Principle extremum of full action
Solomon I. Khmelnik
2011-10-01
Full Text Available A new variational principle extremum of full action is proposed, which extends the Lagrange formalism on dissipative systems. It is shown that this principle is applicable in electrical engineering, electrodynamics, mechanics and hydrodynamics, taking into account the friction forces. The proposed variational principle may be considered as a new formalism used as an universal method of physical equations derivation, and also as a method for solving these equations.
Probabilistic structural analysis by extremum methods
Nafday, Avinash M.
1990-01-01
The objective is to demonstrate discrete extremum methods of structural analysis as a tool for structural system reliability evaluation. Specifically, linear and multiobjective linear programming models for analysis of rigid plastic frames under proportional and multiparametric loadings, respectively, are considered. Kinematic and static approaches for analysis form a primal-dual pair in each of these models and have a polyhedral format. Duality relations link extreme points and hyperplanes of these polyhedra and lead naturally to dual methods for system reliability evaluation.
Application of entransy dissipation extremum principle in radiative heat transfer optimization
WU Jing; LIANG XinGang
2008-01-01
The concepts of entransy flux and entransy dissipation in radiative heat transfer were introduced based on the analogy with heat conduction and heat convection processes. Entransy will be partially dissipated during the radiative heat transfer processes due to the irreversibility. The extremum principle of entransy dissipation was developed for optimizing radiative heat transfer processes. This principle states that for a fixed boundary temperature the radiative heat transfer is optimized when the entransy dissipation is maximized, while for a fixed boundary heat flux the radiative heat transfer process is optimized when the entransy dissipation is minimized. Finally, examples for the application of the entransy dissipation extre-mum principle are presented.
Application of entransy dissipation extremum principle in radiative heat transfer optimization
2008-01-01
The concepts of entransy flux and entransy dissipation in radiative heat transfer were introduced based on the analogy with heat conduction and heat convection processes. Entransy will be partially dissipated during the radiative heat transfer processes due to the irreversibility. The extremum principle of entransy dissipation was developed for optimizing radiative heat transfer processes. This principle states that for a fixed boundary temperature the radiative heat transfer is optimized when the entransy dissipation is maximized, while for a fixed boundary heat flux the radiative heat transfer process is optimized when the entransy dissipation is minimized. Finally, examples for the application of the entransy dissipation extre- mum principle are presented.
Entropy generation extremum and entransy dissipation extremum for heat exchanger optimization
LIU XiongBin; MENG JiAn; GUO ZengYuan
2009-01-01
The applicability of the extremum principles of entropy generation and entransy dissipation is studied for heat exchanger optimization. The extremum principle of entransy dissipation gives better optimization results when heat exchanger is only for the purpose of heating and cooling, while the extremum principle of entropy generation is better for the heat exchanger optimization when it works in the Brayton cycle. The two optimization principles are approximately equivalent when the temperature drops of the streams in a heat exchanger are small.
CHEN Qun; REN JianXun; GUO ZengYuan
2009-01-01
In terms of the analogy between mass and heat transfer phenomena,a new physical quantity,i.e.mass entransy,is introduced to represent the ability of an object for transferring mass to outside.Meanwhile,the mass entransy dissipation occurs during mass transfer processes as an alternative to measure the mass transfer irreversibility.Then the concepts of mass entransy and its dissipation are used to develop the extremum principle of mass entransy dissipation and the corresponding method for convective mass transfer optimization,based on which an Euler's equation has been deduced as the optimization equation for the fluid flow to obtain the best convective mass transfer performance with some specific constraints.As an example,the ventilation process for removing gaseous pollutants in a space station cabin with a uniform air supply system has been optimized to reduce the energy consumption of the ventilation system and decrease the contaminant concentration in the cabin.By solving the optimization equation,an optimal air velocity distribution with the best decontamination performance for a given viscous dissipation is firstly obtained.With the guide of this optimal velocity field,a suitable concentrated air supply system with appropriate air inlet position and width has been designed to replace the uniform air supply system,which leads to the averaged and the maximum contaminant con centrations in the cabin been decreased by 75% and 60%,respectively,and the contaminant concen tration near the contaminant source surface been decreased by 50%,while the viscous dissipation been reduced by 30% simultaneously.
ONE TYPICAL EXTREMUM IN ELECTRICAL PROBLEMS
V. I. Goroshko
2014-01-01
Full Text Available The aim of this work is to attract attention of teachers, scientific personnel, engineers and students to one peculiarity of extremum seeking in different electrical problems. This feature lies in the fact that in many parts of electrical engineering extremum seeking comes to analysis one and the same mathematical structure (T-structure, but differences lie only in many symbols (designation.In one problems this structure appear in finale, the most simple form, but in others – T-structure is “veiled”, and as a rule we need elementary algebraic transformation to detect it.Taking into account high frequency of this structure appearing in electrical problems, in the first part of article the authors carried out the investigation of extremum characteristics of T-structure and show the results in easy algorithms. To determine the typical T-structure there were taken five problems-examples for extremum seeking from different parts of electrical engineering. The first and the second examples belong to the theory of electrical circuits.In the first example the problem of maximum active load power obtaining was considered, in the second we see the solution of problem for inductive coupled circuit adjustment in order to obtain the hump current. In the third example the band active filter, built on operating amplifier, is analyzed. According to these methods, taken in the first part of article, the frequency is determined, on which amplifier provides maximum amplification factor. The forth example deals with analysis of efficiency of transformer. According to algorithm, the optimal efficiency of transformer’s load and also equation for its maximum was determined in this article. In the fifth example the mechanical characteristics of induction motor is analyzed. It is indicated how, on the basis of algorithms article, to obtain equations for critical slip and motor moment, and also the simple development of formula Klossa.The methods of
Adaptive Extremum Control and Wind Turbine Control
Ma, Xin
1997-01-01
This thesis is divided into two parts, i.e., adaptive extremum control and modelling and control of a wind turbine. The rst part of the thesis deals with the design of adaptive extremum controllers for some processes which have the behaviour that process should have as high e ciency as possible...... in parameters, and thus directly lends itself to parameter estimation and adaptive control. The extremum control law is derived based on static optimization of a performance function. For a process with nonlinearity at output the intermediate signal between the linear part and nonlinear part plays an important...... role. If it can be emphasis on control design. The models have beenvalidated by experimental data obtained from an existing wind turbine. The e ective wind speed experienced by the rotor of a wind turbine, which is often required by some control methods, is estimated by using a wind turbine as a wind...
Adaptive Extremum Control and Wind Turbine Control
Ma, Xin
1997-01-01
This thesis is divided into two parts, i.e., adaptive extremum control and modelling and control of a wind turbine. The rst part of the thesis deals with the design of adaptive extremum controllers for some processes which have the behaviour that process should have as high e ciency as possible...... in parameters, and thus directly lends itself to parameter estimation and adaptive control. The extremum control law is derived based on static optimization of a performance function. For a process with nonlinearity at output the intermediate signal between the linear part and nonlinear part plays an important...... role. If it can be emphasis on control design. The models have beenvalidated by experimental data obtained from an existing wind turbine. The e ective wind speed experienced by the rotor of a wind turbine, which is often required by some control methods, is estimated by using a wind turbine as a wind...
PID Tuning Using Extremum Seeking
Killingsworth, N; Krstic, M
2005-11-15
]. This method is based on the performance of the closed-loop system during a step response experiment [10], [11]. In this article we present a method for optimizing the step response of a closed-loop system consisting of a PID controller and an unknown plant with a discrete version of extremum seeking (ES). Specifically, ES is used to minimize a cost function similar to that used in [10], [11], which quantifies the performance of the PID controller. ES, a non-model-based method, iteratively modifies the arguments (in this application the PID parameters) of a cost function so that the output of the cost function reaches a local minimum or local maximum. In the next section we apply ES to PID controller tuning. We illustrate this technique through simulations comparing the effectiveness of ES to other PID tuning methods. Next, we address the importance of the choice of cost function and consider the effect of controller saturation. Furthermore, we discuss the choice of ES tuning parameters. Finally, we offer some conclusions.
Curriculum structure: principles and strategy
Oliver, R.; Kersten, H.; Vinkka-Puhakka, H.; Alpaslan, G.; Bearn, D.; Cema, I.; Delap, E.; Dummer, P.; Goulet, J.P.; Gugushe, T.; Jeniati, E.; Jerolimov, V.; Kotsanos, N.; Krifka, S.; Levy, G.; Neway, M.; Ogawa, T.; Saag, M.; Sidlauskas, A.; Skaleric, U.; Vervoorn, M.; White, D.
2008-01-01
This report provides general guidelines for the structure of a curriculum, followed by specific advice on the principles of learning and teaching, the process of restructuring and change leadership and management. It provides examples of several educational philosophies, including vertical and horiz
The Principle of Structural Reciprocity
Pugnale, Alberto; Parigi, Dario; Kirkegaard, Poul Henning
2011-01-01
This paper deals with the principle of structural reciprocity, considering its origins in both Occidental and Orient culture and aiming to highlight the definition, main peculiarities and interesting aspects of such concept referring to its application to the world of construction. Issues spanning...
Structuring Principles for the Designer
Miller, Thomas Dedenroth; Pedersen, Per Erik Elgård
1998-01-01
This paper suggests a list of structuring principles that support the designer in making alternative concepts for product architectures. Different architectures may support different points of diversification in the product life-cycle. The aim is to balance reuse of resources and reduction...... of variability in design processes and manufacturing processes with product performance and unit costs....
Stochastic Averaging and Stochastic Extremum Seeking
Liu, Shu-Jun
2012-01-01
Stochastic Averaging and Stochastic Extremum Seeking develops methods of mathematical analysis inspired by the interest in reverse engineering and analysis of bacterial convergence by chemotaxis and to apply similar stochastic optimization techniques in other environments. The first half of the text presents significant advances in stochastic averaging theory, necessitated by the fact that existing theorems are restricted to systems with linear growth, globally exponentially stable average models, vanishing stochastic perturbations, and prevent analysis over infinite time horizon. The second half of the text introduces stochastic extremum seeking algorithms for model-free optimization of systems in real time using stochastic perturbations for estimation of their gradients. Both gradient- and Newton-based algorithms are presented, offering the user the choice between the simplicity of implementation (gradient) and the ability to achieve a known, arbitrary convergence rate (Newton). The design of algorithms...
Optimization principles of dendritic structure
Borst Alexander
2007-06-01
Full Text Available Abstract Background Dendrites are the most conspicuous feature of neurons. However, the principles determining their structure are poorly understood. By employing cable theory and, for the first time, graph theory, we describe dendritic anatomy solely on the basis of optimizing synaptic efficacy with minimal resources. Results We show that dendritic branching topology can be well described by minimizing the path length from the neuron's dendritic root to each of its synaptic inputs while constraining the total length of wiring. Tapering of diameter toward the dendrite tip – a feature of many neurons – optimizes charge transfer from all dendritic synapses to the dendritic root while housekeeping the amount of dendrite volume. As an example, we show how dendrites of fly neurons can be closely reconstructed based on these two principles alone.
Curriculum structure: principles and strategy.
Oliver, R; Kersten, H; Vinkka-Puhakka, H; Alpasan, G; Bearn, D; Cema, I; Delap, E; Dummer, P; Goulet, J P; Gugushe, T; Jeniati, E; Jerolimov, V; Kotsanos, N; Krifka, S; Levy, G; Neway, M; Ogawa, T; Saag, M; Sidlauskas, A; Skaleric, U; Vervoorn, M; White, D
2008-02-01
This report provides general guidelines for the structure of a curriculum, followed by specific advice on the principles of learning and teaching, the process of restructuring and change leadership and management. It provides examples of several educational philosophies, including vertical and horizontal integration. It discusses the use of competence, learning outcomes, level of degree and assessment and provides a number of recommendations. It does not seek to be prescriptive of time allocation to disciplines within a curriculum. Although this report has been written primarily for those who will develop an undergraduate curriculum, the information may be sufficiently generic to apply to the recent development in graduate entry ('shortened dental' or 'accelerated') courses and to postgraduate degree planning and higher education certificate or diploma courses for other dental care professionals (auxiliaries). The report may have a European bias as progress is made to converge and enhance educational standards in 29 countries with different educational approaches - a microcosm of global collaboration.
Model-free stabilization by extremum seeking
Scheinker, Alexander
2017-01-01
With this brief, the authors present algorithms for model-free stabilization of unstable dynamic systems. An extremum-seeking algorithm assigns the role of a cost function to the dynamic system’s control Lyapunov function (clf) aiming at its minimization. The minimization of the clf drives the clf to zero and achieves asymptotic stabilization. This approach does not rely on, or require knowledge of, the system model. Instead, it employs periodic perturbation signals, along with the clf. The same effect is achieved as by using clf-based feedback laws that profit from modeling knowledge, but in a time-average sense. Rather than use integrals of the systems vector field, we employ Lie-bracket-based (i.e., derivative-based) averaging. The brief contains numerous examples and applications, including examples with unknown control directions and experiments with charged particle accelerators. It is intended for theoretical control engineers and mathematicians, and practitioners working in various industrial areas ...
Lectures on mathematical theory of extremum problems
1972-01-01
The author of this book, Igor' Vladimirovich Girsanov, was one of the first mathematicians to study general extremum problems and to realize the feasibility and desirability of a unified theory of extremal problems, based on a functional analytic approach. He actively advocated this view, and his special course, given at the Faculty of Mechanics and Mathematics of the Moscow State University in 1963 and 1964, was apparently the first systematic exposition of a unified approach to the theory of extremal problems. This approach was based on the ideas of Dubovitskii and Milyutin [1]. The general theory of extremal problems has developed so intensely during the past few years that its basic concepts may now be considered finalized. Nevertheless, as yet the basic results of this new field of mathematics have not been presented in a form accessible to a wide range of readers. (The profound paper of Dubovitskii and Milyutin [2] can hardly be recommended for a first study of the theory, since, in particular, it doe...
Basic principles of concrete structures
Gu, Xianglin; Zhou, Yong
2016-01-01
Based on the latest version of designing codes both for buildings and bridges (GB50010-2010 and JTG D62-2004), this book starts from steel and concrete materials, whose properties are very important to the mechanical behavior of concrete structural members. Step by step, analysis of reinforced and prestressed concrete members under basic loading types (tension, compression, flexure, shearing and torsion) and environmental actions are introduced. The characteristic of the book that distinguishes it from other textbooks on concrete structures is that more emphasis has been laid on the basic theories of reinforced concrete and the application of the basic theories in design of new structures and analysis of existing structures. Examples and problems in each chapter are carefully designed to cover every important knowledge point. As a basic course for undergraduates majoring in civil engineering, this course is different from either the previously learnt mechanics courses or the design courses to be learnt. Compa...
Modelling and Extremum Seeking Control of a Cascade of Two Anaerobic Bioreactors
Ivan Simeonov
2011-05-01
Full Text Available The principle of extremum seeking control has been applied on a cascade of two anaerobic bioreactors using the dilution rate as control action and the biogas flow rates as measured outputs to be maximized. In all cases maximum biogas flow rate with sensible decrease of the general output depollution parameter (compared to the case of one single bioreactor has been obtained, starting from different initial conditions. With the same algorithm, good performances have been obtained in the presence of variations of the inlet organics. Its implication for biotechnology may result in substantial economic benefits.
Structured programming: Principles, notation, procedure
JOST
1978-01-01
Structured programs are best represented using a notation which gives a clear representation of the block encapsulation. In this report, a set of symbols which can be used until binding directives are republished is suggested. Structured programming also allows a new method of procedure for design and testing. Programs can be designed top down, that is, they can start at the highest program plane and can penetrate to the lowest plane by step-wise refinements. The testing methodology also is adapted to this procedure. First, the highest program plane is tested, and the programs which are not yet finished in the next lower plane are represented by so-called dummies. They are gradually replaced by the real programs.
Principles for the definition of design structures
McKay, A.; G Stiny; Pennington, A.
2015-01-01
Different kinds of design structure are created and used in engineering design and development processes. Function structures, design grammars and bills of materials are common examples. However, there is a lack of clarity regarding distinctions and similarities between different kinds of structure and systematic ways to articulate them. This paper brings together research on product structuring and shape computation to inform the specification of principles for the definition of design struc...
PADF electromagnetic source localization using extremum seeking control
Al Issa, Huthaifa A.; Ordóñez, Raúl
2014-10-01
Wireless Sensor Networks (WSNs) are a significant technology attracting considerable research interest. Recent advances in wireless communications and electronics have enabled the development of low-cost, low-power and multi-functional sensors that are small in size and communicate over short distances. Most WSN applications require knowing or measuring locations of thousands of sensors accurately. For example, sensing data without knowing the sensor location is often meaningless. Locations of sensor nodes are fundamental to providing location stamps, locating and tracking objects, forming clusters, and facilitating routing. This research focused on the modeling and implementation of distributed, mobile radar sensor networks. In particular, we worked on the problem of Position-Adaptive Direction Finding (PADF), to determine the location of a non- collaborative transmitter, possibly hidden within a structure, by using a team of cooperative intelligent sensor networks. Position-Adaptive radar concepts have been formulated and investigated at the Air Force Research Laboratory (AFRL) within the past few years. In this paper, we present the simulation performance analysis on the application aspect. We apply Extremum Seeking Control (ESC) schemes by using the swarm seeking problem, where the goal is to design a control law for each individual sensor that can minimize the error metric by adapting the sensor positions in real-time, thereby minimizing the unknown estimation error. As a result we achieved source seeking and collision avoidance of the entire group of the sensor positions.
Structural principles governing domain motions in proteins
Hayward, S
1999-01-01
With the use of a recently developed method, twenty-four proteins for which two or more X-ray conformers are known have been analyzed to reveal structural principles that govern domain motions in proteins. In all 24 cases, the domain motion is a rotation about a physical axis created through local i
Structural principles governing domain motions in proteins
Hayward, S
1999-01-01
With the use of a recently developed method, twenty-four proteins for which two or more X-ray conformers are known have been analyzed to reveal structural principles that govern domain motions in proteins. In all 24 cases, the domain motion is a rotation about a physical axis created through local
Emergent Behavior of Multi-Vehicle Formations Using Extremum Seeking
Brodecki, M.; Subbarao, K.; Chu, Q.P.
2013-01-01
Emergent behavior of a formation flight control system based on an advanced extremum seeking algorithm is investigated. The control system was implemented on a nonlinear high fidelity aircraft model and combined with a wake vortex model in order to accurately represent the aerodynamic coupling exper
Emergent Behavior of Multi-Vehicle Formations Using Extremum Seeking
Brodecki, M.; Subbarao, K.; Chu, Q.P.
2013-01-01
Emergent behavior of a formation flight control system based on an advanced extremum seeking algorithm is investigated. The control system was implemented on a nonlinear high fidelity aircraft model and combined with a wake vortex model in order to accurately represent the aerodynamic coupling
Xiao, Yan; Li, Yaoyu; Rotea, Mario A.
2016-09-01
The primary objective in below rated wind speed (Region 2) is to maximize the turbine's energy capture. Due to uncertainty, variability of turbine characteristics and lack of inexpensive but precise wind measurements, model-free control strategies that do not use wind measurements such as Extremum Seeking Control (ESC) have received significant attention. Based on a dither-demodulation scheme, ESC can maximize the wind power capture in real time despite uncertainty, variabilities and lack of accurate wind measurements. The existing work on ESC based wind turbine control focuses on power capture only. In this paper, a multi-objective extremum seeking control strategy is proposed to achieve nearly optimum wind energy capture while decreasing structural fatigue loads. The performance index of the ESC combines the rotor power and penalty terms of the standard deviations of selected fatigue load variables. Simulation studies of the proposed multi-objective ESC demonstrate that the damage-equivalent loads of tower and/or blade loads can be reduced with slight compromise in energy capture.
Multivariate Self-Dual Morphological Operators Based on Extremum Constraint
Tao Lei
2015-01-01
Full Text Available Self-dual morphological operators (SDMO do not rely on whether one starts the sequence with erosion or dilation; they treat the image foreground and background identically. However, it is difficult to extend SDMO to multichannel images. Based on the self-duality property of traditional morphological operators and the theory of extremum constraint, this paper gives a complete characterization for the construction of multivariate SDMO. We introduce a pair of symmetric vector orderings (SVO to construct multivariate dual morphological operators. Furthermore, utilizing extremum constraint to optimize multivariate morphological operators, we construct multivariate SDMO. Finally, we illustrate the importance and effectiveness of the multivariate SDMO by applications of noise removal and segmentation performance. The experimental results show that the proposed multivariate SDMO achieves better results, and they suppress noises more efficiently without losing image details compared with other filtering methods. Moreover, the proposed multivariate SDMO is also shown to have the best segmentation performance after the filtered images via watershed transformation.
Extremum Seeking Control of Smart Inverters for VAR Compensation
Arnold, Daniel; Negrete-Pincetic, Matias; Stewart, Emma; Auslander, David, M; Callaway, Duncan
2015-09-04
Reactive power compensation is used by utilities to ensure customer voltages are within pre-defined tolerances and reduce system resistive losses. While much attention has been paid to model-based control algorithms for reactive power support and Volt Var Optimization (VVO), these strategies typically require relatively large communications capabilities and accurate models. In this work, a non-model-based control strategy for smart inverters is considered for VAR compensation. An Extremum Seeking control algorithm is applied to modulate the reactive power output of inverters based on real power information from the feeder substation, without an explicit feeder model. Simulation results using utility demand information confirm the ability of the control algorithm to inject VARs to minimize feeder head real power consumption. In addition, we show that the algorithm is capable of improving feeder voltage profiles and reducing reactive power supplied by the distribution substation.
Combustion distribution control using the extremum seeking algorithm
Marjanovic, A.; Krstic, M.; Djurovic, Z.; Kvascev, G.; Papic, V.
2014-12-01
Quality regulation of the combustion process inside the furnace is the basis of high demands for increasing robustness, safety and efficiency of thermal power plants. The paper considers the possibility of spatial temperature distribution control inside the boiler, based on the correction of distribution of coal over the mills. Such control system ensures the maintenance of the flame focus away from the walls of the boiler, and thus preserves the equipment and reduces the possibility of ash slugging. At the same time, uniform heat dissipation over mills enhances the energy efficiency of the boiler, while reducing the pollution of the system. A constrained multivariable extremum seeking algorithm is proposed as a tool for combustion process optimization with the main objective of centralizing the flame in the furnace. Simulations are conducted on a model corresponding to the 350MW boiler of the Nikola Tesla Power Plant, in Obrenovac, Serbia.
MPPT for Photovoltaic Modules via Newton-Like Extremum Seeking Control
Ramon Leyva
2012-07-01
Full Text Available The paper adapts the Newton-like Extremum-Seeking Control technique to extract the maximum power from photovoltaic panels. This technique uses the gradient and Hessian of the panel characteristic in order to approximate the operating point to its optimum. The paper describes in detail the gradient and Hessian estimations carried out by means of sinusoidal dithering signals. Furthermore, we compare the proposed technique with the common Extremum Seeking Control that only uses the gradient. The comparison is done by means of PSIM simulations and it shows the different transient behaviors and the faster response of the Newton-like Extremum-Seeking Control solution.
Real-time sail and heading optimization for a surface sailing vessel by extremum seeking control
Treichel, Kai; Jouffroy, Jerome
2010-01-01
In this paper we develop a simplified mathematical model representing the main elements of the behaviour of sailing vessels as a basis for simulation and controller design. For adaptive real-time optimization of the sail and heading angle we then apply extremum seeking control (which is a gradient...... based control law that drives the output of a linear or nonlinear system to its extremum) as an approach to maximize the longitudinal velocity. The basic idea behind extremum seeking and “how it works” is presented, as well as a simulation study on noise, convergence and stability issues....
Extremum-Seeking Control and Applications A Numerical Optimization-Based Approach
Zhang, Chunlei
2012-01-01
Extremum seeking control tracks a varying maximum or minimum in a performance function such as a cost. It attempts to determine the optimal performance of a control system as it operates, thereby reducing downtime and the need for system analysis. Extremum Seeking Control and Applications is divided into two parts. In the first, the authors review existing analog optimization based extremum seeking control including gradient, perturbation and sliding mode based control designs. They then propose a novel numerical optimization based extremum seeking control based on optimization algorithms and state regulation. This control design is developed for simple linear time-invariant systems and then extended for a class of feedback linearizable nonlinear systems. The two main optimization algorithms – line search and trust region methods – are analyzed for robustness. Finite-time and asymptotic state regulators are put forward for linear and nonlinear systems respectively. Further design flexibility is achieved u...
Principle of relative positioning of structures in the human body
Buliang Meng; Ailan Pang; Ming Li
2013-01-01
The arrangement of various biological structures should generally ensure the safety of crucial structures and increase their working efficiency; however, other principles governing the relative positions of structures in humans have not been reported. The present study therefore investigated other principles using nerves and their companion vessels in the human body as an example. Nerves and blood vessels usually travel together and in the most direct way towards their targets. Human embryology, histology, and gross anatomy suggest that there are many possible positions for these structures during development. However, for mechanical reasons, tougher or stronger structures should take priority. Nerves are tougher than most other structures, followed by arteries, veins, and lymphatic vessels. Nerves should therefore follow the most direct route, and be followed by the arteries, veins, and lymphatic vessels. This general principle should be applicable to all living things.
Principle of relative positioning of structures in the human body.
Meng, Buliang; Pang, Ailan; Li, Ming
2013-03-25
The arrangement of various biological structures should generally ensure the safety of crucial structures and increase their working efficiency; however, other principles governing the relative positions of structures in humans have not been reported. The present study therefore investigated other principles using nerves and their companion vessels in the human body as an example. Nerves and blood vessels usually travel together and in the most direct way towards their targets. Human embryology, histology, and gross anatomy suggest that there are many possible positions for these structures during development. However, for mechanical reasons, tougher or stronger structures should take priority. Nerves are tougher than most other structures, followed by arteries, veins, and lymphatic vessels. Nerves should therefore follow the most direct route, and be followed by the arteries, veins, and lymphatic vessels. This general principle should be applicable to all living things.
Principles and practice of structural equation modeling
Kline, Rex B
2015-01-01
Emphasizing concepts and rationale over mathematical minutiae, this is the most widely used, complete, and accessible structural equation modeling (SEM) text. Continuing the tradition of using real data examples from a variety of disciplines, the significantly revised fourth edition incorporates recent developments such as Pearl's graphing theory and the structural causal model (SCM), measurement invariance, and more. Readers gain a comprehensive understanding of all phases of SEM, from data collection and screening to the interpretation and reporting of the results. Learning is enhanced by ex
2016-09-07
AFRL-AFOSR-VA-TR-2016-0314 Distributed learning , extremum seeking, and model-free optimization for the resilient coordination of multi-agent...Jun-2016 4. TITLE AND SUBTITLE Distributed learning , extremum seeking, and model-free optimization for the resilient coordination of multi-agent...and 2) the use of extremum seeking (ES) techniques to learn Nash equilibria in finitely- and infinitely-many player noncooperative games and to solve
Digital Learning Characteristics and Principles of Information Resources Knowledge Structuring
Belichenko, Margarita; Davidovitch, Nitza; Kravchenko, Yuri
2017-01-01
Analysis of principles knowledge representation in information systems led to the necessity of improving the structuring knowledge. It is caused by the development of software component and new possibilities of information technologies. The article combines methodological aspects of structuring knowledge and effective usage of information…
Protein structure similarity from principle component correlation analysis
Chou James
2006-01-01
Full Text Available Abstract Background Owing to rapid expansion of protein structure databases in recent years, methods of structure comparison are becoming increasingly effective and important in revealing novel information on functional properties of proteins and their roles in the grand scheme of evolutionary biology. Currently, the structural similarity between two proteins is measured by the root-mean-square-deviation (RMSD in their best-superimposed atomic coordinates. RMSD is the golden rule of measuring structural similarity when the structures are nearly identical; it, however, fails to detect the higher order topological similarities in proteins evolved into different shapes. We propose new algorithms for extracting geometrical invariants of proteins that can be effectively used to identify homologous protein structures or topologies in order to quantify both close and remote structural similarities. Results We measure structural similarity between proteins by correlating the principle components of their secondary structure interaction matrix. In our approach, the Principle Component Correlation (PCC analysis, a symmetric interaction matrix for a protein structure is constructed with relationship parameters between secondary elements that can take the form of distance, orientation, or other relevant structural invariants. When using a distance-based construction in the presence or absence of encoded N to C terminal sense, there are strong correlations between the principle components of interaction matrices of structurally or topologically similar proteins. Conclusion The PCC method is extensively tested for protein structures that belong to the same topological class but are significantly different by RMSD measure. The PCC analysis can also differentiate proteins having similar shapes but different topological arrangements. Additionally, we demonstrate that when using two independently defined interaction matrices, comparison of their maximum
A control strategy for parallel hybrid electric vehicles based on extremum seeking
Dinçmen, Erkin; Aksun Güvenç, Bilin
2012-02-01
An energy management control strategy for a parallel hybrid electric vehicle based on the extremum-seeking method for splitting torque between the internal combustion engine and electric motor is proposed in this paper. The control strategy has two levels of operation: the upper and lower levels. The upper level decision-making controller chooses the vehicle operation mode such as the simultaneous use of the internal combustion engine and electric motor, use of only the electric motor, use of only the internal combustion engine, or regenerative braking. In the simultaneous use of the internal combustion engine and electric motor, the optimum energy distribution between these two sources of energy is determined via the extremum-seeking algorithm that searches for maximum drivetrain efficiency. A dynamic programming solution is also obtained and used to form a benchmark for performance evaluation of the proposed method based on extremum seeking. Detailed simulations using a realistic model are presented to illustrate the effectiveness of the methodology.
Extremum of geometric functionals involving general L p $L_{p}$ -projection bodies
Weidong Wang
2016-05-01
Full Text Available Abstract Following the discovery of general L p $L_{p}$ -projection bodies by Ludwig, Haberl and Schuster determined the extremum of the volume of the polars of this family of L p $L_{p}$ -projection bodies. In this paper, the result of Haberl and Schuster is extended to all dual quermassintegrals, and a dual counterpart for the quermassintegrals of general L p $L_{p}$ -projection bodies is also obtained. Moreover, the extremum of the L q $L_{q}$ -dual affine surface areas of polars of general L p $L_{p}$ -projection bodies are determined.
Heat Transfer Principles in Thermal Calculation of Structures in Fire.
Zhang, Chao; Usmani, Asif
2015-11-01
Structural fire engineering (SFE) is a relatively new interdisciplinary subject, which requires a comprehensive knowledge of heat transfer, fire dynamics and structural analysis. It is predominantly the community of structural engineers who currently carry out most of the structural fire engineering research and design work. The structural engineering curriculum in universities and colleges do not usually include courses in heat transfer and fire dynamics. In some institutions of higher education, there are graduate courses for fire resistant design which focus on the design approaches in codes. As a result, structural engineers who are responsible for structural fire safety and are competent to do their jobs by following the rules specified in prescriptive codes may find it difficult to move toward performance-based fire safety design which requires a deep understanding of both fire and heat. Fire safety engineers, on the other hand, are usually focused on fire development and smoke control, and may not be familiar with the heat transfer principles used in structural fire analysis, or structural failure analysis. This paper discusses the fundamental heat transfer principles in thermal calculation of structures in fire, which might serve as an educational guide for students, engineers and researchers. Insights on problems which are commonly ignored in performance based fire safety design are also presented.
Equivalence Principles, Spacetime Structure and the Cosmic Connection
Ni, Wei-Tou
2015-01-01
After reviewing the meaning of various equivalence principles and the structure of electrodynamics, we give a fairly detailed account of the construction of the light cone and a core metric from the equivalence principle for the photon (no birefringence, no polarization rotation and no amplification/attenuation in propagation) in the framework of linear electrodynamics using cosmic connections/observations as empirical support. The cosmic nonbirefringent propagation of photons independent of energy and polarization verifies the Galileo Equivalence Principle [Universality of Propagation] for photons/electromagnetic wave packets in spacetime. This nonbirefringence constrains the spacetime constitutive tensor to high precision to a core metric form with an axion degree and a dilaton degree of freedom. Thus comes the metric with axion and dilation. Constraints on axion and dilaton from astrophysical/cosmic propagation are reviewed. E\\"otv\\"os-type experiments, Hughes-Drever-type experiments, redshift experiments ...
Chen-Han Wu
2011-12-01
Full Text Available Due to Japan’s recent nuclear crisis and petroleum price hikes, the search for renewable energy sources has become an issue of immediate concern. A promising candidate attracting much global attention is solar energy, as it is green and also inexhaustible. A maximum power point tracking (MPPT controller is employed in such a way that the output power provided by a photovoltaic (PV system is boosted to its maximum level. However, in the context of abrupt changes in irradiance, conventional MPPT controller approaches suffer from insufficient robustness against ambient variation, inferior transient response and a loss of output power as a consequence of the long duration required of tracking procedures. Accordingly, in this work the maximum power point tracking is carried out successfully using a sliding mode extremum-seeking control (SMESC method, and the tracking performances of three controllers are compared by simulations, that is, an extremum-seeking controller, a sinusoidal extremum-seeking controller and a sliding mode extremum-seeking controller. Being able to track the maximum power point promptly in the case of an abrupt change in irradiance, the SMESC approach is proven by simulations to be superior in terms of system dynamic and steady state responses, and an excellent robustness along with system stability is demonstrated as well.
Some relations between duality theory for extremum problems and variational inequalities
Giandomenico Mastroeni
1994-11-01
Full Text Available After revisiting the well-known relationship with the minimax theory, some duality results for constrained extremum problems are related to variational inequalities. In particular, the connection with saddle point conditions and gap functions associated to the variational inequality are analysed.
Real-time sail and heading optimization for a surface sailing vessel by extremum seeking control
Treichel, Kai; Jouffroy, Jerome
2010-01-01
In this paper we develop a simplified mathematical model representing the main elements of the behaviour of sailing vessels as a basis for simulation and controller design. For adaptive real-time optimization of the sail and heading angle we then apply extremum seeking control (which is a gradient...
Principle and Method for Structural Design of Digital Woven Fabric
ZHOU Jiu; NG Frankie
2006-01-01
Digital woven textiles are one of the latest research areas of digital textiles. The key of research on design of digital woven fabrics lies in structural design. Nowadays, the application of digital design technology has fundamentally changed the concept of structural design of woven fabric,giving rise to design methods and effects that were deemed impossible before. A study has been carried out to analyze the nature of woven structures and the methods of structural design. This paper proposes an innovative principle and method of structural design under digital design concept, on which the design of digital gamut weaves and establishment of weave-database were presented to meet the requirement of balanced interlacement. It is envisaged that the results of this study will enhance future research in creation of digital woven fabrics, with particular emphasis on digital jacquard fabrics. Meanwhile, this study is also laid the foundation for the intelligent design of woven textile.
Electronic structure and ionicity of actinide oxides from first principles
Petit, Leon; Svane, Axel; Szotek, Z.
2010-01-01
The ground-state electronic structures of the actinide oxides AO, A2O3, and AO2 (A=U, Np, Pu, Am, Cm, Bk, and Cf) are determined from first-principles calculations, using the self-interaction corrected local spin-density approximation. Emphasis is put on the degree of f-electron localization, which...... in the actinide dioxides is discussed, and it is found that the dioxide is the most stable oxide for the actinides from Np onward. Our study reveals a strong link between preferred oxidation number and degree of localization which is confirmed by comparing to the ground-state configurations of the corresponding...
Teaching the Principles That Govern the Structure & Function of Biomolecules.
Deutch, Charles E.
1995-01-01
Describes four principles essential to understanding the properties of biological molecules. Also uses classroom examples to aid in a discussion of instructional strategies for teaching these principles. (ZWH)
Evolutionary principles underlying structure and response dynamics of cellular networks.
Steinacher, Arno; Soyer, Orkun S
2012-01-01
The network view in systems biology, in conjunction with the continuing development of experimental technologies, is providing us with the key structural and dynamical features of both cell-wide and pathway-level regulatory, signaling and metabolic systems. These include for example modularity and presence of hub proteins at the structural level and ultrasensitivity and feedback control at the level of dynamics. The uncovering of such features, and the seeming commonality of some of them, makes many systems biologists believe that these could represent design principles that underpin cellular systems across organisms. Here, we argue that such claims on any observed feature requires an understanding of how it has emerged in evolution and how it can shape subsequent evolution. We review recent and past studies that aim to achieve such evolutionary understanding for observed features of cellular networks. We argue that this evolutionary framework could lead to deciphering evolutionary origin and relevance of proposed design principles, thereby allowing to predict their presence or absence in an organism based on its environment and biochemistry and their effect on its future evolution.
A NEW SYSTEM DYNAMIC EXTREMUM SELF-SEARCHING METHOD BASED ON CORRELATION ANALYSIS
李嘉; 刘文江; 胡军; 袁廷奇
2003-01-01
Objective To propose a new dynamic extremum self-searching method, which can be used in industrial processes extremum optimum control systems, to overcome the disadvantages of traditional method. Methods This algorithm is based on correlation analysis. A pseudo-random binary signal m-sequence u(t) is added as probe signal in system input, construct cross-correlation function between system input and output, the next step hunting direction is judged by the differential sign. Results Compared with traditional algorithm such as step forward hunting method, the iterative efficient, hunting precision and anti-interference ability of the correlation analysis method is obvious over the traditional algorithm. The computer simulation experimental given illustrate these viewpoints. Conclusion The correlation analysis method can settle the optimum state point of device operating process. It has the advantage of easy condition , simple calculate process.
Mu, Baojie; Li, Yaoyu; Seem, John E.
2016-08-01
A major class of extremum seeking control (ESC) is based on the use of periodic dither perturbation of plant input for extracting the gradient information. Presence of the dither input into the steady state operation is undesirable in practice due to the possible excessive wear of actuators. It is thus beneficial to stop the dithering action after the ESC reaches its steady state. In this paper, we propose a method for automatically discriminating between the steady state and the transient state modes of extremum seeking control process using the sinusoidal detection techniques. Some design guidelines are proposed for the parameter selection of the relevant sinusoidal detection scheme. The proposed scheme is validated with simulation study on dynamic virtual plant of two building HVAC systems.
Lubrication Chemistry Viewed from DFT-Based Concepts and Electronic Structural Principles
Jin Yuansheng; Yang He; Li Shenghua
2003-01-01
Abstract: Fundamental molecular issues in lubrication chemistry were reviewed under categories of solution chemistry, contact chemistry and tribochemistry. By introducing the Density Functional Theory(DFT)-derived chemical reactivity parameters (chemical potential, electronegativity, hardness, softness and Fukui function) and related electronic structural principles (electronegativity equalization principle, hard-soft acid-base principle, and maximum hardness principle), their relevancy to lu...
Barium thiolates and selenolates: syntheses and structural principles.
Ruhlandt-Senge, K; Englich, U
2000-11-17
The synthesis and structural characterization of a family of barium thiolates and selenolates is described. The thiolates were synthesized by metallation of thiols, the selenolates by reductive insertion of the metal into the selenium-selenium bond of diorganodiselenides. Both reaction sequences were carried out by using barium metal dissolved in ammonia; this afforded barium thiolates and selenolates in good yield and purity. The structural principles displayed in the target compounds span a wide range of solid-state formulations, including monomeric and dimeric species, and separated ion triples, namely [Ba(thf)4(SMes*)2] (1; Mes* = 2,4,6-tBU3C6H2), [Ba(thf)4(SeMes*)2] (2), [Ba([18]crown-6)(hmpa)2][(SeMes*)2] (3), the dimeric [(Ba(py)3(thf)(SeTrip)2)2] (4; py = pyridine, Trip = 2,4.6-iPr3C6H2), and [Ba([18]crown-6)(SeTrip)2] (5). The full range of association modes is completed by [Ba([18]crown-6)(hmpa)SMes*][SMes*] (6) communicated earlier by this group. In the solid state, this compound displays an intermediate ion coordination mode: one anion is bound to the metal, while the second one is unassociated. Together these compounds provide structural information about all three different association modes for alkaline earth metal derivatives. This collection of structural data allows important conclusions about the influence of solvation and ligation on structural trends.
First-principles structural design of superhard materials.
Zhang, Xinxin; Wang, Yanchao; Lv, Jian; Zhu, Chunye; Li, Qian; Zhang, Miao; Li, Quan; Ma, Yanming
2013-03-21
We reported a developed methodology to design superhard materials for given chemical systems under external conditions (here, pressure). The new approach is based on the CALYPSO algorithm and requires only the chemical compositions to predict the hardness vs. energy map, from which the energetically preferable superhard structures are readily accessible. In contrast to the traditional ground state structure prediction method where the total energy was solely used as the fitness function, here we adopted hardness as the fitness function in combination with the first-principles calculation to construct the hardness vs. energy map by seeking a proper balance between hardness and energy for a better mechanical description of given chemical systems. To allow a universal calculation on the hardness for the predicted structure, we have improved the earlier hardness model based on bond strength by applying the Laplacian matrix to account for the highly anisotropic and molecular systems. We benchmarked our approach in typical superhard systems, such as elemental carbon, binary B-N, and ternary B-C-N compounds. Nearly all the experimentally known and most of the earlier theoretical superhard structures have been successfully reproduced. The results suggested that our approach is reliable and can be widely applied into design of new superhard materials.
Prediction of Large Structure Welding Residual Stress by Similitude Principles
Shude Ji; Liguo Zhang; Xuesong Liu; Jianguo Yang
2009-01-01
On basis of the similitude principles, the conception of virtual simulative component and the auxiliary value of welding residual stress, which is deduced by the welding conduction theory, the relation of the welding residual stress between the simulative component and the practical component was attained. In order to verify the correctness of the relation, the investigation was done from the view of the welding experiment and the numerical simulation about the simulative component and the practical component. The results show that the distribution of welding residual stress of the simulative component is the same as that of the practical component. The ratio of welding residual stress attained by the experiment or the simulation method between the practical runner and the simulative component was compared with the ratio obtained by the similitude principles. Moreover, the error is less than 10%. This provides a new idea to predict the welding stress distribution of large practical structure by the contractible physical model, which is important for the welding experiment and the numerical simulation.
Electronic Structures of Silicene Doped with Galium: First Principle study
Pamungkas Mauludi Ariesto
2015-01-01
Full Text Available Following the success of graphene which possesses unique and superior properties, 2D material other than graphene become centre of interest of material scientists.Silicene, which has the same crystal structure as graphene but consist of silicon atoms rather than carbon become intriguing material due to domination of silicon as main material of electronic component. It is common to enhance electronic properties of semiconductor by adding dopant atoms. The electronic properties of Silicene doped with Gallium are investigated using first principle calculation based on density functional theory (DFT.Ga doping changes character of silicene from semimetal to conductor except silicene with Ga doping on S-site (Ga atom substitutes one Si atom which lead to semiconductor.
Structural principles of nucleoside selectivity in a 2'-deoxyguanosine riboswitch.
Pikovskaya, Olga; Polonskaia, Anna; Patel, Dinshaw J; Serganov, Alexander
2011-08-14
Purine riboswitches have an essential role in genetic regulation of bacterial metabolism. This family includes the 2'-deoxyguanosine (dG) riboswitch, which is involved in feedback control of deoxyguanosine biosynthesis. To understand the principles that define dG selectivity, we determined crystal structures of the natural Mesoplasma florum riboswitch bound to cognate dG as well as to noncognate guanosine, deoxyguanosine monophosphate and guanosine monophosphate. Comparison with related purine riboswitch structures reveals that the dG riboswitch achieves its specificity through modification of key interactions involving the nucleobase and rearrangement of the ligand-binding pocket to accommodate the additional sugar moiety. In addition, we observe new conformational changes beyond the junctional binding pocket extending as far as peripheral loop-loop interactions. It appears that re-engineering riboswitch scaffolds will require consideration of selectivity features dispersed throughout the riboswitch tertiary fold, and structure-guided drug design efforts targeted to junctional RNA scaffolds need to be addressed within such an expanded framework.
Principles of structure building in music, language and animal song.
Rohrmeier, Martin; Zuidema, Willem; Wiggins, Geraint A; Scharff, Constance
2015-03-19
Human language, music and a variety of animal vocalizations constitute ways of sonic communication that exhibit remarkable structural complexity. While the complexities of language and possible parallels in animal communication have been discussed intensively, reflections on the complexity of music and animal song, and their comparisons, are underrepresented. In some ways, music and animal songs are more comparable to each other than to language as propositional semantics cannot be used as indicator of communicative success or wellformedness, and notions of grammaticality are less easily defined. This review brings together accounts of the principles of structure building in music and animal song. It relates them to corresponding models in formal language theory, the extended Chomsky hierarchy (CH), and their probabilistic counterparts. We further discuss common misunderstandings and shortcomings concerning the CH and suggest ways to move beyond. We discuss language, music and animal song in the context of their function and motivation and further integrate problems and issues that are less commonly addressed in the context of language, including continuous event spaces, features of sound and timbre, representation of temporality and interactions of multiple parallel feature streams. We discuss these aspects in the light of recent theoretical, cognitive, neuroscientific and modelling research in the domains of music, language and animal song. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
General proof of entropy principle in Einstein-Maxwell theory
Fang, Xiongjun
2015-01-01
We consider a static self-gravitating charged perfect fluid system in the Einstein-Maxwell theory. Assume Maxwell's equation and the Einstein constraint equation are satisfied, and the temperature of the fluid obeys Tolman's law. Then we prove that the total entropy of the fluid achieves an extremum implies other components of Einstein's equation for any variations of metric and electrical potential with fixed boundary values. Conversely, if Einstein's equation and Maxwell's equations hold, the total entropy achieves an extremum. Our work suggests that the maximum entropy principle is consistent with Einstein's equation when electric field is taken into account.
Localization of periodic orbits of autonomous systems based on high-order extremum conditions
Starkov Konstantin E.
2004-01-01
Full Text Available This paper gives localization and nonexistence conditions of periodic orbits in some subsets of the state space. Mainly, our approach is based on high-order extremum conditions, on high-order tangency conditions of a nonsingular solution of a polynomial system with an algebraic surface, and on some ideas related to algebraically-dependent polynomials. Examples of the localization analysis of periodic orbits are presented including the Blasius equations, the generalized mass action (GMA system, and the mathematical model of the chemical reaction with autocatalytic step.
Eleiwi, Fadi
2017-05-08
An Observer-based Perturbation Extremum Seeking Control (PESC) is proposed for a Direct-Contact Membrane Distillation (DCMD) process. The process is described with a dynamic model that is based on a 2D Advection-Diffusion Equation (ADE) model which has pump flow rates as process inputs. The objective of the controller is to optimize the trade-off between the permeate mass flux and the energy consumption by the pumps inside the process. Cases of single and multiple control inputs are considered through the use of only the feed pump flow rate or both the feed and the permeate pump flow rates. A nonlinear Lyapunov-based observer is designed to provide an estimation for the temperature distribution all over the designated domain of the DCMD process. Moreover, control inputs are constrained with an anti-windup technique to be within feasible and physical ranges. Performance of the proposed structure is analyzed, and simulations based on real DCMD process parameters for each control input are provided.
Crystal structure prediction from first principles: The crystal structures of glycine
Lund, Albert M.; Pagola, Gabriel I.; Orendt, Anita M.; Ferraro, Marta B.; Facelli, Julio C.
2015-04-01
Here we present the results of our unbiased searches of glycine polymorphs obtained using the genetic algorithms search implemented in MGAC, modified genetic algorithm for crystals, coupled with the local optimization and energy evaluation provided by Quantum Espresso. We demonstrate that it is possible to predict the crystal structures of a biomedical molecule using solely first principles calculations. We were able to find all the ambient pressure stable glycine polymorphs, which are found in the same energetic ordering as observed experimentally and the agreement between the experimental and predicted structures is of such accuracy that the two are visually almost indistinguishable.
Heat Transfer Principles in Thermal Calculation of Structures in Fire
Zhang, Chao; Usmani, Asif
2015-01-01
Structural fire engineering (SFE) is a relatively new interdisciplinary subject, which requires a comprehensive knowledge of heat transfer, fire dynamics and structural analysis. It is predominantly the community of structural engineers who currently carry out most of the structural fire engineering research and design work. The structural engineering curriculum in universities and colleges do not usually include courses in heat transfer and fire dynamics. In some institutions of higher educa...
Extremum Seeking X-ray Position Feedback Using Power Line Harmonic Leakage as the Perturbation
Zohar, S.; Kissick, D. J.; Venugopalan, N.; Ogata, C. M.; Makarov, O.; Stepanov, S.; Fischetti, R. F.
2016-09-12
Small X-ray beam sizes necessary for probing nanoscale phenomena require exquisite stability to prevent data corruption by noise. One source of instability at synchrotron radiation X-ray beamlines is the slow detuning of X-ray optics to marginal alignment where the onset of clipping increases the beam’s susceptibility to higher frequency position oscillations. In this article, we show that a 1 µm amplitude horizontal X-ray beam oscillation driven by power line harmonic leakage into the electron storage ring can be used as perturbation for horizontal position extremum seeking feedback. Feedback performance is characterized by convergence to 1.5% away from maximum intensity at optimal alignment.
Extremum Seeking X-Ray Position Feedback Using Power Line Harmonic Leakage as the Perturbation
Zohar, S.; Kissick, D. J.; Makarov, O.; Ogata, C. M.; Stepanov, S.; Fischetti, R. F.
2016-09-12
Small x-ray beam sizes necessary for probing nanoscale phenomena require exquisite stability to prevent data corruption by noise. One source of instability at synchrotron radiation x-ray beamlines is the slow detuning of x-ray optics to marginal alignment where the onset of clipping increases the beam's susceptibility to higher frequency position oscillations. In this article, we show that a 1 mu m amplitude horizontal x-ray beam oscillation driven by power line harmonic leakage into the electron storage ring can be used as perturbation for horizontal position extremum seeking feedback. Feedback performance is characterized by convergence to 1.5% away from maximum intensity at optimal alignment.
Extremum seeking x-ray position feedback using power line harmonic leakage as the perturbation
S. Zohar
2016-09-01
Full Text Available Small x-ray beam sizes necessary for probing nanoscale phenomena require exquisite stability to prevent data corruption by noise. One source of instability at synchrotron radiation x-ray beamlines is the slow detuning of x-ray optics to marginal alignment where the onset of clipping increases the beam’s susceptibility to higher frequency position oscillations. In this article, we show that a 1 μm amplitude horizontal x-ray beam oscillation driven by power line harmonic leakage into the electron storage ring can be used as perturbation for horizontal position extremum seeking feedback. Feedback performance is characterized by convergence to 1.5% away from maximum intensity at optimal alignment.
Karam, Ayman M.
2015-09-21
This paper presents a real time optimization scheme for a solar powered direct contact membrane distillation (DCMD) water desalination system. The sun and weather conditions vary and are inconsistent throughout the day. Therefore, the solar powered DCMD feed inlet temperature is never constant, which influences the distilled water flux. The problem of DCMD process optimization has not been studied enough. In this work, the response of the process under various feed inlet temperatures is investigated, which demonstrates the need for an optimal controller. To address this issue, we propose a multivariable Newton-based extremum seeking controller which optimizes the inlet feed and permeate mass flow rates as the feed inlet temperature varies. Results are presented and discussed for a realistic temperature profile.
Ding, Yi; Wang, Yanli
2015-01-01
Using first-principles calculations, we investigate the geometric structures and electronic properties of porous silicene and germanene nanosheets, which are the Si and Ge analogues of α−graphyne...
An ambiguity principle for assigning protein structural domains
Postic, Guillaume; Ghouzam, Yassine; Chebrek, Romain; Gelly, Jean-Christophe
2017-01-01
Ambiguity is the quality of being open to several interpretations. For an image, it arises when the contained elements can be delimited in two or more distinct ways, which may cause confusion. We postulate that it also applies to the analysis of protein three-dimensional structure, which consists in dividing the molecule into subunits called domains. Because different definitions of what constitutes a domain can be used to partition a given structure, the same protein may have different but equally valid domain annotations. However, knowledge and experience generally displace our ability to accept more than one way to decompose the structure of an object—in this case, a protein. This human bias in structure analysis is particularly harmful because it leads to ignoring potential avenues of research. We present an automated method capable of producing multiple alternative decompositions of protein structure (web server and source code available at www.dsimb.inserm.fr/sword/). Our innovative algorithm assigns structural domains through the hierarchical merging of protein units, which are evolutionarily preserved substructures that describe protein architecture at an intermediate level, between domain and secondary structure. To validate the use of these protein units for decomposing protein structures into domains, we set up an extensive benchmark made of expert annotations of structural domains and including state-of-the-art domain parsing algorithms. The relevance of our “multipartitioning” approach is shown through numerous examples of applications covering protein function, evolution, folding, and structure prediction. Finally, we introduce a measure for the structural ambiguity of protein molecules. PMID:28097215
An ambiguity principle for assigning protein structural domains.
Postic, Guillaume; Ghouzam, Yassine; Chebrek, Romain; Gelly, Jean-Christophe
2017-01-01
Ambiguity is the quality of being open to several interpretations. For an image, it arises when the contained elements can be delimited in two or more distinct ways, which may cause confusion. We postulate that it also applies to the analysis of protein three-dimensional structure, which consists in dividing the molecule into subunits called domains. Because different definitions of what constitutes a domain can be used to partition a given structure, the same protein may have different but equally valid domain annotations. However, knowledge and experience generally displace our ability to accept more than one way to decompose the structure of an object-in this case, a protein. This human bias in structure analysis is particularly harmful because it leads to ignoring potential avenues of research. We present an automated method capable of producing multiple alternative decompositions of protein structure (web server and source code available at www.dsimb.inserm.fr/sword/). Our innovative algorithm assigns structural domains through the hierarchical merging of protein units, which are evolutionarily preserved substructures that describe protein architecture at an intermediate level, between domain and secondary structure. To validate the use of these protein units for decomposing protein structures into domains, we set up an extensive benchmark made of expert annotations of structural domains and including state-of-the-art domain parsing algorithms. The relevance of our "multipartitioning" approach is shown through numerous examples of applications covering protein function, evolution, folding, and structure prediction. Finally, we introduce a measure for the structural ambiguity of protein molecules.
LI Wei-hua; LUO En; HUANG Wei-jiang
2007-01-01
According to the basic idea of classical yin-yang complementarity and modem dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for geometrically nonlinear elastodynamics of orthogonal cable-net structures are established systematically, which can fully characterize the initial-boundary-value problem of this kind of dynamics. An important integral relation is made, which can be considered as the generalized principle of virtual work for geometrically nonlinear dynamics of orthogonal cable-net structures in mechanics. Based on such relationship, it is possible not only to obtain the principle of virtual work for geometrically nonlinear dynamics of orthogonal cable-net structures, but also to derive systematically the complementary functionals for five-field, four-field, three-field and two-field unconventional Hamilton-type variational principles, and the functional for the unconventional Hamilton-type variational principle in phase space and the potential energy functional for one-field unconventional Hamilton-type variational principle for geometrically nonlinear elastodynamics of orthogonal cable-net structures by the generalized Legendre transformation given in this paper. Furthermore, the intrinsic relationship among various principles can be explained clearly with this approach.
Principles for Predicting RNA Secondary Structure Design Difficulty.
Anderson-Lee, Jeff; Fisker, Eli; Kosaraju, Vineet; Wu, Michelle; Kong, Justin; Lee, Jeehyung; Lee, Minjae; Zada, Mathew; Treuille, Adrien; Das, Rhiju
2016-02-27
Designing RNAs that form specific secondary structures is enabling better understanding and control of living systems through RNA-guided silencing, genome editing and protein organization. Little is known, however, about which RNA secondary structures might be tractable for downstream sequence design, increasing the time and expense of design efforts due to inefficient secondary structure choices. Here, we present insights into specific structural features that increase the difficulty of finding sequences that fold into a target RNA secondary structure, summarizing the design efforts of tens of thousands of human participants and three automated algorithms (RNAInverse, INFO-RNA and RNA-SSD) in the Eterna massive open laboratory. Subsequent tests through three independent RNA design algorithms (NUPACK, DSS-Opt and MODENA) confirmed the hypothesized importance of several features in determining design difficulty, including sequence length, mean stem length, symmetry and specific difficult-to-design motifs such as zigzags. Based on these results, we have compiled an Eterna100 benchmark of 100 secondary structure design challenges that span a large range in design difficulty to help test future efforts. Our in silico results suggest new routes for improving computational RNA design methods and for extending these insights to assess "designability" of single RNA structures, as well as of switches for in vitro and in vivo applications.
Colour Chemistry, Part I, Principles, Colour, and Molecular Structure
Hallas, G.
1975-01-01
Discusses various topics in color chemistry, including the electromagnetic spectrum, the absorption and reflection of light, additive and subtractive color mixing, and the molecular structure of simple colored substances. (MLH)
Tree structures, Entropy, and Action Principles for Neighbourhood Topologies
Hammer, H
1998-01-01
We recast the idea of decision trees as they emerge in Information theory and Complexity theory into a set theoretical language; the result we call tree structures over a given set. We identify all main structural elements of tree structures, the most important of which is the tree function, defined as a sum over certain quantities at every nod in the tree. We show in detail that the minimization of the tree function on, possibly constrained, sets of tree structures renders the functional form of entropy, or of Wiener-Shannon information, depending on the context. We suggest three natural axioms defining tree structures, which are valid also when the underlying set is infinite; in this case the resulting trees are fractal-like objects. These axioms turn out to be related to the neighbourhood axioms describing neighbourhoods on a topological space. In fact we will show that the paths in a tree structure, which are totally ordered subsets of a tree, can be regarded as a countable neighbourhood basis, which in t...
First-principles determination of the structure of magnesium borohydride.
Zhou, Xiang-Feng; Oganov, Artem R; Qian, Guang-Rui; Zhu, Qiang
2012-12-14
The energy landscape of Mg(BH(4))(2) under pressure is explored by ab initio evolutionary calculations. Two new tetragonal structures, with space groups P4 and I4(1)/acd, are predicted to be lower in enthalpy by 15.4 and 21.2 kJ/mol, respectively, than the earlier proposed P4(2)nm phase. We have simulated x-ray diffraction spectra, lattice dynamics, and equations of state of these phases. The density, volume contraction, bulk modulus, and simulated x-ray diffraction patterns of I4(1)/acd and P4 structures are in excellent agreement with the experimental results.
Principles of disaster management lesson. 12: structuring organizations.
Cuny, F C
2001-01-01
This lesson discusses various structures for organizations that have functional roles in disaster responses, relief, and/or management activities. It distinguishes between pyramidal and matrix structures, and notes the advantages and disadvantages of each in relation to disasters. Span of control issues are dissected including the impact of the "P" factor on the performance of disaster managers and workers including its relationship to the coordination and control function. The development of a Table of Organization and how it relates to departmentalization within an organization also is provided.
Retention of Economics Principles by Undergraduates on Alternative Curricular Structures
Johnson, Daniel K. N.; Lybecker, Kristina M.; Taylor, Corrine H.
2011-01-01
The authors investigated whether the curricular structure of an economics course (semester, trimester, or compressed block schedule) has an effect on an undergraduate's subsequent retention of course material, while controlling for other relevant differences. They tested separately for theoretical or process comprehension and for graphical…
Crystalline molecular complexes and compounds structures and principles
Herbstein, Frank H
2005-01-01
This book provides an account of the structure and properties of crystalline binary adducts. Such crystals are perhaps better known as molecular compounds and complexes and are estimated to make up one quarter of the world's crystals. More than 600 figures, 200 tables and 3500 references are included in the book.
Structural and electronic properties of perylene from first principles calculations.
Fedorov, I A; Zhuravlev, Y N; Berveno, V P
2013-03-07
The electronic structure of crystalline perylene has been investigated within the framework of density functional theory including van der Waals interactions. The computations of the lattice parameters and cohesive energy have good agreement with experimental values. We have also calculated the binding distance and energy of perylene dimers, using different schemes, which include van der Waals interactions.
Retention of Economics Principles by Undergraduates on Alternative Curricular Structures
Johnson, Daniel K. N.; Lybecker, Kristina M.; Taylor, Corrine H.
2011-01-01
The authors investigated whether the curricular structure of an economics course (semester, trimester, or compressed block schedule) has an effect on an undergraduate's subsequent retention of course material, while controlling for other relevant differences. They tested separately for theoretical or process comprehension and for graphical…
Frost, Ram; Kugler, Tamar; Deutsch, Avital; Forster, Kenneth I
2005-11-01
Most models of visual word recognition in alphabetic orthographies assume that words are lexically organized according to orthographic similarity. Support for this is provided by form-priming experiments that demonstrate robust facilitation when primes and targets share similar sequences of letters. The authors examined form-orthographic priming effects in Hebrew, Arabic, and English. Hebrew and Arabic have an alphabetic writing system but a Semitic morphological structure. Hebrew morphemic units are composed of noncontiguous phonemic (and letter) sequences in a given word. Results demonstrate that form-priming effects in Hebrew or Arabic are unreliable, whereas morphological priming effects with minimal letter overlap are robust. Hebrew bilingual subjects, by contrast, showed robust form-priming effects with English material, suggesting that Semitic words are lexically organized by morphological rather than orthographic principles. The authors conclude that morphology can constrain lexical organization even in alphabetic orthographies and that visual processing of words is first determined by morphological characteristics.
Principles of structure building in music, language and animal song
Rohrmeier, Martin; Zuidema, Willem; Wiggins, Geraint A.; Scharff, Constance
2015-01-01
Human language, music and a variety of animal vocalizations constitute ways of sonic communication that exhibit remarkable structural complexity. While the complexities of language and possible parallels in animal communication have been discussed intensively, reflections on the complexity of music and animal song, and their comparisons, are underrepresented. In some ways, music and animal songs are more comparable to each other than to language as propositional semantics cannot be used as in...
Statistical methods in longitudinal research principles and structuring change
von Eye, Alexander
1991-01-01
These edited volumes present new statistical methods in a way that bridges the gap between theoretical and applied statistics. The volumes cover general problems and issues and more specific topics concerning the structuring of change, the analysis of time series, and the analysis of categorical longitudinal data. The book targets students of development and change in a variety of fields - psychology, sociology, anthropology, education, medicine, psychiatry, economics, behavioural sciences, developmental psychology, ecology, plant physiology, and biometry - with basic training in statistics an
Rios-Zertuche, Rodolfo
This dissertation presents a novel extremum seeking control method which combines a time-varying Kalman filter with a Newton Raphson algorithm. The Kalman filter is used to estimate the gradient and Hessian of a performance function. The resulting estimates are used in the Newton Raphson algorithm to guide the system to a local extremum of the performance function. Convergence of the method to a local extremum is proven when the system is subject to noisy measurements. This is accomplished by showing that the output of the algorithm is a supermartingale. It is shown that the system will converge to an area around the extremum with a radius defined, in part, by the error covariance of the Kalman filter estimates. The method is applied to two examples. The first utilizes a single independent parameter performance function. The second applies the method to the problem of formation flight for drag reduction. In the first example, two implementations of the method are examined. The first uses only gradient estimates. The second uses both gradient and Hessian estimates. Both implementations show good convergence in the presence of noisy measurements. The second example is of formation flight for drag reduction. The problem is described in some detail and includes an aerodynamic development of the drag-reduction phenomenon. The problem is explored with two simulations. The first uses coefficient of induced drag as its performance function and estimates the gradient and Hessian of the performance function. It shows good convergence of the method. The second simulation first uses pitch angle and then aileron deflection as its performance function. It estimates the gradient but not the Hessian of the performance function. It also shows good convergence.
Fine Structure Constant, Domain Walls, and Generalized Uncertainty Principle in the Universe
Luigi Tedesco
2011-01-01
Full Text Available We study the corrections to the fine structure constant from the generalized uncertainty principle in the spacetime of a domain wall. We also calculate the corrections to the standard formula to the energy of the electron in the hydrogen atom to the ground state, in the case of spacetime of a domain wall and generalized uncertainty principle. The results generalize the cases known in literature.
2010-07-14
... Fighters Using Risk Management Principles at Structure Fires AGENCY: National Institute for Occupational... Fire Fighters Using Risk Management Principles at Structure Fires.'' The final document can be found at.... Established fire service risk management principles suggest that caution should be exercised in abandoned...
An Analysis of the Syllabic Structure of English Mute in the Light of Sonority Sequencing Principle
郑双
2015-01-01
Syllable is the hierarchic natural feature of a language,and there are rules of the phonological sequences of the syllabic structure.Based on the Sonority Sequencing Principle (SSP),this paper will try to discuss and analyze phonological sequences of the syllabic structure of English mutes.
An Analysis of the Syllabic Structure of English Mute in the Light of Sonority Sequencing Principle
郑双
2015-01-01
Syllable is the hierarchic natural feature of a language,and there are rules of the phonological sequences of the syllabic structure.Based on the Sonority Sequencing Principle(SSP),this paper will try to discuss and analyze phonological sequences of the syllabic structure of English mutes.
First-Principles Calculation of the Structure of Mercury
Mehl, M J
1995-01-01
Mercury has perhaps the strangest behavior of any of the metals. Although the other metals in column IIB have an $hcp$ ground state, mercury's ground state is the body centered tetragonal $\\beta$Hg phase. The most common phase of mercury is the rhombohedral $\\alpha$Hg phase, which is stable from 79K to the melting point and meta-stable below 79K. Another rhombohedral phase, calculations are used to study the energetics of the various phases of mercury. Even when partial spin-orbit effects are included, the calculations indicate that the hexagonal close packed structure is the ground state. It is suggested that a better treatment of the spin-orbit interaction might alter this result.
First principles based multiparadigm modeling of electronic structures and dynamics
Xiao, Hai
Electronic structures and dynamics are the key to linking the material composition and structure to functionality and performance. An essential issue in developing semiconductor devices for photovoltaics is to design materials with optimal band gaps and relative positioning of band levels. Approximate DFT methods have been justified to predict band gaps from KS/GKS eigenvalues, but the accuracy is decisively dependent on the choice of XC functionals. We show here for CuInSe2 and CuGaSe2, the parent compounds of the promising CIGS solar cells, conventional LDA and GGA obtain gaps of 0.0-0.01 and 0.02-0.24 eV (versus experimental values of 1.04 and 1.67 eV), while the historically first global hybrid functional, B3PW91, is surprisingly the best, with band gaps of 1.07 and 1.58 eV. Furthermore, we show that for 27 related binary and ternary semiconductors, B3PW91 predicts gaps with a MAD of only 0.09 eV, which is substantially better than all modern hybrid functionals, including B3LYP (MAD of 0.19 eV) and screened hybrid functional HSE06 (MAD of 0.18 eV). The laboratory performance of CIGS solar cells (> 20% efficiency) makes them promising candidate photovoltaic devices. However, there remains little understanding of how defects at the CIGS/CdS interface affect the band offsets and interfacial energies, and hence the performance of manufactured devices. To determine these relationships, we use the B3PW91 hybrid functional of DFT with the AEP method that we validate to provide very accurate descriptions of both band gaps and band offsets. This confirms the weak dependence of band offsets on surface orientation observed experimentally. We predict that the CBO of perfect CuInSe2/CdS interface is large, 0.79 eV, which would dramatically degrade performance. Moreover we show that band gap widening induced by Ga adjusts only the VBO, and we find that Cd impurities do not significantly affect the CBO. Thus we show that Cu vacancies at the interface play the key role in
Mail, M.; Neinhuis, C.
2016-01-01
A comprehensive survey of the construction principles and occurrences of superhydrophobic surfaces in plants, animals and other organisms is provided and is based on our own scanning electron microscopic examinations of almost 20 000 different species and the existing literature. Properties such as self-cleaning (lotus effect), fluid drag reduction (Salvinia effect) and the introduction of new functions (air layers as sensory systems) are described and biomimetic applications are discussed: self-cleaning is established, drag reduction becomes increasingly important, and novel air-retaining grid technology is introduced. Surprisingly, no evidence for lasting superhydrophobicity in non-biological surfaces exists (except technical materials). Phylogenetic trees indicate that superhydrophobicity evolved as a consequence of the conquest of land about 450 million years ago and may be a key innovation in the evolution of terrestrial life. The approximate 10 million extant species exhibit a stunning diversity of materials and structures, many of which are formed by self-assembly, and are solely based on a limited number of molecules. A short historical survey shows that bionics (today often called biomimetics) dates back more than 100 years. Statistical data illustrate that the interest in biomimetic surfaces is much younger still. Superhydrophobicity caught the attention of scientists only after the extreme superhydrophobicity of lotus leaves was published in 1997. Regrettably, parabionic products play an increasing role in marketing. This article is part of the themed issue ‘Bioinspired hierarchically structured surfaces for green science’. PMID:27354736
Barthlott, W; Mail, M; Neinhuis, C
2016-08-06
A comprehensive survey of the construction principles and occurrences of superhydrophobic surfaces in plants, animals and other organisms is provided and is based on our own scanning electron microscopic examinations of almost 20 000 different species and the existing literature. Properties such as self-cleaning (lotus effect), fluid drag reduction (Salvinia effect) and the introduction of new functions (air layers as sensory systems) are described and biomimetic applications are discussed: self-cleaning is established, drag reduction becomes increasingly important, and novel air-retaining grid technology is introduced. Surprisingly, no evidence for lasting superhydrophobicity in non-biological surfaces exists (except technical materials). Phylogenetic trees indicate that superhydrophobicity evolved as a consequence of the conquest of land about 450 million years ago and may be a key innovation in the evolution of terrestrial life. The approximate 10 million extant species exhibit a stunning diversity of materials and structures, many of which are formed by self-assembly, and are solely based on a limited number of molecules. A short historical survey shows that bionics (today often called biomimetics) dates back more than 100 years. Statistical data illustrate that the interest in biomimetic surfaces is much younger still. Superhydrophobicity caught the attention of scientists only after the extreme superhydrophobicity of lotus leaves was published in 1997. Regrettably, parabionic products play an increasing role in marketing.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).
Jian, Yifan; Verstraete, Hans R. G. W.; Heisler, Morgan; Ju, Myeong Jin; Wahl, Daniel J.; Bliek, Laurens; Kalkman, Jeroen; Bonora, Stefano; Verhaegen, Michel; Sarunic, Marinko V.
2017-02-01
Adaptive optics has been successfully applied to cellular resolution imaging of the retina, enabling visualization of the characteristic mosaic patterns of the outer retina. Wavefront sensorless adaptive optics (WSAO) is a novel technique that facilitates high resolution ophthalmic imaging; it replaces the Hartmann-Shack Wavefront Sensor with an image-driven optimization algorithm and mitigates some the challenges encountered with sensor-based designs. However, WSAO generally requires longer time to perform aberrations correction than the conventional closed-loop adaptive optics. When used for in vivo retinal imaging applications, motion artifacts during the WSAO optimization process will affect the quality of the aberration correction. A faster converging optimization scheme needs to be developed to account for rapid temporal variation of the wavefront and continuously apply corrections. In this project, we investigate the Databased Online Nonlinear Extremum-seeker (DONE), a novel non-linear multivariate optimization algorithm in combination with in vivo human WSAO OCT imaging. We also report both hardware and software updates of our compact lens based WSAO 1060nm swept source OCT human retinal imaging system, including real time retinal layer segmentation and tracking (ILM and RPE), hysteresis correction for the multi-actuator adaptive lens, precise synchronization control for the 200kHz laser source, and a zoom lens unit for rapid switching of the field of view. Cross sectional images of the retinal layers and en face images of the cone photoreceptor mosaic acquired in vivo from research volunteers before and after WSAO optimization are presented.
Real-Time Optimization of Organic Rankine Cycle Systems by Extremum-Seeking Control
Andres Hernandez
2016-05-01
Full Text Available In this paper, the optimal operation of a stationary sub-critical 11 kW el organic Rankine cycle (ORC unit for waste heat recovery (WHR applications is investigated, both in terms of energy production and safety conditions. Simulation results of a validated dynamic model of the ORC power unit are used to derive a correlation for the evaporating temperature, which maximizes the power generation for a range of operating conditions. This idea is further extended using a perturbation-based extremum seeking (ES algorithm to identify online the optimal evaporating temperature. Regarding safety conditions, we propose the use of the extended prediction self-adaptive control (EPSAC approach to constrained model predictive control (MPC. Since it uses input/output models for prediction, it avoids the need for state estimators, making it a suitable tool for industrial applications. The performance of the proposed control strategy is compared to PID-like schemes. Results show that EPSAC-MPC is a more effective control strategy, as it allows a safer and more efficient operation of the ORC unit, as it can handle constraints in a natural way, operating close to the boundary conditions where power generation is maximized.
Crystal structure of Mg3Pd from first-principles calculations
DENG Yong-he; WANG Tao-fen; ZHANG Wei-bing; TANG Bi-yu; ZENG Xiao-qin; DING Wen-jiang
2008-01-01
Crystal structure of Mg3Pd alloy was studied by first-principles calculations based on the density functional theory. The total energy, formation heat and cohesive energy of the two types of Mg3Pd were calculated to assess the stability and the preferentiality. The results show that Mg3Pd alloy with Cu3P structure is more stable than Na3As structure, and Mg3Pd alloy is preferential to Cu3P structure. The obtained densities of states and charge density distribution for the two types of crystal structure were analyzed and discussed in combination with experimental findings for further discussion of the Mg3Pd structure.
First-Principles Calculations for Structures and Melting Temperature of Si6 Clusters
BAI Yu-Lin; CHEN Xiang-Rong; ZHOU Xiao-Lin; CHENG Xiao-Hong; YANG Xiang-Dong
2006-01-01
@@ We investigate the structures and the melting temperature of the Si6 cluster by using the first-principles pseudopotential method in real space and Langevin molecular dynamics. It is shown that the ground structure of the Si6 cluster is a square bipyramid, and the corresponding melting temperature is about 1923 K. In the heating procedure, the structures of the Si6 cluster change from high symmetry structures containing 5-8 bonds, via prolate structures containing 3-4 bonds, to oblate structures containing 1-2 bonds.
Lubrication Chemistry Viewed from DFT-Based Concepts and Electronic Structural Principles
Jin Yuansheng
2003-12-01
Full Text Available Abstract: Fundamental molecular issues in lubrication chemistry were reviewed under categories of solution chemistry, contact chemistry and tribochemistry. By introducing the Density Functional Theory(DFT-derived chemical reactivity parameters (chemical potential, electronegativity, hardness, softness and Fukui function and related electronic structural principles (electronegativity equalization principle, hard-soft acid-base principle, and maximum hardness principle, their relevancy to lubrication chemistry was explored. It was suggested that DFT, theoretical, conceptual and computational, represents a useful enabling tool to understand lubrication chemistry issues prior to experimentation and the approach may form a key step in the rational design of lubrication chemistry via computational methods. It can also be optimistically anticipated that these considerations will gestate unique DFT-based strategies to understand sophisticated tribology themes, such as origin of friction, essence of wear, adhesion in MEMS/NEMS, chemical mechanical polishing in wafer manufacturing, stress corrosion, chemical control of friction and wear, and construction of designer tribochemical systems.
Mancera, L; Takeuchi, N
2003-01-01
We have studied the structural and electronic properties of YN in rock salt (sodium chloride), caesium chloride, zinc blende and wurtzite structures using first-principles total energy calculations. Rock salt is the calculated ground state structure with a = 4.93 A, B sub 0 = 157 GPa. The experimental lattice constant is a = 4.877 A. There is an additional local minimum in the wurtzite structure with total energy 0.28 eV/unit cell higher. At high pressure (approx 138 GPa), our calculations predict a phase transformation from a NaCl to a CsCl structure.
Principles of moment distribution applied to stability of structures composed of bars or plates
Lundquist, Eugene E; Stowell, Elbridge Z; Schuette, Evan H
1945-01-01
The principles of the cross method of moment distribution, which have previously been applied to the stability of structures composed of bars under axial load, are applied to the stability of structures composed of long plates under longitudinal load. A brief theoretical treatment of the subject, as applied to structures composed of either bars or plates, is included, together with an illustrative example for each of these two types of structure. An appendix presents the derivation of the formulas for the various stiffnesses and carry-over factors used in solving problems in the stability of structures composed of long plates.
Bandwidth Reduction and Convergence Analysis of Extremum Seeking Control with Feedback Encoding
Vikum Sri Wijesinghe
2016-11-01
Full Text Available Frequently a physical plant of a control system has an optimum operating point such as the spark (or injection time of an internal combustion engine that results in maximum torque. Extremum Seeking Control (ESC is a method of adaptive control capable of locating and maintaining a plant at such an optimum operating point in real time. It is capable of doing so with minimal a priori knowledge of the plant and can also track slowly varying changes. Input perturbed ESC schemes that use periodic dither signals have the disadvantage of requiring a high bandwidth for sampling and correlating the plant output with the dither signal. If the feedback path were to be implemented over a packet switched communication network, the high bandwidth requirement could result in increased congestion and consequently packet delays and dropouts. As a solution encoding using sporadic (aperiodic sampling techniques can be used in the feedback path of the ESC scheme to reduce the required bandwidth. However, in order to ensure convergence of the ESC scheme with encoding, the effect of the signal reconstruction error due to encoding on the critical correlation stage has to be investigated. The contribution of this paper is an investigation of the convergence requirements and bandwidth performance of two encoding schemes; Memory Based Event Triggering (MBET and Event Triggered Adaptive Differential Modulation (ETADM. The results show that MBET can fail for objective functions with plateaus. ETADM fails when the number of ETADM steps used for reconstructing the plant output per perturbation cycle are too low to allow correlation. In terms of bandwidth reduction MBET performs better than ETADM (97% and 70% respectively. However, the use of MBET results in a longer convergence time.
A first principles investigation of the electronic structure of actinide oxides
Petit, Leon; Svane, Axel; Szotek, Zdzislawa
2010-01-01
The ground state electronic structures of the actinide oxides AO, A2O3 and AO2 (A=U, Np, Pu, Am, Cm, Bk, Cf) are determined from first-principles calculations using the selfinteraction corrected local spin-density approximation. Our study reveals a strong link between preferred oxidation number...
Stability of Sb-Te layered structures: First-principles study
Govaerts, K.; Sluiter, M.H.F.; Partoens, B.; Lamoen, D.
2012-01-01
Using an effective one-dimensional cluster expansion in combination with first-principles electronic structure calculations we have studied the energetics and electronic properties of Sb-Te layered systems. For a Te concentration between 0 and 60 at. % an almost continuous series of metastable
Bannikov, V. V.; Shein, I. R.; Ivanovskii, A. L.
2010-05-01
First-principles FLAPW-GGA calculations for six possible polymorphs of ruthenium mononitride RuN indicate that the most stable structure is that of zinc blende rather than the rock salt structure recently reported for synthesized RuN samples. The elastic, electronic properties and the features of chemical bonds of zinc-blende RuN polymorph were investigated and discussed in detail.
Correa S.
2011-10-01
Full Text Available This article presents a finite element formulation based on a parameterized variational principle for solving plane problems of fluid-structure interaction using the displacements as state variable for both solid and fluid media. The circular spurious modes, typical of displacement formulations are avoided. The penalty parameter is not random because it is selected according to energy criterion. Finally the formulation is not sensible to the definition of the normal direction in the fluid-structure interface.
Mark, W. D.
1988-01-01
For a given set of forces transmitted by the gears, each of the three components of the generalized transmission error of spiral bevel gears is shown to be stationary with respect to small independent variations in the positions of the endpoints of the lines of tooth contact about their true values. The tangential generalized transmission error component is shown to take on a minimum value at the true endpoint positions. A computational procedure based on the method of steepest descent is described for computing the true line of contact endpoint positions and the three components of the generalized transmission error. A method for computing the Fourier series coefficients of the tooth meshing harmonics of the three generalized transmission error components also is provided.
Owens, Jonathan R.
In this work, we first present two powerful methods for understanding the electronic, structural, conducting, and energetic properties of nano-materials: density functional theory (DFT) and quantum transport. The basics of the theory and background of both methods are discussed thoroughly. After establishing a firm foundation, we turn our attention to using these tools to solve practical problems, often in collaboration with experimental colleagues. The first two projects pertain to nitrogen doping in graphene nanoribbons (GNRs). We study nitrogen doping in two different schema: concentration-based (N_x-doped) and structural based (N_2. {AA}-doped). Concentration based doping is explored in the context of experimental measurements of IV curves on GNRs with differing dopant concentrations. These results show a shift towards semi-conducting behavior with an increase in dopant concentration. We combine first principles calculations (DFT) and transport calculations in the Landauer formalism to compute the density-of-states (DOS) and transport curves for various dopant concentrations (0.46%, 1.39%, 1.89%, and 2.31%), which corroborate the experimental observations. The N_2. {AA}-doped GNR study was inspired by experimental observation of an atomically precise nitrogen doping scheme in bulk graphene. Experimental STM images, combined with simulated STM images, revealed that the majority (80%) of doping sites consist of nitrogen atoms on neighboring sites of the same sublattice (A) in graphene, hence N_2. {AA} doping. We examine this doping scheme applied to zigzag and armchair GNRs under different orientations of the dopants. We present spin-resolved charge densities, energetics, transport, DOS, and simulated STM images for all four systems studied. Our results show the possibility of spin-filtered devices and the STM images provide an aid in helping experimentalist identify the dopant patterns, if these GNRs are fabricated. We next venture to explain different observed
First principles study of structural, electronic and mechanical properties of alkali nitride-KN
Murugan, A.; Rajeswarapalanichamy, R., E-mail: rrpalanichamy@gmail.com; Santhosh, M. [Department of Physics, N.M.S.S.V.N college, Madurai, Tamilnadu-625019 (India); Iyakutti, K. [Department of Physics and Nanotechnology, SRM University, Chennai, Tamilnadu-603203 (India)
2015-06-24
The structural, electronic and elastic properties of alkali- metal nitride (KN) is investigated by the first principles calculations based on density functional theory as implemented in Vienna ab-initio simulation package. At ambient pressure KN is stable in the ferromagnetic state with NaCl structure. The calculated lattice parameters are in good agreement with the available results. The electronic structure reveals that the KN is half metallic ferromagnet at normal pressure. A pressure-induced structural phase transition from NaCl to ZB phase is observed in KN. Half metallicity and ferromagnetism is maintained at all pressures.
Identifying Coupling Structure in Complex Systems through the Optimal Causation Entropy Principle
Sun, Jie; Bollt, Erik M
2014-01-01
Inferring the coupling structure of complex systems from time series data in general by means of statistical and information-theoretic techniques is a challenging problem in applied science. The reliability of statistical inferences requires the construction of suitable information-theoretic measures that take into account both direct and indirect influences, manifest in the form of information flows, between the components within the system. In this work, we present an application of the optimal causation entropy (oCSE) principle to identify the coupling structure of a synthetic biological system, the repressilator. Specifically, when the system reaches an equilibrium state, we use a stochastic perturbation approach to extract time series data that approximate a linear stochastic process. Then, we present and jointly apply the aggregative discovery and progressive removal algorithms based on the oCSE principle to infer the coupling structure of the system from the measured data. Finally, we show that the suc...
First-principles calculations of structure and high pressure phase transition in gallium nitride
Tan Li-Na; Hu Cui-E; Yu Bai-Ru; Chen Xiang-Rong
2007-01-01
The phase transitions of semiconductor GaN from the Wurtzite (WZ) structure and the zinc-blende (ZB) structure to the rocksalt (RS) structure are investigated by using the first-principles plane-wave pseudopotential density functional method combined with the ultrasoft pseudopotential scheme in the generalized gradient approximation (GGA)correction. It is found that the phase transitions from the WZ structure and the ZB structure to the RS structure occur at pressures of 46.1 GPa and 45.2 GPa, respectively. The lattice parameters, bulk moduli and their pressure derivatives of these structures of GaN are also calculated. Our results are consistent with available experimental and other theoretical results. The dependence of the normalized formula-unit volume V/Vo on pressure P is also successfully obtained.
Bahadur, Amar; Verma, Mohan L.; Mishra, Madhukar
2015-04-01
Using first principle calculation, we investigate the structural, electronic and magnetic properties of silicon doped zigzag boron nitride nanoribbon (ZBNNR). Our results show that the shift in position of silicon doping with respect to the ribbon edge causes change in the structural geometry, electronic structure and magnetization of ZBNNR. The band gap of silicon doped ZBNNR is found to become narrower as compared to that of perfect ZBNNR. We find that band gap and magnetic moment of ZBNNR can be tuned by substitutional silicon doping position and doping concentration.
Numerical Limit Analysis of Reinforced Concrete Structures
Larsen, Kasper Paaske
methods provide engineers with valuable tools for limit sta- te analysis, their application becomes difficult with increased structural complexity. The main challenge is to solve the optimization problem posed by the extremum principles. This thesis is a study of how numerical methods can be used to solve...... limit state analysis problems. The work focuses on determination of the load bearing capacity of reinforced concrete structures by employing the lower bound theorem and a finite element method using equilibrium elements is developed. The recent year’s development within the field of convex optimization...... is developed for improved perfor- mance. An example is given in which an inverse T-beam is analyzed and the numerical results are compared to laboratory tests. The third and final element is a plane shell element capable of modeling membrane and plate bending behavior. The element employs a layered disk...
First principles study on the structural, electronic, and elastic properties of Na-As systems
Ozisik, H. B.; Colakoglu, K.; Deligoz, E.; Ozisik, H.
2011-10-01
We have performed the first principles calculation by using the plane-wave pseudopotential approach with the generalized gradient approximation for investigating the structural, electronic, and elastic properties Na-As systems (NaAs in NaP, LiAs and AuCu-type structures, NaAs 2 in MgCu 2-type structure, Na 3As in Na 3As, Cu 3P and Li 3Bi-type structures, and Na 5As 4 in A 5B 4-type structure). The lattice parameters, cohesive energy, formation energy, bulk modulus, and the first derivative of bulk modulus (to fit to Murnaghan's equation of state) of the related structures are calculated. The second-order elastic constants and the other related quantities such as Young's modulus, shear modulus, Poisson's ratio, sound velocities, and Debye temperature are also estimated.
First-Principles Study of Structural,Magnetic,Electronic and Elastic Properties of PuC2简
杨荣 唐斌 高涛 敖冰云
2016-01-01
We perform first-principles calculations of crystal structure,magnetism,electronic structure,chemical bonding and elastic properties for PuC2 using the standard local spin-density approximation（LSDA）+U...
A first principle study of band structure of III-nitride compounds
Ahmed, Rashid [Centre for High Energy Physics University of the Punjab, Lahore-54590 (Pakistan)]. E-mail: rasofi@hotmail.com; Akbarzadeh, H. [Department of Physics, Isfahan University of Technology, 841546 Isfahan (Iran, Islamic Republic of); Fazal-e-Aleem [Centre for High Energy Physics University of the Punjab, Lahore-54590 (Pakistan)
2005-12-15
The band structure of both phases, zinc-blende and wurtzite, of aluminum nitride, indium nitride and gallium nitride has been studied using computational methods. The study has been done using first principle full-potential linearized augmented plane wave (FP-LAPW) method, within the framework of density functional theory (DFT). For the exchange correlation potential, generalized gradient approximation (GGA) and an alternative form of GGA proposed by Engel and Vosko (GGA-EV) have been used. Results obtained for band structure of these compounds have been compared with experimental results as well as other first principle computations. Our results show a significant improvement over other theoretical work and are closer to the experimental data.
Investigation of Concrete Structures in Serviceability Limit State Using Energy Principles
Hagsten, Lars German; Fisker, Jakob
2013-01-01
In this paper, a method concerning analysis of reinforced concrete structures in the serviceability limit state (SLS) is discussed. The method is based on elastic energy principles, combined with simple assumptions with respect to concrete mechanics. This approach allows for a direct implementati...... the choices made regarding the ULS and the state of stress in the SLS is compared with tests on reinforced concrete disks and beams, respectively. Fairly good agreement between theory and tests is achieved.......In this paper, a method concerning analysis of reinforced concrete structures in the serviceability limit state (SLS) is discussed. The method is based on elastic energy principles, combined with simple assumptions with respect to concrete mechanics. This approach allows for a direct implementation...
张春宜; 宋鲁凯; 费成巍; 郝广平; 刘令君
2016-01-01
To improve the computational efficiency of the reliability-based design optimization (RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method (PSO-AERSM) was proposed by integrating particle swarm optimization (PSO) algorithm and advanced extremum response surface method (AERSM). Firstly, the AERSM was developed and its mathematical model was established based on artificial neural network, and the PSO algorithm was investigated. And then the RBDO model of flexible mechanism was presented based on AERSM and PSO. Finally, regarding cross-sectional area as design variable, the reliability optimization of flexible mechanism was implemented subject to reliability degree and uncertainties based on the proposed approach. The optimization results show that the cross-section sizes obviously reduce by 22.96 mm2 while keeping reliability degree. Through the comparison of methods, it is demonstrated that the AERSM holds high computational efficiency while keeping computational precision for the RBDO of flexible mechanism, and PSO algorithm minimizes the response of the objective function. The efforts of this work provide a useful sight for the reliability optimization of flexible mechanism, and enrich and develop the reliability theory as well.
ding,Yi; Wang, Yanli
2015-01-01
Using first-principles calculations, we investigate the geometric structures and electronic properties of porous silicene and germanene nanosheets, which are the Si and Ge analogues of α−graphyne (referred to as silicyne and germanyne). It is found that the elemental silicyne and germanyne sheets are energetically unfavourable. However, after the C-substitution, the hybrid graphyne-like sheets (c-silicyne/c-germanyne) possess robust energetic and dynamical stabilities. Different from silicene...
Hatton, Leslie; Warr, Gregory
2015-01-01
That the physicochemical properties of amino acids constrain the structure, function and evolution of proteins is not in doubt. However, principles derived from information theory may also set bounds on the structure (and thus also the evolution) of proteins. Here we analyze the global properties of the full set of proteins in release 13-11 of the SwissProt database, showing by experimental test of predictions from information theory that their collective structure exhibits properties that are consistent with their being guided by a conservation principle. This principle (Conservation of Information) defines the global properties of systems composed of discrete components each of which is in turn assembled from discrete smaller pieces. In the system of proteins, each protein is a component, and each protein is assembled from amino acids. Central to this principle is the inter-relationship of the unique amino acid count and total length of a protein and its implications for both average protein length and occurrence of proteins with specific unique amino acid counts. The unique amino acid count is simply the number of distinct amino acids (including those that are post-translationally modified) that occur in a protein, and is independent of the number of times that the particular amino acid occurs in the sequence. Conservation of Information does not operate at the local level (it is independent of the physicochemical properties of the amino acids) where the influences of natural selection are manifest in the variety of protein structure and function that is well understood. Rather, this analysis implies that Conservation of Information would define the global bounds within which the whole system of proteins is constrained; thus it appears to be acting to constrain evolution at a level different from natural selection, a conclusion that appears counter-intuitive but is supported by the studies described herein.
Leslie Hatton
Full Text Available That the physicochemical properties of amino acids constrain the structure, function and evolution of proteins is not in doubt. However, principles derived from information theory may also set bounds on the structure (and thus also the evolution of proteins. Here we analyze the global properties of the full set of proteins in release 13-11 of the SwissProt database, showing by experimental test of predictions from information theory that their collective structure exhibits properties that are consistent with their being guided by a conservation principle. This principle (Conservation of Information defines the global properties of systems composed of discrete components each of which is in turn assembled from discrete smaller pieces. In the system of proteins, each protein is a component, and each protein is assembled from amino acids. Central to this principle is the inter-relationship of the unique amino acid count and total length of a protein and its implications for both average protein length and occurrence of proteins with specific unique amino acid counts. The unique amino acid count is simply the number of distinct amino acids (including those that are post-translationally modified that occur in a protein, and is independent of the number of times that the particular amino acid occurs in the sequence. Conservation of Information does not operate at the local level (it is independent of the physicochemical properties of the amino acids where the influences of natural selection are manifest in the variety of protein structure and function that is well understood. Rather, this analysis implies that Conservation of Information would define the global bounds within which the whole system of proteins is constrained; thus it appears to be acting to constrain evolution at a level different from natural selection, a conclusion that appears counter-intuitive but is supported by the studies described herein.
GUO Han-Ying,; LI Yu-Qi; WU Ke1; WANG Shi-Kun
2002-01-01
In this first paper of a series, we study the difference discrete variational principle in the framework of multi-parameter differential approach by regarding the forward difference as an entire geometric object in view of noncommutative differential geometry. Regarding the difference as an entire geometric object, the difference discrete version of Legendre transformation can be introduced. By virtue of this variational principle, we can discretely deal with the variation problems in both the Lagrangian and Hamiltonian formalisms to get difference discrete Euler-Lagrange equations and canonical ones for the difference discrete versions of the classical mechanics and classical field theory.
Benabadji M.K.
2013-09-01
Full Text Available First-principles calculations have been carried out to investigate the structural properties and electronic structure of the main binary Laves phase YCu2 and YZn2 with C14, C14, C36 and CeCu2 structures in Cu-Y-Zn alloy, respectively. The total energies of Laves phases with various occupations of nonequivalent lattice sites in all four structural forms have been calculated Ab initio by a pseudopotential VASP code. The optimized structural parameters were in very good agreement with the experimental values. The calculated heat of formation showed that the CeCu2-YCu2 and YZn2 Laves phase was of the strongest alloying ability and structural stability. The electronic density of states (DOS and charge density distribution were given.
Li, Xinting; Zhang, Xinyu; Qin, Jiaqian; Zhang, Suhong; Ning, Jinliang; Jing, Ran; Ma, Mingzhen; Liu, Riping
2014-11-01
The structural stability and mechanical properties of WC in WC-, MoC- and NaCl-type structures under high pressure are investigated systematically by first-principles calculations. The calculated equilibrium lattice constants at zero pressure agree well with available experimental and theoretical results. The formation enthalpy indicates that the most stable WC is in WC-type, then MoC-type finally NaCl-type. By the elastic stability criteria, it is predicted that the three structures are all mechanically stable. The elastic constants Cij, bulk modulus B, shear modulus G, Young's modulus E and Poisson's ratio ν of the three structures are studied in the pressure range from 0 to 100 GPa. Furthermore, by analyzing the B/G ratio, the brittle/ductile behavior under high pressure is assessed. Moreover, the elastic anisotropy of the three structures up to 100 GPa is also discussed in detail.
A novel anion interstitial defect structure in zinc-blende materials: A first-principles study
Yin, Yuan; Chen, Guangde; Ye, Honggang; Duan, Xiangyang; Zhu, Youzhang; Wu, Yelong
2016-05-01
The low-formation energy structure of anion interstitial defect in zinc-blende materials is usually identified as the tetrahedron central structure where the anion interstitial atom is surrounded by four countercation atoms. A line-type anion interstitial defect structure AD_il , however, is found to be lower in energy than the tetrahedron central anion interstitial defect structure by first-principles calculations. By analyzing the structural and electronical characters of this line-type defect in relative compounds of zinc-blende materials, we attribute this to the electronegativity shift trends and the bond forming, which lead to the hybridization types varying from sp 3 to sp-like and ending at sp.
Structural phase transition and elastic properties of hafnium dihydride: A first principles study
Santhosh, M., E-mail: rrpalanichamy@gmail.com; Rajeswarapalanichamy, R., E-mail: rrpalanichamy@gmail.com; Sudhapriyanga, G.; Murugan, A.; Chinthia, A. Jemmy [Department of Physics, N.M.S.S.V.N College, Madurai, Tamil Nadu-625019 (India); Kanagaprabha, S. [Department of Physics, Kamaraj College, Tuticorin, Tamil Nadu-628003 (India); Iyakutti, K. [Department of Physics and Nanotechnology, SRM University, Chennai, Tamil Nadu-603203 (India)
2014-04-24
The structural and elastic properties of Hafnium dihydride (HfH{sub 2}) are investigated by first principles calculation based on density functional theory using Vienna ab-initio simulation package (VASP). The calculated lattice parameters are in good agreement with the available results. A pressure induced structural phase transition from CaF{sub 2} to FeS{sub 2} phase is observed in HfH{sub 2} at 10.75 GPa. The calculated elastic constants indicate that this hydride is mechanically stable at ambient condition.
First-principles prediction of the equation of state for TcC with rocksalt structure
Sun, Xiao-Wei; Chu, Yan-Dong; Liu, Zi-Jiang; Song, Ting; Tian, Jun-Hong; Wei, Xiao-Ping
2014-10-01
The equation of state of TcC with rocksalt structure is investigated by means of first-principles density functional theory calculations combined with the quasi-harmonic Debye model in which the phononic effects are considered. Particular attention is paid to the predictions of the compressibility, the isothermal bulk modulus and its first pressure derivative which play a central role in the formulation of approximate equations of state for the first time. The properties of TcC with rocksalt structure are summarized in the pressure range of 0-80 GPa and the temperature up to 2500 K.
Ioan PEPENAR
2013-12-01
Full Text Available The paper presents the environmental impact on steel structures and the corrosivity of atmospheric environments. It defines the principles and criteria for the evaluation of atmospheric-corrosivity classes, according to European standard, which were introduced in the new technical national regulations in the field of corrosion protection of steel structures. It shows the equivalence between the new corrosivity classes and the old aggressivity classes according to Romanian standard, still in force. The examples of typical environments corresponding to the corrosivity classes are also presented.
First-Principles Study on Electronic Structures and Optical Properties of Doped Ag Crystal
CAO Can; CHEN Ling-Na; JIA Shu-Ting; ZHANG Dan; XU Hui
2012-01-01
By using the first-principles calculation based on density functional theory,we investigate the electronic structures and optical properties of Cl-doped Ag crystal. The results show that the electronic structure of Cl-doped Ag crystal depends on the doped concentration and the site of impurity defect.Interestingly,the calculated adsorption spectra of Cl-doped Ag crystal show isotropy or anisotropy coincide with the symmetry of Ag crystal. These features are discussed to provide guidance to experimental efforts for Ag-based nanoeletronic devices.
Structural, electronic and mechanical properties of rare earth nitride-ErN: A first principles study
Murugan, A.; Rajeswarapalanichamy, R., E-mail: rajeswarapalanichamy@gmail.com; Santhosh, M.; Priyanga, G. Sudha [Department of physics, N.M.S.S.V.N college, Madurai, Tamilnadu-625019 (India); Kanagaprabha, S. [Department of Physics, Kamaraj College, Tuticorin, Tamil Nadu 628 003 (India); Iyakutti, K. [Department of Physics and Nanotechnology, SRM University, Chennai, Tamilnadu-603203 (India)
2015-06-24
The structural, electronic and mechanical properties of rare earth nitride ErN is investigated by the first principles calculations based on density functional theory using the Vienna ab-initio simulation package. At ambient pressure ErN is stable in the ferromagnetic state with NaCl structure. The calculated lattice parameters are in good agreement with the available results. The electronic structure reveals that ErN is half metallic at normal pressure. A pressure-induced structural phase transition from NaCl (B1) to CsCl (B2) phase is observed in ErN. Ferromagnetic to non magnetic phase transition is predicted in ErN at high pressure.
Electronic Structure and Elastic Properties of Ti3AlC from First-Principles Calculations
DU Yu-Lei
2009-01-01
We perform a first-principles study on the electronic structure and elastic properties of Ti3AlC with an antiper-ovskite structure. The absence of band gap at the Fermi level and the finite value of the density of states at the Fermi energy reveal the metallic behavior of this compound. The elastic constants of Ti_3AlC are derived yielding c_(11)=356 GPa, c_(12)= 55 GPa, c_(44)=157 GPa. The bulk modulus B, shear modulus G and Young's modulus E are determined to be 156, 151 and 342 GPa, respectively. These properties are compared with those of Ti_3AlC_2 and Ti_2AlC with a layered structure in the Ti-Al-C system and Fe_3AlC with the same antiperovskite structure.
Aidhy, Dilpuneet S.; Liu, Bin; Zhang, Yanwen; Weber, William J.
2015-03-01
We study the chemical expansion for neutral and charged oxygen vacancies in fluorite, rocksalt, perovskite and pyrochlores materials using first principles calculations. We show that the neutral oxygen vacancy leads to lattice expansion whereas the charged vacancy leads to lattice contraction. In addition, we show that there is a window of strain within which an oxygen vacancy is stable; beyond that range, the vacancy can become unstable. Using CeO2|ZrO2 interface structure as an example, we show that the concentration of oxygen vacancies can be manipulated via strain, and the vacancies can be preferentially stabilized. These results could serve as guiding principles in predicting oxygen vacancy stability in strained systems and in the design of vacancy stabilized materials.
Cavalli, Andrea; Camilloni, Carlo; Vendruscolo, Michele
2013-03-07
In order to characterise the dynamics of proteins, a well-established method is to incorporate experimental parameters as replica-averaged structural restraints into molecular dynamics simulations. Here, we justify this approach in the case of interproton distance information provided by nuclear Overhauser effects by showing that it generates ensembles of conformations according to the maximum entropy principle. These results indicate that the use of replica-averaged structural restraints in molecular dynamics simulations, given a force field and a set of experimental data, can provide an accurate approximation of the unknown Boltzmann distribution of a system.
Structural, electronic, and elastic properties of K-As compounds: a first principles study.
Ozisik, Havva Bogaz; Colakoglu, Kemal; Deligoz, Engin; Ozisik, Haci
2012-07-01
First-principle calculations are performed to investigate the structural, elastic and electronic properties of K-As compounds (KAs in NaP, LiAs and AuCu-type structures, KAs(2) in MgCu(2)-type structure, K(3)As in Na(3)As, Cu(3)P and Li(3)Bi-type structures, and K(5)As(4) in A(5)B(4)-type structure). The lattice parameters, cohesive energy, formation energy, bulk modulus, and the first derivative of bulk modulus (to fit to the Murnaghan's equation of state) of the considered structures are calculated and reasonable agreement is obtained, and the phase transition pressure is also predicted. The repeated calculations on the electronic band structures and the related partial density of states are also given. The calculated second-order elastic constants based on the stress-strain method and the other related quantities such as Young's modulus, shear modulus, Poisson's ratio, sound velocities, Debye temperature, and shear anisotropy factors for considered structures are presented, and trends are discussed.
Structures, phase transitions, and magnetic properties of C o3Si from first-principles calculations
Zhao, Xin; Yu, Shu; Wu, Shunqing; Nguyen, Manh Cuong; Wang, Cai-Zhuang; Ho, Kai-Ming
2017-07-01
C o3Si was recently reported to exhibit remarkable magnetic properties in the nanoparticle form [B. Balasubramanian et al., Appl. Phys. Lett. 108, 152406 (2016)], 10.1063/1.4945987, yet better understanding of this material should be promoted. Here we report a study on the crystal structures of C o3Si using an adaptive genetic algorithm and discuss its electronic and magnetic properties from first-principles calculations. Several competing phases of C o3Si have been revealed from our calculations. We show that the hexagonal C o3Si structure reported in experiments has lower energy in the nonmagnetic state than in the ferromagnetic state at zero temperature. The ferromagnetic state of the hexagonal structure is dynamically unstable with imaginary phonon modes and transforms into a new orthorhombic structure, which is confirmed by our structure searches to have the lowest energy for both C o3Si and C o3Ge . Magnetic properties of the experimental hexagonal structure and the lowest-energy structures obtained from our structure searches are investigated in detail.
Electronic structures of long periodic stacking order structures in Mg: A first-principles study
Wang, William Yi, E-mail: yuw129@psu.edu [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Shang, Shun Li; Wang, Yi [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Darling, Kristopher A. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Kecskes, Laszlo J. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, RDRL-WMM-B, Aberdeen Proving Ground, MD 21005 (United States); Mathaudhu, Suveen N. [Materials Science Division, U.S. Army Research Office, Research Triangle Park, NC 27709 (United States); Hui, Xi Dong [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Liu, Zi-Kui, E-mail: dr.liu@psu.edu [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)
2014-02-15
Graphical abstract: -- Highlight: • Formation energies of the LPSOs (γ{sub LPSO}) can be scaled with respect to the formation energy of I2. • γ{sub LPSO} depends on the number of fault layers. • Electron structures of the 10H, 14H, 18R and 24R originate from those of I2. • Electron structure and formation energy of the 6H are between those of I1 and I2. -- Abstract: Long period stacking order (LPSO) structures, such as 6H, 10H, 14H, 18R and 24R, play significant roles in enhancing the mechanical properties of Mg alloys and have been largely investigated separately. In the present work, through detailed investigations of deformation electron density, we show that the electron structures of 10H, 14H, 18R and 24R LPSO structures in Mg originate from those of deformation stacking faults in Mg, and their formation energies can be scaled with respect to formation energy and the number of layers of deformation stacking faults, while the electron structure and formation energy of the 6H LPSO structure are between those of deformation and growth stacking faults. The simulated images of high resolution transmission electron microscopy compare well with experimental observed ones. The understanding of LPSO structures in Mg enables future quantitative investigations of effects of alloying elements on properties of LPSO structures and Mg alloys.
Yorulmaz, Uğur; Özden, Ayberk; Perkgöz, Nihan K.; Ay, Feridun; Sevik, Cem
2016-08-01
MXenes, carbides, nitrides and carbonitrides of early transition metals are the new members of two dimensional materials family given with a formula of {{{M}}}n+1 X n . Recent advances in chemical exfoliation and CVD growth of these crystals together with their promising performance in electrochemical energy storage systems have triggered the interest in these two dimensional structures. In this work, we employ first principles calculations for n = 1 structures of Sc, Ti, Zr, Mo and Hf pristine MXenes and their fully surface terminated forms with F and O. We systematically investigated the dynamical and mechanical stability of both pristine and fully terminated MXene structures to determine the possible MXene candidates for experimental realization. In conjunction with an extensive stability analysis, we report Raman and infrared active mode frequencies for the first time, providing indispensable information for the experimental elaboration of MXene field. After determining dynamically stable MXenes, we provide their phonon dispersion relations, electronic and mechanical properties.
Liu, X.X.; Liu, L.Z. [Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Wu, X.L., E-mail: hkxlwu@nju.edu.cn [Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Department of Physics, NingBo University, NingBo 315301 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)
2015-07-03
The defect states and optical absorption enhancement induced by twin boundaries in silicon are investigated by first-principle calculation. The defect states in the forbidden bands are identified and based on the established electronic structures, the dielectric functions and absorption coefficients are derived. An important result of our calculations is that visible light absorption by the twinning configuration is enhanced significantly, indicating that twinning structures possibly play an important role in silicon-based photovoltaic devices. - Highlights: • Defect states and optical absorption enhancement induced by twin boundaries in silicon are investigated theoretically. • Dielectric functions and absorption coefficients are derived. • Enhanced visible light absorption by the twinning configuration is demonstrated. • Twinning structures play an important role in silicon-based photovoltaic devices.
Niall Holmes
2013-05-01
Full Text Available This paper presents a new model building exercise in a second year module in the Department of Civil & Structural Engineering in the Dublin Institute of Technology (DIT. The activity aimed to improve students’ understanding of structural engineering, construction principles and methods. It allowed students to practically apply lecture material and construct a scaled model giving them an opportunity to study and visualise a real structure and generate their own ideas on how it should be assembled within a constructivist active learning environment. As a result, lectures were found to be more interactive and students more engaged in the discussions and provided a pathway to bridge the gap between theory (presented in lectures and the reality of their professions, which can aid them in their graduate careers. It is hoped that this type of active learning can be used in other engineering programmes to improve student understanding and as an opportunity to better apply lecture material to the real world.
Lithium halide monolayers: Structural, electronic and optical properties by first principles study
Safari, Mandana; Maskaneh, Pegah; Moghadam, Atousa Dashti; Jalilian, Jaafar
2016-09-01
Using first principle study, we investigate the structural, electronic and optical properties of lithium halide monolayers (LiF, LiCl, LiBr). In contrast to graphene and other graphene-like structures that form hexagonal rings in plane, these compounds can form and stabilize in cubic shape interestingly. The type of band structure in these insulators is identified as indirect type and ionic nature of their bonds are illustrated as well. The optical properties demonstrate extremely transparent feature for them as a result of wide band gap in the visible range; also their electron transitions are indicated for achieving a better vision on the absorption mechanism in these kinds of monolayers.
First principle study of the electronic structure of hafnium-doped anatase TiO2
Li Lezhong; Yang Weiqing; DingYingchun; Zhu Xinghua
2012-01-01
Crystal structures and electronic structures of hafnium doping anatase TiO2 were calculated by first principles with the plane-wave ultrasoft pseudopotential method based on the density functional theory within the generalized gradient approximation.The calculated results show that the lattice parameters a and c of Hf-doped anatase TiO2 are larger than those of intrinsic TiO2 under the same calculated condition.The calculated band structure and density of states show that the conduction band width of Hf-doped TiO2 is broadened which results in the band gap of Hf-doped being smaller than the band gap of TiO2.
First Principles Study of Electronic Structure and Magnetic Properties of TMH (TM = Cr, Mn, Fe, Co
S. Kanagaprabha
2013-01-01
Full Text Available First principles calculations are performed using a tight-binding linear muffin-tin orbital (TB-LMTO method with local density approximation (LDA and atomic sphere approximation (ASA to understand the electronic properties of transition metal hydrides (TMH (TM = Cr, Mn, Fe, Co. The structural property, electronic structure, and magnetic properties are investigated. A pressure induced structural phase transition from cubic to hexagonal phase is predicted at the pressures of 50 GPa for CrH and 23 GPa for CoH. Also, magnetic phase transition is observed in FeH and CoH at the pressures of 10 GPa and 180 GPa, respectively.
Structures and magnetic properties of Co-Zr-B magnets studied by first-principles calculations
Zhao, Xin; Ke, Liqin; Nguyen, Manh Cuong; Wang, Cai-Zhuang, E-mail: wangcz@ameslab.gov; Ho, Kai-Ming, E-mail: kmh@ameslab.gov [Ames Laboratory, U.S. DOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States)
2015-06-28
The structures and magnetic properties of Co-Zr-B alloys near the composition of Co{sub 5}Zr with B at. % ≤6% were studied using adaptive genetic algorithm and first-principles calculations. The energy and magnetic moment contour maps as a function of chemical composition were constructed for the Co-Zr-B magnet alloys through extensive structure searches and calculations. We found that Co-Zr-B system exhibits the same structure motif as the “Co{sub 11}Zr{sub 2}” polymorphs, and such motif plays a key role in achieving strong magnetic anisotropy. Boron atoms were found to be able to substitute cobalt atoms or occupy the “interruption” sites. First-principles calculations showed that the magnetocrystalline anisotropy energies of the boron-doped alloys are close to that of the high-temperature rhombohedral Co{sub 5}Zr phase and larger than that of the low-temperature Co{sub 5.25}Zr phase. Our calculations provide useful guidelines for further experimental optimization of the magnetic performances of these alloys.
First-principles prediction of a ground state crystal structure of magnesium borohydride.
Ozolins, V; Majzoub, E H; Wolverton, C
2008-04-04
Mg(BH(4))(2) contains a large amount of hydrogen by weight and by volume, but its promise as a candidate for hydrogen storage is dependent on the currently unknown thermodynamics of H2 release. Using first-principles density-functional theory calculations and a newly developed prototype electrostatic ground state search strategy, we predict a new T=0 K ground state of Mg(BH(4))(2) with I4[over ]m2 symmetry, which is 5 kJ/mol lower in energy than the recently proposed P6(1) structure. The calculated thermodynamics of H(2) release are within the range required for reversible storage.
Mousumi Upadhyay Kahaly; Umesh V Waghmare
2008-06-01
First-principles pseudopotential-based density functional theory calculations of atomic and electronic structures, full phonon dispersions and thermal properties of zigzag single wall carbon nanotubes (SWCNTs) are presented. By determining the correlation between vibrational modes of a graphene sheet and of the nanotube, we understand how rolling of the sheet results in mixing between modes and changes in vibrational spectrum of graphene. We find that the radial breathing mode softens with decreasing curvature. We estimate thermal expansion coefficient of nanotubes within a quasiharmonic approximation and identify the modes that dominate thermal expansion of some of these SWCNTs both at low and high temperatures.
First-principle study on the electronic structure of stressed CrSi2
ZHOU ShiYun; XIE Quan; YAN WanJun; CHEN Qian
2009-01-01
The electronic structure of stressed CrSi2 was calculated using the first-principle methods based on plane-wave pseudo-potential theory. The calculated results showed that, under the uniaxial compres-sion, the energy level of CrSi2 shifted toward high energy and its energy gap became wider with the increasing uniaxial stress, while the gap became narrower under the negative uniaxial stress. When the negative uniaxial stress was up to -18.5 Gpa, CrSi2 was converted into a direct-gap semiconductor with the band gap of 0.32 eV.
First-principle study on the electronic structure of stressed CrSi2
无
2009-01-01
The electronic structure of stressed CrSi2 was calculated using the first-principle methods based on plane-wave pseudo-potential theory. The calculated results showed that, under the uniaxial compression, the energy level of CrSi2 shifted toward high energy and its energy gap became wider with the increasing uniaxial stress, while the gap became narrower under the negative uniaxial stress. When the negative uniaxial stress was up to -18.5 GPa, CrSi2 was converted into a direct-gap semiconductor with the band gap of 0.32 eV.
Stability and electronic structure of InN nanotubes from first-principles study
Chen Li-Juan
2006-01-01
The stability and electronic structure of hypothetical InN nanotubes were studied by first-principles density functional theory.It was found that the strain energies of InN nanotubes are smaller than those of carbon nanotubes of the same radius.Single-wall zigzag InN nanotubes were found to be semiconductors with a direct band gap while the armchair counterparts have an indirect band gap.The band gaps of nanotubes decrease with increasing diameter,similar to the case of carbon nanotubes.
First-principles study of the structural stability and electronic structures of TaN
Cao, C.L.; Yuan, G. [School of Information and Engineering, Ocean University of China, QingDao 266100 (China); Hou, Z.F. [Department of Physics, Fudan University, Shanghai 200433 (China)
2008-08-15
Using the plane-wave pseudopotential method within the generalized gradient approximation, we have studied the structural stability and electronic structures for several TaN phases. Our results show CoSn is the calculated ground-state structure of TaN among the five crystallographic structures that have been studied. The order of energetic stability of phase structures of TaN from low to high is: CsCl
Her-Terng Yau
2013-01-01
Full Text Available An extremum seeking control (ESC scheme is proposed for maximum power point tracking (MPPT in photovoltaic power generation systems. The robustness of the proposed scheme toward irradiance changes is enhanced by implementing the ESC scheme using a sliding mode control (SMC law. In the proposed approach, the chattering phenomenon caused by high frequency switching is suppressed by means of a sliding layer concept. Moreover, in implementing the proposed controller, the optimal value of the gain constant is determined using a particle swarm optimization (PSO algorithm. The experimental and simulation results show that the proposed PSO-based sliding mode ESC (SMESC control scheme yields a better transient response, steady-state stability, and robustness than traditional MPPT schemes based on gradient detection methods.
Koch, M A; Waldmann, H
2006-01-01
The majority of all proteins are modularly built from a limited set of approximately 1,000 structural domains. The knowledge of a common protein fold topology in the ligand-sensing cores of protein domains can be exploited for the design of small-molecule libraries in the development of inhibitors and ligands. Thus, a novel strategy of clustering protein domain cores based exclusively on structure similarity considerations (protein structure similarity clustering, PSSC) has been successfully applied to the development of small-molecule inhibitors of acetylcholinesterase and the 11beta-hydroxysteroid dehydrogenases based on the structure of a naturally occurring Cdc25 inhibitor. The efficiency of making use of the scaffolds of natural products as biologically prevalidated starting points for the design of compound libraries is further highlighted by the development of benzopyran-based FXR ligands.
First-principles simulation of Raman spectra and structural properties of quartz up to 5 GPa
Liu, Lei; Lv, Chao-Jia; Zhuang, Chun-Qiang; Yi, Li; Liu, Hong; Du, Jian-Guo
2015-12-01
The crystal structure and Raman spectra of quartz are calculated by using first-principles method in a pressure range from 0 to 5 GPa. The results show that the lattice constants (a, c, and V) decrease with increasing pressure and the a-axis is more compressible than the c axis. The Si-O bond distance decreases with increasing pressure, which is in contrast to experimental results reported by Hazen et al. [Hazen R M, Finger L W, Hemley R J and Mao H K 1989 Solid State Communications 725 507-511], and Glinnemann et al. [Glinnemann J, King H E Jr, Schulz H, Hahn T, La Placa S J and Dacol F 1992 Z. Kristallogr. 198 177-212]. The most striking changes are of inter-tetrahedral O-O distances and Si-O-Si angles. The volume of the tetrahedron decreased by 0.9% (from 0 to 5 GPa), which suggests that it is relatively rigid. Vibrational models of the quartz modes are identified by visualizing the associated atomic motions. Raman vibrations are mainly controlled by the deformation of the tetrahedron and the changes in the Si-O-Si bonds. Vibrational directions and intensities of atoms in all Raman modes just show little deviations when pressure increases from 0 to 5 GPa. The pressure derivatives (dνi/dP) of the 12 Raman frequencies are obtained at 0 GPa-5 GPa. The calculated results show that first-principles methods can well describe the high-pressure structural properties and Raman spectra of quartz. The combination of first-principles simulations of the Raman frequencies of minerals and Raman spectroscopy experiments is a useful tool for exploring the stress conditions within the Earth. Project supported by the Key Laboratory of Earthquake Prediction, Institute of Earthquake Science, China Earthquake Administration (CEA) (Grant No. 2012IES010201) and the National Natural Science Foundation of China (Grant Nos. 41174071 and 41373060).
Dahmane, F.; Mogulkoc, Y.; Doumi, B.; Tadjer, A.; Khenata, R.; Bin Omran, S.; Rai, D. P.; Murtaza, G.; Varshney, Dinesh
2016-06-01
Using the first-principles density functional calculations, the structural, electronic and magnetic properties of the Fe2XAl (X=Cr, Mn, Ni) compounds in both the Hg2CuTi and Cu2MnAl-type structures were studied by the full-potential linearized augmented plane waves (FP-LAPW) method. The exchange and correlation potential is treated by the generalized-gradient approximation (GGA) where the results show that the Cu2MnAl-type structure is energetically more stable than the Hg2CuTi-type structure for the Fe2CrAl and Fe2MnAl compounds at the equilibrium volume. The full Heusler compounds Fe2XAl (X=Cr, Mn) are half-metallic in the Cu2MnAl-type structure. Fe2NiAl has a metallic character in both CuHg2Ti and AlCu2Mn-type structures. The total magnetic moments of the Fe2CrAl and Fe2MnAl compounds are 1.0 and 2.0 μB, respectively, which are in agreement with the Slater-Pauling rule Mtot=Ztot- 24.
First-principles study of structural and bonding properties of vanadium carbide and niobium carbide
Joshi, K. B.; Paliwal, U.
2009-11-01
An ab initio linear combination of atomic orbitals method founded on density functional theory is applied to study the structural and bonding properties of vanadium carbide and niobium carbide. We present structural properties, namely, first-principles total energies, equilibrium lattice constants, bulk moduli and their pressure derivatives, together with the x-ray structure factors. Two generalized correction schemes—P86 and PW92—are applied to treat correlation. P86 gives a favourable ground state compared with the PW92. The computed equilibrium lattice constants and bulk moduli of the two compounds are compared with available experimental data. The x-ray structure factors for a few reflection planes are also reported. Comparison with experiment could be done only for niobium carbide. More refined measurements on x-ray structure factors for both compounds are required. We also present the autocorrelation functions derived from the ground-state momentum density. The electronic behaviour and bonding properties are discussed in terms of absolute and anisotropies in the directional autocorrelation functions. Our findings on structural and bonding parameters are well in accordance with the experimental data.
First-principles study of structural and bonding properties of vanadium carbide and niobium carbide
Joshi, K B; Paliwal, U [Department of Physics, University College of Science, M L Sukhadia University, Udaipur - 313001 (India)], E-mail: k_joshi@yahoo.com
2009-11-15
An ab initio linear combination of atomic orbitals method founded on density functional theory is applied to study the structural and bonding properties of vanadium carbide and niobium carbide. We present structural properties, namely, first-principles total energies, equilibrium lattice constants, bulk moduli and their pressure derivatives, together with the x-ray structure factors. Two generalized correction schemes-P86 and PW92-are applied to treat correlation. P86 gives a favourable ground state compared with the PW92. The computed equilibrium lattice constants and bulk moduli of the two compounds are compared with available experimental data. The x-ray structure factors for a few reflection planes are also reported. Comparison with experiment could be done only for niobium carbide. More refined measurements on x-ray structure factors for both compounds are required. We also present the autocorrelation functions derived from the ground-state momentum density. The electronic behaviour and bonding properties are discussed in terms of absolute and anisotropies in the directional autocorrelation functions. Our findings on structural and bonding parameters are well in accordance with the experimental data.
Interaction Analysis and Decomposition Principle for Control Structure Design of Large-scale Systems
罗雄麟; 刘雨波; 许锋
2014-01-01
Industrial processes are mostly large-scale systems with high order. They use fully centralized control strategy, the parameters of which are difficult to tune. In the design of large-scale systems, the decomposition ac-cording to the interaction between input and output variables is the first step and the basis for the selection of con-trol structure. In this paper, the decomposition principle of processes in large-scale systems is proposed for the de-sign of control structure. A new variable pairing method is presented, considering the steady-state information and dynamic response of large-scale system. By selecting threshold values, the related matrix can be transformed into the adjoining matrixes, which directly measure the couple among different loops. The optimal number of controllers can be obtained after decomposing the large-scale system. A practical example is used to demonstrate the validity and feasibility of the proposed interaction decomposition principle in process large-scale systems.
Self-assembled wiggling nano-structures and the principle of maximum entropy production.
Belkin, A; Hubler, A; Bezryadin, A
2015-02-09
While behavior of equilibrium systems is well understood, evolution of nonequilibrium ones is much less clear. Yet, many researches have suggested that the principle of the maximum entropy production is of key importance in complex systems away from equilibrium. Here, we present a quantitative study of large ensembles of carbon nanotubes suspended in a non-conducting non-polar fluid subject to a strong electric field. Being driven out of equilibrium, the suspension spontaneously organizes into an electrically conducting state under a wide range of parameters. Such self-assembly allows the Joule heating and, therefore, the entropy production in the fluid, to be maximized. Curiously, we find that emerging self-assembled structures can start to wiggle. The wiggling takes place only until the entropy production in the suspension reaches its maximum, at which time the wiggling stops and the structure becomes quasi-stable. Thus, we provide strong evidence that maximum entropy production principle plays an essential role in the evolution of self-organizing systems far from equilibrium.
Chappell, Helen F.; Thom, William; Bowron, Daniel T.; Faria, Nuno; Hasnip, Philip J.; Powell, Jonathan J.
2017-08-01
Ferrihydrite, with a ``two-line'' x-ray diffraction pattern (2L-Fh), is the most amorphous of the iron oxides and is ubiquitous in both terrestrial and aquatic environments. It also plays a central role in the regulation and metabolism of iron in bacteria, algae, higher plants, and animals, including humans. In this study, we present a single-phase model for ferrihydrite that unifies existing analytical data while adhering to fundamental chemical principles. The primary particle is small (20-50 Å) and has a dynamic and variably hydrated surface, which negates long-range order; collectively, these features have hampered complete characterization and frustrated our understanding of the mineral's reactivity and chemical/biochemical function. Near and intermediate range neutron diffraction (NIMROD) and first-principles density functional theory (DFT) were employed in this study to generate and interpret high-resolution data of naturally hydrated, synthetic 2L-Fh at standard temperature. The structural optimization overcomes transgressions of coordination chemistry inherent within previously proposed structures, to produce a robust and unambiguous single-phase model.
Structural principles for computational and de novo design of 4Fe-4S metalloproteins
Nanda, Vikas; Senn, Stefan; Pike, Douglas H.; Rodriguez-Granillo, Agustina; Hansen, Will; Khare, Sagar D.; Noy, Dror
2017-01-01
Iron-sulfur centers in metalloproteins can access multiple oxidation states over a broad range of potentials, allowing them to participate in a variety of electron transfer reactions and serving as catalysts for high-energy redox processes. The nitrogenase FeMoCO cluster converts di-nitrogen to ammonia in an eight-electron transfer step. The 2(Fe4S4) containing bacterial ferredoxin is an evolutionarily ancient metalloprotein fold and is thought to be a primordial progenitor of extant oxidoreductases. Controlling chemical transformations mediated by iron-sulfur centers such as nitrogen fixation, hydrogen production as well as electron transfer reactions involved in photosynthesis are of tremendous importance for sustainable chemistry and energy production initiatives. As such, there is significant interest in the design of iron-sulfur proteins as minimal models to gain fundamental understanding of complex natural systems and as lead-molecules for industrial and energy applications. Herein, we discuss salient structural characteristics of natural iron-sulfur proteins and how they guide principles for design. Model structures of past designs are analyzed in the context of these principles and potential directions for enhanced designs are presented, and new areas of iron-sulfur protein design are proposed. PMID:26449207
Structural principles for computational and de novo design of 4Fe-4S metalloproteins.
Nanda, Vikas; Senn, Stefan; Pike, Douglas H; Rodriguez-Granillo, Agustina; Hansen, Will A; Khare, Sagar D; Noy, Dror
2016-05-01
Iron-sulfur centers in metalloproteins can access multiple oxidation states over a broad range of potentials, allowing them to participate in a variety of electron transfer reactions and serving as catalysts for high-energy redox processes. The nitrogenase FeMoCO cluster converts di-nitrogen to ammonia in an eight-electron transfer step. The 2(Fe4S4) containing bacterial ferredoxin is an evolutionarily ancient metalloprotein fold and is thought to be a primordial progenitor of extant oxidoreductases. Controlling chemical transformations mediated by iron-sulfur centers such as nitrogen fixation, hydrogen production as well as electron transfer reactions involved in photosynthesis are of tremendous importance for sustainable chemistry and energy production initiatives. As such, there is significant interest in the design of iron-sulfur proteins as minimal models to gain fundamental understanding of complex natural systems and as lead-molecules for industrial and energy applications. Herein, we discuss salient structural characteristics of natural iron-sulfur proteins and how they guide principles for design. Model structures of past designs are analyzed in the context of these principles and potential directions for enhanced designs are presented, and new areas of iron-sulfur protein design are proposed. This article is part of a Special issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, protein networks, edited by Ronald L. Koder and J.L Ross Anderson.
Koch, Marcus A; Waldmann, Herbert
2005-04-01
The identification of new chemical entities that are capable of altering protein function lies at the heart of the hit and lead finding process, for which combinatorial chemistry has emerged as a powerful tool. Following the maturation of combinatorial chemistry and compound library development, it was soon recognized that biological relevance, design and diversity of a library are more important than library size. The universe of conceivable compounds is almost infinite, therefore, the decisive question arises: where is a biologically validated starting point in structural space from which to build a compound library to be found? As a new approach to address this complex problem, a synergistic strategy is presented, which is based on protein structure similarity clustering and natural product structure as guiding rationales.
Novel phases of lithium-aluminum binaries from first-principles structural search
Sarmiento-Pérez, Rafael; Cerqueira, Tiago F. T.; Botti, Silvana; Marques, Miguel A. L., E-mail: marques@tddft.org [Institut Lumière Matière (UMR5306) and ETSF, Université Lyon 1-CNRS, Université de Lyon, F-69622 Villeurbanne Cedex (France); Valencia-Jaime, Irais [Institut Lumière Matière (UMR5306) and ETSF, Université Lyon 1-CNRS, Université de Lyon, F-69622 Villeurbanne Cedex (France); Centro de Investigación y Estudios Avanzados del IPN, MX-76230 Querétaro (Mexico); Amsler, Maximilian; Goedecker, Stefan [Department of Physics, Universität Basel, Klingelbergstr. 82, 4056 Basel (Switzerland); Romero, Aldo H. [Physics Department, West Virginia University, Morgantown, West Virginia 26506-6315 (United States)
2015-01-14
Intermetallic Li–Al compounds are on the one hand key materials for light-weight engineering, and on the other hand, they have been proposed for high-capacity electrodes for Li batteries. We determine from first-principles the phase diagram of Li–Al binary crystals using the minima hopping structural prediction method. Beside reproducing the experimentally reported phases (LiAl, Li{sub 3}Al{sub 2}, Li{sub 9}Al{sub 4}, LiAl{sub 3}, and Li{sub 2}Al), we unveil a structural variety larger than expected by discovering six unreported binary phases likely to be thermodynamically stable. Finally, we discuss the behavior of the elastic constants and of the electric potential profile of all Li–Al stable compounds as a function of their stoichiometry.
A proposal to first principles electronic structure calculation: Symbolic-Numeric method
Kikuchi, Akihito
2012-01-01
This study proposes an approach toward the first principles electronic structure calculation with the aid of symbolic-numeric solving. The symbolic computation enables us to express the Hartree-Fock-Roothaan equation in an analytic form and approximate it as a set of polynomial equations. By use of the Grobner basis technique, the polynomial equations are transformed into other ones which have identical roots. The converted equations take more convenient forms which will simplify numerical procedures, from which we can derive necessary physical properties in order, in an a la carte way. This method enables us to solve the electronic structure calculation, the optimization of any kind, or the inverse problem as a forward problem in a unified way, in which there is no need for iterative self-consistent procedures with trials and errors.
First-principles calculations atomic structure and elastic properties of Ti-Nb alloys
Timoshevskii, A N; Ivasishin, O M
2011-01-01
Elastic properties of Ti based \\beta-alloy were studied by the method of the model structure first principle calculations. Concentrational dependence of Young modulus for the binary \\beta-alloy Ti-Nb was discovered. It is shown that peculiarities visible at 15-18% concentrations can be related to the different Nb atoms distribution. Detailed comparison of the calculation results with the measurement results was done. Young modulus for the set of the ordered structures with different Nb atoms location, which simulate triple \\beta-alloys Ti-29.7%Zr-18.5%Nb and Ti-51.8%Zr-18.5%Nb have been calculated. The results of these calculations allowed us to suggest the concentration region for single-phase ternary \\beta-phase alloys possessing low values of Young's modulus.
Band structure and optical properties of amber studied by first principles
Rao, Zhi-Fan, E-mail: raozhifan@163.com [Analysis and Testing Center of Yunnan, Kunming University of Science and Technology, Kunming 650093 (China); Zhou, Rong-Feng [Analysis and Testing Center of Yunnan, Kunming University of Science and Technology, Kunming 650093 (China)
2013-03-01
The band structure and density of states of amber is studied by the first principles calculation based on density of functional theory. The complex structure of amber has 214 atoms and the band gap is 5.0 eV. The covalent bond is combined C/O atoms with H atoms. The O 2p orbital is the biggest effect near the Fermi level. The optical properties' results show that the reflectivity is low, and the refractive index is 1.65 in visible light range. The highest absorption coefficient peak is at 172 nm and another higher peak is at 136 nm. These convince that the amber would have a pretty sheen and that amber is a good and suitable crystal for jewelry and ornaments.
Novel phases of lithium-aluminum binaries from first-principles structural search
Sarmiento-Pérez, Rafael; Cerqueira, Tiago F. T.; Valencia-Jaime, Irais; Amsler, Maximilian; Goedecker, Stefan; Romero, Aldo H.; Botti, Silvana; Marques, Miguel A. L.
2015-01-01
Intermetallic Li-Al compounds are on the one hand key materials for light-weight engineering, and on the other hand, they have been proposed for high-capacity electrodes for Li batteries. We determine from first-principles the phase diagram of Li-Al binary crystals using the minima hopping structural prediction method. Beside reproducing the experimentally reported phases (LiAl, Li3Al2, Li9Al4, LiAl3, and Li2Al), we unveil a structural variety larger than expected by discovering six unreported binary phases likely to be thermodynamically stable. Finally, we discuss the behavior of the elastic constants and of the electric potential profile of all Li-Al stable compounds as a function of their stoichiometry.
First-principle study of energy band structure of armchair graphene nanoribbons
Ma, Fei; Guo, Zhankui; Xu, Kewei; Chu, Paul K.
2012-07-01
First-principle calculation is carried out to study the energy band structure of armchair graphene nanoribbons (AGNRs). Hydrogen passivation is found to be crucial to convert the indirect band gaps into direct ones as a result of enhanced interactions between electrons and nuclei at the edge boundaries, as evidenced from the shortened bond length as well as the increased differential charge density. Ribbon width usually leads to the oscillatory variation of band gaps due to quantum confinement no matter hydrogen passivated or not. Mechanical strain may change the crystal symmetry, reduce the overlapping integral of C-C atoms, and hence modify the band gap further, which depends on the specific ribbon width sensitively. In practical applications, those effects will be hybridized to determine the energy band structure and subsequently the electronic properties of graphene. The results can provide insights into the design of carbon-based devices.
Ying, Chun; Zhao, Erjun; Lin, Lin; Hou, Qingyu
2014-10-01
The structural determination, thermodynamic, mechanical, dynamic and electronic properties of 4d transitional metal diborides MB2 (M = Y-Ag) are systematically investigated by first-principles within the density functional theory (DFT). For each diboride, five structures are considered, i.e. AlB2-, ReB2-, OsB2-, MoB2- and WB2-type structures. The calculated lattice parameters are in good agreement with the previously theoretical and experimental studies. The formation enthalpy increases from YB2 to AgB2 in AlB2-type structure (similar to MoB2- and WB2-type). While the formation enthalpy decreases from YB2 to MoB2, reached minimum value to TcB2, and then increases gradually in ReB2-type structure (similar to OsB2-type), which is consistent with the results of the calculated density of states. The structural stability of these materials relates mainly on electronegative of metals, boron structure and bond characters. Among the considered structures, TcB2-ReB2 (TcB2-ReB2 represents TcB2 in ReB2-type structure, the same hereinafter) has the largest shear modulus (248 GPa), and is the hardest compound. The number of electrons transferred from metals to boron atoms and the calculated densities of states (DOS) indicate that each diboride is a complex mixture of metallic, ionic and covalent characteristics. Trends are discussed.
A mechanical design principle for tissue structure and function in the airway tree.
LaPrad, Adam S; Lutchen, Kenneth R; Suki, Béla
2013-01-01
With every breath, the dynamically changing mechanical pressures must work in unison with the cells and soft tissue structures of the lung to permit air to efficiently traverse the airway tree and undergo gas exchange in the alveoli. The influence of mechanics on cell and tissue function is becoming apparent, raising the question: how does the airway tree co-exist within its mechanical environment to maintain normal cell function throughout its branching structure of diminishing dimensions? We introduce a new mechanical design principle for the conducting airway tree in which mechanotransduction at the level of cells is driven to orchestrate airway wall structural changes that can best maintain a preferred mechanical microenvironment. To support this principle, we report in vitro radius-transmural pressure relations for a range of airway radii obtained from healthy bovine lungs and model the data using a strain energy function together with a thick-walled cylinder description. From this framework, we estimate circumferential stresses and incremental Young's moduli throughout the airway tree. Our results indicate that the conducting airways consistently operate within a preferred mechanical homeostatic state, termed mechanical homeostasis, that is characterized by a narrow range of circumferential stresses and Young's moduli. This mechanical homeostatic state is maintained for all airways throughout the tree via airway wall dimensional and mechanical relationships. As a consequence, cells within the airway walls throughout the airway tree experience similar oscillatory strains during breathing that are much smaller than previously thought. Finally, we discuss the potential implications of how the maintenance of mechanical homeostasis, while facilitating healthy tissue-level alterations necessary for maturation, may lead to airway wall structural changes capable of chronic asthma.
Ceder, Gerbrand
2007-03-01
The prediction of structure is a key problem in computational materials science that forms the platform on which rational materials design can be performed. Finding structure by traditional optimization methods on quantum mechanical energy models is not possible due to the complexity and high dimensionality of the coordinate space. An unusual, but efficient solution to this problem can be obtained by merging ideas from heuristic and ab initio methods: In the same way that scientist build empirical rules by observation of experimental trends, we have developed machine learning approaches that extract knowledge from a large set of experimental information and a database of over 15,000 first principles computations, and used these to rapidly direct accurate quantum mechanical techniques to the lowest energy crystal structure of a material. Knowledge is captured in a Bayesian probability network that relates the probability to find a particular crystal structure at a given composition to structure and energy information at other compositions. We show that this approach is highly efficient in finding the ground states of binary metallic alloys and can be easily generalized to more complex systems.
Structural stability and mechanical properties of Pt–Zr alloys from first-principles
Pan, Yong, E-mail: y_pan@ipm.com.cn [School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500 (China); Lin, Yuanhua, E-mail: yhlin28@163.com [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500 (China); Wang, Xiaohong; Chen, Songsong; Wang, Lijun; Tong, Chuangchuang; Cao, Zhen [School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500 (China)
2015-09-15
Highlights: • The convex hull indicates that Pt{sub 11}Zr{sub 7} is the most stable structure. • Pt{sub 8}Zr has the strongest volume deformation resistance. • Pt{sub 3}Zr has the strongest shear deformation resistance and has highest stiffness. • The high elastic modulus originated from Pt concentration and bond characteristic. - Abstract: The correlation between structural stability and mechanical properties of Pt–Zr alloys is systematically investigated by first-principles calculations. Additionally, the thermodynamic properties and electronic structure are discussed in detail. The convex hull indicates that the Pt{sub 10}Zr{sub 7} with orthorhombic structure is more stable than other Pt–Zr alloys at ground state. The bulk modulus of Pt–Zr alloys increases linearly as Pt concentration increases. Pt{sub 8}Zr has strong volume deformation resistance, which is derived from the high Pt concentration. Pt{sub 3}Zr exhibits strong shear deformation resistance and has high elastic stiffness, which originated from the strong Pt–Pt metallic bond along the b-direction. The trend of Debye temperature is consistent with the variation of shear modulus and Young’s modulus, and the calculated Debye temperature of Pt{sub 3}Zr is 342 K, which is bigger than other Pt–Zr alloys. The results provide a helpful for the design of Pt-based high-temperature structural materials with excellent mechanical properties.
Ding, Li-Ping; Shao, Peng; Zhang, Fang-Hui; Lu, Cheng; Ding, Lei; Ning, Shu Ya; Huang, Xiao Fen
2016-07-18
On the basis of the first-principles techniques, we perform the structure prediction for MoB2. Accordingly, a new ground-state crystal structure WB2 (P63/mmc, 2 fu/cell) is uncovered. The experimental synthesized rhombohedral R3̅m and hexagonal AlB2, as well as theoretical predicted RuB2 structures, are no longer the most favorite structures. By analyzing the elastic constants, formation enthalpies, and phonon dispersion, we find that the WB2 phase is thermodynamically and mechanically stable. The high bulk modulus B, shear modulus G, low Poisson's ratio ν, and small B/G ratio are benefit to its low compressibility. When the pressure is 10 GPa, a phase transition is observed between the WB2-MoB2 and the rhombohedral R3̅m MoB2 phases. By analyzing the density of states and electron density, we find that the strong covalent is formed in MoB2 compounds, which contributes a great deal to its low compressibility. Furthermore, the low compressibility is also correlated with the local buckled structure.
Structural design principles of complex bird songs: a network-based approach.
Kazutoshi Sasahara
Full Text Available Bird songs are acoustic communication signals primarily used in male-male aggression and in male-female attraction. These are often monotonous patterns composed of a few phrases, yet some birds have extremely complex songs with a large phrase repertoire, organized in non-random fashion with discernible patterns. Since structure is typically associated with function, the structures of complex bird songs provide important clues to the evolution of animal communication systems. Here we propose an efficient network-based approach to explore structural design principles of complex bird songs, in which the song networks--transition relationships among different phrases and the related structural measures--are employed. We demonstrate how this approach works with an example using California Thrasher songs, which are sequences of highly varied phrases delivered in succession over several minutes. These songs display two distinct features: a large phrase repertoire with a 'small-world' architecture, in which subsets of phrases are highly grouped and linked with a short average path length; and a balanced transition diversity amongst phrases, in which deterministic and non-deterministic transition patterns are moderately mixed. We explore the robustness of this approach with variations in sample size and the amount of noise. Our approach enables a more quantitative study of global and local structural properties of complex bird songs than has been possible to date.
Structural design principles of complex bird songs: a network-based approach.
Sasahara, Kazutoshi; Cody, Martin L; Cohen, David; Taylor, Charles E
2012-01-01
Bird songs are acoustic communication signals primarily used in male-male aggression and in male-female attraction. These are often monotonous patterns composed of a few phrases, yet some birds have extremely complex songs with a large phrase repertoire, organized in non-random fashion with discernible patterns. Since structure is typically associated with function, the structures of complex bird songs provide important clues to the evolution of animal communication systems. Here we propose an efficient network-based approach to explore structural design principles of complex bird songs, in which the song networks--transition relationships among different phrases and the related structural measures--are employed. We demonstrate how this approach works with an example using California Thrasher songs, which are sequences of highly varied phrases delivered in succession over several minutes. These songs display two distinct features: a large phrase repertoire with a 'small-world' architecture, in which subsets of phrases are highly grouped and linked with a short average path length; and a balanced transition diversity amongst phrases, in which deterministic and non-deterministic transition patterns are moderately mixed. We explore the robustness of this approach with variations in sample size and the amount of noise. Our approach enables a more quantitative study of global and local structural properties of complex bird songs than has been possible to date.
Xu, C.; Li, Q.; Liu, C. M.; Duan, M. Y.; Wang, H. K.
2016-05-01
First-principles calculations are employed to investigate the structural and elastic properties, formation enthalpies and chemical bonding features as well as hardness values of chromium tetraboride (CrB4) with different structures. The lattice parameters, Poisson’s ratio and B/G ratio are also derived. Our calculations indicate that the orthorhombic structure with Pnnm symmetry is the most energetically stable one for CrB4. Except for WB4P63/mmc structure with imaginary frequencies, another six new structures are investigated through the full phonon dispersion calculations. Their mechanical and thermodynamic stabilities are also studied by calculating the elastic constants and formation enthalpies. Our calculations show that the thermodynamic stabilities of all these CrB4 phases can be enhanced under high pressure. The large shear moduli, Young’s moduli and hardness values indicate that these CrB4 phases are potential hard materials. Analyses of the densities of states (DOSs) and electron localization functions (ELFs) provide further understandings of the chemical and physical properties of these CrB4 phases. It is observed that the large occupations and high strengths of the B-B covalent bonds are important for the stabilities, incompressibility and hardnesses of these CrB4 phases.
Lu, Peng-Xian, E-mail: pengxian_lu@haut.edu.cn; Xia, Yi
2017-05-01
How to further optimize the thermoelectric figure of merit of silicon (Si) nanostructure? Constructing the layered structure composed of two different Si nano morphologies should be viewed an effective approach. The figure of merit of the layered structure could be further optimized by tuning the different contribution from the composed nano morphologies on the electron and phonon transport. In order to reveal the thermoelectric transport mechanism, the electronic structure, the lattice dynamics and the thermoelectric properties of Si nanosphere, Si nanoribbon and the layered structure composed of the two nano morphologies were investigated through first-principles calculation, lattice dynamics simulation and Boltzmann transport theory. The results suggest that the figure of merit of the layered structure is improved significantly in whole although its specific thermoelectric parameters are unsatisfactory as compared to the single nano morphologies. Therefore we provide a complete understanding on the thermoelectric transport of the layered structure and an effective route to further optimize the figure of merit of Si nanostructure.
Prediction of new high pressure structural sequence in thorium carbide: A first principles study
Sahoo, B. D., E-mail: bdsahoo@barc.gov.in; Joshi, K. D.; Gupta, Satish C. [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)
2015-05-14
In the present work, we report the detailed electronic band structure calculations on thorium monocarbide. The comparison of enthalpies, derived for various phases using evolutionary structure search method in conjunction with first principles total energy calculations at several hydrostatic compressions, yielded a high pressure structural sequence of NaCl type (B1) → Pnma → Cmcm → CsCl type (B2) at hydrostatic pressures of ∼19 GPa, 36 GPa, and 200 GPa, respectively. However, the two high pressure experimental studies by Gerward et al. [J. Appl. Crystallogr. 19, 308 (1986); J. Less-Common Met. 161, L11 (1990)] one up to 36 GPa and other up to 50 GPa, on substoichiometric thorium carbide samples with carbon deficiency of ∼20%, do not report any structural transition. The discrepancy between theory and experiment could be due to the non-stoichiometry of thorium carbide samples used in the experiment. Further, in order to substantiate the results of our static lattice calculations, we have determined the phonon dispersion relations for these structures from lattice dynamic calculations. The theoretically calculated phonon spectrum reveal that the B1 phase fails dynamically at ∼33.8 GPa whereas the Pnma phase appears as dynamically stable structure around the B1 to Pnma transition pressure. Similarly, the Cmcm structure also displays dynamic stability in the regime of its structural stability. The B2 phase becomes dynamically stable much below the Cmcm to B2 transition pressure. Additionally, we have derived various thermophysical properties such as zero pressure equilibrium volume, bulk modulus, its pressure derivative, Debye temperature, thermal expansion coefficient and Gruneisen parameter at 300 K and compared these with available experimental data. Further, the behavior of zero pressure bulk modulus, heat capacity and Helmholtz free energy has been examined as a function temperature and compared with the experimental data of Danan [J
Prediction of new high pressure structural sequence in thorium carbide: A first principles study
Sahoo, B. D.; Joshi, K. D.; Gupta, Satish C.
2015-05-01
In the present work, we report the detailed electronic band structure calculations on thorium monocarbide. The comparison of enthalpies, derived for various phases using evolutionary structure search method in conjunction with first principles total energy calculations at several hydrostatic compressions, yielded a high pressure structural sequence of NaCl type (B1) → Pnma → Cmcm → CsCl type (B2) at hydrostatic pressures of ˜19 GPa, 36 GPa, and 200 GPa, respectively. However, the two high pressure experimental studies by Gerward et al. [J. Appl. Crystallogr. 19, 308 (1986); J. Less-Common Met. 161, L11 (1990)] one up to 36 GPa and other up to 50 GPa, on substoichiometric thorium carbide samples with carbon deficiency of ˜20%, do not report any structural transition. The discrepancy between theory and experiment could be due to the non-stoichiometry of thorium carbide samples used in the experiment. Further, in order to substantiate the results of our static lattice calculations, we have determined the phonon dispersion relations for these structures from lattice dynamic calculations. The theoretically calculated phonon spectrum reveal that the B1 phase fails dynamically at ˜33.8 GPa whereas the Pnma phase appears as dynamically stable structure around the B1 to Pnma transition pressure. Similarly, the Cmcm structure also displays dynamic stability in the regime of its structural stability. The B2 phase becomes dynamically stable much below the Cmcm to B2 transition pressure. Additionally, we have derived various thermophysical properties such as zero pressure equilibrium volume, bulk modulus, its pressure derivative, Debye temperature, thermal expansion coefficient and Gruneisen parameter at 300 K and compared these with available experimental data. Further, the behavior of zero pressure bulk modulus, heat capacity and Helmholtz free energy has been examined as a function temperature and compared with the experimental data of Danan [J. Nucl. Mater. 57, 280
Principles for understanding the accuracy of SHAPE-directed RNA structure modeling.
Leonard, Christopher W; Hajdin, Christine E; Karabiber, Fethullah; Mathews, David H; Favorov, Oleg V; Dokholyan, Nikolay V; Weeks, Kevin M
2013-01-29
Accurate RNA structure modeling is an important, incompletely solved, challenge. Single-nucleotide resolution SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) yields an experimental measurement of local nucleotide flexibility that can be incorporated as pseudo-free energy change constraints to direct secondary structure predictions. Prior work from our laboratory has emphasized both the overall accuracy of this approach and the need for nuanced interpretation of modeled structures. Recent studies by Das and colleagues [Kladwang, W., et al. (2011) Biochemistry 50, 8049; Nat. Chem. 3, 954], focused on analyzing six small RNAs, yielded poorer RNA secondary structure predictions than expected on the basis of prior benchmarking efforts. To understand the features that led to these divergent results, we re-examined four RNAs yielding the poorest results in this recent work: tRNA(Phe), the adenine and cyclic-di-GMP riboswitches, and 5S rRNA. Most of the errors reported by Das and colleagues reflected nonstandard experiment and data processing choices, and selective scoring rules. For two RNAs, tRNA(Phe) and the adenine riboswitch, secondary structure predictions are nearly perfect if no experimental information is included but were rendered inaccurate by the SHAPE data of Das and colleagues. When best practices were used, single-sequence SHAPE-directed secondary structure modeling recovered ~93% of individual base pairs and >90% of helices in the four RNAs, essentially indistinguishable from the results of the mutate-and-map approach with the exception of a single helix in the 5S rRNA. The field of experimentally directed RNA secondary structure prediction is entering a phase focused on the most difficult prediction challenges. We outline five constructive principles for guiding this field forward.
What lies beneath? The underlying principles structuring the field of academic nursing in Ireland.
McNamara, Martin S
2010-01-01
This article reports the findings of a structural analysis of the field of academic nursing in Ireland and considers the implications of the field's current structure for its present status and future trajectory in the academy. Six years after preregistration nursing education transferred to the higher education sector, tensions continue to exist concerning the status and legitimacy of academic nursing and of those who profess to profess it. The languages of legitimation of senior nursing academics and national nursing leaders (n = 16) were elicited and subjected to a critical discourse analysis. Respondents' languages were analyzed in terms of the settings of four underlying structuring legitimation principles: autonomy, density, specialization, and temporality. Academic nursing in Ireland was found to be structured by low autonomy, high density, and weak specialization. I conclude that academic and professional leaders in Irish nursing need to urgently consider how academic nursing can reconfigure its relationships with clinical nursing, increase its intellectual autonomy, enhance its internal coherence and cohesiveness, strengthen the epistemic power of its knowledge base, and critically evaluate the ways in which past practices inform its present and whether and to what extent they should shape its future.
BabaeiPour, M.; Safari, E. Keshavarz; Shokri, A. A.
2017-02-01
A systematic study has been done on the structural and electronic properties of carbon, boron nitride and aluminum nitride nanotubes with structure consisting of periodically distributed tetragonal (T ≡A2X2), hexagonal (H ≡A3X3) and dodecagonal (D ≡A6X6) (AX=C2, BN, AlN) cycles. The method has been performed using first-principles calculations based on density functional theory (DFT). The optimized lattice parameters, density of state (DOS) curves and band structure of THD-NTs are obtained for (3, 0) and (0, 2) types. Our calculation results indicate that carbon nanotubes of these types (THD-CNTs) behave as a metallic, but the boron nitride nanotubes (THD-BNNTs) (with a band gap of around 4 eV) as well as aluminum nitride nanotubes (THD-AlNNTs) (with a band gap of around 2.6 eV) behave as an semiconductor. The inequality in number of atoms in different directions is affected on structures and diameters of nanotubes and their walls curvature.
First-principles study of structural, elastic, and thermodynamic properties of ZrHf alloy
韦昭; 翟东; 邵晓红; 鲁勇; 张平
2015-01-01
Structural parameters, elastic constants, and thermodynamic properties of ordered and disordered solid solutions of ZrHf alloys are investigated through first-principles calculations based on density-functional theory (DFT). The special quasi-random structure (SQS) method is used to model the disordered phase as a single unit cell, and two lamella structures are generated to model the ordered alloys. Small strains are applied to the unit cells to measure the elastic behavior and mechanical stability of ZrHf alloys and to obtain the independent elastic constants by the stress–strain relationship. Phonon dispersions and phonon density of states are presented to verify the thermodynamic stability of the considered phases. Our results show that both the ordered and disordered phases of ZrHf alloys are structurally stable. Based on the obtained phonon frequencies, thermodynamic properties, including Gibbs free energy, entropy, and heat capacity, are predicted within the quasi-harmonic approximation. It is verified that there are no obvious differences in energy between ordered and disordered phases over a wide temperature range.
Wiese, Richard; Orzechowska, Paula; Alday, Phillip M.; Ulbrich, Christiane
2017-01-01
Phonological knowledge of a language involves knowledge about which segments can be combined under what conditions. Languages vary in the quantity and quality of licensed combinations, in particular sequences of consonants, with Polish being a language with a large inventory of such combinations. The present paper reports on a two-session experiment in which Polish-speaking adult participants learned nonce words with final consonant clusters. The aim was to study the role of two factors which potentially play a role in the learning of phonotactic structures: the phonological principle of sonority (ordering sound segments within the syllable according to their inherent loudness) and the (non-) existence as a usage-based phenomenon. EEG responses in two different time windows (adversely to behavioral responses) show linguistic processing by native speakers of Polish to be sensitive to both distinctions, in spite of the fact that Polish is rich in sonority-violating clusters. In particular, a general learning effect in terms of an N400 effect was found which was demonstrated to be different for sonority-obeying clusters than for sonority-violating clusters. Furthermore, significant interactions of formedness and session, and of existence and session, demonstrate that both factors, the sonority principle and the frequency pattern, play a role in the learning process. PMID:28119642
Rodrigues, W. A.; Scanavini, M. E. F.; de Alcantara, L. P.
1990-02-01
In this paper a given spacetime theory T is characterized as the theory of a certain species of structure in the sense of Bourbaki [1]. It is then possible to clarify in a rigorous way the concepts of passive and active covariance of T under the action of the manifold mapping group G M . For each T, we define also an invariance group G I T and, in general, G I T ≠ G M . This group is defined once we realize that, for each τ ∈ ModT, each explicit geometrical object defining the structure can be classified as absolute or dynamical [2]. All spacetime theories possess also implicit geometrical objects that do not appear explicitly in the structure. These implicit objects are not absolute nor dynamical. Among them there are the reference frame fields, i.e., “timelike” vector fields X ∈ TU,U subseteq M M, where M is a manifold which is part of ST, a substructure for each τ ∈ ModT, called spacetime. We give a physically motivated definition of equivalent reference frames and introduce the concept of the equivalence group of a class of reference frames of kind X according to T, G X T. We define that T admits a weak principle of relativity (WPR) only if G X T ≠ identity for some X. If G X T = G I T for some X, we say that T admits a strong principle of relativity (PR). The results of this paper generalize and clarify several results obtained by Anderson [2], Scheibe [3], Hiskes [4], Recami and Rodrigues [5], Friedman [6], Fock [7], and Scanavini [8]. Among the novelties here, there is the realization that the definitions of G I T and G X T can be given only when certain boundary conditions for the equations of motion of T can be physically realizable in the domain U U subseteq M M, where a given reference frame is defined. The existence of physically realizable boundary conditions for each τ ∈ ModT (in ∂ U), in contrast with the mathematically possible boundary condition, is then seen to be essential for the validity of a principle of relativity for T
Wang, Jinjin; Wang, Zhanyu; Jing, Yueyue; Wang, Songyou; Chou, Che-Fu; Hu, Han; Chiou, Shan-Haw; Tsoo, Chia-Chin; Su, Wan-Sheng
2016-10-01
The structural, mechanical, electronic, and optical properties of B6O were explored by means of first-principles calculations. Such a system is mechanically stable and also a relatively hard material which are derived from obtained elastic constants and bulk moduli. Bulk B6O is a direct-gap semiconductor with a bandgap of about 2.93 eV within G0W0 approximation. Furthermore, the optical properties, such as real and imaginary parts of dielectric functions, refractive index and extinction coefficient, and the comparison of optical properties between the density-functional theory (DFT) and G0W0 Bethe-Salpeter equation (G0W0-BSE) results, were computed and discussed. The results obtained from our calculations open a possibility for expanding its use in device applications.
Wang, Yingjie; Feng, Xiangfeng; Yu, Zhuoyuan; Cui, Jing
2009-07-01
Poverty is listed as the one of eight "Millennium Development Goals" by UN Summit. From 1978 to 2004, rural poverty population in China is cut to 26.1 million from 250 million. In order to support the decision maker to make nice planning in elimination of poverty and promotion of regional sustainable development in China, the GIS based systemic and comprehensive database for poverty, environment and development is proposed and designed in the paper. Additionally, the design principle and main content of the database is discussed by utilization modern technology, such as spatialtemporal and tree-ring data models for data structuring and coding, in order to represent current poverty status, spatial distribution and temporal variations, and to explore the relationship among poverty, environment and development ultimately.
Polyatomic gases with dynamic pressure: Maximum entropy principle and shock structure
Pavić-Čolić, Milana; Simić, Srboljub
2016-01-01
This paper is concerned with the analysis of polyatomic gases within the framework of kinetic theory. Internal degrees of freedom are modeled using a single continuous variable corresponding to the molecular internal energy. Non-equilibrium velocity distribution function, compatible with macroscopic field variables, is constructed using the maximum entropy principle. A proper collision cross section is constructed which obeys the micro-reversibility requirement. The source term and entropy production rate are determined in the form which generalizes the results obtained within the framework of extended thermodynamics. They can be adapted to appropriate physical situations due to the presence of parameters. They are also compared with the results obtained using BGK approximation. For the proposed model the shock structure problem is thoroughly analyzed.
Study of an effective structural system with rational parameters based on main energy principles
Toporkova Katerina
2017-01-01
Full Text Available The effective architectural and construction system with rational parameters based on main energy principles applied to construction of buildings and constructions with a small-step and large-step frames, representing the metal frame of full factory production collected in spatial system on high-strength bolts and previously strained combined prestressed concrete slabs which formed without timbering is proposed in this paper. The main constructive and technological features of the proposed frame, which allows reducing construction period, increasing working efficiency, and reducing labor intensity by using factory-made materials, quick erection of all process elements through the use of highstrength bolts is considered. The advantages of this constructive system in comparison with alternative systems are shown. The basic concepts of "rational decisions" to the design, namely, the objective of the optimal management of the structure parameters, which can not only improve its basic performance indicators, but also, and most importantly, improve operational reliability, is presented.
The structural, electronic and phonon behavior of CsPbI3: A first principles study
Bano, Amreen; Khare, Preeti; Parey, Vanshree; Shukla, Aarti; Gaur, N. K.
2016-05-01
Metal halide perovskites are optoelectronic materials that have attracted enormous attention as solar cells with power conversion efficiencies reaching 20%. The benefit of using hybrid compounds resides in their ability to combine the advantage of these two classes of compounds: the high mobility of inorganic materials and the ease of processing of organic materials. In spite of the growing attention of this new material, very little is known about the electronic and phonon properties of the inorganic part of this compounds. A theoretical study of structural, electronic and phonon properties of metal-halide cubic perovskite, CsPbI3 is presented, using first-principles calculations with planewave pseudopotential method as personified in PWSCF code. In this approach local density approximation (LDA) is used for exchange-correlation potential.
First-principles investigation of the electronic structure and magnetism of eskolaite
Shen Jing-Qin; Shi Si-Qi; Ouyang Chu-Ying; Lei Min-Sheng; Tang Wei-Hua
2009-01-01
The electronic structure and magnetism of eskolaite are studied by using first-principles calculations where the on-site Coulomb interaction and the exchange interaction are taken into account and the LSDA+U method is used.The calculated energies of magnetic configurations are very well fitted by the Heisenberg Hamiltonian with interactions in five neighbour shells; interaction with two nearest neighbours is found to be dominant. The Neel temperature is calculated in the spin-3/2 pair-cluster approximation. It is found that the measurements are in good agreement with for the values of U and J that are close to those obtained within the constrained occupation method.The band gap is of the Mott-Hubbard type.
Desnavi, Sameerah, E-mail: sameerah-desnavi@zhcet.ac.in [Department of Electronic Engineering, ZHCET, Aligarh Muslim University, Aligarh-202002 (India); Chakraborty, Brahmananda; Ramaniah, Lavanya M. [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)
2014-04-24
The electronic structure and hydrogen storage capability of Yttrium-doped grapheme has been theoretically investigated using first principles density functional theory (DFT). Yttrium atom prefers the hollow site of the hexagonal ring with a binding energy of 1.40 eV. Doping by Y makes the system metallic and magnetic with a magnetic moment of 2.11 μ{sub B}. Y decorated graphene can adsorb up to four hydrogen molecules with an average binding energy of 0.415 eV. All the hydrogen atoms are physisorbed with an average desorption temperature of 530.44 K. The Y atoms can be placed only in alternate hexagons, which imply a wt% of 6.17, close to the DoE criterion for hydrogen storage materials. Thus, this system is potential hydrogen storage medium with 100% recycling capability.
Design of BAs-AlN monolayered honeycomb heterojunction structures: A first-principles study
Camacho-Mojica, Dulce C.; López-Urías, Florentino, E-mail: flo@ipicyt.edu.mx
2016-04-15
Graphical abstract: Single-layer honeycomb heterojunction structures based on alternated and coupled ribbons of BAs and AlN are investigated using first-principles density functional theory calculations. Optimized geometries, density of states, band-gaps, formation energies, and wave functions are studied for different ribbon widths joined along the zigzag and armchair edges. Optimized heterojunction geometries results revealed that BAs narrow ribbons exhibit a corrugation effect at the interface due to a lattice mismatch. From formation energy calculations, it was found that zigzag heterojunctions are more stable than the armchair heterojunctions. - Highlights: • We design new 2D-semiconductor heterojunction nanostructures. • Monolayers formed by alternated strips (heterojunctions) of aluminum-nitride and boron-arsenide, with graphene-like structure are explored by DFT method. • Due to the lattice mismatch, an effect of corrugation was observed in heterojunctions AlN and BAs. • Electronic band gaps are strongly dependent on width and chirality (zigzag or armchair) of the strips. • Formation energy calculations revealed that zigzag heterojunctions are more stable than the armchair heterojunctions. - Abstract: BAs and AlN are semiconductor materials with an indirect and direct gap respectively in the bulk phase. Recently, electronic calculations have demonstrated that a single-layer or few layers of BAs and AlN exhibit a graphite-like structure with interesting electronic properties. In this work, infinite sheets single-layer heterojunction structures based on alternated strips with honeycomb BAs and AlN layers are investigated using first-principles density functional theory calculations. Optimized geometries, density of states, band-gaps, formation energies, and wave functions are studied for different strip widths joined along zigzag and armchair edges. Results in optimized heterojunction geometries revealed that BAs narrow strips exhibit a corrugation
Stock, Christiane; Milz, Simone; Meier, Sabine
2010-03-01
With more than 60 participating universities, the German working group of Health Promoting Universities (German HPU network) is the largest and most active network of universities as healthy settings. This study aims at evaluating processes and effects of the German HPU network and at supporting the future development of the network. The evaluation was based on the multi faceted network assessment instrument developed by Broesskamp-Stone (7). We used a document analysis, two expert interviews and a survey among members (n = 33) to collect relevant data for the assessment. The analysis showed that the visions of the network can be regarded as fulfilled in most aspects. The members of the network received network support through trustful and mutual relationships. The network ranked high on general network principles like implementation of mutual relationships, sharing of information, risks and resources, equal access to resources, responsibility and consensus orientation. However, a high degree of centralization was found as a negative indicator. Other critical aspects of the network's structures and processes have been the regional predominance of universities from the northern and middle part of Germany, the low representation of students in the network, and the low proportion of members that could successfully implement health promotion into the guiding principles of their university. Overall, the evaluation has shown that the network has worked effectively, has developed meaningful processes and structures and has formulated practical guidelines. Since its 12 years of existence the German HPU network has been able to adapt and to adequately respond to changing contextual conditions regarding health promotion at universities in Germany. The network should develop strategies to counteract the critical aspects and detected imbalances in order to further increase its impact on universities as healthy settings.
Treatment of coupled fluid-structure interaction problems by a mixed variational principle
Felippa, Carlos A.; Ohayon, Roger
1989-01-01
A general three-field variational principle is obtained for the motion of an acoustic fluid enclosed in a rigid or flexible container by the method of canonical decomposition applied to a modified form of the wave equation in the displacement potential. The general principle is specialized to a mixed two-field principle that contains the fluid displacement potential and pressure as independent fields. Semidiscrete finite-element equations of motion based on this principle are displayed.
WANG Wei-jun; ZHU Yong-jian; LI Shu-qing; ZHANG Peng
2009-01-01
Through the description of the deformational features of the surrounding rock around high stress engineering soft rock roadways,the coupling stabilization principle of inner and outer structures in surrounding rock was put forward.The supporting principles of high stress engineering soft rock roadway (high resistance and yielding support,timely support,high strength and high stiffness supports) were proposed,which were applied in engineering practices,and obtained better achievements.
Wei-jun Wang; Yong-jian Zhu; Shu-qing Li; Peng Zhang [Hunan Key Laboratory of Safe Mining Techniques of Coal Mines, Xiangtan (China)
2009-03-15
Through the description of the deformational features of the surrounding rock around high stress engineering soft rock roadways, the coupling stabilization principle of inner and outer structures in surrounding rock was put forward. The supporting principles of high stress engineering soft rock roadway (high resistance and yielding support, timely support, high strength and high stiffness supports) were proposed, which were applied in engineering practices in Shuijingtou colliery, and obtained better achievements. 5 refs., 4 figs.
First-principles structures for the close-packed and the 7/2 motif of collagen
Jalkanen, Karl J.; Olsen, Kasper; Knapp-Mohammady, Michaela
2012-01-01
The newly proposed close-packed motif for collagen and the more established 7/2 structure are investigated and compared. First-principles semi-empirical wave function theory and Kohn-Sham density functional theory are applied in the study of these relatively large and complex structures...... function for molecular hydrogen....
Jui-Ho Chen
2014-03-01
Full Text Available This paper proposes a sliding mode extremum seeking control (SMESC of chaos embedded particle swarm optimization (CEPSO Algorithm, applied to the design of maximum power point tracking in wind power systems. Its features are that the control parameters in SMESC are optimized by CEPSO, making it unnecessary to change the output power of different wind turbines, the designed in-repetition rate is reduced, and the system control efficiency is increased. The wind power system control is designed by simulation, in comparison with the traditional wind power control method, and the simulated dynamic response obtained by the SMESC algorithm proposed in this paper is better than the traditional hill-climbing search (HCS and extremum seeking control (ESC algorithms in the transient or steady states, validating the advantages and practicability of the method proposed in this paper.
New crystal structure prediction of fully hydrogenated borophene by first principles calculations
Wang, Zhi-Qiang; Wang, Hui-Qiong; Feng, Yuan Ping; Zheng, Jin-Cheng
2016-01-01
We have studied the structure stability, band structures and mechanical properties of fully hydrogenated borophene (borophane) with different configurations by first principles calculations. Comparing with the Chair-like borophane (C-boropane) that has been reported in literature, we obtained four new conformers with much lower total-energy. The most stable one, Washboard-like borophane (W-borophane), has energy difference about 113.41 meV/atom lower than C-borophane. In W-borophane, B atoms are staggered by zigzag mode along the a direction, and staggered by up and down wrinkle mode along the b direction. Furthermore, we examined the dynamical stability of borophane conformers by calculating phonon dispersions. For the five conformers, no imaginary frequencies along the high-symmetry directions of the Brillouin zone were found, indicating that the five conformers are all dynamically stable. In addition, the band structures of the five conformers all show a Dirac cone along {\\Gamma}-Y or {\\Gamma}-X direction....
First-principles calculations of BC{sub 4}N nanostructures: stability and electronic structure
Freitas, A.; Azevedo, S. [Universidade Federal da Paraiba, CCEN, Departamento de Fisica, Joao Pessoa, PB (Brazil); Machado, M. [Universidade Federal de Pelotas, Departamento de Fisica, Pelotas, RS (Brazil); Kaschny, J.R. [Instituto Federal da Bahia-Campus Vitoria da Conquista, Vitoria da Conquista, BA (Brazil)
2012-07-15
In this work, we apply first-principles methods to investigate the stability and electronic structure of BC{sub 4}N nanostructures which were constructed from hexagonal graphite layers where substitutional nitrogen and boron atoms are placed at specific sites. These layers were rolled up to form zigzag and armchair nanotubes, with diameters varying from 7 to 12 A, or cut and bent to form nanocones, with 60 and 120 disclination angles. The calculation results indicate that the most stable structures are the ones which maximize the number of B-N and C-C bonds. It is found that the zigzag nanotubes are more stable than the armchair ones, where the strain energy decreases with increasing tube diameter D, following a 1/D {sup 2} law. The results show that the 60 disclination nanocones are the most stable ones. Additionally, the calculated electronic properties indicate a semiconducting behavior for all calculated structures, which is intermediate to the typical behaviors found for hexagonal boron nitride and graphene. (orig.)
Zeiler, Evelyn; List, Anja; Alte, Ferdinand; Gersch, Malte; Wachtel, Rudolf; Poreba, Marcin; Drag, Marcin; Groll, Michael; Sieber, Stephan A
2013-07-09
Caseinolytic proteases (ClpPs) are large oligomeric protein complexes that contribute to cell homeostasis as well as virulence regulation in bacteria. Although most organisms possess a single ClpP protein, some organisms encode two or more ClpP isoforms. Here, we elucidated the crystal structures of ClpP1 and ClpP2 from pathogenic Listeria monocytogenes and observe an unprecedented regulation principle by the catalytic triad. Whereas L. monocytogenes (Lm)ClpP2 is both structurally and functionally similar to previously studied tetradecameric ClpP proteins from Escherichia coli and Staphylococcus aureus, heptameric LmClpP1 features an asparagine in its catalytic triad. Mutation of this asparagine to aspartate increased the reactivity of the active site and led to the assembly of a tetradecameric complex. We analyzed the heterooligomeric complex of LmClpP1 and LmClpP2 via coexpression and subsequent labeling studies with natural product-derived probes. Notably, the LmClpP1 peptidase activity is stimulated 75-fold in the complex providing insights into heterooligomerization as a regulatory mechanism. Collectively, our data point toward different preferences for substrates and inhibitors of the two ClpP enzymes and highlight their structural and functional characteristics.
First principles calculations of interlayer exchange coupling in bcc Fe/Cu/Fe structures
Kowalewski, M.; Heninrich, B. [Simon Fraser Univ., Burnaby, British Columbia (Canada); Schulthess, T.C.; Butler, W.H. [Oak Ridge National Lab., TN (United States)
1998-01-01
The authors report on theoretical calculations of interlayer exchange coupling between two Fe layers separated by a modified Cu spacer. These calculations were motivated by experimental investigations of similar structures by the SFU group. The multilayer structures of interest have the general form: Fe/Cu(k)/Fe and Fe/Cu(m)/X(1)/Cu(n)/Fe where X indicates one AL (atomic layer) of foreign atoms X (Cr, Ag, or Fe) and k, m, n represent the number of atomic layers of Cu. The purpose of the experimental and theoretical work was to determine the effect of modifying the pure Cu spacer by replacing the central Cu atomic layer with the atomic layer of foreign atoms X. The first principles calculation were performed using the Layer Korringa-Kohn-Rostoker (LKKR) method. The theoretical thickness dependence of the exchange coupling between two semi-infinite Fe layers was calculated for pure Cu spacer thicknesses in the range of 0 < k < 16. The effect of the foreign atoms X on the exchange coupling was investigated using the structure with 9 AL Cu spacer as a reference sample. The calculated changes in the exchange coupling are in qualitative agreement with experiment.
First-principles calculation on dilute magnetic alloys in zinc blend crystal structure
Ullah, Hamid, E-mail: hamidullah@yahoo.com [Department of Physics, Government Post Graduate Jahanzeb College, Saidu Sharif Swat (Pakistan); Inayat, Kalsoom [Department of Physics, Government Post Graduate Jahanzeb College, Saidu Sharif Swat (Pakistan); Khan, S.A; Mohammad, S. [Department of Physics, Materials Modeling Laboratory, Hazara University, Mansehra 21300 (Pakistan); Ali, A. [Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si, Chungnam-do 356-706 (Korea, Republic of); Alahmed, Z.A. [Department of Physics and Astronomy, King Saud University, Riyadh 11451 (Saudi Arabia); Reshak, A.H. [New Technologies-Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia)
2015-07-01
Ab-initio calculations are performed to investigate the structural, electronic and magnetic properties of spin-polarized diluted magnetic alloys in zinc blende structure. The first-principles study is carried out on Mn doped III–V semiconductors. The calculated band structures, electronic properties and magnetic properties of Ga{sub 1−x}Mn{sub x}X (X=P, As) compounds reveal that Ga{sub 0.75}Mn{sub 0.25}P is half metallic turned to be metallic with increasing x to 0.5 and 0.75, whereas substitute P by As cause to maintain the half-metallicity nature in both of Ga{sub 0.75}Mn{sub 0.25}As and Ga{sub 0.5}Mn{sub 0.5}As and tune Ga{sub 0.25}Mn{sub 0.75}As to be metallic. Calculated total magnetic moments and the robustness of half-metallicity of Ga{sub 0.75}Mn{sub 0.25}P, Ga{sub 0.75}Mn{sub 0.25}As and Ga{sub 0.5}Mn{sub 0.5}As with respect to the variation in lattice parameters are also discussed. The predicted theoretical evidence shows that some Mn-doped III–V semiconductors can be effectively used in spintronic devices.
Sahara, Ryoji; Emura, Satoshi; Ii, Seiichiro; Ueda, Shigenori; Tsuchiya, Koichi
2014-06-01
The electronic structures and structural properties of body-centered cubic Ti-Mo alloys were studied by first-principles calculations. The special quasirandom structures (SQS) model was adopted to emulate the solid solution state of the alloys. The valence band electronic structures of Ti-Mo and Ti-Mo-Fe alloys were measured by hard x-ray photoelectron spectroscopy. The structural parameters and valence band photoelectron spectra were calculated using first-principles calculations. The results obtained with the SQS models showed better agreement with the experimental results than those obtained using the conventional ordered structure models. This indicates that the SQS model is effective for predicting the various properties of solid solution alloys by means of first-principles calculations.
Electronic Structure of KFe2Se2 from First-Principles Calculations
CAO Chao; DAI Jian-Hui
2011-01-01
@@ Electronic structures and magnetic properties for iron-selenide KFe2Se2 axe studied by first-principles calculations.The ground state is collinear antiferromagnetic with calculated 2.26μB magnetic moment on Fe atoms; and the J1 and J2 coupling strengths are calculated to be 0.038eV and 0.029eV.The states around EF are dominated by the Fe 3d orbitals which hybridize noticeably to the Se 4p orbitals.While the band structure of KFe2Se2 is similar to a heavily electron-doped BaFe2As2 or FeSe system,the Fermi surface of KFe2Se2 is much closer to the FeSe system since the electron sheets around M are symmetric with respect to x-y exchange.These features,as well as the absence of Fermi surface nesting,suggest that the parent KFe2Se2 could be regarded as an electron doped FeSe system with possible local moment magnetism.%Electronic structures and magnetic properties for iron-selenide KFe2Se2 are studied by first-principles calculations.The ground state is collinear antiferromagnetic with calculated 2.26μB magnetic moment on Fe atoms; and the J1 and J2 coupling strengths are calculated to be 0.038eV and 0.029eV.The states around EF are dominated by the Fe 3d orbitals which hybridize noticeably to the Se 4p orbitals.While the band structure of KFe2Se2 is similar to a heavily electron-doped BaFe2As2 or FeSe system, the Fermi surface of KFe2Se2 is much closer to the FeSe system since the electron sheets around M are symmetric with respect to x-y exchange.These features, as well as the absence of Fermi surface nesting, suggest that the parent KFe2Se2 could be regarded as an electron doped FeSe system with possible local moment magnetism.
Gu, Jian-Bing; Wang, Chen-Ju; Zhang, Wang-Xi; Sun, Bin; Liu, Guo-Qun; Liu, Dan-Dan; Yang, Xiang-Dong
2016-12-01
Since knowledge of the structure and elastic properties of Ta at high pressures is critical for addressing the recent controversies regarding the high-pressure stable phase and elastic properties, we perform a systematical study on the high-pressure structure and elastic properties of the cubic Ta by using the first-principles method. Results show that the initial body-centered cubic phase of Ta remains stable even up to 500 GPa and the high-pressure elastic properties are excellently consistent with the available experimental results. Besides, the high-pressure sound velocities of the single- and poly-crystals Ta are also calculated based on the elastic constants, and the predications exhibit good agreement with the existing experimental data. Project supported by the Basic and Frontier Technical Research Project of Henan Province, China (Grant No. 152300410228), the University Innovation Team Project in Henan Province, China (Grant No. 15IRTSTHN004), and the Key Scientific Research Project of Higher Education of Henan Province, China (Grant No. 17A140014).
First-Principles Study of Structural, Magnetic, Electronic and Elastic Properties of PuC2
Yang, Rong; Tang, Bin; Gao, Tao; Ao, Bing-Yun
2016-10-01
We perform first-principles calculations of crystal structure, magnetism, electronic structure, chemical bonding and elastic properties for PuC2 using the standard local spin-density approximation (LSDA)+U scheme. The use of the Hubbard term to describe the 5f electrons of plutonium is discussed according to the lattice parameters, magnetism and densities of states. Our calculated lattice constants and magnetism are in good agreement with the experimental data or other theoretical calculations. It is shown that the total densities of states at the Fermi energy level mainly come from the contribution of narrow f band. The Pu-C bonds of PuC2 have a mixture of covalent character and ionic character, while covalent character is stronger than ionic character. The C1-C2 bonding has strong covalent character because of sp2 hybridization between C atoms. Lastly, the elastic properties of PuC2 are studied. We hope that our results can provide a useful reference for further theoretical and experimental research on PuC2. Supported by the National Natural Science Foundation of China under Grant Nos. 21371160, 21401173, and the Science Challenge Program of China
The principle of the Internet evolving and a conjecture on the optimal structure of the Internet
Li Ying; Cao Hong-Duo; Shan Xiu-Ming; Ren Yong; Yuan Jian
2009-01-01
In this paper we will give the statistical characteristics and general principles of an optimal structure of the Internet, which is a scale-free network. Since the purpose of the Internet is to allow fast and easy communication,the average path length is used to measure the performance of the network, and the number of edges of the network is used as a metric of its cost. Based on this, the goal of this Internet optimization problem is to obtain the highest performance with the lowest cast. A multi goal optimization problem is proposed to model this problem. By using two empirical formulas of
Electronic Structure of Cu(tmdt2 Studied with First-Principles Calculations
Kiyoyuki Terakura
2012-08-01
Full Text Available We have studied the electronic structure of Cu(tmdt2, a material related to single-component molecular conductors, by first-principles calculations. The total energy calculations for several different magnetic configurations show that there is strong antiferromagnetic (AFM exchange coupling along the crystal a-axis. The electronic structures are analyzed in terms of the molecular orbitals near the Fermi level of isolated Cu(tmdt2 molecule. This analysis reveals that the system is characterized by the half-filled pdσ(− band whose intermolecular hopping integrals have strong one-dimensionality along the crystal a-axis. As the exchange splitting of the band is larger than the band width, the basic mechanism of the AFM exchange coupling is the superexchange. It will also be shown that two more ligand orbitals which are fairly insensitive to magnetism are located near the Fermi level. Because of the presence of these orbitals, the present calculation predicts that Cu(tmdt2 is metallic even in its AFM state, being inconsistent with the available experiment. Some comments will be made on the difference between Cu(tmdt2 and Cu(dmdt2.
Li, Xiaowei; Zhang, Dong [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Lee, Kwang-Ryeol, E-mail: krlee@kist.re.kr [Computational Science Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Wang, Aiying, E-mail: aywang@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)
2016-05-31
First-principles calculation was performed to investigate the effect of metal doping on the structural characteristics of amorphous carbon system, and the 3d transition metals (TM) were particularly selected as representative case. Results showed that the total energy in TM–C systems caused by distorting the bond angles was reduced distinctly for comparison with that in C–C system. Further electronic structure revealed that as the 3d electrons of doped TM increased, the bond characteristic of highest occupied molecular orbital changed from bonding (Sc, Ti) to nonbonding (V, Cr, Mn, Fe) and finally to antibonding (Co, Ni, Cu) between the TM and C atoms. Meanwhile, the TM–C bond presented a mixture of the covalent and ionic characters. The decrease of strength and directionality of TM–C bonds resulted in the total energy change upon bond angle distortion, which demonstrated that the bond characteristics played an important role in reducing residual stress of TM-doped amorphous carbon systems. - Highlights: • The bond characteristics as 3d electrons changed from bonding, nonbonding to antibonding. • The TM–C bond was a mixture of covalent and ionic characters. • Reduced strength and directionality of TM–C bond led to small distortion energy change. • The weak TM–C bond accounted for the reduced compressive stress caused by TM.
Electronic Structures of S-Doped Capped C-SWNT from First Principles Study.
Wang, L; Zhang, Yz; Zhang, Yf; Chen, Xs; Lu, W
2010-04-14
The semiconducting single-walled carbon nanotube (C-SWNT) has been synthesized by S-doping, and they have extensive potential application in electronic devices. We investigated the electronic structures of S-doped capped (5, 5) C-SWNT with different doping position using first principles calculations. It is found that the electronic structures influence strongly on the workfunction without and with external electric field. It is considered that the extended wave functions at the sidewall of the tube favor for the emission properties. With the S-doping into the C-SWNT, the HOMO and LUMO charges distribution is mainly more localized at the sidewall of the tube and the presence of the unsaturated dangling bond, which are believed to enhance workfunction. When external electric field is applied, the coupled states with mixture of localized and extended states are presented at the cap, which provide the lower workfunction. In addition, the wave functions close to the cap have flowed to the cap as coupled states and to the sidewall of the tube mainly as extended states, which results in the larger workfunction. It is concluded that the S-doped C-SWNT is not incentive to be applied in field emitter fabrication. The results are also helpful to understand and interpret the application in other electronic devices.
Electronic Structures of S-Doped Capped C-SWNT from First Principles Study
Chen XS
2010-01-01
Full Text Available Abstract The semiconducting single-walled carbon nanotube (C-SWNT has been synthesized by S-doping, and they have extensive potential application in electronic devices. We investigated the electronic structures of S-doped capped (5, 5 C-SWNT with different doping position using first principles calculations. It is found that the electronic structures influence strongly on the workfunction without and with external electric field. It is considered that the extended wave functions at the sidewall of the tube favor for the emission properties. With the S-doping into the C-SWNT, the HOMO and LUMO charges distribution is mainly more localized at the sidewall of the tube and the presence of the unsaturated dangling bond, which are believed to enhance workfunction. When external electric field is applied, the coupled states with mixture of localized and extended states are presented at the cap, which provide the lower workfunction. In addition, the wave functions close to the cap have flowed to the cap as coupled states and to the sidewall of the tube mainly as extended states, which results in the larger workfunction. It is concluded that the S-doped C-SWNT is not incentive to be applied in field emitter fabrication. The results are also helpful to understand and interpret the application in other electronic devices.
First-principles study on structural stability of 3d transition metal alloying magnesium hydride
无
2006-01-01
A first-principles plane-wave pseudopotential method based on the density functional theory was used to investigate the energy and electronic structure of magnesium hydride (MgH2) alloyed by 3d transition metal elements. Through calculations of the negative heat formation of magnesium hydride alloyed by X (X denotes 3d transition metal) element, it is found that when a little X (not including Sc) dissolves into magnesium hydride, the structural stability of alloying systems decreases, which indicates that the dehydrogenation properties of MgH2 can be improved. After comparing the densities of states(DOS) and the charge distribution of MgH2 with or without X alloying, it is found that the improvement for the dehydrogenation properties of MgH2 alloyed by X attributes to the fact that the weakened bonding between magnesium and hydrogen is caused by the stronger interactions between X (not including Cu) and hydrogen. The calculation results of the improvement for the dehydrogenation properties of MgH2-X (X=Ti, V, Mn, Fe, Co,Ni, Cu) systems are in agreement with the experimental results. Hence, the dehydrogenation properties of MgH2 are expected to be improved by addition of Cr, Zn alloying elements.
First-principles study and electronic structures of Mn-doped ultrathin ZnO nanofilms
E. Salmani; A. Benyoussef; H. Ez-Zahraouy; E. H. Saidi; O. Mounkachi
2012-01-01
The first-principles density functional calculation is used to investigate the electronic structures and magnetic properties of Mn-doped and N-co-doped ZnO nanofilms.The band structure calculation shows that the band gaps of ZnO films with 2,4,and 6 layers are larger than the band gap of the bulk with wurtzite structure and decrease with the increase of film thickness.However,the four-layer ZnO nanofilms exhibit ferromagnetic phases for Mn concentrations less than 24％ and 12％ for Mn-doping performed in the whole layers and two layers of the film respectively,while they exhibit spin glass phases for higher Mn concentrations.It is also found,on the one hand,that the spin glass phase turns into the ferromagnetic one,with the substitution of nitrogen atoms for oxygen atoms,for nitrogen concentrations higher than 16％ and 5％ for Mn-doping performed in the whole layers and two layers of the film respectively.On the other hand,the spin-glass state is more stable for ZnO bulk containing 5％ of Mn impurities,while the ferromagnetic phase is stable by introducing the p-type carriers into the bulk system.Moreover,it is shown that using the effective field theory for ferromagnetic system,the Curie temperature is close to the room temperature for the undamped Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction.
Saikia, Nabanita; Pati, Swapan K.; Deka, Ramesh C.
2012-09-01
One-dimensional nanostructures such as nanowires and nanotubes are stimulating tremendous research interest due to their structural, electronic and magnetic properties. We perform first principles calculation using density functional theory on the structural, and electronics properties of BNNTs adsorbed with isoniazid (INH) drug via noncovalent functionalization using the GGA/PBE functional and DZP basis set implemented in SIESTA program. The band structure, density of states and projected density of states (PDOS) plots suggest that isoniazid prefers to get adsorbed at the hollow site in case of (5,5) BNNT, whereas in (10,0) BNNT it favours the bridge site. The adsorption energy of INH onto (5,5) BNNT is smaller than in (10,0) BNNT which proposes that (10,0) BNNT with a larger radius compared to (5,5) BNNT is more favourable for INH adsorption as the corresponding distortion energy will also be quite lower. Functionalization of (5,5) and (10,0) BNNTs with isoniazid displays the presence of new impurity states (dispersionless bands) within the HOMO-LUMO energy gap of pristine BNNT leading to an increase in reactivity of the INH/BNNT system and lowering of the energy gap of the BNNTs. The PDOS plots show the major contribution towards the dispersionless impurity states is from INH molecule itself rather than from BNNT near the Fermi energy region. To summarize, noncovalent functionalization of BNNTs with isoniazid drug modulates the electronic properties of the pristine BNNT by lowering its energy gap with respect to the Fermi level, as well as demonstrating the preferential site selectivity for adsorption of isoniazid onto the nanotube sidewalls of varying chirality.
PRINCIPLES OF ASSESSMENT AND RANKING OF UNIVERSITY’S STRUCTURAL DEPARTMENTS
Chernenkii A. V.
2016-02-01
Full Text Available Main principles of ranking of objects, which are evaluated by numeric parameters, are considered in the article. Undoubtedly, the technique for internal assessment of University’s department should be harmonized with techniques of external assessments. It means that during setting of internal indicators, key indicators of external ratings must be taken into account. However, the system of rating’s composition by force of indexes’ aggregation, setting of weighting coefficients, using of various mathematic methods for reduction of an estimate to integral value, could differ from systems currently in use. The choice of methods is validated, which are appropriate for the procedure of ranking of University’s structural departments. For selection of alternatives based on specified criteria, Analytic hierarchy process by Saaty and Cogger and Yu method are proposed. The technique for internal rating of structural departments have been developed, which allows to estimate evolution of positions of faculties and departments in rating, as well as to recommend possible improvements. Recommendations for carrying out of University departments’ effectiveness monitoring are formulated. Techniques under development are being led to practical implementation, and could be introduced into self-assessment processes of Higher educational institutions. Complex technique combines all proposed techniques, and is a tool for carrying out of internal assessment of effectiveness of Higher educational institutions’ activities on base of uniform computation procedure with using of the set of approved indicators. The advantage of proposed technique is its flexibility, which consists in the possibility to adopt the calculation of indicators of activities’ effectiveness in accord with changes in the register and contents of primary data. Results of internal assessments of the University and its’ structural departments should favor the improvement of management
Chang, Jing; Zhao, Guo-Ping; Zhou, Xiao-Lin; Liu, Ke; Lu, Lai-Yu
2012-10-15
The structure and mechanical properties of tantalum mononitride (TaN) are investigated at high pressure from first-principles using the plane wave pseudopotential method within the local density approximation. Three stable phases were considered, i.e., two hexagonal phases (ε and θ) and a cubic δ phase. The obtained equilibrium structure parameters and ground state mechanical properties are in excellent agreement with the experimental and other theoretical results. A full elastic tensor and crystal anisotropy of the ultra-incompressible TaN in three stable phases are determined in the wide pressure range. Results indicated that the elastic properties of TaN in three phases are strongly pressure dependent. And the hexagonal θ-TaN is the most ultraincompressible among the consider phases, which suggests that the θ phase of TaN is a potential candidate structure to be one of the ultraincompressible and hard materials. By the elastic stability criteria, it is predicted that θ-TaN is not stable above 53.9 GPa. In addition, the calculated B/G ratio indicated that the ε and δ phases possess brittle nature in the range of pressure from 0 to 100 GPa. While θ phase is brittleness at low pressure (below 8.2 GPa) and is strongly prone to ductility at high pressure (above 8.2 GPa). The calculated elastic anisotropic factors for three phases of TaN suggest that they are elastically highly anisotropic and strongly dependent on the propagation direction.
Structural principles within the human-virus protein-protein interaction network
Franzosa, Eric A.; Xia, Yu
2011-01-01
General properties of the antagonistic biomolecular interactions between viruses and their hosts (exogenous interactions) remain poorly understood, and may differ significantly from known principles governing the cooperative interactions within the host (endogenous interactions). Systems biology approaches have been applied to study the combined interaction networks of virus and human proteins, but such efforts have so far revealed only low-resolution patterns of host-virus interaction. Here, we layer curated and predicted 3D structural models of human-virus and human-human protein complexes on top of traditional interaction networks to reconstruct the human-virus structural interaction network. This approach reveals atomic resolution, mechanistic patterns of host-virus interaction, and facilitates systematic comparison with the host’s endogenous interactions. We find that exogenous interfaces tend to overlap with and mimic endogenous interfaces, thereby competing with endogenous binding partners. The endogenous interfaces mimicked by viral proteins tend to participate in multiple endogenous interactions which are transient and regulatory in nature. While interface overlap in the endogenous network results largely from gene duplication followed by divergent evolution, viral proteins frequently achieve interface mimicry without any sequence or structural similarity to an endogenous binding partner. Finally, while endogenous interfaces tend to evolve more slowly than the rest of the protein surface, exogenous interfaces—including many sites of endogenous-exogenous overlap—tend to evolve faster, consistent with an evolutionary “arms race” between host and pathogen. These significant biophysical, functional, and evolutionary differences between host-pathogen and within-host protein-protein interactions highlight the distinct consequences of antagonism versus cooperation in biological networks. PMID:21680884
Lin, Jingwu; Wang, Lei; Hu, Zhi; Li, Xiao; Yan, Hong
2017-02-01
The structural, thermodynamic, mechanical and electronic properties of cubic Al2Sm intermetallic compound are investigated by the first-principles method on the basis of density functional theory. In light of the strong on-site Coulomb repulsion between the highly localized 4f electrons of Sm atoms, the local spin density approximation approach paired with additional Hubbard terms is employed to achieve appropriate results. Moreover, to examine the reliability of this study, the experimental value of lattice parameter is procured from the analysis of the TEM image and diffraction pattern of Al2Sm phase in the AZ31 alloy to verify the authenticity of the results originated from the computational method. The value of cohesive energy reveals Al2Sm to be a stable in absolute zero Kelvin. According to the stability criteria, the subject of this work is mechanically stable. Afterward, elastic moduli are deduced by performing Voigt-Reuss-Hill approximation. Furthermore, elastic anisotropy and anisotropy of sound velocity are discussed. Finally, the calculation of electronic density of states is implemented to explore the underlying mechanism of structural stability.
The reconstruction principle of bone structure%骨结构的重建理念
张文贤; 李盛华
2011-01-01
背景:在骨折治疗原则上,主要体现在从生物学和机械力学两方面进行骨结构重建,把生物固定与机械固定,髓内固定与髓外固定相结合.目的:介绍骨折治疗、骨结构重建理念的发展历程和研究进展.方法:应用计算机检索中国期刊全文数据库(CNKI:2006-01/2011-05)、Pubmed数据库和Medline database(2006-01/2011-05)数据库有关骨结构的重建理念的文章,检索词分别为"骨结构,重建,理念"和"bone structure,rebuild,principle",语言分别设定为中文和英文.结果与结论:共收集30篇有关骨结构的重建理念的文章,排除重复或类似的同一研究,14篇符合综述要求.骨折的治疗理念已经由机械力学固定体系逐渐转向生物学固定体系.骨折治疗必须着重于寻求骨折稳固和软组织完整之间的一种平衡,植入物和器械设计明显改善.近年来,又出现了数字化虚拟人体技术、生物力学有限元理论、创伤控制论、骨质疏松的药理学研究、用组织工程学理论和技术修复创伤缺损等.总的来说,骨结构重建的理念就是患者为中心,在宏观与微观的层次上选择骨折治疗最合理的方法,引导和促进骨的愈合、功能恢复.%BACKGROUND: In principle, fracture treatment mainly focuses on bone remodeling from the biological and mechanical aspectsto combine mechanical fixation with biological fixation as well as combine intramedullary fixation with extramedullary fixation.OBJECTIVE: To introduce the principle development of fracture treatment and bone remodeling.METHODS: A computer-based search of CNKI (2006-01/2011-05) and PubMed (2006-01/2011-05) for bone remodelingarticles using the keywords of “bone structure, rebuild, principle” in Chinese and English, respectively.RESULTS AND CONCLUSION: In 30 collected articles, 14 were included in result analysis. The treatment concept of fractureshas been gradually changed from mechanical fixation system to
First-principles prediction of oxygen octahedral rotations in perovskite-structure EuTiO_{3}
Rushchanskii, Konstantin Z.; Spaldin, Nicola A.; Marjana Le\\ueai\\u
2012-01-01
We present a systematic first-principles study of the structural and vibrational properties of perovskite-structure EuTiO3. Our calculated phonon spectrum of the high-symmetry cubic structural prototype shows strong M-and R-point instabilities, indicating a tendency to symmetry-lowering structural deformations composed of rotations and tilts of the oxygen octahedra. Subsequent explicit study of 14 different octahedral tilt-patterns showed that the I4/mcm, Imma, and R (3) over barc structures,...
First-principle studies of electronic structure and magnetic excitations in FeSe monolayer
Bazhirov, Timur; Cohen, Marvin L.
2013-03-01
Recent experimental advances made it possible to study single-layered superconducting systems of iron-based compounds. The results show evidence of significant enhancement of superconducting properties compared to the bulk case. We use first-principle pseudopotential density functional theory techniques and the local spin-density approximation to study the electronic properties of an FeSe monolayer in different spin configurations. The results show that the experimental shape of the Fermi surface is best described by a checkerboard antiferromagnetic (AFM) spin arrangement. To explore the underlying pairing mechanism, we study the evolution of the non-magnetic to the AFM-ordered structures under constrained magnetization, and we estimate the electronic coupling to magnetic excitations involving transfer and increase of iron magnetic moments and compare it to the electron-phonon coupling. Finally, we simulate the substrate-induced interaction by using uniform charge doping and show that the latter can lead to an increase in the density of states at the Fermi level and possibly produce higher superconducting transition temperatures. This work was supported by NSF grant No. DMR10-1006184 and U.S. DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at Lawrence Berkeley National Laboratory's NERSC facility
Generalised phase kick-back: the structure of computational algorithms from physical principles
Lee, Ciarán M.; Selby, John H.
2016-03-01
The advent of quantum computing has challenged classical conceptions of which problems are efficiently solvable in our physical world. This motivates the general study of how physical principles bound computational power. In this paper we show that some of the essential machinery of quantum computation—namely reversible controlled transformations and the phase kick-back mechanism—exist in any operational-defined theory with a consistent notion of information. These results provide the tools for an exploration of the physics underpinning the structure of computational algorithms. We investigate the relationship between interference behaviour and computational power, demonstrating that non-trivial interference behaviour is a general resource for post-classical computation. In proving the above, we connect higher-order interference to the existence of post-quantum particle types, potentially providing a novel experimental test for higher-order interference. Finally, we conjecture that theories with post-quantum interference—the higher-order interference of Sorkin—can solve problems intractable even on a quantum computer.
Piskunov, Sergei, E-mail: piskunov@lu.l [Faculty of Computing, University of Latvia, 19 Raina blvd., Riga LV-1586 (Latvia); Faculty of Physics and Mathematics, University of Latvia, 8 Zellu Str., Riga LV-1002 (Latvia); Zvejnieks, Guntars; Zhukovskii, Yuri F. [Institute for Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063, Riga (Latvia); Bellucci, Stefano [INFN-Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044, Frascati (Italy)
2011-03-31
In this study, we perform first principles simulations on both atomically smooth and nanostructured Ni(111) slabs. The latter contains periodically distributed nickel nanoclusters atop a thin metal film gradually growing from adatoms and serving as a promising catalyst. Applying the generalized gradient approximation within the formalism of the density functional theory we compare the atomic and electronic structures of Ni bulk, as well as both perfect and nanostructured (111) surfaces obtained using two different ab initio approaches: (i) the linear combination of atomic orbitals and (ii) the projector augmented plane waves. The most essential inter-atomic forces between the Ni adatoms upon the substrate have been found to be formed via: (i) attractive pair-wise interactions, (ii) repulsive triple-wise interactions within a triangle and (iii) attractive triple-wise interactions within a line between the nearest adatoms. The attractive interactions surmount the repulsive forces, hence resulting in the formation of stable clusters from Ni adatoms. The magnetic moment and the effective charge (within both Mulliken and Bader approaches) of the outer atoms in Ni nanoparticles increase as compared to those for the smooth Ni(111) surface. The calculated electronic charge redistribution in the Ni nanoclusters features them as possible adsorption centers with increasing catalytic activity, e.g., for further synthesis of carbon nanotubes.
First-principle studies on the electronic structure of Fe3O4(110) surface
LI Yan-li; YAO Kai-lun; LIU Zu-li
2007-01-01
The first-principle was employed to study the six possible models for the Fe3O4(110) surface, namely the AB-terminated surface (AB model), the AB-terminated with Fen vacancy (AB-FeA vac model), the AB-terminated with FeB vacancy (AB-FeB vac model), the B-terminated surface (B model), the B-terminated surface with FeB vacancy (B-FeB vac model) and the B-terminated surface with O vacancy (B-O vac model). The stability, the electronic structure and the magnetic properties of the six surface models were also calculated. The results predict that the B-O vac model is more stable than other types of surface models. The half-metallic property remain in the AB and B models, while the other four surface models exhibit metallic properties. At the same time, the AB, AB-FeAvac, AB-FeB vac, B and the B-FeB vac models have ferrimagnetic properties, while the B-O vac model has antiferromagnetic property.
Stepanenko, Dmitry A; Minchenya, Vladimir T
2012-09-01
The article presents novel design of non-contact rotary ultrasonic motor consisting of ring-shaped stator vibrating in in-plane flexural mode and rotor provided with blades. In contrast to other motors with similar design proposed motor relies on the use of standing ultrasonic waves. This simplifies design and electronic control of motor and becomes possible due to introduction of artificial asymmetry, for example by tilting one or several blades of the rotor relative to the surface normal. Operating principle of the proposed motor is based on acoustic radiation torque exerted on rotor by ultrasonic waves propagating in air or fluid gap between rotor and stator. This torque is calculated using finite element method by means of COMSOL Multiphysics software. Dynamics of rotor is studied using MathCad software and general theory of nonlinear conservative oscillators. Role of asymmetry is explained on the basis of comparative analysis of potential functions and phase trajectories for symmetric and asymmetric cases. It is shown that direction of rotation is determined by structural parameters of motor, particularly tilting direction (clockwise or counter-clockwise) of the blades. Conceptual design of motor with bidirectional rotation is described. Direction and velocity of rotation in the proposed conceptual design can be potentially controlled by changing excitation frequency of stator. Copyright © 2012 Elsevier B.V. All rights reserved.
Zhang, Huai-Yong; Zhao, Ying-Qin; Lu, Qing [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Zeng, Zhao-Yi [Chongqing Normal Univ. (China). College of Physics and Electronic Engineering; Chinese Academy of Engineering Physics, Mianyang (China). National Key Laboratory for Shock Wave and Detonation Physics Research; Cheng, Yan [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Sichuan Univ., Chengdu (China). Key Laboratory of High Energy Density Physics and Technology of Ministry of Education
2016-11-01
Lattice dynamics, structural phase transition, and the thermodynamic properties of barium titanate (BaTiO{sub 3}) are investigated by using first-principles calculations within the density functional theory (DFT). It is found that the GGA-WC exchange-correlation functional can produce better results. The imaginary frequencies that indicate structural instability are observed for the cubic, tetragonal, and orthorhombic phases of BaTiO{sub 3} and no imaginary frequencies emerge in the rhombohedral phase. By examining the partial phonon density of states (PDOSs), we find that the main contribution to the imaginary frequencies is the distortions of the perovskite cage (Ti-O). On the basis of the site-symmetry consideration and group theory, we give the comparative phonon symmetry analysis in four phases, which is useful to analyze the role of different atomic displacements in the vibrational modes of different symmetry. The calculated optical phonon frequencies at Γ point for the four phases are in good agreement with other theoretical and experimental data. The pressure-induced phase transition of BaTiO{sub 3} among four phases and the thermodynamic properties of BaTiO{sub 3} in rhombohedral phase have been investigated within the quasi-harmonic approximation (QHA). The sequence of the pressure-induced phase transition is rhombohedral → orthorhombic → tetragonal → cubic, and the corresponding transition pressure is 5.17, 5.92, 6.65 GPa, respectively. At zero pressure, the thermal expansion coefficient α{sub V}, heat capacity C{sub V}, Grueneisen parameter γ, and bulk modulus B of the rhombohedral phase BaTiO{sub 3} are estimated from 0 K to 200 K.
Lihua Xiao
2011-06-01
Full Text Available The electronic structure and the optical performance of YB6 were investigated by first-principles calculations within the framework of density functional theory. It was found that the calculated results are in agreement with the relevant experimental data. Our theoretical studies showed that YB6 is a promising solar radiation shielding material for windows.
Millett, Nancy Carlyon
In this study of high school and college students' responses to structural principles and clues to order in poetry, four groups of students were tested: Groups I and II were high school sophomores and seniors enrolled in an English class for "average" learners; Group III were college sophomore English majors in a course in intrinsic literary…
Mundy, C; Kuo, I W
2005-06-08
successfully applied to studying the complex problems put forth by atmospheric chemists. To date, the majority of the molecular models of atmospherically relevant interfaces have been comprised of two genres of molecular models. The first is based on empirical interaction potentials. The use of an empirical interaction potential suffers from at least two shortcomings. First, empirical potentials are usually fit to reproduce bulk thermodynamic states, or gas phase spectroscopic data. Thus, without the explicit inclusion of charge transfer, it is not at all obvious that empirical potentials can faithfully reproduce the structure at a solid-vapor, or liquid-vapor interface where charge rearrangement is known to occur (see section 5). One solution is the empirical inclusion of polarization effects. These models are certainly an improvement, but still cannot offer insight into charge transfer processes and are usually difficult to parameterize. The other shortcoming of empirical models is that, in general, they cannot describe bond-making/breaking events, i.e. chemistry. In order to address chemistry one has to consider an ab initio (to be referred to as first-principles throughout the remaining text) approach to molecular modeling that explicitly treats the electronic degrees of freedom. First-principles modeling also give a direct link to spectroscopic data and chemistry, but at a large computational cost. The bottle-neck associated with first-principles modeling is usually determined by the level of electronic structure theory that one chooses to study a particular problem. High-level first-principles approaches, such as MP2, provide accurate representation of the electronic degrees of freedom but are only computationally tractable when applied to small system sizes (i.e. 10s of atoms). Nevertheless, this type of modeling has been extremely useful in deducing reaction mechanisms of atmospherically relevant chemistry that will be discussed in this review (see section 4). However
Löwenberg, Candy; Balk, Maria; Wischke, Christian; Behl, Marc; Lendlein, Andreas
2017-02-15
The ability of hydrophilic chain segments in polymer networks to strongly interact with water allows the volumetric expansion of the material and formation of a hydrogel. When polymer chain segments undergo reversible hydration depending on environmental conditions, smart hydrogels can be realized, which are able to shrink/swell and thus alter their volume on demand. In contrast, implementing the capacity of hydrogels to switch their shape rather than volume demands more sophisticated chemical approaches and structural concepts. In this Account, the principles of hydrogel network design, incorporation of molecular switches, and hydrogel microstructures are summarized that enable a spatially directed actuation of hydrogels by a shape-memory effect (SME) without major volume alteration. The SME involves an elastic deformation (programming) of samples, which are temporarily fixed by reversible covalent or physical cross-links resulting in a temporary shape. The material can reverse to the original shape when these molecular switches are affected by application of a suitable stimulus. Hydrophobic shape-memory polymers (SMPs), which are established with complex functions including multiple or reversible shape-switching, may provide inspiration for the molecular architecture of shape-memory hydrogels (SMHs), but cannot be identically copied in the world of hydrophilic soft materials. For instance, fixation of the temporary shape requires cross-links to be formed also in an aqueous environment, which may not be realized, for example, by crystalline domains from the hydrophilic main chains as these may dissolve in presence of water. Accordingly, dual-shape hydrogels have evolved, where, for example, hydrophobic crystallizable side chains have been linked into hydrophilic polymer networks to act as temperature-sensitive temporary cross-links. By incorporating a second type of such side chains, triple-shape hydrogels can be realized. Considering the typically given light
Kanagaprabha, S. [Department of Physics, Kamaraj College, Tuticorin, Tamil nadu-628003 (India); Rajeswarapalanichamy, R., E-mail: rrpalanichamy@gmail.com; Sudhapriyanga, G., E-mail: rrpalanichamy@gmail.com; Murugan, A., E-mail: rrpalanichamy@gmail.com; Santhosh, M., E-mail: rrpalanichamy@gmail.com [Department of Physics, N.M.S.S.V.N College, Madurai, Tamilnadu-625019 (India); Iyakutti, K. [Department of Physics and Nanotechnology, SRM University, Chennai, Tamilnadu-603203 (India)
2014-04-24
The electronic, structural and mechanical properties of ZrH and ZrH{sub 2} are investigated by means of first principles calculation based on density functional theory as implemented in VASP code with generalized gradient approximation. The calculated ground state properties are in good agreement with previous experimental and other theoretical results. Among the six crystallographic structures considered for ZrH, ZB phase is found to be the most stable phase, whereas ZrH{sub 2} is energetically stable in tetragonal structure at ambient condition. A structural phase transition from ZB→NaCl at a pressure 10 GPa is predicted for ZrH.
Forrow, Susan; Campion, Daniel M; Herrinton, Lisa J; Nair, Vinit P; Robb, Melissa A; Wilson, Marcus; Platt, Richard
2012-01-01
The US Food and Drug Administration's Mini-Sentinel pilot program is developing an organizational structure as well as principles and policies to govern its operations. These will inform the structure and function of the eventual Sentinel System. Mini-Sentinel is a collaboration that includes 25 participating institutions. We describe the program's current organizational structure and its major principles and policies. The organization includes a coordinating center with program leadership provided by a principal investigator; a planning board and subcommittees; an operations center; and data, methods, and protocol cores. Ad hoc workgroups are created as needed. A privacy panel advises about protection of individual health information. Principles and policies are intended to ensure that Mini-Sentinel conforms to the principles of fair information practices, protects the privacy of individual health information, maintains the security and integrity of data, assures the confidentiality of proprietary information, provides accurate and timely communications, prevents or manages conflicts of interest, and preserves respect for intellectual property rights. Copyright © 2012 John Wiley & Sons, Ltd.
First-principles prediction of oxygen octahedral rotations in perovskite-structure EuTiO3
Rushchanskii, Konstantin Z.; Spaldin, Nicola A.; Ležaić, Marjana
2012-03-01
We present a systematic first-principles study of the structural and vibrational properties of perovskite-structure EuTiO3. Our calculated phonon spectrum of the high-symmetry cubic structural prototype shows strong M- and R-point instabilities, indicating a tendency to symmetry-lowering structural deformations composed of rotations and tilts of the oxygen octahedra. Subsequent explicit study of 14 different octahedral tilt-patterns showed that the I4/mcm, Imma, and R3¯c structures, all with antiferrodistortive rotations of the octahedra, have significantly lower total energy than the prototype Pm3¯m structure. We discuss the dynamical stability of these structures, and the influence of the antiferrodistortive structural distortions on the vibrational, optical, and magnetic properties of EuTiO3, in the context of recent unexplained experimental observations.
First Principles Modeling of Phonon Heat Conduction in Nanoscale Crystalline Structures
Sandip Mazumder; Ju Li
2010-06-30
of optical phonons, and (2) by developing a suite of numerical algorithms for solution of the BTE for phonons. The suite of numerical algorithms includes Monte Carlo techniques and deterministic techniques based on the Discrete Ordinates Method and the Ballistic-Diffusive approximation of the BTE. These methods were applied to calculation of thermal conductivity of silicon thin films, and to simulate heat conduction in multi-dimensional structures. In addition, thermal transport in silicon nanowires was investigated using two different first principles methods. One was to apply the Green-Kubo formulation to an equilibrium system. The other was to use Non-Equilibrium Molecular Dynamics (NEMD). Results of MD simulations showed that the nanowire cross-sectional shape and size significantly affects the thermal conductivity, as has been found experimentally. In summary, the project clarified the role of various phonon modes - in particular, optical phonon - in non-equilibrium transport in silicon. It laid the foundation for the solution of the BTE in complex three-dimensional structures using deterministic techniques, paving the way for the development of robust numerical tools that could be coupled to existing device simulation tools to enable coupled electro-thermal modeling of practical electronic/optoelectronic devices. Finally, it shed light on why the thermal conductivity of silicon nanowires is so sensitive to its cross-sectional shape.
First-principle investigations on the structural dynamics of Ti{sub 2}GaN
Yang, Z.J., E-mail: yzjscu@163.com [School of Science, Zhejiang University of Technology, Hangzhou 310023 (China); Li, J. [School of Material and Chemical Engineering, Hainan University, Key Laboratory of Ministry of Education for Application Technology of Chemical Materials in Hainan Superior Resources, Haikou 570228 (China); Linghu, R.F. [School of Physics, Guizhou Normal College, Guiyang 550018 (China); Cheng, X.L.; Yang, X.D. [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China)
2013-10-15
Highlights: •Our calculated lattice parameter of Ti{sub 2}GaN shows that c axis is always stiffer than a axis. •The elastic constants investigations demonstrated that the Ti{sub 2}GaN is meta-stable between 350 and 600 GPa. •We observed an abnormal c-axis expansion behavior within 350–600 GPa resulting from the expansion of the Ti–Ti bond length and the increase of the Ti–Ti bond populations. •Study on the density of states we found that the Ti s and p electrons shift towards higher energies with pressure. -- Abstract: We report a first-principle study on the elastic and electronic properties of the nanolaminate Ti{sub 2}GaN. Our calculated lattice parameter shows that c axis is always stiffer than a axis. The elastic constants investigations demonstrated that Ti{sub 2}GaN is stable over a wide pressure range of 0–1000 GPa with the only exception of 350–600 GPa owing to the elastic softening. The softening behaviors of the Young’s and shear moduli are also found in the same pressure range of 350–600 GPa, indicating a structural metastability. Investigation on the axial compressibility we observed an abnormal c-axis expansion behavior within a pressure range of 350–600 GPa, resulting from the expansion of the Ti–Ti bond length and the increase of the Ti–Ti bond population. Study on the density of states (DOSs) we found that the Ti s and Ti p electrons shift towards higher energies with pressure.
Okada, Kanzo
2017-03-01
Separated variational principles of steady states for multi-forces and multi-currents in transport phenomena were recently proposed by Suzuki (Suzuki, 2013) by extending the principle of minimum integrated entropy production for a single force found by the same author (Suzuki, 2013). On the other hand, in non-equilibrium thermodynamics, Edelen (Edelen, 1974) generalized the linear Onsager theory to those irreversible processes with significant thermodynamic forces by means of Onsager fluxes. Onsager fluxes by definition satisfy a nonlinear system of reciprocity relations, vanish in thermodynamic equilibrium, and satisfy the second law of thermodynamics. Each system of Onsager fluxes is derivable from a dissipation potential sometimes called the flux potential. This paper aims to elucidate a mathematical structure of the separated variational principles based on the above work of Edelen.
Liu, J; Olsson, G; Mattiasson, B
2006-01-01
A state-dependent variable-gain control system is implemented to follow the characteristics of a laboratory-scale up-flow anaerobic fixed-bed reactor dynamically. The transition from one state to another is determined on an hourly basis, depending on difference between the setpoint of the reactor pH and its true value. Considerable improvement of the process stability--reduction of oscillation in both the reactor pH and biogas production rate during high-rate operation, has been achieved, although the control structure is simple and intuitive.
Anomalous screening in two-dimensional materials with an extremum ring in the dispersion law
Kolomeisky, Eugene B.; Straley, Joseph P.
2016-12-01
A variety of two-dimensional materials possess a band structure with an energy extremal ridge along a ring in momentum space. Examples are biased bilayer graphene and surfaces and interfaces with a Rashba spin-orbit interaction where at low doping the carriers fill an annulus. This topological feature causes an anomalous screening behavior, which we study using the Thomas-Fermi theory. Specifically, reducing the doping is predicted to enhance the linear screening response, whereas at zero doping the size of the screening cloud surrounding a Coulomb impurity is found to increase as the cube root of the impurity charge.
Potential thermoelectric material open framework Si24 from a first-principles study
Ouyang, Tao; Zhang, Pei; Xiao, Huaping; Tang, Chao; Li, Jin; He, Chaoyu; Zhong, Jianxin
2017-10-01
Open framework Si24 is a new synthesis cage-like silicon allotrope with a quasi-direct bandgap and predicted to exhibit outstanding adsorption efficiency, foreshowing the potential applications in the photovoltaic community. In this paper, the thermoelectric property of such new Si structures is investigated by combining first-principles calculation and semiclassical Boltzmann transport theory. The calculations show that the Si24 possesses a superb Seebeck coefficient, and obviously anisotropic electronic conductivity. Owing to more energy extremums existing in the conduction band region, the power factor of Si24 in the n-type doping is always better than that in p-type samples. Anisotropic phonon transport property is observed as well in Si24 with average lattice thermal conductivity of 45.35 W m‑1 K‑1 at room temperature. Based on the electron relaxation time estimated from the experiment, the thermoelectric figure of merit of Si24 is found to be as high as 0.69 (n-type doping at 700 K) and 0.51 (p-type doping at 700 K) along the xx crystal direction, which is about two orders of magnitude larger than that of diamond Si (d-Si). The findings presented in this work shed light on the thermoelectric performance of Si24 and qualify that such new Si allotrope is a promising platform for achieving the recombination of photovoltaic and thermoelectric technologies together.
Sandratskii, L. M.
2017-07-01
The purpose of the paper is to gain deeper insight into microscopic formation of the Dzyaloshinskii-Moriya interaction (DMI). The paper aims at the development of the physical picture able to address apparently contradicting conclusions of recent studies concerning the location of the DMI energy in the real and reciprocal spaces as well as the relation between values of the atomic moments and the DMI strength. The main tools of our study are the first-principles calculations of the energies of the spiral magnetic states with opposite chiralities. We suggest a method of the calculation of the spiral structures with account for the spin-orbit coupling (SOC). It is based on the application of the generalized Bloch theorem and generalized Bloch functions and allows to reduce the consideration of arbitrary incommensurate spiral to small chemical unit cell. The method neglects the anisotropy in the plane orthogonal to the rotation axis of the spirals that does not influence importantly the DMI energy. For comparison, the supercell calculation with full account for the SOC is performed. The concrete calculations are performed for the Co/Pt bilayer. We consider the distribution of the DMI energy in both real and reciprocal spaces and the dependence of the DMI on the number of electrons. The results of the calculations reveal a number of energy compensations in the formation of the DMI. Thus, the partial atomic contributions as functions of the spiral wave vector q are nonmonotonic and have strongly varying slopes. However, in the total DMI energy these atom-related features compensate each other, resulting in a smooth q dependence. The reason for the peculiar form of the partial DMI contributions is a q -dependent difference in the charge distribution between q and -q spirals. The strongly q -dependent relation between atomic contributions shows that the real-space distribution of the DMI energy obtained for a selected q value cannot be considered as a general
Takahashi, Melissa K; Watters, Kyle E; Gasper, Paul M; Abbott, Timothy R; Carlson, Paul D; Chen, Alan A; Lucks, Julius B
2016-06-01
Antisense RNA-mediated transcriptional regulators are powerful tools for controlling gene expression and creating synthetic gene networks. RNA transcriptional repressors derived from natural mechanisms called attenuators are particularly versatile, though their mechanistic complexity has made them difficult to engineer. Here we identify a new structure-function design principle for attenuators that enables the forward engineering of new RNA transcriptional repressors. Using in-cell SHAPE-Seq to characterize the structures of attenuator variants within Escherichia coli, we show that attenuator hairpins that facilitate interaction with antisense RNAs require interior loops for proper function. Molecular dynamics simulations of these attenuator variants suggest these interior loops impart structural flexibility. We further observe hairpin flexibility in the cellular structures of natural RNA mechanisms that use antisense RNA interactions to repress translation, confirming earlier results from in vitro studies. Finally, we design new transcriptional attenuators in silico using an interior loop as a structural requirement and show that they function as desired in vivo. This work establishes interior loops as an important structural element for designing synthetic RNA gene regulators. We anticipate that the coupling of experimental measurement of cellular RNA structure and function with computational modeling will enable rapid discovery of structure-function design principles for a diverse array of natural and synthetic RNA regulators.
Rachev, Alexander; Greenwald, Stephen; Shazly, Tarek
2013-08-01
It is well-documented that the geometrical dimensions, the longitudinal stretch ratio in situ, certain structural mechanical descriptors such as compliance and pressure-diameter moduli, as well as the mass fractions of structural constituents, vary along the length of the descending aorta. The origins of and possible interrelations among these observed variations remain open questions. The central premise of this study is that having considered the variation of the deformed inner diameter, axial stretch ratio, and area compliance along the aorta to be governed by the systemic requirements for flow distribution and reduction of cardiac preload, the zero-stress state geometry and mass fractions of the basic structural constituents of aortic tissue meet a principle of optimal mechanical operation. The principle manifests as a uniform distribution of the circumferential stress in the aortic wall that ensures effective bearing of the physiological load and a favorable mechanical environment for mechanosensitive vascular smooth muscle cells. A mathematical model is proposed and inverse boundary value problems are solved for the equations that follow from finite elasticity, structure-based constitutive modeling within constrained mixture theory, and stress-induced control of aortic homeostasis, mediated by the synthetic activity of vascular smooth muscle cells. Published experimental data are used to illustrate the predictive power of the proposed model. The results obtained are in agreement with published experimental data and support the proposed principle of optimal mechanical operation for the descending aorta.
A structured modeling approach for dynamic hybrid fuzzy-first principles models
Lith, van Pascal F.; Betlem, Ben H.L.; Roffel, Brian
2002-01-01
Hybrid fuzzy-first principles models can be attractive if a complete physical model is difficult to derive. These hybrid models consist of a framework of dynamic mass and energy balances, supplemented with fuzzy submodels describing additional equations, such as mass transformation and transfer rate
Kaneko, Tomoaki; Tajima, Nobuo; Yamasaki, Takahiro; Ohno, Takahisa
2017-09-01
Using first principles calculations based on a density functional theory, the energetics and electronic properties of a (2 × 1) π-bonded chain structure in several polytypes of SiC surfaces are discussed with special attention to the stacking sequence of SiC bilayers. We found that the stacking sequence of the topmost two SiC bilayers plays a decisive role for the stability and electronic structures of the π-bonded chain structure. We showed that the homo-elemental bonds in π-bonded chain structures cause alterations in the electronic structures of both the Si- and C-faces. The energetics of π-bonded chain structures on other group IV and IV-IV compound semiconductors were also investigated. We also showed that the buckling structure in the monolayer honeycomb lattice reflects the buckling of the topmost two atoms in the π-bonded chain structure observed in Si(111) and Ge(111).
Rong, Ximing; Chen, Jun; Li, Jing-Tian; Zhuang, Jun; Ning, Xi-Jing
2015-12-01
A first-principles calculation of the structural stability and mechanical property of Ni(111)-graphene-Ni(111) layered composite was presented. Three different structural models were considered, and the most stable interfacial structure had been determined with top-fcc structure in both sides of graphene. Stretching calculations demonstrate that the tensile stress of the composite can reach twice of that of pure Ni in the ranges of 0-0.2 strain. The Young’s modulus in triaxial directions are 384 (x), 362 (y), and 303 (z) GPa for the Ni(111)-graphene-Ni(111) structure, and 212 (x), 251 (y), and 273 (z) GPa for pure single-crystal Ni(111).
NUZILLARD,Jean-Marc
2003-01-01
The LSD (Logic for Structure Determination) program generates organic molecular structures from 1D and 2D NMR data without resorting to chemical shift databases. Its use in the resolution of natural product structure determination problems has been already reported in the literature. This paper describes how data and structures are internally represented and processed by LSD to build solution structures.
McColgan, Peter; Seunarine, Kiran K; Razi, Adeel; Cole, James H; Gregory, Sarah; Durr, Alexandra; Roos, Raymund A C; Stout, Julie C; Landwehrmeyer, Bernhard; Scahill, Rachael I; Clark, Chris A; Rees, Geraint; Tabrizi, Sarah J
2015-11-01
Huntington's disease can be predicted many years before symptom onset, and thus makes an ideal model for studying the earliest mechanisms of neurodegeneration. Diffuse patterns of structural connectivity loss occur in the basal ganglia and cortex early in the disease. However, the organizational principles that underlie these changes are unclear. By understanding such principles we can gain insight into the link between the cellular pathology caused by mutant huntingtin and its downstream effect at the macroscopic level. The 'rich club' is a pattern of organization established in healthy human brains, where specific hub 'rich club' brain regions are more highly connected to each other than other brain regions. We hypothesized that selective loss of rich club connectivity might represent an organizing principle underlying the distributed pattern of structural connectivity loss seen in Huntington's disease. To test this hypothesis we performed diffusion tractography and graph theoretical analysis in a pseudo-longitudinal study of 50 premanifest and 38 manifest Huntington's disease participants compared with 47 healthy controls. Consistent with our hypothesis we found that structural connectivity loss selectively affected rich club brain regions in premanifest and manifest Huntington's disease participants compared with controls. We found progressive network changes across controls, premanifest Huntington's disease and manifest Huntington's disease characterized by increased network segregation in the premanifest stage and loss of network integration in manifest disease. These regional and whole brain network differences were highly correlated with cognitive and motor deficits suggesting they have pathophysiological relevance. We also observed greater reductions in the connectivity of brain regions that have higher network traffic and lower clustering of neighbouring regions. This provides a potential mechanism that results in a characteristic pattern of structural
Canning, Andrew
2013-03-01
Inorganic scintillation phosphors (scintillators) are extensively employed as radiation detector materials in many fields of applied and fundamental research such as medical imaging, high energy physics, astrophysics, oil exploration and nuclear materials detection for homeland security and other applications. The ideal scintillator for gamma ray detection must have exceptional performance in terms of stopping power, luminosity, proportionality, speed, and cost. Recently, trivalent lanthanide dopants such as Ce and Eu have received greater attention for fast and bright scintillators as the optical 5d to 4f transition is relatively fast. However, crystal growth and production costs remain challenging for these new materials so there is still a need for new higher performing scintillators that meet the needs of the different application areas. First principles calculations can provide a useful insight into the chemical and electronic properties of such materials and hence can aid in the search for better new scintillators. In the past there has been little first-principles work done on scintillator materials in part because it means modeling f electrons in lanthanides as well as complex excited state and scattering processes. In this talk I will give an overview of the scintillation process and show how first-principles calculations can be applied to such systems to gain a better understanding of the physics involved. I will also present work on a high-throughput first principles approach to select new scintillator materials for fabrication as well as present more detailed calculations to study trapping process etc. that can limit their brightness. This work in collaboration with experimental groups has lead to the discovery of some new bright scintillators. Work supported by the U.S. Department of Homeland Security and carried out under U.S. Department of Energy Contract no. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory.
Electronic structures of N- and C-doped NiO from first-principles calculations
2010-01-01
The large intrinsic band gap of NiO has hindered severely its potential application under visible-light irradiation. In this study, we have performed first-principles calculations on the electronic properties of N- and C-doped NiO to ascertain if its band gap may be narrowed theoretically. It was found that impurity bands driven by N 2p or C 2p states appear in the band gap of NiO and that some of these locate at the conduction band minimum, which leads to a significant band gap narrowing. Ou...
The optimization of diffraction structures based on the principle selection of the main criterion
Kravets, O.; Beletskaja, S.; Lvovich, Ya; Lvovich, I.; Choporov, O.; Preobrazhenskiy, A.
2017-02-01
The possibilities of optimizing the characteristics of diffractive structures are analysed. A functional block diagram of a subsystem of diffractive structure optimization is shown. Next, a description of the method for the multicriterion optimization of diffractive structures is given. We then consider an algorithm for selecting the main criterion in the process of optimization. The algorithm efficiency is confirmed by an example of optimization of the diffractive structure.
Sahoo, B. D., E-mail: bdsahoo@barc.gov.in; Joshi, K. D.; Gupta, Satish C. [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)
2015-06-24
Structural and lattice dynamical stability of the LaF3 has been analyzed as a function of hydrostatic compression through first principle electronic band structure calculations. The comparison of enthalpies of various plausible structures calculated at various pressures suggests a phase transition from ambient condition tysonite structure (space group P-3c1) to a primitive orthorhombic structure (space group Pmmn) at a pressure of ∼19.5 GPa, in line with the experimental value of 16 GPa. Further, it is predicted that this phase will remain stable up to 100 GPa (the maximum pressure up to which calculations have been performed in the present work). The theoretically determined equation of state displays a good agreement with experimental data. Various physical quantities such as zero pressure equilibrium volume, bulk modulus, and pressure derivative of bulk modulus have been derived from the theoretically determined equation of state and compared with the available experimental data. Our lattice dynamic calculations correctly demonstrate that at zero pressure the tysonite structure is lattice dynamically stable whereas the Pmmn structure is unstable lattice dynamically. Further, at transition pressure the theoretically calculated phonon spectra clearly show that the Pmmn phase emerges as lattice dynamically stable phase whereas the tysonite structure becomes unstable dynamically, supporting our static lattice calculations.
On structural and lattice dynamic stability of LaF3 under high pressure: A first principle study
Sahoo, B. D.; Joshi, K. D.; Gupta, Satish C.
2015-06-01
Structural and lattice dynamical stability of the LaF3 has been analyzed as a function of hydrostatic compression through first principle electronic band structure calculations. The comparison of enthalpies of various plausible structures calculated at various pressures suggests a phase transition from ambient condition tysonite structure (space group P-3c1) to a primitive orthorhombic structure (space group Pmmn) at a pressure of ˜19.5 GPa, in line with the experimental value of 16 GPa. Further, it is predicted that this phase will remain stable up to 100 GPa (the maximum pressure up to which calculations have been performed in the present work). The theoretically determined equation of state displays a good agreement with experimental data. Various physical quantities such as zero pressure equilibrium volume, bulk modulus, and pressure derivative of bulk modulus have been derived from the theoretically determined equation of state and compared with the available experimental data. Our lattice dynamic calculations correctly demonstrate that at zero pressure the tysonite structure is lattice dynamically stable whereas the Pmmn structure is unstable lattice dynamically. Further, at transition pressure the theoretically calculated phonon spectra clearly show that the Pmmn phase emerges as lattice dynamically stable phase whereas the tysonite structure becomes unstable dynamically, supporting our static lattice calculations.
Song, T., E-mail: songting_lzjtu@yeah.net [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Ma, Q. [School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Sun, X.W., E-mail: xsun@carnegiescience.edu [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015 (United States); Liu, Z.J., E-mail: liuzj_lzcu@163.com [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Department of Physics, Lanzhou City University, Lanzhou 730070 (China); Fu, Z.J. [School of Electrical and Electronic Engineering, Chongqing University of Arts and Sciences, Chongqing 402160 (China); Wei, X.P.; Wang, T.; Tian, J.H. [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China)
2016-09-07
The phase transition, electronic band structure, and equation of state (EOS) of cubic TcN are investigated by first-principles pseudopotential method based on density-functional theory. The calculated enthalpies show that TcN has a transformation between zincblende and rocksalt phases and the pressure determined by the relative enthalpy is 32 GPa. The calculated band structure indicates the metallic feature and it might make cubic TcN a better candidate for hard materials. Particular attention is paid to the predictions of volume, bulk modulus and its pressure derivative which play a central role in the formulation of approximate EOSs using the quasi-harmonic Debye model. - Highlights: • The phase transition pressure and electronic band structure for cubic TcN are determined. • Particular attention is paid to investigate the equation of state parameters for cubic TcN. • The thermodynamic properties up to 80 GPa and 3000 K are successfully predicted.
Wen Jun; Duan Chang-Kui; Yin Min; Yu.V.Orlovskii; Xia Shang-Da; Zhang Yong-Fan
2012-01-01
The local coordination structures around the doping Yb2+ ions in sodium and potassium halides were calculated by using the first-principles supercell model.Both the cases with and without the charge compensation vacancy in the local environment of the doping Yb2+ were calculated to study the effect of the doping on the local coordination structures of Yb2+.Using the calculated local structures,we obtained the crystal-field parameters for the Yb2+ ions doped in sodium and potassium halides by a method based on the combination of the quantum-chemical calculations and the effective Hamiltonian method.The calculated crystal-field parameters were analyzed and compared with the fitted results.
First-principles study of structural stability and elastic property of pre-perovskite PbTiO3
Liu Yong; Ni Li-Hong; Ren Zhao-Hui; Xu Gang; Li Xiang; Song Chen-Lu; Han Gao-Rong
2012-01-01
The structural stability and the elastic properties of a novel structure of lead titanate,which is named preperovskite PbTiO3 (PP-PTO) and is constructed with TiO6 octahedral columns arranged in a one-dimensional manner,are investigated by using first-principles calculations.PP-PTO is energetically unstable compared with conventional perovskite phases,however it is mechanically stable. The equilibrium transition pressures for changing from preperovskite to cubic and tetragonal phases are -0.5 GPa and -1.4 GPa,respectively,with first-order characteristics.Further,the differences in elastic properties between pre-perovskite and conventional perovskite phases are discussed for the covalent bonding network,which shows a highly anisotropic character in PP-PTO.This study provides a crucial insight into the structural stabilities of PP-PTO and conventional perovskite.
First-principles study on adsorption structure and electronic state of stanene on α-alumina surface
Araidai, Masaaki; Kurosawa, Masashi; Ohta, Akio; Shiraishi, Kenji
2017-09-01
The adsorption structure and electronic state of stanene on an α-Al2O3(0001) 1×1 surface were investigated by first-principles calculations. The variation in the electronic state of the adsorbed stanene from that of the free-standing one increased with the stanene-alumina distance, because the strength of the stanene-alumina interaction increased with the distance. The band splitting induced by the Rashba effect was observed in the electronic band structures. It was observed from the band structures with spin-orbit interactions that the degrees of band-gap opening due to the spin-orbit interactions were much lower than that due to the interaction between stanene and the α-alumina surface. By population analyses for chemical bonds, we revealed that the electronic state of stanene on the α-alumina surface was affected by Sn-O bonds with antibonding nature.
Uchida, T.; Kakehashi, Y.; Kimura, N.
2016-02-01
The magnetic and electronic structures of Mn3Pt and Mn3Rh, which are three-dimensional frustrated itinerant magnets with a Cu3Au-type crystal structure, have been investigated by means of the first-principles Molecular Spin Dynamics (MSD) method. The theory is based on the first-principles tight-binding linear muffin-tin orbital Hamiltonian combined with the functional integral method and the isothermal MSD technique, and allows us to determine automatically the magnetic structures of itinerant magnets at finite temperatures. The MSD calculations using a self-consistent site-dependent effective medium show that below the Néel temperature Mn3Pt with fixed crystal structure (Cu3Au structure) and volume exhibits a second-order transition from a triangular structure to another noncollinear phase with increasing temperature. Mn3Rh, on the other hand, shows no sign of a phase transition up to the Néel temperature. We found that the Mn-Eg DOS peak, which is responsible for the ferromagnetic couplings among the second nearest-neighbor Mn local moments, develops at the Fermi energy (EF) around 350 K for Mn3Pt, while the peak development for Mn3Rh occurs with increasing temperature slightly above EF.
First-principles study of electronic structure, optical and phonon properties of α-ZrW2O8
Li, Jinping; Meng, Songhe; Qin, Liyuan; Lu, Hantao
2016-12-01
ZrW2O8 exhibits isotropic negative thermal expansions over its entire temperature range of stability, yet so far its physical properties and mechanism have not been fully addressed. In this article, the electronic structure, elastic, thermal, optical and phonon properties of α-ZrW2O8 are systematically investigated from first principles. The agreements between the generalized gradient approximation (GGA) calculation and experiments are found to be quite satisfactory. The calculation results can be useful in relevant material designs, e.g., when ZrW2O8 is employed to adjust the thermal expansion coefficient of ceramic matrix composites.
First-principles DFT+\\emph{U} study of structural and electronic properties of PbCrO$_{3}$
Wang, Bao-Tian; Yin, Wen; Li, Wei-Dong; Wang, Fangwei
2010-01-01
We have performed a systematic first-principles investigation to calculate the structural, electronic, and magnetic properties of PbCrO$_{3}$, CrPbO$_{3}$ as well as their equiproportional combination. The local density approximation (LDA)$+U$ and the generalized gradient approximation$+U$ theoretical formalisms have been used to account for the strong on-site Coulomb repulsion among the localized Cr 3d electrons. By choosing the Hubbard \\emph{U} parameter around 4 eV, ferromagnetic, and/or a...
First-Principles Band Calculations on Electronic Structures of Ag-Doped Rutile and Anatase TiO2
HOU Xing-Gang; LIU An-Dong; HUANG Mei-Dong; LIAO Bin; WU Xiao-Ling
2009-01-01
The electronic structures of Ag-doped rutile and anatase TiO2 are studied by first-principles band calculations based on density funetionai theory with the full-potentiai linearized-augraented-plane-wave method.New occupied bands ore found between the band gaps of both Ag-doped rutile and anatase TiO2.The formation of these new bands Capri be explained mainly by their orbitals of Ag 4d states mixed with Ti 3d states and are supposed to contribute to their visible light absorption.
ZHOU Junzhe; WANG Chongyu
2005-01-01
The effects of Si doping on geometric and electronic structure of closed carbon nanotube (CNT) are studied by, a first-principles method, DMol. It is found that the local density of states at the Fermi level (EF) increases due to the Si-doping and the non-occupied states above the EF go down toward the lower energy range under an external electronic field. In addition, due to the doping of Si, a sub-tip on the CNT cap is formed, which consisted of the Si atom and its neighbor C atoms. From these results it is concluded that Si-doping is beneficial to the CNT field emission properties.
Kizaki, H., E-mail: hkizaki@aquarius.mp.es.osaka-u.ac.j [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 567-8531 (Japan); Toyoda, M.; Sato, K. [The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Katayama-Yoshida, H. [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 567-8531 (Japan); The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)
2009-12-15
Electronic structure of TiO{sub 2} (rutile) based dilute magnetic semiconductors (DMS) are investigated within self-interaction-corrected local density approximation (SIC-LDA) from first-principles calculation. These results are compared with those calculated within standard LDA. It is found that the calculated band-gap energy in the host TiO{sub 2} is different within the LDA and the SIC-LDA. We find that high-spin state is predicted within the SIC-LDA with oxygen vacancy. The calculated density of states within SIC-LDA is in good agreement with photoemission results.
Jiao, Zhen; Liu, Qi-Jun; Liu, Fu-Sheng; Tang, Bin
2017-10-01
The structural, electronic and surface properties of low-index surfaces of tetragonal NbAl3 have been studied with first-principles plane-wave ultrasoft pseudo-potential method based on density functional theory. The atomic relaxations, surface energies and work functions are reported. The calculated atomic relaxations and surface energies suggest that the (111) surface is the most stable stoichiometric surface. Furthermore, the Al-terminated (110) surface is thermodynamically stable than other surfaces in both Al-rich and Nb-rich conditions.
Experimental and first principle studies on electronic structure of BaTiO{sub 3}
Sagdeo, Archna, E-mail: archnaj@rrcat.gov.in; Ghosh, Haranath, E-mail: archnaj@rrcat.gov.in; Chakrabarti, Aparna, E-mail: archnaj@rrcat.gov.in; Kamal, C., E-mail: archnaj@rrcat.gov.in; Ganguli, Tapas, E-mail: archnaj@rrcat.gov.in; Deb, S. K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Phase, D. M. [IUC-DAEF, University Campus, Khandwa Road, Indore-452017 (India)
2014-04-24
We have carried out photoemission experiments to obtain valence band spectra of various crystallographic symmetries of BaTiO{sub 3} system which arise as a function of temperature. We also present results of a detailed first principle study of these symmetries of BaTiO{sub 3} using generalized gradient approximation for the exchange-correlation potential. Here we present theoretical results of density of states obtained from DFT based simulations to compare with the experimental valence band spectra. Further, we also perform calculations using post density functional approaches like GGA + U method as well as non-local hybrid exchange-correlation potentials like PBE0, B3LYP, HSE in order to understand the extent of effect of correlation on band gaps of different available crystallographic symmetries (5 in number) of BaTiO{sub 3}.
First-principles study on the adsorption properties of phenylalanine on carbon graphitic structures
Kang, Seoung-Hun; Kwon, Dae-Gyeon; Park, Sora; Kwon, Young-Kyun
2015-12-01
Using ab-initio density functional theory, we investigate the binding properties of phenylalanine, an amino acid, on graphitic carbon structures, such as graphene, nanotubes, and their modified structures. We focus especially on the effect of the adsorbate on the geometrical and the electronic structures of the absorbents. The phenylalanine molecule is found to bind weakly on pristine graphitic structures with a binding energy of 40-70 meV and not to change the electronic configuration of the graphitic structures, implying that the phenylalanine molecule may not be detected on pristine graphitic structures. On the other hand, the phenylalanine molecule exhibits a substantial increase in its binding energy up to ~2.60 eV on the magnesium-decorated boron-doped graphitic structures. We discover that the Fermi level of the system, which was shifted below the Dirac point of the graphitic structures due to p-doping by boron substitution, can be completely restored to the Dirac point because of the amino acid adsorption. This behavior implies that such modified structures can be utilized to detect phenylalanine molecules.
Chou, M.Y.
1992-04-01
This report discusses the following topics: calculation of the Structural Properties of Yttrium; dynamical and pairing properties of {alpha}-YH{chi}; electronic and structural properties of YH{sub 2} and YH{sub 3}; phase diagram of hydrogen on Ru(000); peierls distortion in hexagonal YH{sub 3}; and study of hydrogen in niobium and palladium.
Analogical Reasoning as a Decision Support Principle for Weakly-Structured Marketing Problems
N.A.P. Althuizen (Niek)
2006-01-01
textabstractMany marketing problems are weakly-structured. From the psychological literature, we know that analogical reasoning is an effective problem-solving method in weakly-structured decision situations. That is, when confronted with such a problem, one of the first things managers will natural
Damager, Iben; Engelsen, Søren Balling; Blennow, Per Gunnar Andreas
2010-01-01
A study was conducted to demonstrate the synthesis, conformation, and hydration of the α-glucan structures of starch. Starch and glycogen were synthesized by sets of specific enzyme activities that directly determined their molecular structures and physical properties. It was demonstrated that th...
Dahmane, F., E-mail: fethallah05@gmail.com [Département de SM, Institue des sciences et des technologies, Centre universitaire de Tissemsilt, 38000, Tissemsilt (Algeria); Modelling and Simulation in Materials Science Laboratory, Physics Department, University of Sidi Bel-Abbes, 22000 Sidi Bel-Abbes (Algeria); Mogulkoc, Y. [Department of Engineering Physics, Ankara University, Ankara (Turkey); Doumi, B.; Tadjer, A. [Modelling and Simulation in Materials Science Laboratory, Physics Department, University of Sidi Bel-Abbes, 22000 Sidi Bel-Abbes (Algeria); Khenata, R. [Laboratoire de Physique Quantique de la Matière et de Modélisation Mathématique (LPQ3M), Université de Mascara, 29000 Mascara (Algeria); Bin Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O Box 2455, Riyadh 11451 (Saudi Arabia); Rai, D.P. [Department of Physics, Pachhunga University College, Aizawl-796001 (India); Murtaza, G. [Materials Modeling Lab, Department of Physics, Islamia College University, Peshawar (Pakistan); Varshney, Dinesh [Materials Science Laboratory, School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India)
2016-06-01
Using the first-principles density functional calculations, the structural, electronic and magnetic properties of the Fe{sub 2}XAl (X=Cr, Mn, Ni) compounds in both the Hg{sub 2}CuTi and Cu{sub 2}MnAl-type structures were studied by the full-potential linearized augmented plane waves (FP-LAPW) method. The exchange and correlation potential is treated by the generalized-gradient approximation (GGA) where the results show that the Cu{sub 2}MnAl-type structure is energetically more stable than the Hg{sub 2}CuTi-type structure for the Fe{sub 2}CrAl and Fe{sub 2}MnAl compounds at the equilibrium volume. The full Heusler compounds Fe{sub 2}XAl (X=Cr, Mn) are half-metallic in the Cu{sub 2}MnAl-type structure. Fe{sub 2}NiAl has a metallic character in both CuHg{sub 2}Ti and AlCu{sub 2}Mn-type structures. The total magnetic moments of the Fe{sub 2}CrAl and Fe{sub 2}MnAl compounds are 1.0 and 2.0 μ{sub B}, respectively, which are in agreement with the Slater–Pauling rule M{sub tot}=Z{sub tot}− 24.
Long, Jianping, E-mail: longjianping@cdut.cn [College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059 (China); Shu, Chaozhu [The Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institutions, Chengdu University of Technology, Chengdu 610059 (China); Yang, Lijun; Yang, Mei [College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059 (China)
2015-09-25
Graphical abstract: The minimum thermal conductivity as a function of pressure for p-BN. - Highlights: • First-principles calculations were carried out to investigate the physical properties of novel superhard p-BN under pressure. • The calculated Vicker’s hardness of p-BN was 55.4 GPa, which indicates that it is a superhard material. • The elastic constants, polycrystalline modulus and Debye temperature under pressure are obtained. • A new modified Clarke-type equation is used to calculate the minimum thermal conductivity. - Abstract: The first-principles calculations were carried out to investigate the electronic structure, elastic, hardness and thermodynamics properties of novel superhard p-BN under pressure. The calculated lattice parameters are in good agreement with previous theoretical results. The band structure, the density of states and the partial density of states are analyzed, which reveals the insulator character of p-BN. In addition, the elastic constants, polycrystalline modulus and Debye temperature under pressure are also successfully obtained. It is observed that the p-BN should be classified as brittle materials and possesses elastically anisotropic. The calculated Vicker’s hardness of p-BN was 55.4 GPa, which indicates that it is a superhard material. According to the calculated polycrystalline modulus, a new modified Clarke-type equation is used to calculate the minimum thermal conductivity. This work provides a useful guide for designing novel borides materials having excellent mechanical performance.
Settouti, Nadera; Aourag, Hafid
2016-08-01
The structural and mechanical properties of alkali hydrides (LiH, NaH, KH, RbH, and CsH) were investigated via first-principles calculations which cover the optimized structural parameters. The density functional theory in combination with the generalized gradient approximation (GGA) were used in this study. From the present study, one could note that alkali hydrides are brittle materials and mechanically stable. It was found that stiffness and shear resistance are greater in LiH than in other hydrides. It is more brittle in nature, and comparatively harder than the other materials under study; it also presents a high degree of anisotropy. The results were then investigated and analyzed with principal component analysis (PCA), which is one of the most common techniques in multivariate analysis, was used to explore the correlations among material properties of alkali hydrides and to study their trends. The alkali hydrides obtained by the first-principles calculations were also compared with the alkaline-earth metal hydrides (BeH2, MgH2, CaH2, SrH2, and BaH2) and discussed in this work.
First-principles study of structural and electronic properties of different phases of GaAs
Arabi, H. [Faculty of Science, Department of Physics, University of Birjand, Birjand (Iran, Islamic Republic of)]. E-mail: harabi@birjand.ac.ir; Pourghazi, A. [Faculty of Science, Department of Physics, University of Isfahan, Isfahan (Iran, Islamic Republic of); Ahmadian, F. [Faculty of Science, Department of Physics, University of Birjand, Birjand (Iran, Islamic Republic of); Nourbakhsh, Z. [Faculty of Science, Department of Physics, University of Isfahan, Isfahan (Iran, Islamic Republic of)
2006-03-01
We present a theoretical investigation of structural and electronic properties of the four known structural phases of GaAs (zinc-blende, sc16, cinnabar and Cmcm). We used the full potential linearized augmented plane wave method, within local density approximation, and also within generalized gradient approximation for the exchange correlation potential. The lattice constants, bulk modulus and its pressure derivative are calculated for each of the four phases. The data obtained for the transition pressures between different phases are presented. Band structures and densities of states of the four phases are also given. The results are compared with previous calculations and with experimental results.
Wang, Lei; Huang, Wei; Li, Run; Gehrig, Dominik; Blom, Paul W M; Landfester, Katharina; Zhang, Kai A I
2016-08-01
Herein, we report on the structural design principle of small-molecule organic semiconductors as metal-free, pure organic and visible light-active photocatalysts. Two series of electron-donor and acceptor-type organic semiconductor molecules were synthesized to meet crucial requirements, such as 1) absorption range in the visible region, 2) sufficient photoredox potential, and 3) long lifetime of photogenerated excitons. The photocatalytic activity was demonstrated in the intermolecular C-H functionalization of electron-rich heteroaromates with malonate derivatives. A mechanistic study of the light-induced electron transport between the organic photocatalyst, substrate, and the sacrificial agent are described. With their tunable absorption range and defined energy-band structure, the small-molecule organic semiconductors could offer a new class of metal-free and visible light-active photocatalysts for chemical reactions.
Pressure-induced structural, magnetic and transport transitions in Sr2FeO3 from first-principles
Ting Jia
2017-05-01
Full Text Available The serial system Srn+1FenO2n+1(n=1,2,3… with the FeO4 square planar motif exhibits abundant phase transitions under pressure. In this work, we investigate the pressure-induced structural, magnetic and transport transitions in Sr2FeO3 from first-principles. Our results show that the system undergoes a structural transition from Immm to Ammm when the volume decreases by 30%, together with a spin-state transition (SST from high-spin (S = 2 to intermediate-spin (S = 1, an antiferromagnetic-to-ferromagnetic transition and an insulator-to-metal transition (IMT. Besides, the IMT here is a bandwidth controlled transition, but little influenced by the SST.
Ma, Chao; Yang, Huaixin; Tian, Huanfang; Shi, Honglong; Wang, Zhiwei; Li, Jianqi
2013-03-20
Using electron energy loss spectroscopy (EELS) measurements and first-principles electronic structure calculations, the significant interlayer hybridization between the insulating layers (ReO or Ba) and the conducting FeAs layers was investigated in the layered iron pnictides, which is quite different from the case in the cuprate superconductors. This interlayer hybridization would result in an increase in the bandwidth near the Fermi level and interorbital charge transfer in the Fe 3d orbitals, which subsequently leads to a decrease in the Fe local moment and the modification of the Fermi surface topology. Therefore, a three-dimensional character of the electronic structure due to the interlayer hybridization is expected, as observed in previous experiments. These findings indicate that reduced dimensionality is no longer a necessary condition in the search for high-T(c) superconductors in iron pnictides.
Wu, Zhijian; Hao, Xianfeng; Liu, Xiaojuan; Meng, Jian
2007-02-01
The structure, elastic, and electronic properties of OsN2 at various space groups: cubic Fm-3m , Pa-3 , and orthorhombic Pnnm were studied by first-principles calculations based on density functional theory. Our calculation indicates that the structure in orthorhombic Pnnm phase is energetically more stable compared with cubic systems. It is metallic, mechanically stable and contains diatomic N-N units with the bond distance 1.418Å . These characters are consistent with experimental facts that OsN2 is orthorhombic and metallic. The calculated bulk modulus 394GPa is also the highest among the considered space groups, slightly larger than previous value 358GPa . The calculated elastic anisotropic factors and directional bulk modulus showed that OsN2 possess high elastic anisotropy.
Songjun, Hou; Sunchao, Huang; Zhi, Zeng
2015-01-01
First principles calculations were performed to study the structural, elastic, and bonding properties of hcp ZrxTi1-x binary alloy. The special quasi- random structure (SQS) method is employed to mimic the random hcp ZrxTi1-x alloy. It is found that Bulk modulus, B, Young's modulus, E, and shear modulus, G, exhibit decreasing trends as increasing the amount of Zr. A ductile behavior ZrxTi1-x is predicted in the whole composition range. In terms of Mulliken charge analisis, we found that the element Ti behaves much more electronegative than Zr in hcp ZrxTi1-x alloy, and the charge transfer of an atom is approximately linear to the amount of other element atom surrounding it.
First-principles study of structural stabilities of AlH3 under high pressure
Feng, Wenxia; Cui, Shouxin; Feng, Min
2014-07-01
The structural stabilities and electronic properties of AlH3 under high pressure are investigated by using the plane-wave pseudopotential method. Our results demonstrate that the sequence of the pressure-induced phase transition is Fd 3 bar m(β) → cmcm(α ') → R 3 bar c(α) → Pnma(hp 1) → Pm 3 bar n(hp 2), and the transition pressures are 0.49, 0.91, 47, and 70 GPa, respectively. Im 3 bar m , Pnnm(γ) and P63/m structures are not stable in the 0-100 GPa. β, α ', α, and hp1 structures of AlH3 are nonmetals, while Pm 3 bar n structure of AlH3 is metallic, and the pressure-induced metallization is ascribed to phase transition under higher compression.
Liang, Zuozhong; Wang, Wei; Zhang, Min; Wu, Fei; Chen, Jian-Feng; Xue, Chunyu; Zhao, Hong
2017-04-01
The structural, mechanical and thermodynamic properties of ZrO2 polymorphs (namely, monoclinic (P21/c), tetragonal (P42/nmc), cubic (Fm 3 bar m), and orthorhombic (Pbca and Pnma)) are investigated systematically by employing DFT functionals (LDA, PBE and PW91). It is found that the structural parameters of ZrO2 polymorphs calculated by PBE and PW91 functionals are highly consistent with previous experiments with low absolute relative error (ARE). Moreover, all considered structures are mechanically stable according to the Born-Huang criterion and the PBE and PW91 functionals are more accurate than the LDA functional in predicting mechanical and thermodynamic properties. Significantly, we described mechanical and thermodynamic properties of ZrO2 polymorphs by introducing the charge density difference of related surfaces, which provides a better understanding of different behaviors of elastic constants (Cij) in various crystal structures of ZrO2.
First principle investigation of structural and electronic properties of bulk ZnSe
Khatta, Swati; Tripathi, S. K., E-mail: surya@pu.ac.in; Prakash, Satya [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160 014 (India)
2015-08-28
Electronic and structural properties of ZnSe are investigated using plane-wave self-consistent field method within the framework of density functional theory. The pseudopotential method within the local density approximation is used for the exchange-correlation potential. The equilibrium lattice parameter, static bulk modulus and its pressure derivative are calculated. The electronic band structure, partial density of states and density of states are also obtained. The results are compared with available theoretical calculations and experimental results.
Large-Scale Computations Leading to a First-Principles Approach to Nuclear Structure
Ormand, W E; Navratil, P
2003-08-18
We report on large-scale applications of the ab initio, no-core shell model with the primary goal of achieving an accurate description of nuclear structure from the fundamental inter-nucleon interactions. In particular, we show that realistic two-nucleon interactions are inadequate to describe the low-lying structure of {sup 10}B, and that realistic three-nucleon interactions are essential.
High pressure structures of "111" type iron-based superconductors predicted from first-principles.
Zhang, Xinxin; Wang, Yanchao; Ma, Yanming
2012-11-21
The high-pressure crystal structures of the "111" type iron-based superconductors: NaFeAs, LiFeP and LiFeAs have been systematically explored by using particle-swarm structural searches. It was found that though these iron-based superconductors are chemically similar, they adopted distinct structural phase transitions: P4/nmm→Cmcm→P3m1 for NaFeAs, P4/nmm→Cmcm→I4mm for LiFeP, and P4/nmm→P3m1 →I4mm→P6(3)/mmc for LiFeAs under high pressure. The high pressure orthorhombic Cmcm phase preserved the structural features of FeX(4)(X = As, P) tetrahedral layers present in the ambient-pressure P4/nmm structure. However, the FeX(4) tetrahedrons in the Cmcm phase were clearly distorted, leading to changes in the electronic behavior around the Fermi level. Under higher pressures, the FeX(4) layered structural features were no longer persistent and three-dimensional crystal structures were stabilized in other P3m1, I4mm, and P6(3)/mmc phases, which featured FeAs(5)/FeAs(6) hexahedron and octahedrons, FeX(5) tetragonal pyramids, and FeAs(6) octahedrons, respectively. Analysis of the electronic density of states suggests that most of the high pressure phases are metallic except for the tetragonal I4mm phase, which possesses a narrow band gap. This semiconducting state might relate to the tetragonal pyramid structure formed by FeX(5) unit, which might be favorable for charge localization.
The Sensing Principle of FBG and Its Experimental Application in Structure Strengthening Detection
YUAN Hai-qing; YUAN Jun; DU Jing
2003-01-01
Based on the basic theory of the fiber Bragg grating sensor,a kind of stickup FBG sensor is developed,which is applied in the structure strengthening.With the experiment of the FBG senor and the common electricity sensor stuck on the reinforced structure,the result shows that the FBG sensor not only has a high performance,but also can realize the control on the spot and on the line.
Structure learning and the Occam's razor principle: a new view of human function acquisition.
Narain, Devika; Smeets, Jeroen B J; Mamassian, Pascal; Brenner, Eli; van Beers, Robert J
2014-01-01
We often encounter pairs of variables in the world whose mutual relationship can be described by a function. After training, human responses closely correspond to these functional relationships. Here we study how humans predict unobserved segments of a function that they have been trained on and we compare how human predictions differ to those made by various function-learning models in the literature. Participants' performance was best predicted by the polynomial functions that generated the observations. Further, participants were able to explicitly report the correct generating function in most cases upon a post-experiment survey. This suggests that humans can abstract functions. To understand how they do so, we modeled human learning using an hierarchical Bayesian framework organized at two levels of abstraction: function learning and parameter learning, and used it to understand the time course of participants' learning as we surreptitiously changed the generating function over time. This Bayesian model selection framework allowed us to analyze the time course of function learning and parameter learning in relative isolation. We found that participants acquired new functions as they changed and even when parameter learning was not completely accurate, the probability that the correct function was learned remained high. Most importantly, we found that humans selected the simplest-fitting function with the highest probability and that they acquired simpler functions faster than more complex ones. Both aspects of this behavior, extent and rate of selection, present evidence that human function learning obeys the Occam's razor principle.
Pati, Ranjit; Karna, Shashi P.
2001-03-01
Recent advancements in the experimental measurement of conductance across a single molecule(M. A. Reed et al, Science, 278) , 252 (1997). have generated great deal of interest in the feasibility of molecular electronic devices. A successful realization of molecule based electronic devices rests on a detailed understanding of the physical principles underlying controlled transport of electron/hole across molecular units. In order to develop such a fundamental understanding, we have investigated current-voltage characteristics of metal atom (Ag, Au) substituted 1,4-dithiobenzene within Green's function approach according to Datta and coworkers( W. Tian et al, J. Chem. Phys., 109), 2874 (1998).. Ab initio Hamiltonian matrix elements are used to construct the Green's function. The calculated conductance spectrum for the molecule with S bonded to Au atoms qualitatively agrees with the experiment^1. However, large quantitative difference between the calculated and measured conductance is noted. The Au and Ag bonded 1,4-dithiobenzene molecules exhibit marked difference in their resistance and conductance spectra. The conductance of the Ag-bonded molecule is calculated to be about 1.5 times larger than that bonded with Au.
Phase stability and electronic structure of UMo2Al20: A first-principles study
Liu, Peng-Chuang; Xian, Ya-Jiang; Wang, Xin; Zhang, Yu-Ting; Zhang, Peng-Cheng
2017-09-01
In this paper, the phase stability of UMo2Al20 was explored using cluster formula in combination with first-principles calculations. Cluster formula analysis uncovered that the compound was composed of two principal clusters, i.e. [Mo-Al12] and [U-Al16]. The electronic interactions between U, Mo and Al atoms in this compound were discussed using elastic property, Bader charges and energy-resolved local bonding analysis, as well as the electronic interactions between Mo and Al atoms in [Mo-Al12] cluster and between U and Al atoms in [U-Al16] cluster. It revealed that UMo2Al20 satisfied the mechanical stability criterion for cubic system, and exhibited near ionic bonding character with weak bonding directionality. The calculations within both standard DFT and HSE frameworks demonstrated that U and Al atoms acted as an electron donor while Mo atoms acted as electron acceptor. The intrinsic stability of UMo2Al20 mainly stemmed from the bonding states of Mo-Al bonds and Al-Al bonds in [Mo-Al12] cluster. These calculations provide a further insight on the CeCr2Al20-type ternary compounds.
Morishita, Tetsuya
2009-05-21
We report a first-principles study of the structural, electronic, and dynamical properties of high-density amorphous (HDA) silicon, which was found to be formed by pressurizing low-density amorphous (LDA) silicon (a normal amorphous Si) [T. Morishita, Phys. Rev. Lett. 93, 055503 (2004); P. F. McMillan, M. Wilson, D. Daisenberger, and D. Machon, Nature Mater. 4, 680 (2005)]. Striking structural differences between HDA and LDA are revealed. The LDA structure holds a tetrahedral network, while the HDA structure contains a highly distorted tetrahedral network. The fifth neighboring atom in HDA tends to be located at an interstitial position of a distorted tetrahedron composed of the first four neighboring atoms. Consequently, the coordination number of HDA is calculated to be approximately 5 unlike that of LDA. The electronic density of state (EDOS) shows that HDA is metallic, which is consistent with a recent experimental measurement of the electronic resistance of HDA Si. We find from local EDOS that highly distorted tetrahedral configurations enhance the metallic nature of HDA. The vibrational density of state (VDOS) also reflects the structural differences between HDA and LDA. Some of the characteristic vibrational modes of LDA are dematerialized in HDA, indicating the degradation of covalent bonds. The overall profile of the VDOS for HDA is found to be an intermediate between that for LDA and liquid Si under pressure (high-density liquid Si).
Chouhan, Sunil Singh; Pagare, Gitanjali; Rajagopalan, M.; Sanyal, S. P.
2012-08-01
The structural, electronic, elastic and thermal properties of YX (X = Cd, In, Au, Hg and Tl) intermetallic compounds crystallizing in B2-type structure have been studied using first principles density functional theory within generalized gradient approximation (GGA) for the exchange correlation potential. Amongst all the YX compounds, YIn is stable in distorted tetragonal (P4/mmm) CuAu-type structure at ambient pressure with very small energy difference of 0.00681 Ry. but it undergoes to CsCl-type (B2 phase) structure at 23.3 GPa. Rest of the compounds are stable in B2 structure at ambient condition. The values of elastic moduli as a function of pressure are also reported. The ductility of these compounds has been analyzed using the Pugh rule. Our calculated results indicate that YTl is the most ductile amongst all the B2-YX compounds. YAu is the hardest and less compressible compound due to the largest bulk modulus. The elastic properties such as Young's modulus (E), Poisson's ratio (σ) and anisotropic ratio (A) are also predicted. The anisotropic factor is found to be unity for YHg which shows that this compound is isotropic.
Magnetism, structure and chemical order in small CoPd clusters: A first-principles study
Mokkath, Junais Habeeb, E-mail: Junais.Mokkath@kaust.edu.sa
2014-01-15
The structural, electronic and magnetic properties of small Co{sub m}Pd{sub n}(N=m+n=8,m=0−N) nanoalloy clusters are studied in the framework of a generalized-gradient approximation to density-functional theory. The optimized cluster structures have a clear tendency to maximize the number of nearest-neighbor CoCo pairs. The magnetic order is found to be ferromagnetic-like (FM) for all the ground-state structures. Antiferromagnetic-like spin arrangements were found in some low-lying isomers. The average magnetic moment per atom μ{sup ¯}{sub N} increases approximately linearly with Co content. A remarkable enhancement of the local Co moments is observed as a result of Pd doping. This is a consequence of the increase in the number of Co d holes, due to CoPd charge transfer, combined with the reduced local coordination. The influence of spin–orbit interactions on the cluster properties is also discussed. - Highlights: • This work analyses the structural and magnetic properties of CoPd nanoclusters. • The magnetic order is found to be ferromagnetic-like for all the ground-state structures. • The average magnetic moment per atom increases approximately linearly with Co content. • The influence of spin–orbit interactions on the cluster properties is discussed.
First-principles predicted low-energy structures of NaSc(BH4)4
Tran, Huan Doan; Amsler, Maximilian; Botti, Silvana; Marques, Miguel A. L.; Goedecker, Stefan
2014-03-01
According to previous interpretations of experimental data, sodium-scandium double-cation borohydride NaSc(BH4)4 crystallizes in the crystallographic space group Cmcm where each sodium (scandium) atom is surrounded by six scandium (sodium) atoms. A careful investigation of this phase based on ab initio calculations indicates that the structure is dynamically unstable and gives rise to an energetically and dynamically more favorable phase with C2221 symmetry and nearly identical x-ray diffraction pattern. By additionally performing extensive structural searches with the minima-hopping method we discover a class of new low-energy structures exhibiting a novel structural motif in which each sodium (scandium) atom is surrounded by four scandium (sodium) atoms arranged at the corners of either a rectangle with nearly equal sides or a tetrahedron. These new phases are all predicted to be insulators with band gaps of 7.9-8.2 eV. Finally, we estimate the influence of these structures on the hydrogen-storage performance of NaSc(BH4)4.
Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics
Moffatt, Ryan; Ma, Buyong; Nussinov, Ruth
2016-01-01
Investigation of macromolecular structure and dynamics is fundamental to understanding how macromolecules carry out their functions in the cell. Significant advances have been made toward this end in silico, with a growing number of computational methods proposed yearly to study and simulate various aspects of macromolecular structure and dynamics. This review aims to provide an overview of recent advances, focusing primarily on methods proposed for exploring the structure space of macromolecules in isolation and in assemblies for the purpose of characterizing equilibrium structure and dynamics. In addition to surveying recent applications that showcase current capabilities of computational methods, this review highlights state-of-the-art algorithmic techniques proposed to overcome challenges posed in silico by the disparate spatial and time scales accessed by dynamic macromolecules. This review is not meant to be exhaustive, as such an endeavor is impossible, but rather aims to balance breadth and depth of strategies for modeling macromolecular structure and dynamics for a broad audience of novices and experts. PMID:27124275
Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics.
Tatiana Maximova
2016-04-01
Full Text Available Investigation of macromolecular structure and dynamics is fundamental to understanding how macromolecules carry out their functions in the cell. Significant advances have been made toward this end in silico, with a growing number of computational methods proposed yearly to study and simulate various aspects of macromolecular structure and dynamics. This review aims to provide an overview of recent advances, focusing primarily on methods proposed for exploring the structure space of macromolecules in isolation and in assemblies for the purpose of characterizing equilibrium structure and dynamics. In addition to surveying recent applications that showcase current capabilities of computational methods, this review highlights state-of-the-art algorithmic techniques proposed to overcome challenges posed in silico by the disparate spatial and time scales accessed by dynamic macromolecules. This review is not meant to be exhaustive, as such an endeavor is impossible, but rather aims to balance breadth and depth of strategies for modeling macromolecular structure and dynamics for a broad audience of novices and experts.
Matar, S.F., E-mail: matar@icmcb-bordeaux.cnrs.fr [CNRS, Universite de Bordeaux, ICMCB, 87 avenue du Docteur Albert Schweitzer, F-33608 Pessac (France); Nakhl, M. [Universite Libanaise, Laboratoire de Chimie-Physique des Materiaux LCPM, Fanar (Lebanon); Al Alam, A.F.; Ouaini, N. [Universite Saint-Esprit de Kaslik, Faculte des Sciences et de Genie Informatique, Jounieh (Lebanon); Chevalier, B. [CNRS, Universite de Bordeaux, ICMCB, 87 avenue du Docteur Albert Schweitzer, F-33608 Pessac (France)
2010-11-25
Graphical abstract: Base centered orthorhombic YNiH{sub X} structure. For x = 3, only H1 and H2 are present. Highest hydrogen content YNiH{sub 4} is obtained when H3 are added. - Abstract: Within density functional theory, establishing the equations of states of YNi in two different controversial structures in the literature, leads to determine the orthorhombic FeB-type as the ground state one with small energy difference. For YNiH{sub 3} and YNiH{sub 4} hydrides crystallizing in the orthorhombic CrB-type structure the geometry optimization and the ab initio determination of the H atomic positions show that the stability of hydrogen decreases from the tri- to the tetra- hydride. New states brought by hydrogen within the valence band lead to its broadening and to enhanced localization of metal density of states. The chemical bonding analysis shows a preferential Ni-H bonding versus Y-H.
First-principles study of structural, elastic and thermodynamic properties of AuIn2
Wu, Hai Ying; Chen, Ya Hong; Deng, Chen Rong; Yin, Peng Fei; Cao, Hong
2015-12-01
The structural, elastic and thermodynamic properties of AuIn2 in the CaF2 structure under pressure have been investigated using ab initio plane wave pseudopotential method within the generalized gradient approximation. The calculated structural parameters and equation of state are in excellent agreement with the available experimental and theoretical results. The elastic constants of AuIn2 at ambient condition are calculated, and the bulk modulus obtained from these calculated elastic constants agrees well with the experimental data. The pressure dependence of the elastic constants, bulk modulus, shear modulus and Young’s modulus has also been investigated. The Debye temperature presents a slight increase with pressure. AuIn2 exhibits ductibility and low hardness characteristics, the ductibility increases while the hardness decreases with the increasing of pressure. The pressure effect on the heat capacity and thermal expansion coefficient for AuIn2 is much larger.
Zeng, Zhenhua; Kubal, Joseph; Greeley, Jeffrey Philip
2015-01-01
In the present study, on the basis of detailed density functional theory (DFT) calculations, and using Ni hydroxy(oxide) films on Pt(111) and Au(111) electrodes as model systems, we describe a detailed structural and electrocatalytic analysis of hydrogen evolution (HER) at three-phase boundaries...... of information that is inaccessible by purely experimental means, and these structures, in turn, strongly suggest that a bifunctional reaction mechanism for alkaline HER will be operative at the interface between the films, the metal substrates, and the surrounding aqueous medium. This bifunctionality produces...... important changes in the calculated barriers of key elementary reaction steps, including water activation and dissociation, as compared to traditional monofunctional Pt surfaces. The successful identification of the structures of thin metal films and three-phase boundary catalysts is not only an important...
Feige, Matthias J; Gräwert, Melissa A; Marcinowski, Moritz; Hennig, Janosch; Behnke, Julia; Ausländer, David; Herold, Eva M; Peschek, Jirka; Castro, Caitlin D; Flajnik, Martin; Hendershot, Linda M; Sattler, Michael; Groll, Michael; Buchner, Johannes
2014-06-03
Sharks and other cartilaginous fish are the phylogenetically oldest living organisms that rely on antibodies as part of their adaptive immune system. They produce the immunoglobulin new antigen receptor (IgNAR), a homodimeric heavy chain-only antibody, as a major part of their humoral adaptive immune response. Here, we report the atomic resolution structure of the IgNAR constant domains and a structural model of this heavy chain-only antibody. We find that despite low sequence conservation, the basic Ig fold of modern antibodies is already present in the evolutionary ancient shark IgNAR domains, highlighting key structural determinants of the ubiquitous Ig fold. In contrast, structural differences between human and shark antibody domains explain the high stability of several IgNAR domains and allowed us to engineer human antibodies for increased stability and secretion efficiency. We identified two constant domains, C1 and C3, that act as dimerization modules within IgNAR. Together with the individual domain structures and small-angle X-ray scattering, this allowed us to develop a structural model of the complete IgNAR molecule. Its constant region exhibits an elongated shape with flexibility and a characteristic kink in the middle. Despite the lack of a canonical hinge region, the variable domains are spaced appropriately wide for binding to multiple antigens. Thus, the shark IgNAR domains already display the well-known Ig fold, but apart from that, this heavy chain-only antibody employs unique ways for dimerization and positioning of functional modules.
Structure of a 13-fold superhelix (almost determined from first principles
Guillaume A. Schoch
2015-03-01
Full Text Available Nuclear hormone receptors are cytoplasm-based transcription factors that bind a ligand, translate to the nucleus and initiate gene transcription in complex with a co-activator such as TIF2 (transcriptional intermediary factor 2. For structural studies the co-activator is usually mimicked by a peptide of circa 13 residues, which for the largest part forms an α-helix when bound to the receptor. The aim was to co-crystallize the glucocorticoid receptor in complex with a ligand and the TIF2 co-activator peptide. The 1.82 Å resolution diffraction data obtained from the crystal could not be phased by molecular replacement using the known receptor structures. HPLC analysis of the crystals revealed the absence of the receptor and indicated that only the co-activator peptide was present. The self-rotation function displayed 13-fold rotational symmetry, which initiated an exhaustive but unsuccessful molecular-replacement approach using motifs of 13-fold symmetry such as α- and β-barrels in various geometries. The structure was ultimately determined by using a single α-helix and the software ARCIMBOLDO, which assembles fragments placed by PHASER before using them as seeds for density modification model building in SHELXE. Systematic variation of the helix length revealed upper and lower size limits for successful structure determination. A beautiful but unanticipated structure was obtained that forms superhelices with left-handed twist throughout the crystal, stabilized by ligand interactions. Together with the increasing diversity of structural elements in the Protein Data Bank the results from TIF2 confirm the potential of fragment-based molecular replacement to significantly accelerate the phasing step for native diffraction data at around 2 Å resolution.
Structural and electronic phase transitions of ThS2 from first-principles calculations
Guo, Yongliang; Wang, Changying; Qiu, Wujie; Ke, Xuezhi; Huai, Ping; Cheng, Cheng; Zhu, Zhiyuan; Chen, Changfeng
2016-10-01
Thorium and its compounds have received considerable attention in recent years due to the renewed interest in developing the thorium fuel cycle as an alternative nuclear energy technology. There is pressing current need to explore the physical properties essential to the fundamental understanding and practical application of these materials. Here we report on a computational study of thorium disulfide (ThS2), which plays an important role in the thorium fuel reprocessing cycle. We have employed the density functional theory and evolutionary structure search methods to determine the crystal structures, electronic band structures, phonon dispersions and density of states, and thermodynamic properties of ThS2 under various pressure and temperature conditions. Our calculations identify several crystalline phases of ThS2 and a series of structural phase transitions induced by pressure and temperature. The calculated results also reveal electronic phase transitions from the semiconducting state in the low-pressure phases of ThS2 in the P n m a and F m 3 ¯m symmetry to the metallic state in the high-pressure phases of ThS2 in the P n m a and I 4 /m m m symmetry. These results explain the experimental observation of the thermodynamic stability of the P n m a phase of ThS2 at the ambient conditions and a pressure-induced structural phase transition in ThS2 around 40 GPa. Moreover, the present study reveals considerable additional information on the structural and electronic properties of ThS2 in a wide range of pressure and temperature. Such information provides key insights into the fundamental material behavior and the underlying mechanisms that lay the foundation for further exploration and application of ThS2.
Nine-month-olds extract structural principles required for natural language.
Gerken, LouAnn
2004-10-01
Infants' ability to rapidly extract properties of language-like systems during brief laboratory exposures has been taken as evidence about the innate linguistic state of humans. However, previous studies have focused on structural properties that are not central to descriptions of natural language. In the current study, infants were exposed to 3- and 5-syllable words from one of the two artificial languages that employed the same stress assignment constraints found in natural languages. Infants were able to generalize beyond the stress patterns encountered during familiarization to new patterns reflecting the same constraints. The results suggest that infants are able to rapidly extract the types of structural information required for human language.
Pasianot, Roberto C.
2016-12-01
We study the structure of several standard and non-standard self-interstitial configurations in a series of hcp metals, by using Density Functional Theory as embodied in the computer codes SIESTA and WIEN2k. The considered metals include Be, Mg, Ti, Zr, Co, Zn, and Cd, thus spanning the whole range of experimental c/a ratios, different kinds of bonding, and even magnetism (Co). The results show the importance of low symmetry configurations, closely related to the non-basal crowdion, in order to rationalize the experimental data on self-interstitial structure and migration.
First-principles study of the structural and electronic properties of III-phosphides
Ahmed, Rashid [Centre for High Energy Physics, University of the Punjab, Lahore 54590 (Pakistan)], E-mail: rasofi@hotmail.com; Fazal-e-Aleem [Centre for High Energy Physics, University of the Punjab, Lahore 54590 (Pakistan); Hashemifar, S. Javad; Akbarzadeh, Hadi [Department of Physics, Isfahan University of Technology, Isfahan 84156 (Iran, Islamic Republic of)
2008-05-01
We use density functional theory and different forms of the exchange-correlation approximation to calculate the structural and electronic properties of tetrahedrally coordinated III-phosphide semiconductors. The computed results for structural properties using generalized gradient approximation (GGA) agree well with the experimental data. For reliable description of energy band gap values, another form of GGA developed by Engel and Vosko has been applied. As anticipated, boron phosphide was found to be the hardest compound due to the strong B-P covalent bonding.
Tetyana Soroka
2015-08-01
Full Text Available The article is dedicated to the description of the procedure of axionomens’ formalized analysis. Matrix method of investigating words denoting spiritual values in the modern Ukrainian language is proposed. Matrix is defined to be a two-dimensional structure which replaces oversimplified notation systems used in componential analysis. Matrix enables a researcher to study all the interconnections between the related meanings of different lexical units as well as between different meanings of a specific lexical unit. It consists of two axes – a vertical one indicates a lexical stock and a horizontal one means a seme stock of the collected language material. The application of matrix method in practice proves that the structural organization of axiovocabulary considerably becomes complicated; internal mechanisms and dynamics of semantic cooperations of axionomens are revealed under the influence of extra-linguistic factors. Matrix presentation of non-material values gives an opportunity to describe in detail the structure of axionouns’ lexical meanings which are not in chaotic order, but clearly organized, to distinguish the degree of their related semantics, to expose the functional character of semes forming definite structures within the framework of analyzed words. The proposed methodology of researching the relations between lexico-semantic groups is considered to be perspective in studying all lexical sub-systems of the value paradigms of the English and French language societies.
First principles calculations of the structural and electronic properties of(CdSe)n clusters
WANG Xin-qiang; CHEN Yong
2004-01-01
The structural and electronic properties of (CdSe)n(1≤n≤5) clusters are calculated using density functional theory within the pseudopotential and generalized gradient approximations. The calculated binding energies and highest occupied molecular orbitallowest unoccupied molecular orbital gaps are compared with those obtained within local density approximation.
Structure determination of ultra dense magnesium borohydride: A first-principles study
Fan, Jing; Duan, Defang; Jin, Xilian; Bao, Kuo; Liu, Bingbing; Cui, Tian
2013-06-01
Magnesium borohydride (Mg(BH4)2) is one of the potential hydrogen storage materials. Recently, two experiments [Y. Filinchuk, B. Richter, T. R. Jensen, V. Dmitriev, D. Chernyshov, and H. Hagemann, Angew. Chem., Int. Ed. 50, 11162 (2011);, 10.1002/anie.201100675 L. George, V. Drozd, and S. K. Saxena, J. Phys. Chem. C 113, 486 (2009), 10.1021/jp807842t] found that α-Mg(BH4)2 can irreversibly be transformed to an ultra dense δ-Mg(BH4)2 under high pressure. Its volumetric hydrogen content at ambient pressure (147 g/cm3) exceeds twice of DOE's (U.S. Department of Energy) target (70 g/cm3) and that of α-Mg(BH4)2 (117 g/cm3) by 20%. In this study, the experimentally proposed P42nm structure of δ-phase has been found to be dynamically unstable. A new Fddd structure has been reported as a good candidate of δ-phase instead. Its enthalpy from 0 to 12 GPa is much lower than P42nm structure and the simulated X-ray diffraction spectrum is in satisfied agreement with previous experiments. In addition, the previously proposed P-3m1 structure, which is denser than Fddd, is found to be a candidate of ɛ-phase due to the agreement of Raman shifts.
First-principle simulations of the electronic structure of copper-based oxide superconductors
Yutoh, Y
2003-01-01
The relationship between the transition temperature (T sub c) of an oxide superconductor and strain has been studied by means of experiments, with a focus an specimens that include an interface between a superconductor and a substrate. In the current study, we performed calculations on the bulk and the surface in order to investigate the electronic structures of the above systems. We calculated the electronic structure of La sub 2 CuO sub 4 bulk by employment of three-dimensional boundary conditions and that of a La sub 2 CuO sub 4 surface by employment of two-dimensional boundary conditions. The results for the bulk indicate that a relationship exists between the lattice parameters and T sub c of La sub 2 CuO sub 4. We discuss the calculated results for the bulk and surface on the basis of the results of investigation of the differences in electronic structures. The results indicate that the surface retained the electronic structures of the bulk. (Abstract Copyright [2003], Wiley Periodicals, Inc.)
Structure determination of ultra dense magnesium borohydride: a first-principles study.
Fan, Jing; Duan, Defang; Jin, Xilian; Bao, Kuo; Liu, Bingbing; Cui, Tian
2013-06-07
Magnesium borohydride (Mg(BH4)2) is one of the potential hydrogen storage materials. Recently, two experiments [Y. Filinchuk, B. Richter, T. R. Jensen, V. Dmitriev, D. Chernyshov, and H. Hagemann, Angew. Chem., Int. Ed. 50, 11162 (2011); L. George, V. Drozd, and S. K. Saxena, J. Phys. Chem. C 113, 486 (2009)] found that α-Mg(BH4)2 can irreversibly be transformed to an ultra dense δ-Mg(BH4)2 under high pressure. Its volumetric hydrogen content at ambient pressure (147 g/cm(3)) exceeds twice of DOE's (U.S. Department of Energy) target (70 g/cm(3)) and that of α-Mg(BH4)2 (117 g/cm(3)) by 20%. In this study, the experimentally proposed P4(2)nm structure of δ-phase has been found to be dynamically unstable. A new Fddd structure has been reported as a good candidate of δ-phase instead. Its enthalpy from 0 to 12 GPa is much lower than P4(2)nm structure and the simulated X-ray diffraction spectrum is in satisfied agreement with previous experiments. In addition, the previously proposed P-3m1 structure, which is denser than Fddd, is found to be a candidate of ε-phase due to the agreement of Raman shifts.
Structural and electronic properties of Y2CrS4 from first-principles study
Wang, B.-T.; Yin, W.; Li, W.-D.; Wang, F.
2011-04-01
We systematically study the structural, electronic, and magnetic properties of chromium sulfide Y2CrS4 by using density-functional theory. We find that antiferromagnetic order is more energetically favorable than ferromagnetic state and near the Fermi level the main occupation is from Cr 3 d states.
First principles results of structural and electronic properties of ZnS clusters
D L Lalsare; Anjali Kshirsagar
2012-12-01
We present results of the study of ZnS (1 ≤ ≤ 9) clusters, using the density functional formalism and projector augmented wave method within the generalized gradient approximation. Along with the structural and electronic properties, nature of bonding and overall stability of clusters has been studied.
First principles study of structural and electronic properties of different phases of boron nitride
Ahmed, Rashid [Centre for High Energy Physics, University of the Punjab, Lahore 54590 (Pakistan)], E-mail: rasofi@hotmail.com; Fazal-e-Aleem [Centre for High Energy Physics, University of the Punjab, Lahore 54590 (Pakistan); Hashemifar, S. Javad; Akbarzadeh, Hadi [Department of Physics, Isfahan University of Technology, 84156 Isfahan (Iran, Islamic Republic of)
2007-11-15
A theoretical study of structural and electronic properties of the four phases of BN (zincblende, wurtzite, hexagonal and rhombohedral) is presented. The calculations are done by full potential (linear) augmented plane wave plus local orbitals (APW+lo) method based on the density functional theory (DFT) as employed in WIEN2k code. Using the local density approximation (LDA) and generalized gradient approximation (GGA-PBE) for the exchange correlation energy functional, we have calculated lattice parameters, bulk modulus, its pressure derivative and cohesive energy. In order to calculate electronic band structure, another form of the generalized gradient approximation proposed by Engel and Vosko (GGA-EV) has been employed along with LDA and GGA-PBE. It is found that all the three approximations exhibit similar band structure qualitatively. However, GGA-EV gives energy band gap values closer to the measured data. Our results for structural and electronic properties are compared with the experimental and other theoretical results wherever these are available.
PRINCIPLES OF MARKET ECONOMY AND STRUCTURAL CHANGES IN THE RUSSIAN INSTRUMENT
V. N. Voronina
2012-01-01
Full Text Available This paper deals with result analysis of incoming of native instrument making into market economy. Reasons of dramatically worsening of many of enterprises condition and factors that are putting obstacles to its improvement are shown. Also variants of competiveness increasing ofRussian instruments are considered taking in account possible structure changes in its sphere.
Structure-property relationships of curved aromatic materials from first principles.
Zoppi, Laura; Martin-Samos, Layla; Baldridge, Kim K
2014-11-18
CONSPECTUS: Considerable effort in the past decade has been extended toward achieving computationally affordable theoretical methods for accurate prediction of the structure and properties of materials. Theoretical predictions of solids began decades ago, but only recently have solid-state quantum techniques become sufficiently reliable to be routinely chosen for investigation of solids as quantum chemistry techniques are for isolated molecules. Of great interest are ab initio predictive theories for solids that can provide atomic scale insights into properties of bulk materials, interfaces, and nanostructures. Adaption of the quantum chemical framework is challenging in that no single theory exists that provides prediction of all observables for every material type. However, through a combination of interdisciplinary efforts, a richly textured and substantive portfolio of methods is developing, which promise quantitative predictions of materials and device properties as well as associated performance analysis. Particularly relevant for device applications are organic semiconductors (OSC), with electrical conductivity between that of insulators and that of metals. Semiconducting small molecules, such as aromatic hydrocarbons, tend to have high polarizabilities, small band-gaps, and delocalized π electrons that support mobile charge carriers. Most importantly, the special nature of optical excitations in the form of a bound electron-hole pairs (excitons) holds significant promise for use in devices, such as organic light emitting diodes (OLEDs), organic photovoltaics (OPVs), and molecular nanojunctions. Added morphological features, such as curvature in aromatic hydrocarbon structure, can further confine the electronic states in one or more directions leading to additional physical phenomena in materials. Such structures offer exploration of a wealth of phenomenology as a function of their environment, particularly due to the ability to tune their electronic
First-principle calculation of the electronic structure, DOS and effective mass TlInSe2
Ismayilova, N. A.; Orudzhev, G. S.; Jabarov, S. H.
2017-05-01
The electronic structure, density of states (DOS), effective mass are calculated for tetragonal TlInSe2 from first principle in the framework of density functional theory (DFT). The electronic structure of TlInSe2 has been investigated by Quantum Wise within GGA. The calculated band structure by Hartwigsen-Goedecker-Hutter (HGH) pseudopotentials (psp) shows both the valence band maximum and conduction band minimum located at the T point of the Brillouin zone. Valence band maximum at the T point and the surrounding parts originate mainly from 6s states of univalent Tl ions. Bottom of the conduction band is due to the contribution of 6p-states of Tl and 5s-states of In atoms. Calculated DOS effective mass for holes and electrons are mDOS h∗ = 0.830m e, mDOS h∗ = 0.492m e, respectively. Electron effective masses are fairly isotropic, while the hole effective masses show strong anisotropy. The calculated electronic structure, density of states and DOS effective masses of TlInSe2 are in good agreement with existing theoretical and experimental results.
First-principles study of the crystal structures and physical properties of H18-BN and Rh6-BN
Ren, Xiao-Yan; Zhao, Chun-Xiang; Niu, Chun-Yao; Wang, Jia-Qi; Jia, Yu; Cho, Jun-Hyung
2016-12-01
As the analog of carbon allotropes, new three-dimensional (3D) boron nitride (BN) allotropes have attracted much attention of researchers due to their great importance in fundamental sciences and wide practical applications. Here, based on first-principles density-functional theory calculations, we predict two new stable BN allotropes: One is H18-BN with the P 6 bar m 2 (D3h1) symmetry containing eighteen atoms in the hexagonal unit cell and the other is Rh6-BN with the R 3 bar m (C3v5) symmetry containing six atoms in the rhombohedral primitive unit cell. The dynamic stabilities of the two structures are examined through the phonon spectrum analysis as well as molecular dynamics simulations, whereas the mechanical properties are analyzed by elastic constants, bulk modulus and shear modulus. From the analysis of the enthalpy evolution with respect to pressure, we find that h-BN can be transformed into either H18-BN or RH6-BN structure under a higher pressure of ∼ 15 GPa. We also find that both the H18-BN and Rh6-BN allotropes are brittle materials with indirect band gaps of 2.31 and 4.48 eV, respectively. The simulated XRD spectra provide detailed structural information of H18-BN and Rh6-BN for future experimental examinations. Our findings not only greatly enrich the existing structural family of 3D-BN materials but also stimulate further experiments.
Hu, Yonghong; Wu, Yunyi; Zhang, Shengli
2016-12-01
Defects are inevitably present in materials, and their existence strongly affects the fundamental physical properties of 2D materials. Here, we performed first-principles calculations to study the structural and electronic properties of antimonene with Stone-Wales defects, highlighting the differences in the structure and electronic properties. Our calculations show that the presence of a SW defect in antimonene changes the geometrical symmetry. And the band gap decreases in electronic band structure with the decrease of the SW defect concentration. The formation energy and cohesive energy of a SW defect in antimonene are studied, showing the possibility of its existence and its good stability, respectively. The difference charge density near the SW defect is explored, by which the structural deformations of antimonene are explained. At last, we calculated the STM images for the SW defective antimonene to provide more information and characters for possible experimental observation. These results may provide meaningful references to the development and design of novel nanodevices based on new 2D materials.
Matsushita, Stephane Yu; Takayama, Akari; Kawamoto, Erina; Hu, Chunping; Hagiwara, Satoshi; Watanabe, Kazuyuki; Takahashi, Takashi; Suto, Shozo
2017-09-01
We have studied the electronic band structure of the hydrogen-terminated Si(110)-(1 ×1 ) [H:Si(110)-(1 ×1 )] surface using angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations in the framework of density functional theory with local density approximation (LDA). The bulk-truncated H:Si(110)-(1 ×1 ) surface is a good template to investigate the electronic band structure of the intrinsic Si(110). In the ARPES spectra, seven bulk states and one surface state due to the H-H interaction are observed clearly. The four bulk states consisting of Si 3 px y orbitals exhibit anisotropic band dispersions along the high symmetric direction of Γ ¯-X ¯ and Γ ¯-X¯' directions, where one state shows one-dimensional character. The calculated band structures show a good agreement with the experimental results except the surface state. We discuss the exact nature of electronic band structures and the applicability of LDA. We have estimated the anisotropic effective masses of electrons and holes of Si(110) for device application.
GUO HanYing; LI YuQi; WU Ke; WANG ShiKun
2002-01-01
In the previous papers I and H, we have studied the difference discrete variational principle and the EulerLagrange cohomology in the framework of multi-parameter differential approach. W5 have gotten the difference discreteEulcr-Lagrangc equations and canonical ones for the difference discrete versions of classical mechanics and tield theoryas well as the difference discrete versions for the Euler-Lagrange cohomology and applied them to get the necessaryand sufficient condition for the symplectic or multisymplectic geometry preserving properties in both the Lagrangianand Hamiltonian formalisms. In this paper, we apply the difference discrete variational principle and Euler-Lagrangecohomological approach directly to the symplectic and multisymplectic algorithms. We will show that either Hamiltonianschemes or Lagrangian ones in both the symplectic and multisymplectic algorithms arc variational integrators and theirdifference discrete symplectic structure-preserving properties can always be established not only in the solution spacebut also in the function space if and only if the related closed Euler Lagrange cohomological conditions are satisfied.
Poswal, H. K.; Sharma, Surinder M.; Sikka, S. K.
2010-03-01
High-pressure behaviour of superhydrous phase B (high temperature; HT) of Mg10Si3O14(OH)4 (Shy B) is investigated with the help of density functional theory-based first-principles calculations. In addition to the lattice parameters and equation of state, we use these calculations to determine the positional parameters of atoms as a function of pressure. Our results show that the compression induced structural changes involve cooperative distortions in the full geometry of the hydrogen bonds. The bond-bending mechanism proposed by Hofmeister et al. (Vibrational spectra of dense hydrous magnesium silicates at high pressure: Importance of the hydrogen bond angle, Am. Miner. 84 (1999), pp. 454-464) for hydrogen bonds to relieve the heightened repulsion due to short H- - -H contacts is not found to be effective in Shy B. The calculated O-H bond contraction is consistent with the observed blue shift in the stretching frequency of the hydrogen bond. These results establish that one can use first-principles calculations to obtain reliable insights into the pressure-induced bonding changes of complex minerals.
Crystal structure analysis and first principle investigation of F doping in LiFePO4
Milović, Miloš; Jugović, Dragana; Cvjetićanin, Nikola; Uskoković, Dragan; Milošević, Aleksandar S.; Popović, Zoran S.; Vukajlović, Filip R.
2013-11-01
This work presents the synthesis of F-doped LiFePO4/C composite by the specific modification of the recently suggested synthesis procedure based on an aqueous precipitation of precursor material in molten stearic acid, followed by a high temperature treatment. Besides the lattice parameters and the primitive cell volume reductions, compared to the undoped sample synthesized under the same conditions, the Rietveld refinement also shows that fluorine ions preferably occupy specific oxygen sites. Particularly, the best refinement is accomplished when fluorine ions occupy O(2) sites exclusively. By means of up-to-date electronic structure and total energy calculations this experimental finding is theoretically confirmed. Such fluorine doping also produces closing of the gap in the electronic structure and consequently better conductivity properties of the doped compound. In addition, the morphological and electrochemical performances of the synthesized powder are fully characterized.
Thermodynamic stability and structures of iron chloride surfaces: A first-principles investigation
Saraireh, Sherin A. [Physics Department, Faculty of Sciences, Al-Hussein Bin Talal University, Ma' an (Jordan); Altarawneh, Mohammednoor, E-mail: M.Altarawneh@Murdoch.edu.au [School of Engineering and Information Technology, Murdoch University, Perth (Australia)
2014-08-07
In this study, we report a comprehensive density functional theory investigation of the structure and thermodynamic stability of FeCl{sub 2} and FeCl{sub 3} surfaces. Calculated lattice constants and heats of formation for bulk FeCl{sub 2} and FeCl{sub 3} were found to be in relatively good agreement with experimental measurements. We provide structural parameters for 15 distinct FeCl{sub 2} and FeCl{sub 3} surfaces along the three low-index orientations. The optimized geometries for all surfaces are compared with analogous bulk values. Ab initio atomistic thermodynamic calculations have been carried out to assess the relative thermodynamic stability of FeCl{sub 2} and FeCl{sub 3} surfaces under practical operating conditions of temperatures and pressures. The FeCl{sub 2} (100-Cl) surface is found to afford the most stable configuration at all experimentally accessible gas phase conditions.
ACRES: An Efficient Method for First-Principles Electronic Structure Calculations of Complex Systems
WAGHMARE,R.V.; KIM,HANCHUL; PARK,I.J.; MODINE,NORMAND A.; MARAGAKIS,P.; KAXIRAS,EFTHIMIOS
2000-08-29
The authors discuss their new implementation of the Adaptive Coordinate Real-space Electronic Structure (ACRES) method for studying the atomic and electronic structure of infinite periodic as well as finite systems, based on density functional theory. This improved version aims at making the method widely applicable and efficient, using high performance Fortran on parallel architectures. The scaling of various parts of an ACRES calculation is analyzed and compared to that of plane-wave based methods. The new developments that lead to enhanced performance, and their parallel implementation, are presented in detail. They illustrate the application of ACRES to the study of elemental crystalline solids, molecules and complex crystalline materials, such as blue bronze and zeolites.
Myosin MyTH4-FERM structures highlight important principles of convergent evolution.
Planelles-Herrero, Vicente José; Blanc, Florian; Sirigu, Serena; Sirkia, Helena; Clause, Jeffrey; Sourigues, Yannick; Johnsrud, Daniel O; Amigues, Beatrice; Cecchini, Marco; Gilbert, Susan P; Houdusse, Anne; Titus, Margaret A
2016-05-24
Myosins containing MyTH4-FERM (myosin tail homology 4-band 4.1, ezrin, radixin, moesin, or MF) domains in their tails are found in a wide range of phylogenetically divergent organisms, such as humans and the social amoeba Dictyostelium (Dd). Interestingly, evolutionarily distant MF myosins have similar roles in the extension of actin-filled membrane protrusions such as filopodia and bind to microtubules (MT), suggesting that the core functions of these MF myosins have been highly conserved over evolution. The structures of two DdMyo7 signature MF domains have been determined and comparison with mammalian MF structures reveals that characteristic features of MF domains are conserved. However, across millions of years of evolution conserved class-specific insertions are seen to alter the surfaces and the orientation of subdomains with respect to each other, likely resulting in new sites for binding partners. The MyTH4 domains of Myo10 and DdMyo7 bind to MT with micromolar affinity but, surprisingly, their MT binding sites are on opposite surfaces of the MyTH4 domain. The structural analysis in combination with comparison of diverse MF myosin sequences provides evidence that myosin tail domain features can be maintained without strict conservation of motifs. The results illustrate how tuning of existing features can give rise to new structures while preserving the general properties necessary for myosin tails. Thus, tinkering with the MF domain enables it to serve as a multifunctional platform for cooperative recruitment of various partners, allowing common properties such as autoinhibition of the motor and microtubule binding to arise through convergent evolution.
Eaves, Laurence
2014-01-01
Christian Beck has proposed a set of Shannon-Khinchin axioms to derive a formula for the cosmological constant, {\\Lambda}. We discuss this result in relation to numerical coincidences involving the measured values of {\\Lambda} and the gravitational and fine structure constants, G and {\\alpha}. The empirical formulae that inter-relate the three constants suggest that the measured values of G and {\\Lambda} are consistent with the apparent anthropic fine-tuning of {\\alpha}.
First principle calculation of structure and lattice dynamics of Lu2Si2O7
Nazipov, D. V.; Nikiforov, A. E.
2016-12-01
Ab initio calculations of crystal structure and Raman spectra has been performed for single crystal of lutetium pyrosilicate Lu2Si2O7. The types of fundamental vibrations, their frequencies and intensities in the Raman spectrum has been obtained for two polarizations. Calculations were made in the framework of density functional theory (DFT) with hybrid functionals. The isotopic substitution was calculated for all inequivalent ions in cell. The results in a good agreement with experimental data.
First principle calculation of structure and lattice dynamics of Lu2Si2O7
Nazipov D.V.
2017-01-01
Full Text Available Ab initio calculations of crystal structure and Raman spectra has been performed for single crystal of lutetium pyrosilicate Lu2Si2O7. The types of fundamental vibrations, their frequencies and intensities in the Raman spectrum has been obtained for two polarizations. Calculations were made in the framework of density functional theory (DFT with hybrid functionals. The isotopic substitution was calculated for all inequivalent ions in cell. The results in a good agreement with experimental data.
Churakov, Sergey V.
2007-03-01
Edge sites of clay minerals play a key role for pH dependent sorption of ions from solutions of electrolytes. Pyrophyllite, Al 2[Si 4O 10](OH) 2, is an important structural prototype for a variety of 2:1 dioctahedral phyllosilicates but in contrast to the other clays has no permanent structural charge. The structure of thin water films confined between most common edges of 1Tc pyrophyllite: (0 1 0), (1 1 0) and (1 0 0), was analyzed by means of ab initio molecular dynamic simulations. The system setup allowed for a full flexibility of the interfaces and a proton exchange between the edges of pyrophyllite and water molecules in solution. The structure of hydrated surfaces is compared with the recent predictions of static geometry optimizations for edge-vacuum interfaces. All surfaces studied reveal a strong hydrophilic character of edge similar to the hydrated silica surface and the facets of simple layered hydroxides. Spontaneous proton transfer between different surface sites were observed in molecular dynamics simulations of the (0 1 0) interface. The proton bound to the tbnd Si sbnd OH site was found to exchange with the tbnd Al sbnd OH group by the mechanism tbnd Si sbnd OH +tbnd Al sbnd OH ↔tbnd Si sbnd O+tbnd Al sbnd OH 2+. The direction of the proton transfer agrees with the scale of relative proton affinities for surface sites obtained from the static calculations. Alternatively, the proton attached to the tbnd Al sbnd OH 2 site exchanges with the tbnd Al sbnd OH group. In both reactions, the protons are transferred through the chains of hydrogen bonds formed between water molecules in the solution and the surface sites. The observed mechanisms might be one of the basic schemes for the surface proton diffusion in compacted clays. Kinetics of the proton transfer at edge sites is limited by the rate of rearrangements of the water molecules near interface.
Hao Xianfeng [Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Wu Zhijian [Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Xu Yuanhui [School of Biological Engineering, Changchun University of Technology, Changchun 130012 (China); Zhou Defeng [School of Biological Engineering, Changchun University of Technology, Changchun 130012 (China); Liu Xiaojuan [Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Meng Jian [Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)
2007-05-16
We investigate the cohesive energy, heat of formation, elastic constant and electronic band structure of transition metal diborides TMB{sub 2} (TM = Hf, Ta, W, Re, Os and Ir, Pt) in the Pmmn space group using the ab initio pseudopotential total energy method. Our calculations indicate that there is a relationship between elastic constant and valence electron concentration (VEC): the bulk modulus and shear modulus achieve their maximum when the VEC is in the range of 6.8-7.2. In addition, trends in the elastic constant are well explained in terms of electronic band structure analysis, e.g., occupation of valence electrons in states near the Fermi level, which determines the cohesive energy and elastic properties. The maximum in bulk modulus and shear modulus is attributed to the nearly complete filling of TM d-B p bonding states without filling the antibonding states. On the basis of the observed relationship, we predict that alloying W and Re in the orthorhombic structure OsB{sub 2} might be harder than alloying the Ir element. Indeed, the further calculations confirmed this expectation.
First-principles study of the structure of water layers on flat and stepped Pb electrodes.
Lin, Xiaohang; Evers, Ferdinand; Groß, Axel
2016-01-01
On the basis of perodic density functional theory (DFT) calculations, we have addressed the geometric structures and electronic properties of water layers on flat and stepped Pb surfaces. In contrast to late d-band metals, on Pb(111) the energy minimum structure does not correspond to an ice-like hexagonal arrangement at a coverage of 2/3, but rather to a distorted structure at a coverage of 1 due to the larger lattice constant of Pb. At stepped Pb surfaces, the water layers are pinned at the step edge and form a complex network consisting of rectangles, pentagons and hexagons. The thermal stability of the water layers has been studied by using ab initio molecular dynamics simulations (AIMD) at a temperature of 140 K. Whereas the water layer on Pb(111) is already unstable at this temperature, the water layers on Pb(100), Pb(311), Pb(511) and Pb(711) exhibit a higher stability because of stronger water-water interactions. The vibrational spectra of the water layers at the stepped surfaces show a characteristic splitting into three modes in the O-H stretch region.
Magnetism, structure and chemical order in small CoPd clusters: A first-principles study
Mokkath, Junais Habeeb
2014-01-01
The structural, electronic and magnetic properties of small ComPdn (N=m+n=8,m=0-N) nanoalloy clusters are studied in the framework of a generalized-gradient approximation to density-functional theory. The optimized cluster structures have a clear tendency to maximize the number of nearest-neighbor CoCo pairs. The magnetic order is found to be ferromagnetic-like (FM) for all the ground-state structures. Antiferromagnetic-like spin arrangements were found in some low-lying isomers. The average magnetic moment per atom μ̄N increases approximately linearly with Co content. A remarkable enhancement of the local Co moments is observed as a result of Pd doping. This is a consequence of the increase in the number of Co d holes, due to CoPd charge transfer, combined with the reduced local coordination. The influence of spin-orbit interactions on the cluster properties is also discussed. © 2013 Elsevier B.V.
Electronic structures and vibrational properties of coronene on Ru(0001): first-principles study
Zhang Yu-Yang; Du Shi-Xuan; Gao Hong-Jun
2012-01-01
We calculate the configurations,electronic structures,vibrational properties at the coronene/Ru(0001) interface,and adsorption of a single Pt atom on coronene/Ru(0001) based on density functional theory calculations.The geometric structures and electronic structures of the coronene on Ru(0001) are compared with those of the graphene/Ru(0001).The results show that the coronene/Ru(0001) can be a simplified model system used to describe the interaction between graphene and ruthenium.Further calculations of the vibrational properties of coronene molecule adsorbed on Ru(0001)suggest that the phonon properties of differently corrugated regions of graphene on Ru(0001) are different.This model system is also used to investigate the selective adsorption of Pt atoms on graphene/Ru(0001).The configurations of Pt on coronene/Ru(0001) with the lowest binding energy give clues to explain the experimental observation that a Pt cluster selectively adsorbs on the second highest regions of graphene/Ru(0001).This work provides a simple model for understanding the adsorption properties and vibrational properties of graphene on Ru(0001) substrate.
Kaloni, Thaneshwor P.
2013-11-01
This thesis covers the structural, electronic, magnetic, and vibrational properties of graphene and silicene. In Chapter I, we will start with an introduction to graphene and silicene. In Chapter II, we will briefly discuss about the methodology (i. e. density functional theory)In Chapter III, we will introduce band gap opening in graphene either by introducing defects/doping or by creating superlattices with h-BN substrate. In Chapter IV, we will focus on the structural and electronic properties of K and Ge-intercalated graphene on SiC(0001). In addition, the enhancement of the superconducting transition temperature in Li-decorated graphene supported by h-BN substrate will be discussed. In Chapter V, we will discuss the vibrational properties of free-standing silicene. In addition, superlattices of silicene with h-BN as well as the phase transition in silicene by applying an external electric field will be discussed. The electronic and magnetic properties transition metal decorated silicene will be discussed, in particular the realization of the quantum anomalous Hall effect will be addressed. Furthermore, the structural, electronic, and magnetic properties of Mn decorated silicene supported by h-BN substrate will be discussed. The conclusion is included in Chapters VI. Finally, we will end with references and a list of publications for this thesis.
Yao, Yin; Liu, Anping; Bai, Jianhui; Zhang, Xuanmei; Wang, Rui
2016-12-01
In this paper, we investigate the structural and electronic properties of zigzag silicene nanoribbons (ZSiNRs) with edge-chemistry modified by H, F, OH, and O, using the ab initio density functional theory method and local spin-density approximation. Three kinds of spin polarized configurations are considered: nonspin polarization (NM), ferromagnetic spin coupling for all electrons (FM), ferromagnetic ordering along each edge, and antiparallel spin orientation between the two edges (AFM). The H, F, and OH groups modified 8-ZSiNRs have the AFM ground state. The directly edge oxidized (O1) ZSiNRs yield the same energy and band structure for NM, FM, and AFM configurations, owning to the same s p (2) hybridization. And replacing the Si atoms on the two edges with O atoms (O2) yields FM ground state. The edge-chemistry-modified ZSiNRs all exhibit metallic band structures. And the modifications introduce special edge state strongly localized at the Si atoms in the edge, except for the O1 form. The modification of the zigzag edges of silicene nanoribbons is a key issue to apply the silicene into the field effect transistors (FETs) and gives more necessity to better understand the experimental findings.
First-Principles Study of Electronic Structure of Type I Hybrid Carbon-Silicon Clathrates
Chan, Kwai S.; Peng, Xihong
2016-08-01
A new class of type I hybrid carbon-silicon clathrates has been designed using computational methods by substituting some of the Si atoms in the silicon clathrate framework with carbon atoms. In this work, the electronic structure of hybrid carbon-silicon clathrates with and without alkaline or alkaline-earth metal guest atoms has been computed within the density functional theory framework. The theoretical calculations indicate that a small number of carbon substitutions in the Si46 framework slightly reduces the density of states (DOS) near the band edge and narrows the bandgap of carbon-silicon clathrates. Weak hybridization of the conduction band occurs when alkaline metal (Li, Na, K) atoms are inserted into the structure, while strong hybridization of the conduction band occurs when alkaline-earth metal (Mg, Ca, Ba) atoms are inserted into the hybrid structure. Empty C y Si46- y clathrates within the composition range of 2 ≤ y ≤ 15 can be tuned to exhibit indirect bandgaps of 1.5 eV or less, and may be considered as potential electronic materials.
GUO Han-Ying; LI Yu-Qi; WU Ke; WANG Shi-Kun
2002-01-01
In this second papcr of a scries of papers, we explore the differcnce discrete versions for the Euler-Lagrange cohomology and apply them to the symplectic or multisymplectic geometry and their preserving propertiesin both the Lagrangian and Hamiltonian formalisms for discrete mechanics and field theory in the framework of multi-parameter differential approach. In terns of the difference discrete Euler-Lagrange cohomological concepts, we show thatthe symplcctic or multisymplectic geometry and their difference discrete structure-preserving properties can always beestablished not only in thc solution spaces of the discrete Euler-Lagrange or canonical equations derived by the differencediscrete variational principle but also in the function space in each case if and only if the relevant closed Euler-Lagrangecohomological conditions are satisfied.
Bannikov, V. V.; Shein, I. R.; Ivanovskii, A. L.
2012-01-01
The structural, elastic, magnetic and electronic properties of the layered tetragonal phase KCo 2Se 2 have been examined in details by means of the first-principles calculations and analyzed in comparison with the isostructural KFe 2Se 2 as the parent phase for the newest group of ternary superconducting iron-chalcogenide materials. Our data show that KCo 2Se 2 should be characterized as a quasi-two-dimensional ferromagnetic metal with highly anisotropic inter-atomic bonding owing to mixed ionic, covalent, and metallic contributions inside [Co 2Se 2] blocks, and with ionic bonding between the adjacent [Co 2Se 2] blocks and K sheets. This material should behave in a brittle manner, adopt enhanced elastic anisotropy rather in compressibility than in shear, and should show very low hardness.
The structural, electronic and phonon behavior of CsPbI{sub 3}: A first principles study
Bano, Amreen, E-mail: banoamreen.7@gmail.com; Khare, Preeti; Parey, Vanshree; Shukla, Aarti; Gaur, N. K. [Department of Physics, Barkatullah University, Bhopal-462026 (India)
2016-05-06
Metal halide perovskites are optoelectronic materials that have attracted enormous attention as solar cells with power conversion efficiencies reaching 20%. The benefit of using hybrid compounds resides in their ability to combine the advantage of these two classes of compounds: the high mobility of inorganic materials and the ease of processing of organic materials. In spite of the growing attention of this new material, very little is known about the electronic and phonon properties of the inorganic part of this compounds. A theoretical study of structural, electronic and phonon properties of metal-halide cubic perovskite, CsPbI{sub 3} is presented, using first-principles calculations with planewave pseudopotential method as personified in PWSCF code. In this approach local density approximation (LDA) is used for exchange-correlation potential.
Role of anion doping on electronic structure and magnetism of GdN by first principles calculations
Zhang, Xuejing
2014-01-01
We have investigated the electronic structure and magnetism of anion doped GdN1-yXy (X = B, C, O, F, P, S and As) systems by first-principles calculations based on density functional theory. GdN 1-yXy systems doped by O, C, F, P, and S atoms are more stable than those doped by B and As atoms because of relatively high binding energies. The anion doping and the N defect states modify the density of states at the Fermi level, resulting in a decrease in spin polarization and a slight increase in the magnetic moment at the Gd and N sites. © 2014 The Royal Society of Chemistry.
Fuda Guo
2016-01-01
Full Text Available The phase stability, mechanical, electronic, and thermodynamic properties of In-Zr compounds have been explored using the first-principles calculation based on density functional theory (DFT. The calculated formation enthalpies show that these compounds are all thermodynamically stable. Information on electronic structure indicates that they possess metallic characteristics and there is a common hybridization between In-p and Zr-d states near the Fermi level. Elastic properties have been taken into consideration. The calculated results on the ratio of the bulk to shear modulus (B/G validate that InZr3 has the strongest deformation resistance. The increase of indium content results in the breakout of a linear decrease of the bulk modulus and Young’s modulus. The calculated theoretical hardness of α-In3Zr is higher than the other In-Zr compounds.
Jiang, Hao; Cao, Guanghan; Cao, Chao
2015-11-01
The electronic structure of quasi-one-dimensional superconductor K2Cr3As3 is studied through systematic first-principles calculations. The ground state of K2Cr3As3 is paramagnetic. Close to the Fermi level, the , dxy, and orbitals dominate the electronic states, and three bands cross EF to form one 3D Fermi surface sheet and two quasi-1D sheets. The electronic DOS at EF is less than 1/3 of the experimental value, indicating a large electron renormalization factor around EF. Despite of the relatively small atomic numbers, the antisymmetric spin-orbit coupling splitting is sizable (≈60 meV) on the 3D Fermi surface sheet as well as on one of the quasi-1D sheets. Finally, the imaginary part of bare electron susceptibility shows large peaks at Γ, suggesting the presence of large ferromagnetic spin fluctuation in the compound.
Jentschura, U D
2014-01-01
It has been a notably elusive task to find a remotely sensical ansatz for a calculation of Sommerfeld's electrodynamic fine-structure constant alpha_QED ~ 1/137.036 based on first principles. However, this has not prevented a number of researchers to invest considerable effort into the problem, despite the formidable challenges, and a number of attempts have been recorded in the literature. Here, we review a possible approach based on the quantum electrodynamic (QED) beta function, and on algebraic identities relating alpha_QED to invariant properties of "internal" symmetry groups, as well as attempts to relate the strength of the electromagnetic interaction to the natural cut-off scale for other gauge theories. Conjectures based on both classical as well as quantum-field theoretical considerations are discussed. We point out apparent strengths and weaknesses of the most prominent attempts that were recorded in the literature. This includes possible connections to scaling properties of the Einstein-Maxwell La...
First-principles studies of phase transition and structural stability of SrC2 under pressure
Lu, Yi-Lin; Zhao, Hui
2014-09-01
Pressure-induced phase transitions in SrC2 are investigated using the first-principles plane wave pseudopotential method within the generalized gradient approximation. The phase transition from monoclinic phase (CaC2-II-type, space group C2/c) to trigonal (CaC2-VII-type, space group R\\bar {3}m) structure is predicted to occur at 10.4 GPa. The high-pressure phase is thermodynamic, mechanically and dynamically stable, as verified by the calculations of its formation energy, elastic stiffness constants and phonon dispersion. Further the electronic analysis predicates this high-pressure phase to be an insulator. When increasing pressure, the ionic bond between C and Sr is strengthened, as well is the covalent bond between C and C, however, the increase of the ionic interaction between Sr and C preponderates over that of the covalent bond interaction, so the gap is narrowed.
Shi Hongliang [LCP, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China)] [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Zhang Ping, E-mail: zhang_ping@iapcm.ac.c [LCP, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China)] [Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Li Shushen [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Sun Bo [LCP, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China); Wang Baotian [Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan 030006 (China)
2009-09-21
The electronic structure, elastic constants, Poisson's ratio, and phonon dispersion curves of UC have been systematically investigated from the first-principles calculations by the projector-augmented-wave (PAW) method. In order to describe precisely the strong on-site Coulomb repulsion among the localized U 5f electrons, we adopt the local density approximation (LDA)+U and generalized gradient approximation (GGA)+U formalisms for the exchange correlation term. We systematically study how the electronic properties and elastic constants of UC are affected by the different choice of U as well as the exchange-correlation potential. We show that by choosing an appropriate Hubbard U parameter within the GGA+U approach, most of our calculated results are in good agreement with the experimental data. Therefore, the results obtained by the GGA+U with effective Hubbard parameter U chosen around 3 eV for UC are considered to be reasonable.
A first principles study of the electronic structure, elastic and thermal properties of UB2
Jossou, Ericmoore; Malakkal, Linu; Szpunar, Barbara; Oladimeji, Dotun; Szpunar, Jerzy A.
2017-07-01
Uranium diboride (UB2) has been widely deployed for refractory use and is a proposed material for Accident Tolerant Fuel (ATF) due to its high thermal conductivity. However, the applicability of UB2 towards high temperature usage in a nuclear reactor requires the need to investigate the thermomechanical properties, and recent studies have failed in highlighting applicable properties. In this work, we present an in-depth theoretical outlook of the structural and thermophysical properties of UB2, including but not limited to elastic, electronic and thermal transport properties. These calculations were performed within the framework of Density Functional Theory (DFT) + U approach, using Quantum ESPRESSO (QE) code considering the addition of Coulomb correlations on the uranium atom. The phonon spectra and elastic constant analysis show the dynamic and mechanical stability of UB2 structure respectively. The electronic structure of UB2 was investigated using full potential linear augmented plane waves plus local orbitals method (FP-LAPW+lo) as implemented in WIEN2k code. The absence of a band gap in the total and partial density of states confirms the metallic nature while the valence electron density plot reveals the presence of covalent bond between adjacent B-B atoms. We predicted the lattice thermal conductivity (kL) by solving Boltzmann Transport Equation (BTE) using ShengBTE. The second order harmonic and third-order anharmonic interatomic force constants required as input to ShengBTE was calculated using the Density-functional perturbation theory (DFPT). However, we predicted the electronic thermal conductivity (kel) using Wiedemann-Franz law as implemented in Boltztrap code. We also show that the sound velocity along 'a' and 'c' axes exhibit high anisotropy, which accounts for the anisotropic thermal conductivity of UB2.
Surface structure and hole localization in bismuth vanadate: A first principles study
Kweon, Kyoung E.; Hwang, Gyeong S.
2013-09-01
The monoclinic and tetragonal phases of bismuth vanadate (BiVO4) have been found to exhibit significantly different photocatalytic activities for water splitting. To assess a possible surface effect on the phase-dependent behavior, we calculate and compare the geometries and electronic structures of the monoclinic and tetragonal BiVO4 (001) surfaces using hybrid density functional theory. The relaxed atomic configurations of these two surfaces are found to be nearly identical, while an excess hole shows a relatively stronger tendency to localize at the surface than the bulk in both phases. Possible factors for the phase-dependent photocatalytic activity of BiVO4 are discussed.
Modelling and Analysis of the Folding Principle used in Selv-Deployable Deorbiting Space Structures
Nikolajsen, Jan Ánike; Lauridsen, Peter Riddersholm; Kristensen, Anders Schmidt
2017-01-01
An initial prototype of the Self-deployable Deorbiting Space Structure (SDSS) for semi-controlled debris removal was launched in 2014. The SDSS module consists of 3 main systems, i.e. the Drag Sail Unit (DSU), the Release Unit (RU) and the Housing Unit (HU). In the redesign, a storage lid is intr...... is introduced whereby the folded drag sail is completely separated from the HU during the release process. During the research, an updated version of the SDSS version is made for CubeSat. The prototype is for a CubeSat which will be scalable....
First Principles Study on Electronic Structures of Mn2+:CdMoO4 Crystals
WANG Xi-En; LIU Ting-Yu; ZHANG Qi-Ren; ZHANG Hai-Yan; SONG Min; GUO Xiao-Feng; YIN Ji-Gang
2008-01-01
@@ Electronic structures of the Mn2+:CdMoO4 crystal are studied within the framework of the fully relativistic self-consistent Dirac-Slater theory,using a numerically discrete variation (DV-Xα)method.The calculated results indicate that the 3d states of Mn have donor energy level in the forbidden band of CdMoO4 crystal.The transition energy of O 2p→Mn 3d is 3.12 eV under excitation corresponding electronic transition being O2-+Mn2+ hvex=3.12 eV→ O-+Mn+hvem→O2+Mn2+.
Structural,electronic and elastic properties of YCu from first principles
G.U(g)ur; M.(C)ivi; S.U(g)ur; F.Soyalp; R.Ellialtio(g)lu
2009-01-01
The structural,electronic and elastic properties of YCu compound in the B2 (CsC1) phase were investigated using the density functional theory (DFT) within the generalized gradient approximation (GGA).The electronic density of states (DOS) obtained in this way accorded well with the results of a recent study utilizing the full-potential iinearized augmented plane wave (FLAPW) method.We also found that the density of d-states at the Fermi energy was low.The calculated equilibrium properties such as lattice constant,bulk modulus and its first derivative,and the elastic constants were in good agreement with experimental and theoretical results.
Dabhi, Shweta, E-mail: venu.mankad@gmail.com; Mankad, Venu, E-mail: venu.mankad@gmail.com; Jha, Prafulla K., E-mail: venu.mankad@gmail.com [Department of Physics, Maharaja Krishnakumasinhji Bhavnagar University, Bhavnagar-364001 (India)
2014-04-24
A detailed theoretical study of structural, electronic and Vibrational properties of BeX compound is presented by performing ab-initio calculations based on density-functional theory using the Espresso package. The calculated value of lattice constant and bulk modulus are compared with the available experimental and other theoretical data and agree reasonably well. BeX (X = S,Se,Te) compounds in the ZB phase are indirect wide band gap semiconductors with an ionic contribution. The phonon dispersion curves are represented which shows that these compounds are dynamically stable in ZB phase.
Reynolds, Penny S; Michael, Mary J; Spiess, Bruce D
2017-02-09
Clinical trial success depends on appropriate management, but practical guidance to trial organisation and planning is lacking. The Incident Command System (ICS) is the 'gold standard' management system developed for managing diverse operations in major incident and public health arenas. It enables effective and flexible management through integration of personnel, procedures, resources, and communications within a common hierarchical organisational structure. Conventional ICS organisation consists of five function modules: Command, Planning, Operations, Logistics, and Finance/Administration. Large clinical trials will require a separate Regulatory Administrative arm, and an Information arm, consisting of dedicated data management and information technology staff. We applied ICS principles to organisation and management of the Prehospital Use of Plasma in Traumatic Haemorrhage (PUPTH) trial. This trial was a multidepartmental, multiagency, randomised clinical trial investigating prehospital administration of thawed plasma on mortality and coagulation response in severely injured trauma patients. We describe the ICS system as it would apply to large clinical trials in general, and the benefits, barriers, and lessons learned in utilising ICS principles to reorganise and coordinate the PUPTH trial. Without a formal trial management structure, early stages of the trial were characterised by inertia and organisational confusion. Implementing ICS improved organisation, coordination, and communication between multiple agencies and service groups, and greatly streamlined regulatory compliance administration. However, unfamiliarity of clinicians with ICS culture, conflicting resource allocation priorities, and communication bottlenecks were significant barriers. ICS is a flexible and powerful organisational tool for managing large complex clinical trials. However, for successful implementation the cultural, psychological, and social environment of trial participants must be
Structure and Properties of the Fe/Y2O3 Interface from First Principles Calculations
Choudhury, Samrat [Los Alamos National Laboratory; Stanek, Christopher R. [Los Alamos National Laboratory; Uberuaga, Blas P. [Los Alamos National Laboratory
2012-07-31
Fundamentals of radiation damage are: (1) Formation of Frenkel pair (interstitial-vacancy pair) defects in the lattice; (2) Concentration of Frenkel pair defects >>> thermal equilibrium thermodynamic concentration; and (3) The radiation damage response of a material is determined by the fate of these excess Frenkel pair defects in the lattice. The objective is to understand the electronic and atomic structure of Fe/Y{sub 2}O{sub 3} interface and segregation behavior of the alloying elements at the interface. The significance of the results of this report are: (1) Provides a science based approach to design new radiation resistant materials. Obtained two controlling parameters - Dislocation density (composition, orientation relationship) and Oxygen partial pressure; (2) Applicable to any other metal/oxide interfaces (both functional and structural properties at the interface) - (a) Nano Catalysts: Oxide-supported metal catalysts Ni/ZrO{sub 2}, (b) Thermal barrier coatings (Ni/Al{sub 2}O{sub 3}), (c) Corrosion of metals and alloys.
Band Structure and Optical Properties of Kesterite Type Compounds: first principle calculations
Palaz, S.; Unver, H.; Ugur, G.; Mamedov, A. M.; Ozbay, E.
2017-02-01
In present work, our research is mainly focused on the electronic structures, optical and magnetic properties of Cu2FeSnZ4 (Z = S, Se) compounds by using ab initio calculations within the generalized gradient approximation (GGA). The calculations are performed by using the Vienna ab-initio simulation package (VASP) based on the density functional theory. The band structure of the Cu2FeSnZ4 ( Z = S, Se) compounds for majority spin (spin-up) and minority spin (spin-down) were calculated. It is seen that for these compounds, the majority spin states cross the Fermi level and thus have the metallic character, while the minority spin states open the band gaps around the Fermi level and thus have the narrow-band semiconducting nature. For better understanding of the electronic states, the total and partial density of states were calculated, too. The real and imaginary parts of dielectric functions and hence the optical functions such as energy-loss function, the effective number of valance electrons and the effective optical dielectric constant for Cu2FeSnZ4 (Z = S, Se) compounds were also calculated.
Structural and electronic properties of wurtzite Bx Al1-x N from first-principles calculations
Zhang, Muwei
2017-06-14
The structural and electronic properties of wurtzite BAlN (0≤x≤1) are studied using density functional theory. The change of lattice parameters with increased B composition shows small bowing parameters and thus slightly nonlinearity. The bandgap exhibits strong dependence on the B composition, where transition from direct to indirect bandgap occurs at a relatively low B composition (x∼0.12) is observed, above which the bandgap of BAlN maintained indirect, thus desirable for low-absorption optical structures. The Γ-A and Γ-K indirect bandgaps are dominant at lower and higher B compositions, respectively. Density of states (DOS) of the valence band is susceptible to the B incorporation. Strong hybridization of Al, B, and N in p-states leads to high DOS near the valence band maximum. The hybridization of Al and B in s-states at lower B compositions and p-states of B at higher B compositions give rise to high DOS near lower end of the upper valence band. Charge density analysis reveals the B-N chemical bond is more covalent than the Al-N bond. This will lead to more covalent crystal with increasing B composition. Dramatic change of the heavy hole effective mass is found due to significant curvature increase of the band by minor B incorporation.
Electronic Structure of Aromatic and Quinoidic Oligothiophenes by First-principles Calculations
Mizuseki, Hiroshi; Kawazoe, Yoshiyuki
2009-03-01
Since the discovery in 1977 that trans-polyacetylene can be made electrically conducting by means of doping[1] several different conjugated polymers with interesting properties in the conducting and semiconducting phases have been discovered. Polythiophene has a typical π-conjugated system, then many polythiophenes are synthesized and several have been well characterized. Calculation systems based on neutral, doubly charged, and highly charged oligomers whose all ring are linked to have linear chains were studied as model for the polaronic defects in doped polythiophenes. The energetics of the aromatic and quinoid structures is investigated using the both ends of neutral oligomers substituted by dimethyl and dimethylen. To estimate the electronic structures, the difference between corresponding bond lengths along the C-C path of neutral, dicationic, and dianionic oligomers, were investigated. Calculations were performed on systems containing 16 monomers, by using B3LYP/6-31G(d) level of theory. References [1] C. K. Chiang et al., Phys. Rev. Lett. 39, 1098 (1977). [2] http://www-lab.imr.edu/˜mizuseki/nanowire.html
Structure reconstruction of TiO2-based multi-wall nanotubes: first-principles calculations.
Bandura, A V; Evarestov, R A; Lukyanov, S I
2014-07-28
A new method of theoretical modelling of polyhedral single-walled nanotubes based on the consolidation of walls in the rolled-up multi-walled nanotubes is proposed. Molecular mechanics and ab initio quantum mechanics methods are applied to investigate the merging of walls in nanotubes constructed from the different phases of titania. The combination of two methods allows us to simulate the structures which are difficult to find only by ab initio calculations. For nanotube folding we have used (1) the 3-plane fluorite TiO2 layer; (2) the anatase (101) 6-plane layer; (3) the rutile (110) 6-plane layer; and (4) the 6-plane layer with lepidocrocite morphology. The symmetry of the resulting single-walled nanotubes is significantly lower than the symmetry of initial coaxial cylindrical double- or triple-walled nanotubes. These merged nanotubes acquire higher stability in comparison with the initial multi-walled nanotubes. The wall thickness of the merged nanotubes exceeds 1 nm and approaches the corresponding parameter of the experimental patterns. The present investigation demonstrates that the merged nanotubes can integrate the two different crystalline phases in one and the same wall structure.
Ye Xiao-Qiu; Luo De-Li; Sang Ge; Ao Bing-Yun
2011-01-01
The alanates (complex aluminohydrides) have relatively high gravimetric hydrogen densities and are among the most promising solid-state hydrogen-storage materials. In this work, the electronic structures and the formation enthalpies of seven typical aluminum-based deuterides have been calculated by the plane-wave pseudopotential method,these being AID3, LiAID4, Li3AID6, BaAID5, Ba2AID7, LiMg(AID4)3 and LiMgAID6. The results show that all these compounds are large band gap insulators at 0 K with estimated band gaps from 2.31 eV in AID3 to 4.96 eV in LiMg(AID4)3. The band gaps are reduced when the coordination of Al varies from 4 to 6. Two peaks present in the valence bands are the common characteristics of aluminum-based deuterides containing AID4 subunits while three peaks are the common characteristics of those containing AID6 subunits. The electronic structures of these compounds are determined mainly by aluminum deuteride complexes (AID4 or AID6) and their mutual interactions. The predicted formation enthalpies are presented for the studied aluminum-based deuterides.
Structure and Coordination Investigation of Iron-ion Tinting Principle in Ferreous Glass
ZHANG Chaowu; WANG Fen
2005-01-01
The tinting phenomena of iron oxide contained glasses were studied from aspects of the electronic configuration, the iron ions coordination fields and the ions structure in glass. Several iron ion tinting forms at different redox or COD (chemical oxygen demand) conditions and their influential factors were given necessary explanations. The results reveal that the Fe3+-O-Fe2+ structure is the real tinting reason of iron involved glasses, whereas the Si4+-O-Fe3+ and Si4+-O-Fe2+ formulations modify the glass colours. Under oxidizing melting condition, the amount of 4/6-coordinated Fe3+ increases and makes the glass colour yellowish. Conversely, reducing melting condition makes the 6-coordinated Fe2+ increased and gives much blue tint to the glass. The conventional tank furnace melting the very strong reducing condition, which is of high COD glass batch, is not suitable. The high ratio of ferrous/ferric in glass can be obtained with a new refining technology which contains no or little amount of refining agent.
Kang, Dongdong; Dai, Jiayu; Yuan, Jianmin
2011-07-14
The changes of structure and distribution of dipole moment of water with temperatures up to 2800 K and densities up to 2.2 g/cm(3) are investigated using ab initio molecular dynamics. Along the isochore of 1.0 g/cm(3), the structure of liquid water above 800 K is dramatically different from that at ambient conditions, where the hydrogen-bonds network collapses. Along the isotherm of 1800 K, the transition from the liquid state to an amorphous superionic phase occurs at 2.0 g/cm(3) (32.9 GPa), which is not observed along the isotherm of 2800 K. With increasing temperature, the average dipole moment of water molecules is decreased arising from the weakened polarization by the collapse of the hydrogen-bonds network, while it is contrarily increased with compression due to the strengthening effect upon the polarization of water molecules. Both higher temperature and pressure broaden the distribution of dipole moment of water molecules due to the enhanced intramolecular charge fluctuations.
Electronic structures of Tl-based materials for γ-ray detectors; First-principles study
Song, Jung-Hwan; Jin, Hosub; Freeman, Arthur J.; Johnsen, Simon; Androulakis, John; Sebastian, Peter; Liu, Zhifu; Peter, John A.; Cho, Nam-Ki; Wessels, Bruce; Kanatzidis, Mercouri G.
2011-03-01
For Tl-based semiconductors, investigated to find good candidate materials for γ -ray detectors, we performed ab-initio calculations using the full-potential linearized augmented plane wave (FLAPW) method to find their electronic structures and to estimate their physical properties such as band gaps, effective masses, absorption coefficients, dielectric constants, and work functions. Within the LDA scheme, the underestimation of the band gap is well-known and causes serious problems in obtaining optical properties. Therefore, we adopted the screened-exchange LDA (sX-LDA) scheme and acquired correct gap values close to experimental ones. With the sX-LDA, we found that Tl 6 I4 S and Tl 6 I4 Se have direct band gaps of 2.36 and 1.88 eV, respectively, and they exhibit dispersive bands near the band edges. Based on the calculated and experimental results, we discuss the relationship between atom species/crystal structure and electronic characteristics, and suggest several materials for γ -ray detectors. Supported by NSF (Grant No. ARI-MA CMMI-0938810).
First-principles studies of electric field effects on the electronic structure of trilayer graphene
Wang, Yun-Peng; Li, Xiang-Guo; Fry, James N.; Cheng, Hai-Ping
2016-10-01
A gate electric field is a powerful way to manipulate the physical properties of nanojunctions made of two-dimensional crystals. To simulate field effects on the electronic structure of trilayer graphene, we used density functional theory in combination with the effective screening medium method, which enables us to understand the field-dependent layer-layer interactions and the fundamental physics underlying band gap variations and the resulting band modifications. Two different graphene stacking orders, Bernal (or ABC) and rhombohedral (or ABA), were considered. In addition to confirming the experimentally observed band gap opening in ABC-stacked and the band overlap in ABA-stacked trilayer systems, our results reveal rich physics in these fascinating systems, where layer-layer couplings are present but some characteristics features of single-layer graphene are partially preserved. For ABC stacking, the electric-field-induced band gap size can be tuned by charge doping, while for ABA band the tunable quantity is the band overlap. Our calculations show that the electronic structures of the two stacking orders respond very differently to charge doping. We find that in the ABA stacking hole doping can reopen a band gap in the band-overlapping region, a phenomenon distinctly different from electron doping. The physical origins of the observed behaviors were fully analyzed, and we conclude that the dual-gate configuration greatly enhances the tunability of the trilayer systems.
Wang, Yushan
2007-12-01
The formation and development of quantum theory in the first half of the 20th century has led to a revolution in our understanding of pure and applied physics. Quantum theory has nowadays demonstrated a surprisingly accurate and predictive power in modern science and engineering. In this study, an important branch of quantum theory, density functional theory (DFT), is applied to studies of TiO2 and doped TiO2, which have shown considerable applications in industry. The first chapter is an introduction to the theoretical background of DFT, in which a large quantity of efforts are focused on the analysis of exchange-correlation energy and how to approximate it by using local density approximation (LDA), generalized gradient approximation (GGA), and LDA+U, where the U is the Hubbard coefficient. This is followed in the second chapter by a discussion of practical implementations of the DFT-based calculations. We primarily introduce linearized augmented plane wave (LAPW) and augmented plane wave plus local orbital (APW+LO) methods, both of which are applied in our calculations. In chapter 3, we briefly introduce some fundamental properties of TiO2 and its applications in industry. Chapters 4 through 8 are divided into two categories. Chapters 4 through 6 are mainly concerned with insights into the mechanism of optical excitation in anatase TiO2. Chapters 7 and 8 are concerned with TiO2-based dilute magnetic semiconductors (DMS). Chapter 4 presents detailed calculations on pristine TiO2, including the structural optimization, density of states (DOS), band structure, and optical properties. Our calculations involve both bulk and slab TiO 2, presenting reasonable results without considering inherent drawbacks of the calculation methods involved. Calculations on slab TiO2 provide insight to account for the particular property of TiO2 in nanoscale particles where a significant fraction of atoms are on the surface. In chapter 5, we investigate effects of the non-metal dopants
Xie, RH; Bryant, GW; Jensen, L; Smith, VH
2003-01-01
The structural, electronic, vibrational, and magnetic properties of the C48N12 azafullerene and C-60 are comparatively studied from the first-principles calculations. Full geometrical optimization and Mulliken charge analysis are performed. Electronic structure calculations of C48N12 show that the
First-principles study of the Pd–Si system and Pd(001)/SiC(001) hetero-structure
Turchi, P.E.A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ivashchenko, V.I. [National Academy of Sciences of Ukraine (NASU), Kiev (Ukraine)
2014-11-01
First-principles molecular dynamics simulations of the Pd(001)/3C–SiC(001) nano-layered structure were carried out at different temperatures ranging from 300 to 2100 K. Various PdSi (Pnma, Fm3m, P6m2, Pm3m), Pd_{2}Si (P6⁻2m, P6_{3}/mmc, P3m1, P3⁻1m) and Pd_{3}Si (Pnma, P6_{3}22, Pm3m, I4/mmm) structures under pressure were studied to identify the structure of the Pd/Si and Pd/C interfaces in the Pd/SiC systems at high temperatures. It was found that a large atomic mixing at the Pd/Si interface occurred at 1500–1800 K, whereas the Pd/C interface remained sharp even at the highest temperature of 2100 K. At the Pd/C interface, voids and a graphite-like clustering were detected. Palladium and silicon atoms interact at the Pd/Si interface to mostly form C22-Pd_{2}Si and D0_{11}-Pd_{3}Si fragments, in agreement with experiment.
Stolbov, Sergey; Zuluaga, Sebastian
2013-02-27
We present here results of our first-principles studies of the sulfur doping effects on the electronic and geometric structures of graphitic carbon nitride (g-C(3)N(4)). Using the ab initio thermodynamics approach combined with some kinetic analysis, we reveal the favorable S-doping configurations. By analyzing the valence charge densities of the doped and undoped systems, we find that sulfur partially donates its p(x)- and p(y)- electrons to the system with some back donation to the S p(z)-states. To obtain an accurate description of the excited electronic states, we calculate the electronic structure of the systems using the GW method. The band gap width calculated for g-C(3)N(4) is found to be equal to 2.7 eV, which is in agreement with experiment. We find the S doping causes a significant narrowing of the gap. Furthermore, the electronic states just above the gap become occupied upon doping, making the material a conductor. Analysis of the projected local density of states provides an insight into the mechanism underlying such changes in the electronic structure of g-C(3)N(4) upon S doping. Based on our results, we propose a possible explanation for the S-doping effect on the photocatalytic properties of g-C(3)N(4) observed in experiments.
First-principle study on bulk and (1 1 1) surface of MP (M = K and Rb) in rocksalt structure
Gao, Qiang; Li, Lei; Xie, Huan-Huan; Lei, Gang; Deng, Jian-Bo; Hu, Xian-Ru, E-mail: huxianru@lzu.edu.cn
2015-08-01
The electronic and magnetic properties of bulk and (1 1 1) surfaces for MP (M = K and Rb) in rocksalt structure have been investigated by employing first-principle calculations. The results reveal that the compounds are half-metallic ferromagnets at the equilibrium lattice constants with large half-metallic band gaps of 0.46 and 0.74 eV. The (1 1 1) surfaces of KP and RbP keep their bulk half-metallic property. We study the stabilities of the bulk compounds and their (1 1 1) surfaces as well. The results show that those bulk compounds are more stable in the rocksalt structure than in the tetragonal structure. In addition, the K- and Rb-terminated surfaces are more stable than their P-terminated surfaces. - Highlights: • The half metallic properties of rocksalt-type KP and RbP are studied. • The Slater-Pauling behaviours, energy levels and fat-bands of them are discussed. • The properties to KP's and RBP's (1 1 1) surfaces have been investigated. • The stabilities of bulk compounds and surfaces are studied.
Nakata, Maho; Shimazaki, Tomomi
2017-06-26
Large-scale molecular databases play an essential role in the investigation of various subjects such as the development of organic materials, in silico drug design, and data-driven studies with machine learning. We have developed a large-scale quantum chemistry database based on first-principles methods. Our database currently contains the ground-state electronic structures of 3 million molecules based on density functional theory (DFT) at the B3LYP/6-31G* level, and we successively calculated 10 low-lying excited states of over 2 million molecules via time-dependent DFT with the B3LYP functional and the 6-31+G* basis set. To select the molecules calculated in our project, we referred to the PubChem Project, which was used as the source of the molecular structures in short strings using the InChI and SMILES representations. Accordingly, we have named our quantum chemistry database project "PubChemQC" ( http://pubchemqc.riken.jp/ ) and placed it in the public domain. In this paper, we show the fundamental features of the PubChemQC database and discuss the techniques used to construct the data set for large-scale quantum chemistry calculations. We also present a machine learning approach to predict the electronic structure of molecules as an example to demonstrate the suitability of the large-scale quantum chemistry database.
Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles
Wu, Zhi-Jian; Zhao, Er-Jun; Xiang, Hong-Ping; Hao, Xian-Feng; Liu, Xiao-Juan; Meng, Jian
2007-08-01
First principles calculations were performed to investigate the structural, elastic, and electronic properties of IrN2 for various space groups: cubic Fm-3m and Pa-3 , hexagonal P3221 , tetragonal P42/mnm , orthorhombic Pmmn , Pnnm , and Pnn2 , and monoclinic P21/c . Our calculation indicates that the P21/c phase with arsenopyrite-type structure is energetically more stable than the other phases. It is semiconducting (the remaining phases are metallic) and contains diatomic N-N with the bond distance of 1.414Å . These characters are consistent with the experimental facts that IrN2 is in lower symmetry and nonmetallic. Our conclusion is also in agreement with the recent theoretical studies that the most stable phase of IrN2 is monoclinic P21/c . The calculated bulk modulus of 373GPa is also the highest among the considered space groups. It matches the recent theoretical values of 357GPa within 4.3% and of 402GPa within 7.8%, but smaller than the experimental value of 428GPa by 14.7%. Chemical bonding and potential displacive phase transitions are discussed for IrN2 . For IrN3 , cubic skutterudite structure (Im-3) was assumed. Our calculation indicated that it is also promising to be superhard due to the large bulk modulus of 358GPa and shear modulus of 246GPa . The diatomic N-N bond distance is even shorter (1.272Å) .
First principle electronic, structural, elastic, and optical properties of strontium titanate
Chinedu E. Ekuma
2012-03-01
Full Text Available We report self-consistent ab-initio electronic, structural, elastic, and optical properties of cubic SrTiO3 perovskite. Our non-relativistic calculations employed a generalized gradient approximation (GGA potential and the linear combination of atomic orbitals (LCAO formalism. The distinctive feature of our computations stem from solving self-consistently the system of equations describing the GGA, using the Bagayoko-Zhao-Williams (BZW method. Our results are in agreement with experimental ones where the later are available. In particular, our theoretical, indirect band gap of 3.24 eV, at the experimental lattice constant of 3.91 Å, is in excellent agreement with experiment. Our predicted, equilibrium lattice constant is 3.92 Å, with a corresponding indirect band gap of 3.21 eV and bulk modulus of 183 GPa.
Aguiar, J; Asta, M; Gronbech-Jensen, N; Perlov, A; Milman, V; Gao, S; Pickard, C; Browning, N
2009-06-05
Energy loss spectra from a variety of cubic oxides are compared with ab-initio calculations based on the density functional plane wave method (CASTEP). In order to obtain agreement between experimental and theoretical spectra, unique material specific considerations were taken into account. The spectra were calculated using various approximations to describe core-hole effects and electronic correlations. All the calculations are based on the local spin density approximation to show qualitative agreement with the sensitive oxygen K-edge spectra in ceria, zirconia, and urania. Comparison of experimental and theoretical results let us characterize the main electronic interactions responsible for both the electronic structure and the resulting EEL spectra of the compounds in question.
Yelgel, Celal
2016-04-01
We present an extensive density functional theory (DFT) based investigation of the electronic structures of ABC-stacked N-layer graphene. It is found that for such systems the dispersion relations of the highest valence and the lowest conduction bands near the K point in the Brillouin zone are characterised by a mixture of cubic, parabolic, and linear behaviours. When the number of graphene layers is increased to more than three, the separation between the valence and conduction bands decreases up until they touch each other. For five and six layer samples these bands show flat behaviour close to the K point. We note that all states in the vicinity of the Fermi energy are surface states originated from the top and/or bottom surface of all the systems considered. For the trilayer system, N = 3, pronounced trigonal warping of the bands slightly above the Fermi level is directly obtained from DFT calculations.
LU Lai-Yu; WEI Dong-Qing; CHEN Xiang-Rong; JI Guang-Fu
2008-01-01
Structures and electronic properties of the pentaerythritol (PE) crystal under volume compression up to 0.85Vo are studied by E - V fitting method using density functional theory (DFT). The compression dependences of the cell volumes, lattice constants, and molecular geometries of solid PE are presented and discussed. It is found that the solid PE presents anisotropy along a- and c-axes, and the c axis is the most compressible. Decreasing anisotropy ratio (c/a) with elevating compression suggests an enhancement of the vdW interaction with increasing compression. The C-C and C-H bonds are significantly reduced under compression, which may be related to the sensitivity. The solid PE has indirect band gap (X - C) in the range of the researched compression and the band gap is decreased with compression.
Structure and Formation of Synthetic Hemozoin: Insights from First Principles Calculations
Marom, Noa; Tkatchenko, Alexandre; Kapishnikov, Sergey; Kronik, Leeor; Leiserowitz, Leslie
2011-03-01
Malaria has reemerged due to parasite resistance to synthetic drugs that act by inhibiting crystallization of the malaria pigment, hemozoin (HZ). Understanding the process of HZ nucleation is therefore vital. The crystal structure of synthetic HZ, β -hematin (β H), has recently been determined via x-ray diffraction. We employ van der Waals (vdW) corrected density functional theory to study the β H crystal and its repeat unit, a heme dimer. We find that vdW interactions play a major role in the binding of the heme dimer and the β H crystal. Accounting for the β H periodicity is a must for obtaining the correct geometry of the heme dimer, due to vdW interactions with adjacent dimers. The different isomers of the heme dimer are close in energy, consistent with the observed pseudo-polymorphism. We use these findings to comment on β H crystallization mechanisms.
Surface structure and hole localization in bismuth vanadate: A first principles study
Kweon, Kyoung E.; Hwang, Gyeong S. [Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712 (United States)
2013-09-23
The monoclinic and tetragonal phases of bismuth vanadate (BiVO{sub 4}) have been found to exhibit significantly different photocatalytic activities for water splitting. To assess a possible surface effect on the phase-dependent behavior, we calculate and compare the geometries and electronic structures of the monoclinic and tetragonal BiVO{sub 4} (001) surfaces using hybrid density functional theory. The relaxed atomic configurations of these two surfaces are found to be nearly identical, while an excess hole shows a relatively stronger tendency to localize at the surface than the bulk in both phases. Possible factors for the phase-dependent photocatalytic activity of BiVO{sub 4} are discussed.
Dabhi, Shweta D.; Gupta, Sanjay D.; Jha, Prafulla K.
2014-05-01
We report the results of a theoretical study on the structural, electronic, mechanical, and vibrational properties of some graphene oxide models (GDO, a-GMO, z-GMO, ep-GMO and mix-GMO) at ambient pressure. The calculations are based on the ab-initio plane-wave pseudo potential density functional theory, within the generalized gradient approximations for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus, and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies. We discuss the contribution of the phonons in the dynamical stability of graphene oxides and detailed analysis of zone centre phonon modes in all the above mentioned models. Our study demonstrates a wide range of energy gap available in the considered models of graphene oxide and hence the possibility of their use in nanodevices.
Dabhi, Shweta D. [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar 364001 (India); Gupta, Sanjay D. [V. B. Institute of Science, Department of Physics, C. U. Shah University, Wadhwan City - 363030, Surendranagar (India); Jha, Prafulla K., E-mail: prafullaj@yahoo.com [Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390002 (India)
2014-05-28
We report the results of a theoretical study on the structural, electronic, mechanical, and vibrational properties of some graphene oxide models (GDO, a-GMO, z-GMO, ep-GMO and mix-GMO) at ambient pressure. The calculations are based on the ab-initio plane-wave pseudo potential density functional theory, within the generalized gradient approximations for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus, and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies. We discuss the contribution of the phonons in the dynamical stability of graphene oxides and detailed analysis of zone centre phonon modes in all the above mentioned models. Our study demonstrates a wide range of energy gap available in the considered models of graphene oxide and hence the possibility of their use in nanodevices.
Structural, electronic, and elastic properties of CuFeS2: first-principles study
Zhou, Meng; Gao, Xiang; Cheng, Yan; Chen, Xiangrong; Cai, Lingcang
2015-03-01
The structural, electronic, and elastic properties of CuFeS2 have been investigated by using the generalized gradient approximation (GGA), GGA + U (on-site Coulomb repulsion energy), the local density approximation (LDA), and the LDA + U approach in the frame of density functional theory. It is shown that when the GGA + U formalism is selected with a U value of 3 eV for the 3d state of Fe, the calculated lattice constants agree well with the available experimental and other theoretical data. Our GGA + U calculations indicate that CuFeS2 is a semiconductor with a band gap of 0.552 eV and with a magnetic moment of 3.64 µB per Fe atom, which are well consistent with the experimental results. Combined with the density of states, the band structure characteristics of CuFeS2 have been analyzed and their origins have been specified, which reveals a hybridization existing between Fe-3d, Cu-3s, and S-3p, respectively. The charge and Mulliken population analyses indicate that CuFeS2 is a covalent crystal. Moreover, the calculated elastic constants prove that CuFeS2 is mechanically stable but anisotropic. The bulk modulus obtained from elastic constants is 87.1 GPa, which agrees well with the experimental value of 91 ± 15 GPa and better than the theoretical bulk modulus 74 GPa obtained from GGA method by Lazewski et al. The obtained shear modulus and Debye temperature are 21.0 GPa and 287 K, respectively, and the latter accords well with the available experimental value. It is expected that our work can provide useful information to further investigate CuFeS2 from both the experimental and theoretical sides.
An approach to first principles electronic structure calculation by symbolic-numeric computation
Akihito Kikuchi
2013-04-01
Full Text Available There is a wide variety of electronic structure calculation cooperating with symbolic computation. The main purpose of the latter is to play an auxiliary role (but not without importance to the former. In the field of quantum physics [1-9], researchers sometimes have to handle complicated mathematical expressions, whose derivation seems almost beyond human power. Thus one resorts to the intensive use of computers, namely, symbolic computation [10-16]. Examples of this can be seen in various topics: atomic energy levels, molecular dynamics, molecular energy and spectra, collision and scattering, lattice spin models and so on [16]. How to obtain molecular integrals analytically or how to manipulate complex formulas in many body interactions, is one such problem. In the former, when one uses special atomic basis for a specific purpose, to express the integrals by the combination of already known analytic functions, may sometimes be very difficult. In the latter, one must rearrange a number of creation and annihilation operators in a suitable order and calculate the analytical expectation value. It is usual that a quantitative and massive computation follows a symbolic one; for the convenience of the numerical computation, it is necessary to reduce a complicated analytic expression into a tractable and computable form. This is the main motive for the introduction of the symbolic computation as a forerunner of the numerical one and their collaboration has won considerable successes. The present work should be classified as one such trial. Meanwhile, the use of symbolic computation in the present work is not limited to indirect and auxiliary part to the numerical computation. The present work can be applicable to a direct and quantitative estimation of the electronic structure, skipping conventional computational methods.
The main principles of formation of structure of cultural-historical landscapes of Central Russia.
Nizovtsev, Vyacheslav; Natalia, Erman
2014-05-01
The forming and development of cultural-historical landscapes (CH) are obligate result of evolution of society and nature, as well as, man and landscapes during their coherent growth. CH landscapes are holistic historic-cultural and nature creations. They reflect the history of land use and spiritual development of ethnic community of concrete territory with determine homogeneous landscape characteristics. The majority of them appertain to the category of relict landscapes, which completed their evolution growth. That means that these are anthropogenic (AL) and cultural (CL) landscapes. They lost anthropogenic management and continue their growth obeying natural logic. These landscapes include elements of morphological structure and natural components, which have been transformed by men, and also artefacts, sociofacts and mental facts. These facts can be considered as peculiar "biographical chronicle" of activity of population in determinate landscape conditions in determinate historical period. These facts are evidences of material and spiritual cultural of society. The first AL begin to arise simultaneously with conversation of appropriating economy into generating economy. There was such conversation in Central Russia (Neolithic revolution) only in Bronze Age. Anthropogenic transformed landscape complexes and even man-made landscape complexes have been formed in Bronze Age. Some of these complexes exist now. Actual anthropogenic and cultural landscapes began to form only in Iron Age while permanent, long existed settlement and agriculture structure has organized. First, These are small settlement anthropogenic landscape complexes (selischa and gorodischa) with applied permanent miniature arable areas. These complexes located on the capes and on the areas between river banks and banks of streams. Second, these are pasture anthropogenic landscape complexes (on the level of podurochische and urochische), located in flood plain and valley-cavin position (pasture
Harne, Ryan L.; Lynd, Danielle T.
2016-08-01
Fixed in spatial distribution, arrays of planar, electromechanical acoustic transducers cannot adapt their wave energy focusing abilities unless each transducer is externally controlled, creating challenges for the implementation and portability of such beamforming systems. Recently, planar, origami-based structural tessellations are found to facilitate great versatility in system function and properties through kinematic folding. In this research we bridge the physics of acoustics and origami-based design to discover that the simple topological reconfigurations of a Miura-ori-based acoustic array yield many orders of magnitude worth of reversible change in wave energy focusing: a potential for acoustic field morphing easily obtained through deployable, tessellated architectures. Our experimental and theoretical studies directly translate the roles of folding the tessellated array to the adaptations in spectral and spatial wave propagation sensitivities for far field energy transmission. It is shown that kinematic folding rules and flat-foldable tessellated arrays collectively provide novel solutions to the long-standing challenges of conventional, electronically-steered acoustic beamformers. While our examples consider sound radiation from the foldable array in air, linear acoustic reciprocity dictates that the findings may inspire new innovations for acoustic receivers, e.g. adaptive sound absorbers and microphone arrays, as well as concepts that include water-borne waves.
An uncertainty principle underlying the pinwheel structure in the primary visual cortex
Barbieri, Davide; Sanguinetti, Gonzalo; Sarti, Alessandro
2010-01-01
The visual information in V1 is processed by an array of modules called orientation preference columns. In some species including humans, orientation columns are radially arranged around singular points like the spokes of a wheel, that are called pinwheels. The pinwheel structure has been observed first with optical imaging techniques and more recently by in vivo two-photon imaging proving their organization with single cell precision. In this research we provide evidence that pinwheels are de facto optimal distributions for coding at the best angular position and momentum. In the last years many authors have recognized that the functional architecture of V1 is locally invariant with respect to the symmetry group of rotations and translations SE(2). In the present study we show that the orientation cortical maps used to construct pinwheels can be modeled as coherent states, i.e. the configurations best localized both in angular position and angular momentum. The theory we adopt is based on the well known unce...
First-principles structure search for the stable isomers of stoichiometric WS2 nano-clusters
Hafizi, Roohollah; Alaei, Mojtaba; Jangrouei, MohammadReza; Akbarzadeh, Hadi
2016-01-01
In this paper, we employ evolutionary algorithm along with the full-potential density functional theory (DFT) computations to perform a comprehensive search for the stable structures of stoichiometric (WS2)n nano-clusters (n=1-9), within three different exchange-correlation functionals. Our results suggest that n=3, 5, 8 are possible candidates for the low temperature magic sizes of WS2 nano-clusters while at temperatures above 600 Kelvin, n=5 and 7 exhibit higher relative stability among the studied systems. The electronic properties and energy gap of the lowest energy isomers were computed within several schemes, including semilocal PBE and BLYP functionals, hybrid B3LYP functional, many body based DFT+GW approach, and time dependent DFT calculations. Vibrational spectra of the lowest lying isomers, computed by the force constant method, are used to address IR spectra and thermal free energy of the clusters. Time dependent density functional calculation in real time domain is applied to determine the full a...
Li, Kexue; Liu, Lei; Yu, Peter Y.; Chen, Xiaobo; Shen, D. Z.
2016-05-01
By converting the energy of nuclear radiation to excited electrons and holes, semiconductor detectors have provided a highly efficient way for detecting them, such as photons or charged particles. However, for detecting the radiated neutrons, those conventional semiconductors hardly behave well, as few of them possess enough capability for capturing these neutral particles. While the element Gd has the highest nuclear cross section, here for searching proper neutron-detecting semiconductors, we investigate theoretically the Gd chalcogenides whose electronic band structures have never been characterized clearly. Among them, we identify that γ-phase Gd2Se3 should be the best candidate for neutron detecting since it possesses not only the right bandgap of 1.76 eV for devices working under room temperature but also the desired indirect gap nature for charge carriers surviving longer. We propose further that semiconductor neutron detectors with single-neutron sensitivity can be realized with such a Gd-chalcogenide on the condition that their crystals can be grown with good quality.
First-principles study of atomic and electronic structures of kaolinite in soft rock
He Man-Chao; Zhao Jian; Fang Zhi-Jie
2012-01-01
Kaolinite is a kind of clay mineral which often causes large deformations in soft-rock tunnel engineering and thus causes safety issues.To deal with these engineering safety issues,the physical/chemical properties of the kaolinite should be studied from basic viewpoints.By using the density-functional theory,in this paper,the atomic and the electronic structures of the kaolinite are studied within the local-density approximation (LDA).It is found that the kaolinite has a large indirect band gap with the conduction band minimum (CBM) and the valence band maximum (VBM) being at the T and the B points,respeetively.The chemical bonding between the cation and the oxygen anion in kaolinite is mainly ionic,accompanied by a minor covalent component.It is pointed that the VBM and the CBM of kaolinite consist of oxygen 2p and cation s states,respectively.The bond lengths between different cations and anions,as well as of the different OH groups,are also compared.
Lu, Xuefeng; Gao, Xu; Li, Cuixia; Ren, Junqiang; Guo, Xin; La, Peiqing
2017-09-01
Using DFT-GGA-PW91 calculations we investigate the electronic structures and optical properties of doped GaP. It is found that the lattice constants and volume increase slightly for Al, In, As and Sb doped systems and EG distinctly decrease after doping. The formation energies are 0.587 and 0.273 eV for As and Sb doped systems, respectively, and lower remarkably than those in other systems, indicating that the stability of the two systems is higher. The direct band gap transition occurs when doped with In, As and Sb elements. The charge density difference images reveal that electron loss near Al atom is observed accompanying the enhancement of covalent bond feature, and then electron enrichment is present around N atom demonstrating that the ionic bond characteristic is obvious. The Sb-doped system has the higher static dielectric constant illustrating the applications in semiconductor devices. The absorption peak value is located at 194.7 nm for Al-doped system and this shows that the system can absorb a large amount of light and displays ;Barrier-type; characteristics in UV region. In the visible region, the doped systems have lower reflectivity coefficient, indicating that the systems all have ;clear-type; properties. This is conducive to fundamentally insights to a tunable band gap semiconductor with enormous potential in device fields.
Dappiaggi, Claudio [Erwin Schroedinger Institut fuer Mathematische Physik, Wien (Austria); Pinamonti, Nicola [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Porrmann, Martin [KwaZulu-Natal Univ. (South Africa). Quantum Research Group, School of Physics; National Institute for Theoretical Physics, Durban (South Africa)
2010-01-15
In the framework of the algebraic formulation, we discuss and analyse some new features of the local structure of a real scalar quantum field theory in a strongly causal spacetime. In particular we use the properties of the exponential map to set up a local version of a bulk-to-boundary correspondence. The bulk is a suitable subset of a geodesic neighbourhood of any but fixed point p of the underlying background, while the boundary is a part of the future light cone having p as its own tip. In this regime, we provide a novel notion for the extended *-algebra of Wick polynomials on the said cone and, on the one hand, we prove that it contains the information of the bulk counterpart via an injective *-homomorphism while, on the other hand, we associate to it a distinguished state whose pull-back in the bulk is of Hadamard form. The main advantage of this point of view arises if one uses the universal properties of the exponential map and of the light cone in order to show that, for any two given backgrounds M and M{sup '} and for any two subsets of geodesic neighbourhoods of two arbitrary points, it is possible to engineer the above procedure such that the boundary extended algebras are related via a restriction homomorphism. This allows for the pull-back of boundary states in both spacetimes and, thus, to set up a machinery which permits the comparison of expectation values of local field observables in M and M{sup '}. (orig.)
Dappiaggi, Claudio [Erwin Schroedinger Institut fuer Mathematische Physik, Wien (Austria); Pinamonti, Nicola [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Porrmann, Martin [KwaZulu-Natal Univ. (South Africa). Quantum Research Group, School of Physics; National Institute for Theoretical Physics, Durban (South Africa)
2010-01-15
In the framework of the algebraic formulation, we discuss and analyse some new features of the local structure of a real scalar quantum field theory in a strongly causal spacetime. In particular we use the properties of the exponential map to set up a local version of a bulk-to-boundary correspondence. The bulk is a suitable subset of a geodesic neighbourhood of any but fixed point p of the underlying background, while the boundary is a part of the future light cone having p as its own tip. In this regime, we provide a novel notion for the extended *-algebra of Wick polynomials on the said cone and, on the one hand, we prove that it contains the information of the bulk counterpart via an injective *-homomorphism while, on the other hand, we associate to it a distinguished state whose pull-back in the bulk is of Hadamard form. The main advantage of this point of view arises if one uses the universal properties of the exponential map and of the light cone in order to show that, for any two given backgrounds M and M{sup '} and for any two subsets of geodesic neighbourhoods of two arbitrary points, it is possible to engineer the above procedure such that the boundary extended algebras are related via a restriction homomorphism. This allows for the pull-back of boundary states in both spacetimes and, thus, to set up a machinery which permits the comparison of expectation values of local field observables in M and M{sup '}. (orig.)
Zhang, Lei; Ju, Ming-Gang; Liang, WanZhen
2016-08-17
With efficiencies exceeding 20% and low production costs, lead halide perovskite solar cells (PSCs) have become potential candidates for future commercial applications. However, there are serious concerns about their long-term stability and environmental friendliness, heavily related to their commercial viability. Herein, we present a theoretical investigation based on the ab initio molecular dynamics (AIMD) simulations and the first-principles density functional theory (DFT) calculations to investigate the effects of sunlight and moisture on the structures and properties of MAPbI3 perovskites. AIMD simulations have been performed to simulate the impact of a few water molecules on the structures of MAPbI3 surfaces terminated in three different ways. The evolution of geometric and electronic structures as well as the absorption spectra has been shown. It is found that the PbI2-terminated surface is the most stable while both the MAI-terminated and PbI2-defective surfaces undergo structural reconstruction, leading to the formation of hydrated compounds in a humid environment. The moisture-induced weakening of photoabsorption is closely related to the formation of hydrated species, and the hydrated crystals MAPbI3·H2O and MA4PbI6·2H2O scarcely absorb the visible light. The electronic excitation in the bare and water-absorbed MAPbI3 nanoparticles tends to weaken Pb-I bonds, especially those around water molecules, and the maximal decrease of photoexcitation-induced bond order can reach up to 20% in the excited state in which the water molecules are involved in the electronic excitation, indicating the accelerated decomposition of perovskites in the presence of sunlight and moisture. This work is valuable for understanding the mechanism of chemical or photochemical instability of MAPbI3 perovskites in the presence of moisture.
Tu, Bingtian; Liu, Xin; Wang, Hao; Wang, Weimin; Zhai, Pengcheng; Fu, Zhengyi
2016-12-19
The nuclear magnetic resonance (NMR) technique gives insight into the local information in a crystal structure, while Rietveld refinement of powder X-ray diffraction (PXRD) sketches out the framework of a crystal lattice. In this work, first-principles calculations were combined with the solid-state NMR technique and Rietveld refinement to explore the crystal structure of a disordered aluminum oxynitride (γ-alon). The theoretical NMR parameters (chemical shift, δiso, quadrupolar coupling constants, CQ, and asymmetry parameter, η) of Al22.5O28.5N3.5, predicted by the gauge-including projector augmented wave (GIPAW) algorithm, were used to facilitate the analytical investigation of the (27)Al magic-angle spinning (MAS) NMR spectra of the as-prepared sample, whose formula was confirmed to be Al2.811O3.565N0.435 by quantitative analysis. The experimental δiso, CQ, and η of (27)Al showed a small discrepancy compared with theoretical models. The ratio of aluminum located at the 8a to 16d sites was calculated to be 0.531 from the relative integration of peaks in the (27)Al NMR spectra. The occupancies of aluminum at the 8a and 16d positions were determined through NMR investigations to be 0.9755 and 0.9178, respectively, and were used in the Rietveld refinement to obtain the lattice parameter and anion parameter of Al2.811O3.565N0.435. The results from (27)Al NMR investigations and PXRD structural refinement complemented each other. This work provides a powerful and accessible strategy to precisely understand the crystal structure of novel oxynitride materials with multiple disorder.
Electronic structure and magnetism of Ge(Sn)TMXTe1-X (TM = V, Cr, Mn): A first principles study
Liu, Yong; Bose, S. K.; Kudrnovský, J.
2016-12-01
This work presents the results of first principles calculations of the electronic and magnetic properties of the compound SnTe and GeTe in zinc blende (ZB) and rock salt (RS) structures, doped with 3d transition metal V, Cr, and Mn. The present study, initiated from the viewpoint of potential application in spintronics, is motivated by our earlier work involving these two compounds, where the doping was limited to the Sn and Ge sublattices. In view of some discrepancies between our calculated results and the available experimental data, in this work we have examined the effect of the Te-sublattice doping. The case of Mn-doping, where the previous results of calculations seemed to differ most from the experimentally available data, is examined further by looking at the effect of Mn atoms partially occupying interstitial sites as well. From the standpoint of potential application in spintronics, we look for half-metallic (HM) states and tabulate their properties in both rock salt and zinc blende structures. ZB structure is found to be more conducive to HM state in general. Among the binary compounds we identify several HM candidates: VGe, VSn, MnGe, MnSn and MnTe at their equilibrium volumes and all in ZB structure. Estimates of the Curie temperature for the ferromagnetic compounds including the half-metals are presented. It is shown that despite the ferromagnetic (FM) nature of the Mn-Mn interaction for the Te-doped case, a simultaneous doping of both Ge(Sn)- and Te-sublattice with Mn atoms would leave the material predominantly antiferromagnetic (AFM).
GAO Xue; ZHANG Yue; SHANG Jia-Xiang
2011-01-01
We choose a Si/Ge interface as a research object to investigate the infiuence of interface disorder on thermal boundary conductance. In the calculations, the diffuse mismatch model is used to study thermal boundary conductance between two non-metallic materials, while the phonon dispersion relationship is calculated by the first-principles density functional perturbation theory. The results show that interface disorder limits thermal transport. The increase of atomic spacing at the interface results in weakly coupled interfaces and a decrease in the thermal boundary conductance. This approach shows a simplistic method to investigate the relationship between microstructure and thermal conductivity.%We choose a Si/Ge interface as a research object to investigate the influence of interface disorder on thermal boundary conductance.In the calculations,the diffuse mismatch model is used to study thermal boundary conductance between two non-metallic materials,while the phonon dispersion relationship is calculated by the first-principles density functional perturbation theory.The results show that interface disorder limits thermal transport.The increase of atomic spacing at the interface results in weakly coupled interfaces and a decrease in the thermal boundary conductance.This approach shows a simplistic method to investigate the relationship between microstructure and thermal conductivity.It is well known that interfaces can play a dominant role in the overall thermal transport characteristics of structures whose length scale is less than the phonon mean free path.When heat flows across an interface between two different materials,there exists a temperature jump at the interface.Thermal boundary conductance (TBC),which describes the efficiency of heat flow at material interfaces,plays an importance role in the transport of thermal energy in nanometerscale devices,semiconductor superlattices,thin film multilayers and nanocrystalline materials.[1
Liang, Pei, E-mail: plianghust@gmail.com [College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 (China); Liu, Yang [College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 (China); Hu, Xing-Hua [Huazhong University of Science and Technology, Wuhan 430074 (China); Wang, Le; Dong, Qian-min; Jing, Xu-feng [College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 (China)
2014-04-15
We present numerically the ferromagnetic and spin-resolved electronic properties of Ti-doped AlP system by using first principle based on spin density functional theory. It is found that Ti impurities are spin-polarized, and it suggests a 100% polarization of the conduction carriers from the calculated band structures. Besides, the net magnetic moment of about 1 μ{sub B} per Ti is demonstrated. The ferromagnetic state of 115.7 meV per Ti atom, lower than the anti-ferromagnetic state, is obtained by total energy calculation for both GGA and GGA+U method. And the Curie temperature, higher than 599 K, in Ti-doped AlP is predicted using mean-field approximation (MFA) theory. Both double-exchange and p–d hybridization mechanism contribute to the ferromagnetic ground state of Ti-doped AlP, but the former is dominant. Therefore, it is expected that Ti-doped AlP would be a promising dilute magnetic semiconductor for the applications in the field of Spintronics. - Highlights: • It is found that Ti impurities are spin-polarized, and it suggests a 100% polarization of the conduction carriers for Ti doped AlP. • The Curie temperature, higher than 599 K in Ti-doped AlP is predicted using mean-field approximation (MFA) theory and first principles method combinational with Monte Carlo method. • The double-exchange and p–d hybridization mechanism are also used to explain the ferromagnetic ground state of Ti-doped AlP.
Ul Islam, A. K. M. Farid; Helal, M. A.; Liton, M. N. H.; Kamruzzaman, M.; Islam, H. M. Tariqul
2017-04-01
The optical properties of BiOCu Ch and their dependency on the electronic structures are investigated using first principles study. Modified Perdew-Burke-Ernzerhof generalized gradient approximation functional for solids are used to optimize lattice parameters. These optimized lattice parameters are used to calculate the electronic energy band, density of state and optical properties. It is observed that the optical constants are dependent on the energy band gap and also on the contribution of Copper and Chalcogen atoms in the formation of electronic band structure. The obtained results reveal that the optical constants are dominated by the inter-band transitions. In the case of higher incident photon energy these materials behave like metal, where optical constants are dominated by the free carriers. The obtained optical band gaps 0.60, 0.56 and 0.55 eV for BiOCuS, BiOCuSe and BiOCuTe, respectively are consistent with available theoretical results. We also calculate the carrier concentration, electrical conductivity, effective mass of the carrier and their temperature dependency using semi-classical BoltzTraP package. Among these three materials BiOCuTe shows higher electrical conductivity. Analyzing their optical properties, we conclude that these materials are useful in the optoelectronic devices such as coating materials, high frequency reflector, infrared radiation detector and emitter and also important to design quantum devices.
First-principles study on electronic structure, magnetic and dielectric properties of Cr-doped Fe3C
杨建平; 陈津; 李伟; 韩培德; 郭丽娜
2016-01-01
The first-principles calculations were performed to investigate the electronic structure, magnetic and dielectric properties of Cr-doped Fe3C, in comparison to those of pure Fe3C and Cr3C. The obtained results show that the thermodynamic stability of Cr- doped Fe3C becomes weaker in terms of the larger formation enthalpy, on the contrary, the metallicity and covalency are found to strengthen to some extent. The magnetic moments of Fe3C, Fe11CrC4(g), and Fe11CrC4(s) are respectively 21.36μB/cell, 16.92μB/cell, and 17.62μB/cell, and in Fe11CrC4(g) and Fe11CrC4(s), the Fe of Wyckoff positions of 8d and 4c is substituted by Cr. The local magnetic moment of Cr at 8d site is larger than that at 4c site in the doped structure, which is opposite to that of Fe. In low frequency band, the permittivity follows the ranking of Fe11CrC4(s)>Cr3C>Fe11CrC4(g)>Fe3C. Once exceeding a certain frequency, the sequence will be broken. Besides the electron transition, the polarization of atoms also makes a contribution to the dielectric properties.
Ma, Liang-Cai; Zhang, Jian-Min; Xu, Ke-Wei
2012-02-01
We present a systematic study on the structural and electronic properties of close-packed Cu nanowires encapsulated in a series of zigzag ( n,0) BeONTs using first-principles calculations. The initial shapes (cylindrical CuNWs and BeONTs) are preserved without any visible changes for the Cu m@( n,0) ( m=6 or 8, 8≤ n≤14) combined systems. The most stable combined systems are Cu 6@(10,0) and Cu 8@(11,0) with an optimal tube-wire distance of about 2.8 Å and a simple superposition of the band structures of their components near the Fermi level. A quantum conductance of 3G 0 is obtained for both Cu 6 and Cu 8 nanowires in either free-standing state or filled into BeONTs. The electron transport will occur only through the inner CuNW and the inert outer BeONT serves well as insulating cable sheath. So the Cu 6@(10,0) and Cu 8@(11,0) combined systems is top-priority in the ULSI circuits and MEMS devices that demand steady transport of electrons.
Ma Liangcai [College of Physics and Information Technology, Shaanxi Normal University, Xian 710062, Shaanxi (China); School of Physics and Electrical Information Engineering, Ningxia University, Yinchuan 750021, Ningxia (China); Zhang Jianmin, E-mail: jianm_zhang@yahoo.com [College of Physics and Information Technology, Shaanxi Normal University, Xian 710062, Shaanxi (China); Xu Kewei [Department of Physics, Xian University of Arts and Science, Xian 710065, Shaanxi (China)
2012-02-15
We present a systematic study on the structural and electronic properties of close-packed Cu nanowires encapsulated in a series of zigzag (n,0) BeONTs using first-principles calculations. The initial shapes (cylindrical CuNWs and BeONTs) are preserved without any visible changes for the Cu{sub m}-(n,0) (m=6 or 8, 8{<=}n{<=}14) combined systems. The most stable combined systems are Cu{sub 6}-(10,0) and Cu{sub 8}-(11,0) with an optimal tube-wire distance of about 2.8 Angstrom-Sign and a simple superposition of the band structures of their components near the Fermi level. A quantum conductance of 3G{sub 0} is obtained for both Cu{sub 6} and Cu{sub 8} nanowires in either free-standing state or filled into BeONTs. The electron transport will occur only through the inner CuNW and the inert outer BeONT serves well as insulating cable sheath. So the Cu{sub 6}-(10,0) and Cu{sub 8}-(11,0) combined systems is top-priority in the ULSI circuits and MEMS devices that demand steady transport of electrons.
Busemeyer, Brian; Dagrada, Mario; Sorella, Sandro; Casula, Michele; Wagner, Lucas K.
2016-07-01
Resolving the interplay between magnetic interactions and structural properties in strongly correlated materials through a quantitatively accurate approach has been a major challenge in condensed-matter physics. Here we apply highly accurate first-principles quantum Monte Carlo (QMC) techniques to obtain structural and magnetic properties of the iron selenide (FeSe) superconductor under pressure. Where comparable, the computed properties are very close to the experimental values. Of potential ordered magnetic configurations, collinear spin configurations are the most energetically favorable over the explored pressure range. They become nearly degenerate in energy with bicollinear spin orderings at around 7 GPa, when the experimental critical temperature Tc is the highest. On the other hand, ferromagnetic, checkerboard, and staggered dimer configurations become relatively higher in energy as the pressure increases. The behavior under pressure is explained by an analysis of the local charge compressibility and the orbital occupation as described by the QMC many-body wave function, which reveals how spin, charge, and orbital degrees of freedom are strongly coupled in this compound. This remarkable pressure evolution suggests that stripelike magnetic fluctuations may be responsible for the enhanced Tc in FeSe and that higher Tc is associated with nearness to a crossover between collinear and bicollinear ordering.
Adebambo, Paul O. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; McPherson Univ., Abeokuta (Nigeria). Dept. of Physical and Computer Sciences; Adetunji, Bamidele I. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; Bells Univ. of Technology, Oto (Nigeria). Dept. of Mathematics; Olowofela, Joseph A. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; Oguntuase, James A. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Mathematics; Adebayo, Gboyega A. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)
2016-05-01
In this work, detailed first-principles calculations within the generalised gradient approximation (GGA) of electronic, structural, magnetic, and optical properties of Ni,Ti, and Al-based Heusler alloys are presented. The lattice parameter of C1{sub b} with space group F anti 43m (216) NiTiAl alloys is predicted and that of Ni{sub 2}TiAl is in close agreement with available results. The band dispersion along the high symmetry points W→L→Γ→X→W→K in Ni{sub 2}TiAl and NiTiAl Heusler alloys are also reported. NiTiAl alloy has a direct band gap of 1.60 eV at Γ point as a result of strong hybridization between the d state of the lower and higher valence of both the Ti and Ni atoms. The calculated real part of the dielectric function confirmed the band gap of 1.60 eV in NiTiAl alloys. The present calculations revealed the paramagnetic state of NiTiAl. From the band structure calculations, Ni{sub 2}TiAl with higher Fermi level exhibits metallic properties as in the case of both NiAl and Ni{sub 3}Al binary systems.
Kanagaprabha, S.; Asvinimeenaatci, A. T.; Rajeswarapalanichamy, R.; Iyakutti, K.
2012-01-01
First principles calculation were performed using Vienna ab-initio simulation package within the frame work of density functional theory (DFT) to understand the electronic properties of magnesium hydride. At normal pressure, the most stable structure of MgH 2 is rutile type with a wide band gap of 3.52 eV, which agrees well with the available data. A pressure induced semi-conductor to metallic transition at a pressure of 92.54 GPa is predicted. Our results indicate a sequence of pressure induced structural phase transition in MgH 2. The obtained sequence of phase transition was α→γ→β→δ→ε at a pressure of 0.37 GPa, 3.89 GPa,7.23 GPa and 11.26 GPa, respectively. Thus our results indicate that MgH 2 is one of the best hydrogen storage material and the maximum storage capacity achieved was 7.7%.
Caliskan, S., E-mail: scaliskan@fatih.edu.tr; Guner, S.
2015-01-15
Highlights: • An atomic configuration joining the electrodes can govern spin resolved transport. • Co position and concentration in ZnO have a crucial effect on electronic behavior. • It is possible to obtain high spin polarization in Al–Co doped ZnO–Al systems. • Al–Co doped ZnO–Al device structures reveal Schottky-like contact at the interface. - Abstract: Employing first principles, Co doped ZnO systems between the Al electrodes were investigated through the Density Functional Theory combined with Non Equilibrium Green’s Function Formalism. Electronic transport properties of these systems, in the presence of spin property, were revealed using substitutional Co atoms in a supercell. Spin resolved electronic behavior was observed to be crucially governed by atomic configuration, defined by doping position and concentration, of the system joining the electrodes. Using this feature, one can manipulate both the electronic transport and magnetic properties of an Al–Co doped ZnO–Al device structure. A nonlinearity was exhibited in current–voltage characteristics for Co doped ZnO systems attached to the Al electrodes, which implies a Schottky-like contact at the interface. The induced magnetic moment and spin polarization in the system, yielding the spin dependent transport, were elucidated.
Ul Islam, A. K. M. Farid; Helal, M. A.; Liton, M. N. H.; Kamruzzaman, M.; Islam, H. M. Tariqul
2016-11-01
The optical properties of BiOCuCh and their dependency on the electronic structures are investigated using first principles study. Modified Perdew-Burke-Ernzerhof generalized gradient approximation functional for solids are used to optimize lattice parameters. These optimized lattice parameters are used to calculate the electronic energy band, density of state and optical properties. It is observed that the optical constants are dependent on the energy band gap and also on the contribution of Copper and Chalcogen atoms in the formation of electronic band structure. The obtained results reveal that the optical constants are dominated by the inter-band transitions. In the case of higher incident photon energy these materials behave like metal, where optical constants are dominated by the free carriers. The obtained optical band gaps 0.60, 0.56 and 0.55 eV for BiOCuS, BiOCuSe and BiOCuTe, respectively are consistent with available theoretical results. We also calculate the carrier concentration, electrical conductivity, effective mass of the carrier and their temperature dependency using semi-classical BoltzTraP package. Among these three materials BiOCuTe shows higher electrical conductivity. Analyzing their optical properties, we conclude that these materials are useful in the optoelectronic devices such as coating materials, high frequency reflector, infrared radiation detector and emitter and also important to design quantum devices.
Dri, Fernando L.; Shang, ShunLi; Hector, Louis G., Jr.; Saxe, Paul; Liu, Zi-Kui; Moon, Robert J.; Zavattieri, Pablo D.
2014-12-01
Anisotropy and temperature dependence of structural, thermodynamic and elastic properties of crystalline cellulose Iβ were computed with first-principles density functional theory (DFT) and a semi-empirical correction for van der Waals interactions. Specifically, we report the computed temperature variation (up to 500 K) of the monoclinic cellulose Iβ lattice parameters, constant pressure heat capacity, Cp, entropy, S, enthalpy, H, the linear thermal expansion components, ξi, and components of the isentropic and isothermal (single crystal) elastic stiffness matrices, CijS (T) and CijT (T) , respectively. Thermodynamic quantities from phonon calculations computed with DFT and the supercell method provided necessary inputs to compute the temperature dependence of cellulose Iβ properties via the quasi-harmonic approach. The notable exceptions were the thermal conductivity components, λi (the prediction of which has proven to be problematic for insulators using DFT) for which the reverse, non-equilibrium molecular dynamics approach with a force field was applied. The extent to which anisotropy of Young's modulus and Poisson's ratio is temperature-dependent was explored in terms of the variations of each with respect to crystallographic directions and preferred planes containing specific bonding characteristics (as revealed quantitatively from phonon force constants for each atomic pair, and qualitatively from charge density difference contours). Comparisons of the predicted quantities with available experimental data revealed reasonable agreement up to 500 K. Computed properties were interpreted in terms of the cellulose Iβ structure and bonding interactions.
First-principles calculations of structural, electronic and optical properties of CdxZn1-xS alloys
Noor, Naveed Ahmed
2010-10-01
Structural, electronic and optical properties of ternary alloy system CdxZn1-xS have been studied using first-principles approach based on density functional theory. Electronic structure, density of states and energy band gap values for CdxZn1-xS are estimated in the range 0 ≤ x ≤ 1 using both the standard local density approximation (LDA) as well as the generalized gradient approximations (GGA) of Wu-Cohen (WC) for the exchange-correlation potential. It is observed that the direct band gap EgΓ-Γ of CdxZn1-xS decreases nonlinearly with the compositional parameter x, as observed experimentally. It is also found that Cd s and d, S p and Zn d states play a major role in determining the electronic properties of this alloy system. Furthermore, results for complex dielectric constant ε(ω), refractive index n(ω), normal-incidence reflectivity R(ω), absorption coefficient α(ω) and optical conductivity σ(ω) are also described in a wide range of the incident photon energy and compared with the existing experimental data. © 2010 Elsevier B.V. All rights reserved.
SANTOSH SINGH; MADHVENDRA NATH TRIPATHI
2017-07-01
First-principles study based on density functional theory $\\rm{(DFT)}$ of two prominent phases, the rutile and the anatase phases, of titanium dioxide $\\rm{(TiO_2)}$ are reported within the generalized gradient approximation $\\rm{(GGA)}$. Our calculated band structure shows that there is a significant presence of O-2p and Ti-3d hybridization in the valence bands. These bands are well separated from the conduction bands by a direct band gap value of 1.73 eV in the rutile phase and an indirect band gap value of 2.03 eV in the anatase phase, from $\\Gamma$ to $\\rm{X}$. Our calculations reproduced the peaks in the conduction and valence band, are in good agreement with experimental observations.Our structural optimization for the rutile and anatase phase led to lattice parameter values of 4.62 Å and 2.99 Å rutile and 3.80 Å and 9.55 Å for anatase for $a$ and $c$. The static dielectric values 7.0 and 5.1 for the rutile and anatase phases respectively are in excellent agreement with experimental results. Our calculation of optical properties reveals that maximum value of the transmittance in anatase phase of $\\rm{(TiO_2)}$ may be achieved by considering the anisotropic behaviour of the optical spectra in the optical region for transparent conducting application.
Chou, M.Y.
1993-05-01
First-principles calculations were carried for the hydrogen-yttrium system using the pseudopotential method within the local density functional approximation (LDA). We have studied the nature of hydrogen pairing in the solid solution phase ({alpha}-YH{sub x}.) and identified the connection with electronic structure. The vibrational spectra, diffusion barrier, and migration path were also investigated. We have also studied the binding characteristics for different interstitial sites and the (420)-plane ordering of octahedral hydrogen in {beta}YH{sub 2+x} within the lattice gas model. Temperature-composition phase diagram was calculated by cluster variational method with the multibody interactions extracted from total energies of related ordered structures. Moreover, the discovery of Peierls distortions in YH{sub 3} explained the unusual hydrogen displacements found in neutron diffraction and the possibility of an excitonic insulating ground state was speculated. Several new improvements in the calculational techniques also been developed: Separable nonlocal pseudopotentials, scheme to calculate the full phonon spectrum, and distance dependent tight-binding parameters. The Ru(0001)-H system was also studied.
Mechanical Properties and Electronic Structure of N and Ta Doped TiC: A First-Principles Study
Ma, Shi-Qing; Liu, Ying; Ye, Jin-Wen; Wang, Bin
2014-12-01
The first principles calculations based on density functional theory (DFT) are employed to investigate the mechanical properties and electronic structure of N and Ta doped TiC. The result shows that the co-doping of nitrogen and tantalum dilates the lattice constant and improves the stability of TiC. Nitrogen and tantalum can signiβcantly enhance the elastic constants and elastic moduli of TiC. The results of B/G and C12-C44 indicate tantalum can markedly increase the ductility of TiC. The electronic structure is calculated to describe the bonding characteristic, which revealed the strong hybridization between C-p and Ta-d and between N-p and Ti-d. The hardnessis is estimated by a semi-empirical model that is based on the Mulliken overlap population and bond length. While the weakest bond takes determinative role of the hardness of materials, the addition of Ta sharply reduces the hardness of TiC.
Interfacial bonding and electronic structure of GaN/GaAs interface: A first-principles study
Cao, Ruyue; Zhang, Zhaofu; Wang, Changhong; Li, Haobo; Dong, Hong; Liu, Hui; Wang, Weichao, E-mail: weichaowang@nankai.edu.cn [College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071 (China); Xie, Xinjian [College of Materials Science, Hebei Technology University, Tianjin 300401 (China)
2015-04-07
Understanding of GaN interfacing with GaAs is crucial for GaN to be an effective interfacial layer between high-k oxides and III-V materials with the application in high-mobility metal-oxide-semiconductor field effect transistor (MOSFET) devices. Utilizing first principles calculations, here, we investigate the structural and electronic properties of the GaN/GaAs interface with respect to the interfacial nitrogen contents. The decrease of interfacial N contents leads to more Ga dangling bonds and As-As dimers. At the N-rich limit, the interface with N concentration of 87.5% shows the most stability. Furthermore, a strong band offsets dependence on the interfacial N concentration is also observed. The valance band offset of N7 with hybrid functional calculation is 0.51 eV. The electronic structure analysis shows that significant interface states exist in all the GaN/GaAs models with various N contents, which originate from the interfacial dangling bonds and some unsaturated Ga and N atoms. These large amounts of gap states result in Fermi level pinning and essentially degrade the device performance.
Electronic structure and optical properties of prominent phases of TiO2: First-principles study
Singh, Santosh; Tripathi, Madhvendra Nath
2017-07-01
First-principles study based on density functional theory (DFT) of two prominent phases, the rutile and the anatase phases, of titanium dioxide (TiO_2) are reported within the generalized gradient approximation (GGA). Our calculated band structure shows that there is a significant presence of O-2p and Ti-3d hybridization in the valence bands. These bands are well separated from the conduction bands by a direct band gap value of 1.73 eV in the rutile phase and an indirect band gap value of 2.03 eV in the anatase phase, from Γ to X. Our calculations reproduced the peaks in the conduction and valence band, are in good agreement with experimental observations. Our structural optimization for the rutile and anatase phase led to lattice parameter values of 4.62 Å and 2.99 Å rutile and 3.80 Å and 9.55 Å for anatase for a and c. The static dielectric values 7.0 and 5.1 for the rutile and anatase phases respectively are in excellent agreement with experimental results. Our calculation of optical properties reveals that maximum value of the transmittance in anatase phase of TiO_2 may be achieved by considering the anisotropic behaviour of the optical spectra in the optical region for transparent conducting application.
Zhao Hongsheng [Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011 (China); Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Chang Aimin, E-mail: changam@ms.xjb.ac.c [Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011 (China); Wang Yunlan [Center for High Performance Computing, Northwestern Polytechnical University, Xi' an 710072 (China)
2009-08-01
We investigated the structural, elastic, and electronic properties of the cubic perovskite-type BaHfO{sub 3} using a first-principles method based on the plane-wave basis set. Analysis of the band structure shows that perovskite-type BaHfO{sub 3} is a wide gap indirect semiconductor. The band-gap is predicted to be 3.94 eV within the screened exchange local density approximation (sX-LDA). The calculated equilibrium lattice constant of this compound is in good agreement with the available experimental and theoretical data reported in the literatures. The independent elastic constants (C{sub 11}, C{sub 12}, and C{sub 44}), bulk modules B and its pressure derivatives B{sup '}, compressibility beta, shear modulus G, Young's modulus Y, Poisson's ratio nu, and Lame constants (mu,lambda) are obtained and analyzed in comparison with the available theoretical and experimental data for both the singlecrystalline and polycrystalline BaHfO{sub 3}. The bonding-charge density calculation make it clear that the covalent bonds exist between the Hf and O atoms and the ionic bonds exist between the Ba atoms and HfO{sub 3} ionic groups in BaHfO{sub 3}.
Marek Stříteský
2014-03-01
Full Text Available This paper describes new trends related to the concepts contained in HR organizational structures within Czech organizations. In addition, it describes the specifics of the roles played by HR in those organizations which have transformed their HR departments in terms of the principles of the HR Business Partner Model, both in theory based on available resources, and at the practical level based on the results of primary examination. The goal of this paper is to present the key perceptions of the changes made in the HR structure within the organizations, as well as the impact of these changes on the effectiveness of the HR departments concerned. Another goal of the paper is to summarize the responsibilities of the newly created position known as the HR Business Partner in these organizations as well as the demands placed upon the personnel employed in the HR Business Partner role. The paper offers conclusions based on the results of both quantitative and qualitative surveys. It also contains a case study of one organization which has one of the best transformed HR departments, and whose services are classified, by internal clients, as being of high quality.
Xu, Lei; Wang, Dai-Hua; Fu, Qiang; Yuan, Gang; Hu, Lei-Zi
2016-11-01
In this paper, the principle and structure of the four-bar linkage prosthetic knee based on the magnetorheological effect (FLPKME) are proposed and realized by individually integrating the upper and lower link rods of the four-bar linkage with the piston rod and the outer cylinder of the magnetorheological (MR) damper. The integrated MR damper, in which the MR fluid is operated in the shear mode, has a double-ended structure. The prototype of the FLPKME is designed and fabricated. Utilizing the developed FLPKME, the lower limb prosthesis is developed, modeled, and simulated. On these bases, the control algorithm for the FLPKME is developed. A test platform for the FLPKME is developed and the performance of the FLPKME with seven constant currents and controlled currents by the control algorithm developed in this paper are experimentally tested. The results show that the FLPKME with a constant current of 1.6 A possesses the basic stable gait, and the FLPKME with the controlled currents by the control algorithm developed in this paper is able to track the motions well and to imitate the natural motions of a healthy human knee joint.
Mahmood, Asad; Tezcan, Fatih; Kardaş, Gülfeza; Karadaǧ, Faruk
2017-09-01
Incorporating impurities in ZnO provide opportunities to manipulate its electronic and optical properties, which can be exploited for optoelectronic device applications. Among various elements doped in ZnO crystal structure, limited attempts have been accounted for the Sr-doped ZnO system. Further, no theoretical evidence has been reported so far to explore the Sr-doped ZnO frameworks. Here, we report first principle study for the pure and Sr-doped ZnO (Zn1-xSrxO) structure. We employed the Perdew-Burke-Ernzerhof exchange-correlation function parameters in generalized gradient approximations. In light of these estimations, we calculated the electronic band gap, density of states, and optical parameters, for example, absorption, dielectric functions, reflectivity, refractive index, and energy-loss. The studies suggested that Sr incorporation expanded the optical band gap of ZnO. In addition, the energy-loss significantly increased with Sr content which might be associated with an increase in the degree of disorder in the crystal lattice with Sr incorporation. Also, significant changes were seen in the optical properties of ZnO with Sr content in the low energy region. The theoretical results were likewise compared with the previously reported experimental data.
Rak, Zs.; O'Brien, C. J.; Brenner, D. W.; Andersson, D. A.; Stanek, C. R.
2016-09-01
The results of recent studies are discussed in which first principles calculations at the atomic level have been used to expand the thermodynamic database for science-based predictive modeling of the chemistry, composition and structure of unwanted oxides that deposit on the fuel rods in pressurized light water nuclear reactors. Issues discussed include the origin of the particles that make up deposits, the structure and properties of the deposits, and the forms by which boron uptake into the deposits can occur. These first principles approaches have implications for other research areas, such as hydrothermal synthesis and the stability and corrosion resistance of other materials under other extreme conditions.
Rameshe, Balasubramaniam; Murugan, Ramaswamy; Palanivel, Balan
2016-12-01
First principle calculations are performed to investigate the electronic structure, structural phase stability, optical and vibrational properties of double perovskite oxide semiconductors namely Ba2ScMO6 (M = Nb, Ta) in the cubic symmetry using WIEN2k. In order to study the ground state properties of these compounds, the total energies are calculated as a function of reduced volumes and fitted with Brich Murnaghan equation. The estimated ground state parameters are comparable with the available experimental data. Calculations of electronic band structure on these compounds reveal that both Ba2ScNbO6 and Ba2ScTaO6 exhibit a semiconducting behavior with a direct energy gap of 2.78 and 3.15 eV, respectively. To explore the optical transitions in these compounds, the real and imaginary parts of the dielectric function, refractive index, extinction coefficient, reflectivity, optical absorption coefficient, real part of optical conductivity and the energy-loss function are calculated at ambient pressure and analyzed. The collective Raman active modes of the atoms of these materials are also calculated in order to understand the structural stability of these compounds.
Structure of the hDmc1-ssDNA filament reveals the principles of its architecture.
Andrei L Okorokov
Full Text Available In eukaryotes, meiotic recombination is a major source of genetic diversity, but its defects in humans lead to abnormalities such as Down's, Klinefelter's and other syndromes. Human Dmc1 (hDmc1, a RecA/Rad51 homologue, is a recombinase that plays a crucial role in faithful chromosome segregation during meiosis. The initial step of homologous recombination occurs when hDmc1 forms a filament on single-stranded (ss DNA. However the structure of this presynaptic complex filament for hDmc1 remains unknown. To compare hDmc1-ssDNA complexes to those known for the RecA/Rad51 family we have obtained electron microscopy (EM structures of hDmc1-ssDNA nucleoprotein filaments using single particle approach. The EM maps were analysed by docking crystal structures of Dmc1, Rad51, RadA, RecA and DNA. To fully characterise hDmc1-DNA complexes we have analysed their organisation in the presence of Ca2+, Mg2+, ATP, AMP-PNP, ssDNA and dsDNA. The 3D EM structures of the hDmc1-ssDNA filaments allowed us to elucidate the principles of their internal architecture. Similar to the RecA/Rad51 family, hDmc1 forms helical filaments on ssDNA in two states: extended (active and compressed (inactive. However, in contrast to the RecA/Rad51 family, and the recently reported structure of hDmc1-double stranded (ds DNA nucleoprotein filaments, the extended (active state of the hDmc1 filament formed on ssDNA has nine protomers per helical turn, instead of the conventional six, resulting in one protomer covering two nucleotides instead of three. The control reconstruction of the hDmc1-dsDNA filament revealed 6.4 protein subunits per helical turn indicating that the filament organisation varies depending on the DNA templates. Our structural analysis has also revealed that the N-terminal domain of hDmc1 accomplishes its important role in complex formation through domain swapping between adjacent protomers, thus providing a mechanistic basis for coordinated action of hDmc1 protomers
Improved hybrid optimization algorithm for 3D protein structure prediction.
Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang
2014-07-01
A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.
Chi, Do Minh
2001-01-01
We advance a famous principle - causality principle - but under a new view. This principle is a principium automatically leading to most fundamental laws of the nature. It is the inner origin of variation, rules evolutionary processes of things, and the answer of the quest for ultimate theories of the Universe.
Ma, Liang-Cai; Zhang, Yan; Zhang, Jian-Min; Xu, Ke-Wei
2011-09-01
We present a systemic study of the structural and electronic properties of Cu n nanowires ( n=5, 9 and 13) encapsulated in armchair (8,8) gallium nitride nanotubes (GaNNTs) using the first-principles calculations. We find that the formation processes of these systems are all exothermic. The initial shapes are preserved without any visible changes for the Cu 5@(8,8) and Cu 9@(8,8) combined systems, but a quadratic-like cross-section shape is formed for the outer nanotube of the Cu 13@(8,8) combined system due to the stronger attraction between nanowire and nanotube. The electrons of Ga and N atoms in outer GaN sheath affect the electron conductance of the encapsulated metallic nanowire in the Cu 13@(8,8) combined system. But in the Cu 5@(8,8) and Cu 9@(8,8) combined systems, the conduction electrons are distributed only on the copper atoms, so charge transport will occur only in the inner copper nanowire, which is effectively insulated by the outer GaN nanotube. Considering the maximal metal filling ratio in nanotube, we know that the Cu 9@(8,8) combined system is top-priority in the ultra-large-scale integration (ULSI) circuits and micro-electromechanical systems (MEMS) devices that demand steady transport of electrons.
Electronic structures and optical properties of Nb-doped SrTiO3 from first principles
Shujuan, Jiao; Jinliang, Yan; Guipeng, Sun; Yinnü, Zhao
2016-07-01
The n-type Nb-doped SrTiO3 with different doping concentrations were studied by first principles calculations. The effects of Nb concentration on the formation enthalpy, electronic structure and optical property were investigated. Results show that Nb preferentially enters the Ti site in SrTiO3, which is in good agreement with the experimental observation. The Fermi level of Nb-doped SrTiO3 moves into the bottom of the conduction band, and the system becomes an n-type semiconductor. The effect of Nb-doping concentration on the conductivity was discussed from the microscopic point of view. Furthermore, the 1.11 at% Nb-doped SrTiO3 shows strong absorption in the visible light and becomes a very useful material for photo-catalytic activity. The 1.67 at% and 2.5 at% Nb-doped models will be potential transparent conductive materials. Project supported by the National Natural Science Foundation of China (No. 10974077) and the Innovation Project of Shandong Graduate Education, China (No. SDYY13093).
First-principles simulations of CaO and CaSiO3 liquids: structure, thermodynamics and diffusion
Bajgain, Suraj K.; Ghosh, Dipta B.; Karki, Bijaya B.
2015-05-01
We have performed first-principles molecular dynamics simulations of CaO and CaSiO3 liquids over broad ranges of pressure (0-150 GPa) and temperature (2,500-8,000 K) within density-functional theory. The simulated liquid structure changes considerably on compression with the mean cation-anion coordination numbers increasing nearly linearly with volume. The Ca-O coordination number increases from 5 (7) near the ambient pressure to 8 (10) at high pressure for CaO (CaSiO3) liquid. The Si-O coordination number increases from 4 to 6 over the same pressure regime. Our results show that both liquids are much more compressible than their solid counterparts implying the possibility of liquid-solid density crossovers at high pressure. The Grüneisen parameter of both the liquids increases with pressure, which is opposite in case of crystalline phases. The calculated self-diffusion coefficients strongly depend on temperature and pressure, thereby requiring non-Arrhenian representation with variable activation volume. The diffusivity differences between the two liquids tend to be large at low-temperature and low-pressure regime. Also, comparisons with MgSiO3 liquid suggest that network modifier cations Ca and Mg behave similarly though Ca is more coordinated and more mobile as compared to Mg.
The electronic structures and ferromagnetism of Fe-doped GaSb: The first-principle calculation study
Lin, Xue-ling; Niu, Cao-ping; Pan, Feng-chun; Chen, Huan-ming; Wang, Xu-ming
2017-09-01
The electronic structures and the magnetic properties of Fe doped GaSb have been investigated by the first-principles calculation based on the framework of the generalized gradient approximation (GGA) and GGA+U schemes. The calculated results indicated that Fe atoms tend to form the anti-ferromagnetic (AFM) coupling with the nearest-neighbor positions preferentially. Compared with the anti-ferromagnetic coupling, the ferromagnetic interactions occurred at the second nearest-neighbor and third nearest-neighbor sites have a bigger superiority energetically. The effect of strong electron correlation at Fe-d orbit taking on the magnetic properties predicted by GGA+U approach demonstrated that the ferromagnetic (FM) coupling between the Fe ions is even stronger in consideration of the strong electron correlation effect. The ferromagnetism in Fe doped GaSb system predicted by our investigation implied that the doping of Fe into GaSb can be as a vital routine for manufacturing the FM semiconductors with higher Curie temperature.
Ganeshraj, C.; Santhosh, P. N., E-mail: santhosh@physics.iitm.ac.in [Low Temperature Physics Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu (India)
2014-10-14
We report first-principles study of structural, electronic, vibrational, dielectric, and elastic properties of Ba₂YTaO₆, a pinning material in high temperature superconductors (HTS), by using density functional theory. By using different exchange-correlation potentials, the accuracy of the calculated lattice constants of Ba₂YTaO₆ has been achieved with GGA-RPBE, since many important physical quantities crucially depend on change in volume. We have calculated the electronic band structure dispersion, total and partial density of states to study the band gap origin and found that Ba₂YTaO₆ is an insulator with a direct band gap of 3.50 eV. From Mulliken population and charge density studies, we conclude that Ba₂YTaO₆ have a mixed ionic-covalent character. Moreover, the vibrational properties, born effective charges, and the dielectric permittivity tensor have been calculated using linear response method. Vibrational spectrum determined through our calculations agrees well with the observed Raman spectrum, and allows assignment of symmetry labels to modes. We perform a detailed analysis of the contribution of the various infrared-active modes to the static dielectric constant to explain its anisotropy, while electronic dielectric tensor of Ba₂YTaO₆ is nearly isotropic, and found that static dielectric constant is in good agreement with experimental value. The six independent elastic constants were calculated and found that tetragonal Ba₂YTaO₆ is mechanically stable. Other elastic properties, including bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and elastic anisotropy ratios are also investigated and found that Poisson's ratio and Young's modulus of Ba₂YTaO₆ are similar to that of other pinning materials in HTS.
Ganeshraj, C.; Santhosh, P. N.
2014-10-01
We report first-principles study of structural, electronic, vibrational, dielectric, and elastic properties of Ba2YTaO6, a pinning material in high temperature superconductors (HTS), by using density functional theory. By using different exchange-correlation potentials, the accuracy of the calculated lattice constants of Ba2YTaO6 has been achieved with GGA-RPBE, since many important physical quantities crucially depend on change in volume. We have calculated the electronic band structure dispersion, total and partial density of states to study the band gap origin and found that Ba2YTaO6 is an insulator with a direct band gap of 3.50 eV. From Mulliken population and charge density studies, we conclude that Ba2YTaO6 have a mixed ionic-covalent character. Moreover, the vibrational properties, born effective charges, and the dielectric permittivity tensor have been calculated using linear response method. Vibrational spectrum determined through our calculations agrees well with the observed Raman spectrum, and allows assignment of symmetry labels to modes. We perform a detailed analysis of the contribution of the various infrared-active modes to the static dielectric constant to explain its anisotropy, while electronic dielectric tensor of Ba2YTaO6 is nearly isotropic, and found that static dielectric constant is in good agreement with experimental value. The six independent elastic constants were calculated and found that tetragonal Ba2YTaO6 is mechanically stable. Other elastic properties, including bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and elastic anisotropy ratios are also investigated and found that Poisson's ratio and Young's modulus of Ba2YTaO6 are similar to that of other pinning materials in HTS.
Ding, Yi; Wang, Yanli
2016-08-17
Germanium monochalcogenides, i.e. GeS and GeSe sheets, are isoelectronic analogues of phosphorene, which have been synthesized in recent experiments (P. Ramasamy et al., J. Mater. Chem. C, 2016, 4, 479). Utilizing first-principles calculations, we have investigated their tunable electronic and magnetic properties via light non-metallic atom (B, C, N, O, Si, P, S) functionalization. We find that on these GeS and GeSe sheets O and S adatoms prefer to locate at the top site above the Ge atom, while the other ones like to occupy the anion site, which push the original S/Se atom to the hollow site instead. O and S adatoms slightly affect the semiconducting behaviour of the doped systems, while B, C, N, Si, P ones will drastically modify their band structures and induce versatile spintronic properties. Through the supercell calculations, B and C adatoms are found to induce a bipolar semiconducting behaviour in the decorated systems, while the N/P adatom will cause a spin-gapless-semiconducting/nearly-half-metallic feature in them. The B/C/N/Si/P-substituted GeS/GeSe sheet can be formed by removing the hollow-site S/Se atom from the adatom-decorated structures, which exhibit an opposite semiconducting/metallic behaviour to their phosphorene counterparts. A general odd-even rule is proposed for this phenomenon, which shows that an odd (even) number of valence electron difference between the substitution and host atoms would cause a metallic (semiconducting) feature in the substituted systems. Our study demonstrates that atom functionalization is an efficient way to tailor the properties of GeS and GeSe nanosheets, which have adaptable electronic properties for potential applications in nanoelectronics and spintronics.
Bulk Modulus and Electronic Band Structure of ZnGa2X4 (X=S,Se): a First-Principles Study
JIANG Xiao-Shu; MI Shu; SUN eeng-Jun; LU Yuan; LIANG Jiu-Qing
2009-01-01
First-principles local density functional calculations are presented for the compounds ZnGa2X4 (X = S, Se). We investigate the bulk moduli and electronic band structures in a defect chalcopyrite structure. The lattice constants and internal parameters axe optimized. The electronic structures are analysed with the help of total and partial density of states. The relation between the cohesive energy and the unit cell volume is obtained by fully relaxed structures. We derive the bulk modulus of ZnGa2X4 by fitting the Birch-Murnaghan's equation of state. The extended Cohen's empirical formula agrees well with our ab initio results.
Liu, Jingwei; Yu, Guangtao; Shen, Xiaopeng; Zhang, Hui; Li, Hui; Huang, Xuri; Chen, Wei
2017-03-01
Based on the first-principles DFT computations, we systematically investigated the geometries, stabilities, electronic and magnetic properties of fully and partially hydrogenated Ge nanoribbons (fH-GeNRs and pH-GeNRs) with the zigzag and armchair edges. It is revealed that the chair-like configuration is the lowest-lying one for zigzag/armchair-edged fH-GeNRs. Regardless of the edge chirality, the full hydrogenation can effectively widen the band gap of GeNR, and endow fH-GeNRs with the nonmagnetic (NM) semiconducting behaviors, where the band gap decreases with the increase of ribbon width. Comparatively, independent of hydrogenation ratio, all the pH-GeNRs with zigzag edge are the antiferromagnetic semiconductors while all the pH-GeNRs with armchair edge are NM semiconductors. When increasing the hydrogenation ratio, the band gap of pH-GeNRs can increase, but the variation of band gap can exhibit the intriguing three family behavior for the armchair-edged pH-GeNRs. Especially, all these pH-GeNRs can exhibit the almost same electronic and magnetic properties as the remaining pristine GeNRs without hydrogenation. This may offer a potential strategy to realize the "narrow" GeNRs in large scale. Finally, all these hydrogenated GeNRs can possess high structure stability, indicating a great possibility of their experimental realization. These valuable insights can be advantageous for promoting the Ge-based nanomaterials in the application of multifunctional nanodevice.
Ivashchenko, V.I.; Scrynskyy, P.L. [Frantsevych Institute for Problems of Material Science, NAS of Ukraine, 3, Krzhyzhanovsky Str., 03142 Kyiv (Ukraine); Dub, S.N. [Bakul Institute for Superhard Materials, NAS of Ukraine, 2, Avtozavodska Str., 04074 Kyiv (Ukraine); Butenko, O.O.; Kozak, A.O.; Sinelnichenko, O.K. [Frantsevych Institute for Problems of Material Science, NAS of Ukraine, 3, Krzhyzhanovsky Str., 03142 Kyiv (Ukraine)
2016-01-29
The Al―Mg―B films were deposited on silicon substrates by direct current magnetron sputtering from the AlMgB{sub 14} target at low discharge power and at substrate temperature ranging from 100 to 500 °C. The deposited films have been annealed at 1000 °C in vacuum, and characterized by X-ray diffraction, atomic force microscopy, Fourier transform infra-red spectroscopy, nano- and micro-indentation, and scratch testing. The films exhibit lower hardness than the bulk AlMgB{sub 14} material, which is due to their amorphous structure in which the strong intra-icosahedron B―B bonds are almost lacking and the weaker B―O bonds are predominant. After the annealing, a reduction of a number of B―O bonds and a formation of crystallites in the films lead to an increase in the nanohardness and elastic modulus. The as-deposited films exhibit a low coefficient of friction of 0.08–0.12. First-principles studies show that the icosahedra in amorphous AlMgB{sub 14}-based materials are not fully developed, which is the reason of their lower mechanical performance. - Highlights: • Al―Mg―B films were deposited at different substrate temperatures. • The as-deposited films were amorphous, whereas the annealed ones were nanostructured. • Mechanical properties were analyzed as functions of substrate and annealing temperatures. • Ab-initio MD simulations of AlMgB{sub 14}-based materials were carried out. • Both experimental and theoretical investigations enabled one to explain film properties.
Structural and electronic properties of cubic KNbO{sub 3} (0 0 1) surfaces: A first-principles study
Luo, Bingcheng [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Wang, Xiaohui, E-mail: wxh@mail.tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Tian, Enke [School of Science, China University of Geosciences, Beijing 100083 (China); Li, Guowu [Crystal Structure Laboratory, National Laboratory of Mineral Materials, China University of Geosciences, Beijing 100083 (China); Li, Longtu [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)
2015-10-01
Highlights: • To the best of our knowledge, the (0 0 1) surfaces of SrTiO{sub 3}, BaTiO{sub 3}, CaTiO{sub 3} and PbTiO{sub 3} have been extensively investigated, but few ab initio calculations of structural and electronic properties of cubic KNbO{sub 3} (0 0 1) surface are reported. • The surface energy for the KO terminated was 1.21 eV, higher than the calculated surface energy of 0.75 eV for NbO{sub 2} termination, revealing that it take much less energy to cleave on the NbO{sub 2} plane than on the KO plane. • Mulliken population showed a strong increase in the K−O chemical bonding on the top surface of the KO-terminated slab, while the Nb−O chemical bonding on the top surface of the NbO{sub 2}-terminated slab decreased by 50 me. • The bond populations for K−O were much smaller than that for Nb−O, indicating significant covalency for Nb−O bonding. - Abstract: We present the calculations of the cubic perovskite KNbO{sub 3} (0 0 1) surface with NbO{sub 2} and KO terminations within the first-principles density functional theory. The electronic structure, surface energy, and charge distribution for both termination are calculated. For the case of NbO{sub 2}-terminated surfaces, the largest atomic relaxation is in the first-layer atoms, while for KO terminations in the second-layer atoms. The surface energy for the KO terminated was 1.21 eV, higher than the calculated surface energy of 0.75 eV for NbO{sub 2} termination, revealing that it takes much less energy to cleave on NbO{sub 2} plane than on a KO plane. The band gaps for KO-terminated and NbO{sub 2}-terminated surface are 1.70 and 1.30 eV, respectively. Mulliken population analysis shows the strong increase in the K−O chemical bonding on the top surface of the KO-terminated slab and significant covalency for Nb−O bonding.
函数条件极值的若干求法%Some methods to find the conditional extremum of functions
鲁翠仙
2013-01-01
In the life,industrial and agricultural production, the economic management and economical accounting, we usually need to solve some practical problems such as how to resolve the minimum input, maximum output, highest benefit,maximize profit,materials most provinces under certain conditions. The solution of these problems is transformed into extreme in mathematics, but these function extreme valve problems are skilled much,hard,flexible, agile. Therefore,discussing the method of solving function extreme has important significance. This paper summarizes some commonly used methods to find the function extremum,and illustrates that we should choose different methods based on the characteristics of the different questions through some typical examples.% 在生活、工农业生产、经济管理和经济核算中，常常要解决在一定条件下要怎么做才会使投入最小，产出最多，效益最高、求利润最大化、用料最省等实际问题，而这些问题的解决就转化到了数学中极值问题，而函数的极值问题技巧性强、难度大、解法灵活，所以函数极值求法的探讨也具有了其重要意义。本文就求函数极值的一些常用方法作了总结，并通过典型例题阐明了求函数极值时，应针对不同的题目的特点选用不同的方法。
Mottaghi, S.; Benaroya, H.
2016-11-01
A first-principles variational approach is proposed for reduced-order modeling of fluid-structure interaction (FSI) systems, specifically vortex-induced vibration (VIV). FSI has to be taken into account in the design and analysis of many engineering applications, yet a comprehensive theoretical development where analytical equations are derived from first principles is nonexistent. An approach where Jourdain's principle is modified and extended for FSI is used to derive reduced-order models from an extended variational formulation where assumptions are explicitly stated. Two VIV models are considered: an elastically supported, inverted pendulum and a translating cylinder, both immersed in a flow and allowed to move transversely to the flow direction. Their reduced-order models are obtained in the form of (i) a single governing equation and (ii) two general coupled equations as well as the coupled lift-oscillator model. Comparisons are made with three existing models. Based on our theoretical results, and especially the reduced-order model, we conclude that the first principles development herein is a viable framework for the modeling of complex fluid-structure interaction problems such as vortex-induced oscillations.
ZHOU Jing; REN Xiao-Min; HUANG Yong-Qing; WANG Qi; HUANG Hui
2008-01-01
We investigate the electronic structures of new semiconductor alloys BxGa1-x As and Tlx Ga1-x As, employing first-principles calculations within the density-functional theory and the generalized gradient approximation.The calculation results indicate that alloying a small Tl content with GaAs will produce larger modifications of the band structures compared to B. A careful investigation of the internal lattice structure relaxation shows that significant bond-length relaxations takes place in both the alloys, and it turns out that difference between the band-gap bowing behaviours for B and Tl stems from the different impact of atomic relaxation on the electronic structure. The relaxed structure yields electronic-structure results, which are in good agreement with the experimental data. Finally, a comparison of formation enthalpies indicates that the production Tlx Ga1-x As with Tl concentration of at least 8% is possible.
Rafique, Muhammad; Shuai, Yong; Tan, He-Ping; Hassan, Muhammad
2017-03-01
We present first-principles density-functional calculations for the structural, electronic and magnetic properties of monolayer graphene doped with 3d (Ti, V, Cr, Fe, Co, Mn and Ni) metal trioxide TMO3 halogen clusters. In this paper we used two approaches for 3d metal trioxide clusters (i) TMO3 halogen cluster was embedded in monolayer graphene substituting four carbon (C) atoms (ii) three C atoms were substituted by three oxygen (O) atoms in one graphene ring and TM atom was adsorbed at the hollow site of O atoms substituted graphene ring. All the impurities were tightly bonded in the graphene ring. In first case of TMO3 doped graphene layer, the bond length between Csbnd O atom was reduced and bond length between TM-O atom was increased. In case of Cr, Fe, Co and Ni atoms substitution in between the O atoms, leads to Fermi level shifting to conduction band thereby causing the Dirac cone to move into valence band, however a band gap appears at high symmetric K-point. In case of TiO3 and VO3 substitution, system exhibits semiconductor properties. Interestingly, TiO3-substituted system shows dilute magnetic semiconductor behavior with 2.00 μB magnetic moment. On the other hand, the substitution of CoO3, CrO3, FeO3 and MnO3 induced 1.015 μB, 2.347 μB, 2.084 μB and 3.584 μB magnetic moment, respectively. In second case of O atoms doped in graphene and TM atoms adsorbed at the hollow site, the O atom bulges out of graphene plane and bond length between TM-O atom is increased. After TM atoms adsorption at the O substituted graphene ring the Fermi level (EF) shifts into conduction band. In case of Cr and Ni adsorption, system displays indirect band gap semiconductor properties with 0.0 μB magnetic moment. Co adsorption exhibits dilute magnetic semiconductor behavior producing 0.916 μB magnetic moment. Fe, Mn, Ti and V adsorption introduces band gap at high symmetric K-point also inducing 1.54 μB, 0.9909 μB, 1.912 μB, and 0.98 μB magnetic moments, respectively
Bernard, Yann
2012-01-01
We derive the Euler-Lagrange equations for minimizers of causal variational principles in the non-compact setting with constraints, possibly prescribing symmetries. Considering first variations, we show that the minimizing measure is supported on the intersection of a hyperplane with a level set of a function which is homogeneous of degree two. Moreover, we perform second variations to obtain that the compact operator representing the quadratic part of the action is positive semi-definite. The key ingredient for the proof is a subtle adaptation of the Lagrange multiplier method to variational principles on convex sets.
Harvesting Principle and Structure Design of Cassava Harvester%国内木薯收获机采挖原理和结构设计
张意松; 黄晖; 崔振德
2012-01-01
The principle, structure and development of cassava harvester are introduced. The structure and working principle are observed in detail, on base of summing up typical cassava harvesters. Direction of development of cassava harvester in China, combined with planting agronomic of cassava.%介绍国内木薯收获机的原理、结构及发展状况，在总结各类型典型木薯收获机的基础上，分析其结构设计及工作原理，评述其优缺点，结合木薯种植农艺的发展，指出国内木薯收获机的发展方向。
Muñoz García, Ana Belén; Barandiarán, Zoila; Seijo, Luis
2012-01-01
This is an electronic version of an article published in Journal of Materials Chemistry. Muñoz García, A.B., Barandiarán, Z. and Luis Seijo. "Antisite defects in Ce-doped YAG (Y3Al5O12): First-principles study on structures and 4f-5d transitions". Journal of Materials Chemistry 22 (2012): 19888-19897
周一鹏; 王星; 田元荣; 周东青; 程嗣怡
2016-01-01
识别雷达信号的脉冲重复间隔（ PRI）调制模式是分析雷达工作状态和工作任务的重要手段。针对复杂体制雷达的PRI调制模式可实时切换并改变调制参数因而难于识别的问题，提出一种基于极值序列特征集的雷达PRI调制模式识别算法。该算法首先提取PRI序列的极值特征，构建极值序列特征集；然后，基于PRI序列及其特征集建立恒参、类正弦、正弦和抖动判定准则，实现雷达PRI调制模式的分层识别。仿真分析表明：该算法对复杂体制雷达PRI调制模式的识别正确率达95．3％，同时具有较高的实时性，在电子对抗应用领域具有良好的前景。%The recognition of pulse repetition interval ( PRI) modulation mode is meaningful for analyzing the condition and task of radar.In order to recognize advanced radar which could change its PRI modulation mode and parameters quickly , a recognition al-gorithm based on extremum sequence features set is proposed .Firstly, by extracting the extremum sequence features from PRI se-quence , the PRI extremum features set is constructed .Then the judge criterions of five PRI modulation modes based on PRI se-quence and its extremum features set is proposed .Finally, a multi-layer recognition algorithm is presented .The result shows that the recognition algorithm has preferable recognition correct rate (95.3%), and could classify the PRI modulation modes quickly , so the resae rch has a good application prospect in electronic support measures.
Li, Xuejiao; Song, Jia; Shi, Shuping; Yan, Liuming; Zhang, Zhaochun; Jiang, Tao; Peng, Shuming
2017-01-26
The dynamic fluctuation of the U(3+) coordination structure in a molten LiCl-KCl mixture was studied using first principles molecular dynamics (FPMD) simulations. The radial distribution function, probability distribution of coordination numbers, fluctuation of coordination number and cage volume, self-diffusion coefficient and solvodynamic mean radius of U(3+), dynamics of the nearest U-Cl distances, and van Hove function were evaluated. It was revealed that fast exchange of Cl(-) occurred between the first and second coordination shells of U(3+) accompanied with fast fluctuation of coordination number and rearrangement of coordination structure. It was concluded that 6-fold coordination structure dominated the coordination structure of U(3+) in the molten LiCl-KCl-UCl3 mixture and a high temperature was conducive to the formation of low coordinated structure.
Dimitrievska, Mirjana; Boero, Federica; Litvinchuk, Alexander P.; Delsante, Simona; Borzone, Gabriella; Perez-Rodriguez, Alejandro; Izquierdo-Roca, Victor
2017-02-27
This work presents detailed structural and vibrational characterization of different Cu2ZnSnS4 (CZTS) polymorphs (space groups: I4-, P4-2c, and P4-2m), using Raman spectroscopy and first-principles calculations. Multiwavelength Raman measurements on bulk crystalline CZTS samples permitted determination of the vibrational modes of each polymorph structure, with frequencies matching well with the results obtained from simulations. The results present Raman spectra fingerprints as well as experimental references for the different polymorph modifications.
Beslon Guillaume
2005-09-01
Full Text Available Abstract Background There is an increasing need for computer-generated models that can be used for explaining the emergence and predicting the behavior of multi-protein dynamic structures in cells. Multi-agent systems (MAS have been proposed as good candidates to achieve this goal. Results We have created 3DSpi, a multi-agent based software that we used to explore the generation of multi-protein dynamic structures. Being based on a very restricted set of parameters, it is perfectly suited for exploring the minimal set of rules needed to generate large multi-protein structures. It can therefore be used to test the hypothesis that such structures are formed and maintained by principles of self-organization. We observed that multi-protein structures emerge and that the system behavior is very robust, in terms of the number and size of the structures generated. Furthermore, the generated structures very closely mimic spatial organization of real life multi-protein structures. Conclusion The behavior of 3DSpi confirms the considerable potential of MAS for modeling subcellular structures. It demonstrates that robust multi-protein structures can emerge using a restricted set of parameters and allows the exploration of the dynamics of such structures. A number of easy-to-implement modifications should make 3DSpi the virtual simulator of choice for scientists wishing to explore how topology interacts with time, to regulate the function of interacting proteins in living cells.
Powell, B J; Bernstein, N; Brake, K; McKenzie, Ross H; Meredith, P; Pederson, M R
2016-01-01
We report first principles density functional calculations for hydroquinone (HQ), indolequinone (IQ) and semiquinone (SQ). These molecules are believed to be the basic building blocks of the eumelanins, a class of bio-macromolecules with important biological functions (including photoprotection) and with potential for certain bioengineering applications. We have used the DeltaSCF (difference of self consistent fields) method to study the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), Delta_HL. We show that Delta_HL is similar in IQ and SQ but approximately twice as large in HQ. This may have important implications for our understanding of the observed broad band optical absorption of the eumelanins. The possibility of using this difference in Delta_HL to molecularly engineer the electronic properties of eumelanins is discussed. We calculate the infrared and Raman spectra of the three redox forms from first principles. Each of the molecules ...
Ryota NAKANISHI; Koji SUEOKA; Seiji SHIBA; Makoto HINO; Koji MURAKAMI; Ken MURAOKA
2009-01-01
A study the with first principles calculation of the interfaces of the Ni layer or Cu layer on the Fe(100) surface formed with metal plating was performed. Ni or Cu atoms were shown to adopt the corresponding position to the bcc structure of the Fe(100) substrate. Other calculations showed that the interfaces of Ni (5 atomic layers)/Fe(100) (5 layers) or Cu (5 atomic layers)/Fe(100) (5 layers) had square lattices. The orientation relationship of Ni/Fe(100) interface corresponds to fcc-Ni(100)//bcc-Fe(100), Ni[011]//Fe[010], and Similar results were obtained for Cu/Fe(100) interfaces. This structure was supported by TEM analysis of plated Ni layer on Fe(100) surfaces. The adhesion strength of the Ni/Fe(100) interface evaluated by first principles calculation was higher than that of the Cu/Fe(100) interface. The experimental results of Hull cell iron plated with Ni or Cu supported the results of the calculation. These results indicate that the first principles calculation, which deals with the ideal interface at the atomic scale, has the potential to evaluate the adhesion strength of metallic material interfaces.
Akashi, Ryosuke; Kawamura, Mitsuaki; Tsuneyuki, Shinji; Nomura, Yusuke; Arita, Ryotaro
2015-06-01
We calculate the superconducting transition temperatures (Tc) in sulfur hydrides H2S and H3S from first principles using the density functional theory for superconductors. At pressures of ≲150 GPa, the high values of Tc (≥130 K) observed in a recent experiment (A. P. Drozdov, M. I. Eremets, and I. A. Troyan, arXiv:1412.0460) are accurately reproduced by assuming that H2S decomposes into R 3 m H3S and S. For higher pressures, the calculated Tc's for I m 3 ¯m H3S are systematically higher than those for R 3 m H3S and the experimentally observed maximum value (190 K), which suggests the possibility of another higher-Tc phase. We also quantify the isotope effect from first principles and demonstrate that the isotope effect coefficient can be larger than the conventional value (0.5) when multiple structural phases energetically compete.
刘清宇; 卫红凯
2015-01-01
利用线性调频(Linear Frequency Modulation, LFM)信号在分数阶Fourier域上的聚焦性，通过搜索可实现LFM信号的检测和参数估计。通常采用步进式搜索法，效率低下。为了克服该缺点，通过对分数阶Fourier域优化问题的研究，将免疫算法引入到分数阶Fourier变换极值搜索中。仿真结果表明：该方法优于传统的步进式搜索法。%Based on the concentrated characteristics of linear frequency modulation (LFM) signal in the fractional Fourier domain, the detection and parameter estimation of LFM signal are usually realized by step-based searching method for extremum searching in the fractional Fourier domain. In order to resolve the disadvantage of low efficiency of the step-based searching method, Immune Algorithm is introduced to the fractional Fourier transform for extremum searching with the study of fractional Fourier optimization. Simulation results show that the performance of the Im-mune algorithm is better than that of the traditional step-based method.
Moiseiwitsch, B L
2004-01-01
This graduate-level text's primary objective is to demonstrate the expression of the equations of the various branches of mathematical physics in the succinct and elegant form of variational principles (and thereby illuminate their interrelationship). Its related intentions are to show how variational principles may be employed to determine the discrete eigenvalues for stationary state problems and to illustrate how to find the values of quantities (such as the phase shifts) that arise in the theory of scattering. Chapter-by-chapter treatment consists of analytical dynamics; optics, wave mecha
Abuelo, D
1987-01-01
The author discusses the basic principles of genetics, including the classification of genetic disorders and a consideration of the rules and mechanisms of inheritance. The most common pitfalls in clinical genetic diagnosis are described, with emphasis on the problem of the negative or misleading family history.
Wesson, P.S.
1979-10-01
The Cosmological Principle states: the universe looks the same to all observers regardless of where they are located. To most astronomers today the Cosmological Principle means the universe looks the same to all observers because density of the galaxies is the same in all places. A new Cosmological Principle is proposed. It is called the Dimensional Cosmological Principle. It uses the properties of matter in the universe: density (rho), pressure (p), and mass (m) within some region of space of length (l). The laws of physics require incorporation of constants for gravity (G) and the speed of light (C). After combining the six parameters into dimensionless numbers, the best choices are: 8..pi..Gl/sup 2/ rho/c/sup 2/, 8..pi..Gl/sup 2/ rho/c/sup 4/, and 2 Gm/c/sup 2/l (the Schwarzchild factor). The Dimensional Cosmological Principal came about because old ideas conflicted with the rapidly-growing body of observational evidence indicating that galaxies in the universe have a clumpy rather than uniform distribution. (SC)
First-principles determination of the ground-state structure of Mg(BH4)(2)
Caputo, R.; Tekin, Adem; Sikora, W.;
2009-01-01
stability of the proposed structures. We combined several computational methods to build and compute the lowest energy structure. We found that the building motif of the crystalline structure of alkali and earth-alkaline metal tetrahydroborates is dictated by the coordination of metal atom. We report here...
Ibrahim, Fatima; Yang, Hongxin; Dieny, Bernard; Chshiev, Mairbek
2015-03-01
Electric-field (EF) control of magnetic anisotropy is promising in the context of establishing low-energy consumption memory devices since it allows EF-assisted switching of magnetization in magnetic tunnel junctions with perpendicular magnetic anisotropy (PMA). Using first-principles calculations, we demonstrate that both the EF and structural strain induce changes of the PMA in Fe/MgO interfaces which originally exhibit strong PMA. Namely, we find that the PMA change in response to strain is much larger than that induced by applied EF. This suggests that the EF control of PMA is caused not only by charge accumulation and depletion mechanism but rather mediated by structural modifications occurring at the interface in agreement with recent experimental reports. In addition, using atomic and orbital-resolved analysis of PMA, we elucidate the effect of both the EF and structural strain on PMA showing in particular that it extends beyond the interfacial layer.
Hui Niu
2012-09-01
Full Text Available Systematic first-principles calculations based on density functional theory were performed on a wide range of Ln2TiO5 compositions (Ln = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy and Y in order to investigate their structural, elastic, electronic, and thermal properties. At low temperature, these compounds crystallize in orthorhombic structures with a Pnma symmetry, and the calculated equilibrium structural parameters agree well with experimental results. A complete set of elastic parameters including elastic constants, Hill's bulk moduli, Young's moduli, shear moduli and Poisson's ratio were calculated. All Ln2TiO5 are ductile in nature. Analysis of densities of states and charge densities and electron localization functions suggests that the oxide bonds are highly ionic with some degree of covalency in the Ti-O bonds. Thermal properties including the mean sound velocity, Debye temperature, and minimum thermal conductivity were obtained from the elastic constants.
Chen Aqing; Shao Qingyi, E-mail: qyshao@163.com; Li Zhen [South China Normal University, Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering (China)
2011-06-15
Boron (B)/phosphorus (P)-doped single-wall carbon nanotubes (B-PSWNTs) are studied by using the first-principle method based on density function theory. Mayer bond order, band structure, electrons density and density of states are calculated. It concludes that the B-PSWNTs have special band structure, which is quite different from BN nanotubes, and that metallic carbon nanotubes will be converted to semiconductor due to boron/phosphorus co-doping, which breaks the symmetrical structure. The bonding forms in B-PSWNTs are investigated in detail. Besides, Mulliken charge population and the quantum conductance are also calculated to study the quantum transport characteristics of B-PSWNT hetero-junction. It is found that the position of p-n junction in this hetero-junction will be changed as the applied electric field increase and it performs the characteristics of diode.
Pang Hua, E-mail: hpang@lzu.edu.cn; Fang Yang; Li Fashen [Lanzhou UniversityLanzhou, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Department of Physics (China)
2011-07-15
The hyperfine parameters of hyperfine fields, electric field gradients and isomer shifts at the Fe site are investigated based on the first-principles calculations of the electronic structures using LDA (GGA)+U method in the low-temperature orthorhombic antiferromagnetic phase of undoped BaFe{sub 2}As{sub 2}. It is fond that the electric field gradient of Fe nucleus is highly related with the electronic structures close to the Fermi level. Though the addition of negative on-site Coulomb interaction to Fe-3d states improves the calculated magnetic moment of Fe atom and the hyperfine parameters of Fe nucleus when U = -0.1 Ry (-0.08 Ry) for GGA+U (LDA+U) method, a negative U correction does not capture the right physics of this system. The calculations prove the strong coupling between the magnetic, structural and electronic properties in antiferromagnetic BaFe{sub 2}As{sub 2} parent.
Ehsanfar, S.; Kanjouri, F.; Tashakori, H.; Esmailian, A.
2017-10-01
Based on first-principles calculations with generalized gradient approximation as exchange-correlation functional, the structural, electronic, mechanical, thermal, and phonon properties of III-phosphide binary compounds, namely BP, AlP, GaP, and InP, with cubic zincblende structure have been investigated. The calculations were performed in the framework of density functional theory and density functional perturbation theory (DFPT) implemented in the Quantum ESPRESSO package. The results obtained for the structural and electronic properties are in good agreement with available theoretical and experimental results. The results of our electronic calculations indicate semiconducting properties for these binary compounds. Furthermore, the frequency bandgaps and phonon density of states were also investigated. The computed mechanical constants predict that BP, AlP, GaP, and InP are elastically stable. Finally, we determined the heat capacity and entropy for these binary compounds within a quasiharmonic Debye model using DFPT for comparison.
Atomic structure of icosahedral B4C boron carbide from a first principles analysis of NMR spectra.
Mauri, F; Vast, N; Pickard, C J
2001-08-20
Density functional theory is demonstrated to reproduce the 13C and 11B NMR chemical shifts of icosahedral boron carbides with sufficient accuracy to extract previously unresolved structural information from experimental NMR spectra. B4C can be viewed as an arrangement of 3-atom linear chains and 12-atom icosahedra. According to our results, all the chains have a CBC structure. Most of the icosahedra have a B11C structure with the C atom placed in a polar site, and a few percent have a B (12) structure or a B10C2 structure with the two C atoms placed in two antipodal polar sites.
Variational principle for the Wheeler-Feynman electrodynamics
De Luca, Jayme
2009-01-01
We adapt the formally-defined Fokker action into a variational principle for the electromagnetic two-body problem. We introduce properly defined boundary conditions to construct a Poincare-invariant-action-functional of a finite orbital segment into the reals. The boundary conditions for the variational principle are an endpoint along each trajectory plus the respective segment of trajectory for the other particle inside the lightcone of each endpoint. We show that the conditions for an extremum of our functional are the mixed-type-neutral-equations with implicit state-dependent-delay of the electromagnetic-two-body problem. We put the functional on a natural Banach space and show that the functional is Frechet-differentiable. We develop a method to calculate the second variation for C2 orbital perturbations in general and in particular about circular orbits of large enough radii. We prove that our functional has a local minimum at circular orbits of large enough radii, at variance with the limiting Kepler ac...
Xu Gui-Gui; Wu Jing; Chen Zhi-Gao; Lin Ying-Bin; Huang Zhi-Gao
2012-01-01
Using first-principles calculations within the generalized gradient approximation (GGA) +U framework,we investigate the effect of C doping on the structural and electronic properties of LiFePO4.The calculated formation energies indicate that C doped at O sites is energetically favoured,and that C dopants prefer to occupy O3 sites.The band gap of the C doped material is much narrow than that of the undoped one,indicating better electro- conductive properties.To maintain charge balance,the valence of the Fe nearest to C appears as Fe3+,and it will be helpful to the hopping of electrons.
General proof of the entropy principle for self-gravitating fluid in f(R) Gravity
Fang, Xiongjun; Jing, Jiliang
2015-01-01
For a static self-gravitating perfect fluid system in $f(R)$ gravity, we first show that in a spherical symmetric spacetime, the Tolman-Oppenheimer-Volkoff equation can be obtained by thermodynamical method. We then prove that the maximum entropy principle is also valid for $f(R)$ gravity in general spacetimes. Which means that if the Einstein constraint equation is satisfied and the temperature of fluid obeys Tolmans law, the extrema of total entropy implies other components of gravitational equations. Conversely, if $f(R)$ gravitational equations hold, the total entropy of the fluid should be extremum. Our work reveals the relationship between $f(R)$ gravity and thermodynamics, and implies that there is no need to modify entropy for perfect fluid in $f(R)$ gravity.
Finite action principle for Chern-Simons AdS gravity
Mora, P; Troncoso, R; Zanelli, J
2004-01-01
A finite action action principle for Chern-Simons AdS gravity is presented. The construction is carried out in detail first in five dimensions, where the bulk action is given by a particular combination of the Einstein-Hilbert action with negative cosmological constant and a Gauss-Bonnet term; and is then generalized for arbitrary odd dimensions. The boundary term needed to render the action finite is singled out demanding the action to attain an extremum for an appropriate set of boundary conditions. The boundary term is a local function of the fields at the boundary and is sufficient to render the action finite for asymptotically AdS solutions, without requiring background fields. It is shown that the Euclidean continuation of the action correctly describes the black hole thermodynamics in the canonical ensemble. Additionally, background independent conserved charges associated with the asymptotic symmetries can be written as surface integrals by direct application of Noether's theorem.
General proof of the entropy principle for self-gravitating fluid in f ( R) gravity
Fang, Xiongjun; Guo, Minyong; Jing, Jiliang
2016-08-01
The discussions on the connection between gravity and thermodynamics attract much attention recently. We consider a static self-gravitating perfect fluid system in f ( R) gravity, which is an important theory could explain the accelerated expansion of the universe. We first show that the Tolman-Oppenheimer-Volkoff equation of f ( R) theories can be obtained by thermodynamical method in spherical symmetric spacetime. Then we prove that the maximum entropy principle is also valid for f ( R) gravity in general static spacetimes beyond spherical symmetry. The result shows that if the constraint equation is satisfied and the temperature of fluid obeys Tolmans law, the extrema of total entropy implies other components of gravitational equations. Conversely, if f ( R) gravitational equation hold, the total entropy of the fluid should be extremum. Our work suggests a general and solid connection between f ( R) gravity and thermodynamics.
Rajeswarapalanichamy, R., E-mail: rrpalanichamy@gmail.com [Department of Physics, N.M.S.S.V.N College, Madurai, Tamil Nadu 625 019 (India); Priyanga, G. Sudha; Murugan, A.; Santhosh, M.; Cinthia, A. Jemmy [Department of Physics, N.M.S.S.V.N College, Madurai, Tamil Nadu 625 019 (India); Kanagaprabha, S. [Department of Physics, Kamaraj College, Tuticorin, Tamil Nadu 628 003 (India); Iyakutti, K. [Department of Physics and Nanotechnology, SRM University, Chennai, Tamil Nadu 603 203 (India)
2013-12-15
Highlights: •Electronic, structural and elastic properties of group IB nitrides are investigated. •A pressure induced structural phase transition is predicted under high pressure. •Electronic structure reveals that these materials exhibit metallic behavior. •Computed elastic moduli obey traditional mechanical stability condition. •The Debye temperature values are computed for Group IB metal mono and di-nitrides. -- Abstract: The structural, electronic and elastic properties of group IB transition metal nitrides (TMN{sub x}: TM = Cu, Ag, Au and x = 1, 2) are investigated by first principles calculation using the Vienna ab initio simulation package. The lattice constants, cohesive energy, bulk modulus, band structures and the density of states are obtained. The calculated lattice parameters are in good agreement with the available results. The electronic structure reveals that these materials exhibit metallic behaviour. A pressure-induced structural phase transition from NaCl to CsCl phase in AgN at 6 GPa, NaCl to ZB phase in AuN at 34.2 GPa and ZB to NaCl phase in CuN at 36.2 GPa is observed. In group IB metal di-nitrides, CaF{sub 2} to AlB{sub 2} phase transition is predicted. The computed elastic constants indicate that these nitrides are mechanically stable at ambient pressure. The calculated Debye temperature values are in good agreement with experimental and other theoretical results.
First-principles calculations of structural properties of Sc{sub 1-x}In{sub x}N compound
Perez, William Lopez [Departamento de Matematicas y Fisica, Universidad del Norte, A. A. 1569, Barranquilla (Colombia)]. E-mail: wlopez@uninorte.edu.co; Arbey Rodriguez M, Jairo [Departamento de Fisica, Universidad Nacional de Colombia, A. A. 5997, Bogota (Colombia); Moreno-Armenta, Maria G. [Centro de Ciencias de la Materia Condensada, Universidad Nacional Autonoma de Mexico, A. P. 2681, Ensenada Baja California 22800 (Mexico)
2007-09-01
We have applied the full-potential linearized augmented plane wave method (FP-LAPW) within the density functional theory to investigate the structural properties of Sc{sub 1-x}In{sub x}N compound in sodium chloride and wurtzite structures. We have found that the lattice parameter (a) increases with the increment of the In-composition in both structures, while the bulk modulus diminishes with the increase of the In-composition. The lattice constant and the bulk modulus present a small bowing in both structures. We have also analyzed the relative stability of this ternary compound in the two studied phases. We have found that sodium chloride structure is the ground state phase for a In-composition range 0=
Imran, Muhammad; Hussain, Fayyaz; Rashid, Muhammad; Ullah, Hafeez; Sattar, Atif; Iqbal, Faisal; Ahmad, Ejaz
2016-03-01
The semiconducting two-dimensional (2D) architectures materials have potential applications in electronics and optics. The design and search of new 2D materials have attracted extensive attention recently. In this study, first principle calculation has been done on 2D gallium nitride (GaN) monolayer with respect to its formation and binding energies. The electronic and optical properties are also investigated. It is found that the single isolated GaN sheet is forming mainly ionic GaN bonds despite a slightly weaker GaN interaction as compared with its bulk counterpart. The dielectric constant value of 2D GaN is smaller as compared to 3D GaN due to less effective electronic screening effect in the layer, which is accompanied by lesser optical adsorption range and suggested to be a promising candidate in electronic and optoelectronic devices.
Je, Minyeong [Department of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Choi, Heechae [Computational Science Research Center, Korea Institute of Science and Technology, 14-Gil 5, Hwarang-Ro, Seoungbuk-Gu, Seoul (Korea, Republic of); Hwang, Yubin; Yun, Kyung-Han [Department of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Chung, Yong-Chae, E-mail: yongchae@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of)
2015-08-31
Perpendicular magnetic anisotropy (PMA) in thin film is the key factor to obtain good properties for high density storage devices. Although the importance of the properties of PMA is well-known for Co/Pd thin film, it is still unclear which surface structure and composition indicate that PMA is present. In this work, the surface structure and magnetic properties of L1{sub 0}-ordered Co/Pd (001) were analyzed using density functional theory calculations. It was confirmed that only Pd-rich A among the facile surface structures indicates PMA properties. However, according to the calculated surface energy, not only Pd-rich A but also Co-rich B is among the most energetically stable structures. The density of states showed a clear distinct electronic structure between Pd-rich A and Co-rich B derived from the structural difference. This result indicates that PMA is not always present in a sandwich structure such as Pd-rich A. The results provide a useful guide to magnetic devices created using L1{sub 0}-ordered Co/Pd (001) on substrate Pd. - Highlights: • Investigation on the possible surface structure of L1{sub 0}-ordered Co/Pd (001) • Using surface phase diagram, the stable structures were Pd-rich A and Co-rich B. • The magnetic property of Pd-rich A and Co-rich B has been measured and discussed. • Pd-rich A only showed perpendicular magnetic anisotropy.
Finite element analysis of an inflatable torus considering air mass structural element
Gajbhiye, S. C.; Upadhyay, S. H.; Harsha, S. P.
2014-01-01
Inflatable structures, also known as gossamer structures, are at high boom in the current space technology due to their low mass and compact size comparing to the traditional spacecraft designing. Internal pressure becomes the major source of strength and rigidity, essentially stiffen the structure. However, inflatable space based membrane structure are at high risk to the vibration disturbance due to their low structural stiffness and material damping. Hence, the vibration modes of the structure should be known to a high degree of accuracy in order to provide better control authority. In the past, most of the studies conducted on the vibration analysis of gossamer structures used inaccurate or approximate theories in modeling the internal pressure. The toroidal shaped structure is one of the important key element in space application, helps to support the reflector in space application. This paper discusses the finite-element analysis of an inflated torus. The eigen-frequencies are obtained via three-dimensional small-strain elasticity theory, based on extremum energy principle. The two finite-element model (model-1 and model-2) have cases have been generated using a commercial finite-element package. The structure model-1 with shell element and model-2 with the combination of the mass of enclosed fluid (air) added to the shell elements have been taken for the study. The model-1 is computed with present analytical approach to understand the convergence rate and the accuracy. The convergence study is made available for the symmetric modes and anti-symmetric modes about the centroidal-axis plane, meeting the eigen-frequencies of an inflatable torus with the circular cross section. The structural model-2 is introduced with air mass element and analyzed its eigen-frequency with different aspect ratio and mode shape response using in-plane and out-plane loading condition are studied.
Zhu, X. H.; Chen, X. R.; Liu, B. G.
2016-10-01
Recent temperature-dependent x-ray diffraction and Raman spectroscopy experiment proved that single-crystalline BiMnO3 assumes a centrosymmetric monoclinic structure (C2/c space group). Here we investigate magnetic structure and electronic structure of this centrosymmetric BiMnO3 phase by using the modified Becke-Johnson (mBJ) exchange functional within the density functional theory (DFT). Our mBJ calculated semiconductor gap, magnetic moment, and other aspects of the electronic structure, in contrast with previous DFT results, are in good agreement with recent experimental values. This satisfactory description of the electronic structure and magnetism of the BiMnO3 is because mBJ reasonably captures the kinetic property and correlation of electrons. Our calculated results with mBJ approach are both useful to study such Bi-based perovskite oxide materials for spintronics applications.
Principles of Bridge Reliability
Thoft-Christensen, Palle; Nowak, Andrzej S.
The paper gives a brief introduction to the basic principles of structural reliability theory and its application to bridge engineering. Fundamental concepts like failure probability and reliability index are introduced. Ultimate as well as serviceability limit states for bridges are formulated...
Liu, Yanjun [Key Laboratory of Oil and Gas Equipment of Ministry of Education, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Huang, Huawei [National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power of China, Chengdu, Sichuan 610041 (China); Pan, Yong, E-mail: yongpanyn@163.com [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming 650106 (China); Zhao, Guanghui; Liang, Zheng [Key Laboratory of Oil and Gas Equipment of Ministry of Education, Southwest Petroleum University, Chengdu, Sichuan 610500 (China)
2014-06-01
Highlights: • The phase transition of Pt{sub 3}Al alloys occurs at 60 GPa. • The elastic modulus of Pt{sub 3}Al alloys increase with increasing pressure. • The cubic structure has good resistance to volume deformation under high pressure. • The pressure enhances the hybridization between Pt atom and Al atom. - Abstract: The phase transition, formation enthalpies, elastic properties and electronic structure of Pt{sub 3}Al alloys are studied using first-principle approach. The calculated results show that the pressure leads to phase transition from tetragonal structure to cubic structure at 60 GPa. With increasing pressure, the elastic constants, bulk modulus and shear modulus of these Pt{sub 3}Al alloys increase linearly and the bond lengths of Pt–Al metallic bonds and the peak at E{sub F} decrease. The cubic Pt{sub 3}Al alloy has excellent resistance to volume deformation under high pressure. We suggest that the phase transition is derived from the hybridization between Pt and Al atoms for cubic structure is stronger than that of tetragonal structure and forms the strong Pt–Al metallic bonds under high pressure.
Wang, Yun-Peng; Cheng, Hai-Ping
2013-06-01
We investigate the currently debated issue of the existence of the Dirac cone in silicene on an Ag(111) surface, using first-principles calculations based on density functional theory to obtain the band structure. By unfolding the band structure in the Brillouin zone of a supercell to that of a primitive cell, followed by projecting onto Ag and silicene subsystems, we demonstrate that the Dirac cone in silicene on Ag(111) is destroyed. Our results clearly indicate that the linear dispersions observed in both angular-resolved photoemission spectroscopy [P. Vogt , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.108.155501 108, 155501 (2012)] and scanning tunneling spectroscopy [L. Chen , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.056804 109, 056804 (2012)] come from the Ag substrate and not from silicene.
Hou, C.; Li, X. [China University of Mining and Technology, Xuzhou (China)
2001-02-01
Based on the characteristics of the surrounding rock of roadway driven along the goaf in a fully mechanised top coal caving face, the stability principle of big and small structures is put forward, which provides the theoretical basis to the application of bolting. The mechanical characteristics of the arc-triangle key block in the main roof and the stability of the roadway during drivage and extraction and the effect on the roadway driven along the next goaf are analysed. The main factors which affect the stability of the small structure of the surrounding rock are discussed. The bolting surrounding strength reinforcement theory is applied to study the important significance of improving the pre-tension of bolting and the support strength. 4 refs., 7 figs., 2 tabs.
Saha, Anirban
2014-01-01
We construct the quantum mechanical model of the COW experiment assuming that the underlying space time has a granular structure, described by a canonical noncommutative algebra of coordinates $x^{\\mu}$. The time-space sector of the algebra is shown to add a mass-dependent contribution to the gravitational acceleration felt by neutron deBrogli waves measured in a COW experiment. This makes time-space noncommutativity a potential candidate for an apparent violation of WEP even if the ratio of the inertial mass $m_{i}$ and gravitational mass $m_{g}$ is a universal constant. The latest experimental result based on COW principle is shown to place an upper-bound several orders of magnitude stronger than the existing one on the time-space noncommutative parameter. We argue that the evidence of NC structure of space-time may be found if the COW-type experiment can be repeated with several particle species.
rehman Hashmi, Muhammad Raza ur; Zafar, Muhammad; Shakil, M.; Sattar, Atif; Ahmed, Shabbir; Ahmad, S. A.
2016-11-01
First-principles calculations by means of the full-potential linearized augmented plane wave method using the generalized gradient approximation with correlation effect correction (GGA+U) within the framework of spin polarized density functional theory (DFT+U) are used to study the structural, electronic, and magnetic properties of cubic perovskite compounds RbXF3 (X = Mn, V, Co, and Fe). It is found that the calculated structural parameters, i.e., lattice constant, bulk modulus, and its pressure derivative are in good agreement with the previous results. Our results reveal that the strong spin polarization of the 3d states of the X atoms is the origin of ferromagnetism in RbXF3. Cohesive energies and the magnetic moments of RbXF3 have also been calculated. The calculated electronic properties show the half-metallic nature of RbCoF3 and RbFeF3, making these materials suitable for spintronic applications.
Principles of artificial intelligence
Nilsson, Nils J
1980-01-01
A classic introduction to artificial intelligence intended to bridge the gap between theory and practice, Principles of Artificial Intelligence describes fundamental AI ideas that underlie applications such as natural language processing, automatic programming, robotics, machine vision, automatic theorem proving, and intelligent data retrieval. Rather than focusing on the subject matter of the applications, the book is organized around general computational concepts involving the kinds of data structures used, the types of operations performed on the data structures, and the properties of th
WEN QingBo; YU ShanSheng; ZHENG WeiTao
2009-01-01
Calculations have been made for single-walled zigzag (n, 0) carbon nanotubes containing substitutional boron impurity atoms using ab initio density functional theory. It is found that the formation energies of these nanotubes depend on the tube diameter, as do the electronic properties, and show periodic fea-ture that results from their different π bonding structures compared to those of perfect zigzag carbon nanotubes. When more boron atoms are incorporated into a single-walled zigzag carbon nanotube, the substitutional boron atoms tend to come together to form structure of BC3 nanodomains, and B-doped tubes have striking acceptor states above the top of the valence bands. For the structure of BC3, there are two kinds of configurations with different electronic structures.
Anil Thakur; P K Ahluwalia
2007-10-01
In this paper formulae for partial structure factors have been used to study partial structure factors of compound-forming quaternary liquid alloys by considering Hoshino's m-component hard-sphere mixture, which is based on Percus-Yevic equation of Hiroike. Formulae are applied to NaSn (Na, Sn, NaSn, Na3Sn) which is considered as a quaternary liquid mixture with the formation of two compounds simultaneously. We have compared the total structure factors for ternary and quaternary alloys with experimental total structure factors which are found to be in good agreement. This suggests that, for suitable stoichiometric composition, two compounds are formed simultaneously. The hard-sphere diameters needed have been calculated using Troullier and Martins ab-initio pseudopotentials.
Egger, David A; Kronik, Leeor
2014-08-07
A microscopic picture of structure and bonding in organic-inorganic perovskites is imperative to understanding their remarkable semiconducting and photovoltaic properties. On the basis of a density functional theory treatment that includes both spin-orbit coupling and dispersive interactions, we provide detailed insight into the crystal binding of lead-halide perovskites and quantify the effect of different types of interactions on the structural properties. Our analysis reveals that cohesion in these materials is characterized by a variety of interactions that includes important contributions from both van der Waals interactions among the halide atoms and hydrogen bonding. We also assess the role of spin-orbit coupling and show that it causes slight changes in lead-halide bonding that do not significantly affect the lattice parameters. Our results establish that consideration of dispersive effects is essential for understanding the structure and bonding in organic-inorganic perovskites in general and for providing reliable theoretical predictions of structural parameters in particular.
无
2009-01-01
Calculations have been made for single-walled zigzag(n,0) carbon nanotubes containing substitutional boron impurity atoms using ab initio density functional theory.It is found that the formation energies of these nanotubes depend on the tube diameter,as do the electronic properties,and show periodic fea-ture that results from their different π bonding structures compared to those of perfect zigzag carbon nanotubes.When more boron atoms are incorporated into a single-walled zigzag carbon nanotube,the substitutional boron atoms tend to come together to form structure of BC3 nanodomains,and B-doped tubes have striking acceptor states above the top of the valence bands.For the structure of BC3,there are two kinds of configurations with different electronic structures.
Structure and Properties of Semiconductor Microclusters GanPn(n=1-4):A First Principle Study
ZHANG Cai-rong; CHEN Hong-shan; WANG Guang-hou
2004-01-01
The possible geometrical structures and relative stabilities of semiconductor microclusters GanPn(n= 1-4) were studied by virtue of density functional calculations with generalized gradient approximation (B3LYP).For the most stable isomers of GanPn(n= 1-4) clusters, the electronic structure, vibrational properties,dipole moment, polarizability and ionization potential were analyzed by means of HF, MP2, CISD and B3LYP methods with different basis sets.
Jiang, Hong
2011-05-28
Early transition metal dichalcogenides (TMDC), characterized by their quasi-two-dimensional layered structure, have attracted intensive interest due to their versatile chemical and physical properties, but a comprehensive understanding of their structural and electronic properties from a first-principles point of view is still lacking. In this work, four simple TMDC materials, MX(2) (M = Zr and Hf, X = S and Se), are investigated by the Kohn-Sham density functional theory (KS-DFT) with different local or semilocal exchange-correlation (xc) functionals and many-body perturbation theory in the GW approximation. Although the widely used Perdew-Burke-Ernzelhof (PBE) generalized gradient approximation (GGA) xc functional overestimates the interlayer distance dramatically, two newly developed GGA functionals, PBE-for-solids (PBEsol) and Wu-Cohen 2006 (WC06), can reproduce experimental crystal structures of these TMDC materials very well. The GW method, currently the most accurate first-principles approach for electronic band structures of extended systems, gives the fundamental band gaps of all these materials in good agreement with the experimental values obtained from optical absorption. The minimal direct gaps from GW are systematically larger than those measured from thermoreflectance by about 0.1-0.3 eV, implying that excitonic effects may be stronger than previously estimated. The calculated density of states from GW quasi-particle band energies agrees very well with photo-emission spectroscopy data. Ionization potentials of these materials are also computed by combining PBE calculations based on the slab model and GW quasi-particle corrections. The calculated absolute band energies with respect to the vacuum level indicate that that ZrS(2) and HfS(2), although having suitable band gaps for visible light absorption, cannot be used for overall water splitting as a result of mismatch of the conduction band minimum with the redox potential of H(+)/H(2).
Ferdous, Naheed; Ertekin, Elif
2016-07-01
The epitaxial integration of functional oxides with wide band gap semiconductors offers the possibility of new material systems for electronics and energy conversion applications. We use first principles to consider an epitaxial interface between the correlated metal oxide SrRuO3 and the wide band gap semiconductor TiO2, and assess energy level alignment, interfacial chemistry, and interfacial dipole formation. Due to the ferromagnetic, half-metallic character of SrRuO3, according to which only one spin is present at the Fermi level, we demonstrate the existence of a spin dependent band alignment across the interface. For two different terminations of SrRuO3, the interface is found to be rectifying with a Schottky barrier of ≈1.3-1.6 eV, in good agreement with experiment. In the minority spin, SrRuO3 exhibits a Schottky barrier alignment with TiO2 and our calculated Schottky barrier height is in excellent agreement with previous experimental measurements. For majority spin carriers, we find that SrRuO3 recovers its exchange splitting gap and bulk-like properties within a few monolayers of the interface. These results demonstrate a possible approach to achieve spin-dependent transport across a heteroepitaxial interface between a functional oxide material and a conventional wide band gap semiconductor.
Li, Li [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Civil Aviation Flight Univ. of China, Guanghan (China). Dept. of Physics; Zeng, Zhao-Yi [Chongqing Normal Univ., Chongqing (China). College of Physics and Electronic Engineering; Liang, Ting; Tang, Mei; Cheng, Yan [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics
2017-07-01
The influence of pressure on the elastic and mechanical properties of the hexagonal transition-metal dichalcogenide WS{sub 2} is investigated using the first-principles calculations. With the increase in pressure, the lattice parameters and the volume of WS{sub 2} decrease, which is exactly in agreement with the available experimental data and other calculated results. The elastic constants C{sub ij}, bulk modulus B, shear modulus G, Young's modulus E, and Poisson's ratio σ of WS{sub 2} also increase with pressure. At last, for the first time, the band gaps of energy, the partial density of states, and the total density of states under three different pressures are obtained and analysed. It is found that the band gap of WS{sub 2} decreases from 0.843 to 0 eV when the external pressure varies from 0 to 20 GPa, which implies that WS{sub 2} may transform from semiconductors to semimetal phase at a pressure about 20 GPa.
Xiang, Huimin; Feng, Zhihai; Li, Zhongping; Zhou, Yanchun, E-mail: yczhou@imr.ac.cn, E-mail: yczhou714@gmail.com [Science and Technology on Advanced Functional Composite Laboratory, Aerospace Research Institute of Materials and Processing Technology, No. 1 South Dahongmen Road, Beijing 100076 (China)
2015-06-14
High temperature mechanical and thermodynamic properties of TiB{sub 2} are important to its applications as ultrahigh temperature ceramic, which were not well understood. In this study, the thermodynamic and mechanical properties of TiB{sub 2} were investigated by the combination of first principle and phonon dispersion calculations. The thermal expansion of TiB{sub 2} was anisotropic, α{sub c}/α{sub a} is nearly constant (1.46) from 300 K to 1500 K, theoretically. The origination of this anisotropy is the anisotropic compressibility. The heat capacity at constant pressure was estimated from the theoretical entropy and fitted the experimental result quite well when higher-order anharmonic effects were considered. Theoretical isentropic elastic constants and mechanical properties were calculated and their temperature dependence agreed with the existed experiments. From room temperature to 1500 K, the theoretical slope is −0.0211 GPa·K{sup −1}, −0.0155 GPa·K{sup −1}, and −0.0384 GPa·K{sup −1} for B, G, and E, respectively. Our theoretical results highlight the suitability of this method in predicting temperature dependent properties of ultrahigh temperature ceramics and show ability in selecting and designing of novel ultrahigh temperature ceramics.
Quesne-Turin, Ambroise; Touzeau, Jeremy; Dappe, Yannick J.; Diawara, Boubakar; Maurel, François; Seydou, Mahamadou
2017-05-01
Graphene-based two-dimensional materials have attracted an increasing attention these last years. Among them, the system formed by molecular adsorption on, aim of modifying the conductivity of graphene and make it semiconducting, is of particular interest. We use here hierarchical first-principles simulations to investigate the energetic and electronic properties of an electron-donor, melamine, and an acceptor, NaphtaleneTetraCarboxylic DiImide (NTCDI), and the assembly of their complexes on graphene surface. In particular, the van der Waals-corrected density functional theory (DFT) method is used to compute the interaction and adsorption energies during assembly. The effect of dispersion interactions on both geometries and energies is investigated. Depending on the surface coverage and the molecular organization, there is a significant local deformation of the graphene surface. Self-assembly is driven by the competition between hydrogen bonds in the building blocks and their adsorption on the surface. The dispersion contribution accounts significantly in both intermolecular and adsorption energies. The electron transfer mechanism and density of states (DOS) calculations show the electron-donor and acceptor characters of melamine and NTCDI, respectively. Molecular adsorption affects differently the energy levels around the Fermi level differently, leading to band gap opening. These results provide information about the new materials obtained by controlling molecular assembly on graphene.
Hu, Wen-Cheng; Liu, Yong; Li, De-Jiang; Li, Ke; Jin, Hua-Lan; Xu, Ying-Xuan; Xu, Chun-Shui; Zeng, Xiao-Qin
2014-12-01
Structural stability and electronic properties of polar intermetallic CaZn2 and SrZn2 in both CeCu2-type and MgZn2-type structures have been investigated using first-principles method. The calculated equilibrium lattice parameters agree closely with the available experimental and other theoretical results. In terms of formation enthalpy, it is discovered that the present compounds with CeCu2-type structure are energetically more stable than that with MgZn2-type. They are all mechanically stable according to the criteria of elastic stability. In particular, we have investigated the pressure effect on the compressive behaviour and structural stability of each compound. Subsequently, the bulk modulus, shear modulus, Young's modulus, theoretical hardness, Poisson's ratio and Debye temperature in the ground state can be estimated using Voigt-Reuss-Hill homogenization method. Mechanical anisotropy is characterized by the anisotropic factors and direction-dependent Young's modulus. Finally, the electronic structures are determined to reveal the bonding characteristics of considered phases.
粟劲苍; 周广; 裴勇; 杨振华; 王先友
2015-01-01
NaxCoO2 is a commonly used cathode material for sodium ion batteries because of its easy synthesis, high reversible capacity and good cyclability. The structural and electrochemical properties of NaxCoO2 during sodium ion insertion/extraction process are studied based on first principles calculations. The calculation results of crystal structure parameters and average intercalation voltage are in good agreement with experiment data. Through calculation of the geometric structure and charge transfer in charging and discharging processes of NaxCoO2, it is found that the oxygen atom surrounding Co of the CoO6 octahedral screens the coulomb potential produced by sodium vacancy in NaxCoO2, and the charge is removed from the entire Co−O layer instead of the Co atom adjacent to sodium vacancy when sodium ions are extracted from the NaCoO2 lattice. Thus, during the insertion/extraction of sodium ion from NaCoO2, the CoO6 octahedral structure undergoes small lattice distortion, which makes the local structure quite stable and is beneficial to the cycling stability of the material for the application of sodium ion batteries.
Le Roux, Sébastien; Bouzid, Assil; Kim, Kye Yeop; Han, Seungwu; Zeidler, Anita; Salmon, Philip S.; Massobrio, Carlo
2016-08-01
The structure of glassy GeSe9 was investigated by combining neutron diffraction with density-functional-theory-based first-principles molecular dynamics. In the simulations, three different models of N = 260 atoms were prepared by sampling three independent temporal trajectories, and the glass structures were found to be substantially different from those obtained for models in which smaller numbers of atoms or more rapid quench rates were employed. In particular, the overall network structure is based on Sen chains that are cross-linked by Ge(Se4)1/2 tetrahedra, where the latter are predominantly corner as opposed to edge sharing. The occurrence of a substantial proportion of Ge-Se-Se connections does not support a model in which the material is phase separated into Se-rich and GeSe2-rich domains. The appearance of a first-sharp diffraction peak in the Bhatia-Thornton concentration-concentration partial structure factor does, however, indicate a non-uniform distribution of the Ge-centered structural motifs on an intermediate length scale.
Mingye Yang
2015-06-01
Full Text Available By using first-principles calculations, we investigate the structural stability of nitrogen-doped (N-doped graphene with graphitic-N, pyridinic-N and pyrrolic-N, and the transition metal (TM atoms embedded into N-doped graphene. The structures and energetics of TM atoms from Sc to Ni embedded into N-doped graphene are studied. The TM atoms at N4V 2 forming a 4N-centered structure shows the strongest binding and the binding energies are more than 7 eV. Finally, we investigate the catalytic performance of N-doped graphene with and without TM embedding for O2 dissociation, which is a fundamental reaction in fuel cells. Compared to the pyridinic-N, the graphitic-N is more favorable to dissociate O2 molecules with a relatively low reaction barrier of 1.15 eV. However, the catalytic performance on pyridinic-N doped structure can be greatly improved by embedding TM atoms, and the energy barrier can be reduced to 0.61 eV with V atom embedded. Our results provide the stable structure of N-doped graphene and its potential applications in the oxygen reduction reactions.
First-principles predicted low-energy structures of NaSc(BH{sub 4}){sub 4}
Tran, Huan Doan, E-mail: huan.tran@uconn.edu; Amsler, Maximilian; Goedecker, Stefan, E-mail: stefan.goedecker@unibas.ch [Department of Physics, Universität Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Botti, Silvana; Marques, Miguel A. L. [Institut Lumière Matière and ETSF, UMR5306 Universite Lyon 1-CNRS, Universitè de Lyon, F-69622 Villeurbanne Cedex (France)
2014-03-28
According to previous interpretations of experimental data, sodium-scandium double-cation borohydride NaSc(BH{sub 4}){sub 4} crystallizes in the crystallographic space group Cmcm where each sodium (scandium) atom is surrounded by six scandium (sodium) atoms. A careful investigation of this phase based on ab initio calculations indicates that the structure is dynamically unstable and gives rise to an energetically and dynamically more favorable phase with C222{sub 1} symmetry and nearly identical x-ray diffraction pattern. By additionally performing extensive structural searches with the minima-hopping method we discover a class of new low-energy structures exhibiting a novel structural motif in which each sodium (scandium) atom is surrounded by four scandium (sodium) atoms arranged at the corners of either a rectangle with nearly equal sides or a tetrahedron. These new phases are all predicted to be insulators with band gaps of 7.9–8.2 eV. Finally, we estimate the influence of these structures on the hydrogen-storage performance of NaSc(BH{sub 4}){sub 4}.
Wu, Xiao-Long; Zhou, Xiao-Lin; Chang, Jing
2014-08-01
The structural and elastic properties of 3d transition metal tetraboride TMB4 (TM = V, Cr, Mn) have been studied by using density functional theory (DFT) within the local density approximation (LDA) and generalized gradient approximation (GGA) for exchange-correlation function. Our results are in agreement well with available experimental data and previous theoretical studies. The full elastic constants and bulk shear modulus of TMB4 (TM = V, Cr, Mn) are obtained in the wide pressure range. Results indicated that these phases of TMB4 (TM = V, Cr, Mn) are strongly pressure dependent. And the CrB4 in Immm structure is the most ultraincompressible among the considered phases at 0 GPa. By the mechanical stability criteria, it is predicted that these phases of TMB4 (TM = V, Cr, Mn) compounds are stable up to 100 GPa. In addition, the calculated B/G ratio indicated that all the structures of TMB4 (TM = V, Cr, Mn) possess brittle nature in the range of pressure from 0 GPa to 100 GPa except the Pnnm structure of MnB4, which is higher than 1.75, indicating that the Pnnm structure of MnB4 is prone to ductility when the pressure is above 73 GPa.
Wei, Zhenyi; Tou, Shushi; Wu, Bo; Bai, Kewu
2016-12-01
ZnZrAl2 is a kind of heterogeneous nucleation to promote the refine of grain of ZA43 alloy. ZnZrAl2 intermetallic is also considered as a candidate for superalloys. The crystal lattice structure, alloy thermodynamics and mechanical properties of ZnZrAl2 intermetallic compound were investigated by ab initio calculations based on density functional theory (DFT). In particular, the site preference of atoms in different sublattices was predicted based on alloy thermodynamics. At ground state, the most stable structure is L12 structure with sublattice model (Zn)1a(Zr0.3333Al0.6667)3c or (Zr)1a(Zn0.3333Al0.6667)3c, and the occupying preferences of Zn, Zr and Al atoms are independent with the increasing temperature. The bulk, shear, Young's modulus and the Poisson's ratio of the L12 structure ZnZrAl2 were calculated based on the site occupying configurations. The results show that ZnZrAl2 is a brittle material in nature. Electronic structures analysis revealed that Al-Zr atoms possess a covalent bonding character, while the Zn-Zr atoms have a metallic bonding character. ZnZrAl2 has stable mechanical properties at high temperature. The grain refinement effect of ZnZrAl2 precipitates in Zn-Al alloys were discussed based on crystal lattice match theory.
Matar, Samir F., E-mail: samir.matar@icmcb.cnrs.fr; Chevalier, Bernard; Etourneau, Jean
2016-01-01
TbTiGe intermetallic compound is characterized by temperature dimorphism with different but related crystal structures with ferromagnetic high temperature (HT) form versus antiferromagnetic low temperature (LT) form. Such different structure properties and magnetic behaviors have been addressed based on DFT computations of cohesive energies, charge transfers, mechanical and chemical properties of the two structures. This is particularly illustrated by harder and less ductile LT-form with stronger Ti–Ge bond and larger charge transfer from Tb and Ti on one hand and Ge on the other hand. - Highlights: • Temperature induced dimorphism in TbTiGe (LT – HT) leads to different magnetic orders. • Long range ferromagnetic SPF and antiferromagnetic SPAF orders addressed within DFT. • SPAF-LT results from differentiated mechanical and chemical behaviors versus SPF-HT.
Pagare, Gitanjali; Jain, Ekta; Sanyal, S. P.
2016-05-01
Structural, electronic, optical and elastic properties of PtZr have been studied using the full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). The energy against volume and enthalpy vs. pressure variation in three different structures i.e. B1, B2 and B3 for PtZr has been presented. The equilibrium lattice parameter, bulk modulus and its pressure derivative have been obtained using optimization method for all the three phases. Furthermore, electronic structure was discussed to reveal the metallic character of the present compound. The linear optical properties are also studied under zero pressure for the first time. Results on elastic properties are obtained using generalized gradient approximation (GGA) for exchange correlation potentials. Ductile nature of PtZr compound is predicted in accordance with Pugh's criteria.
Pagare, Gitanjali, E-mail: gita-pagare@yahoo.co.in [Department of Physics, Sarojini Naidu Government Girls P. G. Autonomous College, Bhopal-462016 (India); Jain, Ekta, E-mail: jainekta05@gmail.com [Department of Physics, Government M. L. B. Girls P. G. Autonomous College, Bhopal-462002 (India); Sanyal, S. P., E-mail: sps.physicsbu@gmail.com [Department of Physics, Barkatullah University, Bhopal-462026 (India)
2016-05-06
Structural, electronic, optical and elastic properties of PtZr have been studied using the full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). The energy against volume and enthalpy vs. pressure variation in three different structures i.e. B{sub 1}, B{sub 2} and B{sub 3} for PtZr has been presented. The equilibrium lattice parameter, bulk modulus and its pressure derivative have been obtained using optimization method for all the three phases. Furthermore, electronic structure was discussed to reveal the metallic character of the present compound. The linear optical properties are also studied under zero pressure for the first time. Results on elastic properties are obtained using generalized gradient approximation (GGA) for exchange correlation potentials. Ductile nature of PtZr compound is predicted in accordance with Pugh’s criteria.
Mitchell, Robert A.; Schumacher, Douglass W.; Chowdhury, Enam A.
2015-11-01
We present our results of a fundamental simulation of a periodic grating structure formation on a copper target during the femtosecond-pulse laser damage process, and compare our results to recent experiment. The particle-in-cell (PIC) method is used to model the initial laser heating of the electrons, a two-temperature model (TTM) is used to model the thermalization of the material, and a modified PIC method is employed to model the atomic transport leading to a damage crater morphology consistent with experimental grating structure formation. This laser-induced periodic surface structure (LIPSS) is shown to be directly related to the formation of surface plasmon polaritons (SPP) and their interference with the incident laser pulse.
Ma, Zi-Qian; Pan, Hui; Wong, Pak Kin
2016-11-01
Organic-inorganic halide perovskites have attracted increasing interest on solar-energy harvesting because of their outstanding electronic properties. In this work, we systematically investigate the structural and electronic properties of Sn-based hybrid perovskites MASnX3 and FASnX3 (X = I, Br) based on density-functional-theory calculations. We find that their electronic properties strongly depend on the organic molecules, halide atoms, and structures. We show that there is a general rule to predict the band gap of the Sn-based hybrid perovskite: its band gap increases as the size of halide atom decreases as well as that of organic molecule increase. The band gap of high temperature phase (cubic structure) is smaller than that of low temperature phase (orthorhombic structure). The band gap of tetragonal structure (medium-temperature phase) may be larger or smaller than that of cubic phase, depending on the orientation of the molecule. Tunable band gap within a range of 0.73-1.53 eV can be achieved by choosing halide atom and organic molecule, and controlling structure. We further show that carrier effective mass also reduces as the size of halide atom increases and that of molecule decreases. By comparing with Pb-based hybrid perovskites, the Sn-based systems show enhanced visible-light absorption and carrier mobility due to narrowed band gap and reduced carrier effective mass. These Sn-based organic-inorganic halide perovskites may find applications in solar energy harvesting with improved performance.
Fedorov, Igor A; Fedorova, Tatyana P; Zhuravlev, Yuriy N
2016-05-26
We studied the structural and electronic properties of pentaerythritol tetranitrate (PETN) and erythritol tetranitrate (ETN) crystals within the framework of density functional theory with van der Waals interactions. The computed lattice parameters have good agreement with experimental data. Electronic and structural properties of the crystals under 0-20 GPa hydrostatic pressure were studied. The parameters of equations of state calculated from the theoretical data show good agreement with experiment within the studied pressure intervals. We have also calculated the detonation velocity and pressure.
Bannikov, V.V.; Shein, I.R. [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 620990 Ekaterinburg (Russian Federation); Ivanovskii, A.L., E-mail: ivanovskii@ihim.uran.ru [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 620990 Ekaterinburg (Russian Federation)
2012-08-25
Highlights: Black-Right-Pointing-Pointer Silicide arsenides and germanide arsenides of Ti, Zr, Hf are probed from first principles. Black-Right-Pointing-Pointer Structural, elastic, electronic properties and stability trends are evaluated. Black-Right-Pointing-Pointer Bulk moduli of HfCuSiAs and HfCuGeAs are the largest among all 1111-like phases. Black-Right-Pointing-Pointer Chemical bonding is analyzed. - Abstract: The tetragonal (s.g. I4/nmm; no. 129) silicide arsenide ZrCuSiAs is well known as a structural type of the broad family of so-called 1111-like quaternary phases which includes now more than 150 representatives. These materials demonstrate a rich variety of outstanding physical properties (from p-type transparent semiconductors to high-temperature Fe-based superconductors) and attracted a great interest as promising candidates for a broad range of applications. At the same time, the data about the electronic and elastic properties of the ZrCuSiAs phase itself, as well as of related silicide arsenides and germanide arsenides are still very limited. Here for a series of six isostructural and isoelectronic 1111-like phases which includes both synthesized (ZrCuSiAs, HfCuSiAs, ZrCuGeAs, and HfCuGeAs) and hypothetical (TiCuSiAs and TiCuGeAs) materials, systematical studies of their structural, elastic, electronic properties and stability trends are performed by means of first-principles calculations.
Principles and Criteria for Design
Beghin, D.; Cervetto, D.; Hansen, Peter Friis
1997-01-01
The mandate of ISSC Committee IV.1 on principles and Criteria for Design is to report on the following:The ongoing concern for quantification of general economic and safety criteria for marine structures and for the development of appropriate principles for rational life cycle design using...
Principles and Criteria for Design
Beghin, D.; Cervetto, D.; Hansen, Peter Friis
1997-01-01
The mandate of ISSC Committee IV.1 on principles and Criteria for Design is to report on the following:The ongoing concern for quantification of general economic and safety criteria for marine structures and for the development of appropriate principles for rational life cycle design using...
Koufos, Alexander P.; Papaconstantopoulos, Dimitrios A.; Mehl, Michael J.
2014-01-01
We have performed density functional theory calculations using the linearized augmented plane wave method (LAPW) with the local density approximation (LDA) functional to study the electronic structure of the iron-based superconductor iron-selenium (FeSe). In our study, we have performed a comprehensive set of calculations involving structural, atomic, and spin configurations. All calculations were executed using the tetragonal lead-oxide or P4/nmm structure, with various volumes, c /a ratios, and internal parameters. Furthermore, we investigated the spin polarization using the LDA functional to assess ferromagnetism in this material. The paramagnetic LDA calculations find the equilibrium configuration of FeSe in the P4/nmm structure to have a volume of 472.5 a.u.3 with a c /a ratio of 1.50 and internal parameter of 0.255, with the ferromagnetic having comparable results to the paramagnetic case. In addition, we calculated total energies for FeSe using a pseudopotential method, and found comparable results to the LAPW calculations. Superconductivity calculations were done using the Gaspari-Gyorffy and the McMillan formalisms and found substantial electron-phonon coupling. Under pressure, our calculations show that the superconductivity critical temperature continues to rise, but underestimates the measured values.
WANG Jian-Gen; ZHAO Yi
2005-01-01
@@ We propose a Bang-Bang control scheme that can synchronize master-slave chaotic systems. The chaotic systems considered here are structurally different from each other. Different from some control strategies reported previously, the scheme proposed here can be taken as a generalone that is independent of the chaotic system itself.
First-principles study of the electronic structure of CdS/ZnSe coupled quantum dots
Ganguli, N.; Acharya, S.; Dasgupta, I.
2014-01-01
We have studied the electronic structure of CdS/ZnSe coupled quantum dots, a novel heterostructure at the nanoscale. Our calculations reveal CdS/ZnSe coupled quantum dots are type II in nature where the anion p states play an important role in deciding the band offset for the highest occupied
First-principles study of atomic structure and electronic properties of Si and F doped anatase TiO2
Li Hongping
2015-09-01
Full Text Available Chemical doping represents one of the most effective ways in engineering electronic structures of anatase TiO2 for practical applications. Here, we investigate formation energies, geometrical structures, and electronic properties of Si-, F-doped and Si/F co-doped anatase TiO2 by using spin-polarized density functional theory calculation. We find that the co-doped TiO2 is thermodynamically more favorable than the Si- and F-doped TiO2- Structural analysis shows that atomic impurity varies crystal constants slightly. Moreover, all the three doped systems show a pronounced narrowing of band gap by 0.33 eV for the F-doped TiO2, 0.17 eV for the Si-doped TiO2, and 0.28 eV for the Si/F-co-doped TiO2, which could account for the experimentally observed redshift of optical absorption edge. Our calculations suggest that the Si/F-co-doping represents an effective way in tailoring electronic structure and optical properties of anatase TiO2.
2016-02-10
1997. [3] Y.G.A. Graham, S. MacGlashan, Peter G. Bruce, Structure of the polymer electrolyte poly( ethylene oxide)6:LiAsF6, Nature 398, 792-794 (1999... chlorine , green; aluminum, pink; magnesium, yellow. 11 Table 1 Ab initio vibrational frequencies for EMImAlCl4 and EMImAl2Cl7