WorldWideScience

Sample records for extremely metal-deficient stars

  1. Chromospheres in metal deficient field stars

    International Nuclear Information System (INIS)

    Dupree, A.K.; Hartmann, L.; Smith, G.

    1984-01-01

    The chromospheric structure of red giant stars with metal deficient atmospheres presents a fundamental observational and theoretical problem for atmospheric theory. Moreover, the occurrence and rate of mass loss from these stars have consequences for the theory of stellar evolution of low mass stars in globular clusters. This paper reports some results from a systematic program to assess the presence and character of chromospheric line profiles and their variations, and to obtain quantitative measurements of radiative losses from chromospheres. Such data are needed to constrain semi-empirical models of these atmospheres. Three metal deficient field stars have been observed both in the ultraviolet and optical spectral regions: HD 165195, HD 110281, and HD 232078. High dispersion spectra near the Hα transition were obtained with the echelle spectrograph and reticon detector at the F.L. Whipple Observatory of SAO. These stars were observed twice in 1983, separated by a two month interval. IUE spectra were also obtained using the long wavelength cameras in low dispersion mode. Observations of the three stars are discussed

  2. ALFALFA DISCOVERY OF THE NEARBY GAS-RICH DWARF GALAXY LEO P. III. AN EXTREMELY METAL DEFICIENT GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Skillman, Evan D.; Berg, Danielle A.; Olive, Keith A.; McQuinn, Kristen B. W., E-mail: skillman@astro.umn.edu, E-mail: berg@astro.umn.edu, E-mail: olive@physics.umn.edu, E-mail: kmcquinn@astro.umn.edu [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States); and others

    2013-07-01

    We present KPNO 4 m and LBT/MODS spectroscopic observations of an H II region in the nearby dwarf irregular galaxy Leo P discovered recently in the Arecibo ALFALFA survey. In both observations, we are able to accurately measure the temperature sensitive [O III] {lambda}4363 line and determine a ''direct'' oxygen abundance of 12 + log(O/H) = 7.17 {+-} 0.04. Thus, Leo P is an extremely metal deficient (XMD) galaxy, and, indeed, one of the most metal deficient star-forming galaxies ever observed. For its estimated luminosity, Leo P is consistent with the relationship between luminosity and oxygen abundance seen in nearby dwarf galaxies. Leo P shows normal {alpha} element abundance ratios (Ne/O, S/O, and Ar/O) when compared to other XMD galaxies, but elevated N/O, consistent with the ''delayed release'' hypothesis for N/O abundances. We derive a helium mass fraction of 0.2509{sup +0.0184}{sub -0.0123}, which compares well with the WMAP + BBN prediction of 0.2483 {+-} 0.0002 for the primordial helium abundance. We suggest that surveys of very low mass galaxies compete well with emission line galaxy surveys for finding XMD galaxies. It is possible that XMD galaxies may be divided into two classes: the relatively rare XMD emission line galaxies which are associated with starbursts triggered by infall of low-metallicity gas and the more common, relatively quiescent XMD galaxies like Leo P, with very low chemical abundances due to their intrinsically small masses.

  3. METAL DEFICIENCY IN CLUSTER STAR-FORMING GALAXIES AT Z = 2

    Energy Technology Data Exchange (ETDEWEB)

    Valentino, F.; Daddi, E.; Strazzullo, V.; Gobat, R.; Bournaud, F.; Juneau, S.; Zanella, A. [Laboratoire AIM-Paris-Saclay, CEA/DSM-CNRS-Université Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif sur Yvette (France); Onodera, M.; Carollo, M. [Institute for Astronomy, ETH Zürich Wolfgang-Pauli-strasse 27, 8093 Zürich (Switzerland); Renzini, A. [INAF-Osservatorio Astronomico di Padova Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Arimoto, N., E-mail: francesco.valentino@cea.fr [Subaru Telescope, National Astronomical Observatory of Japan 650 North A’ohoku Place, Hilo, HI 96720 (United States)

    2015-03-10

    We investigate the environmental effect on the metal enrichment of star-forming galaxies (SFGs) in the farthest spectroscopically confirmed and X-ray-detected cluster, CL J1449+0856 at z = 1.99. We combined Hubble Space Telescope/WFC3 G141 slitless spectroscopic data, our thirteen-band photometry, and a recent Subaru/Multi-object InfraRed Camera and Spectrograph (MOIRCS) near-infrared spectroscopic follow-up to constrain the physical properties of SFGs in CL J1449+0856 and in a mass-matched field sample. After a conservative removal of active galactic nuclei, stacking individual MOIRCS spectra of 6 (31) sources in the cluster (field) in the mass range 10 ≤ log(M/M{sub ⊙}) ≤ 11, we find a ∼4σ lower [N ii]/Hα ratio in the cluster than in the field. Stacking a subsample of 16 field galaxies with Hβ and [O iii] in the observed range, we measure an [O iii]/Hβ ratio fully compatible with the cluster value. Converting these ratios into metallicities, we find that the cluster SFGs are up to 0.25 dex poorer in metals than their field counterparts, depending on the adopted calibration. The low metallicity in cluster sources is confirmed using alternative indicators. Furthermore, we observe a significantly higher Hα luminosity and equivalent width in the average cluster spectrum than in the field. This is likely due to the enhanced specific star formation rate; even if lower dust reddening and/or an uncertain environmental dependence on the continuum-to-nebular emission differential reddening may play a role. Our findings might be explained by the accretion of pristine gas around galaxies at z = 2 and from cluster-scale reservoirs, possibly connected with a phase of rapid halo mass assembly at z > 2 and of a high galaxy merging rate.

  4. Extreme Variables in Star Forming Regions

    Science.gov (United States)

    Contreras Peña, Carlos Eduardo

    2015-01-01

    The notion that low- to intermediate-mass young stellar objects (YSOs) gain mass at a constant rate during the early stages of their evolution appears to be challenged by observations of YSOs suffering sudden increases of the rate at which they gain mass from their circumstellar discs. Also, this idea that stars spend most of their lifetime with a low accretion rate and gain most of their final mass during short-lived episodes of high accretion bursts, helps to solve some long-standing problems in stellar evolution. The original classification of eruptive variables divides them in two separate subclasses known as FU Orionis stars (FUors) and EX Lupi stars (EXors). In this classical view FUors are at an early evolutionary stage and are still gaining mass from their parent envelopes, whilst EXors are thought to be older objects only surrounded by an accretion disc. The problem with this classical view is that it excludes younger protostars which have higher accretion rates but are too deeply embedded in circumstellar matter to be observed at optical wavelengths. Optically invisible protostars have been observed to display large variability in the near-infrared. These and some recent discoveries of new eruptive variables, show characteristics that can be attributed to both of the optically-defined subclasses of eruptive variables. The new objects have been proposed to be part of a new class of eruptive variables. However, a more accepted scenario is that in fact the original classes only represent two extremes of the same phenomena. In this sense eruptive variability could be explained as arising from one physical mechanism, i.e. unsteady accretion, where a variation in the parameters of such mechanism can cause the different characteristics observed in the members of this class. With the aim of studying the incidence of episodic accretion among young stellar objects, and to characterize the nature of these eruptive variables we searched for high amplitude variability

  5. High resolution spectroscopy of six new extreme helium stars

    Science.gov (United States)

    Heber, U.; Jones, G.; Drilling, J. S.

    1986-01-01

    High resolution spectra of six newly discovered extreme helium stars are presented. LSS 5121 is shown to be a spectroscopical twin of the hot extreme helium star HD 160641. A preliminary LTE analysis of LSS 3184 yielded an effective temperature of 22,000 K and a surface gravity of log g = 3.2. Four stars form a new subgroup, classified by sharp-lined He I spectra and pronounced O II spectra, and it is conjectured that these lie close to the Eddington limit. The whole group of extreme helium stars apparently is inhomogeneous with respect to luminosity to mass ratio and chemical composition.

  6. A radial velocity survey of extremely hydrogen-deficient stars

    International Nuclear Information System (INIS)

    Jeffery, C.S.; Kiel Univ.; Drilling, J.S.; Heber, U.

    1987-01-01

    A radial velocity survey of hot extremely hydrogen-deficient stars has been carried out in order to search for possible binaries. The survey found three stars to have large velocity variations. Of these, two are known hydrogen-deficient binaries and one, HDE 320156 (= LSS 4300), is a suspected binary. HDE 320156 (= LSS 4300) is therefore confirmed to be a single-lined spectroscopic hydrogen-deficient binary. The hydrogen-deficient binary stars all show weak C-lines. The remaining stars in the sample are C-strong extreme-helium (EHe) stars and did not show large-amplitude velocity variations. Small-amplitude radial velocity variations known to be present amongst the EHe stars are largely undetected. Evidence for variability is, however, present in the known variable V2076 Oph (HD 160641) and in LS IV - 1 0 2 with amplitudes between 10 and 20 km s -1 . (author)

  7. Extremely Low-Metallicity Stars in the Classical Dwarf Galaxies

    NARCIS (Netherlands)

    Starkenburg, E.; DART Team, [Unknown; Aoki, W; Ishigaki, M; Suda, T; Tsujimoto, T; Arimoto, N

    After careful re-analysis of Ca II triplet calibration at low-metallicity, the classical satellites around the Milky Way are found not to be devoided of extremely low-metallicity stars and their (extremely) metal-poor tails are predicted to be much more in agreement with the Milky Way halo. A first

  8. LITHIUM ABUNDANCES OF EXTREMELY METAL-POOR TURNOFF STARS

    International Nuclear Information System (INIS)

    Aoki, Wako; Inoue, Susumu; Barklem, Paul S.; Beers, Timothy C.; Christlieb, Norbert; Perez, Ana E. GarcIa; Norris, John E.; Carollo, Daniela

    2009-01-01

    We have determined Li abundances for eleven metal-poor turnoff stars, among which eight have [Fe/H] <-3, based on LTE analyses of high-resolution spectra obtained with the High Dispersion Spectrograph on the Subaru Telescope. The Li abundances for four of these eight stars are determined for the first time by this study. Effective temperatures are determined by a profile analysis of Hα and Hβ. While seven stars have Li abundances as high as the Spite Plateau value, the remaining four objects with [Fe/H] <-3 have A(Li) =log (Li/H)+ 12 ∼< 2.0, confirming the existence of extremely metal-poor (EMP) turnoff stars having low Li abundances, as reported by previous work. The average of the Li abundances for stars with [Fe/H]<-3 is lower by 0.2 dex than that of the stars with higher metallicity. No clear constraint on the metallicity dependence or scatter of the Li abundances is derived from our measurements for the stars with [Fe/H]<-3. Correlations of the Li abundance with effective temperatures, with abundances of Na, Mg, and Sr, and with the kinematical properties are investigated, but no clear correlation is seen in the EMP star sample.

  9. Neutron stars as probes of extreme energy density matter

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... Neutron stars have long been regarded as extraterrestrial laboratories from which we can learn about extreme energy density matter at low temperatures. In this article, some of the recent advances made in astrophysical observations and related theory are highlighted. Although the focus is on the much ...

  10. Classification of Metal-Deficient Dwarfs in the Vilnius Photometric System

    Directory of Open Access Journals (Sweden)

    Lazauskaitė R.

    2003-12-01

    Full Text Available Methods used for the quantitative classification of metal-deficient stars in the Vilnius photometric system are reviewed. We present a new calibration of absolute magnitudes for dwarfs and subdwarfs, based on Hipparcos parallaxes. The new classification scheme is applied to a sample of Population II visual binaries.

  11. Infrared spectrum of an extremely cool white-dwarf star

    Science.gov (United States)

    Hodgkin; Oppenheimer; Hambly; Jameson; Smartt; Steele

    2000-01-06

    White dwarfs are the remnant cores of stars that initially had masses of less than 8 solar masses. They cool gradually over billions of years, and have been suggested to make up much of the 'dark matter' in the halo of the Milky Way. But extremely cool white dwarfs have proved difficult to detect, owing to both their faintness and their anticipated similarity in colour to other classes of dwarf stars. Recent improved models indicate that white dwarfs are much more blue than previously supposed, suggesting that the earlier searches may have been looking for the wrong kinds of objects. Here we report an infrared spectrum of an extremely cool white dwarf that is consistent with the new models. We determine the star's temperature to be 3,500 +/- 200 K, making it the coolest known white dwarf. The kinematics of this star indicate that it is in the halo of the Milky Way, and the density of such objects implied by the serendipitous discovery of this star is consistent with white dwarfs dominating the dark matter in the halo.

  12. Comparing the asteroseismic properties of pulsating extremely low-mass pre-white dwarf stars and δ Scuti stars

    Directory of Open Access Journals (Sweden)

    Arias J.P.Sánchez

    2017-01-01

    Full Text Available We present the first results of a detailed comparison between the pulsation properties of pulsating Extremely Low-Mass pre-white dwarf stars (the pre-ELMV variable stars and δ Scuti stars. The instability domains of these very different kinds of stars nearly overlap in the log Teff vs. log g diagram, leading to a degeneracy in the classification of the stars. Our aim is to provide asteroseismic tools for their correct classification.

  13. AN EXTREMELY CARBON-RICH, EXTREMELY METAL-POOR STAR IN THE SEGUE 1 SYSTEM

    International Nuclear Information System (INIS)

    Norris, John E.; Yong, David; Gilmore, Gerard; Wyse, Rosemary F. G.; Frebel, Anna

    2010-01-01

    We report the analysis of high-resolution, high signal-to-noise ratio, spectra of an extremely metal-poor, extremely C-rich red giant, Seg 1-7, in Segue 1-described in the literature alternatively as an unusually extended globular cluster or an ultra-faint dwarf galaxy. The radial velocity of Seg 1-7 coincides precisely with the systemic velocity of Segue 1, and its chemical abundance signature of [Fe/H] = -3.52, [C/Fe] = +2.3, [N/Fe] = +0.8, [Na/Fe] = +0.53, [Mg/Fe] = +0.94, [Al/Fe] = +0.23, and [Ba/Fe] < -1.0 is similar to that of the rare and enigmatic class of Galactic halo objects designated CEMP-no (carbon-rich, extremely metal-poor with no enhancement (over solar ratios) of heavy neutron-capture elements). This is the first star in a Milky Way 'satellite' that unambiguously lies on the metal-poor, C-rich branch of the Aoki et al. bimodal distribution of field halo stars in the ([C/Fe], [Fe/H])-plane. Available data permit us only to identify Seg 1-7 as a member of an ultra-faint dwarf galaxy or as debris from the Sgr dwarf spheroidal galaxy. In either case, this demonstrates that at extremely low abundance, [Fe/H ] <-3.0, star formation and associated chemical evolution proceeded similarly in the progenitors of both the field halo and satellite systems. By extension, this is consistent with other recent suggestions that the most metal-poor dwarf spheroidal and ultra-faint dwarf satellites were the building blocks of the Galaxy's outer halo.

  14. Low-mass Stars with Extreme Mid-Infrared Excesses: Potential Signatures of Planetary Collisions

    Science.gov (United States)

    Theissen, Christopher; West, Andrew

    2018-01-01

    I investigate the occurrence of extreme mid-infrared (MIR) excesses, a tracer of large amounts of dust orbiting stars, in low-mass stellar systems. Extreme MIR excesses, defined as an excess IR luminosity greater than 1% of the stellar luminosity (LIR/L* ≥ 0.01), have previously only been observed around a small number of solar-mass (M⊙) stars. The origin of this excess has been hypothesized to be massive amounts of orbiting dust, created by collisions between terrestrial planets or large planetesimals. Until recently, there was a dearth of low-mass (M* ≤ 0.6M⊙) stars exhibiting extreme MIR excesses, even though low-mass stars are ubiquitous (~70% of all stars), and known to host multiple terrestrial planets (≥ 3 planets per star).I combine the spectroscopic sample of low-mass stars from the Sloan Digital Sky Survey (SDSS) Data Release 7 (70,841 stars) with MIR photometry from the Wide-field Infrared Survey Explorer (WISE), to locate stars exhibiting extreme MIR excesses. I find the occurrence frequency of low-mass field stars (stars with ages ≥ 1 Gyr) exhibiting extreme MIR excesses is much larger than that for higher-mass field stars (0.41 ± 0.03% versus 0.00067 ± 0.00033%, respectively).In addition, I build a larger sample of low-mass stars based on stellar colors and proper motions using SDSS, WISE, and the Two-Micron All-Sky Survey (8,735,004 stars). I also build a galactic model to simulate stellar counts and kinematics to estimate the number of stars missing from my sample. I perform a larger, more complete study of low-mass stars exhibiting extreme MIR excesses, and find a lower occurrence frequency (0.020 ± 0.001%) than found in the spectroscopic sample but that is still orders of magnitude larger than that for higher-mass stars. I find a slight trend for redder stars (lower-mass stars) to exhibit a higher occurrence frequency of extreme MIR excesses, as well as a lower frequency with increased stellar age. These samples probe important

  15. Chemical composition of extremely metal-poor stars in the Sextans dwarf spheroidal galaxy

    OpenAIRE

    Aoki, W.; Arimoto, N.; Sadakane, K.; Tolstoy, E.; Battaglia, G.; Jablonka, P.; Shetrone, M.; Letarte, B.; Irwin, M.; Hill, V.; Francois, P.; Venn, K.; Primas, F.; Helmi, A.; Kaufer, A.

    2009-01-01

    Context. Individual stars in dwarf spheroidal galaxies around the Milky Way Galaxy have been studied both photometrically and spectroscopically. Extremely metal-poor stars among them are very valuable because they should record the early enrichment in the Local Group. However, our understanding of these stars is very limited because detailed chemical abundance measurements are needed from high resolution spectroscopy. Aims. To constrain the formation and chemical evolution of dwarf galaxi...

  16. Extremely metal-poor stars in classical dwarf spheroidal galaxies : Fornax, Sculptor, and Sextans

    NARCIS (Netherlands)

    Tafelmeyer, M.; Jablonka, P.; Hill, V.; Shetrone, M.; Tolstoy, E.; Irwin, M. J.; Battaglia, G.; Helmi, A.; Starkenburg, E.; Venn, K. A.; Abel, T.; Francois, P.; Kaufer, A.; North, P.; Primas, F.; Szeifert, T.

    2010-01-01

    We present the results of a dedicated search for extremely metal-poor stars in the Fornax, Sculptor, and Sextans dSphs. Five stars were selected from two earlier VLT/Giraffe and HET/HRS surveys and subsequently followed up at high spectroscopic resolution with VLT/UVES. All of them turned out to

  17. Extremely metal-poor stars in classical dwarf spheroidal galaxies: Fornax, Sculptor, and Sextans

    NARCIS (Netherlands)

    Tafelmeyer, M.; Jablonka, P.; Hill, V.; Shetrone, M.; Tolstoy, E.; Irwin, M. J.; Battaglia, G.; Helmi, A.; Starkenburg, E.; Venn, K. A.; Abel, T.; Francois, P.; Kaufer, A.; North, P.; Primas, F.; Szeifert, T.

    2010-01-01

    We present the results of a dedicated search for extremely metal-poor stars in the Fornax, Sculptor, and Sextans dSphs. Five stars were selected from two earlier VLT/Giraffe and HET/HRS surveys and subsequently followed up at high spectroscopic resolution with VLT/UVES. All of them turned out to

  18. Chemical composition of extremely metal-poor stars in the Sextans dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Aoki, W.; Arimoto, N.; Sadakane, K.; Tolstoy, E.; Battaglia, G.; Jablonka, P.; Shetrone, M.; Letarte, B.; Irwin, M.; Hill, V.; Francois, P.; Venn, K.; Primas, F.; Helmi, A.; Kaufer, A.; Tafelmeyer, M.; Szeifert, T.; Babusiaux, C.

    Context. Individual stars in dwarf spheroidal galaxies around the Milky Way Galaxy have been studied both photometrically and spectroscopically. Extremely metal-poor stars among them are very valuable because they should record the early enrichment in the Local Group. However, our understanding of

  19. Lithium abundances in samples of dwarf stars of population II and very old population I

    International Nuclear Information System (INIS)

    Molaro, P.; Beckman, J.; Rebolo, R.

    1986-01-01

    We have used the CCD camera and Intermediate Dispersion Spectrograph of the 2.5m Isaac Newton Telescope to obtain high quality spectra of the 6708 A 7 Li resonance doublet in 22 dwarfs with metallicities ≤ -0.7. We find a mean constant value of Log N(Li)= 2.07 (±0.1) for highly metal deficient dwarfs ([Fe/H] ≤ -1.5) with atmospheric temperatures T eff > 5500 K, and a larger spread with values of Log N(Li) up to 2.4 for the warmer dwarfs with metallicities between -0.7 and -1.2. Our results agree with previous findings showing a highly uniform Li abundance near the inception of the galaxy. Li depletion appears to set in at higher temperatures for the moderately metal deficient stars than for the extremely metal deficient, consistent with metallicity-dependent depletion rates (low metals, low depletion)

  20. Extreme neutron stars from Extended Theories of Gravity

    Energy Technology Data Exchange (ETDEWEB)

    Astashenok, Artyom V. [I. Kant Baltic Federal University, Institute of Physics and Technology, Nevskogo st. 14, Kaliningrad, 236041 (Russian Federation); Capozziello, Salvatore [Dipartimento di Fisica, Università di Napoli ' ' Federico II' ' , Via Cinthia, 9, Napoli, I-80126 Italy (Italy); Odintsov, Sergei D., E-mail: artyom.art@gmail.com, E-mail: capozziello@na.infn.it, E-mail: odintsov@ieec.uab.es [Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona (Spain)

    2015-01-01

    We discuss neutron stars with strong magnetic mean fields in the framework of Extended Theories of Gravity. In particular, we take into account models derived from f(R) and f(G) extensions of General Relativity where functions of the Ricci curvature invariant R and the Gauss-Bonnet invariant G are respectively considered. Dense matter in magnetic mean field, generated by magnetic properties of particles, is described by assuming a model with three meson fields and baryons octet. As result, the considerable increasing of maximal mass of neutron stars can be achieved by cubic corrections in f(R) gravity. In principle, massive stars with M > 4M{sub ☉} can be obtained. On the other hand, stable stars with high strangeness fraction (with central densities ρ{sub c} ∼ 1.5–2.0 GeV/fm{sup 3}) are possible considering quadratic corrections of f(G) gravity. The magnetic field strength in the star center is of order 6–8 × 10{sup 18} G. In general, we can say that other branches of massive neutron stars are possible considering the extra pressure contributions coming from gravity extensions. Such a feature can constitute both a probe for alternative theories and a way out to address anomalous self-gravitating compact systems.

  1. Spectroscopic study of the extremely fast rotating star 44 Geminorum

    Czech Academy of Sciences Publication Activity Database

    Iliev, L.; Vennes, Stephane; Kawka, Adela; Kubát, Jiří; Németh, Péter; Borisov, G.; Kraus, Michaela

    2012-01-01

    Roč. 18, č. 12012 (2012), s. 20-28 ISSN 1313-2709 R&D Projects: GA AV ČR(CZ) IAA300030908; GA AV ČR IAA301630901; GA ČR GAP209/10/0967 Institutional support: RVO:67985815 Keywords : Be stars * emission line * fundamental parameter Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  2. Neutron stars as probes of extreme energy density matter

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... and the orbital period decay due to the emission of gravitational radiation. ˙P = −. 192π ... masses severely restrict the EoS of neutron star matter. Masses ..... (9) Is unstable burning of carbon (C) the real cause of superbursts?

  3. The Extreme Ultraviolet Flux of Very Low Mass Stars

    Science.gov (United States)

    Drake, Jeremy

    2017-09-01

    The X-ray and EUV emission of stars is vital for understanding the atmospheres and evolution of their planets. The coronae of dwarf stars later than M6 behave differently to those of earlier spectral types and are more X-ray dim and radio bright. Too faint to have been observed by EUVE, their EUV behavior is currently highly uncertain. We propose to observe a small sample of late M dwarfs using the off-axis HRC-S thin Al" filter that is sensitive to EUV emission in the 50-200 A range. The measured fluxes will be used to understand the amount of cooler coronal plasma present, and extend X-ray-EUV flux relations to the latest stellar types.

  4. The identification of IRAS 15194-5115 with a bright extreme carbon star

    International Nuclear Information System (INIS)

    Meadows, P.J.

    1987-01-01

    The authors identify IRAS 15194-5115 with a previously unknown extreme carbon star which is the third brightest carbon star in the sky at 12 μm (1148 Jy). Results of optical and infrared photometry and spectroscopy are presented. The 3.03 μm absorption feature associated with C 2 H 2 and HCN is seen as well as SiC emission at 11.2 μm. A comparison with recent model calculations of other workers indicates that this star is very similar to IRC+10216 and that it lies at a distance of about 1.7 kpc. (author)

  5. Stellar atmosphere modeling of extremely hot, compact stars

    Science.gov (United States)

    Rauch, Thomas; Ringat, Ellen; Werner, Klaus

    Present X-ray missions like Chandra and XMM-Newton provide excellent spectra of extremely hot white dwarfs, e.g. burst spectra of novae. Their analysis requires adequate NLTE model atmospheres. The Tuebingen Non-LTE Model-Atmosphere Package (TMAP) can calculate such model at-mospheres and spectral energy distributions at a high level of sophistication. We present a new grid of models that is calculated in the parameter range of novae and supersoft X-ray sources and show examples of their application.

  6. The Universe's Most Extreme Star-forming Galaxies

    Science.gov (United States)

    Casey, Caitlin

    2017-06-01

    Dusty star-forming galaxies host the most intense stellar nurseries in the Universe. Their unusual characteristics (SFRs=200-2000Msun/yr, Mstar>1010 Msun) pose a unique challenge for cosmological simulations and galaxy formation theory, particularly at early times. Although rare today, they were factors of 1000 times more prevalent at z~2-5, contributing significantly to the buildup of the Universe's stellar mass and the formation of high-mass galaxies. At even earlier times (within 1Gyr post Big Bang) they could have played a pivotal role in enriching the IGM. However, an ongoing debate lingers as to their evolutionary origins at high-redshift, whether or not they are triggered by major mergers of gas-rich disk galaxies, or if they are solitary galaxies continually fed pristine gas from the intergalactic medium. Furthermore, their presence in early protoclusters, only revealed quite recently, pose intriguing questions regarding the collapse of large scale structure. I will discuss some of the latest observational programs dedicated to understanding dust-obscuration in and gas content of the early Universe, their context in the cosmic web, and future long-term observing campaigns that may reveal their relationship to `normal’ galaxies, thus teaching us valuable lessons on the physical mechanisms of galaxy growth and the collapse of large scale structure in an evolving Universe.

  7. Probing the extreme wind confinement of the most magnetic O star with COS spectroscopy

    Science.gov (United States)

    Petit, Veronique

    2014-10-01

    We propose to obtain phase-resolved UV spectroscopy of the recently discovered magnetic O star NGC 1624-2, which has the strongest magnetic field ever detected in a O-star, by an order of magnitude. We will use the strength and variability of the UV resonance line profiles to diagnose the density, velocity, and ionization structure of NGC 1624-2's enormous magnetosphere that results from entrapment of its stellar wind by its strong, nearly dipolar magnetic field. With this gigantic magnetosphere, NGC 1624-2 represents a new regime of extreme wind confinement that will constrain models of magnetized winds and their surface mass flux properties. A detailed understanding of such winds is necessary to study the rotational braking history of magnetic O-stars, which can shed new light on the fundamental origin of magnetism in massive, hot stars.

  8. THE SYNTHETIC-OVERSAMPLING METHOD: USING PHOTOMETRIC COLORS TO DISCOVER EXTREMELY METAL-POOR STARS

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A. A., E-mail: amiller@astro.caltech.edu [Jet Propulsion Laboratory, 4800 Oak Grove Drive, MS 169-506, Pasadena, CA 91109 (United States)

    2015-09-20

    Extremely metal-poor (EMP) stars ([Fe/H] ≤ −3.0 dex) provide a unique window into understanding the first generation of stars and early chemical enrichment of the universe. EMP stars are exceptionally rare, however, and the relatively small number of confirmed discoveries limits our ability to exploit these near-field probes of the first ∼500 Myr after the Big Bang. Here, a new method to photometrically estimate [Fe/H] from only broadband photometric colors is presented. I show that the method, which utilizes machine-learning algorithms and a training set of ∼170,000 stars with spectroscopically measured [Fe/H], produces a typical scatter of ∼0.29 dex. This performance is similar to what is achievable via low-resolution spectroscopy, and outperforms other photometric techniques, while also being more general. I further show that a slight alteration to the model, wherein synthetic EMP stars are added to the training set, yields the robust identification of EMP candidates. In particular, this synthetic-oversampling method recovers ∼20% of the EMP stars in the training set, at a precision of ∼0.05. Furthermore, ∼65% of the false positives from the model are very metal-poor stars ([Fe/H] ≤ −2.0 dex). The synthetic-oversampling method is biased toward the discovery of warm (∼F-type) stars, a consequence of the targeting bias from the Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding survey. This EMP selection method represents a significant improvement over alternative broadband optical selection techniques. The models are applied to >12 million stars, with an expected yield of ∼600 new EMP stars, which promises to open new avenues for exploring the early universe.

  9. Massive stars dying alone: Extremely remote environments of SN2009ip and SN2010jp

    Science.gov (United States)

    Smith, Nathan

    2014-10-01

    We propose an imaging study of the astonishingly remote environments of two recent supernovae (SNe): SN2009ip and SN2010jp. Both were unusual Type IIn explosions that crashed into dense circumstellar material (CSM) ejected by the star shortly before explosion. The favored progenitors of these SNe are very massive luminous blue variable (LBV) stars. In fact, SN2009ip presents an extraordinay case where the LBV-like progenitor was actually detected directly in archival HST data, and where we obtained spectra and photometry for numerous pre-SN eruptions. No other SN has this treasure trove of detailed information about the progenitor (not even SN1987A). SN2010jp represents a possible collapsar-powered event, since it showed evidence of a fast bipolar jet in spectra and a low 56Ni mass; this would be an analog of the black-hole forming explosions that cause gamma ray bursts, but where the relativistic jet is damped by a residual H envelope on the star. In both cases, the only viable models for these SNe involve extremely massive (initial masses of 40-100 Msun) progenitor stars. This seems at odds with their extremely remote environments in the far outskirts of their host galaxies, with no detected evidence for an underlying massive star population in ground-based data (nor in the single shallow WFPC2/F606W image of SN2009ip). Here we propose deep UV HST images to search for any mid/late O-type stars nearby, deep red images to detect any red supergiants, and an H-alpha image to search for any evidence of ongoing star formation in the vicinity. These observations will place important and demanding constraints on the initial masses and ages of these progenitors.

  10. A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host.

    Science.gov (United States)

    Gaudi, B Scott; Stassun, Keivan G; Collins, Karen A; Beatty, Thomas G; Zhou, George; Latham, David W; Bieryla, Allyson; Eastman, Jason D; Siverd, Robert J; Crepp, Justin R; Gonzales, Erica J; Stevens, Daniel J; Buchhave, Lars A; Pepper, Joshua; Johnson, Marshall C; Colon, Knicole D; Jensen, Eric L N; Rodriguez, Joseph E; Bozza, Valerio; Novati, Sebastiano Calchi; D'Ago, Giuseppe; Dumont, Mary T; Ellis, Tyler; Gaillard, Clement; Jang-Condell, Hannah; Kasper, David H; Fukui, Akihiko; Gregorio, Joao; Ito, Ayaka; Kielkopf, John F; Manner, Mark; Matt, Kyle; Narita, Norio; Oberst, Thomas E; Reed, Phillip A; Scarpetta, Gaetano; Stephens, Denice C; Yeigh, Rex R; Zambelli, Roberto; Fulton, B J; Howard, Andrew W; James, David J; Penny, Matthew; Bayliss, Daniel; Curtis, Ivan A; DePoy, D L; Esquerdo, Gilbert A; Gould, Andrew; Joner, Michael D; Kuhn, Rudolf B; Labadie-Bartz, Jonathan; Lund, Michael B; Marshall, Jennifer L; McLeod, Kim K; Pogge, Richard W; Relles, Howard; Stockdale, Christopher; Tan, T G; Trueblood, Mark; Trueblood, Patricia

    2017-06-22

    The amount of ultraviolet irradiation and ablation experienced by a planet depends strongly on the temperature of its host star. Of the thousands of extrasolar planets now known, only six have been found that transit hot, A-type stars (with temperatures of 7,300-10,000 kelvin), and no planets are known to transit the even hotter B-type stars. For example, WASP-33 is an A-type star with a temperature of about 7,430 kelvin, which hosts the hottest known transiting planet, WASP-33b (ref. 1); the planet is itself as hot as a red dwarf star of type M (ref. 2). WASP-33b displays a large heat differential between its dayside and nightside, and is highly inflated-traits that have been linked to high insolation. However, even at the temperature of its dayside, its atmosphere probably resembles the molecule-dominated atmospheres of other planets and, given the level of ultraviolet irradiation it experiences, its atmosphere is unlikely to be substantially ablated over the lifetime of its star. Here we report observations of the bright star HD 195689 (also known as KELT-9), which reveal a close-in (orbital period of about 1.48 days) transiting giant planet, KELT-9b. At approximately 10,170 kelvin, the host star is at the dividing line between stars of type A and B, and we measure the dayside temperature of KELT-9b to be about 4,600 kelvin. This is as hot as stars of stellar type K4 (ref. 5). The molecules in K stars are entirely dissociated, and so the primary sources of opacity in the dayside atmosphere of KELT-9b are probably atomic metals. Furthermore, KELT-9b receives 700 times more extreme-ultraviolet radiation (that is, with wavelengths shorter than 91.2 nanometres) than WASP-33b, leading to a predicted range of mass-loss rates that could leave the planet largely stripped of its envelope during the main-sequence lifetime of the host star.

  11. SHIELD: The Star Formation Law in Extremely Low-mass Galaxies

    Science.gov (United States)

    Teich, Yaron; McNichols, Andrew; Cannon, John M.; SHIELD Team

    2016-01-01

    The "Survey of HI in Extremely Low-mass Dwarfs" (SHIELD) is a multiwavelength, legacy-class observational study of 12 low-mass dwarf galaxies discovered in Arecibo Legacy Fast ALFA (ALFALFA) survey data products. Here we analyze the relationships between HI and star formation in these systems using multi-configuration, high spatial (~300 pc) and spectral (0.82 - 2.46 km s-1 ch-1) resolution HI observations from the Karl G. Jansky Very Large Array, Hα imaging from the WIYN 3.5m telescope, and archival GALEX far-ultraviolet imaging. We compare the locations and intensities of star formation with the properties of the neutral ISM. We quantify the degree of local co-spatiality between star forming regions and regions of high HI column densities using the Kennicutt-Schmidt (K-S) relation. The values of the K-S index N vary considerably from system to system; because no single galaxy is representative of the sample, we instead focus on the narratives of the individual galaxies and their complex distribution of gaseous and stellar components. At the extremely faint end of the HI mass function, these systems are dominated by stochastic fluctuations in their interstellar media, which governs whether or not they show signs of recent star formation.Support for this work was provided by NSF grant AST-1211683 to JMC at Macalester College.

  12. Very Low-Mass Stars with Extremely Low Metallicity in the Milky Way's Halo

    Science.gov (United States)

    Aoki, Wako; Beers, Timothy C.; Suda, Takuma; Honda, Satoshi; Lee, Young Sun

    2016-08-01

    Large surveys and follow-up spectroscopic studies in the past few decades have been providing chemical abundance data for a growing number of very metal-poor ([Fe/H] LTE model atmospheres has obtained self-consistent chemical abundances for these objects, assuming small values of micro-turbulent velocities compared with giants and turn-off stars. The low temperature of the atmospheres of these objects enables us to measure their detailed chemical abundances. Interestingly, two of the four stars have extreme chemical-abundance patterns: one has the largest excesses of heavy neutron-capture elements associated with the r-process abundance pattern known to date (Aoki et al. 2010), and the other exhibits low abundances of the α-elements and odd-Z elements, suggested to be signatures of the yields of very massive stars (> 100 solar masses; Aoki et al. 2014). Although the sample size is still small, these results indicate the potential of very low-mass stars as probes to study the early stages of the Milky Way's halo formation.

  13. Achieving Extreme Resolution in Numerical Cosmology Using Adaptive Mesh Refinement: Resolving Primordial Star Formation

    Directory of Open Access Journals (Sweden)

    Greg L. Bryan

    2002-01-01

    Full Text Available As an entry for the 2001 Gordon Bell Award in the "special" category, we describe our 3-d, hybrid, adaptive mesh refinement (AMR code Enzo designed for high-resolution, multiphysics, cosmological structure formation simulations. Our parallel implementation places no limit on the depth or complexity of the adaptive grid hierarchy, allowing us to achieve unprecedented spatial and temporal dynamic range. We report on a simulation of primordial star formation which develops over 8000 subgrids at 34 levels of refinement to achieve a local refinement of a factor of 1012 in space and time. This allows us to resolve the properties of the first stars which form in the universe assuming standard physics and a standard cosmological model. Achieving extreme resolution requires the use of 128-bit extended precision arithmetic (EPA to accurately specify the subgrid positions. We describe our EPA AMR implementation on the IBM SP2 Blue Horizon system at the San Diego Supercomputer Center.

  14. The Oldest Stars of the Extremely Metal-Poor Local Group Dwarf Irregular Galaxy Leo A

    Science.gov (United States)

    Schulte-Ladbeck, Regina E.; Hopp, Ulrich; Drozdovsky, Igor O.; Greggio, Laura; Crone, Mary M.

    2002-08-01

    We present deep Hubble Space Telescope (HST) single-star photometry of Leo A in B, V, and I. Our new field of view is offset from the centrally located field observed by Tolstoy et al. in order to expose the halo population of this galaxy. We report the detection of metal-poor red horizontal branch stars, which demonstrate that Leo A is not a young galaxy. In fact, Leo A is as least as old as metal-poor Galactic Globular Clusters that exhibit red horizontal branches and are considered to have a minimum age of about 9 Gyr. We discuss the distance to Leo A and perform an extensive comparison of the data with stellar isochrones. For a distance modulus of 24.5, the data are better than 50% complete down to absolute magnitudes of 2 or more. We can easily identify stars with metallicities between 0.0001 and 0.0004, and ages between about 5 and 10 Gyr, in their post-main-sequence phases, but we lack the detection of main-sequence turnoffs that would provide unambiguous proof of ancient (>10 Gyr) stellar generations. Blue horizontal branch stars are above the detection limits but difficult to distinguish from young stars with similar colors and magnitudes. Synthetic color-magnitude diagrams show it is possible to populate the blue horizontal branch in the halo of Leo A. The models also suggest ~50% of the total astrated mass in our pointing to be attributed to an ancient (>10 Gyr) stellar population. We conclude that Leo A started to form stars at least about 9 Gyr ago. Leo A exhibits an extremely low oxygen abundance, only 3% of solar, in its ionized interstellar medium. The existence of old stars in this very oxygen-deficient galaxy illustrates that a low oxygen abundance does not preclude a history of early star formation. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  15. Neuropsychiatric manifestations of alkali metal deficiency and excess

    Energy Technology Data Exchange (ETDEWEB)

    Yung, C.Y.

    1984-01-01

    The alkali metals from the Group IA of the periodic table (lithium, sodium, potassium, rubidium, cesium and francium) are reviewed. The neuropsychiatric aspects of alkali metal deficiencies and excesses (intoxications) are described. Emphasis was placed on lithium due to its clinical uses. The signs and symptoms of these conditions are characterized by features of an organic brain syndrome with delirium and encephalopathy prevailing. There are no clinically distinctive features that could be reliably used for diagnoses. Sodium and potassium are two essential alkali metals in man. Lithium is used as therapeutic agent in bipolar affective disorders. Rubidium has been investigated for its antidepressant effect in a group of psychiatric disorders. Cesium is under laboratory investigation for its role in carcinogenesis and in depressive illness. Very little is known of francium due to its great instability for experimental study.

  16. NuSTAR Reveals Extreme Absorption in z < 0.5 Type 2 Quasars

    Science.gov (United States)

    Lansbury, G. B.; Gandhi, P.; Alexander, D. M.; Assef, R. J.; Aird, J.; Annuar, A.; Ballantyne, D. R.; Baloković, M.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Christensen, F. E.; Civano, F.; Comastri, A.; Craig, W. W.; Del Moro, A.; Grefenstette, B. W.; Hailey, C. J.; Harrison, F. A.; Hickox, R. C.; Koss, M.; LaMassa, S. M.; Luo, B.; Puccetti, S.; Stern, D.; Treister, E.; Vignali, C.; Zappacosta, L.; Zhang, W. W.

    2015-08-01

    The intrinsic column density (NH) distribution of quasars is poorly known. At the high obscuration end of the quasar population and for redshifts z 1.5 × 1024 cm-2) type 2 quasars (CTQSO2s); five new NuSTAR observations are reported herein, and four have been previously published. The candidate CTQSO2s lie at z < 0.5, have observed [O iii] luminosities in the range 8.4\\lt {log}({L}[{{O} {{III}}]}/{L}⊙ )\\lt 9.6, and show evidence for extreme, Compton-thick absorption when indirect absorption diagnostics are considered. Among the nine candidate CTQSO2s, five are detected by NuSTAR in the high-energy (8-24 keV) band: two are weakly detected at the ≈3σ confidence level and three are strongly detected with sufficient counts for spectral modeling (≳90 net source counts at 8-24 keV). For these NuSTAR-detected sources direct (i.e., X-ray spectral) constraints on the intrinsic active galactic nucleus properties are feasible, and we measure column densities ≈2.5-1600 times higher and intrinsic (unabsorbed) X-ray luminosities ≈10-70 times higher than pre-NuSTAR constraints from Chandra and XMM-Newton. Assuming the NuSTAR-detected type 2 quasars are representative of other Compton-thick candidates, we make a correction to the NH distribution for optically selected type 2 quasars as measured by Chandra and XMM-Newton for 39 objects. With this approach, we predict a Compton-thick fraction of {f}{CT}={36}-12+14 %, although higher fractions (up to 76%) are possible if indirect absorption diagnostics are assumed to be reliable.

  17. The s-Process Nucleosynthesis in Extremely Metal-Poor Stars as the Generating Mechanism of Carbon Enhanced Metal-Poor Stars

    Science.gov (United States)

    Suda, Takuma; Yamada, Shimako; Fujimoto, Masayuki Y.

    The origin of carbon-enhanced metal-poor (CEMP) stars plays a key role in characterising the formation and evolution of the first stars and the Galaxy since the extremely-metal-poor (EMP) stars with [Fe/H] ≤ -2.5 share the common features of carbon enhancement in their surface chemical compositions. The origin of these stars is not yet established due to the controversy of the origin of CEMP stars without the enhancement of s-process element abundances, i.e., so called CEMP-no stars. In this paper, we elaborate the s-process nucleosynthesis in the EMP AGB stars and explore the origin of CEMP stars. We find that the efficiency of the s-process is controlled by O rather than Fe at [Fe/H] ≲ -2. We demonstrate that the relative abundances of Sr, Ba, Pb to C are explained in terms of the wind accretion from AGB stars in binary systems.

  18. Probing Extreme-density Matter with Gravitational-wave Observations of Binary Neutron Star Merger Remnants

    Energy Technology Data Exchange (ETDEWEB)

    Radice, David [Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540 (United States); Bernuzzi, Sebastiano [Department of Mathematical, Physical and Computer Sciences, University of Parma, I-43124 Parma (Italy); Pozzo, Walter Del [Dipartimento di Fisica “Enrico Fermi,” Università di Pisa, Pisa I-56127 (Italy); Roberts, Luke F. [NSCL/FRIB and Department of Physics and Astronomy, Michigan State University, 640 S Shaw Lane, East Lansing, MI 48824 (United States); Ott, Christian D. [TAPIR, Walter Burke Institute for Theoretical Physics, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States)

    2017-06-20

    We present a proof-of-concept study, based on numerical-relativity simulations, of how gravitational waves (GWs) from neutron star merger remnants can probe the nature of matter at extreme densities. Phase transitions and extra degrees of freedom can emerge at densities beyond those reached during the inspiral, and typically result in a softening of the equation of state (EOS). We show that such physical effects change the qualitative dynamics of the remnant evolution, but they are not identifiable as a signature in the GW frequency, with the exception of possible black hole formation effects. The EOS softening is, instead, encoded in the GW luminosity and phase and is in principle detectable up to distances of the order of several megaparsecs with advanced detectors and up to hundreds of megaparsecs with third-generation detectors. Probing extreme-density matter will require going beyond the current paradigm and developing a more holistic strategy for modeling and analyzing postmerger GW signals.

  19. Probing Extreme-density Matter with Gravitational-wave Observations of Binary Neutron Star Merger Remnants

    International Nuclear Information System (INIS)

    Radice, David; Bernuzzi, Sebastiano; Pozzo, Walter Del; Roberts, Luke F.; Ott, Christian D.

    2017-01-01

    We present a proof-of-concept study, based on numerical-relativity simulations, of how gravitational waves (GWs) from neutron star merger remnants can probe the nature of matter at extreme densities. Phase transitions and extra degrees of freedom can emerge at densities beyond those reached during the inspiral, and typically result in a softening of the equation of state (EOS). We show that such physical effects change the qualitative dynamics of the remnant evolution, but they are not identifiable as a signature in the GW frequency, with the exception of possible black hole formation effects. The EOS softening is, instead, encoded in the GW luminosity and phase and is in principle detectable up to distances of the order of several megaparsecs with advanced detectors and up to hundreds of megaparsecs with third-generation detectors. Probing extreme-density matter will require going beyond the current paradigm and developing a more holistic strategy for modeling and analyzing postmerger GW signals.

  20. Rotational broadening and conservation of angular momentum in post-extreme horizontal branch stars

    Science.gov (United States)

    Fontaine, G.; Latour, M.

    2018-06-01

    We show that the recent realization that isolated post-extreme horizontal branch (post-EHB) stars are generally characterized by rotational broadening with values of V rot sini between 25 and 30 km s-1 can be explained as a natural consequence of the conservation of angular momentum from the previous He-core burning phase on the EHB. The progenitors of these evolved objects, the EHB stars, are known to be slow rotators with an average value of V rot sini of 7.7 km s-1. This implies significant spin-up between the EHB and post-EHB phases. Using representative evolutionary models of hot subdwarf stars, we demonstrate that angular momentum conservation in uniformly rotating structures (rigid-body rotation) boosts that value of the projected equatorial rotation speed by a factor 3.6 by the time the model has reached the region of the surface gravity-effective temperature plane where the newly-studied post-EHB objects are found. This is exactly what is needed to account for their observed atmospheric broadening. We note that the decrease of the moment of inertia causing the spin-up is mostly due to the redistribution of matter that produces more centrally-condensed structures in the post-EHB phase of evolution, not to the decrease of the radius per se.

  1. Abundance patterns of the light neutron-capture elements in very and extremely metal-poor stars

    Science.gov (United States)

    Spite, F.; Spite, M.; Barbuy, B.; Bonifacio, P.; Caffau, E.; François, P.

    2018-03-01

    Aims: The abundance patterns of the neutron-capture elements in metal-poor stars provide a unique record of the nucleosynthesis products of the earlier massive primitive objects. Methods: We measured new abundances of so-called light neutron-capture of first peak elements using local thermodynamic equilibrium (LTE) 1D analysis; this analysis resulted in a sample of 11 very metal-poor stars, from [Fe/H] = -2.5 to [Fe/H] = -3.4, and one carbon-rich star, CS 22949-037 with [Fe/H] = -4.0. The abundances were compared to those observed in two classical metal-poor stars: the typical r-rich star CS 31082-001 ([Eu/Fe] > +1.0) and the r-poor star HD 122563 ([Eu/Fe] < 0.0), which are known to present a strong enrichment of the first peak neutron-capture elements relative to the second peak. Results: Within the first peak, the abundances are well correlated in analogy to the well-known correlation inside the abundances of the second-peak elements. In contrast, there is no correlation between any first peak element with any second peak element. We show that the scatter of the ratio of the first peak abundance over second peak abundance increases when the mean abundance of the second peak elements decreases from r-rich to r-poor stars. We found two new r-poor stars that are very similar to HD 122563. A third r-poor star, CS 22897-008, is even more extreme; this star shows the most extreme example of first peak elements enrichment to date. On the contrary, another r-poor star (BD-18 5550) has a pattern of first peak elements that is similar to the typical r-rich stars CS 31082-001, however this star has some Mo enrichment. Conclusions: The distribution of the neutron-capture elements in our very metal-poor stars can be understood as the combination of at least two mechanisms: one that enriches the forming stars cloud homogeneously through the main r-process and leads to an element pattern similar to the r-rich stars, such as CS 31082-001; and another that forms mainly lighter

  2. THE CHEMICAL ABUNDANCES OF STARS IN THE HALO (CASH) PROJECT. II. A SAMPLE OF 14 EXTREMELY METAL-POOR STARS ,

    International Nuclear Information System (INIS)

    Hollek, Julie K.; Sneden, Christopher; Shetrone, Matthew; Frebel, Anna; Roederer, Ian U.; Beers, Timothy C.; Kang, Sung-ju; Thom, Christopher

    2011-01-01

    We present a comprehensive abundance analysis of 20 elements for 16 new low-metallicity stars from the Chemical Abundances of Stars in the Halo (CASH) project. The abundances have been derived from both Hobby-Eberly Telescope High Resolution Spectrograph snapshot spectra (R ∼15, 000) and corresponding high-resolution (R ∼35, 000) Magellan Inamori Kyocera Echelle spectra. The stars span a metallicity range from [Fe/H] from –2.9 to –3.9, including four new stars with [Fe/H] < –3.7. We find four stars to be carbon-enhanced metal-poor (CEMP) stars, confirming the trend of increasing [C/Fe] abundance ratios with decreasing metallicity. Two of these objects can be classified as CEMP-no stars, adding to the growing number of these objects at [Fe/H]< – 3. We also find four neutron-capture-enhanced stars in the sample, one of which has [Eu/Fe] of 0.8 with clear r-process signatures. These pilot sample stars are the most metal-poor ([Fe/H] ∼< –3.0) of the brightest stars included in CASH and are used to calibrate a newly developed, automated stellar parameter and abundance determination pipeline. This code will be used for the entire ∼500 star CASH snapshot sample. We find that the pipeline results are statistically identical for snapshot spectra when compared to a traditional, manual analysis from a high-resolution spectrum.

  3. Non-LTE analysis of extremely helium-rich stars. The hot sdO stars LSE 153, 259 and 263

    Science.gov (United States)

    Husfeld, D.; Butler, K.; Heber, U.; Drilling, J. S.

    1989-01-01

    Results of a non-LTE fine analysis based mainly on high-resolution CASPEC spectra for three extremely helium-rich sdO stars are discussed in order to explain hydrogen deficiency in single stars. High temperature (Teff = 70,000 to 75,000 K) and a position in the log Teff - log g diagram were found close to the Eddington limit. Various abundance estimates are derived for hydrogen (upper limits only), carbon, nitrogen, and magnesium. Hydrogen is reduced to less than 10 percent by number in LSE 153 and LSE 263, and to less than 5 percent in LSE 259. The hydrogen deficiency is accompanied by nitrogen- and carbon-enrichment in LSE 153 and LSE 259 only. In LSE 263, carbon is depleted by about 1 dex. Stellar masses obtained by assuming that a core mass-luminosity relation holds for these stars, were found to be in the range 0.6-0.9 solar mass, yielding luminosities log L/L:solar = 3.7-4.5. Two of the program stars (LSE 153 and 259) appear to be possible successors of the R CrB and helium B stars, whereas the third star (LSE 263) displays a much lower carbon content in its photosphere making it an exceptional case among the known hydrogen deficient stars.

  4. Neutron Star Astronomy in the era of the European Extremely Large Telescope

    International Nuclear Information System (INIS)

    Mignani, Roberto P.

    2011-01-01

    About 25 isolated neutron stars (INSs) are now detected in the optical domain, mainly thanks to the HST and to VLT-class telescopes. The European Extremely Large Telescope(E-ELT) will yield ∼100 new identifications, many of which from the follow-up of SKA, IXO, and Fermi observations. Moreover, the E-ELT will allow to carry out, on a much larger sample, INS observations which still challenge VLT-class telescopes, enabling studies on the structure and composition of the NS interior, of its atmosphere and magnetosphere, as well as to search for debris discs. In this contribution, I outline future perspectives for NS optical astronomy with the E-ELT.

  5. SPECTROSCOPIC STUDIES OF EXTREMELY METAL-POOR STARS WITH THE SUBARU HIGH DISPERSION SPECTROGRAPH. V. THE Zn-ENHANCED METAL-POOR STAR BS 16920-017

    International Nuclear Information System (INIS)

    Honda, Satoshi; Aoki, Wako; Beers, Timothy C.; Takada-Hidai, Masahide

    2011-01-01

    We report Zn abundances for 18 very metal-poor stars studied in our previous work, covering the metallicity range -3.2< [Fe/H] <-2.5. The [Zn/Fe] values of most stars show an increasing trend with decreasing [Fe/H] in this metallicity range, confirming the results found by previous studies. However, the extremely metal-poor star BS 16920-017([Fe/H] =-3.2) exhibits a significantly high [Zn/Fe] ratio ([Zn/Fe] = +1.0). Comparison of the chemical abundances of this object with HD 4306, which has similar atmospheric parameters to BS 16920-017, clearly demonstrates a deficiency of α elements and neutron-capture elements in this star, along with enhancements of Mn and Ni, as well as Zn. The association with a hypernova explosion that has been proposed to explain the high Zn abundance ratios found in extremely metal-poor stars is a possible explanation, although further studies are required to fully interpret the abundance pattern of this object.

  6. TOPoS. IV. Chemical abundances from high-resolution observations of seven extremely metal-poor stars

    Science.gov (United States)

    Bonifacio, P.; Caffau, E.; Spite, M.; Spite, F.; Sbordone, L.; Monaco, L.; François, P.; Plez, B.; Molaro, P.; Gallagher, A. J.; Cayrel, R.; Christlieb, N.; Klessen, R. S.; Koch, A.; Ludwig, H.-G.; Steffen, M.; Zaggia, S.; Abate, C.

    2018-04-01

    Context. Extremely metal-poor (EMP) stars provide us with indirect information on the first generations of massive stars. The TOPoS survey has been designed to increase the census of these stars and to provide a chemical inventory that is as detailed as possible. Aims: Seven of the most iron-poor stars have been observed with the UVES spectrograph at the ESO VLT Kueyen 8.2 m telescope to refine their chemical composition. Methods: We analysed the spectra based on 1D LTE model atmospheres, but also used 3D hydrodynamical simulations of stellar atmospheres. Results: We measured carbon in six of the seven stars: all are carbon-enhanced and belong to the low-carbon band, defined in the TOPoS II paper. We measured lithium (A(Li) = 1.9) in the most iron-poor star (SDSS J1035+0641, [Fe/H] measure Li in three stars at [Fe/H] -4.0, two of which lie on the Spite plateau. We confirm that SDSS J1349+1407 is extremely rich in Mg, but not in Ca. It is also very rich in Na. Several of our stars are characterised by low α-to-iron ratios. Conclusions: The lack of high-carbon band stars at low metallicity can be understood in terms of evolutionary timescales of binary systems. The detection of Li in SDSS J1035+0641 places a strong constraint on theories that aim at solving the cosmological lithium problem. The Li abundance of the two warmer stars at [Fe/H] -4.0 places them on the Spite plateau, while the third, cooler star, lies below. We argue that this suggests that the temperature at which Li depletion begins increases with decreasing [Fe/H]. SDSS J1349+1407 may belong to a class of Mg-rich EMP stars. We cannot assess if there is a scatter in α-to-iron ratios among the EMP stars or if there are several discrete populations. However, the existence of stars with low α-to-iron ratios is supported by our observations. Based on observations obtained at ESO Paranal Observatory, Programmes 189.D-0165,090.D-0306, 093.D-0136, and 096.D-0468.

  7. A volume-limited ROSAT survey of extreme ultraviolet emission from all nondegenerate stars within 10 parsecs

    Science.gov (United States)

    Wood, Brian E.; Brown, Alexander; Linsky, Jeffrey L.; Kellett, Barry J.; Bromage, Gordon E.; Hodgkin, Simon T.; Pye, John P.

    1994-01-01

    We report the results of a volume-limited ROSAT Wide Field Camera (WFC) survey of all nondegenerate stars within 10 pc. Of the 220 known star systems within 10 pc, we find that 41 are positive detections in at least one of the two WFC filter bandpasses (S1 and S2), while we consider another 14 to be marginal detections. We compute X-ray luminosities for the WFC detections using Einstein Imaging Proportional Counter (IPC) data, and these IPC luminosities are discussed along with the WFC luminosities throughout the paper for purposes of comparison. Extreme ultraviolet (EUV) luminosity functions are computed for single stars of different spectral types using both S1 and S2 luminosities, and these luminosity functions are compared with X-ray luminosity functions derived by previous authors using IPC data. We also analyze the S1 and S2 luminosity functions of the binary stars within 10 pc. We find that most stars in binary systems do not emit EUV radiation at levels different from those of single stars, but there may be a few EUV-luminous multiple-star systems which emit excess EUV radiation due to some effect of binarity. In general, the ratio of X-ray luminosity to EUV luminosity increases with increasing coronal emission, suggesting that coronally active stars have higher coronal temperatures. We find that our S1, S2, and IPC luminosities are well correlated with rotational velocity, and we compare activity-rotation relations determined using these different luminosities. Late M stars are found to be significantly less luminous in the EUV than other late-type stars. The most natural explanation for this results is the concept of coronal saturation -- the idea that late-type stars can emit only a limited fraction of their total luminosity in X-ray and EUV radiation, which means stars with very low bolometric luminosities must have relatively low X-ray and EUV luminosities as well. The maximum level of coronal emission from stars with earlier spectral types is studied

  8. Mining the Sloan digital sky survey in search of extremely α-poor stars in the galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Q. F.; Zhao, G., E-mail: qfxing@nao.cas.cn, E-mail: gzhao@nao.cas.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2014-07-20

    As we know, the majority of metal-poor Galactic halo stars appear to have chemical abundances that were enhanced by α-elements (e.g., O, Mg, Si, Ca, and Ti) during the early stage of the Galaxy. Observed metal-poor halo stars preserved this pattern by exhibiting abundance ratios [α/Fe] ∼+0.4. A few striking exceptions that show severe departures from the general enhanced α-element chemical abundance trends of the halo have been discovered in recent years. They possess relatively low [α/Fe] compared to other comparable-metallicity stars, with abundance ratios over 0.5 dex lower. These stars may have a different chemical enrichment history from the majority of the halo. Similarly, low-α abundances are also displayed by satellite dwarf spheroidal (dSph) galaxies. We present a method to select extremely α-poor (EAP) stars from the SDSS/SEGUE survey. The method consists of a two-step approach. In the first step, we select suspected metal-poor ([Fe/H] <–0.5) and α-poor ([Mg/Fe] <0) stars as our targets. In the second step, we determine [Mg/Fe] from low-resolution (R = 2000) stellar spectra for our targets and select stars with [Mg/Fe] <–0.1 as candidate EAP stars. In a sample of 40,000 stars with atmospheric parameters in the range of T{sub eff} = [4500, 7000] K, log g = [1.0, 5.0], and [Fe/H] = [–4.0, +0.5], 14 candidate stars were identified. Three of these stars are found to have already been confirmed by other research.

  9. NuSTAR and XMM-Newton observations of NGC 1365: Extreme absorption variability and a constant inner accretion disk

    DEFF Research Database (Denmark)

    Walton, D. J.; Risaliti, G.; Harrison, F. A.

    2014-01-01

    We present a spectral analysis of four coordinated NuSTAR+XMM-Newton observations of the Seyfert galaxy NGC 1365. These exhibit an extreme level of spectral variability, which is primarily due to variable line-of-sight absorption, revealing relatively unobscured states in this source for the first...

  10. An extremely luminous and variable ultraluminous x-ray source in the outskirts of circinus observed with NuSTAR

    DEFF Research Database (Denmark)

    Walton, D. J.; Fuerst, F.; Harrison, F.

    2013-01-01

    Following a serendipitous detection with the Nuclear Spectroscopic Telescope Array (NuSTAR), we present a multi-epoch spectral and temporal analysis of an extreme ultraluminous X-ray source (ULX) located in the outskirts of the Circinus galaxy, hereafter Circinus ULX5, including coordinated XMM-N...

  11. Embedded star formation in the extended narrow line region of Centaurus A: Extreme mixing observed by MUSE

    Science.gov (United States)

    Santoro, F.; Oonk, J. B. R.; Morganti, R.; Oosterloo, T. A.; Tadhunter, C.

    2016-05-01

    We present a detailed study of the complex ionization structure in a small (~250 pc) extended narrow line region (ENLR) cloud near Centaurus A using the Multi Unit Spectroscopic Explorer. This cloud is located in the so-called outer filament of ionized gas (about 15 kpc from the nucleus) where jet-induced star formation has been suggested to occur by different studies. We find that, despite the small size, a mixture of ionization mechanisms is operating, resulting in considerable complexity in the spatial ionization structure. The area includes two H II regions where star formation is occurring and another location where star formation must have ceased very recently. Interestingly, the extreme Balmer decrement of one of the star forming regions (Hα/Hβobs ~ 6) indicates that it is still heavily embedded in its natal cocoon of gas and dust. At all three locations a continuum counterpart is found with spectra matching those of O/B stars local to Centaurus A. The H II regions are embedded in a larger gas complex which is photoionized by the radiation of the central active galactic nucleus (AGN), but the O/B stars affect the spatial ionization pattern in the ENLR cloud very locally. In particular, in the surroundings of the youngest star forming region, we can isolate a tight mixing sequence in the diagnostic diagram going from gas with ionization due to a pure stellar continuum to gas only photoionized by the AGN. These results emphasize the complexity and the mixture of processes occurring in star forming regions under the influence of an AGN radiation. This is relevant for our understanding of AGN-induced star formation suggested to occur in a number of objects, including this region of Centaurus A. They also illustrate that these young stars influence the gas over only a limited region.

  12. The Chemical Abundances of Stars in the Halo (CASH) Project. II. A Sample of 14 Extremely Metal-poor Stars

    Science.gov (United States)

    Hollek, Julie K.; Frebel, Anna; Roederer, Ian U.; Sneden, Christopher; Shetrone, Matthew; Beers, Timothy C.; Kang, Sung-ju; Thom, Christopher

    2011-11-01

    We present a comprehensive abundance analysis of 20 elements for 16 new low-metallicity stars from the Chemical Abundances of Stars in the Halo (CASH) project. The abundances have been derived from both Hobby-Eberly Telescope High Resolution Spectrograph snapshot spectra (R ~15, 000) and corresponding high-resolution (R ~35, 000) Magellan Inamori Kyocera Echelle spectra. The stars span a metallicity range from [Fe/H] from -2.9 to -3.9, including four new stars with [Fe/H] ratios with decreasing metallicity. Two of these objects can be classified as CEMP-no stars, adding to the growing number of these objects at [Fe/H]CASH and are used to calibrate a newly developed, automated stellar parameter and abundance determination pipeline. This code will be used for the entire ~500 star CASH snapshot sample. We find that the pipeline results are statistically identical for snapshot spectra when compared to a traditional, manual analysis from a high-resolution spectrum. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen. Based on observations gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  13. Prototype of a laser guide star wavefront sensor for the Extremely Large Telescope

    Science.gov (United States)

    Patti, M.; Lombini, M.; Schreiber, L.; Bregoli, G.; Arcidiacono, C.; Cosentino, G.; Diolaiti, E.; Foppiani, I.

    2018-06-01

    The new class of large telescopes, like the future Extremely Large Telescope (ELT), are designed to work with a laser guide star (LGS) tuned to a resonance of atmospheric sodium atoms. This wavefront sensing technique presents complex issues when applied to big telescopes for many reasons, mainly linked to the finite distance of the LGS, the launching angle, tip-tilt indetermination and focus anisoplanatism. The implementation of a laboratory prototype for the LGS wavefront sensor (WFS) at the beginning of the phase study of MAORY (Multi-conjugate Adaptive Optics Relay) for ELT first light has been indispensable in investigating specific mitigation strategies for the LGS WFS issues. This paper presents the test results of the LGS WFS prototype under different working conditions. The accuracy within which the LGS images are generated on the Shack-Hartmann WFS has been cross-checked with the MAORY simulation code. The experiments show the effect of noise on centroiding precision, the impact of LGS image truncation on wavefront sensing accuracy as well as the temporal evolution of the sodium density profile and LGS image under-sampling.

  14. The NuSTAR Serendipitous Survey: Hunting for the Most Extreme Obscured AGN at >10 keV

    Science.gov (United States)

    Lansbury, G. B.; Alexander, D. M.; Aird, J.; Gandhi, P.; Stern, D.; Koss, M.; Lamperti, I.; Ajello, M.; Annuar, A.; Assef, R. J.; Ballantyne, D. R.; Baloković, M.; Bauer, F. E.; Brandt, W. N.; Brightman, M.; Chen, C.-T. J.; Civano, F.; Comastri, A.; Del Moro, A.; Fuentes, C.; Harrison, F. A.; Marchesi, S.; Masini, A.; Mullaney, J. R.; Ricci, C.; Saez, C.; Tomsick, J. A.; Treister, E.; Walton, D. J.; Zappacosta, L.

    2017-09-01

    We identify sources with extremely hard X-ray spectra (I.e., with photon indices of {{Γ }}≲ 0.6) in the 13 deg2 NuSTAR serendipitous survey, to search for the most highly obscured active galactic nuclei (AGNs) detected at > 10 {keV}. Eight extreme NuSTAR sources are identified, and we use the NuSTAR data in combination with lower-energy X-ray observations (from Chandra, Swift XRT, and XMM-Newton) to characterize the broadband (0.5-24 keV) X-ray spectra. We find that all of the extreme sources are highly obscured AGNs, including three robust Compton-thick (CT; {N}{{H}}> 1.5× {10}24 cm-2) AGNs at low redshift (z< 0.1) and a likely CT AGN at higher redshift (z = 0.16). Most of the extreme sources would not have been identified as highly obscured based on the low-energy (< 10 keV) X-ray coverage alone. The multiwavelength properties (e.g., optical spectra and X-ray-mid-IR luminosity ratios) provide further support for the eight sources being significantly obscured. Correcting for absorption, the intrinsic rest-frame 10-40 keV luminosities of the extreme sources cover a broad range, from ≈ 5× {10}42 to 1045 erg s-1. The estimated number counts of CT AGNs in the NuSTAR serendipitous survey are in broad agreement with model expectations based on previous X-ray surveys, except for the lowest redshifts (z< 0.07), where we measure a high CT fraction of {f}{CT}{obs}={30}-12+16 % . For the small sample of CT AGNs, we find a high fraction of galaxy major mergers (50% ± 33%) compared to control samples of “normal” AGNs.

  15. Extreme value statistics for two-dimensional convective penetration in a pre-main sequence star

    Science.gov (United States)

    Pratt, J.; Baraffe, I.; Goffrey, T.; Constantino, T.; Viallet, M.; Popov, M. V.; Walder, R.; Folini, D.

    2017-08-01

    Context. In the interior of stars, a convectively unstable zone typically borders a zone that is stable to convection. Convective motions can penetrate the boundary between these zones, creating a layer characterized by intermittent convective mixing, and gradual erosion of the density and temperature stratification. Aims: We examine a penetration layer formed between a central radiative zone and a large convection zone in the deep interior of a young low-mass star. Using the Multidimensional Stellar Implicit Code (MUSIC) to simulate two-dimensional compressible stellar convection in a spherical geometry over long times, we produce statistics that characterize the extent and impact of convective penetration in this layer. Methods: We apply extreme value theory to the maximal extent of convective penetration at any time. We compare statistical results from simulations which treat non-local convection, throughout a large portion of the stellar radius, with simulations designed to treat local convection in a small region surrounding the penetration layer. For each of these situations, we compare simulations of different resolution, which have different velocity magnitudes. We also compare statistical results between simulations that radiate energy at a constant rate to those that allow energy to radiate from the stellar surface according to the local surface temperature. Results: Based on the frequency and depth of penetrating convective structures, we observe two distinct layers that form between the convection zone and the stable radiative zone. We show that the probability density function of the maximal depth of convective penetration at any time corresponds closely in space with the radial position where internal waves are excited. We find that the maximal penetration depth can be modeled by a Weibull distribution with a small shape parameter. Using these results, and building on established scalings for diffusion enhanced by large-scale convective motions, we

  16. DISCOVERY OF MASSIVE, MOSTLY STAR FORMATION QUENCHED GALAXIES WITH EXTREMELY LARGE Lyα EQUIVALENT WIDTHS AT z ∼ 3

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Yoshiaki; Kajisawa, Masaru; Kobayashi, Masakazu A. R.; Nagao, Tohru; Shioya, Yasuhiro [Research Center for Space and Cosmic Evolution, Ehime University, Bunkyo-cho, Matsuyama 790-8577 (Japan); Scoville, Nick Z.; Capak, Peter L. [Department of Astronomy, California Institute of Technology, MS 105-24, Pasadena, CA 91125 (United States); Sanders, David B. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Toft, Sune [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Mariesvej 30, DK-2100 Copenhagen (Denmark); McCracken, Henry J. [Institut d’Astrophysique de Paris, UMR7095 CNRS, Université Pierre et Marie Curie, 98 bis Boulevard Arago, F-75014 Paris (France); Le Fèvre, Olivier; Tasca, Lidia; Ilbert, Olivier [Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille), UMR 7326, F-13388 Marseille (France); Sheth, Kartik [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Renzini, Alvio [Dipartimento di Astronomia, Universita di Padova, vicolo dell’Osservatorio 2, I-35122 Padua (Italy); Lilly, Simon; Carollo, Marcella; Kovač, Katarina [Department of Physics, ETH Zurich, 8093 Zurich (Switzerland); Schinnerer, Eva, E-mail: tani@cosmos.phys.sci.ehime-u.ac.jp [MPI for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); and others

    2015-08-10

    We report a discovery of six massive galaxies with both extremely large Lyα equivalent widths (EWs) and evolved stellar populations at z ∼ 3. These MAssive Extremely STrong Lyα emitting Objects (MAESTLOs) have been discovered in our large-volume systematic survey for strong Lyα emitters (LAEs) with 12 optical intermediate-band data taken with Subaru/Suprime-Cam in the COSMOS field. Based on the spectral energy distribution fitting analysis for these LAEs, it is found that these MAESTLOs have (1) large rest-frame EWs of EW{sub 0} (Lyα) ∼ 100–300 Å, (2) M{sub ⋆} ∼ 10{sup 10.5}–10{sup 11.1} M{sub ⊙}, and (3) relatively low specific star formation rates of SFR/M{sub ⋆} ∼ 0.03–1 Gyr{sup −1}. Three of the six MAESTLOs have extended Lyα emission with a radius of several kiloparsecs, although they show very compact morphology in the HST/ACS images, which correspond to the rest-frame UV continuum. Since the MAESTLOs do not show any evidence for active galactic nuclei, the observed extended Lyα emission is likely to be caused by a star formation process including the superwind activity. We suggest that this new class of LAEs, MAESTLOs, provides a missing link from star-forming to passively evolving galaxies at the peak era of the cosmic star formation history.

  17. TEMPLATES: Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star Formation

    Science.gov (United States)

    Rigby, Jane; Vieira, Joaquin; Bayliss, M.; Fischer, T.; Florian, M.; Gladders, M.; Gonzalez, A.; Law, D.; Marrone, D.; Phadke, K.; Sharon, K.; Spilker, J.

    2017-11-01

    We propose high signal-to-noise NIRSpec and MIRI IFU spectroscopy, with accompanying imaging, for 4 gravitationally lensed galaxies at 1physical scales of star formation in distant galaxies, in an extinction-robust way; 3) measure specific star formation rates and compare the spatial distribution of the young and old stars; 4) and measure the physical conditions of star formation and their spatial variation. This program uses key instrument modes, heavily exercising the NIRSpec and MIRI IFUs. The resulting science-enabling data products will demonstrate JWST's capabilities and provide the extragalactic science community with rich datasets. In four deliveries, we will provide high-quality Level 3 data cubes and mosaics, empirical star formation diagnostics, maps of star formation, extinction, and physical properties, a tool for comparing NIRSpec and MIRI data cubes, and cookbooks on data reduction, analysis, and calibration strategy.

  18. The Chemical Abundances of Stars in the Halo (CASH) Project. II. New Extremely Metal-poor Stars

    Science.gov (United States)

    Krugler, Julie A.; Frebel, A.; Roederer, I. U.; Sneden, C.; Shetrone, M.; Beers, T.; Christlieb, N.

    2011-01-01

    We present new abundance results from the Chemical Abundances of Stars in the Halo (CASH) project. The 500 CASH spectra were observed using the Hobby-Eberly Telescope in "snapshot" mode and are analyzed using an automated stellar parameter and abundance pipeline called CASHCODE. For the 20 most metal-poor stars of the CASH sample we have obtained high resolution spectra using the Magellan Telescope in order to test the uncertainties and systematic errors associated with the snapshot quality (i.e., R 15,000 and S/N 65) HET spectra and to calibrate the newly developed CASHCODE by making a detailed comparison between the stellar parameters and abundances determined from the high resolution and snapshot spectra. We find that the CASHCODE stellar parameters (effective temperature, surface gravity, metallicity, and microturbulence) agree well with the results of the manual analysis of the high resolution spectra. We present the abundances of three newly discovered stars with [Fe/H] ratios with alpha-enhancement and Fe-peak depletion and a range of n-capture elements. The full CASH sample will be used to derive statistically robust abundance trends and frequencies (e.g. carbon and n-capture), as well as placing constraints on nucleosynthetic processes that occurred in the early universe.

  19. THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. IV. CONSTRUCTION AND VALIDATION OF A GRID OF MODELS FOR OXYGEN-RICH AGB STARS, RED SUPERGIANTS, AND EXTREME AGB STARS

    International Nuclear Information System (INIS)

    Sargent, Benjamin A.; Meixner, M.; Srinivasan, S.

    2011-01-01

    To measure the mass loss from dusty oxygen-rich (O-rich) evolved stars in the Large Magellanic Cloud (LMC), we have constructed a grid of models of spherically symmetric dust shells around stars with constant mass-loss rates using 2Dust. These models will constitute the O-rich model part of the 'Grid of Red supergiant and Asymptotic giant branch star ModelS' (GRAMS). This model grid explores four parameters-stellar effective temperature from 2100 K to 4700 K; luminosity from 10 3 to 10 6 L sun ; dust shell inner radii of 3, 7, 11, and 15 R star ; and 10.0 μm optical depth from 10 -4 to 26. From an initial grid of ∼1200 2Dust models, we create a larger grid of ∼69,000 models by scaling to cover the luminosity range required by the data. These models are available online to the public. The matching in color-magnitude diagrams and color-color diagrams to observed O-rich asymptotic giant branch (AGB) and red supergiant (RSG) candidate stars from the SAGE and SAGE-Spec LMC samples and a small sample of OH/IR stars is generally very good. The extreme AGB star candidates from SAGE are more consistent with carbon-rich (C-rich) than O-rich dust composition. Our model grid suggests lower limits to the mid-infrared colors of the dustiest AGB stars for which the chemistry could be O-rich. Finally, the fitting of GRAMS models to spectral energy distributions of sources fit by other studies provides additional verification of our grid and anticipates future, more expansive efforts.

  20. Spontaneous scalarization with an extremely massive field and heavy neutron stars

    Science.gov (United States)

    Morisaki, Soichiro; Suyama, Teruaki

    2017-10-01

    We investigate the internal structure and the mass-radius relation of neutron stars in a recently proposed scalar-tensor theory dubbed asymmetron in which a massive scalar field undergoes spontaneous scalarization inside neutron stars. We focus on the case where the Compton wavelength is shorter than 10 km, which has not been investigated in the literature. By solving the modified Einstein equations, either purely numerically or by partially using a semianalytic method, we find that not only the weakening of gravity by spontaneous scalarization but also the scalar force affect the internal structure significantly in the massive case. We also find that the maximum mass of neutron stars is larger for certain parameter sets than that in general relativity and reaches 2 M⊙ even if the effect of strange hadrons is taken into account. There is even a range of parameters where the maximum mass of neutron stars largely exceeds the threshold that violates the causality bound in general relativity.

  1. Non-local Thermodynamic Equilibrium Abundance Analyses of the Extreme Helium Stars V652 Her and HD 144941

    International Nuclear Information System (INIS)

    Pandey, Gajendra; Lambert, David L.

    2017-01-01

    Optical high-resolution spectra of V652 Her and HD 144941, the two extreme helium stars with exceptionally low C/He ratios, have been subjected to a non-LTE abundance analysis using the tools TLUSTY and SYNSPEC. Defining atmospheric parameters were obtained from a grid of non-LTE atmospheres and a variety of spectroscopic indicators including He i and He ii line profiles, and the ionization equilibrium of ion pairs such as C ii/C iii and N ii/N iii. The various indicators provide a consistent set of atmospheric parameters: T eff = 25,000 ± 300 K, log g = 3.10 ± 0.12(cgs), and ξ = 13 ± 2 km s −1 are provided for V652 Her, and T eff = 22,000 ± 600 K, log g = 3.45 ± 0.15 (cgs), and ξ = 10 km s −1 are provided for HD 144941. In contrast to the non-LTE analyses, the LTE analyses—LTE atmospheres and an LTE line analysis—with the available indicators do not provide a consistent set of atmospheric parameters. The principal non-LTE effect on the elemental abundances is on the neon abundance. It is generally considered that these extreme helium stars with their very low C/He ratio result from the merger of two helium white dwarfs. Indeed, the derived composition of V652 Her is in excellent agreement with predictions by Zhang and Jeffery, who model the slow merger of helium white dwarfs; a slow merger results in the merged star having the composition of the accreted white dwarf. In the case of HD 144941, which appears to have evolved from metal-poor stars, a slow merger is incompatible with the observed composition but variations of the merger rate may account for the observed composition. More detailed theoretical studies of the merger of a pair of helium white dwarfs are to be encouraged.

  2. TEMPLATES: Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star formation

    Science.gov (United States)

    Spilker, Justin; Rigby, Jane R.; Vieira, Joaquin D.; TEMPLATES Team

    2018-06-01

    TEMPLATES is a JWST Early Release Science program designed to produce high signal-to-noise imaging and IFU spectroscopic data cubes for four gravitationally lensed galaxies at high redshift. The program will spatially resolve the star formation in galaxies across the peak of cosmic star formation in an extinction-robust manner. Lensing magnification pushes JWST to the highest spatial resolutions possible at these redshifts, to map the key spectral diagnostics of star formation and dust extinction: H-alpha, Pa-alpha, and 3.3um PAH emission within individual distant galaxies. Our targets are among the brightest, best-characterized lensed systems known, and include both UV-bright 'normal' galaxies and heavily dust-obscured submillimeter galaxies, at a range of stellar masses and luminosities. I will describe the scientific motivation for this program, detail the targeted galaxies, and describe the planned data products to be delivered to the community in advance of JWST Cycle 2.

  3. Abundance analysis of SDSS J134338.67+484426.6; an extremely metal-poor star from the MARVELS pre-survey

    Science.gov (United States)

    Susmitha Rani, A.; Sivarani, T.; Beers, T. C.; Fleming, S.; Mahadevan, S.; Ge, J.

    2016-05-01

    We present an elemental-abundance analysis of an extremely metal-poor (EMP; [Fe/H] <-3.0) star, SDSS J134338.67+484426.6, identified during the course of the Multi-object Apache Point Observatory Radial Velocity Exoplanet Large-area Survey spectroscopic pre-survey of some 20 000 stars to identify suitable candidates for exoplanet searches. This star, with an apparent magnitude V = 12.14, is the lowest metallicity star found in the pre-survey, and is one of only ˜20 known EMP stars that are this bright or brighter. Our high-resolution spectroscopic analysis shows that this star is a subgiant with [Fe/H] = -3.42, having `normal' carbon and no enhancement of neutron-capture abundances. Strontium is underabundant, [Sr/Fe] = -0.47, but the derived lower limit on [Sr/Ba] indicates that Sr is likely enhanced relative to Ba. This star belongs to the sparsely populated class of α-poor EMP stars that exhibit low ratios of [Mg/Fe], [Si/Fe], and [Ca/Fe] compared to typical halo stars at similar metallicity. The observed variations in radial velocity from several epochs of (low- and high-resolution) spectroscopic follow-up indicate that SDSS J134338.67+484426.6 is a possible long-period binary. We also discuss the abundance trends in EMP stars for r-process elements, and compare with other magnesium-poor stars.

  4. Two extremely luminous WN stars in the Galactic center with circumstellar emission from dust and gas

    OpenAIRE

    Barniske, A.; Oskinova, L. M.; Hamann, W. -R.

    2008-01-01

    We study relatively isolated massive WN-type stars in the Galactic center. The K-band spectra of WR102ka and WR102c are exploited to infer the stellar parameters and to compute synthetic stellar spectra using the Potsdam Wolf-Rayet (PoWR) model atmosphere code. These models are combined with dust-shell models for analyzing the Spitzer IRS spectra of these objects. Archival IR images complement the interpretation. We report that WR102ka and WR102c are among the most luminous stars in the Milky...

  5. Extreme secular excitation of eccentricity inside mean motion resonance. Small bodies driven into star-grazing orbits by planetary perturbations

    Science.gov (United States)

    Pichierri, Gabriele; Morbidelli, Alessandro; Lai, Dong

    2017-09-01

    Context. It is well known that asteroids and comets fall into the Sun. Metal pollution of white dwarfs and transient spectroscopic signatures of young stars like β-Pic provide growing evidence that extra solar planetesimals can attain extreme orbital eccentricities and fall into their parent stars. Aims: We aim to develop a general, implementable, semi-analytical theory of secular eccentricity excitation of small bodies (planetesimals) in mean motion resonances with an eccentric planet valid for arbitrary values of the eccentricities and including the short-range force due to General Relativity. Methods: Our semi-analytic model for the restricted planar three-body problem does not make use of series expansion and therefore is valid for any eccentricity value and semi-major axis ratio. The model is based on the application of the adiabatic principle, which is valid when the precession period of the longitude of pericentre of the planetesimal is much longer than the libration period in the mean motion resonance. In resonances of order larger than 1 this is true except for vanishingly small eccentricities. We provide prospective users with a Mathematica notebook with implementation of the model allowing direct use. Results: We confirm that the 4:1 mean motion resonance with a moderately eccentric (e' ≲ 0.1) planet is the most powerful one to lift the eccentricity of planetesimals from nearly circular orbits to star-grazing ones. However, if the planet is too eccentric, we find that this resonance is unable to pump the planetesimal's eccentricity to a very high value. The inclusion of the General Relativity effect imposes a condition on the mass of the planet to drive the planetesimals into star-grazing orbits. For a planetesimal at 1 AU around a solar mass star (or white dwarf), we find a threshold planetary mass of about 17 Earth masses. We finally derive an analytical formula for this critical mass. Conclusions: Planetesimals can easily fall into the central star

  6. Influence of extreme ultraviolet radiation on the P v ionization fraction in hot star winds

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Kubát, Jiří

    2012-01-01

    Roč. 427, č. 1 (2012), s. 84-90 ISSN 0035-8711 R&D Projects: GA ČR GA205/08/0003 Institutional support: RVO:67985815 Keywords : hydrodynamics * early-type stars * mass-loss Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.521, year: 2012

  7. The Little Cub: Discovery of an Extremely Metal-poor Star-forming Galaxy in the Local Universe

    Energy Technology Data Exchange (ETDEWEB)

    Hsyu, Tiffany; Prochaska, J. Xavier; Bolte, Michael [Department of Astronomy and Astrophysics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95060 (United States); Cooke, Ryan J. [Centre for Extragalactic Astronomy, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2017-08-20

    We report the discovery of the Little Cub, an extremely metal-poor star-forming galaxy in the local universe, found in the constellation Ursa Major (a.k.a. the Great Bear). We first identified the Little Cub as a candidate metal-poor galaxy based on its Sloan Digital Sky Survey photometric colors, combined with spectroscopy using the Kast spectrograph on the Shane 3 m telescope at Lick Observatory. In this Letter, we present high-quality spectroscopic data taken with the Low Resolution Imaging Spectrometer at Keck Observatory, which confirm the extremely metal-poor nature of this galaxy. Based on the weak [O iii] λ 4363 Å emission line, we estimate a direct oxygen abundance of 12 + log(O/H) = 7.13 ± 0.08, making the Little Cub one of the lowest-metallicity star-forming galaxies currently known in the local universe. The Little Cub appears to be a companion of the spiral galaxy NGC 3359 and shows evidence of gas stripping. We may therefore be witnessing the quenching of a near-pristine galaxy as it makes its first passage about a Milky Way–like galaxy.

  8. The Little Cub: Discovery of an Extremely Metal-poor Star-forming Galaxy in the Local Universe

    Science.gov (United States)

    Hsyu, Tiffany; Cooke, Ryan J.; Prochaska, J. Xavier; Bolte, Michael

    2017-08-01

    We report the discovery of the Little Cub, an extremely metal-poor star-forming galaxy in the local universe, found in the constellation Ursa Major (a.k.a. the Great Bear). We first identified the Little Cub as a candidate metal-poor galaxy based on its Sloan Digital Sky Survey photometric colors, combined with spectroscopy using the Kast spectrograph on the Shane 3 m telescope at Lick Observatory. In this Letter, we present high-quality spectroscopic data taken with the Low Resolution Imaging Spectrometer at Keck Observatory, which confirm the extremely metal-poor nature of this galaxy. Based on the weak [O III] λ4363 Å emission line, we estimate a direct oxygen abundance of 12 + log(O/H) = 7.13 ± 0.08, making the Little Cub one of the lowest-metallicity star-forming galaxies currently known in the local universe. The Little Cub appears to be a companion of the spiral galaxy NGC 3359 and shows evidence of gas stripping. We may therefore be witnessing the quenching of a near-pristine galaxy as it makes its first passage about a Milky Way-like galaxy.

  9. The Little Cub: Discovery of an Extremely Metal-poor Star-forming Galaxy in the Local Universe

    International Nuclear Information System (INIS)

    Hsyu, Tiffany; Prochaska, J. Xavier; Bolte, Michael; Cooke, Ryan J.

    2017-01-01

    We report the discovery of the Little Cub, an extremely metal-poor star-forming galaxy in the local universe, found in the constellation Ursa Major (a.k.a. the Great Bear). We first identified the Little Cub as a candidate metal-poor galaxy based on its Sloan Digital Sky Survey photometric colors, combined with spectroscopy using the Kast spectrograph on the Shane 3 m telescope at Lick Observatory. In this Letter, we present high-quality spectroscopic data taken with the Low Resolution Imaging Spectrometer at Keck Observatory, which confirm the extremely metal-poor nature of this galaxy. Based on the weak [O iii] λ 4363 Å emission line, we estimate a direct oxygen abundance of 12 + log(O/H) = 7.13 ± 0.08, making the Little Cub one of the lowest-metallicity star-forming galaxies currently known in the local universe. The Little Cub appears to be a companion of the spiral galaxy NGC 3359 and shows evidence of gas stripping. We may therefore be witnessing the quenching of a near-pristine galaxy as it makes its first passage about a Milky Way–like galaxy.

  10. An extremely luminous and variable ultraluminous X-ray source in the outskirts of Circinus observed with NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Walton, D. J.; Fuerst, F.; Harrison, F.; Stern, D.; Grefenstette, B. W.; Madsen, K. K.; Rana, V. [Space Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Bachetti, M.; Barret, D.; Webb, N. A. [Universite de Toulouse, UPS-OMP, IRAP, Toulouse (France); Bauer, F. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, 306, Santiago 22 (Chile); Boggs, S. E.; Craig, W. W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, F. E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Fabian, A. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Hailey, C. J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Miller, J. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Ptak, A.; Zhang, W. W. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-12-20

    Following a serendipitous detection with the Nuclear Spectroscopic Telescope Array (NuSTAR), we present a multi-epoch spectral and temporal analysis of an extreme ultraluminous X-ray source (ULX) located in the outskirts of the Circinus galaxy, hereafter Circinus ULX5, including coordinated XMM-Newton+NuSTAR follow-up observations. The NuSTAR data presented here represent one of the first instances of a ULX reliably detected at hard (E > 10 keV) X-rays. Circinus ULX5 is variable on long time scales by at least a factor of ∼5 in flux, and was caught in a historically bright state during our 2013 observations (0.3-30.0 keV luminosity of 1.6 × 10{sup 40} erg s{sup –1}). During this epoch, the source displayed a curved 3-10 keV spectrum, broadly similar to other bright ULXs. Although pure thermal models result in a high energy excess in the NuSTAR data, this excess is too weak to be modeled with the disk reflection interpretation previously proposed to explain the 3-10 keV curvature in other ULXs. In addition to flux variability, clear spectral variability is also observed. While in many cases the interpretation of spectral components in ULXs is uncertain, the spectral and temporal properties of all the high quality data sets currently available strongly support a simple disk-corona model reminiscent of that invoked for Galactic binaries, with the accretion disk becoming more prominent as the luminosity increases. However, although the disk temperature and luminosity are well correlated across all time scales currently probed, the observed luminosity follows L∝T {sup 1.70±0.17}, flatter than expected for simple blackbody radiation. The spectral variability displayed here is highly reminiscent of that observed from known Galactic black hole binaries (BHBs) at high luminosities. This comparison implies a black hole mass of ∼90 M {sub ☉} for Circinus ULX5. However, given the diverse behavior observed from Galactic BHB accretion disks, this mass estimate is

  11. Non-local Thermodynamic Equilibrium Abundance Analyses of the Extreme Helium Stars V652 Her and HD 144941

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Gajendra [Indian Institute of Astrophysics, Bangalore, 560034 (India); Lambert, David L., E-mail: pandey@iiap.res.in, E-mail: dll@astro.as.utexas.edu [The W.J. McDonald Observatory and Department of Astronomy, University of Texas at Austin, Austin, TX 78712-1083 (United States)

    2017-10-01

    Optical high-resolution spectra of V652 Her and HD 144941, the two extreme helium stars with exceptionally low C/He ratios, have been subjected to a non-LTE abundance analysis using the tools TLUSTY and SYNSPEC. Defining atmospheric parameters were obtained from a grid of non-LTE atmospheres and a variety of spectroscopic indicators including He i and He ii line profiles, and the ionization equilibrium of ion pairs such as C ii/C iii and N ii/N iii. The various indicators provide a consistent set of atmospheric parameters: T {sub eff} = 25,000 ± 300 K, log g = 3.10 ± 0.12(cgs), and ξ = 13 ± 2 km s{sup −1} are provided for V652 Her, and T {sub eff} = 22,000 ± 600 K, log g = 3.45 ± 0.15 (cgs), and ξ = 10 km s{sup −1} are provided for HD 144941. In contrast to the non-LTE analyses, the LTE analyses—LTE atmospheres and an LTE line analysis—with the available indicators do not provide a consistent set of atmospheric parameters. The principal non-LTE effect on the elemental abundances is on the neon abundance. It is generally considered that these extreme helium stars with their very low C/He ratio result from the merger of two helium white dwarfs. Indeed, the derived composition of V652 Her is in excellent agreement with predictions by Zhang and Jeffery, who model the slow merger of helium white dwarfs; a slow merger results in the merged star having the composition of the accreted white dwarf. In the case of HD 144941, which appears to have evolved from metal-poor stars, a slow merger is incompatible with the observed composition but variations of the merger rate may account for the observed composition. More detailed theoretical studies of the merger of a pair of helium white dwarfs are to be encouraged.

  12. The spectrum and intrinsic color of the extreme P Cygni-type star HDE 316285

    International Nuclear Information System (INIS)

    Morrison, N.D.; Rao, S.M.

    1990-01-01

    In a high-resolution, low-noise, yellow-red CCD spectrum of HDE 316285, P Cygni profiles in H-alpha, He I 5876 A and 6678 A, the Na D lines, and lines of N II, Si II, and Fe II are observed. In addition, forbidden N II, Mg I, and Fe III are observed in emission. Also present is a rich array of diffuse interstellar bands, and their strengths are used to estimate the star's B - V color excess, which is found to be probably not larger than 1.5. 10 refs

  13. Galaxy evolution in extreme environments: Molecular gas content star formation and AGN in isolated void galaxies

    Science.gov (United States)

    Das, Mousumi; Iono, Daisuke; Saito, Toshiki; Subramanian, Smitha

    Since the early redshift surveys of the large scale structure of our universe, it has become clear that galaxies cluster along walls, sheet and filaments leaving large, empty regions called voids between them. Although voids represent the most under dense parts of our universe, they do contain a sparse but significant population of isolated galaxies that are generally low luminosity, late type disk galaxies. Recent studies show that most void galaxies have ongoing star formation and are in an early stage of evolution. We present radio, optical studies of the molecular gas content and star formation in a sample of void galaxies. Using SDSS data, we find that AGN are rare in these systems and are found only in the Bootes void; their black hole masses and radio properties are similar to bright spirals galaxies. Our studies suggest that close galaxy interactions and gas accretion are the main drivers of galaxy evolution in these systems despite their location in the underdense environment of the voids.

  14. Massive disc formation in the tidal disruption of a neutron star by a nearly extremal black hole

    International Nuclear Information System (INIS)

    Lovelace, Geoffrey; Kidder, Lawrence E; Duez, Matthew D; Foucart, Francois; Pfeiffer, Harald P; Scheel, Mark A; Szilágyi, Béla

    2013-01-01

    Black hole–neutron star (BHNS) binaries are important sources of gravitational waves for second-generation interferometers, and BHNS mergers are also a proposed engine for short, hard gamma-ray bursts. The behavior of both the spacetime (and thus the emitted gravitational waves) and the neutron-star matter in a BHNS merger depend strongly and nonlinearly on the black hole's spin. While there is a significant possibility that astrophysical black holes could have spins that are nearly extremal (i.e. near the theoretical maximum), to date fully relativistic simulations of BHNS binaries have included black-hole spins only up to S/M 2 = 0.9, which corresponds to the black hole having approximately half as much rotational energy as possible, given the black hole's mass. In this paper, we present a new simulation of a BHNS binary with a mass ratio q = 3 and black-hole spin S/M 2 = 0.97, the highest simulated to date. We find that the black hole's large spin leads to the most massive accretion disc and the largest tidal tail outflow of any fully relativistic BHNS simulations to date, even exceeding the results implied by extrapolating results from simulations with lower black-hole spin. The disc appears to be remarkably stable. We also find that the high black-hole spin persists until shortly before the time of merger; afterward, both merger and accretion spin down the black hole. (paper)

  15. Extreme Emission Line Galaxies in CANDELS: Broad-Band Selected, Star-Bursting Dwarf Galaxies at Z greater than 1

    Science.gov (United States)

    vanderWel, A.; Straughn, A. N.; Rix, H.-W.; Finkelstein, S. L.; Koekemoer, A. M.; Weiner, B. J.; Wuyts, S.; Bell, E. F.; Faber, S. M.; Trump, J. R.; hide

    2012-01-01

    We identify an abundant population of extreme emission line galaxies (EELGs) at redshift z approx. 1.7 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). 69 EELG candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared broad-band magnitudes. Supported by spectroscopic confirmation of strong [OIII] emission lines . with rest-frame equivalent widths approx. 1000A in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are galaxies with approx.10(exp 8) Solar Mass in stellar mass, undergoing an enormous starburst phase with M*/M* of only approx. 15 Myr. These bursts may cause outflows that are strong enough to produce cored dark matter profiles in low-mass galaxies. The individual star formation rates and the co-moving number density (3.7x10(exp -4) Mpc(sup -3) can produce in approx.4 Gyr much of the stellar mass density that is presently contained in 10(exp 8) - 10(exp 9) Solar Mass dwarf galaxies. Therefore, our observations provide a strong indication that many or even most of the stars in present-day dwarf galaxies formed in strong, short-lived bursts, mostly at z > 1.

  16. Anomalously high intercombination line ratios in symbiotic stars; extreme Bowen pumping?

    International Nuclear Information System (INIS)

    Kastner, S.O.; Bhatia, A.K.; Feibelman, W.A.

    1989-01-01

    We assemble International Ultraviolet Explorer observations of the ratio of the O III intercombination lines near 1660 A, showing that the observed ratios in symbiotic stars are significantly higher than the theoretically predicted optically thin limit of 2.5. The presence of an enhancing physical process is thereby indicated. It is suggested that Bowen pumping of the lower level of the 1666.2 A line in an 'external saturation' limit, coupled with appreciable optical depth, could logically explain the high ratios. Some tentative evidence for this is presented and the relevance of far-infrared observations of the O III 51.8 and 88.3 μm lines in symbiotic sources is emphasized. (author)

  17. COMPACT STELLAR BINARY ASSEMBLY IN THE FIRST NUCLEAR STAR CLUSTERS AND r-PROCESS SYNTHESIS IN THE EARLY UNIVERSE

    International Nuclear Information System (INIS)

    Ramirez-Ruiz, Enrico; MacLeod, Morgan; Trenti, Michele; Roberts, Luke F.; Lee, William H.; Saladino-Rosas, Martha I.

    2015-01-01

    Investigations of elemental abundances in the ancient and most metal deficient stars are extremely important because they serve as tests of variable nucleosynthesis pathways and can provide critical inferences of the type of stars that lived and died before them. The presence of r-process elements in a handful of carbon-enhanced metal-poor (CEMP-r) stars, which are assumed to be closely connected to the chemical yield from the first stars, is hard to reconcile with standard neutron star mergers. Here we show that the production rate of dynamically assembled compact binaries in high-z nuclear star clusters can attain a sufficient high value to be a potential viable source of heavy r-process material in CEMP-r stars. The predicted frequency of such events in the early Galaxy, much lower than the frequency of Type II supernovae but with significantly higher mass ejected per event, can naturally lead to a high level of scatter of Eu as observed in CEMP-r stars

  18. COMPACT STELLAR BINARY ASSEMBLY IN THE FIRST NUCLEAR STAR CLUSTERS AND r-PROCESS SYNTHESIS IN THE EARLY UNIVERSE

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Ruiz, Enrico; MacLeod, Morgan [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Trenti, Michele [Kavli Institute for Cosmology and Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Roberts, Luke F. [TAPIR, California Institute of Technology, Pasadena, California 91125 (United States); Lee, William H.; Saladino-Rosas, Martha I. [Instituto de Astronomía, Universidad Nacional Autónoma de México, México DF 04510, México (Mexico)

    2015-04-01

    Investigations of elemental abundances in the ancient and most metal deficient stars are extremely important because they serve as tests of variable nucleosynthesis pathways and can provide critical inferences of the type of stars that lived and died before them. The presence of r-process elements in a handful of carbon-enhanced metal-poor (CEMP-r) stars, which are assumed to be closely connected to the chemical yield from the first stars, is hard to reconcile with standard neutron star mergers. Here we show that the production rate of dynamically assembled compact binaries in high-z nuclear star clusters can attain a sufficient high value to be a potential viable source of heavy r-process material in CEMP-r stars. The predicted frequency of such events in the early Galaxy, much lower than the frequency of Type II supernovae but with significantly higher mass ejected per event, can naturally lead to a high level of scatter of Eu as observed in CEMP-r stars.

  19. BOO-1137-AN EXTREMELY METAL-POOR STAR IN THE ULTRA-FAINT DWARF SPHEROIDAL GALAXY BOOeTES I

    International Nuclear Information System (INIS)

    Norris, John E.; Yong, David; Gilmore, Gerard; Wyse, Rosemary F. G.

    2010-01-01

    We present high-resolution (R ∼ 40,000), high-signal-to-noise ratio (20-90) spectra of an extremely metal-poor giant star Boo-1137 in the 'ultra-faint' dwarf spheroidal galaxy (dSph) Booetes I, absolute magnitude M V ∼ -6.3. We derive an iron abundance of [Fe/H] = -3.7, making this the most metal-poor star as yet identified in an ultra-faint dSph. Our derived effective temperature and gravity are consistent with its identification as a red giant in Booetes I. Abundances for a further 15 elements have also been determined. Comparison of the relative abundances, [X/Fe], with those of the extremely metal-poor red giants of the Galactic halo shows that Boo-1137 is 'normal' with respect to C and N, the odd-Z elements Na and Al, the iron-peak elements, and the neutron-capture elements Sr and Ba, in comparison with the bulk of the Milky Way halo population having [Fe/H] ∼<-3.0. The α-elements Mg, Si, Ca, and Ti are all higher by Δ[X/Fe] ∼ 0.2 than the average halo values. Monte Carlo analysis indicates that Δ[α/Fe] values this large are expected with a probability ∼0.02. The elemental abundance pattern in Boo-1137 suggests inhomogeneous chemical evolution, consistent with the wide internal spread in iron abundances we previously reported. The similarity of most of the Boo-1137 relative abundances with respect to halo values, and the fact that the α-elements are all offset by a similar small amount from the halo averages, points to the same underlying galaxy-scale stellar initial mass function, but that Boo-1137 likely originated in a star-forming region where the abundances reflect either poor mixing of supernova (SN) ejecta, or poor sampling of the SN progenitor mass range, or both.

  20. Basic calibrations of the photographic RGU system. III - Intermediate and extreme Population II dwarf stars

    Science.gov (United States)

    Buser, R.; Fenkart, R. P.

    1990-11-01

    This paper presents an extended calibration of the color-magnitude and two-color diagrams and the metal-abundance parameter for the intermediate Population II and the extreme halo dwarfs observed in the Basel Palomar-Schmidt RGU three-color photometric surveys of the galaxy. The calibration covers the metallicity range between values +0.50 and -3.00. It is shown that the calibrations presented are sufficiently accurate to be useful for the future analyses of photographic survey data.

  1. The Dual-channel Extreme Ultraviolet Continuum Experiment: Sounding Rocket EUV Observations of Local B Stars to Determine Their Potential for Supplying Intergalactic Ionizing Radiation

    Science.gov (United States)

    Erickson, Nicholas; Green, James C.; France, Kevin; Stocke, John T.; Nell, Nicholas

    2018-06-01

    We describe the scientific motivation and technical development of the Dual-channel Extreme Ultraviolet Continuum Experiment (DEUCE). DEUCE is a sounding rocket payload designed to obtain the first flux-calibrated spectra of two nearby B stars in the EUV 650-1150Å bandpass. This measurement will help in understanding the ionizing flux output of hot B stars, calibrating stellar models and commenting on the potential contribution of such stars to reionization. DEUCE consists of a grazing incidence Wolter II telescope, a normal incidence holographic grating, and the largest (8” x 8”) microchannel plate detector ever flown in space, covering the 650-1150Å band in medium and low resolution channels. DEUCE will launch on December 1, 2018 as NASA/CU sounding rocket mission 36.331 UG, observing Epsilon Canis Majoris, a B2 II star.

  2. Surface brightness and color distributions in blue compact dwarf galaxies. I. Haro 2, an extreme example of a star-forming young elliptical galaxy

    International Nuclear Information System (INIS)

    Loose, H.H.; Thuan, T.X.; Virginia Univ., Charlottesville, VA)

    1986-01-01

    The first results of a large-scale program to study the morphology and structure of blue compact dwarf galaxies from CCD observations are presented. The observations and reduction procedures are described, and surface brightness and color profiles are shown. The results are used to discuss the morphological type of Haro 2 and its stellar populations. It is found that Haro 2 appears to be an extreme example of an elliptical galaxy undergoing intense star formation in its central regions, and that the oldest stars it contains were made only about four million yr ago. The missing mass problem of Haro 2 is also discussed. 28 references

  3. Extreme isolation of WN3/O3 stars and implications for their evolutionary origin as the elusive stripped binaries

    Science.gov (United States)

    Smith, Nathan; Götberg, Ylva; de Mink, Selma E.

    2018-03-01

    Recent surveys of the Magellanic Clouds have revealed a subtype of Wolf-Rayet (WR) star with peculiar properties. WN3/O3 spectra exhibit both WR-like emission and O3 V-like absorption - but at lower luminosity than O3 V or WN stars. We examine the projected spatial distribution of WN3/O3 stars in the Large Magellanic Cloud as compared to O-type stars. Surprisingly, WN3/O3 stars are among the most isolated of all classes of massive stars; they have a distribution similar to red supergiants dominated by initial masses of 10-15 M⊙, and are far more dispersed than classical WR stars or luminous blue variables. Their lack of association with clusters of O-type stars suggests strongly that WN3/O3 stars are not the descendants of single massive stars (30 M⊙ or above). Instead, they are likely products of interacting binaries at lower initial mass (10-18 M⊙). Comparison with binary models suggests a probable origin with primaries in this mass range that were stripped of their H envelopes through non-conservative mass transfer by a low-mass secondary. We show that model spectra and positions on the Hertzsprung-Russell diagram for binary-stripped stars are consistent with WN3/O3 stars. Monitoring radial velocities with high-resolution spectra can test for low-mass companions or runaway velocities. With lower initial mass and environments that avoid very massive stars, the WN3/O3 stars fit expectations for progenitors of Type Ib and possibly Type Ibn supernovae.

  4. Prolonged QT Syndrome and Seizure Secondary to Alkaline Earth Metal Deficiency: A Case Report

    Directory of Open Access Journals (Sweden)

    A. McKinney

    2011-01-01

    Full Text Available Introduction. Alkaline earth metal deficiency is recognized as a cause of both seizure and long QT syndrome. Their deficiency can have significant repercussions on the function of cells, tissues, and organs of the body. An understanding of the role of electrolytes allows an appreciation of the significance of depleted levels on cell function. Case Report. A 65-year-old lady was admitted with symptoms of chest discomfort, vomiting, increased stoma output, and dizziness. Two days following admission she suffered a tonic-clonic seizure. ECG review demonstrated a prolonged QTc interval, raising the possibility of an underlying Torsades de Pointes as the precipitant. This was attributed to electrolyte disturbance arising as a result of multiple aetiologies. Discussion. This paper highlights the multisystem effects of electrolyte disturbance, with emphasis upon its role in precipitating cardiac arrhythmia and neurological symptoms.

  5. Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens

    Science.gov (United States)

    Kelly, Patrick L.; Diego, Jose M.; Rodney, Steven; Kaiser, Nick; Broadhurst, Tom; Zitrin, Adi; Treu, Tommaso; Pérez-González, Pablo G.; Morishita, Takahiro; Jauzac, Mathilde; Selsing, Jonatan; Oguri, Masamune; Pueyo, Laurent; Ross, Timothy W.; Filippenko, Alexei V.; Smith, Nathan; Hjorth, Jens; Cenko, S. Bradley; Wang, Xin; Howell, D. Andrew; Richard, Johan; Frye, Brenda L.; Jha, Saurabh W.; Foley, Ryan J.; Norman, Colin; Bradac, Marusa; Zheng, Weikang; Brammer, Gabriel; Benito, Alberto Molino; Cava, Antonio; Christensen, Lise; de Mink, Selma E.; Graur, Or; Grillo, Claudio; Kawamata, Ryota; Kneib, Jean-Paul; Matheson, Thomas; McCully, Curtis; Nonino, Mario; Pérez-Fournon, Ismael; Riess, Adam G.; Rosati, Piero; Schmidt, Kasper Borello; Sharon, Keren; Weiner, Benjamin J.

    2018-04-01

    Galaxy-cluster gravitational lenses can magnify background galaxies by a total factor of up to 50. Here we report an image of an individual star at redshift z = 1.49 (dubbed MACS J1149 Lensed Star 1) magnified by more than ×2,000. A separate image, detected briefly 0.26″ from Lensed Star 1, is probably a counterimage of the first star demagnified for multiple years by an object of ≳3 solar masses in the cluster. For reasonable assumptions about the lensing system, microlensing fluctuations in the stars' light curves can yield evidence about the mass function of intracluster stars and compact objects, including binary fractions and specific stellar evolution and supernova models. Dark-matter subhaloes or massive compact objects may help to account for the two images' long-term brightness ratio.

  6. Extremes of the jet-accretion power relation of blazars, as explored by NuSTAR

    DEFF Research Database (Denmark)

    Sbarrato, T.; Ghisellini, G.; Tagliaferri, G.

    2016-01-01

    .366) and B0222+185 (at z = 2.690) have been observed twice by the Nuclear Spectroscopic Telescope Array (NuSTAR) simultaneously with Swift/X-ray Telescope, showing different variability behaviours. We found that NuSTAR is instrumental to explore the variability of powerful high-redshift blazars, even when...

  7. Structural studies of three-arm star block copolymers exposed to extreme stretch suggests persistent polymer tube

    DEFF Research Database (Denmark)

    Garvey, Christopher J.; Almdal, Kristoffer; Dorokhin, Andriy

    2018-01-01

    We present structural SANS-studies of a three-armed polystyrene star polymer with short deuterated segments at the end of each arm. We show that the form factor of the three-armed star molecules in the relaxed state agrees with that of the random phase approximation of Gaussian chains. Upon...

  8. HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS IN THE LEAST EVOLVED GALAXIES: BOÖTES II

    International Nuclear Information System (INIS)

    Ji, Alexander P.; Frebel, Anna; Simon, Joshua D.; Geha, Marla

    2016-01-01

    We present high-resolution Magellan/MIKE spectra of the four brightest confirmed red giant stars in the ultra-faint dwarf galaxy Boötes II (Boo II). These stars all inhabit the metal-poor tail of the Boo II metallicity distribution function. The chemical abundance pattern of all detectable elements in these stars is consistent with that of the Galactic halo. However, all four stars have undetectable amounts of neutron-capture elements Sr and Ba, with upper limits comparable to the lowest ever detected in the halo or in other dwarf galaxies. One star exhibits significant radial velocity variations over time, suggesting it to be in a binary system. Its variable velocity has likely increased past determinations of the Boo II velocity dispersion. Our four stars span a limited metallicity range, but their enhanced α-abundances and low neutron-capture abundances are consistent with the interpretation that Boo II has been enriched by very few generations of stars. The chemical abundance pattern in Boo II confirms the emerging trend that the faintest dwarf galaxies have neutron-capture abundances distinct from the halo, suggesting the dominant source of neutron-capture elements in halo stars may be different than in ultra-faint dwarfs

  9. Classification of extremely metal-poor stars: absent region in A(C)-[Fe/H] plane and the role of dust cooling

    Science.gov (United States)

    Chiaki, Gen; Tominaga, Nozomu; Nozawa, Takaya

    2017-11-01

    Extremely metal-poor (EMP) stars are the living fossils with records of chemical enrichment history at the early epoch of galaxy formation. By the recent large observation campaigns, statistical samples of EMP stars have been obtained. This motivates us to reconsider their classification and formation conditions. From the observed lower limits of carbon and iron abundances of Acr(C) ∼ 6 and [Fe/H]cr ∼ -5 for C-enhanced EMP (CE-EMP) and C-normal EMP (CN-EMP) stars, we confirm that gas cooling by dust thermal emission is indispensable for the fragmentation of their parent clouds to form such low mass, i.e. long-lived stars, and that the dominant grain species are carbon and silicate, respectively. We constrain the grain radius r_i^cool of a species i and condensation efficiency fij of a key element j as r_C^cool / f_C,C = 10 {μ m} and r_Sil^cool / f_Sil,Mg = 0.1 {μ m} to reproduce Acr(C) and [Fe/H]cr, which give a universal condition 10[C/H] - 2.30 + 10[Fe/H] > 10-5.07 for the formation of every EMP star. Instead of the conventional boundary [C/Fe] = 0.7 between CE-EMP and CN-EMP stars, this condition suggests a physically meaningful boundary [C/Fe]b = 2.30 above and below which carbon and silicate grains are dominant coolants, respectively.

  10. Spitzer SAGE-Spec: Near infrared spectroscopy, dust shells, and cool envelopes in extreme Large Magellanic Cloud asymptotic giant branch stars

    Energy Technology Data Exchange (ETDEWEB)

    Blum, R. D. [NOAO, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Srinivasan, S.; Kemper, F.; Ling, B. [Academia Sinica, Institute of Astronomy and Astrophysics, 11F of Astronomy-Mathematics Building, NTU/AS, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Volk, K. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-11-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ''tip'' of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ''stellar'' cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk.

  11. Spitzer SAGE-Spec: Near infrared spectroscopy, dust shells, and cool envelopes in extreme Large Magellanic Cloud asymptotic giant branch stars

    International Nuclear Information System (INIS)

    Blum, R. D.; Srinivasan, S.; Kemper, F.; Ling, B.; Volk, K.

    2014-01-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ''tip'' of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ''stellar'' cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk.

  12. Extreme cosmos

    CERN Document Server

    Gaensler, Bryan

    2011-01-01

    The universe is all about extremes. Space has a temperature 270°C below freezing. Stars die in catastrophic supernova explosions a billion times brighter than the Sun. A black hole can generate 10 million trillion volts of electricity. And hypergiants are stars 2 billion kilometres across, larger than the orbit of Jupiter. Extreme Cosmos provides a stunning new view of the way the Universe works, seen through the lens of extremes: the fastest, hottest, heaviest, brightest, oldest, densest and even the loudest. This is an astronomy book that not only offers amazing facts and figures but also re

  13. Altered lower extremity joint mechanics occur during the star excursion balance test and single leg hop after ACL-reconstruction in a collegiate athlete.

    Science.gov (United States)

    Samaan, Michael A; Ringleb, Stacie I; Bawab, Sebastian Y; Greska, Eric K; Weinhandl, Joshua T

    2018-03-01

    The effects of ACL-reconstruction on lower extremity joint mechanics during performance of the Star Excursion Balance Test (SEBT) and Single Leg Hop (SLH) are limited. The purpose of this study was to determine if altered lower extremity mechanics occur during the SEBT and SLH after ACL-reconstruction. One female Division I collegiate athlete performed the SEBT and SLH tasks, bilaterally, both before ACL injury and 27 months after ACL-reconstruction. Maximal reach, hop distances, lower extremity joint kinematics and moments were compared between both time points. Musculoskeletal simulations were used to assess muscle force production during the SEBT and SLH at both time points. Compared to the pre-injury time point, SEBT reach distances were similar in both limbs after ACL-reconstruction except for the max anterior reach distance in the ipsilateral limb. The athlete demonstrated similar hop distances, bilaterally, after ACL-reconstruction compared to the pre-injury time point. Despite normal functional performance during the SEBT and SLH, the athlete exhibited altered lower extremity joint mechanics during both of these tasks. These results suggest that measuring the maximal reach and hop distances for these tasks, in combination with an analysis of the lower extremity joint mechanics that occur after ACL-reconstruction, may help clinicians and researchers to better understand the effects of ACL-reconstruction on the neuromuscular system during the SEBT and SLH.

  14. Structural Studies of Three-Arm Star Block Copolymers Exposed to Extreme Stretch Suggests a Persistent Polymer Tube

    Science.gov (United States)

    Mortensen, Kell; Borger, Anine L.; Kirkensgaard, Jacob J. K.; Garvey, Christopher J.; Almdal, Kristoffer; Dorokhin, Andriy; Huang, Qian; Hassager, Ole

    2018-05-01

    We present structural small-angle neutron scattering studies of a three-armed polystyrene star polymer with short deuterated segments at the end of each arm. We show that the form factor of the three-armed star molecules in the relaxed state agrees with that of the random phase approximation of Gaussian chains. Upon exposure to large extensional flow conditions, the star polymers change conformation resulting in a highly stretched structure that mimics a fully extended three-armed tube model. All three arms are parallel to the flow, one arm being either in positive or negative stretching direction, while the two other arms are oriented parallel, right next to each other in the direction opposite to the first arm.

  15. Observational evidence for composite grains in an AGB outflow: MgS in the extreme carbon star LL Pegasi

    NARCIS (Netherlands)

    Lombaert, R.; de Vries, B.L.; de Koter, A.; Decin, L.; Min, M.; Smolders, K.; Mutschke, H.; Waters, L.B.F.M.

    2012-01-01

    The broad 30 μm feature in carbon stars is commonly attributed to MgS dust particles. However, reproducing the 30 μm feature with homogeneous MgS grains would require much more sulfur relative to the solar abundance. Direct gas-phase condensation of MgS occurs at a low efficiency. Precipitation of

  16. DEEP CHANDRA, HST-COS, AND MEGACAM OBSERVATIONS OF THE PHOENIX CLUSTER: EXTREME STAR FORMATION AND AGN FEEDBACK ON HUNDRED KILOPARSEC SCALES

    International Nuclear Information System (INIS)

    McDonald, Michael; Bautz, Marshall W.; Miller, Eric D.; ZuHone, John A.; McNamara, Brian R.; Weeren, Reinout J. van; Bayliss, Matthew; Jones-Forman, Christine; Applegate, Douglas E.; Benson, Bradford A.; Carlstrom, John E.; Mantz, Adam B.; Bleem, Lindsey E.; Chatzikos, Marios; Edge, Alastair C.; Fabian, Andrew C.; Garmire, Gordon P.; Hlavacek-Larrondo, Julie; Stalder, Brian; Veilleux, Sylvain

    2015-01-01

    We present new ultraviolet, optical, and X-ray data on the Phoenix galaxy cluster (SPT-CLJ2344-4243). Deep optical imaging reveals previously undetected filaments of star formation, extending to radii of ∼50–100 kpc in multiple directions. Combined UV-optical spectroscopy of the central galaxy reveals a massive (2 × 10 9 M ⊙ ), young (∼4.5 Myr) population of stars, consistent with a time-averaged star formation rate of 610 ± 50 M ⊙ yr −1 . We report a strong detection of O vi λλ1032,1038, which appears to originate primarily in shock-heated gas, but may contain a substantial contribution (>1000 M ⊙ yr −1 ) from the cooling intracluster medium (ICM). We confirm the presence of deep X-ray cavities in the inner ∼10 kpc, which are among the most extreme examples of radio-mode feedback detected to date, implying jet powers of 2–7 × 10 45 erg s −1 . We provide evidence that the active galactic nucleus inflating these cavities may have only recently transitioned from “quasar-mode” to “radio-mode,” and may currently be insufficient to completely offset cooling. A model-subtracted residual X-ray image reveals evidence for prior episodes of strong radio-mode feedback at radii of ∼100 kpc, with extended “ghost” cavities indicating a prior epoch of feedback roughly 100 Myr ago. This residual image also exhibits significant asymmetry in the inner ∼200 kpc (0.15R 500 ), reminiscent of infalling cool clouds, either due to minor mergers or fragmentation of the cooling ICM. Taken together, these data reveal a rapidly evolving cool core which is rich with structure (both spatially and in temperature), is subject to a variety of highly energetic processes, and yet is cooling rapidly and forming stars along thin, narrow filaments

  17. Hubble space telescope grism spectroscopy of extreme starbursts across cosmic time: The role of dwarf galaxies in the star formation history of the universe

    Energy Technology Data Exchange (ETDEWEB)

    Atek, Hakim; Kneib, Jean-Paul [Laboratoire d' Astrophysique, EPFL, CH-1290 Sauverny (Switzerland); Pacifici, Camilla [Yonsei University Observatory, Yonsei University, Seoul 120-749 (Korea, Republic of); Malkan, Matthew; Ross, Nathaniel [Department of Physics and Astronomy, University of California, Los Angeles, CA (United States); Charlot, Stephane; Lehnert, Matthew [UPMC-CNRS, UMR7095, Institut d' Astrophysique de Paris, F-75014 Paris (France); Lee, Janice [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bedregal, Alejandro [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Bunker, Andrew J. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, OX13RH (United Kingdom); Colbert, James W.; Rafelski, Marc [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Dressler, Alan; McCarthy, Patrick [Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Hathi, Nimish [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Martin, Crystal L. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Siana, Brian [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Teplitz, Harry I. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-07-10

    Near infrared slitless spectroscopy with the Wide Field Camera 3, on board the Hubble Space Telescope, offers a unique opportunity to study low-mass galaxy populations at high redshift (z ∼ 1-2). While most high-z surveys are biased toward massive galaxies, we are able to select sources via their emission lines that have very faint continua. We investigate the star formation rate (SFR)-stellar mass (M{sub *}) relation for about 1000 emission line galaxies identified over a wide redshift range of 0.3 ≲ z ≲ 2.3. We use the Hα emission as an accurate SFR indicator and correct the broadband photometry for the strong nebular contribution to derive accurate stellar masses down to M{sub *} ∼10{sup 7} M{sub ☉}. We focus here on a subsample of galaxies that show extremely strong emission lines (EELGs) with rest-frame equivalent widths ranging from 200 to 1500 Å. This population consists of outliers to the normal SFR-M{sub *} sequence with much higher specific SFRs (>10 Gyr{sup –1}). While on-sequence galaxies follow continuous star formation processes, EELGs are thought to be caught during an extreme burst of star formation that can double their stellar mass in a period of less than 100 Myr. The contribution of the starburst population to the total star formation density appears to be larger than what has been reported for more massive galaxies in previous studies. In the complete mass range 8.2 < log(M{sub *}/M{sub ☉}) <10 and a SFR lower completeness limit of about 2 M{sub ☉} yr{sup –1} (10 M{sub ☉} yr{sup –1}) at z ∼ 1 (z ∼ 2), we find that starbursts having EW{sub rest}(Hα) > 300, 200, and 100 Å contribute up to ∼13%, 18%, and 34%, respectively, to the total SFR of emission-line-selected sample at z ∼ 1-2. The comparison with samples of massive galaxies shows an increase in the contribution of starbursts toward lower masses.

  18. High mass star formation to the extremes: NGC 3603 at high angular resolution in the near-infrared

    International Nuclear Information System (INIS)

    Nuernberger, Dieter E A

    2008-01-01

    High angular resolution observations play a decisive role for our understanding of high mass star formation processes, both within our Galaxy and in extragalactic starburst regions. We take the Galactic starburst template NGC 3603 as paradigm and report here on high angular resolution JHK s L' observations of the enigmatic, highly reddened sources IRS 9A-C in the NGC 3603 region, which were performed with NACO at ESO's Very Large Telescope Yepun. These broad-band imaging data strongly support the classification of IRS 9A-C as high mass protostellar candidates. We also confirm unambiguously the membership of IRS 9A-C with the NGC 3603 region as gas and dust is seen to be stripped off from their circumstellar envelopes by strong stellar winds, originating from the high mass main sequence stars of the nearby OB cluster. The orientation of these gas and dust streamers coincides with that of a very faint, only marginally detected mini-pillar protruding from the adjacent molecular clump NGC 3603 MM 2. The L' data show extended envelopes around IRS 9A-C and reveal sub-structures therein which are indicative for non-spherically distributed material. It seems obvious that protostellar mass outflows are at work to clear cavities along the polar axes of the central protostar, and / or that circumstellar disks are taking shape.

  19. Herschel extreme lensing line observations: Dynamics of two strongly lensed star-forming galaxies near redshift z = 2

    International Nuclear Information System (INIS)

    Rhoads, James E.; Malhotra, Sangeeta; Allam, Sahar; Carilli, Chris; Combes, Françoise; Finkelstein, Keely; Finkelstein, Steven; Frye, Brenda; Gerin, Maryvonne; Guillard, Pierre; Nesvadba, Nicole; Rigby, Jane; Spaans, Marco; Strauss, Michael A.

    2014-01-01

    We report on two regularly rotating galaxies at redshift z ≈ 2, using high-resolution spectra of the bright [C II] 158 μm emission line from the HIFI instrument on the Herschel Space Observatory. Both SDSS090122.37+181432.3 ( S 0901 ) and SDSSJ120602.09+514229.5 ( t he Clone ) are strongly lensed and show the double-horned line profile that is typical of rotating gas disks. Using a parametric disk model to fit the emission line profiles, we find that S0901 has a rotation speed of vsin (i) ≈ 120 ± 7 km s –1 and a gas velocity dispersion of σ g < 23 km s –1 (1σ). The best-fitting model for the Clone is a rotationally supported disk having vsin (i) ≈ 79 ± 11 km s –1 and σ g ≲ 4 km s –1 (1σ). However, the Clone is also consistent with a family of dispersion-dominated models having σ g = 92 ± 20 km s –1 . Our results showcase the potential of the [C II] line as a kinematic probe of high-redshift galaxy dynamics: [C II] is bright, accessible to heterodyne receivers with exquisite velocity resolution, and traces dense star-forming interstellar gas. Future [C II] line observations with ALMA would offer the further advantage of spatial resolution, allowing a clearer separation between rotation and velocity dispersion.

  20. Distributed Kalman filtering compared to Fourier domain preconditioned conjugate gradient for laser guide star tomography on extremely large telescopes.

    Science.gov (United States)

    Gilles, Luc; Massioni, Paolo; Kulcsár, Caroline; Raynaud, Henri-François; Ellerbroek, Brent

    2013-05-01

    This paper discusses the performance and cost of two computationally efficient Fourier-based tomographic wavefront reconstruction algorithms for wide-field laser guide star (LGS) adaptive optics (AO). The first algorithm is the iterative Fourier domain preconditioned conjugate gradient (FDPCG) algorithm developed by Yang et al. [Appl. Opt.45, 5281 (2006)], combined with pseudo-open-loop control (POLC). FDPCG's computational cost is proportional to N log(N), where N denotes the dimensionality of the tomography problem. The second algorithm is the distributed Kalman filter (DKF) developed by Massioni et al. [J. Opt. Soc. Am. A28, 2298 (2011)], which is a noniterative spatially invariant controller. When implemented in the Fourier domain, DKF's cost is also proportional to N log(N). Both algorithms are capable of estimating spatial frequency components of the residual phase beyond the wavefront sensor (WFS) cutoff frequency thanks to regularization, thereby reducing WFS spatial aliasing at the expense of more computations. We present performance and cost analyses for the LGS multiconjugate AO system under design for the Thirty Meter Telescope, as well as DKF's sensitivity to uncertainties in wind profile prior information. We found that, provided the wind profile is known to better than 10% wind speed accuracy and 20 deg wind direction accuracy, DKF, despite its spatial invariance assumptions, delivers a significantly reduced wavefront error compared to the static FDPCG minimum variance estimator combined with POLC. Due to its nonsequential nature and high degree of parallelism, DKF is particularly well suited for real-time implementation on inexpensive off-the-shelf graphics processing units.

  1. THE IMPACT OF MASS SEGREGATION AND STAR FORMATION ON THE RATES OF GRAVITATIONAL-WAVE SOURCES FROM EXTREME MASS RATIO INSPIRALS

    Energy Technology Data Exchange (ETDEWEB)

    Aharon, Danor; Perets, Hagai B. [Physics Department, Technion—Israel Institute of Technology, Haifa 3200003 (Israel)

    2016-10-10

    Compact stellar objects inspiraling into massive black holes (MBHs) in galactic nuclei are some of the most promising gravitational-wave (GWs) sources for next-generation GW detectors. The rates of such extreme mass ratio inspirals (EMRIs) depend on the dynamics and distribution of compact objects (COs) around the MBH. Here, we study the impact of mass-segregation processes on EMRI rates. In particular, we provide the expected mass function (MF) of EMRIs, given an initial MF of stellar black holes (SBHs), and relate it to the mass-dependent detection rate of EMRIs. We then consider the role of star formation (SF) on the distribution of COs and its implication on EMRI rates. We find that the existence of a wide spectrum of SBH masses leads to the overall increase of EMRI rates and to high rates of the EMRIs from the most massive SBHs. However, it also leads to a relative quenching of EMRI rates from lower-mass SBHs, and together produces a steep dependence of the EMRI MF on the highest-mass SBHs. SF history plays a relatively small role in determining the EMRI rates of SBHs, since most of them migrate close to the MBH through mass segregation rather than forming in situ. However, the EMRI rate of neutron stars (NSs) can be significantly increased when they form in situ close to the MBH, as they can inspiral before relaxation processes significantly segregate them outward. A reverse but weaker effect of decreasing the EMRI rates from NSs and white dwarfs occurs when SF proceeds far from the MBH.

  2. Extreme emission-line galaxies out to z ~ 1 in zCOSMOS. I. Sample and characterization of global properties

    Science.gov (United States)

    Amorín, R.; Pérez-Montero, E.; Contini, T.; Vílchez, J. M.; Bolzonella, M.; Tasca, L. A. M.; Lamareille, F.; Zamorani, G.; Maier, C.; Carollo, C. M.; Kneib, J.-P.; Le Fèvre, O.; Lilly, S.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Bardelli, S.; Bongiorno, A.; Caputi, K.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Kampczyk, P.; Knobel, C.; Kovač, K.; Le Borgne, J.-F.; Le Brun, V.; Mignoli, M.; Pellò, R.; Peng, Y.; Presotto, V.; Ricciardelli, E.; Silverman, J. D.; Tanaka, M.; Tresse, L.; Vergani, D.; Zucca, E.

    2015-06-01

    Context. The study of large and representative samples of low-metallicity star-forming galaxies at different cosmic epochs is of great interest to the detailed understanding of the assembly history and evolution of low-mass galaxies. Aims: We present a thorough characterization of a large sample of 183 extreme emission-line galaxies (EELGs) at redshift 0.11 ≤ z ≤ 0.93 selected from the 20k zCOSMOS bright survey because of their unusually large emission line equivalent widths. Methods: We use multiwavelength COSMOS photometry, HST-ACS I-band imaging, and optical zCOSMOS spectroscopy to derive the main global properties of star-forming EELGs, such as sizes, stellar masses, star formation rates (SFR), and reliable oxygen abundances using both "direct" and "strong-line" methods. Results: The EELGs are extremely compact (r50 ~ 1.3 kpc), low-mass (M∗ ~ 107-1010 M⊙) galaxies forming stars at unusually high specific star formation rates (sSFR ≡ SFR/M⋆ up to 10-7 yr-1) compared to main sequence star-forming galaxies of the same stellar mass and redshift. At rest-frame UV wavelengths, the EELGs are luminous and show high surface brightness and include strong Lyα emitters, as revealed by GALEX spectroscopy. We show that zCOSMOS EELGs are high-ionization, low-metallicity systems, with median 12+log (O/H) = 8.16 ± 0.21 (0.2 Z⊙) including a handful of extremely metal-deficient (Universe, EELGs are most often found in relative isolation. While only very few EELGs belong to compact groups, almost one third of them are found in spectroscopically confirmed loose pairs or triplets. Conclusions: The zCOSMOS EELGs are galaxies caught in a transient and probably early period of their evolution, where they are efficiently building up a significant fraction of their present-day stellar mass in an ongoing, galaxy-wide starburst. Therefore, the EELGs constitute an ideal benchmark for comparison studies between low- and high-redshift low-mass star-forming galaxies. Full

  3. Ultracompact X-ray binary stars

    NARCIS (Netherlands)

    Haaften, L.M. van

    2013-01-01

    Ultracompact X-ray binary stars usually consist of a neutron star and a white dwarf, two stars bound together by their strong gravity and orbiting each other very rapidly, completing one orbit in less than one hour. Neutron stars are extremely compact remnants of the collapsed cores of massive stars

  4. Neutron stars

    International Nuclear Information System (INIS)

    Irvine, J.M.

    1978-01-01

    The subject is covered in chapters entitled: introduction (resume of stellar evolution, gross characteristics of neutron stars); pulsars (pulsar characteristics, pulsars as neutron stars); neutron star temperatures (neutron star cooling, superfluidity and superconductivity in neutron stars); the exterior of neutron stars (the magnetosphere, the neutron star 'atmosphere', pulses); neutron star structure; neutron star equations of state. (U.K.)

  5. White Dwarf Stars

    OpenAIRE

    Kepler, S. O.; Romero, Alejandra Daniela; Pelisoli, Ingrid; Ourique, Gustavo

    2017-01-01

    White dwarf stars are the final stage of most stars, born single or in multiple systems. We discuss the identification, magnetic fields, and mass distribution for white dwarfs detected from spectra obtained by the Sloan Digital Sky Survey up to Data Release 13 in 2016, which lead to the increase in the number of spectroscopically identified white dwarf stars from 5000 to 39000. This number includes only white dwarf stars with log g >= 6.5 stars, i.e., excluding the Extremely Low Mass white dw...

  6. Rotating Stars in Relativity

    Directory of Open Access Journals (Sweden)

    Stergioulas Nikolaos

    2003-01-01

    Full Text Available Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on the equilibrium properties and on the nonaxisymmetric instabilities in f-modes and r-modes have been updated and several new sections have been added on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity.

  7. HD 140283: A STAR IN THE SOLAR NEIGHBORHOOD THAT FORMED SHORTLY AFTER THE BIG BANG

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Howard E.; Nelan, Edmund P. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); VandenBerg, Don A. [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, BC V8W 3P6 (Canada); Schaefer, Gail H. [The CHARA Array of Georgia State University, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Harmer, Dianne, E-mail: bond@stsci.edu, E-mail: nelan@stsci.edu, E-mail: vandenbe@uvic.ca, E-mail: schaefer@chara-array.org, E-mail: diharmer@noao.edu [National Optical Astronomy Observatories, 950 North Cherry Avenue, Tucson, AZ 85726 (United States)

    2013-03-01

    HD 140283 is an extremely metal-deficient and high-velocity subgiant in the solar neighborhood, having a location in the Hertzsprung-Russell diagram where absolute magnitude is most sensitive to stellar age. Because it is bright, nearby, unreddened, and has a well-determined chemical composition, this star avoids most of the issues involved in age determinations for globular clusters. Using the Fine Guidance Sensors on the Hubble Space Telescope, we have measured a trigonometric parallax of 17.15 {+-} 0.14 mas for HD 140283, with an error one-fifth of that determined by the Hipparcos mission. Employing modern theoretical isochrones, which include effects of helium diffusion, revised nuclear reaction rates, and enhanced oxygen abundance, we use the precise distance to infer an age of 14.46 {+-} 0.31 Gyr. The quoted error includes only the uncertainty in the parallax, and is for adopted surface oxygen and iron abundances of [O/H] = -1.67 and [Fe/H] = -2.40. Uncertainties in the stellar parameters and chemical composition, especially the oxygen content, now contribute more to the error budget for the age of HD 140283 than does its distance, increasing the total uncertainty to about {+-}0.8 Gyr. Within the errors, the age of HD 140283 does not conflict with the age of the Universe, 13.77 {+-} 0.06 Gyr, based on the microwave background and Hubble constant, but it must have formed soon after the big bang.

  8. Neutron Stars and NuSTAR

    Science.gov (United States)

    Bhalerao, Varun

    2012-05-01

    My thesis centers around the study of neutron stars, especially those in massive binary systems. To this end, it has two distinct components: the observational study of neutron stars in massive binaries with a goal of measuring neutron star masses and participation in NuSTAR, the first imaging hard X-ray mission, one that is extremely well suited to the study of massive binaries and compact objects in our Galaxy. The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing high energy X-ray telescope to orbit. NuSTAR has an order-of-magnitude better angular resolution and has two orders of magnitude higher sensitivity than any currently orbiting hard X-ray telescope. I worked to develop, calibrate, and test CdZnTe detectors for NuSTAR. I describe the CdZnTe detectors in comprehensive detail here - from readout procedures to data analysis. Detailed calibration of detectors is necessary for analyzing astrophysical source data obtained by the NuSTAR. I discuss the design and implementation of an automated setup for calibrating flight detectors, followed by calibration procedures and results. Neutron stars are an excellent probe of fundamental physics. The maximum mass of a neutron star can put stringent constraints on the equation of state of matter at extreme pressures and densities. From an astrophysical perspective, there are several open questions in our understanding of neutron stars. What are the birth masses of neutron stars? How do they change in binary evolution? Are there multiple mechanisms for the formation of neutron stars? Measuring masses of neutron stars helps answer these questions. Neutron stars in high-mass X-ray binaries have masses close to their birth mass, providing an opportunity to disentangle the role of "nature" and "nurture" in the observed mass distributions. In 2006, masses had been measured for only six such objects, but this small sample showed the greatest diversity in masses

  9. NuSTAR reveals the extreme properties of the super-Eddington accreting supermassive black hole in PG 1247+267

    DEFF Research Database (Denmark)

    Lanzuisi, G.; Perna, M.; Comastri, A.

    2016-01-01

    PG1247+267 is one of the most luminous known quasars at z similar to 2 and is a strongly super-Eddington accreting supermassive black hole (SMBH) candidate. We obtained NuSTAR data of this intriguing source in December 2014 with the aim of studying its high-energy emission, leveraging the broad...

  10. Stellar extreme ultraviolet astronomy

    International Nuclear Information System (INIS)

    Cash, W.C. Jr.

    1978-01-01

    The design, calibration, and launch of a rocket-borne imaging telescope for extreme ultraviolet astronomy are described. The telescope, which employed diamond-turned grazing incidence optics and a ranicon detector, was launched November 19, 1976, from the White Sands Missile Range. The telescope performed well and returned data on several potential stellar sources of extreme ultraviolet radiation. Upper limits ten to twenty times more sensitive than previously available were obtained for the extreme ultraviolet flux from the white dwarf Sirius B. These limits fall a factor of seven below the flux predicted for the star and demonstrate that the temperature of Sirius B is not 32,000 K as previously measured, but is below 30,000 K. The new upper limits also rule out the photosphere of the white dwarf as the source of the recently reported soft x-rays from Sirius. Two other white dwarf stars, Feige 24 and G191-B2B, were observed. Upper limits on the flux at 300 A were interpreted as lower limits on the interstellar hydrogen column densities to these stars. The lower limits indicate interstellar hydrogen densitites of greater than .02 cm -3 . Four nearby stars (Sirius, Procyon, Capella, and Mirzam) were observed in a search for intense low temperature coronae or extended chromospheres. No extreme ultraviolet radiation from these stars was detected, and upper limits to their coronal emisson measures are derived

  11. Star-forming Galaxies as AGN Imposters? A Theoretical Investigation of the Mid-infrared Colors of AGNs and Extreme Starbursts

    Science.gov (United States)

    Satyapal, Shobita; Abel, Nicholas P.; Secrest, Nathan J.

    2018-05-01

    We conduct for the first time a theoretical investigation of the mid-infrared spectral energy distribution (SED) produced by dust heated by an active galactic nucleus (AGN) and an extreme starburst. These models employ an integrated modeling approach using photoionization and stellar population synthesis models in which both the line and emergent continuum is predicted from gas exposed to the ionizing radiation from a young starburst and an AGN. In this work, we focus on the infrared colors from the Wide-field Infrared Survey Explorer, predicting the dependence of the colors on the input radiation field, the interstellar medium conditions, the obscuring column, and the metallicity. We find that an extreme starburst can mimic an AGN in two band mid-infrared color cuts employed in the literature. However, the three-band color cuts employed in the literature require starbursts with extremely high ionization parameters or gas densities. We show that the extreme mid-infrared colors seen in some blue compact dwarf galaxies are not due to metallicity but rather a combination of high ionization parameters and high column densities. Based on our theoretical calculations, we present a theoretical mid-infrared color cut that will exclude even the most extreme starburst that we have modeled in this work. The theoretical AGN demarcation region presented here can be used to identify elusive AGN candidates for future follow-up studies with the James Webb Space Telescope. The full suite of simulated SEDs are available online.

  12. Symbiotic stars

    International Nuclear Information System (INIS)

    Boyarchuk, A.A.

    1975-01-01

    There are some arguments that the symbiotic stars are binary, where one component is a red giant and the other component is a small hot star which is exciting a nebula. The symbiotic stars belong to the old disc population. Probably, symbiotic stars are just such an evolutionary stage for double stars as planetary nebulae for single stars. (Auth.)

  13. Rotating stars in relativity.

    Science.gov (United States)

    Paschalidis, Vasileios; Stergioulas, Nikolaos

    2017-01-01

    Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f -modes and r -modes have been updated. Several new sections have been added on equilibria in modified theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity including both hydrodynamic and magnetohydrodynamic studies of these objects.

  14. Entropy Production of Stars

    Directory of Open Access Journals (Sweden)

    Leonid M. Martyushev

    2015-06-01

    Full Text Available The entropy production (inside the volume bounded by a photosphere of main-sequence stars, subgiants, giants, and supergiants is calculated based on B–V photometry data. A non-linear inverse relationship of thermodynamic fluxes and forces as well as an almost constant specific (per volume entropy production of main-sequence stars (for 95% of stars, this quantity lies within 0.5 to 2.2 of the corresponding solar magnitude is found. The obtained results are discussed from the perspective of known extreme principles related to entropy production.

  15. DISCOVERY OF A GAS-RICH COMPANION TO THE EXTREMELY METAL-POOR GALAXY DDO 68

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, John M.; Alfvin, Erik D. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Johnson, Megan; Koribalski, Baerbel [Australia Telescope National Facility, CSIRO Astronomy and Space Science, P.O. Box 76, NSW 1710, Epping (Australia); McQuinn, Kristen B. W.; Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Bailin, Jeremy [Department of Physics and Astronomy, University of Alabama, P.O. Box 870324, Tuscaloosa, AL 35487-0324 (United States); Ford, H. Alyson [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States); Girardi, Léo [Osservatorio Astronomico di Padova—INAF, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Hirschauer, Alec S.; Janowiecki, Steven; Salzer, John J.; Van Sistine, Angela [Department of Astronomy, Indiana University, 727 East Third Street, Bloomington, IN 47405 (United States); Dolphin, Andrew [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Elson, E. C. [Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Marigo, Paola; Rosenfield, Philip [Dipartimento di Fisica e Astronomia Galileo Galilei, Universitá degli Studi di Padova, Vicolo dell' Osservatorio 3, I-35122 Padova (Italy); Rosenberg, Jessica L. [School of Physics, Astronomy, and Computational Science, George Mason University, Fairfax, VA 22030 (United States); Venkatesan, Aparna [Department of Physics and Astronomy, University of San Francisco, 2130 Fulton Street, San Francisco, CA 94117 (United States); Warren, Steven R., E-mail: jcannon@macalester.edu [Department of Astronomy, University of Maryland, CSS Bldg., Rm. 1024, Stadium Drive, College Park, MD 20742-2421 (United States)

    2014-05-20

    We present H I spectral-line imaging of the extremely metal-poor galaxy DDO 68. This system has a nebular oxygen abundance of only ∼3% Z {sub ☉}, making it one of the most metal-deficient galaxies known in the local volume. Surprisingly, DDO 68 is a relatively massive and luminous galaxy for its metal content, making it a significant outlier in the mass-metallicity and luminosity-metallicity relationships. The origin of such a low oxygen abundance in DDO 68 presents a challenge for models of the chemical evolution of galaxies. One possible solution to this problem is the infall of pristine neutral gas, potentially initiated during a gravitational interaction. Using archival H I spectral-line imaging obtained with the Karl G. Jansky Very Large Array, we have discovered a previously unknown companion of DDO 68. This low-mass (M{sub H} {sub I} = 2.8 × 10{sup 7} M {sub ☉}), recently star-forming (SFR{sub FUV} = 1.4 × 10{sup –3} M {sub ☉} yr{sup –1}, SFR{sub Hα} < 7 × 10{sup –5} M {sub ☉} yr{sup –1}) companion has the same systemic velocity as DDO 68 (V {sub sys} = 506 km s{sup –1}; D = 12.74 ± 0.27 Mpc) and is located at a projected distance of ∼42 kpc. New H I maps obtained with the 100 m Robert C. Byrd Green Bank Telescope provide evidence that DDO 68 and this companion are gravitationally interacting at the present time. Low surface brightness H I gas forms a bridge between these objects.

  16. Neutron Star Science with the NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-16

    The Nuclear Spectroscopic Telescope Array (NuSTAR), launched in June 2012, helped scientists obtain for the first time a sensitive high-­energy X-­ray map of the sky with extraordinary resolution. This pioneering telescope has aided in the understanding of how stars explode and neutron stars are born. LLNL is a founding member of the NuSTAR project, with key personnel on its optics and science team. We used NuSTAR to observe and analyze the observations of different neutron star classes identified in the last decade that are still poorly understood. These studies not only help to comprehend newly discovered astrophysical phenomena and emission processes for members of the neutron star family, but also expand the utility of such observations for addressing broader questions in astrophysics and other physics disciplines. For example, neutron stars provide an excellent laboratory to study exotic and extreme phenomena, such as the equation of state of the densest matter known, the behavior of matter in extreme magnetic fields, and the effects of general relativity. At the same time, knowing their accurate populations has profound implications for understanding the life cycle of massive stars, star collapse, and overall galactic evolution.

  17. Stars and Star Myths.

    Science.gov (United States)

    Eason, Oliver

    Myths and tales from around the world about constellations and facts about stars in the constellations are presented. Most of the stories are from Greek and Roman mythology; however, a few Chinese, Japanese, Polynesian, Arabian, Jewish, and American Indian tales are also included. Following an introduction, myths are presented for the following 32…

  18. HD 140283: A Star in the Solar Neighborhood that Formed Shortly after the Big Bang

    Science.gov (United States)

    Bond, Howard E.; Nelan, Edmund P.; VandenBerg, Don A.; Schaefer, Gail H.; Harmer, Dianne

    2013-03-01

    HD 140283 is an extremely metal-deficient and high-velocity subgiant in the solar neighborhood, having a location in the Hertzsprung-Russell diagram where absolute magnitude is most sensitive to stellar age. Because it is bright, nearby, unreddened, and has a well-determined chemical composition, this star avoids most of the issues involved in age determinations for globular clusters. Using the Fine Guidance Sensors on the Hubble Space Telescope, we have measured a trigonometric parallax of 17.15 ± 0.14 mas for HD 140283, with an error one-fifth of that determined by the Hipparcos mission. Employing modern theoretical isochrones, which include effects of helium diffusion, revised nuclear reaction rates, and enhanced oxygen abundance, we use the precise distance to infer an age of 14.46 ± 0.31 Gyr. The quoted error includes only the uncertainty in the parallax, and is for adopted surface oxygen and iron abundances of [O/H] = -1.67 and [Fe/H] = -2.40. Uncertainties in the stellar parameters and chemical composition, especially the oxygen content, now contribute more to the error budget for the age of HD 140283 than does its distance, increasing the total uncertainty to about ±0.8 Gyr. Within the errors, the age of HD 140283 does not conflict with the age of the Universe, 13.77 ± 0.06 Gyr, based on the microwave background and Hubble constant, but it must have formed soon after the big bang. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained by the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  19. The chemical composition of three Lambda Bootis stars

    International Nuclear Information System (INIS)

    Venn, K.A.; Lambert, D.L.

    1990-01-01

    Abundance analyses are reported for three certain members (Lambda Boo, 29 Cyg, Pi1 Ori) of the class of rapidly rotating, metal-poor A-type stars known as Lambda Bootis stars. Model atmosphere analysis of high-resolution, high signal-to-noise spectra shows that the metal deficiencies are more severe than previously reported: Fe/H = -2.0, -1.8, -1.3 for Lambda Boo, 29 Cyg, and Pi1 Ori, respectively. Other metals (Mg, Ca, Ti, and Sr) are similarly underabundant, with Na often having a smaller underabundance. C, N, O, and S have near-solar abundances. Vega is shown to be a mild Lambda Boo star. The abundance anomalies of the Lambda Boo stars resemble those found for the interstellar gas in which the metals are depleted through formation of interstellar grains. It is suggested that the Lambda Boo stars are created when circumstellar (or interstellar) gas is separated from the grains and accreted by the star. The bulk of the interstellar grains comprises a circumstellar cloud or disk that is detectable by its infrared radiation. 67 refs

  20. A SEARCH FOR UNRECOGNIZED CARBON-ENHANCED METAL-POOR STARS IN THE GALAXY

    International Nuclear Information System (INIS)

    Placco, Vinicius M.; Rossi, Silvia; Kennedy, Catherine R.; Beers, Timothy C.; Lee, Young Sun; Christlieb, Norbert; Sivarani, Thirupathi; Reimers, Dieter; Wisotzki, Lutz

    2010-01-01

    We have developed a new procedure to search for carbon-enhanced metal-poor (CEMP) stars from the Hamburg/ESO (HES) prism-survey plates. This method employs an extended line index for the CH G band, which we demonstrate to have superior performance when compared to the narrower G-band index formerly employed to estimate G-band strengths for these spectra. Although CEMP stars have been found previously among candidate metal-poor stars selected from the HES, the selection on metallicity undersamples the population of intermediate-metallicity CEMP stars (-2.5 ≤ [Fe/H] ≤ -1.0); such stars are of importance for constraining the onset of the s-process in metal-deficient asymptotic giant branch stars (thought to be associated with the origin of carbon for roughly 80% of CEMP stars). The new candidates also include substantial numbers of warmer carbon-enhanced stars, which were missed in previous HES searches for carbon stars due to selection criteria that emphasized cooler stars. A first subsample, biased toward brighter stars (B< 15.5), has been extracted from the scanned HES plates. After visual inspection (to eliminate spectra compromised by plate defects, overlapping spectra, etc., and to carry out rough spectral classifications), a list of 669 previously unidentified candidate CEMP stars was compiled. Follow-up spectroscopy for a pilot sample of 132 candidates was obtained with the Goodman spectrograph on the SOAR 4.1 m telescope. Our results show that most of the observed stars lie in the targeted metallicity range, and possess prominent carbon absorption features at 4300 A. The success rate for the identification of new CEMP stars is 43% (13 out of 30) for [Fe/H] < -2.0. For stars with [Fe/H] < -2.5, the ratio increases to 80% (four out of five objects), including one star with [Fe/H] < -3.0.

  1. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....

  2. NUCLEOSYNTHESIS AND EVOLUTION OF MASSIVE METAL-FREE STARS

    International Nuclear Information System (INIS)

    Heger, Alexander; Woosley, S. E.

    2010-01-01

    The evolution and explosion of metal-free stars with masses 10-100 M sun are followed, and their nucleosynthetic yields, light curves, and remnant masses determined. Such stars would have been the first to form after the big bang and may have left a distinctive imprint on the composition of the early universe. When the supernova yields are integrated over a Salpeter initial mass function (IMF), the resulting elemental abundance pattern is qualitatively solar, but with marked deficiencies of odd-Z elements with 7 ≤ Z ≤ 13. Neglecting the contribution of the neutrino wind from the neutron stars that they form, no appreciable abundances are made for elements heavier than germanium. The computed pattern compares favorably with what has been observed in metal-deficient stars with [Z] ∼ sun ; where 1 B = 1 Bethe = 10 51 erg) for a Salpeter IMF, and may have played a role in reionizing the universe. Neglecting rotation, most of the stars end their lives as blue supergiants and form supernovae with distinctive light curves resembling SN 1987A, but some produce primary nitrogen due to dredge-up and become red supergiants. These make brighter supernovae like typical Type IIp's. For the lower mass supernovae considered, the distribution of remnant masses clusters around typical modern neutron star masses, but above 20-30 M sun , with the value depending on explosion energy, black holes are copiously formed by fallback, with a maximum hole mass of ∼40 M sun . A novel automated fitting algorithm is developed for determining optimal combinations of explosion energy, mixing, and IMF in the large model database to agree with specified data sets. The model is applied to the low-metallicity sample of Cayrel et al. and the two ultra-iron-poor stars HE0107-5240 and HE1327-2326. Best agreement with these very low metallicity stars is achieved with very little mixing, and none of the metal-deficient data sets considered show the need for a high-energy explosion component. In

  3. Mandelbrot's Extremism

    NARCIS (Netherlands)

    Beirlant, J.; Schoutens, W.; Segers, J.J.J.

    2004-01-01

    In the sixties Mandelbrot already showed that extreme price swings are more likely than some of us think or incorporate in our models.A modern toolbox for analyzing such rare events can be found in the field of extreme value theory.At the core of extreme value theory lies the modelling of maxima

  4. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.

    1976-01-01

    Any discussion of the radio emission from stars should begin by emphasizing certain unique problems. First of all, one must clarify a semantic confusion introduced into radio astronomy in the late 1950's when most new radio sources were described as radio stars. All of these early 'radio stars' were eventually identified with other galactic and extra-galactic objects. The study of true radio stars, where the radio emission is produced in the atmosphere of a star, began only in the 1960's. Most of the work on the subject has, in fact, been carried out in only the last few years. Because the real information about radio stars is quite new, it is not surprising that major aspects of the subject are not at all understood. For this reason this paper is organized mainly around three questions: what is the available observational information; what physical processes seem to be involved; and what working hypotheses look potentially fruitful. (Auth.)

  5. Shooting stars

    International Nuclear Information System (INIS)

    Maurette, M.; Hammer, C.

    1985-01-01

    A shooting star passage -even a star shower- can be sometimes easily seen during moonless black night. They represent the partial volatilization in earth atmosphere of meteorites or micrometeorites reduced in cosmic dusts. Everywhere on earth, these star dusts are searched to be gathered. This research made one year ago on the Greenland ice-cap is this article object; orbit gathering projects are also presented [fr

  6. Star Polymers.

    Science.gov (United States)

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  7. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star.......Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star....

  8. Star Imager

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Jørgensen, John Leif; Thuesen, Gøsta

    1997-01-01

    The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol.......The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol....

  9. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.; Gibson, D.M.

    1985-01-01

    Studies of stellar radio emission became an important field of research in the 1970's and have now expanded to become a major area of radio astronomy with the advent of new instruments such as the Very Large Array in New Mexico and transcontinental telescope arrays. This volume contains papers from the workshop on stellar continuum radio astronomy held in Boulder, Colorado, and is the first book on the rapidly expanding field of radio emission from stars and stellar systems. Subjects covered include the observational and theoretical aspects of stellar winds from both hot and cool stars, radio flares from active double star systems and red dwarf stars, bipolar flows from star-forming regions, and the radio emission from X-ray binaries. (orig.)

  10. Implementing Maxwell's Aether Illuminates the Physics of Gravitation:. The Gravity-Electric (G-E) Field, Evident at Every Scale, From the Ionosphere to Spiral Galaxies and a Neutron-Star Extreme

    Science.gov (United States)

    Osmaston, Miles F.

    2013-09-01

    the means for displacing its local density exist; that, we show, is the nature of gravitational action and brings gravitation into the electromagnetic family of forces. Under (B) the particle mass is measured by the aether-sucking capability of its vortex, positiveonly gravitation being because the outward-diminishing force developed by each makes mutual convergence at any given point the statistically prevalent expectation. This activity maintains a radial aether (charge) density gradient - the Gravity-Electric (G-E) Field - around and within any gravitationally retained assemblage. So Newton's is an incomplete description of gravitation; the corresponding G-E field is an inseparable facet of the action. The effect on c of that charge density gradient yields gravitational lensing. We find that G-E field action on plasma is astronomically ubiquitous. This strictly radial outward force on ions has the property of increasing the orbital angular momentum of material, by moving it outwards, but at constant tangential velocity. Spiral galaxies no longer require Cold Dark Matter (CDM) to explain this. The force (maybe 30 V.m-1 at solar surface) has comprehensive relevance to the high orbital a.m. achieved during solar planet formation, to their prograde spins and to exoplanet observations. The growth of high-mass stars is impossible if radiation pressure rules, whereas G-E field repulsion is low during dust-opaque infall, driving their prodigious mass loss rates when infall ceases and the star establishes an ionized environment. Its biggest force-effect (~1012 V.m-1) is developed at neutron stars, where it is likely the force of supernova explosions, and leads to a fertile model for pulsars and the acceleration of 1019 eV extreme-energy cosmic rays. Our only directly observed measure of the G-E field is recorded at about 1 V.m-1 in the ionosphere-to-Earth electric potential. And temporary local changes of ionosphere electron density, monitored by radio and satellite, have

  11. Stars get dizzy after lunch

    International Nuclear Information System (INIS)

    Zhang, Michael; Penev, Kaloyan

    2014-01-01

    Exoplanet searches have discovered a large number of h ot Jupiters — high-mass planets orbiting very close to their parent stars in nearly circular orbits. A number of these planets are sufficiently massive and close-in to be significantly affected by tidal dissipation in the parent star, to a degree parameterized by the tidal quality factor Q * . This process speeds up their star's rotation rate while reducing the planet's semimajor axis. In this paper, we investigate the tidal destruction of hot Jupiters. Because the orbital angular momenta of these planets are a significant fraction of their star's rotational angular momenta, they spin up their stars significantly while spiraling to their deaths. Using the Monte Carlo simulation, we predict that for Q * = 10 6 , 3.9 × 10 –6 of stars with the Kepler Target Catalog's mass distribution should have a rotation period shorter than 1/3 day (8 hr) due to accreting a planet. Exoplanet surveys such as SuperWASP, HATnet, HATsouth, and KELT have already produced light curves of millions of stars. These two facts suggest that it may be possible to search for tidally destroyed planets by looking for stars with extremely short rotational periods, then looking for remnant planet cores around those candidates, anomalies in the metal distribution, or other signatures of the recent accretion of the planet.

  12. Symbiotic stars

    International Nuclear Information System (INIS)

    Kafatos, M.; Michalitsianos, A.G.

    1984-01-01

    Among the several hundred million binary systems estimated to lie within 3000 light years of the solar system, a tiny fraction, no more than a few hundred, belong to a curious subclass whose radiation has a wavelength distribution so peculiar that it long defied explanation. Such systems radiate strongly in the visible region of the spectrum, but some of them do so even more strongly at both shorter and longer wavelengths: in the ultraviolet region and in the infrared and radio regions. This odd distribution of radiation is best explained by the pairing of a cool red giant star and an intensely hot small star that is virtually in contact with its larger companion. Such objects have become known as symbiotic stars. On photographic plate only the giant star can be discerned, but evidence for the existence of the hot companion has been supplied by satellite-born instruments capable of detecting ultraviolet radiation. The spectra of symbiotic stars indicate that the cool red giant is surrounded by a very hot ionized gas. Symbiotic stars also flared up in outbursts indicating the ejection of material in the form of a shell or a ring. Symbiotic stars may therefore represent a transitory phase in the evolution of certain types of binary systems in which there is substantial transfer of matter from the larger partner to the smaller

  13. Sounds of a Star

    Science.gov (United States)

    2001-06-01

    in Alpha Cen A with the CORALIE spectrograph on the 1.2-m Swiss telescope at the ESO La Silla observatory. Several "eigenmodes" appear as high peaks in the frequency interval between 1.7 and 3 mHz; they correspond to oscillation periods in the range from 5 to 10 min. A very similar pattern is observed in the Sun. The data from five nights of observations were then searched to detect any changes of velocity and hence, oscillations. Astronomers use sophisticated mathematical methods for this kind of analysis, and normally present their results in terms of a "power spectrum" ( PR Photo 23b/01 ). It displays the "intensity" of oscillations at different frequencies, that is, of different periods; particularly high "peaks" indicate a "real" oscillation of that frequency. The comb of peaks visible between 2-3 mHz is the unambiguous and typical signature of solar-like oscillations . This frequency corresponds to a period of about 7 minutes, close to the well-known 5-minute oscillations of our Sun. This is in full agreement with expectations from theoretical models of the two stars. Continued detailed modeling of these new results will further improve the associated determination of the mass, radius, age, chemical composition and other properties of Alpha Cen A . This result is another proof of the excellent performance of the CORALIE spectrograph, providing extremely accurate measurements without the present investigation would have been impossible. Models of stellar interiors Our current understanding of stellar interiors is severely limited by lack of detailed and accurate observations of stars other than the Sun. In technical terms, for a complete description of the conditions inside a star, we need detailed knowledge of at least five stellar parameters (mass, age, initial content of helium and heavier elements, and a parameter describing the convection). However, in most cases, only two stellar properties can be measured directly (the temperature and the luminosity), so

  14. Accreting neutron stars, black holes, and degenerate dwarf stars.

    Science.gov (United States)

    Pines, D

    1980-02-08

    During the past 8 years, extended temporal and broadband spectroscopic studies carried out by x-ray astronomical satellites have led to the identification of specific compact x-ray sources as accreting neutron stars, black holes, and degenerate dwarf stars in close binary systems. Such sources provide a unique opportunity to study matter under extreme conditions not accessible in the terrestrial laboratory. Quantitative theoretical models have been developed which demonstrate that detailed studies of these sources will lead to a greatly increased understanding of dense and superdense hadron matter, hadron superfluidity, high-temperature plasma in superstrong magnetic fields, and physical processes in strong gravitational fields. Through a combination of theory and observation such studies will make possible the determination of the mass, radius, magnetic field, and structure of neutron stars and degenerate dwarf stars and the identification of further candidate black holes, and will contribute appreciably to our understanding of the physics of accretion by compact astronomical objects.

  15. Stars Just Got Bigger - A 300 Solar Mass Star Uncovered

    Science.gov (United States)

    2010-07-01

    they age," says Paul Crowther. "Being a little over a million years old, the most extreme star R136a1 is already 'middle-aged' and has undergone an intense weight loss programme, shedding a fifth of its initial mass over that time, or more than fifty solar masses." If R136a1 replaced the Sun in our Solar System, it would outshine the Sun by as much as the Sun currently outshines the full Moon. "Its high mass would reduce the length of the Earth's year to three weeks, and it would bathe the Earth in incredibly intense ultraviolet radiation, rendering life on our planet impossible," says Raphael Hirschi from Keele University, who belongs to the team. These super heavyweight stars are extremely rare, forming solely within the densest star clusters. Distinguishing the individual stars - which has now been achieved for the first time - requires the exquisite resolving power of the VLT's infrared instruments [2]. The team also estimated the maximum possible mass for the stars within these clusters and the relative number of the most massive ones. "The smallest stars are limited to more than about eighty times more than Jupiter, below which they are 'failed stars' or brown dwarfs," says team member Olivier Schnurr from the Astrophysikalisches Institut Potsdam. "Our new finding supports the previous view that there is also an upper limit to how big stars can get, although it raises the limit by a factor of two, to about 300 solar masses." Within R136, only four stars weighed more than 150 solar masses at birth, yet they account for nearly half of the wind and radiation power of the entire cluster, comprising approximately 100 000 stars in total. R136a1 alone energises its surroundings by more than a factor of fifty compared to the Orion Nebula cluster, the closest region of massive star formation to Earth. Understanding how high mass stars form is puzzling enough, due to their very short lives and powerful winds, so that the identification of such extreme cases as R136a1

  16. Star formation

    International Nuclear Information System (INIS)

    Woodward, P.R.

    1978-01-01

    Theoretical models of star formation are discussed beginning with the earliest stages and ending in the formation of rotating, self-gravitating disks or rings. First a model of the implosion of very diffuse gas clouds is presented which relies upon a shock at the edge of a galactic spiral arm to drive the implosion. Second, models are presented for the formation of a second generation of massive stars in such a cloud once a first generation has formed. These models rely on the ionizing radiation from massive stars or on the supernova shocks produced when these stars explode. Finally, calculations of the gravitational collapse of rotating clouds are discussed with special focus on the question of whether rotating disks or rings are the result of such a collapse. 65 references

  17. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star....

  18. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Andersen, Thomas Lykke

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star....

  19. STARS no star on Kauai

    International Nuclear Information System (INIS)

    Jones, M.

    1993-01-01

    The island of Kuai, home to the Pacific Missile Range Facility, is preparing for the first of a series of Star Wars rocket launches expected to begin early this year. The Strategic Defense Initiative plans 40 launches of the Stategic Target System (STARS) over a 10-year period. The focus of the tests appears to be weapons and sensors designed to combat multiple-warhead ICBMs, which will be banned under the START II Treaty that was signed in January. The focus of this article is to express the dubious value of testing the STARS at a time when their application will not be an anticipated problem

  20. Flare stars

    International Nuclear Information System (INIS)

    Nicastro, A.J.

    1981-01-01

    The least massive, but possibly most numerous, stars in a galaxy are the dwarf M stars. It has been observed that some of these dwarfs are characterized by a short increase in brightness. These stars are called flare stars. These flare stars release a lot of energy in a short amount of time. The process producing the eruption must be energetic. The increase in light intensity can be explained by a small area rising to a much higher temperature. Solar flares are looked at to help understand the phenomenon of stellar flares. Dwarfs that flare are observed to have strong magnetic fields. Those dwarf without the strong magnetic field do not seem to flare. It is believed that these regions of strong magnetic fields are associated with star spots. Theories on the energy that power the flares are given. Astrophysicists theorize that the driving force of a stellar flare is the detachment and collapse of a loop of magnetic flux. The mass loss due to stellar flares is discussed. It is believed that stellar flares are a significant contributor to the mass of interstellar medium in the Milky Way

  1. The Diversity of Neutron Stars

    Science.gov (United States)

    Kaplan, David L.

    2004-12-01

    Neutron stars are invaluable tools for exploring stellar death, the physics of ultra-dense matter, and the effects of extremely strong magnetic fields. The observed population of neutron stars is dominated by the >1000 radio pulsars, but there are distinct sub-populations that, while fewer in number, can have significant impact on our understanding of the issues mentioned above. These populations are the nearby, isolated neutron stars discovered by ROSAT, and the central compact objects in supernova remnants. The studies of both of these populations have been greatly accelerated in recent years through observations with the Chandra X-ray Observatory and the XMM-Newton telescope. First, we discuss radio, optical, and X-ray observations of the nearby neutron stars aimed at determining their relation to the Galactic neutron star population and at unraveling their complex physical processes by determining the basic astronomical parameters that define the population---distances, ages, and magnetic fields---the uncertainties in which limit any attempt to derive basic physical parameters for these objects. We conclude that these sources are 1e6 year-old cooling neutron stars with magnetic fields above 1e13 Gauss. Second, we describe the hollow supernova remnant problem: why many of the supernova remnants in the Galaxy have no indication of central neutron stars. We have undertaken an X-ray census of neutron stars in a volume-limited sample of Galactic supernova remnants, and from it conclude that either many supernovae do not produce neutron stars contrary to expectation, or that neutron stars can have a wide range in cooling behavior that makes many sources disappear from the X-ray sky.

  2. Symbiotic stars

    Science.gov (United States)

    Kafatos, M.; Michalitsianos, A. G.

    1984-01-01

    The physical characteristics of symbiotic star systems are discussed, based on a review of recent observational data. A model of a symbiotic star system is presented which illustrates how a cool red-giant star is embedded in a nebula whose atoms are ionized by the energetic radiation from its hot compact companion. UV outbursts from symbiotic systems are explained by two principal models: an accretion-disk-outburst model which describes how material expelled from the tenuous envelope of the red giant forms an inwardly-spiralling disk around the hot companion, and a thermonuclear-outburst model in which the companion is specifically a white dwarf which superheats the material expelled from the red giant to the point where thermonuclear reactions occur and radiation is emitted. It is suspected that the evolutionary course of binary systems is predetermined by the initial mass and angular momentum of the gas cloud within which binary stars are born. Since red giants and Mira variables are thought to be stars with a mass of one or two solar mass, it is believed that the original cloud from which a symbiotic system is formed can consist of no more than a few solar masses of gas.

  3. Dark stars

    DEFF Research Database (Denmark)

    Maselli, Andrea; Pnigouras, Pantelis; Nielsen, Niklas Grønlund

    2017-01-01

    to the formation of compact objects predominantly made of dark matter. Considering both fermionic and bosonic (scalar φ4) equations of state, we construct the equilibrium structure of rotating dark stars, focusing on their bulk properties and comparing them with baryonic neutron stars. We also show that these dark......Theoretical models of self-interacting dark matter represent a promising answer to a series of open problems within the so-called collisionless cold dark matter paradigm. In case of asymmetric dark matter, self-interactions might facilitate gravitational collapse and potentially lead...... objects admit the I-Love-Q universal relations, which link their moments of inertia, tidal deformabilities, and quadrupole moments. Finally, we prove that stars built with a dark matter equation of state are not compact enough to mimic black holes in general relativity, thus making them distinguishable...

  4. The WO Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Barlow, M.J.

    1982-01-01

    Sanduleak (1971) has listed five stars, not apparently associated with planetary nebulae, which show very strong O VI 3811.34 A emission. He pointed out that two of them are in the Magellanic Clouds and have absolute magnitudes comparable to those of classical (Population I) Wolf-Rayet stars. O VI emission is known to occur in some classical Wolf-Rayet stars, but not with the extreme strength shown by the Sanduleak stars. The authors have obtained absolute optical spectrophotometry (3100 - 7400 A) of all five of these stars, using the UCL Image Photon Counting System and RGO Spectrograph on the Anglo-Australian Telescope. Their relative flux distributions are shown. Inspection shows that Sand 1 is very lightly reddened, Sand 2 and 3 have intermediate reddening, and Sand 4 and 5 are heavily reddened. IUE ultraviolet spectrophotometry has been obtained of the first three stars; Sand 4 and 5 are too heavily reddened for IUE spectra to be feasible. (Auth.)

  5. Evolution of Neutron Stars and Observational Constraints

    Directory of Open Access Journals (Sweden)

    Lattimer J.

    2010-10-01

    Full Text Available The structure and evolution of neutron stars is discussed with a view towards constraining the properties of high density matter through observations. The structure of neutron stars is illuminated through the use of several analytical solutions of Einstein’s equations which, together with the maximally compact equation of state, establish extreme limits for neutron stars and approximations for binding energies, moments of inertia and crustal properties as a function of compactness. The role of the nuclear symmetry energy is highlighted and constraints from laboratory experiments such as nuclear masses and heavy ion collisions are presented. Observed neutron star masses and radius limits from several techniques, such as thermal emissions, X-ray bursts, gammaray flares, pulsar spins and glitches, spin-orbit coupling in binary pulsars, and neutron star cooling, are discussed. The lectures conclude with a discusson of proto-neutron stars and their neutrino signatures.

  6. The Habitable Zone and Extreme Planetary Orbits

    OpenAIRE

    Kane, Stephen R.; Gelino, Dawn M.

    2012-01-01

    The habitable zone for a given star describes the range of circumstellar distances from the star within which a planet could have liquid water on its surface, which depends upon the stellar properties. Here we describe the development of the habitable zone concept, its application to our own solar system, and its subsequent application to exoplanetary systems. We further apply this to planets in extreme eccentric orbits and show how they may still retain life-bearing properties depending upon...

  7. Hybrid stars

    Indian Academy of Sciences (India)

    Hybrid stars. AsHOK GOYAL. Department of Physics and Astrophysics, University of Delhi, Delhi 110 007, India. Abstract. Recently there have been important developments in the determination of neutron ... number and the electric charge. ... available to the system to rearrange concentration of charges for a given fraction of.

  8. Pulsating stars

    CERN Document Server

    Catelan, M?rcio

    2014-01-01

    The most recent and comprehensive book on pulsating stars which ties the observations to our present understanding of stellar pulsation and evolution theory.  Written by experienced researchers and authors in the field, this book includes the latest observational results and is valuable reading for astronomers, graduate students, nuclear physicists and high energy physicists.

  9. Variable stars

    International Nuclear Information System (INIS)

    Feast, M.W.; Wenzel, W.; Fernie, J.D.; Percy, J.R.; Smak, J.; Gascoigne, S.C.B.; Grindley, J.E.; Lovell, B.; Sawyer Hogg, H.B.; Baker, N.; Fitch, W.S.; Rosino, L.; Gursky, H.

    1976-01-01

    A critical review of variable stars is presented. A fairly complete summary of major developments and discoveries during the period 1973-1975 is given. The broad developments and new trends are outlined. Essential problems for future research are identified. (B.R.H. )

  10. Star Products and Applications

    OpenAIRE

    Iida, Mari; Yoshioka, Akira

    2010-01-01

    Star products parametrized by complex matrices are defined. Especially commutative associative star products are treated, and star exponentials with respect to these star products are considered. Jacobi's theta functions are given as infinite sums of star exponentials. As application, several concrete identities are obtained by properties of the star exponentials.

  11. Post-giant evolution of helium stars

    International Nuclear Information System (INIS)

    Schoenberner, D.

    1977-01-01

    Extremely hydrogen deficient stars (helium stars and R Coronae Borealis variables) are considered to be remnants of double shell source stars (of the asymptotic giant branch). The evolution of stars with a condensed C/O-core and a helium envelope is followed numerically from the red giant stage to the white dwarf domain, crossing the regions of R CrB- and helium stars (so far analyzed). They have typically masses M/M(sun) = 0.7 and luminosities log L/L(sun) = 4.1. The time for crossing the helium star domain is some 10 3 years. The corresponding times in the R CrB-region amounts up to several 10 4 years. The lower limit of the death rate of helium stars is estimated to be 4 x 10 -14 pc -3 yr -1 . This value is only a factor of ten lower than the birth rate of all non-DA white dwarfs. It is therefore possible that the helium stars are the precursors of helium rich white dwarfs. As a consequence, a significant fraction of all stars which end their lives as white dwarfs should pass through the helium star phase. (orig.) [de

  12. Heavy Metal Stars

    Science.gov (United States)

    2001-08-01

    strongly reinforce our current understanding of heavy element nucleosynthesis. But detecting the element Lead is not easy - the expected spectral lines of Lead in stellar spectra are relatively weak, and they are blended with many nearby absorption lines of other elements. Moreover, bona-fide, low-metallicity AGB stars appear to be extremely rare in the solar neighborhood . But if the necessary observations are so difficult, how is it then possible to probe nucleosynthesis in low-metallicity AGB stars? CH-stars in binary systems ESO PR Photo 26a/01 ESO PR Photo 26a/01 [Preview - JPEG: 350 x 400 pix - 232k] [Normal - JPEG: 700 x 800 pix - 616k] Caption : One of the three Lead stars, HD 196944 that was analyzed in the present research programme (at the center of the field). This star lies about 1600 light years away in the constellation Aquarius. At magnitude 9, it is not visible to the unaided eye, but easily seen through a small amateur telescope. Still, the detailed spectroscopic study reported in this Press release that revealed a high abundance of Lead in this star required a 4-m class telescope. This DSS-image are copyright by the UK SERC/PPARC (Particle Physics and Astronomy Research Council, formerly Science and Engineering Research Council), the Anglo-Australian Telescope Board and the Association of Universities for Research in Astronomy (AURA). The spikes seen in this photo are an optical effect in the telescope. In a determined effort in this direction, a team of Belgian and French astronomers [1] decided to try to detect the presence of Lead in some "CH-stars" [4] that are located about 1600 light-years away, high above the main plane of our Milky Way Galaxy. Over-abundance of some heavy elements has been observed in some "CH-stars". But CH-stars are not very luminous and have not yet evolved to the AGB phase. Hence they are totally unable to produce heavy elements. So how can there be heavy elements in the CH-stars? This mystery was solved when it was realized

  13. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter; Brorsen, Michael

    Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004.......Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004....

  14. The Stars behind the Curtain

    Science.gov (United States)

    2010-02-01

    ESO is releasing a magnificent VLT image of the giant stellar nursery surrounding NGC 3603, in which stars are continuously being born. Embedded in this scenic nebula is one of the most luminous and most compact clusters of young, massive stars in our Milky Way, which therefore serves as an excellent "local" analogue of very active star-forming regions in other galaxies. The cluster also hosts the most massive star to be "weighed" so far. NGC 3603 is a starburst region: a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust. Located 22 000 light-years away from the Sun, it is the closest region of this kind known in our galaxy, providing astronomers with a local test bed for studying intense star formation processes, very common in other galaxies, but hard to observe in detail because of their great distance from us. The nebula owes its shape to the intense light and winds coming from the young, massive stars which lift the curtains of gas and clouds revealing a multitude of glowing suns. The central cluster of stars inside NGC 3603 harbours thousands of stars of all sorts (eso9946): the majority have masses similar to or less than that of our Sun, but most spectacular are several of the very massive stars that are close to the end of their lives. Several blue supergiant stars crowd into a volume of less than a cubic light-year, along with three so-called Wolf-Rayet stars - extremely bright and massive stars that are ejecting vast amounts of material before finishing off in glorious explosions known as supernovae. Using another recent set of observations performed with the SINFONI instrument on ESO's Very Large Telescope (VLT), astronomers have confirmed that one of these stars is about 120 times more massive than our Sun, standing out as the most massive star known so far in the Milky Way [1]. The clouds of NGC 3603 provide us with a family picture of stars in different stages of their life, with gaseous structures that are

  15. Motion-blurred star acquisition method of the star tracker under high dynamic conditions.

    Science.gov (United States)

    Sun, Ting; Xing, Fei; You, Zheng; Wei, Minsong

    2013-08-26

    The star tracker is one of the most promising attitude measurement devices used in spacecraft due to its extremely high accuracy. However, high dynamic performance is still one of its constraints. Smearing appears, making it more difficult to distinguish the energy dispersive star point from the noise. An effective star acquisition approach for motion-blurred star image is proposed in this work. The correlation filter and mathematical morphology algorithm is combined to enhance the signal energy and evaluate slowly varying background noise. The star point can be separated from most types of noise in this manner, making extraction and recognition easier. Partial image differentiation is then utilized to obtain the motion parameters from only one image of the star tracker based on the above process. Considering the motion model, the reference window is adopted to perform centroid determination. Star acquisition results of real on-orbit star images and laboratory validation experiments demonstrate that the method described in this work is effective and the dynamic performance of the star tracker could be improved along with more identified stars and guaranteed position accuracy of the star point.

  16. Descendants of the first stars: the distinct chemical signature of second generation stars

    Science.gov (United States)

    Hartwig, Tilman; Yoshida, Naoki; Magg, Mattis; Frebel, Anna; Glover, Simon C. O.; Gómez, Facundo A.; Griffen, Brendan; Ishigaki, Miho N.; Ji, Alexander P.; Klessen, Ralf S.; O'Shea, Brian W.; Tominaga, Nozomu

    2018-05-01

    Extremely metal-poor (EMP) stars in the Milky Way (MW) allow us to infer the properties of their progenitors by comparing their chemical composition to the metal yields of the first supernovae. This method is most powerful when applied to mono-enriched stars, i.e. stars that formed from gas that was enriched by only one previous supernova. We present a novel diagnostic to identify this subclass of EMP stars. We model the first generations of star formation semi-analytically, based on dark matter halo merger trees that yield MW-like halos at the present day. Radiative and chemical feedback are included self-consistently and we trace all elements up to zinc. Mono-enriched stars account for only ˜1% of second generation stars in our fiducial model and we provide an analytical formula for this probability. We also present a novel analytical diagnostic to identify mono-enriched stars, based on the metal yields of the first supernovae. This new diagnostic allows us to derive our main results independently from the specific assumptions made regarding Pop III star formation, and we apply it to a set of observed EMP stars to demonstrate its strengths and limitations. Our results may provide selection criteria for current and future surveys and therefore contribute to a deeper understanding of EMP stars and their progenitors.

  17. Terminal velocities for a large sample of O stars, B supergiants, and Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Prinja, R.K.; Barlow, M.J.; Howarth, I.D.

    1990-01-01

    It is argued that easily measured, reliable estimates of terminal velocities for early-type stars are provided by the central velocity asymptotically approached by narrow absorption features and by the violet limit of zero residual intensity in saturated P Cygni profiles. These estimators are used to determine terminal velocities, v(infinity), for 181 O stars, 70 early B supergiants, and 35 Wolf-Rayet stars. For OB stars, the values are typically 15-20 percent smaller than the extreme violet edge velocities, v(edge), while for WR stars v(infinity) = 0.76 v(edge) on average. New mass-loss rates for WR stars which are thermal radio emitters are given, taking into account the new terminal velocities and recent revisions to estimates of distances and to the mean nuclear mass per electron. The relationships between v(infinity), the surface escape velocities, and effective temperatures are examined. 67 refs

  18. Rotating Quark Stars in General Relativity

    Directory of Open Access Journals (Sweden)

    Enping Zhou

    2018-03-01

    Full Text Available We have built quasi-equilibrium models for uniformly rotating quark stars in general relativity. The conformal flatness approximation is employed and the Compact Object CALculator (cocal code is extended to treat rotating stars with surface density discontinuity. In addition to the widely used MIT bag model, we have considered a strangeon star equation of state (EoS, suggested by Lai and Xu, that is based on quark clustering and results in a stiff EoS. We have investigated the maximum mass of uniformly rotating axisymmetric quark stars. We have also built triaxially deformed solutions for extremely fast rotating quark stars and studied the possible gravitational wave emission from such configurations.

  19. The Search for New Luminous Blue Variable Stars: Near-Infrared Spectroscopy of Stars With 24 micron Shells

    Science.gov (United States)

    Stringfellow, Guy; Gvaramadze, Vasilii

    2010-02-01

    Luminous Blue Variable (LBV) stars represent an extremely rare class of very luminous and massive stars. Only about a dozen confirmed Galactic LBV stars are known to date, which precludes us from determining a solid evolutionary connection between LBV and other intermediate (e.g. Ofpe/WN9, WNL) phases in the life of very massive stars. The known LBV stars each have their own unique properties, so new discoveries add insight into the properties and evolutionary status of LBVs and massive stars; even one new discovery of objects of this type could provide break-through results in the understanding of the intermediate stages of massive star evolution. We have culled a prime sample of possible LBV candidates from the Spitzer 24 (micron) archival data. All have circumstellar nebulae, rings, and shells (typical of LBVs and related stars) surrounding reddened central stars. Spectroscopic followup of about two dozen optically visible central stars associated with the shells from this sample showed that they are either candidate LBVs, late WN-type Wolf-Rayet stars or blue supergiants. We propose infrared spectroscopic observations of the central stars for a large fraction (23 stars) of our northern sample to determine their nature and discover additional LBV candidates. These stars have no plausible optical counterparts, so infrared spectra are needed. This program requires two nights of Hale time using TripleSpec.

  20. Old and new neutron stars

    International Nuclear Information System (INIS)

    Ruderman, M.

    1984-09-01

    The youngest known radiopulsar in the rapidly spinning magnetized neutron star which powers the Crab Nebula, the remnant of the historical supernova explosion of 1054 AD. Similar neutron stars are probably born at least every few hundred years, but are less frequent than Galactic supernova explosions. They are initially sources of extreme relativistic electron and/or positron winds (approx.10 38 s -1 of 10 12 eV leptons) which greatly decrease as the neutron stars spin down to become mature pulsars. After several million years these neutron stars are no longer observed as radiopulsars, perhaps because of large magnetic field decay. However, a substantial fraction of the 10 8 old dead pulsars in the Galaxy are the most probable source for the isotropically distributed γ-ray burst detected several times per week at the earth. Some old neutron stars are spun-up by accretion from companions to be resurrected as rapidly spinning low magnetic field radiopulsars. 52 references, 6 figures, 3 tables

  1. Hydrogen deficient stars and related objects

    International Nuclear Information System (INIS)

    Hunger, K.; Schoenberner, D.; Kameswara Rao, N.

    1986-01-01

    The central and most startling problem in the field of helium stars is how extreme helium stars are formed and how a star of one solar mass may get rid of all its original hydrogen. A few opposed hypotheses are known, but until now none of them have been very convincing. One of the aims of this book is to explore the various paths which may lead to a solution of the above problems, both theoretically and by means of new methods of observation. One of the points discussed, therefore, is whether the Hubble Space Telescope can be used to this end. (Auth.)

  2. White Dwarf Stars

    Science.gov (United States)

    1999-01-01

    Peering deep inside a cluster of several hundred thousand stars, NASA's Hubble Space Telescope has uncovered the oldest burned-out stars in our Milky Way Galaxy, giving astronomers a fresh reading on the age of the universe. Located in the globular cluster M4, these small, burned-out stars -- called white dwarfs -- are about 12 to 13 billion years old. By adding the one billion years it took the cluster to form after the Big Bang, astronomers found that the age of the white dwarfs agrees with previous estimates that the universe is 13 to 14 billion years old. The images, including some taken by Hubble's Wide Field and Planetary Camera 2, are available online at http://oposite.stsci.edu/pubinfo/pr/2002/10/ or http://www.jpl.nasa.gov/images/wfpc . The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. In the top panel, a ground-based observatory snapped a panoramic view of the entire cluster, which contains several hundred thousand stars within a volume of 10 to 30 light-years across. The Kitt Peak National Observatory's .9-meter telescope took this picture in March 1995. The box at left indicates the region observed by the Hubble telescope. The Hubble telescope studied a small region of the cluster. A section of that region is seen in the picture at bottom left. A sampling of an even smaller region is shown at bottom right. This region is only about one light-year across. In this smaller region, Hubble pinpointed a number of faint white dwarfs. The blue circles indicate the dwarfs. It took nearly eight days of exposure time over a 67-day period to find these extremely faint stars. Globular clusters are among the oldest clusters of stars in the universe. The faintest and coolest white dwarfs within globular clusters can yield a globular cluster's age. Earlier Hubble observations showed that the first stars formed less than 1 billion years after the universe's birth in the big bang. So, finding the oldest stars puts astronomers within

  3. Instabilities in Interacting Binary Stars

    Science.gov (United States)

    Andronov, I. L.; Andrych, K. D.; Antoniuk, K. A.; Baklanov, A. V.; Beringer, P.; Breus, V. V.; Burwitz, V.; Chinarova, L. L.; Chochol, D.; Cook, L. M.; Cook, M.; Dubovský, P.; Godlowski, W.; Hegedüs, T.; Hoňková, K.; Hric, L.; Jeon, Y.-B.; Juryšek, J.; Kim, C.-H.; Kim, Y.; Kim, Y.-H.; Kolesnikov, S. V.; Kudashkina, L. S.; Kusakin, A. V.; Marsakova, V. I.; Mason, P. A.; Mašek, M.; Mishevskiy, N.; Nelson, R. H.; Oksanen, A.; Parimucha, S.; Park, J.-W.; Petrík, K.; Quiñones, C.; Reinsch, K.; Robertson, J. W.; Sergey, I. M.; Szpanko, M.; Tkachenko, M. G.; Tkachuk, L. G.; Traulsen, I.; Tremko, J.; Tsehmeystrenko, V. S.; Yoon, J.-N.; Zola, S.; Shakhovskoy, N. M.

    2017-07-01

    The types of instability in the interacting binary stars are briefly reviewed. The project “Inter-Longitude Astronomy” is a series of smaller projects on concrete stars or groups of stars. It has no special funds, and is supported from resources and grants of participating organizations, when informal working groups are created. This “ILA” project is in some kind similar and complementary to other projects like WET, CBA, UkrVO, VSOLJ, BRNO, MEDUZA, AstroStatistics, where many of us collaborate. Totally we studied 1900+ variable stars of different types, including newly discovered variables. The characteristic timescale is from seconds to decades and (extrapolating) even more. The monitoring of the first star of our sample AM Her was initiated by Prof. V.P. Tsesevich (1907-1983). Since more than 358 ADS papers were published. In this short review, we present some highlights of our photometric and photo-polarimetric monitoring and mathematical modeling of interacting binary stars of different types: classical (AM Her, QQ Vul, V808 Aur = CSS 081231:071126+440405, FL Cet), asynchronous (BY Cam, V1432 Aql), intermediate (V405 Aql, BG CMi, MU Cam, V1343 Her, FO Aqr, AO Psc, RXJ 2123, 2133, 0636, 0704) polars and magnetic dwarf novae (DO Dra) with 25 timescales corresponding to different physical mechanisms and their combinations (part “Polar”); negative and positive superhumpers in nova-like (TT Ari, MV Lyr, V603 Aql, V795 Her) and many dwarf novae stars (“Superhumper”); eclipsing “non-magnetic” cataclysmic variables(BH Lyn, DW UMa, EM Cyg; PX And); symbiotic systems (“Symbiosis”); super-soft sources (SSS, QR And); spotted (and not spotted) eclipsing variables with (and without) evidence for a current mass transfer (“Eclipser”) with a special emphasis on systems with a direct impact of the stream into the gainer star's atmosphere, which we propose to call “Impactor” (short from “Extreme Direct Impactor”), or V361 Lyr-type stars. Other

  4. Oxygen abundances in unevolved metal-poor stars - Interpretation and consequences

    International Nuclear Information System (INIS)

    Abia, C.; Rebolo, R.

    1989-01-01

    The oxygen abundance has been determined by analysis of the O I infrared triplet in 30 unevolved field stars of metallicities in the range Fe/H abundance ratio between -0.2 and -3.5. The data show that the O/Fe abundance ratio increases monotonically as metallicity decreases from solar, reaching values in the range 1.0-1.2 at an Fe/H abundance ratio of about -2. The results, when compared with those already published for metal-deficient red giants, suggest that oxygen could have been depleted in the latter. A discussion of the O/Fe abundance ratios in connection with the chemical evolution of the Galaxy is also presented. 83 refs

  5. Life of a star

    International Nuclear Information System (INIS)

    Henbest, Nigel.

    1988-01-01

    The paper concerns the theory of stellar evolution. A description is given of:- how a star is born, main sequence stars, red giants, white dwarfs, supernovae, neutron stars and black holes. A brief explanation is given of how the death of a star as a supernova can trigger off the birth of a new generation of stars. Classification of stars and the fate of our sun, are also described. (U.K.)

  6. Another Possibility for Boyajian's Star

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    The unusual light curve of the star KIC 8462852, also known as Tabbys star or Boyajians star, has puzzled us since its discovery last year. A new study now explores whether the stars missing flux is due to internal blockage rather than something outside of the star.Mysterious DipsMost explanations for the flux dips of Boyajians star rely on external factors, like this illustrated swarm of comets. [NASA/JPL-Caltech]Boyajians star shows unusual episodes of dimming in its light curve by as much as 20%, each lasting a few to tens of days and separated by periods of typically hundreds of days. In addition, archival observations show that it has gradually faded by roughly 15% over the span of the last hundred years. What could be causing both the sporadic flux dips and the long-term fading of this odd star?Explanations thus far have varied from mundane to extreme. Alien megastructures, pieces of smashed planets or comets orbiting the star, and intervening interstellar medium have all been proposed as possible explanations but these require some object external to the star. A new study by researcher Peter Foukal proposes an alternative: what if the source of the flux obstruction is the star itself?Analogy to the SunDecades ago, researchers discovered that our own stars total flux isnt as constant as we thought. When magnetic dark spots on the Suns surface block the heat transport, the Suns luminosity dips slightly. The diverted heat is redistributed in the Suns interior, becoming stored as a very small global heating and expansion of the convective envelope. When the blocking starspot is removed, the Sun appears slightly brighter than it did originally. Its luminosity then gradually relaxes, decaying back to its original value.Model of a stars flux after a 1,000-km starspot is inserted at time t = 0 and removed at time t = ts at a depth of 10,000 km in the convective zone. The stars luminosity dips, then becomes brighter than originally, and then gradually decays. [Foukal

  7. Role of strangeness to the neutron star mass and cooling

    Science.gov (United States)

    Lee, Chang-Hwan; Lim, Yeunhwan; Hyun, Chang Ho; Kwak, Kyujin

    2018-01-01

    Neutron star provides unique environments for the investigation of the physics of extreme dense matter beyond normal nuclear saturation density. In such high density environments, hadrons with strange quarks are expected to play very important role in stabilizing the system. Kaons and hyperons are the lowest mass states with strangeness among meson and bayron families, respectively. In this work, we investigate the role of kaons and hyperons to the neutron star mass, and discuss their role in the neutron star cooling.

  8. Stars, their evolution and their stability

    International Nuclear Information System (INIS)

    Chandrasekhar, S.

    1984-01-01

    The most important fact concerning a star is its mass. It is measured in units of the mass of the sun, which is 2 x 10 33 g: stars with masses very much less than, or very much more than the mass of the sun are relatively infrequent. The current theories of stellar structure and evolution derive their successes largely from the fact that the following combination of the dimensions of a mass provides a correct measure of stellar masses: natural constant = (hc/G) 3 2 1/H 2 approx. = 29.2 times the mass of sun where G is the constant of gravitation and H is the mass of hydrogen atom. There is an upper limit, M sub limit, to the mass of stars which can become degenerate configurations, as the last stage in their evolution; and stars with M > M sub limit must have end states which cannot be predicted from the considerations presented in this paper. For stars with mass less than 0.43 x the mass of the sun, the end stage of evolution can only be that of the white dwarfs. The inability of massive stars to become white dwarfs must result in the development of much more extreme conditions in their interiors and eventually in the onset of gravitational collapse attended by the supernova phenomena. Neutron stars or black holes form as the natural end products of stellar evolution of massive stars. 24 references, 7 figures, 2 tables

  9. Are sdAs helium core stars?

    Directory of Open Access Journals (Sweden)

    Pelisoli Ingrid

    2017-12-01

    Full Text Available Evolved stars with a helium core can be formed by non-conservative mass exchange interaction with a companion or by strong mass loss. Their masses are smaller than 0.5 M⊙. In the database of the Sloan Digital Sky Survey (SDSS, there are several thousand stars which were classified by the pipeline as dwarf O, B and A stars. Considering the lifetimes of these classes on the main sequence, and their distance modulus at the SDSS bright saturation, if these were common main sequence stars, there would be a considerable population of young stars very far from the galactic disk. Their spectra are dominated by Balmer lines which suggest effective temperatures around 8 000-10 000 K. Several thousand have significant proper motions, indicative of distances smaller than 1 kpc. Many show surface gravity in intermediate values between main sequence and white dwarf, 4.75 < log g < 6.5, hence they have been called sdA stars. Their physical nature and evolutionary history remains a puzzle. We propose they are not H-core main sequence stars, but helium core stars and the outcomes of binary evolution. We report the discovery of two new extremely-low mass white dwarfs among the sdAs to support this statement.

  10. Moments of inertia of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Greif, Svenja Kim; Hebeler, Kai; Schwenk, Achim [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany)

    2016-07-01

    Neutron stars are unique laboratories for matter at extreme conditions. While nuclear forces provide systematic constraints on properties of neutron-rich matter up to around nuclear saturation density, the composition of matter at high densities is still unknown. Recent precise observations of 2 M {sub CircleDot} neutron stars made it possible to derive systematic constraints on the equation of state at high densities and also neutron star radii. Further improvements of these constraints require the observation of even heavier neutron stars or a simultaneous measurement of mass and radius of a single neutron star. Since the precise measurement of neutron star radii is an inherently difficult problem, the observation of moment of inertia of neutron stars provides a promising alternative, since they can be measured by pulsar timing experiments. We present a theoretical framework that allows to calculate moments of inertia microscopically, we show results based on state of the art equations of state and illustrate how future measurements of moments of inertia allow to constrain the equation of state and other properties of neutron stars.

  11. Radiation pressure in super star cluster formation

    Science.gov (United States)

    Tsang, Benny T.-H.; Milosavljević, Miloš

    2018-05-01

    The physics of star formation at its extreme, in the nuclei of the densest and the most massive star clusters in the universe—potential massive black hole nurseries—has for decades eluded scrutiny. Spectroscopy of these systems has been scarce, whereas theoretical arguments suggest that radiation pressure on dust grains somehow inhibits star formation. Here, we harness an accelerated Monte Carlo radiation transport scheme to report a radiation hydrodynamical simulation of super star cluster formation in turbulent clouds. We find that radiation pressure reduces the global star formation efficiency by 30-35%, and the star formation rate by 15-50%, both relative to a radiation-free control run. Overall, radiation pressure does not terminate the gas supply for star formation and the final stellar mass of the most massive cluster is ˜1.3 × 106 M⊙. The limited impact as compared to in idealized theoretical models is attributed to a radiation-matter anti-correlation in the supersonically turbulent, gravitationally collapsing medium. In isolated regions outside massive clusters, where the gas distribution is less disturbed, radiation pressure is more effective in limiting star formation. The resulting stellar density at the cluster core is ≥108 M⊙ pc-3, with stellar velocity dispersion ≳ 70 km s-1. We conclude that the super star cluster nucleus is propitious to the formation of very massive stars via dynamical core collapse and stellar merging. We speculate that the very massive star may avoid the claimed catastrophic mass loss by continuing to accrete dense gas condensing from a gravitationally-confined ionized phase.

  12. The Fermi Gamma-Ray Space Telescope, Exploding Stars, Neutron Stars, and Black Holes

    Science.gov (United States)

    Thompson, David J.

    2010-01-01

    Since August, 2008, the Fermi Gamma-ray Space Telescope has been scanning the sky, producing a full-sky image every three hours. These cosmic gamma-rays come from extreme astrophysical phenomena, many related to exploding stars (supernovae) or what these explosions leave behind: supernova remnants, neutron stars, and black holes. This talk uses sample Fermi results, plus simple demonstrations, to illustrate the exotic properties of these endpoints of stellar evolution.

  13. O stars and Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Conti, P.S.; Underhill, A.B.; Jordan, S.; Thomas, R.

    1988-01-01

    Basic information is given about O and Wolf-Rayet stars indicating how these stars are defined and what their chief observable properties are. Part 2 of the volume discussed four related themes pertaining to the hottest and most luminous stars. Presented are: an observational overview of the spectroscopic classification and extrinsic properties of O and Wolf-Rayet stars; the intrinsic parameters of luminosity, effective temperature, mass, and composition of the stars, and a discussion of their viability; stellar wind properties; and the related issues concerning the efforts of stellar radiation and wind on the immediate interstellar environment are presented

  14. O stars and Wolf-Rayet stars

    Science.gov (United States)

    Conti, Peter S.; Underhill, Anne B.; Jordan, Stuart (Editor); Thomas, Richard (Editor)

    1988-01-01

    Basic information is given about O and Wolf-Rayet stars indicating how these stars are defined and what their chief observable properties are. Part 2 of the volume discussed four related themes pertaining to the hottest and most luminous stars. Presented are: an observational overview of the spectroscopic classification and extrinsic properties of O and Wolf-Rayet stars; the intrinsic parameters of luminosity, effective temperature, mass, and composition of the stars, and a discussion of their viability; stellar wind properties; and the related issues concerning the efforts of stellar radiation and wind on the immediate interstellar environment are presented.

  15. Neutron Star Interiors and Topology Change

    Directory of Open Access Journals (Sweden)

    Peter K. F. Kuhfittig

    2013-01-01

    Full Text Available Quark matter is believed to exist in the center of neutron stars. A combined model consisting of quark matter and ordinary matter is used to show that the extreme conditions existing in the center could result in a topology change, that is, in the formation of wormholes.

  16. W UMa stars and angular momentum loss

    International Nuclear Information System (INIS)

    Vilhu, O.; Rahunen, T.

    1980-01-01

    The structure and evolution of W UMa stars is still unsolved although considerable progress has been achieved in recent years. The authors aim is to find out whether it is possible to obtain more extreme mass ratios, what is the angular momentum needed and what is the time scale. (Auth.)

  17. Properties and origin of the old, metal rich, star cluster, NGC 6791

    OpenAIRE

    Carraro, Giovanni

    2013-01-01

    In this contribution I summarize the unique properties of the old, metal rich, star cluster NGC 6791, with particular emphasis on its population of extreme blue horizontal branch stars. I then conclude providing my personal view on the origin of this fascinating star cluster.

  18. NuSTAR hard x-ray optics design and performance

    DEFF Research Database (Denmark)

    Koglin, J. E.; An, H.; Blaedel, K. L.

    2009-01-01

    surpassing the largest observatories in this band by orders of magnitude. This advance will allow NuSTAR to test theories of how heavy elements are born, discover collapsed stars and black holes on all scales and explore the most extreme physical environments. We will present an overview of the NuSTAR optics...

  19. Egyptian "Star Clocks"

    Science.gov (United States)

    Symons, Sarah

    Diagonal, transit, and Ramesside star clocks are tables of astronomical information occasionally found in ancient Egyptian temples, tombs, and papyri. The tables represent the motions of selected stars (decans and hour stars) throughout the Egyptian civil year. Analysis of star clocks leads to greater understanding of ancient Egyptian constellations, ritual astronomical activities, observational practices, and pharaonic chronology.

  20. MAGNETIC FIELDS OF STARS

    OpenAIRE

    Bychkov, V. D.; Bychkova, L. V.; Madej, J.

    2008-01-01

    Now it is known about 1212 stars of the main sequence and giants (from them 610 stars - it is chemically peculiarity (CP) stars) for which direct measurements of magnetic fields were spent (Bychkov et al.,2008). Let's consider, what representations were generated about magnetic fields (MT) of stars on the basis of available observations data.

  1. Compact stars

    Science.gov (United States)

    Estevez-Delgado, Gabino; Estevez-Delgado, Joaquin

    2018-05-01

    An analysis and construction is presented for a stellar model characterized by two parameters (w, n) associated with the compactness ratio and anisotropy, respectively. The reliability range for the parameter w ≤ 1.97981225149 corresponds with a compactness ratio u ≤ 0.2644959374, the density and pressures are positive, regular and monotonic decrescent functions, the radial and tangential speed of sound are lower than the light speed, moreover, than the plausible stability. The behavior of the speeds of sound are determinate for the anisotropy parameter n, admitting a subinterval where the speeds are monotonic crescent functions and other where we have monotonic decrescent functions for the same speeds, both cases describing a compact object that is also potentially stable. In the bigger value for the observational mass M = 2.05 M⊙ and radii R = 12.957 Km for the star PSR J0348+0432, the model indicates that the maximum central density ρc = 1.283820319 × 1018 Kg/m3 corresponds to the maximum value of the anisotropy parameter and the radial and tangential speed of the sound are monotonic decrescent functions.

  2. Dwarf Star Erupts in Giant Flare

    Science.gov (United States)

    2005-01-01

    This movie taken by NASA'S Galaxy Evolution Explorer shows one of the largest flares, or star eruptions, ever recorded at ultraviolet wavelengths. The star, called GJ 3685A, just happened to be in the Galaxy Evolution Explorer's field of view while the telescope was busy observing galaxies. As the movie demonstrates, the seemingly serene star suddenly exploded once, then even more intensely a second time, pouring out in total about one million times more energy than a typical flare from our Sun. The second blast of light constituted an increase in brightness by a factor of at least 10,000. Flares are huge explosions of energy stemming from a single location on a star's surface. They are caused by the brief destruction of a star's magnetic fields. Many types of stars experience them, though old, small, rapidly rotating 'red dwarfs' like GJ 3685A tend to flare more frequently and dramatically. These stars, called flare stars, can experience powerful eruptions as often as every few hours. Younger stars, in general, also erupt more often. One of the reasons astronomers study flare stars is to gain a better picture and history of flare events taking place on the Sun. A preliminary analysis of the GJ 3685A flare shows that the mechanisms underlying stellar eruptions may be more complex than previously believed. Evidence for the two most popular flare theories was found. Though this movie has been sped up (the actual flare lasted about 20 minutes), time-resolved data exist for each one-hundredth of a second. These observations were taken at 2 p.m. Pacific time, April 24, 2004. In the still image, the time sequence starts in the upper left panel, continues in the upper right, then moves to the lower left and ends in the lower right. The circular and linear features that appear below and to the right of GJ 3685A during the flare event are detector artifacts caused by the extreme brightness of the flare.

  3. The habitable zone and extreme planetary orbits.

    Science.gov (United States)

    Kane, Stephen R; Gelino, Dawn M

    2012-10-01

    The habitable zone for a given star describes the range of circumstellar distances from the star within which a planet could have liquid water on its surface, which depends upon the stellar properties. Here we describe the development of the habitable zone concept, its application to our own solar system, and its subsequent application to exoplanetary systems. We further apply this to planets in extreme eccentric orbits and show how they may still retain life-bearing properties depending upon the percentage of the total orbit which is spent within the habitable zone. Key Words: Extrasolar planets-Habitable zone-Astrobiology.

  4. The complex lives of star clusters

    CERN Document Server

    Stevenson, David

    2015-01-01

    As with the author’s recent books Extreme Explosions and Under a Crimson Sun, the complex topic of star clusters is broken down and made accessible with clear links to other areas of astronomy in a language which the non-specialist can easily read and enjoy. The full range of a star cluster's lifespan is depicted, as both globular and open clusters are tracked from birth to eventual death. Why is it some are dense conglomerates of stars while others are looser associations? Are the young, brilliant clusters seen in neighboring galaxies such as the Large Magellanic Cloud, M33 or M82 analogous to the ancient globulars seen in the Milky Way? How will these clusters change as their stars wane and die? More interestingly, how does living in a dense star cluster affect the fates of the stars and any attendant planets that accompany them?   Star clusters form many of the most dazzling objects in the astronomers’ catalogs. Many amateur astronomers are interested in exploring how these objects are created and wh...

  5. On the origin of the hypervelocity runaway star HD 271791

    Science.gov (United States)

    Gvaramadze, V. V.

    2010-01-01

    We discuss the origin of the early-B-type runaway star HD 271791 and show that its extremely high velocity (≃530 - 920km s-1) cannot be explained within the framework of the binary-supernova ejection scenario. Instead, we suggest that HD 271791 attained its peculiar velocity in the course of a strong dynamical encounter between two hard, massive binaries or through an exchange encounter between a hard, massive binary and a very massive star, formed through runaway mergers of ordinary massive stars in the dense core of a young massive star cluster.

  6. New Wolf-Rayet stars in Galactic open clusters - Sher 1 and the giant H II region core Westerlund 2

    Science.gov (United States)

    Moffat, Anthony F. J.; Shara, Michael M.; Potter, Michael

    1991-01-01

    Two new Galactic Wolf-Rayet stars were found in open clusters: a WN4 star in the O9 cluster Sher 1 and a WN7 star in the O7 cluster Westerlund 2. This confirms a previous trend, namely that fainter, hotter WN stars tend to be older than brighter, cooler WN stars. This may be a consequence of evolution via extreme mass loss.

  7. Giant CP stars

    International Nuclear Information System (INIS)

    Loden, L.O.; Sundman, A.

    1989-01-01

    This study is part of an investigation of the possibility of using chemically peculiar (CP) stars to map local galactic structure. Correct luminosities of these stars are therefore crucial. CP stars are generally regarded as main-sequence or near-main-sequence objects. However, some CP stars have been classified as giants. A selection of stars, classified in literature as CP giants, are compared to normal stars in the same effective temperature interval and to ordinary 'non giant' CP stars. There is no clear confirmation of a higher luminosity for 'CP giants', than for CP stars in general. In addition, CP characteristics seem to be individual properties not repeated in a component star or other cluster members. (author). 50 refs., 5 tabs., 3 figs

  8. Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars

    OpenAIRE

    Bensby, T.; Johnson, J. A.; Cohen, J.; Feltzing, S.; Udalski, A.; Gould, A.; Huang, W.; Thompson, I.; Simmerer, J.; Adén, D.

    2009-01-01

    Aims. Our aims are twofold. First we aim to evaluate the robustness and accuracy of stellar parameters and detailed elemental abundances that can be derived from high-resolution spectroscopic observations of microlensed dwarf and subgiant stars. We then aim to use microlensed dwarf and subgiant stars to investigate the abundance structure and chemical evolution of the Milky Way Bulge. Contrary to the cool giant stars, with their extremely crowded spectra, the dwarf stars are hotter, their spe...

  9. Low-Metallicity Blue Compact Dwarfs as Templates for Primordial Star Formation

    OpenAIRE

    Hunt, L. K.; Hirashita, H.; Thuan, T. X.; Izotov, Y. I.; Vanzi, L.

    2003-01-01

    Understanding how galaxies formed their first stars is a vital cosmological question, but the study of high-redshift objects, caught in the act of forming their first stars, is difficult. Here we argue that two extremely low-metallicity Blue Compact Dwarf galaxies (BCDs), IZw18 and SBS0335-052, could be local templates for primordial star formation, since both lack evolved ($> $1 Gyr) stellar populations; but they form stars differently.

  10. Identification of faint central stars in extended, low-surface-brightness planetary nebulae

    International Nuclear Information System (INIS)

    Kwitter, K.B.; Lydon, T.J.; Jacoby, G.H.

    1988-01-01

    As part of a larger program to study the properties of planetary nebula central stars, a search for faint central stars in extended, low-surface-brightness planetary nebulae using CCD imaging is performed. Of 25 target nebulae, central star candidates have been identified in 17, with certainties ranging from extremely probable to possible. Observed V values in the central star candidates extend to fainter than 23 mag. The identifications are presented along with the resulting photometric measurements. 24 references

  11. Metal-poor star formation triggered by the feedback effects from Pop III stars

    Science.gov (United States)

    Chiaki, Gen; Susa, Hajime; Hirano, Shingo

    2018-04-01

    Metal enrichment by first-generation (Pop III) stars is the very first step of the matter cycle in structure formation and it is followed by the formation of extremely metal-poor (EMP) stars. To investigate the enrichment process by Pop III stars, we carry out a series of numerical simulations including the feedback effects of photoionization and supernovae (SNe) of Pop III stars with a range of masses of minihaloes (MHs), Mhalo, and Pop III stars, MPopIII. We find that the metal-rich ejecta reach neighbouring haloes and external enrichment (EE) occurs when the H II region expands before the SN explosion. The neighbouring haloes are only superficially enriched, and the metallicity of the clouds is [Fe/H] < -5. Otherwise, the SN ejecta fall back and recollapse to form an enriched cloud, i.e. an internal-enrichment (IE) process takes place. In the case where a Pop III star explodes as a core-collapse SN (CCSN), the MH undergoes IE, and the metallicity in the recollapsing region is -5 ≲ [Fe/H] ≲ -3 in most cases. We conclude that IE from a single CCSN can explain the formation of EMP stars. For pair-instability SNe (PISNe), EE takes place for all relevant mass ranges of MHs, consistent with the lack of observational signs of PISNe among EMP stars.

  12. Rates of star formation

    International Nuclear Information System (INIS)

    Larson, R.B.

    1977-01-01

    It is illustrated that a theoretical understanding of the formation and evolution of galaxies depends on an understanding of star formation, and especially of the factors influencing the rate of star formation. Some of the theoretical problems of star formation in galaxies, some approaches that have been considered in models of galaxy evolution, and some possible observational tests that may help to clarify which processes or models are most relevant are reviewed. The material is presented under the following headings: power-law models for star formation, star formation processes (conditions required, ways of achieving these conditions), observational indications and tests, and measures of star formation rates in galaxies. 49 references

  13. Energy production in stars

    International Nuclear Information System (INIS)

    Bethe, Hans.

    1977-01-01

    Energy in stars is released partly by gravitation, partly by nuclear reactions. For ordinary stars like our sun, nuclear reactions predominate. However, at the end of the life of a star very large amounts of energy are released by gravitational collapse; this can amount to as much as 10 times the total energy released nuclear reactions. The rotational energy of pulsars is a small remnant of the energy of gravitation. The end stage of small stars is generally a white dwarf, of heavy stars a neutron star of possibly a black hole

  14. Extremely Preterm Birth

    Science.gov (United States)

    ... Events Advocacy For Patients About ACOG Extremely Preterm Birth Home For Patients Search FAQs Extremely Preterm Birth ... Spanish FAQ173, June 2016 PDF Format Extremely Preterm Birth Pregnancy When is a baby considered “preterm” or “ ...

  15. Regular Generalized Star Star closed sets in Bitopological Spaces

    OpenAIRE

    K. Kannan; D. Narasimhan; K. Chandrasekhara Rao; R. Ravikumar

    2011-01-01

    The aim of this paper is to introduce the concepts of τ1τ2-regular generalized star star closed sets , τ1τ2-regular generalized star star open sets and study their basic properties in bitopological spaces.

  16. Atomic collisions under extreme conditions in space

    International Nuclear Information System (INIS)

    Itikawa, Yukikazu

    1987-01-01

    In space, atoms and molecules are often placed under the extreme conditions which are very difficult to be realized on Earth. For instance, extremely hot and dense plasmas are found in and around various stellar objects (e.g., neutron stars) on one hand and extremely cold and diffuse gases prevail in interstellar space on the other. There is so strong a magnetic field that electron clouds in atoms and molecules are distorted. The study of atomic collisions under the extreme conditions is not only helpful in understanding the astrophysical environment but also reveals new aspects of the physics of atoms and molecules. This paper is an invitation to the study. (References are not exhaustive but only provide a clue with which more details can be found.) (author)

  17. Star Formation in low mass galaxies

    Science.gov (United States)

    Mehta, Vihang

    2018-01-01

    extremely low masses (105-107 M⊙). They are much fainter equivalents of the "green pea" galaxies found in SDSS. These objects are followed up with HectoSpec on the MMT to confirm their redshift as well as study their star formation properties in detail.

  18. Multi-Wavelength Polarimetry of Isolated Neutron Stars

    Directory of Open Access Journals (Sweden)

    Roberto P. Mignani

    2018-03-01

    Full Text Available Isolated neutron stars are known to be endowed with extreme magnetic fields, whose maximum intensity ranges from 10 12 – 10 15 G, which permeates their magnetospheres. Their surrounding environment is also strongly magnetized, especially in the compact nebulae powered by the relativistic wind from young neutron stars. The radiation from isolated neutron stars and their surrounding nebulae is, thus, supposed to bring a strong polarization signature. Measuring the neutron star polarization brings important information about the properties of their magnetosphere and of their highly magnetized environment. Being the most numerous class of isolated neutron stars, polarization measurements have been traditionally carried out for radio pulsars, hence in the radio band. In this review, I summarize multi-wavelength linear polarization measurements obtained at wavelengths other than radio both for pulsars and other types of isolated neutron stars and outline future perspectives with the upcoming observing facilities.

  19. Fluidic Manufacture of Star-Shaped Gold Nanoparticles.

    Science.gov (United States)

    Silvestri, Alessandro; Lay, Luigi; Psaro, Rinaldo; Polito, Laura; Evangelisti, Claudio

    2017-07-21

    Star-shaped gold nanoparticles (StarAuNPs) are extremely attractive nanomaterials, characterized by localized surface plasmon resonance which could be potentially employed in a large number of applications. However, the lack of a reliable and reproducible synthetic protocols for the production of StarAuNPs is the major limitation to their spreading. For the first time, here we present a robust protocol to manufacture reproducible StarAuNPs by exploiting a fluidic approach. Star-shaped AuNPs have been synthesized by means of a seed-less protocol, employing ascorbic acid as reducing agent at room temperature. Moreover, the versatility of the bench-top microfluidic protocol has been exploited to afford hydrophilic, hydrophobic and solid-supported engineered StarAuNPs, by avoiding intermediate NP purifications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Quark core stars, quark stars and strange stars

    International Nuclear Information System (INIS)

    Grassi, F.

    1988-01-01

    A recent one flavor quark matter equation of state is generalized to several flavors. It is shown that quarks undergo a first order phase transition. In addition, this equation of state depends on just one parameter in the two flavor case, two parameters in the three flavor case, and these parameters are constrained by phenomenology. This equation of state is then applied to the hadron-quark transition in neutron stars and the determination of quark star stability, the investigation of strange matter stability and possible strange star existence. 43 refs., 6 figs

  1. ENERGY STAR Certified Displays

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 7.0 ENERGY STAR Program Requirements for Displays that are effective as of July 1, 2016....

  2. ENERGY STAR Certified Boilers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Boilers that are effective as of October 1,...

  3. ENERGY STAR Certified Televisions

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 7.0 ENERGY STAR Program Requirements for Televisions that are effective as of October 30,...

  4. ENERGY STAR Certified Dehumidifiers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Dehumidifiers that are effective as of October...

  5. Observations of central stars

    International Nuclear Information System (INIS)

    Lutz, J.H.

    1978-01-01

    Difficulties occurring in the observation of central stars of planetary nebulae are reviewed with emphasis on spectral classifications and population types, and temperature determination. Binary and peculiar central stars are discussed. (U.M.G.)

  6. ENERGY STAR Certified Telephones

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Telephony (cordless telephones and VoIP...

  7. Wolf-Rayet stars

    Energy Technology Data Exchange (ETDEWEB)

    Sahade, J

    1981-12-01

    Aspects of the problems of the Wolf-Rayet stars related to their chemical composition, their evolutionary status, and their apparent dichotomy in two spectral sequences are discussed. Dogmas concerning WR stars are critically discussed, including the belief that WR stars lack hydrogen, that they are helium stars evolved from massive close binaries, and the existence of a second WR stage in which the star is a short-period single-lined binary. The relationship of WR stars with planetary nebulae is addressed, as is the membership of these stars in clusters and associations. The division of WR stars into WN and WC sequences is considered, questioning the reasonability of accounting for WR line formation in terms of abundance differences.

  8. Star formation: Cosmic feast

    Science.gov (United States)

    Scaringi, Simone

    2017-03-01

    Low-mass stars form through a process known as disk accretion, eating up material that orbits in a disk around them. It turns out that the same mechanism also describes the formation of more massive stars.

  9. Noether's stars in f (R) gravity

    Science.gov (United States)

    De Laurentis, Mariafelicia

    2018-05-01

    The Noether Symmetry Approach can be used to construct spherically symmetric solutions in f (R) gravity. Specifically, the Noether conserved quantity is related to the gravitational mass and a gravitational radius that reduces to the Schwarzschild radius in the limit f (R) → R. We show that it is possible to construct the M- R relation for neutron stars depending on the Noether conserved quantity and the associated gravitational radius. This approach enables the recovery of extreme massive stars that could not be stable in the standard Tolman-Oppenheimer-Volkoff based on General Relativity. Examples are given for some power law f (R) gravity models.

  10. Pulsations of the R Coronae Borealis stars

    International Nuclear Information System (INIS)

    Cox, J.P.; King, D.S.; Cox, A.N.; Wheeler, J.C.; Hansen, C.J.; Hodson, S.W.

    1980-01-01

    The radial pulsations of very luminous, low-mass models (L/M approx. 10 4 , solar units), which are possible representatives of the R CrB stars, have been examined. These pulsations are extremely nonadiabatic. There are in some cases at least one extra (strange) mode which makes interpretation difficult. The blue instability edges are also peculiar, in that there is an abrupt excursion of the blue edge to the blue for L/M sufficiently large. The range of periods of the model encompasses observed periods of the Cepheid-like pulsations of actual R CrB stars

  11. Massive Star Burps, Then Explodes

    Science.gov (United States)

    2007-04-01

    event was a complete surprise," added Alex Filippenko, leader of the UC Berkeley/Keck supernova group and a member of NASA'S Swift team. "It opens up a fascinating new window on how some kinds of stars die." All the observations suggest that the supernova's blast wave took only a few weeks to reach the shell of material ejected two years earlier, which did not have time to drift very far from the star. As the wave smashed into the ejecta, it heated the gas to millions of degrees, hot enough to emit copious X-rays. The Swift satellite saw the supernova continue to brighten in X-rays for 100 days, something that has never been seen before in a supernova. All supernovae previously observed in X-rays have started off bright and then quickly faded to invisibility. "You don't need a lot of mass in the ejecta to produce a lot of X-rays," notes Immler. Swift's ability to monitor the supernova's X-ray rise and decline over six months was crucial to his team's mass determination. But he adds that Chandra's sharp resolution enabled his group to resolve the supernova from a bright X-ray source that appears in the field of view of Swift's X-ray Telescope. "We could not have made this measurement without Chandra," says Immler, who will submit his team's paper next week to the Astrophysical Journal. "The synergy between Swift's fast response and its ability to observe a supernova every day for a long period, and Chandra's high spatial resolution, is leading to a lot of interesting results." Foley and his colleagues, whose paper appears in the March 10 Astrophysical Journal Letters, propose that the star recently transitioned from a Luminous Blue Variable (LBV) star to a Wolf-Rayet star. An LBV is a massive star in a brief but unstable phase of stellar evolution. Similar to the 2004 eruption, LBVs are prone to blow off large amounts of mass in outbursts so extreme that they are frequently mistaken for supernovae, events dubbed "supernova impostors." Wolf-Rayet stars are hot, highly

  12. Autonomous Star Tracker Algorithms

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Kilsgaard, Søren

    1998-01-01

    Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances.......Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances....

  13. Physics of white dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Koester, D.; Chanmugam, G. (Louisiana State Univ., New Orleans, LA (USA))

    1990-07-01

    White dwarf stars, compact objects with extremely high interior densities, are the most common end product in the evolution of stars. In this paper we review the history of their discovery, and of the realisation that their structure is determined by the physics of the degenerate electron gas. Spectral types and surface chemical composition show a complicated pattern dominated by diffusion processes and their interaction with accretion, convection and mass loss. While this interaction is not completely understood in all its detail at present, the study may ultimately lead to important constraints on the theory of stellar evolution in general. Variability, caused by non-radial oscillations of the star, is a common phenomenon and is shown to be a powerful probe of the structure of deeper layers that are not directly accessible to observation. Very strong magnetic fields detected in a small fraction of white dwarfs offer a unique opportunity to study the behaviour of atoms under conditions that cannot be simulated in terrestrial laboratories. (author).

  14. Star clusters in evolving galaxies

    Science.gov (United States)

    Renaud, Florent

    2018-04-01

    Their ubiquity and extreme densities make star clusters probes of prime importance of galaxy evolution. Old globular clusters keep imprints of the physical conditions of their assembly in the early Universe, and younger stellar objects, observationally resolved, tell us about the mechanisms at stake in their formation. Yet, we still do not understand the diversity involved: why is star cluster formation limited to 105M⊙ objects in the Milky Way, while some dwarf galaxies like NGC 1705 are able to produce clusters 10 times more massive? Why do dwarfs generally host a higher specific frequency of clusters than larger galaxies? How to connect the present-day, often resolved, stellar systems to the formation of globular clusters at high redshift? And how do these links depend on the galactic and cosmological environments of these clusters? In this review, I present recent advances on star cluster formation and evolution, in galactic and cosmological context. The emphasis is put on the theory, formation scenarios and the effects of the environment on the evolution of the global properties of clusters. A few open questions are identified.

  15. Covering tree with stars

    DEFF Research Database (Denmark)

    Baumbach, Jan; Guo, Jian-Ying; Ibragimov, Rashid

    2013-01-01

    We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting ...

  16. America's Star Libraries

    Science.gov (United States)

    Lyons, Ray; Lance, Keith Curry

    2009-01-01

    "Library Journal"'s new national rating of public libraries, the "LJ" Index of Public Library Service, identifies 256 "star" libraries. It rates 7,115 public libraries. The top libraries in each group get five, four, or three Michelin guide-like stars. All included libraries, stars or not, can use their scores to learn from their peers and improve…

  17. Orphan Stars Found in Long Galaxy Tail

    Science.gov (United States)

    2007-09-01

    ESO 137-001 and Tail in Abell 3627 H-alpha Image of ESO 137-001 and Tail in Abell 3627 "By our galactic standards, these are extremely lonely stars," said Mark Voit, another team member from MSU. "If life was to form out there on a planet a few billion years from now, they would have very dark skies." The gas that formed the orphan stars was stripped out of its parent galaxy by the pressure induced by the motion of the galaxy through the multimillion degree gas that pervades the intergalactic space of the galaxy cluster. Eventually most of the gas will be scoured from the galaxy, depleting the raw material for new stars, and effectively stopping further star formation in the galaxy. This process may represent an important but short-lived stage in the transformation of a galaxy. Although apparently rare in the present-day universe, galactic tails of gas and orphan stars may have been more common billions of years ago when galaxies were younger and richer in star-forming gas. These results will appear in the December 10th issue of The Astrophysical Journal. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. The SOAR (Southern Astrophysical Research Telescope) is a joint project of Michigan State University, Conselho Nacional de Pesquisas Científicas e Tecnológicas (CNPq-Brazil), The University of North Carolina at Chapel Hill, and the National Optical Astronomy Observatory.

  18. The HR diagram for luminous stars in nearby galaxies

    International Nuclear Information System (INIS)

    Humphreys, R.M.

    1978-01-01

    Due to the extreme faintness of stars in other galaxies it is only possible to sample the brightest stars in the nearest galaxies. The observations must then be compared with comparable data for the brightest stars, the supergiants and O-type stars, in the Milky Way. The data for the luminous stars are most complete for the Milky Way and the Large Magellanic Cloud. The luminosities for the stars in our Galaxy are based on their membership in associations and clusters, and consequently are representative of Population I within approximately 3kpc of the Sun. The data for the stars in the LMC with spectral types O to G8 come from published observations, and the M supergiants are from the author's recent observations of red stars in the LMC. This is the first time that the M supergiants have been included in an HR diagram of the Large Cloud. The presence of the red stars is important for any discussion of the evolution of the massive stars. (Auth.)

  19. Nuclear physics of stars

    CERN Document Server

    Iliadis, Christian

    2015-01-01

    Most elements are synthesized, or ""cooked"", by thermonuclear reactions in stars. The newly formed elements are released into the interstellar medium during a star's lifetime, and are subsequently incorporated into a new generation of stars, into the planets that form around the stars, and into the life forms that originate on the planets. Moreover, the energy we depend on for life originates from nuclear reactions that occur at the center of the Sun. Synthesis of the elements and nuclear energy production in stars are the topics of nuclear astrophysics, which is the subject of this book

  20. Evolution of variable stars

    International Nuclear Information System (INIS)

    Becker, S.A.

    1986-08-01

    Throughout the domain of the H R diagram lie groupings of stars whose luminosity varies with time. These variable stars can be classified based on their observed properties into distinct types such as β Cephei stars, δ Cephei stars, and Miras, as well as many other categories. The underlying mechanism for the variability is generally felt to be due to four different causes: geometric effects, rotation, eruptive processes, and pulsation. In this review the focus will be on pulsation variables and how the theory of stellar evolution can be used to explain how the various regions of variability on the H R diagram are populated. To this end a generalized discussion of the evolutionary behavior of a massive star, an intermediate mass star, and a low mass star will be presented. 19 refs., 1 fig., 1 tab

  1. A tale of two cacti-the complex relationship between peyote (Lophophora williamsii) and endangered star cactus (Astrophytum asterias)

    Science.gov (United States)

    M. Terry; D. Price; J. Poole

    2007-01-01

    Astrophytum asterias, commonly called star cactus, is a federally listed endangered cactus endemic to the Tamaulipan thornscrub ecoregion of extreme southern Texas, USA, and Tamaulipas and Nuevo Leon, Mexico. Only three metapopulations totaling less than 4000 plants are presently known in Texas. Star cactus, known locally as “star peyote”, is highly...

  2. Grain processes in massive star formation

    International Nuclear Information System (INIS)

    Wolfire, M.G.; Cassinelli, J.P.

    1986-01-01

    Observational evidence suggests that stars greater than 100 M(solar) exist in the Galaxy and Large Magellanic Cloud (LMC), however classical star formation theory predicts stellar mass limits of only approx. 60 M(solar). A protostellar accretion flow consists of inflowing gas and dust. Grains are destroyed as they are near the central protostar creating a dust shell or cocoon. Radiation pressure acting on the grain can halt the inflow of material thereby limiting the amount of mass accumulated by the protostar. We first consider rather general constraints on the initial grain to gas ratio and mass accretion rates that permit inflow. We further constrain these results by constructing a numerical model. Radiative deceleration of grains and grain destruction processes are explicitly accounted for in an iterative solution of the radiation-hydrodynamic equations. Findings seem to suggest that star formation by spherical accretion requires rather extreme preconditioning of the grain and gas environment

  3. Star-Branched Polymers (Star Polymers)

    KAUST Repository

    Hirao, Akira; Hayashi, Mayumi; Ito, Shotaro; Goseki, Raita; Higashihara, Tomoya; Hadjichristidis, Nikolaos

    2015-01-01

    The synthesis of well-defined regular and asymmetric mixed arm (hereinafter miktoarm) star-branched polymers by the living anionic polymerization is reviewed in this chapter. In particular, much attention is being devoted to the synthetic

  4. Star-Branched Polymers (Star Polymers)

    KAUST Repository

    Hirao, Akira

    2015-09-01

    The synthesis of well-defined regular and asymmetric mixed arm (hereinafter miktoarm) star-branched polymers by the living anionic polymerization is reviewed in this chapter. In particular, much attention is being devoted to the synthetic development of miktoarm star polymers since 2000. At the present time, the almost all types of multiarmed and multicomponent miktoarm star polymers have become feasible by using recently developed iterative strategy. For example, the following well-defined stars have been successfully synthesized: 3-arm ABC, 4-arm ABCD, 5-arm ABCDE, 6-arm ABCDEF, 7-arm ABCDEFG, 6-arm ABC, 9-arm ABC, 12-arm ABC, 13-arm ABCD, 9-arm AB, 17-arm AB, 33-arm AB, 7-arm ABC, 15-arm ABCD, and 31-arm ABCDE miktoarm star polymers, most of which are quite new and difficult to synthesize by the end of the 1990s. Several new specialty functional star polymers composed of vinyl polymer segments and rigid rodlike poly(acetylene) arms, helical polypeptide, or helical poly(hexyl isocyanate) arms are introduced.

  5. Contamination of RR Lyrae stars from Binary Evolution Pulsators

    Science.gov (United States)

    Karczmarek, Paulina; Pietrzyński, Grzegorz; Belczyński, Krzysztof; Stępień, Kazimierz; Wiktorowicz, Grzegorz; Iłkiewicz, Krystian

    2016-06-01

    Binary Evolution Pulsator (BEP) is an extremely low-mass member of a binary system, which pulsates as a result of a former mass transfer to its companion. BEP mimics RR Lyrae-type pulsations but has different internal structure and evolution history. We present possible evolution channels to produce BEPs, and evaluate the contamination value, i.e. how many objects classified as RR Lyrae stars can be undetected BEPs. In this analysis we use population synthesis code StarTrack.

  6. Pushing the Envelope of Extreme Space Weather

    Science.gov (United States)

    Pesnell, W. D.

    2014-12-01

    Extreme Space Weather events are large solar flares or geomagnetic storms, which can cost billions of dollars to recover from. We have few examples of such events; the Carrington Event (the solar superstorm) is one of the few that had superlatives in three categories: size of solar flare, drop in Dst, and amplitude of aa. Kepler observations show that stars similar to the Sun can have flares releasing millions of times more energy than an X-class flare. These flares and the accompanying coronal mass ejections could strongly affect the atmosphere surrounding a planet. What level of solar activity would be necessary to strongly affect the atmosphere of the Earth? Can we map out the envelope of space weather along the evolution of the Sun? What would space weather look like if the Sun stopped producing a magnetic field? To what extreme should Space Weather go? These are the extremes of Space Weather explored in this talk.

  7. Distant Galaxy Clusters Hosting Extreme Central Galaxies

    Science.gov (United States)

    McDonald, Michael

    2014-09-01

    The recently-discovered Phoenix cluster harbors the most star-forming central cluster galaxy of any cluster in the known Universe, by nearly a factor of 10. This extreme system appears to be fulfilling early cooling flow predictions, although the lack of similar systems makes any interpretation difficult. In an attempt to find other "Phoenix-like" clusters, we have cross-correlated archival all-sky surveys (in which Phoenix was detected) and isolated 4 similarly-extreme systems which are also coincident in position and redshift with an overdensity of red galaxies. We propose here to obtain Chandra observations of these extreme, Phoenix-like systems, in order to confirm them as relaxed, rapidly-cooling galaxy clusters.

  8. Massive stars in galaxies

    International Nuclear Information System (INIS)

    Humphreys, R.M.

    1987-01-01

    The relationship between the morphologic type of a galaxy and the evolution of its massive stars is explored, reviewing observational results for nearby galaxies. The data are presented in diagrams, and it is found that the massive-star populations of most Sc spiral galaxies and irregular galaxies are similar, while those of Sb spirals such as M 31 and M 81 may be affected by morphology (via differences in the initial mass function or star-formation rate). Consideration is also given to the stability-related upper luminosity limit in the H-R diagram of hypergiant stars (attributed to radiation pressure in hot stars and turbulence in cool stars) and the goals of future observation campaigns. 88 references

  9. Probing the LHS Catalog. I. New Nearby Stars and the Coolest Subdwarf

    OpenAIRE

    Gizis, John E.; Reid, I. Neill

    1997-01-01

    We present moderate resolution spectroscopy of 112 cool dwarf stars to supplement the observations we have already presented in the Palomar/MSU Nearby-Star Spectroscopic Survey. The sample consists of 72 suspected nearby stars added to the The Preliminary Third Catalog of Nearby Stars since 1991 as well as 40 faint red stars selected from the LHS catalog. LHS 1826 is more metal-poor and cooler than the coolest previously known extreme subdwarf, LHS 1742a. LHS 2195 is a very late M dwarf of ty...

  10. uvbyHβ photometry of UV-bright stars

    International Nuclear Information System (INIS)

    Wade, B.R.; Smith, L.F.

    1985-01-01

    uvbyHβ photometry is presented for 90 stars taken from an early version of the Carnochan and Wilson catalogue (1983. Mon. Not. R. astr. Soc. 202,317) of stars that have very negative UV colours. Two have definite UV excesses, (HD 36629, and HD81307). Four early-B stars have UV colours too positive for their visible classification, and β-indices that indicate higher luminosities than appear possible on galactic distribution grounds. Six late-B stars appear to have discordant flux distributions for which there are no obvious explanations. It is suggested that the high population of subluminous stars derived by Carnochan and Wilson is the product of the statistical treatment used and the extreme patchiness in the interstellar absorption. (author)

  11. MODEL ATMOSPHERES FOR X-RAY BURSTING NEUTRON STARS

    International Nuclear Information System (INIS)

    Medin, Zach; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L.; Steinkirch, Marina von; Calder, Alan C.

    2016-01-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts (XRBs) are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where XRBs occur. Observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.

  12. MODEL ATMOSPHERES FOR X-RAY BURSTING NEUTRON STARS

    Energy Technology Data Exchange (ETDEWEB)

    Medin, Zach; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Steinkirch, Marina von; Calder, Alan C. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)

    2016-12-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts (XRBs) are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where XRBs occur. Observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.

  13. Einstein Observatory coronal temperatures of late-type stars

    Science.gov (United States)

    Schmitt, J. H. M. M.; Collura, A.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.

    1990-01-01

    The results are presented of a survey of the coronal temperatures of late-type stars using the Einstein Observatory IPC. The spectral analysis shows that the frequently found one- and two-temperature descriptions are mainly influenced by the SNR of the data and that models using continuous emission measure distributions can provide equally adequate and physically more meaningful and more plausible descriptions. Intrinsic differences in differential emission measure distributions are found for four groups of stars. M dwarfs generally show evidence for high-temperature gas in conjunction with lower-temperature material, while main-sequence stars of types F and G have the high-temperature component either absent or very weak. Very hot coronae without the lower-temperature component appearing in dwarf stars are evident in most of the giant stars studied. RS CVn systems show evidence for extremely hot coronae, sometimes with no accompanying lower-temperature material.

  14. Evolution of massive stars

    International Nuclear Information System (INIS)

    Loore, C. de

    1984-01-01

    The evolution of stars with masses larger than 15 sun masses is reviewed. These stars have large convective cores and lose a substantial fraction of their matter by stellar wind. The treatment of convection and the parameterisation of the stellar wind mass loss are analysed within the context of existing disagreements between theory and observation. The evolution of massive close binaries and the origin of Wolf-Rayet Stars and X-ray binaries is also sketched. (author)

  15. Extreme environment electronics

    CERN Document Server

    Cressler, John D

    2012-01-01

    Unfriendly to conventional electronic devices, circuits, and systems, extreme environments represent a serious challenge to designers and mission architects. The first truly comprehensive guide to this specialized field, Extreme Environment Electronics explains the essential aspects of designing and using devices, circuits, and electronic systems intended to operate in extreme environments, including across wide temperature ranges and in radiation-intense scenarios such as space. The Definitive Guide to Extreme Environment Electronics Featuring contributions by some of the world's foremost exp

  16. Distinguishing Newly Born Strange Stars from Neutron Stars with g-Mode Oscillations

    International Nuclear Information System (INIS)

    Fu Weijie; Wei Haiqing; Liu Yuxin

    2008-01-01

    The gravity-mode (g-mode) eigenfrequencies of newly born strange quark stars (SQSs) and neutron stars (NSs) are studied. It is found that the eigenfrequencies in SQSs are much lower than those in NSs by almost 1 order of magnitude, since the components of a SQS are all extremely relativistic particles while nucleons in a NS are nonrelativistic. We therefore propose that newly born SQSs can be distinguished from the NSs by detecting the eigenfrequencies of the g-mode pulsations of supernovae cores through gravitational radiation by LIGO-class detectors

  17. Inhomogeneous structure in the chromospheres of dwarf M stars

    Science.gov (United States)

    Turner, N. J.; Cram, L. E.; Robinson, R. D.

    1991-01-01

    Linear combinations of observed spectra of the H-alpha and Ca-II resonance and IR lines from the chromospheres of a quiet (Gl 1) and an active (Gl 735) dwarf-M star are compared with the corresponding spectra from a star of intermediate activity (Gl 887). It is shown that the intermediate spectra cannot be explained as a simple juxtaposition of the extreme chromospheric states. It is concluded that the range of observed strengths of chromospheric activity indicators in dwarf-M stars is due, at least in part, to changes in the radial structure of the chromospheric heating function and not to changes in the area filling factor.

  18. Ultraviolet spectrophotometry from Gemini 11 of stars in Orion

    International Nuclear Information System (INIS)

    Morgan, T.H.; Spear, G.G.; Kondo, Y.; Henize, K.G.

    1975-01-01

    Ultraviolet spectrophotometry in the wavelength region 2600--3600 A is reported for the bright early-type stars β, eta, γ, delta, iota, epsilon, sigma, xi, and kappa Ori. The results are in good agreement with other observations, and with the possible exception of the supergiants, are in good agreement with recent line-blanketed model atmospheres. There is evidence that the supergiants possess a small ultraviolet deficiency shortward of 3000 A relative to main-sequence stars of similar spectral type. The most extreme example of this phenomenon is the star kappa Ori

  19. Role of strangeness to the neutron star mass and cooling

    Directory of Open Access Journals (Sweden)

    Lee Chang-Hwan

    2018-01-01

    Full Text Available Neutron star provides unique environments for the investigation of the physics of extreme dense matter beyond normal nuclear saturation density. In such high density environments, hadrons with strange quarks are expected to play very important role in stabilizing the system. Kaons and hyperons are the lowest mass states with strangeness among meson and bayron families, respectively. In this work, we investigate the role of kaons and hyperons to the neutron star mass, and discuss their role in the neutron star cooling.

  20. On the origin of the hypervelocity runaway star HD271791

    OpenAIRE

    Gvaramadze, V. V.

    2009-01-01

    We discuss the origin of the runaway early B-type star HD271791 and show that its extremely high velocity (\\simeq 530-920 km/s) cannot be explained within the framework of the binary-supernova ejection scenario. Instead, we suggest that HD271791 attained its peculiar velocity in the course of a strong dynamical encounter between two hard massive binaries or via an exchange encounter between a hard massive binary and a very massive star, formed through runaway mergers of ordinary massive stars...

  1. A SUBSTELLAR COMPANION TO THE DUSTY PLEIADES STAR HD 23514

    International Nuclear Information System (INIS)

    Rodriguez, David R.; Zuckerman, B.; Marois, Christian; Macintosh, Bruce; Melis, Carl

    2012-01-01

    With adaptive optics imaging at Keck observatory, we have discovered a substellar companion to the F6 Pleiades star HD 23514, one of the dustiest main-sequence stars known to date (L IR /L * ∼ 2%). This is one of the first brown dwarfs discovered as a companion to a star in the Pleiades. The 0.06 M ☉ late-M secondary has a projected separation of ∼360 AU. The scarcity of substellar companions to stellar primaries in the Pleiades combined with the extremely dusty environment make this a unique system to study.

  2. Model Atmospheres for X-ray Bursting Neutron Stars

    OpenAIRE

    Medin, Zach; von Steinkirch, Marina; Calder, Alan C.; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L.

    2016-01-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of t...

  3. MASSIVE INFANT STARS ROCK THEIR CRADLE

    Science.gov (United States)

    2002-01-01

    Extremely intense radiation from newly born, ultra-bright stars has blown a glowing spherical bubble in the nebula N83B, also known as NGC 1748. A new NASA Hubble Space Telescope image has helped to decipher the complex interplay of gas and radiation of a star-forming region in a nearby galaxy. The image graphically illustrates just how these massive stars sculpt their environment by generating powerful winds that alter the shape of the parent gaseous nebula. These processes are also seen in our Milky Way in regions like the Orion Nebula. The Hubble telescope is famous for its contribution to our knowledge about star formation in very distant galaxies. Although most of the stars in the Universe were born several billions of years ago, when the Universe was young, star formation still continues today. This new Hubble image shows a very compact star-forming region in a small part of one of our neighboring galaxies - the Large Magellanic Cloud. This galaxy lies only 165,000 light-years from our Milky Way and can easily be seen with the naked eye from the Southern Hemisphere. Young, massive, ultra-bright stars are seen here just as they are born and emerge from the shelter of their pre-natal molecular cloud. Catching these hefty stars at their birthplace is not as easy as it may seem. Their high mass means that the young stars evolve very rapidly and are hard to find at this critical stage. Furthermore, they spend a good fraction of their youth hidden from view, shrouded by large quantities of dust in a molecular cloud. The only chance is to observe them just as they start to emerge from their cocoon - and then only with very high-resolution telescopes. Astronomers from France, the U.S., and Germany have used Hubble to study the fascinating interplay between gas, dust, and radiation from the newly born stars in this nebula. Its peculiar and turbulent structure has been revealed for the first time. This high-resolution study has also uncovered several individual stars

  4. Fast pulsars, strange stars

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1990-02-01

    The initial motivation for this work was the reported discovery in January 1989 of a 1/2 millisecond pulsar in the remnant of the spectacular supernova, 1987A. The status of this discovery has come into grave doubt as of data taken by the same group in February, 1990. At this time we must consider that the millisecond signal does not belong to the pulsar. The existence of a neutron star in remnant of the supernova is suspected because of recent observations on the light curve of the remnant, and of course by the neutrino burst that announced the supernova. However its frequency is unknown. I can make a strong case that a pulsar rotation period of about 1 ms divides those that can be understood quite comfortably as neutron stars, and those that cannot. What we will soon learn is whether there is an invisible boundary below which pulsar periods do not fall, in which case, all are presumable neutron stars, or whether there exist sub- millisecond pulsars, which almost certainly cannot be neutron stars. Their most plausible structure is that of a self-bound star, a strange-quark-matter star. The existence of such stars would imply that the ground state of the strong interaction is not, as we usually assume, hadronic matter, but rather strange quark matter. Let us look respectively at stars that are bound only by gravity, and hypothetical stars that are self-bound, for which gravity is so to speak, icing on the cake

  5. Covering tree with stars

    DEFF Research Database (Denmark)

    Baumbach, Jan; Guo, Jiong; Ibragimov, Rashid

    2015-01-01

    We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting...... tree is isomorphic to T? We prove that in the general setting, CST is NP-complete, which implies that the tree edit distance considered here is also NP-hard, even when both input trees having diameters bounded by 10. We also show that, when the number of distinct stars is bounded by a constant k, CTS...

  6. Introduction to neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Lattimer, James M. [Dept. of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2015-02-24

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts can set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.

  7. Strangeon and Strangeon Star

    Science.gov (United States)

    Xiaoyu, Lai; Renxin, Xu

    2017-06-01

    The nature of pulsar-like compact stars is essentially a central question of the fundamental strong interaction (explained in quantum chromo-dynamics) at low energy scale, the solution of which still remains a challenge though tremendous efforts have been tried. This kind of compact objects could actually be strange quark stars if strange quark matter in bulk may constitute the true ground state of the strong-interaction matter rather than 56Fe (the so-called Witten’s conjecture). From astrophysical points of view, however, it is proposed that strange cluster matter could be absolutely stable and thus those compact stars could be strange cluster stars in fact. This proposal could be regarded as a general Witten’s conjecture: strange matter in bulk could be absolutely stable, in which quarks are either free (for strange quark matter) or localized (for strange cluster matter). Strange cluster with three-light-flavor symmetry is renamed strangeon, being coined by combining “strange nucleon” for the sake of simplicity. A strangeon star can then be thought as a 3-flavored gigantic nucleus, and strangeons are its constituent as an analogy of nucleons which are the constituent of a normal (micro) nucleus. The observational consequences of strangeon stars show that different manifestations of pulsarlike compact stars could be understood in the regime of strangeon stars, and we are expecting more evidence for strangeon star by advanced facilities (e.g., FAST, SKA, and eXTP).

  8. Interacting binary stars

    CERN Document Server

    Sahade, Jorge; Ter Haar, D

    1978-01-01

    Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied

  9. Polarization of Be stars

    International Nuclear Information System (INIS)

    Johns, M.W.

    1975-01-01

    Linear polarization of starlight may be produced by electron scattering in the extended atmospheres of early type stars. Techniques are investigated for the measurement and interpretation of this polarization. Polarimetric observations were made of twelve visual double star systems in which at least one member was a B type star as a means of separating the intrinsic stellar polarization from the polarization produced in the interstellar medium. Four of the double stars contained a Be star. Evidence for intrinsic polarization was found in five systems including two of the Be systems, one double star with a short period eclipsing binary, and two systems containing only normal early type stars for which emission lines have not been previously reported. The interpretation of these observations in terms of individual stellar polarizations and their wavelength dependence is discussed. The theoretical basis for the intrinsic polarization of early type stars is explored with a model for the disk-like extended atmospheres of Be stars. Details of a polarimeter for the measurement of the linear polarization of astronomical point sources are also presented with narrow band (Δ lambda = 100A) measurements of the polarization of γ Cas from lambda 4000 to lambda 5800

  10. ENERGY STAR Unit Reports

    Data.gov (United States)

    Department of Housing and Urban Development — These quarterly Federal Fiscal Year performance reports track the ENERGY STAR qualified HOME units that Participating Jurisdictions record in HUD's Integrated...

  11. Young and Waltzing Binary Stars

    Science.gov (United States)

    2001-10-01

    other) - the detailed analysis showed that the distance between the two components is only 12 solar radii, or a little more than 8 million kilometres. If you would image yourself standing on the surface of the smaller star, the disk of the companion star would extend some 15° in the sky. This is 30 times larger than our view of the Sun! ADONIS observations The short orbital period and the even shorter duration of the eclipses, only 6 hours, posed a real challenge for the observers. They decided to obtain further high-angular resolution observations with the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. Most fortunately, early ADONIS images demonstrated that this binary stellar system has a third companion, sufficiently far away from the two others to be seen as a separate star by ADONIS. This unexpected bonus made it possible to monitor the light changes of the binary system in great detail, by using the third companion as a convenient "reference" star. In December 2000 and January 2001, detailed ADONIS images of the RXJ 0529.4+0041 system were obtained in three near-infrared filters (the J-, H- and K-bands). ADONIS is equipped with the SHARP II camera and eliminates the adverse image-smearing effects of the atmospheric turbulence in real-time by means of a computer-controlled flexible mirror. As expected, the new, extremely sharp images of RXJ 0529.4+0041 greatly improved the achievable photometric precision. In particular, as the image of the third component was perfectly separated from the others, it did not "contaminate" the derived light curve of the eclipsing binary. The movie Primary eclipse Secondary eclipse ESO PR Photo 29a/01 ESO PR Photo 29a/01 [Preview - JPEG: 375 x 400 pix - 87k] [Normal - JPEG: 750 x 800 pix - 240k] ESO PR Photo 29d/01 ESO PR Photo 29d/01 [Preview - JPEG: 375 x 400 pix - 112k] [Normal - JPEG: 750 x 800 pix - 272k] ESO PR Photo 29b/01 ESO PR Photo 29b/01 [Preview - JPEG: 375 x 400 pix

  12. Star-formation functions and the genetics of pulsar origin

    International Nuclear Information System (INIS)

    Guseinov, O.K.; Kasumov, F.K.; Yusifov, I.M.

    1982-01-01

    The star-formation function and the genetics of pulsar origin are discussed. It is shown that the progenitors of pulsars are main-sequence stars with masses of >5M/sub sun/ for almost all the kinds of initial mass functions discussed in the literature. Pulsars are genetically connected with supernova outbursts (mainly of type II). The probability of pulsar formation as a result of ''quiet collapse'' is extremely low. Thus, the hypothesis that pulsars are formed from objects of the extreme planar component of the Galaxy is confirmed on more complete and statistically uniform material

  13. I-Love-Q to the extreme

    Science.gov (United States)

    Silva, Hector O.; Yunes, Nicolás

    2018-01-01

    Certain bulk properties of neutron stars, in particular their moment of inertia, rotational quadrupole moment and tidal Love number, when properly normalized, are related to one another in a nearly equation of state independent way. The goal of this paper is to test these relations with extreme equations of state at supranuclear densities constrained to satisfy only a handful of generic, physically sensible conditions. By requiring that the equation of state be (i) barotropic and (ii) its associated speed of sound be real, we construct a piecewise function that matches a tabulated equation of state at low densities, while matching a stiff equation of state parametrized by its sound speed in the high-density region. We show that the I-Love-Q relations hold to 1 percent with this class of equations of state, even in the extreme case where the speed of sound becomes superluminal and independently of the transition density. We also find further support for the interpretation of the I-Love-Q relations as an emergent symmetry due to the nearly constant eccentricity of isodensity contours inside the star. These results reinforce the robustness of the I-Love-Q relations against our current incomplete picture of physics at supranuclear densities, while strengthening our confidence in the applicability of these relations in neutron star astrophysics.

  14. Star Masses and Star-Planet Distances for Earth-like Habitability.

    Science.gov (United States)

    Waltham, David

    2017-01-01

    This paper presents statistical estimates for the location and duration of habitable zones (HZs) around stars of different mass. The approach is based upon the assumption that Earth's location, and the Sun's mass, should not be highly atypical of inhabited planets. The results support climate-model-based estimates for the location of the Sun's HZ except models giving a present-day outer-edge beyond 1.64 AU. The statistical approach also demonstrates that there is a habitability issue for stars smaller than 0.65 solar masses since, otherwise, Earth would be an extremely atypical inhabited world. It is difficult to remove this anomaly using the assumption that poor habitability of planets orbiting low-mass stars results from unfavorable radiation regimes either before, or after, their stars enter the main sequence. However, the anomaly is well explained if poor habitability results from tidal locking of planets in the HZs of small stars. The expected host-star mass for planets with intelligent life then has a 95% confidence range of 0.78 M ⊙ planets with at least simple life is 0.57 M ⊙  < M < 1.64 M ⊙ . Key Words: Habitability-Habitable zone-Anthropic-Red dwarfs-Initial mass function. Astrobiology 17, 61-77.

  15. Extreme value distributions

    CERN Document Server

    Ahsanullah, Mohammad

    2016-01-01

    The aim of the book is to give a through account of the basic theory of extreme value distributions. The book cover a wide range of materials available to date. The central ideas and results of extreme value distributions are presented. The book rwill be useful o applied statisticians as well statisticians interrested to work in the area of extreme value distributions.vmonograph presents the central ideas and results of extreme value distributions.The monograph gives self-contained of theory and applications of extreme value distributions.

  16. FEROS Finds a Strange Star

    Science.gov (United States)

    1999-02-01

    responsible for the overall design and construction, as well as the data reduction software; this institution was also involved in the construction of the first major instrument for the VLT, FORS. The Copenhagen University Observatory provided the detector controller and took care of the associated installation and tests. ESO supplied the first concept for the new spectrograph, its infrastructure, the fibre link between the telescope and the instrument, and the CCD detector by means of which the spectra are recorded. FEROS is a rather unique instrument. It combines a very large spectral coverage from the near-ultraviolet to the infrared region of the spectrum (360 to 920 nm, altogether 560 nm in one exposure) and a high resolving power. The full spectral range is divided into about 100,000 separate pixels, each of which corresponds to a velocity interval of about 3 km/sec. Moreover, FEROS is extremely light-efficient for an instrument of this complex type. Despite the large number of optical elements needed to produce exceedingly detailed spectra of very high quality, 46% of the light entering the spectrograph is actually recorded by the detector. FEROS is mounted on an optical bench in an isolated and thermally controlled room next to the telescope and is an extremely stable instrument. It is operated in a very user-friendly way, and the observing astronomer can obtain quick-look results directly at the telescope using the FEROS on-line data reduction pipeline that is integrated into the ESO-MIDAS image processing system. Notes: [1]: In addition to very young stars that have not yet destroyed their "original" Lithium, this element is also found in the upper atmospheres of some peculiar stars of the so-called Asymptotic Giant Branch (AGB) type. It is believed that this is the result of nuclear burning of the Helium isotope 3 He that has been produced inside such stars during an earlier evolutionary phase. The Lithium is then brought to the surface by means of "convection", i

  17. Stars and Flowers, Flowers and Stars

    Science.gov (United States)

    Minti, Hari

    2012-12-01

    The author, a graduated from the Bucharest University (1964), actually living and working in Israel, concerns his book to variable stars and flowers, two domains of his interest. The analogies includes double stars, eclipsing double stars, eclipses, Big Bang. The book contains 34 chapters, each of which concerns various relations between astronomy and other sciences and pseudosciences such as Psychology, Religion, Geology, Computers and Astrology (to which the author is not an adherent). A special part of the book is dedicated to archeoastronomy and ethnoastronomy, as well as to history of astronomy. Between the main points of interest of these parts: ancient sanctuaries in Sarmizegetusa (Dacia), Stone Henge(UK) and other. The last chapter of the book is dedicated to flowers. The book is richly illustrated. It is designed for a wide circle of readers.

  18. The Updated Multiple Star Catalog

    Science.gov (United States)

    Tokovinin, Andrei

    2018-03-01

    The catalog of hierarchical stellar systems with three or more components is an update of the original 1997 version. For 2000 hierarchies, the new Multiple Star Catalog (MSC) provides distances, component masses and periods, and supplementary information (astrometry, photometry, identifiers, orbits, notes). The MSC content and format are explained, and its incompleteness and strong observational selection are stressed. Nevertheless, the MSC can be used for statistical studies and is a valuable source for planning observations of multiple stars. Rare classes of stellar hierarchies found in the MSC (with six or seven components, extremely eccentric orbits, planar and possibly resonant orbits, hosting planets) are briefly presented. High-order hierarchies have smaller velocity dispersion compared to triples and are often associated with moving groups. The paper concludes with an analysis of the ratio of periods and separations between inner and outer subsystems. In wide hierarchies, the ratio of semimajor axes, estimated statistically, is distributed between 3 and 300, with no evidence of dynamically unstable systems.

  19. Science Through ARts (STAR)

    Science.gov (United States)

    Kolecki, Joseph; Petersen, Ruth; Williams, Lawrence

    2002-01-01

    Science Through ARts (STAR) is an educational initiative designed to teach students through a multidisciplinary approach to learning. This presentation describes the STAR pilot project, which will use Mars exploration as the topic to be integrated. Schools from the United Kingdom, Japan, the United States, and possibly eastern Europe are expected to participate in the pilot project.

  20. European Stars and Stripes

    National Research Council Canada - National Science Library

    Hendricks, Nancy

    1994-01-01

    The European Stars and Stripes (ES&S) organization publishes a daily newspaper, The Stars and Stripes, for DoD personnel stationed in Germany, Italy, the United Kingdom, and other DoD activities in the U.S. European Command...

  1. Nebraska STARS: Achieving Results

    Science.gov (United States)

    Roschewski, Pat; Isernhagen, Jody; Dappen, Leon

    2006-01-01

    In 2000, the state of Nebraska passed legislation requiring the assessment of student performance on content standards, but its requirements were very different from those of any other state. Nebraska created what has come to be known as STARS (School-based Teacher-led Assessment and Reporting System). Under STARS, each of Nebraska's nearly 500…

  2. Convective overshooting in stars

    NARCIS (Netherlands)

    Andrássy, R.

    2015-01-01

    Numerous observations provide evidence that the standard picture, in which convective mixing is limited to the unstable layers of a star, is incomplete. The mixing layers in real stars are significantly more extended than what the standard models predict. Some of the observations require changing

  3. By Draconis Stars

    Science.gov (United States)

    Bopp, Bernard W.

    An optical spectroscopic survey of dK-M stars has resulted in the discovery of several new H-alpha emission objects. Available optical data suggest these stars have a level of chromospheric activity midway between active BY Dra stars and quiet dM's. These "marginal" BY Dra stars are single objects that have rotation velocities slightly higher than that of quiet field stars but below that of active flare/BY Dra objects. The marginal BY Dra stars provide us with a class of objects rotating very near a "trigger velocity" (believed to be 5 km/s) which appears to divide active flare/BY Dra stars from quiet dM's. UV data on Mg II emission fluxes and strength of transition region features such as C IV will serve to fix activity levels in the marginal objects and determine chromosphere and transition-region heating rates. Simultaneous optical magnetic field measures will be used to explore the connection between fieldstrength/filling-factor and atmospheric heating. Comparison of these data with published information on active and quiet dM stars will yield information on the character of the stellar dynamo as it makes a transition from "low" to "high" activity.

  4. Observing Double Stars

    Science.gov (United States)

    Genet, Russell M.; Fulton, B. J.; Bianco, Federica B.; Martinez, John; Baxter, John; Brewer, Mark; Carro, Joseph; Collins, Sarah; Estrada, Chris; Johnson, Jolyon; Salam, Akash; Wallen, Vera; Warren, Naomi; Smith, Thomas C.; Armstrong, James D.; McGaughey, Steve; Pye, John; Mohanan, Kakkala; Church, Rebecca

    2012-05-01

    Double stars have been systematically observed since William Herschel initiated his program in 1779. In 1803 he reported that, to his surprise, many of the systems he had been observing for a quarter century were gravitationally bound binary stars. In 1830 the first binary orbital solution was obtained, leading eventually to the determination of stellar masses. Double star observations have been a prolific field, with observations and discoveries - often made by students and amateurs - routinely published in a number of specialized journals such as the Journal of Double Star Observations. All published double star observations from Herschel's to the present have been incorporated in the Washington Double Star Catalog. In addition to reviewing the history of visual double stars, we discuss four observational technologies and illustrate these with our own observational results from both California and Hawaii on telescopes ranging from small SCTs to the 2-meter Faulkes Telescope North on Haleakala. Two of these technologies are visual observations aimed primarily at published "hands-on" student science education, and CCD observations of both bright and very faint doubles. The other two are recent technologies that have launched a double star renaissance. These are lucky imaging and speckle interferometry, both of which can use electron-multiplying CCD cameras to allow short (30 ms or less) exposures that are read out at high speed with very low noise. Analysis of thousands of high speed exposures allows normal seeing limitations to be overcome so very close doubles can be accurately measured.

  5. SUPPRESSION OF STAR FORMATION IN NGC 1266

    Energy Technology Data Exchange (ETDEWEB)

    Alatalo, Katherine; Lanz, Lauranne; Bitsakis, Theodoros; Appleton, Philip N.; Ogle, Patrick M. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Lacy, Mark; Lonsdale, Carol J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Nyland, Kristina; Meier, David S. [Physics Department, New Mexico Tech, Socorro, NM 87801 (United States); Cales, Sabrina L. [Department of Astronomy, Faculty of Physical and Mathematical Sciences, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Chang, Philip [Department of Physics, University of Wisconsin—Milwaukee, Milwaukee, WI 53201 (United States); Davis, Timothy A.; De Zeeuw, P. T. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany); Martín, Sergio, E-mail: kalatalo@ipac.caltech.edu [Institut de Radioastronomie Millimétrique, 300 Rue de la Piscine, Domaine Universitaire, F-38406 Saint Martin d' Hères (France)

    2015-01-01

    NGC 1266 is a nearby lenticular galaxy that harbors a massive outflow of molecular gas powered by the mechanical energy of an active galactic nucleus (AGN). It has been speculated that such outflows hinder star formation (SF) in their host galaxies, providing a form of feedback to the process of galaxy formation. Previous studies, however, indicated that only jets from extremely rare, high-power quasars or radio galaxies could impart significant feedback on their hosts. Here we present detailed observations of the gas and dust continuum of NGC 1266 at millimeter wavelengths. Our observations show that molecular gas is being driven out of the nuclear region at M-dot {sub out}≈110 M{sub ⊙} yr{sup –1}, of which the vast majority cannot escape the nucleus. Only 2 M {sub ☉} yr{sup –1} is actually capable of escaping the galaxy. Most of the molecular gas that remains is very inefficient at forming stars. The far-infrared emission is dominated by an ultra-compact (≲ 50 pc) source that could either be powered by an AGN or by an ultra-compact starburst. The ratio of the SF surface density (Σ{sub SFR}) to the gas surface density (Σ{sub H{sub 2}}) indicates that SF is suppressed by a factor of ≈50 compared to normal star-forming galaxies if all gas is forming stars, and ≈150 for the outskirt (98%) dense molecular gas if the central region is powered by an ultra-compact starburst. The AGN-driven bulk outflow could account for this extreme suppression by hindering the fragmentation and gravitational collapse necessary to form stars through a process of turbulent injection. This result suggests that even relatively common, low-power AGNs are able to alter the evolution of their host galaxies as their black holes grow onto the M-σ relation.

  6. Neutron Stars and Pulsars

    CERN Document Server

    Becker, Werner

    2009-01-01

    Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only review...

  7. Spectrophotometry of carbon stars

    Energy Technology Data Exchange (ETDEWEB)

    Oganesyan, R.K.; Karapetyan, M.S.; Nersisyan, S.E.

    1986-01-01

    The results are given of the spectrophotometric investigation of 56 carbon stars in the spectral range from 4000 to 6800 A with resolution 3 A. The observed energy distributions of these stars are determined relative to the flux at the wavelength /sub 0/ = 5556; they are presented in the form of graphs. The energy distributions have been obtained for the first time for 35 stars. Variation in the line Ba II 4554 A has been found in the spectra of St Cam, UU Aur, and RV Mon. Large changes have taken place in the spectra of RT UMa and SS Vir. It is noted that the spectra of carbon stars have a depression, this being situated in different spectral regions for individual groups of stars.

  8. On the evolution of stars

    International Nuclear Information System (INIS)

    Kippenhahn, R.

    1989-01-01

    A popular survey is given of the present knowledge on evolution and ageing of stars. Main sequence stars, white dwarf stars, and red giant stars are classified in the Hertzsprung-Russell (HR)-diagram by measurable quantities: surface temperature and luminosity. From the HR-diagram it can be concluded to star mass and age. Star-forming processes in interstellar clouds as well as stellar burning processes are illustrated. The changes occurring in a star due to the depletion of the nuclear energy reserve are described. In this frame the phenomena of planetary nebulae, supernovae, pulsars, neutron stars as well as of black holes are explained

  9. Monte Carlo simulation of star/linear and star/star blends with chemically identical monomers

    Energy Technology Data Exchange (ETDEWEB)

    Theodorakis, P E [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Avgeropoulos, A [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Freire, J J [Departamento de Ciencias y Tecnicas FisicoquImicas, Universidad Nacional de Educacion a Distancia, Facultad de Ciencias, Senda del Rey 9, 28040 Madrid (Spain); Kosmas, M [Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece); Vlahos, C [Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece)

    2007-11-21

    The effects of chain size and architectural asymmetry on the miscibility of blends with chemically identical monomers, differing only in their molecular weight and architecture, are studied via Monte Carlo simulation by using the bond fluctuation model. Namely, we consider blends composed of linear/linear, star/linear and star/star chains. We found that linear/linear blends are more miscible than the corresponding star/star mixtures. In star/linear blends, the increase in the volume fraction of the star chains increases the miscibility. For both star/linear and star/star blends, the miscibility decreases with the increase in star functionality. When we increase the molecular weight of linear chains of star/linear mixtures the miscibility decreases. Our findings are compared with recent analytical and experimental results.

  10. Monte Carlo simulation of star/linear and star/star blends with chemically identical monomers

    Science.gov (United States)

    Theodorakis, P. E.; Avgeropoulos, A.; Freire, J. J.; Kosmas, M.; Vlahos, C.

    2007-11-01

    The effects of chain size and architectural asymmetry on the miscibility of blends with chemically identical monomers, differing only in their molecular weight and architecture, are studied via Monte Carlo simulation by using the bond fluctuation model. Namely, we consider blends composed of linear/linear, star/linear and star/star chains. We found that linear/linear blends are more miscible than the corresponding star/star mixtures. In star/linear blends, the increase in the volume fraction of the star chains increases the miscibility. For both star/linear and star/star blends, the miscibility decreases with the increase in star functionality. When we increase the molecular weight of linear chains of star/linear mixtures the miscibility decreases. Our findings are compared with recent analytical and experimental results.

  11. Monte Carlo simulation of star/linear and star/star blends with chemically identical monomers

    International Nuclear Information System (INIS)

    Theodorakis, P E; Avgeropoulos, A; Freire, J J; Kosmas, M; Vlahos, C

    2007-01-01

    The effects of chain size and architectural asymmetry on the miscibility of blends with chemically identical monomers, differing only in their molecular weight and architecture, are studied via Monte Carlo simulation by using the bond fluctuation model. Namely, we consider blends composed of linear/linear, star/linear and star/star chains. We found that linear/linear blends are more miscible than the corresponding star/star mixtures. In star/linear blends, the increase in the volume fraction of the star chains increases the miscibility. For both star/linear and star/star blends, the miscibility decreases with the increase in star functionality. When we increase the molecular weight of linear chains of star/linear mixtures the miscibility decreases. Our findings are compared with recent analytical and experimental results

  12. Zero Sound in Neutron Stars with Dense Quark Matter under Strong Magnetic Fields

    DEFF Research Database (Denmark)

    Kouvaris, Christoforos

    2009-01-01

    We study a neutron star with a quark matter core under extremely strong magnetic fields. We investigate the possibility of an Urca process as a mechanism for the cooling of such a star. We found that apart from very particular cases, the Urca process cannot occur. We also study the stability...

  13. The Physical Nature of Subdwarf A Stars: White Dwarf Impostors

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Kilic, Mukremin; Gianninas, A., E-mail: wbrown@cfa.harvard.edu, E-mail: kilic@ou.edu, E-mail: alexg@nhn.ou.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK, 73019 (United States)

    2017-04-10

    We address the physical nature of subdwarf A-type (sdA) stars and their possible link to extremely low mass (ELM) white dwarfs (WDs). The two classes of objects are confused in low-resolution spectroscopy. However, colors and proper motions indicate that sdA stars are cooler and more luminous, and thus larger in radius, than published ELM WDs. We demonstrate that surface gravities derived from pure hydrogen models suffer a systematic ∼1 dex error for sdA stars, likely explained by metal line blanketing below 9000 K. A detailed study of five eclipsing binaries with radial velocity orbital solutions and infrared excess establishes that these sdA stars are metal-poor ≃1.2 M {sub ⊙} main sequence stars with ≃0.8 M {sub ⊙} companions. While WDs must exist at sdA temperatures, only ∼1% of a magnitude-limited sdA sample should be ELM WDs. We conclude that the majority of sdA stars are metal-poor A–F type stars in the halo, and that recently discovered pulsating ELM WD-like stars with no obvious radial velocity variations may be SX Phe variables, not pulsating WDs.

  14. The Physical Nature of Subdwarf A Stars: White Dwarf Impostors

    Science.gov (United States)

    Brown, Warren R.; Kilic, Mukremin; Gianninas, A.

    2017-04-01

    We address the physical nature of subdwarf A-type (sdA) stars and their possible link to extremely low mass (ELM) white dwarfs (WDs). The two classes of objects are confused in low-resolution spectroscopy. However, colors and proper motions indicate that sdA stars are cooler and more luminous, and thus larger in radius, than published ELM WDs. We demonstrate that surface gravities derived from pure hydrogen models suffer a systematic ˜1 dex error for sdA stars, likely explained by metal line blanketing below 9000 K. A detailed study of five eclipsing binaries with radial velocity orbital solutions and infrared excess establishes that these sdA stars are metal-poor ≃1.2 M ⊙ main sequence stars with ≃0.8 M ⊙ companions. While WDs must exist at sdA temperatures, only ˜1% of a magnitude-limited sdA sample should be ELM WDs. We conclude that the majority of sdA stars are metal-poor A-F type stars in the halo, and that recently discovered pulsating ELM WD-like stars with no obvious radial velocity variations may be SX Phe variables, not pulsating WDs.

  15. The Physical Nature of Subdwarf A Stars: White Dwarf Impostors

    International Nuclear Information System (INIS)

    Brown, Warren R.; Kilic, Mukremin; Gianninas, A.

    2017-01-01

    We address the physical nature of subdwarf A-type (sdA) stars and their possible link to extremely low mass (ELM) white dwarfs (WDs). The two classes of objects are confused in low-resolution spectroscopy. However, colors and proper motions indicate that sdA stars are cooler and more luminous, and thus larger in radius, than published ELM WDs. We demonstrate that surface gravities derived from pure hydrogen models suffer a systematic ∼1 dex error for sdA stars, likely explained by metal line blanketing below 9000 K. A detailed study of five eclipsing binaries with radial velocity orbital solutions and infrared excess establishes that these sdA stars are metal-poor ≃1.2 M ⊙ main sequence stars with ≃0.8 M ⊙ companions. While WDs must exist at sdA temperatures, only ∼1% of a magnitude-limited sdA sample should be ELM WDs. We conclude that the majority of sdA stars are metal-poor A–F type stars in the halo, and that recently discovered pulsating ELM WD-like stars with no obvious radial velocity variations may be SX Phe variables, not pulsating WDs.

  16. Star Cluster Structure from Hierarchical Star Formation

    Science.gov (United States)

    Grudic, Michael; Hopkins, Philip; Murray, Norman; Lamberts, Astrid; Guszejnov, David; Schmitz, Denise; Boylan-Kolchin, Michael

    2018-01-01

    Young massive star clusters (YMCs) spanning 104-108 M⊙ in mass generally have similar radial surface density profiles, with an outer power-law index typically between -2 and -3. This similarity suggests that they are shaped by scale-free physics at formation. Recent multi-physics MHD simulations of YMC formation have also produced populations of YMCs with this type of surface density profile, allowing us to narrow down the physics necessary to form a YMC with properties as observed. We show that the shallow density profiles of YMCs are a natural result of phase-space mixing that occurs as they assemble from the clumpy, hierarchically-clustered configuration imprinted by the star formation process. We develop physical intuition for this process via analytic arguments and collisionless N-body experiments, elucidating the connection between star formation physics and star cluster structure. This has implications for the early-time structure and evolution of proto-globular clusters, and prospects for simulating their formation in the FIRE cosmological zoom-in simulations.

  17. DK UMa: A Star on the Ascent

    Science.gov (United States)

    Simon, Theodore

    1999-01-01

    DK UMa (= 24 UMa = HD 82210) is a G4 IV-III star. According to its M(sub v) and B - V color, it is located at the base of the red giant branch, having recently exited from the Hertzsprung Gap. Now poised to start its first ascent along the giant branch, DK UMa is at a significant juncture in its post-main-sequence evolution, offering an important evolutionary comparison for magnetic activity with stars like 31 Comae, which is just entering the Hertzsprung Gap, and older stars like the Hyades giants or P Ceti, which have passed the tip of the giant branch and lie in the so-called 'clump'. As part of a major survey of the ultraviolet and X ray properties of a well-defined sample of evolved giant stars, DK UMa was observed with the Extreme Ultraviolet Explorer (EUVE) spacecraft in March 1997, for a total exposure time of 230 kiloseconds. A plot of the extracted short-wavelength (SW) spectrum of this star is shown, where it is compared with similar EUVE exposures for other yellow and red giant stars in the activity survey. In terms of the spectral lines of different ionization stages present in these spectra, the transition region and coronal temperature of DK UMa appears to be intermediate between those of 31 Com and P Ceti. Combining the relative strengths of the EUVE lines with Hubble Space Telescope (HST) data at near UV wavelengths and with ROSAT X-ray fluxes, the differential emission measure (DEM) distributions of these stars form a sequence in coronal temperature, which peaks at 10(exp 7.2) K for 31 Com, at 10(exp 6.8) K for B Ceti, and at intermediate temperatures for DK UMa - consistent with the evolutionary stages represented by the three stars. The integrated fluxes of the strongest emission lines found in the EUVE spectrum of DK UMa are listed, again compared with similar measurements for other giant stars that were observed in the course of other EUVE Guest Observer programs.

  18. Making star teams out of star players.

    Science.gov (United States)

    Mankins, Michael; Bird, Alan; Root, James

    2013-01-01

    Top talent is an invaluable asset: In highly specialized or creative work, for instance, "A" players are likely to be six times as productive as "B" players. So when your company has a crucial strategic project, why not multiply all that firepower and have a team of your best performers tackle it? Yet many companies hesitate to do this, believing that all-star teams don't work: Big egos will get in the way. The stars won't be able to work with one another. They'll drive the team Leader crazy. Mankins, Bird, and Root of Bain & Company believe it's time to set aside that thinking. They have seen all-star teams do extraordinary work. But there is a right way and a wrong way to organize them. Before you can even begin to assemble such a team, you need to have the right talent management practices, so you hire and develop the best people and know what they're capable of. You have to give the team appropriate incentives and leaders and support staffers who are stars in their own right. And projects that are ill-defined or small scale are not for all-star teams. Use them only for critical missions, and make sure their objectives are clear. Even with the right setup, things can still go wrong. The wise executive will take steps to manage egos, prune non-team-players, and prevent average coworkers from feeling completely undervalued. She will also invest a lot of time in choosing the right team Leader and will ask members for lots of feedback to monitor how that leader is doing.

  19. How extreme is extreme hourly precipitation?

    Science.gov (United States)

    Papalexiou, Simon Michael; Dialynas, Yannis G.; Pappas, Christoforos

    2016-04-01

    The importance of accurate representation of precipitation at fine time scales (e.g., hourly), directly associated with flash flood events, is crucial in hydrological design and prediction. The upper part of a probability distribution, known as the distribution tail, determines the behavior of extreme events. In general, and loosely speaking, tails can be categorized in two families: the subexponential and the hyperexponential family, with the first generating more intense and more frequent extremes compared to the latter. In past studies, the focus has been mainly on daily precipitation, with the Gamma distribution being the most popular model. Here, we investigate the behaviour of tails of hourly precipitation by comparing the upper part of empirical distributions of thousands of records with three general types of tails corresponding to the Pareto, Lognormal, and Weibull distributions. Specifically, we use thousands of hourly rainfall records from all over the USA. The analysis indicates that heavier-tailed distributions describe better the observed hourly rainfall extremes in comparison to lighter tails. Traditional representations of the marginal distribution of hourly rainfall may significantly deviate from observed behaviours of extremes, with direct implications on hydroclimatic variables modelling and engineering design.

  20. Optimization with Extremal Dynamics

    International Nuclear Information System (INIS)

    Boettcher, Stefan; Percus, Allon G.

    2001-01-01

    We explore a new general-purpose heuristic for finding high-quality solutions to hard discrete optimization problems. The method, called extremal optimization, is inspired by self-organized criticality, a concept introduced to describe emergent complexity in physical systems. Extremal optimization successively updates extremely undesirable variables of a single suboptimal solution, assigning them new, random values. Large fluctuations ensue, efficiently exploring many local optima. We use extremal optimization to elucidate the phase transition in the 3-coloring problem, and we provide independent confirmation of previously reported extrapolations for the ground-state energy of ±J spin glasses in d=3 and 4

  1. Stability of boson stars

    International Nuclear Information System (INIS)

    Gleiser, M.

    1988-01-01

    Boson stars are gravitationally bound, spherically symmetric equilibrium configurations of cold, free, or interacting complex scalar fields phi. As these equilibrium configurations naturally present local anisotropy, it is sensible to expect departures from the well-known stability criteria for fluid stars. With this in mind, I investigate the dynamical instability of boson stars against charge-conserving, small radial perturbations. Following the method developed by Chandrasekhar, a variational base for determining the eigenfrequencies of the perturbations is found. This approach allows one to find numerically an upper bound for the central density where dynamical instability occurs. As applications of the formalism, I study the stability of equilibrium configurations obtained both for the free and for the self-interacting [with V(phi) = (λ/4)chemical bondphichemical bond 4 ] massive scalar field phi. Instabilities are found to occur not for the critical central density as in fluid stars but for central densities considerably higher. The departure from the results for fluid stars is sensitive to the coupling λ; the higher the value of λ, the more the stability properties of boson stars approach those of a fluid star. These results are linked to the fractional anisotropy at the radius of the configuration

  2. From clouds to stars

    International Nuclear Information System (INIS)

    Elmegreen, B.G.

    1982-01-01

    At the present time, the theory of star formation must be limited to what we know about the lowest density gas, or about the pre-main sequence stars themselves. We would like to understand two basic processes: 1) how star-forming clouds are created from the ambient interstellar gas in the first place, and 2) how small parts of these clouds condense to form individual stars. We are interested also in knowing what pre-main sequence stars are like, and how they can interact with their environment. These topics are reviewed in what follows. In this series of lectures, what we know about the formation of stars is tentatively described. The lectures begin with a description of the interstellar medium, and then they proceed along the same direction that a young star would follow during its creation, namely from clouds through the collapse phase and onto the proto-stellar phase. The evolution of viscous disks and two models for the formation of the solar system are described in the last lectures. The longest lectures, and the topics that are covered in most detail, are not necessarily the ones for which we have the most information. Physically intuitive explanations for the various processes are emphasized, rather then mathematical explanations. In some cases, the mathematical aspects are developed as well, but only when the equations can be used to give important numerical values for comparison with the observations

  3. Super-solar Metallicity Stars in the Galactic Center Nuclear Star Cluster: Unusual Sc, V, and Y Abundances

    Science.gov (United States)

    Do, Tuan; Kerzendorf, Wolfgang; Konopacky, Quinn; Marcinik, Joseph M.; Ghez, Andrea; Lu, Jessica R.; Morris, Mark R.

    2018-03-01

    We present adaptive-optics assisted near-infrared high-spectral-resolution observations of late-type giants in the nuclear star cluster of the Milky Way. The metallicity and elemental abundance measurements of these stars offer us an opportunity to understand the formation and evolution of the nuclear star cluster. In addition, their proximity to the supermassive black hole (∼0.5 pc) offers a unique probe of the star formation and chemical enrichment in this extreme environment. We observed two stars identified by medium spectral-resolution observations as potentially having very high metallicities. We use spectral-template fitting with the PHOENIX grid and Bayesian inference to simultaneously constrain the overall metallicity, [M/H], alpha-element abundance [α/Fe], effective temperature, and surface gravity of these stars. We find that one of the stars has very high metallicity ([M/H] > 0.6) and the other is slightly above solar metallicity. Both Galactic center stars have lines from scandium (Sc), vanadium (V), and yttrium (Y) that are much stronger than allowed by the PHOENIX grid. We find, using the spectral synthesis code Spectroscopy Made Easy, that [Sc/Fe] may be an order of magnitude above solar. For comparison, we also observed an empirical calibrator in NGC 6791, the highest metallicity cluster known ([M/H] ∼ 0.4). Most lines are well matched between the calibrator and the Galactic center stars, except for Sc, V, and Y, which confirms that their abundances must be anomalously high in these stars. These unusual abundances, which may be a unique signature of nuclear star clusters, offer an opportunity to test models of chemical enrichment in this region.

  4. Nuclear physics of stars

    CERN Document Server

    Iliadis, Christian

    2007-01-01

    Thermonuclear reactions in stars is a major topic in the field of nuclear astrophysics, and deals with the topics of how precisely stars generate their energy through nuclear reactions, and how these nuclear reactions create the elements the stars, planets and - ultimately - we humans consist of. The present book treats these topics in detail. It also presents the nuclear reaction and structure theory, thermonuclear reaction rate formalism and stellar nucleosynthesis. The topics are discussed in a coherent way, enabling the reader to grasp their interconnections intuitively. The book serves bo

  5. Giant Black Hole Rips Apart Star

    Science.gov (United States)

    2004-02-01

    Thanks to two orbiting X-ray observatories, astronomers have the first strong evidence of a supermassive black hole ripping apart a star and consuming a portion of it. The event, captured by NASA's Chandra and ESA's XMM-Newton X-ray Observatories, had long been predicted by theory, but never confirmed. Astronomers believe a doomed star came too close to a giant black hole after being thrown off course by a close encounter with another star. As it neared the enormous gravity of the black hole, the star was stretched by tidal forces until it was torn apart. This discovery provides crucial information about how these black holes grow and affect surrounding stars and gas. "Stars can survive being stretched a small amount, as they are in binary star systems, but this star was stretched beyond its breaking point," said Stefanie Komossa of the Max Planck Institute for Extraterrestrial Physics (MPE) in Germany, leader of the international team of researchers. "This unlucky star just wandered into the wrong neighborhood." While other observations have hinted stars are destroyed by black holes (events known as "stellar tidal disruptions"), these new results are the first strong evidence. Evidence already exists for supermassive black holes in many galaxies, but looking for tidal disruptions represents a completely independent way to search for black holes. Observations like these are urgently needed to determine how quickly black holes can grow by swallowing neighboring stars. Animation of Star Ripped Apart by Giant Black Hole Star Ripped Apart by Giant Black Hole Observations with Chandra and XMM-Newton, combined with earlier images from the German Roentgen satellite, detected a powerful X-ray outburst from the center of the galaxy RX J1242-11. This outburst, one of the most extreme ever detected in a galaxy, was caused by gas from the destroyed star that was heated to millions of degrees Celsius before being swallowed by the black hole. The energy liberated in the process

  6. RUNAWAY DWARF CARBON STARS AS CANDIDATE SUPERNOVA EJECTA

    Energy Technology Data Exchange (ETDEWEB)

    Plant, Kathryn A.; Margon, Bruce; Guhathakurta, Puragra; Cunningham, Emily C.; Toloba, Elisa [Department of Astronomy and Astrophysics and University of California Observatories, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Munn, Jeffrey A., E-mail: kaplant@ucsc.edu [US Naval Observatory, Flagstaff Station, 10391 West Naval Observatory Road, Flagstaff, AZ 86005-8521 (United States)

    2016-12-20

    The dwarf carbon (dC) star SDSS J112801.67+004034.6 has an unusually high radial velocity, 531 ± 4 km s{sup −1}. We present proper motion and new spectroscopic observations which imply a large Galactic rest frame velocity, 425 ± 9 km s{sup −1}. Several other SDSS dC stars are also inferred to have very high galactocentric velocities, again each based on both high heliocentric radial velocity and also confidently detected proper motions. Extreme velocities and the presence of C {sub 2} bands in the spectra of dwarf stars are both rare. Passage near the Galactic center can accelerate stars to such extreme velocities, but the large orbital angular momentum of SDSS J1128 precludes this explanation. Ejection from a supernova in a binary system or disruption of a binary by other stars are possibilities, particularly as dC stars are thought to obtain their photospheric C {sub 2} via mass transfer from an evolved companion.

  7. HIERARCHICAL FORMATION OF THE GALACTIC HALO AND THE ORIGIN OF HYPER METAL-POOR STARS

    International Nuclear Information System (INIS)

    Komiya, Yutaka; Habe, Asao; Suda, Takuma; Fujimoto, Masayuki Y.

    2009-01-01

    Extremely metal-poor (EMP) stars in the Galactic halo are unique probes into the early universe and the first stars. We construct a new program to calculate the formation history of EMP stars in the early universe with the chemical evolution, based on the merging history of the Galaxy. We show that the hierarchical structure formation model reproduces the observed metallicity distribution function and also the total number of observed EMP stars, when we take into account the high-mass initial mass function and the contribution of binaries, as proposed by Komiya et al. The low-mass survivors divide into two groups of those born before and after the mini-halos are polluted by their own first supernovae. The former has observational counterparts in the hyper metal-poor (HMP) stars below [Fe/H] - 4. In this Letter, we focus on the origin of the extremely small iron abundances of HMP stars. We compute the change in the surface abundances of individual stars through the accretion of the metal-enriched interstellar gas along with the dynamical and chemical evolution of the Galaxy, to demonstrate that after-birth pollution of Population III stars is sufficiently effective to explain the observed abundances of HMP stars. Metal pre-enrichment by possible pair instability supernovae is also discussed, to derive constraints on their roles and on the formation of the first low-mass stars.

  8. An overview of white dwarf stars

    Directory of Open Access Journals (Sweden)

    Charpinet S.

    2013-03-01

    Full Text Available We present a brief summary of what is currently known about white dwarf stars, with an emphasis on their evolutionary and internal properties. As is well known, white dwarfs represent the end products of stellar evolution for the vast majority of stars and, as such, bear the signatures of past events (such as mass loss, mixing phases, loss and redistribution of angular momentum, and thermonuclear burning that are of essential importance in the evolution of stars in general. In addition, white dwarf stars represent ideal testbeds for our understanding of matter under extreme conditions, and work on their constitutive physics (neutrino production rates, conductive and radiative opacities, interior liquid/solid equations of state, partially ionized and partially degenerate envelope equations of state, diffusion coefficients, line broadening mechanisms is still being actively pursued. Given a set of constitutive physics, cooling white dwarfs can be used advantageously as cosmochronometers. Moreover, the field has been blessed by the existence of four distinct families of pulsating white dwarfs, each mapping a different evolutionary phase, and this allows the application of the asteroseismological method to probe and test their internal structure and evolutionary state. We set the stage for the reviews that follow on cooling white dwarfs as cosmochronometers and physics laboratories, as well as on the properties of pulsating white dwarfs and the asteroseismological results that can be inferred.

  9. Carbon Stars T. Lloyd Evans

    Indian Academy of Sciences (India)

    that the features used in estimating luminosities of ordinary giant stars are just those whose abundance ... This difference between the spectral energy distributions (SEDs) of CH stars and the. J stars, which belong to .... that the first group was binaries, as for the CH stars of the solar vicinity, while those of the second group ...

  10. Classifying Returns as Extreme

    DEFF Research Database (Denmark)

    Christiansen, Charlotte

    2014-01-01

    I consider extreme returns for the stock and bond markets of 14 EU countries using two classification schemes: One, the univariate classification scheme from the previous literature that classifies extreme returns for each market separately, and two, a novel multivariate classification scheme tha...

  11. A window on first-stars models from studies of dwarf galaxies and galactic halo stars

    Science.gov (United States)

    Venkatesan, Aparna

    2018-06-01

    Dwarf galaxies dominate the local universe by number and are predicted to be even more dominant at early times, with many having large star formation rates per unit mass. The cosmological role of dwarf galaxies in the metal enrichment and the reionization of the universe is an important but unresolved problem at present. Nearby low-mass galaxies are much more accessible observationally for detailed study and may be local analogs of the types of galaxies that hosted the first-light sources relevant for reionization. I will share recent results on UV studies of the escaping radiation from nearby low-mass starforming galaxies, as well as the tantalizing similarities in element abundance patterns between local dwarf galaxies and the latest data compilations on extremely metal-poor stars in galactic halos. I will highlight trends of interest in a variety of individual elements at values of [Fe/H] between -7 and -3, including alpha-elements, elements originating mostly in intermediate-mass stars, lithium, titanium, and r-process elements. These trends constrain not only models of the first stars and their supernovae, but provide a window into the physical conditions in early galaxies and when metal-free star formation may have ceased in the early universe.This work was supported by the University of San Francisco Faculty Development Fund, and NSF grant AST-1637339. We thank the Aspen Center for Physics, where some of this work was conducted, and which is supported by National Science Foundation grant PHY-1607611.

  12. AgSTAR

    Science.gov (United States)

    AgSTAR promotes biogas recovery projects, which generate renewable energy and other beneficial products from the anaerobic digestion of livestock manure and organic wastes while decreasing greenhouse gas emissions from the agriculture sector.

  13. Orbiting radiation stars

    International Nuclear Information System (INIS)

    Foster, Dean P; Langford, John; Perez-Giz, Gabe

    2016-01-01

    We study a spherically symmetric solution to the Einstein equations in which the source, which we call an orbiting radiation star (OR-star), is a compact object consisting of freely falling null particles. The solution avoids quantum scale regimes and hence neither relies upon nor ignores the interaction of quantum mechanics and gravitation. The OR-star spacetime exhibits a deep gravitational well yet remains singularity free. In fact, it is geometrically flat in the vicinity of the origin, with the flat region being of any desirable scale. The solution is observationally distinct from a black hole because a photon from infinity aimed at an OR-star escapes to infinity with a time delay. (paper)

  14. Cataclysmic Variable Stars

    Science.gov (United States)

    Hellier, Coel

    2001-01-01

    Cataclysmic variable stars are the most variable stars in the night sky, fluctuating in brightness continually on timescales from seconds to hours to weeks to years. The changes can be recorded using amateur telescopes, yet are also the subject of intensive study by professional astronomers. That study has led to an understanding of cataclysmic variables as binary stars, orbiting so closely that material transfers from one star to the other. The resulting process of accretion is one of the most important in astrophysics. This book presents the first account of cataclysmic variables at an introductory level. Assuming no previous knowledge of the field, it explains the basic principles underlying the variability, while providing an extensive compilation of cataclysmic variable light curves. Aimed at amateur astronomers, undergraduates, and researchers, the main text is accessible to those with no mathematical background, while supplementary boxes present technical details and equations.

  15. SX Phoenicis stars

    International Nuclear Information System (INIS)

    Nemec, J.; Mateo, M.

    1990-01-01

    The purpose of this paper is to review the basic observational information concerning SX Phe stars, including recent findings such as the discovery of about 40 low-luminosity variable stars in the Carina dwarf galaxy and identification of at least one SX Phe star in the metal-rich globular cluster M71. Direct evidence supporting the hypothesis that at least some BSs are binary systems comes from the discovery of two contact binaries and a semidetached binary among the 50 BSs in the globular cluster NGC 5466. Since these systems will coalesce on a time scale 500 Myr, it stands to reason that many (if not most) BSs are coalesced binaries. The merger hypothesis also explains the relatively-large masses (1.0-1.2 solar masses) that have been derived for SX Phe stars and halo BSs, and may also account for the nonvariable BSs in the 'SX Phe instability strip'. 132 refs

  16. The Mystery of the Lonely Neutron Star

    Science.gov (United States)

    2000-09-01

    The VLT Reveals Bowshock Nebula around RX J1856.5-3754 Deep inside the Milky Way, an old and lonely neutron star plows its way through interstellar space. Known as RX J1856.5-3754 , it measures only ~ 20 km across. Although it is unusually hot for its age, about 700,000 °C, earlier observations did not reveal any activity at all, contrary to all other neutron stars known so far. In order to better understand this extreme type of object, a detailed study of RX J1856.5-3754 was undertaken by Marten van Kerkwijk (Institute of Astronomy of the University of Utrecht, The Netherlands) and Shri Kulkarni (California Institute of Technology, Pasadena, California, USA). To the astronomers' delight and surprise, images and spectra obtained with the ESO Very Large Telescope (VLT) now show a small nearby cone-shaped ("bowshock") nebula. It shines in the light from hydrogen atoms and is obviously a product of some kind of interaction with this strange star. Neutron stars - remnants of supernova explosions Neutron stars are among the most extreme objects in the Universe. They are formed when a massive star dies in a "supernova explosion" . During this dramatic event, the core of the star suddenly collapses under its own weight and the outer parts are violently ejected into surrounding space. One of the best known examples is the Crab Nebula in the constellation Taurus (The Bull). It is the gaseous remnant of a star that exploded in the year 1054 and also left behind a pulsar , i.e., a rotating neutron star [1]. A supernova explosion is a very complex event that is still not well understood. Nor is the structure of a neutron star known in any detail. It depends on the extreme properties of matter that has been compressed to incredibly high densities, far beyond the reach of physics experiments on Earth [2]. The ultimate fate of a neutron star is also unclear. From the observed rates of supernova explosions in other galaxies, it appears that several hundred million neutron stars

  17. Spectrophotometry of carbon stars

    International Nuclear Information System (INIS)

    Gow, C.E.

    1975-01-01

    Observations of over one hundred carbon stars have been made with the Indiana rapid spectral scanner in the red and, when possible, in the visual and blue regions of the spectrum. Five distinct subtypes of carbon stars (Barium, CH, R, N, and hydrogen deficient) are represented in the list of observed stars, although the emphasis was placed on the N stars when the observations were made. The rapid scanner was operated in the continuous sweep mode with the exit slit set at twenty angstroms, however, seeing fluctuations and guiding errors smear the spectrum to an effective resolution of approximately thirty angstroms. Nightly observations of Hayes standard stars yielded corrections for atmospheric extinction and instrumental response. The reduction scheme rests on two assumptions, that thin clouds are gray absorbers and the wavelength dependence of the sky transparency does not change during the course of the night. Several stars have been observed in the blue region of the spectrum with the Indiana SIT vidicon spectrometer at two angstroms resolution. It is possible to derive a color temperature for the yellow--red spectral region by fitting a black-body curve through two chosen continuum points. Photometric indices were calculated relative to the blackbody curve to measure the C 2 Swan band strength, the shape of the CN red (6,1) band to provide a measure of the 12 C/ 13 C isotope ratio, and in the hot carbon stars (Barium, CH, and R stars) the strength of an unidentified feature centered at 400 angstroms. An extensive abundance grid of model atmospheres was calculated using a modified version of the computer code ATLAS

  18. Young Stars with SALT

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, Adric R. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Alam, Munazza K.; Rice, Emily L.; Cruz, Kelle L. [Department of Astrophysics, The American Museum of Natural History, New York, NY 10024 (United States); Henry, Todd J., E-mail: arr@caltech.edu [RECONS Institute, Chambersburg, PA (United States)

    2017-05-10

    We present a spectroscopic and kinematic analysis of 79 nearby M dwarfs in 77 systems. All of these dwarfs are low-proper-motion southern hemisphere objects and were identified in a nearby star survey with a demonstrated sensitivity to young stars. Using low-resolution optical spectroscopy from the Red Side Spectrograph on the South African Large Telescope, we have determined radial velocities, H-alpha, lithium 6708 Å, and potassium 7699 Å equivalent widths linked to age and activity, and spectral types for all of our targets. Combined with astrometric information from literature sources, we identify 44 young stars. Eighteen are previously known members of moving groups within 100 pc of the Sun. Twelve are new members, including one member of the TW Hydra moving group, one member of the 32 Orionis moving group, 9 members of Tucana-Horologium, one member of Argus, and two new members of AB Doradus. We also find 14 young star systems that are not members of any known groups. The remaining 33 star systems do not appear to be young. This appears to be evidence of a new population of nearby young stars not related to the known nearby young moving groups.

  19. STAR facility tritium accountancy

    International Nuclear Information System (INIS)

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J.

    2008-01-01

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  20. A dynamical description of neutron star crusts

    International Nuclear Information System (INIS)

    Mota, V de la; S, F; Eudes, Ph

    2013-01-01

    Neutron Stars are natural laboratories where fundamental properties of matter under extreme conditions can be explored. Modern nuclear physics input as well as many-body theories are valuable tools which may allow us to improve our understanding of the physics of those compact objects. In this work the occurrence of exotic structures in the outermost layers of neutron stars is investigated within the framework of a microscopic model. In this approach the nucleonic dynamics is described by a time-dependent mean field approach at around zero temperature. Starting from an initial crystalline lattice of nuclei at subnuclear densities the system evolves toward a manifold of self-organized structures with different shapes and similar energies. These structures are studied in terms of a phase diagram in density and the corresponding sensitivity to the isospin-dependent part of the equation of state and to the isotopic composition is investigated.

  1. Asteroseismology of white dwarf stars

    OpenAIRE

    Córsico, A. H.

    2014-01-01

    Most of low- and intermediate-mass stars that populate the Universe will end their lives as white dwarf stars. These ancient stellar remnants have encrypted inside a precious record of the evolutionary history of the progenitor stars, providing a wealth of information about the evolution of stars, star formation, and the age of a variety of stellar populations, such as our Galaxy and open and globular clusters. While some information like surface chemical composition, temperature and gravity ...

  2. On the Maximum Mass of Accreting Primordial Supermassive Stars

    Energy Technology Data Exchange (ETDEWEB)

    Woods, T. E.; Heger, Alexander [Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, VIC 3800 (Australia); Whalen, Daniel J. [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth PO1 3FX (United Kingdom); Haemmerlé, Lionel; Klessen, Ralf S. [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische. Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)

    2017-06-10

    Supermassive primordial stars are suspected to be the progenitors of the most massive quasars at z ∼ 6. Previous studies of such stars were either unable to resolve hydrodynamical timescales or considered stars in isolation, not in the extreme accretion flows in which they actually form. Therefore, they could not self-consistently predict their final masses at collapse, or those of the resulting supermassive black hole seeds, but rather invoked comparison to simple polytropic models. Here, we systematically examine the birth, evolution, and collapse of accreting, non-rotating supermassive stars under accretion rates of 0.01–10 M {sub ⊙} yr{sup −1} using the stellar evolution code Kepler . Our approach includes post-Newtonian corrections to the stellar structure and an adaptive nuclear network and can transition to following the hydrodynamic evolution of supermassive stars after they encounter the general relativistic instability. We find that this instability triggers the collapse of the star at masses of 150,000–330,000 M {sub ⊙} for accretion rates of 0.1–10 M {sub ⊙} yr{sup −1}, and that the final mass of the star scales roughly logarithmically with the rate. The structure of the star, and thus its stability against collapse, is sensitive to the treatment of convection and the heat content of the outer accreted envelope. Comparison with other codes suggests differences here may lead to small deviations in the evolutionary state of the star as a function of time, that worsen with accretion rate. Since the general relativistic instability leads to the immediate death of these stars, our models place an upper limit on the masses of the first quasars at birth.

  3. "Movie Star" Acting Strangely, Radio Astronomers Find

    Science.gov (United States)

    1999-01-01

    is the first time anyone has been able to follow the motions of gas in the atmosphere of any star other than the sun. Our results raise a lot of questions that we can't answer yet, but this will give the theorists new information to work with," said Diamond. The star, called TX Cam, in the constellation Camelopardalis, is a variable star whose brightness changes regularly over a period of 557 days. In 1997, the NRAO astronomers began a series of observations aimed at tracking gas motions in the star's outer atmosphere through a full pulsation cycle. Observing with the VLBA every two weeks, they now have accumulated 37 separate images, which they combined to make the "movie." They were able to measure the gas motions because one of the gases in the star's atmosphere, Silicon Monoxide (SiO), can act as a natural amplifier of radio signals. Such cosmic masers amplify radio emission similar to the way that a laser amplifies light emission. Regions where this maser activity occurs appear as bright spots on radio telescope images when the telescope's receivers are tuned to the specific frequency emitted by the masers. With the extremely high resolving power, or ability to see detail, of the VLBA, the astronomers were able to follow the motions of individual maser regions within the star's atmosphere. These served as tracers of overall gas motions. "Such a study only became possible when the VLBA became operational, and with the availability of computers able to handle the quantity of data produced," Kemball said. The SiO maser regions appear to form a ring around the star. The ring's diameter is greater than the distance from the Sun to Saturn, and has expanded from 10 to 20 percent over the course of the VLBA observations. "The continued expansion was our first surprise, but we've only scratched the surface of the immense amount of data our observations have produced," Diamond said. "Since we think that magnetic fields are playing a large role in how this gas behaves, we

  4. A robust star identification algorithm with star shortlisting

    Science.gov (United States)

    Mehta, Deval Samirbhai; Chen, Shoushun; Low, Kay Soon

    2018-05-01

    A star tracker provides the most accurate attitude solution in terms of arc seconds compared to the other existing attitude sensors. When no prior attitude information is available, it operates in "Lost-In-Space (LIS)" mode. Star pattern recognition, also known as star identification algorithm, forms the most crucial part of a star tracker in the LIS mode. Recognition reliability and speed are the two most important parameters of a star pattern recognition technique. In this paper, a novel star identification algorithm with star ID shortlisting is proposed. Firstly, the star IDs are shortlisted based on worst-case patch mismatch, and later stars are identified in the image by an initial match confirmed with a running sequential angular match technique. The proposed idea is tested on 16,200 simulated star images having magnitude uncertainty, noise stars, positional deviation, and varying size of the field of view. The proposed idea is also benchmarked with the state-of-the-art star pattern recognition techniques. Finally, the real-time performance of the proposed technique is tested on the 3104 real star images captured by a star tracker SST-20S currently mounted on a satellite. The proposed technique can achieve an identification accuracy of 98% and takes only 8.2 ms for identification on real images. Simulation and real-time results depict that the proposed technique is highly robust and achieves a high speed of identification suitable for actual space applications.

  5. SPECTRAL CLASSIFICATION AND PROPERTIES OF THE O Vz STARS IN THE GALACTIC O-STAR SPECTROSCOPIC SURVEY (GOSSS)

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Julia I.; Barbá, Rodolfo H.; Sabín-Sanjulián, Carolina [Departamento de Física y Astronomía, Universidad de La Serena, Av. Cisternas 1200 Norte, La Serena (Chile); Walborn, Nolan R. [Space Telescope Science Institute, 3700 San Martin Drive, MD 21218, Baltimore (United States); Díaz, Sergio Simón [Instituto de Astrofísica de Canarias, E-38200, Departamento de Astrofísica, Universidad de La Laguna, E-38205, La Laguna, Tenerife (Spain); Apellániz, Jesús Maíz [Centro de Astrobiología, CSIC-INTA, campus ESAC, Camino Bajo del Castillo s/n, E-28 692 Madrid (Spain); Gamen, Roberto C. [Instituto de Astrofísica de La Plata (CONICET, UNLP), Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata (Argentina); Morrell, Nidia I. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Sota, Alfredo [Instituto de Astrofísica de Andalucía-CSIC, Glorieta de la Astronomía s/n, E-18 008 Granada (Spain); Marco, Amparo; Negueruela, Ignacio, E-mail: jarias@userena.cl [Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Escuela Politécnica Superior, Universidad de Alicante, Carretera San Vicente del Raspeig s/n, E03690, San Vicente del Raspeig (Spain); and others

    2016-08-01

    On the basis of the Galactic O Star Spectroscopic Survey (GOSSS), we present a detailed systematic investigation of the O Vz stars. The currently used spectral classification criteria are rediscussed, and the Vz phenomenon is recalibrated through the addition of a quantitative criterion based on the equivalent widths of the He i λ 4471, He ii λ 4542, and He ii λ 4686 spectral lines. The GOSSS O Vz and O V populations resulting from the newly adopted spectral classification criteria are comparatively analyzed. The locations of the O Vz stars are probed, showing a concentration of the most extreme cases toward the youngest star-forming regions. The occurrence of the Vz spectral peculiarity in a solar-metallicity environment, as predicted by the fastwind code, is also investigated, confirming the importance of taking into account several processes for the correct interpretation of the phenomenon.

  6. SPECTRAL CLASSIFICATION AND PROPERTIES OF THE O Vz STARS IN THE GALACTIC O-STAR SPECTROSCOPIC SURVEY (GOSSS)

    International Nuclear Information System (INIS)

    Arias, Julia I.; Barbá, Rodolfo H.; Sabín-Sanjulián, Carolina; Walborn, Nolan R.; Díaz, Sergio Simón; Apellániz, Jesús Maíz; Gamen, Roberto C.; Morrell, Nidia I.; Sota, Alfredo; Marco, Amparo; Negueruela, Ignacio

    2016-01-01

    On the basis of the Galactic O Star Spectroscopic Survey (GOSSS), we present a detailed systematic investigation of the O Vz stars. The currently used spectral classification criteria are rediscussed, and the Vz phenomenon is recalibrated through the addition of a quantitative criterion based on the equivalent widths of the He i λ 4471, He ii λ 4542, and He ii λ 4686 spectral lines. The GOSSS O Vz and O V populations resulting from the newly adopted spectral classification criteria are comparatively analyzed. The locations of the O Vz stars are probed, showing a concentration of the most extreme cases toward the youngest star-forming regions. The occurrence of the Vz spectral peculiarity in a solar-metallicity environment, as predicted by the fastwind code, is also investigated, confirming the importance of taking into account several processes for the correct interpretation of the phenomenon.

  7. Extremal surface barriers

    International Nuclear Information System (INIS)

    Engelhardt, Netta; Wall, Aron C.

    2014-01-01

    We present a generic condition for Lorentzian manifolds to have a barrier that limits the reach of boundary-anchored extremal surfaces of arbitrary dimension. We show that any surface with nonpositive extrinsic curvature is a barrier, in the sense that extremal surfaces cannot be continuously deformed past it. Furthermore, the outermost barrier surface has nonnegative extrinsic curvature. Under certain conditions, we show that the existence of trapped surfaces implies a barrier, and conversely. In the context of AdS/CFT, these barriers imply that it is impossible to reconstruct the entire bulk using extremal surfaces. We comment on the implications for the firewall controversy

  8. The diversity of neutron stars: Nearby thermally emitting neutron stars and the compact central objects in supernova remnants

    Science.gov (United States)

    Kaplan, David L.

    Neutron stars are invaluable tools for exploring stellar death, the physics of ultra-dense matter, and the effects of extremely strong magnetic fields. The observed population of neutron stars is dominated by the > 1000 radio pulsars, but there are distinct sub-populations that, while fewer in number, can have significant impact on our understanding of the issues mentioned above. These populations are the nearby isolated neutron stars discovered by ROSAT, and the central compact objects in supernova remnants. The studies of both of these populations have been greatly accelerated in recent years through observations with the Chandra X-ray Observatory and the XMM-Newton telescope. First, we discuss radio, optical, and X-ray observations of the nearby neutron stars aimed at determining their relation to the Galactic neutron star population and at unraveling their complex physical processes by determining the basic astronomical parameters that define the population -- instances, ages, and magnetic fields -- the uncertainties in which limit any attempt to derive basic physical parameters for these objects. We conclude that these sources are 10^6 year-old cooling neutron stars with magnetic fields above 10^13 G. Second, we describe the hollow supernova remnant problem: why many of the supernova remnants in the Galaxy have no indication central neutron stars. We have undertaken an X-ray census of neutron stars in a volume-limited sample of Galactic supernova remnants, and from it conclude that either many supernovae do not produce neutron stars contrary to expectation, or that neutron stars can have a wide range in cooling behavior that makes many sources disappear from the X-ray sky.

  9. New ultra metal-poor stars from SDSS: follow-up GTC medium-resolution spectroscopy

    Science.gov (United States)

    Aguado, D. S.; Allende Prieto, C.; González Hernández, J. I.; Rebolo, R.; Caffau, E.

    2017-07-01

    Context. The first generation of stars formed in the Galaxy left behind the chemical signatures of their nucleosynthesis in the interstellar medium, visible today in the atmospheres of low-mass stars that formed afterwards. Sampling the chemistry of those low-mass provides insight into the first stars. Aims: We aim to increase the samples of stars with extremely low metal abundances, identifying ultra metal-poor stars from spectra with modest spectral resolution and signal-to-noise ratio (S/N). Achieving this goal involves deriving reliable metallicities and carbon abundances from such spectra. Methods: We carry out follow-up observations of faint, V > 19, metal-poor candidates selected from SDSS spectroscopy and observed with the Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) at GTC. The SDSS and follow-up OSIRIS spectra were analyzed using the FERRE code to derive effective temperatures, surface gravities, metallicities and carbon abundances. In addition, a well-known extremely metal-poor star has been included in our sample to calibrate the analysis methodology. Results: We observed and analyzed five metal-poor candidates from modest-quality SDSS spectra. All stars in our sample have been confirmed as extremely metal-poor stars, in the [Fe/H] Palma. Programme ID GTC2E-16A and ID GTC65-16B.

  10. Extreme explosions supernovae, hypernovae, magnetars, and other unusual cosmic blasts

    CERN Document Server

    Stevenson, David S

    2013-01-01

    What happens at the end of the life of massive stars? At one time we thought all these stars followed similar evolutionary paths. However, new discoveries have shown that things are not quite that simple. This book focuses on the extreme -the most intense, brilliant and peculiar- of astronomical explosions. It features highly significant observational finds that push the frontiers of astronomy and astrophysics, particularly as before these objects were only predicted in theory.  This book is for those who want the latest information and ideas about the most dramatic and unusual explosions dete

  11. Bubbles, Bow Shocks and B Fields: The Interplay Between Neutron Stars and Their Environments

    Science.gov (United States)

    Gaensler, Bryan M.

    2006-12-01

    Young neutron stars embody Nature's extremes: they spin incredibly rapidly, move through space at enormous velocities, and are imbued with unimaginably strong magnetic fields. Since their progenitor stars do not have any of these characteristics, these properties are presumably all imparted to a neutron star during or shortly after the supernova explosion in which it is formed. This raises two fundamental questions: how do neutron stars attain these extreme parameters, and how are their vast reservoirs of energy then dissipated? I will explain how multi-wavelength observations of the environments of neutron stars not only provide vital forensic evidence on the physics of supernova core collapse, but also spectacularly reveal the winds, jets, shocks and outflows through which these remarkable objects couple to their surroundings.

  12. Brilliant Star in a Colourful Neighbourhood

    Science.gov (United States)

    2010-07-01

    of gas and dust lies off the left side of this picture as can be seen in image eso1031b. This area includes the remarkable star Eta Carinae and was featured in an earlier press release (eso0905). Notes [1] More information about Wolf-Rayet stars More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  13. Extreme Transients in the High Energy Universe

    Science.gov (United States)

    Kouveliotou, Chryssa

    2013-01-01

    The High Energy Universe is rich in diverse populations of objects spanning the entire cosmological (time)scale, from our own present-day Milky Way to the re-ionization epoch. Several of these are associated with extreme conditions irreproducible in laboratories on Earth. Their study thus sheds light on the behavior of matter under extreme conditions, such as super-strong magnetic fields (in excess of 10^14 G), high gravitational potentials (e.g., Super Massive Black Holes), very energetic collimated explosions resulting in relativistic jet flows (e.g., Gamma Ray Bursts, exceeding 10^53 ergs). In the last thirty years, my work has been mostly focused on two apparently different but potentially linked populations of such transients: magnetars (highly magnetized neutron stars) and Gamma Ray Bursts (strongly beamed emission from relativistic jets), two populations that constitute unique astrophysical laboratories, while also giving us the tools to probe matter conditions in the Universe to redshifts beyond z=10, when the first stars and galaxies were assembled. I did not make this journey alone I have either led or participated in several international collaborations studying these phenomena in multi-wavelength observations; solitary perfection is not sufficient anymore in the world of High Energy Astrophysics. I will describe this journey, present crucial observational breakthroughs, discuss key results and muse on the future of this field.

  14. Wolf-Rayet Stars

    Science.gov (United States)

    Hamann, Wolf-Rainer; Sander, Andreas; Todt, Helge

    Nearly 150 years ago, the French astronomers Charles Wolf and Georges Rayet described stars with very conspicuous spectra that are dominated by bright and broad emission lines. Meanwhile termed Wolf-Rayet Stars after their discoverers, those objects turned out to represent important stages in the life of massive stars. As the first conference in a long time that was specifically dedicated to Wolf-Rayet stars, an international workshop was held in Potsdam, Germany, from 1.-5. June 2015. About 100 participants, comprising most of the leading experts in the field as well as as many young scientists, gathered for one week of extensive scientific exchange and discussions. Considerable progress has been reported throughout, e.g. on finding such stars, modeling and analyzing their spectra, understanding their evolutionary context, and studying their circumstellar nebulae. While some major questions regarding Wolf-Rayet stars still remain open 150 years after their discovery, it is clear today that these objects are not just interesting stars as such, but also keystones in the evolution of galaxies. These proceedings summarize the talks and posters presented at the Potsdam Wolf-Rayet workshop. Moreover, they also include the questions, comments, and discussions emerging after each talk, thereby giving a rare overview not only about the research, but also about the current debates and unknowns in the field. The Scientific Organizing Committee (SOC) included Alceste Bonanos (Athens), Paul Crowther (Sheffield), John Eldridge (Auckland), Wolf-Rainer Hamann (Potsdam, Chair), John Hillier (Pittsburgh), Claus Leitherer (Baltimore), Philip Massey (Flagstaff), George Meynet (Geneva), Tony Moffat (Montreal), Nicole St-Louis (Montreal), and Dany Vanbeveren (Brussels).

  15. Models of symbiotic stars

    Science.gov (United States)

    Friedjung, Michael

    1993-01-01

    One of the most important features of symbiotic stars is the coexistence of a cool spectral component that is apparently very similar to the spectrum of a cool giant, with at least one hot continuum, and emission lines from very different stages of ionization. The cool component dominates the infrared spectrum of S-type symbiotics; it tends to be veiled in this wavelength range by what appears to be excess emission in D-type symbiotics, this excess usually being attributed to circumstellar dust. The hot continuum (or continua) dominates the ultraviolet. X-rays have sometimes also been observed. Another important feature of symbiotic stars that needs to be explained is the variability. Different forms occur, some variability being periodic. This type of variability can, in a few cases, strongly suggest the presence of eclipses of a binary system. One of the most characteristic forms of variability is that characterizing the active phases. This basic form of variation is traditionally associated in the optical with the veiling of the cool spectrum and the disappearance of high-ionization emission lines, the latter progressively appearing (in classical cases, reappearing) later. Such spectral changes recall those of novae, but spectroscopic signatures of the high-ejection velocities observed for novae are not usually detected in symbiotic stars. However, the light curves of the 'symbiotic nova' subclass recall those of novae. We may also mention in this connection that radio observations (or, in a few cases, optical observations) of nebulae indicate ejection from symbiotic stars, with deviations from spherical symmetry. We shall give a historical overview of the proposed models for symbiotic stars and make a critical analysis in the light of the observations of symbiotic stars. We describe the empirical approach to models and use the observational data to diagnose the physical conditions in the symbiotics stars. Finally, we compare the results of this empirical

  16. Statistics of Extremes

    KAUST Repository

    Davison, Anthony C.; Huser, Raphaë l

    2015-01-01

    Statistics of extremes concerns inference for rare events. Often the events have never yet been observed, and their probabilities must therefore be estimated by extrapolation of tail models fitted to available data. Because data concerning the event

  17. Analysis of extreme events

    CSIR Research Space (South Africa)

    Khuluse, S

    2009-04-01

    Full Text Available ) determination of the distribution of the damage and (iii) preparation of products that enable prediction of future risk events. The methodology provided by extreme value theory can also be a powerful tool in risk analysis...

  18. Acute lower extremity ischaemia

    African Journals Online (AJOL)

    Acute lower extremity ischaemia. Acute lower limb ischaemia is a surgical emergency. ... is ~1.5 cases per 10 000 persons per year. Acute ischaemia ... Table 2. Clinical features discriminating embolic from thrombotic ALEXI. Clinical features.

  19. What stars become peculiar type I supernovae?

    International Nuclear Information System (INIS)

    Uomoto, A.

    1986-01-01

    Hot hydrogen-deficient binaries such as Upsilon Sgr and KS Per are suggested as the stars most likely to become Type Ib supernovae. These systems satisfy the preexplosion constraints imposed by Type Ib observations by not having any hydrogen in their atmospheres (explaining their spectra), being truncated at the Roche lobe (explaining their light curves), and having large main-sequence masses (explaining their presence in extreme Population I locations). Although none of those known seems to be in danger of exploding, a system with a current primary mass of about solar masses may do so by core collapse. 36 references

  20. Starquakes, Heating Anomalies, and Nuclear Reactions in the Neutron Star Crust

    Science.gov (United States)

    Deibel, Alex Thomas

    When the most massive stars perish, their cores may remain intact in the form of extremely dense and compact stars. These stellar remnants, called neutron stars, are on the cusp of becoming black holes and reach mass densities greater than an atomic nucleus in their centers. Although the interiors of neutron stars were difficult to investigate at the time of their discovery, the advent of modern space-based telescopes (e.g., Chandra X-ray Observatory) has pushed our understanding of the neutron star interior into exciting new realms. It has been shown that the neutron star interior spans an enormous range of densities and contains many phases of matter, and further theoretical progress must rely on numerical calculations of neutron star phenomena built with detailed nuclear physics input. To further investigate the properties of the neutron star interior, this dissertation constructs numerical models of neutron stars, applies models to various observations of neutron star high-energy phenomena, and draws new conclusions about the neutron star interior from these analyses. In particular, we model the neutron star's outermost ? 1 km that encompasses the neutron star's envelope, ocean, and crust. The model must implement detailed nuclear physics to properly simulate the hydrostatic and thermal structure of the neutron star. We then apply our model to phenomena that occur in these layers, such as: thermonuclear bursts in the envelope, g-modes in the ocean, torsional oscillations of the crust, and crust cooling of neutron star transients. A comparison of models to observations provides new insights on the properties of dense matter that are often difficult to probe through terrestrial experiments. For example, models of the quiescent cooling of neutron stars, such as the accreting transient MAXI J0556-332, at late times into quiescence probe the thermal transport properties of the deep neutron star crust. This modeling provides independent data from astronomical

  1. THE DUSTIEST POST-MAIN SEQUENCE STARS IN THE MAGELLANIC CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Olivia C.; Meixner, Margaret; Roman-Duval, Julia [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Sargent, Benjamin A. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Boyer, Martha L. [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sewiło, Marta [The Johns Hopkins University, Department of Physics and Astronomy, 366 Bloomberg Center, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Hony, Sacha [Institut für Theoretische Astrophysik, Zentrum für Astronomie, Universitt Heidelberg, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)

    2015-10-01

    Using observations from the Herschel Inventory of The Agents of Galaxy Evolution (HERITAGE) survey of the Magellanic Clouds (MC), we have found 35 evolved stars and stellar end products that are bright in the far-infrared. These 28 (LMC) and 7 (SMC) sources were selected from the 529 evolved star candidates in the HERITAGE far-infrared point source catalogs. Our source identification method is based on spectral confirmation, spectral energy distribution characteristics, careful examination of the multiwavelength images and includes constraints on the luminosity, resulting in a thoroughly vetted list of evolved stars. These sources span a wide range in luminosity and hence initial mass. We found 13 low- to intermediate-mass evolved stars, including asymptotic giant branch (AGB) stars, post-AGB stars, planetary nebulae, and a symbiotic star. We also identify 10 high mass stars, including 4 of the 15 known B[e] stars in the MC, 3 extreme red supergiants that are highly enshrouded by dust, a Luminous Blue Variable, a Wolf–Rayet star, and two supernova remnants. Further, we report the detection of 9 probable evolved objects which were previously undescribed in the literature. These sources are likely to be among the dustiest evolved objects in the MC. The Herschel emission may either be due to dust produced by the evolved star or it may arise from swept-up interstellar medium material.

  2. Circulation of Stars

    Science.gov (United States)

    Boitani, P.

    2016-01-01

    Since the dawn of man, contemplation of the stars has been a primary impulse in human beings, who proliferated their knowledge of the stars all over the world. Aristotle sees this as the product of primeval and perennial “wonder” which gives rise to what we call science, philosophy, and poetry. Astronomy, astrology, and star art (painting, architecture, literature, and music) go hand in hand through millennia in all cultures of the planet (and all use catasterisms to explain certain phenomena). Some of these developments are independent of each other, i.e., they take place in one culture independently of others. Some, on the other hand, are the product of the “circulation of stars.” There are two ways of looking at this. One seeks out forms, the other concentrates on the passing of specific lore from one area to another through time. The former relies on archetypes (for instance, with catasterism), the latter constitutes a historical process. In this paper I present some of the surprising ways in which the circulation of stars has occurred—from East to West, from East to the Far East, and from West to East, at times simultaneously.

  3. Four new Delta Scuti stars

    Science.gov (United States)

    Schutt, R. L.

    1991-01-01

    Four new Delta Scuti stars are reported. Power, modified into amplitude, spectra, and light curves are used to determine periodicities. A complete frequency analysis is not performed due to the lack of a sufficient time base in the data. These new variables help verify the many predictions that Delta Scuti stars probably exist in prolific numbers as small amplitude variables. Two of these stars, HR 4344 and HD 107513, are possibly Am stars. If so, they are among the minority of variable stars which are also Am stars.

  4. Neutron star/red giant encounters in globular clusters

    International Nuclear Information System (INIS)

    Bailyn, C.D.

    1988-01-01

    The author presents a simple expression for the amount by which xsub(crit) is diminished as a star evolves xsub(crit) Rsub(crit)/R*, where Rsub(crit) is the maximum distance of closest approach between two stars for which the tidal energy is sufficient to bind the system, and R* is the radius of the star on which tides are being raised. Also it is concluded that tidal capture of giants by neutron stars resulting in binary systems is unlikely in globular clusters. However, collisions between neutron stars and red giants, or an alternative process involving tidal capture of a main-sequence star into an initially detached binary system, may result either in rapidly rotating neutron stars or in white dwarf/neutron star binaries. (author)

  5. Atomic diffusion in stars

    CERN Document Server

    Michaud, Georges; Richer, Jacques

    2015-01-01

    This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling.  In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...

  6. Dynamical Boson Stars

    Directory of Open Access Journals (Sweden)

    Steven L. Liebling

    2012-05-01

    Full Text Available The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s, John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called geons, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name boson stars. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single Killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.

  7. GRACE star camera noise

    Science.gov (United States)

    Harvey, Nate

    2016-08-01

    Extending results from previous work by Bandikova et al. (2012) and Inacio et al. (2015), this paper analyzes Gravity Recovery and Climate Experiment (GRACE) star camera attitude measurement noise by processing inter-camera quaternions from 2003 to 2015. We describe a correction to star camera data, which will eliminate a several-arcsec twice-per-rev error with daily modulation, currently visible in the auto-covariance function of the inter-camera quaternion, from future GRACE Level-1B product releases. We also present evidence supporting the argument that thermal conditions/settings affect long-term inter-camera attitude biases by at least tens-of-arcsecs, and that several-to-tens-of-arcsecs per-rev star camera errors depend largely on field-of-view.

  8. Molecules in stars

    International Nuclear Information System (INIS)

    Tsuji, T.

    1986-01-01

    Recently, research related to molecules in stars has rapidly expanded because of progress in related fields. For this reason, it is almost impossible to cover all the topics related to molecules in stars. Thus, here the authors focus their attention on molecules in the atmospheres of cool stars and do not cover in any detail topics related to circumstellar molecules originating from expanding envelopes located far from the stellar surface. However, the authors do discuss molecules in quasi-static circumstellar envelopes (a recently discovered new component of circumstellar envelopes) located near the stellar surface, since molecular lines originating from such envelopes show little velocity shift relative to photospheric lines, and hence they directly affect the interpretation and analysis of stellar spectra

  9. CARBON NEUTRON STAR ATMOSPHERES

    International Nuclear Information System (INIS)

    Suleimanov, V. F.; Klochkov, D.; Werner, K.; Pavlov, G. G.

    2014-01-01

    The accuracy of measuring the basic parameters of neutron stars is limited in particular by uncertainties in the chemical composition of their atmospheres. For example, the atmospheres of thermally emitting neutron stars in supernova remnants might have exotic chemical compositions, and for one of them, the neutron star in Cas A, a pure carbon atmosphere has recently been suggested by Ho and Heinke. To test this composition for other similar sources, a publicly available detailed grid of the carbon model atmosphere spectra is needed. We have computed this grid using the standard local thermodynamic equilibrium approximation and assuming that the magnetic field does not exceed 10 8  G. The opacities and pressure ionization effects are calculated using the Opacity Project approach. We describe the properties of our models and investigate the impact of the adopted assumptions and approximations on the emergent spectra

  10. Instability and star evolution

    International Nuclear Information System (INIS)

    Mirzoyan, L.V.

    1981-01-01

    The observational data are discussed which testify that the phenomena of dynamical instability of stars and stellar systems are definite manifestations of their evolution. The study of these phenomena has shown that the instability is a regular phase of stellar evolution. It has resulted in the recognition of the most important regularities of the process of star formation concerning its nature. This became possible due to the discovery in 1947 of stellar associations in our Galaxy. The results of the study of the dynamical instability of stellar associations contradict the predictions of classical hypothesis of stellar condensation. These data supplied a basis for a new hypothesis on the formation of stars and nebulae by the decay of superdense protostars [ru

  11. The twinkling of stars

    International Nuclear Information System (INIS)

    Jakeman, E.; Parry, G.; Pike, E.R.; Pusey, P.N.

    1978-01-01

    This article collects together some of the main ideas and experimental results on the twinkling of stars. Statistical methods are used to characterise the features of the scintillation and to investigate the ways in which these depend on the zenith angle of the star, the bandwidth of the light and various other parameters. Some new results are included which demonstrate the advantages of using photon counting methods in experiments on stellar scintillation. Since the twinkling of stars is a consequence of the turbulence in the Earth's magnetic atmosphere then measurements can be used to deduce some features of the structure of the turbulence. Some of the experiments designed to do this are discussed and the results reported. (author)

  12. Extreme Programming: Maestro Style

    Science.gov (United States)

    Norris, Jeffrey; Fox, Jason; Rabe, Kenneth; Shu, I-Hsiang; Powell, Mark

    2009-01-01

    "Extreme Programming: Maestro Style" is the name of a computer programming methodology that has evolved as a custom version of a methodology, called extreme programming that has been practiced in the software industry since the late 1990s. The name of this version reflects its origin in the work of the Maestro team at NASA's Jet Propulsion Laboratory that develops software for Mars exploration missions. Extreme programming is oriented toward agile development of software resting on values of simplicity, communication, testing, and aggressiveness. Extreme programming involves use of methods of rapidly building and disseminating institutional knowledge among members of a computer-programming team to give all the members a shared view that matches the view of the customers for whom the software system is to be developed. Extreme programming includes frequent planning by programmers in collaboration with customers, continually examining and rewriting code in striving for the simplest workable software designs, a system metaphor (basically, an abstraction of the system that provides easy-to-remember software-naming conventions and insight into the architecture of the system), programmers working in pairs, adherence to a set of coding standards, collaboration of customers and programmers, frequent verbal communication, frequent releases of software in small increments of development, repeated testing of the developmental software by both programmers and customers, and continuous interaction between the team and the customers. The environment in which the Maestro team works requires the team to quickly adapt to changing needs of its customers. In addition, the team cannot afford to accept unnecessary development risk. Extreme programming enables the Maestro team to remain agile and provide high-quality software and service to its customers. However, several factors in the Maestro environment have made it necessary to modify some of the conventional extreme

  13. Exploding Stars and Stripes

    Science.gov (United States)

    2011-03-01

    The discovery of a pattern of X-ray "stripes" in the remains of an exploded star may provide the first direct evidence that a cosmic event can accelerate particles to energies a hundred times higher than achieved by the most powerful particle accelerator on Earth. This result comes from a very long observation of the Tycho supernova remnant with NASA's Chandra X-ray Observatory. It could explain how some of the extremely energetic particles bombarding the Earth, called cosmic rays, are produced. "We've seen lots of intriguing structures in supernova remnants, but we've never seen stripes before," said Kristoffer Eriksen, a postdoctoral researcher at Rutgers University who led the study. "This made us think very hard about what's happening in the blast wave of this powerful explosion." This latest study from Chandra provides support for a theory about how magnetic fields can be dramatically amplified in such blast waves. In this theory, the magnetic fields become highly tangled and the motions of the particles very turbulent near the expanding supernova shock wave at the front edge of the supernova remnant. High-energy charged particles can bounce back and forth across the shock wave repeatedly, gaining energy with each crossing. Theoretical models of the motion of the most energetic particles -- which are mostly protons -- are predicted to leave a messy network of holes and dense walls corresponding to weak and strong regions of magnetic fields, respectively. The X-ray stripes discovered by the Chandra researchers are thought to be regions where the turbulence is greater and the magnetic fields more tangled than surrounding areas, and may be the walls predicted by the theory. Electrons become trapped in these regions and emit X-rays as they spiral around the magnetic field lines. However, the regular and almost periodic pattern of the X-ray stripes was not predicted by the theory. "It was a big surprise to find such a neatly arranged set of stripes," said co

  14. Evolving R Coronae Borealis Stars with MESA

    Science.gov (United States)

    Clayton, Geoffrey C.; Lauer, Amber; Chatzopoulos, Emmanouil; Frank, Juhan

    2018-01-01

    R Coronae Borealis (RCB) stars form a small class of cool, carbon-rich supergiants that have almost no hydrogen. They undergo extreme, irregular declines in brightness of up to 8 magnitudes due to the formation of thick clouds of carbon dust. Two scenarios have been proposed for the origin of an RCB star: the merger of a CO/He white dwarf (WD) binary and a final helium-shell flash. We are using a combination of 3D hydrodynamics codes and the 1D MESA (Modules for Experiments in Stellar Astrophysics) stellar evolution code including nucleosynthesis to construct post-merger spherical models based on realistic merger progenitor models and on our hydrodynamical simulations, and then following the evolution into the region of the HR diagram where RCB stars are located. We are investigating nucleosynthesis in the dynamically accreting material of CO/He WD mergers which may provide a suitable environment for significant production of 18O and the very low 16O/18O values observed.Our MESA modeling consists of two steps: first mimicking the WD merger event using two different techniques, (a) by choosing a very high mass accretion rate with appropriate abundances and (b) by applying "stellar engineering" to an initial CO WD model to account for the newly merged material by applying an entropy adjusting procedure. Second, we follow the post-merger evolution using a large nuclear reaction network including the effects of convective and rotational instabilities to the mixing of material in order to match the observed RCB abundances. MESA follows the evolution of the merger product as it expands and cools to become an RCB star. We then examine the surface abundances and compare them to the observed RCB abundances. We also investigate how long fusion continues in the He shell near the core and how this processed material is mixed up to the surface of the star. We then model the later evolution of RCB stars to determine their likely lifetimes and endpoints when they have returned to

  15. Weighing the Smallest Stars

    Science.gov (United States)

    2005-01-01

    VLT Finds Young, Very Low Mass Objects Are Twice As Heavy As Predicted Summary Thanks to the powerful new high-contrast camera installed at the Very Large Telescope, photos have been obtained of a low-mass companion very close to a star. This has allowed astronomers to measure directly the mass of a young, very low mass object for the first time. The object, more than 100 times fainter than its host star, is still 93 times as massive as Jupiter. And it appears to be almost twice as heavy as theory predicts it to be. This discovery therefore suggests that, due to errors in the models, astronomers may have overestimated the number of young "brown dwarfs" and "free floating" extrasolar planets. PR Photo 03/05: Near-infrared image of AB Doradus A and its companion (NACO SDI/VLT) A winning combination A star can be characterised by many parameters. But one is of uttermost importance: its mass. It is the mass of a star that will decide its fate. It is thus no surprise that astronomers are keen to obtain a precise measure of this parameter. This is however not an easy task, especially for the least massive ones, those at the border between stars and brown dwarf objects. Brown dwarfs, or "failed stars", are objects which are up to 75 times more massive than Jupiter, too small for major nuclear fusion processes to have ignited in its interior. To determine the mass of a star, astronomers generally look at the motion of stars in a binary system. And then apply the same method that allows determining the mass of the Earth, knowing the distance of the Moon and the time it takes for its satellite to complete one full orbit (the so-called "Kepler's Third Law"). In the same way, they have also measured the mass of the Sun by knowing the Earth-Sun distance and the time - one year - it takes our planet to make a tour around the Sun. The problem with low-mass objects is that they are very faint and will often be hidden in the glare of the brighter star they orbit, also when viewed

  16. General Relativity and Compact Stars

    International Nuclear Information System (INIS)

    Glendenning, Norman K.

    2005-01-01

    Compact stars--broadly grouped as neutron stars and white dwarfs--are the ashes of luminous stars. One or the other is the fate that awaits the cores of most stars after a lifetime of tens to thousands of millions of years. Whichever of these objects is formed at the end of the life of a particular luminous star, the compact object will live in many respects unchanged from the state in which it was formed. Neutron stars themselves can take several forms--hyperon, hybrid, or strange quark star. Likewise white dwarfs take different forms though only in the dominant nuclear species. A black hole is probably the fate of the most massive stars, an inaccessible region of spacetime into which the entire star, ashes and all, falls at the end of the luminous phase. Neutron stars are the smallest, densest stars known. Like all stars, neutron stars rotate--some as many as a few hundred times a second. A star rotating at such a rate will experience an enormous centrifugal force that must be balanced by gravity or else it will be ripped apart. The balance of the two forces informs us of the lower limit on the stellar density. Neutron stars are 10 14 times denser than Earth. Some neutron stars are in binary orbit with a companion. Application of orbital mechanics allows an assessment of masses in some cases. The mass of a neutron star is typically 1.5 solar masses. They can therefore infer their radii: about ten kilometers. Into such a small object, the entire mass of our sun and more, is compressed

  17. Probing thermonuclear burning on accreting neutron stars

    Science.gov (United States)

    Keek, L.

    2008-12-01

    Neutron stars are the most compact stars that can be directly observed, which makes them ideal laboratories to study physics at extreme densities. Neutron stars in low-mass X-ray binaries accrete hydrogen and helium from a lower-mass companion star through Roche lobe overflow. This matter undergoes thermonuclear burning in the neutron star envelope, creating carbon and heavier elements. The fusion process may proceed in an unstable manner, resulting in a thermonuclear runaway. Within one second the entire surface is burned, which is observable as a sharp rise in the emitted X-ray flux: a type I X-ray burst. Afterwards the neutron star surface cools down on a timescale of ten to one hundred seconds. During these bursts the surface of an accreting neutron star can be observed directly, which makes them instrumental for studying this type of stars. We have studied rare kinds of X-ray bursts. One such rare burst is the superburst, which lasts a thousand times longer than an ordinary burst. Superbursts are thought to result from the explosive burning of a thick carbon layer, which lies deeper inside the neutron star, close to a layer known as the crust. A prerequisite for the occurrence of a superburst is a high enough temperature, which is set by the temperature of the crust and the heat conductivity of the envelope. The latter is lowered by the presence of heavy elements that are produced during normal X-ray bursts. Using a large set of observations from the Wide Field Camera's onboard the BeppoSAX satellite, we find that, at high accretion rate, sources which do not exhibit normal bursts likely have a longer superburst recurrence time, than the observed superburst recurrence time of one burster. We analyze in detail the first superburst from a transient source, which went into outburst only 55 days before the superburst. Recent models of the neutron star crust predict that this is too small a time to heat the crust sufficiently for superburst ignition, indicating

  18. Evidence for a New Class of Extreme Ultraviolet Sources

    Science.gov (United States)

    Maoz, Dan; Ofek, Eran O.; Shemi, Amotz

    1997-01-01

    Most of the sources detected in the extreme ultraviolet (EUV; 100-600 A) by the ROSAT/WFC and EUVE all-sky surveys have been identified with active late-type stars and hot white dwarfs that are near enough to the Earth to escape absorption by interstellar gas. However, about 15 per cent of EUV sources are as yet unidentified with any optical counterparts. We examine whether the unidentified EUV sources may consist of the same population of late-type stars and white dwarfs. We present B and R photometry of stars in the fields of seven of the unidentified EUV sources. We detect in the optical the entire main-sequence and white dwarf population out to the greatest distances where they could still avoid absorption. We use color-magnitude diagrams to demonstrate that, in most of the fields, none of the observed stars has the colours and magnitudes of late-type dwarfs at distances less than 100 pc. Similarly, none of the observed stars is a white dwarf within 500 pc that is hot enough to be a EUV emitter. The unidentified EUV sources we study are not detected in X-rays, while cataclysmic variables, X-ray binaries, and active galactic nuclei generally are. We conclude that some of the EUV sources may be a new class of nearby objects, which are either very faint at optical bands or which mimic the colours and magnitudes of distant late-type stars or cool white dwarfs. One candidate for optically faint objects is isolated old neutron stars, slowly accreting interstellar matter. Such neutron stars are expected to be abundant in the Galaxy, and have not been unambiguously detected.

  19. Atmospheres of central stars

    International Nuclear Information System (INIS)

    Hummer, D.G.

    1978-01-01

    The author presents a brief summary of atmospheric models that are of possible relevance to the central stars of planetary nebulae, and then discusses the extent to which these models accord with the observations of both nebulae and central stars. Particular attention is given to the significance of the very high Zanstra temperature implied by the nebulae He II lambda 4686 A line, and to the discrepancy between the Zanstra He II temperature and the considerably lower temperatures suggested by the appearance of the visual spectrum for some of these objects. (Auth.)

  20. The Drifting Star

    Science.gov (United States)

    2008-04-01

    By studying in great detail the 'ringing' of a planet-harbouring star, a team of astronomers using ESO's 3.6-m telescope have shown that it must have drifted away from the metal-rich Hyades cluster. This discovery has implications for theories of star and planet formation, and for the dynamics of our Milky Way. ESO PR Photo 09a/08 ESO PR Photo 09a/08 Iota Horologii The yellow-orange star Iota Horologii, located 56 light-years away towards the southern Horologium ("The Clock") constellation, belongs to the so-called "Hyades stream", a large number of stars that move in the same direction. Previously, astronomers using an ESO telescope had shown that the star harbours a planet, more than 2 times as large as Jupiter and orbiting in 320 days (ESO 12/99). But until now, all studies were unable to pinpoint the exact characteristics of the star, and hence to understand its origin. A team of astronomers, led by Sylvie Vauclair from the University of Toulouse, France, therefore decided to use the technique of 'asteroseismology' to unlock the star's secrets. "In the same way as geologists monitor how seismic waves generated by earthquakes propagate through the Earth and learn about the inner structure of our planet, it is possible to study sound waves running through a star, which forms a sort of large, spherical bell," says Vauclair. The 'ringing' from this giant musical instrument provides astronomers with plenty of information about the physical conditions in the star's interior. And to 'listen to the music', the astronomers used one of the best instruments available. The observations were conducted in November 2006 during 8 consecutive nights with the state-of-the-art HARPS spectrograph mounted on the ESO 3.6-m telescope at La Silla. Up to 25 'notes' could be identified in the unique dataset, most of them corresponding to waves having a period of about 6.5 minutes. These observations allowed the astronomers to obtain a very precise portrait of Iota Horologii: its

  1. The star of Bethlehem

    International Nuclear Information System (INIS)

    Hughes, D.W.

    1976-01-01

    It is stated that the cause and form of the star are still uncertain. The astrologically significant triple conjunction of Saturn and Jupiter in the constellation of Pisces appears to be the most likely explanation, although the two comets of March 5 BC and April 4 BC cannot be dismissed, nor can the possibility that the 'star' was simply legendary. The conjunction occurred in 7 BC and there are indications that Jesus Christ was probably born in the Autumn of that year, around October 7 BC. (U.K.)

  2. The formation of stars

    CERN Document Server

    Stahler, Steven W

    2008-01-01

    This book is a comprehensive treatment of star formation, one of the most active fields of modern astronomy. The reader is guided through the subject in a logically compelling manner. Starting from a general description of stars and interstellar clouds, the authors delineate the earliest phases of stellar evolution. They discuss formation activity not only in the Milky Way, but also in other galaxies, both now and in the remote past. Theory and observation are thoroughly integrated, with the aid of numerous figures and images. In summary, this volume is an invaluable resource, both as a text f

  3. Chaplygin dark star

    International Nuclear Information System (INIS)

    Bertolami, O.; Paramos, J.

    2005-01-01

    We study the general properties of a spherically symmetric body described through the generalized Chaplygin equation of state. We conclude that such an object, dubbed generalized Chaplygin dark star, should exist within the context of the generalized Chaplygin gas (GCG) model of unification of dark energy and dark matter, and derive expressions for its size and expansion velocity. A criteria for the survival of the perturbations in the GCG background that give origin to the dark star are developed, and its main features are analyzed

  4. From hadrons to quarks in neutron stars: a review

    Science.gov (United States)

    Baym, Gordon; Hatsuda, Tetsuo; Kojo, Toru; Powell, Philip D.; Song, Yifan; Takatsuka, Tatsuyuki

    2018-05-01

    In recent years our understanding of neutron stars has advanced remarkably, thanks to research converging from many directions. The importance of understanding neutron star behavior and structure has been underlined by the recent direct detection of gravitational radiation from merging neutron stars. The clean identification of several heavy neutron stars, of order two solar masses, challenges our current understanding of how dense matter can be sufficiently stiff to support such a mass against gravitational collapse. Programs underway to determine simultaneously the mass and radius of neutron stars will continue to constrain and inform theories of neutron star interiors. At the same time, an emerging understanding in quantum chromodynamics (QCD) of how nuclear matter can evolve into deconfined quark matter at high baryon densities is leading to advances in understanding the equation of state of the matter under the extreme conditions in neutron star interiors. We review here the equation of state of matter in neutron stars from the solid crust through the liquid nuclear matter interior to the quark regime at higher densities. We focus in detail on the question of how quark matter appears in neutron stars, and how it affects the equation of state. After discussing the crust and liquid nuclear matter in the core we briefly review aspects of microscopic quark physics relevant to neutron stars, and quark models of dense matter based on the Nambu–Jona–Lasinio framework, in which gluonic processes are replaced by effective quark interactions. We turn then to describing equations of state useful for interpretation of both electromagnetic and gravitational observations, reviewing the emerging picture of hadron-quark continuity in which hadronic matter turns relatively smoothly, with at most only a weak first order transition, into quark matter with increasing density. We review construction of unified equations of state that interpolate between the reasonably well

  5. The character and behaviour of circumstellar shells at T Tauri stars

    International Nuclear Information System (INIS)

    Goetz, W.

    1988-01-01

    T Tauri stars are extremely young low-mass stars in the pre-main sequence stage. A brief review of investigations made at the Sonneberg observatory concerning the character and the behaviour of circumstellar shells at T Tauri stars is given. They lead to the construction of a shell model on the basis of observational facts. The idea rests upon the causal connection between the gas and dust shell phenomenon and the cosmogonic mass loss of the stars, which is the connecting link between the stars and their shells and which appears in the early phase of the pre-main sequence stage and decreases, like the accompanying shell phenomena, during the evolution of the stars. (author)

  6. Extreme meteorological conditions

    International Nuclear Information System (INIS)

    Altinger de Schwarzkopf, M.L.

    1983-01-01

    Different meteorological variables which may reach significant extreme values, such as the windspeed and, in particular, its occurrence through tornadoes and hurricanes that necesarily incide and wich must be taken into account at the time of nuclear power plants' installation, are analyzed. For this kind of study, it is necessary to determine the basic phenomenum of design. Two criteria are applied to define the basic values of design for extreme meteorological variables. The first one determines the expected extreme value: it is obtained from analyzing the recurence of the phenomenum in a convened period of time, wich may be generally of 50 years. The second one determines the extreme value of low probability, taking into account the nuclear power plant's operating life -f.ex. 25 years- and considering, during said lapse, the occurrence probabilities of extreme meteorological phenomena. The values may be determined either by the deterministic method, which is based on the acknowledgement of the fundamental physical characteristics of the phenomena or by the probabilistic method, that aims to the analysis of historical statistical data. Brief comments are made on the subject in relation to the Argentine Republic area. (R.J.S.) [es

  7. Galactic Doppelgängers: The Chemical Similarity Among Field Stars and Among Stars with a Common Birth Origin

    Science.gov (United States)

    Ness, M.; Rix, H.-W.; Hogg, David W.; Casey, A. R.; Holtzman, J.; Fouesneau, M.; Zasowski, G.; Geisler, D.; Shetrone, M.; Minniti, D.; Frinchaboy, Peter M.; Roman-Lopes, Alexandre

    2018-02-01

    We explore to what extent stars within Galactic disk open clusters resemble each other in the high-dimensional space of their photospheric element abundances and contrast this with pairs of field stars. Our analysis is based on abundances for 20 elements, homogeneously derived from APOGEE spectra (with carefully quantified uncertainties of typically 0.03 dex). We consider 90 red giant stars in seven open clusters and find that most stars within a cluster have abundances in most elements that are indistinguishable (in a {χ }2-sense) from those of the other members, as expected for stellar birth siblings. An analogous analysis among pairs of > 1000 field stars shows that highly significant abundance differences in the 20 dimensional space can be established for the vast majority of these pairs, and that the APOGEE-based abundance measurements have high discriminating power. However, pairs of field stars whose abundances are indistinguishable even at 0.03 dex precision exist: ∼0.3% of all field star pairs and ∼1.0% of field star pairs at the same (solar) metallicity [Fe/H] = 0 ± 0.02. Most of these pairs are presumably not birth siblings from the same cluster, but rather doppelgängers. Our analysis implies that “chemical tagging” in the strict sense, identifying birth siblings for typical disk stars through their abundance similarity alone, will not work with such data. However, our approach shows that abundances have extremely valuable information for probabilistic chemo-orbital modeling, and combined with velocities, we have identified new cluster members from the field.

  8. ENERGY STAR Certified Commercial Dishwashers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Commercial Dishwashers that are effective as of...

  9. ENERGY STAR Certified Commercial Ovens

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.2 ENERGY STAR Program Requirements for Commercial Ovens that are effective as of...

  10. Star Formation in Irregular Galaxies.

    Science.gov (United States)

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  11. ENERGY STAR Certified Commercial Boilers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Commercial Boilers that are effective as of...

  12. Photometry of faint blue stars

    International Nuclear Information System (INIS)

    Kilkenny, D.; Hill, P.W.; Brown, A.

    1977-01-01

    Photometry on the uvby system is given for 61 faint blue stars. The stars are classified by means of the Stromgren indices, using criteria described in a previous paper (Kilkenny and Hill (1975)). (author)

  13. ENERGY STAR Certified Commercial Griddles

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.2 ENERGY STAR Program Requirements for Commercial Griddles that are effective as of May...

  14. ENERGY STAR Certified Smart Thermostats

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Connected Thermostats that are effective as of...

  15. ENERGY STAR Certified Residential Dishwashers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 6.0 ENERGY STAR Program Requirements for Residential Dishwashers that are effective as of...

  16. ENERGY STAR Certified Roof Products

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Roof Products that are effective as of July 1,...

  17. ENERGY STAR Certified Pool Pumps

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.1 ENERGY STAR Program Requirements for Pool Pumps that are effective as of February 15,...

  18. Understand B-type stars

    Science.gov (United States)

    1982-01-01

    When observations of B stars made from space are added to observations made from the ground and the total body of observational information is confronted with theoretical expectations about B stars, it is clear that nonthermal phenomena occur in the atmospheres of B stars. The nature of these phenomena and what they imply about the physical state of a B star and how a B star evolves are examined using knowledge of the spectrum of a B star as a key to obtaining an understanding of what a B star is like. Three approaches to modeling stellar structure (atmospheres) are considered, the characteristic properties of a mantle, and B stars and evolution are discussed.

  19. ENERGY STAR Certified Imaging Equipment

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Imaging Equipment that are effective as of...

  20. ENERGY STAR Certified Vending Machines

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.1 ENERGY STAR Program Requirements for Refrigerated Beverage Vending Machines that are...

  1. ENERGY STAR Certified Water Coolers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Water Coolers that are effective as of February...

  2. ENERGY STAR Certified Audio Video

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Audio Video Equipment that are effective as of...

  3. ENERGY STAR Certified Ceiling Fans

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.1 ENERGY STAR Program Requirements for Ceiling Fans that are effective as of April 1,...

  4. ENERGY STAR Certified Ventilating Fans

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Ventilating Fans that are effective as of...

  5. ENERGY STAR Certified Commercial Fryers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Commercial Fryers that are effective as of...

  6. Lithium in the barium stars

    International Nuclear Information System (INIS)

    Pinsonneault, M.H.; Sneden, C.

    1984-01-01

    New high-resolution spectra of the lithium resonance doublet have provided lithium abundances or upper limits for 26 classical and mild barium stars. The lithium lines always are present in the classical barium stars. Lithium abundances in these stars obey a trend with stellar masses consistent with that previously derived for ordinary K giants. This supports the notion that classical barium stars are post-core-He-flash or core-He-burning stars. Lithium contents in the mild barium stars, however, often are much smaller than those of the classical barium stars sometimes only upper limits may be determined. The cause for this difference is not easily understood, but may be related to more extensive mass loss by the mild barium stars. 45 references

  7. Which of Kepler's Stars Flare?

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    The habitability of distant exoplanets is dependent upon many factors one of which is the activity of their host stars. To learn about which stars are most likely to flare, a recent study examines tens of thousands of stellar flares observed by Kepler.Need for a Broader SampleArtists rendering of a flaring dwarf star. [NASAs Goddard Space Flight Center/S. Wiessinger]Most of our understanding of what causes a star to flare is based on observations of the only star near enough to examine in detail the Sun. But in learning from a sample size of one, a challenge arises: we must determine which conclusions are unique to the Sun (or Sun-like stars), and which apply to other stellar types as well.Based on observations and modeling, astronomers think that stellar flares result from the reconnection of magnetic field lines in a stars outer atmosphere, the corona. The magnetic activity is thought to be driven by a dynamo caused by motions in the stars convective zone.HR diagram of the Kepler stars, with flaring main-sequence (yellow), giant (red) and A-star (green) stars in the authors sample indicated. [Van Doorsselaere et al. 2017]To test whether these ideas are true generally, we need to understand what types of stars exhibit flares, and what stellar properties correlate with flaring activity. A team of scientists led by Tom Van Doorsselaere (KU Leuven, Belgium) has now used an enormous sample of flares observed by Kepler to explore these statistics.Intriguing TrendsVan Doorsselaere and collaborators used a new automated flare detection and characterization algorithm to search through the raw light curves from Quarter 15 of the Kepler mission, building a sample of 16,850 flares on 6,662 stars. They then used these to study the dependence of the flare occurrence rate, duration, energy, and amplitude on the stellar spectral type and rotation period.This large statistical study led the authors to several interesting conclusions, including:Flare star incidence rate as a a

  8. ENERGY STAR Certified Residential Freezers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Residential Refrigerators and Freezers that are...

  9. ENERGY STAR Certified Residential Refrigerators

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Residential Refrigerators and Freezers that are...

  10. Review of recent heavy flavor measurements in STAR

    Directory of Open Access Journals (Sweden)

    Lomnitz Michael R.

    2017-01-01

    Full Text Available Heavy-ion collisions at RHIC provide a unique environment to study the behavior of nuclear matter under extreme conditions. In particular, heavy quarks, which are produced during the early stages of a collision, provide an exceptional probe in understanding the hot and dense medium created in such collisions. The Heavy Flavor Tracker and Muon Telescope Detector at the STAR experiment at RHIC have been successfully installed since early 2014 and have significantly improved the experimental capabilities in measuring both open and hidden heavy flavor hadrons in heavy-ion collisions. We present an overview of recent heavy flavor results obtained at STAR using these two dedicated detectors.

  11. Review of recent heavy flavor measurements in STAR

    Science.gov (United States)

    Lomnitz, Michael R.

    2017-12-01

    Heavy-ion collisions at RHIC provide a unique environment to study the behavior of nuclear matter under extreme conditions. In particular, heavy quarks, which are produced during the early stages of a collision, provide an exceptional probe in understanding the hot and dense medium created in such collisions. The Heavy Flavor Tracker and Muon Telescope Detector at the STAR experiment at RHIC have been successfully installed since early 2014 and have significantly improved the experimental capabilities in measuring both open and hidden heavy flavor hadrons in heavy-ion collisions. We present an overview of recent heavy flavor results obtained at STAR using these two dedicated detectors.

  12. VLBA Scientists Study Birth of Sunlike Stars

    Science.gov (United States)

    1999-06-01

    tracing the jet or wind. On smaller scales, there is a circular loop of masers which the astronomers believe surrounds the young stellar object. "The loop probably represents the edge of a dusty shell of gas smaller than the Earth's orbit. The star is several times the mass of the Sun and its heat evaporates material closer in," said Nimesh Patel, leader of the team. The ability to see the details of stars still undergoing their formation processes is extremely valuable to understanding the details of those processes, according to Claussen, a member of the teams led by Furuya and Wootten. "The VLBA images show detail about 100 times better than those routinely available from other radio telescopes," Claussen said. "Studying these systems by observing the clumps of water vapor that act as masers is not particularly difficult with the VLBA. There are hundreds of young stars that we can study this way, and that means that we have a tremendous opportunity to learn just how stars similar to our Sun are formed and interact with their surroundings in the early parts of their lives." The VLBA is a system of ten radio-telescope antennas, each 25 meters (82 feet) in diameter, stretching some 5,000 miles from Mauna Kea in Hawaii to St. Croix in the U.S. Virgin Islands. Operated from NRAO's Array Operations Center in Socorro, NM, the VLBA offers astronomers the greatest resolving power, or ability to see fine detail, of any telescope currently operational. The NRAO is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  13. Acclimatization to extreme heat

    Science.gov (United States)

    Warner, M. E.; Ganguly, A. R.; Bhatia, U.

    2017-12-01

    Heat extremes throughout the globe, as well as in the United States, are expected to increase. These heat extremes have been shown to impact human health, resulting in some of the highest levels of lives lost as compared with similar natural disasters. But in order to inform decision makers and best understand future mortality and morbidity, adaptation and mitigation must be considered. Defined as the ability for individuals or society to change behavior and/or adapt physiologically, acclimatization encompasses the gradual adaptation that occurs over time. Therefore, this research aims to account for acclimatization to extreme heat by using a hybrid methodology that incorporates future air conditioning use and installation patterns with future temperature-related time series data. While previous studies have not accounted for energy usage patterns and market saturation scenarios, we integrate such factors to compare the impact of air conditioning as a tool for acclimatization, with a particular emphasis on mortality within vulnerable communities.

  14. Extremely deformable structures

    CERN Document Server

    2015-01-01

    Recently, a new research stimulus has derived from the observation that soft structures, such as biological systems, but also rubber and gel, may work in a post critical regime, where elastic elements are subject to extreme deformations, though still exhibiting excellent mechanical performances. This is the realm of ‘extreme mechanics’, to which this book is addressed. The possibility of exploiting highly deformable structures opens new and unexpected technological possibilities. In particular, the challenge is the design of deformable and bi-stable mechanisms which can reach superior mechanical performances and can have a strong impact on several high-tech applications, including stretchable electronics, nanotube serpentines, deployable structures for aerospace engineering, cable deployment in the ocean, but also sensors and flexible actuators and vibration absorbers. Readers are introduced to a variety of interrelated topics involving the mechanics of extremely deformable structures, with emphasis on ...

  15. Statistics of Extremes

    KAUST Repository

    Davison, Anthony C.

    2015-04-10

    Statistics of extremes concerns inference for rare events. Often the events have never yet been observed, and their probabilities must therefore be estimated by extrapolation of tail models fitted to available data. Because data concerning the event of interest may be very limited, efficient methods of inference play an important role. This article reviews this domain, emphasizing current research topics. We first sketch the classical theory of extremes for maxima and threshold exceedances of stationary series. We then review multivariate theory, distinguishing asymptotic independence and dependence models, followed by a description of models for spatial and spatiotemporal extreme events. Finally, we discuss inference and describe two applications. Animations illustrate some of the main ideas. © 2015 by Annual Reviews. All rights reserved.

  16. Distances of Dwarf Carbon Stars

    Science.gov (United States)

    Harris, Hugh C.; Dahn, Conard C.; Subasavage, John P.; Munn, Jeffrey A.; Canzian, Blaise J.; Levine, Stephen E.; Monet, Alice B.; Pier, Jeffrey R.; Stone, Ronald C.; Tilleman, Trudy M.; Hartkopf, William I.

    2018-06-01

    Parallaxes are presented for a sample of 20 nearby dwarf carbon stars. The inferred luminosities cover almost two orders of magnitude. Their absolute magnitudes and tangential velocities confirm prior expectations that some originate in the Galactic disk, although more than half of this sample are halo stars. Three stars are found to be astrometric binaries, and orbital elements are determined; their semimajor axes are 1–3 au, consistent with the size of an AGB mass-transfer donor star.

  17. RADIAL STABILITY IN STRATIFIED STARS

    International Nuclear Information System (INIS)

    Pereira, Jonas P.; Rueda, Jorge A.

    2015-01-01

    We formulate within a generalized distributional approach the treatment of the stability against radial perturbations for both neutral and charged stratified stars in Newtonian and Einstein's gravity. We obtain from this approach the boundary conditions connecting any two phases within a star and underline its relevance for realistic models of compact stars with phase transitions, owing to the modification of the star's set of eigenmodes with respect to the continuous case

  18. 20070607 NATO Advanced Study Institute on the Electromagnetic Spectrum of Neutron Stars Marmaris, Turkey 07 - 18 Jun 2004 2004 marmaris20040607 TR 20040618

    CERN Document Server

    Baykal, Altan; Inam, Sitki C; Grebenev, Sergei

    2005-01-01

    Neutron stars hold a central place in astrophysics, not only because they are made up of the most extreme states of the condensed matter, but also because they are, along with white dwarfs and black holes, one of the stable configurations that stars reach at the end of stellar evolution. Neutron stars posses the highest rotation rates and strongest magnetic fields among all stars. They radiate prolifically, in high energy electromagnetic radiation and in the radio band. This book is devoted to the selected lectures presented in the 6th NATO-ASI series entitled "The Electromagnetic Spectrum of Neutron Stars" in Marmaris, Turkey, on 7-18 June 2004. This ASI is devoted to the spectral properties of neutron stars. Spectral observations of neutron stars help us to understand the magnetospheric emission processes of isolated radio pulsars and the emission processes of accreting neutron stars. This volume includes spectral information from the neutron stars in broadest sense, namely neutrino and gravitational radiat...

  19. Imaging extrasolar planets with the European Extremely Large Telescope

    Directory of Open Access Journals (Sweden)

    Jolissaint L.

    2011-07-01

    Full Text Available The European Extremely Large Telescope (E-ELT is the most ambitious of the ELTs being planned. With a diameter of 42 m and being fully adaptive from the start, the E-ELT will be more than one hundred times more sensitive than the present-day largest optical telescopes. Discovering and characterising planets around other stars will be one of the most important aspects of the E-ELT science programme. We model an extreme adaptive optics instrument on the E-ELT. The resulting contrast curves translate to the detectability of exoplanets.

  20. Adventure and Extreme Sports.

    Science.gov (United States)

    Gomez, Andrew Thomas; Rao, Ashwin

    2016-03-01

    Adventure and extreme sports often involve unpredictable and inhospitable environments, high velocities, and stunts. These activities vary widely and include sports like BASE jumping, snowboarding, kayaking, and surfing. Increasing interest and participation in adventure and extreme sports warrants understanding by clinicians to facilitate prevention, identification, and treatment of injuries unique to each sport. This article covers alpine skiing and snowboarding, skateboarding, surfing, bungee jumping, BASE jumping, and whitewater sports with emphasis on epidemiology, demographics, general injury mechanisms, specific injuries, chronic injuries, fatality data, and prevention. Overall, most injuries are related to overuse, trauma, and environmental or microbial exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Extremal graph theory

    CERN Document Server

    Bollobas, Bela

    2004-01-01

    The ever-expanding field of extremal graph theory encompasses a diverse array of problem-solving methods, including applications to economics, computer science, and optimization theory. This volume, based on a series of lectures delivered to graduate students at the University of Cambridge, presents a concise yet comprehensive treatment of extremal graph theory.Unlike most graph theory treatises, this text features complete proofs for almost all of its results. Further insights into theory are provided by the numerous exercises of varying degrees of difficulty that accompany each chapter. A

  2. New stars for old

    International Nuclear Information System (INIS)

    Henbest, N.

    1980-01-01

    Observations of novas made through the ages, the identity of the close double stars which make up these cataclysmic variables and the physics of nova explosions, are discussed. A picture is outlined which explains novas, dwarf novas and recurrent novas and provides a basis for interpreting the latest so called x-ray novas. (U.K.)

  3. Hadrons in compact stars

    Indian Academy of Sciences (India)

    At normal nuclear matter density, neutron star matter mainly consists of neutrons, protons and electrons. The particle population is so arranged as to attain a min- imum energy configuration maintaining electrical charge neutrality and chemical equilibrium. At higher baryon density, hyperon formation becomes energetically.

  4. Millet's Shooting Stars

    Science.gov (United States)

    Beech, M.

    1988-12-01

    In this essay two paintings by the French artist Jean-Francois Millet are described. These paintings, Les Etoiles Filantes and Nuit Etoilée are particularly interesting since they demonstrate the rare artistic employment of the shooting-star image and metaphor.

  5. Asteroseismology of Scuti Stars

    Indian Academy of Sciences (India)

    Abstract. We briefly outline the state-of-the-art seismology of Scuti stars from a theoretical point of view: why is it so difficult a task? The recent theoretical advances in the field that these difficulties have influenced are also discussed.

  6. The STAR trigger

    International Nuclear Information System (INIS)

    Bieser, F.S.; Crawford, H.J.; Engelage, J.; Eppley, G.; Greiner, L.C.; Judd, E.G.; Klein, S.R.; Meissner, F.; Minor, R.; Milosevich, Z.; Mutchler, G.; Nelson, J.M.; Schambach, J.; VanderMolen, A.S.; Ward, H.; Yepes, P.

    2003-01-01

    We describe the trigger system that we designed and implemented for the STAR detector at RHIC. This is a 10 MHz pipelined system based on fast detector output that controls the event selection for the much slower tracking detectors. Results from the first run are presented and new detectors for the 2001 run are discussed

  7. Sleeping under the stars

    Science.gov (United States)

    Zirkel, Jack

    Sherlock Holmes and Dr. Watson went on a camping trip. As they lay down for the night, Holmes said, “Watson, look up at the sky and tell me what you see.”Watson:“! see millions and millions of stars.”

  8. Insight into star death

    International Nuclear Information System (INIS)

    Talcott, R.

    1988-01-01

    Nineteen neutrinos, formed in the center of a supernova, became a theorist's dream. They came straight from the heart of supernova 1987A and landed in two big underground tanks of water. Suddenly a new chapter in observational astronomy opened as these two neutrino telescopes gave astronomers their first look ever into the core of a supernova explosion. But the theorists' dream almost turned into a nightmare. Observations of the presupernova star showed conclusively that the star was a blue supergiant, but theorists have long believed only red supergiant stars could explode as supernovae. Do astronomers understand supernovae better now than when supernova 1987A exploded in the Large Magellanic Cloud (LMC) one year ago? Yes. The observations of neutrinos spectacularly confirmed a vital aspect of supernova theory. But the observed differences between 1987A and other supernovae have illuminated and advanced our perception of how supernovae form. By working together, observers and theorists are continuing to hone their ideas about how massive stars die and how the subsequent supernovae behave

  9. StarLogo TNG

    Science.gov (United States)

    Klopfer, Eric; Scheintaub, Hal; Huang, Wendy; Wendel, Daniel

    Computational approaches to science are radically altering the nature of scientific investigatiogn. Yet these computer programs and simulations are sparsely used in science education, and when they are used, they are typically “canned” simulations which are black boxes to students. StarLogo The Next Generation (TNG) was developed to make programming of simulations more accessible for students and teachers. StarLogo TNG builds on the StarLogo tradition of agent-based modeling for students and teachers, with the added features of a graphical programming environment and a three-dimensional (3D) world. The graphical programming environment reduces the learning curve of programming, especially syntax. The 3D graphics make for a more immersive and engaging experience for students, including making it easy to design and program their own video games. Another change to StarLogo TNG is a fundamental restructuring of the virtual machine to make it more transparent. As a result of these changes, classroom use of TNG is expanding to new areas. This chapter is concluded with a description of field tests conducted in middle and high school science classes.

  10. THE STAR OFFLINE FRAMEWORK

    International Nuclear Information System (INIS)

    FINE, V.; FISYAK, Y.; PEREVOZTCHIKOV, V.; WENAUS, T.

    2000-01-01

    The Solenoidal Tracker At RHIC (STAR) is a-large acceptance collider detector, commissioned at Brookhaven National Laboratory in 1999. STAR has developed a software framework supporting simulation, reconstruction and analysis in offline production, interactive physics analysis and online monitoring environments that is well matched both to STAR's present status of transition between Fortran and C++ based software and to STAR's evolution to a fully OO software base. This paper presents the results of two years effort developing a modular C++ framework based on the ROOT package that encompasses both wrapped Fortran components (legacy simulation and reconstruction code) served by IDL-defined data structures, and fully OO components (all physics analysis code) served by a recently developed object model for event data. The framework supports chained components, which can themselves be composite subchains, with components (''makers'') managing ''data sets'' they have created and are responsible for. An St-DataSet class from which data sets and makers inherit allows the construction of hierarchical organizations of components and data, and centralizes almost all system tasks such as data set navigation, I/O, database access, and inter-component communication. This paper will present an overview of this system, now deployed and well exercised in production environments with real and simulated data, and in an active physics analysis development program

  11. Triggered star formation

    Czech Academy of Sciences Publication Activity Database

    Palouš, Jan; Ehlerová, Soňa

    2002-01-01

    Roč. 12, - (2002), s. 35-36 ISSN 1405-2059 R&D Projects: GA AV ČR IAA3003705; GA AV ČR KSK1048102 Institutional research plan: CEZ:AV0Z1003909 Keywords : interstellar medium * star formation * HI shells Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  12. Highlights from STAR

    International Nuclear Information System (INIS)

    Schweda, Kai

    2004-01-01

    Selected results from the STAR collaboration are presented. We focus on recent results on jet-like correlations, nuclear modification factors of identified hadrons, elliptic flow of multi-strange baryons Ξ and Ω, and resonance yields. First measurements of open charm production at RHIC are presented

  13. Supernovae from massive AGB stars

    NARCIS (Netherlands)

    Poelarends, A.J.T.; Izzard, R.G.; Herwig, F.; Langer, N.; Heger, A.

    2006-01-01

    We present new computations of the final fate of massive AGB-stars. These stars form ONeMg cores after a phase of carbon burning and are called Super AGB stars (SAGB). Detailed stellar evolutionary models until the thermally pulsing AGB were computed using three di erent stellar evolution codes. The

  14. Do All O Stars Form in Star Clusters?

    Science.gov (United States)

    Weidner, C.; Gvaramadze, V. V.; Kroupa, P.; Pflamm-Altenburg, J.

    The question whether or not massive stars can form in isolation or only in star clusters is of great importance for the theory of (massive) star formation as well as for the stellar initial mass function of whole galaxies (IGIMF-theory). While a seemingly easy question it is rather difficult to answer. Several physical processes (e.g. star-loss due to stellar dynamics or gas expulsion) and observational limitations (e.g. dust obscuration of young clusters, resolution) pose severe challenges to answer this question. In this contribution we will present the current arguments in favour and against the idea that all O stars form in clusters.

  15. Giant black hole rips star apart

    Science.gov (United States)

    2004-02-01

    Astronomers believe that a doomed star came too close to a giant black hole after a close encounter with another star threw it off course. As it neared the enormous gravity of the black hole, the star was stretched by tidal forces until it was torn apart. This discovery provides crucial information on how these black holes grow and affect the surrounding stars and gas. "Stars can survive being stretched a small amount, as they are in binary star systems, but this star was stretched beyond its breaking point," said Dr Stefanie Komossa of the Max Planck Institute for Extraterrestrial Physics (MPE) in Germany, who led the international team of researchers. "This unlucky star just wandered into the wrong neighbourhood." While other observations have hinted that stars are destroyed by black holes (events known as ‘stellar tidal disruptions’), these new results are the first strong evidence. Observations with XMM-Newton and Chandra, combined with earlier images from the German Roentgensatellite (ROSAT), detected a powerful X-ray outburst from the centre of the galaxy RXJ1242-11. This outburst, one of the most extreme ever detected in a galaxy, was caused by gas from the destroyed star that was heated to millions of degrees before being swallowed by the black hole. The energy liberated in this process is equivalent to that of a supernova. "Now, with all of the data in hand, we have the smoking gun proof that this spectacular event has occurred," said co-author Prof. Guenther Hasinger, also of MPE. The black hole in the centre of RX J1242-11 is estimated to have a mass about 100 million times that of the Sun. By contrast, the destroyed star probably had a mass about equal to that of the Sun, making it a lopsided battle of gravity. "This is the ultimate ‘David versus Goliath’ battle, but here David loses," said Hasinger. The astronomers estimated that about one hundredth of the mass of the star was ultimately consumed, or accreted, by the black hole. This small

  16. Halo Star Lithium Depletion

    International Nuclear Information System (INIS)

    Pinsonneault, M. H.; Walker, T. P.; Steigman, G.; Narayanan, Vijay K.

    1999-01-01

    The depletion of lithium during the pre-main-sequence and main-sequence phases of stellar evolution plays a crucial role in the comparison of the predictions of big bang nucleosynthesis with the abundances observed in halo stars. Previous work has indicated a wide range of possible depletion factors, ranging from minimal in standard (nonrotating) stellar models to as much as an order of magnitude in models that include rotational mixing. Recent progress in the study of the angular momentum evolution of low-mass stars permits the construction of theoretical models capable of reproducing the angular momentum evolution of low-mass open cluster stars. The distribution of initial angular momenta can be inferred from stellar rotation data in young open clusters. In this paper we report on the application of these models to the study of lithium depletion in main-sequence halo stars. A range of initial angular momenta produces a range of lithium depletion factors on the main sequence. Using the distribution of initial conditions inferred from young open clusters leads to a well-defined halo lithium plateau with modest scatter and a small population of outliers. The mass-dependent angular momentum loss law inferred from open cluster studies produces a nearly flat plateau, unlike previous models that exhibited a downward curvature for hotter temperatures in the 7Li-Teff plane. The overall depletion factor for the plateau stars is sensitive primarily to the solar initial angular momentum used in the calibration for the mixing diffusion coefficients. Uncertainties remain in the treatment of the internal angular momentum transport in the models, and the potential impact of these uncertainties on our results is discussed. The 6Li/7Li depletion ratio is also examined. We find that the dispersion in the plateau and the 6Li/7Li depletion ratio scale with the absolute 7Li depletion in the plateau, and we use observational data to set bounds on the 7Li depletion in main-sequence halo

  17. POST T-Tauri Stars in Galactic Clusters

    Science.gov (United States)

    Haro, G.

    1983-08-01

    There is a number of theoretical and observational reasons to support a view of star formation and evolution as a continuous process which covers a rather long period of time, On the other hand, it can be stressed that some particular evolutionary stages are confined to relatively short lengths of time. On a purely observational basis, it seems quite evident that the typical and most "advanced" T Tauri phenomenon in a given star -and consequently its extreme spectroscopic and photometric characteristics- manifest itself during an extremely short period of time in relation to the whole evolutionary process for intermediate and late type stars. Without doubt the extreme or advanced" features of a T Tauri object tend to diminish in periods of only -in most cases- a few million years. However, a considerably longer time is required for the process of weakening or apparent total disappearance of the most persistent T Tauri features. Nevertheless, among other problems, there emerges one of fundamental importance: can we arrive to an acceptable definition of a bon T Tauri star? In the present work we repeat our attempt to define what can characterize an "advanced" T Tauri-type star or the minimum spectroscopic and photometric features required to classify a young star within the family that unmistakably includes all typical T Tauri objects. At the same time, and following the trends of modern astronomy, we try to demonstrate that certain T Tauri-type stars evolve, during different periods of time and that, although they lose mass and their most conspicuous spectroscopic characteristics, they can still be described as what Herbig calls "post-T Tauri" stars, keeping some remnants of their primitive spectroscopic and photometric features. Several years ago, we stressed that in the great majority of T Tauri stars it seems that the time required for the diminishing or even apparent disappearance of the last typical T Tauri vestiges depends on the mass or on the observable

  18. Relativistic structure, stability, and gravitational collapse of charged neutron stars

    International Nuclear Information System (INIS)

    Ghezzi, Cristian R.

    2005-01-01

    Charged stars have the potential of becoming charged black holes or even naked singularities. We present a set of numerical solutions of the Tolman-Oppenheimer-Volkov equations that represents spherical charged compact stars in hydrostatic equilibrium. The stellar models obtained are evolved forward in time integrating the Einstein-Maxwell field equations. We assume an equation of state of a neutron gas at zero temperature. The charge distribution is taken as being proportional to the rest mass density distribution. The set of solutions present an unstable branch, even with charge-to-mass ratios arbitrarily close to the extremum case. We perform a direct check of the stability of the solutions under strong perturbations and for different values of the charge-to-mass ratio. The stars that are in the stable branch oscillate and do not collapse, while models in the unstable branch collapse directly to form black holes. Stars with a charge greater than or equal to the extreme value explode. When a charged star is suddenly discharged, it does not necessarily collapse to form a black hole. A nonlinear effect that gives rise to the formation of a shell of matter (in supermassive stars), is negligible in the present simulations. The results are in agreement with the third law of black hole thermodynamics and with the cosmic censorship conjecture

  19. The sun as a star: Solar phenomena and stellar applications

    International Nuclear Information System (INIS)

    Noyes, R.W.

    1981-01-01

    Our Sun is a run-of-the-mill star, having no obvious extremes of stellar properties. For this reason it is perhaps more, rather than less, interesting as an astrophysical object, for its sameness to other stars suggests that in studying the Sun, we are studying at close hand common, rather than unusual stellar phenomena. Conversely, comparative study of the Sun and other solar-type stars is an invaluable tool for solar physics, for two reasons: First, it allows us to explore how solar properties and phenomena depend on parameters we cannot vary on the Sun - most fundamentally, rotation rate and mass. Second, study of solar-like stars of different ages allows us to see how stellar and solar phenomena depend on age; study of other stars may be one of the best ways to infer the earlier history of the Sun, as well as its future history. In this review we shall concentrate on phenomena common to the Sun and solar-type (main sequence) stars with different fundamental properties such as mass, age, and rotation. (orig.)

  20. A search for thermal extreme ultraviolet radiation from nearby pulsars

    International Nuclear Information System (INIS)

    Greenstein, G.; Margon, B.

    1977-01-01

    We present the first extreme ultraviolet (100-1000 A) observations of radio pulsars. Using an EUV telescope carried aboard the Apollo-Soyuz mission, data were acquired on the nearby pulsars PSR 1133 + 16, 1451 - 68 and 1929 + 10. The data are interpreted to set limits on the effective temperatures of the neutron stars, yielding T 5 K in the best cases, and the limits compared with theoretical predictions. (orig./BJ) [de

  1. Kinematic and spatial distributions of barium stars - are the barium stars and Am stars related?

    International Nuclear Information System (INIS)

    Hakkila, J.

    1989-01-01

    The possibility of an evolutionary link between Am stars and barium stars is considered, and an examination of previous data suggests that barium star precursors are main-sequence stars of intermediate mass, are most likely A and/or F dwarfs, and are intermediate-mass binaries with close to intermediate orbital separations. The possible role of mass transfer in the later development of Am systems is explored. Mass transfer and loss from systems with a range of masses and orbital separations may explain such statistical peculiarities of barium stars as the large dispersion in absolute magnitude, the large range of elemental abundances from star to star, and the small number of stars with large peculiar velocities. 93 refs

  2. STAR CLUSTERS IN A NUCLEAR STAR FORMING RING: THE DISAPPEARING STRING OF PEARLS

    Energy Technology Data Exchange (ETDEWEB)

    Väisänen, Petri; Barway, Sudhanshu; Randriamanakoto, Zara, E-mail: petri@saao.ac.za [South African Astronomical Observatory, P.O. Box 9 Observatory, Cape Town (South Africa)

    2014-12-20

    An analysis of the star cluster population in a low-luminosity early-type galaxy, NGC 2328, is presented. The clusters are found in a tight star forming nuclear spiral/ring pattern and we also identify a bar from structural two-dimensional decomposition. These massive clusters are forming very efficiently in the circumnuclear environment and they are young, possibly all less than 30 Myr of age. The clusters indicate an azimuthal age gradient, consistent with a ''pearls-on-a-string'' formation scenario, suggesting bar-driven gas inflow. The cluster mass function has a robust down turn at low masses at all age bins. Assuming clusters are born with a power-law distribution, this indicates extremely rapid disruption at timescales of just several million years. If found to be typical, it means that clusters born in dense circumnuclear rings do not survive to become old globular clusters in non-interacting systems.

  3. STAR CLUSTERS IN A NUCLEAR STAR FORMING RING: THE DISAPPEARING STRING OF PEARLS

    International Nuclear Information System (INIS)

    Väisänen, Petri; Barway, Sudhanshu; Randriamanakoto, Zara

    2014-01-01

    An analysis of the star cluster population in a low-luminosity early-type galaxy, NGC 2328, is presented. The clusters are found in a tight star forming nuclear spiral/ring pattern and we also identify a bar from structural two-dimensional decomposition. These massive clusters are forming very efficiently in the circumnuclear environment and they are young, possibly all less than 30 Myr of age. The clusters indicate an azimuthal age gradient, consistent with a ''pearls-on-a-string'' formation scenario, suggesting bar-driven gas inflow. The cluster mass function has a robust down turn at low masses at all age bins. Assuming clusters are born with a power-law distribution, this indicates extremely rapid disruption at timescales of just several million years. If found to be typical, it means that clusters born in dense circumnuclear rings do not survive to become old globular clusters in non-interacting systems

  4. Imprints of fast-rotating massive stars in the Galactic Bulge.

    Science.gov (United States)

    Chiappini, Cristina; Frischknecht, Urs; Meynet, Georges; Hirschi, Raphael; Barbuy, Beatriz; Pignatari, Marco; Decressin, Thibaut; Maeder, André

    2011-04-28

    The first stars that formed after the Big Bang were probably massive, and they provided the Universe with the first elements heavier than helium ('metals'), which were incorporated into low-mass stars that have survived to the present. Eight stars in the oldest globular cluster in the Galaxy, NGC 6522, were found to have surface abundances consistent with the gas from which they formed being enriched by massive stars (that is, with higher α-element/Fe and Eu/Fe ratios than those of the Sun). However, the same stars have anomalously high abundances of Ba and La with respect to Fe, which usually arises through nucleosynthesis in low-mass stars (via the slow-neutron-capture process, or s-process). Recent theory suggests that metal-poor fast-rotating massive stars are able to boost the s-process yields by up to four orders of magnitude, which might provide a solution to this contradiction. Here we report a reanalysis of the earlier spectra, which reveals that Y and Sr are also overabundant with respect to Fe, showing a large scatter similar to that observed in extremely metal-poor stars, whereas C abundances are not enhanced. This pattern is best explained as originating in metal-poor fast-rotating massive stars, which might point to a common property of the first stellar generations and even of the 'first stars'.

  5. Highly efficient star formation in NGC 5253 possibly from stream-fed accretion.

    Science.gov (United States)

    Turner, J L; Beck, S C; Benford, D J; Consiglio, S M; Ho, P T P; Kovács, A; Meier, D S; Zhao, J-H

    2015-03-19

    Gas clouds in present-day galaxies are inefficient at forming stars. Low star-formation efficiency is a critical parameter in galaxy evolution: it is why stars are still forming nearly 14 billion years after the Big Bang and why star clusters generally do not survive their births, instead dispersing to form galactic disks or bulges. Yet the existence of ancient massive bound star clusters (globular clusters) in the Milky Way suggests that efficiencies were higher when they formed ten billion years ago. A local dwarf galaxy, NGC 5253, has a young star cluster that provides an example of highly efficient star formation. Here we report the detection of the J = 3→2 rotational transition of CO at the location of the massive cluster. The gas cloud is hot, dense, quiescent and extremely dusty. Its gas-to-dust ratio is lower than the Galactic value, which we attribute to dust enrichment by the embedded star cluster. Its star-formation efficiency exceeds 50 per cent, tenfold that of clouds in the Milky Way. We suggest that high efficiency results from the force-feeding of star formation by a streamer of gas falling into the galaxy.

  6. Extremity x-ray

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003461.htm Extremity x-ray To use the sharing features on this page, ... in the body Risks There is low-level radiation exposure. X-rays are monitored and regulated to provide the ...

  7. Extremity perfusion for sarcoma

    NARCIS (Netherlands)

    Hoekstra, Harald Joan

    2008-01-01

    For more than 50 years, the technique of extremity perfusion has been explored in the limb salvage treatment of local, recurrent, and multifocal sarcomas. The "discovery" of tumor necrosis factor-or. in combination with melphalan was a real breakthrough in the treatment of primarily irresectable

  8. Statistics of Local Extremes

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Bierbooms, W.; Hansen, Kurt Schaldemose

    2003-01-01

    . A theoretical expression for the probability density function associated with local extremes of a stochasticprocess is presented. The expression is basically based on the lower four statistical moments and a bandwidth parameter. The theoretical expression is subsequently verified by comparison with simulated...

  9. Star identification methods, techniques and algorithms

    CERN Document Server

    Zhang, Guangjun

    2017-01-01

    This book summarizes the research advances in star identification that the author’s team has made over the past 10 years, systematically introducing the principles of star identification, general methods, key techniques and practicable algorithms. It also offers examples of hardware implementation and performance evaluation for the star identification algorithms. Star identification is the key step for celestial navigation and greatly improves the performance of star sensors, and as such the book include the fundamentals of star sensors and celestial navigation, the processing of the star catalog and star images, star identification using modified triangle algorithms, star identification using star patterns and using neural networks, rapid star tracking using star matching between adjacent frames, as well as implementation hardware and using performance tests for star identification. It is not only valuable as a reference book for star sensor designers and researchers working in pattern recognition and othe...

  10. Ecology of blue straggler stars

    CERN Document Server

    Carraro, Giovanni; Beccari, Giacomo

    2015-01-01

    The existence of blue straggler stars, which appear younger, hotter, and more massive than their siblings, is at odds with a simple picture of stellar evolution. Such stars should have exhausted their nuclear fuel and evolved long ago to become cooling white dwarfs. They are found to exist in globular clusters, open clusters, dwarf spheroidal galaxies of the Local Group, OB associations and as field stars. This book summarises the many advances in observational and theoretical work dedicated to blue straggler stars. Carefully edited extended contributions by well-known experts in the field cover all the relevant aspects of blue straggler stars research: Observations of blue straggler stars in their various environments; Binary stars and formation channels; Dynamics of globular clusters; Interpretation of observational data and comparison with models. The book also offers an introductory chapter on stellar evolution written by the editors of the book.

  11. What Determines Star Formation Rates?

    Science.gov (United States)

    Evans, Neal John

    2017-06-01

    The relations between star formation and gas have received renewed attention. We combine studies on scales ranging from local (within 0.5 kpc) to distant galaxies to assess what factors contribute to star formation. These include studies of star forming regions in the Milky Way, the LMC, nearby galaxies with spatially resolved star formation, and integrated galaxy studies. We test whether total molecular gas or dense gas provides the best predictor of star formation rate. The star formation ``efficiency," defined as star formation rate divided by mass, spreads over a large range when the mass refers to molecular gas; the standard deviation of the log of the efficiency decreases by a factor of three when the mass of relatively dense molecular gas is used rather than the mass of all the molecular gas. We suggest ways to further develop the concept of "dense gas" to incorporate other factors, such as turbulence.

  12. Spectrophotometry of Symbiotic Stars (Abstract)

    Science.gov (United States)

    Boyd, D.

    2017-12-01

    (Abstract only) Symbiotic stars are fascinating objects - complex binary systems comprising a cool red giant star and a small hot object, often a white dwarf, both embedded in a nebula formed by a wind from the giant star. UV radiation from the hot star ionizes the nebula, producing a range of emission lines. These objects have composite spectra with contributions from both stars plus the nebula and these spectra can change on many timescales. Being moderately bright, they lend themselves well to amateur spectroscopy. This paper describes the symbiotic star phenomenon, shows how spectrophotometry can be used to extract astrophysically useful information about the nature of these systems, and gives results for three symbiotic stars based on the author's observations.

  13. Mass loss from S stars

    International Nuclear Information System (INIS)

    Jura, M.

    1988-01-01

    The mass-loss process in S stars is studied using 65 S stars from the listing of Wing and Yorka (1977). The role of pulsations in the mass-loss process is examined. It is detected that stars with larger mass-loss rates have a greater amplitude of pulsations. The dust-to-gas ratio for the S stars is estimated as 0.002 and the average mass-loss rate is about 6 x 10 to the -8th solar masses/yr. Some of the properties of the S stars, such as scale height, surface density, and lifetime, are measured. It is determined that scale height is 200 pc; the total duration of the S star phase is greater than or equal to 30,000 yr; and the stars inject 3 x 10 to the -6th solar masses/sq kpc yr into the interstellar medium. 46 references

  14. UTILIZING SYNTHETIC UV SPECTRA TO EXPLORE THE PHYSICAL BASIS FOR THE CLASSIFICATION OF LAMBDA BOÖTIS STARS

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kwang-Ping; Johnson, Dustin M.; Tarbell, Erik S.; Romo, Christopher A.; Prabhaker, Arvind [Cal. State Univ., Fullerton, Fullerton, CA (United States); Neff, James E.; Steele, Patricia A. [College of Charleston, Charleston, SC (United States); Gray, Richard O. [Appalachian State Univ., Boone, NC (United States); Corbally, Christopher J. [Vatican Observatory, Tucson, AZ (United States)

    2016-04-15

    Lambda Boo-type stars are a group of late B to early F-type Population I dwarfs that show mild to extreme deficiencies of iron-peak elements (up to 2 dex), but their C, N, O, and S abundances are near solar. This intriguing stellar class has recently regained the spotlight because of the directly imaged planets around a confirmed Lambda Boo star, HR 8799, and a suggested Lambda Boo star, Beta Pictoris. The discovery of a giant asteroid belt around Vega, another possible Lambda Boo star, also suggests hidden planets. The possible link between Lambda Boo stars and planet-bearing stars motivates us to study Lambda Boo stars systematically. Since the peculiar nature of the prototype Lambda Boötis was first noticed in 1943, Lambda Boo candidates published in the literature have been selected using widely different criteria. In order to determine the origin of Lambda Boo stars’ unique abundance pattern and to better discriminate between theories explaining the Lambda Boo phenomenon, a consistent working definition of Lambda Boo stars is needed. We have re-evaluated all published Lambda Boo candidates and their available ultraviolet and visible spectra. In this paper, using observed and synthetic spectra, we explore the physical basis for the classification of Lambda Boo stars, and develop quantitative criteria that discriminate metal-poor stars from bona fide Lambda Boo stars. Based on these stricter Lambda Boo classification criteria, we conclude that neither Beta Pictoris nor Vega should be classified as Lambda Boo stars.

  15. UTILIZING SYNTHETIC UV SPECTRA TO EXPLORE THE PHYSICAL BASIS FOR THE CLASSIFICATION OF LAMBDA BOÖTIS STARS

    International Nuclear Information System (INIS)

    Cheng, Kwang-Ping; Johnson, Dustin M.; Tarbell, Erik S.; Romo, Christopher A.; Prabhaker, Arvind; Neff, James E.; Steele, Patricia A.; Gray, Richard O.; Corbally, Christopher J.

    2016-01-01

    Lambda Boo-type stars are a group of late B to early F-type Population I dwarfs that show mild to extreme deficiencies of iron-peak elements (up to 2 dex), but their C, N, O, and S abundances are near solar. This intriguing stellar class has recently regained the spotlight because of the directly imaged planets around a confirmed Lambda Boo star, HR 8799, and a suggested Lambda Boo star, Beta Pictoris. The discovery of a giant asteroid belt around Vega, another possible Lambda Boo star, also suggests hidden planets. The possible link between Lambda Boo stars and planet-bearing stars motivates us to study Lambda Boo stars systematically. Since the peculiar nature of the prototype Lambda Boötis was first noticed in 1943, Lambda Boo candidates published in the literature have been selected using widely different criteria. In order to determine the origin of Lambda Boo stars’ unique abundance pattern and to better discriminate between theories explaining the Lambda Boo phenomenon, a consistent working definition of Lambda Boo stars is needed. We have re-evaluated all published Lambda Boo candidates and their available ultraviolet and visible spectra. In this paper, using observed and synthetic spectra, we explore the physical basis for the classification of Lambda Boo stars, and develop quantitative criteria that discriminate metal-poor stars from bona fide Lambda Boo stars. Based on these stricter Lambda Boo classification criteria, we conclude that neither Beta Pictoris nor Vega should be classified as Lambda Boo stars

  16. An extremely bright gamma-ray pulsar in the Large Magellanic Cloud.

    Science.gov (United States)

    2015-11-13

    Pulsars are rapidly spinning, highly magnetized neutron stars, created in the gravitational collapse of massive stars. We report the detection of pulsed giga-electron volt gamma rays from the young pulsar PSR J0540-6919 in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. This is the first gamma-ray pulsar detected in another galaxy. It has the most luminous pulsed gamma-ray emission yet observed, exceeding the Crab pulsar's by a factor of 20. PSR J0540-6919 presents an extreme test case for understanding the structure and evolution of neutron star magnetospheres. Copyright © 2015, American Association for the Advancement of Science.

  17. Delayed star formation in isolated dwarf galaxies: Hubble space telescope star formation history of the Aquarius dwarf irregular

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Andrew A. [School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart, Tasmania, 7001 Australia (Australia); Weisz, Daniel R. [Department of Astronomy, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Dolphin, Andrew E. [Raytheon, 1151 East Hermans Road, Tucson, AZ 85706 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55441 (United States); McConnachie, Alan W. [NRC Herzberg Institute of Astrophysics, Dominion Astrophysical Observatory, Victoria, BC, V9E 2E7 Canada (Canada); Brooks, Alyson M. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Leaman, Ryan, E-mail: andrew.cole@utas.edu.au, E-mail: drw@ucsc.edu, E-mail: adolphin@raytheon.com, E-mail: skillman@astro.umn.edu, E-mail: alan.mcconnachie@nrc-cnrc.gc.ca, E-mail: abrooks@physics.rutgers.edu, E-mail: rleaman@iac.es [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2014-11-01

    We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope Advanced Camera for Surveys. The resulting color-magnitude diagram (CMD) reaches more than a magnitude below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ≈10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ≈10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ≈ 2). The star formation rate increased dramatically ≈6-8 Gyr ago (z ≈ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M {sub H} {sub I}/M {sub *}, dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CDM simulations. The similarities between Leo A and Aquarius suggest that if gas is not removed from dwarf galaxies by interactions or feedback, it can linger for several gigayears without cooling in sufficient quantity to form stars efficiently. We discuss possible causes for the delay in star formation including suppression by reionization and late-time mergers. We find reasonable agreement between our measured SFHs and select cosmological simulations of isolated dwarfs. Because star formation and merger processes are both stochastic in nature, delayed star formation in various degrees is predicted to be a characteristic (but not a universal) feature of isolated small galaxies.

  18. Alchemy of stars

    Energy Technology Data Exchange (ETDEWEB)

    Parashar, D [A.R.S.D. Coll., New Delhi (India); Bhatia, V B [Delhi Univ. (India). Dept. of Physics and Astrophysics

    1976-05-01

    Developments in studies on stellar evolution during this century are reviewed. Recent considerations indicate that almost all elements between helium and zinc (a range which comprises more than 99 percent by mass of elements heavier than helium) can be synthesised in nuclear processes occurring during the late violent stages of an exploding star or supernova and a vigorous study in the new field of explosive nucleosynthesis is in progress. The process of nucleosynthesis has been classified into 8 sets of nuclear reactions, namely, (1) hydrogen burning, (2) helium burning, (3) ..cap alpha..-process, (4) e-process, (5) s-process, (6) r-process, (7) p-process and (8) x-process. The abundance of helium and heavier elements are explained and the formation of various elements during supernova explosions is discussed. The questions regarding the appropriate astrophysical conditions for the formation of massive stars (3 to 8 times solar mass) is still unanswered.

  19. Very low mass stars

    International Nuclear Information System (INIS)

    Liebert, J.; Probst, R.G.

    1987-01-01

    This paper discusses several theoretical and observational topics involved in discovering and analyzing very low mass stellar objects below about 0.3 M circle, as well as their likely extension into the substellar range. The authors hereafter refer to these two classes of objects as VLM stars and brown dwarfs, respectively; collectively, they are called VLM objects. The authors outline recent theoretical work on low-mass stellar interiors and atmospheres, the determination of the hydrogen-burning mass limit, important dynamical evidence bearing on the expected numbers of such objects, and the expectations for such objects from star-formation theory. They focus on the properties of substellar objects near the stellar mass limit. Observational techniques used to discover and analyze VLM objects are summarized

  20. Pulsating stars harbouring planets

    Directory of Open Access Journals (Sweden)

    Moya A.

    2013-04-01

    Full Text Available Why bother with asteroseismology while studying exoplanets? There are several answers to this question. Asteroseismology and exoplanetary sciences have much in common and the synergy between the two opens up new aspects in both fields. These fields and stellar activity, when taken together, allow maximum extraction of information from exoplanet space missions. Asteroseismology of the host star has already proved its value in a number of exoplanet systems by its unprecedented precision in determining stellar parameters. In addition, asteroseismology allows the possibility of discovering new exoplanets through time delay studies. The study of the interaction between exoplanets and their host stars opens new windows on various physical processes. In this review I will summarize past and current research in exoplanet asteroseismology and explore some guidelines for the future.

  1. Shells around stars

    International Nuclear Information System (INIS)

    Olnon, F.M.

    1977-01-01

    This thesis deals with optically visible stars surrounded by gas and dust and hot enough to ionize the hydrogen atoms in their envelopes. The ionized gas emits radio continuum radiation by the thermal Bremsstrahlung mechanism. Cool giant stars that show radio line emission from molecules in their circumstellar envelopes are discussed. Under favourable conditions the so-called maser effect gives rise to very intense emission lines. Up till now seven different maser transitions have been found in the envelopes of cool giants. Four of these lines from OH, H 2 O and SiO are studied here. Each of them originates in a different layer so that these lines can be used to probe the envelope. The profile of a maser line gives information about the velocity structure of the region where it is formed

  2. Structure of neutron stars

    International Nuclear Information System (INIS)

    Cheong, C.K.

    1974-01-01

    Structure of neutron stars consisting of a cold and catalyzed superdense matter were investigated by integrating the equations for hydrostatic equilibrium based on the General Relativity theory. The equations of state were obtained with the help of semiempirical nuclear mass formulae. A large phase transition was found between the nuclear and subnuclear density regions. The density phase transition points were calculated as 6.2 x 10 11 and 3.8 x 10 13 g/cm 3 . Due to such a large phase transition, the equation of state practically consists of two parts: The nuclear and subnuclear phases wich are in contact under the thermodynamical equilibrium at the corresponding pressure. Some macroscopic properties of neutron stars are discussed. (Author) [pt

  3. What stars become supernovae

    International Nuclear Information System (INIS)

    Tinsley, B.M.

    1975-01-01

    A variety of empirical lines of evidence is assembled on the masses and stellar population types of stars that trigger supernova (SN) explosions. The main theoretical motivations are to determine whether type I supernovae (SN I) can have massive precursors, and whether there is an interval of stellar mass, between the masses of precursors of pulsars and white dwarfs, that is disrupted by carbon detonation. Statistical and other uncertainties in the empirical arguments are given particular attention, and are found to be more important than generally realized. Relatively secure conclusions include the following. Statistics of stellar birthrates, SN, pulsars, and SN remnants in the Galaxy show that SN II (or all SN) could arise from stars with masses greater than M/sub s/ where M/sub s/ approximately 49 to 12 M solar mass; the precursor mass range cannot be more closely defined from present data; nor can it be said whether all SN leave pulsars and/or extended radio remnants. Several methods of estimating the masses of stars that become white dwarfs are consistent with a lower limit, M/sub s/ greater than or equal to 5 M solar mass, so carbon detonation may indeed be avoided, although this conclusion is not secure. Studies of the properties of galaxies in which SN occur, and their distributions within galaxies, support the usual views that SN I have low-mass precursors (less than or equal to 5 M solar mass and typically less than or equal to 1 M solar mass) and SN II have massive precursors (greater than or equal to 5 M solar mass); the restriction of known SN II to Sc and Sb galaxies, to date, is shown to be consistent, statistically, with massive stars in other galaxies also dying as SN II. Possible implications of the peculiarities of some SN-producing galaxies are discussed. Suggestions are made for observational and theoretical studies that would help answer important remaining questions on the nature of SN precursors

  4. Detector limitations, STAR

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, D. G.

    1998-07-13

    Every detector has limitations in terms of solid angle, particular technologies chosen, cracks due to mechanical structure, etc. If all of the presently planned parts of STAR [Solenoidal Tracker At RHIC] were in place, these factors would not seriously limit our ability to exploit the spin physics possible in RHIC. What is of greater concern at the moment is the construction schedule for components such as the Electromagnetic Calorimeters, and the limited funding for various levels of triggers.

  5. Oscillations in neutron stars

    International Nuclear Information System (INIS)

    Hoeye, Gudrun Kristine

    1999-01-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l → 4) f-modes we were also able to derive a formula that determines II l+1 from II l and II l-1 to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n c , while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  6. Oscillations in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Hoeye, Gudrun Kristine

    1999-07-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  7. Extremes in nature

    CERN Document Server

    Salvadori, Gianfausto; Kottegoda, Nathabandu T

    2007-01-01

    This book is about the theoretical and practical aspects of the statistics of Extreme Events in Nature. Most importantly, this is the first text in which Copulas are introduced and used in Geophysics. Several topics are fully original, and show how standard models and calculations can be improved by exploiting the opportunities offered by Copulas. In addition, new quantities useful for design and risk assessment are introduced.

  8. Star clouds of Magellan

    International Nuclear Information System (INIS)

    Tucker, W.

    1981-01-01

    The Magellanic Clouds are two irregular galaxies belonging to the local group which the Milky Way belongs to. By studying the Clouds, astronomers hope to gain insight into the origin and composition of the Milky Way. The overall structure and dynamics of the Clouds are clearest when studied in radio region of the spectrum. One benefit of directly observing stellar luminosities in the Clouds has been the discovery of the period-luminosity relation. Also, the Clouds are a splendid laboratory for studying stellar evolution. It is believed that both Clouds may be in the very early stage in the development of a regular, symmetric galaxy. This raises a paradox because some of the stars in the star clusters of the Clouds are as old as the oldest stars in our galaxy. An explanation for this is given. The low velocity of the Clouds with respect to the center of the Milky Way shows they must be bound to it by gravity. Theories are given on how the Magellanic Clouds became associated with the galaxy. According to current ideas the Clouds orbits will decay and they will spiral into the Galaxy

  9. Stars of strange matter

    International Nuclear Information System (INIS)

    Bethe, H.A.; Brown, G.E.; Cooperstein, J.

    1987-01-01

    We investigate suggestions that quark matter with strangeness per baryon of order unity may be stable. We model this matter at nuclear matter densities as a gas of close packed Λ-particles. From the known mass of the Λ-particle we obtain an estimate of the energy and chemical potential of strange matter at nuclear densities. These are sufficiently high to preclude any phase transition from neutron matter to strange matter in the region near nucleon matter density. Including effects from gluon exchange phenomenologically, we investigate higher densities, consistently making approximations which underestimate the density of transition. In this way we find a transition density ρ tr > or approx.7ρ 0 , where ρ 0 is nuclear matter density. This is not far from the maximum density in the center of the most massive neutron stars that can be constructed. Since we have underestimated ρ tr and still find it to be ∝7ρ 0 , we do not believe that the transition from neutron to quark matter is likely in neutron stars. Moreover, measured masses of observed neutron stars are ≅1.4 M sun , where M sun is the solar mass. For such masses, the central (maximum) density is ρ c 0 . Transition to quark matter is certainly excluded for these densities. (orig.)

  10. Stable dark energy stars

    International Nuclear Information System (INIS)

    Lobo, Francisco S N

    2006-01-01

    The gravastar picture is an alternative model to the concept of a black hole, where there is an effective phase transition at or near where the event horizon is expected to form, and the interior is replaced by a de Sitter condensate. In this work a generalization of the gravastar picture is explored by considering matching of an interior solution governed by the dark energy equation of state, ω ≡ p/ρ < -1/3, to an exterior Schwarzschild vacuum solution at a junction interface. The motivation for implementing this generalization arises from the fact that recent observations have confirmed an accelerated cosmic expansion, for which dark energy is a possible candidate. Several relativistic dark energy stellar configurations are analysed by imposing specific choices for the mass function. The first case considered is that of a constant energy density, and the second choice that of a monotonic decreasing energy density in the star's interior. The dynamical stability of the transition layer of these dark energy stars to linearized spherically symmetric radial perturbations about static equilibrium solutions is also explored. It is found that large stability regions exist that are sufficiently close to where the event horizon is expected to form, so that it would be difficult to distinguish the exterior geometry of the dark energy stars, analysed in this work, from an astrophysical black hole

  11. Spheroidal Populated Star Systems

    Science.gov (United States)

    Angeletti, Lucio; Giannone, Pietro

    2008-10-01

    Globular clusters and low-ellipticity early-type galaxies can be treated as systems populated by a large number of stars and whose structures can be schematized as spherically symmetric. Their studies profit from the synthesis of stellar populations. The computation of synthetic models makes use of various contributions from star evolution and stellar dynamics. In the first sections of the paper we present a short review of our results on the occurrence of galactic winds in star systems ranging from globular clusters to elliptical galaxies, and the dynamical evolution of a typical massive globular cluster. In the subsequent sections we describe our approach to the problem of the stellar populations in elliptical galaxies. The projected radial behaviours of spectro-photometric indices for a sample of eleven galaxies are compared with preliminary model results. The best agreement between observation and theory shows that our galaxies share a certain degree of heterogeneity. The gas energy dissipation varies from moderate to large, the metal yield ranges from solar to significantly oversolar, the dispersion of velocities is isotropic in most of the cases and anisotropic in the remaining instances.

  12. What are the stars?

    CERN Document Server

    Srinivasan, Ganesan

    2014-01-01

    The outstanding question in astronomy at the turn of the twentieth century was: What are the stars and why are they as they are? In this volume, the story of how the answer to this fundamental question was unravelled is narrated in an informal style, with emphasis on the underlying physics. Although the foundations of astrophysics were laid down by 1870, and the edifice was sufficiently built up by 1920, the definitive proof of many of the prescient conjectures made in the 1920s and 1930s came to be established less than ten years ago. This book discusses these recent developments in the context of discussing the nature of the stars, their stability and the source of the energy they radiate.  Reading this book will get young students excited about the presently unfolding revolution in astronomy and the challenges that await them in the world of physics, engineering and technology. General readers will also find the book appealing for its highly accessible narrative of the physics of stars.  “... The reade...

  13. Polarimetry of symbiotic stars

    International Nuclear Information System (INIS)

    Piirola, V.

    1983-01-01

    Five symbiotic stars have been observed for linear polarization (UBVRI) in September 1981. Three systems, CH Cyg, CI Cyg and AG Peg show intrinsic polarization while in the case of Z And and AX Per the observed polarization seems to be mostly of interstellar origin. The position angle of polarization of CI Cyg and AG Peg rotates strongly vs. wavelength, as observed also for CH Cyg in 1977-80. The polarization of CH Cyg has decreased since May 1980, especially in the I, R and U bands, so that the maximum polarization is now in the blue (Psub(B) approx. 0.3%). Probably one is monitoring the formation, growth and disappearance of dust particles in the atmosphere of this star. Two related systems, PU Vul (Nova Vul 1979) and R Aql (Mira) have polarization behaviour rather similar to that of symbiotic stars which suggests that the M type giant present in these systems is responsible for most of the intrinsic polarization. (Auth.)

  14. Rhabdomyosarcoma of the extremity

    International Nuclear Information System (INIS)

    Rao, Bhaskar N

    1997-01-01

    Rhabdomyosarcoma is the most common soft tissue sarcoma accounting for almost 55%. These tumors arise from unsegmented mesoderm or primitive mesenchyma, which have the capacity to differentiate into muscle. Less than 5% occur in the first year of life. Extremity rhabdomyosarcoma are mainly seen in the adolescent years. The most common histologic subtype is the alveolar variant. Other characteristics of extremity rhabdomyosarcoma include a predilection for lymph node metastasis, a high local failure, and a relatively low survival rate. They often present as slow painless masses; however, lesions in the hand and foot often present as painful masses and imaging studies may show invasion of the bone. Initial diagnostic approaches include needle biopsy or incisional biopsy for larger lesions. Excisional biopsy is indicated preferably for lesions less than 2.5 cm. following this in most instances therapy is initiated with multi agent chemotherapy depending upon response, the next modality may be either surgery with intent to cure or radiation therapy. Amputation of an extremity for local control is not considered in most instances. Prognostic factors that have been determined over the years to be of significance by multi variant analysis have included age, tumor size, invasiveness, presence of either nodal or distant metastasis, and complete excision whenever feasible, with supplemental radiation therapy for local control

  15. EXTREMELY METAL-POOR GALAXIES: THE ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Filho, M. E. [Universidad de Las Palmas de Gran Canaria–Universidad de La Laguna, CIE Canarias: Tri-Continental Atlantic Campus, Canary Islands (Spain); Almeida, J. Sánchez; Muñoz-Tuñón, C. [Instituto Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Nuza, S. E.; Kitaura, F.; Heß, S., E-mail: mfilho@astro.up.pt [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany)

    2015-04-01

    We have analyzed bibliographical observational data and theoretical predictions, in order to probe the environment in which extremely metal-poor dwarf galaxies (XMPs) reside. We have assessed the H i component and its relation to the optical galaxy, the cosmic web type (voids, sheets, filaments and knots), the overdensity parameter and analyzed the nearest galaxy neighbors. The aim is to understand the role of interactions and cosmological accretion flows in the XMP observational properties, particularly the triggering and feeding of the star formation. We find that XMPs behave similarly to Blue Compact Dwarfs; they preferably populate low-density environments in the local universe: ∼60% occupy underdense regions, and ∼75% reside in voids and sheets. This is more extreme than the distribution of irregular galaxies, and in contrast to those regions preferred by elliptical galaxies (knots and filaments). We further find results consistent with previous observations; while the environment does determine the fraction of a certain galaxy type, it does not determine the overall observational properties. With the exception of five documented cases (four sources with companions and one recent merger), XMPs do not generally show signatures of major mergers and interactions; we find only one XMP with a companion galaxy within a distance of 100 kpc, and the H i gas in XMPs is typically well-behaved, demonstrating asymmetries mostly in the outskirts. We conclude that metal-poor accretion flows may be driving the XMP evolution. Such cosmological accretion could explain all the major XMP observational properties: isolation, lack of interaction/merger signatures, asymmetric optical morphology, large amounts of unsettled, metal-poor H i gas, metallicity inhomogeneities, and large specific star formation.

  16. Improved autonomous star identification algorithm

    International Nuclear Information System (INIS)

    Luo Li-Yan; Xu Lu-Ping; Zhang Hua; Sun Jing-Rong

    2015-01-01

    The log–polar transform (LPT) is introduced into the star identification because of its rotation invariance. An improved autonomous star identification algorithm is proposed in this paper to avoid the circular shift of the feature vector and to reduce the time consumed in the star identification algorithm using LPT. In the proposed algorithm, the star pattern of the same navigation star remains unchanged when the stellar image is rotated, which makes it able to reduce the star identification time. The logarithmic values of the plane distances between the navigation and its neighbor stars are adopted to structure the feature vector of the navigation star, which enhances the robustness of star identification. In addition, some efforts are made to make it able to find the identification result with fewer comparisons, instead of searching the whole feature database. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition rate and robustness by the proposed algorithm are better than those by the LPT algorithm and the modified grid algorithm. (paper)

  17. The best and brightest metal-poor stars

    Energy Technology Data Exchange (ETDEWEB)

    Schlaufman, Kevin C.; Casey, Andrew R., E-mail: kschlauf@mit.edu, E-mail: arc@ast.cam.ac.uk [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2014-12-10

    The chemical abundances of large samples of extremely metal-poor (EMP) stars can be used to investigate metal-free stellar populations, supernovae, and nucleosynthesis as well as the formation and galactic chemical evolution of the Milky Way and its progenitor halos. However, current progress on the study of EMP stars is being limited by their faint apparent magnitudes. The acquisition of high signal-to-noise spectra for faint EMP stars requires a major telescope time commitment, making the construction of large samples of EMP star abundances prohibitively expensive. We have developed a new, efficient selection that uses only public, all-sky APASS optical, 2MASS near-infrared, and WISE mid-infrared photometry to identify bright metal-poor star candidates through their lack of molecular absorption near 4.6 microns. We have used our selection to identify 11,916 metal-poor star candidates with V < 14, increasing the number of publicly available candidates by more than a factor of five in this magnitude range. Their bright apparent magnitudes have greatly eased high-resolution follow-up observations that have identified seven previously unknown stars with [Fe/H] ≲ –3.0. Our follow-up campaign has revealed that 3.8{sub −1.1}{sup +1.3}% of our candidates have [Fe/H] ≲ –3.0 and 32.5{sub −2.9}{sup +3.0}% have –3.0 ≲ [Fe/H] ≲ –2.0. The bulge is the most likely location of any existing Galactic Population III stars, and an infrared-only variant of our selection is well suited to the identification of metal-poor stars in the bulge. Indeed, two of our confirmed metal-poor stars with [Fe/H] ≲ –2.7 are within about 2 kpc of the Galactic center. They are among the most metal-poor stars known in the bulge.

  18. The Evolution of Low-Metallicity Massive Stars

    Science.gov (United States)

    Szécsi, Dorottya

    2016-07-01

    Massive star evolution taking place in astrophysical environments consisting almost entirely of hydrogen and helium - in other words, low-metallicity environments - is responsible for some of the most intriguing and energetic cosmic phenomena, including supernovae, gamma-ray bursts and gravitational waves. This thesis aims to investigate the life and death of metal-poor massive stars, using theoretical simulations of the stellar structure and evolution. Evolutionary models of rotating, massive stars (9-600 Msun) with an initial metal composition appropriate for the low-metallicity dwarf galaxy I Zwicky 18 are presented and analyzed. We find that the fast rotating models (300 km/s) become a particular type of objects predicted only at low-metallicity: the so-called Transparent Wind Ultraviolet INtense (TWUIN) stars. TWUIN stars are fast rotating massive stars that are extremely hot (90 kK), very bright and as compact as Wolf-Rayet stars. However, as opposed to Wolf-Rayet stars, their stellar winds are optically thin. As these hot objects emit intense UV radiation, we show that they can explain the unusually high number of ionizing photons of the dwarf galaxy I Zwicky 18, an observational quantity that cannot be understood solely based on the normal stellar population of this galaxy. On the other hand, we find that the most massive, slowly rotating models become another special type of object predicted only at low-metallicity: core-hydrogen-burning cool supergiant stars. Having a slow but strong stellar wind, these supergiants may be important contributors in the chemical evolution of young galactic globular clusters. In particular, we suggest that the low mass stars observed today could form in a dense, massive and cool shell around these, now dead, supergiants. This scenario is shown to explain the anomalous surface abundances observed in these low mass stars, since the shell itself, having been made of the mass ejected by the supergiant’s wind, contains nuclear

  19. First stars X. The nature of three unevolved carbon-enhanced metal-poor stars

    DEFF Research Database (Denmark)

    Sivarani, T.; Beers, T.C.; Bonifacio, P.

    2006-01-01

    Stars: abundances, stars: population II, Galaxy: abundances, stars: AGB and post-AGB Udgivelsesdato: Nov.......Stars: abundances, stars: population II, Galaxy: abundances, stars: AGB and post-AGB Udgivelsesdato: Nov....

  20. StarDOM: From STAR format to XML

    International Nuclear Information System (INIS)

    Linge, Jens P.; Nilges, Michael; Ehrlich, Lutz

    1999-01-01

    StarDOM is a software package for the representation of STAR files as document object models and the conversion of STAR files into XML. This allows interactive navigation by using the Document Object Model representation of the data as well as easy access by XML query languages. As an example application, the entire BioMagResBank has been transformed into XML format. Using an XML query language, statistical queries on the collected NMR data sets can be constructed with very little effort. The BioMagResBank/XML data and the software can be obtained at http://www.nmr.embl-heidelberg.de/nmr/StarDOM/

  1. Baseline metal enrichment from Population III star formation in cosmological volume simulations

    Science.gov (United States)

    Jaacks, Jason; Thompson, Robert; Finkelstein, Steven L.; Bromm, Volker

    2018-04-01

    We utilize the hydrodynamic and N-body code GIZMO coupled with our newly developed sub-grid Population III (Pop III) Legacy model, designed specifically for cosmological volume simulations, to study the baseline metal enrichment from Pop III star formation at z > 7. In this idealized numerical experiment, we only consider Pop III star formation. We find that our model Pop III star formation rate density (SFRD), which peaks at ˜ 10- 3 M⊙ yr- 1 Mpc- 1 near z ˜ 10, agrees well with previous numerical studies and is consistent with the observed estimates for Pop II SFRDs. The mean Pop III metallicity rises smoothly from z = 25 to 7, but does not reach the critical metallicity value, Zcrit = 10-4 Z⊙, required for the Pop III to Pop II transition in star formation mode until z ≃ 7. This suggests that, while individual haloes can suppress in situ Pop III star formation, the external enrichment is insufficient to globally terminate Pop III star formation. The maximum enrichment from Pop III star formation in star-forming dark matter haloes is Z ˜ 10-2 Z⊙, whereas the minimum found in externally enriched haloes is Z ≳ 10-7 Z⊙. Finally, mock observations of our simulated IGM enriched with Pop III metals produce equivalent widths similar to observations of an extremely metal-poor damped Lyman alpha system at z = 7.04, which is thought to be enriched by Pop III star formation only.

  2. Searching for X-ray Pulsations from Neutron Stars Using NICER

    Science.gov (United States)

    Ray, Paul S.; Arzoumanian, Zaven; Gendreau, Keith C.; Bogdanov, Slavko; Bult, Peter; Chakrabarty, Deepto; Chakrabarty, Deepto; Guillot, Sebastien; Harding, Alice; Ho, Wynn C. G.; Lamb, Frederick; Mahmoodifar, Simin; Miller, Cole; Strohmayer, Tod; Wilson-Hodge, Colleen; Wolff, Michael T.; NICER Science Team Working Group on Pulsation Searches and Multiwavelength Coordination

    2018-01-01

    The Neutron Star Interior Composition Explorer (NICER) presents an exciting new capability for discovering new modulation properties of X-ray emitting neutron stars, including large area, low background, extremely precise absolute time stamps, superb low-energy response and flexible scheduling. The Pulsation Searches and Multiwavelength Coordination working group has designed a 2.5 Ms observing program to search for pulsations and characterize the modulation properties of about 30 known or suspected neutron star sources across a number of source categories. A key early goal will be to search for pulsations from millisecond pulsars that might exhibit thermal pulsations from the surface suitable for pulse profile modeling to constrain the neutron star equation of state. In addition, we will search for pulsations from transitional millisecond pulsars, isolated neutron stars, LMXBs, accretion-powered millisecond pulsars, central compact objects and other sources. We present our science plan and initial results from the first months of the NICER mission.

  3. Rapidly rotating single late-type giants: New FK Comae stars?

    Science.gov (United States)

    Fekel, Francis C.

    1986-01-01

    A group of rapidly rotating single late-type giants was found from surveys of chromospherically active stars. These stars have V sin I's ranging from 6 to 46 km/sec, modest ultraviolet emission line fluxes, and strong H alpha absorption lines. Although certainly chromospherically active, their characteristics are much less extreme than those of FK Com and one or two other similar systems. One possible explanation for the newly identified systems is that they have evolved from stars similar to FK Com. The chromospheric activity and rotation of single giant stars like FK Com would be expected to decrease with time as they do in single dwarfs. Alternatively, this newly identified group may have evolved from single rapidly rotating A, or early F stars.

  4. Gravitational waves from the collision of tidally disrupted stars with massive black holes

    International Nuclear Information System (INIS)

    East, William E.

    2014-01-01

    We use simulations of hydrodynamics coupled with full general relativity to investigate the gravitational waves produced by a star colliding with a massive black hole when the star's tidal disruption radius lies far outside of the black hole horizon. We consider both main-sequence and white-dwarf compaction stars, and nonspinning black holes, as well as those with near-extremal spin. We study the regime in between where the star can be accurately modeled by a point particle, and where tidal effects completely suppress the gravitational wave signal. We find that nonnegligible gravitational waves can be produced even when the star is strongly affected by tidal forces, as well as when it collides with large angular momentum. We discuss the implications that these results have for the potential observation of gravitational waves from these sources with future detectors.

  5. Extreme Programming Pocket Guide

    CERN Document Server

    Chromatic

    2003-01-01

    Extreme Programming (XP) is a radical new approach to software development that has been accepted quickly because its core practices--the need for constant testing, programming in pairs, inviting customer input, and the communal ownership of code--resonate with developers everywhere. Although many developers feel that XP is rooted in commonsense, its vastly different approach can bring challenges, frustrations, and constant demands on your patience. Unless you've got unlimited time (and who does these days?), you can't always stop to thumb through hundreds of pages to find the piece of info

  6. Upper extremity golf injuries.

    Science.gov (United States)

    Cohn, Michael A; Lee, Steven K; Strauss, Eric J

    2013-01-01

    Golf is a global sport enjoyed by an estimated 60 million people around the world. Despite the common misconception that the risk of injury during the play of golf is minimal, golfers are subject to a myriad of potential pathologies. While the majority of injuries in golf are attributable to overuse, acute traumatic injuries can also occur. As the body's direct link to the golf club, the upper extremities are especially prone to injury. A thorough appreciation of the risk factors and patterns of injury will afford accurate diagnosis, treatment, and prevention of further injury.

  7. Stellar and wind parameters of massive stars from spectral analysis

    Science.gov (United States)

    Araya, Ignacio; Curé, Michel

    2017-11-01

    The only way to deduce information from stars is to decode the radiation it emits in an appropriate way. Spectroscopy can solve this and derive many properties of stars. In this work we seek to derive simultaneously the stellar and wind characteristics of a wide range of massive stars. Our stellar properties encompass the effective temperature, the surface gravity, the stellar radius, the micro-turbulence velocity, the rotational velocity and the Si abundance. For wind properties we consider the mass-loss rate, the terminal velocity and the line-force parameters α, k and δ (from the line-driven wind theory). To model the data we use the radiative transport code Fastwind considering the newest hydrodynamical solutions derived with Hydwind code, which needs stellar and line-force parameters to obtain a wind solution. A grid of spectral models of massive stars is created and together with the observed spectra their physical properties are determined through spectral line fittings. These fittings provide an estimation about the line-force parameters, whose theoretical calculations are extremely complex. Furthermore, we expect to confirm that the hydrodynamical solutions obtained with a value of δ slightly larger than ~ 0.25, called δ-slow solutions, describe quite reliable the radiation line-driven winds of A and late B supergiant stars and at the same time explain disagreements between observational data and theoretical models for the Wind-Momentum Luminosity Relationship (WLR).

  8. Detailed abundances in stars belonging to ultra-faint dwarf spheroidal galaxies

    OpenAIRE

    François, P.; Monaco, L.; Villanova, S.; Catelan, M.; Bonifacio, P.; Bellazzini, M.; Bidin, C. Moni; Marconi, G.; Geisler, D.; Sbordone, L.

    2012-01-01

    We report preliminary results concerning the detailed chemical composition of metal poor stars belonging to close ultra-faint dwarf galaxies (hereafter UfDSphs). The abundances have been determined thanks to spectra obtained with X-Shooter, a high efficiency spectrograph installed on one of the ESO VLT units. The sample of ultra-faint dwarf spheroidal stars have abundance ratios slightly lower to what is measured in field halo star of the same metallicity.We did not find extreme abundances in...

  9. The first X-ray imaging spectroscopy of quiescent solar active regions with NuSTAR

    DEFF Research Database (Denmark)

    Hannah, Iain G.; Grefenstette, Brian W.; Smith, David M.

    2016-01-01

    We present the first observations of quiescent active regions (ARs) using the Nuclear Spectroscopic Telescope Array (NuSTAR), a focusing hard X-ray telescope capable of studying faint solar emission from high-temperature and non-thermal sources. We analyze the first directly imaged and spectrally...... resolved X-rays above 2 keV from non-flaring ARs, observed near the west limb on 2014 November 1. The NuSTAR X-ray images match bright features seen in extreme ultraviolet and soft X-rays. The NuSTAR imaging spectroscopy is consistent with isothermal emission of temperatures 3.1-4.4 MK and emission...

  10. ISOPHOT observations of R CrB: A star caught smoking

    DEFF Research Database (Denmark)

    Walker, H.J.; Heinrichsen, I.; Richards, P.J.

    1996-01-01

    with an unusual shape to the observed spectrum. The long wavelength photometry, when compared to IRAS data, shows the temperature of the warm dust shell is unaffected by the ejection of a new cloud of carbon from the central star. The dust cloud is probably composed of pure carbon, but other materials cannot......R CrB is a very unusual star, being extremely hydrogen deficient and undergoing irregular deep minima in its visible light. R CrB started to undergo a fading episode in October 1995. The infrared Space Observatory (ISO) observed the star after it had faded by 7 magnitudes. The inner, warm dust...

  11. X-ray emission from open star clusters with Spectrum-Rontgen-Gamma

    DEFF Research Database (Denmark)

    Singh, K.P.; Ojha, D.K.; Schnopper, H.W.

    1998-01-01

    The study of X-ray emission from co-evolving populations of stars in open dusters is extremely important for understanding the dynamo activity among the stars. With this objective, we propose to observe a number of open clusters in the X-ray and UV bands using SPECTRUM-Rontgen-Gamma. The high...... throughput of SPECTRUM-Rontgen-Gamma will help detect main sequence stars like Sun in middle-aged and old clusters. We will study the relationships between various parameters - age, rotation, abundance, UBV colors, X-ray luminosity, coronal temperature etc. X-ray spectra of younger and brighter populations...

  12. Numerical study of rotating relativistic stars

    International Nuclear Information System (INIS)

    Wilson, J.R.

    1975-01-01

    The equations of structure for rotating stars in general relativity are presented and put in a form suitable for computer calculations. The results of equilibrium calculations for supermassive stars, neutron stars, and magnetically supported stars are reported, as are calculations of collapsing, rotating, and magnetized stars in the slowly changing gravitational field approximation. (auth)

  13. The Spacelab IPS Star Simulator

    Science.gov (United States)

    Wessling, Francis C., III

    The cost of doing business in space is very high. If errors occur while in orbit the costs grow and desired scientific data may be corrupted or even lost. The Spacelab Instrument Pointing System (IPS) Star Simulator is a unique test bed that allows star trackers to interface with simulated stars in a laboratory before going into orbit. This hardware-in-the loop testing of equipment on earth increases the probability of success while in space. The IPS Star Simulator provides three fields of view 2.55 x 2.55 degrees each for input into star trackers. The fields of view are produced on three separate monitors. Each monitor has 4096 x 4096 addressable points and can display 50 stars (pixels) maximum at a given time. The pixel refresh rate is 1000 Hz. The spectral output is approximately 550 nm. The available relative visual magnitude range is 2 to 8 visual magnitudes. The star size is less than 100 arc seconds. The minimum star movement is less than 5 arc seconds and the relative position accuracy is approximately 40 arc seconds. The purpose of this paper is to describe the LPS Star Simulator design and to provide an operational scenario so others may gain from the approach and possible use of the system.

  14. Origin of faint blue stars

    International Nuclear Information System (INIS)

    Tutukov, A.; Iungelson, L.

    1987-01-01

    The origin of field faint blue stars that are placed in the HR diagram to the left of the main sequence is discussed. These include degenerate dwarfs and O and B subdwarfs. Degenerate dwarfs belong to two main populations with helium and carbon-oxygen cores. The majority of the hot subdwarfs most possibly are helium nondegenerate stars that are produced by mass exchange close binaries of moderate mass cores (3-15 solar masses). The theoretical estimates of the numbers of faint blue stars of different types brighter than certain stellar magnitudes agree with star counts based on the Palomar Green Survey. 28 references

  15. Statistical properties of barium stars

    International Nuclear Information System (INIS)

    Hakkila, J.E.

    1986-01-01

    Barium stars are G- and K-giant stars with atmospheric excesses of s-process elements, and a broadband spectral depression in the blue portion of the spectrum. The strength of the λ4554 Ball line is used as a classification parameter known as the Barium Intensity. They have a mean absolute magnitude of 1.0 and a dispersion of 1.2 magnitudes (assuming a Gaussian distribution in absolute magnitude) as measured from secular and statistical parallaxes. These stars apparently belong to a young-disk population from analyses of both the solar reflex motion and their residual velocity distribution, which implies that they have an upper mass limit of around three solar masses. There is no apparent correlation of barium intensity with either luminosity or kinematic properties. The barium stars appear to be preferentially distributed in the direction of the local spiral arm, but show no preference to associate with or avoid the direction of the galactic center. They do not appear related to either the carbon or S-stars because of these tendencies and because of the stellar population to which each type of star belongs. The distribution in absolute magnitude combined with star count analyses implies that these stars are slightly less numerous than previously believed. Barium stars show infrared excesses that correlate with their barium intensities

  16. The birth of star clusters

    CERN Document Server

    2018-01-01

    All stars are born in groups. The origin of these groups has long been a key question in astronomy, one that interests researchers in star formation, the interstellar medium, and cosmology. This volume summarizes current progress in the field, and includes contributions from both theorists and observers. Star clusters appear with a wide range of properties, and are born in a variety of physical conditions. Yet the key question remains: How do diffuse clouds of gas condense into the collections of luminous objects we call stars? This book will benefit graduate students, newcomers to the field, and also experienced scientists seeking a convenient reference.

  17. The Maximum Flux of Star-Forming Galaxies

    Science.gov (United States)

    Crocker, Roland M.; Krumholz, Mark R.; Thompson, Todd A.; Clutterbuck, Julie

    2018-04-01

    The importance of radiation pressure feedback in galaxy formation has been extensively debated over the last decade. The regime of greatest uncertainty is in the most actively star-forming galaxies, where large dust columns can potentially produce a dust-reprocessed infrared radiation field with enough pressure to drive turbulence or eject material. Here we derive the conditions under which a self-gravitating, mixed gas-star disc can remain hydrostatic despite trapped radiation pressure. Consistently taking into account the self-gravity of the medium, the star- and dust-to-gas ratios, and the effects of turbulent motions not driven by radiation, we show that galaxies can achieve a maximum Eddington-limited star formation rate per unit area \\dot{Σ }_*,crit ˜ 10^3 M_{⊙} pc-2 Myr-1, corresponding to a critical flux of F*, crit ˜ 1013L⊙ kpc-2 similar to previous estimates; higher fluxes eject mass in bulk, halting further star formation. Conversely, we show that in galaxies below this limit, our one-dimensional models imply simple vertical hydrostatic equilibrium and that radiation pressure is ineffective at driving turbulence or ejecting matter. Because the vast majority of star-forming galaxies lie below the maximum limit for typical dust-to-gas ratios, we conclude that infrared radiation pressure is likely unimportant for all but the most extreme systems on galaxy-wide scales. Thus, while radiation pressure does not explain the Kennicutt-Schmidt relation, it does impose an upper truncation on it. Our predicted truncation is in good agreement with the highest observed gas and star formation rate surface densities found both locally and at high redshift.

  18. The Double Star mission

    Directory of Open Access Journals (Sweden)

    Liu

    2005-11-01

    Full Text Available The Double Star Programme (DSP was first proposed by China in March, 1997 at the Fragrant Hill Workshop on Space Science, Beijing, organized by the Chinese Academy of Science. It is the first mission in collaboration between China and ESA. The mission is made of two spacecraft to investigate the magnetospheric global processes and their response to the interplanetary disturbances in conjunction with the Cluster mission. The first spacecraft, TC-1 (Tan Ce means "Explorer", was launched on 29 December 2003, and the second one, TC-2, on 25 July 2004 on board two Chinese Long March 2C rockets. TC-1 was injected in an equatorial orbit of 570x79000 km altitude with a 28° inclination and TC-2 in a polar orbit of 560x38000 km altitude. The orbits have been designed to complement the Cluster mission by maximizing the time when both Cluster and Double Star are in the same scientific regions. The two missions allow simultaneous observations of the Earth magnetosphere from six points in space. To facilitate the comparison of data, half of the Double Star payload is made of spare or duplicates of the Cluster instruments; the other half is made of Chinese instruments. The science operations are coordinated by the Chinese DSP Scientific Operations Centre (DSOC in Beijing and the European Payload Operations Service (EPOS at RAL, UK. The spacecraft and ground segment operations are performed by the DSP Operations and Management Centre (DOMC and DSOC in China, using three ground station, in Beijing, Shanghai and Villafranca.

  19. Symbiotic star AG Dra

    International Nuclear Information System (INIS)

    Ipatov, A.P.; Yudin, B.F.; Moskovskij Gosudarstvennyj Univ.

    1986-01-01

    The results obtained from photometric (in the UBVRJHKLM system) and spectrophotometric (in the range 0.33-0.75 μm) observations of symbiotic star AG Dra are presented. The cool component of this star is a red giant with approximately constant brightness (ΔJ ≤ 0 m .3) classified as K4-K5. This red giant fills it's Roche loble and probably is on the assymptotic giant branch of the HR diagramm. The presence of IR excess in 5 μm associated with radiation of the gaseous envelope with the mass of M≅ 10 -6 M sun have been detected. Observations of AG Dra indicate that growing of the bolometric flux of a hot component is accompanied with decreasing effective temperature. The hot component of the system is probably an accerting red dwarf with the mass M≅ 0.4 M sun and disk accretion of matter of cool star with the rate M >or ∼ 10 -4 M sun year in equatorial region. Increase of accretion rate during the outburst of AG Dra leads to the increase of stellar wind from the red dwarf surface and the decrease of it's effective temperature. The hot component of AG Dra may also be considered as a white Dwarf with luminosity L 3 L sun and R eff >or approx. 0.2 R sun . In this case gravitational energy of accreting matter M > or ∼ 10 -6 M sun / year would be the source of the hot component outbursts. The luminosity between outbursts is determined by energy generation from the burning hydrogen layer source

  20. New light on dark stars red dwarfs, low-mass stars, brown dwarfs

    CERN Document Server

    Reid, I Neill

    2000-01-01

    Perhaps the most common question that a child asks when he or she sees the night sky from a dark site for the first time is: 'How many stars are there?' This happens to be a question which has exercised the intellectual skills of many astronomers over the course of most of the last century, including, for the last two decades, one of the authors of this text. Until recently, the most accurate answer was 'We are not certain, but there is a good chance that almost all of them are M dwarfs. ' Within the last three years, results from new sky-surveys - particularly the first deep surveys at near­ infrared wavelengths - have provided a breakthrough in this subject, solidifying our census of the lowest-mass stars and identifying large numbers of the hitherto almost mythical substellar-mass brown dwarfs. These extremely low-luminosity objects are the central subjects of this book, and the subtitle should be interpreted accordingly. The expression 'low-mass stars' carries a wide range of meanings in the astronomical...

  1. Stars of heaven

    CERN Document Server

    Pickover, Clifford A

    2004-01-01

    Do a little armchair space travel, rub elbows with alien life forms, and stretch your mind to the furthest corners of our uncharted universe. With this astonishing guidebook, you don't have to be an astronomer to explore the mysteries of stars and their profound meaning for human existence. Clifford A. Pickover tackles a range of topics from stellar evolution to the fundamental reasons why the universe permits life to flourish. He alternates sections that explain the mysteries of the cosmos with sections that dramatize mind-expanding concepts through a fictional dialog between futuristic human

  2. Elemental diffusion in stars

    International Nuclear Information System (INIS)

    Michaud, Georges; Montmerle, Thierry

    1977-01-01

    This paper is dealing with the origin of the elements in the universe. The scheme of nucleosynthesis is kept to explain the stellar generation of helium, carbon, etc... from the initial hydrogen; but a nonlinear theory is then elaborated to account for the anomalous abundances which were observed. The chemical elements would diffuse throughout the outer layers of a star under the action of the opposite forces of gravitation and radiation. This theory, with completing the nucleosynthesis, would contribute to give a consistent scheme of the elemental origin and abundances [fr

  3. Hadronic Resonances from STAR

    Directory of Open Access Journals (Sweden)

    Wada Masayuki

    2012-11-01

    Full Text Available The results of resonance particle productions (ρ0, ω, K*, ϕ, Σ*, and Λ* measured by the STAR collaboration at RHIC from various colliding systems and energies are presented. Measured mass, width, 〈pT〉, and yield of those resonances are reviewed. No significant mass shifts or width broadening beyond the experiment uncertainties are observed. New measurements of ϕ and ω from leptonic decay channels are presented. The yields from leptonic decay channels are compared with the measurements from hadronic decay channels and the two results are consistent with each other.

  4. O3 stars

    International Nuclear Information System (INIS)

    Walborn, N.R.

    1982-01-01

    A brief review of the 10 known objects in this earliest spectral class is presented. Two new members are included: HD 64568 in NGC 2467 (Puppis OB2), which provides the first example of an O3 V((f*)) spectrum; and Sk -67 0 22 in the Large Magellanic Cloud, which is intermediate between types O3 If* and WN6-A. In addition, the spectrum of HDE 269810 in the LMC is reclassified as the first of type O3 III (f*). The absolute visual magnitudes of these stars are rediscussed

  5. Star-forming galaxy models: Blending star formation into TREESPH

    Science.gov (United States)

    Mihos, J. Christopher; Hernquist, Lars

    1994-01-01

    We have incorporated star-formation algorithms into a hybrid N-body/smoothed particle hydrodynamics code (TREESPH) in order to describe the star forming properties of disk galaxies over timescales of a few billion years. The models employ a Schmidt law of index n approximately 1.5 to calculate star-formation rates, and explicitly include the energy and metallicity feedback into the Interstellar Medium (ISM). Modeling the newly formed stellar population is achieved through the use of hybrid SPH/young star particles which gradually convert from gaseous to collisionless particles, avoiding the computational difficulties involved in creating new particles. The models are shown to reproduce well the star-forming properties of disk galaxies, such as the morphology, rate of star formation, and evolution of the global star-formation rate and disk gas content. As an example of the technique, we model an encounter between a disk galaxy and a small companion which gives rise to a ring galaxy reminiscent of the Cartwheel (AM 0035-35). The primary galaxy in this encounter experiences two phases of star forming activity: an initial period during the expansion of the ring, and a delayed phase as shocked material in the ring falls back into the central regions.

  6. I-Love relations for incompressible stars and realistic stars

    Science.gov (United States)

    Chan, T. K.; Chan, AtMa P. O.; Leung, P. T.

    2015-02-01

    In spite of the diversity in the equations of state of nuclear matter, the recently discovered I-Love-Q relations [Yagi and Yunes, Science 341, 365 (2013), 10.1126/science.1236462], which relate the moment of inertia, tidal Love number (deformability), and the spin-induced quadrupole moment of compact stars, hold for various kinds of realistic neutron stars and quark stars. While the physical origin of such universality is still a current issue, the observation that the I-Love-Q relations of incompressible stars can well approximate those of realistic compact stars hints at a new direction to approach the problem. In this paper, by establishing recursive post-Minkowskian expansion for the moment of inertia and the tidal deformability of incompressible stars, we analytically derive the I-Love relation for incompressible stars and show that the so-obtained formula can be used to accurately predict the behavior of realistic compact stars from the Newtonian limit to the maximum mass limit.

  7. TRIGGERED STAR FORMATION SURROUNDING WOLF-RAYET STAR HD 211853

    Energy Technology Data Exchange (ETDEWEB)

    Liu Tie; Wu Yuefang; Zhang Huawei [Department of Astronomy, Peking University, 100871 Beijing (China); Qin Shengli, E-mail: liutiepku@gmail.com [I. Physikalisches Institut, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany)

    2012-05-20

    The environment surrounding Wolf-Rayet (W-R) star HD 211853 is studied in molecular, infrared, as well as radio, and H I emission. The molecular ring consists of well-separated cores, which have a volume density of 10{sup 3} cm{sup -3} and kinematic temperature {approx}20 K. Most of the cores are under gravitational collapse due to external pressure from the surrounding ionized gas. From the spectral energy distribution modeling toward the young stellar objects, the sequential star formation is revealed on a large scale in space spreading from the W-R star to the molecular ring. A small-scale sequential star formation is revealed toward core 'A', which harbors a very young star cluster. Triggered star formations are thus suggested. The presence of the photodissociation region, the fragmentation of the molecular ring, the collapse of the cores, and the large-scale sequential star formation indicate that the 'collect and collapse' process functions in this region. The star-forming activities in core 'A' seem to be affected by the 'radiation-driven implosion' process.

  8. TRIGGERED STAR FORMATION SURROUNDING WOLF-RAYET STAR HD 211853

    International Nuclear Information System (INIS)

    Liu Tie; Wu Yuefang; Zhang Huawei; Qin Shengli

    2012-01-01

    The environment surrounding Wolf-Rayet (W-R) star HD 211853 is studied in molecular, infrared, as well as radio, and H I emission. The molecular ring consists of well-separated cores, which have a volume density of 10 3 cm –3 and kinematic temperature ∼20 K. Most of the cores are under gravitational collapse due to external pressure from the surrounding ionized gas. From the spectral energy distribution modeling toward the young stellar objects, the sequential star formation is revealed on a large scale in space spreading from the W-R star to the molecular ring. A small-scale sequential star formation is revealed toward core 'A', which harbors a very young star cluster. Triggered star formations are thus suggested. The presence of the photodissociation region, the fragmentation of the molecular ring, the collapse of the cores, and the large-scale sequential star formation indicate that the 'collect and collapse' process functions in this region. The star-forming activities in core 'A' seem to be affected by the 'radiation-driven implosion' process.

  9. NGC 346: Looking in the Cradle of a Massive Star Cluster

    Science.gov (United States)

    Gouliermis, Dimitrios A.; Hony, Sacha

    2017-03-01

    How does a star cluster of more than few 10,000 solar masses form? We present the case of the cluster NGC 346 in the Small Magellanic Cloud, still embedded in its natal star-forming region N66, and we propose a scenario for its formation, based on observations of the rich stellar populations in the region. Young massive clusters host a high fraction of early-type stars, indicating an extremely high star formation efficiency. The Milky Way galaxy hosts several young massive clusters that fill the gap between young low-mass open clusters and old massive globular clusters. Only a handful, though, are young enough to study their formation. Moreover, the investigation of their gaseous natal environments suffers from contamination by the Galactic disk. Young massive clusters are very abundant in distant starburst and interacting galaxies, but the distance of their hosting galaxies do not also allow a detailed analysis of their formation. The Magellanic Clouds, on the other hand, host young massive clusters in a wide range of ages with the youngest being still embedded in their giant HII regions. Hubble Space Telescope imaging of such star-forming complexes provide a stellar sampling with a high dynamic range in stellar masses, allowing the detailed study of star formation at scales typical for molecular clouds. Our cluster analysis on the distribution of newly-born stars in N66 shows that star formation in the region proceeds in a clumpy hierarchical fashion, leading to the formation of both a dominant young massive cluster, hosting about half of the observed pre-main-sequence population, and a self-similar dispersed distribution of the remaining stars. We investigate the correlation between stellar surface density (and star formation rate derived from star-counts) and molecular gas surface density (derived from dust column density) in order to unravel the physical conditions that gave birth to NGC 346. A power law fit to the data yields a steep correlation between these

  10. Statistical investigation of flare stars. III. Flare stars in the general galactic star field

    International Nuclear Information System (INIS)

    Mirzoyan, L.V.; Ambaryan, V.V.; Garibdzhanyan, A.T.; Mirzoyan, A.L.

    1989-01-01

    Some questions relating to the existence of a large number of flare stars in the general star field of the Galaxy are discussed. It is shown that only a small proportion of them can be found by photographic observations, and the fraction of field flare stars among such stars found in the regions of star clusters and associations does not exceed 10%. The ratio of the numbers of flare stars of the foreground and the background for a particular system depends on its distance, reaching zero at a distance of about 500 pc. The spatial density of flare stars in the Pleiades is at least two orders of magnitude greater than in the general galactic field. A lower limit for the number of flare stars in the Galaxy is estimated at 4.2 ·10 9 , and the number of nonflare red dwarfs at 2.1·10 10 . There are grounds for believing that they were all formed in star clusters and associations

  11. The Stars of Heaven

    Science.gov (United States)

    Pickover, Clifford A.

    2004-05-01

    Do a little armchair space travel, rub elbows with alien life forms, and stretch your mind to the furthest corners of our uncharted universe. With this astonishing guidebook, you don't have to be an astronomer to explore the mysteries of stars and their profound meaning for human existence. Clifford A. Pickover tackles a range of topics from stellar evolution to the fundamental reasons why the universe permits life to flourish. He alternates sections that explain the mysteries of the cosmos with sections that dramatize mind-expanding concepts through a fictional dialog between futuristic humans and their alien peers (who embark on a journey beyond the reader's wildest imagination). This highly accessible and entertaining approach turns an intimidating subject into a scientific game open to all dreamers. Told in Pickover's inimitable blend of fascinating state-of-the-art science and whimsical science fiction, and packed with numerous diagrams and illustrations, The Stars of Heaven unfolds a world of paradox and mystery, one that will intrigue anyone who has ever pondered the night sky with wonder.

  12. Stars and Planets

    Science.gov (United States)

    Neta, Miguel

    2014-05-01

    'Estrelas e Planetas' (Stars and Planets) project was developed during the academic year 2009/2010 and was tested on three 3rd grade classes of one school in Quarteira, Portugal. The aim was to encourage the learning of science and the natural and physical phenomena through the construction and manipulation of materials that promote these themes - in this case astronomy. Throughout the project the students built a small book containing three themes of astronomy: differences between stars and planets, the solar system and the phases of the Moon. To each topic was devoted two sessions of about an hour each: the first to teach the theoretical aspects of the theme and the second session to assembly two pages of the book. All materials used (for theoretical sessions and for the construction of the book) and videos of the finished book are available for free use in www.miguelneta.pt/estrelaseplanetas. So far there is only a Portuguese version but soon will be published in English as well. This project won the Excellency Prize 2011 of Casa das Ciências, a portuguese site for teachers supported by the Calouste Gulbenkian Fundation (www.casadasciencias.org).

  13. Chemistry between the stars

    International Nuclear Information System (INIS)

    Kroto, H.W.

    1986-01-01

    During the past 15 years the techniques used by chemists to determine accurate molecular structures have combined with those of radio astronomers to probe the space between the stars. Together they paint a new picture of interstellar space, a picture which shows that vast clouds of gas and dust are continually collapsing to form stars and planets and that the main constituents of these clouds are molecules, some of which are quite complex organic species. It is now known that many of the organic building blocks, useful in the evolution of biologically significant macromolecules, existed long before the Earth was formed. These findings present a challenge to previous widely-accepted theories that such molecules were first generated in the Earth's primaeval atmosphere. In this paper certain aspects of these discoveries are considered with particular emphasis on the contributions made by techniques of use in general chemistry. After a brief astronomical introduction to the Interstellar Medium (ISM) the interaction between chemistry and radioastronomy is discussed. This is followed by details of some exciting, new and quite unexpected advances in our understanding of carbon chemistry, discovered during experiments aimed at understanding some of the more perplexing radioastronomy results. Finally an overview is given of the present knowledge of the molecular composition of the ISM and the resulting implications in so far as the origins of life are concerned. (author)

  14. Chemistry between the stars

    Energy Technology Data Exchange (ETDEWEB)

    Kroto, H W

    1986-01-01

    During the past 15 years the techniques used by chemists to determine accurate molecular structures have combined with those of radio astronomers to probe the space between the stars. Together they paint a new picture of interstellar space, a picture which shows that vast clouds of gas and dust are continually collapsing to form stars and planets and that the main constituents of these clouds are molecules, some of which are quite complex organic species. It is now known that many of the organic building blocks, useful in the evolution of biologically significant macromolecules, existed long before the Earth was formed. These findings present a challenge to previous widely-accepted theories that such molecules were first generated in the Earth's primaeval atmosphere. In this paper certain aspects of these discoveries are considered with particular emphasis on the contributions made by techniques of use in general chemistry. After a brief astronomical introduction to the Interstellar Medium (ISM) the interaction between chemistry and radioastronomy is discussed. This is followed by details of some exciting, new and quite unexpected advances in our understanding of carbon chemistry, discovered during experiments aimed at understanding some of the more perplexing radioastronomy results. Finally an overview is given of the present knowledge of the molecular composition of the ISM and the resulting implications in so far as the origins of life are concerned.

  15. The spectrophotometric investigation of 4 parent stars

    International Nuclear Information System (INIS)

    Tereshchenko, V.M.

    2005-01-01

    The absolute energy distribution in spectra of four parent stars was obtained. The synthetic color indexes for the investigated stars were calculated. They were used for determination of the fundamental parameters of the parent stars: effective temperatures and metallicities. (author)

  16. Rotation of White Dwarf Stars

    OpenAIRE

    Kawaler, Steven D.

    2014-01-01

    I discuss and consider the status of observational determinations of the rotation velocities of white dwarf stars via asteroseismology and spectroscopy. While these observations have important implications on our understanding of the angular momentum evolution of stars in their late stages of evolution, more direct methods are sorely needed to disentangle ambiguities.

  17. The STAR-RICH Detector

    CERN Document Server

    Lasiuk, B; Braem, André; Cozza, D; Davenport, M; De Cataldo, G; Dell'Olio, L; Di Bari, D; Di Mauro, A; Dunlop, J C; Finch, E; Fraissard, Daniel; Franco, A; Gans, J; Ghidini, B; Harris, J W; Horsley, M; Kunde, G J; Lasiuk, B; Lesenechal, Y; Majka, R D; Martinengo, P; Morsch, Andreas; Nappi, E; Paic, G; Piuz, François; Posa, F; Raynaud, J; Salur, S; Sandweiss, J; Santiard, Jean-Claude; Satinover, J; Schyns, E M; Smirnov, N; Van Beelen, J; Williams, T D; Xu, Z

    2002-01-01

    The STAR-RICH detector extends the particle idenfication capabilities of the STAR spectrometer for charged hadrons at mid-rapidity. It allows identification of pions and kaons up to ~3 GeV/c and protons up to ~5 GeV/c. The characteristics and performance of the device in the inaugural RHIC run are described.

  18. Physics of Neutron Star Crusts

    Directory of Open Access Journals (Sweden)

    Chamel Nicolas

    2008-12-01

    Full Text Available The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.

  19. ENERGY STAR Certified Vending Machines

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Refrigerated Beverage Vending Machines that are effective as of March 1, 2013. A detailed listing of key efficiency criteria are available at

  20. Star formation in the multiverse

    International Nuclear Information System (INIS)

    Bousso, Raphael; Leichenauer, Stefan

    2009-01-01

    We develop a simple semianalytic model of the star formation rate as a function of time. We estimate the star formation rate for a wide range of values of the cosmological constant, spatial curvature, and primordial density contrast. Our model can predict such parameters in the multiverse, if the underlying theory landscape and the cosmological measure are known.

  1. Measuring the Sizes of Stars

    Indian Academy of Sciences (India)

    The nearest star to our solar system, called Proxima Centauri, is about 260,000 ..... We can choose the origin of x to be the maximum of the fringe pattern of one of the stars .... ating day and night, round the year, to explore the universe with.

  2. When a major star dies

    International Nuclear Information System (INIS)

    Joubert, G.

    1988-01-01

    Astrologers are slowly learning what happens when a star dies. On the night of 23-24 February 1987, the light of an exploding star - a supernova with the name SN 1987A - reached the earth. In this article this astrological event of the century are discussed, and its importance for astrologers

  3. KAON CONDENSATION IN NEUTRON STARS

    International Nuclear Information System (INIS)

    RAMOS, A.; SCHAFFNER-BIELICH, J.; WAMBACH, J.

    2001-01-01

    We discuss the kaon-nucleon interaction and its consequences for the change of the properties of the kaon in the medium. The onset of kaon condensation in neutron stars under various scenarios as well its effects for neutron star properties are reviewed

  4. ENERGY STAR Certified Ceiling Fans

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Ceiling Fans that are effective as of April 1, 2012. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=ceiling_fans.pr_crit_ceiling_fans

  5. ENERGY STAR Certified Ventilating Fans

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Ventilating Fans that are effective as of October 1, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=vent_fans.pr_crit_vent_fans

  6. Possibility of stable quark stars

    International Nuclear Information System (INIS)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.

    1976-08-01

    A recent zero temperature equation of state which contains quark-partons separated from conventional baryons by a phase transition is used to investigate the stability of quark stars. The sensitivity to the input physics is also considered. The conclusions, which are found to be relatively model independent, indicate that a separately identifiable class of stable objects called quark stars does not exist

  7. Stars the size of planets

    International Nuclear Information System (INIS)

    Whitehouse, D.

    1984-01-01

    Red dwarf stars, the faintest and smallest stars that can be seen, sometimes host flares of immense violence. The article discusses the energy of these flares in terms of mass, x-rays, brightness, variation in light output, the sun and magnetic phenomena. (U.K.)

  8. Opdriftsbaserede modeller for Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten

    Formålet med dette skrift er at få en forhåndsvurdering af mulige effektforøgelser for Wave Star ved anvendelse af aktiv akkumulatordrift. Disse vurderinger baseres på simuleringsmodeller for driften af Wave Star i uregelmæssige bølger. Modellen er udarbejdet i programmeringssproget Delphi og er en...

  9. Investigating NARCCAP Precipitation Extremes via Bivariate Extreme Value Theory (Invited)

    Science.gov (United States)

    Weller, G. B.; Cooley, D. S.; Sain, S. R.; Bukovsky, M. S.; Mearns, L. O.

    2013-12-01

    We introduce methodology from statistical extreme value theory to examine the ability of reanalysis-drive regional climate models to simulate past daily precipitation extremes. Going beyond a comparison of summary statistics such as 20-year return values, we study whether the most extreme precipitation events produced by climate model simulations exhibit correspondence to the most extreme events seen in observational records. The extent of this correspondence is formulated via the statistical concept of tail dependence. We examine several case studies of extreme precipitation events simulated by the six models of the North American Regional Climate Change Assessment Program (NARCCAP) driven by NCEP reanalysis. It is found that the NARCCAP models generally reproduce daily winter precipitation extremes along the Pacific coast quite well; in contrast, simulation of past daily summer precipitation extremes in a central US region is poor. Some differences in the strength of extremal correspondence are seen in the central region between models which employ spectral nudging and those which do not. We demonstrate how these techniques may be used to draw a link between extreme precipitation events and large-scale atmospheric drivers, as well as to downscale extreme precipitation simulated by a future run of a regional climate model. Specifically, we examine potential future changes in the nature of extreme precipitation along the Pacific coast produced by the pineapple express (PE) phenomenon. A link between extreme precipitation events and a "PE Index" derived from North Pacific sea-surface pressure fields is found. This link is used to study PE-influenced extreme precipitation produced by a future-scenario climate model run.

  10. PALFA Discovers Neutron Stars on a Collision Course

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    Got any plans in 46 million years? If not, you should keep an eye out for PSR J1946+2052 around that time this upcoming merger of two neutron stars promises to be an exciting show!Survey SuccessAverage profile for PSR J1946+2052 at 1.43 GHz from a 2 hr observation from the Arecibo Observatory. [Stovall et al. 2018]It seems like we just wrote about the dearth of known double-neutron-star systems, and about how new surveys are doing their best to find more of these compact binaries. Observing these systems improves our knowledge of how pairs of evolved stars behave before they eventually spiral in, merge, and emit gravitational waves that detectors like the Laser Interferometer Gravitational-wave Observatory might observe.Todays study, led by Kevin Stovall (National Radio Astronomy Observatory), goes to show that these surveys are doing a great job so far! Yet another double-neutron-star binary, PSR J1946+2052, has now been discovered as part of the Arecibo L-Band Feed Array pulsar (PALFA) survey. This one is especially unique due to the incredible speed with which these neutron stars orbit each other and their correspondingly (relatively!) short timescale for merger.An Extreme ExampleThe PALFA survey, conducted with the enormous 305-meter radio dish at Arecibo, has thus far resulted in the discovery of 180 pulsars including two double-neutron-star systems. The most recent discovery by Stovall and collaborators brings that number up to three, for a grand total of 16 binary-neutron-star systems (confirmed and unconfirmed) known to date.The 305-m Arecibo Radio Telescope, built into the landscape at Arecibo, Puerto Rico. [NOAO/AURA/NSF/H. Schweiker/WIYN]The newest binary in this collection, PSR J1946+2052, exhibits a pulsar with a 17-millisecond spin period thatwhips around its compact companion at a terrifying rate: the binary period is just 1.88 hours. Follow-up observations with the Jansky Very Large Array and other telescopes allowed the team to identify the binarys

  11. Formation of stars and star clusters in colliding galaxies

    International Nuclear Information System (INIS)

    Belles, Pierre-Emmanuel

    2012-01-01

    Mergers are known to be essential in the formation of large-scale structures and to have a significant role in the history of galaxy formation and evolution. Besides a morphological transformation, mergers induce important bursts of star formation. These starburst are characterised by high Star Formation Efficiencies (SFEs) and Specific Star Formation Rates, i.e., high Star Formation Rates (SFR) per unit of gas mass and high SFR per unit of stellar mass, respectively, compared to spiral galaxies. At all redshifts, starburst galaxies are outliers of the sequence of star-forming galaxies defined by spiral galaxies. We have investigated the origin of the starburst-mode of star formation, in three local interacting systems: Arp 245, Arp 105 and NGC 7252. We combined high-resolution JVLA observations of the 21-cm line, tracing the HI diffuse gas, with UV GALEX observations, tracing the young star-forming regions. We probe the local physical conditions of the Inter-Stellar Medium (ISM) for independent star-forming regions and explore the atomic-to-dense gas transformation in different environments. The SFR/HI ratio is found to be much higher in central regions, compared to outer regions, showing a higher dense gas fraction (or lower HI gas fraction) in these regions. In the outer regions of the systems, i.e., the tidal tails, where the gas phase is mostly atomic, we find SFR/HI ratios higher than in standard HI-dominated environments, i.e., outer discs of spiral galaxies and dwarf galaxies. Thus, our analysis reveals that the outer regions of mergers are characterised by high SFEs, compared to the standard mode of star formation. The observation of high dense gas fractions in interacting systems is consistent with the predictions of numerical simulations; it results from the increase of the gas turbulence during a merger. The merger is likely to affect the star-forming properties of the system at all spatial scales, from large scales, with a globally enhanced turbulence

  12. Dark stars in Starobinsky's model

    Science.gov (United States)

    Panotopoulos, Grigoris; Lopes, Ilídio

    2018-01-01

    In the present work we study non-rotating dark stars in f (R ) modified theory of gravity. In particular, we have considered bosonic self-interacting dark matter modeled inside the star as a Bose-Einstein condensate, while as far as the modified theory of gravity is concerned we have assumed Starobinsky's model R +a R2. We solve the generalized structure equations numerically, and we obtain the mass-to-ratio relation for several different values of the parameter a , and for two different dark matter equation-of-states. Our results show that the dark matter stars become more compact in the R-squared gravity compared to general relativity, while at the same time the highest star mass is slightly increased in the modified gravitational theory. The numerical value of the highest star mass for each case has been reported.

  13. Delta isobars in neutron stars

    Directory of Open Access Journals (Sweden)

    Pagliara Giuseppe

    2015-01-01

    Full Text Available The appearance of delta isobars in beta-stable matter is regulated by the behavior of the symmetry energy at densities larger than saturation density. We show that by taking into account recent constraints on the density derivative of the symmetry energy and the theoretical and experimental results on the excitations of delta isobars in nuclei, delta isobars are necessary ingredients for the equations of state used for studying neutron stars. We analyze the effect of the appearance of deltas on the structure of neutron stars: as in the case of hyperons, matter containing delta is too soft for allowing the existence of 2M⊙ neutron stars. Quark stars on the other hand, could reach very massive configurations and they could form from a process of conversion of hadronic stars in which an initial seed of strangeness appears through hyperons.

  14. Numerical evidence for 'multiscalar stars'

    International Nuclear Information System (INIS)

    Hawley, Scott H.; Choptuik, Matthew W.

    2003-01-01

    We present a class of general relativistic solitonlike solutions composed of multiple minimally coupled, massive, real scalar fields which interact only through the gravitational field. We describe a two-parameter family of solutions we call ''phase-shifted boson stars'' (parametrized by central density ρ 0 and phase δ), which are obtained by solving the ordinary differential equations associated with boson stars and then altering the phase between the real and imaginary parts of the field. These solutions are similar to boson stars as well as the oscillating soliton stars found by Seidel and Suen [E. Seidel and W. M. Suen, Phys. Rev. Lett. 66, 1659 (1991)]; in particular, long-time numerical evolutions suggest that phase-shifted boson stars are stable. Our results indicate that scalar solitonlike solutions are perhaps more generic than has been previously thought

  15. Flares on a Bp Star

    Science.gov (United States)

    Mullan, D. J.

    2009-09-01

    Two large X-ray flares have been reported from the direction of a magnetic B2p star (σ Ori E). Sanz-Forcada et al. have suggested that the flares did not occur on the B2p star but on a companion of late spectral type. A star which is a candidate for a late-type flare star near σ Ori E has recently been identified by Bouy et al. However, based on the properties of the flares, and based on a recent model of rotating magnetospheres, we argue that, rather than attributing the two flares to a late-type dwarf, it is a viable hypothesis that the flares were magnetic phenomena associated with the rotating magnetosphere of the B2p star itself.

  16. FLARES ON A Bp STAR

    International Nuclear Information System (INIS)

    Mullan, D. J.

    2009-01-01

    Two large X-ray flares have been reported from the direction of a magnetic B2p star (σ Ori E). Sanz-Forcada et al. have suggested that the flares did not occur on the B2p star but on a companion of late spectral type. A star which is a candidate for a late-type flare star near σ Ori E has recently been identified by Bouy et al. However, based on the properties of the flares, and based on a recent model of rotating magnetospheres, we argue that, rather than attributing the two flares to a late-type dwarf, it is a viable hypothesis that the flares were magnetic phenomena associated with the rotating magnetosphere of the B2p star itself.

  17. Star trackers for attitude determination

    DEFF Research Database (Denmark)

    Liebe, Carl Christian

    1995-01-01

    One problem comes to all spacecrafts using vector information. That is the problem of determining the attitude. This paper describes how the area of attitude determination instruments has evolved from simple pointing devices into the latest technology, which determines the attitude by utilizing...... a CCD camera and a powerful microcomputer. The instruments are called star trackers and they are capable of determining the attitude with an accuracy better than 1 arcsecond. The concept of the star tracker is explained. The obtainable accuracy is calculated, the numbers of stars to be included...... in the star catalogue are discussed and the acquisition of the initial attitude is explained. Finally the commercial market for star trackers is discussed...

  18. SPECTROSCOPIC ANALYSIS OF METAL-POOR STARS FROM LAMOST: EARLY RESULTS

    International Nuclear Information System (INIS)

    Li, Hai-Ning; Zhao, Gang; Wang, Liang; Wang, Wei; Yuan, Hailong; Christlieb, Norbert; Zhang, Yong; Hou, Yonghui

    2015-01-01

    We report on early results from a pilot program searching for metal-poor stars with LAMOST and follow-up high-resolution observation acquired with the MIKE spectrograph attached to the Magellan II telescope. We performed detailed abundance analysis for eight objects with iron abundances [Fe/H] < -2.0, including five extremely metal-poor (EMP; [Fe/H] < -3.0) stars with two having [Fe/H] < -3.5. Among these objects, three are newly discovered EMP stars, one of which is confirmed for the first time with high-resolution spectral observations. Three program stars are regarded as carbon-enhanced metal-poor (CEMP) stars, including two stars with no enhancement in their neutron-capture elements, which thus possibly belong to the class of CEMP-no stars; one of these objects also exhibits significant enhancement in nitrogen, and is thus a potential carbon and nitrogen-enhanced metal-poor star. The [X/Fe] ratios of the sample stars generally agree with those reported in the literature for other metal-poor stars in the same [Fe/H] range. We also compared the abundance patterns of individual program stars with the average abundance pattern of metal-poor stars and find only one chemically peculiar object with abundances of at least two elements (other than C and N) showing deviations larger than 0.5 dex. The distribution of [Sr/Ba] versus [Ba/H] agrees that an additional nucleosynthesis mechanism is needed aside from a single r-process. Two program stars with extremely low abundances of Sr and Ba support the prospect that both main and weak r-processes may have operated during the early phase of Galactic chemical evolution. The distribution of [C/N] shows that there are two groups of carbon-normal giants with different degrees of mixing. However, it is difficult to explain the observed behavior of the [C/N] of the nitrogen-enhanced unevolved stars based on current data

  19. StarGuides Plus

    Science.gov (United States)

    Heck, A.

    StarGuides Plus represents the most comprehensive and accurately validated collection of practical data on organizations involved in astronomy, related space sciences and other related fields. This invaluable reference source (and its companion volume, StarBriefs Plus) should be on the reference shelf of every library, organization or individual with any interest in these areas. The coverage includes relevant universities, scientific committees, institutions, associations, societies, agencies, companies, bibliographic services, data centers, museums, dealers, distributors, funding organizations, journals, manufacturers, meteorological services, national norms & standard institutes, parent associations & societies, publishers, software producers & distributors, and so on. Besides astronomy and associated space sciences, related fields such as aeronautics, aeronomy, astronautics, atmospheric sciences, chemistry, communications, computer sciences, data processing, education, electronics, engineering, energetics, environment, geodesy, geophysics, information handling, management, mathematics, meteorology, optics, physics, remote sensing, and so on, are also covered where appropriate. After some thirty years in continuous compilation, verification and updating, StarGuides Plus currently gathers together some 6,000 entries from 100 countries. The information is presented in a clear, uncluttered manner for direct and easy use. For each entry, all practical data are listed: city, postal and electronic-mail addresses, telephone and fax numbers, URLs for WWW access, foundation years, numbers of members and/or numbers of staff, main activities, publications titles (with frequencies, ISS-Numbers and circulations), names and geographical coordinates of observing sites, names of planetariums, awards (prizes and/or distinctions) granted, etc. The entries are listed alphabetically in each country. An exhaustive index gives a breakdown not only by different designations and

  20. Near-infrared variability study of the central 2.3 × 2.3 arcmin2 of the Galactic Centre - II. Identification of RR Lyrae stars in the Milky Way nuclear star cluster

    Science.gov (United States)

    Dong, Hui; Schödel, Rainer; Williams, Benjamin F.; Nogueras-Lara, Francisco; Gallego-Cano, Eulalia; Gallego-Calvente, Teresa; Wang, Q. Daniel; Rich, R. Michael; Morris, Mark R.; Do, Tuan; Ghez, Andrea

    2017-11-01

    Because of strong and spatially highly variable interstellar extinction and extreme source crowding, the faint (K ≥ 15) stellar population in the Milky Way's nuclear star cluster is still poorly studied. RR Lyrae stars provide us with a tool to estimate the mass of the oldest, relative dim stellar population. Recently, we analysed HST/WFC3/IR observations of the central 2.3 × 2.3 arcmin2 of the Milky Way and found 21 variable stars with periods between 0.2 and 1 d. Here, we present a further comprehensive analysis of these stars. The period-luminosity relationship of RR Lyrae is used to derive their extinctions and distances. Using multiple approaches, we classify our sample as 4 RRc stars, 4 RRab stars, 3 RRab candidates and 10 binaries. Especially, the four RRab stars show sawtooth light curves and fall exactly on to the Oosterhoff I division in the Bailey diagram. Compared to the RRab stars reported by Minniti et al., our new RRab stars have higher extinction (AK > 1.8) and should be closer to the Galactic Centre. The extinction and distance of one RRab stars match those for the Milky Way's nuclear star cluster given in previous works. We perform simulations and find that after correcting for incompleteness, there could be not more than 40 RRab stars within the Milky Way's nuclear star cluster and in our field of view. Through comparing with the known globular clusters of the Milky Way, we estimate that if there exists an old, metal-poor (-1.5 < [Fe/H] < -1) stellar population in the Milky Way nuclear star cluster on a scale of 5 × 5 pc, then it contributes at most 4.7 × 105 M⊙, I.e. ˜18 per cent of the stellar mass.