WorldWideScience

Sample records for extremely hot inlet

  1. 30 CFR 77.305 - Access to drying chambers, hot gas inlet chambers and ductwork; installation and maintenance.

    Science.gov (United States)

    2010-07-01

    ... chambers and ductwork; installation and maintenance. 77.305 Section 77.305 Mineral Resources MINE SAFETY... drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. Drying chambers, hot gas inlet chambers and all ductwork in which coal dust may accumulate shall be equipped with...

  2. Uniform and non-uniform inlet temperature of a vertical hot water jet injected into a rectangular tank

    KAUST Repository

    El-Amin, Mohamed

    2010-12-01

    In most of real-world applications, such as the case of heat stores, inlet is not kept at a constant temperature but it may vary with time during charging process. In this paper, a vertical water jet injected into a rectangular storage tank is measured experimentally and simulated numerically. Two cases of study are considered; one is a hot water jet with uniform inlet temperature (UIT) injected into a cold water tank, and the other is a cold water jet with non-uniform inlet temperature (NUIT) injected into a hot water tank. Three different temperature differences and three different flow rates are studied for the hot water jet with UIT which is injected into a cold water tank. Also, three different initial temperatures with constant flow rate as well as three different flow rates with constant initial temperature are considered for the cold jet with NUIT which is injected into a hot water tank. Turbulence intensity at the inlet as well as Reynolds number for the NUIT cases are therefore functions of inlet temperature and time. Both experimental measurements and numerical calculations are carried out for the same measured flow and thermal conditions. The realizable k-ε model is used for modeling the turbulent flow. Numerical solutions are obtained for unsteady flow while pressure, velocity, temperature and turbulence distributions inside the water tank are analyzed. The simulated results are compared to the measured results, and they show a good agreement at low temperatures. © 2010 IEEE.

  3. Intensification of hot extremes in the United States

    Science.gov (United States)

    Diffenbaugh, Noah S.; Ashfaq, Moetasim

    2010-08-01

    Governments are currently considering policies that will limit greenhouse gas concentrations, including negotiation of an international treaty to replace the expiring Kyoto Protocol. Existing mitigation targets have arisen primarily from political negotiations, and the ability of such policies to avoid dangerous impacts is still uncertain. Using a large suite of climate model experiments, we find that substantial intensification of hot extremes could occur within the next 3 decades, below the 2°C global warming target currently being considered by policy makers. We also find that the intensification of hot extremes is associated with a shift towards more anticyclonic atmospheric circulation during the warm season, along with warm-season drying over much of the U.S. The possibility that intensification of hot extremes could result from relatively small increases in greenhouse gas concentrations suggests that constraining global warming to 2°C may not be sufficient to avoid dangerous climate change.

  4. Thermal stratification built up in hot water tank with different inlet stratifiers

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon; Dannemand, Mark

    2017-01-01

    H is a rigid plastic pipe with holes for each 30 cm. The holes are designed with flaps preventing counter flow into the pipe. The inlet stratifier from EyeCular Technologies ApS is made of a flexible polymer with openings all along the side and in the full length of the stratifier. The flexibility...... in order to elucidate how well thermal stratification is established in the tank with differently designed inlet stratifiers under different controlled laboratory conditions. The investigated inlet stratifiers are from Solvis GmbH & Co KG and EyeCular Technologies ApS. The inlet stratifier from Solvis Gmb...... of the stratifier prevents counterflow. The tests have shown that both types of inlet stratifiers had an ability to create stratification in the test tank under the different test conditions. The stratifier from EyeCular Technologies ApS had a better performance at low flows of 1-2 l/min and the stratifier...

  5. Extreme Hot Days future projections using Circulation Types

    Science.gov (United States)

    Andres Garcia-Valero, Juan; Fernández-Montes, Sonia; Jerez, Sonia; Montávez, Juan Pedro; Gómez-Navarro, Juan Jose

    2016-04-01

    This work presents an ensemble of future climate change projections of Extreme Hot Days (EHDs) for Spain. EHD are defined as the days with temperature over the 95 percentile of extended 8 summer regional series (Garcia-Valero et al, 2015). The ensemble consist of 18 members. These come from varying the RPC (4.5 and 8.5), the global model (MPIM,EC-EARTH, CCSM) and the Circulation Type (CT) classification (Z500-SLP, Z500-T850, SLP-T850) obtained in Garcia-Valero et al (2015). Firstly, the ability of GCMs for representing the observed extreme CTs in the historical runs is assessed. All models represent satisfactory most CTs for all classifications, being the bias errors of the frequency appearance of the CTs always under the 15%. Results indicate that the CTs having the largest efficiencies in EHD production has the biggest increase along the next century. This leads to that all regions strongly increase the frequency appearance of EHD. The EHD increase is larger in the inner regions towards the north of Spain, reaching an increase of 3 times the current frequency at the end of this century . This shift is mainly attributable to changes in the atmospheric dynamics. It is very likely that the this value is a low boundary of EHD positive change, since most regional processes (feedbacks, persistence, etc) tends to increase high temperature events. In addition, an analysis of uncertainties has been carried out. An ANOVA analysis shows that the uncertainty associated to each source (GCMs, CT-class, RPC) depends on the region. However the general behavior is that the largest uncertainty is assigned to the GCM, while RCP and CT-class presents similar uncertainty.

  6. Contrasting responses of terrestrial ecosystem production to hot temperature extreme regimes between grassland and forest

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2014-04-01

    Full Text Available Observational data during the past several decades show faster increase of hot temperature extremes over land than changes in mean temperature. Towards more extreme temperature is expected to affect terrestrial ecosystem function. However, the ecological impacts of hot extremes on vegetation production remain uncertain across biomes in natural climatic conditions. In this study, we investigated the effects of hot temperature extremes on aboveground net primary production (ANPP by combining MODIS EVI dataset and in situ climatic records during 2000 to 2009 from 12 long-term experimental sites across biomes and climates. Our results showed that higher mean annual maximum temperatures (Tmax greatly reduced grassland production, and yet enhanced forest production after removing the effects of precipitation. Relative decreases in ANPP were 16% for arid grassland and 7% for mesic grassland, and the increase were 5% for forest. We also observed a significant positive relationship between interannual ANPP and Tmax for forest biome (R2 = 0.79, P < 0.001. This line of evidence suggests that hot temperature extreme leads to contrasting ecosystem-level response of vegetation production to warming climate between grassland and forest. Given that many terrestrial ecosystem models use average daily temperature as input, predictions of ecosystem production should consider these contrasting responses to more hot temperature extreme regimes associated with climate change.

  7. Microfabrication of polymeric surfaces with extreme wettability using hot embossing

    Science.gov (United States)

    Falah Toosi, Salma; Moradi, Sona; Ebrahimi, Marzieh; Hatzikiriakos, Savvas G.

    2016-08-01

    Hot embossing was utilized to imprint topographical metallic patterns on the surfaces of thermoplastic polymers in order to create superhydrophobic and superoleophobic polymeric surfaces. The stainless steel (SS) micro/nano structured templates were fabricated using femtosecond laser ablation. The SS laser ablated templates were employed to imprint micron/submicron periodic structures onto the surface of high density polyethylene (HDPE), polylactic acid (PLA), and medical PVC at temperatures slightly above their melting points and pressures in the range of 3-12 MPa. Results have shown that the water contact angle (CA) of imprinted polymers increased to above 160° in the case of PLA and HDPE, while their water contact angle hysteresis (CAH) were significantly below 10°. In the case of medical-PVC, imprinting produced morphologies with high CA and high CAH (petal effect) due to the adhesion forces developed at the interface between the hydrophilic plasticizer of medical-PVC (TOTM) and water droplets. It is also noted that the re-entrant superoleophobic patterns created on HDPE through imprinting closely resemble the patterns found on the surface of filefish skin that is densely angled microfiber arrays. This bioinspired surface is highly capable of repelling both polar (water) and non-polar liquids of low surface tension and meets the superoleophobicity criteria.

  8. Intensification of hot extremes in the United States in the next three decades (Invited)

    Science.gov (United States)

    Diffenbaugh, N. S.; Ashfaq, M.

    2010-12-01

    Governments are currently considering policies that will limit greenhouse gas concentrations, including negotiation of an international treaty to replace the expiring Kyoto Protocol. Existing mitigation targets have arisen primarily from political negotiations, and the ability of such policies to avoid dangerous impacts is still uncertain. One important source of climate change impact is extreme heat, which can cause substantial damage, including to human health, agricultural systems, food security, and energy and water supply and delivery. Because the atmospheric conditions that cause hot extremes can result from both large- and fine-scale climate processes, we quantify the risk of extreme heat in the United States using a high-resolution, transient, multi-decadal, ensemble climate model experiment, along with a large suite of global climate model experiments. We find that substantial intensification of hot extremes could occur within the next 3 decades, below the 2 degrees C global warming target currently being considered by policy makers. This intensification of hot extremes includes substantial increases in the occurrence of the hottest season and longest heat wave of the second half of the 20th century. We find that the intensification is associated with a shift towards more anticyclonic atmospheric circulation during the warm season, along with warm-season drying over much of the U.S. Further, the sign of soil-moisture change and coupling with temperature and precipitation is robust across the climate model ensembles. The possibility that intensification of hot extremes could result from relatively small increases in greenhouse gas concentrations suggests that constraining global warming to 2 degrees C may not be sufficient to avoid dangerous climate change.

  9. Changes in Extremely Hot Summers over the Global Land Area under Various Warming Targets.

    Science.gov (United States)

    Wang, Lei; Huang, Jianbin; Luo, Yong; Yao, Yao; Zhao, Zongci

    2015-01-01

    Summer temperature extremes over the global land area were investigated by comparing 26 models of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) with observations from the Goddard Institute for Space Studies (GISS) and the Climate Research Unit (CRU). Monthly data of the observations and models were averaged for each season, and statistics were calculated for individual models before averaging them to obtain ensemble means. The summers with temperature anomalies (relative to 1951-1980) exceeding 3σ (σ is based on the local internal variability) are defined as "extremely hot". The models well reproduced the statistical characteristics evolution, and partly captured the spatial distributions of historical summer temperature extremes. If the global mean temperature increases 2°C relative to the pre-industrial level, "extremely hot" summers are projected to occur over nearly 40% of the land area (multi-model ensemble mean projection). Summers that exceed 5σ warming are projected to occur over approximately 10% of the global land area, which were rarely observed during the reference period. Scenarios reaching warming levels of 3°C to 5°C were also analyzed. After exceeding the 5°C warming target, "extremely hot" summers are projected to occur throughout the entire global land area, and summers that exceed 5σ warming would become common over 70% of the land area. In addition, the areas affected by "extremely hot" summers are expected to rapidly expand by more than 25%/°C as the global mean temperature increases by up to 3°C before slowing to less than 16%/°C as the temperature continues to increase by more than 3°C. The area that experiences summers with warming of 5σ or more above the warming target of 2°C is likely to maintain rapid expansion of greater than 17%/°C. To reduce the impacts and damage from severely hot summers, the global mean temperature increase should remain low.

  10. Changes in Extremely Hot Summers over the Global Land Area under Various Warming Targets.

    Directory of Open Access Journals (Sweden)

    Lei Wang

    Full Text Available Summer temperature extremes over the global land area were investigated by comparing 26 models of the fifth phase of the Coupled Model Intercomparison Project (CMIP5 with observations from the Goddard Institute for Space Studies (GISS and the Climate Research Unit (CRU. Monthly data of the observations and models were averaged for each season, and statistics were calculated for individual models before averaging them to obtain ensemble means. The summers with temperature anomalies (relative to 1951-1980 exceeding 3σ (σ is based on the local internal variability are defined as "extremely hot". The models well reproduced the statistical characteristics evolution, and partly captured the spatial distributions of historical summer temperature extremes. If the global mean temperature increases 2°C relative to the pre-industrial level, "extremely hot" summers are projected to occur over nearly 40% of the land area (multi-model ensemble mean projection. Summers that exceed 5σ warming are projected to occur over approximately 10% of the global land area, which were rarely observed during the reference period. Scenarios reaching warming levels of 3°C to 5°C were also analyzed. After exceeding the 5°C warming target, "extremely hot" summers are projected to occur throughout the entire global land area, and summers that exceed 5σ warming would become common over 70% of the land area. In addition, the areas affected by "extremely hot" summers are expected to rapidly expand by more than 25%/°C as the global mean temperature increases by up to 3°C before slowing to less than 16%/°C as the temperature continues to increase by more than 3°C. The area that experiences summers with warming of 5σ or more above the warming target of 2°C is likely to maintain rapid expansion of greater than 17%/°C. To reduce the impacts and damage from severely hot summers, the global mean temperature increase should remain low.

  11. A historical perspective of the extremely hot 2013 summer in East-central China

    Science.gov (United States)

    Liu, Qi; Fu, Congbin; Mao, Huiting

    2016-04-01

    An extreme hot summer occurred over East-central China in 2013. Its duration of continuous, highest temperature anomalies was the longest on record for the time period of 1948-2013. Several modeling studies have attempted to identify the causes and did not obtain conclusive findings, in large part due to their limited scopes of the problem. Here, we conducted a multi-scale and multi-factor analysis of this extreme event using observational data of 600 monitoring stations over China and global reanalysis data for the period of 1981-2013. Our results suggested that the number of heatwave days (NHD) (defined as a day with daily maximum temperature ≥ 35°C) over East-central China experienced an increasing trend of 3.44 days per decade since 1981 and reached the record maximum (34.1 days) in 2013, with significant inter-annual variability superimposed on the trend. It should be noted that this increasing trend in NHD was consistent with that of the intensity of the Western Pacific Subtropical High (WPSH) linked to global warming as suggested in the literature. There were also strong correlations between NHD over East-central China, WPSH, and global mean temperature (GT) on interannual scales. The extremely hot 2013 summer could not be explained by global warming and associated enhanced WPSH alone as GT and WPSH intensity were not record high in that summer. Further analysis suggested that large scale air-sea interaction over the Pacific region could have played a critical role. Specifically, enhanced convection over the Philippine Sea and along Indonesian islands in summer 2013 appeared to be strongest for the study period. This convection could cause a strong local feedback among precipitation, cloud cover, and net radiation, which could further weaken upper- and lower-level circulation via the tropical-extratropical teleconnection and Rossby wave propagation. This feedback was likely the direct cause of the extremely hot 2013 summer.

  12. Possible Impact of the Summer North Atlantic Oscillation on Extreme Hot Events in China

    Institute of Scientific and Technical Information of China (English)

    SUN Jian-Qi

    2012-01-01

    This paper reveals that the summer North Atlantic Oscillation (SNAO) is closely related to the extreme hot event (EHE) variability in China during the period of 1979 2009, with a positive-phase (negative-phase) SNAO corresponding to less (more) EHEs in northern China. The summer circulation anomalies associated with the SNAO give further confirmation of the above relationship. In a positive-phase (negative-phase) SNAO year, there is an anomalous cyclone (anticyclone) over central East Asia, which can increase (decrease) the total cloud cover over this region. Such changes of the total cloud cover can then decrease (increase) the solar radiation reaching the surface, which is consequently unfavorable (favorable) to the formation of EHEs over northern China.

  13. Coastal Inlet Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Coastal Inlet Model Facility, as part of the Coastal Inlets Research Program (CIRP), is an idealized inlet dedicated to the study of coastal inlets and equipped...

  14. Far-UV Spectroscopy of Two Extremely Hot, Helium-Rich White Dwarfs

    Science.gov (United States)

    Werner, K.; Rauch, T.; Kruk, J. W.

    2017-01-01

    A large proportion of hot post-asymptotic giant branch stars and white dwarfs (WDs) are hydrogen-deficient. Two distinct evolutionary sequences have been identified. One of them comprises stars of spectral type [WC] and PG1159, and it originates from a late helium-shell flash, creating helium-rich stellar atmospheres with significant admixtures of carbon (up to about 50, mass fraction). The other sequence comprises stars of spectral type O(He) and luminous subdwarf O stars which possibly are descendants of RCrB stars and extreme helium stars. Their carbon abundances are significantly lower (of the order of 1 or less) and it is thought that they originate from binary-star evolution (through merger or common-envelope evolution). Here we investigate two of the three hottest known helium-rich (DO) WDs (PG 1034+001 and PG 0038+199). They are the only ones for which spectra were recorded with the Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope, allowing a comprehensive ultraviolet spectral analysis. We find effective temperatures of T(eff) =115000 +/- 5000 K and 125000 +/- 5000 K, respectively, and a surface gravity of log g = 7 +/-0.5. In both stars, nitrogen is strongly oversolar while C and O are significantly subsolar. For all other assessed metals (Ne, Si, P, S, Ar, Fe, and Ni) we find abundances close to solar. We conclude that these WDs are immediate descendants of O(He) stars and, hence, result from close-binary evolution.

  15. Just how hot are the ω Centauri extreme horizontal branch pulsators?

    Science.gov (United States)

    Latour, M.; Randall, S. K.; Chayer, P.; Fontaine, G.; Calamida, A.; Ely, J.; Brown, T. M.; Landsman, W.

    2017-04-01

    Context. Past studies based on optical spectroscopy suggest that the five ω Cen pulsators form a rather homogeneous group of hydrogen-rich subdwarf O stars with effective temperatures of around 50 000 K. This places the stars below the red edge of the theoretical instability strip in the log g-Teff diagram, where no pulsation modes are predicted to be excited. Aims: Our goal is to determine whether this temperature discrepancy is real, or whether the stars' effective temperatures were simply underestimated. Methods: We present a spectral analysis of two rapidly pulsating extreme horizontal branch (EHB) stars found in ω Cen. We obtained Hubble Space Telescope/COS UV spectra of two ω Cen pulsators, V1 and V5, and used the ionisation equilibrium of UV metallic lines to better constrain their effective temperatures. As a by-product we also obtained FUV lightcurves of the two pulsators. Results: Using the relative strength of the N iv and N v lines as a temperature indicator yields Teff values close to 60 000 K, significantly hotter than the temperatures previously derived. From the FUV light curves we were able to confirm the main pulsation periods known from optical data. Conclusions: With the UV spectra indicating higher effective temperatures than previously assumed, the sdO stars would now be found within the predicted instability strip. Such higher temperatures also provide consistent spectroscopic masses for both the cool and hot EHB stars of our previously studied sample. Based on observations (proposal GO-13707) with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26666.

  16. Acclimation of killifish to thermal extremes of hot spring: Transcription of gonadal and liver heat shock genes.

    Science.gov (United States)

    Akbarzadeh, Arash; Leder, Erica H

    2016-01-01

    In this study, we explored the hypothesis that killifish acclimate to thermal extremes through regulation of genes involved in stress and metabolism. We examined the liver and gonadal transcription of heat shock proteins (hsp70, hsp90a, hsp90b), glucokinase (gck), and high mobility group b1 (hmgb1) protein in wild killifish species from hot springs and rivers using quantitative real-time PCR. Moreover, we exposed a river killifish species to a long-term thermal regime of hot spring (37-40°C) and examined the liver transcription of the heat shock genes. Our results showed that hot spring killifish showed a significant, strong upregulation of liver hsp90a. Moreover, the testicular transcript levels of hsp90a, hsp90b, and hsp70 were higher in hot spring killifish than the river ones. The results of the common garden experiments showed that the transcripts of hsp70, hsp90b, and hmgb1 were mildly induced (> twofold) at the time when temperature reached to 37-40°C, while the transcripts of hsp90a were strongly induced (17-fold increase). The level of hsp90a was dramatically more upregulated when fish were maintained in thermal extreme (42-fold change higher than in ambient temperature). Moreover, a significant downregulation of gck transcripts was observed at the time when temperature was raised to 37-40°C (80-fold decrease) and during exposure to long-term thermal extreme (56-fold decrease). It can be concluded that the regulation of heat shock genes particularly hsp90a might be a key factor of the acclimation of fish to high temperature environments like hot springs.

  17. Metagenomic Analysis of Hot Springs in Central India Reveals Hydrocarbon Degrading Thermophiles and Pathways Essential for Survival in Extreme Environments

    Science.gov (United States)

    Saxena, Rituja; Dhakan, Darshan B.; Mittal, Parul; Waiker, Prashant; Chowdhury, Anirban; Ghatak, Arundhuti; Sharma, Vineet K.

    2017-01-01

    Extreme ecosystems such as hot springs are of great interest as a source of novel extremophilic species, enzymes, metabolic functions for survival and biotechnological products. India harbors hundreds of hot springs, the majority of which are not yet explored and require comprehensive studies to unravel their unknown and untapped phylogenetic and functional diversity. The aim of this study was to perform a large-scale metagenomic analysis of three major hot springs located in central India namely, Badi Anhoni, Chhoti Anhoni, and Tattapani at two geographically distinct regions (Anhoni and Tattapani), to uncover the resident microbial community and their metabolic traits. Samples were collected from seven distinct sites of the three hot spring locations with temperature ranging from 43.5 to 98°C. The 16S rRNA gene amplicon sequencing of V3 hypervariable region and shotgun metagenome sequencing uncovered a unique taxonomic and metabolic diversity of the resident thermophilic microbial community in these hot springs. Genes associated with hydrocarbon degradation pathways, such as benzoate, xylene, toluene, and benzene were observed to be abundant in the Anhoni hot springs (43.5–55°C), dominated by Pseudomonas stutzeri and Acidovorax sp., suggesting the presence of chemoorganotrophic thermophilic community with the ability to utilize complex hydrocarbons as a source of energy. A high abundance of genes belonging to methane metabolism pathway was observed at Chhoti Anhoni hot spring, where methane is reported to constitute >80% of all the emitted gases, which was marked by the high abundance of Methylococcus capsulatus. The Tattapani hot spring, with a high-temperature range (61.5–98°C), displayed a lower microbial diversity and was primarily dominated by a nitrate-reducing archaeal species Pyrobaculum aerophilum. A higher abundance of cell metabolism pathways essential for the microbial survival in extreme conditions was observed at Tattapani. Taken together

  18. Trends in the number of extreme hot SST days along the Canary Upwelling System due to the influence of upwelling

    Directory of Open Access Journals (Sweden)

    Xurxo Costoya

    2014-07-01

    Full Text Available Trends in the number of extreme hot days (days with SST anomalies higher than the 95% percentile were analyzed along the Canary Upwelling Ecosystem (CUE over the period 1982- 2012 by means of SST data retrieved from NOAA OI1/4 Degree. The analysis will focus on the Atlantic Iberian sector and the Moroccan sub- region where upwelling is seasonal (spring and summer are permanent, respectively. Trends were analyzed both near coast and at the adjacent ocean where the increase in the number of extreme hot days is higher. Changes are clear at annual scale with an increment of 9.8±0.3 (9.7±0.1 days dec-1 near coast and 11.6±0.2 (13.5±0.1 days dec-1 at the ocean in the Atlantic Iberian sector (Moroccan sub-region. The differences between near shore and ocean trends are especially patent for the months under intense upwelling conditions. During that upwelling season the highest differences in the excess of extreme hot days between coastal and ocean locations (Δn(#days dec-1 occur at those regions where coastal upwelling increase is high. Actually, Δn and upwelling trends have shown to be significantly correlated in both areas, R=0.88 (p<0.01 at the Atlantic Iberian sector and R=0.67 (p<0.01 at the Moroccan sub-region.

  19. Effect of hot bag application on the extremities in angiography of patients with Raynaud's syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Won, Je Hwan; Han, Kyong Lim; Kim, Chan [College of Medicine, Ajou Univ., Suwon (Korea, Republic of)

    2004-05-01

    It is sometimes difficult to evaluate the angiographic findings pertaining to spasm of the arteries in the hands and feet in patients with Raynaud's syndrome. The purpose of this study is to investigate the effectiveness of applying a hot bag to the hands and/or feet for the control of vasospasm in patients with Raynaud's syndrome during angiography. Forty five cases (hands: feet=15:30) in forty patients (M:F=9:31, mean age; 39 years) with Raynaud's syndrome whose conventional angiography demonstrated the presence of vasospasm were included. First, digital subtraction angiography of the extremities was performed at room temperature (20 to 21 degrees Celsius). Then a hot bag was applied for 5 minutes on the hand or foot, and a post-hot bag angiography of the extremity was performed. The angiographic findings were classified into 6 grades in the case of the feet (0; anterior/posterior tibial artery, 1; dorsalis pedis /lateral plantar artery, 2; arcuate artery/plantar arch, 3; metatarsal artery, 4; digital artery, 5; blushing of toe tip) and 5 grades in the case of the hands (0; ulnar/radial artery, 1; palmar arch, 2; common palmar artery, 3; proper palmar artery, 4; blushing of finger tip) according to the level of the visualized vessels on the angiography. The time and the time difference to maximal visualization of the vessels between the measurements taken at room temperature and those taken after the hot bag application were calculated. In all cases, more. vessels were visualized after the hot bag application than at room temperature. After the application of the hot bag, the grade of vessel visualization was increased in both the feet (range; 1-4, mean; 2.3) and hands (range; 1-2, mean; 1.4). The time to the maximal visualization of the vessels was faster after the hot bag application than at room temperature. The time difference between the two groups ranged from 1 to 33 seconds (mean; 12.3 seconds) in the feet and 2 to 26 seconds (mean; 11

  20. Hot Dust Obscured Galaxies with Excess Blue Light: Dual AGN or Single AGN Under Extreme Conditions?

    CERN Document Server

    Assef, R J; Brightman, M; Stern, D; Alexander, D; Bauer, F; Blain, A W; Diaz-Santos, T; Eisenhardt, P R M; Finkelstein, S L; Hickox, R C; Tsai, C -W; Wu, J W

    2015-01-01

    Hot Dust-Obscured Galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the WISE mission from their very red mid-IR colors, and characterized by hot dust temperatures ($T>60~\\rm K$). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured AGN that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of 8 Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot D...

  1. HOT DUST OBSCURED GALAXIES WITH EXCESS BLUE LIGHT: DUAL AGN OR SINGLE AGN UNDER EXTREME CONDITIONS?

    Energy Technology Data Exchange (ETDEWEB)

    Assef, R. J.; Diaz-Santos, T. [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Walton, D. J.; Brightman, M. [Space Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, D.; Eisenhardt, P. R. M.; Tsai, C.-W. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-236, Pasadena, CA 91109 (United States); Alexander, D. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Bauer, F. [Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Blain, A. W. [Physics and Astronomy, University of Leicester, 1 University Road, Leicester LE1 7RH (United Kingdom); Finkelstein, S. L. [The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712 (United States); Hickox, R. C. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Wu, J. W., E-mail: roberto.assef@mail.udp.cl [UCLA Astronomy, P.O. Box 951547, Los Angeles, CA 90095-1547 (United States)

    2016-03-10

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13–050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M{sub ⊙} yr{sup −1}. Deep polarimetry observations could confirm the reflection hypothesis.

  2. Hot Dust Obscured Galaxies with Excess Blue Light: Dual AGN or Single AGN Under Extreme Conditions?

    Science.gov (United States)

    Assef, R. J.; Walton, D. J.; Brightman, M.; Stern, D.; Alexander, D.; Bauer, F.; Blain, A. W.; Diaz-Santos, T.; Eisenhardt, P. R. M.; Finkelstein, S. L.; Hickox, R. C.; Tsai, C.-W.; Wu, J. W.

    2016-03-01

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13-050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M⊙ yr-1. Deep polarimetry observations could confirm the reflection hypothesis.

  3. Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot.

    Science.gov (United States)

    Caputi, Nick; Kangas, Mervi; Denham, Ainslie; Feng, Ming; Pearce, Alan; Hetzel, Yasha; Chandrapavan, Arani

    2016-06-01

    An extreme marine heat wave which affected 2000 km of the midwest coast of Australia occurred in the 2010/11 austral summer, with sea-surface temperature (SST) anomalies of 2-5°C above normal climatology. The heat wave was influenced by a strong Leeuwin Current during an extreme La Niña event at a global warming hot spot in the Indian Ocean. This event had a significant effect on the marine ecosystem with changes to seagrass/algae and coral habitats, as well as fish kills and southern extension of the range of some tropical species. The effect has been exacerbated by above-average SST in the following two summers, 2011/12 and 2012/13. This study examined the major impact the event had on invertebrate fisheries and the management adaption applied. A 99% mortality of Roei abalone (Haliotis roei) and major reductions in recruitment of scallops (Amusium balloti), king (Penaeus latisulcatus) and tiger (P. esculentus) prawns, and blue swimmer crabs were detected with management adapting with effort reductions or spatial/temporal closures to protect the spawning stock and restocking being evaluated. This study illustrates that fisheries management under extreme temperature events requires an early identification of temperature hot spots, early detection of abundance changes (preferably using pre-recruit surveys), and flexible harvest strategies which allow a quick response to minimize the effect of heavy fishing on poor recruitment to enable protection of the spawning stock. This has required researchers, managers, and industry to adapt to fish stocks affected by an extreme environmental event that may become more frequent due to climate change.

  4. Non-LTE Spectral Analysis of Extremely Hot Post-AGB Stars: Constraints for Evolutionary Theory

    CERN Document Server

    Rauch, Thomas; Ziegler, Marc; Koesterke, Lars; Kruk, Jeffrey W

    2008-01-01

    Spectral analysis by means of Non-LTE model-atmosphere techniques has arrived at a high level of sophistication: fully line-blanketed model atmospheres which consider opacities of all elements from H to Ni allow the reliable determination of photospheric parameters of hot, compact stars. Such models provide a crucial test of stellar evolutionary theory: recent abundance determinations of trace elements like, e.g., F, Ne, Mg, P, S, Ar, Fe, and Ni are suited to investigate on AGB nucleosynthesis. E.g., the strong Fe depletion found in hydrogen-deficient post-AGB stars is a clear indication of an efficient s-process on the AGB where Fe is transformed into Ni or even heavier trans iron-group elements. We present results of recent spectral analyses based on high-resolution UV observations of hot stars.

  5. An extremely fast halo hot subdwarf star in a wide binary system

    CERN Document Server

    Németh, Péter; Irrgang, Andreas; Geier, Stephan; Fürst, Felix; Kupfer, Thomas; Heber, Ulrich

    2016-01-01

    New spectroscopic observations of the halo hyper-velocity star candidate SDSS J121150.27+143716.2 ($V=17.92$ mag) revealed a cool companion to the hot subdwarf primary. The components have a very similar radial velocity and their absolute luminosities are consistent with the same distance, confirming the physical nature of the binary, which is the first double-lined hyper-velocity candidate. Our spectral decomposition of the Keck/ESI spectrum provided an sdB+K3V pair, analogous to many long-period subdwarf binaries observed in the Galactic disk. We found the subdwarf atmospheric parameters: $T_{\\rm eff}=30\\,600\\pm500$ K, $\\log{g}=5.57\\pm0.06$ cm s$^{-2}$ and He abundance $\\log(n{\\rm He}/n{\\rm H})=-3.0\\pm0.2$. Oxygen is the most abundant metal in the hot subdwarf atmosphere, and Mg and Na lines are the most prominent spectral features of the cool companion, consistent with a metallicity of $[{\\rm Fe}/{\\rm H}]=-1.3$. The non-detection of radial velocity variations suggest the orbital period to be a few hundred ...

  6. Abundances of neutron-capture elements in the Hot Extreme-Helium Stars V1920 Cygni and HD 124448

    CERN Document Server

    Pandey, G; Rao, N K; Jeffery, C S; Pandey, Gajendra; Lambert, David L.

    2004-01-01

    Analysis of HST STIS ultraviolet spectra of two hot extreme helium stars (EHes): V1920 Cyg and HD 124448 provide the first measurements of abundances of neutron-capture elements for EHes. Although the two stars have similar abundances for elements up through the iron-group, they differ strikingly in their abundances of heavier elements: V1920 Cyg is enriched by a factor of 30 in light neutron-capture elements (Y/Fe, Zr/Fe) relative to HD 124448. These differences in abundances of neutron-capture elements among EHes mirrors that exhibited by the RCrB stars, and is evidence supporting the view that there is an evolutionary connection between these two groups of hydrogen-deficient stars. Also, the abundances of Y and Zr in V1920 Cyg provide evidence that at least one EHe star went through a s-process synthesis episode in its earlier evolution.

  7. HotSense: a high temperature piezoelectric platform for sensing and monitoring in extreme environments (Conference Presentation)

    Science.gov (United States)

    Stevenson, Tim; Wines, Thomas; Martin, David; Vickers, William; Laws, Michael

    2016-04-01

    Effective monitoring of asset integrity subject to corrosion and erosion while minimizing the exposure of personnel to difficult and hazardous working environments has always been a major problem in many industries. One solution of this problem is permanently installed ultrasonic monitoring equipment which can continuously provide information on the rate of corrosion or cracking, even in the most severe environments and at extreme temperatures to prevent the need for shutdown. Here, a permanently installed 5 MHz ultrasonic monitoring system based on our HotSense® technology is designed and investigated. The system applicability for wall thickness, crack monitoring and weld inspection in high temperature environments is demonstrated through experimental studies on a range of Schedule 40 pipes at temperatures up to 350 °C continuously. The applicability for this technology to be distributed to Aerospace and Nuclear sectors are also explored and preliminary results discussed.

  8. Long time durability tests of fabric inlet stratification pipes

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2008-01-01

    The long time durability of seven different two layer fabric inlet stratification pipes for enhancing thermal stratification in hot water stores is investigated experimentally. Accelerated durability tests are carried out with the inlet stratification pipes both in a domestic hot water tank...... and that this destroys the capability of building up thermal stratification for the fabric inlet stratification pipe. The results also show that although dirt, algae etc. are deposited in the fabric pipes in the space heating tank, the capability of the fabric inlet stratifiers to build up thermal stratification...

  9. An extreme planetary system around HD219828. One long-period super Jupiter to a hot-neptune host star

    CERN Document Server

    Santos, N C; Faria, J P; Rey, J; Correia, A C M; Laskar, J; Udry, S; Adibekyan, V; Bouchy, F; Delgado-Mena, E; Melo, C; Dumusque, X; Hébrard, G; Lovis, C; Mayor, M; Montalto, M; Mortier, A; Pepe, F; Figueira, P; Sahlmann, J; Ségransan, D; Sousa, S G

    2016-01-01

    With about 2000 extrasolar planets confirmed, the results show that planetary systems have a whole range of unexpected properties. We present a full investigation of the HD219828 system, a bright metal-rich star for which a hot neptune has previously been detected. We used a set of HARPS, SOPHIE, and ELODIE radial velocities to search for the existence of orbiting companions to HD219828. A dynamical analysis is also performed to study the stability of the system and to constrain the orbital parameters and planet masses. We announce the discovery of a long period (P=13.1years) massive (msini=15.1MJup) companion (HD219828c) in a very eccentric orbit (e=0.81). The same data confirms the existence of a hot-neptune, HD219828b, with a minimum mass of 21 MEarth and a period of 3.83days. The dynamical analysis shows that the system is stable. The HD219828 system is extreme and unique in several aspects. First, among all known exoplanet systems it presents an unusually high mass ratio. We also show that systems like H...

  10. Impacts of Extreme Hot Weather Events on Electricity Consumption in Baden-Wuerttemberg

    Science.gov (United States)

    Mimler, S.

    2009-04-01

    Changes in electricity consumption due to hot weather events were examined for the German federal state Baden-Württemberg. The analysis consists of three major steps: Firstly, an analysis of the media coverage on the hot summer of 2003 gives direct and indirect information about changes in electricity demand due to changes in consumption patterns. On the one hand there was an overall increase in electricity demand due to the more frequent use of air conditionings, fans, cooling devices and water pumps. On the other hand shifts in electricity consumption took place due to modifications in daily routines: if possible, core working times were scheduled earlier, visitor streams in gastronomy and at events shifted from noon to evening hours, a temporal shifting of purchases took place in early morning or evening hours, and an increased night-activity was documented by a higher number of police operations due to noise disturbances. In a second step, some of the findings of the media analysis were quantified for households in the city region of Karlsruhe. For the chosen electric device groups refrigerators, mini-coolers, air conditionings, fans and electric stoves the difference between the consumption on a hot summer day and a normal summer day was computed. For this purpose, assumptions had to be made on the share of affected households, affected devices or usage patterns. These assumptions were summarized into three scenarios on low, medium and high heat induced changes in electricity consumption. In total, the quantification resulted in a range of about 7.5 to 9.2 % of heat-induced over-consumption related to the average amount of electrical load that is normally provided to Karlsruhe households on a summer's day. A third analysis of summer load curves aimed at testing the following hypotheses derived from the media analysis regarding changes in every-day routines and their effects on shifts in load profiles. To test the hypotheses, correlation tests were applied. (1

  11. Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland

    DEFF Research Database (Denmark)

    Larsen, L.; Nielsen, P.; Ahring, B.K.

    1997-01-01

    The extremely thermophilic ethanol-producing strain A3 was isolated from a hot spring in Iceland, The cells were rod-shaped, motile, and had terminal spores: cells from the mid-to-late exponential growth phase stained gram-variable but had a gram-positive cell wall structure when viewed...... that strain A3 belongs to the eubacteria. Addition of 50.66 kPa H-2 or 2% NaCl did not affect growth. The isolate grew in the presence of exogenously added 4% (w/v) ethanol. The G+C ratio was 37 mol%. 16S rDNA studies revealed that strain A3 belongs to the genus Thermoanaerobacter. Genotypic and phenotypic...... by transmission electron microscopy. Strain A3 used a number of carbohydrates as carbon sources, including xylan, but did not utilize microcrystalline cellulose. Fermentation end products were ethanol, acetate, lactate, CO2, and H-2. The temperature optimum for growth was between 70 and 75 degrees C, and growth...

  12. INLET STRATIFICATION DEVICE

    DEFF Research Database (Denmark)

    2006-01-01

    An inlet stratification device (5) for a circuit circulating a fluid through a tank (1 ) and for providing and maintaining stratification of the fluid in the tank (1 ). The stratification de- vice (5) is arranged vertically in the tank (1) and comprises an inlet pipe (6) being at least partially...... formed of a flexible porous material and having an inlet (19) and outlets formed of the pores of the porous material. The stratification device (5) further comprises at least one outer pipe (7) surrounding the inlet pipe (6) in spaced relationship thereto and being at least partially formed of a porous...

  13. Inlet stratification device

    DEFF Research Database (Denmark)

    2014-01-01

    ) with an inlet passage way (16). The upper end of the inlet pipe (6) is connected with a top cap (9). The top cap (9) and the bottom cap (10) are mutually connected by means of a wire (8) and the top cap (9) is configured as a floating device providing a buoyancy force larger than the downwardly directed force......An inlet stratification (5) is adapted to be arranged vertically in a tank (1) during operation. The stratification device (5) comprises an inlet pipe (6) formed of a flexible porous material and having a lower and upper end. The lower end of the inlet pipe (6) is connected to a bottom cap (10...

  14. Existence and uniqueness of extreme point of total power rate functional for hot rolling problem with rigid-plastic SCM model

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The total power rate functional for hot rolling problem with the rigid-plastic SCM model is considered.The gradient operator of the plastic deformation power rate functional is deduced.It is strictly monotone mapping.Further,it is proved that the frictional power rate functional is a convex functional and the tensional stress power rate functional is a linear one.Hence,the total power rate functional is a strictly convex functional.By using nonlinear functional analysis methods,the existence and uniqueness of extreme point of the functional is obtained.

  15. High Pressure Atmospheric Sampling Inlet System for Venus or the Gas Giants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized high pressure atmospheric sampling inlet system for sample acquisition in extreme planetary environments,...

  16. Esophageal Inlet Patch

    Directory of Open Access Journals (Sweden)

    C. Behrens

    2011-01-01

    Full Text Available An inlet patch is a congenital anomaly consisting of ectopic gastric mucosa at or just distal to the upper esophageal sphincter. Most inlet patches are largely asymptomatic, but in problematic cases complications related to acid secretion such as esophagitis, ulcer, web and stricture may occur. The diagnosis of inlet patch is strongly suggested on barium swallow where the most common pattern consists of two small indentations on the wall of the esophagus. The diagnosis of inlet patch is confirmed via endoscopy with biopsy. At endoscopy, the lesion appears salmon-coloured and velvety and is easily distinguished from the normal grey-white squamous epithelium of the esophagus. The prominent margins correlate with the radiological findings of indentations and rim-like shadows on barium swallow. Histopathology provides the definitive diagnosis by demonstrating gastric mucosa adjacent to normal esophageal mucosa. No treatment is required for asymptomatic inlet patches. Symptomatic cases are treated with proton pump inhibitors to relieve symptoms related to acid secretion. Strictures and webs are treated with serial dilatation and should be biopsied to rule out malignancy.

  17. Simultaneous mass detection for direct inlet mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, R.L.

    1979-05-01

    The evolution of analytical techniques for application in trace analysis has led to interest in practical methods for real-time monitoring. Direct inlet mass spectrometry (DIMS) has been the subject of considerable activity in recent years. A DIMS instrument is described which consists of an inlet system designed to permit particles entrained in the inlet air stream to strike a hot, oxidized rhenium filament which serves as a surface ionization source. A mass analyzer and detection system then permits identification of the elemental composition of particulates which strike the filament.

  18. Non-LTE models for synthetic spectra of type Ia supernovae/hot stars with extremely extended atmospheres

    CERN Document Server

    Sauer, D N; Pauldrach, A W A

    2006-01-01

    Realistic atmospheric models that link the properties and the physical conditions of supernova ejecta to observable spectra are required for the quantitative interpretation of observational data of type Ia supernovae (SN Ia) and the assessment of the physical merits of theoretical supernova explosion models. The numerical treatment of the radiation transport - yielding the synthetic spectra - in models of SN Ia ejecta in early phases is usually carried out in analogy to atmospheric models of `normal' hot stars. Applying this analogy indiscriminately leads to inconsistencies in SN Ia models because a diffusive lower boundary, while justified for hot stars, is invalid for hydrogen and helium-deficient supernova ejecta. In type Ia supernovae the radiation field does not thermalize even at large depths, and large optical depths are not reached at all wavelengths. We derive an improved description of the lower boundary that allows a more consistent solution of the radiation transfer in SN Ia and therefore yields m...

  19. The constitution of the atmospheric layers and the extreme ultraviolet spectrum of hot hydrogen-rich white dwarfs

    Science.gov (United States)

    Vennes, Stephane

    1992-01-01

    An analysis is presented of the atmospheric properties of hot, H-rich, DA white dwarfs that is based on optical, UV, and X-ray observations aimed at predicting detailed spectral properties of these stars in the range 80-800 A. The divergences between observations from a sample of 15 hot DA white dwarfs emitting in the EUV/soft X-ray range and pure H synthetic spectra calculated from a grid of model atmospheres characterized by Teff and g are examined. Seven out of 15 DA stars are found to consistently exhibit pure hydrogen atmospheres, the remaining seven stars showing inconsistency between FUV and EUV/soft X-ray data that can be explained by the presence of trace EUV/soft X-ray absorbers. Synthetic data are computed assuming two other possible chemical structures: photospheric traces of radiatively levitated heavy elements and a stratified hydrogen/helium distribution. Predictions about forthcoming medium-resolution observations of the EUV spectrum of selected hot H-rich white dwarfs are made.

  20. A comparison of spent fuel shipping cask response to 10 CFR 71 normal conditions and realistic hot day extremes

    Energy Technology Data Exchange (ETDEWEB)

    Manson, S.J.; Gianoulakis, S.E. [Sandia National Labs., Albuquerque, NM (United States). Transportation Systems Development Dept.

    1994-04-01

    An examination of the effect of a realistic (though conservative) hot day environment on the thermal transient behavior of spent fuel shipping casks is made. These results are compared to those that develop under the prescribed normal thermal condition of 10 CFR 71. Of specific concern are the characteristics of propagating thermal waves, which are set up by diurnal variations of temperature and insolation in the outdoor environment. In order to arrive at a realistic approximation of these variations on a conservative hot day, actual temperature and insolation measurements have been obtained from the National Climatic Data Center (NCDC) for representatively hot and high heat flux days. Thus, the use of authentic meteorological data ensures the realistic approach sought. Further supporting the desired realism of the modeling effort is the use of realistic cask configurations in which multiple laminations of structural, shielding, and other materials are expected to attenuate the propagating thermal waves. The completed analysis revealed that the majority of wall temperatures, for a wide variety of spent fuel shipping cask configurations, fall well below those predicted by enforcement of the regulatory environmental conditions of 10 CFR 71. It was found that maximum temperatures at the cask surface occasionally lie above temperatures predicted under the prescribed regulatory conditions. However, the temperature differences are small enough that the normal conservative assumptions that are made in the course of typical cask evaluations should correct for any potential violations. The analysis demonstrates that diurnal temperature variations that penetrate the cask wall all have maxima substantially less than the corresponding regulatory solutions. Therefore it is certain that vital cask components and the spent fuel itself will not exceed the temperatures calculated by use of the conditions of 10 CFR 71.

  1. Characterization of carbon contamination under ion and hot atom bombardment in a tin-plasma extreme ultraviolet light source

    NARCIS (Netherlands)

    Dolgov, A.; Lopaev, D.; Lee, C. J.; Zoethout, E.; Medvedev, V.; Yakushev, O.; F. Bijkerk,

    2015-01-01

    Molecular contamination of a grazing incidence collector for extreme ultraviolet (EUV) lithography was experimentally studied. A carbon film was found to have grown under irradiation from a pulsed tin plasma discharge. Our studies show that the film is chemically inert and has characteristics that a

  2. Coastal Inlets Research Program

    Science.gov (United States)

    2014-04-01

    2003 2005 2007 2009 2011 2013 Calendar Year CIRP Website: Tech Transfer http://cirp.usace.army.mil What new technology transfer do we have to discuss...etc.), nested grids; integrated with CMS-Flow Verification & Validation Cases (14) Bouss-2D: Phase -resolving shallow- water, nonlinear wave model for...Port Orford, OR Tillamook Inlet, OR  SPN: Half Moon Bay CA Waves at  Navigation  Structures ,  SWG: Matagorda Ship Channel, TX West Galveston

  3. An extremely peculiar hot subdwarf with a ten-thousand-fold excess of zirconium, yttrium, and strontium

    CERN Document Server

    N., Naslim; Behara, N T; Hibbert, A

    2010-01-01

    Helium-rich subdwarf B (He-sdB) stars represent a small group of low-mass hot stars with luminosities greater than those of conventional subdwarf B stars, and effective temperatures lower than those of subdwarf O stars. By measuring their surface chemistry, we aim to explore the connection between He-sdB stars, He-rich sdO stars and normal sdB stars. LS IV-14 116 is a relatively intermediate He-sdB star, also known to be a photometric variable. High-resolution blue-optical spectroscopy was obtained with the Anglo-Australian Telescope. Analysis of the spectrum shows LS IV-14 116 to have effective temperature Teff = 34 000 +/- 500 K, surface gravity log g = 5.6 +/- 0.2, and surface helium abundance nHe = 0.16 +/- 0.03 by number. This places the star slightly above the standard extended horizontal branch, as represented by normal sdB stars. The magnesium and silicon abundances indicate the star to be metal poor relative to the Sun. A number of significant but unfamiliar absorption lines were identified as being ...

  4. K2-66b and K2-106b: Two Extremely Hot Sub-Neptune-size Planets with High Densities

    Science.gov (United States)

    Sinukoff, Evan; Howard, Andrew W.; Petigura, Erik A.; Fulton, Benjamin J.; Crossfield, Ian J. M.; Isaacson, Howard; Gonzales, Erica; Crepp, Justin R.; Brewer, John M.; Hirsch, Lea; Weiss, Lauren M.; Ciardi, David R.; Schlieder, Joshua E.; Benneke, Bjoern; Christiansen, Jessie L.; Dressing, Courtney D.; Hansen, Brad M. S.; Knutson, Heather A.; Kosiarek, Molly; Livingston, John H.; Greene, Thomas P.; Rogers, Leslie A.; Lépine, Sébastien

    2017-06-01

    We report precise mass and density measurements of two extremely hot sub-Neptune-size planets from the K2 mission using radial velocities, K2 photometry, and adaptive optics imaging. K2-66 harbors a close-in sub-Neptune-sized ({2.49}-0.24+0.34 {R}\\oplus ) planet (K2-66b) with a mass of 21.3+/- 3.6 {M}\\oplus . Because the star is evolving up the subgiant branch, K2-66b receives a high level of irradiation, roughly twice the main-sequence value. K2-66b may reside within the so-called “photoevaporation desert,” a domain of planet size and incident flux that is almost completely devoid of planets. Its mass and radius imply that K2-66b has, at most, a meager envelope fraction (radiation environments. Their high densities reflect the challenge of retaining a substantial gas envelope in such extreme environments.

  5. An Extreme Analogue of ɛ Aurigae: An M-giant Eclipsed Every 69 Years by a Large Opaque Disk Surrounding a Small Hot Source

    Science.gov (United States)

    Rodriguez, Joseph E.; Stassun, Keivan G.; Lund, Michael B.; Siverd, Robert J.; Pepper, Joshua; Tang, Sumin; Kafka, Stella; Gaudi, B. Scott; Conroy, Kyle E.; Beatty, Thomas G.; Stevens, Daniel J.; Shappee, Benjamin J.; Kochanek, Christopher S.

    2016-05-01

    We present TYC 2505-672-1 as a newly discovered and remarkable eclipsing system comprising an M-type red giant that undergoes a ˜3.45 year long, near-total eclipse (depth of ˜4.5 mag) with a very long period of ˜69.1 years. TYC 2505-672-1 is now the longest-period eclipsing binary system yet discovered, more than twice as long as that of the currently longest-period system, ɛ Aurigae. We show from analysis of the light curve including both our own data and historical data spanning more than 120 years and from modeling of the spectral energy distribution, both before and during eclipse, that the red giant primary is orbited by a moderately hot source (Teff ≈ 8000 K) that is itself surrounded by an extended, opaque circumstellar disk. From the measured ratio of luminosities, the radius of the hot companion must be in the range of 0.1-0.5 R⊙ (depending on the assumed radius of the red giant primary), which is an order of magnitude smaller than that for a main sequence A star and 1-2 orders of magnitude larger than that for a white dwarf. The companion is therefore most likely a “stripped red giant” subdwarf-B type star destined to become a He white dwarf. It is, however, somewhat cooler than most sdB stars, implying a very low mass for this “pre-He-WD” star. The opaque disk surrounding this hot source may be a remnant of the stripping of its former hydrogen envelope. However, it is puzzling how this object became stripped, given that it is at present so distant (orbital semimajor axis of ˜24 au) from the current red giant primary star. Extrapolating from our calculated ephemeris, the next eclipse should begin in early UT 2080 April and end in mid UT 2083 September (eclipse center UT 2081 December 24). In the meantime, radial velocity observations would establish the masses of the components, and high-cadence UV observations could potentially reveal oscillations of the hot companion that would further constrain its evolutionary status. In any case

  6. Characterization of carbon contamination under ion and hot atom bombardment in a tin-plasma extreme ultraviolet light source

    Energy Technology Data Exchange (ETDEWEB)

    Dolgov, A., E-mail: a.dolgov@utwente.nl [MESA+ Institute for Nanotechnology, University of Twente, Enschede (Netherlands); Lopaev, D. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow (Russian Federation); Lee, C.J. [MESA+ Institute for Nanotechnology, University of Twente, Enschede (Netherlands); Zoethout, E. [Dutch Institute for Fundamental Energy Research (DIFFER), Nieuwegein (Netherlands); Medvedev, V. [MESA+ Institute for Nanotechnology, University of Twente, Enschede (Netherlands); Yakushev, O. [Institute for Spectroscopy Russian Academy of Sciences, Moscow (Russian Federation); Bijkerk, F. [MESA+ Institute for Nanotechnology, University of Twente, Enschede (Netherlands)

    2015-10-30

    Highlights: • Carbon film grown during exposure to EUV radiation and high energy ions was studied. • The carbon film is highly resistant to chemical and physical sputtering. • Surface contamination of plasma-facing components is similar to hydrogenated DLC. - Abstract: Molecular contamination of a grazing incidence collector for extreme ultraviolet (EUV) lithography was experimentally studied. A carbon film was found to have grown under irradiation from a pulsed tin plasma discharge. Our studies show that the film is chemically inert and has characteristics that are typical for a hydrogenated amorphous carbon film. It was experimentally observed that the film consists of carbon (∼70 at.%), oxygen (∼20 at.%) and hydrogen (bound to oxygen and carbon), along with a few at.% of tin. Most of the oxygen and hydrogen are most likely present as OH groups, chemically bound to carbon, indicating an important role for adsorbed water during the film formation process. It was observed that the film is predominantly sp{sup 3} hybridized carbon, as is typical for diamond-like carbon. The Raman spectra of the film, under 514 and 264 nm excitation, are typical for hydrogenated diamond-like carbon. Additionally, the lower etch rate and higher energy threshold in chemical ion sputtering in H{sub 2} plasma, compared to magnetron-sputtered carbon films, suggests that the film exhibits diamond-like carbon properties.

  7. Pulsating hot O subdwarfs in Omega Cen: mapping a unique instability strip on the Extreme Horizontal Branch

    CERN Document Server

    Randall, S K; Fontaine, G; Monelli, M; Bono, G; Alonso, M L; Van Grootel, V; Brassard, P; Chayer, P; Catelan, M; Littlefair, S; Dhillon, V S; Marsh, T R

    2016-01-01

    We present an extensive survey for rapid pulsators among Extreme Horizontal Branch (EHB) stars in omega Cen. The observations performed consist of nearly 100 hours of time-series photometry, as well as low-resolution spectroscopy. We obtained photometry for some 300 EHB stars. Based on the spectroscopy, we derive reliable values of log g, Teff and log(N(He)/N(H)) for 38 targets, as well as estimates of the effective temperature for another nine targets. The survey uncovered a total of five rapid variables with multi-periodic oscillations between 85 and 125 s. Spectroscopically, they form a homogeneous group of hydrogen-rich subdwarf O stars clustered between 48,000 and 54,000 K. For each of the variables we are able to measure between two and three significant pulsations believed to constitute independent harmonic oscillations. In addition to the rapid variables, we found an EHB star with an apparently periodic luminosity variation of ~2700 s, which we tentatively suggest may be caused by ellipsoidal variatio...

  8. Inlet Geomorphology Evolution Work Unit

    Science.gov (United States)

    2015-10-30

    the expected behavior and benefits of nearshore placement. Nearshore placement studies have been documented in two journal papers, one technical...Coastal Inlets Research Program Inlet Geomorphology Evolution Work Unit The Inlet Geomorphology Evolution work unit of the CIRP develops methods...sensing measurements, and USACE projects to create valuable guidance that address geomorphic questions. The present focus of the work unit is a common

  9. Flow in the Inlet Region in Tangential Inlet Cyclones

    NARCIS (Netherlands)

    Peng, W.; Boot, P.J.A.J.; Hoffmann, A.C; Dries, H.W.A.; Kater, J.

    2001-01-01

    In this paper the flow pattern in a tangential inlet cyclone is studied by laser Doppler anemometry, with emphasis on the inlet region. The particular focus is on axial asymmetry in the flow, which was studied by determining radial profiles of the axial and tangential gas velocity components at four

  10. Investigation of Flow Instabilities in the Inlet Ducts of DP-1C VTOL Aircraft

    Science.gov (United States)

    Lepicovsky, Jan

    2008-01-01

    An investigation of flow instabilities in the inlet ducts of a two-engine vertical takeoff and landing aircraft DP-1C is described in this report. Recent tests revealed that the engines stall during run ups while the aircraft is operating on the ground. These pop stalls occurred at relatively low power levels, sometimes as low as 60 percent of the engine full speed. Inability to run the engines up to the full speed level is attributed to in-ground effects associated with hot gas ingestion. Such pop stalls were never experienced when the aircraft was tested on a elevated grid platform, which ensured that the aircraft was operating in out-of-the-ground-effect conditions. Based on available information on problems experienced with other vertical takeoff and landing aircraft designs, it was assumed that the engine stalls were caused by partial ingestion of hot gases streaming forward from the main exit nozzle under the aircraft inlets, which are very close to the ground. It was also suggested that the nose wheel undercarriage, located between the inlets, may generate vortices or an unstable wake causing intense mixing of hot exit gases with incoming inlet flow, which would enhance the hot gas ingestion. After running a short three-day series of tests with fully instrumented engine inlets, it is now believed the most probable reason for engine pop stalls are random ingestions of a vortex generated between the two streams moving in opposite directions: outbound hot gas stream from the main nozzle close to the ground and inbound inlet flow above. Originally, the vortex is in a horizontal plane. However, at a certain velocity ratio of these two streams, the vortex attaches either to the ground or the aircraft surface at one end and the other end is swallowed by one of the aircraft inlets. Once the vortex enters the inlet duct, a puff of hot air can be sucked through the vortex core into the engine, which causes a serious inlet flow field distortion followed by an engine

  11. Microsensor Hot-Film Anemometer

    Science.gov (United States)

    Mcginley, Catherine B.; Stephens, Ralph; Hopson, Purnell; Bartlett, James E.; Sheplak, Mark; Spina, Eric F.

    1995-01-01

    Improved hot-film anemometer developed for making high-bandwidth turbulence measurements in moderate-enthalpy supersonic and hypersonic flows (e.g., NASP inlets and control surfaces, HSCT jet exhaust). Features include low thermal inertia, ruggedness, and reduced perturbation of flow.

  12. Method for Determining Optimum Injector Inlet Geometry

    Science.gov (United States)

    Trinh, Huu P. (Inventor); Myers, W. Neill (Inventor)

    2015-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The method calculates the tangential inlet area for each throttleable stage. The method also uses correlation between the tangential inlet areas and delta pressure values to calculate the spring displacement and variable inlet geometry of a liquid rocket engine swirl injector.

  13. Centrifugal pump inlet pressure site affects measurement.

    Science.gov (United States)

    Augustin, Simon; Horton, Alison; Butt, Warwick; Bennett, Martin; Horton, Stephen

    2010-09-01

    During extracorporeal life support (ECLS), blood is exposed to a myriad of unphysiological factors that can affect outcome. One aspect of this is the sub-atmospheric pressure generated by the ECLS pump and imparted to blood elements along the pump inlet line. This pressure can be measured on the inlet line close to the pump head by adding a connector, or at the venous cannula connection site. We compared the two measurement sites located at both points; between the venous cannula-inlet tubing and inlet tubing-pump, with a range of cannulae and flows. We also investigated the effects on inlet pressure from pump afterload and increasing inlet tubing length.

  14. Oregon inlet: Hydrodynamics, volumetric flux and implications for larval fish transport

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, C.R. [National Oceanic and Atmospheric Administration, Silver Springs, MD (United States); Pietrafesa, L.J. [North Carolina State Univ., Raleigh, NC (United States). Department of Marine, Earth and Atmospheric Sciences

    1997-05-01

    The temporal response of Oregon Inlet currents to atmospheric forcing and sea level fluctuations is analyzed using time and frequency domain analysis. Temporally persistent and spatially extensive ebb and flood events are identified using data sets from both within and outside of Oregon Inlet. Prism estimates are made to generate a time series of volumetric flux of water transported through the inlet. Water masses flooding into the Pamlico Sound via Oregon Inlet are identified in temperature (T) and salinity (S) space to determine their source of origin. Correlations are examined between the atmospheric wind field, the main axial slope of the inlet`s water level, inlet flow and T, S properties. Synoptic scale atmospheric wind events are found to dramatically and directly affect the transport of water towards (away from) the inlet on the ocean side, in concert with the contemporaneous transport away from (towards) the inlet on the estuary side, and a subsequent flooding into (out of) the estuary via Oregon Inlet. Thus, while astronomical tidal flooding and ebbing events are shown to be one-sided as coastal waters either set-up or set-down, synoptic scale wind events are shown to be manifested as a two-sided in-phase response set-up and set-down inside and outside the inlet, and thus are extremely effective in driving currents through the inlet. These subinertial frequency flood events are believed to be essential for both the recruitment and subsequent retention of estuarine dependent larval fish from the coastal ocean into Pamlico Sound. Year class strength of these finish may be determined annually by the relative strength and timing of these climatological wind events.

  15. Oregon inlet: Hydrodynamics, volumetric flux and implications for larval fish transport

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, C.R. [National Oceanic and Atmospheric Administration, Silver Springs, MD (United States); Pietrafesa, L.J. [North Carolina State Univ., Raleigh, NC (United States). Department of Marine, Earth and Atmospheric Sciences

    1997-05-01

    The temporal response of Oregon Inlet currents to atmospheric forcing and sea level fluctuations is analyzed using time and frequency domain analysis. Temporally persistent and spatially extensive ebb and flood events are identified using data sets from both within and outside of Oregon Inlet. Prism estimates are made to generate a time series of volumetric flux of water transported through the inlet. Water masses flooding into the Pamlico Sound via Oregon Inlet are identified in temperature (T) and salinity (S) space to determine their source of origin. Correlations are examined between the atmospheric wind field, the main axial slope of the inlet`s water level, inlet flow and T, S properties. Synoptic scale atmospheric wind events are found to dramatically and directly affect the transport of water towards (away from) the inlet on the ocean side, in concert with the contemporaneous transport away from (towards) the inlet on the estuary side, and a subsequent flooding into (out of) the estuary via Oregon Inlet. Thus, while astronomical tidal flooding and ebbing events are shown to be one-sided as coastal waters either set-up or set-down, synoptic scale wind events are shown to be manifested as a two-sided in-phase response set-up and set-down inside and outside the inlet, and thus are extremely effective in driving currents through the inlet. These subinertial frequency flood events are believed to be essential for both the recruitment and subsequent retention of estuarine dependent larval fish from the coastal ocean into Pamlico Sound. Year class strength of these finish may be determined annually by the relative strength and timing of these climatological wind events.

  16. How mixing during hot water draw-offs influence the thermal performance of small solar domestic hot water systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Shah, Louise Jivan

    2005-01-01

    CFD calculations on the mixing during hot water draw-offs in vertical hot water tanks with different diameters have been carried out. The calculations, which were carried out with the same cold water inlet design, showed that the extent of mixing is strongly influenced by the tank diameter. The e...... consideration of the required hot water comfort.......CFD calculations on the mixing during hot water draw-offs in vertical hot water tanks with different diameters have been carried out. The calculations, which were carried out with the same cold water inlet design, showed that the extent of mixing is strongly influenced by the tank diameter....... The extent of mixing is increasing for increasing tank diameter. Further, calculations of the yearly thermal performance of small solar domestic hot water systems with hot water tanks with different mixing rates during hot water draw-offs were carried out. Both solar domestic hot water systems with mantle...

  17. Hot Money, Hot Potato

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    International hot money flowing into Chinese capital markets has caught the attention of Chinese watchdogs The Chinese are not the only ones feasting on the thriving property and stock markets. Apparently, these markets are the targets of international h

  18. Effects of inlet distortion on gas turbine combustion chamber exit temperature profiles

    Science.gov (United States)

    Maqsood, Omar Shahzada

    Damage to a nozzle guide vane or blade, caused by non-uniform temperature distributions at the combustion chamber exit, is deleterious to turbine performance and can lead to expensive and time consuming overhaul and repair. A test rig was designed and constructed for the Allison 250-C20B combustion chamber to investigate the effects of inlet air distortion on the combustion chamber's exit temperature fields. The rig made use of the engine's diffuser tubes, combustion case, combustion liner, and first stage nozzle guide vane shield. Rig operating conditions simulated engine cruise conditions, matching the quasi-non-dimensional Mach number, equivalence ratio and Sauter mean diameter. The combustion chamber was tested with an even distribution of inlet air and a 4% difference in airflow at either side. An even distribution of inlet air to the combustion chamber did not create a uniform temperature profile and varying the inlet distribution of air exacerbated the profile's non-uniformity. The design of the combustion liner promoted the formation of an oval-shaped toroidal vortex inside the chamber, creating localized hot and cool sections separated by 90° that appeared in the exhaust. Uneven inlet air distributions skewed the oval vortex, increasing the temperature of the hot section nearest the side with the most mass flow rate and decreasing the temperature of the hot section on the opposite side. Keywords: Allison 250, Combustion, Dual-Entry, Exit Temperature Profile, Gas Turbine, Pattern Factor, Reverse Flow.

  19. Tidal Motion in a Complex Inlet and Bay System, Ponce de Leon Inlet, Florida

    Science.gov (United States)

    2000-01-01

    REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Tidal Motion in a Complex Inlet and Bay System, Ponce de Leon Inlet, Florida 5a...investigated in Ponce de Leon (Ponce) Inlet, Florida, and its bay channels through a 10-week data-collection campaign and two-dimensional numerical...Beach, Florida Summer 2000 Tidal Motion in a Complex Inlet and Bay System, Ponce de Leon Inlet, Florida Adele Militellot and Gary A. Zarillo:j: t

  20. An Extreme Analogue of $\\epsilon$ Aurigae: An M-giant Eclipsed Every 69 Years by a Large Opaque Disk Surrounding a Small Hot Source

    CERN Document Server

    Rodriguez, Joseph E; Lund, Michael B; Siverd, Robert J; Pepper, Joshua; Tang, Sumin; Kafka, Stella; Gaudi, Scott; Conroy, Kyle E; Beatty, Thomas G; Stevens, Daniel J

    2016-01-01

    We present TYC 2505-672-1 as a newly discovered, remarkable eclipsing system comprising an M-type red giant that undergoes a ~3.45 year long, near-total eclipse (depth of ~4.5 mag) with a very long period of ~69.1 yr. This therefore becomes the longest-period eclipsing binary system yet discovered, more than twice as long as that of the currently longest-period system, $\\epsilon$ Aurigae. We show from analysis of the light curve including both our own data and historical data spanning more than 120 yr and from modeling of the spectral energy distribution, both before and during eclipse, that the red giant primary is orbited by a moderately hot source (T$_{eff}$~8000 K) that is itself surrounded by an extended, opaque circumstellar disk. From the measured ratio of luminosities, the radius of the hot companion must be in the range 0.1-0.5 Rsun (depending on the assumed radius of the red giant primary), which is an order of magnitude smaller than that for a main sequence A star and 1-2 orders of magnitude larger...

  1. Extremely Strong ^{13}CO J=3-2 Line in the "Water Fountain" IRAS 16342-3814: Evidence for the Hot-Bottom Burning

    CERN Document Server

    Imai, Hiroshi; He, Jin-Hua; Nakashima, Jun-ichi; Hsia, Chih-Hao; Sakai, Takeshi; Deguchi, Shuji; Koning, Nico

    2012-01-01

    We observed four "water fountain" sources in the CO J=3-2 line emission with the Atacama Submillimeter Telescope Experiment (ASTE) 10 m telescope in 2010-2011. The water fountain sources are evolved stars that form high-velocity collimated jets traced by water maser emission. The CO line was detected only from IRAS 16342-3814. The present work confirmed that the ^{12}CO to ^{13}CO line intensity ratio is ~1.5 at the systemic velocity. We discuss the origins of the very low ^{12}CO to ^{13}CO intensity ratio, as possible evidence for the "hot-bottom burning" in an oxygen-rich star, and the CO intensity variation in IRAS 16342-3814.

  2. Planar Inlet Design and Analysis Process (PINDAP)

    Science.gov (United States)

    Slater, John W.; Gruber, Christopher R.

    2005-01-01

    The Planar Inlet Design and Analysis Process (PINDAP) is a collection of software tools that allow the efficient aerodynamic design and analysis of planar (two-dimensional and axisymmetric) inlets. The aerodynamic analysis is performed using the Wind-US computational fluid dynamics (CFD) program. A major element in PINDAP is a Fortran 90 code named PINDAP that can establish the parametric design of the inlet and efficiently model the geometry and generate the grid for CFD analysis with design changes to those parameters. The use of PINDAP is demonstrated for subsonic, supersonic, and hypersonic inlets.

  3. Numerical Analysis of Supersonic Film Cooling in Supersonic Flow in Hypersonic Inlet with Isolator

    Directory of Open Access Journals (Sweden)

    Silong Zhang

    2014-02-01

    Full Text Available Supersonic film cooling is an efficient method to cool the engine with extremely high heat load. In order to study supersonic film cooling in a real advanced engine, a two-dimensional model of the hypersonic inlet in a scramjet engine with supersonic film cooling in the isolator is built and validated through experimental data. The simulation results show that the cooling effect under different coolant injection angles does not show clear differences; a small injection angle can ensure both the cooling effect and good aerodynamic performances (e.g., flow coefficient of the hypersonic inlet. Under selected coolant injection angle and inlet Mach number, the cooling efficiency increases along with the injection Mach number of the coolant flow, only causing a little total pressure loss in the isolator. Along with the increase of the inlet Mach number of the hypersonic inlet, the cooling efficiency does not present a monotonic change because of the complex shock waves. However, the wall temperature shows a monotonic increase when the inlet Mach number increases. The mass flow rate of coolant flow should be increased to cool the engine more efficiently according to the mass flow rate of the main stream when the inlet Mach number increases.

  4. Safety analysis on large partial inlet flow blockage in PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J.; Chang, W. P.; Jeong, J. H.; Ha, K. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The objective of the present study is to predict cladding temperature for the hot assembly by postulating flow blockage accident occurring side orifice nozzles at lower plenum. The large partial inlet flow blockage occurring orifice nozzles of receptacle was estimated by MATRA-LMR/FB. It is hypothesized that a large object has gotten down to lower plenum during normal operation and blocked side orifice nozzles at lower plenum. The flow blockage has been considered one of the main issues to be addressed in SFR since the Ferim-1 suffered a partial fuel meltdown. The flow blockage causes an insufficient amount of coolant to enter the fuel assembly. Large Partial Inlet flow blockage is classified as DEC (Design Extension Condition) for PGSFR. There are several flow paths at lower plenum and possibility of occurrence of inlet flow blockage is estimated to be about 1 x 10{sup -8} which is very remote. However, it should be dealt with in PGSFR because it is a BE (Bounding Event). There are no known sources for inlet flow blockage but one could postulate that a large object might be gotten down to lower plenum during normal operation. Then it leads to not only reduced flow rate that flows into assemblies but also temperature increase within fuel assembly. The results indicate that 3-orifice nozzles blockage (50% of blockage area) lead to a maximum clad temperature of inner/outer core assembly around 670 .deg. C/580 .deg. C. This is guaranteed that safety margin is enough considering the eutectic temperature. On the other hand, for more than 4-orifice nozzles blockage (67% of blockage area), the maximum clad temperature of both inner/outer core assembly reaches around 806 .deg. C/739 .deg. C, respectively, which go beyond eutectic temperature.

  5. 阀门进汽接管窄间隙热丝TIG焊接接头组织与性能相关性研究%Correlations Between Properties and Microstructure of Valve Inlet Pipe Joint Welded by NG-TIG with Hot Wire

    Institute of Scientific and Technical Information of China (English)

    杨仁杰; 沈学峰; 刘霞; 芦凤桂

    2012-01-01

    Narrow-gap tungsten inert gas (NG-TIG) with hot wire method was taken to weld X10CrMoVNb9-l valve inlet pipe in all positions. The correlations between properties and microstructure of weld joint were researched . There are different size of grains in weld seam such as coarse grains, fine grains etc. And with tempered martensite microstructure, which can cause some fluctuations on the properties of weld seam. The hardness test results show the hardness fluctuations in weld seam caused by different structures and size grains in weld seam. The hardness decreases after stress-rupture test comparison with the hardness as welded for all the regions including weld seam, heat affected zone and base metal. Lots of gathering carbides are found at welded joint especially for the grain boundaries, which can explain the decrease of hardness after stress-rupture test. The study results can provide references for the control of weld process parameters and the failure behavior during the service process at high temperature was discussed.%研究发现,焊缝是由粗晶、细晶等不同尺寸的晶粒组成,组织形貌为回火马氏体,这将会导致焊缝的性能发生波动,其硬度试验表明焊缝中存在不同程度的由于焊缝组织结构引起的波动.高温持久试验后再次进行硬度分析,发现经过高温持久试验后焊缝区硬度比试验前硬度略低,同时热影响区、母材等硬度也存在降低的现象.经分析发现,这与母材及焊缝中析出的碳化物相关,特别是晶界处碳化物的大量析出、聚集导致了接头性能的降低.本文的研究结果可为窄间隙热丝TIG焊过程参数控制及探讨高温服役过程中的失效行为提供依据.利用窄间隙热丝TIG焊对X10CrMoVNb9-1钢汽轮机阀门进汽接管进行多层全位置焊接,对焊接接头各微区组织与性能的相关性展开研究.

  6. Extremely large and hot multilayer Keplerian disk around the O-type protostar W51N: The precursors of the HCHII regions?

    CERN Document Server

    Zapata, Luis A; Leurini, Silvia

    2010-01-01

    We present sensitive high angular resolution (0.57$''$-0.78$''$) SO, SO$_2$, CO, C$_2$H$_5$OH, HC$_3$N, and HCOCH$_2$OH line observations at millimeter and submillimeter wavelengths of the young O-type protostar W51 North made with the Submillimeter Array (SMA). We report the presence of a large (of about 8000 AU) and hot molecular circumstellar disk around this object, which connects the inner dusty disk with the molecular ring or toroid reported recently, and confirms the existence of a single bipolar outflow emanating from this object. The molecular emission from the large disk is observed in layers with the transitions characterized by high excitation temperatures in their lower energy states (up to 1512 K) being concentrated closer to the central massive protostar. The molecular emission from those transitions with low or moderate excitation temperatures are found in the outermost parts of the disk and exhibits an inner cavity with an angular size of around 0.7$''$. We modeled all lines with a Local Ther...

  7. Aerosol Inlet Characterization Experiment Report

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, Robert L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kuang, Chongai [Brookhaven National Lab. (BNL), Upton, NY (United States); Uin, Janek [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States); Springston, Stephen R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-05-01

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerosol Observation System inlet stack was characterized for particle penetration efficiency from 10 nm to 20 μm in diameter using duplicate scanning mobility particle sizers (10 nm-450 nm), ultra-high-sensitivity aerosol spectrometers (60 nm-μm), and aerodynamic particle sizers (0.5 μm-20 μm). Results show good model-measurement agreement and unit transmission efficiency of aerosols from 10 nm to 4 μm in diameter. Large uncertainties in the measured transmission efficiency exist above 4 μm due to low ambient aerosol signal in that size range.

  8. External-Compression Supersonic Inlet Design Code

    Science.gov (United States)

    Slater, John W.

    2011-01-01

    A computer code named SUPIN has been developed to perform aerodynamic design and analysis of external-compression, supersonic inlets. The baseline set of inlets include axisymmetric pitot, two-dimensional single-duct, axisymmetric outward-turning, and two-dimensional bifurcated-duct inlets. The aerodynamic methods are based on low-fidelity analytical and numerical procedures. The geometric methods are based on planar geometry elements. SUPIN has three modes of operation: 1) generate the inlet geometry from a explicit set of geometry information, 2) size and design the inlet geometry and analyze the aerodynamic performance, and 3) compute the aerodynamic performance of a specified inlet geometry. The aerodynamic performance quantities includes inlet flow rates, total pressure recovery, and drag. The geometry output from SUPIN includes inlet dimensions, cross-sectional areas, coordinates of planar profiles, and surface grids suitable for input to grid generators for analysis by computational fluid dynamics (CFD) methods. The input data file for SUPIN and the output file from SUPIN are text (ASCII) files. The surface grid files are output as formatted Plot3D or stereolithography (STL) files. SUPIN executes in batch mode and is available as a Microsoft Windows executable and Fortran95 source code with a makefile for Linux.

  9. Hot microswimmers

    Science.gov (United States)

    Kroy, Klaus; Chakraborty, Dipanjan; Cichos, Frank

    2016-11-01

    Hot microswimmers are self-propelled Brownian particles that exploit local heating for their directed self-thermophoretic motion. We provide a pedagogical overview of the key physical mechanisms underlying this promising new technology. It covers the hydrodynamics of swimming, thermophoresis and -osmosis, hot Brownian motion, force-free steering, and dedicated experimental and simulation tools to analyze hot Brownian swimmers.

  10. Promethus Hot Leg Piping Concept

    Energy Technology Data Exchange (ETDEWEB)

    AM Girbik; PA Dilorenzo

    2006-01-24

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  11. Gas Turbine Engine Inlet Wall Design

    Science.gov (United States)

    Florea, Razvan Virgil (Inventor); Matalanis, Claude G. (Inventor); Stucky, Mark B. (Inventor)

    2016-01-01

    A gas turbine engine has an inlet duct formed to have a shape with a first ellipse in one half and a second ellipse in a second half. The second half has an upstream most end which is smaller than the first ellipse. The inlet duct has a surface defining the second ellipse which curves away from the first ellipse, such that the second ellipse is larger at an intermediate location. The second ellipse is even larger at a downstream end of the inlet duct leading into a fan.

  12. Annual report, Cook Inlet District, 1958 season

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Commercial fishery management activities for Cook Inlet and Resurrection Bay for 1958, including lists of operators and extensive statistics.

  13. Annual report, Cook Inlet District, 1956 season

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Commercial fishery management activities for Cook Inlet and Resurrection Bay for 1956, including lists of operators and extensive statistics.

  14. Annual report, Cook Inlet District, 1954 season

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Commercial fishery management activities for Cook Inlet and Resurrection Bay for 1954, including lists of operators and extensive statistics.

  15. Annual report, Cook Inlet District, 1957 season

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Commercial fishery management activities for Cook Inlet and Resurrection Bay for 1957, including lists of operators and extensive statistics.

  16. Annual report, Cook Inlet District, 1959 season

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Commercial fishery management activities for Cook Inlet and Resurrection Bay for 1959, including lists of operators and extensive statistics.

  17. HOT 2012

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  18. Interactions Between Wetlands and Tidal Inlets

    Science.gov (United States)

    2008-08-01

    Madre, TX), (3) fjord-type (e.g., Penobscot Bay , ME), and (4) tectonically created estuaries (e.g., San Francisco Bay , CA) (Pritchard 1967). This CHETN...small marsh island in San Francisco Bay , CA. Wolaver et al. (1988) measured suspended sediment flux of 827 g/m2/year into a marsh in North Inlet, SC...permanent or ephemeral inlets. Conversely, the development or construction of wetlands within an estuary reduces bay area and the tidal prism, which will

  19. Flow Control Application on a Submerged Inlet Characterized by Three-Component LDV

    Science.gov (United States)

    2010-12-01

    The probe type obtaining the streamwise velocity measurements was a Dantec model 55p11. The hotwire has a 2.5 µm platinum plated tungsten wire with a...with the LDV beams above the submerged inlet for freestream measurements. from the measurement region. Particle temperatures that were too hot or cold...plane. 4.1 Schlieren and Hotwire Examination Schlieren photography and one-component hotwire anemometry obtained some general characteristics of the

  20. How extreme are extremes?

    Science.gov (United States)

    Cucchi, Marco; Petitta, Marcello; Calmanti, Sandro

    2016-04-01

    High temperatures have an impact on the energy balance of any living organism and on the operational capabilities of critical infrastructures. Heat-wave indicators have been mainly developed with the aim of capturing the potential impacts on specific sectors (agriculture, health, wildfires, transport, power generation and distribution). However, the ability to capture the occurrence of extreme temperature events is an essential property of a multi-hazard extreme climate indicator. Aim of this study is to develop a standardized heat-wave indicator, that can be combined with other indices in order to describe multiple hazards in a single indicator. The proposed approach can be used in order to have a quantified indicator of the strenght of a certain extreme. As a matter of fact, extremes are usually distributed in exponential or exponential-exponential functions and it is difficult to quickly asses how strong was an extreme events considering only its magnitude. The proposed approach simplify the quantitative and qualitative communication of extreme magnitude

  1. How mixing during hot water draw-offs influence the thermal performance of small solar domestic hot water systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Shah, Louise Jivan

    2005-01-01

    CFD calculations on the mixing during hot water draw-offs in vertical hot water tanks with different diameters have been carried out. The calculations, which were carried out with the same cold water inlet design, showed that the extent of mixing is strongly influenced by the tank diameter....... The extent of mixing is increasing for increasing tank diameter. Further, calculations of the yearly thermal performance of small solar domestic hot water systems with hot water tanks with different mixing rates during hot water draw-offs were carried out. Both solar domestic hot water systems with mantle......, and that a decreased auxiliary volume in the tanks and an increased height/diameter ratio of the tanks will increase the thermal performance of the systems. The investigations showed further, that mixing during hot water draw-offs decreases the thermal performance of solar domestic hot water systems. The mixing...

  2. Influences of flow loss and inlet distortions from radial inlets on the performances of centrifugal compressor stages

    Energy Technology Data Exchange (ETDEWEB)

    Han, Feng Hui; Mao, Yi Jun [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an (China); Tan, Ji Jian [Dept. of Research and Development, Shenyang Blower Works Group Co., Ltd., Shenyang (China)

    2016-11-15

    Radial inlets are typical upstream components of multistage centrifugal compressors. Unlike axial inlets, radial inlets generate additional flow loss and introduce flow distortions at impeller inlets. Such distortions negatively affect the aerodynamic performance of compressor stages. In this study, industrial centrifugal compressor stages with different radial inlets are investigated via numerical simulations. Two reference models were built, simulated, and compared with each original compressor stage to analyze the respective and coupling influences of flow loss and inlet distortions caused by radial inlets on the performances of the compressor stage and downstream components. Flow loss and inlet distortions are validated as the main factors through which radial inlets negatively affect compressor performance. Results indicate that flow loss inside radial inlets decreases the performance of the whole compressor stage but exerts minimal effect on downstream components. By contrast, inlet distortions induced by radial inlets negatively influence the performance of the whole compressor stage and exert significant effects on downstream components. Therefore, when optimizing radial inlets, the reduction of inlet distortions might be more effective than the reduction of flow loss. This research provides references and suggestions for the design and improvement of radial inlets.

  3. Exergy, Economic and Environmental Analyses of Gas Turbine Inlet Air Cooling with a Heat Pump Using a Novel System Configuration

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Majdi Yazdi

    2015-10-01

    Full Text Available Gas turbines incur a loss of output power during hot seasons due to high ambient air temperatures, and input air cooling systems are often used to partly offset this problem. Here, results are reported for an investigation of the utilization of a heat pump to cool the inlet air of a gas turbine compressor. The analyses are carried out for two climates: the city of Yazd, Iran, which has a hot, arid climate, and Tehran, Iran, which has a temperate climate. The heat pump input power is obtained from the gas turbine. The following parameters are determined, with and without the heat pump: net output power, first and second law efficiencies, quantities and costs of environmental pollutants, entropy generation and power generation. The results suggest that, by using the air-inlet cooling system, the mean output power increases during hot seasons by 11.5% and 10% for Yazd and Tehran, respectively, and that the costs of power generation (including pollution costs decrease by 11% and 10% for Yazd and Tehran, respectively. Also, the rate of generation of pollutants such as NOx and CO decrease by about 10% for Yazd and 35% for Tehran, while the average annual entropy generation rate increases by 9% for Yazd and 7% for Tehran, through air-inlet cooling. The average increase of the system first law efficiency is 2% and of the system second law efficiency is 1.5% with the inlet-air cooling system.

  4. Cold water inlet in solar tanks - valuation

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1999-01-01

    The aim of the project is to make a proposal for how to value a storage tank with a poor design of the cold water inlet. Based on measurements and calculations a number of curves, which are valid for this valuation, are worked out. Based on a simple test with a uniform heated storage tank the ratio...

  5. Miniature piezo electric vacuum inlet valve

    Science.gov (United States)

    Keville, Robert F.; Dietrich, Daniel D.

    1998-03-24

    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability. The low power (piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three.

  6. Active Control of Jet Engine Inlet Flows

    Science.gov (United States)

    2007-03-31

    investigation was performed with no pressure applied across the fan. To measure the high-frequency, unsteady jet velocity, an IFA 300 hot - wire anemometry ...flow at the engine face. Recommendations for the measurement devices include hot -film or hot - wire sensors and wall-mounted, high frequency pressure...the blade and creates flow instabilities that convect through the later compressor stages. This report presents a study performed to gain an

  7. Temperature stratification in a hot water tank with circulation pipe

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1998-01-01

    The aim of the project is to investigate the change in temperature stratification due to the operation of a circulation pipe. Further, putting forward rules for design of pipe inlet in order not to disturb the temperature stratification in the hot water tank. A validated computer model based...

  8. Flow Control in a Compact Inlet

    Science.gov (United States)

    Vaccaro, John C.

    2011-12-01

    An experimental investigation of flow control, via various control jets actuators, was undertaken to eliminate separation and secondary flows in a compact inlet. The compact inlet studied was highly aggressive with a length-to-diameter ratio of 1.5. A brand new facility was designed and built to enable various actuation methodologies as well as multiple measurement techniques. Techniques included static surface pressure, total pressure, and stereoscopic particle image velocimetry. Experimental data were supplemented with numerical simulations courtesy of Prof. Kenneth Jansen, Dr. Onkar Sahni, and Yi Chen. The baseline flow field was found to be dominated by two massive separations and secondary flow structures. These secondary structures were present at the aerodynamic interface plane in the form of two counter-rotating vortices inducing upwash along centerline. A dominant shedding frequency of 350 Hz was measured both at the aerodynamic interface plane and along the lower surface of the inlet. Flow control experiments started utilizing a pair of control jets placed in streamwise locations where flow was found to separate. Tests were performed for a range of inlet Mach numbers from 0.2 to 0.44. Steady and unsteady static pressure measurements along the upper and lower walls of the duct were performed for various combinations of actuation. The parameters that were tested include the control jets momentum coefficient, their blowing ratio, the actuation frequency, as well as different combinations of jets. It was shown that using mass flux ratio as a criterion to define flow control is not sufficient, and one needs to provide both the momentum coefficient and the blowing ratio to quantify the flow control performance. A detailed study was undertaken on controlling the upstream separation point for an inlet Mach number of 0.44. Similar to the baseline flow field, the flow field associated with the activation of a two-dimensional control jet actuator was dominated by

  9. Hot Tickets

    Science.gov (United States)

    Fox, Bette-Lee; Hoffert, Barbara; Kuzyk, Raya; McCormack, Heather; Williams, Wilda

    2008-01-01

    This article describes the highlights of this year's BookExpo America (BEA) held at the Los Angeles Convention Center. The attendees at BEA had not minded that the air was recycled, the lighting was fluorescent, and the food was bad. The first hot book sighting came courtesy of Anne Rice. Michelle Moran, author of newly published novel, "The…

  10. Performance analysis of a combined cycle gas turbine power plant by using various inlet air cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Rahim, Murad A. [Department of Mechanical Engineering, Gazi University (Turkey)], e-mail: mrahim@gazi.edu.tr

    2011-07-01

    In recent years, the use of gas turbines in combined cycle power plants has increased. Turbine inlet air cooling appears to be the best solution for maximizing both production and efficiency, particularly in a hot climate. The aim of this study is to determine the impact of different air cooling systems on the gas turbine's performance and carbon dioxide emissions. Computer simulations were carried out, using the THERMOFLEX program, on fogging, evaporative cooling, adsorption cooling, and electrical chiller cooling systems as well as on a base case without cooling system. Results showed that inlet air cooling systems are effective in increasing the efficiency of gas turbine power plants. In addition it was found that absorption chillers are the best system for increasing power generation but that economic and source analyses should be conducted before installing a cooling system. This paper demonstrated that inlet air cooling systems have the ability to increase net power generation of gas turbine power plants.

  11. Effectiveness of an inlet flow turbulence control device to simulate flight noise fan in an anechoic chamber

    Science.gov (United States)

    Woodward, R. P.; Wazyniak, J. A.; Shaw, L. M.; Mackinnon, M. J.

    1977-01-01

    A hemispherical inlet flow control device was tested on a 50.8 cm. (20-inch) diameter fan stage in the NASA-Lewis anechoic chamber. The control device used honeycomb and wire mesh to reduce turbulence intensities entering the fan. Far field acoustic power level results show about a 5 db reduction in blade passing tone and about 10 dB reduction in multiple pure tone sound power at 90% design fan speed with the inlet device in place. Hot film cross probes were inserted in the inlet to obtain data for two components of the turbulence at 65 and 90% design fan speed. Without the flow control device, the axial intensities were below 1.0%, while the circumferential intensities were almost twice this value. The inflow control device significantly reduced the circumferential turbulence intensities and also reduced the axial length scale.

  12. Effectiveness of an inlet flow turbulence control device to simulate flight fan noise in an anechoic chamber

    Science.gov (United States)

    Woodward, R. P.; Wazyniak, J. A.; Shaw, L. M.; Mackinnon, M. J.

    1977-01-01

    A hemispherical inlet flow control device was tested on a 50.8 cm. (20-inch) diameter fan stage in the NASA-Lewis Anechoic Chamber. The control device used honeycomb and wire mesh to reduce turbulence intensities entering the fan. Far field acoustic power level results showed about a 5 dB reduction in blade passing tone and about 10 dB reduction in multiple pure tone sound power at 90% design fan speed with the inlet device in place. Hot film cross probes were inserted in the inlet to obtain data for two components of the turbulence at 65 and 90% design fan speed. Without the flow control device the axial intensities were below 1.0%, while the circumferential intensities were almost twice this value. The inflow control device significantly reduced the circumferential turbulence intensities and also reduced the axial length scale.

  13. New inlet nozzle assembly: C Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Calkin, J.F.

    1960-10-19

    The use of self-supported fuel elements in ribless Zircaloy-2 tubes at C-Reactor requires some inlet nozzle modification to allow charging of the larger overall diameter fuel pieces. A new nozzle assembly has been developed (by Equipment Development Operation -- IPD) which will allow use of the new fuel pieces and at the same time increase the reliability of the header-to-tube piping and reduce pumping power losses. Flow test data were requested for the new assembly and the results of these tests are presented herein. This report also presents a comparison of the header to tube energy losses for the various reactor inlet nozzle assemblies which are currently used on the Hanford production reactors.

  14. Numerical Investigation of Cowl Lip Adjustments for a Rocket-Based Combined-Cycle Inlet in Takeoff Regime

    Science.gov (United States)

    Shi, Lei; Liu, Xiaowei; He, Guoqiang; Qin, Fei; Wei, Xianggeng; Yang, Bing; Wu, Lele

    2016-09-01

    Numerical integration simulations were performed on a ready-made central strut-based rocket-based combined-cycle (RBCC) engine operating in the ejector mode during the takeoff regime. The effective principles of various cowl lip positions and shapes on the inlet operation and the overall performance of the entire engine were investigated in detail. Under the static condition, reverse cowl lip rotation in a certain range was found to contribute comprehensive improvement to the RBCC inlet and the entire engine. However, the reverse rotation of the cowl lip contributed very little enhancement of the RBCC inlet under the low subsonic flight regime and induced extremely negative impacts in the high subsonic flight regime, especially in terms of a significant increase in the drag of the inlet. Changes to the cowl lip shape provided little improvement to the overall performance of the RBCC engine, merely shifting the location of the leeward area inside the RBCC inlet, as well as the flow separation and eddy, but not relieving or eliminating those phenomena. The results of this study indicate that proper cowl lip rotation offers an efficient variable geometry scheme for a RBCC inlet in the takeoff regime.

  15. Hot Attractors

    CERN Document Server

    Goldstein, Kevin; Nampuri, Suresh

    2014-01-01

    The product of the areas of the event horizon and the Cauchy horizon of a non-extremal black hole equals the square of the area of the horizon of the black hole obtained from taking the smooth extremal limit. We establish this result for a large class of black holes using the second order equations of motion, black hole thermodynamics, and the attractor mechanism for extremal black holes. This happens even though the area of each horizon generically depends on the moduli, which are asymptotic values of scalar fields. The conformal field theory dual to the BTZ black hole facilitates a microscopic interpretation of the result. In addition, we demonstrate that certain quantities which vanish in the extremal case are zero when integrated over the region between the two horizons. We corroborate these conclusions through an analysis of known solutions.

  16. Modelling Complex Inlet Geometries in CFD

    DEFF Research Database (Denmark)

    Skovgaard, M.; Nielsen, Peter V.

    Modem inlet devices applied in the field of ventilation of rooms are getting more complex in terms of geometry in order to fulfil the occupants' demand for thermal comfort in the room and in order to decrease the energy consumption. This expresses the need for a more precise calculation of the fl...... and tested. The method is based upon threedimensional - and radial wall jet theory and upon diffuser specific experimental data....

  17. Optimal Design of a Subsonic Submerged Inlet

    Science.gov (United States)

    Taskinoglu, Ezgi; Jovanovic, Vasilije; Elliott, Gregory; Knight, Doyle

    2003-11-01

    A multi-objective optimization study based on an epsilon-constraint method is conducted for the design optimization of a subsonic submerged air vehicle inlet. The multi-objective optimization problem is reformulated by minimizing one of the objectives and restricting the other objectives within user specified values. The figures of merits are the engine-face distortion and swirl that determines the inlet/engine compatibility. The distortion index is minimized while the feasible design space is determined by the swirl index. The design variables are the geometrical parameters defining the surface alteration. The design algorithm is driven by a gradient-based optimizer, and is constructed by integrating the optimizer with a solid modeller (Pro/Engineer), a mesh generator (Grid/Pro) and a flow solver (GASPex). The optimizer is CFSQP (C code for Feasible Sequential Quadratic Programming). Integration of the software packages is achieved by a Perl script. In order to verify the numerical results, an experimental setup for the same inlet geometry is prepared to run at the same flow conditions. The presentation will describe the numerical approach and summarize the results.

  18. Unsteady lubrication modeling of inlet zone in metal rolling processes

    Institute of Scientific and Technical Information of China (English)

    毛明智; 谭建平

    2002-01-01

    An unsteady lubrication model of inlet zone in metal rolling was established. The simulation computations show that for the variation amplitude of the inlet film thickness, the variation of the inlet angle contributes the largest, the surface mean speed contributes the second and the back tension stress the least. The higher the input frequency is, the smaller the amplitude output of the inlet film thickness will be. For a sinusoidal input, the inlet film thickness varies periodically but is not a sine wave because the system is not linear.

  19. Unstart coupling mechanism analysis of multiple-modules hypersonic inlet.

    Science.gov (United States)

    Hu, Jichao; Chang, Juntao; Wang, Lei; Cao, Shibin; Bao, Wen

    2013-01-01

    The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted.

  20. Extreme Heat

    Science.gov (United States)

    ... Landslides & Debris Flow Nuclear Blast Nuclear Power Plants Power Outages Pandemic Radiological Dispersion Device Severe Weather Snowstorms & Extreme ... Landslides & Debris Flow Nuclear Blast Nuclear Power Plants Power Outages Pandemic Radiological Dispersion Device Severe Weather Snowstorms & Extreme ...

  1. Mandelbrot's Extremism

    NARCIS (Netherlands)

    Beirlant, J.; Schoutens, W.; Segers, J.J.J.

    2004-01-01

    In the sixties Mandelbrot already showed that extreme price swings are more likely than some of us think or incorporate in our models.A modern toolbox for analyzing such rare events can be found in the field of extreme value theory.At the core of extreme value theory lies the modelling of maxima

  2. Hot Subluminous Stars

    Science.gov (United States)

    Heber, U.

    2016-08-01

    Vir systems from eclipse timings. The high incidence of circumbinary substellar objects suggests that most of the planets are formed from the remaining CE material (second generation planets). Several types of pulsating star have been discovered among hot subdwarf stars, the most common are the gravity-mode sdB pulsators (V1093 Her) and their hotter siblings, the p-mode pulsating V361 Hya stars. Another class of multi-periodic pulsating hot subdwarfs has been found in the globular cluster ω Cen that is unmatched by any field star. Asteroseismology has advanced enormously thanks to the high-precision Kepler photometry and allowed stellar rotation rates to be determined, the interior structure of gravity-mode pulsators to be probed and stellar ages to be estimated. Rotation rates turned out to be unexpectedly slow calling for very efficient angular momentum loss on the red giant branch or during the helium core flash. The convective cores were found to be larger than predicted by standard stellar evolution models requiring very efficient angular momentum transport on the red giant branch. The masses of hot subdwarf stars, both single or in binaries, are the key to understand the stars’ evolution. A few pulsating sdB stars in eclipsing binaries have been found that allow both techniques to be applied for mass determination. The results, though few, are in good agreement with predictions from binary population synthesis calculations. New classes of binaries, hosting so-called extremely low mass (ELM) white dwarfs (M dark matter halo to be constrained and additional unbound hyper-velocity stars may be discovered. Subdwarf O/B stars and extremely low mass white dwarfs: atmospheric parameters and abundances, formation and evolution, binaries, planetary companions, pulsation, and kinematics.

  3. Hot Money,Hot Problems

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    After emerging from the economic doldrums, developing economies are now confronted with a new danger-a flood of international hot money. But how has the speculative capital circumvented regulatory controls and what are the consequences concerning the stability of the developing world? Zhao Zhongwei, a senior researcher with the Institute of World Politics and Economics at the Chinese Academy of Social Sciences, discussed these issues in an article recently published in the China Securities Journal. Edited excerpts follow

  4. Swift, UVOT and Hot Stars

    CERN Document Server

    Siegel, Michael H; Hagen, Lea M Z; Hoversten, Erik A

    2015-01-01

    We present the results of our ongoing investigation into the properties of hot stars and young stellar populations using the Swift/UVOT telescope. We present UVOT photometry of open and globular clusters and show that UVOT is capable of characterizing a variety of rare hot stars, including Post-Asymptotic Giant Branch and Extreme Horizontal Branch Stars. We also present very early reults of our survey of stellar populations in the Small Magellanic Cloud. We find that the SMC has experienced recent bouts of star formation but constraining the exact star formation history will depend on finding an effective model of the reddening within the SMC.

  5. Irrigation mitigates against heat extremes

    Science.gov (United States)

    Thiery, Wim; Fischer, Erich; Visser, Auke; Hirsch, Annette L.; Davin, Edouard L.; Lawrence, Dave; Hauser, Mathias; Seneviratne, Sonia I.

    2017-04-01

    Irrigation is an essential practice for sustaining global food production and many regional economies. Emerging scientific evidence indicates that irrigation substantially affects mean climate conditions in different regions of the world. Yet how this practice influences climate extremes is currently unknown. Here we use gridded observations and ensemble simulations with the Community Earth System Model to assess the impacts of irrigation on climate extremes. While the influence of irrigation on annual mean temperatures is limited, we find a large impact on temperature extremes, with a particularly strong cooling during the hottest day of the year (-0.78 K averaged over irrigated land). The strong influence on hot extremes stems from the timing of irrigation and its influence on land-atmosphere coupling strength. Together these effects result in asymmetric temperature responses, with a more pronounced cooling during hot and/or dry periods. The influence of irrigation is even more pronounced when considering subgrid-scale model output, suggesting that local effects of land management are far more important than previously thought. Finally we find that present-day irrigation is partly masking GHG-induced warming of extreme temperatures, with particularly strong effects in South Asia. Our results overall underline that irrigation substantially reduces our exposure to hot temperature extremes and highlight the need to account for irrigation in future climate projections.

  6. Long-Term Morphological Modeling of Barrier Island Tidal Inlets

    Directory of Open Access Journals (Sweden)

    Richard Styles

    2016-09-01

    Full Text Available The primary focus of this study is to apply a two-dimensional (2-D coupled flow-wave-sediment modeling system to simulate the development and growth of idealized barrier island tidal inlets. The idealized systems are drawn from nine U.S. coastal inlets representing Pacific Coast, Gulf Coast and Atlantic Coast geographical and climatological environments. A morphological factor is used to effectively model 100 years of inlet evolution and the resulting morphological state is gauged in terms of the driving hydrodynamic processes. Overall, the model performs within the range of established theoretically predicted inlet cross-sectional area. The model compares favorably to theoretical models of maximum inlet currents, which serve as a measure of inlet stability. Major morphological differences are linked to inlet geometry and tidal forcing. Narrower inlets develop channels that are more aligned with the inlet axis while wider inlets develop channels that appear as immature braided channel networks similar to tidal flats in regions with abundant sediment supply. Ebb shoals with strong tidal forcing extend further from shore and spread laterally, promoting multi-lobe development bisected by ebb shoal channels. Ebb shoals with moderate tidal forcing form crescent bars bracketing a single shore-normal channel. Longshore transport contributes to ebb shoal asymmetry and provides bed material to help maintain the sediment balance in the bay.

  7. Are 'hot spots' hot spots?

    Science.gov (United States)

    Foulger, Gillian R.

    2012-07-01

    The term 'hot spot' emerged in the 1960s from speculations that Hawaii might have its origins in an unusually hot source region in the mantle. It subsequently became widely used to refer to volcanic regions considered to be anomalous in the then-new plate tectonic paradigm. It carried with it the implication that volcanism (a) is emplaced by a single, spatially restricted, mongenetic melt-delivery system, assumed to be a mantle plume, and (b) that the source is unusually hot. This model has tended to be assumed a priori to be correct. Nevertheless, there are many geological ways of testing it, and a great deal of work has recently been done to do so. Two fundamental problems challenge this work. First is the difficulty of deciding a 'normal' mantle temperature against which to compare estimates. This is usually taken to be the source temperature of mid-ocean ridge basalts (MORBs). However, Earth's surface conduction layer is ˜200 km thick, and such a norm is not appropriate if the lavas under investigation formed deeper than the 40-50 km source depth of MORB. Second, methods for estimating temperature suffer from ambiguity of interpretation with composition and partial melt, controversy regarding how they should be applied, lack of repeatability between studies using the same data, and insufficient precision to detect the 200-300 °C temperature variations postulated. Available methods include multiple seismological and petrological approaches, modelling bathymetry and topography, and measuring heat flow. Investigations have been carried out in many areas postulated to represent either (hot) plume heads or (hotter) tails. These include sections of the mid-ocean spreading ridge postulated to include ridge-centred plumes, the North Atlantic Igneous Province, Iceland, Hawaii, oceanic plateaus, and high-standing continental areas such as the Hoggar swell. Most volcanic regions that may reasonably be considered anomalous in the simple plate-tectonic paradigm have been

  8. Cold water inlet in solar tanks - valuation

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1999-01-01

    The aim of the project is to make a proposal for how to value a storage tank with a poor design of the cold water inlet. Based on measurements and calculations a number of curves, which are valid for this valuation, are worked out. Based on a simple test with a uniform heated storage tank the ratio...... between the energy tapped in one storage volume and the energy content in the tank before the tapping is measured. Afterwards the mixing factor, corresponding to the measured ratio, can be determined. It is proposed that the mixing factor is taken into consideration when the governmental subsidy for SDHW...

  9. Marine Ice Atlas for Cook Inlet, Alaska

    Science.gov (United States)

    2007-11-02

    microwave/imager TDD thawing degree-day USACE U.S. Army Corps of Engineers USCB U.S. Census Bureau USCG U.S. Coast Guard USNO U.S. Naval Observatory WMO...large com- mercial fishing fleet based there. Homer, also a center for tourism , has a population of about 4,800. Marine facilities there include a deep...the importance of commercial navigation, fishing, and tourism access to remote sites around Cook Inlet, the practice continues today with even greater

  10. Low cost inlet filters for rainwater tanks

    OpenAIRE

    Martinson, Brett; Thomas, T.

    2005-01-01

    Inlet filters are a common method for enhancing water quality in rainwater harvesting systems. They range from cheap cloth or gravel filters to complex and expensive multi-stage systems. Field experience has shown, however that filters often suffer from a lack of maintenance so self-cleaning is an advantage. Filters can clean themselves by dividing the water stream into two components; the first and largest is the clean water passed to the tank, the second much smaller component can be used t...

  11. Hydraulics and Stability of Five Texas Inlets.

    Science.gov (United States)

    1981-01-01

    8217~~r 0.38 .. , q . P . I Pleasure Pier 7 Morgan’s Point 2 South Jetty 8 Railroad Causeway N 1. 3 Teuas City Dike 9 Chocolate Bayou A 4 Manna Reel 10 Son...Range and Level.............15 III HYDRAULICS AND STABILITY OF SPECIFIC INLETS...................... 15 1. Brazos River-Freeport Harbor Entrance...g acceleration of gravity K Keulegan repletion coefficient k wave number L channel length Le effective channel length n Manning’s coefficient P

  12. Redistribution of an inlet temperature distortion in an axial flow turbine stage

    Science.gov (United States)

    Butler, T. L.; Sharma, O. P.; Joslyn, H. D.; Dring, R. P.

    1986-06-01

    The results of an experimental program aimed at determining the extent of the redistribution of an inlet temperature distortion in an axial flow turbine stage are presented. The program was conducted in a large-scale, low speed, single stage turbine where air, seeded with CO2 was introduced at one circumferential location upstream of the inlet guide vane. The migration of the seeded air through the turbine was determined by sensing CO2 concentration inside the stage. A temperature distortion was introduced by heating the seeded air. The CO2 concentration contours measured downstream of the vane showed little change with heating, indicating that the vane flowfield was relatively unaffected by the introduction of the temperature distortion. However, the CO2 contours observed on the rotor airfoil surfaces for the case with inlet heating indicated segregation of hot and cold gas, with the higher temperature gas migrating to the pressure side and the lower temperature gas migrating to the suction side. Significant increases in rotor secondary flow were also observed.

  13. Influence of Inlet / Shoal Complex on Adjacent Shorelines via Inlet Sink Method

    Science.gov (United States)

    2012-07-01

    placing dredged material onto adjacent beaches in moderate quantities (~200-500K cu yd) since the 1970 ’s (Dredging Information System (DIS...southward to Matanzas Inlet. Analysis of the ebb shoal volume change between surveys was made within a GIS framework using an area mask (Fig. 6

  14. Sub-Alfvenic inlet boundary conditions for axisymmetric MHD nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Cassibry, J T [Propulsion Research Center, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Wu, S T [Center for Space Plasma and Aeronomy Research, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2007-09-07

    There are numerous electromagnetic accelerator concepts which require plasma expansion through a magnetic nozzle. If the inlet flow is slower than one or all of the outgoing characteristics, namely, the Alfven, slow and fast magnetosonic speeds, then the number of inlet conditions which could be arbitrarily specified are reduced by the number of outgoing characteristics (up to three). We derive the axisymmetric compatibility equations using the method of projected characteristics for the inlet conditions in the z-plane to assure the boundary conditions being consistent with flow properties. We make simplifications to the equations assuming that the inlet Alfven speed is much faster than the sonic and slow magnetosonic speeds. We compare results for various inlet boundary conditions, including a modified Lax-Wendroff implementation of the compatibility equations, first order extrapolation and arbitrarily specifying the inlet conditions, in order to assess the stability and accuracy of various approaches.

  15. CFD numerical simulation of Archimedes spiral inlet hydrocyclone

    Science.gov (United States)

    Zhang, L.; Wei, L.; Chang, B. H.; Xing, J. L.; Jia, K.

    2013-12-01

    For traditional linear type inlet, hydrocyclone has an unstable inner field, high turbulence intensity and low separation efficiency, this paper proposes an inlet mode that uses an Archimedes spiral hydrocyclone. A Mixture liquid-solid multiphase flow model combined with the kinetic theory of granular flow was used to simulate the high concentration water-sand-air three-phase flow in a hydrocyclone. We analyzed the pressure field, velocity field and turbulent kinetic energy and compared with traditional linear type inlet hydrocyclone inner field. The results show that Archimedes spiral inlet hydrocyclone's pressure field is evenly distributed. The Archimedes spiral inlet hydrocyclone can guide and accelerate the mixture flow and produce small forced vortex and less short circuit flow. The particles easily go to the outer vortex and are separated. The Archimedes spiral inlet hydrocyclone has effectively improved the stability of inner flow field and separation efficiency.

  16. Investigation of influencing factors of hot streaks migration in high pressure stage of a vaneless counter-rotating turbine

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Three-dimensional,viscous,and unsteady CFD simulations have been performed in order to reveal the influencing factors of hot streaks migration in high pressure stage of a vaneless counter-rotating turbine. Based on the numerical results,the comparison between the case with inlet hot streaks and case without inlet hot streaks is carried out,which shows that the effect of inlet hot streaks on the load distributions of high pressure turbine airfoils is not notable and the airfoil load distributions are directly related to the inlet pressure distributions. The predicted results also indicate that the circumferential and radial movements of the hot streaks were not observed in the high pressure turbine stator. This means that the combined effects of secondary flow and buoyancy are very weak in the high pres-sure turbine stator. The numerical results also prove that the circumferential flow angle effect at the inlet of the high pressure turbine rotor,secondary flow effect and buoyancy effect are the mainly influencing factors to directly affect the migration characteristics of the hot streaks in the high pressure turbine rotor.

  17. The Geometry of Selected U.S. Tidal Inlets.

    Science.gov (United States)

    1980-05-01

    Bodega Bay Inlet. Calif. 1931 NI C6GS S162 56 Humboldt Bay Inlet, Calif. 1859 NI CIGS 5710 57 Coos Bay Inlet. Oreg. 1885 NI USAE CB-I-18 58 Umpqua...Group 2 Group 3 Group 4 Group 5 Group 6 Outliers koriches Fripps Carolina Beach Lockwoods Folly Townsend Beaufort Hillsboro Stump St. Augustine Bodega ...Drakes Inlet, Calif. 1860 141 AlAN - -1 4-- * LtA94 LAND 0( -RAY 339 ft SECTON WDTHCHANNEL LENGTH 542. 626. Boo EGA BA 1931 C GS5162 BODEGA BAY 1931

  18. Hysteresis phenomenon of hypersonic inlet at high Mach number

    Science.gov (United States)

    Jiao, Xiaoliang; Chang, Juntao; Wang, Zhongqi; Yu, Daren

    2016-11-01

    When the hypersonic inlet works at a Mach number higher than the design value, the hypersonic inlet is started with a regular reflection of the external compression shock at the cowl, whereas a Mach reflection will result in the shock propagating forwards to cause a shock detachment at the cowl lip, which is called "local unstart of inlet". As there are two operation modes of hypersonic inlet at high Mach number, the mode transition may occur with the operation condition of hypersonic inlet changing. A cowl-angle-variation-induced hysteresis and a downstream-pressure-variation-induced hysteresis in the hypersonic inlet start↔local unstart transition are obtained by viscous numerical simulations in this paper. The interaction of the external compression shock and boundary layer on the cowl plays a key role in the hysteresis phenomenon. Affected by the transition of external compression shock reflection at the cowl and the transition between separated and attached flow on the cowl, a hysteresis exists in the hypersonic inlet start↔local unstart transition. The hysteresis makes the operation of a hypersonic inlet very difficult to control. In order to avoid hysteresis phenomenon and keep the hypersonic inlet operating in a started mode, the control route should never pass through the local unstarted boundary.

  19. Effects of Flow Parameters and Inlet Geometry on Cyclone Efficiency

    Institute of Scientific and Technical Information of China (English)

    赵兵涛

    2006-01-01

    A novel cyclone design, named converging symmetrical spiral inlet (CSSI) cyclone, is developed by improving the inlet geometry of conventional tangential single inlet (CTSI) cyclone for enhancing the physical performance of the cyclone.The collection efficiency of the CSSI cyclone is experimentally compared with the widely used CTSI cyclone. The results indicate that the CSSI cyclone provides higher collection efficiency by 5%~20% than that of the CTSI cyclone for a tested inlet velocity range of 11.99~23.85 m/s. In addition, the results of collection efficiency comparison between experimental data and theoretical model are also discussed.

  20. Inlet and airframe compatibility for a V/STOL fighter/attack aircraft with top-mounted inlets

    Science.gov (United States)

    Durston, D. A.; Smeltzer, D. B.

    1982-01-01

    Aerodynamic force and inlet pressure data are obtained for 9.5% force and pressure models of a V/STOL fighter/attack aircraft configuration with top mounted twin inlets. Data are presented from tests conducted in the Ames Unitary Wind Tunnels at Mach numbers of 0.6, 0.9, and 1.2 at angles of attack up to 27 deg. and angles of sideslip up to 12 deg. Trimmed aerodynamic characteristics and inlet performance are compared for three different leading edge extension (LEX) configurations. The effects of wing leading and trailing-edge flaps on the inlet are also determined. Maneuver perfromance is calculated form combined force and inlet pressure data. The largest of the three LEX sizes tested gives the best airplane maneuver performance. Wing flap deflections improved inlet recovery at all Mach numbers.

  1. Sources of antibiotics: Hot springs.

    Science.gov (United States)

    Mahajan, Girish B; Balachandran, Lakshmi

    2017-06-15

    The discovery of antibiotics heralded an era of improved health care. However, the over-prescription and misuse of antibiotics resulted in the development of resistant strains of various pathogens. Since then, there has been an incessant search for discovering novel compounds from bacteria at various locations with extreme conditions. The soil is one of the most explored locations for bioprospecting. In recent times, hypersaline environments and symbiotic associations have been investigated for novel antimicrobial compounds. Among the extreme environments, hot springs are comparatively less explored. Many researchers have reported the presence of microbial life and secretion of antimicrobial compounds by microorganisms in hot springs. A pioneering research in the corresponding author's laboratory resulted in the identification of the antibiotic Fusaricidin B isolated from a hot spring derived eubacteria, Paenibacillus polymyxa, which has been assigned a new application for its anti-tubercular properties. The corresponding author has also reported anti-MRSA and anti-VRE activity of 73 bacterial isolates from hot springs in India. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Inlet-engine matching for SCAR including application of a bicone variable geometry inlet. [Supersonic Cruise Aircraft Research

    Science.gov (United States)

    Wasserbauer, J. F.; Gerstenmaier, W. H.

    1978-01-01

    Airflow characteristics of variable cycle engines (VCE) designed for Mach 2.32 can have transonic airflow requirements as high as 1.6 times the cruise airflow. This is a formidable requirement for conventional, high performance, axisymmetric, translating centerbody mixed compression inlets. An alternate inlet is defined where the second cone of a two cone centerbody collapses to the initial cone angle to provide a large off-design airflow capability, and incorporates modest centerbody translation to minimize spillage drag. Estimates of transonic spillage drag are competitive with those of conventional translating centerbody inlets. The inlet's cruise performance exhibits very low bleed requirements with good recovery and high angle of attack capability.

  3. Usage of Connor Inlets to Eliminate Shrinkage

    Directory of Open Access Journals (Sweden)

    D. Fecko

    2012-09-01

    Full Text Available The demand for castings of high quality and sound work is nowadays very high. The production of sound castings without foundryerrors is the big issue in modern foundries. Foundry simulation software can do a lot to help improve the disposition of castings, gatingsystem and feeder system, and assure good filling and solidification conditions, and also produce sound casting without the need of the oldmethod of "try and error". One can easily change a lot of parameters for filling and solidification, and create the best proposal forproduction. Connor inlets have two functions. One is that it serves as an ingate, through which molten metal passes and comes into themould cavity. The second function is that it serves as a feeder and substitutes the metal contracted during solidification and cooling of the castings. It can also save quite a lot of metal in comparison to classic feeders.

  4. Extreme cosmos

    CERN Document Server

    Gaensler, Bryan

    2011-01-01

    The universe is all about extremes. Space has a temperature 270°C below freezing. Stars die in catastrophic supernova explosions a billion times brighter than the Sun. A black hole can generate 10 million trillion volts of electricity. And hypergiants are stars 2 billion kilometres across, larger than the orbit of Jupiter. Extreme Cosmos provides a stunning new view of the way the Universe works, seen through the lens of extremes: the fastest, hottest, heaviest, brightest, oldest, densest and even the loudest. This is an astronomy book that not only offers amazing facts and figures but also re

  5. 46 CFR 45.155 - Inlets and discharge piping: Valves.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Inlets and discharge piping: Valves. 45.155 Section 45... LINES Conditions of Assignment § 45.155 Inlets and discharge piping: Valves. (a) Except as provided in... visited by the crew. (e) Through-hull piping systems in machinery spaces may have valves with...

  6. Bedform evolution in a tidal inlet referred from wavelet analysis

    DEFF Research Database (Denmark)

    Fraccascia, Serena; Winter, Christian; Ernstsen, Verner Brandbyge;

    2011-01-01

    inlet and evaluate how they changed over consecutive years, when morphology was modified and bedforms migrated. High resolution bathymetric data from the Grådyb tidal inlet channel (Danish Wadden Sea) from seven years from 2002 to 2009 (not in 2004) were analyzed. Continuous wavelet transform of bed...

  7. Morphodynamics of tidal inlets in a tropical monsoon area

    NARCIS (Netherlands)

    Lam, N.T.; Stive, M.J.F.; Verhagen, H.J.; Wang, Z.B.

    2007-01-01

    Morphodynamics of a tidal inlet system on a micro-tidal coast in a tropical monsoon influenced region is modelled and discussed. Influences of river flow and wave climate on the inlet morphology are investigated with the aid of process-based state-of-the-art numerical models. Seasonal and episodic b

  8. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Inlet, engine, and exhaust compatibility. 25.941 Section 25.941 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF..., engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or...

  9. Effect of inlet box on performance of axial flow fans

    Institute of Scientific and Technical Information of China (English)

    Jingyin LI; Hua TIAN; Xiaofang YUAN

    2008-01-01

    Numerical investigations on 3D flow fields in an axial flow fan with and without an inlet box have been extensively conducted, focusing on the variation of fan performance caused by the internal flow fields and the velocity evenness at the exit of the inlet box. It is interest-ing to find that although the inlet box is well designed in accordance with basic design principles, there is a flow separation region in it. Furthermore, this flow separation and the resulting uneven velocity distribution at the exit lead to some decrease in the efficiency and an increase in the total pressure rise of the fan. This research shows that the inlet box needs further improvement and such a check on the flow fields is of value for the design of inlet boxes.

  10. Classification of tidal inlets along the Central east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Reddy, N.A.; Vikas, M.; Rao, S.; JayaKumar S.

    ) as long as the alongshore sediment bypasses the tidal inlet. Classification of coastal systems in a broader view is necessary for the management of tidal inlets. There are several methods to classify tidal inlets based on different perspectives namely geo...

  11. METC CFD simulations of hot gas filtration

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, T.J.

    1995-06-01

    Computational Fluid Dynamic (CFD) simulations of the fluid/particle flow in several hot gas filtration vessels will be presented. These simulations have been useful in designing filtration vessels and in diagnosing problems with filter operation. The simulations were performed using the commercial code FLUENT and the METC-developed code MFIX. Simulations of the initial configuration of the Karhula facility indicated that the dirty gas flow over the filter assemblage was very non-uniform. The force of the dirty gas inlet flow was inducing a large circulation pattern that caused flow around the candles to be in opposite directions on opposite sides of the vessel. By introducing a system of baffles, a more uniform flow pattern was developed. This modification may have contributed to the success of the project. Several simulations of configurations proposed by Industrial Filter and Pump were performed, varying the position of the inlet. A detailed resolution of the geometry of the candles allowed determination of the flow between the individual candles. Recent simulations in support of the METC/CeraMem Cooperative Research and Development Agreement have analyzed the flow in the vessel during the cleaning back-pulse. Visualization of experiments at the CeraMem cold-flow facility provided confidence in the use of CFD. Extensive simulations were then performed to assist in the design of the hot test facility being built by Ahlstrom/Pyropower. These tests are intended to demonstrate the CeraMem technology.

  12. Engine inlet distortion in a 9.2 percent scale vectored thrust STOVL model in ground effect

    Science.gov (United States)

    Johns, Albert L.; Neiner, George; Flood, J. D.; Amuedo, K. C.; Strock, T. W.

    1989-01-01

    Advanced Short Takeoff/Vertical Landing (STOVL) aircraft which can operate from remote locations, damaged runways, and small air capable ships are being pursued for deployment around the turn of the century. To achieve this goal, NASA Lewis Research Center, McDonnell Douglas Aircraft, and DARPA defined a cooperative program for testing in the NASA Lewis 9- by 15-foot low speed wind tunnel (LSWT) to establish a database for hot gas ingestion, one of the technologies critical to STOVL. Results are presented which show the engine inlet distortions (both temperature and pressure) in a 9.2 percent scale vectored thrust STOVL model in ground effects. Results are shown for the forward nozzle splay angles of 0 degrees, -6 degrees, and 18 degrees. The model support system had 4 degrees of freedom, heated high pressure air for nozzle flow, and a suction system exhaust for inlet flow. The headwind (freestream) velocity was varied from 8 to 23 knots.

  13. Engine inlet distortion in a 9.2 percent scaled vectored thrust STOVL model in ground effect

    Science.gov (United States)

    Johns, Albert L.; Neiner, George; Flood, J. D.; Amuedo, K. C.; Strock, T. W.

    1989-01-01

    Advanced Short Takeoff/Vertical Landing (STOVL) aircraft which can operate from remote locations, damaged runways, and small air capable ships are being pursued for deployment around the turn of the century. To achieve this goal, a cooperative program has been defined for testing in the NASA Lewis 9- by 15-foot Low Speed Wind Tunnel (LSWT) to establish a database for hot gas ingestion, one of the technologies critical to STOVL. This paper presents results showing the engine inlet distortions (both temperature and pressure) in a 9.2 percent scale Vectored Thrust STOVL model in ground effects. Results are shown for the forward nozzle splay angles of 0, -6, and 18 deg. The model support system had 4 deg of freedom, heated high pressure air for nozzle flow, and a suction system exhaust for inlet flow. The headwind (freestream) velocity was varied from 8 to 23 kn.

  14. Performance influence in submersible pump with different diffuser inlet widths

    Directory of Open Access Journals (Sweden)

    Qingshun Wei

    2016-12-01

    Full Text Available The diffuser inlet width is a key geometric parameter that affects submersible pump performance. On the basis of diffuser characteristic curve analyses, diffusers with different inlet widths and the same impeller were equipped to construct a submersible pump model through the use of AutoCAD software. The performance curves of the submersible pump, with six diffuser inlet widths, were obtained using computational fluid dynamics method. Simultaneously, the simulation results were tested with the experimental method presented in this article. The results show that the optimum value of the inlet width (b3 = 50 mm is larger than the experience-based one. With an increase in the inlet width, the optimum operating point of a submersible pump offsets to a larger flow rate. When the guide blade inlet width is approximately 40–55 mm, the submersible pump efficiency is relatively high, approximately 75.9%–83.7% capacity, and the flow rate is approximately 105–135 m3/h. The numerical results of submersible pump performance are higher than those of the test results; however, their change trends have an acceptable agreement with each other. The practical significance is supplied by changing the inlet width of the diffuser to expand the scope of use.

  15. Unstart Coupling Mechanism Analysis of Multiple-Modules Hypersonic Inlet

    Directory of Open Access Journals (Sweden)

    Jichao Hu

    2013-01-01

    Full Text Available The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted.

  16. Flow Simulation of Supersonic Inlet with Bypass Annular Duct

    Science.gov (United States)

    Kim, HyoungJin; Kumano, Takayasu; Liou, Meng-Sing; Povinelli, Louis A.; Conners, Timothy R.

    2011-01-01

    A relaxed isentropic compression supersonic inlet is a new concept that produces smaller cowl drag than a conventional inlet, but incurs lower total pressure recovery and increased flow distortion in the (radially) outer flowpath. A supersonic inlet comprising a bypass annulus to the relaxed isentropic compression inlet dumps out airflow of low quality through the bypass duct. A reliable computational fluid dynamics solution can provide considerable useful information to ascertain quantitatively relative merits of the concept, and further provide a basis for optimizing the design. For a fast and reliable performance evaluation of the inlet performance, an equivalent axisymmetric model whose area changes accounts for geometric and physical (blockage) effects resulting from the original complex three-dimensional configuration is proposed. In addition, full three-dimensional calculations are conducted for studying flow phenomena and verifying the validity of the equivalent model. The inlet-engine coupling is carried out by embedding numerical propulsion system simulation engine data into the flow solver for interactive boundary conditions at the engine fan face and exhaust plane. It was found that the blockage resulting from complex three-dimensional geometries in the bypass duct causes significant degradation of inlet performance by pushing the terminal normal shock upstream.

  17. Inlet Guide Vane Wakes Including Rotor Effects

    Science.gov (United States)

    Johnston, R. T.; Fleeter, S.

    2001-02-01

    Fundamental experiments are described directed at the investigation of forcing functions generated by an inlet guide vane (IGV) row, including interactions with the downstream rotor, for application to turbomachine forced response design systems. The experiments are performed in a high-speed research fan facility comprised of an IGV row upstream of a rotor. IGV-rotor axial spacing is variable, with the IGV row able to be indexed circumferentially, thereby allowing measurements to be made across several IGV wakes. With an IGV relative Mach number of 0.29, measurements include the IGV wake pressure and velocity fields for three IGV-rotor axial spacings. The decay characteristics of the IGV wakes are compared to the Majjigi and Gliebe empirical correlations. After Fourier decomposition, a vortical-potential gust splitting analysis is implemented to determine the vortical and potential harmonic wake gust forcing functions both upstream and downstream of the rotor. Higher harmonics of the vortical gust component of the IGV wakes are found to decay at a uniform rate due to viscous diffusion.

  18. Is Cervical Inlet Patch Important Clinical Problem?

    Science.gov (United States)

    SAHIN, Gurol; ADAS, Gokhan; KOC, Bora; AKCAKAYA, Adem; DOGAN, Yasar; Goksel, Suha; Yalcin, Ozben

    2014-01-01

    AIM: In this study we aim to determine the frequency of Inlet Patch (IP) and its association to clinical symptoms and draw attention to be aware of this heterotopic gastric mucosa. METHODS: This study was a prospective case series that IP was detected in the upper gastrointestinal endoscopy. Patients with laringopharyngeal reflux symptoms underwent endoscopy between March 2009 and July 2012 in two different institutions. All the biopsies were obtained from if there is the IP lesion and antral or/and gastric mucosa. The data was prospectively evaluated. The prevalence was compared with those of patients that did not determine IP in the study period. RESULTS: 3907 upper gastrointestinal system endoscopy was performed while 123 patients consist of 51 male and 72 female was determined as IP. The prevalence of IP in patiens who underwent upper gastrointestinal endoscopy was 3.14% in our study. The majority of symptoms of those who had IP were laringopharyngeal reflux symptoms. Heterotopic gastric mucosa was fixed in 114 cases while 28 chronic inflammation, 9 esophagitis, 5 intestinal metaplasia, 4 glicogenic acanthosis were obtained as additional findings in pathological examinations. CONCLUSION: Heterotopic gastric mucosa in the proximal esophagus is a frequent finding if the endoscopist is aware of this entity. The importance of IP is the increasing number of cases of neoplastic transformation. Symptomatic patients should be treated and should be considered of the complications of heterotopic gastric mucosa. PMID:25018682

  19. Should we attempt global (inlet engine airframe) control design?

    Science.gov (United States)

    Carlin, C. M.

    1980-01-01

    The feasibility of multivariable design of the entire airplane control system is briefly addressed. An intermediate step in that direction is to design a control for an inlet engine augmentor system by using multivariable techniques. The supersonic cruise large scale inlet research program is described which will provide an opportunity to develop, integrate, and wind tunnel test a control for a mixed compression inlet and variable cycle engine. The integrated propulsion airframe control program is also discussed which will introduce the problem of implementing MVC within a distributed processing avionics architecture, requiring real time decomposition of the global design into independent modules in response to hardware communication failures.

  20. Conceptual Design of a Variable Air Inlet, JAS 39 Gripen

    OpenAIRE

    Rosén, Malin; Boström, Andreas

    2015-01-01

    The JAS 39 Gripen currently has a static air inlet designed for cooling the engine bay. This inlet has been developed over the years and has consisted of several different solutions. In this master’s thesis an investigation of past and current designs has been conducted in order to develop new concepts with a variable solution. Since the static inlet is designed for a worst case scenario, long duration of flight at low altitudes and high atmospheric temperatures, the cooling produced is not a...

  1. Variable geometry inlet design for scram jet engine

    Science.gov (United States)

    Guinan, Daniel P. (Inventor); Drake, Alan (Inventor); Andreadis, Dean (Inventor); Beckel, Stephen A. (Inventor)

    2005-01-01

    The present invention relates to an improved variable geometry inlet for a scram jet engine having at least one combustor module. The variable geometry inlet comprises each combustor module having two sidewalls. Each of the sidewalls has a central portion with a thickness and a tapered profile forward of the central portion. The tapered profile terminates in a sharp leading edge. The variable geometry inlet further comprises each module having a lower wall and a movable cowl flap positioned forward of the lower wall. The movable cowl flap has a leading edge and the leading edges of the sidewalls intersect the leading edge of the cowl flap.

  2. An Alternative Ice Protection System for Turbine Engine Inlets Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal presents a dual approach to the development and certification of an alternative system for ice protection of turbine engine inlets. It combines a new...

  3. Piping Plover (Charadrius ntelodus) monitoring at Oregon Inlet, North Carolina

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report recommends a plan of monitoring Piping Plovers adjacent to Oregon Inlet relative to activities associated with the construction of a new bridge across...

  4. Cook Inlet and Kenai Peninsula, Alaska ESI: FISHL (Fish Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for anadromous fish streams in Cook Inlet and Kenai Peninsula, Alaska. Vector lines in this data set represent...

  5. PIE Nacelle Flow Analysis and TCA Inlet Flow Quality Assessment

    Science.gov (United States)

    Shieh, C. F.; Arslan, Alan; Sundaran, P.; Kim, Suk; Won, Mark J.

    1999-01-01

    This presentation includes three topics: (1) Analysis of isolated boattail drag; (2) Computation of Technology Concept Airplane (TCA)-installed nacelle effects on aerodynamic performance; and (3) Assessment of TCA inlet flow quality.

  6. Cook Inlet and Kenai Peninsula, Alaska ESI: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for herring spawning areas in Cook Inlet and Kenai Peninsula, Alaska. Vector polygons in this data set represent...

  7. Cook Inlet and Kenai Peninsula, Alaska ESI: INDEX (Index Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the boundaries used in the creation of the Environmental Sensitivity Index (ESI) for Cook Inlet and Kenai...

  8. Cook Inlet and Kenai Peninsula, Alaska ESI: NESTS (Nest Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for alcids, shorebirds, waterfowl, diving birds, pelagic birds, gulls and terns in Cook Inlet and Kenai Peninsula,...

  9. Cook Inlet and Kenai Peninsula, Alaska ESI: BIRDS (Bird Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for alcids, shorebirds, waterfowl, diving birds, pelagic birds, gulls and terns in Cook Inlet and Kenai Peninsula,...

  10. Cook Inlet and Kenai Peninsula, Alaska ESI: INVERT (Invertebrate Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for razor clams in Cook Inlet and Kenai Peninsula, Alaska. Vector polygons in this data set represent locations of...

  11. Cook Inlet and Kenai Peninsula, Alaska ESI: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains the locations of volcanos in Cook Inlet and Kenai Peninsula, Alaska. Vector points in the data set represent the location of the volcanos....

  12. A multiobjective shape optimization study for a subsonic submerged inlet

    Science.gov (United States)

    Taskinoglu, Ezgi S.

    The purpose of the present work is to summarize the findings of a multiobjective shape optimization study conducted for a subsonic submerged air vehicle inlet. The objective functions of the optimization problem are distortion and swirl indices defined by the distribution of flow parameters over the exit cross-section of the inlet. The geometry alteration is performed by placing a protrusion in the shape of a fin on the baseline inlet surface. Thus, the design variables of the optimization problem are chosen to be the geometrical parameters defining the fin protrusion; namely fin height, length and incidence angle. The Trade Off (also known as epsilon-constraint) method is employed for finding the Pareto optimal set formed by the nondominated solutions of the feasible design space. Since the flow domain solution is required for every step along the line search, an automated optimization loop is constructed by integrating the optimizer with a surface modeler, a mesh generator and a flow solver through which the flow parameters over the compressor face are computed. In addition, the trade study for fin protrusion, the analyses and the comparison of the baseline and Pareto optimal solutions are presented and observations concerning grid resolution and convergence behaviour are discussed. The results display an irregular and discontinuous Pareto optimal set. Optimum inlet designs are scattered in two regions from which one representative inlet design is chosen and analyzed. As a result, it is concluded that an inlet designer has two options within the framework of this optimization study: an inlet design with high swirl but low distortion or an inlet design with low swirl but higher distortion.

  13. Thermodynamic Analysis of a Power Plant Integrated with Fogging Inlet Cooling and a Biomass Gasification

    Directory of Open Access Journals (Sweden)

    Hassan Athari

    2015-01-01

    Full Text Available Biomass energy and especially biofuels produced by biomass gasification are clean and renewable options for power plants. Also, on hot days the performance of gas turbines decreases substantially, a problem that can be mitigated by fog cooling. In the present paper, a biomass-integrated fogging steam injected gas turbine cycle is analyzed with energy and exergy methods. It is observed that (1 increasing the compressor pressure ratio raises the air flow rate in the plant but reduces the biomass flow rate; (2 increasing the gas turbine inlet temperature decreases the air and biomass flow rates; (3 increasing the compressor pressure ratio raises the energy and exergy efficiencies, especially at lower pressure ratios; (4 increasing the gas turbine inlet temperature raises both efficiencies; and (5 overspray increases the energy efficiency and net cycle power slightly. The gas turbine exhibits the highest exergy efficiency of the cycle components and the combustor the lowest. A comparison of the cycle with similar cycles fired by natural gas and differently configured cycles fueled by biomass shows that the cycle with natural gas firing has an energy efficiency 18 percentage points above the biomass fired cycle, and that steam injection increases the energy efficiency about five percentage points relative to the cycle without steam injection. Also, the influence of steam injection on energy efficiency is more significant than fog cooling.

  14. Velocity profile of water vapor inside a cavity with two axial inlets and two outlets

    Science.gov (United States)

    Guadarrama-Cetina, José; Ruiz Chavarría, Gerardo

    2014-03-01

    To study the dynamics of Breath Figure phenomenon, a control of both the rate of flow and temperature of water vapor is required. The experimental setup widely used is a non hermetically closed chamber with cylindrical geometry and axial inlets and outlets. In this work we present measurements in a cylindrical chamber with diameter 10 cm and 1.5 cm height, keeping a constant temperature (10 °C). We are focused in the velocity field when a gradient of the temperatures is produced between the base plate and the vapor. With a flux of water vapor of 250 mil/min at room temperature (21 °C), the Reynolds number measured in one inlet is 755. Otherwise, the temperatures of water vapor varies from 21 to 40 °C. The velocity profile is obtained by hot wire anemometry. We identify the stagnations and the possibly instabilities regions for an empty plate and with a well defined shape obstacle as a fashion sample. Facultad de Ciencias, UNAM.

  15. Augustine Volcano, Cook Inlet, Alaska (January 31, 2006)

    Science.gov (United States)

    2006-01-01

    Since last spring, the U.S. Geological Survey's Alaska Volcano Observatory (AVO) has detected increasing volcanic unrest at Augustine Volcano in Cook Inlet, Alaska near Anchorage. Based on all available monitoring data, AVO regards that an eruption similar to 1976 and 1986 is the most probable outcome. During January, activity has been episodic, and characterized by emission of steam and ash plumes, rising to altitudes in excess of 9,000 m (30,000 ft), and posing hazards to aircraft in the vicinity. In the last week, volcanic flows have been seen on the volcano's flanks. An ASTER thermal image was acquired at night at 22:50 AST on January 31, 2006, during an eruptive phase of Augustine. The image shows three volcanic flows down the north flank of Augustine as white (hot) areas. The eruption plume spreads out to the east in a cone shape: it appears dark blue over the summit because it is cold and water ice dominates the composition; further downwind a change to orange color indicates that the plume is thinning and the signal is dominated by the presence of ash. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion

  16. Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems

    Science.gov (United States)

    McMillan, Michelle L.; Mackie, Scott A.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James L.

    2011-01-01

    Fail-safe, hybrid, flow control (HFC) is a promising technology for meeting high-speed cruise efficiency, low-noise signature, and reduced fuel-burn goals for future, Hybrid-Wing-Body (HWB) aircraft with embedded engines. This report details the development of HFC technology that enables improved inlet performance in HWB vehicles with highly integrated inlets and embedded engines without adversely affecting vehicle performance. In addition, new test techniques for evaluating Boundary-Layer-Ingesting (BLI)-inlet flow-control technologies developed and demonstrated through this program are documented, including the ability to generate a BLI-like inlet-entrance flow in a direct-connect, wind-tunnel facility, as well as, the use of D-optimal, statistically designed experiments to optimize test efficiency and enable interpretation of results. Validated improvements in numerical analysis tools and methods accomplished through this program are also documented, including Reynolds-Averaged Navier-Stokes CFD simulations of steady-state flow physics for baseline, BLI-inlet diffuser flow, as well as, that created by flow-control devices. Finally, numerical methods were employed in a ground-breaking attempt to directly simulate dynamic distortion. The advances in inlet technologies and prediction tools will help to meet and exceed "N+2" project goals for future HWB aircraft.

  17. Development of two-dimensional hot pool model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Hahn, H. D

    2000-05-01

    During a normal reactor scram, the heat generation is reduced almost instantaneously while the coolant flow rate follows the pump coast-down. This mismatch between power and flow results in a situation where the core flow entering the hot pool is at a lower temperature than the temperature of the bulk pool sodium. This temperature difference leads to thermal stratification. Thermal stratification can occur in the hot pool region if the entering coolant is colder than the existing hot pool coolant and the flow momentum is not large enough to overcome the negative buoyancy force. Since the fluid of hot pool enters IHX{sub s}, the temperature distribution of hot pool can alter the overall system response. Hence, it is necessary to predict the pool coolant temperature distribution with sufficient accuracy to determine the inlet temperature conditions for the IHX{sub s} and its contribution to the net buoyancy head. Therefore, in this study two-dimensional hot pool model is developed instead of existing one-dimensional model to predict the hot pool coolant temperature and velocity distribution more accurately and is applied to the SSC-K code.

  18. General Investigation of Tidal Inlets: Stability of Selected United States Tidal Inlets

    Science.gov (United States)

    1991-09-01

    to determine the relationships that exist among the geometric and dynamic characterisa tics and the e n’. -onmen fac tocs that control these...73 5 50 Siletz, OR 7-39 to 2-76 4 51 Netarts, OR 7-53 to 7-73 4 Report Organizacion 8. Previous research on tidal inlet stability is summarized in Part...Relatinsh-i ps Among Time Variar.t Cha neteri tics Channel Indices R SC LC T W:L R 1 3 3 5 SC 0 3 0 3 LC 0 1 9 2 T 4 6 3 8 W: R 1 6 1 4 SC 0 1 2 3 LC 0 1 7 4

  19. Off-Design Performance of a Streamline-Traced, External-Compression Supersonic Inlet

    Science.gov (United States)

    Slater, John W.

    2017-01-01

    A computational study was performed to explore the aerodynamic performance of a streamline-traced, external-compression inlet designed for Mach 1.664 at off-design conditions of freestream Mach number, angle-of-attack, and angle-of-sideslip. Serious degradation of the inlet performance occurred for negative angles-of-attack and angles-of-sideslip greater than 3 degrees. At low subsonic speeds, the swept leading edges of the inlet created a pair of vortices that propagated to the engine face. Increasing the bluntness of the cowl lip showed no real improvement in the inlet performance at the low speeds, but did improve the inlet performance at the design conditions. Reducing the inlet flow rate improved the inlet performance, but at the likely expense of reduced thrust of the propulsion system. Deforming the cowl lip for low-speed operation of the inlet increased the inlet capture area and improved the inlet performance.

  20. Organics Verification Study for Sinclair and Dyes Inlets, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, Nancy P.; Brandenberger, Jill M.; Niewolny, Laurie A.; Johnston, Robert K.

    2006-09-28

    Sinclair and Dyes Inlets near Bremerton, Washington, are on the State of Washington 1998 303(d) list of impaired waters because of fecal coliform contamination in marine water, metals in sediment and fish tissue, and organics in sediment and fish tissue. Because significant cleanup and source control activities have been conducted in the inlets since the data supporting the 1998 303(d) listings were collected, two verification studies were performed to address the 303(d) segments that were listed for metal and organic contaminants in marine sediment. The Metals Verification Study (MVS) was conducted in 2003; the final report, Metals Verification Study for Sinclair and Dyes Inlets, Washington, was published in March 2004 (Kohn et al. 2004). This report describes the Organics Verification Study that was conducted in 2005. The study approach was similar to the MVS in that many surface sediment samples were screened for the major classes of organic contaminants, and then the screening results and other available data were used to select a subset of samples for quantitative chemical analysis. Because the MVS was designed to obtain representative data on concentrations of contaminants in surface sediment throughout Sinclair Inlet, Dyes Inlet, Port Orchard Passage, and Rich Passage, aliquots of the 160 MVS sediment samples were used in the analysis for the Organics Verification Study. However, unlike metals screening methods, organics screening methods are not specific to individual organic compounds, and are not available for some target organics. Therefore, only the quantitative analytical results were used in the organics verification evaluation. The results of the Organics Verification Study showed that sediment quality outside of Sinclair Inlet is unlikely to be impaired because of organic contaminants. Similar to the results for metals, in Sinclair Inlet, the distribution of residual organic contaminants is generally limited to nearshore areas already within the

  1. Control of Inflow Distortion in a Scarf Inlet

    Science.gov (United States)

    Gerhold, Carl H.; Clark, Lorenzo R.; Biedron, Robert T.

    2002-01-01

    The scarf inlet has the potential to reduce aircraft inlet noise radiation to the ground by reflecting it into the space above the engine. Without forward motion of the engine, the non-symmetry of the inlet causes inflow distortion which generates noise that is greater than the noise reduction of the scarf. However, acoustic evaluations of aircraft engines are often done on static test stands. A method to reduce inflow distortion by boundary layer suction is proposed and evaluated using a model of a high bypass ratio engine located in an anechoic chamber. The design goal of the flow control system is to make the inflow to the inlet circumferentially uniform and to eliminate reversed flow. This minimizes the inflow distortion and allows for acoustic evaluation of the scarf inlet on a static test stand. The inlet boundary layer suction effectiveness is evaluated both by aerodynamic and by acoustic measurements. Although the design goal is not met, the control system is found to have a beneficial effect on the engine operation, reducing blade stall and speed variation. This is quantified by two acoustic benefits, reduction both of the variability of tone noise and of the low frequency wideband noise due to the inflow distortion. It is felt that a compromise in the manufacture of the control hardware contributes to the inability of the control system to perform as expected from the analysis. The control system with sufficient authority is felt to have the potential to permit reliable acoustic testing in a static configuration of engines with non-symmetric inlets. Because the control system can improve operation of the engine, it may also have the potential to reduce noise and vibration and enhance engine longevity during low speed ground operations in the terminal area.

  2. Application of LES in the study of inlet flow field in marine gas turbine

    Institute of Scientific and Technical Information of China (English)

    SHI Bao-long; SUN Hai-ou; SUN Tao; HU Yan-yong

    2005-01-01

    The structure and aerodynamics performance of gas turbine inlet system is an important part of technology of gas turbine installed on naval vessels. The design and numerical simulations of gas turbine inlet system are conducted and reliable foundation for design and manufacture of marine gas turbine inlet system of high performance is provided. Numerical simulations and experiments of two inlet system models of gas turbine are conducted with satisfactory results and are of significance to the actual application of the inlet system.

  3. Hot-dome anemometry

    Science.gov (United States)

    Thompson, Brian E.

    1998-05-01

    Hot-dome anemometry obtains three components of flow velocity using an array of sensors, specifically five hot films in the present contribution, which are mounted around the hemispherical tip of a cylindrical support. Calibration for speed and angle resembles that of hot wires and split films except that the procedures accommodate heat transfer dominated by forced convection from the surface of a sphere rather than single or multiple cylinders. Measurements are obtained with hot domes, conventional hot wires, and impact probes in the wake of a wing to quantify measurement uncertainties.

  4. Performance of Generator of Absorption Refrigerating Machine Powered by Hot Water

    Science.gov (United States)

    Kunugi, Yoshifumi; Usui, Sanpei; Ouchi, Tomihisa; Fukuda, Tamio

    For 70 kW generator of absorption refrigerating machine powered by the hot water, lifted liquid rate of the bubble lift pump has a maximum value at some vapor flow rate of refrigerant and hot water inlet temperature. This is in agreement with results of small size bubble lift pump. Maximum lifted liquid rate G0 is correlated by the equation G0 = 5, 000σ1.5, where σ is the degree of submergence. In this case, diameter of pump tube was 41.6mm, and length of it were 1,300 and 1,500mm. The range of hot water inlet temperature was 78 - 100°C. Multitube heat flux of first generator is about two times that of second generator at the same superheat.

  5. Development of the Planar Inlet Design and Analysis Process (PINDAP)

    Science.gov (United States)

    Gruber, Christopher R.

    2004-01-01

    The aerodynamic development of an engine inlet requires a comprehensive program of both wind tunnel testing and Computational Fluid Dynamics (CFD) simulations. To save time and resources, much "testing" is done using CFD before any design ever enters a wind tunnel. The focus of my project this summer is on CFD analysis tool development. In particular, I am working to further develop the capabilities of the Planar Inlet Design and Analysis Process (PINDAP). "PINDAP" is a collection of computational tools that allow for efficient and accurate design and analysis of the aerodynamics about and through inlets that can make use of a planar (two-dimensional or axisymmetric) geometric and flow assumption. PINDAP utilizes the WIND CFD flow solver, which is capable of simulating the turbulent, compressible flow field. My project this summer is a continuation of work that I performed for two previous summers. Two years ago, I used basic features of the PINDAP to design a Mach 5 hypersonic scramjet engine inlet and to demonstrate the feasibility of the PINDAP. The following summer, I worked to develop its geometry and grid generation capabilities to include subsonic and supersonic inlets, complete bodies and cowls, conic leading and trailing edges, as well as airfoils. These additions allowed for much more design flexibility when using the program.

  6. Passive acoustic monitoring of Cook Inlet beluga whales (Delphinapterus leucas).

    Science.gov (United States)

    Lammers, Marc O; Castellote, Manuel; Small, Robert J; Atkinson, Shannon; Jenniges, Justin; Rosinski, Anne; Oswald, Julie N; Garner, Chris

    2013-09-01

    The endangered beluga whale (Delphinapterus leucas) population in Cook Inlet, AK faces threats from a variety of anthropogenic factors, including coastal development, oil and gas exploration, vessel traffic, and military activities. To address existing gaps in understanding about the occurrence of belugas in Cook Inlet, a project was developed to use passive acoustic monitoring to document the year-round distribution of belugas, as well as killer whales (Orcinus orca), which prey on belugas. Beginning in June 2009, ten moorings were deployed throughout the Inlet and refurbished every two to eight months. Despite challenging conditions consisting of strong tidal currents carrying debris and seasonal ice cover, 83% of mooring deployments were successfully recovered. Noise from water flow, vessel traffic, and/or industrial activities was present at several sites, potentially masking some signals. However, belugas were successfully detected at multiple locations. Detections were relatively common in the upper inlet and less common or absent at middle and lower inlet locations. Killer whale signals were also recorded. Some seasonal variability in the occurrence of both belugas and killer whales was evident.

  7. Transmission geometry laserspray ionization vacuum using an atmospheric pressure inlet.

    Science.gov (United States)

    Lutomski, Corinne A; El-Baba, Tarick J; Inutan, Ellen D; Manly, Cory D; Wager-Miller, James; Mackie, Ken; Trimpin, Sarah

    2014-07-01

    This represents the first report of laserspray ionization vacuum (LSIV) with operation directly from atmospheric pressure for use in mass spectrometry. Two different types of electrospray ionization source inlets were converted to LSIV sources by equipping the entrance of the atmospheric pressure inlet aperture with a customized cone that is sealed with a removable glass plate holding the matrix/analyte sample. A laser aligned in transmission geometry (at 180° relative to the inlet) ablates the matrix/analyte sample deposited on the vacuum side of the glass slide. Laser ablation from vacuum requires lower inlet temperature relative to laser ablation at atmospheric pressure. However, higher inlet temperature is required for high-mass analytes, for example, α-chymotrypsinogen (25.6 kDa). Labile compounds such as gangliosides and cardiolipins are detected in the negative ion mode directly from mouse brain tissue as intact doubly deprotonated ions. Multiple charging enhances the ion mobility spectrometry separation of ions derived from complex tissue samples.

  8. Coping with the cold: an ecological context for the abundance and distribution of rock sandpipers during winter in upper Cook Inlet, Alaska

    Science.gov (United States)

    Ruthrauff, Daniel R.; Gill, Robert E.; Tibbitts, T. Lee

    2013-01-01

    Shorebirds are conspicuous and abundant at high northern latitudes during spring and summer, but as seasonal conditions deteriorate, few remain during winter. To the best of our knowledge, Cook Inlet, Alaska (60.6˚ N, 151.6˚ W), is the world’s coldest site that regularly supports wintering populations of shorebirds, and it is also the most northerly nonbreeding location for shorebirds in the Pacific Basin. During the winters of 1997–2012, we conducted aerial surveys of upper Cook Inlet to document the spatial and temporal distribution and number of Rock Sandpipers (Calidris ptilocnemis) using the inlet. The average survey total was 8191 ± 6143 SD birds, and the average of each winter season’s highest single-day count was 13 603 ± 4948 SD birds. We detected only Rock Sandpipers during our surveys, essentially all of which were individuals of the nominate subspecies (C. p. ptilocnemis). Survey totals in some winters closely matched the population estimate for this subspecies, demonstrating the region’s importance as a nonbreeding resource to the subspecies. Birds were most often found at only a handful of sites in upper Cook Inlet, but shifted their distribution to more southerly locations in the inlet during periods of extreme cold. Two environmental factors allow Rock Sandpipers to inhabit Cook Inlet during winter: 1) an abundant bivalve (Macoma balthica) food source and 2) current and tidal dynamics that keep foraging substrates accessible during all but extreme periods of cold and ice accretion. C. p. ptilocnemis is a subspecies of high conservation concern for which annual winter surveys may serve as a relatively inexpensive population-monitoring tool that will also provide insight into adaptations that allow these birds to exploit high-latitude environments in winter.

  9. Boundary conditions for free surface inlet and outlet problems

    KAUST Repository

    Taroni, M.

    2012-08-10

    We investigate and compare the boundary conditions that are to be applied to free-surface problems involving inlet and outlets of Newtonian fluid, typically found in coating processes. The flux of fluid is a priori known at an inlet, but unknown at an outlet, where it is governed by the local behaviour near the film-forming meniscus. In the limit of vanishing capillary number Ca it is well known that the flux scales with Ca 2/3, but this classical result is non-uniform as the contact angle approaches π. By examining this limit we find a solution that is uniformly valid for all contact angles. Furthermore, by considering the far-field behaviour of the free surface we show that there exists a critical capillary number above which the problem at an inlet becomes over-determined. The implications of this result for the modelling of coating flows are discussed. © 2012 Cambridge University Press.

  10. Flow hydrodynamics near inlet key of Piano Key Weir (PKW)

    Indian Academy of Sciences (India)

    Harinarayan Tiwari; Nayan Sharma

    2015-10-01

    This paper presents fundamental outcomes from an experimental study on the hydrodynamic performance near inlet key of Piano Key Weir (PKW). Hydrodynamic performance was tested in a circulated open channel that comprised of PKW and sand bed (d50 = 0.25 mm). Instantaneous velocities were measured at 20 cross sections using Laser Doppler Velocimeter (LDV) with constant discharge and depth. Average velocity and turbulence intensities in both directions were investigated. Average longitudinal velocities are found very much consistent at every point and maximum around the midway of inlet key. In transverse direction, flow is bifurcating in two directions which are also confirmed by average transverse velocity estimation. Variation of turbulence intensity presents average 10 times higher transverse turbulence than longitudinal turbulence near inlet key of PKW.

  11. Observations and a linear model of water level in an interconnected inlet-bay system

    Science.gov (United States)

    Aretxabaleta, Alfredo L.; Ganju, Neil K.; Butman, Bradford; Signell, Richard P.

    2017-04-01

    A system of barrier islands and back-barrier bays occurs along southern Long Island, New York, and in many coastal areas worldwide. Characterizing the bay physical response to water level fluctuations is needed to understand flooding during extreme events and evaluate their relation to geomorphological changes. Offshore sea level is one of the main drivers of water level fluctuations in semienclosed back-barrier bays. We analyzed observed water levels (October 2007 to November 2015) and developed analytical models to better understand bay water level along southern Long Island. An increase (˜0.02 m change in 0.17 m amplitude) in the dominant M2 tidal amplitude (containing the largest fraction of the variability) was observed in Great South Bay during mid-2014. The observed changes in both tidal amplitude and bay water level transfer from offshore were related to the dredging of nearby inlets and possibly the changing size of a breach across Fire Island caused by Hurricane Sandy (after December 2012). The bay response was independent of the magnitude of the fluctuations (e.g., storms) at a specific frequency. An analytical model that incorporates bay and inlet dimensions reproduced the observed transfer function in Great South Bay and surrounding areas. The model predicts the transfer function in Moriches and Shinnecock bays where long-term observations were not available. The model is a simplified tool to investigate changes in bay water level and enables the evaluation of future conditions and alternative geomorphological settings.

  12. Observations and a linear model of water level in an interconnected inlet-bay system

    Science.gov (United States)

    Aretxabaleta, Alfredo; Ganju, Neil Kamal; Butman, Bradford; Signell, Richard

    2017-01-01

    A system of barrier islands and back-barrier bays occurs along southern Long Island, New York, and in many coastal areas worldwide. Characterizing the bay physical response to water level fluctuations is needed to understand flooding during extreme events and evaluate their relation to geomorphological changes. Offshore sea level is one of the main drivers of water level fluctuations in semienclosed back-barrier bays. We analyzed observed water levels (October 2007 to November 2015) and developed analytical models to better understand bay water level along southern Long Island. An increase (∼0.02 m change in 0.17 m amplitude) in the dominant M2 tidal amplitude (containing the largest fraction of the variability) was observed in Great South Bay during mid-2014. The observed changes in both tidal amplitude and bay water level transfer from offshore were related to the dredging of nearby inlets and possibly the changing size of a breach across Fire Island caused by Hurricane Sandy (after December 2012). The bay response was independent of the magnitude of the fluctuations (e.g., storms) at a specific frequency. An analytical model that incorporates bay and inlet dimensions reproduced the observed transfer function in Great South Bay and surrounding areas. The model predicts the transfer function in Moriches and Shinnecock bays where long-term observations were not available. The model is a simplified tool to investigate changes in bay water level and enables the evaluation of future conditions and alternative geomorphological settings.

  13. Frequently Asked Questions (FAQ) about Extreme Heat

    Science.gov (United States)

    ... Part 3 of 3) Hot Weather Tips Heat Stress in Older Adults FAQs Extreme Heat PSAs Related Links MMWR Bibliography CDC's Program Floods Flood Readiness Personal Hygiene After a Disaster Cleanup of Flood Water After a Flood Worker Safety Educational Materials Floods ...

  14. Rapidly design safety relief valve inlet piping systems

    Energy Technology Data Exchange (ETDEWEB)

    Westman, M.A.

    1997-03-01

    Safety relief valves (SRVs) used to protect against overpressure require well-designed inlet piping for proper operation. The engineer`s job is to produce these designs from a thorough understanding of the inlet piping as a key component in the safety relief system and the correct application of the governing fluid dynamics principles. This article will present a technique for analysis and design using classical ideal-gas adiabatic fluid flow principles. Also, it will discuss the advantages of using the personal computer (PC) to quickly arrive at accurate designs. This work applies to SRVs in which relief flows are limited by sonic conditions at their nozzles.

  15. Characterize the hydraulic behaviour of grate inlet in urban drainage to prevent the urban's flooding

    Science.gov (United States)

    Tellez Alvarez, Jackson David; Gomez, Manuel; Russo, Beniamino; Redondo, Jose M.

    2016-04-01

    One of the most important problems that have some cities is the urban floods because of poor drainage design. Therefore the systems the drainage do not have the capacity of capture the flow of discharge generated in a rain event and insert it into the drainage network. Even though the two problems that have caught the main attention are the evaluation of the volumes falling in the river basin because extreme rainfall events often lead to urban pluvial flooding being a hydrologic problem and the hydraulic design of the sewer network being a hydraulic problem to limiting capacity of the drainage system, there is an intermediate step between these two processes that is necessary to solve that is the hydraulic behavior of the grate inlet. We need to collect the runoff produced on the city surface and to introduce it in the sewer network. Normally foundry companies provide complete information about drainage grate structural capacity but provide nothing about their hydraulic capacity. This fact can be seen because at the moment does not exist any official regulation at national or international level in this field. It's obvious that, nowadays, there is a great gap in this field at the legislative level owing to the complexity of this field and the modernity of the urban hydrology as science [1]. In essence, we shows the relevance to know the inlet hydraulic interception capacity because surface drainage requires a satisfactory knowledge on storm frequency, gutter flow and above all inlet capacity. In addition, we development an important achievement is the invention and development of techniques for measurement of field velocities in hydraulics engineering applications. Hence knowledge the technological advances in digital cameras with high resolution and high speed found in the environmental, and the advances in image processing techniques, therefore now is a tremendous potential to obtain of behavior of the water surface flow [2]. A novel technique using particle

  16. Thermal stratification in vertical mantle heat-exchangers with application to solar domestic hot-water systems

    DEFF Research Database (Denmark)

    Knudsen, Søren; Furbo, Simon

    2004-01-01

    Experimental and numerical investigations of vertical mantle heat exchangers for solar domestic hot water (SDHW) systems have been carried out. Two different inlet positions are investigated. Experiments based on typical operation conditions are carried out to investigate how the thermal stratifi......Experimental and numerical investigations of vertical mantle heat exchangers for solar domestic hot water (SDHW) systems have been carried out. Two different inlet positions are investigated. Experiments based on typical operation conditions are carried out to investigate how the thermal...... stratification is affected by different positions of the mantle inlet. The heat transfer between the solar collector fluid in the mantle and the domestic water in the tank is analysed by CFD-simulations. Furthermore, side-by-side laboratory tests have been carried out with SDHW systems with different mantle...

  17. Hot days induced by precipitation deficits at the global scale.

    Science.gov (United States)

    Mueller, Brigitte; Seneviratne, Sonia I

    2012-07-31

    Global warming increases the occurrence probability of hot extremes, and improving the predictability of such events is thus becoming of critical importance. Hot extremes have been shown to be induced by surface moisture deficits in some regions. In this study, we assess whether such a relationship holds at the global scale. We find that wide areas of the world display a strong relationship between the number of hot days in the regions' hottest month and preceding precipitation deficits. The occurrence probability of an above-average number of hot days is over 70% after precipitation deficits in most parts of South America as well as the Iberian Peninsula and Eastern Australia, and over 60% in most of North America and Eastern Europe, while it is below 30-40% after wet conditions in these regions. Using quantile regression analyses, we show that the impact of precipitation deficits on the number of hot days is asymmetric, i.e. extreme high numbers of hot days are most strongly influenced. This relationship also applies to the 2011 extreme event in Texas. These findings suggest that effects of soil moisture-temperature coupling are geographically more widespread than commonly assumed.

  18. Micro-Ramps for External Compression Low-Boom Inlets

    Science.gov (United States)

    Rybalko, Michael; Loth, Eric; Chima, Rodrick V.; Hirt, Stefanie M.; DeBonis, James R.

    2010-01-01

    The application of vortex generators for flow control in an external compression, axisymmetric, low-boom concept inlet was investigated using RANS simulations with three-dimensional (3-D), structured, chimera (overset) grids and the WIND-US code. The low-boom inlet design is based on previous scale model 1- by 1-ft wind tunnel tests and features a zero-angle cowl and relaxed isentropic compression centerbody spike, resulting in defocused oblique shocks and a weak terminating normal shock. Validation of the methodology was first performed for micro-ramps in supersonic flow on a flat plate with and without oblique shocks. For the inlet configuration, simulations with several types of vortex generators were conducted for positions both upstream and downstream of the terminating normal shock. The performance parameters included incompressible axisymmetric shape factor, separation area, inlet pressure recovery, and massflow ratio. The design of experiments (DOE) methodology was used to select device size and location, analyze the resulting data, and determine the optimal choice of device geometry. The optimum upstream configuration was found to substantially reduce the post-shock separation area but did not significantly impact recovery at the aerodynamic interface plane (AIP). Downstream device placement allowed for fuller boundary layer velocity profiles and reduced distortion. This resulted in an improved pressure recovery and massflow ratio at the AIP compared to the baseline solid-wall configuration.

  19. Open inlet conversion: Water quality benefits of two designs

    Science.gov (United States)

    Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for movement of sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine the reduction in drainage effluent total suspended sediment (TSS) and phosphorus (P) concentr...

  20. Validation of Helium Inlet Design for ITER Toroidal Field Coil

    CERN Document Server

    Boyer, C; Hamada, K; Foussat, A; Le Rest, M; Mitchell, N; Decool, P; Savary, F; Sgobba, S; Weiss, K-P

    2014-01-01

    The ITER organization has performed design and its validation tests on a helium inlet structure for the ITER Toroidal Field (TF) coil under collaboration with CERN, KIT, and CEA-Cadarache. Detailed structural analysis was performed in order to optimize the weld shape. A fatigue resistant design on the fillet weld between the shell covers and the jacket is an important point on the helium inlet structure. A weld filler material was selected based on tensile test at liquid helium temperature after Nb3Sn reaction heat treatment. To validate the design of the weld joint, fatigue tests at 7 K were performed using heat-treated butt weld samples. A pressure drop measurement of a helium inlet mock-up was performed by using nitrogen gas at room temperature in order to confirm uniform flow distribution and pressure drop characteristic. These tests have validated the helium inlet design. Based on the validation, Japanese and European Union domestic agencies, which have responsibilities of the TF coil procurement, are pr...

  1. HINCOF-1: a Code for Hail Ingestion in Engine Inlets

    Science.gov (United States)

    Gopalaswamy, N.; Murthy, S. N. B.

    1995-01-01

    One of the major concerns during hail ingestion into an engine is the resulting amount and space- and time-wise distribution of hail at the engine face for a given geometry of inlet and set of atmospheric and flight conditions. The appearance of hail in the capture streamtube is invariably random in space and time, with respect to size and momentum. During the motion of a hailstone through an inlet, a hailstone undergoes several processes, namely impact with other hailstones and material surfaces of the inlet and spinner, rolling and rebound following impact; heat and mass transfer; phase change; and shattering, the latter three due to friction and impact. Taking all of these factors into account, a numerical code, designated HINCOF-I, has been developed for determining the motion hailstones from the atmosphere, through an inlet, and up to the engine face. The numerical procedure is based on the Monte-Carlo method. The report presents a description of the code, along with several illustrative cases. The code can be utilized to relate the spinner geometry - conical or, more effective, elliptical - to the possible diversion of hail at the engine face into the bypass stream. The code is also useful for assessing the influence of various hail characteristics on the ingestion and distribution of hailstones over the engine face.

  2. Diffuse Ceiling Inlet Systems and the Room Air Distribution

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Jensen, Rasmus Lund; Rong, Li

    2010-01-01

    A diffuse ceiling inlet system is an air distribution system which is supplying the air through the whole ceiling. The system can remove a large heat load without creating draught in the room. The paper describes measurements in the case of both cooling and heating, and CFD predictions are given ...

  3. Cross contamination in dual inlet isotope ratio mass spectrometers

    NARCIS (Netherlands)

    Meijer, H.A.J.; Neubert, R.E.M.; Visser, G.H.

    2000-01-01

    Since the early days of geochemical isotope ratio mass spectrometry there has always been the problem of cross contamination, i.e. the contamination of the sample gas with traces of reference gas land vice versa) in a dual inlet system and the analyzer itself. This was attributable to valve leakages

  4. Hydrodynamics and morphodynamics of a seasonally forced tidal inlet system

    NARCIS (Netherlands)

    Lam, N.T.; Stive, M.J.F.; Wang, Z.B.; Verhagen, H.J.; Thuy, V.T.T.

    2008-01-01

    Hydrodynamics and morphodynamics of a seasonally forced tidal inlet system are investigated using numerical models. The ocean forcing including tidal and wave actions and sediment transport is simulated using Delft3D model. Fluvial processes in Delft3D are taken into account as results from SOBEK RU

  5. Characterization of Inlet Diffuser Performance for Stratified Thermal Storage

    Science.gov (United States)

    Cimbala, John M.; Bahnfleth, William; Song, Jing

    1999-11-01

    Storage of sensible heating or cooling capacity in stratified vessels has important applications in central heating and cooling plants, power production, and solar energy utilization, among others. In stratified thermal storage systems, diffusers at the top and bottom of a stratified tank introduce and withdraw fluid while maintaining a stable density gradient and causing as little mixing as possible. In chilled water storage applications, mixing during the formation of the thermocline near an inlet diffuser is the single greatest source of thermal losses. Most stratified chilled water storage tanks are cylindrical vessels with diffusers that are either circular disks that distribute flow radially outward or octagonal rings of perforated pipe that distribute flow both inward and outward radially. Both types produce gravity currents that are strongly influenced by the inlet Richardson number, but the significance of other parameters is not clear. The present investigation considers the dependence of the thermal performance of a perforated pipe diffuser on design parameters including inlet velocity, ambient and inlet fluid temperatures, and tank dimensions for a range of conditions representative of typical chilled water applications. Dimensional analysis is combined with a parametric study using results from computational fluid dynamics to obtain quantitative relationships between design parameters and expected thermal performance.

  6. Cross-sectional stability of double inlet systems

    NARCIS (Netherlands)

    Brouwer, R.L.

    2013-01-01

    Barrier coasts and their associated tidal inlet systems are a common feature in many parts of the world. They constitute dynamic environments that are in a continuous stage of adapting to the prevailing tide and wave conditions. Commonly, these coastal areas are densely populated and (partly) as a r

  7. Hydrodynamics and morphodynamics of a seasonally forced tidal inlet system

    NARCIS (Netherlands)

    Lam, N.T.; Stive, M.J.F.; Wang, Z.B.; Verhagen, H.J.; Thuy, V.T.T.

    2008-01-01

    Hydrodynamics and morphodynamics of a seasonally forced tidal inlet system are investigated using numerical models. The ocean forcing including tidal and wave actions and sediment transport is simulated using Delft3D model. Fluvial processes in Delft3D are taken into account as results from SOBEK

  8. Physics of Acoustic Radiation from Jet Engine Inlets

    Science.gov (United States)

    Tam, Christopher K. W.; Parrish, Sarah A.; Envia, Edmane; Chien, Eugene W.

    2012-01-01

    Numerical simulations of acoustic radiation from a jet engine inlet are performed using advanced computational aeroacoustics (CAA) algorithms and high-quality numerical boundary treatments. As a model of modern commercial jet engine inlets, the inlet geometry of the NASA Source Diagnostic Test (SDT) is used. Fan noise consists of tones and broadband sound. This investigation considers the radiation of tones associated with upstream propagating duct modes. The primary objective is to identify the dominant physical processes that determine the directivity of the radiated sound. Two such processes have been identified. They are acoustic diffraction and refraction. Diffraction is the natural tendency for an acoustic wave to follow a curved solid surface as it propagates. Refraction is the turning of the direction of propagation of sound waves by mean flow gradients. Parametric studies on the changes in the directivity of radiated sound due to variations in forward flight Mach number and duct mode frequency, azimuthal mode number, and radial mode number are carried out. It is found there is a significant difference in directivity for the radiation of the same duct mode from an engine inlet when operating in static condition and in forward flight. It will be shown that the large change in directivity is the result of the combined effects of diffraction and refraction.

  9. Max Data Report Jet Stability versus Inlet Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Lomperski, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Bremer, N. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    This document describes experiments investigating the effect of inlet geometry on the flow field within a glass tank where two jets mix and impinge upon the lid. The setup mimics the outlet plenum of a fast reactor where core exit flows of different temperatures can mix in ways that induce thermal cycling in neighboring structures.

  10. 33 CFR 334.1310 - Lutak Inlet, Alaska; restricted areas.

    Science.gov (United States)

    2010-07-01

    ... signs will not be lighted. (2) Dry Cargo dock mooring area. (i) The waters within 60 feet off the face... dropping and dragging of anchors, weights, or other ground tackle within the Dry Cargo dock mooring area is...; restricted areas. (a) The areas—(1) Army POL dock restricted area. (i) The waters of Lutak Inlet bounded as...

  11. Coarse mode aerosol measurement using a Low Turbulence Inlet

    Science.gov (United States)

    Brooke, J.; Bart, M.; Trembath, J.; McQuaid, J. B.; Brooks, B. J.; Osborne, S.

    2012-04-01

    The Sahara desert is a major natural source of global mineral dust emissions (Forster et al., 2007) through the mobilisation and lifting of dust particles into the atmosphere from dust storms. A significant fraction of this dust is in the aerosol coarse mode (Weinzierl et al., 2009). It is highlighted of the difficulty in making accurate and reliable measurements from an aircraft platform, particularly that of coarse mode aerosol (Wendisch et al., 2004). To achieve the measurement of a representative aerosol sample an aerosol inlet, on an aircraft, is required for the delivery of the sample to the instruments making the measurements. Inlet design can modify aerosol size distribution through either underestimating due to aerosol losses or overestimation due to enhancements. The Low Turbulence Inlet (LTI) was designed to improve inlet efficiency. This is achieved by reducing turbulence flow within the tip of the inlet, reducing impaction of particles to the walls of the inlet (Wilson et al., 2004). The LTI further maintains isokinetic sampling flow (free stream velocity, U0 and sampling velocity, U are equal to 1). Dust aerosol over the Sahara desert provides an excellent environment to test and quantify the capabilities of the LTI on the FAAM BAe 146, whilst enabling in-situ dust measurement. The LTI was operated during the Fennec field campaign in June 2011 with 11 flights during the campaign over Mauritania and Mali. We are using the LTI to provide critical information on the sampling characteristics of the inlet used by nearly all aerosol instruments inside the aircraft (AMS, Nephelometer, PSAP, and CCN). Inlet experiments were performed with identical Optical Particle Counters (OPC) connected to the rosemount and LTI with size distribution for each inlet measured and Rosemount enhancements determined. Rosemount inlet enhancements were determined to be 2 to 4 times for particles up to 2.5 µm. A key parameter in aerosol measurement is size distribution, in which

  12. RESEARCH ON DESIGN METHODOLOGY OF SMALL AXIAL FAN ‐CONSIDERATION OF INLET FLOW VELOCITY FOR PERFORMANCE ENHANCEMENT‐

    OpenAIRE

    2013-01-01

    The efficiency of small axial fan used as cooling device in information technology machines is extremely low, comparing with conventional axial fan which is much larger than small fan. In the design of conventional axial fan, the axial velocity of the inlet flow is regarded as uniform along the blade span. However, in case of the small fan, the velocity could not be uniform.Because the hub-tip ratiois so large that the blade span will be too short to keep the uniform flow region. So, it is im...

  13. Microjet flow control in an ultra-compact serpentine inlet

    Institute of Scientific and Technical Information of China (English)

    Da Xingy; Fan Zhaolin; Fan Jianchao; Zeng Liquan; Rui Wei; Zhou Run

    2015-01-01

    Microjets are used to control the internal flow to improve the performance of an ultra-compact serpentine inlet. A highly offset serpentine inlet with length-to-diameter ratio of 2.5 is designed and static tests are conducted to analyze the internal flow characteristics in terms of pressure recovery, distortion and flow separation. Flow separation is encountered in the second S-turn, and two strong counter-rotating vortices are formed at the aerodynamic interface plane (AIP) face which occupy a quarter of the outlet area and result in severe pressure loss and distortion. A flow control model employing a row of microjets in the second turn is designed based on the internal flow characteristics and simplified CFD simulations. Flow control tests are conducted to verify the control effectiveness and understand the characteristics as a function of inlet throat Mach number, injection mass flow ratio, jet Mach number and momentum coefficient. At all test Mach numbers, microjet flow control (MFC) effectively improves the recovery and reduces the distortion intensity. Between inlet throat Mach number 0.2 and 0.5, the strong flow separation in the second S-turn is suppressed at an optimum jet flow ratio of less than 0.65%, resulting in a maximum improvement of 4% for pressure recovery coefficient and a maximum decrease of 75% for circumferential distortion intensity at cruise. However, in order to suppress the flow separation, the injection rate should retain in an effective range. When the injection rate is higher than this range, the flow is degraded and the distortion contour is changed from 90? circumferential distortion pattern to 180? circumferential distortion pattern. Detailed data analysis shows that this optimum flow ratio depends on inlet throat Mach number and the momentum coefficient affects the control effectiveness in a dual stepping manner.

  14. Microjet flow control in an ultra-compact serpentine inlet

    Directory of Open Access Journals (Sweden)

    Da Xingya

    2015-10-01

    Full Text Available Microjets are used to control the internal flow to improve the performance of an ultra-compact serpentine inlet. A highly offset serpentine inlet with length-to-diameter ratio of 2.5 is designed and static tests are conducted to analyze the internal flow characteristics in terms of pressure recovery, distortion and flow separation. Flow separation is encountered in the second S-turn, and two strong counter-rotating vortices are formed at the aerodynamic interface plane (AIP face which occupy a quarter of the outlet area and result in severe pressure loss and distortion. A flow control model employing a row of microjets in the second turn is designed based on the internal flow characteristics and simplified CFD simulations. Flow control tests are conducted to verify the control effectiveness and understand the characteristics as a function of inlet throat Mach number, injection mass flow ratio, jet Mach number and momentum coefficient. At all test Mach numbers, microjet flow control (MFC effectively improves the recovery and reduces the distortion intensity. Between inlet throat Mach number 0.2 and 0.5, the strong flow separation in the second S-turn is suppressed at an optimum jet flow ratio of less than 0.65%, resulting in a maximum improvement of 4% for pressure recovery coefficient and a maximum decrease of 75% for circumferential distortion intensity at cruise. However, in order to suppress the flow separation, the injection rate should retain in an effective range. When the injection rate is higher than this range, the flow is degraded and the distortion contour is changed from 90° circumferential distortion pattern to 180° circumferential distortion pattern. Detailed data analysis shows that this optimum flow ratio depends on inlet throat Mach number and the momentum coefficient affects the control effectiveness in a dual stepping manner.

  15. The physical environment affects cyanophage communities in British Columbia inlets.

    Science.gov (United States)

    Frederickson, C M; Short, S M; Suttle, C A

    2003-10-01

    Little is known about the natural distribution of viruses that infect the photosynthetically important group of marine prokaryotes, the cyanobacteria. The current investigation reveals that the structure of cyanophage communities is dependent on water column structure. PCR was used to amplify a fragment of the cyanomyovirus gene (g) 20, which codes for the portal vertex protein. Denaturing gradient gel electrophoresis (DGGE) of PCR amplified g20 gene fragments was used to examine variations in cyanophage community structure in three inlets in British Columbia, Canada. Qualitative examination of denaturing gradient gels revealed cyanophage community patterns that reflected the physical structure of the water column as indicated by temperature and salinity. Based on mobility of PCR fragments in the DGGE gels, some cyanophages appeared to be widespread, while others were observed only at specific depths. Cyanophage communities within Salmon Inlet were more related to one another than to communities from either Malaspina Inlet or Pendrell Sound. As well, surface communities in Malaspina Inlet and Pendrell Sound were different when compared to communities at depth. In the same two locations, distinct differences in community composition were observed in communities that coincided with depths of high chlorophyll fluorescence. The observed community shifts over small distances (only a few meters in depth or inlets separated by less than 100 km) support the idea that cyanophage communities separated by small spatial scales develop independently of each other as a result isolation by water column stratification or land mass separation, which may ultimately lead to changes in the distribution or composition of the host community.

  16. Secondary flow and heat transfer control in gas turbine inlet nozzle guide vanes

    Science.gov (United States)

    Burd, Steven Wayne

    1998-12-01

    Endwall heat transfer is a very serious problem in the inlet nozzle guide vane region of gas turbine engines. To resolve heat transfer concerns and provide the desired thermal protection, modern cooling flows for the vane endwalls tend to be excessive leading to lossy and inefficient designs. Coolant introduction is further complicated by the flow patterns along vane endwall surfaces. They are three-dimensional and dominated by strong, complex secondary flows. To achieve performance goals for next-generation engines, more aerodynamically efficient and advanced cooling concepts, including combustor bleed cooling, must be investigated. To this end, the overall performance characteristics of several combustor bleed flow designs are assessed in this experimental study. In particular, their contributions toward secondary flow control and component cooling are documented. Testing is performed in a large-scale, guide vane simulator comprised of three airfoils encased between one contoured and one flat endwall. Core flow is supplied to this simulator at an inlet chord Reynolds number of 350,000 and turbulence intensity of 9.5%. Combustor bleed cooling flow is injected through the contoured endwall via inclined slots. The slots vary in cross-sectional area, have equivalent slot widths, and are positioned with their leeward edges 10% of the axial chord ahead of the airfoil leading edges. Measurements with hot-wire anemometry characterize the inlet and exit flow fields of the cascade. Total and static pressure measurements document aerodynamic performance. Thermocouple measurements detail thermal fields and permit evaluation of surface adiabatic effectiveness. To elucidate the effects of bleed injection, data are compared to an experiment taken without bleed. The influence of bleed mass flow rate and slot geometry on the aerodynamic losses and thermal protection arc given. This study suggests that such combustor bleed flow cooling offers significant thermal protection without

  17. Advanced coal-fueled industrial cogeneration gas turbine system: Hot End Simulation Rig

    Energy Technology Data Exchange (ETDEWEB)

    Galica, M.A.

    1994-02-01

    This Hot End Simulation Rig (HESR) was an integral part of the overall Solar/METC program chartered to prove the technical, economic, an environmental feasibility of a coal-fueled gas turbine, for cogeneration applications. The program was to culminate in a test of a Solar Centaur Type H engine system operated on coal slurry fuel throughput the engine design operating range. This particular activity was designed to verify the performance of the Centaur Type H engine hot section materials in a coal-fired environment varying the amounts of alkali, ash, and sulfur in the coal to assess the material corrosion. Success in the program was dependent upon the satisfactory resolution of several key issues. Included was the control of hot end corrosion and erosion, necessary to ensure adequate operating life. The Hot End Simulation Rig addressed this important issue by exposing currently used hot section turbine alloys, alternate alloys, and commercially available advanced protective coating systems to a representative coal-fueled environment at turbine inlet temperatures typical of Solar`s Centaur Type H. Turbine hot end components which would experience material degradation include the transition duct from the combustor outlet to the turbine inlet, the shroud, nozzles, and blades. A ceramic candle filter vessel was included in the system as the particulate removal device for the HESR. In addition to turbine material testing, the candle material was exposed and evaluated. Long-term testing was intended to sufficiently characterize the performance of these materials for the turbine.

  18. Really Hot Stars

    Science.gov (United States)

    2003-04-01

    Spectacular VLT Photos Unveil Mysterious Nebulae Summary Quite a few of the most beautiful objects in the Universe are still shrouded in mystery. Even though most of the nebulae of gas and dust in our vicinity are now rather well understood, there are some which continue to puzzle astronomers. This is the case of a small number of unusual nebulae that appear to be the subject of strong heating - in astronomical terminology, they present an amazingly "high degree of excitation". This is because they contain significant amounts of ions, i.e., atoms that have lost one or more of their electrons. Depending on the atoms involved and the number of electrons lost, this process bears witness to the strength of the radiation or to the impact of energetic particles. But what are the sources of that excitation? Could it be energetic stars or perhaps some kind of exotic objects inside these nebulae? How do these peculiar objects fit into the current picture of universal evolution? New observations of a number of such unusual nebulae have recently been obtained with the Very Large Telescope (VLT) at the ESO Paranal Observatory (Chile). In a dedicated search for the origin of their individual characteristics, a team of astronomers - mostly from the Institute of Astrophysics & Geophysics in Liège (Belgium) [1] - have secured the first detailed, highly revealing images of four highly ionized nebulae in the Magellanic Clouds, two small satellite galaxies of our home galaxy, the Milky Way, only a few hundred thousand light-years away. In three nebulae, they succeeded in identifying the sources of energetic radiation and to eludicate their exceptional properties: some of the hottest, most massive stars ever seen, some of which are double. With masses of more than 20 times that of the Sun and surface temperatures above 90 000 degrees, these stars are truly extreme. PR Photo 09a/03: Nebula around the hot star AB7 in the SMC. PR Photo 09b/03: Nebula near the hot Wolf-Rayet star BAT99

  19. Four hot DOGs in the microwave

    CERN Document Server

    Frey, S; Gabányi, K É; An, T

    2016-01-01

    Hot dust-obscured galaxies (hot DOGs) are a rare class of hyperluminous infrared galaxies identified with the Wide-field Infrared Survey Explorer (WISE) satellite. The majority of them is at high redshifts (z~2-3), at the peak epoch of star formation in the Universe. Infrared, optical, radio, and X-ray data suggest that hot DOGs contain heavily obscured, extremely luminous active galactic nuclei (AGN). This class may represent a short phase in the life of the galaxies, signifying the transition from starburst- to AGN-dominated phases. Hot DOGs are typically radio-quiet, but some of them show mJy-level emission in the radio (microwave) band. We observed four hot DOGs using the technique of very long baseline interferometry (VLBI). The 1.7-GHz observations with the European VLBI Network (EVN) revealed weak radio features in all sources. The radio is free from dust obscuration and, at such high redshifts, VLBI is sensitive only to compact structures that are characteristic of AGN activity. In two cases (WISE J07...

  20. Modelling Morphological Response of Large Tidal Inlet Systems to Sea Level Rise

    NARCIS (Netherlands)

    Dissanayake, P.K.

    2011-01-01

    This dissertation qualitatively investigates the morphodynamic response of a large inlet system to IPCC projected relative sea level rise (RSLR). Adopted numerical approach (Delft3D) used a highly schematised model domain analogous to the Ameland inlet in the Dutch Wadden Sea. Predicted inlet evolut

  1. 40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook Inlet Intrastate Air Quality Control Region (Alaska) consists of the territorial area encompassed by the boundaries... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Cook Inlet Intrastate Air...

  2. A Combined CFD/Characteristic Method for Prediction and Design of Hypersonic Inlet with Nose Bluntness

    Science.gov (United States)

    Gao, Wenzhi; Li, Zhufei; Yang, Jiming

    Leading edge bluntness is widely used in hypersonic inlet design for thermal protection[1]. Detailed research of leading edge bluntness on hypersonic inlet has been concentrated on shock shape correlation[2], boundary layer flow[3], inlet performance[4], etc. It is well known that blunted noses cause detached bow shocks which generate subsonic regions around the noses and entropy layers in the flowfield.

  3. Non-linear dynamics of inlet film thickness during unsteady rolling process

    Science.gov (United States)

    Fu, Kuo; Zang, Yong; Gao, Zhiying; Qin, Qin; Wu, Diping

    2016-05-01

    The inlet film thickness directly affects film and stress distribution of rolling interfaces. Unsteady factors, such as unsteady back tension, may disturb the inlet film thickness. However, the current models of unsteady inlet film thickness lack unsteady disturbance factors and do not take surface topography into consideration. In this paper, based on the hydrodynamic analysis of inlet zone an unsteady rolling film model which concerns the direction of surface topography is built up. Considering the small fluctuation of inlet angle, absolute reduction, reduction ratio, inlet strip thickness and roll radius as the input variables and the fluctuation of inlet film thickness as the output variable, the non-linear relationship between the input and output is discussed. The discussion results show that there is 180° phase difference between the inlet film thickness and the input variables, such as the fluctuant absolute reduction, the fluctuant reduction ratio and non-uniform inlet strip thickness, but there is no phase difference between unsteady roll radius and the output. The inlet angle, the steady roll radius and the direction of surface topography have significant influence on the fluctuant amplitude of unsteady inlet film thickness. This study proposes an analysis method for unsteady inlet film thickness which takes surface topography and new disturbance factors into consideration.

  4. 78 FR 11094 - Safety Zone; Lake Worth Dredge Operations, Lake Worth Inlet; West Palm Beach, FL

    Science.gov (United States)

    2013-02-15

    ... Guard is establishing a temporary safety zone on Lake Worth Inlet, West Palm Beach, Florida, to provide..., February 20, 2013, dredging operations will be conducted on Lake Worth Inlet in West Palm Beach, Florida... the southwestern corner of Singer Island and then due south across the inlet to Palm Beach...

  5. 78 FR 48314 - Drawbridge Operation Regulation; Milford Haven Inlet, Hudgins, VA

    Science.gov (United States)

    2013-08-08

    ... SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulation; Milford Haven Inlet, Hudgins, VA... Bridge (Gwynn's Island) across the Milford Haven Inlet, mile 0.1, at Hudgins, Virginia. The deviation is... Milford Haven Inlet near Hudgins, Virginia. VDOT requested a deviation from the requirement to open on...

  6. 76 FR 24513 - Public Land Order No. 7765; Partial Revocation Jupiter Inlet Lighthouse Withdrawal; Florida

    Science.gov (United States)

    2011-05-02

    ... Bureau of Land Management Public Land Order No. 7765; Partial Revocation Jupiter Inlet Lighthouse... Management to continue to be managed as part of the Jupiter Inlet Lighthouse Outstanding Natural Area. DATES... Resource Act of 2008 (43 U.S.C. 1787), which created the Jupiter Inlet Lighthouse Outstanding Natural...

  7. Mechanics and rates of tidal inlet migration: Modeling and application to natural examples

    Science.gov (United States)

    Nienhuis, Jaap H.; Ashton, Andrew D.

    2016-11-01

    Tidal inlets on barrier coasts can migrate alongshore hundreds of meters per year, often presenting great management and engineering challenges. Here we perform model experiments with migrating tidal inlets in Delft3D-SWAN to investigate the mechanics and rates of inlet migration. Model experiments with obliquely approaching waves suggest that tidal inlet migration occurs due to three mechanisms: (1) littoral sediment deposition along the updrift inlet bank, (2) wave-driven sediment transport preferentially eroding the downdrift bank of the inlet, and (3) flood-tide-driven flow preferentially cutting along the downdrift inlet bank because it is less obstructed by flood-tidal delta deposits. To quantify tidal inlet migration, we propose and apply a simple mass balance framework of sediment fluxes around inlets that includes alongshore sediment bypassing and flood-tidal delta deposition. In model experiments, both updrift littoral sediment and the eroded downdrift inlet bank are sediment sources to the growing updrift barrier and the flood-tidal delta, such that tidal inlets can be net sink of up to 150% of the littoral sediment flux. Our mass balance framework demonstrates how, with flood-tidal deltas acting as a littoral sediment sink, migrating tidal inlets can drive erosion of the downdrift barrier beach. Parameterizing model experiments, we propose a predictive model of tidal inlet migration rates based upon the relative momentum flux of the inlet jet and the alongshore radiation stress; we then compare these predicted migration rates to 22 natural tidal inlets along the U.S. East Coast and find good agreement.

  8. Experimental Investigation of Fan Rotor Response to Inlet Swirl Distortion

    OpenAIRE

    Frohnapfel, Dustin Joseph

    2016-01-01

    Next generation aircraft design focuses on highly integrated airframe/engine architectures that exploit advantages in system level efficiency and performance. One such design concept incorporates boundary layer ingestion which locates the turbofan engine inlet near enough to the lifting surface of the aircraft skin that the boundary layer is ingested and reenergized. This process reduces overall aircraft drag and associated required thrust, resulting in fuel savings and decreased emissions;...

  9. Observations and modeling of a tidal inlet dye tracer plume

    Science.gov (United States)

    Feddersen, Falk; Olabarrieta, Maitane; Guza, R. T.; Winters, D.; Raubenheimer, Britt; Elgar, Steve

    2016-10-01

    A 9 km long tracer plume was created by continuously releasing Rhodamine WT dye for 2.2 h during ebb tide within the southern edge of the main tidal channel at New River Inlet, NC on 7 May 2012, with highly obliquely incident waves and alongshore winds. Over 6 h from release, COAWST (coupled ROMS and SWAN, including wave, wind, and tidal forcing) modeled dye compares well with (aerial hyperspectral and in situ) observed dye concentration. Dye first was transported rapidly seaward along the main channel and partially advected across the ebb-tidal shoal until reaching the offshore edge of the shoal. Dye did not eject offshore in an ebb-tidal jet because the obliquely incident breaking waves retarded the inlet-mouth ebb-tidal flow and forced currents along the ebb shoal. The dye plume largely was confined to <4 m depth. Dye was then transported downcoast in the narrow (few 100 m wide) surfzone of the beach bordering the inlet at 0.3 m s-1 driven by wave breaking. Over 6 h, the dye plume is not significantly affected by buoyancy. Observed dye mass balances close indicating all released dye is accounted for. Modeled and observed dye behaviors are qualitatively similar. The model simulates well the evolution of the dye center of mass, lateral spreading, surface area, and maximum concentration, as well as regional ("inlet" and "ocean") dye mass balances. This indicates that the model represents well the dynamics of the ebb-tidal dye plume. Details of the dye transport pathways across the ebb shoal are modeled poorly perhaps owing to low-resolution and smoothed model bathymetry. Wave forcing effects have a large impact on the dye transport.

  10. Advanced Scavenge Systems for an Integrated Engine Inlet Particle Separator

    Science.gov (United States)

    1977-09-01

    Fully machined centerbody and outer casing. Four strut (. 093 nch constant thickless. were silver - soldered to form the assembly. AIR SPLITTER ASSEMBLY...pieces of ice, nominally 1/2-inch cubes, weee introduced a.s well. In order that some degree of randomness be present, the objects were directed, unde...section (. 125-inch orifice/ •415-in. duct) followed by a high-pressure manifold to which the nozzle is silver brazed. In the secondary duct, an inlet

  11. Starting Processes of High Contraction Ratio Scramjet Inlets

    Science.gov (United States)

    2012-01-01

    lack of thrust production that can lead to terminal flight failure. Between these two regions however lie conditions of great interest. Both started...coated cable of 0.7mm diameter. A brass cylindrical attachment was screwed onto the piston con-rod, with a brass champignon/ mushroom connector...At a given substrate depth x (distance from the wall of the inlet geometry), the temperature can be considered to be constant during the short

  12. Boussinesq Modeling for Inlets, Harbors & Structures (Bouss-2D)

    Science.gov (United States)

    2014-10-27

    longshore and rip currents, wave-current and wave interaction with porous media , wave propagation over vegetated areas, wetlands and marshes, and vessel...circulation in surf and swash zone; wave-current interaction in channels and inlets; generation and impacts of infra- gravity waves on ports and...New structures will be proposed to reduce navigation channel shoaling and decrease vessel influence (e.g., waves, erosion). Ship-to-ship and ship

  13. Technology Review of Modern Gas Turbine Inlet Filtration Systems

    OpenAIRE

    2012-01-01

    An inlet air filtration system is essential for the successful operation of a gas turbine. The filtration system protects the gas turbine from harmful debris in the ambient air, which can lead to issues such as FOD, erosion, fouling, and corrosion. These issues if not addressed will result in a shorter operational life and reduced performance of the gas turbine. Modern day filtration systems are comprised of multiple filtration stages. Each stage is selected based on the local operating envir...

  14. Hot spray technology of TA7 titanium alloy coated by molybdenum and its bonding strength

    Institute of Scientific and Technical Information of China (English)

    Li Xiaoquan; Du Zeyu; Yang Xuguang

    2006-01-01

    A kind of surface modification test was introduced, by which plasma spray in argon atmosphere with CNC4500 system was applied for TA7 titanium alloy to be coated with molybdenum, and technology to produce metallurgical bonding at interface of coating and base meal was tested by heating in vacuum condition for diffusion after hot spray.With the help of scan electron microscope analysis ( SEM) , the effect of argon inlet pressure and heating temperature on coating structure as well as product of diffusion layer were studied.The glued tensile test method was used to measure bonding strength of base metal to coating.The result has shown that both argon inlet pressure and heating temperature exert some effect on coating structure and the width of diffusion layer.A bonding strength of base metal to coating which is greater than molybdenum coating itself may be attained and can be controlled in more than 50 MPa level with tested hot spray technology.

  15. Thermography of the New River Inlet plume and nearshore currents

    Science.gov (United States)

    Chickadel, C.; Jessup, A.

    2012-12-01

    As part of the DARLA and RIVET experiments, thermal imaging systems mounted on a tower and in an airplane captured water flow in the New River Inlet, NC, USA. Kilometer-scale, airborne thermal imagery of the inlet details the ebb flow of the estuarine plume water mixing with ocean water. Multiple fronts, corresponding to the preferred channels through the ebb tidal delta, are imaged in the aerial data. A series of internal fronts suggest discreet sources of the tidal plume that vary with time. Focused thermal measurements made from a tower on the south side of the inlet viewed an area within a radius of a few hundred meters. Sub-meter resolution video from the tower revealed fine-scale flow features and the interaction of tidal exchange and wave-forced surfzone currents. Using the tower and airborne thermal image data we plan to provide geophysical information to compare with numerical models and in situ measurements made by other investigators. From the overflights, we will map the spatial and temporal extent of the estuarine plume to correlate with tidal phase and local wind conditions. From the tower data, we will investigate the structure of the nearshore flow using a thermal particle image velocimetry (PIV) technique, which is based on tracking motion of the surface temperature patterns. Long term variability of the mean and turbulent two-dimensional PIV currents will be correlated to local wave, tidal, and wind forcing parameters.

  16. JET ENGINE INLET DISTORTION SCREEN AND DESCRIPTOR EVALUATION

    Directory of Open Access Journals (Sweden)

    Jiří Pečinka

    2017-02-01

    Full Text Available Total pressure distortion is one of the three basic flow distortions (total pressure, total temperature and swirl distortion that might appear at the inlet of a gas turbine engine (GTE during operation. Different numerical parameters are used for assessing the total pressure distortion intensity and extent. These summary descriptors are based on the distribution of total pressure in the aerodynamic interface plane. There are two descriptors largely spread around the world, however, three or four others are still in use and can be found in current references. The staff at the University of Defence decided to compare the most common descriptors using basic flow distortion patterns in order to select the most appropriate descriptor for future department research. The most common descriptors were identified based on their prevalence in widely accessible publications. The construction and use of these descriptors are reviewed in the paper. Subsequently, they are applied to radial, angular, and combined distortion patterns of different intensities and with varied mass flow rates. The tests were performed on a specially designed test bench using an electrically driven standalone industrial centrifugal compressor, sucking air through the inlet of a TJ100 small turbojet engine. Distortion screens were placed into the inlet channel to create the desired total pressure distortions. Of the three basic distortions, only the total pressure distortion descriptors were evaluated. However, both total and static pressures were collected using a multi probe rotational measurement system.

  17. Data base for the prediction of inlet external drag

    Science.gov (United States)

    Mcmillan, O. J.; Perkins, E. W.; Perkins, S. C., Jr.

    1980-01-01

    Results are presented from a study to define and evaluate the data base for predicting an airframe/propulsion system interference effect shown to be of considerable importance, inlet external drag. The study is focused on supersonic tactical aircraft with highly integrated jet propulsion systems, although some information is included for supersonic strategic aircraft and for transport aircraft designed for high subsonic or low supersonic cruise. The data base for inlet external drag is considered to consist of the theoretical and empirical prediction methods as well as the experimental data identified in an extensive literature search. The state of the art in the subsonic and transonic speed regimes is evaluated. The experimental data base is organized and presented in a series of tables in which the test article, the quantities measured and the ranges of test conditions covered are described for each set of data; in this way, the breadth of coverage and gaps in the existing experimental data are evident. Prediction methods are categorized by method of solution, type of inlet and speed range to which they apply, major features are given, and their accuracy is assessed by means of comparison to experimental data.

  18. Exchange inlet optimization by genetic algorithm for improved RBCC performance

    Science.gov (United States)

    Chorkawy, G.; Etele, J.

    2017-09-01

    A genetic algorithm based on real parameter representation using a variable selection pressure and variable probability of mutation is used to optimize an annular air breathing rocket inlet called the Exchange Inlet. A rapid and accurate design method which provides estimates for air breathing, mixing, and isentropic flow performance is used as the engine of the optimization routine. Comparison to detailed numerical simulations show that the design method yields desired exit Mach numbers to within approximately 1% over 75% of the annular exit area and predicts entrained air massflows to between 1% and 9% of numerically simulated values depending on the flight condition. Optimum designs are shown to be obtained within approximately 8000 fitness function evaluations in a search space on the order of 106. The method is also shown to be able to identify beneficial values for particular alleles when they exist while showing the ability to handle cases where physical and aphysical designs co-exist at particular values of a subset of alleles within a gene. For an air breathing engine based on a hydrogen fuelled rocket an exchange inlet is designed which yields a predicted air entrainment ratio within 95% of the theoretical maximum.

  19. Numerical study of unsteady starting characteristics of a hypersonic inlet

    Institute of Scientific and Technical Information of China (English)

    Wang Weixing; Guo Rongwei

    2013-01-01

    The impulse and self starting characteristics of a mixed-compression hypersonic inlet designed at Mach number of 6.5 are studied by applying the unsteady computational fluid dynamics (CFD) method.The full Navier-Stokes equations are solved with the assumption of viscous perfect gas model,and the shear-stress transport (SST) k-ω two-equation Reynolds averaged NavierStokes (RANS) model is used for turbulence modeling.Results indicate that during impulse starting,the flow field is divided into three zones with different aerodynamic parameters by primary shock and upstream-facing shock.The separation bubble on the shoulder of ramp undergoes a generating,growing,swallowing and disappearing process in sequence.But a separation bubble at the entrance of inlet exists until the freestream velocity is accelerated to the starting Mach number during self starting.The mass flux distribution of flow field is non-uniform because of the interaction between shock and boundary layer,so that the mass flow rate at throat is unsteady during impulse starting.The duration of impulse starting process increases almost linearly with the decrease of fleestream Mach number but rises abruptly when the freestream Mach number approaches the starting Mach number.The accelerating performance of booster almost has no influence on the self starting ability of hypersonic inlet.

  20. Quantitative risk assessment of the effects of drought on extreme temperature in eastern China

    Science.gov (United States)

    Hao, Zengchao; Hao, Fanghua; Singh, Vijay P.; Ouyang, Wei

    2017-09-01

    Hot extremes may lead to disastrous impacts on human health and agricultural production. Previous studies have revealed the feedback between drought and hot extremes in large regions of eastern China, while quantifying the impact of antecedent drought on hot extremes has been limited. This study aims at quantitatively assessing the risk of extreme temperature conditioned on the antecedent drought condition represented by Standardized Precipitation Index (SPI) during summer time in eastern China. A copula-based model is proposed to construct the joint probability distribution of extreme temperature and drought based on 6 month SPI (SPI6). Accordingly, the conditional probability distribution is employed to quantify impacts of antecedent dry (and wet) conditions on the exceedance probability of extreme temperature. Results show that the likelihood of extreme temperature exceeding high quantiles is higher given antecedent dry conditions than that given antecedent wet conditions in large regions from southwestern to northeastern China. Specifically, the conditional probability difference of temperature exceeding 80th percentile given SPI6 lower than or equal to -0.5 and SPI6 higher than 0.5 is around 0.2-0.3. The case study of the 2006 summer hot extremes and drought in Sichuan and Chongqing region shows that the conditional return period of extreme temperature conditioned on antecedent drought is around 5-50 years shorter than univariate return period. These results quantify the impact of antecedent drought on subsequent extreme temperature and highlight the important role of antecedent drought in intensifying hot extremes in these regions.

  1. Air Motion and Thermal Environment in Pig Housing Facilities with Diffuse Inlet

    DEFF Research Database (Denmark)

    Jacobsen, Lis

    A ventilation system with ambient air supply through diffuse ceiling used in pig production facilities is presented. The climatic conditions were examined both experimentally and numerically in an full scale experimental room and the inlet boundary conditions of the diffuse inlet were examined...... of thermal comfort in terms of the operative temperature of the occupational zone. A model of the boundary condition of the diffuse inlet is necessary because the inlet is a conglomeration of an inlet and a wall boundary condition. Two methods of modelling can be chosen, a model based on the determination...

  2. Hot plasma dielectric tensor

    NARCIS (Netherlands)

    Westerhof, E.

    1996-01-01

    The hot plasma dielectric tensor is discussed in its various approximations. Collisionless cyclotron resonant damping and ion/electron Bernstein waves are discussed to exemplify the significance of a kinetic description of plasma waves.

  3. Extremely Preterm Birth

    Science.gov (United States)

    ... Events Advocacy For Patients About ACOG Extremely Preterm Birth Home For Patients Search FAQs Extremely Preterm Birth ... Spanish FAQ173, June 2016 PDF Format Extremely Preterm Birth Pregnancy When is a baby considered “preterm” or “ ...

  4. CFD-Based Design Optimization Tool Developed for Subsonic Inlet

    Science.gov (United States)

    1995-01-01

    The traditional approach to the design of engine inlets for commercial transport aircraft is a tedious process that ends with a less-than-optimum design. With the advent of high-speed computers and the availability of more accurate and reliable computational fluid dynamics (CFD) solvers, numerical optimization processes can effectively be used to design an aerodynamic inlet lip that enhances engine performance. The designers' experience at Boeing Corporation showed that for a peak Mach number on the inlet surface beyond some upper limit, the performance of the engine degrades excessively. Thus, our objective was to optimize efficiency (minimize the peak Mach number) at maximum cruise without compromising performance at other operating conditions. Using a CFD code NPARC, the NASA Lewis Research Center, in collaboration with Boeing, developed an integrated procedure at Lewis to find the optimum shape of a subsonic inlet lip and a numerical optimization code, ADS. We used a GRAPE-based three-dimensional grid generator to help automate the optimization procedure. The inlet lip shape at the crown and the keel was described as a superellipse, and the superellipse exponents and radii ratios were considered as design variables. Three operating conditions: cruise, takeoff, and rolling takeoff, were considered in this study. Three-dimensional Euler computations were carried out to obtain the flow field. At the initial design, the peak Mach numbers for maximum cruise, takeoff, and rolling takeoff conditions were 0.88, 1.772, and 1.61, respectively. The acceptable upper limits on the takeoff and rolling takeoff Mach numbers were 1.55 and 1.45. Since the initial design provided by Boeing was found to be optimum with respect to the maximum cruise condition, the sum of the peak Mach numbers at takeoff and rolling takeoff were minimized in the current study while the maximum cruise Mach number was constrained to be close to that at the existing design. With this objective, the

  5. Methodology for the Design of Streamline-Traced External-Compression Supersonic Inlets

    Science.gov (United States)

    Slater, John W.

    2014-01-01

    A design methodology based on streamline-tracing is discussed for the design of external-compression, supersonic inlets for flight below Mach 2.0. The methodology establishes a supersonic compression surface and capture cross-section by tracing streamlines through an axisymmetric Busemann flowfield. The compression system of shock and Mach waves is altered through modifications to the leading edge and shoulder of the compression surface. An external terminal shock is established to create subsonic flow which is diffused in the subsonic diffuser. The design methodology was implemented into the SUPIN inlet design tool. SUPIN uses specified design factors to design the inlets and computes the inlet performance, which includes the flow rates, total pressure recovery, and wave drag. A design study was conducted using SUPIN and the Wind-US computational fluid dynamics code to design and analyze the properties of two streamline-traced, external-compression (STEX) supersonic inlets for Mach 1.6 freestream conditions. The STEX inlets were compared to axisymmetric pitot, two-dimensional, and axisymmetric spike inlets. The STEX inlets had slightly lower total pressure recovery and higher levels of total pressure distortion than the axisymmetric spike inlet. The cowl wave drag coefficients of the STEX inlets were 20% of those for the axisymmetric spike inlet. The STEX inlets had external sound pressures that were 37% of those of the axisymmetric spike inlet, which may result in lower adverse sonic boom characteristics. The flexibility of the shape of the capture cross-section may result in benefits for the integration of STEX inlets with aircraft.

  6. Gas turbine performance enhancement via utilizing different integrated turbine inlet cooling techniques

    Directory of Open Access Journals (Sweden)

    Alaa A. El-Shazly

    2016-09-01

    Full Text Available Regions that experience ambient temperatures rising during hot seasons have significant losses and impacts on both output power and efficiency of the gas turbine. When the ambient temperature increases, the air mass flow rate decreases, and hence leads to reduce the gas turbine produced power. Ambient air can be cooled by using either evaporative cooler or absorption chiller. Currently, the performance was simulated thermodynamically for a natural gas operated gas turbine. The performance was tested for the base case without any turbine inlet cooling (TIC systems and compared with the performance for both evaporative cooler and absorption chiller separately in terms of output power, thermal efficiency, heat rate, specific fuel consumption, consumed fuel mass flow rate, and economics. Results showed that at air ambient temperature equals to 37 °C and after deducting all the associated auxiliaries power consumption for both evaporative cooler and absorption chiller, the absorption chiller with regenerator can achieve an augmentation of 25.47% in power and 33.66% in efficiency which provides a saving in average power price about 13%, while the evaporative cooler provides only an increase of 5.56% in power and 1.55% in efficiency, and a saving of 3% in average power price.

  7. Present-day irrigation mitigates heat extremes

    Science.gov (United States)

    Thiery, Wim; Davin, Edouard L.; Lawrence, David M.; Hirsch, Annette L.; Hauser, Mathias; Seneviratne, Sonia I.

    2017-02-01

    Irrigation is an essential practice for sustaining global food production and many regional economies. Emerging scientific evidence indicates that irrigation substantially affects mean climate conditions in different regions of the world. Yet how this practice influences climate extremes is currently unknown. Here we use ensemble simulations with the Community Earth System Model to assess the impacts of irrigation on climate extremes. An evaluation of the model performance reveals that irrigation has a small yet overall beneficial effect on the representation of present-day near-surface climate. While the influence of irrigation on annual mean temperatures is limited, we find a large impact on temperature extremes, with a particularly strong cooling during the hottest day of the year (-0.78 K averaged over irrigated land). The strong influence on extremes stems from the timing of irrigation and its influence on land-atmosphere coupling strength. Together these effects result in asymmetric temperature responses, with a more pronounced cooling during hot and/or dry periods. The influence of irrigation is even more pronounced when considering subgrid-scale model output, suggesting that local effects of land management are far more important than previously thought. Our results underline that irrigation has substantially reduced our exposure to hot temperature extremes in the past and highlight the need to account for irrigation in future climate projections.

  8. Four hot DOGs in the microwave

    Science.gov (United States)

    Frey, Sándor; Paragi, Zsolt; Gabányi, Krisztina Éva; An, Tao

    2016-01-01

    Hot dust-obscured galaxies (hot DOGs) are a rare class of hyperluminous infrared galaxies identified with the Wide-field Infrared Survey Explorer (WISE) satellite. The majority of them are at high redshifts (z ˜ 2-3), at the peak epoch of star formation in the Universe. Infrared, optical, radio, and X-ray data suggest that hot DOGs contain heavily obscured, extremely luminous active galactic nuclei (AGN). This class may represent a short phase in the life of the galaxies, signifying the transition from starburst- to AGN-dominated phases. Hot DOGs are typically radio-quiet, but some of them show mJy-level emission in the radio (microwave) band. We observed four hot DOGs using the technique of very long baseline interferometry (VLBI). The 1.7 GHz observations with the European VLBI Network (EVN) revealed weak radio features in all sources. The radio is free from dust obscuration and, at such high redshifts, VLBI is sensitive only to compact structures that are characteristic of AGN activity. In two cases (WISE J0757+5113, WISE J1603+2745), the flux density of the VLBI-detected components is much smaller than the total flux density, suggesting that ˜70-90 per cent of the radio emission, while still dominated by AGN, originates from angular scales larger than that probed by the EVN. The source WISE J1146+4129 appears a candidate compact symmetric object, and WISE J1814+3412 shows a 5.1 kpc double structure, reminiscent of hotspots in a medium-sized symmetric object. Our observations support that AGN residing in hot DOGs may be genuine young radio sources where starburst and AGN activities coexist.

  9. Analysis of Post-LOCA Core Inlet Blockage to Evaluate In-vessel Downstream Effect in APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Young Seok [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    The method was developed to have a conservatism to cover the uncertainty of analysis and the acceptance is judged by the representative bounding estimation. However, the important safety parameters such as the available driving head need to be confirmed by the plant specific calculation. Also an interaction between the debris induced head loss and the core flow rate needs to be explained because the head loss induced by debris in actual condition may reduce the core inflow rate faster. To confirm the safety parameters, in this study, thermal-hydraulic response considering the core inlet blockage (CIB) by debris during LTCC process following a double-ended guillotine break of cold leg (CLB), one of hot leg (HLB) and one of intermediate leg (ILB) of the APR1400 were calculated, respectively. MARS-KS 1.3 code has been used. The CIB has been modeled by the closure of valves to the core in exponential manner with time to observe the behavior near the complete blockage. To understand the effect of core inlet blockage (CIB) during a long term core cooling (LTCC) phase following a loss-of-coolant accident (LOCA) in the light of in-vessel downstream effect (IDE) of Generic Safety Issue (GSI) 191, double-ended guillotine break of hot leg (HLB), one of cold leg (CLB) and one of intermediate leg (ILB) were calculated, respectively. And the important safety parameters such as the available driving head and the head loss due to debris were calculated using MARS-KS code and discussed in comparison with the WCAP method. As a result, a little delayed heatup behavior of the fuel cladding was found for all the cases, which due to the redistribution of flow within the core after blockage.

  10. Multidimensional extremal dependence coefficients

    OpenAIRE

    2017-01-01

    Extreme values modeling has attracting the attention of researchers in diverse areas such as the environment, engineering, or finance. Multivariate extreme value distributions are particularly suitable to model the tails of multidimensional phenomena. The analysis of the dependence among multivariate maxima is useful to evaluate risk. Here we present new multivariate extreme value models, as well as, coefficients to assess multivariate extremal dependence.

  11. The European Extreme Right and Religious Extremism

    Directory of Open Access Journals (Sweden)

    Jean-Yves Camus

    2007-12-01

    Full Text Available The ideology of the Extreme Right in Western Europe is rooted in Catholic fundamentalism and Counter-Revolutionary ideas. However, the Extreme Right, like all other political families, has had to adjust to an increasingly secular society. The old link between religion and the Extreme Right has thus been broken and in fact already was when Fascism overtook Europe: Fascism was secular, sometimes even anti-religious, in its essence. Although Catholic fundamentalists still retain strong positions within the apparatus of several Extreme Right parties (Front National, the vote for the Extreme Right is generally weak among regular churchgoers and strong among non-believers. In several countries, the vote for the Extreme Right is stronger among Protestant voters than among Catholics, since while Catholics may support Christian-Democratic parties, there are very few political parties linked to Protestant churches. Presently, it also seems that Paganism is becoming the dominant religious creed within the Extreme Right. In a multicultural Europe, non-Christian forms of religious fundamentalism such as Islamism also exist with ideological similarities to the Extreme Right, but this is not sufficient to categorize Islamism as a form of Fascism. Some Islamist groups seek alliances with the Extreme Right on the basis of their common dislike for Israel and the West, globalization and individual freedom of thought.

  12. Dynamical Interactions Make Hot Jupiters in Open Star Clusters

    CERN Document Server

    Shara, Michael M; Mardling, Rosemary A

    2014-01-01

    Explaining the origin and evolution of exoplanetary "hot Jupiters" remains a significant challenge. One possible mechanism for their production is planet-planet interactions, which produces hot Jupiters from planets born far from their host stars but near their dynamical stability limits. In the much more likely case of planets born far from their dynamical stability limits, can hot Jupiters can be formed in star clusters? Our N-body simulations of planetary systems inside star clusters answer this question in the affirmative, and show that hot Jupiter formation is not a rare event. We detail three case studies of the dynamics-induced births of hot Jupiters on highly eccentric orbits that can only occur inside star clusters. The hot Jupiters' orbits bear remarkable similarities to those of some of the most extreme exoplanets known: HAT-P-32 b, HAT-P-2 b, HD 80606 b and GJ 876 d. If stellar perturbations formed these hot Jupiters then our simulations predict that these very hot, inner planets are sometimes acc...

  13. Advances in hot gas filtration technology

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.

    The past decade has seen the introduction of new filter media specifically designed for 'hot-gas' filtration. These media are available as woven or knitted fabrics and as non-wovens, i.e. needled felts. Needlefelted fabrics have proven so highly successful in the dedusting of hot gases that they are widely used nowadays in this new and necessary technology. Hot-gas filtration offers advantages in, for example, the saving or recycling of energy, the elimination of the cooling process, and the short-circuiting of process steps. This paper gives a survey of the types of textile fibres available for hot-gas filtration from the more recently developed organic fibres to refractory fibres. It describes, compares and contrasts their salient properties and lists the uses to which they may be put. It concentrates on such fibres which are generally referred to as 'high performance materials', since they are expected to provide satisfactory performance under extreme conditions of temperature, chemical environment and mechanical stress. It touches on filtration theory governing the collection mechanism. 9 refs., 7 figs., 3 tabs.

  14. Temperature-programmed desorption for membrane inlet mass spectrometry

    DEFF Research Database (Denmark)

    Ketola, R.A.; Grøn, C.; Lauritsen, F.R.

    1998-01-01

    We present a novel technique for analyzing volatile organic compounds in air samples using a solid adsorbent together with temperature-programmed desorption and subsequent detection by membrane inlet mass spectrometry (TPD-MIMS). The new system has the advantage of a fast separation of compounds...... prior to the detection by MIMS. The gaseous sample is simply adsorbed on the adsorbent, which is then rapidly heated from 30 degrees C to 250 degrees C at a rate of 50 degrees C/min, Trapped organic compounds are released from the adsorbent into a helium stream at different temperatures depending...

  15. IR Hot Wave

    Energy Technology Data Exchange (ETDEWEB)

    Graham, T. B.

    2010-04-01

    The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.

  16. Hot Air Engines

    Directory of Open Access Journals (Sweden)

    P. Stouffs

    2011-01-01

    Full Text Available Invented in 1816, the hot-air engines have known significant commercial success in the nineteenth century, before falling into disuse. Nowadays they enjoy a renewed interest for some specific applications. The "hot-air engines" family is made up of two groups: Stirling engines and Ericsson engines. The operating principle of Stirling and Ericsson engines, their troubled history, their advantages and their niche applications are briefly presented, especially in the field of micro-combined heat and power, solar energy conversion and biomass energy conversion. The design of an open cycle Ericsson engine for solar application is proposed. A first prototype of the hot part of the engine has been built and tested. Experimental results are presented.

  17. Hot subdwarf formation: Confronting theory with observation

    Directory of Open Access Journals (Sweden)

    Geier S.

    2013-03-01

    Full Text Available The formation of hot subdwarf stars is still unclear. Both single-star and binary scenarios have been proposed to explain the properties of these evolved stars situated at the extreme blue end of the horizontal branch. The observational evidence gathered in the last decade, which revealed high fractions of binaries, shifted the focus from the single-star to the binary formation scenarios. Common envelope ejection, stable Roche lobe overflow and the merger of helium white dwarfs seemed to be sufficient to explain the formation of both the binary as well as the remaining single hot subdwarfs. However, most recent and rather unexpected observations challenge the standard binary evolution scenarios.

  18. TYPICAL HOT WATER DRAW PATTERNS BASED ON FIELD DATA

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Jim; Melody, Moya

    2012-11-08

    There is significant variation in hot water use and draw patterns among households. This report describes typical hot water use patterns in single-family residences in North America. We found that daily hot water use is highly variable both among residences and within the same residence. We compared the results of our analysis of the field data to the conditions and draw patterns established in the current U.S. Department of Energy (DOE) test procedure for residential water heaters. The results show a higher number of smaller draws at lower flow rates than used in the test procedure. The data from which the draw patterns were developed were obtained from 12 separate field studies. This report describes the ways in which we managed, cleaned, and analyzed the data and the results of our data analysis. After preparing the data, we used the complete data set to analyze inlet and outlet water temperatures. Then we divided the data into three clusters reflecting house configurations that demonstrated small, medium, or large median daily hot water use. We developed the three clusters partly to reflect efforts of the ASHRAE standard project committee (SPC) 118.2 to revise the test procedure for residential water heaters to incorporate a range of draw patterns. ASHRAE SPC 118.2 has identified the need to separately evaluate at least three, and perhaps as many as five, different water heater capacities. We analyzed the daily hot water use data within each cluster in terms of volume and number of hot water draws. The daily draw patterns in each cluster were characterized using distributions for volume of draws, duration of draws, time since previous draw, and flow rates.

  19. Investigation of synchronous effects of multi-mesh regenerator and double-inlet on performance of a Stirling pulse tube cryocooler

    Science.gov (United States)

    Arablu, M.; Jafarian, A.

    2013-02-01

    In this paper synchronous effects of multi-mesh regenerator and double-inlet on performance of a Stirling pulse tube cryocooler (SPTC) have been considered. In this respect, a finite volume code was developed to simulate the SPTC. Set of governing equations were written in a general form such that all porous and non-porous sections of the system could be modeled. Results showed that synchronous application of double inlet and multi-mesh regenerator optimizes the phase shift between velocity and pressure at the warm end of the pulse tube, increases the regenerator's outlet pressure amplitude, decreases inertial and viscous losses in the hot end of the regenerator and consequently increases the COP of the system. Furthermore, it was observed that a minimum temperature of 60.3 K and COP of 0.03996 @ 80 K is attainable using optimum multi-mesh regenerator and double inlet; whereas, for a simple SPTC with a uniform mesh regenerator, a minimum temperature of 71.3 K and maximum COP of 0.0227 @ 80 K are concluded.

  20. Mining Hot Springs for Biodiversity and Novel Enzymes

    DEFF Research Database (Denmark)

    Islin, Sóley Ruth

    The existence of microbial life at extreme environments, such as hot springs, has been known for a few decades. The remarkable ability of microorganisms to withstand the extreme conditions of their habitats, has astounded scientist and pushed the limits of what was considered possible. Thermophilic...... culture-dependent as well as culture-independent methods. Each hot spring sample was enriched on various polymeric substrates at high temperatures in the search of thermophilic microorganism with the ability to degrade the substrate. Enzymatic activity of the cultures was confirmed, the most promising...... the biodiversity within the environment. By comparing several metagenomic data sets from hot spring from around the world, we could analyze community structures of cellular microorganisms as well as the biodiversity of viral sequences. We found that crenarchaeal viruses are dominant in these environments...

  1. QCD matter in extreme environments

    CERN Document Server

    Fukushima, Kenji

    2011-01-01

    We review various theoretical approaches to the states of QCD matter out of quarks and gluons in extreme environments such as the high-temperature states at zero and finite baryon density and the dimensionally reduced state under an intense magnetic field. The topics at high temperature include the Polyakov loop and the 't Hooft loop in the perturbative regime, the Polyakov loop behaviour and the phase transition in some of non-perturbative methods; the strong-coupling expansion, the large-Nc limit and the holographic QCD models. These analyses are extended to hot and dense matter with a finite baryon chemical potential. We point out that the difficulty in the finite-density problem has similarity to that under a strong magnetic field. We make a brief summary of results related to the topological contents probed by the magnetic field and the Chiral Magnetic Effect. We also address the close connection to the (1+1) dimensional system.

  2. Flow distribution in the inlet plenum of steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Khadamakar, H.P. [Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Patwardhan, A.W., E-mail: aw.patwardhan@ictmumbai.edu.in [Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Padmakumar, G.; Vaidyanathan, G. [Experimental Thermal Hydraulics Section, Separation Technology and Hydraulics Division, Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2011-10-15

    Highlights: > Various flow distribution devices have been studied to make the flow distribution uniform in axial as well as tangential direction. > Experiments were performed using Ultrasonic Velocity Profiler (UVP) and Particle Image Velocimetry (PIV). > CFD modeling has been carried out to give more insights. > Various flow distribution devices have been compared. - Abstract: The flow distribution in a 1/5th and 1/8th scale models of inlet plenum of steam generator (SG) has been studied by a combination of experiments and Computational Fluid Dynamics (CFD) simulations. The distribution of liquid sodium in the inlet plenum of the SG strongly affects the thermal as well as mechanical performance of the steam generator. Various flow distribution devices have been used to make the flow distribution uniform in axial as well as tangential direction in the window region. Experiments have been conducted to measure the radial velocity distribution using Ultrasonic Velocity Profiler (UVP) and Particle Image Velocimetry (PIV) under a variety of conditions. CFD modeling has been carried out for various configurations to give more insight into the flow distribution phenomena. The various flow distribution devices have been compared on the basis of a non-uniformity index parameter.

  3. Liquefied Bleed for Stability and Efficiency of High Speed Inlets

    Science.gov (United States)

    Saunders, J. David; Davis, David; Barsi, Stephen J.; Deans, Matthew C.; Weir, Lois J.; Sanders, Bobby W.

    2014-01-01

    A mission analysis code was developed to perform a trade study on the effectiveness of liquefying bleed for the inlet of the first stage of a TSTO vehicle. By liquefying bleed, the vehicle weight (TOGW) could be reduced by 7 to 23%. Numerous simplifying assumptions were made and lessons were learned. Increased accuracy in future analyses can be achieved by: Including a higher fidelity model to capture the effect of rescaling (variable vehicle TOGW). Refining specific thrust and impulse models ( T m a and Isp) to preserve fuel-to-air ratio. Implementing LH2 for T m a and Isp. Correlating baseline design to other mission analyses and correcting vehicle design elements. Implementing angle-of-attack effects on inlet characteristics. Refining aerodynamic performance (to improve L/D ratio at higher Mach numbers). Examining the benefit with partial cooling or densification of the bleed air stream. Incorporating higher fidelity weight estimates for the liquefied bleed system (heat exchange and liquid storage versus bleed duct weights) could be added when more fully developed. Adding trim drag or 6-degree-of-freedom trajectory analysis for higher fidelity. Investigating vehicle optimization for each of the bleed configurations.

  4. Technology Review of Modern Gas Turbine Inlet Filtration Systems

    Directory of Open Access Journals (Sweden)

    Melissa Wilcox

    2012-01-01

    Full Text Available An inlet air filtration system is essential for the successful operation of a gas turbine. The filtration system protects the gas turbine from harmful debris in the ambient air, which can lead to issues such as FOD, erosion, fouling, and corrosion. These issues if not addressed will result in a shorter operational life and reduced performance of the gas turbine. Modern day filtration systems are comprised of multiple filtration stages. Each stage is selected based on the local operating environment and the performance goals for the gas turbine. Selection of these systems can be a challenging task. This paper provides a review of the considerations for selecting an inlet filtration system by covering (1 the characteristics of filters and filter systems, (2 a review of the many types of filters, (3 a detailed look at the different environments where the gas turbine can operate, (4 a process for evaluating the site where the gas turbine will be or is installed, and (5 a method to compare various filter system options with life cycle cost analysis.

  5. A dual-inlet, single detector relaxed eddy accumulation system for long-term measurement of mercury flux

    Science.gov (United States)

    Osterwalder, S.; Fritsche, J.; Alewell, C.; Schmutz, M.; Nilsson, M. B.; Jocher, G.; Sommar, J.; Rinne, J.; Bishop, K.

    2016-02-01

    The fate of anthropogenic emissions of mercury (Hg) to the atmosphere is influenced by the exchange of elemental Hg with the earth surface. This exchange holds the key to a better understanding of Hg cycling from local to global scales, which has been difficult to quantify. To advance research about land-atmosphere Hg interactions, we developed a dual-inlet, single detector relaxed eddy accumulation (REA) system. REA is an established technique for measuring turbulent fluxes of trace gases and aerosol particles in the atmospheric surface layer. Accurate determination of gaseous elemental mercury (GEM) fluxes has proven difficult due to technical challenges presented by extremely small concentration differences (typically < 0.5 ng m-3) between updrafts and downdrafts. We present an advanced REA design that uses two inlets and two pairs of gold cartridges for continuous monitoring of GEM fluxes. This setup reduces the major uncertainty created by the sequential sampling in many previous designs. Additionally, the instrument is equipped with a GEM reference gas generator that monitors drift and recovery rates. These innovations facilitate continuous, autonomous measurement of GEM flux. To demonstrate the system performance, we present results from field campaigns in two contrasting environments: an urban setting with a heterogeneous fetch and a boreal peatland during snowmelt. The observed average emission rates were 15 and 3 ng m-2 h-1, respectively. We believe that this dual-inlet, single detector approach is a significant improvement of the REA system for ultra-trace gases and can help to advance our understanding of long-term land-atmosphere GEM exchange.

  6. Is there an association between Helicobacter pylori in the inlet patch and globus sensation?

    Institute of Scientific and Technical Information of China (English)

    Hakan; Alagozlu; Zahide; Simsek; Selahattin; Unal; Mehmet; Cindoruk; Sukru; Dumlu; Ayse; Dursun

    2010-01-01

    AIM:To determine the association between Helicobacter pylori(H.pylori)and globus sensation(GS)in the patients with cervical inlet patch. METHODS:Sixty-eight patients with esophageal inlet patches were identified from 6760 consecutive patients undergoing upper gastrointestinal endoscopy prospectively.In these 68 patients with cervical inlet patches, symptoms of globus sensation(lump in the throat), hoarseness,sore throat,frequent clearing of the throat,cough,dysphagia,odynophagia of at least 3 mo duration wa...

  7. Ultrasonic Hot Embossing

    Directory of Open Access Journals (Sweden)

    Werner Karl Schomburg

    2011-05-01

    Full Text Available Ultrasonic hot embossing is a new process for fast and low-cost production of micro systems from polymer. Investment costs are on the order of 20.000 € and cycle times are a few seconds. Microstructures are fabricated on polymer foils and can be combined to three-dimensional systems by ultrasonic welding.

  8. What's Hot? What's Not?

    Science.gov (United States)

    Buczynski, Sandy

    2006-01-01

    When Goldilocks finds three bowls of porridge at different temperatures in the three bears' house, she accurately assesses the situation and comes up with one of the most recognizable lines in children's literature," This porridge is too hot; this porridge is too cold; aahh, this porridge is just right!" Goldilocks' famous line is a perfect…

  9. Hot house bad house

    OpenAIRE

    Azzopardi, Shaun

    2014-01-01

    Shaun Azzopardi met up with a team of researchers led by Eur. Ing. Charles Yousif to take the concrete block to the next level. It is more exciting than it sounds. Photography by Dr Edward Duca. http://www.um.edu.mt/think/hot-house-bad-house/

  10. Fending Off Hot Money

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Amid uncertainties about the amount of hot money,the government strives to curb the harmful capital The benchmark Shanghai Composite Index was plagued by dips, climbs and dives as the stock market slumped from 3,186 to 2,838 points

  11. The "hot money" phenomenon in Brazil

    Directory of Open Access Journals (Sweden)

    Mylène Gaulard

    2012-09-01

    Full Text Available Because of its high interest rates, Brazil attracts more and more speculative capital flows, called "hot money", under the form of foreign loans, direct or portfolio investments. Actually, the country is directly involved in a carry-trade strategy that tends to appreciate the real, what penalizes the Brazilian exportations of manufactured products. Moreover, capital inflows are extremely volatile, and their departure, causing a fall in loans granted to the Brazilian private banks, could provoke a dangerous burst of the speculative bubble they have contributed to form in the Brazilian real estate sector.

  12. Cavitation performance and flow characteristic in a centrifugal pump with inlet guide vanes

    Science.gov (United States)

    Tan, L.; Zha, L.; Cao, S. L.; Wang, Y. C.; Gui, S. B.

    2015-01-01

    The influence of prewhirl regulation by inlet guide vanes (IGVs) on cavitation performance and flow characteristic in a centrifugal pump is investigated. At the impeller inlet, the streamlines are regulated by the IGVs, and the axial velocity distribution is also influenced by the IGVs. Due to the total pressure loss on the IGVs, the cavitation performance of the centrifugal pump degrades. The cavitation area in impeller with IGVs is larger than one without IGVs. The specify values of total pressure loss between the suction pipe inlet and impeller inlet for three cavitation conditions show that the IGVs will generate additional pressure loss, which is related to the IGVs angles and cavitation conditions.

  13. Smart Materials Technology for High Speed Adaptive Inlet/Nozzle Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Enabling a new generation of high speed civil aircraft will require breakthrough developments in propulsion design, including novel techniques to optimize inlet...

  14. Inlet boundary conditions for shock wave propagation problems in air ducts

    Science.gov (United States)

    Fashbaugh, R. H.

    1992-03-01

    Shock waves propagating into air ducting systems are numerically studied using data from Kriebel (1972). Small-scale junctions mounted in shock tubes with an incident shock wave are considered. The stagnation pressure ratio through a duct inlet is evaluated for various junction types. The logarithm of this ratio varies linearly with the Mach number of the flow behind the incident shock wave. The static pressure inside the inlet is established using experimental data with given Mach numbers of the incident and inlet flows. A constant stagnation enthalpy through the inlet junction is assumed to establish inflow to the duct.

  15. Design concept of three-dimensional section controllable internal waverider hypersonic inlet

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A new hypersonic inlet named three-dimensional section controllable internal waverider inlet is presented in this paper to achieve the goal of section shape geometric transition and complete capture of the upstream mass. On the basis of the association between hypersonic waverider airframe and streamtraced hypersonic inlet, the waverider concept is extended to yield results for the internal flows, namely internal waverider concept. It is proven theoretically that not osculating cones but osculating axisymmetric theory is appropriate for the design of section controllable internal waverider inlet. And two design methods out of the internal waverider concept are proposed subsequently to construct two inlets with specific section shape request, triangle to ellipse and rectangle to ellipse ones. The calculation results show that the inlets are capable of keeping their shock structures and the main flow characteristics exactly as their derived flowfield. Further, the inlets successfully capture all the upstream mass despite their complicated cross-section transitions. It is believed that the concept proposed ex- plores a new way of designing three-dimensional hypersonic inlets with special demand of section shape transition. However, the detailed flow characteristic and the performance of the internal waverider inlets are still under investigation.

  16. Shock Position Control for Mode Transition in a Turbine Based Combined Cycle Engine Inlet Model

    Science.gov (United States)

    Csank, Jeffrey T.; Stueber, Thomas J.

    2013-01-01

    A dual flow-path inlet for a turbine based combined cycle (TBCC) propulsion system is to be tested in order to evaluate methodologies for performing a controlled inlet mode transition. Prior to experimental testing, simulation models are used to test, debug, and validate potential control algorithms which are designed to maintain shock position during inlet disturbances. One simulation package being used for testing is the High Mach Transient Engine Cycle Code simulation, known as HiTECC. This paper discusses the development of a mode transition schedule for the HiTECC simulation that is analogous to the development of inlet performance maps. Inlet performance maps, derived through experimental means, describe the performance and operability of the inlet as the splitter closes, switching power production from the turbine engine to the Dual Mode Scram Jet. With knowledge of the operability and performance tradeoffs, a closed loop system can be designed to optimize the performance of the inlet. This paper demonstrates the design of the closed loop control system and benefit with the implementation of a Proportional-Integral controller, an H-Infinity based controller, and a disturbance observer based controller; all of which avoid inlet unstart during a mode transition with a simulated disturbance that would lead to inlet unstart without closed loop control.

  17. Design concept of three-dimensional section controllable internal waverider hypersonic inlet

    Institute of Scientific and Technical Information of China (English)

    YOU YanCheng; LIANG DeWang

    2009-01-01

    A new hypersonic inlet named three-dimensional section controllable internal waverider inlet is presented in this paper to achieve the goal of section shape geometric transition and complete capture of the upstream mass. On the basis of the association between hypersonic waverider airframe and streamtraced hypersonic inlet, the waverider concept is extended to yield results for the internal flows,namely internal waverider concept. It is proven theoretically that not osculating cones but osculating axisymmetric theory is appropriate for the design of section controllable internal wsverider inlet. And two design methods out of the internal waverider concept are proposed subsequently to construct two inlets with specific section shape request, triangle to ellipse and rectangle to ellipse ones. The calculation results show that the inlets are capable of keeping their shock structures and the main flow characteristics exactly as their derived flowfield. Further, the inlets successfully capture all the upstream mass despite their complicated cross-section transitions. It is believed that the concept proposed explores a new way of designing three-dimensional hypersonic inlets with special demand of section shape transition. However, the detailed flow characteristic and the performance of the internal waverider inlets are still under investigation.

  18. Particle Loss Calculator – a new software tool for the assessment of the performance of aerosol inlet systems

    Directory of Open Access Journals (Sweden)

    S.-L. von der Weiden

    2009-09-01

    Full Text Available Most aerosol measurements require an inlet system to transport aerosols from a select sampling location to a suitable measurement device through some length of tubing. Such inlet systems must be optimized to minimize aerosol sampling artifacts and maximize sampling efficiency. In this study we introduce a new multifunctional software tool (Particle Loss Calculator, PLC that can be used to quickly determine aerosol sampling efficiency and particle transport losses due to passage through arbitrary tubing systems. The software employs relevant empirical and theoretical relationships found in established literature and accounts for the most important sampling and transport effects that might be encountered during deployment of typical, ground-based ambient aerosol measurements through a constant-diameter sampling probe. The software treats non-isoaxial and non-isokinetic aerosol sampling, aerosol diffusion and sedimentation as well as turbulent inertial deposition and inertial deposition in bends and contractions of tubing. This software was validated through comparison with experimentally determined particle losses for several tubing systems bent to create various diffusion, sedimentation and inertial deposition properties. As long as the tube geometries are not "too extreme", agreement is satisfactory. We discuss the conclusions of these experiments, the limitations of the software and present three examples of the use of the Particle Loss Calculator in the field.

  19. Particle Loss Calculator – a new software tool for the assessment of the performance of aerosol inlet systems

    Directory of Open Access Journals (Sweden)

    S.-L. von der Weiden

    2009-04-01

    Full Text Available Most aerosol measurements require an inlet system to transport aerosols from a select sampling location to a suitable measurement device through some length of tubing. Such inlet systems must be optimized to minimize aerosol sampling artifacts and maximize sampling efficiency. In this study we introduce a new multifunctional software tool (Particle Loss Calculator, PLC that can be used to quickly determine aerosol sampling efficiency and particle transport losses due to passage through arbitrary tubing systems. The software employs relevant empirical and theoretical relationships found in established literature and accounts for the most important sampling and transport effects that might be encountered during deployment of typical, ground-based ambient aerosol measurements. The software treats non-isoaxial and non-isokinetic aerosol sampling, aerosol diffusion and sedimentation as well as turbulent inertial deposition and inertial deposition in bends and contractions of tubing. This software was validated through comparison with experimentally determined particle losses for several tubing systems bent to create various diffusion, sedimentation and inertial deposition properties. As long as the tube geometries are not "too extreme", agreement is satisfactory. We discuss the conclusions of these experiments, the limitations of the software and present three examples of the use of the Particle Loss Calculator in the field.

  20. Legacy to the extreme

    NARCIS (Netherlands)

    A. van Deursen (Arie); T. Kuipers (Tobias); L.M.F. Moonen (Leon)

    2000-01-01

    textabstractWe explore the differences between developing a system using extreme programming techniques, and maintaining a legacy system. We investigate whether applying extreme programming techniques to legacy maintenance is useful and feasible.

  1. Legacy to the extreme

    NARCIS (Netherlands)

    Deursen, A. van; Kuipers, T.; Moonen, L.M.F.

    2000-01-01

    We explore the differences between developing a system using extreme programming techniques, and maintaining a legacy system. We investigate whether applying extreme programming techniques to legacy maintenance is useful and feasible.

  2. Hot Fuel Examination Facility (HFEF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Hot Fuel Examination Facility (HFEF) is one of the largest hot cells dedicated to radioactive materials research at Idaho National Laboratory (INL). The nation's...

  3. Propagation of Light in a Hot and Dense Medium

    CERN Document Server

    Masood, Samina

    2016-01-01

    Photons, as quanta of electromagnetic fields, determine the electromagnetic properties of an extremely hot and dense medium. Considering the properties of photons in the interacting medium of charged particles, we explicitly calculate the electromagnetic properties such as the electric permittivity, magnetic permeability, refractive index and the propagation speed of electromagnetic signals in extremely hot and dense background in cosmos. Photons acquire dynamically generated mass in a medium. The screening mass of photon, Debye shielding length and the plasma frequency are calculated as functions of statistical parameters of the medium. We study the properties of the propagating particles in astrophysical systems of distinct statistical conditions. The modifications in the medium properties lead to the equation of state of the system. We mainly calculate all these parameters for extremely high temperatures of the early universe.

  4. Extreme environment electronics

    CERN Document Server

    Cressler, John D

    2012-01-01

    Unfriendly to conventional electronic devices, circuits, and systems, extreme environments represent a serious challenge to designers and mission architects. The first truly comprehensive guide to this specialized field, Extreme Environment Electronics explains the essential aspects of designing and using devices, circuits, and electronic systems intended to operate in extreme environments, including across wide temperature ranges and in radiation-intense scenarios such as space. The Definitive Guide to Extreme Environment Electronics Featuring contributions by some of the world's foremost exp

  5. Inlet throttling effect on the boiling two-phase flow stability in a natural circulation loop with a chimney

    Science.gov (United States)

    Furuya, M.; Inada, F.; Yasuo, A.

    Experiments have been conducted to investigate an effect of inlet restriction on the thermal-hydraulic stability. A Test facility used in this study was designed and constructed to have non-dimensional values that are nearly equal to those of natural circulation BWR. Experimental results showed that driving force of the natural circulation at the stability boundary was described as a function of heat flux and inlet subcooling independent of inlet restriction. In order to extend experimental database regarding thermal-hydraulic stability to different inlet restriction, numerical analysis was carried out based on the homogeneous flow model. Stability maps in reference to the core inlet subcooling and heat flux were presented for various inlet restrictions using the above-mentioned function. Instability region during the inlet subcooling shifted to the higher inlet subcooling with increasing inlet restriction and became larger with increasing heat flux.

  6. Deficiently Extremal Gorenstein Algebras

    Indian Academy of Sciences (India)

    Pavinder Singh

    2011-08-01

    The aim of this article is to study the homological properties of deficiently extremal Gorenstein algebras. We prove that if / is an odd deficiently extremal Gorenstein algebra with pure minimal free resolution, then the codimension of / must be odd. As an application, the structure of pure minimal free resolution of a nearly extremal Gorenstein algebra is obtained.

  7. What Is Hot Yoga (Bikram)?

    Science.gov (United States)

    Healthy Lifestyle Consumer health What is hot yoga? Answers from Edward R. Laskowski, M.D. Hot yoga is a vigorous form of yoga performed in a studio ... you check with your doctor before trying hot yoga if you have any health concerns. If you have heart disease, problems with ...

  8. Extreme Temperatures May Increase Risk for Low Birth Weight at Term

    Science.gov (United States)

    ... at term, NIH study suggests Skip sharing on social media links Share this: Page Content Monday, February 27, 201 7 -Stock photo Extreme hot or cold temperatures during pregnancy may increase the risk that infants born at ...

  9. Microbial hotspots and hot moments in soil

    Science.gov (United States)

    Kuzyakov, Yakov; Blagodatskaya, Evgenia

    2015-04-01

    Soils are the most heterogeneous parts of the biosphere, with an extremely high differentiation of properties and processes within nano- to macroscales. The spatial and temporal heterogeneity of input of labile organics by plants creates microbial hotspots over short periods of time - the hot moments. We define microbial hotspots as small soil volumes with much faster process rates and much more intensive interactions compared to the average soil conditions. Such hotspots are found in the rhizosphere, detritusphere, biopores (including drilosphere) and on aggregate surfaces, but hotspots are frequently of mixed origin. Hot moments are short-term events or sequences of events inducing accelerated process rates as compared to the averaged rates. Thus, hotspots and hot moments are defined by dynamic characteristics, i.e. by process rates. For this hotspot concept we extensively reviewed and examined the localization and size of hotspots, spatial distribution and visualization approaches, transport of labile C to and from hotspots, lifetime and process intensities, with a special focus on process rates and microbial activities. The fraction of active microorganisms in hotspots is 2-20 times higher than in the bulk soil, and their specific activities (i.e. respiration, microbial growth, mineralization potential, enzyme activities, RNA/DNA ratio) may also be much higher. The duration of hot moments in the rhizosphere is limited and is controlled by the length of the input of labile organics. It can last a few hours up to a few days. In the detritusphere, however, the duration of hot moments is regulated by the output - by decomposition rates of litter - and lasts for weeks and months. Hot moments induce succession in microbial communities and intense intra- and interspecific competition affecting C use efficiency, microbial growth and turnover. The faster turnover and lower C use efficiency in hotspots counterbalances the high C inputs, leading to the absence of strong

  10. Comparison of Chip Inlet Geometry in Microfluidic Devices for Cell Studies

    Directory of Open Access Journals (Sweden)

    Yung-Shin Sun

    2016-06-01

    Full Text Available Micro-fabricated devices integrated with fluidic components provide an in vitro platform for cell studies best mimicking the in vivo micro-environment. These devices are capable of creating precise and controllable surroundings of pH value, temperature, salt concentration, and other physical or chemical stimuli. Various cell studies such as chemotaxis and electrotaxis can be performed by using such devices. Moreover, microfluidic chips are designed and fabricated for applications in cell separations such as circulating tumor cell (CTC chips. Usually, there are two most commonly used inlets in connecting the microfluidic chip to sample/reagent loading tubes: the vertical (top-loading inlet and the parallel (in-line inlet. Designing this macro-to-micro interface is believed to play an important role in device performance. In this study, by using the commercial COMSOL Multiphysics software, we compared the cell capture behavior in microfluidic devices with different inlet types and sample flow velocities. Three different inlets were constructed: the vertical inlet, the parallel inlet, and the vertically parallel inlet. We investigated the velocity field, the flow streamline, the cell capture rate, and the laminar shear stress in these inlets. It was concluded that the inlet should be designed depending on the experimental purpose, i.e., one wants to maximize or minimize cell capture. Also, although increasing the flow velocity could reduce cell sedimentation, too high shear stresses are thought harmful to cells. Our findings indicate that the inlet design and flow velocity are crucial and should be well considered in fabricating microfluidic devices for cell studies.

  11. Long-Term Ecological Research (LTER) Climate Data with Water Parameters from North Inlet Meteorological Station, North Inlet Estuary, Georgetown, South Carolina: 1982-1996.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — Meteorological data with water parameters were collected on an hourly basis from June 3, 1982 through April 29, 1996 in the North Inlet Estuary, Georgetown County,...

  12. North Inlet-Winyah Bay National Estuarine Research Reserve's (NERR) Estuarine Water Quality Data for the North Inlet and Winyah Bay Estuaries, Georgetown, South Carolina: 1993-2002

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — The North Inlet Estuary and the adjacent lower northeastern section of the Winyah Bay Estuary were designated as part of the National Estuarine Research Reserve...

  13. Phosphorus mass balance in a highly eutrophic semi-enclosed inlet near a big metropolis: a small inlet can contribute towards particulate organic matter production.

    Science.gov (United States)

    Asaoka, Satoshi; Yamamoto, Tamiji

    2011-01-01

    Terrigenous loading into enclosed water bodies has been blamed for eutrophic conditions marked by massive algal growth and subsequent hypoxia due to decomposition of dead algal cells. This study aims to describe the eutrophication and hypoxia processes in a semi-enclosed water body lying near a big metropolis. Phosphorus mass balance in a small inlet, Ohko Inlet, located at the head of Hiroshima Bay, Japan, was quantified using a numerical model. Dissolved inorganic phosphorous inflow from Kaita Bay next to the inlet was five times higher than that from terrigenous load, which may cause an enhancement of primary production. Therefore, it was concluded that not only the reduction of material load from the land and the suppression of benthic flux are needed, but also reducing the inflow of high phosphorus and oxygen depleted water from Kaita Bay will form a collective alternative measure to remediate the environmental condition of the inlet.

  14. Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor. Ph.D. Thesis - Toledo Univ., OH

    Science.gov (United States)

    Owen, Albert K.

    1991-01-01

    Detailed flow measurements were taken inside an isolated axial compressor rotor operating subsonically near peak efficiency. Laser anemometer measurements were made with two inlet velocity profiles. One profile consisted of an unmodified baseline flow, and the second profile was distorted by placing axisymmetric screens on the hub and shroud well upstream of the rotor. A primary flow is defined in the rotor and deviations from this primary flow for each inlet flow condition identified. A comparison between the two flow deviations is made to assess the development of a passage vortex due to the distortion of the inlet flow. A comparison of experimental results with computational predictions from a Navier-Stokes solver showed good agreement between predicted and measured flow. Measured results indicate that a distorted inlet profile has minimal effect on the development of the flow in the rotor passage and the resulting passage vortex.

  15. North Inlet • Winyah Bay (NIW) National Estuarine Research Reserve Meteorological Data, North Inlet Estuary, Georgetown, South Carolina: 1997 • 1999.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — The North Inlet Estuary and the adjacent lower northeastern section of Winyah Bay Estuary were designated as part of the National Estuarine Research Reserve System...

  16. Admiralty Inlet Pilot Tidal Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Collar, Craig [Public Utility District No. 1 of Snohomish County, Everett, WA (United States)

    2015-09-14

    This document represents the final report for the Admiralty Inlet Pilot Tidal Project, located in Puget Sound, Washington, United States. The Project purpose was to license, permit, and install a grid-connected deep-water tidal turbine array (two turbines) to be used as a platform to gather operational and environmental data on tidal energy generation. The data could then be used to better inform the viability of commercial tidal energy generation from technical, economic, social, and environmental standpoints. This data would serve as a critical step towards the responsible advancement of commercial scale tidal energy in the United States and around the world. In late 2014, Project activities were discontinued due to escalating costs, and the DOE award was terminated in early 2015. Permitting, licensing, and engineering design activities were completed under this award. Final design, deployment, operation, and monitoring were not completed. This report discusses the results and accomplishments achieved under the subject award.

  17. Mass independent kinetic energy reducing inlet system for vacuum environment

    Science.gov (United States)

    Reilly, Peter T. A. [Knoxville, TN

    2010-12-14

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  18. The hot Hagedorn Universe

    CERN Document Server

    Rafelski, Johann

    2016-01-01

    In the context of the half-centenary of Hagedorn temperature and the statistical bootstrap model (SBM) we present a short account of how these insights coincided with the establishment of the hot big-bang model (BBM) and helped resolve some of the early philosophical difficulties. We then turn attention to the present day context and show the dominance of strong interaction quark and gluon degrees of freedom in the early stage, helping to characterize the properties of the hot Universe. We focus attention on the current experimental insights about cosmic microwave background (CMB) temperature fluctuation, and develop a much improved understanding of the neutrino freeze-out, in this way paving the path to the opening of a direct connection of quark-gluon plasma (QGP) physics in the early Universe with the QCD-lattice, and the study of the properties of QGP formed in the laboratory.

  19. The hot chocolate effect

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Frank S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)

    1982-05-01

    The "hot chocolate effect" was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the ten percent accuracy of the experiments.

  20. Hot chocolate effect

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, F.S.

    1982-05-01

    The ''hot chocolate effect'' was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one-quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the 10% accuracy of the experiments.

  1. Hot Spring Metagenomics

    Directory of Open Access Journals (Sweden)

    Olalla López-López

    2013-04-01

    Full Text Available Hot springs have been investigated since the XIX century, but isolation and examination of their thermophilic microbial inhabitants did not start until the 1950s. Many thermophilic microorganisms and their viruses have since been discovered, although the real complexity of thermal communities was envisaged when research based on PCR amplification of the 16S rRNA genes arose. Thereafter, the possibility of cloning and sequencing the total environmental DNA, defined as metagenome, and the study of the genes rescued in the metagenomic libraries and assemblies made it possible to gain a more comprehensive understanding of microbial communities—their diversity, structure, the interactions existing between their components, and the factors shaping the nature of these communities. In the last decade, hot springs have been a source of thermophilic enzymes of industrial interest, encouraging further study of the poorly understood diversity of microbial life in these habitats.

  2. Extreme value distributions

    CERN Document Server

    Ahsanullah, Mohammad

    2016-01-01

    The aim of the book is to give a through account of the basic theory of extreme value distributions. The book cover a wide range of materials available to date. The central ideas and results of extreme value distributions are presented. The book rwill be useful o applied statisticians as well statisticians interrested to work in the area of extreme value distributions.vmonograph presents the central ideas and results of extreme value distributions.The monograph gives self-contained of theory and applications of extreme value distributions.

  3. Subclavian artery resection and reconstruction for thoracic inlet neoplasms.

    Science.gov (United States)

    Mercier, Olaf; Su, Xiao-Dong; Lahon, Benoit; Mussot, Sacha; Fabre, Dominique; Delemos, Alexandra; Le Chevalier, Thierry; Dartevelle, Philippe G; Fadel, Elie

    2015-12-01

    To update the long-term outcomes after subclavian artery (SA) resection and reconstruction during surgery for thoracic inlet (TI) cancer through the anterior transclavicular approach. Between 1985 and 2014, 85 patients (60 men and 25 women; mean age, 52 years) underwent en bloc resection of thoracic-inlet non-small cell lung cancer (NSCLC) (n=69), sarcoma (n=11), breast carcinoma (n=3) or thyroid carcinoma (n=2) involving the SA. L-shaped transclavicular cervicothoracotomy was performed, with posterolateral thoracotomy in 18 patients or a posterior midline approach in 15 patients. Resection extended to the chest wall (>2 ribs, n=60), lung (n=76), and spine (n=15). Revascularization was by end-to-end anastomosis (n=48), polytetrafluoroethylene (PTFE) graft interposition (n=28), subclavian-to-common carotid artery transposition (n=8), or grafting of the autologous superficial femoral artery in an anterolateral thigh free flap (n=1). Complete R0 resection was achieved in 75 patients and microscopic R1 resection in 10 patients. Postoperative radiation therapy was given to 51 patients. There were no cases of postoperative death, neurological sequelae, graft infection or occlusion, or limb ischemia. Postoperative morbidity consisted of pneumonia (n=16), phrenic nerve palsy (n=2), recurrent nerve palsy (n=4), bleeding (n=4), acute pulmonary embolism (n=1), cerebrospinal fluid leakage (n=1), chylothorax (n=1), and wound infection (n=2). Five-year survival and disease-free survival rates were 32% and 22%, respectively. Long-term survival was not observed after R1 resection. Subclavian arteries invaded by TI malignancies can be safely resected and reconstructed through the anterior transclavicular approach, with good long-term survival provided complete R0 resection is achieved.

  4. Acoustic Environment of Admiralty Inlet: Broadband Noise Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jinshan; Deng, Zhiqun; Martinez, Jayson J.; Carlson, Thomas J.; Myers, Joshua R.; Weiland, Mark A.; Jones, Mark E.

    2011-09-30

    Admiralty Inlet has been selected as a potential tidal energy site. It is located near shipping lanes, is a highly variable acoustic environment, and is frequented by the highly endangered southern resident killer whale (SRKW). Resolving environmental impacts is the first step to receiving approval to deploy tidal turbines at Admiralty Inlet. Of particular concern is the potential for blade strike or other negative interactions between the SRKW and the tidal turbine. A variety of technologies including passive and active monitoring systems are being considered as potential tools to determine the presence of SRKW in the vicinity of the turbines. Broadband noise level measurements are critical for the determination of design and operation specifications of all marine and hydrokinetic energy capture technologies. Acoustic environment data at the proposed site was acquired at different depths using a cabled vertical line array (VLA) with four calibrated hydrophones. The sound pressure level (SPL) power spectrum density was estimated based on the fast Fourier transform. This study describes the first broadband SPL measurements for this site at different depths with frequency ranging from 10 kHz to 480 kHz in combination with other information. To understand the SPL caused by this bedload transport, three different pressure sensors with temperature and conductivity were also assembled on the VLA to measure the conditions at the hydrophone deployment depth. The broadband SPL levels at frequency ranges of 3 kHz to 7 kHz as a function of depth were estimated. Only the hydrophone at an average depth of 40 m showed the strong dependence of SPL with distance from the bottom, which was possibly caused by the cobbles shifting on the seabed. Automatic Identification System data were also studied to understand the SPL measurements.

  5. Compound extremes in a changing climate - a Markov chain approach

    Science.gov (United States)

    Sedlmeier, Katrin; Mieruch, Sebastian; Schädler, Gerd; Kottmeier, Christoph

    2016-11-01

    Studies using climate models and observed trends indicate that extreme weather has changed and may continue to change in the future. The potential impact of extreme events such as heat waves or droughts depends not only on their number of occurrences but also on "how these extremes occur", i.e., the interplay and succession of the events. These quantities are quite unexplored, for past changes as well as for future changes and call for sophisticated methods of analysis. To address this issue, we use Markov chains for the analysis of the dynamics and succession of multivariate or compound extreme events. We apply the method to observational data (1951-2010) and an ensemble of regional climate simulations for central Europe (1971-2000, 2021-2050) for two types of compound extremes, heavy precipitation and cold in winter and hot and dry days in summer. We identify three regions in Europe, which turned out to be likely susceptible to a future change in the succession of heavy precipitation and cold in winter, including a region in southwestern France, northern Germany and in Russia around Moscow. A change in the succession of hot and dry days in summer can be expected for regions in Spain and Bulgaria. The susceptibility to a dynamic change of hot and dry extremes in the Russian region will probably decrease.

  6. Peppery Hot Bean Curd

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    Peppery Hot Bean Curd is a famous dish that originated in Chengdu,Sichuan Province.Dating back to the year under the reign of Emperor Tongzhi during the Qing Dynasty(1862-1875),a woman chef named Chen created this dish.In Chinese it is called Mapo Bean Curd. Ingredients:Three pieces of bean curd,100 grams lean pork,25 grams green soy beans or garlic

  7. Hot subluminous stars

    CERN Document Server

    Heber, Ulrich

    2016-01-01

    Hot subluminous stars of spectral type B and O are core helium-burning stars at the blue end of the horizontal branch or have evolved even beyond that stage. Strikingly, the distribution in the Hertzsprung-Russell diagram of He-rich vs. He-poor hot subdwarf stars of the globular clusters omega Cen and NGC~2808 differ from that of their field counterparts. The metal-abundance patterns of hot subdwarfs are typically characterized by strong deficiencies of some lighter elements as well as large enrichments of heavy elements. A large fraction of sdB stars are found in close binaries with white dwarf or very low-mass main sequence companions, which must have gone through a common-envelope phase of evolution.They provide a clean-cut laboratory to study this important but yet purely understood phase of stellar evolution. Substellar companions to sdB stars have also been found. For HW~Vir systems the companion mass distribution extends from the stellar into the brown dwarf regime. A giant planet to the pulsator V391 ...

  8. Solar Hot Water Heater

    Science.gov (United States)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  9. Jupiter's Hot, Mushy Moon

    Science.gov (United States)

    Taylor, G. Jeffrey

    2003-01-01

    Jupiter's moon Io is the most volcanically active body in the Solar System. Observations by instruments on the Galileo spacecraft and on telescopes atop Mauna Kea in Hawai'i indicate that lava flows on Io are surprisingly hot, over 1200 oC and possibly as much as 1300 oC; a few areas might have lava flows as hot as 1500 oC. Such high temperatures imply that the lava flows are composed of rock that formed by a very large amount of melting of Io's mantle. This has led Laszlo Keszthelyi and Alfred S. McEwen of the University of Arizona and me to reawaken an old hypothesis that suggests that the interior of Io is a partially-molten mush of crystals and magma. The idea, which had fallen out of favor for a decade or two, explains high-temperature hot spots, mountains, calderas, and volcanic plains on Io. If correct, Io gives us an opportunity to study processes that operate in huge, global magma systems, which scientists believe were important during the early history of the Moon and Earth, and possibly other planetary bodies as well. Though far from proven, the idea that Io has a ocean of mushy magma beneath its crust can be tested with measurements by future spacecraft.

  10. Temporal variations of randomness in seismic noise during the 2009 Redoubt volcano eruption, Cook Inlet, Alaska

    Science.gov (United States)

    Konstantinou, Konstantinos; Glynn, Chagnon

    2017-04-01

    Redoubt volcano is a stratovolcano in the Cook Inlet, south-central Alaska, that has erupted several times in the last fifty years. Its latest eruption in March 2009 was preceded first by volcanic tremor, which was immediately followed by a swarm of low-frequency earthquakes. Due to its proximity to sensitive infrastructure (oil platforms and storage facilities) and the fact that it lies in the way of air traffic routes, Redoubt has been closely monitored by permanent and temporary seismic stations. One of these stations (REF) equipped with a short-period, vertical component sensor was located very near the summit and was continuously recording before, during and after the 2009 eruption. Here we quantify the randomness levels of the continuous seismic signal at REF by calculating Permutation Entropy (PE), which is a nonlinear statistical measure of the amount of randomness in a time series. The time window for this calculation starts 1 January 2009 about two months before the first earthquake swarm, and ends 2 May 2009 when the main explosive activity ceased. The temporal variation of PE during this period shows two significant features: (1) a large decrease about 20 days prior to the onset of the earthquake swarm of 26 February, and (2) smaller decreases that occur shortly (few hours to a day) before phreatic/magmatic explosions. These decreases in PE also coincide with depletion of higher frequencies (> 6 Hz) in the seismic signal, confirming previous findings where reduced randomness in seismic noise may indicate increased absorption losses as hot magmatic fluids reach shallow levels within the volcano edifice.

  11. Climate change impacts on extreme temperature mortality in select metropolitan areas of the United States

    Science.gov (United States)

    Projected mortality from climate change-driven impacts on extremely hot and cold days increases significantly over the 21st century in a large group of United States Metropolitan Statistical Areas. Increases in projected mortality from more hot days are greater than decreases in ...

  12. 33 CFR 110.170 - Lockwoods Folly Inlet, N.C.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lockwoods Folly Inlet, N.C. 110.170 Section 110.170 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.170 Lockwoods Folly Inlet, N.C. (a)...

  13. 33 CFR 334.130 - Atlantic Ocean off Wallops Island and Chincoteague Inlet, Va.; danger zone.

    Science.gov (United States)

    2010-07-01

    ... and Chincoteague Inlet, Va.; danger zone. 334.130 Section 334.130 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.130 Atlantic Ocean off Wallops Island and Chincoteague Inlet, Va.; danger zone. (a) The...

  14. 77 FR 6065 - Proposed Information Collection; Comment Request; Cook Inlet Beluga Whale Economic Survey

    Science.gov (United States)

    2012-02-07

    ....) waters. It was listed as endangered under the Endangered Species Act on October 22, 2008 (73 FR 62919... Inlet Beluga Whale Economic Survey AGENCY: National Oceanic and Atmospheric Administration (NOAA....Lew@noaa.gov . SUPPLEMENTARY INFORMATION: I. Abstract The population of Cook Inlet beluga whales...

  15. Assessing climate change impacts on the stability of small tidal inlet systems: Why and how?

    NARCIS (Netherlands)

    Duong, T.; Ranasinghe, Ranasinghe W M R J B; Walstra, D.J.R.; Roelvink, D.

    2016-01-01

    Coastal zones in the vicinity of tidal inlets are commonly utilised for navigation, fishing, sand mining, waterfront development and recreation and are under very high population pressure. Any negative impacts of climate change (CC) on inlet environment are therefore very likely to result in

  16. Direct vacuum inlet system enabling highly sensitive in-situ analysis of chemical reaction products

    DEFF Research Database (Denmark)

    Trimarco, Daniel Bøndergaard; Scott, Søren Bertelsen; Pedersen, Thomas

    , a capillary maintaining a controlled flow over a pressure drop to ultra-high vacuum, and inlet and outlet channels for an inert make up gas. The use of a direct inlet enables orders of magnitude higher sensitivity than differentially pumped systems without a loss in time response for volatile products, while...

  17. Biochar-amended filter socks reduce herbicide losses via tile line surface inlets

    Science.gov (United States)

    Standing water in depressions and behind terraces in fields with subsurface drainage systems can result in reduced crop yields. This concern can be partially alleviated by installing surface inlets that reduce the duration of ponding. Unfortunately, these inlets provide an open conduit for surface w...

  18. Assessing climate change impacts on the stability of small tidal inlet systems: Why and how?

    NARCIS (Netherlands)

    Duong, T.; Ranasinghe, R.W.M.R.J.; Walstra, D.J.R.; Roelvink, D.

    2016-01-01

    Coastal zones in the vicinity of tidal inlets are commonly utilised for navigation, fishing, sand mining, waterfront development and recreation and are under very high population pressure. Any negative impacts of climate change (CC) on inlet environment are therefore very likely to result in signifi

  19. PREFACE: Hot Quarks 2004

    Science.gov (United States)

    Antinori, Federico; Bass, Steffen A.; Bellwied, Rene; Ullrich, Thomas; Velkovska, Julia; Wiedemann, Urs

    2005-04-01

    Why another conference devoted to ultra-relativistic heavy-ion physics? As we looked around the landscape of the existing international conferences and workshops, we realized that there was not a single one tailored to the people who are most directly involved with the actual research work: students, post-docs, and junior faculty/research scientists. Of course there are schools, but that was not what we had in mind. We wanted a meeting where young researchers could come together to discuss in depth the physics that they are working on without any hindrance. The major conferences have very limited time for discussions which is often shared amongst the most established. This leaves little room for young people to ask their questions and to get the detailed feedback which they deserve and which satisfies their curiosity. A discussion-driven workshop, centering on those without whom there will be no future—that seemed like what was needed. And thus the Hot Quarks workshop was born. The aim of Hot Quarks was to enhance the direct exchange of scientific information among the younger members of the community, from both experiment and theory. Participation was by invitation only in order to emphasize the contributions from junior researchers. This approach makes the workshop unique among the many forums in the field. For young scientists it represented an opportunity for exposure that they would not have had in one of the major conferences. The hope is that this meeting has helped to stimulate the next generation of scientists in our field and, at the same time, strengthened their sense of community. It all came together from 18 24 July 2004, when the 77 participants met at The Inn at Snakedance in the Taos Ski Valley, New Mexico, USA, for the first Hot Quarks workshop. Photograph Participants gather in the sunshine at the foot of the Taos Ski Valley chairlift. By all accounts, Hot Quarks 2004 was a great success. Every participant had the opportunity to present her or

  20. An Investigation on the Effect of the Hot End Plugs on the Efficiency of the Ranque-Hilsch Vortex Tube

    Science.gov (United States)

    Arjomandi, M.; Xue, Y. P.

    The phenomenon of temperature distribution in confined steady rotating gas flows is called as Ranque-Hilsch effect. The simple counter-flow vortex tube consists of a long hollow cylinder with tangential nozzles at one end for injecting compressed air. Rotating air escapes the tube through two different outlets-a central orifice diaphragm placed near the inlet (cold end) and a ring-shaped peripheral outlet at the opposite end of the tube (hot end).

  1. Design of Three-Dimensional Hypersonic Inlets with Rectangular to Elliptical Shape Transition

    Science.gov (United States)

    Smart, M. K.

    1998-01-01

    A methodology has been devised for the design of three-dimensional hypersonic inlets which include a rectangular to elliptical shape transition. This methodology makes extensive use of inviscid streamtracing techniques to generate a smooth shape transition from a rectangular-like capture to an elliptical throat. Highly swept leading edges and a significantly notched cowl enable use of these inlets in fixed geometry configurations. The design procedure includes a three dimensional displacement thickness calculation and uses established correlations to check for boundary layer separation due to shock wave interactions. Complete details of the design procedure are presented and the characteristics of a modular inlet with rectangular to elliptical shape transition and a design point of Mach 7.1 are examined. Comparison with a classical two-dimensional inlet optimized for maximum total pressure recovery indicates that this three-dimensional inlet demonstrates good performance even well below its design point.

  2. Effects of Inlet/Outlet Ducts on Acoustic Attenuation Characteristics of Circular Expansion Chambers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-bo; GE Yun-shan; JI Zhen-lin; ZHANG Wen-ping; SONG Yan-rong; HAN Xiu-kun; ZHANG Xue-min

    2006-01-01

    The effect of coaxial, offset and extended inlet/outlet on the acoustic attenuation characteristics of circular expansion chambers are studied by the three-dimensional finite element method. The numerical results of transmission loss are compared with experiment results to verify the necessary of using three-dimensional methods. Maps of acoustic pressure level distribution inside of chambers and inlet/outlet ducts are given at a frequency to demonstrate the difference of acoustic wave propagation behavior caused by locations of inlet/outlet ducts. For the chambers of the same length, the chamber with extended inlet/outlet duct has higher attenuation ability than coaxial and offset inlet/outlet duct over middle frequencies.

  3. Experimental Investigations into the Production Behavior of Methane Hydrate in Porous Sediment under Ethylene Glycol Injection and Hot Brine Stimulation

    OpenAIRE

    Li, Xiaosen; Li, Gang

    2010-01-01

    1 2 3 The flowing of hot water or hot brine injected in the vessel can be regarded as the moving of a piston from the inlet to the outlet. The hydrate dissociation process is divided into three stages: free gas production, hydrate dissociation and residual gas production. The process of the hydrate dissociation is a process of the temperature decrease in the presence of the brine solution. The duration of the hydrate dissociation is shortened and the degree of the depth of the temperature dro...

  4. A sedimentological approach to P-A relationships for tidal inlet systems:an example from Yuehu Inlet,Shandong Peninsula,China

    Institute of Scientific and Technical Information of China (English)

    Jianjun jIA; Shu GAO

    2008-01-01

    Power-law relationship between tidal prism (P) and the cross-sectional area of the entrance channel (A)is applicable to assess the equilibrium conditions of a tidal inlet system.The classic method of determining P-A relationships proposed bv O'Brien depends on datasets from multi-tidal inlet systems,which has shown some limitations and is unable to assess equilibrium of a single tidal inlet.This paper focuses on establishing a new P-A relationship for a single tidal inlet.Our experimental result shows that in order to maintain the status,power n should be>1.implying that the inlet width will narrow and current speed within the entrance will increase as tidal prism becomes smaller.A possible explanation for power n<41.0.as many researchers argued before,iS that the influence of tidal prism has been exaggerated.Meanwhile,the magnitude of coefficient C iS dependent on many factors such as longshore drift,freshwater discharge,etc,resulting in a wide range of variation Of C.It should be pointed out that P-A relationship given by the sediment dynamical approach is still a representative of average status for tidal inlets in equilibrium.As tide,wave,freshwater discharge and tidal inlet morphology change with time,actual P-Arelationships will fluctuate also.The problems that needto be solved when applying sediment dynamic methods to P-A relationships include the cross-sectional distribution Pattern of tidal currnt speeds in the entrance channel,the relationship between the tidal current and the tidal water level at the entrance,and the calculation of the ratio of width to depth.This paper will establish a sediment dynamical approach of P-A relationship for a single tidal inlet.The results are tested for P-A relationships of YuehuInlet,a small inlet-lagoon system located in Shandong Peninsula,China.

  5. Variation in the Deep Gas Composition in Hot Spots on Jupiter

    Science.gov (United States)

    Bjoraker, Gordon; de Pater, Imke; Wong, Michael H.; Adamkovics, Mate; Hewagama, Tilak; Hesman, Brigette

    2015-11-01

    We used CSHELL on NASA’s Infrared Telescope Facility and NIRSPEC on the Keck telescope in the last two years to spectrally resolve line profiles of CH3D, NH3, PH3, and H2O in 5-micron Hot Spots on Jupiter. The profile of the CH3D lines at 4.66 microns is very broad in both NEB and SEB Hot Spots due to collisions with up to 8 bars of H2, where unit optical depth occurs due to collision-induced H2 opacity. The extreme width of these CH3D features implies that the Hot Spots that we observed do not have significant cloud opacity for P > 2 bars. We retrieved NH3, PH3, and gaseous H2O within Hot Spots in both the NEB and SEB. We had dry nights on Mauna Kea and a sufficient Doppler shift to detect H2O. We will compare line wings to derive H2O profiles in the 2 to 6-bar region. NEB Hot Spots are depleted in NH3 with respect to adjacent regions. Interestingly, SEB Hot Spots exhibit stronger NH3 absorption than NEB Hot Spots. In addition, SEB Hot Spots have very similar 5-micron spectra as neighboring longitudes in the SEB, implying similar deep gas composition. The dynamical origin of SEB Hot Spots is much less studied than that of NEB Hot Spots, so our observations of gas composition in both regions may constrain mechanisms for forming Hot Spots.

  6. Statistical modeling and CMIP5 simulations of hot spell changes in China

    Science.gov (United States)

    Wang, Weiwen; Zhou, Wen; Li, Yun; Wang, Xin; Wang, Dongxiao

    2015-05-01

    A hot spell is an extreme weather event with one or more consecutive days with daily maximum temperature exceeding a certain threshold of high temperature. Statistical modeling of summer hot spells in China during 1960-2005 and their simulations in the historical experiment of the Coupled Model Intercomparison Project Phase 5 (CMIP5) are investigated in this study. A technique called the hot spell model (HSM), introduced by Furrer et al. (Clim Res 43:191-205, 2010) for modeling hot spells by extending the point process approach to extreme value theory, is applied. Specifically, the frequency of summer hot spells is modeled by a Poisson distribution, their intensity is modeled by a generalized Pareto distribution, and their duration is modeled by a geometric distribution. Results show that the HSM permits realistic modeling of summer hot spells in China. Trends in the frequency, duration, and intensity of hot spells were estimated based on the HSM for the observed period from 1960 to 2005. Furthermore, the performance in simulating hot spell characteristics and trends from the CMIP5 historical run were assessed based on the HSM. Climate models with good performance were selected to conduct an ensemble projection of hot spell intensity, frequency, and duration and their trends in future decades.

  7. Historical influence of irrigation on climate extremes

    Science.gov (United States)

    Thiery, Wim; Davin, Edouard L.; Lawrence, Dave; Hauser, Mathias; Seneviratne, Sonia I.

    2016-04-01

    Land irrigation is an essential practice sustaining global food production and many regional economies. During the last decades, irrigation amounts have been growing rapidly. Emerging scientific evidence indicates that land irrigation substantially affects mean climate conditions in different regions of the world. However, a thorough understanding of the impact of irrigation on extreme climatic conditions, such as heat waves, droughts or intense precipitation, is currently still lacking. In this context, we aim to assess the historical influence of irrigation on the occurrence of climate extremes. To this end, two simulations are conducted over the period 1910-2010 with a state-of-the-art global climate model (the Community Earth System Model, CESM): a control simulation including all major anthropogenic and natural external forcings except for irrigation and a second experiment with transient irrigation enabled. The two simulations are evaluated for their ability to represent (i) hot, dry and wet extremes using the HadEX2 and ERA-Interim datasets as a reference, and (ii) latent heat fluxes using LandFlux-EVAL. Assuming a linear combination of climatic responses to different forcings, the difference between both experiments approximates the influence of irrigation. We will analyse the impact of irrigation on a number of climate indices reflecting the intensity and duration of heat waves. Thereby, particular attention is given to the role of soil moisture changes in modulating climate extremes. Furthermore, the contribution of individual biogeophysical processes to the total impact of irrigation on hot extremes is quantified by application of a surface energy balance decomposition technique to the 90th and 99th percentile surface temperature changes.

  8. Extreme Velocity Wind Sensor

    Science.gov (United States)

    Perotti, Jose; Voska, Ned (Technical Monitor)

    2002-01-01

    This presentation provides an overview of the development of new hurricane wind sensor (Extreme Velocity Wind Sensor) for the Kennedy Space Center (KSC) which is designed to withstand winds of up to three hundred miles an hour. The proposed Extreme Velocity Wind Sensor contains no moveable components that would be exposed to extreme wind conditions. Topics covered include: need for new hurricane wind sensor, conceptual design, software applications, computational fluid dynamic simulations of design concept, preliminary performance tests, and project status.

  9. High resolution spectroscopy of six new extreme helium stars

    Science.gov (United States)

    Heber, U.; Jones, G.; Drilling, J. S.

    1986-01-01

    High resolution spectra of six newly discovered extreme helium stars are presented. LSS 5121 is shown to be a spectroscopical twin of the hot extreme helium star HD 160641. A preliminary LTE analysis of LSS 3184 yielded an effective temperature of 22,000 K and a surface gravity of log g = 3.2. Four stars form a new subgroup, classified by sharp-lined He I spectra and pronounced O II spectra, and it is conjectured that these lie close to the Eddington limit. The whole group of extreme helium stars apparently is inhomogeneous with respect to luminosity to mass ratio and chemical composition.

  10. Hot bitumen grouting rediscovered

    Energy Technology Data Exchange (ETDEWEB)

    Naudts, A. [ECO Grouting Specialists, Grand Valley, ON (Canada)

    2001-10-01

    The article extols the value of hot bitumen grouting, in conjunction with cement-based grout, as a fast, safe, environmentally-friendly and cost-effective sealant. A major advantage of bitumen grout is that blown bitumen will never wash out. The article discusses the properties and some applications of bitumen grout. A diagram shows an application of bitumen and cement-based grout at a large dam. Examples of preventing water flow in dams, in a coal mine and in a potash mine are also given.

  11. Mean water level setup/setdown in the inlet-lagoon system induced by tidal action-a case study of Xincun Inlet, Hainan Island in China

    Institute of Scientific and Technical Information of China (English)

    GONG Wenping; SHEN Jian; WANG Daoru

    2008-01-01

    With the tides propagating from the open sea to the lagoon, the mean water level (MWL) in the inlet and lagoon becomes different from that at the open sea, and a setup/setdown is generated. The change of MWL (setup/setdown) in the system imposes a great impact on regulating the development of tidal marshes, on determining the long-term water level for harbor maintenance, on the planning for the water front development with the flood control for the possible inundation, and on the interpretation of the historical sea level change when using tidal marsh peat deposits in the lagoon as the indicator for open sea' s sea level. In this ease study on the mechanisms which control the setup/setdown in Xincun Inlet, Hainan in China, the 2-D barotropic mode of Eulerian - Lagrangian CIRCulation (ELCIRC) model was utilized. After model calibration and verification, a series of numerical experiments were conducted to examine the effects of bottom friction and advection terms, wetting and drying of intertidal areas, bathymetry and boundary conditions on the setup/setdown in the system. The modeling results show that setup occurs over the inlet and lagoon areas with an order of one tenth of the tide range at the entrance. The larger the bottom friction is, a larger setup is generated.Without the advection term, the setup is reduced due to a decrease of water level gradient to compensate for the disappearance of the advection term. Even without overtides, a setup can still be developed in the system. Sea level rise and dredging in the inlet and tidal channel can cause a decrease of setup in the system, whereas shoaling of the system can increase the setup. The uniqueness of the Xincun Inlet with respect to MWL change is that there is no evident setdown in the inlet, which can be attributed to the complex geometry and bathymetry associated with the inlet system.

  12. How extreme is extreme hourly precipitation?

    Science.gov (United States)

    Papalexiou, Simon Michael; Dialynas, Yannis G.; Pappas, Christoforos

    2016-04-01

    The importance of accurate representation of precipitation at fine time scales (e.g., hourly), directly associated with flash flood events, is crucial in hydrological design and prediction. The upper part of a probability distribution, known as the distribution tail, determines the behavior of extreme events. In general, and loosely speaking, tails can be categorized in two families: the subexponential and the hyperexponential family, with the first generating more intense and more frequent extremes compared to the latter. In past studies, the focus has been mainly on daily precipitation, with the Gamma distribution being the most popular model. Here, we investigate the behaviour of tails of hourly precipitation by comparing the upper part of empirical distributions of thousands of records with three general types of tails corresponding to the Pareto, Lognormal, and Weibull distributions. Specifically, we use thousands of hourly rainfall records from all over the USA. The analysis indicates that heavier-tailed distributions describe better the observed hourly rainfall extremes in comparison to lighter tails. Traditional representations of the marginal distribution of hourly rainfall may significantly deviate from observed behaviours of extremes, with direct implications on hydroclimatic variables modelling and engineering design.

  13. Effect of piano-key shape inlet on critical submergence at a vertical pipe intake

    Science.gov (United States)

    Shemshi, R.; Kabiri-Samani, A.

    2012-11-01

    Intake vortices are the result of angular momentum conservation at the flow constriction, where angular velocity increases with a decrease in the cross sectional area. The common solution for avoiding air-entrainment and swirl is to provide sufficient submergence to the intake. If the required approach flow conditions can not be met to avoid swirl and air entrainment, other approaches for preventing vortices at water intakes are considered. There are several means of avoiding air-entrainment, where the most cost-effective option is often determined by a physical model study. Among the most economical and common measures of reducing the effect of air-entrainment and swirl strength, is the optimized shape of inlet for instance by installing a Piano-Key inlet over the pipe intake. If Piano-Key inlet is used, then, its' optimum geometry should be studied experimentally. Since there is not any realized guidance for the use of Piano-Key inlets in pipe intakes, hence, a comprehensive set of model experiments have been carried out using Piano-Key inlets with different dimensions, with respect to the vertical pipe intakes, and four different pipe diameters of (D=) 75, 100, 125 and 150 mm. Results showed that by employing a Piano-Key inlet over the vertical pipe intake, the critical submergence reduces significantly. Fianally, according to the results, the effect of Piano-Key inlet geometry on critical submergence were evaluated in the form of realized relationships which would be of practical interest for design engineers.

  14. A One Dimensional, Time Dependent Inlet/Engine Numerical Simulation for Aircraft Propulsion Systems

    Science.gov (United States)

    Garrard, Doug; Davis, Milt, Jr.; Cole, Gary

    1999-01-01

    The NASA Lewis Research Center (LeRC) and the Arnold Engineering Development Center (AEDC) have developed a closely coupled computer simulation system that provides a one dimensional, high frequency inlet/engine numerical simulation for aircraft propulsion systems. The simulation system, operating under the LeRC-developed Application Portable Parallel Library (APPL), closely coupled a supersonic inlet with a gas turbine engine. The supersonic inlet was modeled using the Large Perturbation Inlet (LAPIN) computer code, and the gas turbine engine was modeled using the Aerodynamic Turbine Engine Code (ATEC). Both LAPIN and ATEC provide a one dimensional, compressible, time dependent flow solution by solving the one dimensional Euler equations for the conservation of mass, momentum, and energy. Source terms are used to model features such as bleed flows, turbomachinery component characteristics, and inlet subsonic spillage while unstarted. High frequency events, such as compressor surge and inlet unstart, can be simulated with a high degree of fidelity. The simulation system was exercised using a supersonic inlet with sixty percent of the supersonic area contraction occurring internally, and a GE J85-13 turbojet engine.

  15. 75 FR 4528 - Endangered and Threatened Species: Notice of Intent to Prepare a Recovery Plan for Cook Inlet...

    Science.gov (United States)

    2010-01-28

    ... plan development. NMFS is hereby soliciting relevant information on Cook Inlet beluga whales and their... Intent to Prepare a Recovery Plan for Cook Inlet Beluga Whales AGENCY: National Marine Fisheries Service... recovery plan for the Cook Inlet beluga whale (Delphinapterus leucas) and requests information from...

  16. Laminar Flow Through Circular Tubes with Side Inlets

    Science.gov (United States)

    Abedian, Behrouz; Muhlanger, Eric

    2004-11-01

    We discuss experimental results on steady axisymmetric flow of a Newtonian incompressible fluid through circular pipes with side inlets. Circular tubes with a set of holes along their sidewalls are used in a number of medical procedures as straight catheters to transfer fluid into or out of the human body. For example, because of the small size of the incision required, they are commonly used in peritoneal dialysis. The internal diameter and the diameter of the side holes are often 1 mm and less, and as a result, the fluid flow is laminar in a typical medical procedure. An understanding of the flow inside the catheter tube in terms of its geometric parameters will be key in designing new catheters with optimal clinical performance for specific applications. In the experiments, water is withdrawn from a smooth tube with side holes and the local axial pressure and flow rates through the side holes are measured for different flow conditions. A nondimensionalization of the data shows a power-law behavior in only some cases. Using numerical simulations, it is shown how the interaction of the axial flow with the impinging jets from the side holes can change the overall behavior of the flow for a given suction pressure.

  17. Exergy analysis of inlet water temperature of condenser

    Directory of Open Access Journals (Sweden)

    Doi Aysakhanam m

    2014-12-01

    Full Text Available The most of the power plant designed by energetic performance criteria based on first law of thermodynamics. According to First law of thermodynamics energy analysis cannot be justified the losses of energy.The method of exergy analysis is well suited to describe true magnitude of waste and loss to be determined. Such information can be used in the design of new energy efficient system and increasing the efficiency of existing systems.In the present study exergy analysis of the shell and tube condenser is carried out. As the condenser is one of the major components of the power plant, so it is necessary to operate the condenser efficiently under the various operating condition to increase the overall efficiency of the power plant. In the present study inlet temperature of the condenser is optimized using the exergy method. The main aim of paper is to be find out causes of energy destruction that can be helpful to redesign the system and to increase the efficiency

  18. Southern Salish Sea Habitat Map Series: Admiralty Inlet

    Science.gov (United States)

    Cochrane, Guy R.; Dethier, Megan N.; Hodson, Timothy O.; Kull, Kristine K.; Golden, Nadine E.; Ritchie, Andrew C.; Moegling, Crescent; Pacunski, Robert E.; Cochrane, Guy R.

    2015-01-01

    In 2010 the Environmental Protection Agency, Region 10 initiated the Puget Sound Scientific Studies and Technical Investigations Assistance Program, designed to support research in support of implementing the Puget Sound Action Agenda. The Action Agenda was created in response to Puget Sound having been designated as one of 28 estuaries of national significance under section 320 of the U.S. Clean Water Act, and its overall goal is to restore the Puget Sound Estuary's environment by 2020. The Southern Salish Sea Mapping Project was funded by the Assistance Program request for proposals process, which also supports a large number of coastal-zone- and ocean-management issues. The issues include the recommendations of the Marine Protected Areas Work Group to the Washington State Legislature (Van Cleve and others, 2009), which endorses a Puget Sound and coast-wide marine conservation needs assessment, gap analysis of existing Marine Protected Areas (MPA) and recommendations for action. This publication is the first of four U.S. Geological Survey Scientific Investigation Maps that make up the Southern Salish Sea Mapping Project. The remaining three map blocks to be published in the future, located south of Admiralty Inlet, are shown in figure 1.

  19. Classifying Returns as Extreme

    DEFF Research Database (Denmark)

    Christiansen, Charlotte

    2014-01-01

    I consider extreme returns for the stock and bond markets of 14 EU countries using two classification schemes: One, the univariate classification scheme from the previous literature that classifies extreme returns for each market separately, and two, a novel multivariate classification scheme tha...

  20. An Investigation of Cowl Inlets for the B-29 Power-Plan Installation

    Science.gov (United States)

    1946-01-01

    operation. - The total pressures at the inlet of each configuration were considerably hipher and more uniform with the propoller removed than v...ith.thc propoller operating. (Soe figs. 22 to 25.) The reduction in pressure resulting from tho in- stallation of the propoller was about 0.07 qQ for...tho 43-inoh-dlameter inlet and about 0.14 q for the smaller oval inlet. (See fig. 26.) Changes in the propoller thrust coefficient ?0 (fi^. 27) :-;ad

  1. A Dynamic Process Model for the Beach-Inlet Transition Zone.

    Science.gov (United States)

    1980-05-01

    A0-A87 096 UNIVERSITY OF SOUTH FLORIDA TAMPA DEPT OF GEOLOGY F/S 8/3 A DYNAMIC PROCESS MODEL FOR THE REACH-INLET TRANSITION ZONE. UI N MAY 80 R A...cz80 7 A DYNAMIC PROCESS MODEL FOR THE BEACH-INLET TRANSITION ZONE by Richard A. Davis, Jr., University of South Florida and William T. Fox, Williams...during the study period have permitted construction of a dynami, process model for the beach-inlet transition zone during the tidal cycle. This model

  2. Development of the HIDEC inlet integration mode. [Highly Integrated Digital Electronic Control

    Science.gov (United States)

    Chisholm, J. D.; Nobbs, S. G.; Stewart, J. F.

    1990-01-01

    The Highly Integrated Digital Electronic Control (HIDEC) development program conducted at NASA-Ames/Dryden will use an F-15 test aircraft for flight demonstration. An account is presently given of the HIDEC Inlet Integration mode's design concept, control law, and test aircraft implementation, with a view to its performance benefits. The enhancement of performance is a function of the use of Digital Electronic Engine Control corrected engine airflow computations to improve the scheduling of inlet ramp positions in real time; excess thrust can thereby be increased by 13 percent at Mach 2.3 and 40,000 ft. Aircraft supportability is also improved through the obviation of inlet controllers.

  3. Numerical Simulation of NOx Formation in Coal Combustion with Inlet Natural Gas Burning

    Institute of Scientific and Technical Information of China (English)

    张宇; 周力行; 魏小林; 盛宏至

    2005-01-01

    A full two-fluid model of reacting gas-particle flows and coal combustion is used to simulate coal combustion with and without inlet natural gas added in the inlet. The simulation results for the case without natural gas burning is in fair agreement with the experimental results reported in references. The simulation results of different natural gas adding positions indicate that the natural gas burning can form lean oxygen combustion enviroment at the combustor inlet region and the NOx concentration is reduced. The same result can be obtained from chemical equilibrium analysis.

  4. The Stellar Extreme-Ultraviolet Radiation Field

    Science.gov (United States)

    Vallerga, John

    1998-04-01

    The local extreme ultraviolet (EUV) radiation field from stellar sources has been determined by combining the EUV spectra of 54 stars, taken with the spectrometers aboard the Extreme Ultraviolet Explorer satellite. The resultant spectrum over the range 70-730 Å is estimated to be 95% complete above 400 Å and 90% complete above 200 Å. The flux contributed by two B stars and three hot white dwarfs dominate the spectrum except at the shortest wavelengths, where an assortment of EUV source types contribute. The high electron densities measured toward nearby stars can be accounted for by photoionization from this radiation field, but the spectrum is too soft to explain the overionization of helium with respect to hydrogen recently measure in the Local Cloud.

  5. Mining Hot Springs for Biodiversity and Novel Enzymes

    DEFF Research Database (Denmark)

    Islin, Sóley Ruth

    The existence of microbial life at extreme environments, such as hot springs, has been known for a few decades. The remarkable ability of microorganisms to withstand the extreme conditions of their habitats, has astounded scientist and pushed the limits of what was considered possible. Thermophilic....... The polymerase activity of one of the homologs was confirmed and could have potential use in applications that require e.g. amplification of large DNA fragments. Another gene was found tandemly repeated, with high sequence variability and conserved intergenic regions, on several contigs in the metagenomes. We...

  6. Forecasting extreme temperature health hazards in Europe

    Science.gov (United States)

    Di Napoli, Claudia; Pappenberger, Florian; Cloke, Hannah L.

    2017-04-01

    Extreme hot temperatures, such as those experienced during a heat wave, represent a dangerous meteorological hazard to human health. Heat disorders such as sunstroke are harmful to people of all ages and responsible for excess mortality in the affected areas. In 2003 more than 50,000 people died in western and southern Europe because of a severe and sustained episode of summer heat [1]. Furthermore, according to the Intergovernmental Panel on Climate Change heat waves are expected to get more frequent in the future thus posing an increasing threat to human lives. Developing appropriate tools for extreme hot temperatures prediction is therefore mandatory to increase public preparedness and mitigate heat-induced impacts. A recent study has shown that forecasts of the Universal Thermal Climate Index (UTCI) provide a valid overview of extreme temperature health hazards on a global scale [2]. UTCI is a parameter related to the temperature of the human body and its regulatory responses to the surrounding atmospheric environment. UTCI is calculated using an advanced thermo-physiological model that includes the human heat budget, physiology and clothing. To forecast UTCI the model uses meteorological inputs, such as 2m air temperature, 2m water vapour pressure and wind velocity at body height derived from 10m wind speed, from NWP models. Here we examine the potential of UTCI as an extreme hot temperature prediction tool for the European area. UTCI forecasts calculated using above-mentioned parameters from ECMWF models are presented. The skill in predicting UTCI for medium lead times is also analysed and discussed for implementation to international health-hazard warning systems. This research is supported by the ANYWHERE project (EnhANcing emergencY management and response to extreme WeatHER and climate Events) which is funded by the European Commission's HORIZON2020 programme. [1] Koppe C. et al., Heat waves: risks and responses. World Health Organization. Health and

  7. A study on vortex flow control of inlet distortion in the re-engined 727-100 center inlet duct using computational fluid dynamics

    Science.gov (United States)

    Anderson, Bernhard H.; Huang, Pao S.; Paschal, William A.; Cavatorta, Enrico

    1992-01-01

    Computational fluid dynamics was used to investigate the management of inlet distortion by the introduction of discrete vorticity sources at selected locations in the inlet for the purpose of controlling secondary flow. These sources of vorticity were introduced by means of vortex generators. A series of design observations were made concerning the importance of various vortex generator design parameters in minimizing engine face circumferential distortion. The study showed that vortex strength, generator scale, and secondary flow field structure have a complicated and interrelated influence on the engine face distortion, over and above the initial geometry and arrangement of the generators. The installed vortex generator performance was found to be a function of three categories of variables: the inflow conditions, the aerodynamic characteristics associated with the inlet duct, and the design parameters related to the geometry, arrangement, and placement of the vortex generators within the outlet duct itself.

  8. A study on vortex flow control on inlet distortion in the re-engined 727-100 center inlet duct using computational fluid dynamics

    Science.gov (United States)

    Anderson, Bernhard H.; Huang, Pao S.; Paschal, William A.; Cavatorta, Enrico

    1992-01-01

    Computational fluid dynamics was used to investigate the management of inlet distortion by the introduction of discrete vorticity sources at selected locations in the inlet for the purpose of controlling secondary flow. These sources of vorticity were introduced by means of vortex generators. A series of design observations were made concerning the importance of various vortex generator design parameters in minimizing engine face circumferential distortion. The study showed that vortex strength, generator scale, and secondary flow field structure have a complicated and interrelated influence on the engine face distortion, over and above the initial geometry and arrangement of the generators. The installed vortex generator performance was found to be a function of three categories of variables: the inflow conditions, the aerodynamic characteristics associated with the inlet duct, and the design parameters related to the geometry, arrangement, and placement of the vortex generators within the outlet duct itself.

  9. Resistance of Silicon Nitride Turbine Components to Erosion and Hot Corrosion/oxidation Attack

    Science.gov (United States)

    Strangmen, Thomas E.; Fox, Dennis S.

    1994-01-01

    Silicon nitride turbine components are under intensive development by AlliedSignal to enable a new generation of higher power density auxiliary power systems. In order to be viable in the intended applications, silicon nitride turbine airfoils must be designed for survival in aggressive oxidizing combustion gas environments. Erosive and corrosive damage to ceramic airfoils from ingested sand and sea salt must be avoided. Recent engine test experience demonstrated that NT154 silicon nitride turbine vanes have exceptional resistance to sand erosion, relative to superalloys used in production engines. Similarly, NT154 silicon nitride has excellent resistance to oxidation in the temperature range of interest - up to 1400 C. Hot corrosion attack of superalloy gas turbine components is well documented. While hot corrosion from ingested sea salt will attack silicon nitride substantially less than the superalloys being replaced in initial engine applications, this degradation has the potential to limit component lives in advanced engine applications. Hot corrosion adversely affects the strength of silicon nitride in the 850 to 1300 C range. Since unacceptable reductions in strength must be rapidly identified and avoided, AlliedSignal and the NASA Lewis Research Center have pioneered the development of an environmental life prediction model for silicon nitride turbine components. Strength retention in flexure specimens following 1 to 3300 hour exposures to high temperature oxidation and hot corrosion has been measured and used to calibrate the life prediction model. Predicted component life is dependent upon engine design (stress, temperature, pressure, fuel/air ratio, gas velocity, and inlet air filtration), mission usage (fuel sulfur content, location (salt in air), and times at duty cycle power points), and material parameters. Preliminary analyses indicate that the hot corrosion resistance of NT154 silicon nitride is adequate for AlliedSignal's initial engine

  10. Investigation of Inlet Condition Effect on Flow and Turbulence Characteristics in Subsonic Jets from Conical and Chevron Nozzles Using RANS/ILES High Resolutions Method

    Directory of Open Access Journals (Sweden)

    L. A. Benderskiy

    2015-01-01

    Full Text Available Effect of Mach number and temperature on subsonic jets flow with a combined highresolution RANS/ILES method (Reynolds Averaged Navier-Stokes - RANS, Implicit Large Eddy Simulation - ILES was investigated. Cold Mj=0.985 T0=300К and hot Mj=0.548 T0=858.6К jets were considered (Mj – Mach number at the nozzle exit and T0 – total temperature at the nozzle inlet. Conical and two chevron nozzles with angle of chevrons to the nozzle axis α=5° and α=18.2° were investigated. The jet flow calculations were carried out together with flow calculation in nozzles. Computation grids were Meshes for simulations (2.8-3.2×106 cells. Investigated cases were compared by average velocity and velocity fluctuations at the jet axis and at the mixing layer. The magnitude of velocity fluctuations at the jet axis and at the mixing layer for hot jets is higher than for cold jets. It leads to increasing expansion angle of the mixing layer inward the jet axis. This is why the initial part length of hot jets becomes shorter than in cold jets. Comparison of simulations with the experimental data of other authors showed a good agreement by flow and turbulences characteristics.

  11. Strangeness At Extremes

    CERN Document Server

    Tolos, Laura; Khemchandani, Kanchan; Martinez-Torres, Alberto; Bratkovskaya, Elena; Aichelin, Joerg; Nielsen, Marina; Navarra, Fernando S

    2015-01-01

    We study the properties of strange mesons in vacuum and in the hot nuclear medium within unitarized coupled-channel effective theories. We determine transition probabilities, cross sections and scattering lengths for strange mesons. These scattering observables are of fundamental importance for understanding the dynamics of strangeness production and propagation in heavy-ion collisions.

  12. The Pace of Perceivable Extreme Climate Change

    Science.gov (United States)

    Tan, X.; Gan, T. Y.

    2015-12-01

    When will the signal of obvious changes in extreme climate emerge over climate variability (Time of Emergence, ToE) is a key question for planning and implementing measures to mitigate the potential impact of climate change to natural and human systems that are generally adapted to potential changes from current variability. We estimated ToEs for the magnitude, duration and frequency of global extreme climate represented by 24 extreme climate indices (16 for temperature and 8 for precipitation) with different thresholds of the signal-to-noise (S/N) ratio based on projections of CMIP5 global climate models under RCP8.5 and RCP4.5 for the 21st century. The uncertainty of ToE is assessed by using 3 different methods to calculate S/N for each extreme index. Results show that ToEs of the projected extreme climate indices based on the RCP4.5 climate scenarios are generally projected to happen about 20 years later than that for the RCP8.5 climate scenarios. Under RCP8.5, the projected magnitude, duration and frequency of extreme temperature on Earth will all exceed 2 standard deviations by 2100, and the empirical 50th percentile of the global ToE for the frequency and magnitude of hot (cold) extreme are about 2040 and 2054 (2064 and 2054) for S/N > 2, respectively. The 50th percentile of global ToE for the intensity of extreme precipitation is about 2030 and 2058 for S/N >0.5 and S/N >1, respectively. We further evaluated the exposure of ecosystems and human societies to the pace of extreme climate change by determining the year of ToE for various extreme climate indices projected to occur over terrestrial biomes, marine realms and major urban areas with large populations. This was done by overlaying terrestrial, ecoregions and population maps with maps of ToE derived, to extract ToEs for these regions. Possible relationships between GDP per person and ToE are also investigated by relating the mean ToE for each country and its average value of GDP per person.

  13. Moving in extreme environments

    DEFF Research Database (Denmark)

    Lucas, Samuel J E; Helge, Jørn W; Schütz, Uwe H W;

    2016-01-01

    This review addresses human capacity for movement in the context of extreme loading and with it the combined effects of metabolic, biomechanical and gravitational stress on the human body. This topic encompasses extreme duration, as occurs in ultra-endurance competitions (e.g. adventure racing...... and transcontinental races) and expeditions (e.g. polar crossings), to the more gravitationally limited load carriage (e.g. in the military context). Juxtaposed to these circumstances is the extreme metabolic and mechanical unloading associated with space travel, prolonged bedrest and sedentary lifestyle, which may...

  14. Extremal surface barriers

    Energy Technology Data Exchange (ETDEWEB)

    Engelhardt, Netta; Wall, Aron C. [Department of Physics, University of California,Santa Barbara, CA 93106 (United States)

    2014-03-13

    We present a generic condition for Lorentzian manifolds to have a barrier that limits the reach of boundary-anchored extremal surfaces of arbitrary dimension. We show that any surface with nonpositive extrinsic curvature is a barrier, in the sense that extremal surfaces cannot be continuously deformed past it. Furthermore, the outermost barrier surface has nonnegative extrinsic curvature. Under certain conditions, we show that the existence of trapped surfaces implies a barrier, and conversely. In the context of AdS/CFT, these barriers imply that it is impossible to reconstruct the entire bulk using extremal surfaces. We comment on the implications for the firewall controversy.

  15. On the Hot Money Trail

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The huge influx of international hot money is threatening inflation and affecting the country’s monetary policy In the last three months, the country’s financial supervisory departments have conducted frequent but atypical investi-gations of hot money.

  16. How hot is the sun

    Institute of Scientific and Technical Information of China (English)

    刘超

    2001-01-01

    Do you know how hot thesun is? There are no solidsor liquids on the sun. Why not? The temperature onoutside the sun is more than 10, 000℃, and that at the centre is about 20, 000, 000℃.The sun is so hot that all thesolids and all the liquids havebeen turned into gases.

  17. Entrance Effects in Solar Hot Water Stores

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    2003-01-01

    A theoretical and experimental analysis of water jets entering a solar storage tank is performed. CFD calculations of three inlet designs with different inlet flow rates were carried out to illustrate the varying behaviour of the thermal conditions in a solar store. The results showed the impact...

  18. Inlet contributions of ions to Becharof Lake in relation to its fisheries

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The objectives of this project are to examine the major ion characteristics of the 31 major inlets; to examine the variation in trace element concentrations of the...

  19. Telemetry data from satellite tags deployed on harbor seals in Cook Inlet, Alaska

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Between 2004 and 2006 we conducted four harbor seal tagging trips in Cook Inlet during the months of October and May. In total, we captured and released 93 harbor...

  20. Smart Materials Technology for High Speed Adaptive Inlet/Nozzle Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Enabling a new generation of high-speed civil aircraft will require breakthrough developments in propulsion systems, including novel techniques to optimize inlet...

  1. Miniaturized, Low Power Cryogenic Inlet System with Sampling Probes for Titan Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. has demonstrated feasibility in Phase 1 and now proposes a Phase 2 effort to develop a miniature, low power cryogenic inlet system with...

  2. Cook Inlet Beluga Opportunistic Sightings, 1975 to 2015 (NCEI Accession 0142326)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — As a part of National Marine Fisheries Service (NMFS) management of the endangered Cook Inlet beluga whale population, a database of opportunistic beluga whale...

  3. AFSC/NMML: Beluga whale aerial survey in Cook Inlet, Alaska, 1993-2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Marine Fisheries Service (NMFS) has conducted aerial counts of Cook Inlet beluga whales (Delphinapterus leucas) from 1993 to 2014 (excluding 2013)....

  4. AFSC/NMML: Beluga whale Counts from Aerial Surveys in Cook Inlet, Alaska, 1993-2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Marine Mammal Laboratory conducted aerial surveys to monitor the abundance and distribution of beluga whales in Cook Inlet, Alaska. This database...

  5. The effects of forward speed on fan inlet turbulence and its relation to tone noise generation

    Science.gov (United States)

    Hodder, B. K.

    1974-01-01

    The effect of forward speed on fan inlet turbulence was studied to determine the feasibility of using a wind tunnel to simulate various flight conditions where turbulence of atmospheric origin enters the engine inlet. The investigation was conducted in the Ames 7- by 10-foot Wind Tunnel with a small-scale low pressure-ratio fan. Results indicate that a wind tunnel of this size does produce large turbulence scale appropriate for simulation of atmospheric scale. But the tunnel's low turbulence intensity seems to cause results contrary to existing theories on the effects of fan inlet velocity ratio on turbulence scale. Limited results with artificially increased turbulence intensity removed this contradiction. Acoustic measurements showed the impact of inlet turbulence on fantone noise.

  6. Classification of tidal inlets along the central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Vikas, M.; Reddy, N.A.; Rao, S.; JayaKumar, S.

    Tidal inlets along the Maharashtra coast on the central west coast of India were classified according to three methods available in the literature. Two classification methods viz., (i) Hydrodynamic classification (Hayes, 1979) and (ii...

  7. 76 FR 20179 - Endangered and Threatened Species: Designation of Critical Habitat for Cook Inlet Beluga Whale

    Science.gov (United States)

    2011-04-11

    ... Arctic and subarctic oceans. Five distinct stocks of beluga whales are currently recognized in Alaska... distribution in Cook Inlet such as water temperatures, turbidities, salinities, or the fish species...

  8. Environmental Sensitivity Index (ESI) Atlas: Cook Inlet, Alaska, maps and geographic information systems (NODC Accession 0046027)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) data for Cook Inlet and Kenai Peninsula, Alaska. ESI data characterize estuarine environments and...

  9. Socioeconomic Features - Cook Inlet/Kenai Peninsula Environmental Sensitivity Index (ESI) Summary Data

    Data.gov (United States)

    National Park Service, Department of the Interior — Point and line coverage depicting several human-use, or socioeconomic features in the Cook Inlet/Kenai Peninsula region including oil facilities, oil platforms,...

  10. CREEK Project's Oyster Biomass Database for Eight Creeks in the North Inlet Estuary, South Carolina

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight tidal creeks dominated by oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated BACI (Before -...

  11. Cook Inlet and Kenai Peninsula, Alaska ESI: MGT (Management Area Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains management area data for communities, wildlife refuges, and National, State, and regional parks in Cook Inlet and Kenai Peninsula, Alaska....

  12. Time Accurate Computation of Unsteady Inlet Flows with a Dynamic Flow Adaptive Mesh.

    Science.gov (United States)

    1994-09-07

    pertaining to unsteady flow effects associated with inlets. K eep up the good work! Sincerely, John H. Gerstlc, Manager HSCT Propulsion (206)237-7571 MIS 6H-FJ sh CC: Profesor Scott McRae North Carolina University

  13. Miniaturized In Situ Atmospheric Probe Sampling Inlet System for Uranus or Saturn Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized in situ atmospheric probe sampling inlet system for measuring chemical and isotopic composition of the...

  14. AFSC/NMML: Cook Inlet Beluga Opportunistic Sightings, 1975 to 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — As a part of National Marine Fisheries Service (NMFS) management of the endangered Cook Inlet beluga whale population, a database of opportunistic beluga whale...

  15. Cook Inlet and Kenai Peninsula, Alaska ESI: HYDRO (Hydrography Lines and Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for Cook Inlet...

  16. Cook Inlet and Kenai Peninsula, Alaska ESI: M_MAMPT (Marine Mammal Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for seals and sea lions in Cook Inlet and Kenai Peninsula, Alaska. Vector points in this data set represent locations...

  17. Cook Inlet and Kenai Peninsula, Alaska ESI: ESI (Environmental Sensitivity Index Shoreline Types - Polygons and Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing the shoreline and coastal habitats of Cook Inlet and Kenai Peninsula, Alaska, classified according to...

  18. Aerial Surveys of Birds and Mammals in Potential Development Areas in Upper Cook Inlet, Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Distribution and abundance of waterbirds, marine mammals, and other wildlife were surveyed by helicopter in coastal areas of upper Cook Inlet 13-14 July 1993, in...

  19. Cook Inlet and Kenai Peninsula, Alaska ESI: RIPS (Rip Current Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains locations of rip currents in Cook Inlet, Alaska. Vector lines in the data set represent rip zone locations. Location-specific type and source...

  20. Cook Inlet and Kenai Peninsula, Alaska ESI: ICE (Ice Extent Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains locations of ice extent in Cook Inlet, Alaska. Vector lines in the data set represent 50 percent ice coverage. Location-specific type and...

  1. Cook Inlet and Kenai Peninsula, Alaska ESI: M_MAMMAL (Marine Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains biological resource data for marine mammals in Cook Inlet and Kenai Peninsula, Alaska. Vector polygons in this data set represent locations of...

  2. Miniaturized, Low Power Cryogenic Inlet System with Sampling Probes for Titan Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniature, low power cryogenic inlet system with sampling probes for Titan. This addresses a key technology gap for...

  3. The Rankin Inlet Birthing Centre: community midwifery in the Inuit context

    National Research Council Canada - National Science Library

    Douglas, Vasiliki Kravariotis

    2011-01-01

    To trace the historical development of the Rankin Inlet Birthing Centre since its inception in 1993 in the context of plans to make it the nucleus of a system of community birthing centres throughout Nunavut...

  4. The Rankin Inlet Birthing Centre: community midwifery in the Inuit context

    National Research Council Canada - National Science Library

    Vasiliki Kravariotis Douglas

    2011-01-01

      To trace the historical development of the Rankin Inlet Birthing Centre since its inception in 1993 in the context of plans to make it the nucleus of a system of community birthing centres throughout Nunavut...

  5. The influence of boundary layers on supersonic inlet flow unstart induced by mass injection

    Science.gov (United States)

    Do, Hyungrok; Im, Seong-Kyun; Mungal, M. Godfrey; Cappelli, Mark A.

    2011-09-01

    A transverse jet is injected into a supersonic model inlet flow to induce unstart. Planar laser Rayleigh scattering from condensed CO2 particles is used to visualize flow dynamics during the unstart process, while in some cases, wall pressure traces are simultaneously recorded. Studies conducted over a range of inlet configurations reveal that the presence of turbulent wall boundary layers strongly affect the unstart dynamics. It is found that relatively thick turbulent boundary layers in asymmetric wall boundary layer conditions prompt the formation of unstart shocks; in symmetric boundary conditions lead to the propagation of pseudo-shocks; and in both cases facilitate fast inlet unstart, when compared with thin, laminar boundary layers. Incident shockwaves and associated reflections are found to affect the speed of pressure disturbances. These disturbances, which induce boundary layer separation, are found to precede the formation of unstart shocks. The results confirm the importance of and need to better understand shock-boundary layer interactions in inlet unstart dynamics.

  6. Euler Calculations at Off-Design Conditions for an Inlet of Inward Turning RBCC-SSTO Vehicle

    Science.gov (United States)

    Takashima, N.; Kothari, A. P.

    1998-01-01

    The inviscid performance of an inward turning inlet design is calculated computationally for the first time. Hypersonic vehicle designs based on the inward turning inlets have been shown analytically to have increased effective specific impulse and lower heat load than comparably designed vehicles with two-dimensional inlets. The inward turning inlets are designed inversely from inviscid stream surfaces of known flow fields. The computational study is performed on a Mach 12 inlet design to validate the performance predicted by the design code (HAVDAC) and calculate its off-design Mach number performance. The three-dimensional Euler equations are solved for Mach 4, 8, and 12 using a software package called SAM, which consists of an unstructured mesh generator (SAMmesh), a three-dimensional unstructured mesh flow solver (SAMcfd), and a CAD-based software (SAMcad). The computed momentum averaged inlet throat pressure is within 6% of the design inlet throat pressure. The mass-flux at the inlet throat is also within 7 % of the value predicted by the design code thereby validating the accuracy of the design code. The off-design Mach number results show that flow spillage is minimal, and the variation in the mass capture ratio with Mach number is comparable to an ideal 2-D inlet. The results from the inviscid flow calculations of a Mach 12 inward turning inlet indicate that the inlet design has very good on and off-design performance which makes it a promising design candidate for future air-breathing hypersonic vehicles.

  7. Deep coastal marine taphonomy: investigation into carcass decomposition in the Saanich Inlet, British Columbia using a baited camera.

    Directory of Open Access Journals (Sweden)

    Gail S Anderson

    Full Text Available Decomposition and faunal colonization of a carcass in the terrestrial environment has been well studied, but knowledge of decomposition in the marine environment is based almost entirely on anecdotal reports. Three pig carcasses were deployed in Saanich Inlet, BC, over 3 years utilizing Ocean Network Canada's VENUS observatory. Each carcass was deployed in late summer/early fall at 99 m under a remotely controlled camera and observed several times a day. Dissolved oxygen, temperature, salinity, density and pressure were continuously measured. Carcass 1 was immediately colonized by Munida quadrispina, Pandalus platyceros and Metacarcinus magister, rapidly scavenged then dragged from view by Day 22. Artifacts specific to each of the crustaceans' feeding patterns were observed. Carcass 2 was scavenged in a similar fashion. Exposed tissue became covered by Orchomenella obtusa (Family Lysianassidae which removed all the internal tissues rapidly. Carcass 3 attracted only a few M. quadrispina, remaining intact, developing a thick filamentous sulphur bacterial mat, until Day 92, when it was skeletonized by crustacea. The major difference between the deployments was dissolved oxygen levels. The first two carcasses were placed when oxygen levels were tolerable, becoming more anoxic. This allowed larger crustacea to feed. However, Carcass 3 was deployed when the water was already extremely anoxic, which prevented larger crustacea from accessing the carcass. The smaller M. quadrispina were unable to break the skin alone. The larger crustacea returned when the Inlet was re-oxygenated in spring. Oxygen levels, therefore, drive the biota in this area, although most crustacea endured stressful levels of oxygen to access the carcasses for much of the time. These data will be valuable in forensic investigations involving submerged bodies, indicating types of water conditions to which the body has been exposed, identifying post-mortem artifacts and providing

  8. Development of an Inlet Pressure Sensor for Control in a Left Ventricular Assist Device

    OpenAIRE

    2010-01-01

    A Tesla type continuous flow left ventricular assist device (VAD) has been designed by Penn State and Advanced Bionics, Inc. (ABI). When a continuous flow device is employed, care must be taken to limit low pressures in the ventricle that can produce an obstruction to the inlet cannula or trigger arrhythmias. Design of an inexpensive, semi-conductor strain gage inlet pressure sensor to detect suction has been completed. The research and design analysis included finite element modeling of the ...

  9. Passage Key Inlet, Florida; CMS Modeling and Borrow Site Impact Analysis

    Science.gov (United States)

    2016-06-01

    use of a nested Coastal Modeling System (CMS) model for Passage Key Inlet, which is one of the connections between the Gulf of Mexico and Tampa Bay...XIV-51 June 2016 2 Figure 1. Active USACE Jacksonville District (SAJ) projects in Pinellas, Manatee, and Sarasota Counties, FL. METHOD : The CMS...is a product of the Coastal Inlets Research Program (http://cirp.usace.army.mil) managed at ERDC. CMS is composed of two models, CMS-Flow (Buttolph

  10. Perancangan Turbine Inlet Cooling Untuk Meningkatkan Efisiensi Pembangkit Listrik Tenaga Gas Dengan Menggunakan Refrigerasi Absorpsi

    OpenAIRE

    Aditya, Ahmad

    2014-01-01

    Electrical energy plays an important role in the progress of a region, therefore the availability of electrical energy should be a priority. The availability of electricity can be achieved in two ways: the addition of new plants and improve the efficiency of existing plants. In this paper the task, the authors designed a compressor inlet air cooling system or TIC (turbine inlet cooling) on Gas Power Plant with a view to improving the efficiency of the engine. Cooling system ...

  11. Morphologic Response to a New Inlet, Packery Channel, Corpus Christi, Texas

    Science.gov (United States)

    2007-01-01

    additional navigational amenity is that access to the Gulf of Mexico from the Upper Laguna Madre and Corpus Christi Bay system would be about 3 miles (5 km...Emily during construction of the jetties. The inlet connects Corpus Christi Bay and Laguna Madre to the Gulf of Mexico, the first new artificially...Packery Channel was opened by Hurricane Emily during the second year of its construction. This inlet connects Corpus Christi Bay and Upper Laguna

  12. Numerical Investigation of Inlet Distortion on an Axial Flow Compressor Rotor with Circumferential Groove Casing Treatment

    Institute of Scientific and Technical Information of China (English)

    Huang Jian; Wu Hu

    2008-01-01

    On the base of an assumed steady inlet circumferential total pressure distortion, three-dimensional time-dependent numerical simulations are conducted on an axial flow subsonic compressor rotor. The performances and flow fields of a compressor rotor, either casing treated or untreated, are investigated in detail either with or without inlet pressure distortion. Results show that the circumferential groove casing treatment can expand the operating range of the compressor rotor either with or without inlet pressure distortion at the expense of a drop in peak isentropic efficiency. The casing treatment is capable of weakening or even removing the tip leakage vortex effectively either with or without inlet distortion. In clean inlet circumstances, the enhancement and forward movement of tip leakage vortex cause the untreated compressor rotor to stall. By contrast, with circumferential groove casing, the serious flow separation on the suction surface leads to aerodynamic stalling eventually. In the presence of inlet pressure distortion, the blade loading changes from passage to passage as the distorted inflow sector is traversed. Similar to the clean inlet circumstances, with a smooth wall casing, the enhancement and forward movement of tip leakage vortex are still the main factors which lead to the compressor rotor stalling eventu-ally. When the rotor works under near stall conditions, the blockage resulting from the tip leakage vortex in all the passages is very seri-ous. Especially in several passages, flow-spillage is observed. Compared to the clean inlet circumstances, circumferential groove casing treatment can also eliminate the low energy zone in the outer end wall region effectively.

  13. Analysis of extreme events

    CSIR Research Space (South Africa)

    Khuluse, S

    2009-04-01

    Full Text Available ) determination of the distribution of the damage and (iii) preparation of products that enable prediction of future risk events. The methodology provided by extreme value theory can also be a powerful tool in risk analysis...

  14. Extreme environments and exobiology.

    Science.gov (United States)

    Friedmann, E I

    1993-01-01

    Ecological research on extreme environments can be applied to exobiological problems such as the question of life on Mars. If life forms (fossil or extant) are found on Mars, their study will help to solve fundamental questions about the nature of life on Earth. Extreme environments that are beyond the range of adaptability of their inhabitants are defined as "absolute extreme". Such environments can serve as terrestrial models for the last stages of life in the history of Mars, when the surface cooled down and atmosphere and water disappeared. The cryptoendolithic microbial community in porous rocks of the Ross Desert in Antarctica and the microbial mats at the bottom of frozen Antarctic lakes are such examples. The microbial communities of Siberian permafrost show that, in frozen but stable communities, long-term survival is possible. In the context of terraforming Mars, selected microorganisms isolated from absolute extreme environments are considered for use in creation of a biological carbon cycle.

  15. Venous Ultrasound (Extremities)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound - Venous (Extremities) Venous ultrasound uses sound waves to ... limitations of Venous Ultrasound Imaging? What is Venous Ultrasound Imaging? Ultrasound is safe and painless, and produces ...

  16. Statistics of extremes

    CERN Document Server

    Gumbel, E J

    2012-01-01

    This classic text covers order statistics and their exceedances; exact distribution of extremes; the 1st asymptotic distribution; uses of the 1st, 2nd, and 3rd asymptotes; more. 1958 edition. Includes 44 tables and 97 graphs.

  17. Abundance analyses of cool extreme helium stars

    CERN Document Server

    Pandey, G; Lambert, D L; Jeffery, C S; Asplund, M; Pandey, Gajendra; Lambert, David L.; Asplund, Martin

    2001-01-01

    Extreme helium stars (EHe) with effective temperatures from 8000K to 13000K are among the coolest EHe stars and overlap the hotter R CrB stars in effective temperature. The cool EHes may represent an evolutionary link between the hot EHes and the R CrBs. Abundance analyses of four cool EHes are presented. To test for an evolutionary connection, the chemical compositions of cool EHes are compared with those of hot EHes and R CrBs. Relative to Fe, the N abundance of these stars is intermediate between those of hot EHes and R CrBs. For the R CrBs, the metallicity M derived from the mean of Si and S appears to be more consistent with the kinematics than that derived from Fe. When metallicity M derived from Si and S replaces Fe, the observed N abundances of EHes and R CrBs fall at or below the upper limit corresponding to thorough conversion of initial C and O to N. There is an apparent difference between the composition of R CrBs and EHes; the former having systematically higher [N/M] ratios. The material present...

  18. SLOPE LITHOLOGIC PROPERTY, SOIL MOISTURE CONDITION AND REVEGETATION IN DRY-HOT VALLEY OF JINSHA RIVER

    Institute of Scientific and Technical Information of China (English)

    XIONG Dong-hong; ZHOU Hong-yi; YANG Zhong; ZHANG Xin-bao

    2005-01-01

    The dry-hot valley of the Jinsha River is one of the typical eco-fragile areas in Southwest China, as well as a focus ofrevegetation study in the upper and middle reaches of the Changjiang River. Due to its extremely dry and hot climate, severely degraded vegetation and the intense soil and water loss, there are extreme difficulties in vegetation restoration in this area and no great breakthrough has ever been achieved on studies of revegetation over the last several decades. Through over ten years' research conducted in the typical areas-the Yuanmou dry-hot valley, the authors found that the lithologic property is one of the crucial factors determining soil moisture conditions and vegetation types in the dry-hot valley, and the rainfall infiltration capability is also one of the key factors affecting the tree growth. Then the revegetation zoning based on different slopes was conducted and revegetation patterns for different zones were proposed.

  19. Exergy analysis and performance of a counter flow Ranque-Hilsch vortex tube having various nozzle numbers at different inlet pressures of oxygen and air

    Energy Technology Data Exchange (ETDEWEB)

    Kirmaci, Volkan [Bartin University, Faculty of Engineering, Mechanical Engineering Department, 74100 Bartin (Turkey)

    2009-11-15

    An experimental investigation is made to determine the effects of the orifice nozzle number and the inlet pressure on the heating and cooling performance of the counter flow Ranque-Hilsch vortex tube when air and oxygen used as a fluid. The orifices used at these experiments are made of the polyamide plastic material. The thermal conductivity of polyamide plastic material is 0.25 W/m C. Five orifices with nozzle numbers of 2, 3, 4, 5 and 6 have been manufactured and used during the experiments. For each one of the orifices (nozzle numbers) when used with two different fluids, inlet pressures were adjusted from 150 kPa to 700 kPa with 50 kPa increments, and the exergy efficiency was determined. During the experiments, a vortex tube is used with an L/D ratio of 15, and cold mass fraction is held constant at 0.5. As a result of the experimental study, it is determined that the temperature gradient between the hot and cold fluid is decreased with increasing of the orifice nozzle number. (author)

  20. Development of a solenoid actuated planar valveless micropump with single and multiple inlet-outlet arrangements

    Science.gov (United States)

    Kumar, N.; George, D.; Sajeesh, P.; Manivannan, P. V.; Sen, A. K.

    2016-07-01

    We report a planar solenoid actuated valveless micropump with multiple inlet-outlet configurations. The self-priming characteristics of the multiple inlet-multiple outlet micropump are studied. The filling dynamics of the micropump chamber during start-up and the effects of fluid viscosity, voltage and frequency on the dynamics are investigated. Numerical simulations for multiple inlet-multiple outlet micropumps are carried out using fluid structure algorithm. With DI water and at 5.0 Vp-p, 20 Hz frequency, the two inlet-two outlet micropump provides a maximum flow rate of 336 μl min-1 and maximum back pressure of 441 Pa. Performance characteristics of the two inlet-two outlet micropump are studied for aqueous fluids of different viscosity. Transport of biological cell lines and diluted blood samples are demonstrated; the flow rate-frequency characteristics are studied. Viability of cells during pumping with multiple inlet multiple outlet configuration is also studied in this work, which shows 100% of cells are viable. Application of the proposed micropump for simultaneous pumping, mixing and distribution of fluids is demonstrated. The proposed integrated, standalone and portable micropump is suitable for drug delivery, lab-on-chip and micro-total-analysis applications.

  1. CFD simulation of inlet design effect on deoiling hydrocyclone separation efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Noroozi, S.; Hashemabadi, S.H. [Computational Fluid Dynamics Research Laboratory, School of Chemical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2009-12-15

    An Eulerian-Eulerian three-dimensional CFD model was developed to study the effect of different inlet designs on deoiling hydrocyclone separation efficiency. Reynolds averaged Navier Stokes and continuity equations were applied to solve steady turbulent flow through the cyclone with the Reynolds stress model. In addition, the modified drag correlation for liquid-liquid emulsion with respect to the Reynolds number range and viscosity ratio of two phases was used and the simulation results were compared with those predicted by the Schiller-Naumann correlation. Pressure profile, tangential and axial velocities and separation efficiency of the deoiling hydrocyclone were calculated for four different inlet designs and compared with the standard design. The simulation results for the standard design demonstrate an acceptable agreement with reported experimental data. The results show that all new four inlet designs offer higher efficiencies compared to the standard design. The difference between the efficiency of the LLHC, of the new inlets and the standard design can be improved by increasing the inlet velocity. Furthermore, the simulations show that the separation efficiency can be improved by about 10 % when using a helical form of inlet. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  2. Effect of inlet and outlet flow conditions on natural gas parameters in supersonic separation process.

    Directory of Open Access Journals (Sweden)

    Yan Yang

    Full Text Available A supersonic separator has been introduced to remove water vapour from natural gas. The mechanisms of the upstream and downstream influences are not well understood for various flow conditions from the wellhead and the back pipelines. We used a computational model to investigate the effect of the inlet and outlet flow conditions on the supersonic separation process. We found that the shock wave was sensitive to the inlet or back pressure compared to the inlet temperature. The shock position shifted forward with a higher inlet or back pressure. It indicated that an increasing inlet pressure declined the pressure recovery capacity. Furthermore, the shock wave moved out of the diffuser when the ratio of the back pressure to the inlet one was greater than 0.75, in which the state of the low pressure and temperature was destroyed, resulting in the re-evaporation of the condensed liquids. Natural gas would be the subsonic flows in the whole supersonic separator, if the mass flow rate was less than the design value, and it could not reach the low pressure and temperature for the condensation and separation of the water vapor. These results suggested a guidance mechanism for natural gas supersonic separation in various flow conditions.

  3. Effects of inlet momentum and orientation on the hydraulic performance of water storage tanks

    Science.gov (United States)

    Xavier, Manoel Lucas Machado; Janzen, Johannes Gérson

    2017-09-01

    The influence of inlet momentum and inlet orientation on hydraulic performance of cylindrical water process tanks were investigated using a factorial design strategy. The hydraulic performance of the tanks was assessed with a computational fluid dynamics (CFD) model, which calculated the flow fields and the residence time distribution (RTD). RTDs were used to quantify the tanks hydraulic performance using hydraulic indexes that represent short-circuiting, mixing, and moment. These indexes were later associated with the effluent fraction of disinfectant (inlet and outlet disinfectant ratio). For small depth-to-diameter ratios, the inlet orientation and the inlet momentum were the most important factors regarding the hydraulic indexes and the effluent fraction of disinfectant, respectively. A poor correlation was obtained between the hydraulic indexes and the effluent fraction of disinfectant, indicating that they are not good predictors for water quality. For large depth-to-diameter ratios, the inlet orientation had the most significant effect on both the hydraulic indexes and effluent fraction of disinfectant. The short-circuiting and mixing indexes presented a good correlation with water quality for this case.

  4. An Experimental Investigation of the Aeroacoustics of a Two-Dimensional Bifurcated Supersonic Inlet

    Science.gov (United States)

    LI, S.-M.; HANUSKA, C. A.; NG, W. F.

    2001-11-01

    An experiment was conducted on a two-dimensional bifurcated, supersonic inlet to investigate the aeroacoustics at take-off and landing conditions. A 104·1 mm (4·1 in) diameter turbofan simulator was coupled to the inlet to generate the noise typical of a turbofan engine. Aerodynamic and acoustic data were obtained in an anechoic chamber under ground-static conditions (i.e., no forward flight effect). Results showed that varying the distance between the trailing edge of the bifurcated ramp of the inlet and the fan face had negligible effect on the total noise level. Thus, one can have a large freedom to design the bifurcated ramp mechanically and aerodynamically, with minimum impact on the aeroacoustics. However, the effect of inlet guide vanes' (IGV) axial spacing to the fan face has a first order effect on the aeroacoustics for the bifurcated 2-D inlet. As much as 5 dB reduction in the overall sound pressure level and as much as 15 dB reduction in the blade passing frequency tone were observed when the IGV was moved from 0·8 chord of rotor blade upstream of the fan face to 2·0 chord of the blade upstream. The wake profile similarity of the IGV was also found in the flow environment of the 2-D bifurcated inlet, i.e., the IGV wakes followed the usual Gauss' function.

  5. Repetitious-Hot-Pressing Technique in Hot-Pressing Process

    Institute of Scientific and Technical Information of China (English)

    Shixue SONG; Xing AI; Wei GAO; Jun ZHAO

    2003-01-01

    A new pressing method was proposed for hot-pressing process. Experimental results indicated that the porosity in Al2O3/TiC/Ni/Mo (hereafter called Al2O3/TiC composite) composite compacts decreases by 6% after adopting this new technique,compared to traditional hot-pressing technique under the same sintering temperature. The flexural strength and Vickerhardness increase from 883 MPa to 980 MPa and from 16 GPa to 21.1 GPa, respectively. A theoretical model was given toanalyze the densification mechanism of the composite in the process of repetitious-hot-pressing.

  6. Elliptical instability in hot Jupiter systems

    CERN Document Server

    Cébron, David; Gal, Patrice Le; Moutou, Claire; Leconte, J; Sauret, Alban

    2013-01-01

    Several studies have already considered the influence of tides on the evolution of systems composed of a star and a close-in companion to tentatively explain different observations such as the spin-up of some stars with hot Jupiters, the radius anomaly of short orbital period planets and the synchronization or quasi-synchronization of the stellar spin in some extreme cases. However, the nature of the mechanism responsible for the tidal dissipation in such systems remains uncertain. In this paper, we claim that the so-called elliptical instability may play a major role in these systems, explaining some systematic features present in the observations. This hydrodynamic instability, arising in rotating flows with elliptical streamlines, is suspected to be present in both planet and star of such systems, which are elliptically deformed by tides. The presence and the influence of the elliptical instability in gaseous bodies, such as stars or hot Jupiters, are most of the time neglected. In this paper, using numeri...

  7. Impact of soil moisture on extreme maximum temperatures in Europe

    Directory of Open Access Journals (Sweden)

    Kirien Whan

    2015-09-01

    Full Text Available Land-atmosphere interactions play an important role for hot temperature extremes in Europe. Dry soils may amplify such extremes through feedbacks with evapotranspiration. While previous observational studies generally focused on the relationship between precipitation deficits and the number of hot days, we investigate here the influence of soil moisture (SM on summer monthly maximum temperatures (TXx using water balance model-based SM estimates (driven with observations and temperature observations. Generalized extreme value distributions are fitted to TXx using SM as a covariate. We identify a negative relationship between SM and TXx, whereby a 100 mm decrease in model-based SM is associated with a 1.6 °C increase in TXx in Southern-Central and Southeastern Europe. Dry SM conditions result in a 2–4 °C increase in the 20-year return value of TXx compared to wet conditions in these two regions. In contrast with SM impacts on the number of hot days (NHD, where low and high surface-moisture conditions lead to different variability, we find a mostly linear dependency of the 20-year return value on surface-moisture conditions. We attribute this difference to the non-linear relationship between TXx and NHD that stems from the threshold-based calculation of NHD. Furthermore the employed SM data and the Standardized Precipitation Index (SPI are only weakly correlated in the investigated regions, highlighting the importance of evapotranspiration and runoff for resulting SM. Finally, in a case study for the hot 2003 summer we illustrate that if 2003 spring conditions in Southern-Central Europe had been as dry as in the more recent 2011 event, temperature extremes in summer would have been higher by about 1 °C, further enhancing the already extreme conditions which prevailed in that year.

  8. Two-component model of the interaction of an interstellar cloud with surrounding hot plasma

    OpenAIRE

    Provornikova, E. A.; Izmodenov, V. V.; Lallement, R.

    2011-01-01

    We present a two-component gasdynamic model of an interstellar cloud embedded in a hot plasma. It is assumed that the cloud consists of atomic hydrogen gas, interstellar plasma is quasineutral. Hydrogen atoms and plasma protons interact through a charge exchange process. Magnetic felds and radiative processes are ignored in the model. The influence of heat conduction within plasma on the interaction between a cloud and plasma is studied. We consider the extreme case and assume that hot plasma...

  9. The cyanobacterium Mastigocladus fulfills the nitrogen demand of a terrestrial hot spring microbial mat

    OpenAIRE

    Estrella Alcamán, María; Fernandez, Camila; Delgado, Antonio; Bergman, Birgitta; Díez, Beatriz

    2015-01-01

    Cyanobacteria from Subsection V (Stigonematales) are important components of microbial mats in non-acidic terrestrial hot springs. Despite their diazotrophic nature (N2 fixers), their impact on the nitrogen cycle in such extreme ecosystems remains unknown. Here, we surveyed the identity and activity of diazotrophic cyanobacteria in the neutral hot spring of Porcelana (Northern Patagonia, Chile) during 2009 and 2011–2013. We used 16S rRNA and the nifH gene to analyze the distribution and diver...

  10. Investigation of Inlet Control Parameters for an External-internal-compression Inlet from Mach 2.1 to 3.0

    Science.gov (United States)

    Anderson, B. H.; Bowditch, D. N.

    1958-01-01

    Investigation of the control parameters of an external-internal compression inlet indicates that the cowl-lip shock provides a signal to position the spike and to start the inlet over a Mach number range from 2.1 to 3.0. Use of a single fixed probe position to control the spike over the range of conditions resulted in a 3.7-count loss in total-pressure recovery at Mach 3.0 and 0 deg angle of attack. Three separate shock-sensing-probe positions were required to set the spike for peak recovery from Mach 2.1 to 3.0 and angles of attack from 0 deg to 6 deg. When the inlet was unstarted, an erroneous signal was obtained from the normal-shock control through most of the starting cycle that prevented the inlet from starting. Therefore, it was necessary to over-ride the normal-shock control signal and not allow the control to position the terminal shock until the spike was positioned.

  11. Hot Hydrogen Test Facility

    Science.gov (United States)

    Swank, W. David; Carmack, Jon; Werner, James E.; Pink, Robert J.; Haggard, DeLon C.; Johnson, Ryan

    2007-01-01

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISP. This quantity is proportional to the square root of the propellant's absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500°C hydrogen flowing at 1500 liters per minute. The facility is intended to test low activity uranium containing materials but is also suited for testing cladding and coating materials. In this first installment the facility is described. Automated data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed.

  12. Charmonium in Hot Medium

    CERN Document Server

    Zhao, Xingbo

    2012-01-01

    We investigate charmonium production in the hot medium created by heavy-ion collisions by setting up a framework in which in-medium charmonium properties are constrained by thermal lattice QCD (lQCD) and subsequently implemented into kinetic approaches. A Boltzmann transport equation is employed to describe the time evolution of the charmonium phase space distribution with the loss and gain term accounting for charmonium dissociation and regeneration (from charm quarks), respectively. The momentum dependence of the charmonium dissociation rate is worked out. The dominant process for in-medium charmonium regeneration is found to be a 3-to-2 process. Its corresponding regeneration rates from different input charm-quark momentum spectra are evaluated. Experimental data on $J/\\psi$ production at CERN-SPS and BNL-RHIC are compared with our numerical results in terms of both rapidity-dependent inclusive yields and transverse momentum ($p_t$) spectra. Within current uncertainties from (interpreting) lQCD data and fr...

  13. Temperature Swings in a Hot Jupiter's Atmosphere

    Science.gov (United States)

    Kohler, Susanna

    2016-04-01

    Weather variations in the atmosphere of a planet on a highly eccentric orbit are naturally expected to be extreme. Now, a study has directly measured the wild changes in the atmosphere of a highly eccentric hot Jupiter as it passes close to its host star.Diagram of the HD 80606 system. The inset images labeled AH show the temperature distribution of the planet at different stages as it swings around its star. [de Wit et al. 2016]Eccentric OpportunityFor a hot Jupiter a gas giant that orbits close to its host star the exoplanet HD 80606 b exhibits a fairly unusual path. Rather than having a circularized orbit, HD 80606 b travels on an extremely elliptic 111-day orbit, with an eccentricity of e ~ 0.93. Since the amount of flux HD 80606 b receives from its host varies by a factor of ~850 over the course of its orbit, it stands to reason that this planet must have extreme weather swings!Now a team of scientists led by Julien de Wit (Massachusetts Institute of Technology) has reanalyzed old observations of HD 80606 and obtained new ones using the Spitzer Space Telescope. The longer observing time and new data analysis techniques allowed the team to gain new insights into how the exoplanets atmosphere responds to changes in the stellar flux it receives during its orbit.Extreme VariationsBy measuring the infrared light coming from HD 80606, de Wit and collaborators modeled the planets temperature during 80 hours of its closest approach to its host star. This period of time included the ~20 hours in which most of the planets temperature change is expected to occur, as it approaches to a distance a mere 6 stellar radii from its host.The authors find that the layer of the atmosphere probed by Spitzer heats rapidly from 500K to 1400K (thats ~440F to a scalding 2000+F!) as the planet approaches periastron.The atmosphere then cools similarly quickly as the planet heads away from the star once more.Relative infrared brightness of HD 80606 b at 4.5 and 8 m. The dip marks where

  14. Extreme Programming: Maestro Style

    Science.gov (United States)

    Norris, Jeffrey; Fox, Jason; Rabe, Kenneth; Shu, I-Hsiang; Powell, Mark

    2009-01-01

    "Extreme Programming: Maestro Style" is the name of a computer programming methodology that has evolved as a custom version of a methodology, called extreme programming that has been practiced in the software industry since the late 1990s. The name of this version reflects its origin in the work of the Maestro team at NASA's Jet Propulsion Laboratory that develops software for Mars exploration missions. Extreme programming is oriented toward agile development of software resting on values of simplicity, communication, testing, and aggressiveness. Extreme programming involves use of methods of rapidly building and disseminating institutional knowledge among members of a computer-programming team to give all the members a shared view that matches the view of the customers for whom the software system is to be developed. Extreme programming includes frequent planning by programmers in collaboration with customers, continually examining and rewriting code in striving for the simplest workable software designs, a system metaphor (basically, an abstraction of the system that provides easy-to-remember software-naming conventions and insight into the architecture of the system), programmers working in pairs, adherence to a set of coding standards, collaboration of customers and programmers, frequent verbal communication, frequent releases of software in small increments of development, repeated testing of the developmental software by both programmers and customers, and continuous interaction between the team and the customers. The environment in which the Maestro team works requires the team to quickly adapt to changing needs of its customers. In addition, the team cannot afford to accept unnecessary development risk. Extreme programming enables the Maestro team to remain agile and provide high-quality software and service to its customers. However, several factors in the Maestro environment have made it necessary to modify some of the conventional extreme

  15. Hot scalar electrodynamics as a toy model for hot QCD

    CERN Document Server

    Krämmer, U; Schulz, H; Kraemmer, Ulrike; Rebhan, Anton K; Schulz, Hermann

    1995-01-01

    Hot scalar electrodynamics is adopted as a toy model for a hot gluon plasma to display some aspects of the compulsory resummation of hard thermal loops when next-to-leading order quantities at soft momentum scales are to be calculated. [Talk given by A.K.R. at a one-day meeting dedicated to the memory of Tanguy ALTHERR, held on November 4, 1994 at CERN, Geneva. To appear in a Gedenkschrift published by World Scientific.

  16. Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals

    Science.gov (United States)

    Li, Mingjie; Bhaumik, Saikat; Goh, Teck Wee; Kumar, Muduli Subas; Yantara, Natalia; Grätzel, Michael; Mhaisalkar, Subodh; Mathews, Nripan; Sum, Tze Chien

    2017-02-01

    Hot-carrier solar cells can overcome the Schottky-Queisser limit by harvesting excess energy from hot carriers. Inorganic semiconductor nanocrystals are considered prime candidates. However, hot-carrier harvesting is compromised by competitive relaxation pathways (for example, intraband Auger process and defects) that overwhelm their phonon bottlenecks. Here we show colloidal halide perovskite nanocrystals transcend these limitations and exhibit around two orders slower hot-carrier cooling times and around four times larger hot-carrier temperatures than their bulk-film counterparts. Under low pump excitation, hot-carrier cooling mediated by a phonon bottleneck is surprisingly slower in smaller nanocrystals (contrasting with conventional nanocrystals). At high pump fluence, Auger heating dominates hot-carrier cooling, which is slower in larger nanocrystals (hitherto unobserved in conventional nanocrystals). Importantly, we demonstrate efficient room temperature hot-electrons extraction (up to ~83%) by an energy-selective electron acceptor layer within 1 ps from surface-treated perovskite NCs thin films. These insights enable fresh approaches for extremely thin absorber and concentrator-type hot-carrier solar cells.

  17. Real-time study of fast-electron transport inside dense hot plasmas.

    Science.gov (United States)

    Sandhu, A S; Ravindra Kumar, G; Sengupta, S; Das, A; Kaw, P K

    2006-03-01

    We offer a method to study transport of fast electrons in dense hot media. The technique relies on temporal profiling of the laser induced magnetic fields and offers a unique capability to map the hot electron currents and their neutralization (or lack of it) by the return currents in the plasma. We report direct quantitative measurements of strong electric inhibition in insulators and turbulence induced anomalous stopping of hot electrons in conductors. The present technique can prove extremely important from the point of view of fast ignition scheme, which relies on the penetration of fast electrons into the fusion core.

  18. Injector Element which Maintains a Constant Mean Spray Angle and Optimum Pressure Drop During Throttling by Varying the Geometry of Tangential Inlets

    Science.gov (United States)

    Trinh, Huu P. (Inventor); Myers, William Neill (Inventor)

    2014-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The tangential inlet area for each throttleable stage is calculated. The correlation between the tangential inlet areas and delta pressure values is used to calculate the spring displacement and variable inlet geometry. An injector designed using the method includes a plurality of geometrically calculated tangential inlets in an injection tube; an injection tube cap with a plurality of inlet slots slidably engages the injection tube. A pressure differential across the injector element causes the cap to slide along the injection tube and variably align the inlet slots with the tangential inlets.

  19. Gas Flow Dynamics in Inlet Capillaries: Evidence for non Laminar Conditions

    Science.gov (United States)

    Wißdorf, Walter; Müller, David; Brachthäuser, Yessica; Langner, Markus; Derpmann, Valerie; Klopotowski, Sebastian; Polaczek, Christine; Kersten, Hendrik; Brockmann, Klaus; Benter, Thorsten

    2016-09-01

    In this work, the characteristics of gas flow in inlet capillaries are examined. Such inlet capillaries are widely used as a first flow restriction stage in commercial atmospheric pressure ionization mass spectrometers. Contrary to the common assumption, we consider the gas flow in typical glass inlet capillaries with 0.5 to 0.6 mm inner diameters and lengths about 20 cm as transitional or turbulent. The measured volume flow of the choked turbulent gas stream in such capillaries is 0.8 L·min-1 to 1.6 L·min-1 under typical operation conditions, which is in good agreement to theoretically calculated values. Likewise, the change of the volume flow in dependence of the pressure difference along the capillary agrees well with a theoretical model for turbulent conditions as well as with exemplary measurements of the static pressure inside the capillary channel. However, the results for the volume flow of heated glass and metal inlet capillaries are neither in agreement with turbulent nor with laminar models. The velocity profile of the neutral gas in a quartz capillary with an inner diameter similar to commercial inlet capillaries was experimentally determined with spatially resolved ion transfer time measurements. The determined gas velocity profiles do not contradict the turbulent character of the flow. Finally, inducing disturbances of the gas flow by placing obstacles in the capillary channel is found to not change the flow characteristics significantly. In combination the findings suggest that laminar conditions inside inlet capillaries are not a valid primary explanation for the observed high ion transparency of inlet capillaries under common operation conditions.

  20. Impact of Hurricanes and Nor'easters on a Migrating Inlet System

    Science.gov (United States)

    Hopkins, J.; Elgar, S.; Raubenheimer, B.

    2016-12-01

    After breaching in 2007, Katama Inlet, connecting Katama Bay to the Atlantic Ocean on the south shore of Martha's Vineyard, MA, migrated 2 km until it closed in 2015. Bathymetric surveys before and after Hurricanes Irene (2011) and Sandy (2012) indicate the strong waves and currents associated with these storms caused 2 m of erosion and deposition around the inlet mouth. The waves, currents, and bathymetric change observed during the hurricanes were used to validate the hydrodynamic and morphodynamic components of a Delft3D numerical model of the Martha's Vineyard coastline for storm (> 3 m wave heights) conditions. When driven with observed bathymetry and offshore waves, as well as simulated (WaveWatch3) winds and barometric pressures, the model reproduces the pattern and range of bathymetric change observed around the inlet. Model simulations of realistic (i.e., Irene and Sandy) and idealized storm conditions with a range of durations and wave conditions are used to test the relative importance of short-duration, high-intensity storms (hurricanes) and longer-duration, lower-intensity storms (nor'easters) on inlet migration. The simulations suggest that longer-duration, lower-intensity storms cause a higher range and variance in bathymetric change around the inlet than shorter-duration, higher-intensity storms. However, the simulations also suggest that the storm-induced migration of the inlet depends more on the wave direction at the peak of the storm than on the duration of the storm peak. The effect of storms on inlet migration over yearly time scales will be discussed. Funded by NSF, NOAA, ONR, and ASD(R&E).

  1. Control of barrier island shape by inlet sediment bypassing: East Frisian Islands, West Germany

    Science.gov (United States)

    FitzGerald, D.M.; Penland, S.; Nummedal, D.

    1984-01-01

    A study of the East Frisian Islands has shown that the plan form of these islands can be explained by processes of inlet sediment bypassing. This island chain is located on a high wave energy, high tide range shoreline where the average deep-water significant wave height exceeds 1.0 m and the spring tidal range varies from 2.7 m at Juist to 2.9 m at Wangerooge. An abundant sediment supply and a strong eastward component of wave power (4.4 ?? 103 W m-1) have caused a persistent eastward growth of the barrier islands. The eastward extension of the barriers has been accommodated more by inlet narrowing, than by inlet migration. It is estimated from morphological evidence that a minimum of 2.7 ?? 105 m3 of sand is delivered to the inlets each year via the easterly longshore transport system. Much of this sand ultimately bypasses the inlets in the form of large, migrating swash bars. The location where the swash bars attach to the beach is controlled by the amount of overlap of the ebb-tidal delta along the downdrift inlet shoreline. The configuration of the ebbtidal delta, in turn, is a function of inlet size and position of the main ebb channel. The swash bar welding process has caused preferential beach nourishment and historical shoreline progradation. Along the East Frisian Islands this process has produced barrier islands with humpbacked, bulbous updrift and bulbous downdrift shapes. The model of barrier island development presented in this paper not only explains well the configuration of the German barriers but also the morphology of barriers along many other mixed energy coasts. ?? 1984.

  2. Statistics of Extremes

    KAUST Repository

    Davison, Anthony C.

    2015-04-10

    Statistics of extremes concerns inference for rare events. Often the events have never yet been observed, and their probabilities must therefore be estimated by extrapolation of tail models fitted to available data. Because data concerning the event of interest may be very limited, efficient methods of inference play an important role. This article reviews this domain, emphasizing current research topics. We first sketch the classical theory of extremes for maxima and threshold exceedances of stationary series. We then review multivariate theory, distinguishing asymptotic independence and dependence models, followed by a description of models for spatial and spatiotemporal extreme events. Finally, we discuss inference and describe two applications. Animations illustrate some of the main ideas. © 2015 by Annual Reviews. All rights reserved.

  3. Extremely deformable structures

    CERN Document Server

    2015-01-01

    Recently, a new research stimulus has derived from the observation that soft structures, such as biological systems, but also rubber and gel, may work in a post critical regime, where elastic elements are subject to extreme deformations, though still exhibiting excellent mechanical performances. This is the realm of ‘extreme mechanics’, to which this book is addressed. The possibility of exploiting highly deformable structures opens new and unexpected technological possibilities. In particular, the challenge is the design of deformable and bi-stable mechanisms which can reach superior mechanical performances and can have a strong impact on several high-tech applications, including stretchable electronics, nanotube serpentines, deployable structures for aerospace engineering, cable deployment in the ocean, but also sensors and flexible actuators and vibration absorbers. Readers are introduced to a variety of interrelated topics involving the mechanics of extremely deformable structures, with emphasis on ...

  4. Precursors of extreme increments

    CERN Document Server

    Hallerberg, S; Holstein, D; Kantz, H; Hallerberg, Sarah; Altmann, Eduardo G.; Holstein, Detlef; Kantz, Holger

    2006-01-01

    We investigate precursors and predictability of extreme events in time series, which consist in large increments within successive time steps. In order to understand the predictability of this class of extreme events, we study analytically the prediction of extreme increments in AR(1)-processes. The resulting strategies are then applied to predict sudden increases in wind speed recordings. In both cases we evaluate the success of predictions via creating receiver operator characteristics (ROC-plots). Surprisingly, we obtain better ROC-plots for completely uncorrelated Gaussian random numbers than for AR(1)-correlated data. Furthermore, we observe an increase of predictability with increasing event size. Both effects can be understood by using the likelihood ratio as a summary index for smooth ROC-curves.

  5. Small Friends of Hot Jupiters

    Science.gov (United States)

    Nunez, Luis Ernesto; Johnson, John A.

    2017-01-01

    Hot Jupiters are Jupiter-sized gas giant exoplanets that closely orbit their host star in periods of about 10 days or less. Early models hypothesized that these exoplanets formed away from the star, then over time drifted to their characteristically closer locations. However, new theories predict that Hot Jupiters form at their close proximity during the process of core accretion (Batygin et al. 2015). In fact, a super-Earth and a Neptune-sized exoplanet have already been detected in the Hot Jupiter-hosting star WASP-47 (Becker et al. 2015). We will present our analysis of radial velocity time series plots to determine whether low-mass, short-period planets have been previously overlooked in systems of stars which host Hot Jupiters.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851.

  6. Hot dry rock geothermal energy

    Science.gov (United States)

    Heiken, G.; Murphy, H.; Nunz, G.; Potter, R.

    1981-08-01

    Man-made geothermal systems are discussed which make it possible to extract heat from hot rocks in areas where natural fluids are insufficient for the development of hydrothermal energy. The location and magnitude of high- and low-temperature geothermal resources in the USA for such hot dry rock (HDR) systems are examined. An HDR concept is described in which water is injected into one of two nearly parallel wells connected at depth by man-made fractures; the injected water circulates through the fracture system, where it is heated by conduction from the hot rock, and hot fluid, which can be used for heating or for electric power generation, rises through the second well. Some heat-extraction experiments using the described concept are reviewed which are being conducted in a complex volcanic field in New Mexico. The economics of HDR energy is evaluated.

  7. Do scientists trace hot topics?

    Science.gov (United States)

    Wei, Tian; Li, Menghui; Wu, Chensheng; Yan, Xiao-Yong; Fan, Ying; Di, Zengru; Wu, Jinshan

    2013-01-01

    Do scientists follow hot topics in their scientific investigations? In this paper, by performing analysis to papers published in the American Physical Society (APS) Physical Review journals, it is found that papers are more likely to be attracted by hot fields, where the hotness of a field is measured by the number of papers belonging to the field. This indicates that scientists generally do follow hot topics. However, there are qualitative differences among scientists from various countries, among research works regarding different number of authors, different number of affiliations and different number of references. These observations could be valuable for policy makers when deciding research funding and also for individual researchers when searching for scientific projects.

  8. Coulomb explosion of "hot spot"

    CERN Document Server

    Oreshkin, V I; Chaikovsky, S A; Artyomov, A P

    2016-01-01

    The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed and estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.

  9. Microhabitats reduce animal's exposure to climate extremes.

    Science.gov (United States)

    Scheffers, Brett R; Edwards, David P; Diesmos, Arvin; Williams, Stephen E; Evans, Theodore A

    2014-02-01

    Extreme weather events, such as unusually hot or dry conditions, can cause death by exceeding physiological limits, and so cause loss of population. Survival will depend on whether or not susceptible organisms can find refuges that buffer extreme conditions. Microhabitats offer different microclimates to those found within the wider ecosystem, but do these microhabitats effectively buffer extreme climate events relative to the physiological requirements of the animals that frequent them? We collected temperature data from four common microhabitats (soil, tree holes, epiphytes, and vegetation) located from the ground to canopy in primary rainforests in the Philippines. Ambient temperatures were monitored from outside of each microhabitat and from the upper forest canopy, which represent our macrohabitat controls. We measured the critical thermal maxima (CTmax ) of frog and lizard species, which are thermally sensitive and inhabit our microhabitats. Microhabitats reduced mean temperature by 1-2 °C and reduced the duration of extreme temperature exposure by 14-31 times. Microhabitat temperatures were below the CTmax of inhabitant frogs and lizards, whereas macrohabitats consistently contained lethal temperatures. Microhabitat temperatures increased by 0.11-0.66 °C for every 1 °C increase in macrohabitat temperature, and this nonuniformity in temperature change influenced our forecasts of vulnerability for animal communities under climate change. Assuming uniform increases of 6 °C, microhabitats decreased the vulnerability of communities by up to 32-fold, whereas under nonuniform increases of 0.66 to 3.96 °C, microhabitats decreased the vulnerability of communities by up to 108-fold. Microhabitats have extraordinary potential to buffer climate and likely reduce mortality during extreme climate events. These results suggest that predicted changes in distribution due to mortality and habitat shifts that are derived from macroclimatic samples and that assume

  10. Quantitative spectroscopy of hot stars

    Science.gov (United States)

    Kudritzki, R. P.; Hummer, D. G.

    1990-01-01

    A review on the quantitative spectroscopy (QS) of hot stars is presented, with particular attention given to the study of photospheres, optically thin winds, unified model atmospheres, and stars with optically thick winds. It is concluded that the results presented here demonstrate the reliability of Qs as a unique source of accurate values of the global parameters (effective temperature, surface gravity, and elemental abundances) of hot stars.

  11. Weather and Climate Extremes.

    Science.gov (United States)

    1997-09-01

    Antarctica’s highest (New Zealand Antarctic Society, 1974). This extreme exceeded the record of 58°F (14.4°C) that occurred on 20 October 1956 at Esperanza ... Esperanza (also known as Bahia Esperanza , Hope Bay) was in operation from 1945 through the early 1960s. Meteorological/Climatological Factors: This extreme...cm) Location: Grand Ilet, La R’eunion Island [21°00’S, 55°30’E] Date: 26 January 1980 WORLD’S GREATEST 24-HOUR RAINFALL 72 in (182.5 cm

  12. Adventure and Extreme Sports.

    Science.gov (United States)

    Gomez, Andrew Thomas; Rao, Ashwin

    2016-03-01

    Adventure and extreme sports often involve unpredictable and inhospitable environments, high velocities, and stunts. These activities vary widely and include sports like BASE jumping, snowboarding, kayaking, and surfing. Increasing interest and participation in adventure and extreme sports warrants understanding by clinicians to facilitate prevention, identification, and treatment of injuries unique to each sport. This article covers alpine skiing and snowboarding, skateboarding, surfing, bungee jumping, BASE jumping, and whitewater sports with emphasis on epidemiology, demographics, general injury mechanisms, specific injuries, chronic injuries, fatality data, and prevention. Overall, most injuries are related to overuse, trauma, and environmental or microbial exposure.

  13. Extremal graph theory

    CERN Document Server

    Bollobas, Bela

    2004-01-01

    The ever-expanding field of extremal graph theory encompasses a diverse array of problem-solving methods, including applications to economics, computer science, and optimization theory. This volume, based on a series of lectures delivered to graduate students at the University of Cambridge, presents a concise yet comprehensive treatment of extremal graph theory.Unlike most graph theory treatises, this text features complete proofs for almost all of its results. Further insights into theory are provided by the numerous exercises of varying degrees of difficulty that accompany each chapter. A

  14. Augustine Volcano, Cook Inlet, Alaska (January 12, 2006)

    Science.gov (United States)

    2006-01-01

    Since last spring, the U.S. Geological Survey's Alaska Volcano Observatory (AVO) has detected increasing volcanic unrest at Augustine Volcano in Cook Inlet, Alaska near Anchorage. Based on all available monitoring data, AVO regards that an eruption similar to 1976 and 1986 is the most probable outcome. During January, activity has been episodic, and characterized by emission of steam and ash plumes, rising to altitudes in excess of 9,000 m (30,000 ft), and posing hazards to aircraft in the vicinity. An ASTER image was acquired at 12:42 AST on January 12, 2006, during an eruptive phase of Augustine. The perspective rendition shows the eruption plume derived from the ASTER image data. ASTER's stereo viewing capability was used to calculate the 3-dimensional topography of the eruption cloud as it was blown to the south by prevailing winds. From a maximum height of 3060 m (9950 ft), the plume cooled and its top descended to 1900 m (6175 ft). The perspective view shows the ASTER data draped over the plume top topography, combined with a base image acquired in 2000 by the Landsat satellite, that is itself draped over ground elevation data from the Shuttle Radar Topography Mission. The topographic relief has been increased 1.5 times for this illustration. Comparison of the ASTER plume topography data with ash dispersal models and weather radar data will allow the National Weather Service to validate and improve such models. These models are used to forecast volcanic ash plume trajectories and provide hazard alerts and warnings to aircraft in the Alaska region. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with

  15. Influence of Sea Level Rise and Marsh Hypsometry on the Equilibrium Morphology of Tidal Inlets

    Science.gov (United States)

    Lovering, J. L.; Adams, P. N.

    2011-12-01

    As global sea level is predicted to rise between 0.18 and 1.9 meters by the end of the 21st century, it is critical to understand how the geomorphology and ecology of coastal regions worldwide will be affected for a range of sea level rise rate scenarios. Tidal inlets along sandy, passive margin coasts are sensitive to water levels, nearshore currents, and wave fields, so changes in environmental conditions in the vicinity of inlets should drive a morphologic response. Due to their importance in commercial shipping, military navigation, and recreation, an improved understanding of tidal inlet response to sea level rise will assist in future planning efforts. The widely accepted conceptual model of tidal inlet evolution predicts that, as sea level rises, salt marshes in the lagoon become drowned and converted to subtidal environments, increasing accommodation space in the back barrier basin. This conversion increases the tidal prism, inlet cross-sectional area, and ebb shoal volume. The purpose of this study is to quantify the relationship between sea level rise, the ecomorphodynamic environment of the back barrier basin, and the resulting changes in equilibrium tidal inlet morphology. Threshold values of sea level rise rate for which marsh habitats convert to subtidal environments, determined by the tidal range and suspended sediment concentration found in the back barrier basin, were developed using previously published numerical simulations and field-based observations. We paired the threshold values with Escoffier equilibrium curve calculations, in order to predict changes in tidal inlet equilibrium cross-sectional area. Halophytic vegetation that is supplied with high suspended sediment concentrations and lives in an area with a high tidal range is able to trap sediment and drive vertical accretion at a faster pace than vegetation in areas of low sediment availability and low tidal range; therefore marshes with high sediment availability and tidal range are

  16. Mercury in Sediment, Water, and Biota of Sinclair Inlet, Puget Sound, Washington, 1989-2007

    Science.gov (United States)

    Paulson, Anthony J.; Keys, Morgan E.; Scholting, Kelly L.

    2010-01-01

    Historical records of mercury contamination in dated sediment cores from Sinclair Inlet are coincidental with activities at the U.S. Navy Puget Sound Naval Shipyard; peak total mercury concentrations occurred around World War II. After World War II, better metallurgical management practices and environmental regulations reduced mercury contamination, but total mercury concentrations in surface sediment of Sinclair Inlet have decreased slowly because of the low rate of sedimentation relative to the vertical mixing within sediment. The slopes of linear regressions between the total mercury and total organic carbon concentrations of sediment offshore of Puget Sound urban areas was the best indicator of general mercury contamination above pre-industrial levels. Prior to the 2000-01 remediation, this indicator placed Sinclair Inlet in the tier of estuaries with the highest level of mercury contamination, along with Bellingham Bay in northern Puget Sound and Elliott Bay near Seattle. This indicator also suggests that the 2000/2001 remediation dredging had significant positive effect on Sinclair Inlet as a whole. In 2007, about 80 percent of the area of the Bremerton naval complex had sediment total mercury concentrations within about 0.5 milligrams per kilogram of the Sinclair Inlet regression. Three areas adjacent to the waterfront of the Bremerton naval complex have total mercury concentrations above this range and indicate a possible terrestrial source from waterfront areas of Bremerton naval complex. Total mercury concentrations in unfiltered Sinclair Inlet marine waters are about three times higher than those of central Puget Sound, but the small numbers of samples and complex physical and geochemical processes make it difficult to interpret the geographical distribution of mercury in marine waters from Sinclair Inlet. Total mercury concentrations in various biota species were compared among geographical locations and included data of composite samples, individual

  17. Magnetotactic Bacteria from Extreme Environments

    Directory of Open Access Journals (Sweden)

    Christopher T. Lefèvre

    2013-03-01

    Full Text Available Magnetotactic bacteria (MTB represent a diverse collection of motile prokaryotes that biomineralize intracellular, membrane-bounded, tens-of-nanometer-sized crystals of a magnetic mineral called magnetosomes. Magnetosome minerals consist of either magnetite (Fe3O4 or greigite (Fe3S4 and cause cells to align along the Earth’s geomagnetic field lines as they swim, a trait called magnetotaxis. MTB are known to mainly inhabit the oxic–anoxic interface (OAI in water columns or sediments of aquatic habitats and it is currently thought that magnetosomes function as a means of making chemotaxis more efficient in locating and maintaining an optimal position for growth and survival at the OAI. Known cultured and uncultured MTB are phylogenetically associated with the Alpha-, Gamma- and Deltaproteobacteria classes of the phylum Proteobacteria, the Nitrospirae phylum and the candidate division OP3, part of the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC bacterial superphylum. MTB are generally thought to be ubiquitous in aquatic environments as they are cosmopolitan in distribution and have been found in every continent although for years MTB were thought to be restricted to habitats with pH values near neutral and at ambient temperature. Recently, however, moderate thermophilic and alkaliphilic MTB have been described including: an uncultured, moderately thermophilic magnetotactic bacterium present in hot springs in northern Nevada with a probable upper growth limit of about 63 °C; and several strains of obligately alkaliphilic MTB isolated in pure culture from different aquatic habitats in California, including the hypersaline, extremely alkaline Mono Lake, with an optimal growth pH of >9.0.

  18. Migration of Tidal Inlets of Chilika Lagoon, Odisha, India -A Critical Study

    Directory of Open Access Journals (Sweden)

    Siba Prasad Mishra

    2014-10-01

    Full Text Available Chilika Lake, Asia’s largest brackish water lagoon situated on the East coast of India is separated from Bay of Bengal by sand bars and connected with the sea by a series of tidal inlets. The inlets are maintained by discharges of inflowing streams during monsoon and by tides and ebb tides during non-monsoon. Imbalance in ingress and egress of sediment due to their continuous exchange between sea and the lagoon causes sedimentation of lagoon. Varying inflow, littoral drift and such other factors influence sedimentation. It results shifting mouths (inlets continuously. Some mouths closed and some opened at various locations of the spits of the lagoon in course of time. This governs the inflow and the outflow characteristics and hence the salinity. A barrage at Naraj on Kathajodi, a major distributary of the river Mohanadi, and an artificial channel connecting the mouth of the Lagoon from Magarmunha to Bay of Bengal were provided to regulate the inflow. This phenomenon has been studied critically considering long history, geophysical parameters, terrestrial events and human interventions etc. Since the activities are location based, exact hydrodynamics has not yet been established for formation, closure and shifting of the tidal inlets. The present study deals with mouthing activities with time, the mechanism involved and effect of Naraj barrage on closure, migration and opening of new tidal inlets in Chilika Lagoon. The possible effects of celestial bodies and sun-earth geometry, which were unnoticed so far, are studied.

  19. Numerical modelling to assess maintenance strategy management options for a small tidal inlet

    Science.gov (United States)

    Shaeri, Saeed; Tomlinson, Rodger; Etemad-Shahidi, Amir; Strauss, Darrell

    2017-03-01

    Small tidal inlets are found to be more sensitive to anthropogenic alteration than their larger counterparts. Such alterations, although typically supported by technical design reports, sometimes require amendments or modification. One of the most suitable tools to conduct the necessary studies in this regard is numerical modelling, since the behaviour of the inlet system in response to proposed remedial actions, can easily be identified. In this paper, various alternative proposals are investigated to determine the most practical and viable option to mitigate the need for ongoing maintenance at a typical small, jettied tidal inlet. The main tool to investigate the alternatives is the hydro-sedimentological modelling of the inlet system, which was performed using the Delft3D software package. The proposed alternative entrance modifications were based upon structural alterations of the inlet system (such as a jetty extension or submerged weir) and non-structural scenarios (such as a change of the time of the dredging campaign or the deposition location of the dredged material). It was concluded that whilst a detailed study is inevitable in order to achieve a comprehensive design plan, based upon the results of this study the construction of a submerged weir at the entrance channel can satisfy the needs of most of the stakeholders, with justifiable costs over a longer period.

  20. Experiments of effects of inlet-air distortion on aerodynamic performance in transonic compressor

    Institute of Scientific and Technical Information of China (English)

    LI Mao-yi; YUAN Wei; LU Ya-jun; SONG Xi-zhen; LU Li-peng

    2013-01-01

    The inlet-air distortion which was caused by high angle-of-attack flight was simulated by plugboard.Experiments were conducted on a transonic axial-flow compressor's rotor at 98% rotating speed.The flow field characteristics and mechanism of performance degradation were analyzed in detail.The compressor inlet was divided into four sectors at circumference under inlet-air distortion.They were undistorted sector,transition sector A where the rotor was rotating into the distortion sector,distorted sector and transition sector B where the rotor was rotating out of the distortion sector.The experimental results show that compared with undistorted sector,there is a subsonic flow in transition sector A,so the pressure ratio is decreased by a large margin in this sector.However,the shock wave is enhanced in distortion sector and transition sector B,and thus the pressure ratio increases in these sectors.Because of the different works at circumference,the phase angle of total pressure changes 90° when the inlet total pressure distortion passes through compressor rotor.In addition,the frequency and amplitude of disturbances in front of the rotor strengthenes under inlet distortion,so the unstable flow would take place in advance.In addition,the position of stall inception is in one of the transition sectors.

  1. Effect of blade sweep on inlet flow in axial compressor cascades

    Directory of Open Access Journals (Sweden)

    Hao Chang

    2015-02-01

    Full Text Available This paper presents comparative numerical studies to investigate the effects of blade sweep on inlet flow in axial compressor cascades. A series of swept and straight cascades was modeled in order to obtain a general understanding of the inlet flow field that is induced by sweep. A computational fluid dynamics (CFD package was used to simulate the cascades and obtain the required three-dimensional (3D flow parameters. A circumferentially averaged method was introduced which provided the circumferential fluctuation (CF terms in the momentum equation. A program for data reduction was conducted to obtain a circumferentially averaged flow field. The influences of the inlet flow fields of the cascades were studied and spanwise distributions of each term in the momentum equation were analyzed. The results indicate that blade sweep does affect inlet radial equilibrium. The characteristic of radial fluid transfer is changed and thus influencing the axial velocity distributions. The inlet flow field varies mainly due to the combined effect of the radial pressure gradient and the CF component. The axial velocity varies consistently with the incidence variation induced by the sweep, as observed in the previous literature. In addition, factors that might influence the radial equilibrium such as blade camber angles, solidity and the effect of the distance from the leading edge are also taken into consideration and comparatively analyzed.

  2. Tidal hydrodynamics in a two-inlet coastal lagoon in the Gulf of California

    Science.gov (United States)

    Serrano, David; Ramírez-Félix, Evlin; Valle-Levinson, Arnoldo

    2013-07-01

    The aim of this study is to understand the effects of friction and advection in the hydrodynamics of a two-inlet coastal lagoon, Santa María La Reforma, in Northwest Mexico. A vertically integrated numerical model is used to describe sea level variations and tidal currents, and to study the dynamics inside the system. Observed sea level and current measurements were used to calibrate the model. Results show a ˜90 min phase lag of the tidal signal in the center of the system with respect to both inlets. Tidal currents greater than 1.0 m s-1 were recorded and modeled at both inlets. The sea level in the lagoon shows one-quarter of period of M2 out of phase (˜3 h) with respect to the velocity. Bottom friction generated the greatest M4 harmonic and largest tidal asymmetries at the narrowest section of the lagoon, ˜35 km away from the inlets. The tidal momentum balance along the main axis of the lagoon was dominated by pressure gradient and friction, describing a quasi-standing tidal wave in currents and in amplitude. This behavior resulted from waves traveling in opposite directions from the two tidal inlets, causing constructive interference in elevation but destructive interference inflow.

  3. Influence of combustion-preheating vitiation on operability of a hypersonic inlet

    Science.gov (United States)

    Liu, K.; Zhu, Y.; Gao, W.; Yang, J.; Jin, Y.; Wu, Y.

    2016-11-01

    Vitiation of the test flow with combustion products is inherent in combustion wind tunnels, and its effect on experimental results needs to be clarified. In this study, the influence of air vitiation on the startability and performance of a hypersonic inlet is investigated through two-dimensional (2D) numerical simulation. The study examines the vitiation effects introduced by carbon dioxide and water vapor, on the basis of maintaining the static pressure, static temperature and Mach number of the incoming flow. The starting Mach number limits of the inlet are estimated, and it is found that both of these vitiation components lower the starting limit of the inlet. This suggests that the experimental results acquired by tests in combustion wind tunnels overestimate the startability of an inlet and, therefore, combustion-preheated facilities may not be completely trusted in this respect. Deviations in the inlet performance caused by the vitiation are also detected. These are nevertheless minor as long as the flow is at the same started or unstarted condition. A further analysis reveals that it is mainly the increase in the heat capacity, and the resulting weaker shock/compression waves and shock-wave/boundary-layer interactions that account for the aforementioned effects.

  4. Experimental investigation of the draft tube inlet flow of a bulb turbine

    Science.gov (United States)

    Vuillemard, J.; Aeschlimann, V.; Fraser, R.; Lemay, S.; Deschênes, C.

    2014-03-01

    In the BulbT project framework, a bulb turbine model was studied with a strongly diverging draft tube. At high discharge, flow separation occurs in the draft tube correlated to significant efficiency and power drops. In this context, a focus was put on the draft tube inlet flow conditions. Actually, a precise inlet flow velocity field is required for comparison and validation purposes with CFD simulation. This paper presents different laser Doppler velocimetry (LDV) measurements at the draft tube inlet and their analysis. The LDV was setup to measure the axial and circumferential velocity on a radius under the runner and a diameter under the hub. A method was developed to perform indirect measurement of the mean radial velocity component. Five operating conditions were studied to correlate the inlet flow to the separation in the draft tube. Mean velocities, fluctuations and frequencies allowed characterizing the flow. Using this experimental database, the flow structure was characterized. Phase averaged velocities based on the runner position allowed detecting the runner blade wakes. The velocity gradients induced by the blade tip vortices were captured. The guide vane wakes was also detected at the draft tube inlet. The recirculation in the hub wake was observed.

  5. Preliminary assessment of landslide-induced wave hazards, Tidal Inlet, Glacier Bay National Park, Alaska

    Science.gov (United States)

    Wieczorek, Gerald F.; Jakob, Matthias; Motyka, Roman J.; Zirnheld, Sandra L.; Craw, Patricia

    2003-01-01

    A large potential rock avalanche above the northern shore of Tidal Inlet, Glacier Bay National Park, Alaska, was investigated to determine hazards and risks of landslide-induced waves to cruise ships and other park visitors. Field and photographic examination revealed that the 5 to 10 million cubic meter landslide moved between AD 1892 and 1919 after the retreat of Little Ice Age glaciers from Tidal Inlet by AD 1890. The timing of landslide movement and the glacial history suggest that glacial debuttressing caused weakening of the slope and that the landslide could have been triggered by large earthquakes of 1899-1900 in Yakutat Bay. Evidence of recent movement includes fresh scarps, back-rotated blocks, and smaller secondary landslide movements. However, until there is evidence of current movement, the mass is classified as a dormant rock slump. An earthquake on the nearby active Fairweather fault system could reactivate the landslide and trigger a massive rock slump and debris avalanche into Tidal Inlet. Preliminary analyses show that waves induced by such a landslide could travel at speeds of 45 to 50 m/s and reach heights up to 76 m with wave runups of 200 m on the opposite shore of Tidal Inlet. Such waves would not only threaten vessels in Tidal Inlet, but would also travel into the western arm of Glacier Bay endangering large cruise ships and their passengers.

  6. Extremity perfusion for sarcoma

    NARCIS (Netherlands)

    Hoekstra, Harald Joan

    2008-01-01

    For more than 50 years, the technique of extremity perfusion has been explored in the limb salvage treatment of local, recurrent, and multifocal sarcomas. The "discovery" of tumor necrosis factor-or. in combination with melphalan was a real breakthrough in the treatment of primarily irresectable ext

  7. Hydrological extremes and security

    Science.gov (United States)

    Kundzewicz, Z. W.; Matczak, P.

    2015-04-01

    Economic losses caused by hydrological extremes - floods and droughts - have been on the rise. Hydrological extremes jeopardize human security and impact on societal livelihood and welfare. Security can be generally understood as freedom from threat and the ability of societies to maintain their independent identity and their functional integrity against forces of change. Several dimensions of security are reviewed in the context of hydrological extremes. The traditional interpretation of security, focused on the state military capabilities, has been replaced by a wider understanding, including economic, societal and environmental aspects that get increasing attention. Floods and droughts pose a burden and serious challenges to the state that is responsible for sustaining economic development, and societal and environmental security. The latter can be regarded as the maintenance of ecosystem services, on which a society depends. An important part of it is water security, which can be defined as the availability of an adequate quantity and quality of water for health, livelihoods, ecosystems and production, coupled with an acceptable level of water-related risks to people, environments and economies. Security concerns arise because, over large areas, hydrological extremes - floods and droughts - are becoming more frequent and more severe. In terms of dealing with water-related risks, climate change can increase uncertainties, which makes the state's task to deliver security more difficult and more expensive. However, changes in population size and development, and level of protection, drive exposure to hydrological hazards.

  8. Acute lower extremity ischaemia

    African Journals Online (AJOL)

    tend to impact at arterial bifurcations, the commonest site being the ... Other ominous signs of advanced ischaemia include bluish ... Recommended standards for lower extremity ischaemia*. Doppler signals ... of the embolectomy procedure. An ... in a cath-lab or angio-suite under local ... We serially measure the aPTT and.

  9. Extremity perfusion for sarcoma

    NARCIS (Netherlands)

    Hoekstra, Harald Joan

    2008-01-01

    For more than 50 years, the technique of extremity perfusion has been explored in the limb salvage treatment of local, recurrent, and multifocal sarcomas. The "discovery" of tumor necrosis factor-or. in combination with melphalan was a real breakthrough in the treatment of primarily irresectable

  10. Statistics of Local Extremes

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Bierbooms, W.; Hansen, Kurt Schaldemose

    2003-01-01

    . A theoretical expression for the probability density function associated with local extremes of a stochasticprocess is presented. The expression is basically based on the lower four statistical moments and a bandwidth parameter. The theoretical expression is subsequently verified by comparison with simulated...

  11. de Sitter Extremal Surfaces

    CERN Document Server

    Narayan, K

    2015-01-01

    We study extremal surfaces in de Sitter space in the Poincare slicing in the upper patch, anchored on spatial subregions at the future boundary ${\\cal I}^+$, restricted to constant boundary Euclidean time slices (focussing on strip subregions). We find real extremal surfaces of minimal area as the boundaries of past lightcone wedges of the subregions in question: these are null surfaces with vanishing area. We find also complex extremal surfaces as complex extrema of the area functional, and the area is not always real-valued. In $dS_4$ the area is real and has some structural resemblance with entanglement entropy in a dual $CFT_3$. There are parallels with analytic continuation from the Ryu-Takayanagi expressions for holographic entanglement entropy in $AdS$. We also discuss extremal surfaces in the $dS$ black brane and the de Sitter "bluewall" studied previously. The $dS_4$ black brane complex surfaces exhibit a real finite cutoff-independent extensive piece. In the bluewall geometry, there are real surface...

  12. Moving in extreme environments

    DEFF Research Database (Denmark)

    Lucas, Samuel J E; Helge, Jørn W; Schütz, Uwe H W

    2016-01-01

    and transcontinental races) and expeditions (e.g. polar crossings), to the more gravitationally limited load carriage (e.g. in the military context). Juxtaposed to these circumstances is the extreme metabolic and mechanical unloading associated with space travel, prolonged bedrest and sedentary lifestyle, which may...

  13. Ponce de Leon Inlet, Florida, Site Investigation Report 1, Selected Portions of Long-Term Measurements, 1995-1997.

    Science.gov (United States)

    1999-01-01

    Technical Report CHL-99-1 January 1999 US Army Corps of Engineers Waterways Experiment Station Coastal Inlets Research Program Ponce de Leon ...Report CHL-99-1 Research Program January 1999 Ponce de Leon Inlet, Florida, Site Investigation Report 1 Selected Portions of Long-Term Measurements...AREA OF RESERVAT«» • J?s»lon Waterways Experiment Station Cataloging-in-Publication Data Ponce de Leon Inlet, Florida, site investigation. Report

  14. Closed bioregenerative life support systems: Applicability to hot deserts

    Science.gov (United States)

    Polyakov, Yuriy S.; Musaev, Ibrahim; Polyakov, Sergey V.

    2010-09-01

    Water scarcity in hot deserts, which cover about one-fifth of the Earth's land area, along with rapid expansion of hot deserts into arable lands is one of the key global environmental problems. As hot deserts are extreme habitats characterized by the availability of solar energy with a nearly complete absence of organic life and water, space technology achievements in designing closed ecological systems may be applicable to the design of sustainable settlements in the deserts. This review discusses the key space technology findings for closed biogenerative life support systems (CBLSS), which can simultaneously produce food, water, nutrients, fertilizers, process wastes, and revitalize air, that can be applied to hot deserts. Among them are the closed cycle of water and the acceleration of the cycling times of carbon, biogenic compounds, and nutrients by adjusting the levels of light intensity, temperature, carbon dioxide, and air velocity over plant canopies. Enhanced growth of algae and duckweed at higher levels of carbon dioxide and light intensity can be important to provide complete water recycling and augment biomass production. The production of fertilizers and nutrients can be enhanced by applying the subsurface flow wetland technology and hyper-thermophilic aerobic bacteria for treating liquid and solid wastes. The mathematical models, optimization techniques, and non-invasive measuring techniques developed for CBLSS make it possible to monitor and optimize the performance of such closed ecological systems. The results of long-duration experiments performed in BIOS-3, Biosphere 2, Laboratory Biosphere, and other ground-based closed test facilities suggest that closed water cycle can be achieved in hot-desert bioregenerative systems using the pathways of evapotranspiration, condensation, and biological wastewater treatment technologies. We suggest that the state of the art in the CBLSS design along with the possibility of using direct sunlight for

  15. Digital-computer normal shock position and restart control of a Mach 2.5 axisymmetric mixed-compression inlet

    Science.gov (United States)

    Neiner, G. H.; Cole, G. L.; Arpasi, D. J.

    1972-01-01

    Digital computer control of a mixed-compression inlet is discussed. The inlet was terminated with a choked orifice at the compressor face station to dynamically simulate a turbojet engine. Inlet diffuser exit airflow disturbances were used. A digital version of a previously tested analog control system was used for both normal shock and restart control. Digital computer algorithms were derived using z-transform and finite difference methods. Using a sample rate of 1000 samples per second, the digital normal shock and restart controls essentially duplicated the inlet analog computer control results. At a sample rate of 100 samples per second, the control system performed adequately but was less stable.

  16. Dynamic Inlet Distortion Prediction with a Combined Computational Fluid Dynamics and Distortion Synthesis Approach

    Science.gov (United States)

    Norby, W. P.; Ladd, J. A.; Yuhas, A. J.

    1996-01-01

    A procedure has been developed for predicting peak dynamic inlet distortion. This procedure combines Computational Fluid Dynamics (CFD) and distortion synthesis analysis to obtain a prediction of peak dynamic distortion intensity and the associated instantaneous total pressure pattern. A prediction of the steady state total pressure pattern at the Aerodynamic Interface Plane is first obtained using an appropriate CFD flow solver. A corresponding inlet turbulence pattern is obtained from the CFD solution via a correlation linking root mean square (RMS) inlet turbulence to a formulation of several CFD parameters representative of flow turbulence intensity. This correlation was derived using flight data obtained from the NASA High Alpha Research Vehicle flight test program and several CFD solutions at conditions matching the flight test data. A distortion synthesis analysis is then performed on the predicted steady state total pressure and RMS turbulence patterns to yield a predicted value of dynamic distortion intensity and the associated instantaneous total pressure pattern.

  17. Advanced Shock Position Control for Mode Transition in a Turbine Based Combined Cycle Engine Inlet Model

    Science.gov (United States)

    Csank, Jeffrey T.; Stueber, Thomas J.

    2013-01-01

    A dual flow-path inlet system is being tested to evaluate methodologies for a Turbine Based Combined Cycle (TBCC) propulsion system to perform a controlled inlet mode transition. Prior to experimental testing, simulation models are used to test, debug, and validate potential control algorithms. One simulation package being used for testing is the High Mach Transient Engine Cycle Code simulation, known as HiTECC. This paper discusses the closed loop control system, which utilizes a shock location sensor to improve inlet performance and operability. Even though the shock location feedback has a coarse resolution, the feedback allows for a reduction in steady state error and, in some cases, better performance than with previous proposed pressure ratio based methods. This paper demonstrates the design and benefit with the implementation of a proportional-integral controller, an H-Infinity based controller, and a disturbance observer based controller.

  18. The influence of inlet flow condition on the frequency of self-excited jet precession

    Science.gov (United States)

    Mi, J.; Nathan, G. J.; Wong, C. Y.

    2006-01-01

    A precessing jet flow can be generated naturally by a fluidic nozzle comprising a cylindrical nozzle-chamber with a large sudden expansion at its inlet and a small lip at its outlet. Such a precessing jet flow is offset with respect to the chamber axis, about which it rotates. The aim of the present study is to investigate the influence of the chamber-inlet configuration on the frequency of such precession. Three different inlet configurations, classified as long pipe, smooth contraction, and sharp-edged orifice plate, are tested. It is found that the frequency of precession from the orifice is highest, whereas that of the pipe jet is lowest. These differences appear to result partly from the distinct differences in their respective initial boundary layers.

  19. Surge investigations in a radial single-stage blower with adjustable inlet guide vanes

    Energy Technology Data Exchange (ETDEWEB)

    Kryllowicz, W.; Horodko, L.; Hanausek, P.

    1996-12-31

    Experimental investigations of the influence of adjustable inlet guide vanes on the surge propagation in a radial single-stage blower system were carried out. The object of the investigations was a blower with a semi-open impeller with radially ended blades and a vaneless diffuser. The blower maximum pressure rate was {Pi} = 1.52 at the mass flow equal to m = 13.8 kg/s. The test instrumentation used consisted of classic probes and thermocouples and fast response semi-conductor pressure transducers located in flow path walls. Additionally, the noise level for different blower operating points was measured. These investigations made it possible to identify the mild and deep surge regions, the region of an inlet recirculation phenomenon as well as an inlet reverse flow phenomenon in the function of the IGV adjustment angle. (orig.)

  20. Effect of gas inlet angle on the gas-assisted extrusion forming of polymer melt

    Science.gov (United States)

    Ren, Z.; Huang, X. Y.

    2017-06-01

    In this paper, the effect of gas inlet angle on the gas-assisted extrusion (GAE) forming of polymer melt was studied by means of numerical simulation method. The geometric models and the corresponding finite element meshes of four different gas inlet angles (0°, 30°, 60°, and 90°) were established. The computed fluid dynamic software package Polyflow was used. The shear stress, normal stress, and first normal stress difference of melt at the gas/melt interface were obtained. The results show that the influence of gas inlet angle at 30 on the gas-assisted extrusion forming of melt is lest, which can provide the technique guidance for the optimal designing of the gas-assisted die for the polymer melt.

  1. Hot Alps (Invited)

    Science.gov (United States)

    Speranza, F.; Minelli, L.; Pignatelli, A.; Gilardi, M.

    2013-12-01

    Although it is frequently assumed that crust of Alpine orogens is hot due to the occurrence of thick and young (hence radiogenic) crust, evidence on the thermal ranking of orogens is contradictory. Heat flow measurements from shallow wells (depth ≤ 1 km) in the Alps yield a relatively cold thermal regime of 50-80 mW/m2, but data are likely biased by meteoric cold-water circulation. Here we report on the spectral analysis of the aeromagnetic residuals of northern Italy to derive the Curie point depth (CPD), assumed to represent the 600°C isotherm depth. Airborne magnetics were acquired on whole Italy during the 1970s by the national oil company AGIP (now Eni). Data were gathered by several surveys carried out at 1000-13,300 feet (300-4000 m) altitude, with flight line spacing of 2-10 km. Surveys of the Alps and Po Plain (northern Italy) were obtained both with a line spacing of 5 km (and 5 km tie lines), at an altitude of 4000-5000 and 13,300 feet, respectively. To evaluate CPDs we used the centroid method (routinely adopted in recent CPD studies on East Asia and central-southern Europe) on 72 square windows of 100-110 km edge, with a 50% degree of superposition. CPDs vary between 16 and 38 km (22 km on average) in the Po Plain, located south of the Alps and representing the Adriatic-African foreland area. Conversely, the Alps yield very shallow CPDs, ranging between 6 and 15 km (10 km on average). CPDs fall systematically above local Moho depths, implying that magnetic source bottoms documented in this study do not represent a lithological boundary over non-magnetic peridotitic mantle, but can be safely associated with CPDs and the 600°C isotherm. CPDs from the Po Plain are in rough agreement with reported heat flow values of 25-60 mW/m2, and imply and average thermal conductivity (k) of the Po Plain crust of 1.5 W/m°K, at the lower bound of k values measured and inferred for the crust. Conversely, the average 10 km CPD documented in the Alps translates into

  2. The Role of Design-of-Experiments in Managing Flow in Compact Air Vehicle Inlets

    Science.gov (United States)

    Anderson, Bernhard H.; Miller, Daniel N.; Gridley, Marvin C.; Agrell, Johan

    2003-01-01

    It is the purpose of this study to demonstrate the viability and economy of Design-of-Experiments methodologies to arrive at microscale secondary flow control array designs that maintain optimal inlet performance over a wide range of the mission variables and to explore how these statistical methods provide a better understanding of the management of flow in compact air vehicle inlets. These statistical design concepts were used to investigate the robustness properties of low unit strength micro-effector arrays. Low unit strength micro-effectors are micro-vanes set at very low angles-of-incidence with very long chord lengths. They were designed to influence the near wall inlet flow over an extended streamwise distance, and their advantage lies in low total pressure loss and high effectiveness in managing engine face distortion. The term robustness is used in this paper in the same sense as it is used in the industrial problem solving community. It refers to minimizing the effects of the hard-to-control factors that influence the development of a product or process. In Robustness Engineering, the effects of the hard-to-control factors are often called noise , and the hard-to-control factors themselves are referred to as the environmental variables or sometimes as the Taguchi noise variables. Hence Robust Optimization refers to minimizing the effects of the environmental or noise variables on the development (design) of a product or process. In the management of flow in compact inlets, the environmental or noise variables can be identified with the mission variables. Therefore this paper formulates a statistical design methodology that minimizes the impact of variations in the mission variables on inlet performance and demonstrates that these statistical design concepts can lead to simpler inlet flow management systems.

  3. Economical analysis of the spray drying process by pre-dehumidification of the inlet air

    Energy Technology Data Exchange (ETDEWEB)

    Madeira, A.N.; Camargo, J.R. [University of Taubate (UNITAU), SP (Brazil). Mechanical Engineering Dept.

    2009-07-01

    Spray drying is a dehumidification process by atomization in a closed chamber that aims to remove moisture of a product by heat and mass transfer from the product's contained water to the air that, in this process is previously heated. This paper presents a case study for an industry that produces food ingredients. The current process applied in the product to heat the air can uses one of these two systems: a direct heating process that burns liquid petroleum gas in contact with the inlet air or indirect heating that uses a heat exchanger which heat the air. This heating system consumes 90% of the total process energy. However, this inlet air can reach the dehumidifier with high moisture from the atmosphere condition requesting, in this case, more energy consumption according to the year's seasons. This paper promotes a utilization study of the current process through the installation of a pre-dehumidification device of the inlet air and shows a study to three different dehumidification systems that means by refrigeration, adsorption and actual comparing their performance in an energetic and economical point of view. The goals of this study are to analyze the capacity of moisture removing of each removing device, the influence of moisture variation of the inlet air in the process as well as the economic impact of each device in the global system. It concludes that the utilization of dehumidification devices can eliminate the heating system reducing this way the energy consumption. Moreover it promotes the increasing of moisture gradient between the inlet air and the product optimizing the drying process and increasing the global energy efficiency in the global system. Choosing the most appropriate system for the pre-dehumidification device depends on the desired initial and final moisture content of the product, but applying pre-dehumidifiers at the inlet air promotes an energetic optimization in the spray drying process. (author)

  4. A numerical analysis on the effect of inlet parameters for condensation induced water hammer

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Priyankan [Department of Mechanical Engineering, Jadavpur University, Kolkata (India); Chakravarty, Aranyak [Department of Mechanical Engineering, Jadavpur University, Kolkata (India); School of Nuclear Studies & Application, Jadavpur University, Kolkata (India); Ghosh, Koushik, E-mail: kghosh@mech.jdvu.ac.in [Department of Mechanical Engineering, Jadavpur University, Kolkata (India); Mukhopadhyay, Achintya; Sen, Swarnendu [Department of Mechanical Engineering, Jadavpur University, Kolkata (India); Dutta, Anu; Goyal, Priyanshu [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai (India)

    2016-08-01

    Highlights: • Condensation induced water hammer phenomenon is analysed with RELAP5/Mod 3.4. • Effect of various inlet conditions on the occurrence of CIWH are investigated. • Pressure peak amplitude and location has strong dependency on water subcooling. • Superheated steam does not have significant impact on pressure amplitude. • Presence of dry saturated steam is the necessary condition for CIWH. - Abstract: Direct contact condensation (DCC) is almost an inevitable phenomenon during accidental condition for all LWRs. Rapid condensation caused by the direct contact of steam and subcooled water can lead to condensation induced water hammer (CIWH). The present work explores the underlying physics of CIWH phenomenon in a horizontal pipe under different inlet conditions such as inlet water temperature, pressure difference between steam and water section, steam superheating, steam quality and duration of valve opening using RELAP5/Mod 3.4. This work emphasises on the prediction of pressure peak magnitude in conjunction with its location of occurrence under different parametric conditions. The stratified to slug flow transition is presented in terms of the ‘flow regime map’ which is identified as the primary cause for pressure wave generation. The strongest pressure wave amplitude due to CIWH is found to be 116.6 bar for ΔP = 10 bar. Observation reveals that peak pressure location shifts towards the subcooled water injection point for higher inlet water temperature. For the lowest inlet water temperature (T{sub in} = 20 °C), the peak pressure is found at a distance of 47.5 cm away from the water inlet whereas, for the high water temperature (T{sub in} = 120 °C), peak pressure is observed at 6.25 cm away from the injection point. It is also observed that the duration of valve opening significantly affects the location of peak pressure occurrence. This study also reveals that the presence of superheated or wet steam could possibly avoid the occurrence of

  5. Combined Cycle Engine Large-Scale Inlet for Mode Transition Experiments: System Identification Rack Hardware Design

    Science.gov (United States)

    Thomas, Randy; Stueber, Thomas J.

    2013-01-01

    The System Identification (SysID) Rack is a real-time hardware-in-the-loop data acquisition (DAQ) and control instrument rack that was designed and built to support inlet testing in the NASA Glenn Research Center 10- by 10-Foot Supersonic Wind Tunnel. This instrument rack is used to support experiments on the Combined-Cycle Engine Large-Scale Inlet for Mode Transition Experiment (CCE? LIMX). The CCE?LIMX is a testbed for an integrated dual flow-path inlet configuration with the two flow paths in an over-and-under arrangement such that the high-speed flow path is located below the lowspeed flow path. The CCE?LIMX includes multiple actuators that are designed to redirect airflow from one flow path to the other; this action is referred to as "inlet mode transition." Multiple phases of experiments have been planned to support research that investigates inlet mode transition: inlet characterization (Phase-1) and system identification (Phase-2). The SysID Rack hardware design met the following requirements to support Phase-1 and Phase-2 experiments: safely and effectively move multiple actuators individually or synchronously; sample and save effector control and position sensor feedback signals; automate control of actuator positioning based on a mode transition schedule; sample and save pressure sensor signals; and perform DAQ and control processes operating at 2.5 KHz. This document describes the hardware components used to build the SysID Rack including their function, specifications, and system interface. Furthermore, provided in this document are a SysID Rack effectors signal list (signal flow); system identification experiment setup; illustrations indicating a typical SysID Rack experiment; and a SysID Rack performance overview for Phase-1 and Phase-2 experiments. The SysID Rack described in this document was a useful tool to meet the project objectives.

  6. CFD analysis of hot spot formation through a fixed bed reactor of Fischer-Tropsch synthesis

    Directory of Open Access Journals (Sweden)

    Hamed Aligolzadeh

    2015-12-01

    Full Text Available One of the interesting methods for conversion of synthesis gas to heavy hydrocarbons is Fischer–Tropsch process. The process has some bottlenecks, such as hot spot formation and low degree of conversion. In this work, computational fluid dynamics technique was used to simulate conversion of synthetic gas and product distribution. Also, hot spot formation in the catalytic fixed-bed reactor was investigated in several runs. Simulation results indicated that hot spot formation occurred more likely in the early and middle part of reactor due to high reaction rates. Based on the simulation results, the temperature of hot spots increased with increase in the inlet temperature as well as pressure. Among the many CFD runs conducted, it is found that the optimal temperature and pressure for Fischer–Tropsch synthesis are 565 K and 20 bar, respectively. As it seems that the reactor shall work very well under optimal conditions, the reaction rates and catalyst duration would simultaneously be maximum .

  7. Flow control in axial fan inlet guide vanes by synthetic jets

    OpenAIRE

    Wurst P.; Trávníček Z.; Cyrus V.; Kordík J.

    2013-01-01

    Tested high pressure axial flow fan with hub/tip ratio of 0.70 and external diameter of 600 mm consisted of inlet guide vanes (IGV), rotor and stator blade rows. Fan peripheral velocity was 47 m/s. Air volume flow rate was changed by turning of rear part of the inlet guide vanes. At turning of 20 deg the flow was separated on the IGV profiles. The synthetic jets were introduced through radial holes in machine casing in the location before flow separation origin. Synthetic jet actuator was des...

  8. Gas-liquid two-phase flows in double inlet cyclones for natural gas separation

    DEFF Research Database (Denmark)

    Yang, Yan; Wang, Shuli; Wen, Chuang

    2017-01-01

    The gas-liquid two-phase flow within a double inlet cyclone for natural gasseparation was numerically simulated using the discrete phase model. The numericalapproach was validated with the experimental data, and the comparison resultsagreed well with each other. The simulation results showed......-outlet. The swirling flow was concentric dueto the design of the double inlet for the cyclonic separator, which greatly improvedthe separating efficiency. The separating efficiency was greater than 90% with theparticle diameter of more than 100 μm....

  9. An Interactive Preliminary Design System of High Speed Forebody and Inlet Flows

    Science.gov (United States)

    Liou, May-Fun; Benson, Thomas J.; Trefny, Charles J.

    2010-01-01

    This paper demonstrates a simulation-based aerodynamic design process of high speed inlet. A genetic algorithm is integrated into the design process to facilitate the single objective optimization. The objective function is the total pressure recovery and is obtained by using a PNS solver for its computing efficiency. The system developed uses existing software of geometry definition, mesh generation and CFD analysis. The process which produces increasingly desirable design in each genetic evolution over many generations is automatically carried out. A generic two-dimensional inlet is created as a showcase to demonstrate the capabilities of this tool. A parameterized study of geometric shape and size of the showcase is also presented.

  10. NUMERICAL SIMULATIONS OF THE HYDRAULIC CHARACTERISTICS OF SIDE INLET/OUTLETS

    Institute of Scientific and Technical Information of China (English)

    YE Fei; GAO Xue-ping

    2011-01-01

    The hydraulic characteristics at the side inlet/outlet of pumped storage plants is studied by numerical simulations, covering the flow distribution, head loss, vortex, and others.Based on the physical model test, the realizable k - ε turbulence model is used in the 3-D simulation of the side inlet/outlet.A new scheme is suggested to obtain the uneven flow distribution over three branch orifices.The variation of the free surface with the reservoir water level under the pumped condition is simulated, with results consistent with the experimental results.

  11. Inlet Turbulence and Length Scale Measurements in a Large Scale Transonic Turbine Cascade

    Science.gov (United States)

    Thurman, Douglas; Flegel, Ashlie; Giel, Paul

    2014-01-01

    Constant temperature hotwire anemometry data were acquired to determine the inlet turbulence conditions of a transonic turbine blade linear cascade. Flow conditions and angles were investigated that corresponded to the take-off and cruise conditions of the Variable Speed Power Turbine (VSPT) project and to an Energy Efficient Engine (EEE) scaled rotor blade tip section. Mean and turbulent flowfield measurements including intensity, length scale, turbulence decay, and power spectra were determined for high and low turbulence intensity flows at various Reynolds numbers and spanwise locations. The experimental data will be useful for establishing the inlet boundary conditions needed to validate turbulence models in CFD codes.

  12. Continuous Right Radial Arterial Pressure Monitoring as a Guide to Dissection of a Thoracic Inlet Neurofibroma.

    Science.gov (United States)

    Ravindra, Madhavi Nishtala

    2015-09-01

    Excision of tumors in the thoracic inlet entail a risk of injury to subclavian vessels due to their close proximity. A right radial artery line can sensitively and continuously monitor the occurrence of right subclavian artery compression and warn the surgeon of its proximity and prevent injury. We describe a case of thoracic inlet tumor in a 12-year-old child, wherein the use of radial artery pressure monitoring guided the surgeon to separate the subclavian artery from the tumor to which it was adherent. © The Author(s) 2015.

  13. Investigations on an Axial Flow Fan Stage subjected to Circumferential Inlet Flow Distortion and Swirl

    Institute of Scientific and Technical Information of China (English)

    M.Govardhan; K.Viswanath

    1997-01-01

    The combined effects of swirl and circumferential inlet flow distortion on the flow field of an axial flow fan stage are reported in this paper,The study involves measurements at the inlet of the rotor and exit of the rotor and stator atdesign and off design flow conditions.The study indicated that at the design flow condition,swirl had caused deterioration of the performance in addition to that caused by distortion.Pressure rise imparted in the distortion zone is hogher than in the free zone.The attenuation of distortion is high in the presence of swirl.

  14. Non-extremal branes

    Directory of Open Access Journals (Sweden)

    Pablo Bueno

    2015-04-01

    Full Text Available We prove that for arbitrary black brane solutions of generic Supergravities there is an adapted system of variables in which the equations of motion are exactly invariant under electric–magnetic duality, i.e. the interchange of a given extended object by its electromagnetic dual. We obtain thus a procedure to automatically construct the electromagnetic dual of a given brane without needing to solve any further equation. We apply this procedure to construct the non-extremal (p,q-string of Type-IIB String Theory (new in the literature, explicitly showing how the dual (p,q-five-brane automatically arises in this construction. In addition, we prove that the system of variables used is suitable for a generic characterization of every double-extremal Supergravity brane solution, which we perform in full generality.

  15. Tibetans at extreme altitude.

    Science.gov (United States)

    Wu, Tianyi; Li, Shupin; Ward, Michal P

    2005-01-01

    Between 1960 and 2003, 13 Chinese expeditions successfully reached the summit of Chomolungma (Mt Everest or Sagarmatha). Forty-five of the 80 summiteers were Tibetan highlanders. During these and other high-altitude expeditions in Tibet, a series of medical and physiological investigations were carried out on the Tibetan mountaineers. The results suggest that these individuals are better adapted to high altitude and that, at altitude, they have a greater physical capacity than Han (ethnic Chinese) lowland newcomers. They have higher maximal oxygen uptake, greater ventilation, more brisk hypoxic ventilatory responses, larger lung volumes, greater diffusing capacities, and a better quality of sleep. Tibetans also have a lower incidence of acute mountain sickness and less body weight loss. These differences appear to represent genetic adaptations and are obviously significant for humans at extreme altitude. This paper reviews what is known about the physiologic responses of Tibetans at extreme altitudes.

  16. Extremal periodic wave profiles

    Directory of Open Access Journals (Sweden)

    E. van Groesen

    2007-01-01

    Full Text Available As a contribution to deterministic investigations into extreme fluid surface waves, in this paper wave profiles of prescribed period that have maximal crest height will be investigated. As constraints the values of the momentum and energy integrals are used in a simplified description with the KdV model. The result is that at the boundary of the feasible region in the momentum-energy plane, the only possible profiles are the well known cnoidal wave profiles. Inside the feasible region the extremal profiles of maximal crest height are "cornered" cnoidal profiles: cnoidal profiles of larger period, cut-off and periodically continued with the prescribed period so that at the maximal crest height a corner results.

  17. Extreme Photonics & Applications

    CERN Document Server

    Hall, Trevor J; Paredes, Sofia A

    2010-01-01

    "Extreme Photonics & Applications" arises from the 2008 NATO Advanced Study Institute in Laser Control & Monitoring in New Materials, Biomedicine, Environment, Security and Defense. Leading experts in the manipulation of light offered by recent advances in laser physics and nanoscience were invited to give lectures in their fields of expertise and participate in discussions on current research, applications and new directions. The sum of their contributions to this book is a primer for the state of scientific knowledge and the issues within the subject of photonics taken to the extreme frontiers: molding light at the ultra-finest scales, which represents the beginning of the end to limitations in optical science for the benefit of 21st Century technological societies. Laser light is an exquisite tool for physical and chemical research. Physicists have recently developed pulsed lasers with such short durations that one laser shot takes the time of one molecular vibration or one electron rotation in an ...

  18. Extremal Hairy Black Holes

    CERN Document Server

    Gonzalez, P A; Saavedra, Joel; Vasquez, Yerko

    2014-01-01

    We consider a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential and an U(1) electromagnetic field. Solving the coupled Einstein-Maxwell-scalar system we find exact hairy charged black hole solutions with the scalar field regular everywhere. We go to the zero temperature limit and we study the effect of the scalar field on the near horizon geometry of an extremal black hole. We find that except a critical value of the charge of the black hole there is also a critical value of the charge of the scalar field beyond of which the extremal black hole is destabilized. We study the thermodynamics of these solutions and we find that if the space is flat then at low temperature the Reissner-Nordstr\\"om black hole is thermodynamically preferred, while if the space is AdS the hairy charged black hole is thermodynamically preferred at low temperature.

  19. A year in hypoxia: epibenthic community responses to severe oxygen deficit at a subsea observatory in a coastal inlet.

    Directory of Open Access Journals (Sweden)

    Marjolaine Matabos

    Full Text Available Changes in ocean ventilation driven by climate change result in loss of oxygen in the open ocean that, in turn, affects coastal areas in upwelling zones such as the northeast Pacific. Saanich Inlet, on the west coast of Canada, is a natural seasonally hypoxic fjord where certain continental shelf species occur in extreme hypoxia. One study site on the VENUS cabled subsea network is located in the hypoxic zone at 104 m depth. Photographs of the same 5 m(2 area were taken with a remotely-controlled still camera every 2/3 days between October 6(th 2009 and October 18(th 2010 and examined for community composition, species behaviour and microbial mat features. Instruments located on a near-by platform provided high-resolution measurements of environmental variables. We applied multivariate ordination methods and a principal coordinate analysis of neighbour matrices to determine temporal structures in our dataset. Responses to seasonal hypoxia (0.1-1.27 ml/l and its high variability on short time-scale (hours varied among species, and their life stages. During extreme hypoxia, microbial mats developed then disappeared as a hippolytid shrimp, Spirontocaris sica, appeared in high densities (200 m(-2 despite oxygen below 0.2 ml/l. The slender sole Lyopsetta exilis was abundant in severe hypoxia and diminished as oxygen increased in the summer. This planktivore may be responding to changes in the depth of the diurnal migration of zooplankton. While the squat lobster Munida quadrispina was common at all times, juveniles disappeared in fluctuating conditions. Despite low oxygen conditions, animal densities were high indicating that the risk from hypoxia is balanced by factors such as food availability and escape from less tolerant predators. As hypoxia increases on the continental shelf, we expect benthic communities to become dominated by low diversity, hypoxia-tolerant species of low commercial significance.

  20. Religious Extremism in Pakistan

    Science.gov (United States)

    2014-12-01

    Face (July 2008): 32. 21 Ahmed Rashid , Pakistan on the Brink: The Future of America, Pakistan, and Afghanistan (New York: Viking, 2012). 22 Brian J...promoting extremism. Commentators such as Jessica Stern, Alan Richards, Hussain Haqqani, Ahmed Rashid , and Ali Riaz are a few of the scholars who...www.jstor.org/stable/3183558; See also Ahmed Rashid , Descent Into Chaos: The United States and the Failure of Nation Building in Pakistan, Afghanistan, and

  1. USACE Extreme Sea levels

    Science.gov (United States)

    2014-03-14

    report summarising the results of the research, together with a set of recommendations arising from the research. This report describes progress to...Southampton University at HR Wallingford and subsequent teleconference with Heidi Moritz and Kate White. The notes summarising the findings of the...suggestion was made that we may want to begin talking about extreme water levels separate from storms. Ivan mentioned an analysis of storminess which

  2. Extreme geomagnetically induced currents

    Science.gov (United States)

    Kataoka, Ryuho; Ngwira, Chigomezyo

    2016-12-01

    We propose an emergency alert framework for geomagnetically induced currents (GICs), based on the empirically extreme values and theoretical upper limits of the solar wind parameters and of d B/d t, the time derivative of magnetic field variations at ground. We expect this framework to be useful for preparing against extreme events. Our analysis is based on a review of various papers, including those presented during Extreme Space Weather Workshops held in Japan in 2011, 2012, 2013, and 2014. Large-amplitude d B/d t values are the major cause of hazards associated with three different types of GICs: (1) slow d B/d t with ring current evolution (RC-type), (2) fast d B/d t associated with auroral electrojet activity (AE-type), and (3) transient d B/d t of sudden commencements (SC-type). We set "caution," "warning," and "emergency" alert levels during the main phase of superstorms with the peak Dst index of less than -300 nT (once per 10 years), -600 nT (once per 60 years), or -900 nT (once per 100 years), respectively. The extreme d B/d t values of the AE-type GICs are 2000, 4000, and 6000 nT/min at caution, warning, and emergency levels, respectively. For the SC-type GICs, a "transient alert" is also proposed for d B/d t values of 40 nT/s at low latitudes and 110 nT/s at high latitudes, especially when the solar energetic particle flux is unusually high.

  3. Extremes in nature

    CERN Document Server

    Salvadori, Gianfausto; Kottegoda, Nathabandu T

    2007-01-01

    This book is about the theoretical and practical aspects of the statistics of Extreme Events in Nature. Most importantly, this is the first text in which Copulas are introduced and used in Geophysics. Several topics are fully original, and show how standard models and calculations can be improved by exploiting the opportunities offered by Copulas. In addition, new quantities useful for design and risk assessment are introduced.

  4. Software Simulation of Hot Tearing

    DEFF Research Database (Denmark)

    Andersen, S.; Hansen, P.N.; Hattel, Jesper Henri

    1999-01-01

    the solidification rate and the strain rate of the hot tear prone areas. But, until recently it was only possible to simulate the solidification rate, so that the criteria could not be used effectively.Today, with new software developments, it is possible to also simulate the strain rate in the hot tear prone areas....... With this additional information, the criteria can, for the first time, be used to their full potential.The purpose of this paper is to first give an introduction to a stress/strain simulation procedure that can be used in any foundry. Then, some results how to predict the hot cracking tendency in a casting are shown......, and the use of simulation to reduce this tendency is illustrated....

  5. Numerical Modeling of Flow Control in a Boundary-Layer-Ingesting Offset Inlet Diffuser at Transonic Mach Numbers

    Science.gov (United States)

    Allan Brian G.; Owens, Lewis, R.

    2006-01-01

    This paper will investigate the validation of a NASA developed, Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, for a boundary-layer-ingesting (BLI) offset (S-shaped) inlet in transonic flow with passive and active flow control devices as well as the baseline case. Numerical simulations are compared to wind tunnel results of a BLI inlet conducted at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. Comparisons of inlet flow distortion, pressure recovery, and inlet wall pressures are performed. The numerical simulations are compared to the BLI inlet data at a freestream Mach number of 0.85 and a Reynolds number of approximately 2 million based on the length of the fan-face diameter. The numerical simulations with and without wind tunnel walls are performed, quantifying effects of the tunnel walls on the BLI inlet flow measurements. The wind tunnel test evaluated several different combinations of jet locations and mass flow rates as well as a vortex generator (VG) vane case. The numerical simulations will be performed on a single jet configuration for varying actuator mass flow rates at a fix inlet mass flow condition. Validation of the numerical simulations for the VG vane case will also be performed for varying inlet mass flow rates. Overall, the numerical simulations were able to predict the baseline circumferential flow distortion, DPCPavg, very well for comparisons made within the designed operating range of the BLI inlet. However the CFD simulations did predict a total pressure recovery that was 0.01 lower than the experiment. Numerical simulations of the baseline inlet flow also showed good agreement with the experimental inlet centerline surface pressures. The vane case showed that the CFD predicted the correct trends in the circumferential distortion for varying inlet mass flow but had a distortion level that was nearly twice as large as the experiment. Comparison to circumferential distortion measurements for a 15 deg clocked 40 probe

  6. Trends in Mediterranean gridded temperature extremes and large-scale circulation influences

    Directory of Open Access Journals (Sweden)

    D. Efthymiadis

    2011-08-01

    Full Text Available Two recently-available daily gridded datasets are used to investigate trends in Mediterranean temperature extremes since the mid-20th century. The underlying trends are found to be generally consistent with global trends of temperature and their extremes: cold extremes decrease and warm/hot extremes increase. This consistency is better manifested in the western part of the Mediterranean where changes are most pronounced since the mid-1970s. In the eastern part, a cooling is observed, with a near reversal in the last two decades. This inter-basin discrepancy is clearer in winter, while in summer changes are more uniform and the west-east difference is restricted to the rate of increase of warm/hot extremes, which is higher in central and eastern parts of the Mediterranean over recent decades. Linear regression and correlation analysis reveals some influence of major large-scale atmospheric circulation patterns on the occurrence of these extremes – both in terms of trend and interannual variability. These relationships are not, however, able to account for the most striking features of the observations – in particular the intensification of the increasing trend in warm/hot extremes, which is most evident over the last 15–20 yr in the Central and Eastern Mediterranean.

  7. Hot gas ingestion test results of a two-poster vectored thrust concept with flow visualization in the NASA Lewis 9- x 15-foot low speed wind tunnel

    Science.gov (United States)

    Johns, Albert L.; Neiner, George; Bencic, Timothy J.; Flood, Joseph D.; Amuedo, Kurt C.; Strock, Thomas W.

    1990-01-01

    A 9.2 percent scale Short Takeoff and Vertical Landing (STOVL) hot gas ingestion model was designed and built by McDonnell Douglas Corporation (MCAIR) and tested in the Lewis Research Center 9 x 15 foot Low Speed Wind Tunnel (LSWT). Hot gas ingestion, the entrainment of heated engine exhaust into the inlet flow field, is a key development issure for advanced short takeoff and vertical landing aircraft. Flow visualization from the Phase 1 test program, which evaluated the hot ingestion phenomena and control techniques, is covered. The Phase 2 test program evaluated the hot gas ingestion phenomena at higher temperatures and used a laser sheet to investigate the flow field. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/life improvement devices (LIDs) which reduced the hot gas ingestion. The model support system had four degrees of freedom - pitch, roll, yaw, and vertical height variation. The model support system also provided heated high-pressure air for nozzle flow and a suction system exhaust for inlet flow. The test was conducted at full scale nozzle pressure ratios and inlet Mach numbers. Test and data analysis results from Phase 2 and flow visualization from both Phase 1 and 2 are documented. A description of the model and facility modifications is also provided. Headwind velocity was varied from 10 to 23 kn. Results are presented over a range of nozzle pressure ratios at a 10 kn headwind velocity. The Phase 2 program was conducted at exhaust nozzle temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. The results reported are for nozzle exhaust temperatures up to 1160 R. These results will contain the compressor face pressure and temperature distortions, the total pressure recovery, the inlet temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane contours

  8. Trends in Extremes of Surface Humidity, Temperature, and Summertime Heat Stress in China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the past half century, the mean summertime temperature in China has increased, with nights warm ing more than days. Using surface station observations, we show that the frequency of extreme heat-stress events in China, caused by extremely hot and humid days as well as by heatwaves lasting for a few days, has increased over the period from 1951 to 1994. When humidity is high, hot weather can cause heat stress in humans. The increased heat-stress trend may pose a public health problem.

  9. Monopole transitions in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sujkowski, Z. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs.

  10. Hot conditioning equipment conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  11. Direct Analysis of Organic Compounds in Liquid Using a Miniature Photoionization Ion Trap Mass Spectrometer with Pulsed Carrier-Gas Capillary Inlet

    Science.gov (United States)

    Lu, Xinqiong; Yu, Quan; Zhang, Qian; Ni, Kai; Qian, Xiang; Tang, Fei; Wang, Xiaohao

    2017-08-01

    A miniature ion trap mass spectrometer with capillary direct sampling and vacuum ultraviolet photoionization source was developed to conduct trace analysis of organic compounds in liquids. Self-aspiration sampling is available where the samples are drawn into the vacuum chamber through a capillary with an extremely low flow rate (less than 1 μL/min), which minimizes sample consumption in each analysis to tens of micrograms. A pulsed gas-assisted inlet was designed and optimized to promote sample transmission in the tube and facilitate the cooling of ions, thereby improving instrument sensitivity. A limit of detection of 2 ppb could be achieved for 2,4-dimethylaniline in a methanol solution. The sampling system described in the present study is specifically suitable for a miniature photoionization ion trap mass spectrometer that can perform rapid and online analysis for liquid samples.

  12. Post-Hurricane Irene coastal oblique aerial photographs collected from Ocracoke Inlet, North Carolina, to Virginia Beach, Virginia, August 30-31, 2011

    Science.gov (United States)

    Morgan, Karen L. M.; Krohn, M. Dennis

    2016-02-17

    The U.S. Geological Survey (USGS), as part of the National Assessment of Coastal Change Hazards project, conducts baseline and storm-response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms (Morgan, 2009). On August 30-31, 2011, the USGS conducted an oblique aerial photographic survey from Ocracoke Inlet, North Carolina, to Virginia Beach, Virginia, aboard a Piper Navajo Chieftain (aircraft) at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was flown to collect post-Hurricane Irene data for assessing incremental changes in the beach and nearshore area since the last survey, flown in May 2008, and the data can be used in the assessment of future coastal change.

  13. Post-Hurricane Irene coastal oblique aerial photographs collected from Ocracoke Inlet, North Carolina, to Virginia Beach, Virginia, August 30-31, 2011

    Science.gov (United States)

    Morgan, Karen L. M.; Krohn, M. Dennis

    2016-02-17

    The U.S. Geological Survey (USGS), as part of the National Assessment of Coastal Change Hazards project, conducts baseline and storm-response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms (Morgan, 2009). On August 30-31, 2011, the USGS conducted an oblique aerial photographic survey from Ocracoke Inlet, North Carolina, to Virginia Beach, Virginia, aboard a Piper Navajo Chieftain (aircraft) at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was flown to collect post-Hurricane Irene data for assessing incremental changes in the beach and nearshore area since the last survey, flown in May 2008, and the data can be used in the assessment of future coastal change.

  14. Mathematical model of a closed hot air engine cycle using MATLAB Simulink

    Science.gov (United States)

    Oršanský, Pavol; Ftorek, Branislav; Durčanský, Peter

    2014-08-01

    In our work we present a model of a closed hot air engine, which we simulate in MATLAB®Simulink® environment. That gives us many opportunities of investigating the influence of extreme demanding conditions on the stability and functionality of the device. We were also able to try the conditions that would real device cannot resist as high temperature or pressure.

  15. Calculating the “pressing force” in a Sircular Gas Pipeline with two Inlets and One Outlet

    Directory of Open Access Journals (Sweden)

    Malohat A. Kukanova

    2012-01-01

    Full Text Available The article examines the use of circular arrangement which helps, on the basis of Kirchhoff’s laws, to develop formulas for calculating hydraulics in a circular gas pipeline with two inlets and one outlet. In addition, the article describes the conditions which produce the “pressing force” in the inlet with lesser pressure

  16. Continuous-Flow Inlet Systems for Low Pressure Curie-Point Pyrolysis. Introduction of Pulse-Pyrolysis

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Carlsen, Lars

    1984-01-01

    With emphasis on a constant reactant flow, a series of inlet systems for gas-phase Curie-point pyrolysis—mass spectrometry experiments have been studied. Inlet systems for the handling of gaseous, liquid and oligomeric (solid) samples have been designed and their performances evaluated. The princ....... The principle of pulse-pyrolysis is introduced and its applicability to kinetic studies outlined....

  17. Atrazine sorption by biochar, tire chips, and steel slag as media for blind inlets: A kinetic and isotherm sorption approach

    Science.gov (United States)

    Surface inlets are installed in subsurface drainage systems to reduce ponding duration and surface runoff, but can contribute to water quality concerns by allowing water to directly enter buried drains. Blind inlets, consist of perforated pipes covered with gravel and are separated from an overlying...

  18. A new concept and preliminary study of variable hypersonic inlet with fixed geometry based on shockwave control

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The inlet plays a significant role in the hypersonic airbreathing propulsion. A fixed-geometry inlet is troubled by low air-capture ratio and large additional drag while operating below the design Mach number. Whereas a variable-geometry inlet can maximize performance, but adds weight and complexity to the propulsion system. Based on a fluidic shock shape control technique, this paper proposes a new concept of variable hypersonic inlet with fixed geometry, gives the realization scheme, and conducts a preliminary validation. The results show that the control of the external shock system and the effective throat area can be achieved by the self-provided high pressure fluid of the inlet. For an inlet with an operating Mach-number region of 4 to 6, the shock-on-lip condition can be maintained from Mach 5 to Mach 6 with the maximum expense of 1.8% secondary flow ratio, resulting in 20% extra captured mass flow and 8% less forebody drag at low Mach numbers compared with conventional fixed-geometry inlets. Thus, the performance enhancement by using the proposed variable inlet can substantially benefit the acceleration process of hypersonic vehicles at low Mach numbers.

  19. Automatic efficiency optimization of an axial compressor with adjustable inlet guide vanes

    Science.gov (United States)

    Li, Jichao; Lin, Feng; Nie, Chaoqun; Chen, Jingyi

    2012-04-01

    The inlet attack angle of rotor blade reasonably can be adjusted with the change of the stagger angle of inlet guide vane (IGV); so the efficiency of each condition will be affected. For the purpose to improve the efficiency, the DSP (Digital Signal Processor) controller is designed to adjust the stagger angle of IGV automatically in order to optimize the efficiency at any operating condition. The A/D signal collection includes inlet static pressure, outlet static pressure, outlet total pressure, rotor speed and torque signal, the efficiency can be calculated in the DSP, and the angle signal for the stepping motor which control the IGV will be sent out from the D/A. Experimental investigations are performed in a three-stage, low-speed axial compressor with variable inlet guide vanes. It is demonstrated that the DSP designed can well adjust the stagger angle of IGV online, the efficiency under different conditions can be optimized. This establishment of DSP online adjustment scheme may provide a practical solution for improving performance of multi-stage axial flow compressor when its operating condition is varied.

  20. Cyclone energy: impact of inlet velocity and outlet évasé designs

    Science.gov (United States)

    Because electricity generation produces emissions, reducing cyclone pressure drop has the potential to benefit the environment. Enhanced 1D3D cyclones common in the cotton ginning industry were tested with various évasés, over a range of inlet velocities. With évasés it was possible to reduce the ...

  1. Numerical Simulation for Effect of Inlet Cooling Rate on Fluid Flow and Temperature Distribution in Tundish

    Institute of Scientific and Technical Information of China (English)

    QU Tian-peng; LIU Cheng-jun; JIANG Mao-fa

    2012-01-01

    The fluid flow in tundish is a non-isothermal process and the temperature variation of stream from teeming ladle dominates the fluid flow and thermal distribution in tundish. A numerical model was established to investigate the effect of inlet cooling rate on fluid flow and temperature distribution in tundish based on a FTSC (Flexible Thin Slab Casting) tundish. The inlet cooling rate varies from 0. 5 to 0. 25 ~C/rain. Under the present calculation conditions, the following conclusions were made. When the stream temperature from teeming ladle drops seriously (for inlet cooling rate of 0.5℃/min), there is a "backward flow" at the coming end of casting. The horizontal flow along the free surface turns to flow along the bottom of tundish. The bottom flow shortens the fluid flow route in tundish and deteriorates the removal effect of nonmetallic inclusions from molten steel. Nevertheless, when the inlet cooling rate decreases to 0.25℃/min, the horizontal flow is sustained during the whole casting period. The present research provides theoretical directions for temperature control in teeming ladle and continuous casting tundish during production of advanced steels.

  2. Regional Sediment Management Strategies for the Vicinity of St. Augustine Inlet, St. Johns County, Florida

    Science.gov (United States)

    2016-07-01

    Ponte Vedra Beach and Vilano Beach, data indicate that it is best suited to beaches south of the inlet such as Anastasia Island and St. Augustine Beach...11 St. Johns County HSDR Feasibility Study: South Ponte Vedra Beach...feasibility study of potential additional segments of the overall St. Johns County SPP for nourishment, including South Ponte Vedra Beach and Vilano

  3. Stiffener Layout Optimization of Inlet Structure for Electrostatic Precipitator by Improved Adaptive Growth Method

    Directory of Open Access Journals (Sweden)

    Jin Ji

    2014-11-01

    Full Text Available The inlet structure is the main part of an electrostatic precipitator, so its mechanical properties, including the static strength, stiffness, and vibration characteristics, play an important role in the structural safety. In order to achieve good mechanical performance and lightweight of the inlet structure, an optimal design method, which is based on growth mechanism of the branching systems in nature and optimality criteria, named the improved adaptive growth method, is suggested. The method is applied to optimize the stiffener layout of the inlet structure, and the multiobjective optimization mathematical model which consists of the minimum compliance and the maximum natural frequency is considered. The optimality criteria method is applied to solve the design problem. The design result shows that the suggested method is effective, compared with the empirical design of the inlet structure, the weight of the optimal structure is reduced by 3.0%, while the global stiffness and the first natural frequency are increased by 18.83% and 4.66%, respectively.

  4. Blind Inlet as a Possible Technology for the Remediation of Phosphorus from Surface Runoff

    Science.gov (United States)

    Sturmlechner, M.; Wu, X.; Livingston, S.; Klik, A.; Huang, C. H.

    2015-12-01

    Phosphorus (P) is an essential element for plant life, but too much P in runoff water can cause eutrophication and harmful algal blooms. Hence, mitigation of agricultural P losses into the water cycle is a very important issue. In-stream P treatment is difficult to implement because the large amount of storm runoff needs to be treated in short durations. In this research, we evaluated the potential to use blind inlet as an in-field P treatment technology. A box system was built to simulate hydrological and chemical processes occurring in a blind inlet. Current blind inlets, which are already installed in the field, use a bed of limestone with a sand/pea gravel layer on the top. In this study, steel slags has been tested, which has a very high P sorption potential, as the filter media through a series of adsorption and desorption experiments. The P mass balance results are compared with the limestone material used in current blind inlet construction. The total mass of P which was absorbed by the limestone was 14 % of the P input into the system whereas 26 % P was absorbed by the steel slags. Therefore the steel slags show potential to sequester dissolved P. Additional research is on-going to come up with a design criteria for field implementation.

  5. Characterisation and airborne deployment of a new counterflow virtual impactor inlet

    Science.gov (United States)

    Shingler, T.; Dey, S.; Sorooshian, A.; Brechtel, F. J.; Wang, Z.; Metcalf, A.; Coggon, M.; Mülmenstädt, J.; Russell, L. M.; Jonsson, H. H.; Seinfeld, J. H.

    2012-06-01

    A new counterflow virtual impactor (CVI) inlet is introduced with details of its design, laboratory characterisation tests and deployment on an aircraft during the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE). The CVI inlet addresses three key issues in previous designs; in particular, the inlet operates with: (i) negligible organic contamination; (ii) a significant sample flow rate to downstream instruments (∼15 l min-1) that reduces the need for dilution; and (iii) a high level of accessibility to the probe interior for cleaning. Wind tunnel experiments characterised the cut size of sampled droplets and the particle size-dependent transmission efficiency in various parts of the probe. For a range of counter-flow rates and air velocities, the measured cut size was between 8.7-13.1 μm. The mean percentage error between cut size measurements and predictions from aerodynamic drag theory is 1.7%. The CVI was deployed on the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter for thirty flights during E-PEACE to study aerosol-cloud-radiation interactions off the central coast of California in July and August 2011. Results are reported to assess the performance of the inlet including comparisons of particle number concentration downstream of the CVI and cloud drop number concentration measured by two independent aircraft probes. Measurements downstream of the CVI are also examined from one representative case flight coordinated with shipboard-emitted smoke that was intercepted in cloud by the Twin Otter.

  6. Characterization and airborne deployment of a new counterflow virtual impactor inlet

    Science.gov (United States)

    Shingler, T.; Dey, S.; Sorooshian, A.; Brechtel, F. J.; Wang, Z.; Metcalf, A.; Coggon, M.; Mülmenstädt, J.; Russell, L. M.; Jonsson, H. H.; Seinfeld, J. H.

    2012-02-01

    A new counterflow virtual impactor (CVI) inlet is introduced with details of its design, laboratory characterization tests, and deployment on an aircraft during the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE). The CVI inlet addresses three key issues in previous designs; in particular, the inlet operates with: (i) negligible organic contamination; (ii) a significant sample flow rate to downstream instruments (~15 l min-1) that reduces the need for dilution; and (iii) a high level of accessibility to the probe interior for cleaning. Wind tunnel experiments characterized the cut size of sampled droplets and the particle size-dependent transmission efficiency in various parts of the probe. For a range of counter-flow rates and air velocities, the measured cut size was between 8.7-13.1 μm. The percentage error between cut size measurements and predictions from aerodynamic drag theory are less than 13%. The CVI was deployed on the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter for thirty flights during E-PEACE to study aerosol-cloud-radiation interactions off the central coast of California between July and August 2011. Results are reported to assess the performance of the inlet including comparisons of particle number concentration downstream of the CVI and cloud drop number concentration measured by two independent aircraft probes. Measurements downstream the CVI are also examined from one representative case flight coordinated with shipboard-emitted smoke that was intercepted in cloud by the Twin Otter.

  7. Empirical relationship between inlet cross-sectional area and tidal prism: A re-evaluation

    NARCIS (Netherlands)

    Stive, M.J.F.; Ji, L.; Brouwer, R.L.; Van de Kreeke, J.; Ranasinghe, R.W.M.R.J.B.

    2010-01-01

    The well-known empirical relationship between the equilibrium cross-sectional area of tidal inlet entrances (A) and the tidal prism (P), first developed by O’Brien (1931), has been extensively reviewed. Our theoretical investigations indicate that a unique A-P relationship should only be expected fo

  8. Review of empirical relationships between inlet cross-section and tidal prism

    NARCIS (Netherlands)

    Stive, M.J.F.; Rakhorst, R.D.

    2008-01-01

    Although other engineers had considered the relationship between tidal prism and inlet crosssectional area before, it is O’Brien who is usually credited for deriving the familiar relationship A = aPm, where A is the cross-sectional area (relative to mean sea level) and P is the spring tidal prism. T

  9. Effects of gravity and inlet location on a two-phase countercurrent imbibition in porous media

    KAUST Repository

    El-Amin, Mohamed

    2012-01-01

    We introduce a numerical investigation of the effect of gravity on the problem of two-phase countercurrent imbibition in porous media. We consider three cases of inlet location, namely, from, side, top, and bottom. A 2D rectangular domain is considered for numerical simulation. The results indicate that gravity has a significant effect depending on open-boundary location.

  10. Velocity and Temperature Distribution in Flow from an Inlet Device in Rooms with Displacement Ventilation

    DEFF Research Database (Denmark)

    Jacobsen, T.V.; Nielsen, Peter V.

    Measurements are performed in a full-scale test room with displacement ventilation with focus on the velocity and temperature field in the region close to the inlet device. Investigations based on these detailed measurements have been made in order to see if it is possible to describe the velocity...

  11. 75 FR 12688 - Drawbridge Operation Regulations; Long Island, New York Inland Waterway from East Rockaway Inlet...

    Science.gov (United States)

    2010-03-17

    ... Waterway from East Rockaway Inlet to Shinnecock Canal, NY, Maintenance AGENCY: Coast Guard, DHS. ACTION... to replace the motor locks at the bridge. The bridge can not open during the installation of the motor locks. Under this deviation the Wreck Lead Railroad Bridge may remain closed from 9 a.m. through...

  12. Natural Diet of Callinectes ornatus Ordway, 1863 (Decapoda, Portunidae in the Itapocoroy Inlet, Penha, SC, Brazil

    Directory of Open Access Journals (Sweden)

    Branco Joaquim Olinto

    2002-01-01

    Full Text Available From January to December 1995, 332 individuals of the Callinectes ornatus species were collected from the Itapocoroy inlet in Penha, Sta. Catarina, Brazil to study its natural diet and the seasonal variations of diet. Results showed a diversified trophic spectrum with a generalized dietary strategy comprising the algae, macrophyta, foraminiferida, mollusca, polychaeta, crustacea, echinodermata, Osteichthyes and NIOM (Nonidentified Organic Matter groups.

  13. Residual water transport in the Marsdiep tidal inlet inferred from observations and a numerical model

    NARCIS (Netherlands)

    Sassi, M.G.; Gerkema, T.; Duran-Matute, M.; Nauw, J.J.

    2016-01-01

    At tidal inlets, large amounts of water are exchanged with the adjacent sea during the tidal cycle.The residual flows, the net effect of ebb and flood, are generally small compared with the gross flux;they vary in magnitude and sign from one tidal period to the other; and their long-term mean

  14. Calculating residual flows through a multiple-inlet system: the conundrum of the tidal period

    NARCIS (Netherlands)

    Duran Matute, M.; Gerkema, T.

    2015-01-01

    The concept of residual, i.e., tidally-averaged,flows through a multiple inlet system is reappraised. Theevaluation of the residual through-flow depends on the timeinterval over which is integrated, in other words, on how onedefines the tidal period. It is demonstrated that this definitionis

  15. 78 FR 71546 - Safety Zone; Belt Parkway Bridge Construction, Gerritsen Inlet, Brooklyn, NY

    Science.gov (United States)

    2013-11-29

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Belt Parkway Bridge Construction, Gerritsen Inlet, Brooklyn, NY AGENCY: Coast Guard, DHS. ACTION: Notice of proposed rulemaking. SUMMARY: The Coast... Belt Parkway Bridge. This proposed rule would allow the Coast Guard to prohibit all vessel traffic...

  16. Turbulent velocity and concentration measurements in a macro-scale multi-inlet vortex nanoprecipitation reactor

    Science.gov (United States)

    Liu, Zhenping; Fox, Rodney; Hill, James; Olsen, Michael

    2013-11-01

    Flash Nanoprecipitation (FNP) is a technique to produce monodisperse functional nanoparticles. Microscale multi-inlet vortex reactors (MIVR) have been effectively applied to FNP due to their ability to provide rapid mixing and flexibility of inlet flow conditions. A scaled-up MIVR could potentially generate large quantities of functional nanoparticles, giving FNP wider applicability in industry. In the presented research, the turbulent velocity field inside a scaled-up, macroscale MIVR is measured by particle image velocimetry (PIV). Within the reactor, velocity is measured using both two-dimensional and stereoscopic PIV at two Reynolds numbers (3500 and 8750) based on the flow at each inlet. Data have been collected at numerous locations in the inlet channels, the reaction chamber, and the reactor outlet. Mean velocity and Reynolds stresses have been obtained based on 5000 instantaneous velocity realizations at each measurement location. The turbulent mixing process has also been investigated with passive scalar planar laser-induced fluorescence and simultaneous PIV/PLIF. Velocity and concentration results are compared to results from previous experiments in a microscale MIVR. Scaled profiles of turbulent quantities are similar to those previously found in the microscale MIVR.

  17. Conditions for using outdoor-air inlet filter for removing UFP in residential buildings

    DEFF Research Database (Denmark)

    Afshari, Alireza; Ardkapan, Siamak Rahimi; Bergsøe, Niels Christian;

    2012-01-01

    The purpose of this project is to study the possibility of achieving a reduction of ultrafine particles in the indoor air by placing a filter at the outdoor-air inlet in residential buildings with exhaust ventilation or natural ventilation. This paper presents field measurements of airflow rates...

  18. Characterization of the pneumatic behavior of a novel spouted bed apparatus with two adjustable gas inlets

    NARCIS (Netherlands)

    Gryczka, O.; Heinrich, S.; Miteva, V.; Deen, N.G.; Kuipers, J.A.M.; Jacob, M.; Mörl, L.

    2008-01-01

    Recently the importance of spouted bed technology has significantly increased in the context of drying processes as well as granulation, agglomeration or coating processes. Within this work the fluid dynamics of a novel spouted bed plant with two adjustable gas inlets is investigated. By analysis of

  19. Effects of Nitrogen source, empty bed residence time and inlet concentration on biofilter removal of chlorobenzene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Can; Xi, Jin-Ying; Hu, Hong-Ying [Environmental Simulation and Pollution Control State Key Joint Laboratory, Department of Environmental Science and Engineering, Tsinghua University, Beijing (China)

    2009-04-15

    A new biofilter with bamboo carriers was used to remove gaseous chlorobenzene. Operating parameters such as the nitrogen source, the empty bed residence time (EBRT) and the inlet concentration of chlorobenzene were varied. The ability of the biofilter to remove chlorobenzene was evaluated under each set of conditions. The experimental results indicated that better biofilter performance was achieved using ammonium instead of nitrate nitrogen as the nitrogen source. However, an addition of excess ammonium did not further increase the removal efficiency. The optimal ratio of carbon to nitrogen supply (C/N) was 7:1-14:1. Increasing EBRT increased the biofilter efficiency from 0-20% (EBRT=24 s) to 30-50% (EBRT=41 s) and to 50-70% (EBRT=122 s). The relationship between removal efficiency and EBRT indicated that the removal of chlorobenzene is a pseudo first order kinetic process below the concentration of 400 mg/m{sup 3}. A substrate inhibition model, the Haldane equation, successfully described the removal rate of the biofilter at various inlet concentrations. With increasing inlet concentration, the removal rate initially rose and then declined. The highest removal rate of 18 g/m{sup 3} x h was achieved at an inlet concentration of 1440 mg/m{sup 3}. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  20. Effects of Gravity and Inlet Location on a Two-Phase Countercurrent Imbibition in Porous Media

    Directory of Open Access Journals (Sweden)

    M. F. El-Amin

    2012-01-01

    Full Text Available We introduce a numerical investigation of the effect of gravity on the problem of two-phase countercurrent imbibition in porous media. We consider three cases of inlet location, namely, from, side, top, and bottom. A 2D rectangular domain is considered for numerical simulation. The results indicate that gravity has a significant effect depending on open-boundary location.