compromise, such as compartment syndrome or ischemic contracture, and thus the clinician must perform immediate and frequent neurovascular assessments focusing on the distributions of the brachial artery in addition to the median, ulnar, and radial nerves.4 Hyperextension injuries that typically occur following a fall onto an outstretched arm are responsible for 95% of supracondylar fractures.1 A type I supracondylar fracture is non-displaced and can be treated with immobilization through a posterior splint and sling5 with close follow-up, type II is angulated but with an intact

  13. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Frauk; Hughes, Richard G.

    2001-08-15

    Research continues on characterizing and modeling the behavior of naturally fractured reservoir systems. Work has progressed on developing techniques for estimating fracture properties from seismic and well log data, developing naturally fractured wellbore models, and developing a model to characterize the transfer of fluid from the matrix to the fracture system for use in the naturally fractured reservoir simulator.

  14. Atypical fracture with long-term bisphosphonate therapy is associated with altered cortical composition and reduced fracture resistance

    Science.gov (United States)

    Lloyd, Ashley A.; Gludovatz, Bernd; Riedel, Christoph; Luengo, Emma A.; Saiyed, Rehan; Marty, Eric; Lorich, Dean G.; Lane, Joseph M.; Ritchie, Robert O.

    2017-01-01

    Bisphosphonates are the most widely prescribed pharmacologic treatment for osteoporosis and reduce fracture risk in postmenopausal women by up to 50%. However, in the past decade these drugs have been associated with atypical femoral fractures (AFFs), rare fractures with a transverse, brittle morphology. The unusual fracture morphology suggests that bisphosphonate treatment may impair toughening mechanisms in cortical bone. The objective of this study was to compare the compositional and mechanical properties of bone biopsies from bisphosphonate-treated patients with AFFs to those from patients with typical osteoporotic fractures with and without bisphosphonate treatment. Biopsies of proximal femoral cortical bone adjacent to the fracture site were obtained from postmenopausal women during fracture repair surgery (fracture groups, n = 33) or total hip arthroplasty (nonfracture groups, n = 17). Patients were allocated to five groups based on fracture morphology and history of bisphosphonate treatment [+BIS Atypical: n = 12, BIS duration: 8.2 (3.0) y; +BIS Typical: n = 10, 7.7 (5.0) y; +BIS Nonfx: n = 5, 6.4 (3.5) y; −BIS Typical: n = 11; −BIS Nonfx: n = 12]. Vibrational spectroscopy and nanoindentation showed that tissue from bisphosphonate-treated women with atypical fractures was harder and more mineralized than that from bisphosphonate-treated women with typical osteoporotic fractures. In addition, fracture mechanics measurements showed that tissue from patients treated with bisphosphonates had deficits in fracture toughness, with lower crack-initiation toughness and less crack deflection at osteonal boundaries than that of bisphosphonate-naïve patients. Together, these results suggest a deficit in intrinsic and extrinsic toughening mechanisms, which contribute to AFFs in patients treated with long-term bisphosphonates. PMID:28760963

  15. High-Risk Stress Fractures: Diagnosis and Management.

    Science.gov (United States)

    McInnis, Kelly C; Ramey, Lindsay N

    2016-03-01

    Stress fractures are common overuse injuries in athletes. They occur during periods of increased training without adequate rest, disrupting normal bone reparative mechanisms. There are a host of intrinsic and extrinsic factors, including biochemical and biomechanical, that put athletes at risk. In most stress fractures, the diagnosis is primarily clinical, with imaging indicated at times, and management focused on symptom-free relative rest with advancement of activity as tolerated. Overall, stress fractures in athletes have an excellent prognosis for return to sport, with little risk of complication. There is a subset of injuries that have a greater risk of fracture progression, delayed healing, and nonunion and are generally more challenging to treat with nonoperative care. Specific locations of high-risk stress fracture include the femoral neck (tension side), patella, anterior tibia, medial malleolus, talus, tarsal navicular, proximal fifth metatarsal, and great toe sesamoids. These sites share a characteristic region of high tensile load and low blood flow. High-risk stress fractures require a more aggressive approach to evaluation, with imaging often necessary, to confirm early and accurate diagnosis and initiate immediate treatment. Treatment consists of nonweight-bearing immobilization, often with a prolonged period away from sport, and a more methodic and careful reintroduction to athletic activity. These stress fractures may require surgical intervention. A high index of suspicion is essential to avoid delayed diagnosis and optimize outcomes in this subset of stress fractures. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  16. Intrinsic and Extrinsic Motivation Among Adolescent Ten-Pin Bowlers in Kuala Lumpur, Malaysia

    Directory of Open Access Journals (Sweden)

    Teo Eng-Wah

    2015-03-01

    Full Text Available Motivation has long been associated with sports engagement. However, to date no research has been performed to understand the domain of motivation among ten-pin bowlers. The purpose of this study was to investigate different types of motivation (i.e., intrinsic vs. extrinsic based on self-determination theory from the perspective of gender and the bowler type (competitive vs. casual. A total of 240 bowlers (104 male, 136 female; 152 competitive, 88 casual with a mean age of 16.61 ± 0.78 years were recruited in Kuala Lumpur. The Sport Motivation Scale, a 28-item self-report questionnaire measuring seven subscales (i.e., intrinsic motivation to know, intrinsic motivation to accomplish, intrinsic motivation to experience stimulation, extrinsic motivation to identify regulation, extrinsic motivation for introjection regulation, extrinsic motivation to external regulation, and amotivation was administered. Results showed significant differences (t=10.43, df=239, p=0.01 between total scores of intrinsic and extrinsic motivation among tenpin bowlers. There were significant gender differences with respect to intrinsic motivation to know, intrinsic motivation to accomplish, intrinsic motivation to experience stimulation, and extrinsic motivation to identify regulation. However, no significant bowler type differences were found for either the intrinsic (t=-1.15, df=238, p=0.25 or extrinsic (t=-0.51, df=238, p=0.61 motivation dimensions. In conclusion, our study demonstrated substantial intrinsic motivation for gender effects, but no bowler type effects among adolescent ten-pin bowlers.

  17. Distinguishing subtypes of extrinsic motivation among people with mild to borderline intellectual disability.

    Science.gov (United States)

    Frielink, N; Schuengel, C; Embregts, P

    2017-07-01

    According to self-determination theory, motivation is ordered in types, including amotivation, extrinsic motivation and intrinsic motivation. Self-determination theory defines four subtypes of extrinsic motivation: external motivation, introjected motivation, identified motivation and integrated motivation. Although it has been argued theoretically that the different types of motivation are universally applicable, Reid et al. () proposed a dichotomy of broad subtypes of extrinsic motivation for people with intellectual disability (ID) due to their cognitive limitations. The current study challenges this proposal by testing whether the four subtypes of extrinsic motivation can be differentiated among people with ID as well. The subtypes of extrinsic motivation were measured using two adapted versions of the Self-Regulation Questionnaire, one regarding exercise and one regarding support. In total, 186 adults with mild to borderline ID participated in the study. Results supported the distinction between the four subtypes of extrinsic motivation regarding both exercise and support. In addition, the correlation coefficients supported a quasi-simplex pattern of correlations among the subtypes, indicating that adjacent subtypes were more closely related than non-adjacent subtypes. Moreover, the study showed sufficient Cronbach's alphas and test-retest reliabilities for early stage research. Overall, the results of the current study provide initial evidence for the universality of the four subtypes of extrinsic motivation across populations with and without ID. © 2017 The Authors. Journal of Intellectual Disability Research published by MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disibilities and John Wiley & Sons Ltd.

  18. Intrinsic and extrinsic motivation among adolescent ten-pin bowlers in kuala lumpur, malaysia.

    Science.gov (United States)

    Teo, Eng-Wah; Khoo, Selina; Wong, Rebecca; Wee, Eng-Hoe; Lim, Boon-Hooi; Rengasamy, Shabesan Sit

    2015-03-29

    Motivation has long been associated with sports engagement. However, to date no research has been performed to understand the domain of motivation among ten-pin bowlers. The purpose of this study was to investigate different types of motivation (i.e., intrinsic vs. extrinsic) based on self-determination theory from the perspective of gender and the bowler type (competitive vs. casual). A total of 240 bowlers (104 male, 136 female; 152 competitive, 88 casual) with a mean age of 16.61 ± 0.78 years were recruited in Kuala Lumpur. The Sport Motivation Scale, a 28-item self-report questionnaire measuring seven subscales (i.e., intrinsic motivation to know, intrinsic motivation to accomplish, intrinsic motivation to experience stimulation, extrinsic motivation to identify regulation, extrinsic motivation for introjection regulation, extrinsic motivation to external regulation, and amotivation) was administered. Results showed significant differences (t=10.43, df=239, p=0.01) between total scores of intrinsic and extrinsic motivation among ten-pin bowlers. There were significant gender differences with respect to intrinsic motivation to know, intrinsic motivation to accomplish, intrinsic motivation to experience stimulation, and extrinsic motivation to identify regulation. However, no significant bowler type differences were found for either the intrinsic (t=-1.15, df=238, p=0.25) or extrinsic (t=-0.51, df=238, p=0.61) motivation dimensions. In conclusion, our study demonstrated substantial intrinsic motivation for gender effects, but no bowler type effects among adolescent ten-pin bowlers.

  19. Hydraulic fracturing

    Energy Technology Data Exchange (ETDEWEB)

    Clampitt, R.L.

    1973-04-17

    A method of fracturing a subterranean porous formation penetrated by a well bore consists of injecting down the well and into the formation, at a pressure sufficient to fracture the formation, a fracturing fluid comprising an aqueous gel. This gel is composed of water to which there has been added: a water-thickening amount of a water-dispersible polymer selected from the group consisting of polyacrylamides and polymethacrylamides; crosslinked polyacrylamides and crosslinked polyacrylamides; polyacrylic acid and polymethacrylic acid; polyacrylates; polymers of N-substituted acrylamides; copolymers of acrylamide with another ethylenically unsaturated monomer copolymerizable therewith; mixtures of the polymers; a water-soluble compound of a polyvalent metal which is capable of gelling the water when the valence of the metal is reduced to a lower valence state; and a water-soluble reducing agent. (31 claims)

  20. [Stress fractures].

    Science.gov (United States)

    Uhl, M

    2016-07-01

    Bone stress injuries are due to repetitive mechanical overuse of the skeleton and occur as a result of microscopic lesions sustained when bone is subjected to repeated submaximal stress. Over time accumulation of such injuries can lead to bone failure and fractures. Stress-related bone injuries are relatively common among otherwise healthy persons who have recently started new or intensified forms of physical training activities. Stress injuries lead to typical findings on radiography, bone scintigraphy, computed tomography (CT) and magnetic resonance imaging (MRI) and need to be discriminated from other conditions, in particular infections and neoplasms. Stress fractures must be differentiated from insufficiency fractures that occur in bones with reduced mechanical resistance or disturbed structure.

  1. Investigation of the local fracture toughness and the elastic-plastic fracture behavior of NiAl and tungsten by means of micro-cantilever tests; Untersuchung der lokalen Bruchzaehigkeit und des elastisch-plastischen Bruchverhaltens von NiAl und Wolfram mittels Mikrobiegebalkenversuchen

    Energy Technology Data Exchange (ETDEWEB)

    Ast, Johannes

    2016-07-01

    The objective of this work was to get an improved understanding of the size dependence of the fracture toughness. For this purpose notched micro-cantilevers were fabricated ranging in dimensions from the submicron regime up to some tens of microns by means of a focused ion beam. B2-NiAl and tungsten were chosen as model materials as their brittle to ductile transition temperatures are well above room temperature. In that way, fracture processes accompanied by limited plastic deformation around the crack tip could be studied at the micro scale. For this size regime, new methods to describe the local elastic-plastic fracture behavior and to measure the fracture toughness were elaborated. Particular focus was set on the J-integral concept which was adapted to the micro scale to derive crack growth from stiffness measurements. This allowed a precise analysis of the transition from crack tip blunting to stable crack growth which is necessary to accurately measure the fracture toughness. Experiments in single crystalline NiAl showed for the two investigated crack systems, namely the hard and the soft orientation, that the fracture toughness at the micro scale is the same as the one known from macroscopic testing. Thus, size effects were not found for the tested length scale. The addition of little amounts of iron did not affect the fracture toughness considerably. Yet, it influenced the crack growth in those samples and consequently the resistance curve behavior. Concerning experiments in single crystalline tungsten, the fracture toughness showed a clear dependency on sample size. The smallest cantilevers fractured purely by cleavage. Larger samples exhibited stable crack growth along with plastic deformation which was recognizable in SEM-micrographs and quantified by means of EBSD measurements. Just as in macroscopic testing, the investigated crack system <100>{100} demonstrated a dependency on loading rate with higher loading rates leading to a more brittle behavior

  2. Fracture Blisters

    Directory of Open Access Journals (Sweden)

    Uebbing, Claire M

    2011-02-01

    Full Text Available Fracture blisters are a relatively uncommon complication of fractures in locations of the body, such as the ankle, wrist elbow and foot, where skin adheres tightly to bone with little subcutaneous fat cushioning. The blister that results resembles that of a second degree burn.These blisters significantly alter treatment, making it difficult to splint or cast and often overlying ideal surgical incision sites. Review of the literature reveals no consensus on management; however, most authors agree on early treatment prior to blister formation or delay until blister resolution before attempting surgical correction or stabilization. [West J Emerg Med. 2011;12(1;131-133.

  3. Giant extrinsic negative thermal expansion in vanadium pentoxide nanocrystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Bahgat, A.A. [Department of Physics, Faculty of Science, King Khaled University, P.O. Box 9004, Abha (Saudi Arabia); Department of Physics, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo (Egypt); Al-Hajry, A. [Department of Physics, Faculty of Science, King Khaled University, P.O. Box 9004, Abha (Saudi Arabia); El-Desoky, M.M. [Department of Physics, Faculty of Science, King Khaled University, P.O. Box 9004, Abha (Saudi Arabia); Department of Physics, Faculty of Education, Suez Canal University, Al-Arish (Egypt)

    2006-06-15

    Vanadium pentoxide gels, V{sub 2}O{sub 5}.1.6H{sub 2}O, give rise to xerogel layers that exhibit a preferred orientation. X-ray diffraction of this xerogel displays the 00l peaks typical of a turbostratic stacking of the V{sub 2}O{sub 5} ribbons along a direction parallel to the substrate. The distance along the c-axis is observed from the interlayer spacing to decrease continuously with increasing temperature up to 180 C, as observed by high-temperature X-ray diffraction. This contraction may be described by an extrinsic mechanism of negative thermal expansion (NTE). The coefficient of NTE as large as -1.5 x 10{sup -3} K{sup -1} was observed. Full recovery of the interlayer spacing is obtained after cooling the sample to room temperature in open air, where water molecules are reabsorbed, indicating that the process is reversible and the heating process can be repeated without losing NTE. The structure of the xerogel was explored further using differential scanning calorimetry as well as infrared spectroscopy. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Enabling complex genetic circuits to respond to extrinsic environmental signals.

    Science.gov (United States)

    Hoynes-O'Connor, Allison; Shopera, Tatenda; Hinman, Kristina; Creamer, John Philip; Moon, Tae Seok

    2017-07-01

    Genetic circuits have the potential to improve a broad range of metabolic engineering processes and address a variety of medical and environmental challenges. However, in order to engineer genetic circuits that can meet the needs of these real-world applications, genetic sensors that respond to relevant extrinsic and intrinsic signals must be implemented in complex genetic circuits. In this work, we construct the first AND and NAND gates that respond to temperature and pH, two signals that have relevance in a variety of real-world applications. A previously identified pH-responsive promoter and a temperature-responsive promoter were extracted from the E. coli genome, characterized, and modified to suit the needs of the genetic circuits. These promoters were combined with components of the type III secretion system in Salmonella typhimurium and used to construct a set of AND gates with up to 23-fold change. Next, an antisense RNA was integrated into the circuit architecture to invert the logic of the AND gate and generate a set of NAND gates with up to 1168-fold change. These circuits provide the first demonstration of complex pH- and temperature-responsive genetic circuits, and lay the groundwork for the use of similar circuits in real-world applications. Biotechnol. Bioeng. 2017;114: 1626-1631. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Intrinsic and extrinsic motivational orientations in the competitive context: an examination of person-situation interactions.

    Science.gov (United States)

    Abuhamdeh, Sami; Csikszentmihalyi, Mihaly

    2009-10-01

    The current study examined Intrinsic Motivation Orientation and Extrinsic Motivation Orientation (Work Preference Inventory; Amabile, Hill, Hennessey, & Tighe, 1994) as potential trait-level moderators of the way Internet chess players responded to the intrinsic and extrinsic rewards of the chess games they played. On the basis of the defining characteristics of these 2 types of motivational orientations, we predicted that (a) Intrinsic Motivation Orientation would be associated with a stronger curvilinear relationship between challenge and enjoyment and (b) Extrinsic Motivation Orientation would be associated with a heightened affective responsivity to competitive outcome (i.e., winning vs. losing). Results supported the predictions. Implications of the findings are discussed.

  6. Comportamiento de las fracturas maxilofaciales atendidas en el Hospital Universitario de Maabar, República de Yemen Behavior of the maxillofacial fractures in the Maabar's University Hospital, Yemen Republic

    Directory of Open Access Journals (Sweden)

    Juan Carlos Quintana Díaz

    2012-03-01

    Full Text Available Introducción: las fracturas maxilofaciales constituyen más del 50 % del total de fracturas, y en muchas ocasiones están asociadas a otras fracturas del cuerpo humano. Objetivos: estudiar el comportamiento de estas lesiones en el Hospital Universitario de Maabar, de la Universidad de Thamar (Yemen, determinar su relación con la edad, sexo, etiología y localización, y compararlo con los resultados de otros estudios realizados en Cuba y en otros países. Métodos: se realizó un estudio estadístico descriptivo retrospectivo de las fracturas maxilofaciales atendidas por la brigada de profesores cubanos en este hospital entre los años 2006 y 2009. Las variables estudiadas fueron: sexo, edad, causa de la fractura y región afectada, así como el tipo de fractura y los traumatismos asociados. Resultados: el sexo masculino fue mucho más afectado que el femenino. Los accidentes del tránsito fueron la causa más común (más del 50 % de los casos. La fractura nasal fue la más frecuente, y en más de 150 casos se detectaron traumatismos asociados, muchos muy graves, como fracturas de cráneo, de miembros y heridas de partes blandas. Conclusiones: se confirman los resultados que el sexo masculino es el más afectado, y que los accidentes del tránsito son la principal causa de fracturas en la cara. La fractura nasal es la más frecuente de todas las de los huesos faciales (más del 50 % de los casos, pero otros registran la mandíbula o la región zigomática como la zona más frecuente. Impresionaron las fracturas mandibulares en niños, lo cual no es frecuente en Cuba.Introduction: the maxillofacial fractures account for more than the 50 % of the total of fractures and often are associated with other fractures of the human body. Objectives: to study the behavior of these lesions in patients from the Maabar's University Hospital of the Thamar's University (Yemen, to determine its relation to age, sex, etiology and location and to compare it with

  7. Stress fractures of the pelvis and legs in athletes: a review.

    Science.gov (United States)

    Behrens, Steve B; Deren, Matthew E; Matson, Andrew; Fadale, Paul D; Monchik, Keith O

    2013-03-01

    Stress fractures are common injuries in athletes, often difficult to diagnose. A stress fracture is a fatigue-induced fracture of bone caused by repeated applications of stress over time. PubMed articles published from 1974 to January 2012. Intrinsic and extrinsic factors may predict the risk of stress fractures in athletes, including bone health, training, nutrition, and biomechanical factors. Based on their location, stress fractures may be categorized as low- or high-risk, depending on the likelihood of the injury developing into a complete fracture. Treatment for these injuries varies substantially and must account for the risk level of the fractured bone, the stage of fracture development, and the needs of the patient. High-risk fractures include the anterior tibia, lateral femoral neck, patella, medial malleolus, and femoral head. Low-risk fractures include the posteromedial tibia, fibula, medial femoral shaft, and pelvis. Magnetic resonance is the imaging test of choice for diagnosis. These injuries can lead to substantial lost time from participation. Treatment will vary by fracture location, but most stress fractures will heal with rest and modified weightbearing. Some may require more aggressive intervention, such as prolonged nonweightbearing movement or surgery. Contributing factors should also be addressed prior to return to sports.

  8. Simulation of counter-current imbibition in water-wet fractured reservoirs based on discrete-fracture model

    Directory of Open Access Journals (Sweden)

    Wang Yueying

    2017-08-01

    Full Text Available Isolated fractures usually exist in fractured media systems, where the capillary pressure in the fracture is lower than that of the matrix, causing the discrepancy in oil recoveries between fractured and non-fractured porous media. Experiments, analytical solutions and conventional simulation methods based on the continuum model approach are incompetent or insufficient in describing media containing isolated fractures. In this paper, the simulation of the counter-current imbibition in fractured media is based on the discrete-fracture model (DFM. The interlocking or arrangement of matrix and fracture system within the model resembles the traditional discrete fracture network model and the hybrid-mixed-finite-element method is employed to solve the associated equations. The Behbahani experimental data validates our simulation solution for consistency. The simulation results of the fractured media show that the isolated-fractures affect the imbibition in the matrix block. Moreover, the isolated fracture parameters such as fracture length and fracture location influence the trend of the recovery curves. Thus, the counter-current imbibition behavior of media with isolated fractures can be predicted using this method based on the discrete-fracture model.

  9. Fracture probability along a fatigue crack path

    Energy Technology Data Exchange (ETDEWEB)

    Makris, P. [Technical Univ., Athens (Greece)

    1995-03-01

    Long experience has shown that the strength of materials under fatigue load has a stochastic behavior, which can be expressed through the fracture probability. This paper deals with a new analytically derived law for the distribution of the fracture probability along a fatigue crack path. The knowledge of the distribution of the fatigue fracture probability along the crack path helps the connection between stress conditions and the expected fatigue life of a structure under stochasticly varying loads. (orig.)

  10. Extrinsic and intrinsic factors associated with non-contact injury in adult pace bowlers: a systematic review protocol.

    Science.gov (United States)

    Olivier, Benita; Stewart, Aimee; Taljaard, Tracy; Burger, Elaine; Brukner, Peter; Orchard, John; Gray, Janine; Botha, Nadine; Mckinon, Warrick

    2015-01-01

    Review question: which extrinsic and intrinsic factors are associated with non-contact injury in adult cricket pace bowlers?Review objective: the objective of this review is to determine the extrinsic and intrinsic factors associated with non-contact injury in adult pace bowlers. Cricket is generally considered to be a sport of low injury risk compared to other sports. In cricket, the pace bowler strives towards the adoption of a bowling technique with a relatively low injury threat that will, at the same time, allow for a fast (>120km/hr) and accurate delivery to the opposing batsman. However, of all the various roles of the cricket player, the pace bowler has the highest risk of injury, especially for low back and lower limb (lower quarter) injury. The reason for this high risk of injury is due to the inherent, high-load biomechanical nature of the pace bowling action. The high prevalence of injury amongst pace bowlers highlights the great need for research into factors associated with injury.Both extrinsic and intrinsic factors work in combination to predispose the bowler to injury. Extrinsic or environment-related factors include bowling workload (the numbers of overs a bowler bowls), player position (first, second or third change) and time of play (morning or afternoon). A high bowling workload has been linked with a higher risk of injury in pace bowlers. Foster et al. found in an observational study that bowling too many overs in a single spell or bowling too many spells may increase the pace bowler's risk of sustaining a low back injury. In another observational study, Dennis et al. found that an exceptionally high bowling workload as well as an uncommonly low bowling workload is associated with injury risk. The major extrinsic factors for bowling injury identified by Orchard et al. are a high number of match overs bowled in the previous week, number of days of play and bowling second (batting first) in a match. Extrinsic factors are known to make the bowler

  11. Aging and Fracture of Human Cortical Bone and Tooth Dentin

    Energy Technology Data Exchange (ETDEWEB)

    Ager, Joel; Koester, Kurt J.; Ager III, Joel W.; Ritchie, Robert O.

    2008-05-07

    Mineralized tissues, such as bone and tooth dentin, serve as structural materials in the human body and, as such, have evolved to resist fracture. In assessing their quantitative fracture resistance or toughness, it is important to distinguish between intrinsic toughening mechanisms which function ahead of the crack tip, such as plasticity in metals, and extrinsic mechanisms which function primarily behind the tip, such as crack bridging in ceramics. Bone and dentin derive their resistance to fracture principally from extrinsic toughening mechanisms which have their origins in the hierarchical microstructure of these mineralized tissues. Experimentally, quantification of these toughening mechanisms requires a crack-growth resistance approach, which can be achieved by measuring the crack-driving force, e.g., the stress intensity, as a function of crack extension ("R-curve approach"). Here this methodology is used to study of the effect of aging on the fracture properties of human cortical bone and human dentin in order to discern the microstructural origins of toughness in these materials.

  12. Effects of extrinsic point defects in phosphorene: B, C, N, O, and F adatoms

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gaoxue, E-mail: gaoxuew@mtu.edu, E-mail: pandey@mtu.edu, E-mail: shashi.p.karna.civ@mail.mil; Pandey, Ravindra, E-mail: gaoxuew@mtu.edu, E-mail: pandey@mtu.edu, E-mail: shashi.p.karna.civ@mail.mil [Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Karna, Shashi P., E-mail: gaoxuew@mtu.edu, E-mail: pandey@mtu.edu, E-mail: shashi.p.karna.civ@mail.mil [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, ATTN: RDRL-WM, Aberdeen Proving Ground, Maryland 21005-5069 (United States)

    2015-04-27

    Phosphorene is emerging as a promising 2D semiconducting material with a direct band gap and high carrier mobility. In this paper, we examine the role of the extrinsic point defects including surface adatoms in modifying the electronic properties of phosphorene using density functional theory. The surface adatoms considered are B, C, N, O, and F with a [He] core electronic configuration. Our calculations show that B and C, with electronegativity close to P, prefer to break the sp{sup 3} bonds of phosphorene and reside at the interstitial sites in the 2D lattice by forming sp{sup 2} like bonds with the native atoms. On the other hand, N, O, and F, which are more electronegative than P, prefer the surface sites by attracting the lone pairs of phosphorene. B, N, and F adsorption will also introduce local magnetic moment to the lattice. Moreover, B, C, N, and F adatoms will modify the band gap of phosphorene, yielding metallic transverse tunneling characters. Oxygen does not modify the band gap of phosphorene, and a diode like tunneling behavior is observed. Our results therefore offer a possible route to tailor the electronic and magnetic properties of phosphorene by the adatom functionalization and provide the physical insights of the environmental sensitivity of phosphorene, which will be helpful to experimentalists in evaluating the performance and aging effects of phosphorene-based electronic devices.

  13. Self- and dopant diffusion in extrinsic boron doped isotopically controlled silicon multilayer structures

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, Ian D.; Bracht, Hartmut A.; Silvestri, Hughes H.; Nicols, Samuel P.; Beeman, Jeffrey W.; Hansen, John L.; Nylandsted Larsen, Arne; Haller, Eugene E.

    2002-04-01

    Isotopically controlled silicon multilayer structures were used to measure the enhancement of self- and dopant diffusion in extrinsic boron doped silicon. {sup 30}Si was used as a tracer through a multilayer structure of alternating natural Si and enriched {sup 28}Si layers. Low energy, high resolution secondary ion mass spectrometry (SIMS) allowed for simultaneous measurement of self- and dopant diffusion profiles of samples annealed at temperatures between 850 C and 1100 C. A specially designed ion- implanted amorphous Si surface layer was used as a dopant source to suppress excess defects in the multilayer structure, thereby eliminating transient enhanced diffusion (TED) behavior. Self- and dopant diffusion coefficients, diffusion mechanisms, and native defect charge states were determined from computer-aided modeling, based on differential equations describing the diffusion processes. We present a quantitative description of B diffusion enhanced self-diffusion in silicon and conclude that the diffusion of both B and Si is mainly mediated by neutral and singly positively charged self-interstitials under p-type doping. No significant contribution of vacancies to either B or Si diffusion is observed.

  14. Individual Differences in Preferences for Intrinsic Versus Extrinsic Aspects of Work

    Science.gov (United States)

    Andrisani, Paul J.; Miljus, Robert C.

    1977-01-01

    Examined individual differences in preferences for intrinsic versus extrinsic aspects of work among two representative national samples of males. Findings suggest that preferences are significantly related to age, occupation, class of worker, job satisfaction, educational attainment, and race. (Author)

  15. Distinguishing subtypes of extrinsic motivation among people with mild to borderline intellectual disability

    OpenAIRE

    Frielink, N.; Schuengel, C.; Embregts, P. J. C. M.

    2017-01-01

    Background According to self-determination theory, motivation is ordered in types, including amotivation, extrinsic motivation and intrinsic motivation. Self-determination theory defines four subtypes of extrinsic motivation: external motivation, introjected motivation, identified motivation and integrated motivation. Although it has been argued theoretically that the different types of motivation are universally applicable, Reid et al. (2009) proposed a dichotomy of broad subtypes of extrins...

  16. A validity generalization procedure to test relations between intrinsic and extrinsic motivation and influence tactics.

    Science.gov (United States)

    Barbuto, John E; Moss, Jennifer A

    2006-08-01

    The relations of intrinsic and extrinsic motivation with use of consultative, legitimating, and pressure influence tactics were examined using validity generalization procedures. 5 to 7 field studies with cumulative samples exceeding 800 were used to test each relationship. Significance was found for relation between agents' intrinsic motivation and their use of consultative influence tactics and agents' extrinsic motivation and their use of legitimating influence tactics.

  17. Mechanical behavior and failure analysis of prosthetic retaining screws after long-term use in vivo. Part 3: Preload and tensile fracture load testing.

    Science.gov (United States)

    Al Jabbari, Youssef S; Fournelle, Raymond; Ziebert, Gerald; Toth, Jeffrey; Iacopino, Anthony M

    2008-04-01

    The aim of this study was to determine the preload and tensile fracture load values of prosthetic retaining screws after long-term use in vivo compared to unused screws (controls). Additionally, the investigation addressed whether the preload and fracture load values of prosthetic retaining screws reported by the manufacturer become altered after long-term use in vivo. For preload testing, 10 new screws (controls) from Nobel Biocare (NB) and 73 used retaining screws [58 from NB and 15 from Sterngold (SG)] were subjected to preload testing. For tensile testing, eight controls from NB and 58 used retaining screws (46 from NB and 12 from SG) were subjected to tensile testing. Used screws for both tests were in service for 18-120 months. A custom load frame, load cell, and torque wrench setup were used for preload testing. All 83 prosthetic screws were torqued once to 10 Ncm, and the produced preload value was recorded (N) using an X-Y plotter. Tensile testing was performed on a universal testing machine and the resulting tensile fracture load value was recorded (N). Preload and tensile fracture load values were analyzed with 2-way ANOVA and Tukey post-hoc tests. There was a significant difference between preload values for screws from NB and screws from SG (p time. The reduction of the fracture load value may be related to the increase of in-service time; however, the actual determination of this relationship is not possible from this study alone.

  18. Extrinsic Calibration for Vehicle-based Mobile Mapping System

    Directory of Open Access Journals (Sweden)

    SHI Limei

    2015-01-01

    Full Text Available Having the advantage of 360° imaging and rotation invariance, panoramic camera has gradually been used in mobile mapping systems(MMS. Calibration is an essential requirement to make sure that MMS can get high quality geo-information. This paper presents a way to address the extrinsic calibration for vehicle-based MMS composed of panoramic camera and Position and Orientation System (POS. Firstly, control points in the natural scene are set up, whose spatial coordinates are measured with high precision. Secondly, a panoramic spherical model is constructed and panoramic image can be projected to this model by means of spherical reverse transformation projection. Then, localize and select the control points in 3D spherical panoramic view but not in panoramic distorted image directly, the spherical coordinates of control points in panoramic image are gotten. After points correspondence is established, make use of direct geo-reference positioning equation and coordinate transformation, the translation and rotation parameters of panoramic camera relative to POS are computed. Experiments are conducted separately in space city calibration site located in Beijing and the Binhai New Area in Tianjin using our approach. Test results are listed as follows. When the GPS signal are of good quality, absolute positioning mean square error of a point is 10.3 cm in two-dimension plane and 16.5 cm in height direction; Otherwise, it is 35.4 cm in two-dimension plane and 54.8 cm in height direction. The max relative error of distance measurement is about 5 cm over a short distance (distance<3 km, which is not obviously affected by the GPS signal quality.

  19. Bimalleolar ankle fracture with proximal fibular fracture

    NARCIS (Netherlands)

    Colenbrander, R. J.; Struijs, P. A. A.; Ultee, J. M.

    2005-01-01

    A 56-year-old female patient suffered a bimalleolar ankle fracture with an additional proximal fibular fracture. This is an unusual fracture type, seldom reported in literature. It was operatively treated by open reduction and internal fixation of the lateral malleolar fracture. The proximal fibular

  20. Extrinsic response enhancement at the polymorphic phase boundary in piezoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa, Diego A.; García, José E., E-mail: jose.eduardo.garcia@upc.edu [Department of Physics, Universitat Politècnica de Catalunya - BarcelonaTech, Barcelona 08034 (Spain); Esteves, Giovanni; Jones, Jacob L. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27696 (United States); Rubio-Marcos, Fernando; Fernández, José F. [Department of Electroceramics, Instituto de Cerámica y Vidrio - CSIC, Madrid 28049 (Spain)

    2016-04-04

    Polymorphic phase boundaries (PPBs) in piezoelectric materials have attracted significant interest in recent years, in particular, because of the unique properties that can be found in their vicinity. However, to fully harness their potential as micro-nanoscale functional entities, it is essential to achieve reliable and precise control of their piezoelectric response, which is due to two contributions known as intrinsic and extrinsic. In this work, we have used a (K,Na)NbO{sub 3}-based lead-free piezoceramic as a model system to investigate the evolution of the extrinsic contribution around a PPB. X-ray diffraction measurements are performed over a wide range of temperatures in order to determine the structures and transitions. The relevance of the extrinsic contribution at the PPB region is evaluated by means of nonlinear dielectric response measurements. Though it is widely appreciated that certain intrinsic properties of ferroelectric materials increase as PPBs are approached, our results demonstrate that the extrinsic contribution also maximizes. An enhancement of the extrinsic contribution is therefore also responsible for improving the functional properties at the PPB region. Rayleigh's law is used to quantitatively analyze the nonlinear response. As a result, an evolution of the domain wall motion dynamics through the PPB region is detected. This work demonstrates that the extrinsic contribution at a PPB may have a dynamic role in lead-free piezoelectric materials, thereby exerting a far greater influence on their functional properties than that considered to date.

  1. Influential Effects of Intrinsic-Extrinsic Incentive Factors on Management Performance in New Energy Enterprises.

    Science.gov (United States)

    Wang, Ping; Lu, Zhengnan; Sun, Jihong

    2018-02-08

    Background : New energy has become a key trend for global energy industry development. Talent plays a very critical role in the enhancement of new energy enterprise competitiveness. As a key component of talent, managers have been attracting more and more attention. The increase in job performance relies on, to a certain extent, incentive mechanism. Based on the Two-factor Theory, differences in influences and effects of different incentives on management performance have been checked in this paper from an empirical perspective. Methods : This paper selects the middle and low level managers in new energy enterprises as research samples and classifies the managers' performance into task performance, contextual performance and innovation performance. It uses manager performance questionnaires and intrinsic-extrinsic incentive factor questionnaires to investigate and study the effects and then uses Amos software to analyze the inner link between the intrinsic-extrinsic incentives and job performance. Results : Extrinsic incentives affect task performance and innovation performance positively. Intrinsic incentives impose active significant effects on task performance, contextual performance, and innovation performance. The intrinsic incentive plays a more important role than the extrinsic incentive. Conclusions : Both the intrinsic-extrinsic incentives affect manager performance positively and the intrinsic incentive plays a more important role than the extrinsic incentive. Several suggestions to management should be given based on these results.

  2. The interplay of intrinsic and extrinsic bounded noises in biomolecular networks.

    Directory of Open Access Journals (Sweden)

    Giulio Caravagna

    Full Text Available After being considered as a nuisance to be filtered out, it became recently clear that biochemical noise plays a complex role, often fully functional, for a biomolecular network. The influence of intrinsic and extrinsic noises on biomolecular networks has intensively been investigated in last ten years, though contributions on the co-presence of both are sparse. Extrinsic noise is usually modeled as an unbounded white or colored gaussian stochastic process, even though realistic stochastic perturbations are clearly bounded. In this paper we consider Gillespie-like stochastic models of nonlinear networks, i.e. the intrinsic noise, where the model jump rates are affected by colored bounded extrinsic noises synthesized by a suitable biochemical state-dependent Langevin system. These systems are described by a master equation, and a simulation algorithm to analyze them is derived. This new modeling paradigm should enlarge the class of systems amenable at modeling. We investigated the influence of both amplitude and autocorrelation time of a extrinsic Sine-Wiener noise on: (i the Michaelis-Menten approximation of noisy enzymatic reactions, which we show to be applicable also in co-presence of both intrinsic and extrinsic noise, (ii a model of enzymatic futile cycle and (iii a genetic toggle switch. In (ii and (iii we show that the presence of a bounded extrinsic noise induces qualitative modifications in the probability densities of the involved chemicals, where new modes emerge, thus suggesting the possible functional role of bounded noises.

  3. Effect of high-temperature water and hydrogen on the fracture behavior of a low-alloy reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Roychowdhury, S., E-mail: sroy27@gmail.com [Paul Scherrer Institut, Nuclear Energy and Safety Research Department, Laboratory for Nuclear Materials, 5232 Villigen, PSI (Switzerland); Materials Processing & Corrosion Engineering Division, Mod-Lab, D-Block, Bhabha Atomic Research Centre, Mumbai 400085 (India); Seifert, H.-P.; Spätig, P.; Que, Z. [Paul Scherrer Institut, Nuclear Energy and Safety Research Department, Laboratory for Nuclear Materials, 5232 Villigen, PSI (Switzerland)

    2016-09-15

    Structural integrity of reactor pressure vessels (RPV) is critical for safety and lifetime. Possible degradation of fracture resistance of RPV steel due to exposure to coolant and hydrogen is a concern. In this study tensile and elastic-plastic fracture mechanics (EPFM) tests in air (hydrogen pre-charged) and EFPM tests in hydrogenated/oxygenated high-temperature water (HTW) was done, using a low-alloy RPV steel. 2–5 wppm hydrogen caused embrittlement in air tensile tests at room temperature (25 °C) and at 288 °C, effects being more significant at 25 °C and in simulated weld coarse grain heat affected zone material. Embrittlement at 288 °C is strain rate dependent and is due to localized plastic deformation. Hydrogen pre-charging/HTW exposure did not deteriorate the fracture resistance at 288 °C in base metal, for investigated loading rate range. Clear change in fracture morphology and deformation structures was observed, similar to that after air tests with hydrogen. - Highlights: • Hydrogen content, microstructure of LAS, and strain rate affects tensile properties at 288 °C. • Strength affects hydrogen embrittlement susceptibility to a greater extent than grain size. • Hydrogen in LAS leads to strain localization and restricts cross-slip at 288 °C. • Possible hydrogen pickup due to exposure to 288 °C water alters fracture surface appearance without affecting fracture toughness in bainitic base material. • Simulated weld heat affected zone microstructure shows unstable crack propagation in 288 °C water.

  4. Effect of fracture compliance on wave propagation within a fluid-filled fracture.

    Science.gov (United States)

    Nakagawa, Seiji; Korneev, Valeri A

    2014-06-01

    Open and partially closed fractures can trap seismic waves. Waves propagating primarily within fluid in a fracture are sometimes called Krauklis waves, which are strongly dispersive at low frequencies. The behavior of Krauklis waves has previously been examined for an open, fluid-filled channel (fracture), but the impact of finite fracture compliance resulting from contacting asperities and porous fillings in the fracture (e.g., debris, proppants) has not been fully investigated. In this paper, a dispersion equation is derived for Krauklis wave propagation in a fracture with finite fracture compliance, using a modified linear-slip-interface model (seismic displacement-discontinuity model). The resulting equation is formally identical to the dispersion equation for the symmetric fracture interface wave, another type of guided wave along a fracture. The low-frequency solutions of the newly derived dispersion equations are in good agreement with the exact solutions available for an open fracture. The primary effect of finite fracture compliance on Krauklis wave propagation is to increase wave velocity and attenuation at low frequencies. These effects can be used to monitor changes in the mechanical properties of a fracture.

  5. TOUGH-RBSN simulator for hydraulic fracture propagation within fractured media: Model validations against laboratory experiments

    Science.gov (United States)

    Kim, Kunhwi; Rutqvist, Jonny; Nakagawa, Seiji; Birkholzer, Jens

    2017-11-01

    This paper presents coupled hydro-mechanical modeling of hydraulic fracturing processes in complex fractured media using a discrete fracture network (DFN) approach. The individual physical processes in the fracture propagation are represented by separate program modules: the TOUGH2 code for multiphase flow and mass transport based on the finite volume approach; and the rigid-body-spring network (RBSN) model for mechanical and fracture-damage behavior, which are coupled with each other. Fractures are modeled as discrete features, of which the hydrological properties are evaluated from the fracture deformation and aperture change. The verification of the TOUGH-RBSN code is performed against a 2D analytical model for single hydraulic fracture propagation. Subsequently, modeling capabilities for hydraulic fracturing are demonstrated through simulations of laboratory experiments conducted on rock-analogue (soda-lime glass) samples containing a designed network of pre-existing fractures. Sensitivity analyses are also conducted by changing the modeling parameters, such as viscosity of injected fluid, strength of pre-existing fractures, and confining stress conditions. The hydraulic fracturing characteristics attributed to the modeling parameters are investigated through comparisons of the simulation results.

  6. Usual and unusual care: existing practice control groups in randomized controlled trials of behavioral interventions

    National Research Council Canada - National Science Library

    Freedland, Kenneth E; Mohr, David C; Davidson, Karina W; Schwartz, Joseph E

    2011-01-01

    To evaluate the use of existing practice control groups in randomized controlled trials of behavioral interventions and the role of extrinsic health care services in the design and conduct of behavioral trials...

  7. Exercise-related leg pain in female collegiate athletes: the influence of intrinsic and extrinsic factors.

    Science.gov (United States)

    Reinking, Mark F

    2006-09-01

    Exercise-related leg pain is a common complaint among athletes, but there is little evidence regarding risk factors for this condition in female collegiate athletes. To examine prospectively the effect of selected extrinsic and intrinsic factors on the development of exercise-related leg pain in female collegiate athletes. Cohort study; Level of evidence, 2. Subjects were 76 female collegiate athletes participating in fall season sports, including cross-country running, field hockey, soccer, and volleyball. Athletes were seen for a pre-season examination that included measures of height, weight, foot pronation, and calf muscle length as well as a questionnaire for disordered eating behaviors. Body mass index was calculated from height and weight (kg/m(2)). Those athletes who developed exercise-related leg pain during the season were seen for follow-up. All athletes who developed the condition and a matched group without such leg pain underwent bone mineral density and body composition testing. Statistical analyses of differences and relationships were conducted. Of the 76 athletes, 58 (76%) reported a history of exercise-related leg pain, and 20 (26%) reported occurrence of exercise-related leg pain during the season. A history of this condition was strongly associated with its occurrence during the season (odds ratio, 13.2). Exercise-related leg pain was most common among field hockey and cross-country athletes and least common among soccer players. There were no differences between athletes with and without such leg pain regarding age, muscle length, self-reported eating behaviors, body mass index, menstrual function, or bone mineral density. Athletes with exercise-related leg pain had significantly (P sport, and a history of this condition, that are associated with an increased risk of exercise-related leg pain.

  8. What makes coaches tick? The impact of coaches' intrinsic and extrinsic motives on their own satisfaction and that of their athletes.

    Science.gov (United States)

    Jowett, S

    2008-10-01

    This study aims to investigate the influence of two types of motivational forces on coach and athlete satisfaction. The focus is on intrinsic and extrinsic motives that initiate coach-related behavior. A questionnaire that measures both types of motivation and three facets of satisfaction (i.e., satisfaction with performance, with instruction, and with the coach-athlete relationship) was completed by 138 coaches. One athlete from each of the coaches who participated in the study was also asked to complete a questionnaire that measures their satisfaction with performance, instruction, and the coach-athlete relationship. Results from a series of regression analyses indicated that while intrinsic motivation was moderately and positively related to all facets of coach satisfaction, extrinsic motivation was only related to coach satisfaction with the coach-athlete relationship. Athletes' satisfaction with the coach-athlete relationship was only associated with the coach's intrinsic motivation. Interaction effects among the two types of motivation were significant suggesting that extrinsic motivation can potentially undermine intrinsic motivation when intrinsic motivation is low. The findings are discussed based on assumptions put forward by self-determination theory.

  9. Modeling Flow in Naturally Fractured Reservoirs : Effect of Fracture Aperture Distribution on Critical Sub-Network for Flow

    NARCIS (Netherlands)

    Gong, J.; Rossen, W.R.

    2014-01-01

    Fracture network connectivity and aperture (or conductivity) distribution are two crucial features controlling the flow behavior of fractured formations. The effect of connectivity on flow properties is well documented. We focus here on the influence of fracture aperture distribution. We model a

  10. Modeling flow in naturally fractured reservoirs : effect of fracture aperture distribution on dominant sub-network for flow

    NARCIS (Netherlands)

    Gong, J.; Rossen, W.R.

    2017-01-01

    Fracture network connectivity and aperture (or conductivity) distribution are two crucial features controlling flow behavior of naturally fractured reservoirs. The effect of connectivity on flow properties is well documented. In this paper, however, we focus here on the influence of fracture

  11. Laboratory Visualization Experiments of Temperature-induced Fractures Around a Borehole (Cryogenic Fracturing) in Shale and Analogue Rock Samples

    Science.gov (United States)

    Kneafsey, T. J.; Nakagawa, S.; Wu, Y. S.; Mukhopadhyay, S.

    2014-12-01

    In tight shales, hydraulic fracturing is the dominant method for improving reservoir permeability. However, injecting water-based liquids can induce formation damage and disposal problems, thus other techniques are being sought. One alternative to hydraulic fracturing is producing fractures thermally, using low-temperature fluids (cryogens). The primary consequence of thermal stimulation is that shrinkage fractures are produced around the borehole wall. Recently, cryogenic stimulation produced some promising results when the cryogen (typically liquid nitrogen and cold nitrogen gas) could be brought to reservoir depth. Numerical modeling also showed possible significant increases in gas production from a shale reservoir after cryogenic stimulation. However, geometry and the dynamic behavior of these thermally induced fractures under different stress regimes and rock anisotropy and heterogeneity is not yet well understood.Currently, we are conducting a series of laboratory thermal fracturing experiments on Mancos Shale and transparent glass blocks, by injecting liquid nitrogen under atmospheric pressure into room temperature blocks under various anisotropic stress states. The glass blocks allow clear optical visualization of fracture development and final fracturing patterns. For the shale blocks, X-ray CT is used to image both pre-existing and induced fractures. Also, the effect of borehole orientation with respect to the bedding planes and aligned preexisting fractures is examined. Our initial experiment on a uniaxially compressed glass block showed fracturing behavior which was distinctly different from conventional hydraulic fracturing. In addition to tensile fractures in the maximum principal stress directions, the thermal contraction by the cryogen induced (1) chaotic, spalling fractures around the borehole wall, and (2) a series of disk-shaped annular fractures perpendicular to the borehole. When applied to a horizontal borehole, the propagation plane of the

  12. Distal radius triplane fracture.

    Science.gov (United States)

    Parkar, A A H; Marya, S; Auplish, S

    2014-11-01

    A triplane fracture is so named because of the three planes traversed by the fracture line. These are physeal fractures that result from injury during the final phase of maturation and cessation of growth. This fracture pattern typically involves the distal tibia. We present a rare case of a triplane fracture involving the distal radius.

  13. Intrinsic and extrinsic spin-orbit torques from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Geranton, Guillaume

    2017-09-01

    This thesis attempts to shed light on the microscopic mechanisms underlying the current-induced magnetic torques in ferromagnetic heterostructures. We have developed first principles methods aiming at the accurate and effcient calculation of the so-called spin-orbit torques (SOTs) in magnetic thin films. The emphasis of this work is on the impurity-driven extrinsic SOTs. The main part of this thesis is dedicated to the development of a formalism for the calculation of the SOTs within the Korringa-Kohn-Rostoker (KKR) method. The impurity-induced transitions rates are obtained from first principles and their effect on transport properties is treated within the Boltzmann formalism. The developed formalism provides a mean to compute the SOTs beyond the conventional constant relaxation time approximation. We first apply our formalism to the investigation of FePt/Pt and Co/Cu bilayers in the presence of defects and impurities. Our results hint at a crucial dependence of the torque on the type of disorder present in the films, which we explain by a complex interplay of several competing Fermi surface contributions to the SOT. Astonishingly, specific defect distributions or doping elements lead respectively to an increase or a sign change of the torque, which can not be explained on the basis of simple models. We also compute the intrinsic SOT induced by electrical and thermal currents within the full potential linearized augmented plane-wave method. Motivated by recent experimental works, we then investigate the microscopic origin of the SOT in a Ag{sub 2}Bi-terminated Ag film grown on ferromagnetic Fe(110). We find that the torque in that system can not be explained solely by the spin-orbit coupling in the Ag{sub 2}Bi alloy, and instead results from the spin-orbit coupling in all regions of the film.Finally, we predict a large SOT in Fe/Ge bilayers and suggest that semiconductor substrates might be a promising alternative to heavy metals for the development of SOT

  14. Experimental and finite element study of the effect of temperature and moisture on the tangential tensile strength and fracture behavior in timber logs

    DEFF Research Database (Denmark)

    Larsen, Finn; Ormarsson, Sigurdur

    2014-01-01

    Timber is normally dried by kiln drying, in the course of which moisture-induced stresses and fractures can occur. Cracks occur primarily in the radial direction due to tangential tensile strength (TSt) that exceeds the strength of the material. The present article reports on experiments and nume...

  15. Characterization of Precipitation Behavior and Fracture Toughness along Thickness Direction in SA508 Gr.3 Mn-Mo-Ni low alloy steels

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jaemin; Kim, Min-Chul; Hong, Seokmin; Lee, Bong-Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    SA 508 Gr.3 Mn-Mo-Ni low alloy steel forgings thicker than 200 mm are used for reactor pressure vessels in nuclear power plants. The cooling rate difference along the thickness direction during the quenching process causes variation in the microstructure and mechanical properties. The microstructural variation and its influence on the fracture toughness of RPV steels were investigated in this study. The cleavage fracture toughness in the transition region were evaluated with the ASTM E1921 master curve method for samples at different locations from the inner surface to the center thickness of the RPV steel. The microstructural features, such as the area fraction, and the size and distribution of precipitates were quantitatively evaluated at each sampling position. Microstructure observations showed that at near the surface position, bainite laths are finer, and furthermore, the carbides are smaller and homogeneously distributed. The fracture toughness at the surface was better than those at deeper positions. The reference temperature T{sub 0} showed a linear relationship with the area fraction of the carbides bigger than a certain critical size. It is concluded that the size of the precipitates caused by the cooling rate gradient may have a dominant role in controlling the cleavage fracture toughness variation along the thickness direction for a very thick RPV steel.

  16. Behaviorism

    National Research Council Canada - National Science Library

    Moore, J

    2011-01-01

    .... Watson proposed an alternative: classical S-R behaviorism. According to Watson, behavior was a subject matter in its own right, to be studied by the observational methods common to all sciences...

  17. Fracture and Medium Modeling, by Analizing Hidraulic Fracturing Induced Microseismicity

    Science.gov (United States)

    Gomez Alba, S.; Vargas Jiménez, C. A.

    2014-12-01

    Hydraulic fracturing is an essential technology for most unconventional hydrocarbon resources and many conventional ones as well. The primary limitation on the improvement and optimization of the fracturing process is the minimal access to observe the behavior of the fracture in the subsurface. Without direct observational evidence, hypothetical mechanisms must be assumed and then tested for their validity with indirect information such as wellbore measurements, indirect production and pressure behavior. One of the most important sources of information today is the relation made between micro seismic source mechanisms and fracture behavior. Hydraulic fractures induce some level of micro seismicity when the stress conditions in the Earth are altered by changes in stress during the operations. The result is the sudden movement between rock elements and the radiation of both compressional and shear energy in a seismic range that can be detected and recorded with sensitive receivers. The objective of this work is to provide reasonable information when applying inversion methods in order to estimate the vertical and horizontal spatial heterogeneities in medium and energy radiation distribution of microseisms while fracking operations. The method consist in record microseisms at a previous lineal array of stations (triaxial accelerometers) which are located close to the source coordinates and cover the area of study. The analysis clarify some ideas about what information can be gained from the micro seismic source data and according to the obtained results, what kind of comparisons and associations might be done to evaluate the fracking performance operation. Non uniformities in medium such as faults would be revealed by interpreted scattering coefficients. Fracture properties like distance, velocity and orientation would be also determined by analyzing energy radiation.

  18. Extrinsic innervation of ileum and pelvic flexure of foals with ileocolonic aganglionosis.

    Science.gov (United States)

    Giancola, F; Gentilini, F; Romagnoli, N; Spadari, A; Turba, M E; Giunta, M; Sadeghinezhad, J; Sorteni, C; Chiocchetti, R

    2016-10-01

    Equine ileocolonic aganglionosis, which is also called lethal white foal syndrome (LWFS), is a severe congenital condition characterized by the unsuccessful colonization of neural crest progenitors in the caudal part of the small intestine and the entire large intestine. LWFS, which is attributable to a mutation in the endothelin receptor B gene, is the horse equivalent of Hirschsprung's disease in humans. Affected foals suffer from aganglionosis or hypoganglionosis of the enteric ganglia resulting in intestinal akinesia and colic. In other species with aganglionosis, fibers of extrinsic origin show an abnormal distribution pattern within the gut wall, but we have no information to date regarding this occurrence in horses. Our present aim is to investigate the distribution of extrinsic sympathetic and sensory neural fibers in LWFS, focusing on ileum and the pelvic flexure of the colon of two LWFS foals compared with a control subject. The sympathetic fibers were immunohistochemically identified with the markers tyrosine hydroxylase and dopamine beta-hydroxylase. The extrinsic sensory fibers were identified with the markers Substance P (SP) and calcitonin gene-related peptide (CGRP). Since SP and CGRP are also synthesized by subclasses of horse intramural neurons, LWFS represents a good model for the selective study of extrinsic fiber distribution. Affected foals showed large bundles of extrinsic fibers, compared with the control, as observed in Hirschsprung's disease. Furthermore, altered adrenergic pathways were observed, prominently in the pelvic flexure. The numbers of SP- and CGRP-immunoreactive fibers in the muscle, a target of enteric neurons, were dramatically reduced, whereas fibers deduced to be extrinsic sensory axons persisted around submucosal blood vessels. Fiber numbers in the mucosa were reduced. Thus, extrinsic innervation, contributing to modulate enteric functions, might also be affected during LWFS.

  19. Intrinsic and Extrinsic Motivation Among Adolescent Ten-Pin Bowlers in Kuala Lumpur, Malaysia

    Science.gov (United States)

    Teo, Eng-Wah; Khoo, Selina; Wong, Rebecca; Wee, Eng-Hoe; Lim, Boon-Hooi; Rengasamy, Shabesan Sit

    2015-01-01

    Motivation has long been associated with sports engagement. However, to date no research has been performed to understand the domain of motivation among ten-pin bowlers. The purpose of this study was to investigate different types of motivation (i.e., intrinsic vs. extrinsic) based on self-determination theory from the perspective of gender and the bowler type (competitive vs. casual). A total of 240 bowlers (104 male, 136 female; 152 competitive, 88 casual) with a mean age of 16.61 ± 0.78 years were recruited in Kuala Lumpur. The Sport Motivation Scale, a 28-item self-report questionnaire measuring seven subscales (i.e., intrinsic motivation to know, intrinsic motivation to accomplish, intrinsic motivation to experience stimulation, extrinsic motivation to identify regulation, extrinsic motivation for introjection regulation, extrinsic motivation to external regulation, and amotivation) was administered. Results showed significant differences (t=10.43, df=239, p=0.01) between total scores of intrinsic and extrinsic motivation among ten-pin bowlers. There were significant gender differences with respect to intrinsic motivation to know, intrinsic motivation to accomplish, intrinsic motivation to experience stimulation, and extrinsic motivation to identify regulation. However, no significant bowler type differences were found for either the intrinsic (t=−1.15, df=238, p=0.25) or extrinsic (t=−0.51, df=238, p=0.61) motivation dimensions. In conclusion, our study demonstrated substantial intrinsic motivation for gender effects, but no bowler type effects among adolescent ten-pin bowlers. PMID:25964827

  20. Incentives and Prosocial Behavior

    OpenAIRE

    Bénabou, Roland; Tirole, Jean

    2003-01-01

    We develop a theory of prosocial behavior that combines heterogeneity in individual altruism and greed with concerns for social reputation or self-respect. Rewards or punishments (whether material or image-related) create doubt about the true motive for which good deeds are performed, and this ?overjustification effect? can induce a partial or even net crowding out of prosocial behavior by extrinsic incentives. We also identify the settings that are conducive to multiple social norms and, mor...

  1. Flow upscaling in propped fracture

    Science.gov (United States)

    Jasinski, Lukasz; Dabrowski, Marcin

    2016-04-01

    Proppants in combination with hydraulic fracturing are widely used to maintain the production of oil or gas from low permeability formations (i.e. shale rocks). There are also examples of proppants use in geothermal reservoirs. Flow patterns in propped fracture control transport processes and give information about fracture/matrix exchange surface. Our main motivation is to understand flow behavior in such structures using direct numerical simulations and to find a good upscaling technique to be able to investigate models on reservoir scale. We study fracture made of two parallel plane walls, where void space between them is filled with partial monolayer of proppant. As the fracture is affected by closing pressure, the proppant grains are squeezed between two opposite fracture walls which can change the grain shapes or embed the grains into impermeable rock matrix. To take this effect into account and simplify the geometry, the grains are approximated as cylinders. Imposed macroscopic pressure gradient invokes flow in such medium. As the flow is considered in the low Reynolds number regime, a stationary velocity flow field is obtained by solving the Stokes equations in 3D by means of finite element method. Void space between the grains is accurately discretized by using tetrahedral mesh. To reduce computational effort, the Stokes equation is reduced over the fracture aperture to 2D Stokes-Brinkman equation, which is further numerically solved and compared against numerical solution in 3D. Systematic flow calculations using 2D Stokes-Brinkman equation are performed for periodic domain and no slip boundary condition on the grain surface. Results are discussed in terms of effective properties as a function of geometrical parameters of the medium, such as proppant packing fraction and proppant grain diameter to fracture aperture ratio.

  2. Hand fracture - aftercare

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000552.htm Hand fracture - aftercare To use the sharing features on ... need to be repaired with surgery. Types of Hand Fractures Your fracture may be in one of ...

  3. Fractured porous media

    CERN Document Server

    Adler, Pierre M; Mourzenko, Valeri V

    2013-01-01

    This monograph on fractures, fracture networks, and fractured porous media provides a systematic treatment of their geometrical and transport properties for students and professionals in geophysics, materials science, and Earth sciences.

  4. Acetabular Fracture

    OpenAIRE

    Correa, Chad; Lahham, Sari

    2017-01-01

    History of present illness: A 77-year-old female presented to her primary care physician (PCP) with right hip pain after a mechanical fall. She did not lose consciousness or have any other traumatic injuries. She was unable to ambulate post-fall, so X-rays were ordered by her PCP. Her X-rays were concerning for a right acetabular fracture (see purple arrows), so the patient was referred to the emergency department where a computed tomography (CT) scan was ordered. Significant findings:...

  5. Galeazzi Fracture

    OpenAIRE

    Reid Honda

    2017-01-01

    History of present illness: A 19-year-old male presented to the ED with right forearm pain after being struck in the forearm by a baseball. The patient then threw the ball and felt a sharp “pop” in his arm. The patient complained of sharp pain, worse with movement. Upon examination, the patient was neurovascularly intact. Significant findings: The X-ray showed an acute comminuted fracture of the distal diaphysis of the radius with disruption of the distal radioulnar joint, consisten...

  6. First-principle study of extrinsic defects in CuScO 2 and CuYO 2

    Science.gov (United States)

    Fang, Zhi-Jie; Shi, Li-Jie

    2008-05-01

    Using first-principles methods, we studied the extrinsic defects doping in transparent conducting oxides CuMO 2 (M dbnd Sc, Y). We chose Be, Mg, Ca, Si, Ge, Sn as extrinsic defects to substitute for M and Cu atoms. By systematically calculating the impurity formation energy and transition energy level, we find that Be is the most prominent extrinsic donor and Ca is the prominent extrinsic acceptor. In addition, we find that Mg atom substituting for Sc is the most prominent extrinsic acceptor in CuScO 2. Our calculation results are expected to be a guide for preparing n-type and p-type materials through extrinsic doping in CuMO 2 (M dbnd Sc,Y).

  7. Life Goals and Well-Being: Are Extrinsic Aspirations Always Detrimental to Well-Being?

    Directory of Open Access Journals (Sweden)

    Ingrid Brdar

    2009-12-01

    Full Text Available Past research has revealed that relative importance a person places on extrinsic life goals as oposed to intrinsic ones is related to lower well-being. But sometimes it is more important why a goal is being pursued than the content of the goal. Materialistic aspirations will not decrease people's well-being if they help them to achieve basic financial security or some intrinsic goals. On the other hand, if social comparison or seeking power drives extrinsic orientation, these aspirations may be detrimental for well-being, since they do not satisfy satisfy our basic psychological needs. Research from Croatia and other, less rich countries suggest that extrinsic aspirations are not necessarily deterimental but may even contribute to well-being. This finding suggests that various factors can moderate the relationship between aspirations and well-being. Intrinsic life goals may probably be affordable only for people who are well off enough. The meaning of financial success in transitional and poor countries may not necesseraly be associated with purchase and consumption. On the contrary, it may bring opportunities and possibilities of self-expression and self-growth. Individualistic societies allow individuals to pursue their intrinsic goals while collectivistic cultures stress extrinsic ones. Although this extrinsic orientation may detract their well-being, the sense of individual well-being may not be as important to them as the survival of the group they belong to or so called social well-being.

  8. Predictors of employment in schizophrenia: The importance of intrinsic and extrinsic motivation.

    Science.gov (United States)

    Reddy, L Felice; Llerena, Katiah; Kern, Robert S

    2016-10-01

    Unemployment is a primary functional deficit for the majority of adults with schizophrenia. Research indicates that over two-thirds of adults living in the community with schizophrenia are unemployed. Despite effective programs to assist with job identification and placement, the ability to attain and maintain employment remains a pressing concern. A contributing factor that may be relevant but has received little attention in the work rehabilitation literature is motivation. People with schizophrenia show marked deficits in both intrinsic and extrinsic motivation but these deficits have not been directly examined in relation to work outcomes. The present study sought to examine the relationship between intrinsic and extrinsic motivation and work outcome among a sample of 65 adults with schizophrenia enrolled in a supported employment program. One-third of the participants in the study obtained work. Intrinsic motivation related to valuing and feeling useful in a work role significantly predicted who would obtain employment. Extrinsic motivation related to gaining rewards and avoiding obstacles showed a non-significant trend-level relationship such that workers had higher extrinsic motivation than nonworkers. These findings highlight the importance of considering both intrinsic and extrinsic motivation in work-related interventions and supported employment for individuals with schizophrenia. The results are discussed in terms of clinical implications for improving rehabilitation and occupational outcomes in schizophrenia. Published by Elsevier B.V.

  9. The effect of extrinsic noise on the dynamics of simple gene network motifs

    Science.gov (United States)

    Assaf, Michael

    Cellular processes do not follow deterministic rules; even in identical environments genetically identical cells can make random choices leading to different phenotypes. This randomness originates from fluctuations present in the biomolecular interaction networks. Most previous work has been focused on the intrinsic noise of these networks. Yet, especially for high-copy-number biomolecules, extrinsic or environmental noise has been experimentally shown to dominate the variation. Here we develop an analytical formalism that allows for calculation of the combined effect of intrinsic and extrinsic noise on gene expression motifs. We introduce a new and generic method for modeling bounded extrinsic noise as an auxiliary species in the master equation. We focus our study on motifs that can be viewed as the building blocks of genetic switches: a non-regulated gene, a self-inhibiting gene, and a self-promoting gene. The role of the extrinsic noise properties (magnitude, correlation time, and distribution) on the statistics of interest are systematically investigated, and the effect of fluctuations in different reaction rates is compared. Due to its analytical nature, our formalism can be used to quantify the effect of extrinsic noise on the dynamics of biochemical networks and can also be used to improve the interpretation of data from single-cell gene expression experiments.

  10. The Influence of Extrinsic Reinforcement on Children with Heavy Prenatal Alcohol Exposure.

    Science.gov (United States)

    Graham, Diana M; Glass, Leila; Mattson, Sarah N

    2016-02-01

    Prenatal alcohol exposure affects inhibitory control and other aspects of attention and executive function. However, the efficacy of extrinsic reinforcement on these behaviors has not been tested. Alcohol-exposed children (AE; n = 34), children with attention-deficit/hyperactivity disorder (ADHD; n = 23), and controls (CON; n = 31) completed a flanker task with 4 reward conditions (no reward, reward, reward+occasional response cost, equal probability of reward+response cost). Inhibitory control was tested in the no reward conditions using a 3(group) × 2(flanker type) ANCOVA. Response to reinforcement was tested using 3(group) × 4(reward condition) × 4(flanker type) analysis of covariance (ANCOVA). Response time (RT) and accuracy were tested independently. Groups did not differ on demographic variables. The flanker task was successful in taxing interference control, an aspect of executive attention (i.e., responses to incongruent stimuli were slower than to congruent stimuli) and the AE group demonstrated impaired executive control over the other groups. Overall, the AE group had significantly slower RTs compared to the CON and ADHD groups, which did not differ. However, reinforcement improved RT in all groups. While occasional response cost had the greatest benefit in the CON group, the type of reinforcement did not differentially affect the AE and ADHD groups. Accuracy across reward conditions did not differ by group, but was dependent on flanker type and reward condition. Alcohol-exposed children, but not children with ADHD, had impaired interference control in comparison with controls, supporting a differential neurobehavioral profile in these 2 groups. Both clinical groups were equally affected by introduction of reinforcement, although the type of reinforcement did not differentially affect performance as it did in the control group, suggesting that reward or response cost could be used interchangeably to result in the same benefit. Copyright

  11. The Impact of College Students’ Intrinsic and Extrinsic Motivation on Continuance Intention to Use English Mobile Learning Systems

    National Research Council Canada - National Science Library

    Chang, Chi-Cheng; Liang, Chaoyun; Yan, Chi-Fang; Tseng, Ju-Shih

    2013-01-01

    ...) proposed by Davis was extended with extrinsic motivation, perceived convenience, and intrinsic motivation, perceived playfulness, for examining the factors that affect continuance intention to use...

  12. Not All Ideals are Equal: Intrinsic and Extrinsic Ideals in Relationships.

    Science.gov (United States)

    Rodriguez, Lindsey M; Hadden, Benjamin W; Knee, C Raymond

    2015-03-01

    The ideal standards model suggests that greater consistency between ideal standards and actual perceptions of one's relationship predicts positive relationship evaluations; however, no research has evaluated whether this differs across types of ideals. A self-determination theory perspective was derived to test whether satisfaction of intrinsic ideals buffers the importance of extrinsic ideals. Participants (N=195) in committed relationships directly and indirectly reported the extent to which their partner met their ideal on two dimensions: intrinsic (e.g., warm, intimate) and extrinsic (e.g., attractive, successful). Relationship need fulfillment and relationship quality were also assessed. Hypotheses were largely supported, such that satisfaction of intrinsic ideals more strongly predicted relationship functioning, and satisfaction of intrinsic ideals buffered the relevance of extrinsic ideals for outcomes.

  13. Behaviorism

    Science.gov (United States)

    Moore, J.

    2011-01-01

    Early forms of psychology assumed that mental life was the appropriate subject matter for psychology, and introspection was an appropriate method to engage that subject matter. In 1913, John B. Watson proposed an alternative: classical S-R behaviorism. According to Watson, behavior was a subject matter in its own right, to be studied by the…

  14. Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing

    Science.gov (United States)

    2012-01-01

    the help of LMI toolbox in MATLAB easily. Conclusion If the synchronization robustness criterion, i.e. the synchronization robustness ≥ intrinsic robustness + extrinsic robustness, then the stochastic coupled synthetic oscillators can be robustly synchronized in spite of intrinsic parameter fluctuation and extrinsic noise. If the synchronization robustness criterion is violated, external control scheme by adding inducer can be designed to improve synchronization robustness of coupled synthetic genetic oscillators. The investigated robust synchronization criteria and proposed external control method are useful for a population of coupled synthetic networks with emergent synchronization behavior, especially for multi-cellular, engineered networks. PMID:23101662

  15. Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing.

    Science.gov (United States)

    Chen, Bor-Sen; Hsu, Chih-Yuan

    2012-10-26

    toolbox in MATLAB easily. If the synchronization robustness criterion, i.e. the synchronization robustness ≥ intrinsic robustness + extrinsic robustness, then the stochastic coupled synthetic oscillators can be robustly synchronized in spite of intrinsic parameter fluctuation and extrinsic noise. If the synchronization robustness criterion is violated, external control scheme by adding inducer can be designed to improve synchronization robustness of coupled synthetic genetic oscillators. The investigated robust synchronization criteria and proposed external control method are useful for a population of coupled synthetic networks with emergent synchronization behavior, especially for multi-cellular, engineered networks.

  16. Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing

    Directory of Open Access Journals (Sweden)

    Chen Bor-Sen

    2012-10-01

    , which could be solved with the help of LMI toolbox in MATLAB easily. Conclusion If the synchronization robustness criterion, i.e. the synchronization robustness ≥ intrinsic robustness + extrinsic robustness, then the stochastic coupled synthetic oscillators can be robustly synchronized in spite of intrinsic parameter fluctuation and extrinsic noise. If the synchronization robustness criterion is violated, external control scheme by adding inducer can be designed to improve synchronization robustness of coupled synthetic genetic oscillators. The investigated robust synchronization criteria and proposed external control method are useful for a population of coupled synthetic networks with emergent synchronization behavior, especially for multi-cellular, engineered networks.

  17. Fracture analysis of concrete gravity dam under earthquake induced ...

    African Journals Online (AJOL)

    In this paper, seismic fracture behavior of the concrete gravity dam using finite element (2D) theory has been studied. Bazant model which is non-linear fracture mechanics criteria as a measure of growth and smeared crack was chosen to develop profiles of the crack. Behavior of stress - strain curves of concrete as a ...

  18. The relationship between extrinsic motivation, job satisfaction and life satisfaction amongst employees in a public organisation

    Directory of Open Access Journals (Sweden)

    Chengedzai Mafini

    2014-02-01

    Full Text Available Orientation: There is much research on extrinsic motivation, job satisfaction and life satisfaction in organisations. However, empirical evidence on how such factors affect employees in public organisations in developing countries is lacking.Research purpose: To examine the relationships between extrinsic motivation, job satisfaction and life satisfaction amongst employees in a public organisation.Motivation for the study: Labour strife is an endemic phenomenon in South Africa’s public sector as evidenced by the high incidences of industrial action and labour turnover. This study contributes to this subject by identifying the extrinsic factors that could be optimised with a view to enhancing job and life satisfaction amongst government employees.Research approach, design and method: The study used the quantitative research survey approach: a questionnaire was administered to 246 employees in a South African public organisation. Extrinsic motivation factors were identified using principal components analysis. Mean score ranking was used to compare the relative importance of all factors. The conceptual framework was tested using Spearman’s rank correlation analysis and linear regression analysis.Main findings: Statistically significant relationships were observed between job satisfaction and four extrinsic motivation factors: remuneration, quality of work life, supervision and teamwork. The relationship with promotion was insignificant, but a statistically significant relationship was established with life satisfaction.Practical/managerial implications: The findings may be used to implement strategies for enhancing employee performance and industrial relations within public organisations.Contribution/value-add: The study provides evidence of the interplay between extrinsic motivation, job satisfaction and life satisfaction for public servants in developing countries.

  19. Substance use by college students: the role of intrinsic versus extrinsic motivation for athletic involvement.

    Science.gov (United States)

    Rockafellow, Bradley D; Saules, Karen K

    2006-09-01

    Certain types of athletic involvement may confer risk for substance use by college students. This study investigated whether motivational factors play a role in the relationship between athletic involvement and substance use. Intercollegiate athletes (n=98) and exercisers (n=120) were surveyed about substance use and motivation for athletic involvement. Athletes and exercisers who were extrinsically motivated had significantly higher rates of alcohol use than their intrinsically motivated counterparts. Results suggest that college students who are extrinsically motivated for involvement in physical activity/athletics--particularly those involved in team sports--may be in need of targeted prevention efforts. ((c) 2006 APA, all rights reserved).

  20. Computer tomographic patterns in extrinsic allergic alveolitis - a comparison with conventional radiological findings

    Energy Technology Data Exchange (ETDEWEB)

    Hieckel, H.G.; Mueller, S.; Luening, M.

    1986-10-01

    Seventeen patients with extrinsic allergic alveolitis or bird-fancier's lung were examined by standard radiological techniques and classified after Hapke's classification. In addition, the patients were examined by CT. The CT patterns have been analysed and compared with standard radiological findings. The methodological advantages of CT are discussed. Radiological investigation is of limited value in the diagnosis of extrinsic allergic alveolitis. Conventional radiography remains the standard of initial X-ray examination. In early cases, however, CT may be a valuable addition within the diagnostic strategy of a diagnostic imaging department.

  1. Effect of Cu content on the microstructure evolution and fracture behavior of Al-Mg-Si-xCu (x  =  0, 1, 2 and 4 wt.%) alloys

    Science.gov (United States)

    Rahman, Tanzilur; Sakib Rahman, Saadman; Zurais Ibne Ashraf, Md; Ibn Muneer, Khalid; Rashed, H. M. Mamun Al

    2017-10-01

    Lightweighting automobiles can dramatically reduce their consumption of fossil fuels and the atmospheric CO2 concentration. Heat-treatable Al-Mg-Si has attracted a great deal of research interest due to their high strength-to-weight ratio, good formability, and resistance to corrosion. In the past, it has been reported that the mechanical properties of Al-Mg-Si can be ameliorated by the addition of Cu. However, determining the right amount of Cu content still remains a challenge. To address this the microstructure evolution, phase transformation, mechanical properties, and fracture behavior of Al-Mg-Si-xCu (x  =  0, 1, 2 and 4 wt.%) alloys were studied through optical and field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, differential scanning calorimetry, hardness measurements, and tensile tests. The obtained results indicate that the addition of Cu of up to 4 wt.% improved the hardness (17.5% increase) of the alloy, but reduced its ductility. Moreover, an alloy with 4 wt.% Cu fractured in a brittle manner while Al-Mg-Si showed ductile fracture mechanism. In addition, differential scanning calorimetry analysis revealed five exothermic peaks in all Cu containing alloys. Our results also showed that θʹ and Qʹ-type intermetallic phases formed owing to the addition of Cu, which affected the strength and ductility. Thus, Al-Mg-Si-xCu alloy with the right amount of Cu content serves as an excellent candidate for replacing more costly alloys for cost-effective lightweighting and other applications.

  2. Fractures in multiple sclerosis

    DEFF Research Database (Denmark)

    Stenager, E; Jensen, K

    1991-01-01

    In a cross-sectional study of 299 MS patients 22 have had fractures and of these 17 after onset of MS. The fractures most frequently involved the femoral neck and trochanter (41%). Three patients had had more than one fracture. Only 1 patient had osteoporosis. The percentage of fractures increase...

  3. [Effects of different tooth preparations on the fracture behavior of teeth with severe wedge-shaped defect restored with post and core crowns].

    Science.gov (United States)

    Feng, Dandan; Qi, Dong; Lin, Xuefen; Ding, Tingting; Ji, Ping

    2014-04-01

    This study aimed to investigate the effects of different tooth preparations on the fracture strength and pattern of failure of teeth with severe wedge-shaped defect restored with post and core crowns. According to whether the teeth above the wedge-shaped defect was removed (represented by B) or not (represented by A), the ferrule next to the wedge-shaped defect was prepared (represented by D) or not (represented by C), the cast post-and-core was chosen (represented by E) or glass-fiber post and resin core was chosen (represented by F). A total of 64 human mandibular premolar teeth were randomly divided into 8 groups: A1-1 (A + C + E), A1-2 (A + C + F), A2-1 (A + D + E), A2-2 (A + D + F), B1-1 (B + C + E), B1-2 (B + C + F), B2-1 (B + D + E), B2-2 (B + D + F), each group 8 teeth. All the teeth were prepared and restored accordingly and then mounted on an electronic pressure universal testing machine. The maximum fracture strength and the patterns of failure were recorded. 1) The fracture strength of Group A1-1 > that of Group B1-1, Group A1-2 > Group B1-2, Group B2-1 > Group B1-1, and Group B2-1 > Group B2-2 with significant differences (P crown. The ferrule of the wedge-shaped defect is not recommended to be prepared. Furthermore, the glass-fiber post and resin core is favorable for the re-repair of the teeth than the cast post and core.

  4. Reduced Fracture Finite Element Model Analysis of an Efficient Two-Scale Hybrid Embedded Fracture Model

    KAUST Repository

    Amir, Sahar Z.

    2017-06-09

    A Hybrid Embedded Fracture (HEF) model was developed to reduce various computational costs while maintaining physical accuracy (Amir and Sun, 2016). HEF splits the computations into fine scale and coarse scale. Fine scale solves analytically for the matrix-fracture flux exchange parameter. Coarse scale solves for the properties of the entire system. In literature, fractures were assumed to be either vertical or horizontal for simplification (Warren and Root, 1963). Matrix-fracture flux exchange parameter was given few equations built on that assumption (Kazemi, 1968; Lemonnier and Bourbiaux, 2010). However, such simplified cases do not apply directly for actual random fracture shapes, directions, orientations …etc. This paper shows that the HEF fine scale analytic solution (Amir and Sun, 2016) generates the flux exchange parameter found in literature for vertical and horizontal fracture cases. For other fracture cases, the flux exchange parameter changes according to the angle, slop, direction, … etc. This conclusion rises from the analysis of both: the Discrete Fracture Network (DFN) and the HEF schemes. The behavior of both schemes is analyzed with exactly similar fracture conditions and the results are shown and discussed. Then, a generalization is illustrated for any slightly compressible single-phase fluid within fractured porous media and its results are discussed.

  5. Oblique Axis Body Fracture

    DEFF Research Database (Denmark)

    Takai, Hirokazu; Konstantinidis, Lukas; Schmal, Hagen

    2016-01-01

    Anderson type III fractures with a characteristic fracture pattern that we refer to as "oblique type axis body fracture." Results. The female patients aged 90 and 72 years, respectively, were both diagnosed with minimally displaced Anderson type III fractures. Both fractures had a characteristic "oblique...... was uneventful. Conclusions. Oblique type axis body fractures resemble a highly unstable subtype of Anderson type III fractures with the potential of severe secondary deformity following conservative treatment, irrespective of initial grade of displacement. The authors therefore warrant a high index of suspicion...

  6. Assessment of fracture risk

    Energy Technology Data Exchange (ETDEWEB)

    Kanis, John A. [WHO Collaborating Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX (United Kingdom)], E-mail: w.j.pontefract@sheffield.ac.uk; Johansson, Helena; Oden, Anders [WHO Collaborating Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX (United Kingdom); McCloskey, Eugene V. [WHO Collaborating Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX (United Kingdom); Osteoporosis Centre, Northern General Hospital, Sheffield (United Kingdom)

    2009-09-15

    Fractures are a common complication of osteoporosis. Although osteoporosis is defined by bone mineral density at the femoral neck, other sites and validated techniques can be used for fracture prediction. Several clinical risk factors contribute to fracture risk independently of BMD. These include age, prior fragility fracture, smoking, excess alcohol, family history of hip fracture, rheumatoid arthritis and the use of oral glucocorticoids. These risk factors in conjunction with BMD can be integrated to provide estimates of fracture probability using the FRAX tool. Fracture probability rather than BMD alone can be used to fashion strategies for the assessment and treatment of osteoporosis.

  7. Fracture toughness and the effects of stress state on fracture of nickel aluminides

    Science.gov (United States)

    Lewandowski, John J.; Michal, Gary M.; Locci, Ivan; Rigney, Joseph D.

    1991-01-01

    The effects of stress state on the fracture behavior of Ni3Al, Ni3Al + B, and NiAl were determined using either notched or fatigue-precracked bend bars tested to failure at room temperature, in addition to testing specimens in tension under superposed hydrostatic pressure. Although Ni3Al is observed to fail in a macroscopically brittle intergranular manner in tension tests conducted at room temperature, the fracture toughnesses presently obtained on Ni3Al exceeded 20 MPam, and R-curve behavior was exhibited. In situ monitoring of the fracture experiments was utilized to aid in interpreting the source(s) of the high toughness in Ni3Al, while SEM fractography was utilized to determine the operative fracture modes. The superposition by hydrostatic pressure during tensile testing of NiAl specimens was observed to produce increased ductility without changing the fracture mode.

  8. Extrinsic Rewards Diminish Costly Sharing in 3-Year-Olds.

    Science.gov (United States)

    Ulber, Julia; Hamann, Katharina; Tomasello, Michael

    2016-07-01

    Two studies investigated the influence of external rewards and social praise in young children's fairness-related behavior. The motivation of ninety-six 3-year-olds' to equalize unfair resource allocations was measured in three scenarios (collaboration, windfall, and dictator game) following three different treatments (material reward, verbal praise, and neutral response). In all scenarios, children's willingness to engage in costly sharing was negatively influenced when they had received a reward for equal sharing during treatment than when they had received praise or no reward. The negative effect of material rewards was not due to subjects responding in kind to their partner's termination of rewards. These results provide new evidence for the intrinsic motivation of prosociality-in this case, costly sharing behavior-in preschool children. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  9. Thermal convection in three-dimensional fractured porous media

    Science.gov (United States)

    Mezon, C.; Mourzenko, V. V.; Thovert, J.-F.; Antoine, R.; Fontaine, F.; Finizola, A.; Adler, P. M.

    2018-01-01

    Thermal convection is numerically computed in three-dimensional (3D) fluid saturated isotropically fractured porous media. Fractures are randomly inserted as two-dimensional (2D) convex polygons. Flow is governed by Darcy's 2D and 3D laws in the fractures and in the porous medium, respectively; exchanges take place between these two structures. Results for unfractured porous media are in agreement with known theoretical predictions. The influence of parameters such as the fracture aperture (or fracture transmissivity) and the fracture density on the heat released by the whole system is studied for Rayleigh numbers up to 150 in cubic boxes with closed-top conditions. Then, fractured media are compared to homogeneous porous media with the same macroscopic properties. Three major results could be derived from this study. The behavior of the system, in terms of heat release, is determined as a function of fracture density and fracture transmissivity. First, the increase in the output flux with fracture density is linear over the range of fracture density tested. Second, the increase in output flux as a function of fracture transmissivity shows the importance of percolation. Third, results show that the effective approach is not always valid, and that the mismatch between the full calculations and the effective medium approach depends on the fracture density in a crucial way.

  10. 3D Numerical Modeling of the Propagation of Hydraulic Fracture at Its Intersection with Natural (Pre-existing) Fracture

    Science.gov (United States)

    Dehghan, Ali Naghi; Goshtasbi, Kamran; Ahangari, Kaveh; Jin, Yan; Bahmani, Aram

    2017-02-01

    A variety of 3D numerical models were developed based on hydraulic fracture experiments to simulate the propagation of hydraulic fracture at its intersection with natural (pre-existing) fracture. Since the interaction between hydraulic and pre-existing fractures is a key condition that causes complex fracture patterns, the extended finite element method was employed in ABAQUS software to simulate the problem. The propagation of hydraulic fracture in a fractured medium was modeled in two horizontal differential stresses (Δ σ) of 5e6 and 10e6 Pa considering different strike and dip angles of pre-existing fracture. The rate of energy release was calculated in the directions of hydraulic and pre-existing fractures (G_{{frac}} /G_{{rock}}) at their intersection point to determine the fracture behavior. Opening and crossing were two dominant fracture behaviors during the hydraulic and pre-existing fracture interaction at low and high differential stress conditions, respectively. The results of numerical studies were compared with those of experimental models, showing a good agreement between the two to validate the accuracy of the models. Besides the horizontal differential stress, strike and dip angles of the natural (pre-existing) fracture, the key finding of this research was the significant effect of the energy release rate on the propagation behavior of the hydraulic fracture. This effect was more prominent under the influence of strike and dip angles, as well as differential stress. The obtained results can be used to predict and interpret the generation of complex hydraulic fracture patterns in field conditions.

  11. The Relationship Between Intrinsic and Extrinsic Factors and Central Venous Catheter Infections in the Acutely Ill Patient

    Science.gov (United States)

    1991-01-01

    patients. Intrinsic factors (inherent) included sex, age, diagnoses, surgical procedures, and medical history . Extrinsic factors (external) included...status, medical history , primary diagnosis, secondary diagnosis, surgical procedures, and immunosuppression. Extrinsic factors are external to the...LOS EFFECTOS DE UN PROGRAMA EDUCACIONAL PARA ENFERMERAS GUE CUIDAN PACIENTES QUE TIENEN INSERTADO UN CATETER HACIA LAS VENAS POR DONDE RECIBEN FLUIDOS

  12. The effects of long (C20/22) and short (C18) chain omega-3 fatty acids on keel bone fractures, bone biomechanics, behavior, and egg production in free-range laying hens.

    Science.gov (United States)

    Toscano, M J; Booth, F; Wilkins, L J; Avery, N C; Brown, S B; Richards, G; Tarlton, J F

    2015-05-01

    Keel fractures in the laying hen are the most critical animal welfare issue facing the egg production industry, particularly with the increased use of extensive systems in response to the 2012 EU directive banning conventional battery cages. The current study is aimed at assessing the effects of 2 omega-3 (n3) enhanced diets on bone health, production endpoints, and behavior in free-range laying hens. Data was collected from 2 experiments over 2 laying cycles, each of which compared a (n3) supplemented diet with a control diet. Experiment 1 employed a diet supplemented with a 60:40 fish oil-linseed mixture (n3:n6 to 1.35) compared with a control diet (n3:n6 to 0.11), whereas the n3 diet in Experiment 2 was supplemented with a 40:60 fish oil-linseed (n3:n6 to 0.77) compared to the control diet (n3:n6 to 0.11). The n3 enhanced diet of Experiment 1 had a higher n3:n6 ratio, and a greater proportion of n3 in the long chain (C20/22) form (0.41 LC:SC) than that of Experiment 2 (0.12 LC:SC). Although dietary treatment was successful in reducing the frequency of fractures by approximately 27% in Experiment 2, data from Experiment 1 indicated the diet actually induced a greater likelihood of fracture (odds ratio: 1.2) and had substantial production detriment. Reduced keel breakage during Experiment 2 could be related to changes in bone health as n3-supplemented birds demonstrated greater load at failure of the keel, and tibiae and humeri that were more flexible. These results support previous findings that n3-supplemented diets can reduce fracture likely by increasing bone strength, and that this can be achieved without detriment to production. However, our findings suggest diets with excessive quantities of n3, or very high levels of C20/22, may experience health and production detriments. Further research is needed to optimize the quantity and type of n3 in terms of bone health and production variables and investigate the potential associated mechanisms. © 2015

  13. On the multiscale origins of fracture resistance in human bone and its biological degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Elizabeth A.; Barth, Holly D.; Ritchie, Robert O.

    2012-03-09

    Akin to other mineralized tissues, human cortical bone can resist deformation and fracture due to the nature of its hierarchical structure, which spans the molecular to macroscopic length-scales. Deformation at the smallest scales, mainly through the composite action of the mineral and collagen, contributes to bone?s strength or intrinsic fracture resistance, while crack-tip shielding mechanisms active on the microstructural scale contribute to the extrinsic fracture resistance once cracking begins. The efficiency with which these structural features can resist fracture at both small and large length-scales becomes severely degraded with such factors as aging, irradiation and disease. Indeed aging and irradiation can cause changes to the cross-link profile at fibrillar length-scales as well as changes at the three orders of magnitude larger scale of the osteonal structures, both of which combine to inhibit the bone's overall resistance to the initiation and growth of cracks.

  14. Tangible and Intangible Rewards and Employee Creativity: The Mediating Role of Situational Extrinsic Motivation

    Science.gov (United States)

    Yoon, Hye Jung; Sung, Sun Young; Choi, Jin Nam; Lee, Kyungmook; Kim, Seongsu

    2015-01-01

    This study examined the effects of tangible and intangible forms of creativity-contingent rewards on employee creativity. Situation-specific intrinsic and extrinsic motivations were proposed as mediators of the reward-creativity link. Based on data collected from 271 employees and their supervisors, results revealed the following: (a) intangible…

  15. Perceived Constraints on Recreational Sport Participation: Investigating Their Relationship with Intrinsic Motivation, Extrinsic Motivation and Amotivation.

    Science.gov (United States)

    Alexandris, Konstantinos; Tsorbatzoudis, Charalambos; Grouios, George

    2002-01-01

    Investigated the influence of constraint dimensions on intrinsic motivation, extrinsic motivation, and amotivation among Greek adults who reported participation in some type of sport and physical activity. Data from the Sport Motivation Scale and leisure constraints questionnaire revealed that intrapersonal constraints acted as de-motivating…

  16. Teacher Rewards: Going beyond the Stickers--Moving beyond Extrinsic Motivation

    Science.gov (United States)

    Taylor, Cheryl; McNaney-Funk, Claire; Jardine, Don; Lehman, Geannette; Fok-Chan, Evelyn

    2014-01-01

    Studies have shown that teachers appreciate intrinsic rewards, such as student achievement, positive relationships with students, self-growth, and mastery of professional skills, far greater than extrinsic motivators, like holidays and salary (Plihal, 1981; Plihal, 1982; Ashiedu & Scott-Ladd, 2012; Baleghizadeh & Gordani, 2012). This paper…

  17. Intrinsic and Extrinsic Motivation: Evaluating Benefits and Drawbacks from College Instructors' Perspectives

    Science.gov (United States)

    Lei, Simon A.

    2010-01-01

    A growing body of literature has been examined and discussed the effects of intrinsic and extrinsic motivation on student learning at the college level. Intrinsically motivated individuals have been able to develop high regards for learning various types of course information without the inclusion of external rewards or reinforcements. In…

  18. The Role of Extrinsic Rewards and Cue-Intention Association in Prospective Memory in Young Children

    NARCIS (Netherlands)

    Sheppard, D.P.; Kretschmer, A.; Knispel, E.; Vollert, B.; Altgassen, A.M.

    2015-01-01

    The current study examined, for the first time, the effect of cue-intention association, as well as the effects of promised extrinsic rewards, on prospective memory in young children, aged 5-years-old (n = 39) and 7-years-old (n = 40). Children were asked to name pictures for a toy mole, whilst also

  19. Time is on my side: time, general mental ability, human capital, and extrinsic career success.

    Science.gov (United States)

    Judge, Timothy A; Klinger, Ryan L; Simon, Lauren S

    2010-01-01

    The present study linked general mental ability (GMA) to extrinsic career success using a multilevel framework that included time and 3 possible time-based mediators of the GMA-career success relationship. Results, based on a large national sample, revealed that over a 28-year period, GMA affected growth in 2 indicators of extrinsic career success (income and occupational prestige), such that the careers of high-GMA individuals ascended more steeply over time than those of low-GMA individuals. Part of the reason high-GMA individuals had steeper growth in extrinsic success over time was because they attained more education, completed more job training, and gravitated toward more complex jobs. GMA also moderated the degree to which within-individual variation in the mediating variables affected within-individual variation in extrinsic career success over time: Education, training, and job complexity were much more likely to translate into career success for more intelligent individuals. Copyright 2009 APA, all rights reserved.

  20. Zooming in and out: scale dependence of extrinsic and intrinsic factors affecting salt marsh erosion

    NARCIS (Netherlands)

    Wang, H.; van der Wal, D.; Li, X.; van Belzen, J.; Herman, P.M.J.; Hu, Z.; Ge, Z.; Zhang, L.; Bouma, T.J.

    2017-01-01

    Salt marshes are valuable ecosystems that provide important ecosystem services. Given the global scale of marsh loss due to climate change and coastal squeeze, there is a pressing need to identify the critical extrinsic (wind exposure and foreshore morphology) and intrinsic factors (soil and

  1. An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control

    Science.gov (United States)

    Adewuyi, Adenike A.; Hargrove, Levi J.; Kuiken, Todd A.

    2015-01-01

    Pattern recognition control combined with surface electromyography (EMG) from the extrinsic hand muscles has shown great promise for control of multiple prosthetic functions for transradial amputees. There is, however, a need to adapt this control method when implemented for partial-hand amputees, who possess both a functional wrist and information-rich residual intrinsic hand muscles. We demonstrate that combining EMG data from both intrinsic and extrinsic hand muscles to classify hand grasps and finger motions allows up to 19 classes of hand grasps and individual finger motions to be decoded, with an accuracy of 96% for non-amputees and 85% for partial-hand amputees. We evaluated real-time pattern recognition control of three hand motions in seven different wrist positions. We found that a system trained with both intrinsic and extrinsic muscle EMG data, collected while statically and dynamically varying wrist position increased completion rates from 73% to 96% for partial-hand amputees and from 88% to 100% for non-amputees when compared to a system trained with only extrinsic muscle EMG data collected in a neutral wrist position. Our study shows that incorporating intrinsic muscle EMG data and wrist motion can significantly improve the robustness of pattern recognition control for partial-hand applications. PMID:25955989

  2. Intrinsic and Extrinsic Factors That Influence Black Males to Attend Institutions of Higher Education

    Science.gov (United States)

    Etheridge, Robert

    2013-01-01

    The purpose of this qualitative, narrative study was to explore the intrinsic and extrinsic factors that motivated Black males to attend institutions of higher education. The Self-determination theory and the Integrated Model for Educational Choice formed the theoretical framework for this study. Eight Black males who were between the ages of 18…

  3. Extrinsic and intrinsic drivers of corporate social performance: evidence from foreign and domestic firms in Mexico

    NARCIS (Netherlands)

    Muller, A.; Kolk, A.

    2010-01-01

    The literature on corporate social performance (CSP) is largely split between approaches that consider CSP to be extrinsically driven and those that consider it to be intrinsically driven. While the management literature has paid attention to drivers of both types, the relationship between the two

  4. Creep of current-driven domain-wall lines: intrinsic versus extrinsic pinning

    NARCIS (Netherlands)

    Duine, R.A.; de Morais Smith, C.

    2008-01-01

    We present a model for current-driven motion of a magnetic domain-wall line, in which the dynamics of the domain wall is equivalent to that of an overdamped vortex line in an anisotropic pinning potential. This potential has both extrinsic contributions due to, e.g., sample inhomogeneities, and an

  5. The Relationship between Future Goals and Achievement Goal Orientations: An Intrinsic-Extrinsic Motivation Perspective

    Science.gov (United States)

    Lee, Jie Qi; McInerney, Dennis M.; Liem, Gregory Arief D.; Ortiga, Yasmin P.

    2010-01-01

    This research aimed to study the relationships between students' future goals (FGs) and their immediate achievement goal orientations (AGOs) among 5733 Singaporean secondary school students (M age = 14.18, SD = 1.26; 53% boys). To this end, we hypothesized that the relationships between like valenced FGs and AGOs (both intrinsic or both extrinsic)…

  6. Extrinsic Calibration of Camera and 2D Laser Sensors without Overlap

    Directory of Open Access Journals (Sweden)

    Khalil M. Ahmad Yousef

    2017-10-01

    Full Text Available Extrinsic calibration of a camera and a 2D laser range finder (lidar sensors is crucial in sensor data fusion applications; for example SLAM algorithms used in mobile robot platforms. The fundamental challenge of extrinsic calibration is when the camera-lidar sensors do not overlap or share the same field of view. In this paper we propose a novel and flexible approach for the extrinsic calibration of a camera-lidar system without overlap, which can be used for robotic platform self-calibration. The approach is based on the robot–world hand–eye calibration (RWHE problem; proven to have efficient and accurate solutions. First, the system was mapped to the RWHE calibration problem modeled as the linear relationship AX = ZB , where X and Z are unknown calibration matrices. Then, we computed the transformation matrix B , which was the main challenge in the above mapping. The computation is based on reasonable assumptions about geometric structure in the calibration environment. The reliability and accuracy of the proposed approach is compared to a state-of-the-art method in extrinsic 2D lidar to camera calibration. Experimental results from real datasets indicate that the proposed approach provides better results with an L2 norm translational and rotational deviations of 314 mm and 0 . 12 ∘ respectively.

  7. Conformational changes in photosystem II supercomplexes upon removal of extrinsic subunits

    NARCIS (Netherlands)

    Boekema, EJ; van Breemen, JFL; van Roon, H; Dekker, JP; Dekker, Jan P.

    2000-01-01

    Photosystem II is a multisubunit pigment-protein complex embedded in the thylakoid membranes of chloroplasts, It consists of a large number of intrinsic membrane proteins involved in light-harvesting and electron-transfer processes and of a number of extrinsic proteins required to stabilize

  8. Family Factors Related to Children's Intrinsic/Extrinsic Motivational Orientation and Academic Performance.

    Science.gov (United States)

    Ginsburg, Golda S.; Bronstein, Phyllis

    1993-01-01

    Examined familial factors in relation to 93 fifth-graders' motivational orientation and academic performance. High parental surveillance of homework; parental reactions to grades that included negative control, uninvolvement, or extrinsic reward; and over- and undercontrolling family styles were found to be related to children's extrinsic…

  9. A family with extrinsic allergic alveolitis caused by wild city pigeons: A case report

    NARCIS (Netherlands)

    G.J. du Marchie Sarvaas; P.J.F.M. Merkus (Peter); J.C. de Jongste (Johan)

    2000-01-01

    textabstractWe describe a family in which the mother died of unresolved lung disease and whose 5 children, some of whom had previous signs of asthma, were subsequently affected by extrinsic allergic alveolitis caused by contact with wild city pigeon antigens. The children received

  10. Students' Extrinsic and Intrinsic Motivation Level and Its Relationship with Their Mathematics Achievement

    Science.gov (United States)

    Acar Güvendir, Meltem

    2016-01-01

    This study focused on the extrinsic and intrinsic motivation levels of eighth grade students and its relationship with their mathematical achievement. The participants of the study included 6,829 students who took TIMSS in 2011 and 239 mathematics teachers. The data obtained from the student and teacher questionnaires that are included in the…

  11. Intrinsic and Extrinsic Reading Motivation as Predictors of Reading Literacy: A Longitudinal Study

    Science.gov (United States)

    Becker, Michael; McElvany, Nele; Kortenbruck, Marthe

    2010-01-01

    The purpose in this study was to examine the longitudinal relationships of intrinsic and extrinsic motivation with reading literacy development. In particular, the authors (a) investigated reading amount as mediator between motivation and reading literacy and (b) probed for bidirectional relationships between reading motivation and reading…

  12. Promoting Intrinsic and Extrinsic Motivation among Chemistry Students Using Computer-Assisted Instruction

    Science.gov (United States)

    Gambari, Isiaka A.; Gbodi, Bimpe E.; Olakanmi, Eyitao U.; Abalaka, Eneojo N.

    2016-01-01

    The role of computer-assisted instruction in promoting intrinsic and extrinsic motivation among Nigerian secondary school chemistry students was investigated in this study. The study employed two modes of computer-assisted instruction (computer simulation instruction and computer tutorial instructional packages) and two levels of gender (male and…

  13. Extrinsic Tooth Enamel Color Changes and Their Relationship with the Quality of Water Consumed

    Directory of Open Access Journals (Sweden)

    Maria da Luz Rosário de Sousa

    2012-10-01

    Full Text Available The quality of the consumed drinking water may affect oral health. For example, the presence of iron in drinking water can cause aesthetic problems related to changes in dental enamel color. This study assessed the prevalence of extrinsic enamel color changes and their relationship with the quality of the water in the town of Caapiranga/AM-Brazil. Three hundred and forty six residents of the urban area were examined, and they also answered a questionnaire on eating habits and self-perceived oral health. As the initial results indicated an insufficient number of observations for the application of variance analysis (one-way ANOVA, the Student t test was chosen to compare levels of iron content in the water coming from two sources. The change in tooth color had a prevalence of 5.78% (20 people. The majority of the population (n = 261, 75.43% consumed well water. Those who presented extrinsic stains were uncomfortable with the appearance of their teeth (15.09%. We conclude that while there is excess of iron in the water in this region of Brazil, no association between extrinsic stains on the enamel and the level of iron in the water was found. There was a low prevalence of extrinsic stains in Caaparinga, being found only in children and adolescents. In the present study, an association between the presence of stains and the consumption of açai was determined, and those who presented them felt uncomfortable about their aesthetics.

  14. Shifting the Sun: Solar Spectral Conversion and Extrinsic Sensitization in Natural and Artificial Photosynthesis

    Science.gov (United States)

    Tyystjärvi, Esa; Méndez‐Ramos, Jorge; Müller, Frank A.; Zhang, Qinyuan

    2015-01-01

    Solar energy harvesting is largely limited by the spectral sensitivity of the employed energy conversion system, where usually large parts of the solar spectrum do not contribute to the harvesting scheme, and where, of the contributing fraction, the full potential of each photon is not efficiently used in the generation of electrical or chemical energy. Extrinsic sensitization through photoluminescent spectral conversion has been proposed as a route to at least partially overcome this problem. Here, we discuss this approach in the emerging context of photochemical energy harvesting and storage through natural or artificial photosynthesis. Clearly contrary to application in photovoltaic energy conversion, implementation of solar spectral conversion for extrinsic sensitization of a photosynthetic machinery is very straightforward, and—when compared to intrinsic sensitization—less‐strict limitations with regard to quantum coherence are seen. We now argue the ways in which extrinsic sensitization through photoluminescent spectral converters will—and will not—play its role in the area of ultra‐efficient photosynthesis, and also illustrate how such extrinsic sensitization requires dedicated selection of specific conversion schemes and design strategies on system scale. PMID:27774377

  15. Shifting the Sun: Solar Spectral Conversion and Extrinsic Sensitization in Natural and Artificial Photosynthesis.

    Science.gov (United States)

    Wondraczek, Lothar; Tyystjärvi, Esa; Méndez-Ramos, Jorge; Müller, Frank A; Zhang, Qinyuan

    2015-12-01

    Solar energy harvesting is largely limited by the spectral sensitivity of the employed energy conversion system, where usually large parts of the solar spectrum do not contribute to the harvesting scheme, and where, of the contributing fraction, the full potential of each photon is not efficiently used in the generation of electrical or chemical energy. Extrinsic sensitization through photoluminescent spectral conversion has been proposed as a route to at least partially overcome this problem. Here, we discuss this approach in the emerging context of photochemical energy harvesting and storage through natural or artificial photosynthesis. Clearly contrary to application in photovoltaic energy conversion, implementation of solar spectral conversion for extrinsic sensitization of a photosynthetic machinery is very straightforward, and-when compared to intrinsic sensitization-less-strict limitations with regard to quantum coherence are seen. We now argue the ways in which extrinsic sensitization through photoluminescent spectral converters will-and will not-play its role in the area of ultra-efficient photosynthesis, and also illustrate how such extrinsic sensitization requires dedicated selection of specific conversion schemes and design strategies on system scale.

  16. The extrinsic affective Simon task as an instrument for indirect assessment of prejudice

    NARCIS (Netherlands)

    Degner, J.; Wentura, D.

    2008-01-01

    We report one study that explored the applicability of the Extrinsic Affective Simon Task (EAST) as an indirect measure of prejudice. The EAST detected known differences in reactions revealing that a Turkish outgroup was spontaneously evaluated more negatively than the German ingroup. More

  17. Extrinsic Calibration of Camera and 2D Laser Sensors without Overlap

    Science.gov (United States)

    Al-Widyan, Khalid

    2017-01-01

    Extrinsic calibration of a camera and a 2D laser range finder (lidar) sensors is crucial in sensor data fusion applications; for example SLAM algorithms used in mobile robot platforms. The fundamental challenge of extrinsic calibration is when the camera-lidar sensors do not overlap or share the same field of view. In this paper we propose a novel and flexible approach for the extrinsic calibration of a camera-lidar system without overlap, which can be used for robotic platform self-calibration. The approach is based on the robot–world hand–eye calibration (RWHE) problem; proven to have efficient and accurate solutions. First, the system was mapped to the RWHE calibration problem modeled as the linear relationship AX=ZB, where X and Z are unknown calibration matrices. Then, we computed the transformation matrix B, which was the main challenge in the above mapping. The computation is based on reasonable assumptions about geometric structure in the calibration environment. The reliability and accuracy of the proposed approach is compared to a state-of-the-art method in extrinsic 2D lidar to camera calibration. Experimental results from real datasets indicate that the proposed approach provides better results with an L2 norm translational and rotational deviations of 314 mm and 0.12∘ respectively. PMID:29036905

  18. The fragmented self : imbalance between intrinsic and extrinsic self-networks in psychotic disorders

    NARCIS (Netherlands)

    Ebisch, Sjoerd J. H.; Aleman, Andre

    Self-disturbances are among the core features of schizophrenia and related psychotic disorders. The basic structure of the self could depend on the balance between intrinsic and extrinsic self-processing. We discuss studies on self-related processing in psychotic disorders that provide converging

  19. Intrinsic Motivation, Extrinsic Motivation, and Academic Achievement among Indian Adolescents in Canada and India

    Science.gov (United States)

    Areepattamannil, Shaljan; Freeman, John G.; Klinger, Don A.

    2011-01-01

    The purpose of the present study was to examine the relationships among intrinsic motivation, extrinsic motivation, and academic achievement for the Indian immigrant adolescents in Canada in comparison to their counterparts in India. Descriptive discriminant analysis indicated that the Indian immigrant adolescents in Canada had higher intrinsic…

  20. The Relationship of Intrinsic-Extrinsic Motivation and Communication Climate in Organizations.

    Science.gov (United States)

    Krivonos, Paul D.

    After reviewing the literature relevant to motivation and perception of communication climate, a study of 65 supervisory-managerial personnel from two large manufacturing companies is reported. Subjects completed an intrinsic/extrinsic motivation scale and a communication-climate questionnaire. Analysis of results indicated partial support for the…

  1. The efficacy of two prototype chewing gums for the removal of extrinsic tooth stain

    NARCIS (Netherlands)

    Ozcan, M; Kulak, Y; Kazazoglu, E

    Aim: To compare the potential efficacy of two prototype chewing gums in extrinsic stain removal on natural teeth. Setting: Dental school clinics. Design: Double-blind, two groups, parallel design. Participants: 76 adult volunteers (32m, 44f, mean age: 20.6 years old). Methods: Oral hard and soft

  2. Profiles of Intrinsic and Extrinsic Motivations in Elementary School: A Longitudinal Analysis

    Science.gov (United States)

    Corpus, Jennifer Henderlong; Wormington, Stephanie V.

    2014-01-01

    The authors used a person-centered, longitudinal approach to identify and evaluate naturally occurring combinations of intrinsic and extrinsic motivations among 490 third- through fifth-grade students. Cluster analysis revealed 3 groups, characterized by high levels of both motivations ("high quantity"): high intrinsic motivation but low…

  3. First principles studies of extrinsic and intrinsic defects in boron nitride nanotubes

    CSIR Research Space (South Africa)

    Mashapa, MG

    2012-10-01

    Full Text Available -1 Journal of Nanoscience and Nanotechnology 2012/ Vol. 12, 7807?7814 First Principles Studies of Extrinsic and Intrinsic Defects in Boron Nitride Nanotubes M. G. Mashapa 1, 2, ?, N. Chetty1, and S. Sinha Ray2, 3 1Physics Department, University...

  4. The dark side of monetary incentive: how does extrinsic reward crowd out intrinsic motivation.

    Science.gov (United States)

    Ma, Qingguo; Jin, Jia; Meng, Liang; Shen, Qiang

    2014-02-12

    It was widely believed that incentives could effectively enhance the motivation of both students and employees. However, psychologists reported that extrinsic reward actually could undermine individuals' intrinsic motivation to a given interesting task, which challenged viewpoints from traditional incentive theories. Numerous studies have been carried out to test and explain the undermining effect; however, the neural basis of this effect is still elusive. Here, we carried out an electrophysiological study with a simple but interesting stopwatch task to explore to what extent the performance-based monetary reward undermines individuals' intrinsic motivation toward the task. The electrophysiological data showed that the differentiated feedback-related negativity amplitude toward intrinsic success failure divergence was prominently reduced once the extrinsic reward was imposed beforehand. However, such a difference was not observed in the control group, in which no extrinsic reward was provided throughout the experiment. Furthermore, such a pattern was not observed for P300 amplitude. Therefore, the current results indicate that extrinsic reward demotivates the intrinsic response of individuals toward success-failure outcome, which was reflected in the corresponding reduced motivational-related differentiated feedback-related negativity, but not in amplitude of P300.

  5. Effects of a Baking Soda Gum on extrinsic dental stain: results of a longitudinal 4-week assessment.

    Science.gov (United States)

    Soparkar, P; Newman, M B

    2001-07-01

    An evaluation of the effects of ARM & HAMMER DENTAL CARE The Baking Soda Gum (AHDC) on extrinsic dental stain was made in 48 subjects presenting with measurable extrinsic stain. The subjects were randomized to use either the baking soda gum or a non-baking soda placebo gum for 20 minutes twice daily after lunch and dinner while brushing once daily. The procedure of limited brushing was chosen to simulate the level of hygiene normally practiced by participants entering a clinical study. After 4 weeks, the reduction in measurable extrinsic stain in the baking soda gum group was statistically significant (P = .0044) relative to baseline. Statistical analysis of the placebo gum group revealed no significant change in extrinsic stain from baseline. The magnitude of the unadjusted longitudinal reduction in extrinsic stain in the baking soda gum group was 29.7% at 4 weeks.

  6. Effector-independent motor sequence representations exist in extrinsic and intrinsic reference frames.

    Science.gov (United States)

    Wiestler, Tobias; Waters-Metenier, Sheena; Diedrichsen, Jörn

    2014-04-02

    Many daily activities rely on the ability to produce meaningful sequences of movements. Motor sequences can be learned in an effector-specific fashion (such that benefits of training are restricted to the trained hand) or an effector-independent manner (meaning that learning also facilitates performance with the untrained hand). Effector-independent knowledge can be represented in extrinsic/world-centered or in intrinsic/body-centered coordinates. Here, we used functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis to determine the distribution of intrinsic and extrinsic finger sequence representations across the human neocortex. Participants practiced four sequences with one hand for 4 d, and then performed these sequences during fMRI with both left and right hand. Between hands, these sequences were equivalent in extrinsic or intrinsic space, or were unrelated. In dorsal premotor cortex (PMd), we found that sequence-specific activity patterns correlated higher for extrinsic than for unrelated pairs, providing evidence for an extrinsic sequence representation. In contrast, primary sensory and motor cortices showed effector-independent representations in intrinsic space, with considerable overlap of the two reference frames in caudal PMd. These results suggest that effector-independent representations exist not only in world-centered, but also in body-centered coordinates, and that PMd may be involved in transforming sequential knowledge between the two. Moreover, although effector-independent sequence representations were found bilaterally, they were stronger in the hemisphere contralateral to the trained hand. This indicates that intermanual transfer relies on motor memories that are laid down during training in both hemispheres, but preferentially draws upon sequential knowledge represented in the trained hemisphere.

  7. [Arthroscopic fracture management in proximal humeral fractures].

    Science.gov (United States)

    Lill, H; Katthagen, C; Jensen, G; Voigt, C

    2013-04-01

    Arthroscopy has become increasingly more established in the treatment of proximal humeral fractures. In addition to the known advantages of minimally invasive surgery fracture and implant positioning can be optimized and controlled arthroscopically and relevant intra-articular concomitant pathologies (e.g. biceps tendon complex and rotator cuff) can be diagnosed and treated. Arthroscopic techniques have proven to be advantageous in the treatment of various entities of greater tuberosity fractures, lesser tuberosity fractures (suture bridging technique) and subcapital humeral fractures (arthroscopic nailing). This article presents an overview on innovative arthroscopic modalities for treating proximal humeral fractures, describes the surgical techniques and the advantages compared to open procedures as well as initial clinical results.

  8. Pediatric Phalanx Fractures.

    Science.gov (United States)

    Abzug, Joshua M; Dua, Karan; Sesko Bauer, Andrea; Cornwall, Roger; Wyrick, Theresa O

    2017-02-15

    Phalangeal fractures are the most common type of hand fracture that occurs in the pediatric population and account for the second highest number of emergency department visits in the United States for fractures. The incidence of phalangeal fractures is the highest in children aged 10 to 14 years, which coincides with the time that most children begin playing contact sports. Younger children are more likely to sustain a phalangeal fracture in the home setting as a result of crush and laceration injuries. Salter-Harris type II fractures of the proximal phalanx are the most common type of finger fracture. An unmineralized physis is biomechanically weaker compared with the surrounding ligamentous structures and mature bone, which make fractures about the physis likely. A thorough physical examination is necessary to assess the digital cascade for signs of rotational deformity and/or coronal malalignment. Plain radiographs of the hand and digits are sufficient to confirm a diagnosis of a phalangeal fracture. The management of phalangeal fractures is based on the initial severity of the injury and depends on the success of closed reduction techniques. Nondisplaced phalanx fractures are managed with splint immobilization. Stable, reduced phalanx fractures are immobilized but require close monitoring to ensure maintenance of fracture reduction. Unstable, displaced phalanx fractures require surgical management, preferably via closed reduction and percutaneous pinning.

  9. Mixed Mode Fracture of Plasma Sprayed Thermal Barrier Coatings: Effects of Anisotropy and Heterogeneity

    Science.gov (United States)

    Zhu, Dongming; Choi, Sung R.; Ghosn, Louis L.

    2008-01-01

    The combined mode I-mode II fracture behavior of anisotropic ZrO2-8wt%Y2O3 thermal barrier coatings was determined in asymmetric flexure loading at both ambient and elevated temperatures. A fracture envelope of KI versus KII was determined for the coating material at ambient and elevated temperatures. Propagation angles of fracture as a function of KI/KII were also determined. The mixed-mode fracture behavior of the microsplat coating material was modeled using Finite Element approach to account for anisotropy and micro cracked structures, and predicted in terms of fracture envelope and propagation angle using mixed-mode fracture theories.

  10. Permeability of displaced fractures

    Science.gov (United States)

    Kluge, Christian; Milsch, Harald; Blöcher, Guido

    2017-04-01

    Flow along fractures or in fissured systems becomes increasingly important in the context of Enhanced Geothermal Systems (EGS), shale gas recovery or nuclear waste deposit. Commonly, the permeability of fractures is approximated using the Hagen-Poiseuille solution of Navier Stokes equation. Furthermore, the flow in fractures is assumed to be laminar flow between two parallel plates and the cubic law for calculating the velocity field is applied. It is a well-known fact, that fracture flow is strongly influenced by the fracture surface roughness and the shear displacement along the fracture plane. Therefore, a numerical approach was developed which calculates the flow pattern within a fracture-matrix system. The flow in the fracture is described by a free fluid flow and the flow in the matrix is assumed to be laminar and therefore validates Darcy's law. The presented approach can be applied for artificially generated fractures or real fractures measured by surface scanning. Artificial fracture surfaces are generated using the power spectral density of the surface height random process with a spectral exponent to define roughness. For calculating the permeability of such fracture-matrix systems the mean fracture aperture, the shear displacement and the surface roughness are considered by use of a 3D numerical simulator. By use of this approach correlation between shear displacement and mean aperture, shear displacement and permeability, as well as surface roughness and permeability can be obtained. Furthermore, the intrinsic measured permeability presents a combination of matrix and fracture permeability. The presented approach allows the separation and quantification of the absolute magnitudes of the matrix and the fracture permeability and the permeability of displaced fractures can be calculated. The numerical approach which is a 3D numerical simulation of the fracture-matrix system can be applied for artificial as well as real systems.

  11. Generational differences in American students' reasons for going to college, 1971-2014: The rise of extrinsic motives.

    Science.gov (United States)

    Twenge, Jean M; Donnelly, Kristin

    2016-01-01

    We examined generational differences in reasons for attending college among a nationally representative sample of college students (N = 8 million) entering college between 1971-2014. We validated the items on reasons for attending college against an established measure of extrinsic and intrinsic values among college students in 2014 (n = 189). Millennials (in college 2000s-2010s) and Generation X (1980s-1990s) valued extrinsic reasons for going to college ("to make more money") more, and anti-extrinsic reasons ("to gain a general education and appreciation of ideas") less than Boomers when they were the same age in the 1960s-1970s. Extrinsic reasons for going to college were higher in years with more income inequality, college enrollment, and extrinsic values. These results mirror previous research finding generational increases in extrinsic values begun by GenX and continued by Millennials, suggesting that more recent generations are more likely to favor extrinsic values in their decision-making.

  12. Infant skull fracture (image)

    Science.gov (United States)

    Skull fractures may occur with head injuries. Although the skull is both tough and resilient and provides excellent protection ... a severe impact or blow can result in fracture of the skull and may be accompanied by ...

  13. Nasal fracture (image)

    Science.gov (United States)

    A nasal fracture is a break in the bone over the ridge of the nose. It usually results from a blunt ... and is one of the most common facial fracture. Symptoms of a broken nose include pain, blood ...

  14. Growth Plate Fractures

    Science.gov (United States)

    .org Growth Plate Fractures Page ( 1 ) The bones of children and adults share many of the same risks for ... also subject to a unique injury called a growth plate fracture. Growth plates are areas of cartilage ...

  15. Bone fracture repair - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100077.htm Bone fracture repair - series—Indications To use the sharing features ... Go to slide 4 out of 4 Overview Fractures of the bones are classified in a number ...

  16. Femur fracture repair - discharge

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000166.htm Femur fracture repair - discharge To use the sharing features on this page, please enable JavaScript. You had a fracture (break) in the femur in your leg. It ...

  17. Rib fracture - aftercare

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000539.htm Rib fracture - aftercare To use the sharing features on this page, please enable JavaScript. A rib fracture is a crack or break in one or ...

  18. Nasal fracture - aftercare

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000554.htm Nasal fracture - aftercare To use the sharing features on this ... that gives your nose its shape. A nasal fracture occurs when the bony part of your nose ...

  19. Hip fracture surgery

    Science.gov (United States)

    ... neck fracture repair; Trochanteric fracture repair; Hip pinning surgery; Osteoarthritis - hip ... You may receive general anesthesia for this surgery. This means you ... spinal anesthesia . With this kind of anesthesia, medicine is ...

  20. Metatarsal stress fractures - aftercare

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000553.htm Metatarsal stress fractures - aftercare To use the sharing features on ... that connect your ankle to your toes. A stress fracture is a break in the bone that ...

  1. Everted skull fracture.

    Science.gov (United States)

    Balasubramaniam, Srikant; Tyagi, Devendra K; Savant, Hemant V

    2011-11-01

    Skull bone fractures are common in trauma. They are usually linear undisplaced or depressed; however, a distinct possibility of elevated fracture remains. We describe an entity of everted fracture skull in which the fracture segment is totally everted. The nature of trauma, management, and complications of this unique case are discussed. A 21-year-old woman involved in a railway accident presented to us with a primary dressing on her wound. Investigations revealed an everted fracture skull. She underwent surgery with good results. We would like to add everted fracture skull to the nomenclature describing skull fractures in addition to elevated compound fracture skull as a new entity. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. The development of in situ fracture toughness evaluation techniques in hydrogen environment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Ren, Fei [ORNL; Tan, Ting [ORNL; Liu, Ken C [ORNL

    2014-01-01

    Fracture behavior and fracture toughness are of great interest regarding reliability of hydrogen pipelines and storage tanks, however, many conventional fracture testing techniques are difficult to be realized under the presence of hydrogen, in addition to the inherited specimen size effect. Thus it is desired to develop novel in situ fracture toughness evaluation techniques to study the fracture behavior of structural materials in hydrogen environments. In this study, a torsional fixture was developed to utilize an emerging fracture testing technique, Spiral Notch Torsion Test (SNTT). The in situ testing results indicated that the exposure to H2 significantly reduces the fracture toughness of 4340 high strength steels by up to 50 percent. Furthermore, SNTT tests conducted in air demonstrated a significant fracture toughness reduction in samples subject to simulated welding heat treatment using Gleeble, which illustrated the effect of welding on the fracture toughness of this material.

  3. MULTI-PHASE FRACTURE-MATRIX INTERACTIONS UNDER STRESS CHANGES

    Energy Technology Data Exchange (ETDEWEB)

    A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarado; A. Alajmi; Z. Karpyn; N. Mohammed; S. Al-Enezi

    2005-06-15

    The main objectives of this project are to quantify the changes in fracture porosity and multiphase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (a) developing the direct experimental measurements of fracture aperture and topology and fluid occupancy using high-resolution x-ray micro-tomography, (b) quantifying the effect of confining stress on the distribution of fracture aperture, and (c) characterization of shear fractures and their impact on multi-phase flow. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. Several fractures have been scanned and the fracture aperture maps have been extracted. The success of the mapping of fracture aperture was followed by measuring the occupancy of the fracture by two immiscible phases, water and decane, and water and kerosene. The distribution of fracture aperture depends on the effective confining stress on the nature of the rock and the type and distribution of the asperities that keep the fracture open. Fracture apertures at different confining stresses were obtained by micro-tomography covering a range of about two thousand psig. Initial analysis of the data shows a significant aperture closure with increase in effective confining stress. Visual descriptions of the process are shown in the report while detailed analysis of the behavior of the distribution of fracture aperture is in progress. Both extensional and shear fractures are being considered. The initial multi-phase flow tests were done in extensional fractures. Several rock samples with induced shear fracture are being studied, and some of the new results are presented in this report. These samples are being scanned in order to

  4. Management of common fractures.

    Science.gov (United States)

    Walker, Jennie

    2013-02-01

    The incidence of fractures increases with advancing age partly due to the presence of multiple comorbidities and increased risk of falls. Common fracture sites in older people include femoral neck, distal radius and vertebral bodies. Nurses have an important role in caring for older patients who have sustained fractures, not only to maximise function and recovery, but as part of a team to minimise the morbidity and mortality associated with fractures in this group.

  5. Emergence of Anomalous Transport in Stressed Rough Fractures

    Science.gov (United States)

    Kang, P. K.; Brown, S.; Alves da Silva, J.; Juanes, R.

    2015-12-01

    Fluid flow and tracer transport in fractured rock controls many natural and engineered processes in the geosciences, and therefore has been extensively studied. Geologic fractures, however, are always under significant overburden stress. While confining stress has been shown to impact fluid flow through rough-walled fractures in a fundamental way, studies of anomalous tracer transport at the scale of individual fractures have so far ignored the potential role of confining stress.Here, we report the emergence of anomalous (non-Fickian) transport through a rough-walled fracture as a result of increasing the normal stress on the fracture. We generate fracture surfaces with fractal roughness, and solve the elastic contact problem between the two surfaces to obtain the 3D fracture geometry for increasing levels of normal stress. We then simulate fluid flow and particle transport through the stressed rough fracture. We observe a transition from Fickian to anomalous transport as the normal stress on the fracture increases.We show that the origin of this anomalous transport behavior can be traced to the self-organization of the flow field into a heterogeneous structure dominated by preferential channels and stagnation zones, as a result of the larger number of contacts in a highly stressed fracture. We also propose a spatial Markov model that reproduces the transport behavior at the scale of the entire fracture with only three physical parameters. Our results point to a heretofore unrecognized link between geomechanics and anomalous particle transport in fractured media. Finally, we show preliminary laboratory experiment results that confirm our findings. (a) Magnitude of the volumetric flux at each discretization grid block at low stress. (b) Magnitude of the volumetric flux for a highly stressed fracture. Values are normalized with the mean volumetric flux.

  6. Lead induced intergranular fracture in aluminum alloy AA6262

    OpenAIRE

    De Hosson, JTM

    2003-01-01

    The influence of lead on the fracture behavior of aluminum alloy AA6262 is investigated. Under certain conditions, the mode of fracture changes from transgranular microvoid coalescence to an intergranular mechanism. Three different intergranular fracture mechanisms are observed: liquid metal embrittlement, dynamic embrittlement at temperatures below the melting temperature of lead, and intergranular microvoid coalescence. An attempt is made to examine the dependence of these three mechanisms ...

  7. R0 for vector-borne diseases: impact of the assumption for the duration of the extrinsic incubation period.

    Science.gov (United States)

    Hartemink, Nienke; Cianci, Daniela; Reiter, Paul

    2015-03-01

    Mathematical modeling and notably the basic reproduction number R0 have become popular tools for the description of vector-borne disease dynamics. We compare two widely used methods to calculate the probability of a vector to survive the extrinsic incubation period. The two methods are based on different assumptions for the duration of the extrinsic incubation period; one method assumes a fixed period and the other method assumes a fixed daily rate of becoming infectious. We conclude that the outcomes differ substantially between the methods when the average life span of the vector is short compared to the extrinsic incubation period.

  8. Imaging of insufficiency fractures

    Energy Technology Data Exchange (ETDEWEB)

    Krestan, Christian [Department of Radiology, Medical University of Vienna, Vienna General Hospital, Waehringerstr. 18-20, 1090 Vienna (Austria)], E-mail: christian.krestan@meduniwien.ac.at; Hojreh, Azadeh [Department of Radiology, Medical University of Vienna, Vienna General Hospital, Waehringerstr. 18-20, 1090 Vienna (Austria)

    2009-09-15

    This review focuses on the occurrence, imaging and differential diagnosis of insufficiency fractures. Prevalence, the most common sites of insufficiency fractures and their clinical implications are discussed. Insufficiency fractures occur with normal stress exerted on weakened bone. Postmenopausal osteoporosis is the most common cause of insufficiency fractures. Other conditions which affect bone turnover include osteomalacia, hyperparathyroidism, chronic renal failure and high-dose glucocorticoid therapy. It is a challenge for the radiologist to detect and diagnose insufficiency fractures, and to differentiate them from other bone lesions. Radiographs are still the most widely used imaging method for identification of insufficiency fractures, but sensitivity is limited, depending on the location of the fractures. Magnetic resonance imaging (MRI) is a very sensitive tool to visualize bone marrow abnormalities associated with insufficiency fractures. Thin section, multi-detector computed tomography (MDCT) depicts subtle fracture lines allowing direct visualization of cortical and trabecular bone. Bone scintigraphy still plays a role in detecting fractures, with good sensitivity but limited specificity. The most important differential diagnosis is underlying malignant disease leading to pathologic fractures. Bone densitometry and clinical history may also be helpful in confirming the diagnosis of insufficiency fractures.

  9. Sprains, Strains and Fractures

    Science.gov (United States)

    ... the bone. Causes Injuries are the most common causes of foot and ankle sprains and fractures. Many fractures and sprains occur during ... or stumbling on uneven ground is another common cause of foot and ankle sprains and fractures. Symptoms Pain, swelling, bruising, and difficulty ...

  10. Obesity and fracture risk

    OpenAIRE

    Gonnelli, S; Caffarelli, C.; Nuti, R.

    2014-01-01

    Obesity and osteoporosis are two common diseases with an increasing prevalence and a high impact on morbidity and mortality. Obese women have always been considered protected against osteoporosis and osteoporotic fractures. However, several recent studies have challenged the widespread belief that obesity is protective against fracture and have suggested that obesity is a risk factor for certain fractures.

  11. Impact of Micro-to Meso-scale Fractures on Sealing Behavior of Argillaceous Cap Rocks For CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Evans, James [Utah State Univ., Logan, UT (United States)

    2016-08-01

    This multi-disciplinary project evaluated seal lithologies for the safety and security of long-term geosequestration of CO2. We used integrated studies to provide qualitative risk for potential seal failure; we integrated data sets from outcrop, core, geochemical analysis, rock failure properties from mechanical testing, geophysical wireline log analysis, and geomechanical modeling to understand the effects of lithologic heterogeneity and changing mechanical properties have on the mechanical properties of the seal. The objectives of this study were to characterize cap rock seals using natural field analogs, available drillhole logging data and whole-rock core, geochemical and isotopic analyses. Rock deformation experiments were carried out on collected samples to develop better models of risk estimation for potential cap rock seal failure. We also sampled variably faulted and fractured cap rocks to examine the impacts of mineralization and/or alteration on the mechanical properties. We compared CO2 reacted systems to non-CO2 reacted seal rock types to determine response of each to increased pore fluid pressures and potential for the creation of unintentional hydrofractures at depth.

  12. Dynamic Strength and Fracturing Behavior of Single-Flawed Prismatic Marble Specimens Under Impact Loading with a Split-Hopkinson Pressure Bar

    Science.gov (United States)

    Li, Xibing; Zhou, Tao; Li, Diyuan

    2017-01-01

    Dynamic impact tests are performed on prismatic marble specimens containing a single flaw using a modified split-Hopkinson pressure bar device. The effects of pre-existing flaws with different flaw angles and lengths on the dynamic mechanical properties are analyzed. The results demonstrate that the dynamic strength of marble is influenced by the flaw geometry. The dynamic fracturing process of flawed specimens is monitored and characterized with the aid of a high-speed camera. Cracking of marble specimens with a single pre-existing flaw under impact loading is analyzed based on experimental investigations. Cracking involves two major stages: formation of white patches and development of macrocracks. Six typical crack types are identified on the basis of their trajectories and initiation mechanisms. The presence of an artificial flaw may change the failure mode of marble from splitting-dominated for an intact specimen to shear-dominated for a flawed specimen under dynamic loading. Nevertheless, the geometry of the flaws appears to have a slight influence on the failure modes of flawed specimens under impact loading.

  13. Modeling of heat transport through Fractures with emphasis to roughness and aperture variability

    Science.gov (United States)

    Nigon, Benoit; Englert, Andreas; Pascal, Christophe

    2015-04-01

    Fractured media are characterized by multi-scale heterogeneities implying high spatial variability of hydraulic properties. At the fracture network scale, spatial organization of fluxes is controlled by the fracture network geometry, itself characterized by fracture connectivity, fracture density, and the respective lengths and apertures of the fractures within the network. At the fracture scale, the variability of the fluxes is mainly controlled by fracture roughness and aperture variability. The multi-scale heterogeneities of fractured rocks imply complexities for prediction of solute and heat transport in space and time, and often lead to the so-called "anomalous transport" behavior. In homogeneous media, heat transport can be described using Fourier's law opening the possibility to apply the advection-dispersion equation to predict transport behavior. However, in real fractured media a "non-Fourier transport" often dominates. The latter phenomenon, characterized by asymmetric breakthrough shape, early breakthrough and long tailing cannot be described by the classical advection-dispersion equation. In the present study, we focus on heat transport within a single fracture and we explore the respective roles of fracture roughness and aperture variability. Fracture roughness has two main effects on heat transport, flow channeling and a spatial variation of heat exchange area between fluid and rock. Fracture aperture variability controls the variability of fracture flow, and thus induces spatial variation of heat transport in a fracture. Micro- to macro-scale fracture roughness measurements will be performed in the field and the laboratory using a terrestrial LIDAR, a X-Ray CT-Scanner Alpha, and a Microscope Keyence VHX 100. Thereafter the measurements will be used to better describe fracture geometry taking in account discontinuity type. To further improve the understanding of heat transfer between fracture and matrix, we will numerically model heat transport as

  14. Family factors related to children's intrinsic/extrinsic motivational orientation and academic performance.

    Science.gov (United States)

    Ginsburg, G S; Bronstein, P

    1993-10-01

    This study examined 3 familial factors--parental surveillance of homework, parental reactions to grades, and general family style--in relation to children's motivational orientation and academic performance. Family, parent, and child measures were obtained in the home from 93 fifth graders and their parents. Teachers provided a measure of classroom motivational orientation, and grades and achievement scores were obtained from school records. Higher parental surveillance of homework, parental reactions to grades that included negative control, uninvolvement, or extrinsic reward, and over- and undercontrolling family styles were found to be related to an extrinsic motivational orientation and to lower academic performance. On the other hand, parental encouragement in response to grades children received was associated with an intrinsic motivational orientation, and autonomy-supporting family styles were associated with intrinsic motivation and higher academic performance. In addition, socioeconomic level was a significant predictor of motivational orientation and academic performance.

  15. Intrinsic and extrinsic motivation in early adolescents' friendship development: friendship selection, influence, and prospective friendship quality.

    Science.gov (United States)

    Ojanen, Tiina; Sijtsema, Jelle J; Hawley, Patricia H; Little, Todd D

    2010-12-01

    Friendships are essential for adolescent social development. However, they may be pursued for varying motives, which, in turn, may predict similarity in friendships via social selection or social influence processes, and likely help to explain friendship quality. We examined the effect of early adolescents' (N = 374, 12-14 years) intrinsic and extrinsic friendship motivation on friendship selection and social influence by utilizing social network modeling. In addition, longitudinal relations among motivation and friendship quality were estimated with structural equation modeling. Extrinsic motivation predicted activity in making friendship nominations during the sixth grade and lower friendship quality across time. Intrinsic motivation predicted inactivity in making friendship nominations during the sixth, popularity as a friend across the transition to middle school, and higher friendship quality across time. Social influence effects were observed for both motives, but were more pronounced for intrinsic motivation. Copyright © 2010 The Association for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  16. Effects of intrinsic and extrinsic factors on the diet of Bathyraja macloviana, a benthophagous skate.

    Science.gov (United States)

    Barbini, S A; Scenna, L B; Figueroa, D E; Díaz de Astarloa, J M

    2013-07-01

    The effects of intrinsic (sex, maturity stage and body size) and extrinsic (depth and region) factors on the diet of Bathyraja macloviana, in the south-west Atlantic Ocean, were evaluated using a multiple-hypothesis modelling approach. Bathyraja macloviana fed mainly on polychaetes followed by amphipods, isopods and decapods. Effects of intrinsic and extrinsic factors on diet composition of this species were found. The consumption of polychaetes had a humped relationship with total length (L(T), and isopods and decapods increased with increasing L(T). Immature individuals preyed on amphipods more heavily than mature individuals. Furthermore, region and depth had an important effect on the consumption of isopods, decapods and amphipods. Such ontogenetic changes and spatial patterns may provide insights into understanding the regulatory mechanisms of marine communities. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.

  17. Extrinsic anomalous Hall effect in epitaxial Mn{sub 4}N films

    Energy Technology Data Exchange (ETDEWEB)

    Meng, M.; Wu, S. X., E-mail: wushx3@mail.sysu.edu.cn; Ren, L. Z.; Zhou, W. Q.; Wang, Y. J.; Wang, G. L.; Li, S. W., E-mail: stslsw@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2015-01-19

    Anomalous Hall effect (AHE) in ferrimagnetic Mn{sub 4}N epitaxial films grown by molecular-beam epitaxy is investigated. The longitudinal conductivity σ{sub xx} is within the superclean regime, indicating Mn{sub 4}N is a highly conducting material. We further demonstrate that the AHE signal in 40-nm-thick films is mainly due to the extrinsic contributions based on the analysis fitted by ρ{sub AH}=a′ρ{sub xx0}+bρ{sub xx}{sup 2} and σ{sub AH}∝σ{sub xx}. Our study not only provide a strategy for further theoretical work on antiperovskite manganese nitrides but also shed promising light on utilizing their extrinsic AHE to fabricate spintronic devices.

  18. Examining the relationship between recreational sport participation and intrinsic and extrinsic motivation and amotivation.

    Science.gov (United States)

    Tsorbatzoudis, Haralambos; Alexandris, Konstantinos; Zahariadis, Panagiotis; Grouios, George

    2006-10-01

    This study aimed at investigating the effect of motivational dimensions proposed by Pelletier, et al. in 1995, both on sport participation levels and on intention for continuing participation among adult recreational sport participants. Two hundred and fifty-seven adult individuals, who reported participation in some type of sport and physical activity, completed the Sport Motivation Scale and a scale measuring intention. The study provided evidence to suggest that increased motivation leads to increased participation. Amotivation significantly decreased from the least to the most frequent participant groups, while both extrinsic and intrinsic motivation followed the reverse pattern. The results also indicated that increased intrinsic motivation to gain knowledge and accomplishment and extrinsic motivation (introjected regulation) are positively correlated with individuals' intentions to continue participation, while amotivation is negatively related. These results provide limited support for the self-determination theory. Implications for sport participation promotion are discussed.

  19. MR imaging of normal extrinsic wrist ligaments using thin slices with clinical and surgical correlation.

    Science.gov (United States)

    Shahabpour, M; De Maeseneer, M; Pouders, C; Van Overstraeten, L; Ceuterick, P; Fierens, Y; Goubau, J; De Mey, J

    2011-02-01

    Eighty-nine MR examinations of the wrist were retrospectively analyzed. MRI results were compared with clinical findings and/or arthroscopy. Thin proton density and T2 weighted sequences and 3D DESS weighted sequences were applied on a 1.5T scanner. On the palmar side three radiocarpal ligaments are recognized including the radioscaphocapitate, radiolunotriquetral, radioscapholunate, and midcarpal triquetroscaphoidal ligaments. Ulnocarpal ligaments include the ulnolunate ligament and the ulnotriquetral ligament. On the dorsal side three ligaments are recognized: the dorsal radiolunotriquetral, and the midcarpal triquetroscaphoidal and triquetro-trapezoido-trapezial. The collateral ligaments include the radial and ulnar collateral ligament. MR is a valuable technique in the assessment of the extrinsic and midcarpal ligaments. Depiction of the extrinsic ligaments can best be accomplished with coronal 3D DESS sequences and sagittal and transverse proton density and T2 weighted sequences with thin slices. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Extrinsic electromagnetic chirality in all-photodesigned one-dimensional THz metamaterials

    CERN Document Server

    Rizza, Carlo; Brambilla, Massimo; Prati, Franco; Ciattoni, Alessandro

    2016-01-01

    We suggest that all-photodesigned metamaterials, sub-wavelength custom patterns of photo-excited carriers on a semiconductor, can display an exotic extrinsic electromagnetic chirality in terahertz (THz) frequency range. We consider a photo-induced pattern exhibiting 1D geometrical chirality, i.e. its mirror image can not be superposed onto itself by translations without rotations and, in the long wavelength limit, we evaluate its bianisotropic response. The photo-induced extrinsic chirality turns out to be fully reconfigurable by recasting the optical illumination which supports the photo-excited carriers. The all-photodesigning technique represents a feasible, easy and powerful method for achieving effective matter functionalization and, combined with the chiral asymmetry, it could be the platform for a new generation of reconfigurable devices for THz wave polarization manipulation.

  1. Estimating consumer preferences for extrinsic and intrinsic attributes of vegetables. A study of German consumers

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Guerrero, J. F.; Gazquez-Abad, J. C.; Huertas-Garcia, R.; Mondejar-Jimenez, J. A.

    2012-11-01

    Preference formation developed during the consumers evaluation of alternatives is one of the most important stages in models of consumer purchasing behaviour. This is especially true for the purchase of vegetables. The purpose of this paper is to analyze the role of extrinsic versus intrinsic attributes in the behaviour of consumer when purchasing cucumbers, considering four attributes; price, country of origin and production method (extrinsic), and freshness (intrinsic). Utilizing a sample of German tourists visiting the city of Almeria (Spain), conjoint analysis methodology is used. The results suggest that an intrinsic aspect (freshness) is the most important attribute for consumers. Therefore, marketers are advised to consider the importance of this attribute to the consumer and try to position the product in the destination markets on the basis of product freshness. (Author) 91 refs.

  2. Intrinsic motivation, extrinsic motivation, and learning English as a foreign language.

    Science.gov (United States)

    Shaikholeslami, Razieh; Khayyer, Mohammad

    2006-12-01

    The objective of this study was to examine the relationships of amotivation, extrinsic motivation, and intrinsic motivation with learning the English language. The 230 Iranian students at Shiraz University were tested using the Language Learning Orientations Scales to measure Amotivation, Extrinsic Motivation, and Intrinsic Motivation as explanatory variables. Grade point average in English exams was selected as a measure of English learning Achievement. Multiple regression analysis revealed that learning Achievement scores were predicted by scores on the Amotivation subscale, Introjected Regulation subscale, Knowledge subscale, and Stimulation subscale, whereas, the External and Identified Regulation and Accomplishment subscales did not have a significant relationship with Achievement. The results are discussed in terms of differences in Iranian context and culture.

  3. [Espartosis. A new type of extrinsic allergic alveolitis among construction plasterers].

    Science.gov (United States)

    Morell, F; Gómez, F; Uresandi, F; González, A; Suárez, I; Rodrigo, M J

    1995-06-03

    The clinical characteristics of three plasterers in contact with esparto and who presented a picture of extrinsic allergic alveolitis which was peculiar because of their being hyperacute and causing hypoxemia. In addition to a review of 5 previously published sporadic cases the clinical picture of this new type of apparently infrequent alveolitis is described. The causal antigen is unknown although contamination by fungus or the addition of raw esparto may be the origin of the disease. After a review of the literature regarding this subject, the authors suggest that, in addition to cases of asthma and chronic airway obstruction, the patients with extrinsic allergic alveolitis be included under the name of espartosis following esparto dust inhalation.

  4. Numerical simulations of seepage flow in rough single rock fractures

    Directory of Open Access Journals (Sweden)

    Qingang Zhang

    2015-09-01

    Full Text Available To investigate the relationship between the structural characteristics and seepage flow behavior of rough single rock fractures, a set of single fracture physical models were produced using the Weierstrass–Mandelbrot functions to test the seepage flow performance. Six single fractures, with various surface roughnesses characterized by fractal dimensions, were built using COMSOL multiphysics software. The fluid flow behavior through the rough fractures and the influences of the rough surfaces on the fluid flow behavior was then monitored. The numerical simulation indicates that there is a linear relationship between the average flow velocity over the entire flow path and the fractal dimension of the rough surface. It is shown that there is good a agreement between the numerical results and the experimental data in terms of the properties of the fluid flowing through the rough single rock fractures.

  5. PyDII: A python framework for computing equilibrium intrinsic point defect concentrations and extrinsic solute site preferences in intermetallic compounds

    Science.gov (United States)

    Ding, Hong; Medasani, Bharat; Chen, Wei; Persson, Kristin A.; Haranczyk, Maciej; Asta, Mark

    2015-08-01

    Point defects play an important role in determining the structural stability and mechanical behavior of intermetallic compounds. To help quantitatively understand the point defect properties in these compounds, we developed PyDII, a Python program that performs thermodynamic calculations of equilibrium intrinsic point defect concentrations and extrinsic solute site preferences in intermetallics. The algorithm implemented in PyDII is built upon a dilute-solution thermodynamic formalism with a set of defect excitation energies calculated from first-principles density-functional theory methods. The analysis module in PyDII enables automated calculations of equilibrium intrinsic antisite and vacancy concentrations as a function of composition and temperature (over ranges where the dilute solution formalism is accurate) and the point defect concentration changes arising from addition of an extrinsic substitutional solute species. To demonstrate the applications of PyDII, we provide examples for intrinsic point defect concentrations in NiAl and Al3 V and site preferences for Ti, Mo and Fe solutes in NiAl.

  6. Multifocal humeral fractures.

    Science.gov (United States)

    Maresca, A; Pascarella, R; Bettuzzi, C; Amendola, L; Politano, R; Fantasia, R; Del Torto, M

    2014-02-01

    Multifocal humeral fractures are extremely rare. These may affect the neck and the shaft, the shaft alone, or the diaphysis and the distal humerus. There is no classification of these fractures in the literature. From 2004 to 2010, 717 patients with humeral fracture were treated surgically at our department. Thirty-five patients presented with an associated fracture of the proximal and diaphyseal humerus: synthesis was performed with plate and screws in 34 patients, and the remaining patient had an open fracture that was treated with an external fixator. Mean follow-up was 3 years and 3 months. A classification is proposed in which type A fractures are those affecting the proximal and the humeral shaft, type B the diaphysis alone, and type C the diaphysis in association with the distal humerus. Type A fractures are then divided into three subgroups: A-I, undisplaced fracture of the proximal humerus and displaced shaft fracture; A-II: displaced fracture of the proximal and humeral shaft; and A-III: multifragmentary fracture affecting the proximal humerus and extending to the diaphysis. Multifocal humeral fractures are very rare and little described in the literature, both for classification and treatment. The AO classification describes bifocal fracture of the humeral diaphysis, type B and C. The classification suggested in this article mainly concerns fractures involving the proximal and humeral shaft. A simple classification of multifocal fractures is suggested to help the surgeon choose the most suitable type of synthesis for surgical treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. A Randomized Controlled Clinical Trial to Evaluate Extrinsic Stain Removal of a Whitening Dentifrice.

    Science.gov (United States)

    Terézhalmy, Géza; He, Tao; Anastasia, Mary Kay; Eusebio, Rachelle

    2016-12-01

    To evaluate the extrinsic stain removal efficacy of a new whitening dentifrice containing sodium hexametaphosphate (SHMP) over a two-week period. This study used a controlled and randomized, examiner-blind, single-center, two-treatment, parallel group design. Subjects with visible extrinsic dental stain on facial surfaces of their anterior teeth, and meeting all study criteria, were entered into the trial. The test group received the whitening dentifrice with sodium fluoride and SHMP and an ADA reference soft manual toothbrush. Subjects in the control group received a dental prophylaxis after the initial examination at Baseline and were instructed to use their usual oral hygiene products at home. Subjects returned at Day 3 and Week 2 for re-evaluation of extrinsic dental stain. Extrinsic stain was measured using the Interproximal Modified Lobene (IML) Stain Index; safety was assessed based on clinical examination. Fifty subjects (mean age 32.0 years) completed the study, with 25 in each group. Statistically significant reductions in composite stain for whole tooth, as well as interproximal, gingival, and body surfaces were observed for both groups at Day 3 and Week 2 (p 0.3). At Day 3, median percent reductions in composite IML stain from Baseline were 98% for the prophylaxis group and 100% for the test dentifrice group. At Week 2, median percent reductions in composite IML stain were 100% compared to Baseline for both groups. No adverse events were reported for either group. The whitening dentifrice demonstrated a statistically significant reduction in IML stain after three days and two weeks of use relative to baseline. Stain reduction with the toothpaste was comparable to a dental prophylaxis.

  8. Modeling effects of intrinsic and extrinsic rewards on the competition between striatal learning systems.

    Science.gov (United States)

    Boedecker, Joschka; Lampe, Thomas; Riedmiller, Martin

    2013-01-01

    A common assumption in psychology, economics, and other fields holds that higher performance will result if extrinsic rewards (such as money) are offered as an incentive. While this principle seems to work well for tasks that require the execution of the same sequence of steps over and over, with little uncertainty about the process, in other cases, especially where creative problem solving is required due to the difficulty in finding the optimal sequence of actions, external rewards can actually be detrimental to task performance. Furthermore, they have the potential to undermine intrinsic motivation to do an otherwise interesting activity. In this work, we extend a computational model of the dorsomedial and dorsolateral striatal reinforcement learning systems to account for the effects of extrinsic and intrinsic rewards. The model assumes that the brain employs both a goal-directed and a habitual learning system, and competition between both is based on the trade-off between the cost of the reasoning process and value of information. The goal-directed system elicits internal rewards when its models of the environment improve, while the habitual system, being model-free, does not. Our results account for the phenomena that initial extrinsic reward leads to reduced activity after extinction compared to the case without any initial extrinsic rewards, and that performance in complex task settings drops when higher external rewards are promised. We also test the hypothesis that external rewards bias the competition in favor of the computationally efficient, but cruder and less flexible habitual system, which can negatively influence intrinsic motivation and task performance in the class of tasks we consider.

  9. Not All Ideals are Equal: Intrinsic and Extrinsic Ideals in Relationships

    OpenAIRE

    Rodriguez, Lindsey M.; Hadden, Benjamin W.; Knee, C. Raymond

    2015-01-01

    The ideal standards model suggests that greater consistency between ideal standards and actual perceptions of one’s relationship predicts positive relationship evaluations; however, no research has evaluated whether this differs across types of ideals. A self-determination theory perspective was derived to test whether satisfaction of intrinsic ideals buffers the importance of extrinsic ideals. Participants (N=195) in committed relationships directly and indirectly reported the extent to whic...

  10. Effects of extrinsic mortality on the evolution of aging: a stochastic modeling approach.

    Science.gov (United States)

    Shokhirev, Maxim Nikolaievich; Johnson, Adiv Adam

    2014-01-01

    The evolutionary theories of aging are useful for gaining insights into the complex mechanisms underlying senescence. Classical theories argue that high levels of extrinsic mortality should select for the evolution of shorter lifespans and earlier peak fertility. Non-classical theories, in contrast, posit that an increase in extrinsic mortality could select for the evolution of longer lifespans. Although numerous studies support the classical paradigm, recent data challenge classical predictions, finding that high extrinsic mortality can select for the evolution of longer lifespans. To further elucidate the role of extrinsic mortality in the evolution of aging, we implemented a stochastic, agent-based, computational model. We used a simulated annealing optimization approach to predict which model parameters predispose populations to evolve longer or shorter lifespans in response to increased levels of predation. We report that longer lifespans evolved in the presence of rising predation if the cost of mating is relatively high and if energy is available in excess. Conversely, we found that dramatically shorter lifespans evolved when mating costs were relatively low and food was relatively scarce. We also analyzed the effects of increased predation on various parameters related to density dependence and energy allocation. Longer and shorter lifespans were accompanied by increased and decreased investments of energy into somatic maintenance, respectively. Similarly, earlier and later maturation ages were accompanied by increased and decreased energetic investments into early fecundity, respectively. Higher predation significantly decreased the total population size, enlarged the shared resource pool, and redistributed energy reserves for mature individuals. These results both corroborate and refine classical predictions, demonstrating a population-level trade-off between longevity and fecundity and identifying conditions that produce both classical and non

  11. Parallel evolution of senescence in annual fishes in response to extrinsic mortality.

    Science.gov (United States)

    Tozzini, Eva Terzibasi; Dorn, Alexander; Ng'oma, Enoch; Polačik, Matej; Blažek, Radim; Reichwald, Kathrin; Petzold, Andreas; Watters, Brian; Reichard, Martin; Cellerino, Alessandro

    2013-04-03

    Early evolutionary theories of aging predict that populations which experience low extrinsic mortality evolve a retarded onset of senescence. Experimental support for this theory in vertebrates is scarce, in part for the difficulty of quantifying extrinsic mortality and its condition- and density-dependent components that -when considered- can lead to predictions markedly different to those of the "classical" theories. Here, we study annual fish of the genus Nothobranchius whose maximum lifespan is dictated by the duration of the water bodies they inhabit. Different populations of annual fish do not experience different strengths of extrinsic mortality throughout their life span, but are subject to differential timing (and predictability) of a sudden habitat cessation. In this respect, our study allows testing how aging evolves in natural environments when populations vary in the prospect of survival, but condition-dependent survival has a limited effect. We use 10 Nothobranchius populations from seasonal pools that differ in their duration to test how this parameter affects longevity and aging in two independent clades of these annual fishes. We found that replicated populations from a dry region showed markedly shorter captive lifespan than populations from a humid region. Shorter lifespan correlated with accelerated accumulation of lipofuscin (an established age marker) in both clades. Analysis of wild individuals confirmed that fish from drier habitats accumulate lipofuscin faster also under natural conditions. This indicates faster physiological deterioration in shorter-lived populations. Our data provide a strong quantitative example of how extrinsic mortality can shape evolution of senescence in a vertebrate clade. Nothobranchius is emerging as a genomic model species. The characterization of pairs of closely related species with different longevities should provide a powerful paradigm for the identification of genetic variations responsible for evolution of

  12. Effects of extrinsic mortality on the evolution of aging: a stochastic modeling approach.

    Directory of Open Access Journals (Sweden)

    Maxim Nikolaievich Shokhirev

    Full Text Available The evolutionary theories of aging are useful for gaining insights into the complex mechanisms underlying senescence. Classical theories argue that high levels of extrinsic mortality should select for the evolution of shorter lifespans and earlier peak fertility. Non-classical theories, in contrast, posit that an increase in extrinsic mortality could select for the evolution of longer lifespans. Although numerous studies support the classical paradigm, recent data challenge classical predictions, finding that high extrinsic mortality can select for the evolution of longer lifespans. To further elucidate the role of extrinsic mortality in the evolution of aging, we implemented a stochastic, agent-based, computational model. We used a simulated annealing optimization approach to predict which model parameters predispose populations to evolve longer or shorter lifespans in response to increased levels of predation. We report that longer lifespans evolved in the presence of rising predation if the cost of mating is relatively high and if energy is available in excess. Conversely, we found that dramatically shorter lifespans evolved when mating costs were relatively low and food was relatively scarce. We also analyzed the effects of increased predation on various parameters related to density dependence and energy allocation. Longer and shorter lifespans were accompanied by increased and decreased investments of energy into somatic maintenance, respectively. Similarly, earlier and later maturation ages were accompanied by increased and decreased energetic investments into early fecundity, respectively. Higher predation significantly decreased the total population size, enlarged the shared resource pool, and redistributed energy reserves for mature individuals. These results both corroborate and refine classical predictions, demonstrating a population-level trade-off between longevity and fecundity and identifying conditions that produce both

  13. The fracture properties and toughening mechanisms of bone and dentin

    Science.gov (United States)

    Koester, Kurt John

    The mechanical properties of bone and dentin and in particular their fracture properties, are the subject of intense research. The relevance of these properties is increasing as our population ages and fracture incidence impacts the lives of a greater portion of the population. A robust framework is needed to understand the fracture properties of bone and dentin to guide researchers as they attempt to characterize the effects of aging, disease, and pharmaceutical treatments on the properties of these mineralized tissues. In the present work, this framework is provided and applied to human bone, human dentin, and animal bone. In situ electron microscopy was also used to identify the salient toughening mechanisms in bone and dentin. It was found that bone and dentin are extrinsically toughened materials and consequently their fracture properties are best characterized utilizing a crack-growth resistance approach. A description of the different mechanical measurements commonly employed when using small animal models (rats and mice) to evaluate the influence of drug therapies on bone fragility is provided. A study where these properties were measured for a large population of wild-type rats and mice was also conducted. Given my findings, it was determined that for the most complete understanding of small animal bone it was necessary to measure strength and toughness. Strength measurements probe the flaw distribution and toughness measurements to evaluate the resistance to facture in the presence of a single dominant worst-case flaw.

  14. Modeling contaminant plumes in fractured limestone aquifers

    DEFF Research Database (Denmark)

    Mosthaf, Klaus; Brauns, Bentje; Fjordbøge, Annika Sidelmann

    Determining the fate and transport of contaminant plumes from contaminated sites in limestone aquifers is important because they are a major drinking water resource. This is challenging because they are often heavily fractured and contain chert layers and nodules, resulting in a complex transport...... behavior. Improved conceptual models are needed for this type of site. Here conceptual models are developed by combining numerical models with field data. Several types of fracture flow and transport models are available for the modeling of contaminant transport in fractured media. These include...... the established approaches of the equivalent porous medium, discrete fracture and dual continuum models. However, these modeling concepts are not well tested for contaminant plume migration in limestone geologies. Our goal was to develop and evaluate approaches for modeling the transport of dissolved contaminant...

  15. Identity Processes and Intrinsic and Extrinsic Goal Pursuits: Directionality of Effects in College Students.

    Science.gov (United States)

    Luyckx, Koen; Duriez, Bart; Green, Lindsey M; Negru-Subtirica, Oana

    2017-08-01

    Identity research has mainly focused on the degree to which adolescents and emerging adults engage in exploration and commitment to identity goals and strivings. Somewhat lacking from this research tradition is an explicit focus on the content of the identity goals that individuals deem important and pursue. The present manuscript describes two longitudinal studies sampling college students in which we examine how exploration and commitment processes relate to intrinsic and extrinsic goal pursuits as defined in Self-Determination Theory. Study 1 was a two-wave longitudinal study spanning 6 months (N = 370; 77.4% women; mean age 18.24 years); Study 2 was a three-wave longitudinal study spanning 6 months (N = 458 students; 84.9% women; mean age 18.25 years). Using cross-lagged path analyses, hypotheses were supported to various degrees of convergence between studies, pointing to the extent of which results were replicated across our two independent longitudinal samples. Whereas an intrinsic goal orientation positively predicted commitment making (Study 1) and identification with commitment over time (Studies 1 and 2), an extrinsic goal orientation positively predicted ruminative exploration over time, which led to decreases in intrinsic orientation over time (Study 2). Further, an intrinsic goal orientation negatively predicted ruminative exploration over time (Study 1). The findings in for pro-active exploration processes were inconsistent across both studies, being prospectively related to both intrinsic (Study 2) and extrinsic goal orientations (Study 1). Implications and suggestions for future research are discussed.

  16. A comparison of South African and German extrinsic and intrinsic motivation

    Directory of Open Access Journals (Sweden)

    Robin Snelgar

    2017-04-01

    Aim: The main objective of this study was to investigate similarities and differences concerning extrinsic and intrinsic motivation in the workplace between German and South African cultures by examining individuals with working experience and tertiary education specifically. In addition, the research investigated differences in the motivation of respondents with regard to demographics such as gender, age and income. Setting: The setting took place in South Africa and Germany. Methods: In the study, exploratory factor analysis was utilised to prove validity of Cinar, Bektas and Aslan’s two-dimensional measure of extrinsic and intrinsic motivation. Moreover, analysis of variance and t-tests were used to show differences among demographic variables. Descriptive statistics such as means, central tendency and Cronbach’s alpha were also utilised. Results: The results revealed preferences for intrinsic motivational factors for the whole sample with higher levels of intrinsic motivation for the South African respondents compared to German respondents. Demographic characteristics played a minor role in determining levels of intrinsic motivation within individuals. Culture, however, played the biggest role in determining one’s levels of intrinsic or extrinsic motivation. Conclusion: These findings play an important role in explaining differences in motivation between the two countries Germany and South Africa. It highlights the important role that cultural differences play in shaping one’s form of motivation.

  17. Effect of toothpaste with natural calcium carbonate/perlite on extrinsic tooth stain.

    Science.gov (United States)

    Matheson, J R; Cox, T F; Baylor, N; Joiner, A; Patil, R; Karad, V; Ketkar, V; Bijlani, N S

    2004-01-01

    The current study was designed to determine the effect of natural calcium carbonate toothpaste containing Perlite and microgranules (Whitening toothpaste) on extrinsic tooth stain compared to a standard commercial toothpaste formulation with precipitated calcium carbonate (PCC) as abrasive and a commercial toothpaste with dicalcium phosphate dihydrate (DCPD) as abrasive. The toothpastes were evaluated in a double blind, three-cell, stratified (tobacco use; baseline tooth stain level), parallel group design study involving 600 subjects with extrinsic tooth stain. Subjects brushed twice daily with their allocated toothpaste for four weeks. Extrinsic tooth stain was measured using the Macpherson modification of the Lobene stain index. ANCOVA showed significant differences between toothpastes (p=0.037). Subsequent multiple comparisons using pairwise t-tests, showed the Whitening toothpaste to be superior to the DCPD toothpaste (p=0.014) and the PCC toothpaste (p=0.067). When a Box-Cox transformation was made to the data (y0.6) to improve normality, these two differences were more accurately estimated at p=0.004 and p=0.03 respectively. The Whitening toothpaste has been shown to be significantly more effective in tooth stain removal than the two standard commercial toothpaste formulations.

  18. Please say what this word is-Vowel-extrinsic normalization in the sensorimotor control of speech.

    Science.gov (United States)

    Bourguignon, Nicolas J; Baum, Shari R; Shiller, Douglas M

    2016-07-01

    The extent to which the adaptive nature of speech perception influences the acoustic targets underlying speech production is not well understood. For example, listeners can rapidly accommodate to talker-dependent phonetic properties-a process known as vowel-extrinsic normalization-without altering their speech output. Recent evidence, however, shows that reinforcement-based learning in vowel perception alters the processing of speech auditory feedback, impacting sensorimotor control during vowel production. This suggests that more automatic and ubiquitous forms of perceptual plasticity, such as those characterizing perceptual talker normalization, may also impact the sensorimotor control of speech. To test this hypothesis, we set out to examine the possible effects of vowel-extrinsic normalization on experimental subjects' interpretation of their own speech outcomes. By combining a well-known manipulation of vowel-extrinsic normalization with speech auditory-motor adaptation, we show that exposure to different vowel spectral properties subsequently alters auditory feedback processing during speech production, thereby influencing speech motor adaptation. These findings extend the scope of perceptual normalization processes to include auditory feedback and support the idea that naturally occurring adaptations found in speech perception impact speech production. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. Careful accounting of extrinsic noise in protein expression reveals correlations among its sources

    Science.gov (United States)

    Cole, John A.; Luthey-Schulten, Zaida

    2017-06-01

    In order to grow and replicate, living cells must express a diverse array of proteins, but the process by which proteins are made includes a great deal of inherent randomness. Understanding this randomness—whether it arises from the discrete stochastic nature of chemical reactivity ("intrinsic" noise), or from cell-to-cell variability in the concentrations of molecules involved in gene expression, or from the timings of important cell-cycle events like DNA replication and cell division ("extrinsic" noise)—remains a challenge. In this article we analyze a model of gene expression that accounts for several extrinsic sources of noise, including those associated with chromosomal replication, cell division, and variability in the numbers of RNA polymerase, ribonuclease E, and ribosomes. We then attempt to fit our model to a large proteomics and transcriptomics data set and find that only through the introduction of a few key correlations among the extrinsic noise sources can we accurately recapitulate the experimental data. These include significant correlations between the rate of mRNA degradation (mediated by ribonuclease E) and the rates of both transcription (RNA polymerase) and translation (ribosomes) and, strikingly, an anticorrelation between the transcription and the translation rates themselves.

  20. Stress fractures in runners.

    Science.gov (United States)

    McCormick, Frank; Nwachukwu, Benedict U; Provencher, Matthew T

    2012-04-01

    Stress fractures are a relatively common entity in athletes, in particular, runners. Physicians and health care providers should maintain a high index of suspicion for stress fractures in runners presenting with insidious onset of focal bone tenderness associated with recent changes in training intensity or regimen. It is particularly important to recognize “high-risk” fractures, as these are associated with an increased risk of complication. A patient with confirmed radiographic evidence of a high-risk stress fracture should be evaluated by an orthopedic surgeon. Runners may benefit from orthotics, cushioned sneakers, interval training, and vitamin/calcium supplementation as a means of stress fracture prevention.

  1. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    Energy Technology Data Exchange (ETDEWEB)

    B.M. Freifeild

    2001-10-18

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  2. Estimation of fracture porosity in an unsaturated fractured welded tuff using gas tracer testing

    Energy Technology Data Exchange (ETDEWEB)

    Freifeld, Barry Mark [Univ. of California, Berkeley, CA (United States)

    2001-12-01

    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  3. Study of fatigue and fracture behavior of NbCr{sub 2}-based alloys: Phase stability in Nb-Cr-Ni ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.H.; Liaw, P.K. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Liu, C.T. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    Phase stability in a ternary Nb-Cr-Ni Laves phase system was studied in this paper. Their previous study in NbCr{sub 2}-based transition-metal Laves phases has shown that the average electron concentration factor, e/a, is the dominating factor in controlling the phase stability of NbCr{sub 2}-based Laves phases when the atomic size ratios are kept identical. Since Ni has ten out-shell electrons, the substitution of Ni for Cr in NbCr{sub 2} will increase the average electron concentration of the alloy, thus leading to the change of the crystal structures from C15 to C14. In this paper, a number of pseudo-binary Nb(Cr,Ni){sub 2} alloys were prepared, and the crystal structures of the alloys after a long heat-treatment at 1000 C as a function of the Ni content were determined by the X-ray diffraction technique. The boundaries of the C15/C14 transition were determined and compared to their previous predictions. It was found that the electron concentration and phase stability correlation is obeyed in the Nb-Cr-Ni system. However, the e/a ratio corresponding to the C15/C14 phase transition was found to move to a higher value than the predicted one. The changes in the lattice constant, Vickers hardness and fracture toughness were also determined as a function of the Ni content, which were discussed in light of the phase stability difference of the alloys.

  4. Study of fractures in Precambrian crystalline rocks using field ...

    Indian Academy of Sciences (India)

    Geol. Bull. 64 764. Rahiman T I H and Pettinga J R 2008 Analysis of lin- eaments and their relationship to Neogene fracturing,. SE Viti Levu, Fiji; Geol. Soc. Am. Bull. 120(11–12). 1544–1555. Tsang Y W and Witherspoon P A 1981 Hydromechanical behavior of a deformable rock fracture subject to normal stress; J. Geophys.

  5. [Fractures of the patella].

    Science.gov (United States)

    Wild, M; Windolf, J; Flohé, S

    2010-05-01

    Fractures of the patella account for approximately 0.5% to 1.5% of all skeletal injuries. The diagnosis is made by means of the mechanism of injury, physical and radiological findings. The kind of treatment of patella fractures depends on the type of fracture, the size of the fragments, the integrity of the extensor mechanism and the congruity of the articular surface. Independent of the kind of treatment an early rehabilitation is recommended. Modified tension band wiring is the most commonly used surgical treatment for patella fractures and can be used for almost every type of fracture. Due the superior stability in biomechanical studies two parallel cannulated lag screws combined with a tension band wiring are the treatment of choice for horizontally displaced two-part fractures. In comminuted fractures a partial or total patellectomy may be necessary. However, since the loss of quadriceps muscle power and the poor outcome total patellectomy should be considered as a salvage procedure.

  6. Fracture in Soft Materials

    DEFF Research Database (Denmark)

    Hassager, Ole

    Fracture is a phenomenon that is generally associated with solids. A key element in fracture theory is the so-called weakest link idea that fracture initiates from the largest pre-existing material imperfection. However, recent work has demonstrated that fracture can also happen in liquids, where...... surface tension will act to suppress such imperfections. Therefore, the weakest link idea does not seem immediately applicable to fracture in liquids. This presentation will review fracture in liquids and argue that fracture in soft liquids is a material property independent of pre-existing imperfections....... The following questions then emerge: What is the material description needed to predict crack initiation, crack speed and crack shape in soft materials and liquids....

  7. Orbital fractures: a review

    Directory of Open Access Journals (Sweden)

    Jeffrey M Joseph

    2011-01-01

    Full Text Available Jeffrey M Joseph, Ioannis P GlavasDivision of Ophthalmic Plastic and Reconstructive Surgery, Department of Ophthalmology, School of Medicine, New York University, New York, NY, USA; Manhattan Eye, Ear, and Throat Hospital, New York, NY, USAAbstract: This review of orbital fractures has three goals: 1 to understand the clinically relevant orbital anatomy with regard to periorbital trauma and orbital fractures, 2 to explain how to assess and examine a patient after periorbital trauma, and 3 to understand the medical and surgical management of orbital fractures. The article aims to summarize the evaluation and management of commonly encountered orbital fractures from the ophthalmologic perspective and to provide an overview for all practicing ophthalmologists and ophthalmologists in training.Keywords: orbit, trauma, fracture, orbital floor, medial wall, zygomatic, zygomatic complex, zmc fracture, zygomaticomaxillary complex fractures 

  8. Intrinsic vs. extrinsic influences on life history expression: metabolism and parentally induced temperature influences on embryo development rate

    Science.gov (United States)

    Martin, Thomas E.; Ton, Riccardo; Nikilson, Alina

    2013-01-01

    Intrinsic processes are assumed to underlie life history expression and trade-offs, but extrinsic inputs are theorised to shift trait expression and mask trade-offs within species. Here, we explore application of this theory across species. We do this based on parentally induced embryo temperature as an extrinsic input, and mass-specific embryo metabolism as an intrinsic process, underlying embryonic development rate. We found that embryonic metabolism followed intrinsic allometry rules among 49 songbird species from temperate and tropical sites. Extrinsic inputs via parentally induced temperatures explained the majority of variation in development rates and masked a relationship with metabolism; metabolism explained a minor proportion of the variation in development rates among species, and only after accounting for temperature effects. We discuss evidence that temperature further obscures the expected interspecific trade-off between development rate and offspring quality. These results demonstrate the importance of considering extrinsic inputs to trait expression and trade-offs across species.

  9. Extrinsic attributes that influence parents' purchase of chocolate milk for their children.

    Science.gov (United States)

    Li, Xiaomeng E; Lopetcharat, Kannapon; Drake, MaryAnne

    2014-07-01

    The consumption of milk is essential for children's heath; and flavored milk, especially chocolate milk, is often purchased to increase children's milk consumption. However, the sugar content of chocolate milk has raised health concerns. As such, it is important to understand chocolate milk extrinsic attributes that influence parents' purchase decisions when they are purchasing chocolate milk for their children. The objective of this study was to determine the key extrinsic attributes for parents when they purchase chocolate milk for their children. An online survey with a conjoint analysis design, emotions questions, and Kano questionnaire that focused on chocolate milk was conducted targeting parents. Three hundred and twelve parents participated in the survey. Parents reported positive emotions including good, good natured, happy, loving, and satisfied when purchasing chocolate milk for their kids. Three segments of parents were identified with subtle but distinct differences in their key preferences for chocolate milk attributes for their children. Type of sweetener was the primary driver of choice for purchasing chocolate milk for children followed by fat content. Among sweetener types, natural noncaloric/nonnutritive sweeteners or sucrose were preferred over artificial sweeteners, and reduced fat was preferred over full fat or skim milk. Kano results revealed that reduced fat and sugar with an all natural label and added vitamins, minerals, and protein were attractive to the majority of parents when purchasing chocolate milk for their kids. Understanding the driving extrinsic attributes for parents when they purchase chocolate milk for their children will assist manufacturers to target extrinsic attributes that are attractive to parents for chocolate milk. This study established that sweetener type and fat content are the primary extrinsic attributes affecting parents purchase decisions when choosing chocolate milk for their children. Different segments of

  10. The Influence of Intrinsic and Extrinsic Rewards on Employee Results: An Empirical Analysis in Turkish Manufacturing Industry

    OpenAIRE

    Hatice Ozutku

    2012-01-01

    The study discussed in this article questions whether certain reward practices used by organizations are better than others when comparing the employee results based on TQM. We first examine reward systems and TQM relevant literature. After related literature review, reward practices have been handled in two groups as intrinsic rewards and extrinsic rewards. In the sample, which consists of 217 businesses that operate in Turkish manufacturing industry and apply TQM, intrinsic and extrinsic re...

  11. Associations among teacher-student interpersonal relationships and students’ intrinsic and extrinsic motivation and academic achievement: A cross cultural study

    OpenAIRE

    Chan, Dawn

    2016-01-01

    This cross-cultural study explored associations among teacher-student relationship, students’ intrinsic and extrinsic motivation, and students’ academic achievement in grade 5 and 6 students from Vancouver, Canada (n = 102) and Hong Kong, China (n = 207). Hong Kong students perceived their teachers to be more dissatisfied, strict, admonishing, and uncertain, while Vancouver students perceived their teachers to be more helpful and friendly. Students’ levels of intrinsic and extrinsic motivatio...

  12. Self-oriented perfectionism and socially prescribed perfectionism: Differential relationships with intrinsic and extrinsic motivation and test anxiety

    OpenAIRE

    Stoeber, Joachim; Feast, Alexandra R.; Hayward, Jennifer A.

    2009-01-01

    Previous studies suggest that self-oriented and socially prescribed perfectionism show differential relationships with intrinsic–extrinsic motivation and test anxiety, but the findings are ambiguous. Moreover, they ignored that test anxiety is multidimensional. Consequently, the present study re-investigated the relationships in 104 university students examining how the two forms of perfectionism are related to intrinsic–extrinsic motivation and multidimensional test anxiety (worry, emotional...

  13. Bioavailability of zinc from defatted soy flour, soy hulls and whole eggs as determined by intrinsic and extrinsic labeling techniques.

    Science.gov (United States)

    Meyer, N R; Stuart, M A; Weaver, C M

    1983-06-01

    Bioavailability of zinc from diets prepared from intrinsically and extrinsically labeled autoclaved, defatted soy flour and scrambled, freeze-dried egg was investigated in male rats marginally depleted in zinc. In one study, retention of zinc from intrinsically labeled soybean flour (73%) was significantly less than from 65ZnCl2 extrinsically added to a soy flour-based diet (80%). Zinc from intrinsically labeled soybean hulls and from soy flour diets containing 10% soybean hulls extrinsically labeled with 65ZnCl2 was as available as the zinc from the extrinsically labeled soy flour diet. In a second study, extrinsic and intrinsic labeling techniques gave a similar assessment of bioavailability of zinc from egg- and soy flour-based diets when extrinsic labeling was accomplished by thoroughly mixing 65ZnCl2 with the protein source prior to incorporation into the diet. Absorption of 65Zn was greater from egg diets than from soy flour diets and of intermediate value from mixed soy flour and egg (50:50, wt/wt) diets regardless of which protein source was labeled, indicating that the zinc entered a common pool.

  14. IPIRG programs - advances in pipe fracture technology

    Energy Technology Data Exchange (ETDEWEB)

    Wilkowski, G.; Olson, R.; Scott, P. [Batelle, Columbus, OH (United States)

    1997-04-01

    This paper presents an overview of the advances made in fracture control technology as a result of the research performed in the International Piping Integrity Research Group (IPIRG) program. The findings from numerous experiments and supporting analyses conducted to investigate the behavior of circumferentially flawed piping and pipe systems subjected to high-rate loading typical of seismic events are summarized. Topics to be discussed include; (1) Seismic loading effects on material properties, (2) Piping system behavior under seismic loads, (3) Advances in elbow fracture evaluations, and (4) {open_quotes}Real{close_quotes} piping system response. The presentation for each topic will be illustrated with data and analytical results. In each case, the state-of-the-art in fracture mechanics prior to the first IPIRG program will be contrasted with the state-of-the-art at the completion of the IPIRG-2 program.

  15. Pediatric Distal Radius Fractures.

    Science.gov (United States)

    Dua, Karan; Abzug, Joshua M; Sesko Bauer, Andrea; Cornwall, Roger; Wyrick, Theresa O

    2017-02-15

    Distal radius fractures are the most common orthopaedic injury that occur in the pediatric population. The annual incidence of distal radius fractures has increased as a result of earlier participation in sporting activities, increased body mass index, and decreased bone mineral density. Most distal radius fractures are sustained after a fall onto an outstretched arm that results in axial compression on the extremity or from direct trauma to the extremity. Physeal fractures of the distal radius are described based on the Salter-Harris classification system. Extraphyseal fractures of the distal radius are described as incomplete or complete based on the amount of cortical involvement. A thorough physical examination of the upper extremity is necessary to rule out any associated injuries. PA and lateral radiographs of the wrist usually are sufficient to diagnose a distal radius fracture. The management of distal radius fractures is based on several factors, including patient age, fracture pattern, and the amount of growth remaining. Nonsurgical management is the most common treatment option for patients who have distal radius fractures because marked potential for remodeling exists. If substantial angulation or displacement is present, closed reduction maneuvers with or without percutaneous pinning should be performed. Patients with physeal fractures of the distal radius that may result in malunion who present more than 10 days postinjury should not undergo manipulation of any kind because of the increased risk for physeal arrest.

  16. Odontoid Fracture: Computed Tomography

    Directory of Open Access Journals (Sweden)

    Jonathan Peña

    2016-09-01

    Full Text Available History of present illness: An 84-year-old male presented with left-sided posterior head, neck, and back pain after a ground level fall. Exam was notable for left parietal scalp laceration and midline cervical spine tenderness with no obvious deformities. He was neurovascularly intact, and placed in an Aspen Collar with strict spine precautions. Significant findings: Computed Tomography (CT of the cervical spine showed a stable, acute, non-displaced fracture of the odontoid process extending into the body of C2, consistent with a Type III Odontoid Fracture. He was evaluated by orthopedic spine service who recommended conservative, non-operative management. Discussion: The cervical spine is composed of seven vertebrae, with C1 and C2 commonly referred to as the Atlas and Axis, respectively. Unique to C2 is a bony prominence, the Odontoid Process (Dens. Hyperextension or hyperflexion injuries can induce significant stress causing fractures. Odontoid fractures comprise approximately 10% of vertebral fractures, and there are three types with varying stability.1 Type 1 is the rarest and is a fracture involving the superior segment of the Dens. It is considered a stable fracture. Type 2 is the most common and is a fracture involving the base of the odontoid process, below the transverse component of the cruciform ligament. This fracture is unstable and requires operative stabilization. 2 Type 3 odontoid fractures are classified by a fracture of the Odontoid process, as well as the lateral masses of the C2. Determining the stability of a Type III Odontoid fracture requires radiographic evaluation. Strict cervical spine precautions must be adhered to until adequate imaging and surgical consultation is obtained. CT of the of cervical spine fractures poses several advantages to plain film radiography due to the ability to view the anatomy in three planes. 3 However, if there is concern for ligamentous injury, MRI is the preferred modality.3

  17. Experimental Fracture Measurements of Functionally Graded Materials

    Science.gov (United States)

    Carpenter, Ray Douglas

    The primary objective of this research was to extend established fracture toughness testing methods to a new class of engineering materials known as functionally graded materials (FGMs). Secondary goals were to compare experimental results to those predicted by finite element models and to provide fracture test results as feedback toward optimizing processing parameters for the in-house synthesis of a MoSi2/SiC FGM. Preliminary experiments were performed on commercially pure (CP) Ti and uniform axial tensile tests resulted in mechanical property data including yield strength, 268 MPa, ultimate tensile strength, 470 MPa and Young's modulus, 110 GPa. Results from 3-point bending fracture experiments on CP Ti demonstrated rising R-curve behavior and experimentally determined JQ fracture toughness values ranged between 153 N/mm and 254 N/mm. Similar experimental protocols were used for fracture experiments on a 7- layered Ti/TiB FGM material obtained from Cercom in Vista, California. A novel technique for pre-cracking in reverse 4-point bending was developed for this ductile/brittle FGM material. Fracture test results exhibited rising R-curve behavior and estimated JQ fracture toughness values ranged from 0.49 N/mm to 2.63 N/mm. A 5- layered MoSi2/SiC FGM was synthesized using spark plasma sintering (SPS). Samples of this material were fracture tested and the results again exhibited a rising R-curve with KIC fracture toughness values ranging from 2.7 MPa-m1/2 to 6.0 MPa-m1/2. Finite Element Models predicted rising R-curve behavior for both of the FGM materials tested. Model results were in close agreement for the brittle MoSi2/SiC FGM. For the relatively more ductile Ti/TiB material, results were in close agreement at short crack lengths but diverged at longer crack lengths because the models accounted for fracture toughening mechanisms at the crack tip but not those acting in the crack wake.

  18. Transport efficiency and dynamics of hydraulic fracture networks

    Directory of Open Access Journals (Sweden)

    Till eSachau

    2015-08-01

    Full Text Available Intermittent fluid pulses in the Earth's crust can explain a variety of geological phenomena, for instance the occurrence of hydraulic breccia. Fluid transport in the crust is usually modeled as continuous darcian flow, ignoring that sufficient fluid overpressure can cause hydraulic fractures as fluid pathways with very dynamic behavior. Resulting hydraulic fracture networks are largely self-organized: opening and healing of hydraulic fractures depends on local fluid pressure, which is, in turn, largely controlled by the fracture network. We develop a crustal-scale 2D computer model designed to simulate this process. To focus on the dynamics of the process we chose a setup as simple as possible. Control factors are constant overpressure at a basal fluid source and a constant 'viscous' parameter controlling fracture-healing. Our results indicate that at large healing rates hydraulic fractures are mobile, transporting fluid in intermittent pulses to the surface and displaying a 1/fα behavior. Low healing rates result in stable networks and constant flow. The efficiency of the fluid transport is independent from the closure dynamics of veins or fractures. More important than preexisting fracture networks is the distribution of fluid pressure. A key requirement for dynamic fracture networks is the presence of a fluid pressure gradient.

  19. Transport efficiency and dynamics of hydraulic fracture networks

    Science.gov (United States)

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique

    2015-08-01

    Intermittent fluid pulses in the Earth's crust can explain a variety of geological phenomena, for instance the occurrence of hydraulic breccia. Fluid transport in the crust is usually modeled as continuous darcian flow, ignoring that sufficient fluid overpressure can cause hydraulic fractures as fluid pathways with very dynamic behavior. Resulting hydraulic fracture networks are largely self-organized: opening and healing of hydraulic fractures depends on local fluid pressure, which is, in turn, largely controlled by the fracture network. We develop a crustal-scale 2D computer model designed to simulate this process. To focus on the dynamics of the process we chose a setup as simple as possible. Control factors are constant overpressure at a basal fluid source and a constant 'viscous' parameter controlling fracture-healing. Our results indicate that at large healing rates hydraulic fractures are mobile, transporting fluid in intermittent pulses to the surface and displaying a 1/fα behavior. Low healing rates result in stable networks and constant flow. The efficiency of the fluid transport is independent from the closure dynamics of veins or fractures. More important than preexisting fracture networks is the distribution of fluid pressure. A key requirement for dynamic fracture networks is the presence of a fluid pressure gradient.

  20. Reactive flow in fractured porous media

    Science.gov (United States)

    Jasinski, L.; Thovert, J.; Mourzenko, V.; Adler, P. M.

    2011-12-01

    still exist between the fractures and the matrix which can widely exceed diffusive ones and strongly affect the solute transport and its residence time distribution. Finally, simulations of passive and reactive solute transport have been performed in large samples containing percolating or non percolating fracture networks. Various parameters have been systematically investigated, including the transmissivity of the fractures, the flow regime characterized by Péclet numbers in the fractures and in the matrix, and the Damköhler numbers of the reaction process in the matrix and fractures. The passive transport behavior and the effect of the gradual clogging of the fractures and/or matrix pore space in the case of a precipitation process are analyzed.