WorldWideScience

Sample records for extremely high shear

  1. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2004-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continously increase the knowledge on wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describe the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of high-sampled full-scale time series measurements...... are consistent, given the inevitabel uncertainties associated with model as well as with the extreme value data analysis. Keywords: Statistical model, extreme wind conditions, statistical analysis, turbulence, wind loading, statistical analysis, turbulence, wind loading, wind shear, wind turbines....

  2. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.

    2005-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continuously increase the knowledge of wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describes the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of full-scale measurements recorded with a high sampling rate...

  3. Baseline climatology of extremely high vertical wind shears' values over Europe based on ERA-Interim reanalysis

    Science.gov (United States)

    Palarz, Angelika; Celiński-Mysław, Daniel

    2017-04-01

    The dominant role in the development of deep convection is played by kinematic and thermodynamic conditions, as well as atmospheric circulation, land cover and local relief. Severe thunderstorms are considerably more likely to form in environments with large values of convective available potential energy (CAPE) and significant magnitude of vertical wind shears (VWSs). According to the most recent research, the tropospheric wind shears have an important influence on intensity, longevity and organisation of the primary convective systems - bow echoes, squall lines and supercell thunderstorms. This study, in turn, examines the role of wind structure in controlling the spatial and temporal variability of VWSs over Europe. Considering the importance of the kinematic conditions for the convective systems formation, research is limited exclusively to 0-1 km, 0-3 km and 0-6 km wind shears. In order to compute the VWS' values, the data derived from ERA-Interim reanalysis for the period 1981-2015 was applied. It consisted of U and V wind components with 12-hourly sampling and horizontal resolution of 0.75×0.75°. The VWS' values were calculated as wind difference between two levels - this entails that the hodograph's shape was not considered (e.g. Clark 2013, Pucik et. al 2015). We have analysed both VWS' mean values (MN) and frequency of VWSs exceeding assumed thresholds (FQ). Taking into account previous studies (e.g. Rasmussen & Blanchard 1998, Schneider et al. 2006, Schaumann & Przybylinski 2012), the thresholds for extremely high values of vertical wind shears were set at 10 m/s for 0-1 km shear, 15 m/s for 0-3 km shear and 18 m/s for 0-6 km shear. Both MN and FQ values were characterised by strong temporal variability, as well as significant spatial differentiation over the research area. A clear diurnal cycle was identified in the case of 0-1 km shear, while seasonal variability was typical for 0-3 km and 0-6 km shears. Regardless of the season, 0-1 km shear reached

  4. Extreme value statistics of weak lensing shear peak counts

    CERN Document Server

    Reischke, Robert; Bartelmann, Matthias

    2015-01-01

    The statistics of peaks in weak gravitational lensing maps is a promising technique to constrain cosmological parameters in present and future surveys. Here we investigate its power when using general extreme value statistics which is very sensitive to the exponential tail of the halo mass function. To this end, we use an analytic method to quantify the number of weak lensing peaks caused by galaxy clusters, large-scale structures and observational noise. Doing so, we further improve the method in the regime of high signal-to-noise ratios dominated by non-linear structures by accounting for the embedding of those counts into the surrounding shear caused by large scale structures. We derive the extreme value and order statistics for both over-densities (positive peaks) and under-densities (negative peaks) and provide an optimized criterion to split a wide field survey into sub-fields in order to sample the distribution of extreme values such that the expected objects causing the largest signals are mostly due ...

  5. SEDflume - High Shear Stress Flume

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Corps of Engineers High Shear Stress flume (SEDflume) is designed for estimating erosion rates of fine-grained and mixed fine/coarse grained sediments...

  6. Shear jamming in highly strained granular system without shear banding

    Science.gov (United States)

    Zhao, Yiqiu; Barés, Jonathan; Zheng, Hu; Behringer, Robert

    2016-11-01

    Bi et al. have shown that, if sheared, a granular material can jam even if its packing fraction (ϕ) is lower than the critical isotropic jamming point ϕJ. They have introduced a new critical packing fraction value ϕS such that for ϕSjams if sheared. Nevertheless, the value of ϕS as a function of the shear profile or the strain necessary to observe jamming remain poorly understood because of the experimental complexity to access high strain without shear band. We present a novel 2D periodic shear apparatus made of 21 independent, aligned and mirrored glass rings. Each ring can be moved independently which permits us to impose any desired shear profile. The circular geometry allows access to any strain value. The forces between grains are measured using reflective photoelasticity. By performing different shear profiles for different packing fractions we explored the details of jamming diagram including the location of the yield surface. This work is supported by NSF No.DMR1206351, NASA No.NNX15AD38G and W. M. Keck Foundation.

  7. Dynamic shear deformation in high purity Fe

    Energy Technology Data Exchange (ETDEWEB)

    Cerreta, Ellen K [Los Alamos National Laboratory; Bingert, John F [Los Alamos National Laboratory; Trujillo, Carl P [Los Alamos National Laboratory; Lopez, Mike F [Los Alamos National Laboratory; Gray, George T [Los Alamos National Laboratory

    2009-01-01

    The forced shear test specimen, first developed by Meyer et al. [Meyer L. et al., Critical Adiabatic Shear Strength of Low Alloyed Steel Under Compressive Loading, Metallurgical Applications of Shock Wave and High Strain Rate Phenomena (Marcel Decker, 1986), 657; Hartmann K. et al., Metallurgical Effects on Impact Loaded Materials, Shock Waves and High Strain rate Phenomena in Metals (Plenum, 1981), 325-337.], has been utilized in a number of studies. While the geometry of this specimen does not allow for the microstructure to exactly define the location of shear band formation and the overall mechanical response of a specimen is highly sensitive to the geometry utilized, the forced shear specimen is useful for characterizing the influence of parameters such as strain rate, temperature, strain, and load on the microstructural evolution within a shear band. Additionally, many studies have utilized this geometry to advance the understanding of shear band development. In this study, by varying the geometry, specifically the ratio of the inner hole to the outer hat diameter, the dynamic shear localization response of high purity Fe was examined. Post mortem characterization was performed to quantify the width of the localizations and examine the microstructural and textural evolution of shear deformation in a bcc metal. Increased instability in mechanical response is strongly linked with development of enhanced intergranular misorientations, high angle boundaries, and classical shear textures characterized through orientation distribution functions.

  8. Thrombus Formation at High Shear Rates.

    Science.gov (United States)

    Casa, Lauren D C; Ku, David N

    2017-06-21

    The final common pathway in myocardial infarction and ischemic stroke is occlusion of blood flow from a thrombus forming under high shear rates in arteries. A high-shear thrombus forms rapidly and is distinct from the slow formation of coagulation that occurs in stagnant blood. Thrombosis at high shear rates depends primarily on the long protein von Willebrand factor (vWF) and platelets, with hemodynamics playing an important role in each stage of thrombus formation, including vWF binding, platelet adhesion, platelet activation, and rapid thrombus growth. The prediction of high-shear thrombosis is a major area of biofluid mechanics in which point-of-care testing and computational modeling are promising future directions for clinically relevant research. Further research in this area will enable identification of patients at high risk for arterial thrombosis, improve prevention and treatment based on shear-dependent biological mechanisms, and improve blood-contacting device design to reduce thrombosis risk.

  9. Electrorheological Effects at High Shear Rate

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Much attention has been given to electrorheological (ER) fluids because of the ER effect, which has been described by a large number of researchers as a notable increase in the apparent viscosity of a fluid upon the application of an electric field. The description of ER effects is, however, not accurate at high shear rates. To clarify the discrepancy, we analyze and compute the apparent viscosity as a function of shear rate for ER fluid flow between rotating coaxial cylinders in the presence of an electric field. The theoretical predictions show that the increase of electric intensity contributes little to the apparent viscosity enhancement at high shear rates, while ER effects for ER fluids with a higher polarization rate still exist and ER devices possess controllability in this regime. Description of the ER effect by the apparent viscosity leads to an unrealistic conclusion that ER effects disappear at high shear rates, because the apparent viscosity of ER fluids approaches the value for Newtonian fluids. Therefore, it is concluded that the proper description of ER effects, i.e., one that holds uniformly for any strain rate when ER effects exist, is manifested by a remarkable increase in the extra stress rather than in the apparent viscosity of ER fluids.

  10. High-shear-rate capillary viscometer for inkjet inks

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xi [FUJIFILM Dimatix, Inc., Lebanon, New Hampshire 03766 (United States); Carr, Wallace W.; Bucknall, David G. [School of Polymer, Textile, and Fiber Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Morris, Jeffrey F. [Department of Chemical Engineering and Benjamin Levich Institute for Physico-Chemical Hydrodynamics, City College of New York, New York, New York 10031 (United States)

    2010-06-15

    A capillary viscometer developed to measure the apparent shear viscosity of inkjet inks at high apparent shear rates encountered during inkjet printing is described. By using the Weissenberg-Rabinowitsch equation, true shear viscosity versus true shear rate is obtained. The device is comprised of a constant-flow generator, a static pressure monitoring device, a high precision submillimeter capillary die, and a high stiffness flow path. The system, which is calibrated using standard Newtonian low-viscosity silicone oil, can be easily operated and maintained. Results for measurement of the shear-rate-dependent viscosity of carbon-black pigmented water-based inkjet inks at shear rates up to 2x10{sup 5} s{sup -1} are discussed. The Cross model was found to closely fit the experimental data. Inkjet ink samples with similar low-shear-rate viscosities exhibited significantly different shear viscosities at high shear rates depending on particle loading.

  11. Shear Reinforcement Requirements for High-Strength Concrete Bridge Girders

    OpenAIRE

    Ramirez, J. A.; Aguilar, Gerardo

    2005-01-01

    A research program was conducted on the shear strength of high-strength concrete members. The objective was to evaluate the shear behavior and strength of concrete bridge members with compressive strengths in the range of 10 000 to 15 000 psi. The goal was to determine if the current minimum amount of shear reinforcement together with maximum spacing limits in the 2004 AASHTO LRFD Specifications, and the upper limit on the nominal shear strength were applicable to concrete compressive strengt...

  12. Shear Melting and High Temperature Embrittlement: Theory and Application to Machining Titanium

    Science.gov (United States)

    Healy, Con; Koch, Sascha; Siemers, Carsten; Mukherji, Debashis; Ackland, Graeme J.

    2015-04-01

    We describe a dynamical phase transition occurring within a shear band at high temperature and under extremely high shear rates. With increasing temperature, dislocation deformation and grain boundary sliding are supplanted by amorphization in a highly localized nanoscale band, which allows for massive strain and fracture. The mechanism is similar to shear melting and leads to liquid metal embrittlement at high temperature. From simulation, we find that the necessary conditions are lack of dislocation slip systems, low thermal conduction, and temperature near the melting point. The first two are exhibited by bcc titanium alloys, and we show that the final one can be achieved experimentally by adding low-melting-point elements: specifically, we use insoluble rare earth metals (REMs). Under high shear, the REM becomes mixed with the titanium, lowering the melting point within the shear band and triggering the shear-melting transition. This in turn generates heat which remains localized in the shear band due to poor heat conduction. The material fractures along the shear band. We show how to utilize this transition in the creation of new titanium-based alloys with improved machinability.

  13. Shear melting and high temperature embrittlement: theory and application to machining titanium.

    Science.gov (United States)

    Healy, Con; Koch, Sascha; Siemers, Carsten; Mukherji, Debashis; Ackland, Graeme J

    2015-04-24

    We describe a dynamical phase transition occurring within a shear band at high temperature and under extremely high shear rates. With increasing temperature, dislocation deformation and grain boundary sliding are supplanted by amorphization in a highly localized nanoscale band, which allows for massive strain and fracture. The mechanism is similar to shear melting and leads to liquid metal embrittlement at high temperature. From simulation, we find that the necessary conditions are lack of dislocation slip systems, low thermal conduction, and temperature near the melting point. The first two are exhibited by bcc titanium alloys, and we show that the final one can be achieved experimentally by adding low-melting-point elements: specifically, we use insoluble rare earth metals (REMs). Under high shear, the REM becomes mixed with the titanium, lowering the melting point within the shear band and triggering the shear-melting transition. This in turn generates heat which remains localized in the shear band due to poor heat conduction. The material fractures along the shear band. We show how to utilize this transition in the creation of new titanium-based alloys with improved machinability.

  14. Comparison of low shear, high shear, and fluid bed granulation during low dose tablet process development.

    Science.gov (United States)

    Hausman, Debra S

    2004-03-01

    Three processing methods were compared to develop a low dose (0.1%) immediate release tablet. Similar formulations were used to evaluate low shear, high shear, and fluid bed granulation methods. For each granulation process, the drug was dissolved or suspended in the granulating fluid and sprayed into the granulator. Both water and methanol were evaluated as granulating fluids. The low shear granulation was performed in a Patterson-Kelley V-Blender with I-bar. The high shear granulation was performed in a GRAL (top entry impeller) and a Diosna (bottom mounted impeller). Fluid bed granulation was also performed using top-spray. Acceptable content uniformity was obtained using each technology. The type of granulator and granulating solvent affected the granulation particle size distributions and bulk/tap densities. However, the addition of extragranular microcrystalline cellulose minimized the effect of variable granulation properties and allowed similar tablets to be produced from each granulation process.

  15. High yield DNA fragmentation using cyclical hydrodynamic shearing

    NARCIS (Netherlands)

    Shui, Lingling; Sparreboom, Wouter; Spang, Peter; Roeser, Tina; Nieto, Benjamin; Guasch, Francesc; Corbera, Antoni Homs; van den Berg, Albert; Carlen, Edwin

    2013-01-01

    We report a new DNA fragmentation technique that significantly simplifies conventional hydrodynamic shearing fragmentation by eliminating the need for sample recirculation while maintaining high fragmentation yield and low fragment length variation, and therefore, reduces instrument complexity and c

  16. High yield DNA fragmentation using cyclical hydrodynamic shearing

    NARCIS (Netherlands)

    Shui, Lingling; Sparreboom, Wouter; Spang, Peter; Roeser, Tina; Nieto, Benjamin; Guasch, Francesc; Corbera, Antoni Homs; van den Berg, Albert; Carlen, Edwin

    2013-01-01

    We report a new DNA fragmentation technique that significantly simplifies conventional hydrodynamic shearing fragmentation by eliminating the need for sample recirculation while maintaining high fragmentation yield and low fragment length variation, and therefore, reduces instrument complexity and

  17. Horizontal Shear Transfer Between Ultra High Performance Concrete And Lightweight Concrete

    OpenAIRE

    Banta, Timothy E.

    2005-01-01

    Ultra high performance concrete, specifically Ductal® concrete, has begun to revolutionize the bridge design industry. This extremely high strength material has given smaller composite sections the ability to carry larger loads. As the forces being transferred through composite members are increasing in magnitude, it is vital that the equations being used for design are applicable for use with the new materials. Of particular importance is the design of the horizontal shear reinforcement ...

  18. Fabrication of diffractive optical components for an extreme ultraviolet shearing interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Spector, S.J. (Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794 (United States)); Tennant, D.M. (AT T Bell Laboratories, Holmdel, New Jersey 07733 (United States)); Tan, Z. (AT T Bell Laboratories, 510E Brookhaven National Laboratory, Upton, New York 11973 (United States)); Bjorkholm, J.E. (AT T Bell Laboratories, Holmdel, New Jersey 07733 (United States))

    1994-11-01

    We have constructed four optical components for use in an extreme ultraviolet shearing interferometer which will operate at a wavelength of 13.4 nm. The components that have been constructed include transmission diffractive optical components such as a Fresnel zone plate, angled gratings, and two-frequency gratings, as well as pinhole apertures. All the components are fabricated in 110 nm of Ge, which is supported by a 0.5--0.7-[mu]m-thick membrane of Si. The patterns were fabricated by first evaporating Ge and then spinning 100 nm polymethylmethacrylate (PMMA) onto the Si membranes. The desired patterns were exposed in the PMMA resist using electron beam lithography. Custom interative computer programs generated the patterns used to control the exposure. After developing the PMMA resist the Ge layer was etched using a reactive ion etching technique. Electron microscopy of the finished components show that the smallest features in our components are cleanly constructed, and the linewidths and placement of the features meet the desired accuracy.

  19. Muscle crush injury of extremity: quantitative elastography with supersonic shear imaging.

    Science.gov (United States)

    Lv, Faqin; Tang, Jie; Luo, Yukun; Ban, Yu; Wu, Rong; Tian, Jiangke; Yu, Tengfei; Xie, Xia; Li, Tanshi

    2012-05-01

    The aim of this study was to determine the characteristic of muscle crush injury at quantitative ultrasonographic elastography using supersonic shear imaging (SSI). Twenty-three New Zealand rabbits underwent crush injury to left hind leg caused by a special balloon cuff device. Conventional ultrasonography and SSI quantitative elastography were performed at both crushed and uncrushed regions of the left hind legs. Quantitative lesion elasticity was measured using the Young's modulus (in kilopascals) at 0.5 h, 2 h, 6 h, 24 h and 72 h after the release of the crushing pressure. Compared with those from the uncrushed regions, both the maximum and mean elasticity values at these time points from the crushed regions were significantly higher (p < 0.001). A receiver operating characteristic (ROC) analysis was employed to assess diagnostic performance. ROC curves showed that extremity crush injury was diagnosed using elasticity value and the greater the elasticity value, the greater the diagnostic value. SSI provides quantitative elasticity measurements, thus, adding complementary information that potentially could help in crush injury characterization with conventional ultrasonography. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  20. Shear and shear friction of ultra-high performance concrete bridge girders

    Science.gov (United States)

    Crane, Charles Kennan

    Ultra-High Performance Concrete (UHPC) is a new class of concrete characterized by no coarse aggregate, steel fiber reinforcement, low w/c, low permeability, compressive strength exceeding 29,000 psi (200 MPa), tensile strength ranging from 1,200 to 2,500 psi (8 to 17 MPa), and very high toughness. These properties make prestressed precast UHPC bridge girders a very attractive replacement material for steel bridge girders, particularly when site demands require a comparable beam depth to steel and a 100+ year life span is desired. In order to efficiently utilize UHPC in bridge construction, it is necessary to create new design recommendations for its use. The interface between precast UHPC girder and cast-in-place concrete decks must be characterized in order to safely use composite design methods with this new material. Due to the lack of reinforcing bars, all shear forces in UHPC girders have to be carried by the concrete and steel fibers. Current U.S. codes do not consider fiber reinforcement in calculating shear capacity. Fiber contribution must be accurately accounted for in shear equations in order to use UHPC. Casting of UHPC may cause fibers to orient in the direction of casting. If fibers are preferentially oriented, physical properties of the concrete may also become anisotropic, which must be considered in design. The current research provides new understanding of shear and shear friction phenomena in UHPC including: (1) Current AASHTO codes provide a non-conservative estimate of interface shear performance of smooth UHPC interfaces with and without interface steel. (2) Fluted interfaces can be created by impressing formliners into the surface of plastic UHPC. AASHTO and ACI codes for roughened interfaces are conservative for design of fluted UHPC interfaces.(3) A new equation for the calculation of shear capacity of UHPC girders is presented which takes into account the contribution of steel fiber reinforcement. (4) Fibers are shown to preferentially

  1. Exploratory results from a new rotary shear designed to reproduce the extreme deformation conditions of crustal earthquakes

    Science.gov (United States)

    Di Toro, G.; Nielsen, S. B.; Spagnuolo, E.; Smith, S.; Violay, M. E.; Niemeijer, A. R.; Di Felice, F.; Di Stefano, G.; Romeo, G.; Scarlato, P.

    2011-12-01

    A challenging goal in experimental rock deformation is to reproduce the extreme deformation conditions typical of coseismic slip in crustal earthquakes: large slip (up to 50 m), slip rates (0.1-10 m/s), accelerations (> 10 m/s2) and normal stress (> 50 MPa). Moreover, fault zones usually contain non-cohesive rocks (gouges) and fluids. The integration of all these deformation conditions is such a technical challenge that there is currently no apparatus in the world that can reproduce seismic slip. Yet, the determination of rock friction at seismic slip rates remains one of the main unknowns in earthquake physics, as it cannot be determined (or very approximately) by seismic wave inversion analysis. In the last thirty years, rotary shear apparatus were designed that combine large normal stresses and slip but low slip rates (high-pressure rotary shears first designed by Tullis) or low normal stresses but large slip rates and slip (rotary shears first designed by Shimamoto). Here we present the results of experiments using a newly-constructed Slow to HIgh Velocity Apparatus (SHIVA), installed at INGV in Rome, which extends the combination of normal stress, slip and slip rate achieved by previous apparatus and reproduces the conditions likely to occur during an earthquake in the shallow crust. SHIVA uses two brushless engines (max power 300 kW, max torque 930 Nm) and an air actuator (thrust 5 tons) in a rotary shear configuration (nominally infinite displacement) to slide hollow rock cylinders (30/50 mm int./ext. diameter) at slip rates ranging from 10 micron/s up to 6.5 m/s, accelerations up to 80 m/s2 and normal stresses up to 50 MPa. SHIVA can also perform experiments in which the torque on the sample (rather than the slip rate) is progressively increased until spontaneous failure occurs: this experimental capability should better reproduce natural conditions. The apparatus is equipped with a sample chamber to carry out experiments in the presence of fluids (up to 15

  2. Effects of extreme wind shear on aeroelastic modal damping of wind turbines

    DEFF Research Database (Denmark)

    Skjoldan, P.F.; Hansen, Morten Hartvig

    2013-01-01

    the effect of wind shear on the modal damping of the turbine. In isotropic conditions with a uniform wind field, the modal properties can be extracted from the system matrix transformed into the inertial frame using the Coleman transformation. In shear conditions, an implicit Floquet analysis, which reduces...

  3. High resolution weak lensing mass mapping combining shear and flexion

    Science.gov (United States)

    Lanusse, F.; Starck, J.-L.; Leonard, A.; Pires, S.

    2016-06-01

    Aims: We propose a new mass mapping algorithm, specifically designed to recover small-scale information from a combination of gravitational shear and flexion. Including flexion allows us to supplement the shear on small scales in order to increase the sensitivity to substructures and the overall resolution of the convergence map without relying on strong lensing constraints. Methods: To preserve all available small scale information, we avoid any binning of the irregularly sampled input shear and flexion fields and treat the mass mapping problem as a general ill-posed inverse problem, which is regularised using a robust multi-scale wavelet sparsity prior. The resulting algorithm incorporates redshift, reduced shear, and reduced flexion measurements for individual galaxies and is made highly efficient by the use of fast Fourier estimators. Results: We tested our reconstruction method on a set of realistic weak lensing simulations corresponding to typical HST/ACS cluster observations and demonstrate our ability to recover substructures with the inclusion of flexion, which are otherwise lost if only shear information is used. In particular, we can detect substructures on the 15'' scale well outside of the critical region of the clusters. In addition, flexion also helps to constrain the shape of the central regions of the main dark matter halos. Our mass mapping software, called Glimpse2D, is made freely available at http://www.cosmostat.org/software/glimpse

  4. Relativistic QED Plasma at Extremely High Temperature

    CERN Document Server

    Masood, Samina S

    2016-01-01

    Renormalization scheme of QED (Quantum Electrodynamics) at high temperatures is used to calculate the effective parameters of relativistic plasma in the early universe. Renormalization constants of QED play role of effective parameters of the theory and can be used to determine the collective behavior of the medium. We explicitly show that the dielectric constant, magnetic reluctivity, Debye length and the plasma frequency depend on temperature in the early universe. Propagation speed, refractive index, plasma frequency and Debye shielding length of a QED plasma are computed at extremely high temperatures in the early universe. We also found the favorable conditions for the relativistic plasma from this calculations.

  5. Extreme Transients in the High Energy Universe

    Science.gov (United States)

    Kouveliotou, Chryssa

    2013-01-01

    The High Energy Universe is rich in diverse populations of objects spanning the entire cosmological (time)scale, from our own present-day Milky Way to the re-ionization epoch. Several of these are associated with extreme conditions irreproducible in laboratories on Earth. Their study thus sheds light on the behavior of matter under extreme conditions, such as super-strong magnetic fields (in excess of 10^14 G), high gravitational potentials (e.g., Super Massive Black Holes), very energetic collimated explosions resulting in relativistic jet flows (e.g., Gamma Ray Bursts, exceeding 10^53 ergs). In the last thirty years, my work has been mostly focused on two apparently different but potentially linked populations of such transients: magnetars (highly magnetized neutron stars) and Gamma Ray Bursts (strongly beamed emission from relativistic jets), two populations that constitute unique astrophysical laboratories, while also giving us the tools to probe matter conditions in the Universe to redshifts beyond z=10, when the first stars and galaxies were assembled. I did not make this journey alone I have either led or participated in several international collaborations studying these phenomena in multi-wavelength observations; solitary perfection is not sufficient anymore in the world of High Energy Astrophysics. I will describe this journey, present crucial observational breakthroughs, discuss key results and muse on the future of this field.

  6. Extremely high frequency RF effects on electronics.

    Energy Technology Data Exchange (ETDEWEB)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  7. Probe Oscillation Shear Elastography (PROSE): A High Frame-Rate Method for Two-Dimensional Ultrasound Shear Wave Elastography.

    Science.gov (United States)

    Mellema, Daniel C; Song, Pengfei; Kinnick, Randall R; Urban, Matthew W; Greenleaf, James F; Manduca, Armando; Chen, Shigao

    2016-09-01

    Ultrasound shear wave elastography (SWE) utilizes the propagation of induced shear waves to characterize the shear modulus of soft tissue. Many methods rely on an acoustic radiation force (ARF) "push beam" to generate shear waves. However, specialized hardware is required to generate the push beams, and the thermal stress that is placed upon the ultrasound system, transducer, and tissue by the push beams currently limits the frame-rate to about 1 Hz. These constraints have limited the implementation of ARF to high-end clinical systems. This paper presents Probe Oscillation Shear Elastography (PROSE) as an alternative method to measure tissue elasticity. PROSE generates shear waves using a harmonic mechanical vibration of an ultrasound transducer, while simultaneously detecting motion with the same transducer under pulse-echo mode. Motion of the transducer during detection produces a "strain-like" compression artifact that is coupled with the observed shear waves. A novel symmetric sampling scheme is proposed such that pulse-echo detection events are acquired when the ultrasound transducer returns to the same physical position, allowing the shear waves to be decoupled from the compression artifact. Full field-of-view (FOV) two-dimensional (2D) shear wave speed images were obtained by applying a local frequency estimation (LFE) technique, capable of generating a 2D map from a single frame of shear wave motion. The shear wave imaging frame rate of PROSE is comparable to the vibration frequency, which can be an order of magnitude higher than ARF based techniques. PROSE was able to produce smooth and accurate shear wave images from three homogeneous phantoms with different moduli, with an effective frame rate of 300 Hz. An inclusion phantom study showed that increased vibration frequencies improved the accuracy of inclusion imaging, and allowed targets as small as 6.5 mm to be resolved with good contrast (contrast-to-noise ratio ≥ 19 dB) between the target and

  8. Extremely compliant and highly stretchable patterned graphene

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Shuze; Huang, Yinjun; Li, Teng, E-mail: LiT@umd.edu [Department of Mechanical Engineering and Maryland NanoCenter, University of Maryland, College Park, Maryland 20742 (United States)

    2014-04-28

    Graphene is intrinsically ultra-stiff in its plane. Its huge mechanical mismatch when interfacing with ultra-compliant biological tissues and elastomers (7–9 orders of magnitude difference in stiffness) poses significant challenge in its application to functional devices such as epidermal electronics and sensing prosthesis. We offer a feasible and promising solution to this significant challenge by suitably patterning graphene into a nanomesh. Through systematic coarse-grained simulations, we show that graphene nanomesh can be made extremely compliant with nearly zero stiffness up to about 20% elongation and then remain highly compliant up to about 50% elongation.

  9. A Predictive Model of High Shear Thrombus Growth.

    Science.gov (United States)

    Mehrabadi, Marmar; Casa, Lauren D C; Aidun, Cyrus K; Ku, David N

    2016-08-01

    The ability to predict the timescale of thrombotic occlusion in stenotic vessels may improve patient risk assessment for thrombotic events. In blood contacting devices, thrombosis predictions can lead to improved designs to minimize thrombotic risks. We have developed and validated a model of high shear thrombosis based on empirical correlations between thrombus growth and shear rate. A mathematical model was developed to predict the growth of thrombus based on the hemodynamic shear rate. The model predicts thrombus deposition based on initial geometric and fluid mechanic conditions, which are updated throughout the simulation to reflect the changing lumen dimensions. The model was validated by comparing predictions against actual thrombus growth in six separate in vitro experiments: stenotic glass capillary tubes (diameter = 345 µm) at three shear rates, the PFA-100(®) system, two microfluidic channel dimensions (heights = 300 and 82 µm), and a stenotic aortic graft (diameter = 5.5 mm). Comparison of the predicted occlusion times to experimental results shows excellent agreement. The model is also applied to a clinical angiography image to illustrate the time course of thrombosis in a stenotic carotid artery after plaque cap rupture. Our model can accurately predict thrombotic occlusion time over a wide range of hemodynamic conditions.

  10. Duration of exposure to high fluid shear stress is critical in shear-induced platelet activation-aggregation.

    Science.gov (United States)

    Zhang, Jian-ning; Bergeron, Angela L; Yu, Qinghua; Sun, Carol; McBride, Latresha; Bray, Paul F; Dong, Jing-fei

    2003-10-01

    Platelet functions are increasingly measured under flow conditions to account for blood hydrodynamic effects. Typically, these studies involve exposing platelets to high shear stress for periods significantly longer than would occur in vivo. In the current study, we demonstrate that the platelet response to high shear depends on the duration of shear exposure. In response to a 100 dyn/cm2 shear stress for periods less than 10-20 sec, platelets in PRP or washed platelets were aggregated, but minimally activated as demonstrated by P-selectin expression and binding of the activation-dependent alphaIIbbeta3 antibody PAC-1 to sheared platelets. Furthermore, platelet aggregation under such short pulses of high shear was subjected to rapid disaggregation. The disaggregated platelets could be re-aggregated by ADP in a pattern similar to unsheared platelets. In comparison, platelets that are exposed to high shear for longer than 20 sec are activated and aggregated irreversibly. In contrast, platelet activation and aggregation were significantly greater in whole blood with significantly less disaggregation. The enhancement is likely via increased collision frequency of platelet-platelet interaction and duration of platelet-platelet association due to high cell density. It may also be attributed to the ADP release from other cells such as red blood cells because increased platelet aggregation in whole blood was partially inhibited by ADP blockage. These studies demonstrate that platelets have a higher threshold for shear stress than previously believed. In a pathologically relevant timeframe, high shear alone is likely to be insufficient in inducing platelet activation and aggregation, but acts synergistically with other stimuli.

  11. Local shear texture formation in adiabatic shear bands by high rate compression of high manganese TRIP steels

    Science.gov (United States)

    Li, J.; Yang, P.; Mao, W. M.; Cui, F. E.

    2015-04-01

    Local shear textures in ASBs of high manganese TRIP steels under high rate straining are determined and the influences of initial microstructure is analyzed using EBSD technique. It is seen that even at the presence of majority of two types of martensite before deformation, ASB is preferred to evolve in austenite, rather than in martenite, due to reverse transformation. Ultrafine grains of thress phases due to dynamic recrystallization are formed and all show shear textures. The less ε-martensite in ASB is distributed as islands and its preferred orientation can be found to originate from the variants in matrix. The grain orientation rotation around ASB in multi-phase alloy reveals significant influence of α'- martensite on texture in ASB. The mechanism of local texture formation in ASB of high manganese TRIP steel is proposed in terms of the interaction of early TRIP and later reverse transformation.

  12. Extreme Precipitation and High-Impact Landslides

    Science.gov (United States)

    Kirschbaum, Dalia; Adler, Robert; Huffman, George; Peters-Lidard, Christa

    2012-01-01

    It is well known that extreme or prolonged rainfall is the dominant trigger of landslides; however, there remain large uncertainties in characterizing the distribution of these hazards and meteorological triggers at the global scale. Researchers have evaluated the spatiotemporal distribution of extreme rainfall and landslides at local and regional scale primarily using in situ data, yet few studies have mapped rainfall-triggered landslide distribution globally due to the dearth of landslide data and consistent precipitation information. This research uses a newly developed Global Landslide Catalog (GLC) and a 13-year satellite-based precipitation record from Tropical Rainfall Measuring Mission (TRMM) data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurence of precipitation and rainfall-triggered landslides globally. The GLC, available from 2007 to the present, contains information on reported rainfall-triggered landslide events around the world using online media reports, disaster databases, etc. When evaluating this database, we observed that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan Arc, and central-eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This research also considers the sources for this extreme rainfall, citing

  13. Vortex dynamics and shear layer instability in high intensity cyclotrons

    CERN Document Server

    Cerfon, Antoine J

    2016-01-01

    We show that the space charge dynamics of high intensity beams in the plane perpendicular to the magnetic field in cyclotrons is described by the two-dimensional Euler equations for an incompressible fluid. This analogy with fluid dynamics gives a unified and intuitive framework to explain the beam spiraling and beam break up behavior observed in experiments and in simulations. In particular, we demonstrate that beam break up is the result of a classical instability occurring in fluids subject to a sheared flow. We give scaling laws for the instability and predict the nonlinear evolution of beams subject to it. Our work suggests that cyclotrons may be uniquely suited for the experimental study of shear layers and vortex distributions that are not achievable in Penning-Malmberg traps.

  14. Hitherto unknown shear rupture mechanism as a source of instability in intact hard rocks at highly confined compression

    Science.gov (United States)

    Tarasov, Boris G.

    2014-05-01

    Today, frictional shear resistance along pre-existing faults is considered to be the lower limit on rock shear strength for confined conditions corresponding to the seismogenic layer. This paper introduces a recently identified shear rupture mechanism providing a paradoxical feature of hard rocks - the possibility of shear rupture propagation through the highly confined intact rock mass at shear stress levels significantly less than frictional strength. In the new mechanism, the rock failure associated with consecutive creation of small slabs (known as ‘domino-blocks') from the intact rock in the rupture tip is driven by a fan-shaped domino structure representing the rupture head. The fan-head combines such unique features as: extremely low shear resistance, self-sustaining stress intensification, and self-unbalancing conditions. Due to this the failure process caused by the mechanism is very dynamic and violent. This makes it impossible to directly observe and study the mechanism and can explain why the mechanism has not been detected before. This paper provides physical motivation for the mechanism, based upon side effects accompanying the failure process. Physical and mathematical models of the mechanism presented in the paper explain unique and paradoxical features of the mechanism. The new shear rupture mechanism allows a novel point of view for understanding the nature of spontaneous failure processes in hard rocks including earthquakes.

  15. Shear behavior of squalane and tetracosane under extreme confinement. I. Model, simulation method, and interfacial slip

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.A.; Cochran, H.D.; Cummings, P.T. [Department of Chemical Engineering, University of Tennessee, Knoxville, Tennessee 37996-2200 (United States)]|[Chemical Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6268 (United States)

    1997-12-01

    In this three part study, nonequilibrium molecular dynamics simulation of the rheology of confined films is used to explore the microscopic properties and response of model lubricants under shear. The rheological behavior of two alkanes that differ in molecular structural complexity is examined: tetracosane (C{sub 24}H{sub 50}), which is a linear alkane, and squalane (C{sub 30}H{sub 62}), which has six symmetrically placed methyl branches along a 24 carbon backbone. The model lubricants are confined between model walls that have short chains tethered to them, thus screening the wall details. Shear flow is generated by moving the walls at constant velocity, and various properties are calculated after attainment of steady state. Heat generated by viscous dissipation is removed by thermostatting the first two atoms of the tethered molecules at 300 K, which allows a temperature profile to develop across the width of the lubricant layer. This paper details the molecular model and simulation method, and examines interfacial slip at the interface between the tethered chains and the fluid alkane. The effects of various parameters on the slip behavior are presented. Two subsequent papers respectively address the structural features of these liquid alkanes under shear flow and compare the viscosities from independent calculations of the bulk and confined fluids. {copyright} {ital 1997 American Institute of Physics.}

  16. Shear behavior of squalane and tetracosane under extreme confinement. II. Confined film structure

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.A.; Cochran, H.D.; Cummings, P.T. [Department of Chemical Engineering, University of Tennessee, Knoxville, Tennessee 37996-2200 (United States)]|[Chemical Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6268 (United States)

    1997-12-01

    This paper focuses on the structural characteristics of confined squalane and tetracosane under shear flow conditions. Nonequilibrium molecular dynamics simulation is used to explore the rheology of these model lubricants. A preceding paper describes the molecular model and the simulation method, and examines interfacial slip. The lubricants are confined between model walls that have short chains tethered to them, thus screening the wall details. In this paper we examine the density profiles and chain conformations of the alkanes under shear flow conditions. Our results indicate a profound influence of the walls on the fluid structure. In particular, when the wall spacing is close to an integral multiple of the molecular diameter, tetracosane shows the formation of distinct layers with the molecules being in a fully extended state. This behavior is not observed for squalane. Under shear flow conditions the molecules tend to orient parallel to the walls, as would be expected, with a greater degree of orientation (a) close to the walls, (b) at the positions of local density maxima, and (c) at higher strain rates. {copyright} {ital 1997 American Institute of Physics.}

  17. Shear-driven dynamo waves at high magnetic Reynolds number.

    Science.gov (United States)

    Tobias, S M; Cattaneo, F

    2013-05-23

    Astrophysical magnetic fields often display remarkable organization, despite being generated by dynamo action driven by turbulent flows at high conductivity. An example is the eleven-year solar cycle, which shows spatial coherence over the entire solar surface. The difficulty in understanding the emergence of this large-scale organization is that whereas at low conductivity (measured by the magnetic Reynolds number, Rm) dynamo fields are well organized, at high Rm their structure is dominated by rapidly varying small-scale fluctuations. This arises because the smallest scales have the highest rate of strain, and can amplify magnetic field most efficiently. Therefore most of the effort to find flows whose large-scale dynamo properties persist at high Rm has been frustrated. Here we report high-resolution simulations of a dynamo that can generate organized fields at high Rm; indeed, the generation mechanism, which involves the interaction between helical flows and shear, only becomes effective at large Rm. The shear does not enhance generation at large scales, as is commonly thought; instead it reduces generation at small scales. The solution consists of propagating dynamo waves, whose existence was postulated more than 60 years ago and which have since been used to model the solar cycle.

  18. Extreme Environment High Temperature Communication Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop and demonstrate a communications system capable of operation at extreme temperatures and pressures in hostile and corrosive...

  19. A NEW TYPE LOW SHEAR RATE VISCOMETER FOR HIGH MOLECULAR WEIGHT POLYMER

    Institute of Scientific and Technical Information of China (English)

    YE Meiling; HAN Dong; SHI Lianghe

    1996-01-01

    In this paper, the effects of shear rate on the intrinsic viscosity measurement of partially Hydrolysed Polyacrylamide (HPAM) in salt solution were studied with homemade multibulb viscometer and low shear rate rheometer. The critical shear rate of HPAM in salt solution for high molecular weight HPAM was determined. A low shear rate capillary viscometer was designed in which the [η] approached to value at zero shear rate can be obtained for HPAM -salt system. The effect of molecular weight on shear rate dependence of viscosity was also studied.

  20. High-frequency shear-horizontal surface acoustic wave sensor

    Science.gov (United States)

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  1. Advanced System Identification for High-rise Building Using Shear-Bending Model

    Directory of Open Access Journals (Sweden)

    Kohei Fujita

    2016-11-01

    Full Text Available In order to identify physical model parameters of a high-rise building, a new story stiffness identification method is presented based on a shear-bending model and the identification function. Although a shear building model may be the simplest conventional model for representing tall buildings, the system identification (SI method using that model is not necessarily appropriate. This is because the influence of bending deformation is predominant in such high-rise buildings. For this reason, a shear-bending model is used where the shear and bending stiffnesses are unknown. In the previous researches using the shear-bending model, it was difficult to identify the bending stiffnesses stably and reliably. In this paper, to overcome such instability of bending stiffness identification of the shear-bending model, a new SI algorithm using both the shear model and the shear-bending model is presented. The proposed SI algorithm is based on the observation that the fundamental-mode shape of the identified shear model is similar to that of the shear-bending model identified in the previous SI method. In order to verify the advanced SI method, two different 20-story building models are investigated in the numerical simulations. From the results of the simulations, both the shear and bending stiffnesses of the shear-bending model are identified reliably and stably in the proposed SI method.

  2. Effect of shear stress on the high-pressure behaviour of nitromethane: Raman spectroscopy in a shear diamond anvil cell

    Science.gov (United States)

    Hebert, Philippe; Isambert, Aude; Petitet, Jean-Pierre; Zerr, Andreas

    2009-06-01

    A detailed description of the reaction mechanisms occurring in shock-induced decomposition of condensed energetic materials is very important for a comprehensive understanding of detonation. Besides pressure and temperature effects, shear stress has also been proposed to play an important role in the initiation and decomposition mechanisms. In order to study this effect, a Shear Diamond Anvil Cell (SDAC) has been developed. It is actually a classical DAC with the upper diamond anvil rotating about the compression axis relative to the opposite anvil. In this paper, we present a Raman spectroscopy study of the effect of shear stress on the high-pressure behaviour of nitromethane. Two major effects of shear stress are observed in our experiments. The first one is a lowering of the pressures at which the different structural modifications that nitromethane undergoes are observed. The second effect is observed at 28 GPa where sudden decomposition of the sample occurs just after shear application. Observation of the sample after decomposition shows the presence of a black residue which is composed of carbon as indicated by the Raman spectrum. [1] Manaa, M. R., Fried, L. E., and Reed, E. J., Journal of Computer-Aided Materials Design, 10, pp 75-97, 2003.

  3. Shear behavior of squalane and tetracosane under extreme confinement. III. Effect of confinement on viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.A.; Cochran, H.D.; Cummings, P.T. [Department of Chemical Engineering, University of Tennessee, Knoxville, Tennessee 37996-2200 (United States)]|[Chemical Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6268 (United States)

    1997-12-01

    This study uses nonequilibrium molecular dynamics simulation to explore the rheology of confined liquid alkanes. Two alkanes that differ in molecular structural complexity are examined: tetracosane (C{sub 24}H{sub 50}), which is a linear alkane, and squalane (C{sub 30}H{sub 62}), which has six symmetrically placed methyl branches along a 24 carbon backbone. These model lubricants are confined between model walls that have short chains tethered to them, thus screening the wall details. This paper, the third of a three part series, compares the viscosities of the confined fluids to those of the bulk fluids. The alkanes are described by a well-documented potential model that has been shown to reproduce bulk experimental viscosity and phase equilibria measurements. Details of the simulation method, and structural information can be found in the preceding two papers of this series. The measured strain rates in these simulations range between 10{sup 8} and 10{sup 11} s{sup {minus}1}, which is typical of a number of practical applications. The confined fluids undergo extensive shear thinning, showing a power-law behavior. Comparison of results for the confined fluid to those for the bulk fluid reveal that, for the conditions examined, there is no difference between the bulk and confined viscosities for these alkanes. This observation is in contrast to experimental results at much lower strain rates (10{endash}10{sup 5} s{sup {minus}1}), which indicate the viscosities of the confined fluid to be much larger than the bulk viscosities. In making the comparison, we have carefully accounted for slip at the wall and have performed simulations of the bulk fluid at the same conditions of strain rate, temperature, and pressure as for the corresponding confined fluid. The viscosity is found to be independent of the wall spacing. The calculated power-law exponents are similar to experimentally observed values. We also note that the exponent increases with increasing density of the

  4. Shear Capacity and Failure Behavior of Steel-Reinforced High Ductile Concrete Beams

    Directory of Open Access Journals (Sweden)

    Mingke Deng

    2015-01-01

    Full Text Available The shear behavior of six high ductile fiber reinforced concrete (HDC beams is studied to investigate the influence of shear-span ratio and HDC mechanical property on the improvement of the shear failure mode and shear capacity of short beams. Four steel-reinforced high ductile concrete beams (SHDC beams with different shear span ratios are tested under concentrated load at midspan. To study the effect of stirrups and steel on the shear capacity of short beams, two additional specimens without steel but one including stirrups are investigated. The main aspects of SHDC beams are discussed in detail, such as failure mode, deformability, and shear capacity. Test results show that the SHDC short beams keep high residual bearing capacity and great integrity when suffering from large deformation. It is revealed that HDC increased the shear ductility and improved the shear failure mode of short beams. A comparison with the shear equations of Chinese YB9082-2006 shows that the Chinese Code equation provides conservative estimation for HDC beams. This study proposes modifications to the equation for predicting the shear capacity of HDC beams.

  5. The Role of Axisymmetric Reconnection Events in JET Discharges with Extreme Shear Reversal

    Energy Technology Data Exchange (ETDEWEB)

    B.C. Stratton; J.A. Breslau; R.V. Budny; S.C. Jardin; W. Park; H.R. Strauss; L.E. Zakharov; B. Alper; V. Drozdov; N.C. Hawkes; S. Reyes-Cortes; and Contributors to the EFDA-JET Work Programme

    2001-12-03

    Injection of Lower Hybrid Heating and Current Drive into the current ramp-up phase of Joint European Torus (JET) discharges can produce extremely reversed q-profiles characterized by a core region of very small or zero current density (within Motional Stark Effect diagnostic measurement errors) and q(subscript min) > 1. T(subscript e)-profiles show sawtooth-like collapses and the presence of an internal transport barrier. Accurate equilibrium reconstructions of these discharges are obtained using the ESC code, which was recently extended to allow equilibrium reconstructions in which a free boundary solver determines the plasma boundary and a fixed boundary solver provides the magnetic geometry and current density profile. The core current density does not appear to go negative, although current diffusion calculations indicate that sufficient non-inductive current drive to cause this is present. This is explained by nonlinear resistive MHD simulations in toroidal geometry which predict that these discharges undergo n=0 reconnection events (axisymmetric sawteeth) that redistribute the current to hold the core current density near zero.

  6. ENHANCED PLATELET AGGREGABILITY UNDER HIGH SHEAR STRESS IN CORONARY CIRCULATION OF PATIENTS WITH UNSTABLE ANGINA

    OpenAIRE

    Doi, Naofumi

    2000-01-01

    Mechanical forces, including high shear stress, have been found to cause platelet aggregation. Although increased platelet aggregation is also associated with the pathophysiology of unstable angina, it is not known whether platelet aggregation induced by high shear stress occurs in the coronary circulation of patients with unstable angina. We assayed high shear stress induced platelet aggregation (h-SIPA) in each of 25 patients with unstable angina and a severe stenotic lesion of the left cor...

  7. High Resolution Shear Profile Measurements in Entangled Polymers

    KAUST Repository

    Hayes, Keesha A.

    2008-11-17

    We use confocal microscopy and particle image velocimetry to visualize motion of 250-300 nm. fluorescent tracer particles in entangled polymers subject to a rectilinear shear flow. Our results show linear velocity profiles in polymer solutions spanning a wide range of molecular weights and number of entanglements (8≤Z≤56), but reveal large differences between the imposed and measured shear rates. These findings disagree with recent reports that shear banding is a characteristic flow response of entangled polymers, and instead point to interfacial slip as an important source of strain loss. © 2008 The American Physical Society.

  8. DYNAMIC RESPONSE OF HIGH RISE STRUCTURES UNDER THE INFLUENCE OF DISCRETE STAGGERED SHEAR WALLS

    Directory of Open Access Journals (Sweden)

    Dr. B. KAMESHWARI

    2011-10-01

    Full Text Available It is well-established fact that shear walls are quite effective in lateral load resistance of low-rise to medium-rise reinforced concrete buildings. Restriction in the architectural design by the presence of the shear walls may contribute to discourage the engineers from adopting the shear walls. Due to this a new concept ofproviding storey deep and bay wide discrete staggered shear wall panels have been introduced. In this study, the effect of various configurations of shear walls on high-rise structure is analysed. The drift and inter-storey drift of the structure in the following configurations of shear wall panels is studied and is compared with that of bare frame: (1 Conventional shear walls. (2 Alternate arrangement of shear walls. (3 Diagonal arrangement of shear walls. (4 Zigzag arrangement of shear walls. (5 Influence of lift core walls. Of the configurations studied, the zigzag shear wall configuration is found to be better than the other systems studied in controlling the response to earthquake loading. The diagonal configuration is found to be having significant role in controlling the response of structures to earthquake.

  9. Shear Yielding and Shear Jamming of Dense Hard Sphere Glasses

    Science.gov (United States)

    Urbani, Pierfrancesco; Zamponi, Francesco

    2017-01-01

    We investigate the response of dense hard sphere glasses to a shear strain in a wide range of pressures ranging from the glass transition to the infinite-pressure jamming point. The phase diagram in the density-shear strain plane is calculated analytically using the mean-field infinite-dimensional solution. We find that just above the glass transition, the glass generically yields at a finite shear strain. The yielding transition in the mean-field picture is a spinodal point in presence of disorder. At higher densities, instead, we find that the glass generically jams at a finite shear strain: the jamming transition prevents yielding. The shear yielding and shear jamming lines merge in a critical point, close to which the system yields at extremely large shear stress. Around this point, highly nontrivial yielding dynamics, characterized by system-spanning disordered fractures, is expected.

  10. Common lower extremity injuries in female high school soccer ...

    African Journals Online (AJOL)

    Common lower extremity injuries in female high school soccer players in ... and fitness and not wearing shin guards are risk factors for injury in female soccer ... do not differ from the studies done in male adolescent and adult soccer players.

  11. FE Analysis on Shear Deformation for Asymmetrically Hot-Rolled High-Manganese Steel Strip

    Science.gov (United States)

    Sui, Feng-Li; Wang, Xin; Li, Chang-Sheng; Zhao, Jun

    2016-09-01

    Shear deformation along the longitudinal cross section of the high-manganese steel strip has been analyzed in hot asymmetrical rolling process using rigid-plastic finite element model. The friction coefficient between the rolls and the strip surfaces, the diameter of the work rolls, the speed ratio for the lower/upper rolls, the reduction rate and the initial temperature of the billet were all taken into account. Influence of these process parameters on the shear stress, the shear strain and the related shear strain energy in the center layer of the hot-rolled strip was analyzed. It is indicated that increasing the speed ratio, the reduction rate and the work roll diameter is an effective way to accumulate more shear strain energy in the strip center. A mathematical model reflecting the relationship between the shear strain energy and the process parameters has been established.

  12. Advanced Extremely High Frequency Satellite (AEHF)

    Science.gov (United States)

    2015-12-01

    High Frequency Satellite (AEHF) is a joint service satellite communications system that provides global , survivable, secure, protected, and jam...three satellites fully integrated into the Milstar constellation. October 2014: On October 16, 2014, the program received PEO certification for the...Combined Orbital Operation, Logistics Sustainment ( COOLS ) contract, it will be completed and coordinated in CY 2016. The AEHF system being sustained

  13. Extremely high Q-factor toroidal metamaterials

    CERN Document Server

    Basharin, Alexey A; Volsky, Nikita; Kafesaki, Maria; Economou, Eleftherios N; Ustinov, Alexey V

    2016-01-01

    We demonstrate that, owing to the unique topology of the toroidal dipolar mode, its electric/magnetic field can be spatially confined within subwavelength, externally accessible regions of the metamolecules, which makes the toroidal planar metamaterials a viable platform for high Q-factor resonators due to interfering toroidal and other dipolar modes in metamolecules.

  14. Workshop on extremely high energy density plasmas and their diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Shozo (ed.)

    2001-09-01

    Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)

  15. High fluid shear strain causes injury in silver shark: Preliminary implications for Mekong hydropower turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, L. J. [New South Wales Department of Primary Industries, Narrandera Fisheries Centre, Narrandera NSW Australia; Institute of Land, Water and Society, Charles Sturt University, Albury NSW Australia; Thorncraft, G. [Faculty of Agriculture, Forestry and Fisheries, National University of Laos, Vientiane Lao People’s Democratic Republic; Phonekhampheng, O. [Faculty of Agriculture, Forestry and Fisheries, National University of Laos, Vientiane Lao People’s Democratic Republic; Boys, C. [New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Nelson Bay NSW Australia; Navarro, A. [Institute of Land, Water and Society, Charles Sturt University, Albury NSW Australia; Robinson, W. [Institute of Land, Water and Society, Charles Sturt University, Albury NSW Australia; Brown, R. [Pacific Northwest National Laboratory, Richland WA USA; Deng, Z. D. [Pacific Northwest National Laboratory, Richland WA USA

    2017-02-09

    Fluid shear arises when two bodies of water, travelling at different velocities, intersect. Fish entrained at the interface of these two water masses will experience shear stress; which can be harmful. The stress magnitude is dependent on waterbody mass and velocity; with the fish impact largely related to body size. Elevated shear stress occurs where rapidly flowing water passes near spillways, across screens, within turbine draft tubes or other passage routes. A flume was used to determine critical tolerances of silver shark (Balantiocheilos melanopterus) to different shear stress rates generated by a high velocity jet. Fish experienced higher levels of injury and mortality as shear stress was increased. Excessive shear forces had damaging impacts on fish. Mortality occurred at shear levels higher that 600/s. It is important that developers should attempt to model potential shear profiles expected during turbine passage in selected designs. These data will be critical to determine potential impacts on fish. If the likelihood of adverse impact is high, then alternative designs which have lower shear stress could be explored.

  16. A model for shear-band formation and high-explosive initiation in a hydrodynamics code

    Energy Technology Data Exchange (ETDEWEB)

    Kerrisk, J.F.

    1996-03-01

    This report describes work in progress to develop a shear band model for MESA-2D. The object of this work is (1) to predict the formation of shear bands and their temperature in high explosive (HE) during a MESA-2D calculation, (2) to then assess whether the HE would initiate, and (3) to allow a detonation wave initiated from a shear band to propagate. This requires developing a model that uses average cell data to estimate the size and temperature of narrow region (generally much narrower than the cell size) that is undergoing shear within the cell. The shear band temperature (rather than the average cell temperature) can be used to calculate the flow stress of the material in the cell or to calculate heat generation from reactive materials. Modifications have been made to MESA-2D to calculate shear band size and temperature, and to initiate HE detonation when conditions warrant. Two models have been used for shear-band size and temperature calculation, one based on an independent estimate of the shear band width and a second based on the temperature distribution around the shear band. Both models have been tested for calculations in which shear band formation occurs in steel. A comparison of the measured and calculated local temperature rise in a shear band has been made. A model for estimating the time to initiation of the HE based on the type of HE and the temperature distribution in a shear band has also been added to MESA-2D. Calculations of conditions needed to initiate HE in projectile-impact tests have been done and compared with experimental data. Further work is d to test the model.

  17. Thermostatic and rheological responses of DPD fluid to extreme shear under modified Lees-Edwards boundary condition.

    Science.gov (United States)

    Moshfegh, Abouzar; Ahmadi, Goodarz; Jabbarzadeh, Ahmad

    2015-12-01

    Thermodynamic, hydrodynamic and rheological interactions between velocity-dependent thermostats of Lowe-Andersen (LA) and Nosé-Hoover-Lowe-Andersen (NHLA), and modified Lees-Edwards (M-LEC) boundary condition were studied in the context of Dissipative Particle Dynamics method. Comparisons were made with original Lees-Edwards method to characterise the improvements that M-LEC offers in conserving the induced shear momentum. Different imposed shear velocities, heat bath collision/exchange frequencies and thermostating probabilities were considered. The presented analyses addressed an unusual discontinuity in momentum transfer that appeared in form of nonphysical jumps in velocity and temperature profiles. The usefulness of M-LEC was then quantified by evaluating the enhancements in obtained effective shear velocity, effective shear rate, Péclet number, and dynamic viscosity. System exchange frequency (Γ) with Maxwellian heat bath was found to play an important role, in that its larger values facilitated achieving higher shear rates with proper temperature control at the cost of deviation from an ideal momentum transfer. Similar dynamic viscosities were obtained under both shearing modes between LA and NHLA thermostats up to Γ = 10, whilst about twice the range of viscosity (1 %). The main benefits of this modification were to facilitate momentum flow from shear boundaries to the system bulk. In addition, it was found that there exist upper thresholds for imposing shear on the system beyond which temperature cannot be controlled properly and nonphysical jumps reappear.

  18. Nanometric Gouge in High-Speed Shearing Experiments: Superplasticity?

    Science.gov (United States)

    Green, H. W.; Lockner, D. A.; Bozhilov, K. N.; Maddon, A.; Beeler, N. M.; Reches, Z.

    2010-12-01

    High-speed shearing experiments on solid rock samples typically generate a gouge with sub-micron grain size that appears to control the frictional resistance at velocities approaching 1 m/s (Reches & Lockner, Nature, in press). We conducted experiments on Kasota dolomite samples and observed profound weakening (friction drops from ~0.8 to ~ 0.2) under earthquake conditions (up to slip-velocity ~ 0.95 m/s and normal stress 28.4 MPa). During these runs the experimental fault had T ≥ 800°C and developed a shining, dark surface. We report here analysis of such a surface with scanning electron microscopy (SEM) and atomic force microscopy (AFM). SEM analysis shows a slickensided gouge made up of particles all ≤ 50nm with a large fraction ≤ 20nm. The spacing of the slickenside striations is less than 1 µm. Over large areas of the slickensided surface the nanometric gouge has been replaced by an undeformed, interlocking crystalline pavement of 100-300 nm grain size. Qualitative chemical analysis of this pavement surface by energy-dispersive X-ray spectroscopy reveals only a weak carbon peak, suggesting that the dolomite has been decarbonated. The development of a “pavement” of grain size ~200 nm in our experiments is remarkably similar to the observations of Han et al. (JGR, 2010, Fig. 14(d)). However, their experiments either did not develop such a nanometric gouge or it was completely replaced by the coarser pavement. These present observations of nanometric gouge that recrystallizes during the short time interval of elevated temperature following termination of deformation are reminiscent of the nanometric “gouge” produced in very high-pressure experiments (1-14 GPa) that have failed by transformation-induced faulting during the olivine-spinel transformation (Green and Burnley, Nature, 1989; Green et al., Nature, 1990). In the high-pressure experiments, the gouge consists of a nanocrystalline aggregate of the spinel phase that flowed at very high strain

  19. High resolution spectroscopy of six new extreme helium stars

    Science.gov (United States)

    Heber, U.; Jones, G.; Drilling, J. S.

    1986-01-01

    High resolution spectra of six newly discovered extreme helium stars are presented. LSS 5121 is shown to be a spectroscopical twin of the hot extreme helium star HD 160641. A preliminary LTE analysis of LSS 3184 yielded an effective temperature of 22,000 K and a surface gravity of log g = 3.2. Four stars form a new subgroup, classified by sharp-lined He I spectra and pronounced O II spectra, and it is conjectured that these lie close to the Eddington limit. The whole group of extreme helium stars apparently is inhomogeneous with respect to luminosity to mass ratio and chemical composition.

  20. Search for New Highly Energetic Phases under Compression and Shear

    Science.gov (United States)

    2015-05-01

    diamond anvil cell. Europhysics Letters , 2009, Vol. 88, 16004, 1-6. IF: 2.753 4. Ji, C., Hou, D., Zhu, H., Wu, J., Chyu, M., Ma, Y., Pressure...I-2. The room temperature phase diagram of NaN3. Letters mark the material surrounding the sample as pressure transmitting media. (b) Shear...transitions at large strains: Phase-field theory and simulations. Physical Review Letters , 2009, Vol. 103, No. 2, 025702; selected and published by

  1. Extreme states of matter high energy density physics

    CERN Document Server

    Fortov, Vladimir E

    2016-01-01

    With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams,electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets, and in many other situations characterized by extremely high pressures and temperatures.Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics, and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview. This second edition is thoroughly revised and expanded, in particular with new material on high energy-density physics, nuclear explosions and other nuclear transformation processes.

  2. Strength of precast concrete shear joints reinforced with high-strength wire ropes

    DEFF Research Database (Denmark)

    Joergensen, Henrik B.; Hoang, Linh Cao; Hagsten, Lars German

    2017-01-01

    This paper concerns the in-plane shear strength of connections between precast concrete wall elements reinforced with looped high-strength wire ropes. The looped wire ropes are pre-installed in so-called ‘wire boxes’ which function as shear keys. Although only a small amount of research...... on the shear strength of such connections can be found in the literature, this type of connection is increasingly being used because wire ropes are much more construction-friendly than traditional U-bars. A rigid plastic upper bound model for the shear strength of wall connections reinforced with looped wire...... ropes that are pre-installed in wire boxes is presented along with test results on the shear strength of connections with double-wire boxes. It is shown that the plastic solution agrees well with both the obtained test results and results from previously conducted tests....

  3. Shear dependent nonlinear vibration in a high quality factor single crystal silicon micromechanical resonator

    Science.gov (United States)

    Zhu, H.; Shan, G. C.; Shek, C. H.; Lee, J. E.-Y.

    2012-07-01

    The frequency response of a single crystal silicon resonator under nonlinear vibration is investigated and related to the shear property of the material. The shear stress-strain relation of bulk silicon is studied using a first-principles approach. By incorporating the calculated shear property into a device-level model, our simulation closely predicts the frequency response of the device obtained by experiments and further captures the nonlinear features. These results indicate that the observed nonlinearity stems from the material's mechanical property. Given the high quality factor (Q) of the device reported here (˜2 × 106), this makes it highly susceptible to such mechanical nonlinear effects.

  4. Extremely High Q-factor metamaterials due to Anapole Excitation

    CERN Document Server

    Basharin, Alexey A; Volsky, Nikita; Kafesaki, Maria; Economou, Eleftherios N

    2016-01-01

    We demonstrate that ideal anapole metamaterials have infinite Q-factor. We have designed and fabricated a metamaterial consisting of planar metamolecules which exhibit anapole behavior in the sense that the electric dipole radiation is almost cancelled by the toroidal dipole one, producing thus an extremely high Q-factor at the resonance frequency. The size of the system, at the mm range, and the parasitic magnetic quadrupole radiation are the factors limiting the size of the Q-factor. In spite of the very low radiation losses the local fields at the metamolecules are extremely high, of the order of higher than the external incoming field.

  5. Is Extremely High Life Satisfaction during Adolescence Advantageous?

    Science.gov (United States)

    Suldo, Shannon M.; Huebner, E. Scott

    2006-01-01

    This study examined whether extremely high life satisfaction was associated with adaptive functioning or maladaptive functioning. Six hundred ninety-eight secondary level students completed the Students' Life Satisfaction Scale [Huebner, 1991a, School Psychology International, 12, pp. 231-240], Youth Self-Report of the Child Behavior Checklist…

  6. common lower extremity injuries in female high school soccer ...

    African Journals Online (AJOL)

    studies on soccer concentrate on male soccer players.5-7 Although participation ... the prevalence and injury profile of lower extremity injuries in female high school ... An extended duration of skills (p=0.0001) and fitness (p=0.02) training in this .... The results (Table V) show that shin guards were associated with a reduced ...

  7. Extreme high-head portables provide more pumping options

    Energy Technology Data Exchange (ETDEWEB)

    Fiscor, S.

    2006-10-15

    Three years ago, Godwin Pumps, one of the largest manufacturers of portable pumps, introduced its Extreme Duty High Lift (HL) series of pumps and more mines are finding unique applications for these pumps. The Extreme HL series is a range single-stage Dri-Prime pumps with heads up to 600 feet and flows up to 5,000 gallons per minute. The American Coal Co.'s Galatia mine, an underground longwall mine in southern Illinois, used an HL 160 to replace a multiple-staged centrifugal pump. It provided Galatia with 1,500 gpm at 465 ft. 3 photos.

  8. Shear softening of Earth's inner core indicated by its high Poisson's ratio and elastic anisotropy

    CERN Document Server

    Wu, Zhongqing

    2016-01-01

    Earth's inner core exhibits an unusually high Poisson's ratio and noticeable elastic anisotropy. The mechanisms responsible for these features are critical for understanding the evolution of the Earth but remain unclear. This study indicates that once the correct formula for the shear modulus is used, shear softening can simultaneously explain the high Poisson's ratio and strong anisotropy of the inner core. Body-centred-cubic (bcc) iron shows shear instability at the pressures found in the inner-core and can be dynamically stabilized by temperature and light elements. It is very likely that some combinations of light elements stabilize the bcc iron alloy under inner-core conditions. Such a bcc phase would exhibit significant shear softening and match the geophysical constraints of the inner core. Identifying which light elements and what concentrations of these elements stabilize the bcc phase will provide critical information on the light elements of the inner core.

  9. High resolution modelling of extreme precipitation events in urban areas

    Science.gov (United States)

    Siemerink, Martijn; Volp, Nicolette; Schuurmans, Wytze; Deckers, Dave

    2015-04-01

    The present day society needs to adjust to the effects of climate change. More extreme weather conditions are expected, which can lead to longer periods of drought, but also to more extreme precipitation events. Urban water systems are not designed for such extreme events. Most sewer systems are not able to drain the excessive storm water, causing urban flooding. This leads to high economic damage. In order to take appropriate measures against extreme urban storms, detailed knowledge about the behaviour of the urban water system above and below the streets is required. To investigate the behaviour of urban water systems during extreme precipitation events new assessment tools are necessary. These tools should provide a detailed and integral description of the flow in the full domain of overland runoff, sewer flow, surface water flow and groundwater flow. We developed a new assessment tool, called 3Di, which provides detailed insight in the urban water system. This tool is based on a new numerical methodology that can accurately deal with the interaction between overland runoff, sewer flow and surface water flow. A one-dimensional model for the sewer system and open channel flow is fully coupled to a two-dimensional depth-averaged model that simulates the overland flow. The tool uses a subgrid-based approach in order to take high resolution information of the sewer system and of the terrain into account [1, 2]. The combination of using the high resolution information and the subgrid based approach results in an accurate and efficient modelling tool. It is now possible to simulate entire urban water systems using extreme high resolution (0.5m x 0.5m) terrain data in combination with a detailed sewer and surface water network representation. The new tool has been tested in several Dutch cities, such as Rotterdam, Amsterdam and The Hague. We will present the results of an extreme precipitation event in the city of Schiedam (The Netherlands). This city deals with

  10. Extremely high Q -factor metamaterials due to anapole excitation

    Science.gov (United States)

    Basharin, Alexey A.; Chuguevsky, Vitaly; Volsky, Nikita; Kafesaki, Maria; Economou, Eleftherios N.

    2017-01-01

    We have designed and fabricated a metamaterial consisting of planar metamolecules which exhibit unusual, almost perfect anapole behavior in the sense that the electric dipole radiation is almost canceled by the toroidal dipole one, producing thus an extremely high Q -factor at the resonance frequency. Thus we have demonstrated theoretically and experimentally that metamaterials approaching ideal anapole behavior have very high Q -factor. The size of the system, at the millimeter range, and the parasitic magnetic quadrupole radiation are the factors limiting the size of the Q -factor. In spite of the very low radiation losses the estimated local fields at the metamolecules are extremely high, of the order of 104 higher than the external incoming field.

  11. High Resolution Weak Lensing Mass-Mapping Combining Shear and Flexion

    CERN Document Server

    Lanusse, Francois; Leonard, Adrienne; Pires, Sandrine

    2016-01-01

    We propose a new mass-mapping algorithm, specifically designed to recover small-scale information from a combination of gravitational shear and flexion. Including flexion allows us to supplement the shear on small scales in order to increase the sensitivity to substructures and the overall resolution of the convergence map without relying on strong lensing constraints. In order to preserve all available small scale information, we avoid any binning of the irregularly sampled input shear and flexion fields and treat the mass-mapping problem as a general ill-posed inverse problem, regularised using a robust multi-scale wavelet sparsity prior. The resulting algorithm incorporates redshift, reduced shear, and reduced flexion measurements for individual galaxies and is made highly efficient by the use of fast Fourier estimators. We test our reconstruction method on a set of realistic weak lensing simulations corresponding to typical HST/ACS cluster observations and demonstrate our ability to recover substructures ...

  12. A new high shear degassing technology and mechanism for 7032 alloy

    Directory of Open Access Journals (Sweden)

    Yu-bo Zuo

    2015-07-01

    Full Text Available Degassing is very important for aluminum alloys especially for 7xxx series alloys. In the present study, a high shear technology was used to degas 7032 aluminum alloy in order to study its degassing efficiency. The experimental results showed that the high shear technology can significantly degas 7032 aluminum alloy. By applying intensive melt shearing and an Ar injection of 60 seconds, the density index, Di, was reduced from 13.25% to 0.28% and the hydrogen concentration was significantly reduced from 0.31 to 0.10 mL/100g Al. Compared with the conventional rotary degassing, high shear technology showed a much higher degassing efficiency, achieving a lower concentration of hydrogen in a shorter time. The water simulation experiment was used to study the mechanism of the high degassing efficiency. The small bubble size and the uniform distribution of Ar bubbles with the application of high shear technology are believed to be the main cause for the high degassing efficiency.

  13. Extremely High Current, High-Brightness Energy Recovery Linac

    CERN Document Server

    Ben-Zvi, Ilan; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Burger, Al; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Favale, Anthony; Gassner, David M; Grimes, Jacob T; Hahn, Harald; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Lambiase, Robert; Litvinenko, Vladimir N; McIntyre, Gary; Meng, Wuzheng; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Segalov, Zvi; Smith, Kevin T; Todd, Alan M M; Warren-Funk, L; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Yip, Kin; Zaltsman, Alex; Zhao, Yongxiang

    2005-01-01

    Next generation ERL light-sources, high-energy electron coolers, high-power Free-Electron Lasers, powerful Compton X-ray sources and many other accelerators were made possible by the emerging technology of high-power, high-brightness electron beams. In order to get the anticipated performance level of ampere-class currents, many technological barriers are yet to be broken. BNL's Collider-Accelerator Department is pursuing some of these technologies for its electron cooling of RHIC application, as well as a possible future electron-hadron collider. We will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun and an accelerator cavity capable of producing low emittance (about 1 micron rms normalized) one nano-Coulomb bunches at currents of the order of one ampere average.

  14. High wall shear stress and high-risk plaque: an emerging concept.

    Science.gov (United States)

    Eshtehardi, Parham; Brown, Adam J; Bhargava, Ankit; Costopoulos, Charis; Hung, Olivia Y; Corban, Michel T; Hosseini, Hossein; Gogas, Bill D; Giddens, Don P; Samady, Habib

    2017-01-10

    In recent years, there has been a significant effort to identify high-risk plaques in vivo prior to acute events. While number of imaging modalities have been developed to identify morphologic characteristics of high-risk plaques, prospective natural-history observational studies suggest that vulnerability is not solely dependent on plaque morphology and likely involves additional contributing mechanisms. High wall shear stress (WSS) has recently been proposed as one possible causative factor, promoting the development of high-risk plaques. High WSS has been shown to induce specific changes in endothelial cell behavior, exacerbating inflammation and stimulating progression of the atherosclerotic lipid core. In line with experimental and autopsy studies, several human studies have shown associations between high WSS and known morphological features of high-risk plaques. However, despite increasing evidence, there is still no longitudinal data linking high WSS to clinical events. As the interplay between atherosclerotic plaque, artery, and WSS is highly dynamic, large natural history studies of atherosclerosis that include WSS measurements are now warranted. This review will summarize the available clinical evidence on high WSS as a possible etiological mechanism underlying high-risk plaque development.

  15. Prolonged application of high fluid shear to chondrocytes recapitulates gene expression profiles associated with osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Fei Zhu

    Full Text Available BACKGROUND: Excessive mechanical loading of articular cartilage producing hydrostatic stress, tensile strain and fluid flow leads to irreversible cartilage erosion and osteoarthritic (OA disease. Since application of high fluid shear to chondrocytes recapitulates some of the earmarks of OA, we aimed to screen the gene expression profiles of shear-activated chondrocytes and assess potential similarities with OA chondrocytes. METHODOLOGY/PRINCIPAL FINDINGS: Using a cDNA microarray technology, we screened the differentially-regulated genes in human T/C-28a2 chondrocytes subjected to high fluid shear (20 dyn/cm(2 for 48 h and 72 h relative to static controls. Confirmation of the expression patterns of select genes was obtained by qRT-PCR. Using significance analysis of microarrays with a 5% false discovery rate, 71 and 60 non-redundant transcripts were identified to be ≥2-fold up-regulated and ≤0.6-fold down-regulated, respectively, in sheared chondrocytes. Published data sets indicate that 42 of these genes, which are related to extracellular matrix/degradation, cell proliferation/differentiation, inflammation and cell survival/death, are differentially-regulated in OA chondrocytes. In view of the pivotal role of cyclooxygenase-2 (COX-2 in the pathogenesis and/or progression of OA in vivo and regulation of shear-induced inflammation and apoptosis in vitro, we identified a collection of genes that are either up- or down-regulated by shear-induced COX-2. COX-2 and L-prostaglandin D synthase (L-PGDS induce reactive oxygen species production, and negatively regulate genes of the histone and cell cycle families, which may play a critical role in chondrocyte death. CONCLUSIONS/SIGNIFICANCE: Prolonged application of high fluid shear stress to chondrocytes recapitulates gene expression profiles associated with osteoarthritis. Our data suggest a potential link between exposure of chondrocytes/cartilage to abnormal mechanical loading and the pathogenesis

  16. Characteristics of extreme ultraviolet emission from high-Z plasmas

    Science.gov (United States)

    Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.

    2016-03-01

    We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics.

  17. Microturbulence and Flow Shear in High-performance JET ITB Plasma

    Energy Technology Data Exchange (ETDEWEB)

    R.V. Budny; A. Andre; A. Bicoulet; C. Challis; G.D. Conway; W. Dorland; D.R. Ernst; T.S. Hahm; T.C. Hender; D. McCune; G. Rewoldt; S.E. Sharapov

    2001-12-05

    The transport, flow shear, and linear growth rates of microturbulence are studied for a Joint European Torus (JET) plasma with high central q in which an internal transport barrier (ITB) forms and grows to a large radius. The linear microturbulence growth rates of the fastest growing (most unstable) toroidal modes with high toroidal mode number are calculated using the GS2 and FULL gyrokinetic codes. These linear growth rates, gamma (subscript lin) are large, but the flow-shearing rates, gamma (subscript ExB) (dominated by the toroidal rotation contribution) are also comparably large when and where the ITB exists.

  18. Solidification at the High and Low Rate Extreme

    Energy Technology Data Exchange (ETDEWEB)

    Meco, Halim [Iowa State Univ., Ames, IA (United States)

    2004-12-19

    The microstructures formed upon solidification are strongly influenced by the imposed growth rates on an alloy system. Depending on the characteristics of the solidification process, a wide range of growth rates is accessible. The prevailing solidification mechanisms, and thus the final microstructure of the alloy, are governed by these imposed growth rates. At the high rate extreme, for instance, one can have access to novel microstructures that are unattainable at low growth rates. While the low growth rates can be utilized for the study of the intrinsic growth behavior of a certain phase growing from the melt. Although the length scales associated with certain processes, such as capillarity, and the diffusion of heat and solute, are different at low and high rate extremes, the phenomena that govern the selection of a certain microstructural length scale or a growth mode are the same. Consequently, one can analyze the solidification phenomena at both high and low rates by using the same governing principles. In this study, we examined the microstructural control at both low and high extremes. For the high rate extreme, the formation of crystalline products and factors that control the microstructure during rapid solidification by free-jet melt spinning are examined in Fe-Si-B system. Particular attention was given to the behavior of the melt pool at different quench-wheel speeds. Since the solidification process takes place within the melt-pool that forms on the rotating quench-wheel, we examined the influence of melt-pool dynamics on nucleation and growth of crystalline solidification products and glass formation. High-speed imaging of the melt-pool, analysis of ribbon microstructure, and measurement of ribbon geometry and surface character all indicate upper and lower limits for melt-spinning rates for which nucleation can be avoided, and fully amorphous ribbons can be achieved. Comparison of the relevant time scales reveals that surface-controlled melt

  19. Probing the dynamics of high-viscosity entangled polymers under shear using Neutron Spin Echo spectroscopy

    Science.gov (United States)

    Kawecki, M.; Gutfreund, P.; Adlmann, F. A.; Lindholm, E.; Longeville, S.; Lapp, A.; Wolff, M.

    2016-09-01

    Neutron Spin Echo spectroscopy provides unique insight into molecular and submolecular dynamics as well as intra- and inter-molecular interactions in soft matter. These dynamics may change drastically under shear flow. In particular in polymer physics a stress plateau is observed, which might be explained by an entanglement-disentanglement transition. However, such a transition is difficult to identify directly by experiments. Neutron Spin Echo has been proven to provide information about entanglement length and degree by probing the local dynamics of the polymer chains. Combining shear experiments and neutron spin echo is challenging since, first the beam polarisation has to be preserved during scattering and second, Doppler scattered neutrons may cause inelastic scattering. In this paper we present a new shear device adapted for these needs. We demonstrate that a high beam polarisation can be preserved and present first data on an entangled polymer solution under shear. To complement the experiments on the dynamics we present novel SANS data revealing shear- induced conformational changes in highly entangled polymers.

  20. Load carrying capacity of shear wall t-connections reinforced with high strength wire ropes

    DEFF Research Database (Denmark)

    Jørgensen, Henrik B.; Bryndom, Thor; Larsen, Michael

    2016-01-01

    Traditionally, U-bar loop connections with keyed joints have been used in vertical shear connections between precast concrete wall elements. However, in the recent years, connections with looped high strength wire ropes instead of U-bar loops have proven to be a much more construction......-friendly solution. The wire ropes have no bending stiffness and therefore allow for an easier vertical installation of the wall elements. During the last 10 – 15 years, a number of shear tests on plane wire rope connections have been carried out. However, to the best knowledge of the authors, tests on wire rope...... connections for assembly of precast elements in different planes, such as T- and L-connections, have not yet been published. This paper presents the results of a large test series recently conducted at the University of Southern Denmark to study the shear behaviour of high strength wire rope T...

  1. Load Carrying Capacity of Shear Wall T-Connections Reinforced with High Strength Wire Ropes

    DEFF Research Database (Denmark)

    Jørgensen, Henrik Brøner; Bryndum, Thor; Larsen, Michael

    2017-01-01

    Traditionally, U-bar loop connections with keyed joints have been used in vertical shear connections between precast concrete wall elements. However, in the recent years, connections with looped high strength wire ropes instead of U-bar loops have proven to be a much more construction......-friendly solution. The wire ropes have no bending stiffness and therefore allow for an easier vertical installation of the wall elements. During the last 10 – 15 years, a number of shear tests on plane wire rope connections have been carried out. However, to the best knowledge of the authors, tests on wire rope...... connections for assembly of precast elements in different planes, such as T- and L-connections, have not yet been published. This paper presents the results of a large test series recently conducted at the University of Southern Denmark to study the shear behaviour of high strength wire rope T...

  2. Gas-Enhanced Ultra-High Shear Mixing: A Concept and Applications

    Science.gov (United States)

    Czerwinski, Frank; Birsan, Gabriel

    2016-12-01

    The processes of mixing, homogenizing, and deagglomeration are of paramount importance in many industries for modifying properties of liquids or liquid-based dispersions at room temperature and treatment of molten or semi-molten alloys at high temperatures, prior to their solidification. To implement treatments, a variety of technologies based on mechanical, electromagnetic, and ultrasonic principles are used commercially or tested at the laboratory scale. In a large number of techniques, especially those tailored toward metallurgical applications, the vital role is played by cavitation, generation of gas bubbles, and their interaction with the melt. This paper describes a novel concept exploring an integration of gas injection into the shear zone with ultra-high shear mixing. As revealed via experiments with a prototype of the cylindrical rotor-stator apparatus and transparent media, gases injected radially through the high-speed rotor generate highly refined bubbles of high concentration directly in the shear zone of the mixer. It is believed that an interaction of large volume of fine gas bubbles with the liquid, superimposed on ultra-high shear, will enhance mixing capabilities and cause superior refining and homogenizing of the liquids or solid-liquid slurries, thus allowing their effective property modification.

  3. Gas-Enhanced Ultra-High Shear Mixing: A Concept and Applications

    Science.gov (United States)

    Czerwinski, Frank; Birsan, Gabriel

    2017-04-01

    The processes of mixing, homogenizing, and deagglomeration are of paramount importance in many industries for modifying properties of liquids or liquid-based dispersions at room temperature and treatment of molten or semi-molten alloys at high temperatures, prior to their solidification. To implement treatments, a variety of technologies based on mechanical, electromagnetic, and ultrasonic principles are used commercially or tested at the laboratory scale. In a large number of techniques, especially those tailored toward metallurgical applications, the vital role is played by cavitation, generation of gas bubbles, and their interaction with the melt. This paper describes a novel concept exploring an integration of gas injection into the shear zone with ultra-high shear mixing. As revealed via experiments with a prototype of the cylindrical rotor-stator apparatus and transparent media, gases injected radially through the high-speed rotor generate highly refined bubbles of high concentration directly in the shear zone of the mixer. It is believed that an interaction of large volume of fine gas bubbles with the liquid, superimposed on ultra-high shear, will enhance mixing capabilities and cause superior refining and homogenizing of the liquids or solid-liquid slurries, thus allowing their effective property modification.

  4. Forecasting extreme wave events in moderate and high sea states

    Science.gov (United States)

    Magnusson, Anne Karin; Reistad, Magnar; Bitner-Gregersen, Elzbieta Maria

    2013-04-01

    Empirical studies on measurements have not yet come to conclusive relations between occurrence of rogue waves and - parameters which could be forecasted . Theoretical and tank experiments have demonstrated that high spectral peakedness and low spectral width combined (high Benjamin-Feir instability index, Onorato et al., 2006) give higher probability of rogue wave occurrence. Directional spread seems to reduce the probability of occurrence of rogue waves in these studies. Many years of experience with forecasting and discussions with people working in ocean environment indicate that rogue waves may as well occur in crossing seas. This was also indicated in a study in the Maxwave project (Toffoli et al., 2003) and the EXTREME SEAS project (Toffoli et al., 2011). We have here experimented with some indexes describing both high BFI and crossing seas and run the WAM model for some North Sea storm cases. Wave distributions measured at Ekofisk are analysed in the different cases. References • Onorato, M., Osborne, A., Serio, M., Cavaleri, L., Brandini, C., and Stansberg, C.: Extreme waves, modulational instability and second order theory: wave flume experiments on irregular waves,Europ. J. Mech. B/Fluids, 25, 586-601, 2006. • Toffoli, A., Lefevre, J.M., Monbaliu, J., Savina, H., and Bitner-Gregersen, E., "Freak Waves:Clues for Prediction in Ship Accidents?", Proc. ISOPE'2003 Conf. Hawai, USA, 2003. • Toffoli A., Bitner-Gregersen E. M., Osborne A. R., Serio M. Monbaliu J., Onorato M. (2011) Extreme Waves in Random Crossing Seas: Laboratory Experiments and Numerical Simulations. Geophys. Res. Lett., Vol. 38, L06605, 5 pp. doi: 10.1029/2011.

  5. Analysis on Shear Deformation for High Manganese Austenite Steel during Hot Asymmetrical Rolling Process Using Finite Element Method

    Institute of Scientific and Technical Information of China (English)

    Feng-li SUI; Xin WANG; Jun ZHAO; Biao MA; Chang-sheng LI

    2015-01-01

    Based on the rigid-plastic ifnite element method (FEM), the shear stress ifeld of deformation region for high manganese austenite steel during hot asymmetrical rolling process was analyzed. The inlfuences of rolling parameters, such as thevelocity ratio of upper to lower rolls, theinitial temperature of workpiece and the reduction rate, on the shear deformation of three nodes in the upper, center and lower layers were discussed. As the rolling parameters change, distinct shear deformation appears in the up-per and lower layers, but the shear deformation in the center layer appears only when the velocity ratio is more than 1.00, and the absolute value of the shear stress in this layer is changed with rolling parameters. A mathematical model which relfected the change of the maximal absolute shear stress for the center layer was established, by which the maximal absolute shear stress for the center layer can be easily calculated and the appropriate rolling technology can be designed.

  6. Method for obtaining simple shear material properties of the intervertebral disc under high strain rates.

    Science.gov (United States)

    Ott, Kyle A; Armiger, Robert S; Wickwire, Alexis C; Carneal, Catherine M; Trexler, Morgana M; Lennon, Andrew M; Zhang, Jiangyue; Merkle, Andrew C

    2012-01-01

    Predicting spinal injury under high rates of vertical loading is of interest, but the success of computational models in modeling this type of loading scenario is highly dependent on the material models employed. Understanding the response of these biological materials at high strain rates is critical to accurately model mechanical response of tissue and predict injury. While data exists at lower strain rates, there is a lack of the high strain rate material data that are needed to develop constitutive models. The Split Hopkinson Pressure Bar (SHPB) has been used for many years to obtain properties of various materials at high strain rates. However, this apparatus has mainly been used for characterizing metals and ceramics and is difficult to apply to softer materials such as biological tissue. Recently, studies have shown that modifications to the traditional SHPB setup allow for the successful characterization of mechanical properties of biological materials at strain rates and peak strain values that exceed alternate soft tissue testing techniques. In this paper, the previously-reported modified SHPB technique is applied to characterize human intervertebral disc material under simple shear. The strain rates achieved range from 5 to 250 strain s-1. The results demonstrate the sensitivity to the disc composition and structure, with the nucleus pulposus and annulus fibrosus exhibiting different behavior under shear loading. Shear tangent moduli are approximated at varying strain levels from 5 to 20% strain. This data and technique facilitates determination of mechanical properties of intervertebral disc materials under shear loading, for eventual use in constitutive models.

  7. Analysis of a high intensity shear zone between overlapping fiber ends in a polymer matrix composite

    DEFF Research Database (Denmark)

    Lindgreen, Britta

    2008-01-01

    The formation of high intensity shear zones in a glass fiber reinforced thermoplast is studied numerically. The thermoplast is characterized by a finite strain elastic-viscoplastic constitutive relation and the calculations are carried out using a dynamic finite element program where plane strain...... conditions are assumed to prevail in the direction of the thickness. Different ratios of the elongation strain and the transverse strain are studied to consider the effect of different levels of stress triaxiality and the effect of these states on the shear zone development and emerging strain and stress...

  8. Impact of triacylglycerol composition on shear-induced textural changes in highly saturated fats.

    Science.gov (United States)

    Gregersen, Sandra B; Andersen, Morten D; Hammershøj, Marianne; Wiking, Lars

    2017-01-15

    This study demonstrates a strong interaction between triacylglycerol (TAG) composition and effects of shear rate on the microstructure and texture of fats. Cocoa butter alternatives with similar saturated fat content, but different major TAGs (PPO-, PSO-, SSO-, POP- and SOS-rich blends) were evaluated. Results show how shear can create a harder texture in fat blends based on symmetric monounsaturated TAGs (up to ∼200%), primarily due to reduction in crystal size, whereas shear has little effect on hardness of asymmetric monounsaturated TAGs. Such differences could not be ascribed to differences in the degree of supercooling, but was found to be a consequence of differences in the crystallisation behaviour of different TAGs. The fractal dimension was evaluated by dimensional detrended fluctuation analysis and Fourier transformation of microscopy images. However, the concept of fractal patterns was found to be insufficient to describe microstructural changes of fat blends with high solid fat content.

  9. Zenith-Distance Dependence of Chromatic Shear Effect: A Limiting Factor for an Extreme Adaptive Optics System

    CERN Document Server

    Nakajima, T

    2006-01-01

    Consider a perfect AO system with a very fine wavefront sampling interval and a very small actuator interval. If this AO system senses wavefront at a wavelength, lambda_{WFS}, and does science imaging at another wavelength, lambda_{SCI}, the light paths through the turbulent atmosphere at these two wavelengths are slightly different for a finite zenith distance, z. The error in wavefront reconstruction of the science channel associated with this non-common path effect, or so-called chromatic shear, is uncorrectable and sets an upper bound of the system performance. We evaluate the wavefront variance, sigma^2(lambda_{WFS},lambda_{SCI},z) for a typical seeing condition at Mauna Kea and find that this effect is not negligible at a large z. If we require that the Strehl ratio be greater than 99 or 95%, z must be less than about 50 or 60 deg respectively, for the combination of visible wavefront sensing and infrared science imaging.

  10. The relation between granule size, granule stickiness, and torque in the high-shear granulation process

    NARCIS (Netherlands)

    Bouwman, A.M.; Henstra, M.J.; Hegge, J.J.M.E.; Zhang, Z.; Ingram, A.; Seville, J.P.K.; Frijlink, H.W.

    2005-01-01

    Purpose. To investigate the background of the observed relationship between measured torque and granule size in high-shear granulation processes. Methods. Torque was measured during the granulation process; the behavior of individual wet granules during compaction was investigated using micromanipul

  11. The plane strain shear fracture of the advanced high strength steels

    Science.gov (United States)

    Sun, Li

    2013-12-01

    The "shear fracture" which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of "shear fracture" phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a "shear fracture" in the component.

  12. The plane strain shear fracture of the advanced high strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Li, E-mail: li.sun@gm.com [General Motors China Science Lab, No.56 Jinwan Road, Shanghai, 201206 (China)

    2013-12-16

    The “shear fracture” which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of “shear fracture” phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a “shear fracture” in the component.

  13. Dynamic Strengthening During High Velocity Shear Experiments with Siliceous Rocks

    Science.gov (United States)

    Liao, Z.; Chang, J. C.; Boneh, Y.; Chen, X.; Reches, Z.

    2011-12-01

    It is generally accepted that dynamic-weakening is essential for earthquake instability, and many experimental works have documented this weakening. Recent observations revealed also opposite trends of dynamic-strengthening in experiments (Reches & Lockner, 2010). We present here our experimental results of this dynamic-strengthening and discuss possible implications to earthquake behavior. We ran hundreds of experiments on experimental faults made of siliceous rock including granite, syenite, diorite, and quartzite. The experimental fault is comprised of two solid cylindrical blocks with a raised-ring contact of 7 cm diameter and 1 cm width. We recognized general, three regimes of strength-velocity relations: (I) Dynamic weakening (drop of 20-60% of static strength) as slip velocity increased from ~0.0003 m/s (lowest experimental velocity) to a critical velocity, Vc=0.008-0.16 m/s; (II) Abrupt transition to dynamic strengthening regime during which the fault strength almost regains its static strength; and (III) Quasi-constant strength with further possible drops as velocity approaches ~1 m/s. The critical velocity depends on the sample lithology: Vc is ~0.06 m/s for granite, ~0.008 m/s for syenite, ~0.01 m/s for diorite, and ~0.16 m/s for quartzite. The strengthening stage is associated with temperature increase, wear-rate increase, and the occurrence of intense, high frequency stick-slip events (Reches & Lockner, 2010). Sammis et al., (this meeting) attributed this strengthening to dehydration of the thin water layer that covers the gouge particles as the temperature increases. On the other hand, we note that tens of experiments with dolomite samples (non-siliceous), which were deformed under similar conditions, did not exhibit the velocity strengthening (unpublished). Based on the analyses by Andrews (2004, 2005), we speculate that velocity strengthening may bound the slip velocity. The numerical models of Andrews show that the slip velocity along a slip

  14. Treatment algorithms for high-energy traumas of lower extremities

    Directory of Open Access Journals (Sweden)

    Jovanović Mladen

    2002-01-01

    Full Text Available Introduction High-energy traumas are open or closed injuries caused by force (missile, traffic injuries, crush or blust injuries, falling from heights, affecting the body surface and transferring high amount of kinetic energy inducing great damage to the tissue. Management of such lower extremity injuries has evolved over past several decades, but still remains a difficult task for every surgical team. Specific anatomic and functional characteristics combined with extensive injuries demands specific treatment protocols. Multiple injuries In a multiple injured patient the first priority is management of life-threatening trauma. Despite other injuries, surgical treatment of limb-threatening injuries must start as soon as life-threatening condition has been managed. Treatment algorithms Algorithms are especially beneficial in management of severely injured, but salvageable extremities and in making decision on amputation. Insight into mechanisms of injury, as well as systematic examination of the affected limb, should help us understand the extensiveness of trauma and make an adequate management plan. Prevention of infection and surgical approach Prevention of wound infection and surgical approach to high- energy limb trauma, which includes wound extension, wound excision, skeletal stabilization and if necessary muscle compartment release, should be done in the first 6 hours after injury. Methods of soft tissue reconstruction Commonly used methods for soft tissue defects must provide wound coverage in less than five days following injury. Rehabilitation Early passive and active mobilization and verticalization of patients is very important for successful treatment. Conclusion Good and timely evaluation of the injured and collaboration between plastic and orthopedic surgeons from the beginning of treatment, are crucial for final outcome.

  15. High spatial resolution zonal wavefront reconstruction with improved initial value determination scheme for lateral shearing interferometry.

    Science.gov (United States)

    Dai, Fengzhao; Tang, Feng; Wang, Xiangzhao; Sasaki, Osami; Zhang, Min

    2013-06-10

    In a recent paper [J. Opt. Soc. Am. A 29, 2038 (2012)], we proposed a generalized high spatial resolution zonal wavefront reconstruction method for lateral shearing interferometry. The test wavefront can be reconstructed with high spatial resolution by using linear interpolation on a subgrid for initial values estimation. In the current paper, we utilize the difference between the Zernike polynomial fitting method and linear interpolation in determining the subgrid initial values. The validity of the proposed method is investigated through comparison with the previous high spatial resolution zonal method. Simulation results show that the proposed method is more accurate and more stable to shear ratios compared with the previous method. A comprehensive comparison of the properties of the proposed method, the previous high spatial resolution zonal method, and the modal method is performed.

  16. Ptychographic hyperspectral spectromicroscopy with an extreme ultraviolet high harmonic comb

    CERN Document Server

    Zhang, Bosheng; Seaberg, Matthew H; Shanblatt, Elisabeth R; Porter, Christina L; Karl,, Robert; Mancuso, Christopher A; Kapteyn, Henry C; Murnane, Margaret M; Adams, Daniel E

    2016-01-01

    We demonstrate a new scheme of spectromicroscopy in the extreme ultraviolet (EUV) spectral range, where the spectral response of the sample at different wavelengths is imaged simultaneously. It is enabled by applying ptychographical information multiplexing (PIM) to a tabletop EUV source based on high harmonic generation, where four spectrally narrow harmonics near 30 nm form a spectral comb structure. Extending PIM from previously demonstrated visible wavelengths to the EUV/X-ray wavelengths promises much higher spatial resolution and more powerful spectral contrast mechanism, making PIM an attractive spectromicroscopy method in both the microscopy and the spectroscopy aspects. Besides the sample, the multicolor EUV beam is also imaged in situ, making our method a powerful beam characterization technique. No hardware is used to separate or narrow down the wavelengths, leading to efficient use of the EUV radiation.

  17. Phase field simulations of plastic strain-induced phase transformations under high pressure and large shear

    Science.gov (United States)

    Javanbakht, Mahdi; Levitas, Valery I.

    2016-12-01

    Pressure and shear strain-induced phase transformations (PTs) in a nanograined bicrystal at the evolving dislocations pile-up have been studied utilizing a phase field approach (PFA). The complete system of PFA equations for coupled martensitic PT, dislocation evolution, and mechanics at large strains is presented and solved using the finite element method (FEM). The nucleation pressure for the high-pressure phase (HPP) under hydrostatic conditions near a single dislocation was determined to be 15.9 GPa. Under shear, a dislocation pile-up that appears in the left grain creates strong stress concentration near its tip and significantly increases the local thermodynamic driving force for PT, which causes nucleation of HPP even at zero pressure. At pressures of 1.59 and 5 GPa and shear, a major part of a grain transforms to HPP. When dislocations are considered in the transforming grain as well, they relax stresses and lead to a slightly smaller stationary HPP region than without dislocations. However, they strongly suppress nucleation of HPP and require larger shear. Unexpectedly, the stationary HPP morphology is governed by the simplest thermodynamic equilibrium conditions, which do not contain contributions from plasticity and surface energy. These equilibrium conditions are fulfilled either for the majority of points of phase interfaces or (approximately) in terms of stresses averaged over the HPP region or for the entire grain, despite the strong heterogeneity of stress fields. The major part of the driving force for PT in the stationary state is due to deviatoric stresses rather than pressure. While the least number of dislocations in a pile-up to nucleate HPP linearly decreases with increasing applied pressure, the least corresponding shear strain depends on pressure nonmonotonously. Surprisingly, the ratio of kinetic coefficients for PT and dislocations affect the stationary solution and the nanostructure. Consequently, there are multiple stationary solutions

  18. On the Origin of High Shear Wave Velocities in the Deep Roots of Cratons

    Science.gov (United States)

    Zeng, L.; Duncan, M. S.; Garber, J. M.; Hernandez, J. A.; Maurya, S.; Zhang, H.; Faul, U.; McCammon, C. A.; Montagner, J. P.; Moresi, L. N.; Romanowicz, B. A.; Rudnick, R. L.; Stixrude, L. P.

    2016-12-01

    Some seismic models derived from tomographic studies indicate very high shear wave velocities around 150 km depth, which cannot be explained by standard cratonic peridotite compositions derived from kimberlites, even under the assumption of very cold geotherms (i.e. 28mW/m3 surface heat flux). We present the results of a multi-disciplinary study conducted at the CIDER Summer 2016 program in Santa Barbara (CA), in which we have reviewed various geophysical and petrological constraints on the nature of cratonic roots (seismic velocities, electrical conductivity, gravity, lithologies) and explored a range of possible solutions. We find that matching the high shear wave velocities requires a large proportion of eclogite that is not matched by observed eclogite proportions in kimberlite samples. The high shear velocity of diamond makes it a viable candidate to account for such high velocities, in a proportion that is compatible with the global carbon budget. Our most recent results will be presented as well as suggestions for possible mechanisms for diamond formation and emplacement.

  19. Opposing Shear-Induced Forces Dominate Inertial Focusing in Curved Channels and High Reynolds Numbers

    CERN Document Server

    Keinan, Eliezer; Nahmias, Yaakov

    2015-01-01

    Inertial focusing is the migration of particles in fluid toward equilibrium, where current theory predicts that shear-induced and wall-induced lift forces are balanced. First reported in 1961, this Segre-Silberberg effect is particularly useful for microfluidic isolation of cells and particles. Interestingly, recent work demonstrated particle focusing at high Reynolds numbers that cannot be explained by current theory. In this work, we show that non-monotonous velocity profiles, such as those developed in curved channels, create peripheral velocity maxima around which opposing shear-induced forces dominate over wall effects. Similarly, entry effects amplified in high Reynolds flow produce an equivalent trapping mechanism in short, straight channels. This new focusing mechanism in the developing flow regime enables a 10-fold miniaturization of inertial focusing devices, while our model corrects long-standing misconceptions about the nature of mechanical forces governing inertial focusing in curved channels.

  20. Application of High Shear Agitation for Desulfurization of Gasoline Using Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    Zhao Dishun; ZhangZhigang; Wang Jialei; Wang Na; Li Xiangyu

    2006-01-01

    The high shear agitation device was first adopted for gasoline desulfurization by ionic liquids. The effect of benzylimidazol fluoborate in desulfurization of gasoline and the influence of moisture on deuslfurization rate were investigated. The experimental results showed that the ionic liquid could effectively decrease the sulfur content of gasoline and the optimal conditions were as follows: The reaction could be carried out at room temperature, a volumetric ratio between oil and the liquid of 2∶1, a volumetric ratio between water and ionic liquid of 0.04∶1, a rotational speed of 5 krad/s, and a reaction time of 1 minute. The desulfurization rate of gasoline reached 53.6%, and the gasoline yield was up to 97.3%. The ionic liquid could be recycled for repeated use, and the use of high shear agitation for gasoline would have good prospects.

  1. High photon flux table-top coherent extreme ultraviolet source

    CERN Document Server

    Hädrich, Steffen; Rothhardt, Jan; Krebs, Manuel; Hoffmann, Armin; Pronin, Oleg; Pervak, Vladimir; Limpert, Jens; Tünnermann, Andreas

    2014-01-01

    High harmonic generation (HHG) enables extreme ultraviolet radiation with table-top setups. Its exceptional properties, such as coherence and (sub)-femtosecond pulse durations, have led to a diversity of applications. Some of these require a high photon flux and megahertz repetition rates, e.g. to avoid space charge effects in photoelectron spectroscopy. To date this has only been achieved with enhancement cavities. Here, we establish a novel route towards powerful HHG sources. By achieving phase-matched HHG of a megahertz fibre laser we generate a broad plateau (25 eV - 40 eV) of strong harmonics, each containing more than $10^{12}$ photons/s, which constitutes an increase by more than one order of magnitude in that wavelength range. The strongest harmonic (H25, 30 eV) has an average power of 143 $\\mu$W ($3\\cdot10^{13}$ photons/s). This concept will greatly advance and facilitate applications in photoelectron or coincidence spectroscopy, coherent diffractive imaging or (multidimensional) surface science.

  2. Small-scale characteristics of extremely high latitude aurora

    Directory of Open Access Journals (Sweden)

    J. A. Cumnock

    2009-09-01

    Full Text Available We examine 14 cases of an interesting type of extremely high latitude aurora as identified in the precipitating particles measured by the DMSP F13 satellite. In particular we investigate structures within large-scale arcs for which the particle signatures are made up of a group of multiple distinct thin arcs. These cases are chosen without regard to IMF orientation and are part of a group of 87 events where DMSP F13 SSJ/4 measures emissions which occur near the noon-midnight meridian and are spatially separated from both the dawnside and duskside auroral ovals by wide regions with precipitating particles typical of the polar cap. For 73 of these events the high-latitude aurora consists of a continuous region of precipitating particles. We focus on the remaining 14 of these events where the particle signatures show multiple distinct thin arcs. These events occur during northward or weakly southward IMF conditions and follow a change in IMF By. Correlations are seen between the field-aligned currents and plasma flows associated with the arcs, implying local closure of the FACs. Strong correlations are seen only in the sunlit hemisphere. The convection associated with the multiple thin arcs is localized and has little influence on the large-scale convection. This also implies that the sunward flow along the arcs is unrelated to the overall ionospheric convection.

  3. Extremely high-frequency micro-Doppler measurements of humans

    Science.gov (United States)

    Hedden, Abigail S.; Silvious, Jerry L.; Dietlein, Charles R.; Green, Jeremy A.; Wikner, David A.

    2014-05-01

    The development of sensors that are capable of penetrating smoke, dust, fog, clouds, and rain is critical for maintaining situational awareness in degraded visual environments and for providing support to the Warfighter. Atmospheric penetration properties, the ability to form high-resolution imagery with modest apertures, and available source power make the extremely high-frequency (EHF) portion of the spectrum promising for the development of radio frequency (RF) sensors capable of penetrating visual obscurants. Comprehensive phenomenology studies including polarization and backscatter properties of relevant targets are lacking at these frequencies. The Army Research Laboratory (ARL) is developing a fully-polarimetric frequency-modulated continuous-wave (FMCW) instrumentation radar to explore polarization and backscatter properties of in-situ rain, scattering from natural and man-made surfaces, and the radar cross section and micro-Doppler signatures of humans at EHF frequencies, specifically, around the 220 GHz atmospheric window. This work presents an overview of the design and construction of the radar system, hardware performance, data acquisition software, and initial results including an analysis of human micro-Doppler signatures.

  4. Vortex Dynamics and Shear-Layer Instability in High-Intensity Cyclotrons

    Science.gov (United States)

    Cerfon, Antoine J.

    2016-04-01

    We show that the space-charge dynamics of high-intensity beams in the plane perpendicular to the magnetic field in cyclotrons is described by the two-dimensional Euler equations for an incompressible fluid. This analogy with fluid dynamics gives a unified and intuitive framework to explain the beam spiraling and beam breakup behavior observed in experiments and in simulations. Specifically, we demonstrate that beam breakup is the result of a classical instability occurring in fluids subject to a sheared flow. We give scaling laws for the instability and predict the nonlinear evolution of beams subject to it. Our work suggests that cyclotrons may be uniquely suited for the experimental study of shear layers and vortex distributions that are not achievable in Penning-Malmberg traps.

  5. The effect of particle shape on mixing in a high shear mixer

    Science.gov (United States)

    Sinnott, Matthew D.; Cleary, Paul W.

    2016-11-01

    Discrete element method modelling is used to study the effect of particle shape on the flow dynamics and mixing in a high shear mixer. The blade generates strong flow over its top surface while compacting and pushing forward particles that are directly in front of the blade. A complex three dimensional flow is established with vertical and radial flow components that are shape dependent and which control the nature of the mixing. Mixing was found to be fast in the azimuthal direction, of intermediate speed in the vertical direction and comparatively slow in the radial mixing. Diffusive mixing is characterised using the granular temperature which shows that the regions of higher granular temperature are larger for round particles than non-round ones leading to stronger diffusive mixing. The spatial distribution of the convective component of mixing is identified using novel calculation of shear strain rate. This size and shape of the high shear region is found to be only slightly sensitive to the particle shape indicating that the convective mixing is relatively independent of shape, except in the middle of the mixer. The blockiness of the particles has the strongest impact on flow and mixing while the mixing has only a weak dependence on the particle aspect ratio.

  6. Design and simulation of high-energy-density shear experiments on OMEGA and the NIF

    Science.gov (United States)

    Doss, F. W.; Devolder, B.; di Stefano, C.; Flippo, K. A.; Kline, J. L.; Kot, L.; Loomis, E. N.; Merritt, E. C.; Perry, T. S.; MacLaren, S. A.; Wang, P.; Zhou, Y. K.

    2015-11-01

    High-energy-density shear experiments have been performed by LANL at the OMEGA Laser Facility and National Ignition Facility (NIF). The experiments have been simulated using the LANL radiation-hydrocode RAGE and have been used to assess turbulence models' ability to function in the high-energy-density, inertial-fusion-relevant regime. Beginning with the basic configuration of two counter-oriented shock-driven flows of > 100 km/s, which initiate a strong shear instability across an initially solid density, 20 micron thick Al plate, variations of the experiment have been performed and are studied. These variations have included increasing the fluid density (by modifying the metal plate material from Al to Ti), imposing sinusoidal perturbations on the plate, and directly modifying the plate's intrinsic surface roughness. In addition to examining the shear-induced mixing, the simulations reveal other physics, such as how the interaction of our indirect-drive halfraums with a mated shock tube's ablator impedes a stagnation-driven shock. This work is conducted by the US DOE by LANL under contract DE-AC52-06NA25396, and NIF facility operations by LLNL under contract DE-AC52-07NA27344.

  7. CO2-Philic polymer membrane with extremely high separation performance

    KAUST Repository

    Yave, Wilfredo

    2010-01-12

    Polymeric membranes are attractive for CO2 separation and concentration from different gas streams because of their versatility and energy efficiency; they can compete with, and they may even replace, traditional absorption processes. Here we describe a simple and powerful method for developing nanostructured and CO2-philic polymer membranes for CO2 separation. A poly(ethylene oxide)-poly(butylene terephthalate) multiblock copolymer is used as membrane material. Smart additives such as polyethylene glycol dibutyl ether are incorporated as spacers or fillers for producing nanostructured materials. The addition of these specific additives produces CO2-philic membranes and increases the CO2 permeability (750 barrer) up to five-fold without the loss of selectivity. The membranes present outstanding performance for CO2 separation, and the measured CO2 flux is extremely high ( > 2 m3 m -2 h-1 bar-1) with selectivity over H2 and N2 of 10 and 40, respectively, making them attractive for CO 2 capture. © 2009 American Chemical Society.

  8. Synoptic conditions leading to extremely high temperatures in Madrid

    Directory of Open Access Journals (Sweden)

    R. García

    Full Text Available Extremely hot days (EHD in Madrid have been analysed to determine the synoptic patterns that produce EHDs during the period of 1955–1998. An EHD is defined as a day with maximum temperature higher than 36.5°C, a value which is the threshold for the intense effects on mortatility and it coincides with the 95 percentile of the series. Two different situations have been detected as being responsible for an EHD occurrence, one more dynamical, produced by southern fluxes, and another associated with a stagnation situation over Iberia of a longer duration. Both account for 92% of the total number of days, thus providing an efficient classification framework. A circulation index has been derived to characterise and forecast an EHD occurrence. This paper shows that EHD occur in Madrid during short duration events, and no long heat waves, like those recorded in other cities, are present. Additionally, no clear pattern can be detected in the EHD frequency; the occurrence is tied to changes in the summer location of the Azores high.

    Key words. Meteorology and atmospheric dynamics (Climatology; synoptic-scale meteorology; general or miscellaneous

  9. Extremely high-intensity laser interactions with fundamental quantum systems

    CERN Document Server

    Di Piazza, A; Hatsagortsyan, K Z; Keitel, C H

    2011-01-01

    The field of laser-matter interaction traditionally deals with the response of atoms, molecules and plasmas to an external light wave. However, the recent sustained technological progress is opening the possibility of employing intense laser radiation to prompt or substantially influence physical processes beyond atomic-physics energy scales. Available optical laser intensities exceeding $10^{22}\\;\\text{W/cm$^2$}$ can push the fundamental light-electron interaction to the extreme limit where radiation-reaction effects dominate the electron dynamics, can shed light on the structure of the quantum vacuum and can prime the creation of particles like electrons, muons and pions and the corresponding antiparticles. Also, novel sources of intense coherent high-energy photons and laser-based particle colliders can pave the way to nuclear quantum optics and can even allow for potential discovery of new particles beyond the Standard Model. These are the main topics of the present article, which is devoted to a review o...

  10. Synoptic conditions leading to extremely high temperatures in Madrid

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, R.; Prieto, L.; Hernandez, E.; Teso, T. del [Dept. Fisica de la Tierra II, Fac. CC. Fisicas, Univ. Camplutense de Madrid (Spain); Diaz, J. [Centro Universitario de Salud Publica, Univ. Autonoma de Madrid (Spain)

    2002-02-01

    Extremely hot days (EHD) in Madrid have been analysed to determine the synoptic patterns that produce EHDs during the period of 1955-1998. An EHD is defined as a day with maximum temperature higher than 36.5 C, a value which is the threshold for the intense effects on mortatility and it coincides with the 95 percentile of the series. Two different situations have been detected as being responsible for an EHD occurrence, one more dynamical, produced by southern fluxes, and another associated with a stagnation situation over Iberia of a longer duration. Both account for 92% of the total number of days, thus providing an efficient classification framework. A circulation index has been derived to characterise and forecast an EHD occurrence. This paper shows that EHD occur in Madrid during short duration events, and no long heat waves, like those recorded in other cities, are present. Additionally, no clear pattern can be detected in the EHD frequency; the occurrence is tied to changes in the summer location of the Azores high. (orig.)

  11. Assessment of Deformation of Shear Localized Chip in High Speed Machining

    Institute of Scientific and Technical Information of China (English)

    T; C; LEE; W; S; LAU; S; K; CHAN

    2002-01-01

    As the cutting speed goes higher, the mechanism of chip deformation will be changed significantly, i.e., continuous chip in low cutting speed will shift to serrated chip with shear localization. For the shear localized chip, the parameters used to assess the chip deformation for continuous chip, such as shorten coefficient ξ, shear angle φ and shear strain ε, can not describe the chip deformation correctly or comprehensively. This paper deals with the assessment of chip deformation of shear localization. Th...

  12. Monitoring of high-intensity focused ultrasound treatment by shear wave elastography induced by two-dimensional-array therapeutic transducer

    Science.gov (United States)

    Iwasaki, Ryosuke; Takagi, Ryo; Nagaoka, Ryo; Jimbo, Hayato; Yoshizawa, Shin; Saijo, Yoshifumi; Umemura, Shin-ichiro

    2016-07-01

    Shear wave elastography (SWE) is expected to be a noninvasive monitoring method of high-intensity focused ultrasound (HIFU) treatment. However, conventional SWE techniques encounter difficulty in inducing shear waves with adequate displacements in deep tissue. To observe tissue coagulation at the HIFU focal depth via SWE, in this study, we propose using a two-dimensional-array therapeutic transducer for not only HIFU exposure but also creating shear sources. The results show that the reconstructed shear wave velocity maps detected the coagulated regions as the area of increased propagation velocity even in deep tissue. This suggests that “HIFU-push” shear elastography is a promising solution for the purpose of coagulation monitoring in deep tissue, because push beams irradiated by the HIFU transducer can naturally reach as deep as the tissue to be coagulated by the same transducer.

  13. Ductility of Advanced High-Strength Steel in the Presence of a Sheared Edge

    Science.gov (United States)

    Ruggles, Tim; Cluff, Stephen; Miles, Michael; Fullwood, David; Daniels, Craig; Avila, Alex; Chen, Ming

    2016-07-01

    The ductility of dual-phase (DP) 980 and transformation-induced plasticity (TRIP) assisted bainitic ferritic (TBF) 980 steels was studied in the presence of a sheared edge. Specimens were tested in uniaxial tension in a standard test frame as well as in situ in the scanning electron microscope (SEM). Incremental tensile straining was done in the SEM with images taken at each strain increment. Then digital image correlation (DIC) was used to compute the effective strain at the level of the individual phases in the microstructure. Shear banding across multiple phases was seen in strained TBF specimens, while the DP specimens exhibited more of a patchwork strain pattern, with high strains concentrated in ferrite and low strains observed in the martensite. Two-point statistics were applied to the strain data from the DIC work and the corresponding microstructure images to evaluate the effect of phase hardness on localization and fracture. It was observed that the DP 980 material had a greater tendency for localization around hard phases compared to the TBF 980. This at least partially explains the greater ductility of the TBF material, especially in specimens where a sheared edge was present.

  14. Understanding High Recession Rates of Carbon Ablators Seen in Shear Tests in an Arc Jet

    Science.gov (United States)

    Driver, David M.; Olson, Michael W.; Barnhardt, Michael D.; MacLean, Matthew

    2010-01-01

    High rates of recession in arc jet shear tests of Phenolic Impregnated Carbon Ablator (PICA) inspired a series of tests and analysis on FiberForm (a carbon preform used in the fabrication of PICA). Arc jet tests were performed on FiberForm in both air and pure nitrogen for stagnation and shear configurations. The nitrogen tests showed little or no recession, while the air tests of FiberForm showed recession rates similar to that of PICA (when adjusted for the difference in density). While mechanical erosion can not be ruled out, this is the first step in doing so. Analysis using a carbon oxidation boundary condition within DPLR was used to predict the recession rate of FiberForm. The analysis indicates that much of the anomalous recession behavior seen in shear tests may simply be an artifact of the non-flight like test configuration (copper upstream of the test article) a result of dissimilar enthalpy and oxygen concentration profiles on the copper. Shape change effects were also investigated and shown to be relatively small.

  15. Form, formation, and deformation : the influence of material properties and process conditions on the shape of granules produced by high shear granulation

    NARCIS (Netherlands)

    Bouwman, Anneke Margriet

    2005-01-01

    High shear granulation The introduction of this thesis describes the high shear granulation process. High shear granulation is a commonly used unit operation to produce larger granules of primary particles. The granulation process has been described to consist of different stages. The initial growth

  16. Identification and control of large-scale structures in highly turbulent shear flow

    Science.gov (United States)

    Schadow, K. C.; Wilson, K. J.; Gutmark, E.

    Unforced and forced subsonic jets were studied using hot-wire anemometry. It is found that highly coherent flow structure can be generated in the initial region of ducted flow by applying forcing to the flow innstability frequencies. Flow visualization experiments in water showed that the coherent structures had relatively high azimuthal coherence and were periodic in time and space. The convection velocity of the structures was about 60 percent of the mean flow velocity. Mixing of the shear layer with the surrounding recirculation zone and the inside core was enhanced by the forcing and reduced their size accordingly. Photographs from the flow visualization tests are provided.

  17. High-resolution Sonographic Measurements of Lower Extremity Bursae in Chinese Healthy Young Men

    Directory of Open Access Journals (Sweden)

    Yong-Yan Gao

    2016-01-01

    Conclusions: Using HR-US imaging, we were able to analyze lower extremity bursae with high detection rates in healthy young men. The normal ranges of lower extremity bursa dimensions in healthy young men measured by HR-US in this study could be used as reference values for evaluation of bursa abnormalities in the lower extremity.

  18. High resolution simulations of extreme weather event in south Sardinia

    Science.gov (United States)

    Dessy, C.

    2010-05-01

    In the last decade, like most region of Mediterranean Europe, Sardinia has experienced severe precipitation events generating flash floods resulting in loss of lives and large economic damage. A numerical meteorological operational set-up is applied in the local weather service with the aim to improve the operational short range weather forecast of the Service with particular attention to intense, mostly rare and potentially severe, events. On the early hours of 22 October 2008 an intense and almost stationary mesoscale convective system interested particularly the south of Sardinia, heavy precipitation caused a flash flood with fatalities and numerous property damages. The event was particularly intense: about 400 mm of rain in 12 hours (a peak of 150 mm in an hour) were misured by the regional network of weather stations and these values appear extremely meaningfulls since those are about seven times the climatological monthly rainfall for that area and nearly the climatological annual rainfall. With the aim to improve significantly quantitative precipitation forecasting, it was evaluated a different set-up of a high resolution convection resolving model (MM5) initialised with different initial and boundary conditions (ECMWF and NCAR). In this paper it is discussed the meteorological system related to the mentioned event by using different numerical weather models (GCM and LAM) combined with conventional data, radar Doppler and Meteosat images. Preliminary results say that a different set-up of a non hydrostatic model can forecast severe convection events in advance of about one day and produce more realistic rainfall than that current operational and also improve the weather forecasts to respect the ECMWF-GCM. So it could drive an operational alert system in order to limit the risks associated with heavy precipitation events.

  19. High speed digital phonoscopy of selected extreme vocalization (Conference Presentation)

    Science.gov (United States)

    Izdebski, Krzysztof; Blanco, Matthew; Di Lorenzo, Enrico; Yan, Yuling

    2017-02-01

    We used HSDP (KayPENTAX Model 9710, NJ, USA) to capture the kinematics of vocal folds in the production of extreme vocalization used by heavy metal performers. The vibrations of the VF were captured at 4000 f/s using transoral rigid scope. Growl, scream and inhalatory phonations were recoded. Results showed that these extreme sounds are produced predominantly by supraglottic tissues rather than by the true vocal folds, which explains while these sounds do not injure the mucosa of the true vocal folds. In addition, the HSDI were processed using custom software (Vocalizer®) that clearly demonstrated the contribution of each vocal fold to the generation of the sound.

  20. Effect of high molecular weight plasticizers on the gelatinization of starch under static and shear conditions.

    Science.gov (United States)

    Taghizadeh, Ata; Favis, Basil D

    2013-02-15

    Starch gelatinization in the presence of high molecular weight polyol plasticizers and water was studied under static and dynamic conditions and was compared to a glycerol reference. For static gelatinization, glycerol, sorbitol, diglycerol and polyglycerol were examined using polarized light microscopy and differential scanning calorimetry. A wide range of starch/water/plasticizer compositions were prepared to explore the gelatinization regime for each plasticizer. The plasticizers show that the onset and conclusion temperatures for sorbitol and glycerol are in the same range and are lower than the other two plasticizers. On the other hand, polyglycerol shows a higher gelatinization temperature than diglycerol because of its higher molecular weight and viscosity. The results indicate that in the case of all plasticizers, increasing the water content tends to decrease the gelatinization temperature and, except for polyglycerol, increasing the plasticizer content increases the gelatinization temperature. In the case of polyglycerol, however, increasing the plasticizer content had the opposite effect and this was found to be related to the borderline solubility of polyglycerol in water. When the polyglycerol/water solubility was increased by increasing the temperature of the water/plasticizer/starch slurry, the gelatinization temperature dependence was found to be similar to the other polyols. A rheological technique was developed to study the dynamic gelatinization process by tracking the influence of shear on the complex viscosity in a couette flow system. Glycerol, diglycerol and sorbitol were subjected to different dynamic gelatinization treatments and the results were compared with static gelatinization. It is quantitatively shown that shear has a major effect on the gelatinization process. The conclusion temperature of gelatinization is significantly diminished (up to 21 °C) in the presence of shear whereas the onset temperature of gelatinization remains

  1. [Quality by design based high shear wet granulation process development for the microcrystalline cellulose].

    Science.gov (United States)

    Luo, Gan; Xu, Bing; Sun, Fei; Cui, Xiang-long; Shi, Xin-yuan; Qiao, Yan-jiang

    2015-03-01

    The design space of the high shear wet granulation process was established and validated within the framework of quality by design (QbD). The system of microcrystalline cellulose-de-ioned water was used in this study. The median granule size and bulk density of granules were identified as critical quality attributes. Plackeet-Burmann experimental design was used to screen these factors as follows: dry mixing time, the impeller and chopper speed of dry mixing, water amount, water addition time, wet massing time, the impeller and chopper speed of wet massing and drying time. And the optimization was implemented with the central composite experimental design based on screened critical process parameters. The design space of the high shear wet granulation process was established based on the quadratic polynomial regression model. Since the P-values of both models were less than 0.05 and values of lack of fit were more than 0.1, the relationship between critical quality attributes and critical process parameters could be well described by the two models. The reliability of design space, illustrated by overlay plot, was improved with the addition of 95% confidence interval. For those granules whose process parameters were in the design space, the granule size could be controlled within 250 to 355 μm, and the bulk density could be controlled within a range of 0.4 to 0.6 g x cm(-3). The robustness and flexibility of the high shear wet granulation process have been enhanced via the establishment of the design space based on the QbD concept.

  2. Inelastic X-ray scattering experiments at extreme conditions: high temperatures and high pressures

    Directory of Open Access Journals (Sweden)

    S.Hosokawa

    2008-03-01

    Full Text Available In this article, we review the present status of experimental techniques under extreme conditions of high temperature and high pressure used for inelastic X-ray scattering (IXS experiments of liquid metals, semiconductors, molten salts, molecular liquids, and supercritical water and methanol. For high temperature experiments, some types of single-crystal sapphire cells were designed depending on the temperature of interest and the sample thickness for the X-ray transmission. Single-crystal diamond X-ray windows attached to the externally heated high-pressure vessel were used for the IXS experiment of supercritical water and methanol. Some typical experimental results are also given, and the perspective of IXS technique under extreme conditions is discussed.

  3. Dissolution and reconstitution of casein micelle containing dairy powders by high shear using ultrasonic and physical methods.

    Science.gov (United States)

    Chandrapala, Jayani; Martin, Gregory J O; Kentish, Sandra E; Ashokkumar, Muthupandian

    2014-09-01

    The effect of shear on the solubilization of a range of dairy powders was investigated. The rate of solubilization of low solubility milk protein concentrate and micellar casein powders was examined during ultrasonication, high pressure homogenization and high-shear rotor-stator mixing and compared to low-shear overhead stirring. The high shear techniques were able to greatly accelerate the solubilization of these powders by physically breaking apart the powder agglomerates and accelerating the release of individual casein micelles into solution. This was achieved without affecting the structure of the solubilized proteins. The effect of high shear on the re-establishment of the mineral balance between the casein micelles and the serum was examined by monitoring the pH of the reconstituted skim milk powder after prior exposure to ultrasonication. Only minor differences in the re-equilibration of the pH were observed after sonication for up to 3 min, suggesting that the localized high shear forces exerted by sonication did not significantly affect the mass transfer of minerals from within the casein micelles. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. High temperature gradient micro-sensor for wall shear stress and flow direction measurements

    Science.gov (United States)

    Ghouila-Houri, C.; Claudel, J.; Gerbedoen, J.-C.; Gallas, Q.; Garnier, E.; Merlen, A.; Viard, R.; Talbi, A.; Pernod, P.

    2016-12-01

    We present an efficient and high-sensitive thermal micro-sensor for near wall flow parameters measurements. By combining substrate-free wire structure and mechanical support using silicon oxide micro-bridges, the sensor achieves a high temperature gradient, with wires reaching 1 mm long for only 3 μm wide over a 20 μm deep cavity. Elaborated to reach a compromise solution between conventional hot-films and hot-wire sensors, the sensor presents a high sensitivity to the wall shear stress and to the flow direction. The sensor can be mounted flush to the wall for research studies such as turbulence and near wall shear flow analysis, and for technical applications, such as flow control and separation detection. The fabrication process is CMOS-compatible and allows on-chip integration. The present letter describes the sensor elaboration, design, and micro-fabrication, then the electrical and thermal characterizations, and finally the calibration experiments in a turbulent boundary layer wind tunnel.

  5. Novel high bandwidth wall shear stress sensor for ultrasonic cleaning applications

    Science.gov (United States)

    Gonzalez-Avila, S. Roberto; Prabowo, Firdaus; Ohl, Claus-Dieter

    2010-11-01

    Ultrasonic cleaning is due to the action of cavitation bubbles. The details of the cleaning mechanisms are not revealed or confirmed experimentally, yet several studies suggest that the wall shear stresses generated are very high, i.e. of the order of several thousand Pascal. Ultrasonic cleaning applications span a wide range from semiconductor manufacturing, to low pressure membrane cleaning, and the in the medical field cleaning of surgical instruments. We have developed a novel sensor to monitor and quantify cleaning activity which is (1) very sturdy, (2) has a high bandwidth of several megahertz, (3) is cheap in manufacturing costs, and (4) of very small size. We analyze the sensor signal by comparing its response time correlated to single laser induced cavitation bubbles using high-speed photography. Additionally, we will present first measurements in ultrasonic cleaning bathes using again high-speed photography. A preliminary discussion on the working mechanism of the sensor will be presented.

  6. Microstructural characteristics of adiabatic shear localization in a metastable beta titanium alloy deformed at high strain rate and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Hongyi, E-mail: h.zhan@uq.edu.au [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Zeng, Weidong [State Key Laboratory of Solidification Processing, School of Materials, Northwestern Polytechnical University, Xi' an 710072 (China); Wang, Gui [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Defence Material Technology Centre, Level 2, 24 Wakefield St, Hawthorn, VIC 3122 (Australia); Kent, Damon [School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4575 (Australia); Dargusch, Matthew [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Defence Material Technology Centre, Level 2, 24 Wakefield St, Hawthorn, VIC 3122 (Australia)

    2015-04-15

    The microstructural evolution and grain refinement within adiabatic shear bands in the Ti6554 alloy deformed at high strain rates and elevated temperatures have been characterized using transmission electron microscopy. No stress drops were observed in the corresponding stress–strain curve, indicating that the initiation of adiabatic shear bands does not lead to the loss of load capacity for the Ti6554 alloy. The outer region of the shear bands mainly consists of cell structures bounded by dislocation clusters. Equiaxed subgrains in the core area of the shear band can be evolved from the subdivision of cell structures or reconstruction and transverse segmentation of dislocation clusters. It is proposed that dislocation activity dominates the grain refinement process. The rotational recrystallization mechanism may operate as the kinetic requirements for it are fulfilled. The coexistence of different substructures across the shear bands implies that the microstructural evolution inside the shear bands is not homogeneous and different grain refinement mechanisms may operate simultaneously to refine the structure. - Graphical abstract: Display Omitted - Highlights: • The microstructure within the adiabatic shear band was characterized by TEM. • No stress drops were observed in the corresponding stress–strain curve. • Dislocation activity dominated the grain refinement process. • The kinetic requirements for rotational recrystallization mechanism were fulfilled. • Different grain refinement mechanisms operated simultaneously to refine the structure.

  7. The effect of process parameters on audible acoustic emissions from high-shear granulation.

    Science.gov (United States)

    Hansuld, Erin M; Briens, Lauren; Sayani, Amyn; McCann, Joe A B

    2013-02-01

    Product quality in high-shear granulation is easily compromised by minor changes in raw material properties or process conditions. It is desired to develop a process analytical technology (PAT) that can monitor the process in real-time and provide feedback for quality control. In this work, the application of audible acoustic emissions (AAEs) as a PAT tool was investigated. A condenser microphone was placed at the top of the air exhaust on a PMA-10 high-shear granulator to collect AAEs for a design of experiment (DOE) varying impeller speed, total binder volume and spray rate. The results showed the 10 Hz total power spectral densities (TPSDs) between 20 and 250 Hz were significantly affected by the changes in process conditions. Impeller speed and spray rate were shown to have statistically significant effects on granulation wetting, and impeller speed and total binder volume were significant in terms of process end-point. The DOE results were confirmed by a multivariate PLS model of the TPSDs. The scores plot showed separation based on impeller speed in the first component and spray rate in the second component. The findings support the use of AAEs to monitor changes in process conditions in real-time and achieve consistent product quality.

  8. A quality by design approach to scale-up of high-shear wet granulation process.

    Science.gov (United States)

    Pandey, Preetanshu; Badawy, Sherif

    2016-01-01

    High-shear wet granulation is a complex process that in turn makes scale-up a challenging task. Scale-up of high-shear wet granulation process has been studied extensively in the past with various different methodologies being proposed in the literature. This review article discusses existing scale-up principles and categorizes the various approaches into two main scale-up strategies - parameter-based and attribute-based. With the advent of quality by design (QbD) principle in drug product development process, an increased emphasis toward the latter approach may be needed to ensure product robustness. In practice, a combination of both scale-up strategies is often utilized. In a QbD paradigm, there is also a need for an increased fundamental and mechanistic understanding of the process. This can be achieved either by increased experimentation that comes at higher costs, or by using modeling techniques, that are also discussed as part of this review.

  9. High shear dispersion of tracers in polyolefins for improving their detection

    Directory of Open Access Journals (Sweden)

    Valérie Massardier

    2015-10-01

    Full Text Available Abstract An efficient recycling of end-of-life products is of crucial interest from an economical and ecological point of view. However, the near infrared spectroscopy often used for the optic sorting processes is limited because of the absorption of carbon black present in black plastics and as it only sorts as a function of chemical formulas. The tracing technology developed in this study is based on the dispersion of lanthanide complexes particles into polymers to give them a code that can be related to their formulation and viscosity that are important parameters for their re-processing. As the success of this technology is conditioned by achieving a fine dispersion of the tracer particles, we also focus on accomplishing a fine dispersion of tracer particles by using a high shear process. Processing under high shear rate (N= 800 rpm has proved to play a determining role in dispersing finely and homogenously tracer particles within PP matrix. Thanks to the good quality of dispersion, the detection of three tracers at a level of 0.1 wt% has been successfully achieved, even in black matrices for an acquisition time of 10 ms.

  10. Developments in dynamic MR elastography for in vitro biomechanical assessment of hyaline cartilage under high-frequency cyclical shear.

    Science.gov (United States)

    Lopez, Orlando; Amrami, Kimberly K; Manduca, Armando; Rossman, Phillip J; Ehman, Richard L

    2007-02-01

    The design, construction, and evaluation of a customized dynamic magnetic resonance elastography (MRE) technique for biomechanical assessment of hyaline cartilage in vitro are described. For quantification of the dynamic shear properties of hyaline cartilage by dynamic MRE, mechanical excitation and motion sensitization were performed at frequencies in the kilohertz range. A custom electromechanical actuator and a z-axis gradient coil were used to generate and image shear waves throughout cartilage at 1000-10,000 Hz. A radiofrequency (RF) coil was also constructed for high-resolution imaging. The technique was validated at 4000 and 6000 Hz by quantifying differences in shear stiffness between soft ( approximately 200 kPa) and stiff ( approximately 300 kPa) layers of 5-mm-thick bilayered phantoms. The technique was then used to quantify the dynamic shear properties of bovine and shark hyaline cartilage samples at frequencies up to 9000 Hz. The results demonstrate that one can obtain high-resolution shear stiffness measurements of hyaline cartilage and small, stiff, multilayered phantoms at high frequencies by generating robust mechanical excitations and using large magnetic field gradients. Dynamic MRE can potentially be used to directly quantify the dynamic shear properties of hyaline and articular cartilage, as well as other cartilaginous materials and engineered constructs. (c) 2007 Wiley-Liss, Inc.

  11. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    Science.gov (United States)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non

  12. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    Science.gov (United States)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non

  13. Deformation and failure of OFHC copper under high strain rate shear compression

    Science.gov (United States)

    Ruggiero, Andrew; Testa, Gabriel; Bonora, Nicola; Iannitti, Gianluca; Persechino, Italo; Colliander, Magnus Hörnqvist

    2017-01-01

    Hat-shaped specimen geometries were developed to generate high strain, high-strain-rates deformation under prescribed conditions. These geometries offer also the possibility to investigate the occurrence of ductile rupture under low or negative stress triaxiality, where most failure models fail. In this work, three tophat geometries were designed, by means of extensive numerical simulation, to obtain desired stress triaxiality values within the shear region that develops across the ligament. Material failure was simulated using the Continuum Damage Model (CDM) formulation with a unilateral condition for damage accumulation and validated by comparing with quasi-static and high strain rate compression tests results on OFHC copper. Preliminary results seem to indicate that ductile tearing initiates at the specimen corner location where positive stress triaxiality occurs because of local rotation and eventually propagates along the ligament.

  14. Identification of high shears and compressive discontinuities in the inner heliosphere

    Energy Technology Data Exchange (ETDEWEB)

    Greco, A.; Perri, S. [Dipartimento di Fisica, Universitá della Calabria, I-87036 Rende (CS) (Italy)

    2014-04-01

    Two techniques, the Partial Variance of Increments (PVI) and the Local Intermittency Measure (LIM), have been applied and compared using MESSENGER magnetic field data in the solar wind at a heliocentric distance of about 0.3 AU. The spatial properties of the turbulent field at different scales, spanning the whole inertial range of magnetic turbulence down toward the proton scales have been studied. LIM and PVI methodologies allow us to identify portions of an entire time series where magnetic energy is mostly accumulated, and regions of intermittent bursts in the magnetic field vector increments, respectively. A statistical analysis has revealed that at small time scales and for high level of the threshold, the bursts present in the PVI and the LIM series correspond to regions of high shear stress and high magnetic field compressibility.

  15. High Temperature Shear Horizontal Electromagnetic Acoustic Transducer for Guided Wave Inspection.

    Science.gov (United States)

    Kogia, Maria; Gan, Tat-Hean; Balachandran, Wamadeva; Livadas, Makis; Kappatos, Vassilios; Szabo, Istvan; Mohimi, Abbas; Round, Andrew

    2016-04-22

    Guided Wave Testing (GWT) using novel Electromagnetic Acoustic Transducers (EMATs) is proposed for the inspection of large structures operating at high temperatures. To date, high temperature EMATs have been developed only for thickness measurements and they are not suitable for GWT. A pair of water-cooled EMATs capable of exciting and receiving Shear Horizontal (SH₀) waves for GWT with optimal high temperature properties (up to 500 °C) has been developed. Thermal and Computational Fluid Dynamic (CFD) simulations of the EMAT design have been performed and experimentally validated. The optimal thermal EMAT design, material selection and operating conditions were calculated. The EMAT was successfully tested regarding its thermal and GWT performance from ambient temperature to 500 °C.

  16. High Temperature Shear Horizontal Electromagnetic Acoustic Transducer for Guided Wave Inspection

    Directory of Open Access Journals (Sweden)

    Maria Kogia

    2016-04-01

    Full Text Available Guided Wave Testing (GWT using novel Electromagnetic Acoustic Transducers (EMATs is proposed for the inspection of large structures operating at high temperatures. To date, high temperature EMATs have been developed only for thickness measurements and they are not suitable for GWT. A pair of water-cooled EMATs capable of exciting and receiving Shear Horizontal (SH0 waves for GWT with optimal high temperature properties (up to 500 °C has been developed. Thermal and Computational Fluid Dynamic (CFD simulations of the EMAT design have been performed and experimentally validated. The optimal thermal EMAT design, material selection and operating conditions were calculated. The EMAT was successfully tested regarding its thermal and GWT performance from ambient temperature to 500 °C.

  17. Development of K-Basin High-Strength Homogeneous Sludge Simulants and Correlations Between Unconfined Compressive Strength and Shear Strength

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Baer, Ellen BK; Chun, Jaehun; Yokuda, Satoru T.; Schmidt, Andrew J.; Sande, Susan; Buchmiller, William C.

    2011-02-20

    K-Basin sludge will be stored in the Sludge Transport and Storage Containers (STSCs) at an interim storage location on Central Plateau before being treated and packaged for disposal. During the storage period, sludge in the STSCs may consolidate/agglomerate, potentially resulting in high-shear-strength material. The Sludge Treatment Project (STP) plans to use water jets to retrieve K-Basin sludge after the interim storage. STP has identified shear strength to be a key parameter that should be bounded to verify the operability and performance of sludge retrieval systems. Determining the range of sludge shear strength is important to gain high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from the STSCs. The shear strength measurements will provide a basis for bounding sludge properties for mobilization and erosion. Thus, it is also important to develop potential simulants to investigate these phenomena. Long-term sludge storage tests conducted by Pacific Northwest National Laboratory (PNNL) show that high-uranium-content K-Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has 'paste' and 'chunks' with shear strengths of approximately 3-5 kPa and 380-770 kPa, respectively. High-uranium-content sludge samples subjected to hydrothermal testing (e.g., 185 C, 10 hours) have been observed to form agglomerates with a shear strength up to 170 kPa. These high values were estimated by measured unconfined compressive strength (UCS) obtained with a pocket penetrometer. Due to its ease of use, it is anticipated that a pocket penetrometer will be used to acquire additional shear strength data from archived K-Basin sludge samples stored at the PNNL Radiochemical Processing Laboratory (RPL) hot cells. It is uncertain whether the pocket penetrometer provides accurate shear strength measurements of the material. To assess the bounding material strength and

  18. Experimental analysis of the effect of vegetation on flow and bed shear stress distribution in high-curvature bends

    Science.gov (United States)

    Termini, Donatella

    2016-12-01

    The cross-sectional circulation, which develops in meandering bends, exerts an important role in velocity and the boundary shear stress redistributions. This paper considers the effect of vegetation on cross-sectional flow and bed shear distribution along a high-curvature bend. The analysis is conducted with the aid of data collected in a large-amplitude meandering flume during a reference experiment without vegetation and an experiment with vegetation on the bed. The results show that the presence of vegetation modifies the curvature-induced flow pattern and the directionality of turbulent structures. In fact, in the presence of vegetation, the turbulent structures tend to develop within and between the vegetated elements. The pattern of cross-sectional flow, modified by the presence of vegetation, affects the bed shear stress distribution along the bend so that the core of the highest value of the bed shear stress does not reach the outer bank.

  19. Spray pattern and droplet size analyses for high-shear viscosity determination of aqueous suspension corticosteroid nasal sprays.

    Science.gov (United States)

    Pennington, Justin; Pandey, Preetanshu; Tat, Henry; Willson, Jennifer; Donovan, Brent

    2008-09-01

    Aqueous suspension corticosteroid nasal sprays exhibit the rheological property of shear thinning, meaning they exhibit a decrease in viscosity upon application of shear. Most rheological methods are limited in the amount of shear that can be applied to samples (approximately 1,000 s(-1)) and thus can only approximate the viscosities at the high-shear conditions of nasal spray devices (approximately 10(5)-10(6) s(-1)). In the current work, spray area and droplet size were shown to demonstrate viscosity dependence. Three Newtonian fluids were used to determine equations to approximate viscosity at the spray nozzle from correlations to spray area and droplet size using a standard 100 microL Pfeiffer nasal spray pump. Several shear-thinning solutions, including four commercial aqueous suspension corticosteroid nasal sprays and three aqueous Avicel (1, 2, and 3%, wt/wt) samples, were analyzed to demonstrate the ability of spray area and droplet size analysis to estimate high-shear viscosities. The calculated viscosity values trend in accordance with the rheometer data along with the ability to distinguish differences between all samples analyzed.

  20. Numerical modelling of the evolution of conglomerate deformation up to high simple-shear strain

    Science.gov (United States)

    Ran, Hao; Bons, Paul D.; Wang, Genhou; Steinbach, Florian; Finch, Melanie; Ran, Shuming; Liang, Xiao; Zhou, Jie

    2017-04-01

    Deformed conglomerates have been widely used to investigate deformation history and structural analysis, using strain analyses techniques, such as the Rf-Φ and Fry methods on deformed pebbles. Although geologists have focused on the study of deformed conglomerates for several decades, some problems of the process and mechanism of deformation, such as the development of structures in pebbles and matrix, are still not understand well. Numerical modelling provides a method to investigate the process of deformation, as a function of different controlling parameters, up to high strains at conditions that cannot be achieved in the laboratory. We use the 2D numerical modelling platform Elle coupled to the full field crystal visco-plasticity code (VPFFT) to simulate the deformation of conglomerates under simple shear conditions, achieving high finite strains of ≥10. Probably for the first time, we included the effect of an anisotropy, i.e. mica-rich matrix. Our simulations show the deformation of pebbles not only depends on the viscosity contrast between pebbles and matrix but emphasises the importance of interaction between neighbouring pebbles. Under the same finite strain shearing the pebbles of conglomerates with high pebble densities show higher Rf and lower Φ than those of conglomerates with a low density pebbles. Strain localisation can be observed at both the margin of strong pebbles and in the bridging area between the pebbles. At low to medium finite strain, local areas show the opposite (antithetic) shear sense because of the different relative rotation and movement of pebbles or clusters of pebbles. Very hard pebbles retain their original shape and may rotate, depending on the anisotropy of the matrix. σ-clasts are formed by pebbles with moderate viscosity contrast between pebble and a softer matrix. By contrast, δ-clasts are not observed in our simulations with both isotropic and anisotropic matrices, which is consistent with their relative scarcity in

  1. Creep strength of iridium at extremely high temperatures; Zeitstandfestigkeit von Iridium bei extrem hohen Temperaturen

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, B. [Fachhochschule Jena (Germany). Fachbereich Werkstofftechnik; Lupton, D. [Heraeus (W.C.) GmbH, Hanau (Germany). Produktbereich Materialtechnik; Braun, F. [Heraeus (W.C.) GmbH, Hanau (Germany). Produktbereich Materialtechnik; Merker, J. [Jena Univ. (Germany). Technisches Inst.; Helmich, R. [Jena Univ. (Germany). Technisches Inst.

    1994-12-31

    On iridium in the initial state and after carrying out creep tests, apart from metallographic and fractographic work, investigations on the distribution of trace impurities were done by means of secondary ion mass spectroscopy and investigations of the crystal structure were carried out with the aid of Kossel technique, a special field of X-ray bending. Although iridium of high purity was used for the investigations, enrichment of hydrogen, carbon, sodium, potassium, calcium, magnesium, silicon, iron, nickel and chromium was proved by means of secondary ion mass spectroscopy at the grain boundaries, where the average contents in iridium were only about 1 {mu}g/g. In the creep test, creep fracture lines were found in the range of 1800 to 2300 C and about 0.5 to 12 hours on iridium samples with a square cross section of 1 mm. It follows from the results that this noble metal has a considerable resistance to heat at these temperatures, which makes its use up to 2300 C possible. (orig./RHM) [Deutsch] Es erfolgten am Iridium im Ausgangszustand und nach Durchfuehrung der Zeitstandversuche neben metallographischen und fraktographischen Arbeiten Untersuchungen zur Verteilung der Spurenverunreinigungen mittels Sekundaerionen-Massenspektroskopie sowie Untersuchungen der Kristallstruktur mit Hilfe der Kossel-Technik, einem Spezialgebiet der Roentgenbeugung. Obwohl fuer die Untersuchungen hochreines Iridium verwendet wurde, konnten mittels Sekundaerionen-Massenspektroskopie in den Korngrenzen Anreicherungen von Wasserstoff, Kohlenstoff, Natrium, Kalium, Calcium, Magnesium, Silizium, Eisen, Nickel und Chrom nachgewiesen werden, wobei die durchschnittlichen Gehalte in Iridium nur um 1 {mu}g/g lagen. Im Zeitstandversuch wurden an Iridiumproben mit 1 mm Vierkantquerschnitt Zeitbruchlinien im Bereich von 1800 bis 2300 C und etwa 0,5 bis 12 Stunden aufgenommen. Aus den Ergebnissen folgt, dass das Edelmetall bei diesen Temperaturen noch eine beachtliche Warmfestigkeit besitzt, die

  2. Extremely short duration high intensity interval training substantially improves insulin action in young healthy males

    DEFF Research Database (Denmark)

    Babraj, John A; Vollaard, Niels B J; Keast, Cameron

    2009-01-01

    BACKGROUND: Traditional high volume aerobic exercise training reduces cardiovascular and metabolic disease risk but involves a substantial time commitment. Extremely low volume high-intensity interval training (HIT) has recently been demonstrated to produce improvements to aerobic function, but i...

  3. Breaking and Characteristics of Ganoderma Lucidum Spores by High Speed Entrifugal Shearing Pulverizer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The spores of Ganoderma lucidum were ground and broken to ultrafine particles by high speed centrifugal shearing(HSCS) pulverizer. The characteristics of Ganoderma lucidum spores were analyzed by scanning electron microscope (SEM), Fourier transform infrared spectrophotometry (FTIR). Ultraviolet-visible pectrophotometer was used to determine the extraction ratio of aqueous solubility polysaccharide between the raw and broken spores. The immunological function on the mice before and after the breaking of spores was investigated. The experimental results show that after being ground, the sporoderm-broken ratio reachs 100%,the original active ingredients of ganoderma lucidum spores do not change, and the extraction ratio of aqueous solubility polysaccharide is greatly increased by 40.08%. The broken spores show much higher immunological activity comparing with original spores of Ganoderma lucidum.

  4. Shear strain in Nd0.5Ca0.5MnO3 at high pressures.

    Science.gov (United States)

    Arulraj, Anthony; Dinnebier, Robert E; Carlson, Stefan; Hanfland, Michael; van Smaalen, Sander

    2005-04-29

    High-pressure x-ray powder diffraction has been measured on the half doped rare earth manganite Nd0.5Ca0.5MnO3 up to a pressure of 15 GPa. We report the presence of a quantifiable amount of shear distortion of the MnO6 octahedra in Nd0.5Ca0.5MnO3 at high pressures. The lattice strain of Nd0.5Ca0.5MnO3 is minimal at a crossover pressure of p* approximately 7 GPa, with the same lattice strain above and below this pressure achieved by shear and Jahn-Teller-type distortions, respectively. The increase in shear strain with increasing pressure provides a mechanism for the insulating behavior of manganites at high pressures that has not been considered before.

  5. Earthquake Energy Dissipation in Light of High-Velocity, Slip-Pulse Shear Experiments

    Science.gov (United States)

    Reches, Z.; Liao, Z.; Chang, J. C.

    2014-12-01

    We investigated the energy dissipation during earthquakes by analysis of high-velocity shear experiments conducted on room-dry, solid samples of granite, tonalite, and dolomite sheared at slip-velocity of 0.0006-1m/s, and normal stress of 1-11.5MPa. The experimental fault were loaded in one of three modes: (1) Slip-pulse of abrupt, intense acceleration followed by moderate deceleration; (2) Impact by a spinning, heavy flywheel (225 kg); and (3) Constant velocity loading. We refer to energy dissipation in terms of power-density (PD=shear stress*slip-velocity; units of MW/m^2), and Coulomb-energy-density (CED= mechanical energy/normal stress; units of m). We present two aspects: Relative energy dissipation of the above loading modes, and relative energy dissipation between impact experiments and moderate earthquakes. For the first aspect, we used: (i) the lowest friction coefficient of the dynamic weakening; (ii) the work dissipated before reaching the lowest friction; and (iii) the cumulative mechanical work during the complete run. The results show that the slip-pulse/impact modes are energy efficient relatively to the constant-velocity mode as manifested by faster, more intense weakening and 50-90% lower energy dissipation. Thus, for a finite amount of pre-seismic crustal energy, the efficiency of slip-pulse would amplify earthquake instability. For the second aspect, we compare the experimental CED of the impact experiments to the reported breakdown energy (EG) of moderate earthquakes, Mw = 5.6 to 7.2 (Chang et al., 2012). In is commonly assumed that the seismic EG is a small fraction of the total earthquake energy, and as expected in 9 out of 11 examined earthquakes, EG was 0.005 to 0.07 of the experimental CED. We thus speculate that the experimental relation of Coulomb-energy-density to total slip distance, D, CED = 0.605 × D^0.933, is a reasonable estimate of total earthquake energy, a quantity that cannot be determined from seismic data.

  6. High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: Remarkable resistance to shear failure

    Science.gov (United States)

    Li, Z.; Zhao, S.; Diao, H.; Liaw, P. K.; Meyers, M. A.

    2017-01-01

    The mechanical behavior of a single phase (fcc) Al0.3CoCrFeNi high-entropy alloy (HEA) was studied in the low and high strain-rate regimes. The combination of multiple strengthening mechanisms such as solid solution hardening, forest dislocation hardening, as well as mechanical twinning leads to a high work hardening rate, which is significantly larger than that for Al and is retained in the dynamic regime. The resistance to shear localization was studied by dynamically-loading hat-shaped specimens to induce forced shear localization. However, no adiabatic shear band could be observed. It is therefore proposed that the excellent strain hardening ability gives rise to remarkable resistance to shear localization, which makes this material an excellent candidate for penetration protection applications such as armors. PMID:28210000

  7. High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: Remarkable resistance to shear failure

    Science.gov (United States)

    Li, Z.; Zhao, S.; Diao, H.; Liaw, P. K.; Meyers, M. A.

    2017-02-01

    The mechanical behavior of a single phase (fcc) Al0.3CoCrFeNi high-entropy alloy (HEA) was studied in the low and high strain-rate regimes. The combination of multiple strengthening mechanisms such as solid solution hardening, forest dislocation hardening, as well as mechanical twinning leads to a high work hardening rate, which is significantly larger than that for Al and is retained in the dynamic regime. The resistance to shear localization was studied by dynamically-loading hat-shaped specimens to induce forced shear localization. However, no adiabatic shear band could be observed. It is therefore proposed that the excellent strain hardening ability gives rise to remarkable resistance to shear localization, which makes this material an excellent candidate for penetration protection applications such as armors.

  8. Magnetically applied pressure-shear : a new technique for direct strength measurement at high pressure (final report for LDRD project 117856).

    Energy Technology Data Exchange (ETDEWEB)

    Lamppa, Derek C.; Haill, Thomas A.; Alexander, C. Scott; Asay, James Russell

    2010-09-01

    A new experimental technique to measure material shear strength at high pressures has been developed for use on magneto-hydrodynamic (MHD) drive pulsed power platforms. By applying an external static magnetic field to the sample region, the MHD drive directly induces a shear stress wave in addition to the usual longitudinal stress wave. Strength is probed by passing this shear wave through a sample material where the transmissible shear stress is limited to the sample strength. The magnitude of the transmitted shear wave is measured via a transverse VISAR system from which the sample strength is determined.

  9. Degree of coupling in high-rise mixed shear walls structures

    Indian Academy of Sciences (India)

    J C D Hoenderkamp

    2012-08-01

    A simple method of analysis is presented to determine the influence of single shear walls (SSW) on the degree of coupling DoC and on the peak shear demand PSD for beams of coupled shear walls (CSW) in mixed shear wall structures (MSW). Non-coupled lateral load resisting structures such as singular planar walls and cores will reduce primary bending moments in the coupled shear wall bents of MSW structures thereby increasing the degree of coupling. They will also change the location and magnitude of the maximum shear in and rotation of the coupling beams. These changes in the coupled wall bents may increase the demand on their performance beyond capacity. It is, therefore, important to have an indication of the change in the coupling beam design parameters at an early stage of the design. The proposed graphical method is based on the continuous medium theory and allows a rapid assessment of the structural behaviour of coupled shear wall bents in mixed shear wall structures that are subject to horizontal loading.

  10. Late-Time Mixing Sensitivity to Initial Broadband Surface Roughness in High-Energy-Density Shear Layers

    Energy Technology Data Exchange (ETDEWEB)

    Flippo, K. A.; Doss, F. W.; Kline, J. L.; Merritt, E. C.; Capelli, D.; Cardenas, T.; DeVolder, B.; Fierro, F.; Huntington, C. M.; Kot, L.; Loomis, E. N.; MacLaren, S. A.; Murphy, T. J.; Nagel, S. R.; Perry, T. S.; Randolph, R. B.; Rivera, G.; Schmidt, D. W.

    2016-11-23

    Using a large volume high-energy-density fluid shear experiment (8.5 cm3) at the National Ignition Facility, we have demonstrated for the first time the ability to significantly alter the evolution of a supersonic sheared mixing layer by controlling the initial conditions of that layer. By altering the initial surface roughness of the tracer foil, we demonstrate the ability to transition the shear mixing layer from a highly ordered system of coherent structures to a randomly ordered system with a faster growing mix layer, indicative of strong mixing in the layer at a temperature of several tens of electron volts and at near solid density. Simulations using a turbulent-mix model show good agreement with the experimental results and poor agreement without turbulent mix.

  11. Extremely High Suction Performance Inducers for Space Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced pump inducer design technology that uses high inlet diffusion blades, operates at a very low flow coefficient, and employs a cavitation control and...

  12. Specific inhibiting effects of Ilexonin A on von Willebrand factor-dependent platelet aggregation under high shear rate

    Institute of Scientific and Technical Information of China (English)

    李敏; 吴伟康; 刘良; 廖福龙; 篠原幸人; 半田俊之介; 後藤信哉

    2004-01-01

    Background Ilexonin A (IA), purified from the Chinese herbal medicine Maodongqing (Ilex pubescens Hook, et Am) has been commonly used in south China to treat thrombotic disorders. In this study, we aimed to study the inhibiting effects and mechanism of lA on von Willebrand factor (vWF)-dependent high shear-induced platelet aggregation. Methods vWF-dependent high shear (10 800 s-1) induced aggregation of platelets obtained from normal donors in the presence or absence of lA was measured by a modified cone-plate viscometer and shear-induced vWF binding was measured by quantitative flowcytometry with monoclonal antibody known to bind exclusively to the C-terminal domain of vWF (LJ-C3) directly labeled with fluorescein isothiocyanate (FITC). P-selectin surface expression was also measured by a similar method with FITC conjugated anti-P-selectin monoclonal antibody (WGA1).Results Shear-induced platelet aggregation was inhibited by IA in a dose-dependent manner. The extent of aggregation decreased from (78.6±4.6)% in the absence of lA to (36.5±2.1 )% in the presence of lA (3.3 mmol/L) (P<0.0001, n=9) with a high shear rate of 10800 s-1. vWF binding and P-selectin expression were also inhibited by lA in a dose dependent manner. The number of binding FITC-LJ-C3 molecules increased after exposure of platelet-rich plasma to a high shear rate of 10 800 s-1 for 6 minutes, but this shear-induced increased binding platelet surface vWF molecules and P-selectin expression can be decreased in the presence of IA.Conclusion vWF binding and vWF mediated platelet activation, aggregation occurring under high shear rate were inhibited by IA. lA may be a unique antithrombotic drug inhibiting the vWF-GP Ib α interaction, and may thus facilitate drug design targeting arterial thrombosis.

  13. Supersonic shear flows in laser driven high-energy-density plasmas created by the Nike laser

    Science.gov (United States)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.

    2008-11-01

    In high-energy-density (HED) plasmas the Kelvin-Helmholtz (KH) instability plays an important role in the evolution of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) unstable interfaces, as well as material interfaces that experience the passage one or multiple oblique shocks. Despite the potentially important role of the KH instability few experiments have been carried out to explore its behavior in the high-energy-density regime. We report on the evolution of a supersonic shear flow that is generated by the release of a high velocity (>100 km/s) aluminum plasma onto a CRF foam (ρ = 0.1 g/cc) surface. In order to seed the Kelvin-Helmholtz (KH) instability various two-dimensional sinusoidal perturbations (λ = 100, 200, and 300 μm with peak-to-valley amplitudes of 10, 20, and 30 μm respectively) have been machined into the foam surface. This experiment was performed using the Nike laser at the Naval Research Laboratory.

  14. Fluid-loss control for high-permeability rocks in hydraulic fracturing under realistic shear conditions

    Energy Technology Data Exchange (ETDEWEB)

    Navarrete, R.C.; Mitchell, J.P.

    1995-12-31

    A study is presented on the effectiveness of different combinations of fluid and fluid-loss additives to control fluid loss in high-permeability formations under high shear rates. The impact on matrix damage and proppant-pack damage is also studied. Borate-crosslinked guars, hydroxyethylcellulose (HEC) and a surfactant water-base gravel packing fluid were investigated. The fluid-loss additive considered was silica flour. All fluid-loss tests were run in dynamic fluid-loss cells. To properly test high-permeability cores, new long core dynamic fluid-loss cells were used. The matrix damage caused by the invasion of the fluid was determined using pressure taps along the core. Conductivity tests were also run to determine the damage to the proppant pack. Results show that the effectiveness of particulate fluid-loss additives under dynamic conditions is strongly dependent on the initial leakoff rate, which depends on the pressure gradient across the core, permeability of the core and viscosity of the invading fluid. The use of silica flour helps matrix flowback, and it has a minimal effect on proppant-pack conductivity in clean fluids (e.g., surfactant water-base gravel packing fluid). With the exception of the borate-crosslinked guar with no fluid-loss additive, the variety of fluids used in these tests (with and without silica flour) have a negligible effect on postproduction.

  15. Shear deformation and division of cylindrical walls in free-standing nematic films under high electric fields.

    Science.gov (United States)

    Tadapatri, Pramod; Krishnamurthy, K S

    2008-10-30

    We report on the behavior of cylindrical walls formed in a substrate-free nematic film of PCH5 under the action of an in-plane ac field. In the film, with vertical molecular alignment at all the limiting surfaces, annular Brochard-Leger walls are induced well above the bend-Freedericksz threshold. They exhibit, at high field strengths, a new type of instability not encountered in sandwich, or any other, cell configuration. It manifests as a shearing of the loop-wall between the opposite free-surfaces. The shear strain is measured as a function of time, field strength, frequency, and temperature. Significantly, the strain is linear in field strength. The origin of shear and its dependence on field variables are explained through an adaptation of the Carr-Helfrich mechanism of charge separation. The sheared wall is stable against pincement up to several times the threshold field, and divides itself into two fragments under a large enough strain. With the shear distortion, linear defects appear in the opposite splay-bend regions, just as Neel lines in Bloch walls of magnetic systems. At very low frequencies, flexoelectric influence on distortion is revealed.

  16. Influence of loading-rate and steel fibers on the shear strength of ultra high performance concrete

    Directory of Open Access Journals (Sweden)

    Bratislav Lukic

    2015-01-01

    Full Text Available The paper describes quasi-static and dynamic experimental methods used to examine the confined shear strength of an Ultra High Performance Concrete, with and without the presence of steel fibers in the concrete composition. An experimental setup was created to investigate the concrete shear strength under quasi-static loading regime using a hydraulic press Schenk while dynamic shear strength was characterized by subjecting concrete samples to dynamic loading through a modified Split Hopkinson Pressure Bar. Both methods are based on a Punch Through Shear (PTS test with a well-instrumented aluminum passive confinement ring that allows measuring the change of radial stress in the shear ligament throughout the test. Firstly, four equally distributed radial notches have been performed in order to deduce the radial stress by suppressing a self-confinement of the sample peripheral part. However, by analyzing the strain gauge data from the confinement ring, it has been noticed that these were apparently insufficient, especially for fiber-reinforced samples, resulting in subsequently practicing eight radial notches through the sample peripheral part. The results obtained from both procedures are reported and discussed.

  17. Influence of loading-rate and steel fibers on the shear strength of ultra high performance concrete

    Science.gov (United States)

    Bratislav, Lukic; Pascal, Forquin

    2015-09-01

    The paper describes quasi-static and dynamic experimental methods used to examine the confined shear strength of an Ultra High Performance Concrete, with and without the presence of steel fibers in the concrete composition. An experimental setup was created to investigate the concrete shear strength under quasi-static loading regime using a hydraulic press Schenk while dynamic shear strength was characterized by subjecting concrete samples to dynamic loading through a modified Split Hopkinson Pressure Bar. Both methods are based on a Punch Through Shear (PTS) test with a well-instrumented aluminum passive confinement ring that allows measuring the change of radial stress in the shear ligament throughout the test. Firstly, four equally distributed radial notches have been performed in order to deduce the radial stress by suppressing a self-confinement of the sample peripheral part. However, by analyzing the strain gauge data from the confinement ring, it has been noticed that these were apparently insufficient, especially for fiber-reinforced samples, resulting in subsequently practicing eight radial notches through the sample peripheral part. The results obtained from both procedures are reported and discussed.

  18. Effect of low-intensity extremely high frequency radiation on reproductive function in wistar rats.

    Science.gov (United States)

    Subbotina, T I; Tereshkina, O V; Khadartsev, A A; Yashin, A A

    2006-08-01

    The exposure to low-intensity extremely high frequency electromagnetic radiation during spermatogenesis was accompanied by pathological changes, which resulted in degeneration and polymorphism of spermatozoa. The number of newborn rats increased in the progeny of irradiated animals.

  19. Extreme Environment Circuit Blocks for Spacecraft Power & Propulsion System & Other High Reliability Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Chronos Technology (DIv of FMI, Inc.) proposes to design, fabricate, and deliver a performance proven, and commercially available set of extreme high operating...

  20. Extremely high-power tongue projection in plethodontid salamanders

    NARCIS (Netherlands)

    Deban, S.M.; O'Reilly, J.C.; Dicke, U.; Leeuwen, van J.L.

    2007-01-01

    Many plethodontid salamanders project their tongues ballistically at high speed and for relatively great distances. Capturing evasive prey relies on the tongue reaching the target in minimum time, therefore it is expected that power production, or the rate of energy release, is maximized during tong

  1. High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography.

    Science.gov (United States)

    van Leeuwen, T G; Kulkarni, M D; Yazdanfar, S; Rollins, A M; Izatt, J A

    1999-11-15

    Color Doppler optical coherence tomography (CDOCT) is capable of precise velocity mapping in turbid media. Previous CDOCT systems based on the short-time Fourier transform have been limited to maximum flow velocities of the order of tens of millimeters per second. We describe a technique, based on interference signal demodulation at multiple frequencies, to extend the physiological relevance of CDOCT by increasing the dynamic range of measurable velocities to hundreds of millimeters per second. The physiologically important parameter of shear rate is also derived from CDOCT measurements. The measured flow-velocity profiles and shear-rate distributions correlate very well with theoretical predictions. The multiple demodulation technique, therefore, may be useful to monitor blood flow in vivo and to identify regions with high and low shear rates.

  2. Large-strain time-temperature equivalence in high density polyethylene for prediction of extreme deformation and damage

    Directory of Open Access Journals (Sweden)

    Gray G.T.

    2012-08-01

    Full Text Available Time-temperature equivalence is a widely recognized property of many time-dependent material systems, where there is a clear predictive link relating the deformation response at a nominal temperature and a high strain-rate to an equivalent response at a depressed temperature and nominal strain-rate. It has been found that high-density polyethylene (HDPE obeys a linear empirical formulation relating test temperature and strain-rate. This observation was extended to continuous stress-strain curves, such that material response measured in a load frame at large strains and low strain-rates (at depressed temperatures could be translated into a temperature-dependent response at high strain-rates and validated against Taylor impact results. Time-temperature equivalence was used in conjuction with jump-rate compression tests to investigate isothermal response at high strain-rate while exluding adiabatic heating. The validated constitutive response was then applied to the analysis of Dynamic-Tensile-Extrusion of HDPE, a tensile analog to Taylor impact developed at LANL. The Dyn-Ten-Ext test results and FEA found that HDPE deformed smoothly after exiting the die, and after substantial drawing appeared to undergo a pressure-dependent shear damage mechanism at intermediate velocities, while it fragmented at high velocities. Dynamic-Tensile-Extrusion, properly coupled with a validated constitutive model, can successfully probe extreme tensile deformation and damage of polymers.

  3. High Energy Ion Acceleration by Extreme Laser Radiation Pressure

    Science.gov (United States)

    2017-03-14

    was used instead. This code makes the assumption that the background ion and electron behaviour can be approximated with a fluid model whilst...electron behaviour occurring from this aperture was also published in High Power Laser Science and Engineering [4]. A significant breakthrough was also...acceleration to transparency. This was published in Physics of Plasmas [12]. Through one- dimensional modelling of the interaction, it was also

  4. The extremely high stability of carbofuran pesticide in acidic media

    Directory of Open Access Journals (Sweden)

    Tomašević Anđelka V.

    2007-01-01

    Full Text Available Environment friendly iron catalysts were applied in the decomposition reactions of some toxic compounds like phenol, methomyl and corbofuran pesticide. The applied catalytic processes belong to photo-Fenton reactions. Heterogeneous iron catalysts showed significant activity in phenol and methomyl conversion, however, these catalysts were completely inactive in destruction of carbofuran molecule, even in the catalytic reaction promoted with UV light at high temperature.

  5. Optimization of curcumin loaded lipid nanoparticles formulated using high shear homogenization (HSH) and ultrasonication (US) methods.

    Science.gov (United States)

    Puglia, Carmelo; Offerta, Alessia; Rizza, Luisa; Zingale, Giuseppe; Bonina, Francesco; Ronsisvalle, Simone

    2013-10-01

    Lipid nanoparticles (LN) are drug carriers possessing advantages with respect to stability, drug release profile, and biocompatibility. There are several production methods for lipid nanoparticles. Recently high shear homogenization (HSH) and ultrasound (US) techniques have been used to produce these systems in a cheaper and easier way. The objective of the present study was to evaluate the effect of same important instrumental parameters, such as homogenization time (HT) and ultrasonication time (UT), on particle size (MD) and polydispersity index (PDI) of LNs obtained by HSH-US techniques. Curcumin was used as a model drug to be incapsulated in the LNs. LN were prepared by HSH-US technique using tripalmitin (Dynasan 116) and poloxamer 188 (Lutrol F68) as solid lipid and surfactant, respectively. The preparations were characterized and then evaluated using a factorial design study. From the results obtained, LNs produced by HSH-US method were characterized by nanodimension, high homogeneity and encapsulation efficiency. US technology plays an important role in controlling the final dimension of LN dispersion, while longer times of HSH seem mainly to exert a positive effect on the final homogeneity of particle dispersion. Additional studies are in progress to evaluate drug release profile from LNs, for further in vitro/in vivo correlation studies.

  6. ZaP-HD: High Energy Density Z-Pinch Plasmas using Sheared Flow Stabilization

    Science.gov (United States)

    Golingo, R. P.; Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Doty, S. A.; Forbes, E. G.; Hughes, M. C.; Kim, B.; Ross, M. P.; Weed, J. R.

    2015-11-01

    The ZaP-HD flow Z-pinch project investigates scaling the flow Z-pinch to High Energy Density Plasma, HEDP, conditions by using sheared flow stabilization. ZaP used a single power supply to produce 100 cm long Z-pinches that were quiescent for many radial Alfven times and axial flow-through times. The flow Z-pinch concept provides an approach to achieve HED plasmas, which are dimensionally large and persist for extended durations. The ZaP-HD device replaces the single power supply from ZaP with two separate power supplies to independently control the plasma flow and current in the Z-pinch. Equilibrium is determined by diagnostic measurements of the density with interferometry and digital holography, the plasma flow and temperature with passive spectroscopy, the magnetic field with surface magnetic probes, and plasma emission with optical imaging. The diagnostics fully characterize the plasma from its initiation in the coaxial accelerator, through the pinch, and exhaust from the assembly region. The plasma evolution is modeled with high resolution codes: Mach2, WARPX, and NIMROD. Experimental results and scaling analyses are presented. This work is supported by grants from the U.S. Department of Energy and the U.S. National Nuclear Security Administration.

  7. Self-assembled core-polyethylene glycol-lipid shell nanoparticles demonstrate high stability in shear flow.

    Science.gov (United States)

    Shen, Zhiqiang; Ye, Huilin; Kröger, Martin; Li, Ying

    2017-05-24

    A core-polyethylene glycol-lipid shell (CPLS) nanoparticle consists of an inorganic core coated with polyethylene glycol (PEG) polymers, surrounded by a lipid bilayer shell. It can be self-assembled from a PEGylated core with surface-tethered PEG chains, where all the distal ends are covalently bonded to lipid molecules. Upon adding free lipids, a complete lipid bilayer shell can be formed on the surface driven by the hydrophobic nature of lipid tails, leading to the formation of a CPLS nanoparticle. The stability of CPLS nanoparticles in shear flow has been systematically studied through large scale dissipative particle dynamics simulations. CPLS nanoparticles demonstrate higher stability and less deformation in shear flow, compared with lipid vesicles. Burst leakage of drug molecules inside lipid vesicles and CPLS NPs can be induced by the large pores at their tips. These pores are initiated by the maximum stress in the waist region. It further grows along with the tank-treading motion of vesicles or CPLS NPs in shear flow. However, due to the constraints applied by PEG polymers, CPLS NPs are less deformed than vesicles with comparable size under the same flow conditions. Thus, the less deformed CPLS NPs express a smaller maximum stress at waists, demonstrating higher stability. Pore formation at waists, evolving into large pores on vesicles, leads to the burst leakage of drug molecules and complete rupture of vesicles. In contrast, although similar drug leakage in CPLS nanoparticles can occur at high shear rates, pores initiated at moderate shear rates tend to be short-lived and close due to the constraints mediated by PEG polymers. This kind of 'self-healing' capability can be observed over a wide range of shear rates for CPLS nanoparticles. Our results suggest self-assembled CPLS nanoparticles to exhibit high stability during blood circulation without rapid drug leakage. These features make CPLS nanoparticles candidates for a promising drug delivery platform.

  8. Three-dimensional shear-strain patterns induced by high-pressure torsion and their impact on hardness evolution

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Y.; Wang, Y.B. [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Figueiredo, R.B. [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901 (Brazil); Chang, L. [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Liao, X.Z., E-mail: xiaozhou.liao@sydney.edu.au [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Kawasaki, M. [Departments of Aerospace and Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States); Zheng, W.L. [Shanghai Research Institute of Materials, 99 Handan Road, Shanghai 200437 (China); Ringer, S.P. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); Langdon, T.G. [Departments of Aerospace and Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States); Materials Research Group, School of Engineering Sciences, University of Southampton, Southampton SO17 1BJ (United Kingdom); Zhu, Y.T. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2011-06-15

    Highlights: > Three-dimensional shear strain patterns were evaluated during high-pressure torsion. > Double-swirl patterns are visible on the top surfaces of discs in early stages of HPT. > Double-swirls ultimately evolve into a single swirl with increasing revolutions. > Microstructural evolution in HPT may deviate initially from rigid-body situation - Abstract: The shear strain imposed on austenite/ferrite duplex stainless steel discs at different stages of high-pressure torsion (HPT) processing was imaged in plan-view and cross-section using optical microscopy and scanning electron microscopy. The effect of the shear strain was correlated to the hardness evolution of the discs. The shear-strain patterns are complex and are different on the top and bottom surfaces of the discs. A double-swirl pattern emerged on the top surface in the early stages of HPT. These two centres of the swirl moved towards the centre of the disc as the numbers of HPT revolutions was increased and ultimately the double-swirl evolved into a single-swirl. Less regular shear-strain patterns were observed on the bottom surfaces of the discs. Multiple ring-like patterns with mirror symmetry over the central axes of the discs were visible from cross-sectional observations. Nanoindentation testing on the two surfaces and a cross-section of HPT discs showed that the hardness is insensitive to specific shear-strain patterns, but is closely related to the widths of the austenite and ferrite phase domains. Late in the deformation process, the hardness in the interior of an HPT disc may be higher than at either of the disc surfaces because of the development of finer microstructural phase distributions.

  9. Adaptation potential of naturally ventilated barns to high temperature extremes: The OptiBarn project

    Science.gov (United States)

    Menz, Christoph

    2016-04-01

    Climate change interferes with various aspects of the socio-economic system. One important aspect is its influence on animal husbandry, especially dairy faming. Dairy cows are usually kept in naturally ventilated barns (NVBs) which are particular vulnerable to extreme events due to their low adaptation capabilities. An effective adaptation to high outdoor temperatures for example, is only possible under certain wind and humidity conditions. High temperature extremes are expected to increase in number and strength under climate change. To assess the impact of this change on NVBs and dairy cows also the changes in wind and humidity needs to be considered. Hence we need to consider the multivariate structure of future temperature extremes. The OptiBarn project aims to develop sustainable adaptation strategies for dairy housings under climate change for Europe, by considering the multivariate structure of high temperature extremes. In a first step we identify various multivariate high temperature extremes for three core regions in Europe. With respect to dairy cows in NVBs we will focus on the wind and humidity field during high temperature events. In a second step we will use the CORDEX-EUR-11 ensemble to evaluate the capability of the RCMs to model such events and assess their future change potential. By transferring the outdoor conditions to indoor climate and animal wellbeing the results of this assessment can be used to develop technical, architectural and animal specific adaptation strategies for high temperature extremes.

  10. High shear stress relates to intraplaque haemorrhage in asymptomatic carotid plaques

    DEFF Research Database (Denmark)

    Tuenter, A.; Selwaness, M.; Arias Lorza, A.

    2016-01-01

    BACKGROUND AND AIMS: Carotid artery plaques with vulnerable plaque components are related to a higher risk of cerebrovascular accidents. It is unknown which factors drive vulnerable plaque development. Shear stress, the frictional force of blood at the vessel wall, is known to influence plaque...... estimating equations analysis, adjusting for age, sex and carotid wall thickness. RESULTS: The study group consisted of 93 atherosclerotic carotid arteries of 74 participants. In plaques with higher maximum shear stresses, IPH was more often present (OR per unit increase in maximum shear stress (log...... formation. We evaluated the association between shear stress and plaque components (intraplaque haemorrhage (IPH), lipid rich necrotic core (LRNC) and/or calcifications) in relatively small carotid artery plaques in asymptomatic persons. METHODS: Participants (n = 74) from the population-based Rotterdam...

  11. Adiabatic Shear Band Formation in Intermetallic WHA at High Strain Rates and Elevated Temperatures

    Science.gov (United States)

    Duprey, K. E.; Clifton, R. J.; Griffo, A.; German, R. M.

    1997-07-01

    A novel tungsten-based composite is being developed at The Pennsylvania State University to enhance shear banding by introducing a strong thermo-plastic instability. This liquid phase sintered composite consists of tungsten grains embedded in an intermetallic alloy matrix which has the property that its flow stress increases with increasing temperature up to a critical temperature at which rapid thermal softening begins. Pressure-shear plate impact experiments are being used to subject thin plates of this composite to shearing at strain rates of 10^5 s-1 to 10^6 s-1 at pressures of 6 - 8 GPa, and temperatures up to 650 ^o C. The experiments, combined with computer simulation, are being conducted to determine the effects of the thermal properties of the matrix on the initiation and propagation of adiabatic shear bands.

  12. Shear stress measurements during high-speed impacts with sand and glass beads

    Science.gov (United States)

    Cooper, William

    2012-03-01

    Right-circular (φ 15 mm x 26 mm) and spherical (φ 10mm) projectiles were fired verticallydownward (300-1,000 m/s) into acrylic containers (φ 100-190 mm) containing either quartz Eglin sand or solid, amorphous glass beads. A variety of shearing conditions were observed; allowing estimation of stresses along the various shearing surfaces. Under certain conditions a false nose was formed of partially-crushed particles on the front of the projectile and the particulate media sheared along the false nose surface. The included angle of the false nose varies with impact velocity (up to a velocity of 375 m/s) and appears to be a residual artifact of initial impact conditions. An analytical model is presented to explain the false nose formation and stability during the projectile deceleration. Other impact conditions (especially on the front face of the spherical projectiles) resulted in shearing along the surface or surface abrasion.

  13. High Performance Multivariate Visual Data Exploration for Extremely Large Data

    Energy Technology Data Exchange (ETDEWEB)

    Rubel, Oliver; Wu, Kesheng; Childs, Hank; Meredith, Jeremy; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Ahern, Sean; Weber, Gunther H.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes; Prabhat,

    2008-08-22

    One of the central challenges in modern science is the need to quickly derive knowledge and understanding from large, complex collections of data. We present a new approach that deals with this challenge by combining and extending techniques from high performance visual data analysis and scientific data management. This approach is demonstrated within the context of gaining insight from complex, time-varying datasets produced by a laser wakefield accelerator simulation. Our approach leverages histogram-based parallel coordinates for both visual information display as well as a vehicle for guiding a data mining operation. Data extraction and subsetting are implemented with state-of-the-art index/query technology. This approach, while applied here to accelerator science, is generally applicable to a broad set of science applications, and is implemented in a production-quality visual data analysis infrastructure. We conduct a detailed performance analysis and demonstrate good scalability on a distributed memory Cray XT4 system.

  14. Deformation and Shear Band Development in an Ultrahigh Carbon Steel During High Strain Rate Deformation

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D R; Syn, C K; Sherby, O D

    2004-07-06

    The mechanical response of a pearlitic UHCS-1.3C steel deformed at approximately 4000 s{sup -1} to large strains ({var_epsilon} = -0.9) has been studied. Failure, at both the macroscopic and the microscopic levels has been evaluated, and the ability of the material to absorb energy in compression has been examined. Failure occurred by the development of a shear band. However before failure, extensive buckling of the carbide plates was observed and the UHCS-1.3C material exhibited significant potential for compressive ductility and energy absorption due to the distributed buckling of these plates. Strain localization during adiabatic shear band development resulted in the formation of austenite. Subsequent cooling produced a divorced-eutectoid transformation with associated deformation, which resulted in a microstructure consisting of 50 to 100 nm sized grains. The stress-strain behavior within the shear band has also been determined. The results are used to critically evaluate the maximum shear stress criterion of shear band development. New criteria for the development of shear bands are developed based on a strain energy concept.

  15. Effect of high shear mixing parameters and degassing temperature on the morphology of epoxy-clay nanocomposites

    KAUST Repository

    Al-Qadhi, Muneer

    2013-01-01

    Epoxy-clay nanocomposites were prepared by high shear mixing method using Nanomer I.30E nanoclay as nano-reinforcement in diglycidyl ether of bisphenol A (DGEBA). The effect of mixing speed and time on the nature and degree of clay dispersion were investigated by varying the mixing speed in the range of 500-8000 RPM and mixing time in the range of 15-90 minutes. The effect of degassing temperature on the morphology of the resultant nanocomposites was also studied. Scanning and transmission microscopy (SEM and TEM) along with x-ray diffraction (XRD) have been used to characterize the effect of shear mixing speed, mixing time and degassing temperature on the structure of the resultant nanocomposites. The SEM, TEM and XRD examinations demonstrated that the degree of clay dispersion was improved with increasing the high shear mixing speed and mixing time. The results showed that the optimum high shear mixing speed and mixing time were 6000 rpm and 60 min, respectively. It was observed that the structure of the nanocomposites that have been degassed at 65°C was dominated by ordered intercalated morphology while disordered intercalated with some exfoliated morphology was found for the sample degassed at 100°C for the first 2 hours of the degassing process. © (2013) Trans Tech Publications, Switzerland.

  16. An extremely high altitude plume seen at Mars morning terminator

    Science.gov (United States)

    Sanchez-Lavega, Agustin; Garcia-Muñoz, Antonio; Garcia-Melendo, Enrique; Perez-Hoyos, Santiago; Gomez-Forrellad, Josep M.; Pellier, Christophe; Delcroix, Marc; Lopez-Valverde, Miguel Angel; Gonzalez-Galindo, Francisco; Jaeschke, Wayne; Parker, Donald C.; Phillips, James H.; Peach, Damian

    2014-11-01

    We report the occurrence in March and April 2012 of two bright very high altitude plumes at the Martian terminator at 250 km or more above the surface, thus well into the ionosphere and bordering on the exosphere. They were located at about 195 deg West longitude and -45 deg latitude (at Terra Cimmeria) and lasted for about 10 days. The features showed day-to-day variability, and were seen at the morning terminator but not at the evening limb, which indicates rapid evolution in less than 10 hours and a cyclic behavior. Photometric measurements are used to explore two possible scenarios to explain their nature. If the phenomenon is due to suspended particles (dust, CO2 or H2O ice clouds) reflecting solar radiation, the mean size is about 0.1 microns with a nadir optical depth > 0.06. Alternatively, the plume could be auroral emission above a region with a strong magnetic anomaly and where aurora has previously been detected. Importantly, both explanations defy our current understanding of the Mars upper atmosphere.AcknowledgementsThis work was supported by the Spanish MINECO projects AYA2012-36666 with FEDER support, CONSOLIDER program ASTROMOL CSD2009-00038 and AYA2011-30613-CO2-1. Grupos Gobierno Vasco IT765-13 and UPV/EHU UFI11/55.

  17. Dynamic Response of High Rise Structures Under The Influence of Shear Walls

    Directory of Open Access Journals (Sweden)

    Syed Khasim Mutwalli

    2014-09-01

    Full Text Available This study presents the procedure for seismic performance estimation of high-rise buildings based on a concept of the capacity spectrum method. In 3D analytical model of thirty storied buildings have been generated for symmetric buildings Models and analyzed using structural analysis tool ETABS. The analytical model of the building includes all important components that influence the mass, strength, stiffness and deformability of the structure. To study the effect of concrete core wall & shear wall at different positions during earthquake, seismic analysis using both linear static, linear dynamic and non-linear static procedure has been performed. The deflections at each storey level has been compared by performing Equivalent static, response spectrum method as well as pushover method has also been performed to determine capacity, demand and performance level of the considered building models. From the below studies it has been observed that non-linear pushover analysis provide good estimate of global as well as local inelastic deformation demands and also reveals design weakness that may remain hidden in an elastic analysis and also the performance level of the structure. Storey drifts are found within the limit as specified by code (IS: 1893-2002 in Equivalent static, linear dynamic & non-linear static analysis.

  18. Fractal properties of isovelocity surfaces in high Reynolds number laboratory shear flows

    Science.gov (United States)

    Praskovsky, Alexander A.; Foss, John F.; Kleis, Stanley J.; Karyakin, Mikhail Yu.

    1993-08-01

    The fractal properties of isovelocity surfaces are studied in three high Reynolds number (Rλ≊2.0×102-3.2×103) laboratory shear flows using the standard box-counting method. The fractal dimension D=-d(log Nr)/d(log r) was estimated within the range of box sizes r from several Kolmogorov scales up to several integral scales (Nr is the number of boxes with size r required to cover the line intersection of an isovelocity surface). The inertial subrange was of particular interest in this investigation. Measurements were carried out for external intermittency factors γ≊0.6-1.0. The data were processed using threshold levels U±2.5u' (U and u' denote mean and rms values of longitudinal velocity). Over the parameters studied, no wide range of constant fractal dimension was found. On the other hand, the accuracy of constant fractal dimension approximation with D≊0.4 over the inertial subranges was shown to be similar to that of the Kolmogorov [Dokl. Akad. Nauk SSSR 30, 301 (1941)] ``two-thirds law.''

  19. Optimization of {beta}-carotene loaded solid lipid nanoparticles preparation using a high shear homogenization technique

    Energy Technology Data Exchange (ETDEWEB)

    Triplett, Michael D., E-mail: triplettm@battelle.or [Battelle Memorial Institute, Health and Life Sciences Global Business (United States); Rathman, James F. [The Ohio State University, Department of Chemical and Biomolecular Engineering (United States)

    2009-04-15

    Using statistical experimental design methodologies, the solid lipid nanoparticle design space was found to be more robust than previously shown in literature. Formulation and high shear homogenization process effects on solid lipid nanoparticle size distribution, stability, drug loading, and drug release have been investigated. Experimentation indicated stearic acid as the optimal lipid, sodium taurocholate as the optimal cosurfactant, an optimum lecithin to sodium taurocholate ratio of 3:1, and an inverse relationship between mixing time and speed and nanoparticle size and polydispersity. Having defined the base solid lipid nanoparticle system, {beta}-carotene was incorporated into stearic acid nanoparticles to investigate the effects of introducing a drug into the base solid lipid nanoparticle system. The presence of {beta}-carotene produced a significant effect on the optimal formulation and process conditions, but the design space was found to be robust enough to accommodate the drug. {beta}-Carotene entrapment efficiency averaged 40%. {beta}-Carotene was retained in the nanoparticles for 1 month. As demonstrated herein, solid lipid nanoparticle technology can be sufficiently robust from a design standpoint to become commercially viable.

  20. Analysis of the origins of content non-uniformity in high-shear wet granulation.

    Science.gov (United States)

    Oka, Sarang; Smrčka, David; Kataria, Anjali; Emady, Heather; Muzzio, Fernando; Štěpánek, František; Ramachandran, Rohit

    2017-08-07

    In this study, the origins of granule content non-uniformity in the high-shear wet granulation of a model two-component pharmaceutical blend were investigated. Using acetaminophen as the active pharmaceutical ingredient (API) and microcrystalline cellulose as the excipient, the distribution of the API across the granule size classes was measured for a range of conditions that differed in the duration of the initial dry mixing stage, the overall composition of the blend and the wet massing time. The coarse granule fractions were found to be systematically sub-potent, while the fines were enriched in the API. The extent of content non-uniformity was found to be dependent on two factors - powder segregation during dry mixing and redistribution of the API between the granule size fractions during the wet massing phase. The latter was demonstrated in an experiment where the excipient was pre-granulated, the API was added later and wet massed. The content non-uniformity in this case was comparable to that obtained when both components were present in the granulator from the beginning. With increasing wet massing time, the extent of content non-uniformity decreased, indicating that longer wet massing times might be a solution for systems with a natural tendency for component segregation. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Particle-turbulence-acoustic interactions in high-speed free-shear flows

    Science.gov (United States)

    Shallcross, Gregory; Buchta, David; Capecelatro, Jesse

    2016-11-01

    Experimental studies have shown that the injection of micro-water droplets in turbulent flows can be used to reduce the intensity of near-field pressure fluctuations. In this study, direct numerical simulation (DNS) is used to evaluate the effects of particle-turbulence-acoustic coupling for the first time. Simulations of temporally developing mixing layers are conducted for a range of Mach numbers and mass loadings. Once the turbulence reaches a self-similar state, the air-density shear layer is seeded with a random distribution of mono disperse water-density droplets. For M =0.9 to M =1.75, preliminary results show reductions in the near-field pressure fluctuations for moderate mass loadings, consistent with experimental studies under similar conditions. At high speed, the principle reduction of the normal velocity fluctuations, which increases with particle mass loading, appears to correlate to the reduction of the near-field radiated pressure fluctuations. These findings demonstrate that the DNS reproduces the observed particle-turbulence-acoustic phenomenology, and its complete space-time database can be used to further understand their interactions.

  2. Studies of wall shear and mass transfer in a large scale model of neonatal high-frequency jet ventilation.

    Science.gov (United States)

    Muller, W J; Gerjarusek, S; Scherer, P W

    1990-01-01

    The problem of endotracheal erosion associated with neonatal high-frequency jet ventilation (HFJV) is investigated through measurement of air velocity profiles in a scaled up model of the system. Fluid mechanical scaling principles are applied in order to construct a model within which velocity profiles are measured by hot-wire anemometry. The effects of two different jet geometries are investigated. Velocity gradients measured near the tracheal wall are used to measure the shear stresses caused by the jet flow on the wall. The Chilton-Colburn analogy between the transport of momentum and mass is applied to investigate tracheal drying caused by the high shear flow. Shear forces are seen to be more than two times higher for jets located near the endotracheal tube wall than for those located axisymmetrically in the center of the tube. Since water vapor fluxes are dependent on these shears, they are also higher for the asymmetric case. Fluxes are shown to be greatly dependent on the temperature and relative humidity of the inspired gas. Water from the tracheal surface may be depleted within one second if inspired gases are inadequately heated and humidified. It is recommended that the design of neonatal HFJV devices include delivery of heated (near body temperature), humidified (as close to 100% humidity as possible) gases through an axisymmetric jet to best avoid the problem of endotracheal erosion.

  3. Effect of functionality on unentangled star polymers at equilibrium and under shear flow

    Science.gov (United States)

    Xu, Xiaolei; Chen, Jizhong

    2016-06-01

    The properties of unentangled star polymers with arm length Nf = 20 beads and functionality f (3 ≤ f ≤ 60) are investigated at equilibrium and under shear flow by coarse-grained molecular dynamics simulations. At equilibrium, the star polymer shows a crossover from a linear, freely penetrable, extremely soft object to a spherical, slightly hard object with an impenetrable center with increasing f. The results confirm that the arm relaxation is essentially independent of f and stars of large f form a liquid-like structure. In shear flow, the polymer deformation and alignment are calculated as well as the shear-induced rotational dynamics as function of shear rate. These properties are found to exhibit qualitative changes at an f-independent shear rate, γ p ˙ , which is a consequence of competition between chain relaxation and imposed flow. Shear thinning is characterized by shear viscosity and normal stress differences. With increasing f, the critical shear rate for the onset of shear thinning decreases from γ p ˙ for f = 3 to a smaller value. Our results also show that shear thinning of stars of large f arise from the collapse of liquid-like structures at low shear rates ( γ ˙ ≪ γ p ˙), where chains have no deformation; at high shear rates ( γ ˙ ≫ γ p ˙), shear thinning is mainly attributed to the chain stretching and orientation as linear polymers.

  4. Fan-structure waves in shear ruptures

    Science.gov (United States)

    Tarasov, Boris

    2016-04-01

    This presentation introduces a recently identified shear rupture mechanism providing a paradoxical feature of hard rocks - the possibility of shear rupture propagation through the highly confined intact rock mass at shear stress levels significantly less than frictional strength. According to the fan-mechanism the shear rupture propagation is associated with consecutive creation of small slabs in the fracture tip which, due to rotation caused by shear displacement of the fracture interfaces, form a fan-structure representing the fracture head. The fan-head combines such unique features as: extremely low shear resistance (below the frictional strength), self-sustaining stress intensification in the rupture tip (providing easy formation of new slabs), and self-unbalancing conditions in the fan-head (making the failure process inevitably spontaneous and violent). An important feature of the fan-mechanism is the fact that for the initial formation of the fan-structure an enhanced local shear stress is required, however, after completion of the fan-structure it can propagate as a dynamic wave through intact rock mass at shear stresses below the frictional strength. Paradoxically low shear strength of pristine rocks provided by the fan-mechanism determines the correspondingly low transient strength of the lithosphere, which favours generation of new earthquake faults in the intact rock mass adjoining pre-existing faults in preference to frictional stick-slip instability along these faults. The new approach reveals an alternative role of pre-existing faults in earthquake activity: they represent local stress concentrates in pristine rock adjoining the fault where special conditions for the fan-mechanism nucleation are created, while further dynamic propagation of the new fault (earthquake) occurs at low field stresses even below the frictional strength.

  5. Prospects of hydroacoustic detection of ultra-high and extremely high energy cosmic neutrinos

    Science.gov (United States)

    Dedenko, L. G.; Karlik, Ya. S.; Learned, J. G.; Svet, V. D.; Zheleznykh, I. M.

    2001-07-01

    The prospects of construction of deep underwater neutrino telescopes in the world's oceans for the goals of ultra-high and super-high energy neutrino astrophysics (astronomy) using acoustic technologies are reviewed. The effective detection volume of the acoustic neutrino telescopes can be far greater than a cubic kilometer for extreme energies. In recent years, it was proposed that an existing hydroacoustic array of 2400 hydrophones in the Pacific Ocean near Kamchatka Peninsula could be used as a test base for an acoustic neutrino telescope SADCO (Sea-based Acoustic Detector of Cosmic Objects) which should be capable of detecting acoustic signals produced in water by the cosmic neutrinos with energies 1019-21 eV (e.g., topological defect neutrinos). We report on simulations of super-high energy electron-hadron and electron-photon cascades with the Landau-Pomeranchuk-Migdal effect taken into account. Acoustic signals emitted by neutrino-induced cascades with energies 1020-21 eV were calculated. The possibilities of using a converted hydroacoustic station MG-10 (MG-10M) of 132 hydrophones as a basic module for a deep water acoustic neutrino detector with the threshold detection energy 1015 eV in the Mediterranean Sea are analyzed (with the aim of searching for neutrinos with energies 1015-16 eV from Active Galactic Nuclei). .

  6. The Shear TEsting Programme 2: Factors affecting high precision weak lensing analyses

    CERN Document Server

    Massey, R; Berge, J; Bernstein, G; Bridle, S; Clowe, D; Dahle, H; Ellis, R; Erben, T; Hetterscheidt, M; High, F W; Hirata, C; Hoekstra, H; Hudelot, P; Jarvis, M; Johnston, D; Kuijken, K; Margoniner, V; Mandelbaum, R; Mellier, Y; Nakajima, R; Paulin-Henriksson, S; Peeples, M; Roat, C; Réfrégier, A; Rhodes, J; Schrabback, T; Schirmer, M; Seljak, U; Semboloni, E; Van Waerbeke, L; Massey, Richard; Heymans, Catherine; Berge, Joel; Bernstein, Gary; Bridle, Sarah; Clowe, Douglas; Dahle, Hakon; Ellis, Richard; Erben, Thomas; Hetterscheidt, Marco; Hirata, Christopher; Hoekstra, Henk; Hudelot, Patrick; Jarvis, Mike; Johnston, David; Kuijken, Konrad; Margoniner, Vera; Mandelbaum, Rachel; Mellier, Yannick; Nakajima, Reiko; Paulin-Henriksson, Stephane; Peeples, Molly; Roat, Chris; Refregier, Alexandre; Rhodes, Jason; Schrabback, Tim; Schirmer, Mischa; Seljak, Uros; Semboloni, Elisabetta; Waerbeke, Ludovic Van

    2006-01-01

    The Shear TEsting Programme (STEP) is a collaborative project to improve the accuracy and reliability of weak lensing measurement, in preparation for the next generation of wide-field surveys. We review sixteen current and emerging shear measurement methods in a common language, and assess their performance by running them (blindly) on simulated images that contain a known shear signal. We determine the common features of algorithms that most successfully recover the input parameters. We achieve previously unattained discriminatory precision in our analysis, via a combination of more extensive simulations, and pairs of galaxy images that have been rotated with respect to each other, thus removing noise from their intrinsic ellipticities. The robustness of our simulation approach is also confirmed by testing the relative calibration of methods on real data. Weak lensing measurement has improved since the first STEP paper. Several methods now consistently achieve better than 2% precision, and are still being de...

  7. The Shear Testing Programme 2: Factors affecting high-precision weak-lensing analyses

    Science.gov (United States)

    Massey, Richard; Heymans, Catherine; Bergé, Joel; Bernstein, Gary; Bridle, Sarah; Clowe, Douglas; Dahle, Håkon; Ellis, Richard; Erben, Thomas; Hetterscheidt, Marco; High, F. William; Hirata, Christopher; Hoekstra, Henk; Hudelot, Patrick; Jarvis, Mike; Johnston, David; Kuijken, Konrad; Margoniner, Vera; Mandelbaum, Rachel; Mellier, Yannick; Nakajima, Reiko; Paulin-Henriksson, Stephane; Peeples, Molly; Roat, Chris; Refregier, Alexandre; Rhodes, Jason; Schrabback, Tim; Schirmer, Mischa; Seljak, Uroš; Semboloni, Elisabetta; van Waerbeke, Ludovic

    2007-03-01

    The Shear Testing Programme (STEP) is a collaborative project to improve the accuracy and reliability of weak-lensing measurement, in preparation for the next generation of wide-field surveys. We review 16 current and emerging shear-measurement methods in a common language, and assess their performance by running them (blindly) on simulated images that contain a known shear signal. We determine the common features of algorithms that most successfully recover the input parameters. A desirable goal would be the combination of their best elements into one ultimate shear-measurement method. In this analysis, we achieve previously unattained discriminatory precision via a combination of more extensive simulations and pairs of galaxy images that have been rotated with respect to each other. That removes the otherwise overwhelming noise from their intrinsic ellipticities. Finally, the robustness of our simulation approach is confirmed by testing the relative calibration of methods on real data. Weak-lensing measurements have improved since the first STEP paper. Several methods now consistently achieve better than 2 per cent precision, and are still being developed. However, we can now distinguish all methods from perfect performance. Our main concern continues to be the potential for a multiplicative shear calibration bias: not least because this cannot be internally calibrated with real data. We determine which galaxy populations are responsible for bias and, by adjusting the simulated observing conditions, we also investigate the effects of instrumental and atmospheric parameters. The simulated point spread functions are not allowed to vary spatially, to avoid additional confusion from interpolation errors. We have isolated several previously unrecognized aspects of galaxy shape measurement, in which focused development could provide further progress towards the sub-per cent level of precision desired for future surveys. These areas include the suitable treatment of

  8. High shear treatment of concentrates and drying conditions influence the solubility of milk protein concentrate powders.

    Science.gov (United States)

    Augustin, Mary Ann; Sanguansri, Peerasak; Williams, Roderick; Andrews, Helen

    2012-11-01

    The solubility of milk protein concentrate (MPC) powders was influenced by the method used for preparing the concentrate, drying conditions, and the type of dryer used. Increasing total solids of the ultrafiltered concentrates (23% total solids, TS) by diafiltration to 25% TS or evaporation to 31% TS decreased the solubility of MPC powders (80-83% protein, w/w dry basis), with ultrafiltration followed by evaporation to higher total solids having the greater detrimental effect on solubility. High shear treatment (homogenisation at 350/100 bar, microfluidisation at 800 bar or ultrasonication at 24 kHz, 600 watts) of ultrafiltered and diafiltered milk protein concentrates prior to spray drying increased the nitrogen solubility of MPC powders (82% protein, w/w dry basis). Of the treatments applied, microfluidisation was the most effective for increasing nitrogen solubility of MPC powders after manufacture and during storage. Manufacture of MPC powders (91% protein, w/w dry basis) prepared on two different pilot-scale dryers (single stage or two stage) from milk protein concentrates (20% TS) resulted in powders with different nitrogen solubility and an altered response to the effects of microfluidisation. Microfluidisation (400, 800 and 1200 bar) of the concentrate prior to drying resulted in increased long term solubility of MPC powders that were prepared on a single stage dryer but not those produced on a two stage spray dryer. This work demonstrates that microfluidisation can be used as a physical intervention for improving MPC powder solubility. Interactions between the method of preparation and treatment of concentrate prior to drying, the drying conditions and dryer type all influence MPC solubility characteristics.

  9. Shearing stability of lubricants

    Science.gov (United States)

    Shiba, Y.; Gijyutsu, G.

    1984-01-01

    Shearing stabilities of lubricating oils containing a high mol. wt. polymer as a viscosity index improver were studied by use of ultrasound. The oils were degraded by cavitation and the degradation generally followed first order kinetics with the rate of degradation increasing with the intensity of the ultrasonic irradiation and the cumulative energy applied. The shear stability was mainly affected by the mol. wt. of the polymer additive and could be determined in a short time by mechanical shearing with ultrasound.

  10. Shearing stability of lubricants

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, Y.; Gijyutsu, G.

    1984-03-01

    Shearing stabilities of lubricating oils containing a high mol. wt. polymer as a viscosity index improver were studied by use of ultrasound. The oils were degraded by cavitation and the degradation generally followed first order kinetics with the rate of degradation increasing with the intensity of the ultrasonic irradiation and the cumulative energy applied. The shear stability was mainly affected by the mol. wt. of the polymer additive and could be determined in a short time by mechanical shearing with ultrasound.

  11. High magnetic shear gain in a liquid sodium stable couette flow experiment A prelude to an alpha - omega dynamo

    Energy Technology Data Exchange (ETDEWEB)

    Colgate, Stirling [Los Alamos National Laboratory; Li, Jui [Los Alamos National Laboratory; Finn, John [Los Alamos National Laboratory; Pariev, Vladimir [Los Alamos National Laboratory; Beckley, Howard [NM INSTIT. OF MINING AND TECH; Si, Jiahe [NM INSTIT. OF MINING AND TECH.; Martinic, Joe [NM INSTIT. OF MINING AND TECH.; Westpfahl, David [NM INSTIT. OF TECH.; Slutz, James [NM INSTIT. OF MINING AND TECH.; Westrom, Zeb [NM INSTIT. OF TECH.; Klein, Brianna [NM INSTIT. OF MINING AND TECH.

    2010-11-08

    The {Omega}-phase of the liquid sodium {alpha}-{Omega} dynamo experiment at NMIMT in cooperation with LANL has successfully demonstrated the production of a high toroidal field, B{sub {phi}} {approx_equal} 8 x B{sub r} from the radial component of an applied poloidal magnetic field, B{sub r}. This enhanced toroidal field is produced by rotational shear in stable Couette Row within liquid sodium at Rm {approx_equal} 120. The small turbulence in stable Taylor-Couette Row is caused by Ekman Row where ({delta}v/v){sup 2} {approx} 10{sup -3}. This high {Omega}-gain in low turbulence flow contrasts with a smaller {Omega}-gain in higher turbulence, Helmholtz-unstable shear flows. This result supports the ansatz that large scale astrophysical magnetic fields are created within semi-coherent large scale motions in which turbulence plays a diffusive role that enables magnetic flux linkage.

  12. High Magnetic Shear Gain in a Liquid Sodium Stable Couette Flow Experiment; A Prelude to an alpha-Omega Dynamo

    CERN Document Server

    Colgate, Stirling A; Pariev, Vladimir; Finn, John; Beckley, Howard; Si, Jiahe; Martinic, Joe; Westpfahl, David; Slutz, James; Westrom, Cebastian; Klein, Brianna; Schendel, Paul; Scharle, Cletus; McKinney, Travis; Ginanni, Rocky; Bentley, Ian; Mickey, Timothy

    2010-01-01

    The $\\Omega$-phase of the liquid sodium $\\alpha$-$\\Omega$ dynamo experiment at NMIMT in cooperation with LANL has successfully demonstrated the production of a high toroidal field, $B_{\\phi} \\simeq 8\\times B_r$ from the radial component of an applied poloidal magnetic field, $B_r$. This enhanced toroidal field is produced by rotational shear in stable Couette flow within liquid sodium at $Rm \\simeq 120$. The small turbulence in stable Taylor-Couette flow is caused by Ekman flow where $ (\\delta v/v)^2 \\sim 10^{-3} $. This high $\\Omega$-gain in low turbulence flow contrasts with a smaller $\\Omega$-gain in higher turbulence, Helmholtz-unstable shear flows. This result supports the ansatz that large scale astrophysical magnetic fields are created within semi-coherent large scale motions in which turbulence plays only a smaller diffusive role that enables magnetic flux linkage.

  13. How extreme are extremes?

    Science.gov (United States)

    Cucchi, Marco; Petitta, Marcello; Calmanti, Sandro

    2016-04-01

    High temperatures have an impact on the energy balance of any living organism and on the operational capabilities of critical infrastructures. Heat-wave indicators have been mainly developed with the aim of capturing the potential impacts on specific sectors (agriculture, health, wildfires, transport, power generation and distribution). However, the ability to capture the occurrence of extreme temperature events is an essential property of a multi-hazard extreme climate indicator. Aim of this study is to develop a standardized heat-wave indicator, that can be combined with other indices in order to describe multiple hazards in a single indicator. The proposed approach can be used in order to have a quantified indicator of the strenght of a certain extreme. As a matter of fact, extremes are usually distributed in exponential or exponential-exponential functions and it is difficult to quickly asses how strong was an extreme events considering only its magnitude. The proposed approach simplify the quantitative and qualitative communication of extreme magnitude

  14. Generation of bright circularly-polarized extreme ultraviolet high harmonics for magnetic circular dichroism spectroscopy

    CERN Document Server

    Kfir, Ofer; Turgut, Emrah; Knut, Ronny; Zusin, Dmitriy; Popmintchev, Dimitar; Popmintchev, Tenio; Nembach, Hans; Shaw, Justin M; Fleicher, Avner; Kapteyn, Henry; Murnane, Margaret; Cohen, Oren

    2014-01-01

    Circularly-polarized extreme UV and X-ray radiation provides valuable access to the structural, electronic and magnetic properties of materials. To date, such experiments have been possible only using large-scale free-electron lasers or synchrotrons. Here we demonstrate the first bright extreme UV circularly-polarized high harmonics and use this new light source for magnetic circular dichroism measurements at the M-shell absorption edges of cobalt. This work paves the way towards element-specific imaging and spectroscopy of multiple elements simultaneously in magnetic and other chiral media with very high spatio-temporal resolution, all on a tabletop.

  15. High aspect ratio tungsten grating on ultrathin Si membranes for extreme UV lithography

    Science.gov (United States)

    Peng, Xinsheng; Ying, Yulong

    2016-09-01

    Extreme ultraviolet lithography is one of the modern lithography tools for high-volume manufacturing with 22 nm resolution and beyond. But critical challenges exist to the design and fabrication of large-scale and highly efficient diffraction transmission gratings, significantly reducing the feature sizes down to 22 nm and beyond. To achieve such a grating, the surface flatness, the line edge roughness, the transmission efficiency and aspect ratio should be improved significantly. Delachat et al (2015 Nanotechnology 26 108262) develop a full process to fabricate a tungsten diffraction grating on an ultrathin silicon membrane with higher aspect ratio up to 8.75 that met all the aforementioned requirements for extreme ultraviolet lithography. This process is fully compatible with standard industrial extreme ultraviolet lithography.

  16. High aspect ratio tungsten grating on ultrathin Si membranes for extreme UV lithography.

    Science.gov (United States)

    Peng, Xinsheng; Ying, Yulong

    2016-09-02

    Extreme ultraviolet lithography is one of the modern lithography tools for high-volume manufacturing with 22 nm resolution and beyond. But critical challenges exist to the design and fabrication of large-scale and highly efficient diffraction transmission gratings, significantly reducing the feature sizes down to 22 nm and beyond. To achieve such a grating, the surface flatness, the line edge roughness, the transmission efficiency and aspect ratio should be improved significantly. Delachat et al (2015 Nanotechnology 26 108262) develop a full process to fabricate a tungsten diffraction grating on an ultrathin silicon membrane with higher aspect ratio up to 8.75 that met all the aforementioned requirements for extreme ultraviolet lithography. This process is fully compatible with standard industrial extreme ultraviolet lithography.

  17. Probability modeling of high flow extremes in Yingluoxia watershed, the upper reaches of Heihe River basin

    Science.gov (United States)

    Li, Zhanling; Li, Zhanjie; Li, Chengcheng

    2014-05-01

    Probability modeling of hydrological extremes is one of the major research areas in hydrological science. Most basins in humid and semi-humid south and east of China are concerned for probability modeling analysis of high flow extremes. While, for the inland river basin which occupies about 35% of the country area, there is a limited presence of such studies partly due to the limited data availability and a relatively low mean annual flow. The objective of this study is to carry out probability modeling of high flow extremes in the upper reach of Heihe River basin, the second largest inland river basin in China, by using the peak over threshold (POT) method and Generalized Pareto Distribution (GPD), in which the selection of threshold and inherent assumptions for POT series are elaborated in details. For comparison, other widely used probability distributions including generalized extreme value (GEV), Lognormal, Log-logistic and Gamma are employed as well. Maximum likelihood estimate is used for parameter estimations. Daily flow data at Yingluoxia station from 1978 to 2008 are used. Results show that, synthesizing the approaches of mean excess plot, stability features of model parameters, return level plot and the inherent independence assumption of POT series, an optimum threshold of 340m3/s is finally determined for high flow extremes in Yingluoxia watershed. The resulting POT series is proved to be stationary and independent based on Mann-Kendall test, Pettitt test and autocorrelation test. In terms of Kolmogorov-Smirnov test, Anderson-Darling test and several graphical diagnostics such as quantile and cumulative density function plots, GPD provides the best fit to high flow extremes in the study area. The estimated high flows for long return periods demonstrate that, as the return period increasing, the return level estimates are probably more uncertain. The frequency of high flow extremes exhibits a very slight but not significant decreasing trend from 1978 to

  18. A genome-wide analysis of putative functional and exonic variation associated with extremely high intelligence.

    Science.gov (United States)

    Spain, S L; Pedroso, I; Kadeva, N; Miller, M B; Iacono, W G; McGue, M; Stergiakouli, E; Smith, G D; Putallaz, M; Lubinski, D; Meaburn, E L; Plomin, R; Simpson, M A

    2016-08-01

    Although individual differences in intelligence (general cognitive ability) are highly heritable, molecular genetic analyses to date have had limited success in identifying specific loci responsible for its heritability. This study is the first to investigate exome variation in individuals of extremely high intelligence. Under the quantitative genetic model, sampling from the high extreme of the distribution should provide increased power to detect associations. We therefore performed a case-control association analysis with 1409 individuals drawn from the top 0.0003 (IQ >170) of the population distribution of intelligence and 3253 unselected population-based controls. Our analysis focused on putative functional exonic variants assayed on the Illumina HumanExome BeadChip. We did not observe any individual protein-altering variants that are reproducibly associated with extremely high intelligence and within the entire distribution of intelligence. Moreover, no significant associations were found for multiple rare alleles within individual genes. However, analyses using genome-wide similarity between unrelated individuals (genome-wide complex trait analysis) indicate that the genotyped functional protein-altering variation yields a heritability estimate of 17.4% (s.e. 1.7%) based on a liability model. In addition, investigation of nominally significant associations revealed fewer rare alleles associated with extremely high intelligence than would be expected under the null hypothesis. This observation is consistent with the hypothesis that rare functional alleles are more frequently detrimental than beneficial to intelligence.

  19. Effect of temperature on high shear-induced gelation of charge-stabilized colloids without adding electrolytes.

    Science.gov (United States)

    Wu, Hua; Tsoutsoura, Aikaterini; Lattuada, Marco; Zaccone, Alessio; Morbidelli, Massimo

    2010-02-16

    We demonstrated previously (Wu, H.; Zaccone, A.; Tsoutsoura, A.; Lattuada, M.; Morbidelli, M. Langmuir 2009, 25, 4715) that, for a colloid stabilized by charges from both polymer chain-end groups and adsorbed sulfonate surfactants, when the surfactant surface density reaches a certain critical value, the shear-induced gelation becomes unachievable at room temperature, even at an extremely large Peclet number, Pe = 4.6 x 10(4). This is due to the presence of the short-range, repulsive hydration force generated by the adsorbed surfactant. In this work, we investigate how such hydration force affects the shear-induced gelation at higher temperatures, in the range between 303 and 338 K. It is found that a colloidal system, which does not gel at room temperature in a microchannel at a fixed Pe = 3.7 x 10(4), does gel when temperature increases to a certain value. The critical initial particle volume fraction for the gelation to occur decreases as temperature increases. These results indicate that the effect of the hydration force on the gelation decreases as temperature increases. Moreover, we have observed that at the criticality only part of the primary particles is converted to the gel network and the effective particle volume fraction forming the gel network does not change significantly with temperature. The effective particle volume fraction is also independent of the surfactant surface coverage. Since the effective particle volume fraction corresponds to space filling requirement of a standing gel network, which is mainly related to the clusters structure, this result indicates that at a given shear rate the cluster structure does not change significantly with the surfactant surface coverage. On the other hand, since the cluster morphology is a strong function of the shear rate, we have observed that when the Peclet number is lowered from Pe = 3.7 x 10(4) to 1.7 x 10(4), the effective particle volume fraction reduces from 0.19 to 0.12 at 313 K.

  20. Quaternary layer anomalies around the Carlsberg Fault zone mapped with high-resolution shear-wave seismics south of Copenhagen

    DEFF Research Database (Denmark)

    Kammann, Janina; Hübscher, Christian; Nielsen, Lars

    . In the Upper Cretaceous growth faulting documents continued rifting. This finding contrasts the Late Cretaceous to Paleogene inversion tectonics in neighboring structures, as the Tornquist Zone. The high-resolution shear-wave seismic method was used to image structures in Quaternary layers in the Carlsberg....... In the shear-wave profile, we imaged the 30 m of the upward continuation of the Carlsberg Fault zone. In our area of investigation, the fault zone appears to comprise normal block faults and one reverse block fault showing the complexity of the fault zone. The observed faults appear to affect both the Danian......The Carlsberg Fault zone is located in the N-S striking Höllviken Graben and traverses the city of Copenhagen. The fault zone is a NNW-SSE striking structure in direct vicinity to the transition zone of the Danish Basin and the Baltic Shield. Recent small earthquakes indicate activity in the area...

  1. Scalable shear-exfoliation of high-quality phosphorene nanoflakes with reliable electrochemical cycleability in nano batteries

    Science.gov (United States)

    Xu, Feng; Ge, Binghui; Chen, Jing; Nathan, Arokia; Xin, Linhuo L.; Ma, Hongyu; Min, Huihua; Zhu, Chongyang; Xia, Weiwei; Li, Zhengrui; Li, Shengli; Yu, Kaihao; Wu, Lijun; Cui, Yiping; Sun, Litao; Zhu, Yimei

    2016-06-01

    Atomically thin black phosphorus (called phosphorene) holds great promise as an alternative to graphene and other two-dimensional transition-metal dichalcogenides as an anode material for lithium-ion batteries (LIBs). However, bulk black phosphorus (BP) suffers from rapid capacity fading and poor rechargeable performance. This work reports for the first time the use of in situ transmission electron microscopy (TEM) to construct nanoscale phosphorene LIBs. This enables direct visualization of the mechanisms underlying capacity fading in thick multilayer phosphorene through real-time capture of delithiation-induced structural decomposition, which serves to reduce electrical conductivity thus causing irreversibility of the lithiated phases. We further demonstrate that few-layer-thick phosphorene successfully circumvents the structural decomposition and holds superior structural restorability, even when subject to multi-cycle lithiation/delithiation processes and concomitant huge volume expansion. This finding provides breakthrough insights into thickness-dependent lithium diffusion kinetics in phosphorene. More importantly, a scalable liquid-phase shear exfoliation route has been developed to produce high-quality ultrathin phosphorene using simple means such as a high-speed shear mixer or even a household kitchen blender with the shear rate threshold of ˜1.25 × 104 s-1. The results reported here will pave the way for industrial-scale applications of rechargeable phosphorene LIBs.

  2. Dynamics of a high viscosity layer in response to shear flow

    Science.gov (United States)

    Esmaili, Ehsan; Staples, Anne

    2016-11-01

    We use the Shan-Chen multicomponent Lattice Boltzmann method (LBM) to investigate the time evolution of a thin liquid film (phase I) coating a solid surface under the action of a shearing force imposed by a surrounding fluid (phase II), whose viscosity is significantly lower than that of the film. The goal of this study is to use LBM to capture the contact line motion and interfacial dynamics for an oil-like liquid film which is driven by the upper phase (water) movement as a first approach to modeling thin film dewetting in wave swept marine environments. Lubrication theory is used to validate the results for the driven thin film, and the LBM simulations investigate the effects of the upper phase movement, lower phase thickness, and angle of the imposed shearing force on the thin film profile. This work was supported by the National Science Foundation under Grant Number 1437387.

  3. Calculation of shear stiffness in noise dominated magnetic resonance elastography data based on principal frequency estimation

    Energy Technology Data Exchange (ETDEWEB)

    McGee, K P; Lake, D; Mariappan, Y; Manduca, A; Ehman, R L [Department of Radiology, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN 55905 (United States); Hubmayr, R D [Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN 55905 (United States); Ansell, K, E-mail: mcgee.kiaran@mayo.edu [Schaeffer Academy, 2700 Schaeffer Lane NE, Rochester, MN 55906 (United States)

    2011-07-21

    Magnetic resonance elastography (MRE) is a non-invasive phase-contrast-based method for quantifying the shear stiffness of biological tissues. Synchronous application of a shear wave source and motion encoding gradient waveforms within the MRE pulse sequence enable visualization of the propagating shear wave throughout the medium under investigation. Encoded shear wave-induced displacements are then processed to calculate the local shear stiffness of each voxel. An important consideration in local shear stiffness estimates is that the algorithms employed typically calculate shear stiffness using relatively high signal-to-noise ratio (SNR) MRE images and have difficulties at an extremely low SNR. A new method of estimating shear stiffness based on the principal spatial frequency of the shear wave displacement map is presented. Finite element simulations were performed to assess the relative insensitivity of this approach to decreases in SNR. Additionally, ex vivo experiments were conducted on normal rat lungs to assess the robustness of this approach in low SNR biological tissue. Simulation and experimental results indicate that calculation of shear stiffness by the principal frequency method is less sensitive to extremely low SNR than previously reported MRE inversion methods but at the expense of loss of spatial information within the region of interest from which the principal frequency estimate is derived.

  4. Tensile fracture and shear localization under high loading rate in tungsten alloys

    OpenAIRE

    Couque, H.; Lankford, J.; Bose, A

    1992-01-01

    The influence of loading rate and microstructure on the tensile and compressive failure properties of three microstructurally dissimilar tungsten alloys has been investigated. Dynamic tensile fracture properties were characterized through fracture toughness tests performed at a stress intensity loading rate of 106 MPa $\\sqrt{{\\rm m}}$ s-1, and by tensile testing at a strain rate of 103 s-1. Shear banding phenomena were investigated by means of compression tests performed at strain rates of 5 ...

  5. High-resolution analysis of 1 day extreme precipitation in Sicily

    Science.gov (United States)

    Maugeri, M.; Brunetti, M.; Garzoglio, M.; Simolo, C.

    2015-04-01

    Sicily, the major Mediterranean island, experienced several exceptional precipitation episodes and floods during the last century, with dramatic consequences on human life and environment. A long term, rational planning of urban development is mandatory for protecting population and avoiding huge economic losses in the future. This requires a deep knowledge of the distributional features of extreme precipitation over the complex territory of Sicily. In the present study, we address this issue, and attempt a detailed investigation of observed 1-day precipitation extremes and their frequency distribution, based on a dense data-set of high-quality, homogenized station records in 1921-2005. We extrapolate very high quantiles (return levels) corresponding to 10-, 50- and 100-year return periods, as predicted by a generalized extreme value distribution. Return level estimates are produced on a regular high-resolution grid (30 arcsec) using a variant of regional frequency analysis combined with regression techniques. Results clearly reflect the complexity of this region, and make evident the high vulnerability of its eastern and northeastern parts as those prone to the most intense and potentially damaging events. This analysis thus provides an operational tool for extreme precipitation risk assessment and, at the same time, is an useful basis for validation and downscaling of regional climate models.

  6. Extreme deformations and clusterization at high spin in the A ~ 40 mass region

    Science.gov (United States)

    Ray, Debisree; Afanasjev, Anatoli

    2015-10-01

    Recent revival of the interest to the study of superdeformation and clusterization in light nuclei has motivated us to undertake the study of extreme deformations in the A ~ 32 - 50 N ~ Z nuclei. Unfortunately, at spin zero the predicted structures with extreme deformation are located at high excitation energies which prevents their experimental observation. On the other hand, the rotation brings such structures closer to the yrast line and, in principle, makes their observation possible with future generation of facilities such as GRETA. Thus, the systematic study of the extremely deformed structures and clusterization has been performed in the framework of cranked relativistic mean field theory. The major features of such structures, the spins at which they become yrast and the possiblities of their experimental observation will be discussed in this presentation. This work has been supported by the U.S. Department of Energy under the Grant DE-FG02-07ER41459.

  7. Extremely high thermal conductivity anisotropy of double-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Zhaoji Ma

    2017-06-01

    Full Text Available Based on molecular dynamics simulations, we reveal that double-walled carbon nanotubes can possess an extremely high anisotropy ratio of radial to axial thermal conductivities. The mechanism is basically the same as that for the high thermal conductivity anisotropy of graphene layers - the in-plane strong sp2 bonds lead to a very high intralayer thermal conductivity while the weak van der Waals interactions to a very low interlayer thermal conductivity. However, different from flat graphene layers, the tubular structures of carbon nanotubes result in a diameter dependent thermal conductivity. The smaller the diameter, the larger the axial thermal conductivity but the smaller the radial thermal conductivity. As a result, a DWCNT with a small diameter may have an anisotropy ratio of thermal conductivity significantly higher than that for graphene layers. The extremely high thermal conductivity anisotropy allows DWCNTs to be a promising candidate for thermal management materials.

  8. Extremely high thermal conductivity anisotropy of double-walled carbon nanotubes

    Science.gov (United States)

    Ma, Zhaoji; Guo, Zhengrong; Zhang, Hongwei; Chang, Tienchong

    2017-06-01

    Based on molecular dynamics simulations, we reveal that double-walled carbon nanotubes can possess an extremely high anisotropy ratio of radial to axial thermal conductivities. The mechanism is basically the same as that for the high thermal conductivity anisotropy of graphene layers - the in-plane strong sp2 bonds lead to a very high intralayer thermal conductivity while the weak van der Waals interactions to a very low interlayer thermal conductivity. However, different from flat graphene layers, the tubular structures of carbon nanotubes result in a diameter dependent thermal conductivity. The smaller the diameter, the larger the axial thermal conductivity but the smaller the radial thermal conductivity. As a result, a DWCNT with a small diameter may have an anisotropy ratio of thermal conductivity significantly higher than that for graphene layers. The extremely high thermal conductivity anisotropy allows DWCNTs to be a promising candidate for thermal management materials.

  9. Shear Thinning of Noncolloidal Suspensions

    Science.gov (United States)

    Vázquez-Quesada, Adolfo; Tanner, Roger I.; Ellero, Marco

    2016-09-01

    Shear thinning—a reduction in suspension viscosity with increasing shear rates—is understood to arise in colloidal systems from a decrease in the relative contribution of entropic forces. The shear-thinning phenomenon has also been often reported in experiments with noncolloidal systems at high volume fractions. However its origin is an open theoretical question and the behavior is difficult to reproduce in numerical simulations where shear thickening is typically observed instead. In this letter we propose a non-Newtonian model of interparticle lubrication forces to explain shear thinning in noncolloidal suspensions. We show that hidden shear-thinning effects of the suspending medium, which occur at shear rates orders of magnitude larger than the range investigated experimentally, lead to significant shear thinning of the overall suspension at much smaller shear rates. At high particle volume fractions the local shear rates experienced by the fluid situated in the narrow gaps between particles are much larger than the averaged shear rate of the whole suspension. This allows the suspending medium to probe its high-shear non-Newtonian regime and it means that the matrix fluid rheology must be considered over a wide range of shear rates.

  10. Detection and Attribution of Simulated Climatic Extreme Events and Impacts: High Sensitivity to Bias Correction

    Science.gov (United States)

    Sippel, S.; Otto, F. E. L.; Forkel, M.; Allen, M. R.; Guillod, B. P.; Heimann, M.; Reichstein, M.; Seneviratne, S. I.; Kirsten, T.; Mahecha, M. D.

    2015-12-01

    Understanding, quantifying and attributing the impacts of climatic extreme events and variability is crucial for societal adaptation in a changing climate. However, climate model simulations generated for this purpose typically exhibit pronounced biases in their output that hinders any straightforward assessment of impacts. To overcome this issue, various bias correction strategies are routinely used to alleviate climate model deficiencies most of which have been criticized for physical inconsistency and the non-preservation of the multivariate correlation structure. We assess how biases and their correction affect the quantification and attribution of simulated extremes and variability in i) climatological variables and ii) impacts on ecosystem functioning as simulated by a terrestrial biosphere model. Our study demonstrates that assessments of simulated climatic extreme events and impacts in the terrestrial biosphere are highly sensitive to bias correction schemes with major implications for the detection and attribution of these events. We introduce a novel ensemble-based resampling scheme based on a large regional climate model ensemble generated by the distributed weather@home setup[1], which fully preserves the physical consistency and multivariate correlation structure of the model output. We use extreme value statistics to show that this procedure considerably improves the representation of climatic extremes and variability. Subsequently, biosphere-atmosphere carbon fluxes are simulated using a terrestrial ecosystem model (LPJ-GSI) to further demonstrate the sensitivity of ecosystem impacts to the methodology of bias correcting climate model output. We find that uncertainties arising from bias correction schemes are comparable in magnitude to model structural and parameter uncertainties. The present study consists of a first attempt to alleviate climate model biases in a physically consistent way and demonstrates that this yields improved simulations of

  11. Cryogenic High-Pressure Shear-Coaxial Jets Exposed to Transverse Acoustic Forcing

    Science.gov (United States)

    2011-12-13

    Fluid Mech. 22, 473-537 24Huerre P. 2000. Open shear flow instabilities. In Perspectives in Fluid Dynamics , ed. G.K. Batchelor , H.K. Moffatt, M.G...Tryggvason, G. 1992 Vortex structure and dynamics in the near field of a coaxial jet. J. Fluid Mech. 241, 371-402. 3Wicker, R.B. and Eaton, J.K. 1994 Near...20Arienti, M, and Soteriou, M.C. 2009 Time-resolved proper orthogonal decomposition of liquid jet dynamics . Phys. Fluids 21, 112104. 21Narayanan,V

  12. Physical Exam Risk Factors for Lower Extremity Injury in High School Athletes: A Systematic Review.

    Science.gov (United States)

    Onate, James A; Everhart, Joshua S; Clifton, Daniel R; Best, Thomas M; Borchers, James R; Chaudhari, Ajit M W

    2016-11-01

    A stated goal of the preparticipation physical evaluation (PPE) is to reduce musculoskeletal injury, yet the musculoskeletal portion of the PPE is reportedly of questionable use in assessing lower extremity injury risk in high school-aged athletes. The objectives of this study are: (1) identify clinical assessment tools demonstrated to effectively determine lower extremity injury risk in a prospective setting, and (2) critically assess the methodological quality of prospective lower extremity risk assessment studies that use these tools. A systematic search was performed in PubMed, CINAHL, UptoDate, Google Scholar, Cochrane Reviews, and SportDiscus. Inclusion criteria were prospective injury risk assessment studies involving athletes primarily ages 13 to 19 that used screening methods that did not require highly specialized equipment. Methodological quality was evaluated with a modified physiotherapy evidence database (PEDro) scale. Nine studies were included. The mean modified PEDro score was 6.0/10 (SD, 1.5). Multidirectional balance (odds ratio [OR], 3.0; CI, 1.5-6.1; P < 0.05) and physical maturation status (P < 0.05) were predictive of overall injury risk, knee hyperextension was predictive of anterior cruciate ligament injury (OR, 5.0; CI, 1.2-18.4; P < 0.05), hip external:internal rotator strength ratio of patellofemoral pain syndrome (P = 0.02), and foot posture index of ankle sprain (r = -0.339, P = 0.008). Minimal prospective evidence supports or refutes the use of the functional musculoskeletal exam portion of the current PPE to assess lower extremity injury risk in high school athletes. Limited evidence does support inclusion of multidirectional balance assessment and physical maturation status in a musculoskeletal exam as both are generalizable risk factors for lower extremity injury.

  13. Physical Exam Risk Factors for Lower Extremity Injury in High School Athletes: A Systematic Review

    Science.gov (United States)

    Onate, James A.; Everhart, Joshua S.; Clifton, Daniel R.; Best, Thomas M.; Borchers, James R.; Chaudhari, Ajit M.W.

    2016-01-01

    Objective A stated goal of the preparticipation physical evaluation (PPE) is to reduce musculoskeletal injury, yet the musculoskeletal portion of the PPE is reportedly of questionable use in assessing lower extremity injury risk in high school-aged athletes. The objectives of this study are: (1) identify clinical assessment tools demonstrated to effectively determine lower extremity injury risk in a prospective setting, and (2) critically assess the methodological quality of prospective lower extremity risk assessment studies that use these tools. Data Sources A systematic search was performed in PubMed, CINAHL, UptoDate, Google Scholar, Cochrane Reviews, and SportDiscus. Inclusion criteria were prospective injury risk assessment studies involving athletes primarily ages 13 to 19 that used screening methods that did not require highly specialized equipment. Methodological quality was evaluated with a modified physiotherapy evidence database (PEDro) scale. Main Results Nine studies were included. The mean modified PEDro score was 6.0/10 (SD, 1.5). Multidirectional balance (odds ratio [OR], 3.0; CI, 1.5–6.1; P anterior cruciate ligament injury (OR, 5.0; CI, 1.2–18.4; P < 0.05), hip external: internal rotator strength ratio of patellofemoral pain syndrome (P = 0.02), and foot posture index of ankle sprain (r = −0.339, P = 0.008). Conclusions Minimal prospective evidence supports or refutes the use of the functional musculoskeletal exam portion of the current PPE to assess lower extremity injury risk in high school athletes. Limited evidence does support inclusion of multidirectional balance assessment and physical maturation status in a musculoskeletal exam as both are generalizable risk factors for lower extremity injury. PMID:26978166

  14. Effect of High Temperature on Mineralogy, Microstructure, Shear Stiffness and Tensile Strength of Two Australian Mudstones

    Science.gov (United States)

    Liu, Xianfeng; Zhang, Chonglei; Yuan, Shengyang; Fityus, Stephen; Sloan, Scott William; Buzzi, Olivier

    2016-09-01

    This study aims at providing quality experimental data on the effects of temperature on tensile strength and small strain shear stiffness of two Australian mudstones. The objective is to provide multiscale data in view of developing a numerical model that can capture and simulate the complex multiphysics of underground coal fire propagation. Two mudstones were collected in the Hunter Valley, close to a known underground coal fire, referred to as "Burning Mountain." The rock specimens were heated to a range of temperatures (maximum of 900 °C) for 24 h, and the materials were comprehensively characterized by X-ray diffraction, thermal gravimetric analyses, optical microscopy and scanning electron microscopy. In addition, mercury intrusion porosimetry was used in order to track changes in pore size distribution with temperature. Investigations at microscale were complemented by testing at the macroscale. In particular, the paper focuses on the evolution of the tensile strength and small strain shear stiffness as the materials are subjected to heating treatment. Results show that both parameters evolve in a non-monotonic manner with temperature. The observed mechanical responses are fully explained and corroborated by microstructural observations.

  15. A Shear-Mode Ultrasonic Motor Using Potassium Sodium Niobate-Based Ceramics with High Mechanical Quality Factor

    Science.gov (United States)

    Li, Enzhu; Kakemoto, Hirofumi; Hoshina, Takuya; Tsurumi, Takaaki

    2008-09-01

    (K,Na)NbO3-LiNbO3-CuO lead-free piezoelectric ceramics that show a high mechanical quality factor Qm were synthesized and used as a drive element of an ultrasonic motor. The Qm of the (K,Na)NbO3 ceramic could be enhanced by chemical modification using Li and Cu as well as microstructure control to obtain ceramics with fine grains. The grain size dependence of the Qm was consistent with a model based on the formation of internal bias field to stabilize the domain structure. A shear mode was used to drive the ultrasonic motor because the piezoelectric d31 and d33 constants of the ceramics were not sufficient for the motor applications. A shear-mode motor driven with four piezoelectric ceramic plates was developed using the lead-free ceramics with a high Qm of 1400, a high d15 of 207 pC/N, and a high k15 of 0.72. The highest revolution speed of 486 rpm was achieved at 34.5 kHz with the input voltage of approximately 180 Vp-p (peak to peak).

  16. Momentum-transport studies in high E x B shear plasmas in the National Spherical Torus Experiment.

    Science.gov (United States)

    Solomon, W M; Kaye, S M; Bell, R E; Leblanc, B P; Menard, J E; Rewoldt, G; Wang, W; Levinton, F M; Yuh, H; Sabbagh, S A

    2008-08-08

    Experiments have been conducted at the National Sperical Torus Experiment (NSTX) to study both steady state and perturbative momentum transport. These studies are unique in their parameter space under investigation, where the low aspect ratio of NSTX results in rapid plasma rotation with ExB shearing rates high enough to suppress low-k turbulence. In some cases, the ratio of momentum to energy confinement time is found to exceed five. Momentum pinch velocities of order 10-40 m/s are inferred from the measured angular momentum flux evolution after nonresonant magnetic perturbations are applied to brake the plasma.

  17. Large Differences in Bacterial Community Composition among Three Nearby Extreme Waterbodies of the High Andean Plateau.

    Science.gov (United States)

    Aguilar, Pablo; Acosta, Eduardo; Dorador, Cristina; Sommaruga, Ruben

    2016-01-01

    The high Andean plateau or Altiplano contains different waterbodies that are subjected to extreme fluctuations in abiotic conditions on a daily and an annual scale. The bacterial diversity and community composition of those shallow waterbodies is largely unexplored, particularly, of the ponds embedded within the peatland landscape (i.e., Bofedales). Here we compare the small-scale spatial variability (Altiplano peatland ponds represent a hitherto unknown source of microbial diversity.

  18. B-2 Extremely High Frequency SATCOM and Computer Increment 1 (B-2 EHF Inc 1)

    Science.gov (United States)

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-224 B-2 Extremely High Frequency SATCOM and Computer Increment 1 (B-2 EHF Inc 1) As of FY...10 Track to Budget 11 Cost and Funding 13 Low Rate Initial Production 19 Foreign Military Sales 20 Nuclear Costs 20 Unit Cost...Document CLIN - Contract Line Item Number CPD - Capability Production Document CY - Calendar Year DAB - Defense Acquisition Board DAE - Defense

  19. Environmental Assessment for the Advanced Extremely High Frequency Satellite Beddown and Deployment Program

    Science.gov (United States)

    2010-07-01

    Fish and Wildlife Service Advanced Extremely High Frequency Satellite Final Environmental Assessment v VIF Vehicle Integration Facility WMO World...Vehicle Mate Operations Upon arrival on CCAFS, the transporter would take the encapsulated payload to the Vehicle Integration Facility ( VIF ), which...is located just south of LC-41 (Figure 2-2). At the VIF , the encapsulated payload would be mated to the Atlas V Launch Vehicle (LV) using a mobile

  20. Effect of external shearing force on exfoliation structure and properties of high-performance epoxy/clay nanocomposites

    Institute of Scientific and Technical Information of China (English)

    LU Hai-jun; ZHANG Bao-yan; CHEN Xiang-bao

    2005-01-01

    To further investigate the influence of organic modifiers (primary amine with catalytic hydrogen and quaternary alkylammonium salt) on exfoliation behavior of clay tactoids, high-speed emulsifying and homogeneous mixing(HEHM) and ball milling were used to exert external shearing force on two organic clay tactoids (termed as MMTDDA and MMTDBDA, respectively), which were organically modified with DoDecyl Amine(DDA) and Dodecyl Benzyl Dimethyl Ammonium chloride(DBDA) ,respectively. The effects of external shearing force on microstructure and properties of both resultant nanocomposites were investigated by X-ray diffractometry(XRD), transmission electron microscopy(TEM) and thermogravimetric analysis(TGA). The results show that whether the clay tactoids are organically modified with catalytic primary amine or quaternary alkylammonium salt, the large agglomerates will not be finely dispersed or exfoliated by conventional mixing (magnetic stirring). After being vigorously sheared by HEHM or ball milling, the dispersion and exfoliation of clay tactoids are increasingly promoted for both MMTDDA and MMTDBDA, and the mechanical properties of the high-performance epoxy/clay nanocomposites are enhanced. For epoxy/MMTDDA nanocomposites, impact strength can be increased up to 44.5 kJ/m2 from 32.1 kJ/m2 , which is about 39% higher than that of pristine matrix, and the flexural strength is enhanced by about 4%. A similar enhancement for epoxy/MMTDBDA nanocomposites has also been achieved. Improvement on thermal stability of epoxy/clay nanocomposites is dependent on the exfoliation of clay layers and molecular structure of the modifiers. The onset temperature is increased with the clay loading decreasing from 5% or higher content to 3% (mass fraction), and the DBDA modifier with the heat-resistant benzyl may also improve the stability of epoxy/MMTDBDA nanocomposites.

  1. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment

    Science.gov (United States)

    Schoepf, Verena; Stat, Michael; Falter, James L.; McCulloch, Malcolm T.

    2015-12-01

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events.

  2. [Membranotropic effects of electromagnetic radiation of extremely high frequency on Escherichia coli].

    Science.gov (United States)

    Trchunian, A; Ogandzhanian, E; Sarkisian, E; Gonian, S; Oganesian, A; Oganesian, S

    2001-01-01

    It was found that "sound" electromagnetic radiations of extremely high frequencies (53.5-68 GHz) or millimeter waves (wavelength range of 4.2-5.6 mm) of low intensity (power density 0.01 mW) have a bactericidal effect on Escherichia coli bacteria. It was shown that exposure to irradiation of extremely high frequencies increases the electrokinetic potential and surface change density of bacteria and decreases of membrane potential. The total secretion of hydrogen ions was suppressed, the H+ flux from the cytoplasm to medium decreased, and the flux of N,N'-dicyclohexylcarbodiimide-sensitive potassium ions increased, which was accompanied by changes in the stoichiometry of these fluxes and an increase in the sensitivity of H+ ions to N,N'-dicyclohexylcarbodiimide. The effects depended on duration of exposure: as the time of exposure increased, the bactericidal effect increased, whereas the membranotropic effects decreased. The effects also depended on growth phase of bacteria: the irradiation affected the cells in the stationary but not in the logarithmic phase. It is assumed that the H(+)-ATPase complex F0F1 is involved in membranotropic effects of electromagnetic radiation of extremely high frequencies. Presumably, there are some compensatory mechanisms that eliminate the membranotropic effects.

  3. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment.

    Science.gov (United States)

    Schoepf, Verena; Stat, Michael; Falter, James L; McCulloch, Malcolm T

    2015-12-02

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events.

  4. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events.

    Science.gov (United States)

    Choudhary, Sonal; Blaud, Aimeric; Osborn, A Mark; Press, Malcolm C; Phoenix, Gareth K

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem (15)N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g Nm(-2)yr(-1), applied as (15)NH4(15)NO3 in Svalbard (79(°)N), during the summer. Separate applications of (15)NO3(-) and (15)NH4(+) were also made to determine the importance of N form in their retention. More than 95% of the total (15)N applied was recovered after one growing season (~90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants>vascular plants>organic soil>litter>mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of (15)N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater (15)NO3(-) than (15)NH4(+), suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication.

  5. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Sonal, E-mail: S.Choudhary@sheffield.ac.uk [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Management School, University of Sheffield, Conduit Road, Sheffield S10 1FL (United Kingdom); Blaud, Aimeric [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Osborn, A. Mark [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); School of Applied Sciences, RMIT University, PO Box 71, Bundoora, VIC 3083 (Australia); Press, Malcolm C. [School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Manchester Metropolitan University, Manchester, M15 6BH (United Kingdom); Phoenix, Gareth K. [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom)

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem {sup 15}N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g N m{sup −2} yr{sup −1}, applied as {sup 15}NH{sub 4}{sup 15}NO{sub 3} in Svalbard (79{sup °}N), during the summer. Separate applications of {sup 15}NO{sub 3}{sup −} and {sup 15}NH{sub 4}{sup +} were also made to determine the importance of N form in their retention. More than 95% of the total {sup 15}N applied was recovered after one growing season (~ 90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants > vascular plants > organic soil > litter > mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of {sup 15}N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater {sup 15}NO{sub 3}{sup −} than {sup 15}NH{sub 4}{sup +}, suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events

  6. High-resolution projections of mean and extreme precipitations over China through PRECIS under RCPs

    Science.gov (United States)

    Zhu, Jinxin; Huang, Gordon; Wang, Xiuquan; Cheng, Guanhui; Wu, Yinghui

    2017-08-01

    The impact of global warming on the characteristics of mean and extreme precipitations over China is investigated by using the Providing REgional Climate Impacts for Studies (PRECIS) model. The PRECIS model was driven by the Hadley Centre Global Environment Model version 2 with Earth System components and coupling (HadGEM2-ES). The results of both models are analyzed in terms of mean precipitation and indices of precipitation extremes (R95p, R99p, SDII, WDF, and CWD) over China at the resolution of 25 km under the Representative Concentration Pathways 4.5 and 8.5 (RCP4.5 and RCP8.5) scenarios for the baseline period (1976-2005) and two future periods (2036-2065 and 2070-2099). With improved resolution, the PRECIS model is able to better represent the fine-scale physical process than HadGEM2-ES. It can provide reliable spatial patterns of precipitation and its related extremes with high correlations to observations. Moreover, there is a notable improvement in temporal patterns simulation through the PRECIS model. The PRECIS model better reproduces the regional annual cycle and frequencies of daily precipitation intensity than its driving GCM. Under RCP4.5 and RCP8.5, both the HadGEM2-ES and the precis project increasing annual precipitation over the entire country for two future periods. Precipitation increase in winter is greater than the increase in summer. The results suggest that increased radiative forcing from RCP4.5 to RCP8.5 would further intensify the magnitude of projected precipitation changes by both PRECIS and HadGEM2-ES. For example, some parts of south China with decreased precipitation under RCP4.5 would expect even less precipitation under RCP8.5; regions (northwest, northcentral and northeast China) with increased precipitation under RCP4.5 would expect more precipitation under RCP8.5. Apart from the projected increase in annual total precipitation, the results also suggest that there will be an increase in the days with precipitation higher than

  7. Design and characteristics of MRF-based actuators for torque transmission under influence of high shear rates up to 34,000s-1

    Science.gov (United States)

    Güth, Dirk; Erbis, Vadim; Schamoni, Markus; Maas, Jürgen

    2014-04-01

    High rotational speeds for brakes and clutches based on magnetorheological fluids represent a remaining challenge for the industrial or automotive application. Beside particle centrifugation effects and rotational speed-depending no-load losses, the torque characteristic is an important property that needs to considered in the design process of actuators. Due to missing experimental data for these operating conditions, in this paper the shear rate and flux depending yield stress behavior of magnetorheological uids is experimentally investigated for high rotational speeds or respectively high shear rates. Therefore a brake actuator with variable shear gap heights up to 4 mm is designed, realized and used for the experimental investigation, which are performed for a maximum shear rate of ƴ= 34; 000 s-1 under large magnetic elds. The measurement results point out a strong dependency between shear rate, magnetic ux density and resulting yield stress. For low shear gap heights, a significant reduction in the yield stress up to 10 % can be determined. Additionally the development of Taylor vortices is determined, which will not only occur in viscous case without an applied magnetic field. The measurement results are important for a reliable actuator design which should be used in application with high rotational speeds.

  8. Multiplex APLP System for High-Resolution Haplogrouping of Extremely Degraded East-Asian Mitochondrial DNAs

    Science.gov (United States)

    Kakuda, Tsuneo; Shojo, Hideki; Tanaka, Mayumi; Nambiar, Phrabhakaran; Minaguchi, Kiyoshi; Umetsu, Kazuo; Adachi, Noboru

    2016-01-01

    Mitochondrial DNA (mtDNA) serves as a powerful tool for exploring matrilineal phylogeographic ancestry, as well as for analyzing highly degraded samples, because of its polymorphic nature and high copy numbers per cell. The recent advent of complete mitochondrial genome sequencing has led to improved techniques for phylogenetic analyses based on mtDNA, and many multiplex genotyping methods have been developed for the hierarchical analysis of phylogenetically important mutations. However, few high-resolution multiplex genotyping systems for analyzing East-Asian mtDNA can be applied to extremely degraded samples. Here, we present a multiplex system for analyzing mitochondrial single nucleotide polymorphisms (mtSNPs), which relies on a novel amplified product-length polymorphisms (APLP) method that uses inosine-flapped primers and is specifically designed for the detailed haplogrouping of extremely degraded East-Asian mtDNAs. We used fourteen 6-plex polymerase chain reactions (PCRs) and subsequent electrophoresis to examine 81 haplogroup-defining SNPs and 3 insertion/deletion sites, and we were able to securely assign the studied mtDNAs to relevant haplogroups. Our system requires only 1×10−13 g (100 fg) of crude DNA to obtain a full profile. Owing to its small amplicon size (<110 bp), this new APLP system was successfully applied to extremely degraded samples for which direct sequencing of hypervariable segments using mini-primer sets was unsuccessful, and proved to be more robust than conventional APLP analysis. Thus, our new APLP system is effective for retrieving reliable data from extremely degraded East-Asian mtDNAs. PMID:27355212

  9. 浅析高层剪力墙结构免抹灰施工技术%Free Plastering Construction Technology of High-rise Shear Wall Structure

    Institute of Scientific and Technical Information of China (English)

    李中军; 姜海波

    2014-01-01

    随着社会的发展,建筑规模和体量变大,高层住宅楼以现浇钢筋混凝土最为常见,如果粉刷,极其容易造成空鼓、裂缝等,而且会造成工期延误,材料浪费。本文以国营第七九五厂华星新家园1#住宅楼工程为例,对现浇混凝土剪力墙结构工程免抹灰施工技术进行了相关探讨。%With the development of the society, the construction scale and volume become large, with cast-in-place reinforced concrete commonly appears in high-rise residential buildings, if painted, it is extremely easy to cause the empty drum, cracks, etc., and can cause delays, material waste. This article, taking 1 # residential building project of Huaxing new homes of state-run seven nine five factory as an example, carries on the related discussion on the cast-in-place concrete free plastering construction technology of shear wall structure engineering.

  10. Impact of the extreme 2009 wildfire Victoria the wettability of naturally highly water repellent soils

    Science.gov (United States)

    Doerr, Stefan H.; Shakesby, Richard A.; Sheridan, Gary J.; Lane, Patrick Nj; Smith, Hugh G.; Bell, Tina; Blake, William H.

    2010-05-01

    The recent catastrophic wildfires near Melbourne, which peaked on Feb. 7 2009, burned ca 400,000 ha and caused the tragic loss of 173 people. They occurred during unprecedented extreme fire weather where dry northerly winds gusting up to 100 km/h coincided with the highest temperatures ever recorded in this region. These conditions, combined with the very high biomass of mature eucalypt forests, very low fuel moisture conditions and steep slopes, generated extreme burning conditions. A rapid response project was launched under the NERC Urgency Scheme aimed at determining the effects of this extreme event on soil properties. Three replicate sites each were sampled for extremely high burn severity, high burn severity and unburnt control terrain, within mature mixed-species eucalypt forests near Marysville in April 2009. Ash and surface soil (0-2.5 cm and 2.5-5 cm) were collected at 20 sample grid points at each site. Here we report on outcomes from Water Drop Penetration Time (WDPT) tests carried out on soil samples to determine the impact of this extreme event on the wettability of a naturally highly water repellent soil. Field assessment suggested that the impact of this extreme wildfire on the soil was less than might be supposed given the extreme burn severity (indicated by the complete elimination of the ground vegetation). This was confirmed by the laboratory results. No major difference in WDPT was detected between (i) burned and control samples, and (ii) between surface and subsurface WDPT patterns, indicating that soil temperatures in the top 0-2.5 cm did not exceed ~200° C. Seedling germination in burned soil was reduced by at least 2/3 compared to the control samples, however, this reduction is indicative an only modest heat input into the soil. The limited heat input into the soil stands in stark contrast to the extreme burn severity (based on vegetation destruction parameters). We speculate that limited soil heating resulted perhaps from the unusually

  11. Extreme risk taker who wants to continue taking part in high risk sports after serious injury.

    Science.gov (United States)

    Pain, M; Kerr, J H

    2004-06-01

    The case is reported of a 40 year old male high risk sport athlete who had seriously injured himself several times and as a result was partially physically disabled and had trouble with mental tasks requiring concentration such as spelling, reading numbers, and writing. The athlete was referred to a sports psychologist. In consultations, it became clear that he was having difficulty reconciling the difference between his life as it used to be and as it would be in the future. Part of his difficulty was dealing with the frustration and anger "outbursts" which resulted from not being able to perform straightforward everyday motor skills. In spite of his injuries and disability, the patient badly wanted to continue participating in extreme sports. Reversal theory is used in the discussion to provide theoretical explanations of the motivation for his extreme risk taking behaviour.

  12. Carbon coatings for extreme-ultraviolet high-order laser harmonics

    Energy Technology Data Exchange (ETDEWEB)

    Coraggia, S.; Frassetto, F. [CNR-Institute of Photonics and Nanotechnologies, Laboratory for UV and X-Ray Optical Research, via Trasea 7, 35131 Padova (Italy); Aznarez, J.A.; Larruquert, J.I.; Mendez, J.A. [GOLD-Instituto de Optica-Consejo Superior de Investigaciones Cientificas, Serrano 144, 28006 Madrid (Spain); Negro, M.; Stagira, S.; Vozzi, C. [Department of Physics-Politecnico of Milano and CNR-Institute of Photonics and Nanotechnologies, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Poletto, L., E-mail: poletto@dei.unipd.i [CNR-Institute of Photonics and Nanotechnologies, Laboratory for UV and X-Ray Optical Research, via Trasea 7, 35131 Padova (Italy)

    2011-04-11

    The experimental study of the optical properties of thin carbon films to be used as grazing-incidence coatings for extreme-ultraviolet high-order harmonics is presented. The carbon samples were deposited on plane glass substrates by the electron beam evaporation technique. The optical constants (real and imaginary parts of the refraction index) have been calculated through reflectivity measurements. The results are in good agreement with what reported in the literature, and confirm that carbon-coated optics operated at grazing incidence have a remarkable gain over conventional metallic coatings in the extreme ultraviolet. Since the harmonics co-propagate with the intense infrared laser generating beam, the carbon damage threshold when exposed to ultrashort infrared laser pulses has been measured.

  13. Phase Quantization Study of Spatial Light Modulator for Extreme High contrast Imaging

    CERN Document Server

    Dou, Jiangpei

    2016-01-01

    Direct imaging of exoplanets by reflected starlight is extremely challenging due to the large luminosity ratio to the primary star. Wave front control is a critical technique to attenuate the speckle noise in order to achieve an extreme high contrast. We present the phase quantization study of spatial light modulator for wave front control to meet the contrast requirement of detection of a terrestrial planet in the habitable zone of a solar-type star. We perform the numerical simulation by employing the SLM with different phase accuracy and actuator numbers, which are related to the achievable contrast. We use an optimization algorithm to solve the quantization problems that is matched to the controllable phase step of the SLM. Two optical configurations are discussed with the SLM located before and after the coronagraph focal plane mask, respectively. The simulation result has constrained the specification for phase accuracy of SLM in above two optical configurations. Finally, we have demonstrated that the S...

  14. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic

    Science.gov (United States)

    Hansen, Brage B.; Isaksen, Ketil; Benestad, Rasmus E.; Kohler, Jack; Pedersen, Åshild Ø.; Loe, Leif E.; Coulson, Stephen J.; Larsen, Jan Otto; Varpe, Øystein

    2014-11-01

    One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January-February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (˜5-20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties.

  15. Functional properties of whey proteins affected by heat treatment and hydrodynamic high-pressure shearing.

    Science.gov (United States)

    Dissanayake, M; Vasiljevic, T

    2009-04-01

    Two batches of native whey proteins (WP) were subjected to microfluidization or heat denaturation accompanied by microfluidization, followed by spray drying. Powders were assessed for their solubility, heat stability, coagulation time, and emulsifying and foaming properties. Effects of denaturation and shearing were examined by particle size analysis, differential scanning calorimetry, reducing and nonreducing sodium dodecyl sulfate-PAGE, and size exclusion-HPLC. Heat treatment significantly decreased solubility, whereas the number of microfluidization passes markedly improved solubility. The combined effect of heat and pressure significantly increased heat coagulation time. Emulsifying activity index substantially increased upon heat denaturation and was further enhanced by microfluidization. Emulsion stability appeared unaffected by the combined treatment, but the concentration of adsorbed protein on fat droplets was significantly increased. Foaming properties were diminished by heating. Particle size distribution patterns, sodium dodecyl sulfate-PAGE, and size exclusion-HPLC revealed disappearance of major WP and creation of relatively higher, as well as smaller, molecular weight aggregates as a result of the 2 treatments. The use of heat and microfluidization in combination could be used to stabilize WP against heat by producing microparticulated species that have different surface and colloidal properties compared with native WP. These results have implications for the use of WP as an additive in heat-processed foods.

  16. Reducing the Ideal Shear Strengths of ZrB2 by High Efficient Alloying Elements (Ag, Au, Pd and Pt)

    Science.gov (United States)

    Dai, Fu-Zhi; Zhou, Yanchun

    2017-02-01

    Activating the plasticity of ZrB2 is a promising approach to improve its key properties for applications in hypersonic vehicles, including high temperature strength and thermal shock resistance. The present work demonstrates that ideal shear strength of ZrB2, which is a good indicator of the critical stress for dislocation nucleation, can be significantly reduced by dissolving of appropriate alloying elements. Analyzing on the bonding nature of ZrB2 reveals that choosing alloying elements with low energy valence electrons will prevent electron transferring from alloying element to the electron deficient B-B π orbits, which will reduce the local stability of the region surrounding the alloying element. Under the criterion, elements with d electrons tending to be full-filled (Ag, Au, Pd and Pt, the full-filled state is associated with low energy level) are selected as promising candidates with their prominent efficiency in reducing ideal shear strengths verified by first-principles calculations. The results provide useful guidelines for further designs of ZrB2 based materials, especially for improving their mechanical properties.

  17. Reducing the Ideal Shear Strengths of ZrB2 by High Efficient Alloying Elements (Ag, Au, Pd and Pt).

    Science.gov (United States)

    Dai, Fu-Zhi; Zhou, Yanchun

    2017-02-24

    Activating the plasticity of ZrB2 is a promising approach to improve its key properties for applications in hypersonic vehicles, including high temperature strength and thermal shock resistance. The present work demonstrates that ideal shear strength of ZrB2, which is a good indicator of the critical stress for dislocation nucleation, can be significantly reduced by dissolving of appropriate alloying elements. Analyzing on the bonding nature of ZrB2 reveals that choosing alloying elements with low energy valence electrons will prevent electron transferring from alloying element to the electron deficient B-B π orbits, which will reduce the local stability of the region surrounding the alloying element. Under the criterion, elements with d electrons tending to be full-filled (Ag, Au, Pd and Pt, the full-filled state is associated with low energy level) are selected as promising candidates with their prominent efficiency in reducing ideal shear strengths verified by first-principles calculations. The results provide useful guidelines for further designs of ZrB2 based materials, especially for improving their mechanical properties.

  18. Lower Extremity Function following Partial Calcanectomy in High-Risk Limb Salvage Patients

    Directory of Open Access Journals (Sweden)

    Noah G. Oliver

    2015-01-01

    Full Text Available Partial calcanectomy (PC is an established limb salvage procedure for treatment of deep heel ulceration with concomitant calcaneal osteomyelitis. The purpose of this study is to determine if a relationship exists between the amount of calcaneus removed during PC and the resulting lower extremity function and limb salvage outcomes. Consecutive PC patients were retrospectively divided into two cohorts defined by the amount of calcaneus resected before wound closure: patients in cohort 1 retained = 50% of calcaneus, while patients in cohort 2 underwent resection of >50% of the calcaneus. The Lower Extremity Function Scale (LEFS was used to assess postoperative lower extremity function. The average amount of calcaneus resected was 13% ± 9.2 (1–39% and 74% ± 19.5 (51–100 in cohorts 1 and 2, respectively (P<0.0001. Below knee amputation was performed in 7 (28% and 5 (29% of subjects in cohorts 1 and 2, respectively (P=1.0. The average LEFS score was 33.9 ± 15.0 for subjects in cohort 1 and 36.2 ± 19.9 for the subjects cohort 2 (P=0.8257 which correlates to “moderate to quite a bit of difficulty.” Our study suggests that regardless of the amount of calcaneus resected, PC provides a viable treatment option for high-risk patients with calcaneal osteomyelitis.

  19. Performance of High Temperature Operational Amplifier, Type LM2904WH, under Extreme Temperatures

    Science.gov (United States)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Operation of electronic parts and circuits under extreme temperatures is anticipated in NASA space exploration missions as well as terrestrial applications. Exposure of electronics to extreme temperatures and wide-range thermal swings greatly affects their performance via induced changes in the semiconductor material properties, packaging and interconnects, or due to incompatibility issues between interfaces that result from thermal expansion/contraction mismatch. Electronics that are designed to withstand operation and perform efficiently in extreme temperatures would mitigate risks for failure due to thermal stresses and, therefore, improve system reliability. In addition, they contribute to reducing system size and weight, simplifying its design, and reducing development cost through the elimination of otherwise required thermal control elements for proper ambient operation. A large DC voltage gain (100 dB) operational amplifier with a maximum junction temperature of 150 C was recently introduced by STMicroelectronics [1]. This LM2904WH chip comes in a plastic package and is designed specifically for automotive and industrial control systems. It operates from a single power supply over a wide range of voltages, and it consists of two independent, high gain, internally frequency compensated operational amplifiers. Table I shows some of the device manufacturer s specifications.

  20. A Stable, Extreme Temperature, High Radiation, Compact. Low Power Clock Oscillator for Space, Geothermal, Down-Hole & other High Reliability Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Efficient and stable clock signal generation requirements at extreme temperatures and high radiation are not met with the current solutions. Chronos Technology...

  1. Amplitude limits and nonlinear damping of shear-Alfvén waves in high-beta low-collisionality plasmas

    Science.gov (United States)

    Squire, J.; Schekochihin, A. A.; Quataert, E.

    2017-05-01

    This work, which extends Squire et al (Astrophys. J. Lett. 2016 830 L25), explores the effect of self-generated pressure anisotropy on linearly polarized shear-Alfvén fluctuations in low-collisionality plasmas. Such anisotropies lead to stringent limits on the amplitude of magnetic perturbations in high-β plasmas, above which a fluctuation can destabilize itself through the parallel firehose instability. This causes the wave frequency to approach zero, ‘interrupting’ the wave and stopping its oscillation. These effects are explored in detail in the collisionless and weakly collisional ‘Braginskii’ regime, for both standing and traveling waves. The focus is on simplified models in one dimension, on scales much larger than the ion gyroradius. The effect has interesting implications for the physics of magnetized turbulence in the high-β conditions that are prevalent in many astrophysical plasmas.

  2. Fabrication of surfaces with extremely high contact angle hysteresis from polyelectrolyte multilayer.

    Science.gov (United States)

    Wang, Liming; Wei, Jingjing; Su, Zhaohui

    2011-12-20

    High contact angle hysteresis on polyelectrolyte multilayers (PEMs) ion-paired with hydrophobic perfluorooctanoate anions is reported. Both the bilayer number of PEMs and the ionic strength of deposition solutions have significant influence on contact angle hysteresis: higher ionic strength and greater bilayer number cause increased contact angle hysteresis values. The hysteresis values of ~100° were observed on smooth PEMs and pinning of the receding contact line on hydrophilic defects is implicated as the cause of hysteresis. Surface roughness can be used to further tune the contact angle hysteresis on the PEMs. A surface with extremely high contact angle hysteresis of 156° was fabricated when a PEM was deposited on a rough substrate coated with submicrometer scale silica spheres. It was demonstrated that this extremely high value of contact angle hysteresis resulted from the penetration of water into the rough asperities on the substrate. The same substrate hydrophobized by chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltriethoxysilane exhibits high advancing contact angle and low hysteresis.

  3. In situ observation and measurement of composites subjected to extremely high temperature

    Science.gov (United States)

    Fang, Xufei; Yu, Helong; Zhang, Guobing; Su, Hengqiang; Tang, Hongxiang; Feng, Xue

    2014-03-01

    In this work, we develop an instrument to study the ablation and oxidation process of materials such as C/SiC (carbon fiber reinforced silicon carbide composites) and ultra-high temperature ceramic in extremely high temperature environment. The instrument is integrated with high speed cameras with filtering lens, infrared thermometers and water vapor generator for image capture, temperature measurement, and humid atmosphere, respectively. The ablation process and thermal shock as well as the temperature on both sides of the specimen can be in situ monitored. The results show clearly the dynamic ablation and liquid oxide flowing. In addition, we develop an algorithm for the post-processing of the captured images to obtain the deformation of the specimens, in order to better understand the behavior of the specimen subjected to high temperature.

  4. Foundations of high-energy-density physics physical processes of matter at extreme conditions

    CERN Document Server

    Larsen, Jon

    2017-01-01

    High-energy-density physics explores the dynamics of matter at extreme conditions. This encompasses temperatures and densities far greater than we experience on Earth. It applies to normal stars, exploding stars, active galaxies, and planetary interiors. High-energy-density matter is found on Earth in the explosion of nuclear weapons and in laboratories with high-powered lasers or pulsed-power machines. The physics explored in this book is the basis for large-scale simulation codes needed to interpret experimental results whether from astrophysical observations or laboratory-scale experiments. The key elements of high-energy-density physics covered are gas dynamics, ionization, thermal energy transport, and radiation transfer, intense electromagnetic waves, and their dynamical coupling. Implicit in this is a fundamental understanding of hydrodynamics, plasma physics, atomic physics, quantum mechanics, and electromagnetic theory. Beginning with a summary of the topics and exploring the major ones in depth, thi...

  5. Poly(acrylamide-MWNTs hybrid hydrogel with extremely high mechanical strength

    Directory of Open Access Journals (Sweden)

    Feng Huanhuan

    2016-01-01

    Full Text Available Poly(acrylamide-multiwalled carbon nanotubes (PAAm-MWNTs hybrid hydrogels were prepared through the radiation-induced polymerization and crosslinking of the aqueous solution of acrylamide and well-dispersed MWNTs for the first time. The PAAm gels obtained by the radiation-induced polymerization and cosslinking showed very high mechanical strengths, and the PAAm-MWNTs hybrid hydrogels had improved mechanical properties compared with the PAAm gels, and hence the PAAm-MWNTs hybrid hydrogels showed extremely high compressive and tensile strengths. The hybrid hydrogels with water contents more than 80 wt.% usually did not fracture even at compressive strengths close to or even more than 60 MPa and strains more than 97%. And the hybrid hydrogels had very high elongations (more than 2000% in some cases, especially when the water content was high. The tensile strengths were in sub-MPa. The hybrid PAAm-MWNTs hydrogel is one of the strongest hydrogel even made.

  6. Table-Top Milliwatt-Class Extreme Ultraviolet High Harmonic Light Source

    CERN Document Server

    Klas, Robert; Tschernajew, Maxim; Hädrich, Steffen; Shamir, Yariv; Tünnermann, Andreas; Rothhardt, Jan; Limpert, Jens

    2016-01-01

    Extreme ultraviolet (XUV) lasers are essential for the investigation of fundamental physics. Especially high repetition rate, high photon flux sources are of major interest for reducing acquisition times and improving signal to noise ratios in a plethora of applications. Here, an XUV source based on cascaded frequency conversion is presented, which delivers due to the drastic better single atom response for short wavelength drivers, an average output power of (832 +- 204) {\\mu}W at 21.7 eV. This is the highest average power produced by any HHG source in this spectral range surpassing precious demonstrations by more than a factor of four. Furthermore, a narrow-band harmonic at 26.6 eV with a relative energy bandwidth of only {\\Delta}E/E= 1.8 x 10E-3 has been generated, which is of high interest for high precision spectroscopy experiments.

  7. EEE - Extreme Energy Events: an astroparticle physics experiment in Italian High Schools

    Science.gov (United States)

    Abbrescia, M.; Avanzini, C.; Baldini, L.; Baldini Ferroli, R.; Batignani, G.; Bencivenni, G.; Bossini, E.; Bressan, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccia, E.; Corvaglia, A.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Dreucci, M.; Fabbri, F. L.; Fattibene, E.; Ferrarov, A.; Forster, R.; Frolov, V.; Galeotti, P.; Garbini, M.; Gemme, G.; Gnesi, I.; Grazzi, S.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Maggiora, A.; Maron, G.; Mazziotta, M. N.; Miozzi, S.; Noferini, F.; Nozzoli, F.; Panareo, M.; Panetta, M. P.; Paoletti, R.; Perasso, L.; Pilo, F.; Piragino, G.; Riggi, F.; Righini, G. C.; Rodriguez Rodriguez, A.; Sartorelli, G.; Scapparone, E.; Schioppa, M.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Squarcia, S.; Taiuti, M.; Terreni, G.; Vistoli, M. C.; Votano, L.; Williams, M. C. S.; Zani, S.; Zichichi, A.; Zuyeuski, R.

    2016-05-01

    The Extreme Energy Events project (EEE) is aimed to study Extensive Air Showers (EAS) from primary cosmic rays of more than 1018 eV energy detecting the ground secondary muon component using an array of telescopes with high spatial and time resolution. The second goal of the EEE project is to involve High School teachers and students in this advanced research work and to initiate them in scientific culture: to reach both purposes the telescopes are located inside High School buildings and the detector construction, assembling and monitoring - together with data taking and analysis - are done by researchers from scientific institutions in close collaboration with them. At present there are 42 telescopes in just as many High Schools scattered all over Italy, islands included, plus two at CERN and three in INFN units. We report here some preliminary physics results from the first two common data taking periods together with the outreach impact of the project.

  8. Shear Bearing Capacity of Ultra-High Performance Concrete Shear Wall%超高性能混凝土剪力墙抗剪承载力分析

    Institute of Scientific and Technical Information of China (English)

    钟益东; 童小龙; 甘文举

    2015-01-01

    This paper uses nonlinear finite element analysis upon the basic behavior of Ultra -high performance concrete shear wall subjected to monodirectional lateral load, and studies the effect of axial load ratio, shear span ratio, the ratio of hidden column longitudinal, the volumetric ratio of hidden column and the ratio of web reinforcement on the shear bearing capacity. The research shows that: the bearing capacity of UHPC shear wall is high; the displacement ductility of UHPC shear wall is well. With the increased of axial load ratio, the bearing capacity is first increased and then decreased, the ductility drop significantly, so axial load ratio should be strictly controlled; With the shear span ratio increased, the destruction of morphological change and the bearing capacity increase; With the ratio of hidden column longitudinal increasing, the bearing capacity increase; the volumetric ratio of hidden column, the ratio of web horizontal reinforcement and the ratio of web vertical reinforcement effect on bearing capacity are not very obvious.%对超高性能混凝土UHPC(Ultra-High Performance Concrete)剪力墙在单向水平荷载作用下的受力过程进行了非线性有限元分析。重点分析了轴压比、剪跨比、暗柱纵筋配筋率、暗柱箍筋配箍率、分布钢筋配筋率等因素对UHPC剪力墙抗剪承载力的影响。结果表明: UHPC混凝土剪力墙抗剪承载力高,延性较好,值得在工程领域应用。随着轴压比的增大,承载力先增大后减小,延性大幅下降,应该严格控制轴压比;随着剪跨比增大,破坏形态发生变化,承载力减小;随着暗柱纵筋配筋率的增大,承载力增大;暗柱箍筋体积配箍率及分布钢筋的增大对承载力的影响不很明显。

  9. Image-based motion compensation for high-resolution extremities cone-beam CT

    Science.gov (United States)

    Sisniega, A.; Stayman, J. W.; Cao, Q.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.

    2016-03-01

    Purpose: Cone-beam CT (CBCT) of the extremities provides high spatial resolution, but its quantitative accuracy may be challenged by involuntary sub-mm patient motion that cannot be eliminated with simple means of external immobilization. We investigate a two-step iterative motion compensation based on a multi-component metric of image sharpness. Methods: Motion is considered with respect to locally rigid motion within a particular region of interest, and the method supports application to multiple locally rigid regions. Motion is estimated by maximizing a cost function with three components: a gradient metric encouraging image sharpness, an entropy term that favors high contrast and penalizes streaks, and a penalty term encouraging smooth motion. Motion compensation involved initial coarse estimation of gross motion followed by estimation of fine-scale displacements using high resolution reconstructions. The method was evaluated in simulations with synthetic motion (1-4 mm) applied to a wrist volume obtained on a CMOS-based CBCT testbench. Structural similarity index (SSIM) quantified the agreement between motion-compensated and static data. The algorithm was also tested on a motion contaminated patient scan from dedicated extremities CBCT. Results: Excellent correction was achieved for the investigated range of displacements, indicated by good visual agreement with the static data. 10-15% improvement in SSIM was attained for 2-4 mm motions. The compensation was robust against increasing motion (4% decrease in SSIM across the investigated range, compared to 14% with no compensation). Consistent performance was achieved across a range of noise levels. Significant mitigation of artifacts was shown in patient data. Conclusion: The results indicate feasibility of image-based motion correction in extremities CBCT without the need for a priori motion models, external trackers, or fiducials.

  10. High yield simultaneous hydrogen and ethanol production under extreme-thermophilic (70 C) mixed culture environment

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chenxi [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby (Denmark); O-Thong, Sompong [Department of Biology, Faculty of Science, Thaksin University, Patthalung 93110 (Thailand); Karakashev, Dimitar; Angelidaki, Irini [Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby (Denmark); Lu, Wenjing; Wang, Hongtao [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2009-07-15

    The effect of pH and medium composition on extreme-thermophilic (70 C) dark fermentative simultaneous hydrogen and ethanol production (process performance and microbial ecology) was investigated. Hydrogen and ethanol yields were optimized with respect to glucose, peptone, FeSO{sub 4}, NaHCO{sub 3}, yeast extract, trace mineral salts, vitamins, and phosphate buffer concentrations as well as initial pH as independent variables. A combination of low levels of both glucose ({<=}2 g/L) and vitamin solutions ({<=}1 mL/L) and high levels of initial pH ({>=}7), mineral salts solution ({>=}5 mL/L) and FeSO{sub 4} ({>=}100 mg/L) stimulated the hydrogen production, while high level of glucose ({>=}5 g/L) and low levels of both initial pH ({<=}5.5) and mineral salts solution ({<=}1 mL/L) enhanced the ethanol production. High yield of simultaneous hydrogen and ethanol production (1.58 mol H{sub 2}/mol glucose combined with an ethanol yield of 0.90 mol ethanol/mol glucose) was achieved under extreme-thermophilic mixed culture environment. Results obtained showed that the shift of the metabolic pathways favouring either hydrogen or ethanol production was affected by the change in cultivation conditions (pH and medium composition). The mixed culture in this study demonstrated flexible ability for simultaneous hydrogen and ethanol production, depending on pH and nutrients formulation. The microorganisms involved could be regarded as simultaneous hydrogen/ethanol producers, as hydrogen and ethanol fermentation under all conditions was carried out by a group of extreme-thermophilic bacterial species related to Thermoanaerobacter, Thermoanaerobacterium and Caldanaerobacter. (author)

  11. Prospects of extreme ultraviolet radiation sources based on microwave discharge for high-resolution lithography

    Science.gov (United States)

    Abramov, I. S.; Gospodchikov, E. D.; Shalashov, A. G.

    2017-07-01

    In this paper, inspired by the success of recent experiments, we discuss a new possible type of sources of extreme ultraviolet radiation for the semiconductor industry, based on the radiating plasma with multiply charged ions supported in a mirror magnetic trap by high-power microwaves. We propose a simple theory that describes the main features of such source, perform modeling for a wide range of plasma parameters and magnetic configurations, compare the results to the existing experimental data, and study the prospects of the new scheme in present technological circumstances.

  12. Extremely high reflection of solar wind protons as neutral hydrogen atoms from regolith in space

    CERN Document Server

    Wieser, Martin; Futaana, Yoshifumi; Holmström, Mats; Bhardwaj, Anil; Sridharan, R; Dhanya, MB; Wurz, Peter; Schaufelberger, Audrey; Asamura, Kazushi; 10.1016/j.pss.2009.09.012

    2010-01-01

    We report on measurements of extremely high reflection rates of solar wind particles from regolith-covered lunar surfaces. Measurements by the Sub-keV Atom Reflecting Analyzer (SARA) instrument on the Indian Chandrayaan-1 spacecraft in orbit around the Moon show that up to 20% of the impinging solar wind protons are reflected from the lunar surface back to space as neutral hydrogen atoms. This finding, generally applicable to regolith-covered atmosphereless bodies, invalidates the widely accepted assumption that regolith almost completely absorbs the impinging solar wind.

  13. A High shear stress segment along the San Andreas Fault: Inferences based on near-field stress direction and stress magnitude observations in the Carrizo Plain Area

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, D. A., [Department of Geology and Geophysics, University of Adelaide (Australia); Younker, L.W. [Lawrence Livermore National Lab., CA (United States)

    1997-01-30

    Nearly 200 new in-situ determinations of stress directions and stress magnitudes near the Carrizo plain segment of the San Andreas fault indicate a marked change in stress state occurring within 20 km of this principal transform plate boundary. A natural consequence of this stress transition is that if the observed near-field ``fault-oblique`` stress directions are representative of the fault stress state, the Mohr-Coulomb shear stresses resolved on San Andreas sub-parallel planes are substantially greater than previously inferred based on fault-normal compression. Although the directional stress data and near-hydrostatic pore pressures, which exist within 15 km of the fault, support a high shear stress environment near the fault, appealing to elevated pore pressures in the fault zone (Byerlee-Rice Model) merely enhances the likelihood of shear failure. These near-field stress observations raise important questions regarding what previous stress observations have actually been measuring. The ``fault-normal`` stress direction measured out to 70 km from the fault can be interpreted as representing a comparable depth average shear strength of the principal plate boundary. Stress measurements closer to the fault reflect a shallower depth-average representation of the fault zone shear strength. If this is true, only stress observations at fault distances comparable to the seismogenic depth will be representative of the fault zone shear strength. This is consistent with results from dislocation monitoring where there is pronounced shear stress accumulation out to 20 km of the fault as a result of aseismic slip within the lower crust loading the upper locked section. Beyond about 20 km, the shear stress resolved on San Andreas fault-parallel planes becomes negligible. 65 refs., 15 figs.

  14. CLASH: Extreme Emission Line Galaxies and Their Implication on Selection of High-Redshift Galaxies

    CERN Document Server

    Huang, Xingxing; Wang, Junxian; Ford, Holland; Lemze, Doron; Moustakas, John; Shu, Xinwen; Van der Wel, Arjen; Zitrin, Adi; Frye, Brenda L; Postman, Marc; Bartelmann, Matthias; Benitez, Narciso; Bradley, Larry; Broadhurst, Tom; Coe, Dan; Donahue, Megan; Infante, Leopoldo; Kelson, Daniel; Koekemoer, Anton; Lahav, Ofer; Medezinski, Elinor; Moustakas, Leonidas; Rosati, Piero; Seitz, Stella; Umetsu, Keiichi

    2014-01-01

    We utilize the CLASH (Cluster Lensing And Supernova survey with Hubble) observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y105) and F125W (J125), as the flux of the central bands could be enhanced by the presence of [O III] 4959, 5007 at redshift of about 0.93-1.14 and 1.57-1.79, respectively. The multi-band observations help to constrain the equivalent widths of emission lines. Thanks to cluster lensing, we are able to identify 52 candidates down to an intrinsic limiting magnitude of 28.5 and to a rest-frame [O III] 4959,5007 equivalent width of about 3737 angstrom. Our samples include a number of EELGs at lower luminosities that are missed in other surveys, and the extremely high equivalent width can be only found in such faint galaxies. These EELGs can mimic the dropout feature similar to that of high redshift galaxies and contaminate the color-color selection of high redshift galaxies when the S/N ratio is limited ...

  15. CLASH: EXTREME EMISSION-LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xingxing; Wang, Junxian; Shu, Xinwen [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zheng, Wei; Ford, Holland; Lemze, Doron [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Moustakas, John [Department of Physics and Astronomy, Siena College, 515 Loudon Road, Loudonville, NY 12211 (United States); Van der Wel, Arjen [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg (Germany); Zitrin, Adi [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Frye, Brenda L. [Steward Observatory/Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Postman, Marc; Bradley, Larry; Coe, Dan [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21208 (United States); Bartelmann, Matthias [Leiden Observatory, Leiden University, P. O. Box 9513, 2300 RA Leiden (Netherlands); Benítez, Narciso [Instituto de Astrofísica de Andalucía (CSIC), C/Camino Bajo de Huétor 24, Granada E-18008 (Spain); Broadhurst, Tom [Department of Theoretical Physics, University of Basque Country UPV/EHU E-Bilbao (Spain); Donahue, Megan [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Infante, Leopoldo, E-mail: hxx@mail.ustc.edu.cn [Departamento de Astronoía y Astrofísica, Pontificia Universidad Católica de Chile, V. Mackenna 4860 Santiago 22 (Chile); and others

    2015-03-01

    We utilize the Cluster Lensing And Supernova survey with Hubble observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y {sub 105}) and F125W (J {sub 125}), as the flux of the central bands could be enhanced by the presence of [O III] λλ4959, 5007 at redshifts of ∼0.93-1.14 and 1.57-1.79, respectively. The multiband observations help to constrain the equivalent widths (EWs) of emission lines. Thanks to cluster lensing, we are able to identify 52 candidates down to an intrinsic limiting magnitude of 28.5 and to a rest-frame [O III] λλ4959, 5007 EW of ≅ 3700 Å. Our samples include a number of EELGs at lower luminosities that are missed in other surveys, and the extremely high EW can only be found in such faint galaxies. These EELGs can mimic a dropout feature similar to that of high-redshift galaxies and contaminate the color-color selection of high-redshift galaxies when the signal-to-noise ratio is limited or the band coverage is incomplete.

  16. Laboratory measurements of materials in extreme conditions; The use of high energy radiation sources for high pressure studies

    Energy Technology Data Exchange (ETDEWEB)

    Cauble, R.; Remington, B.A.

    1998-06-01

    High energy lasers can be used to study material conditions that are appropriate fort inertial confinement fusion: that is, materials at high densities, temperatures, and pressures. Pulsed power devices can offer similar opportunities. The National Ignition Facility (NIF) will be a high energy multi-beam laser designed to achieve the thermonuclear ignition of a mm-scale DT-filled target in the laboratory. At the same time, NE will provide the physics community with a unique tool for the study of high energy density matter at states unreachable by any other laboratory technique. Here we describe how these lasers and pulsed power tools can contribute to investigations of high energy density matter in the areas of material properties and equations of state, extend present laboratory shock techniques such as high-speed jets to new regimes, and allow study of extreme conditions found in astrophysical phenomena.

  17. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments

    Science.gov (United States)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan

    2016-01-01

    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  18. High magnetic shear gain in a liquid sodium stable Couette flow experiment: a prelude to an α-Ω dynamo.

    Science.gov (United States)

    Colgate, Stirling A; Beckley, Howard; Si, Jiahe; Martinic, Joe; Westpfahl, David; Slutz, James; Westrom, Cebastian; Klein, Brianna; Schendel, Paul; Scharle, Cletus; McKinney, Travis; Ginanni, Rocky; Bentley, Ian; Mickey, Timothy; Ferrel, Regnar; Li, Hui; Pariev, Vladimir; Finn, John

    2011-04-29

    The Ω phase of the liquid sodium α-Ω dynamo experiment at New Mexico Institute of Mining and Technology in cooperation with Los Alamos National Laboratory has demonstrated a high toroidal field B(ϕ) that is ≃8×B(r), where B(r) is the radial component of an applied poloidal magnetic field. This enhanced toroidal field is produced by the rotational shear in stable Couette flow within liquid sodium at a magnetic Reynolds number Rm≃120. Small turbulence in stable Taylor-Couette flow is caused by Ekman flow at the end walls, which causes an estimated turbulence energy fraction of (δv/v)(2)∼10(-3).

  19. Design, performance, and early results from extremely high Doppler precision instruments in a global network

    Science.gov (United States)

    Ge, Jian; Zhao, Bo; Groot, John; Chang, Liang; Varosi, Frank; Wan, Xiaoke; Powell, Scott; Jiang, Peng; Hanna, Kevin; Wang, Ji; Pais, Rohan; Liu, Jian; Dou, Liming; Schofield, Sidney; McDowell, Shaun; Costello, Erin; Delgado-Navarro, Adriana; Fleming, Scott; Lee, Brian; Bollampally, Sandeep R.; Bosman, Troy; Jakeman, Hali; Fletcher, Adam; Marquez, Gabriel

    2010-07-01

    We report design, performance and early results from two of the Extremely High Precision Extrasolar Planet Tracker Instruments (EXPERT) as part of a global network for hunting for low mass planets in the next decade. EXPERT is a combination of a thermally compensated monolithic Michelson interferometer and a cross-dispersed echelle spectrograph for extremely high precision Doppler measurements for nearby bright stars (e.g., 1m/s for a V=8 solar type star in 15 min exposure). It has R=18,000 with a 72 micron slit and a simultaneous coverage of 390-694 nm. The commissioning results show that the instrument has already produced a Doppler precision of about 1 m/s for a solar type star with S/N~100 per pixel. The instrument has reached ~4 mK (P-V) temperature stability, ~1 mpsi pressure stability over a week and a total instrument throughput of ~30% at 550 nm from the fiber input to the detector. EXPERT also has a direct cross-dispersed echelle spectroscopy mode fed with 50 micron fibers. It has spectral resolution of R=27,000 and a simultaneous wavelength coverage of 390-1000 nm.

  20. Experimental method for the evaluation of the susceptibility of materials to shear band formation

    Directory of Open Access Journals (Sweden)

    Tham R.

    2012-08-01

    Full Text Available In order to characterize materials with respect to their susceptibility to shear band formation at high strain rates, a modified Hopkinson pressure bar apparatus and hat-shaped steel specimens with a shear zone having a width significantly larger than the typical width of adiabatic bands are used. The sample is directly impacted by the striker. The force acting on the sample is measured with a PVDF-gauge between the sample and the output bar. The displacement is recorded with an electro-optical extensometer. The energy absorbed by the shearing process up to failure can be used as a reference for the susceptibility of materials to shear band formation. The method is demonstrated comparing the shear behavior of two high-strength steels with similar metallic structure and strength. Differences were found in the transition region between quasi-static and fully adiabatic shearing conditions where the energy up to rupture differs by 40 %. For fully adiabatic shear band formation, the deformation process of both materials equals. At extreme rates, shear processes are mainly governed by the thermodynamic properties of the materials. On the other hand, strength and structural properties play a role for low and intermediate rates where global and localized shear mechanisms occur in parallel.

  1. Trunk postures and peak and cumulative low back kinetics during upright posture sheep shearing.

    Science.gov (United States)

    Gregory, Diane E; Laughton, Carla; Carman, Allan; Milosavljevic, Stephan; Callaghan, Jack P

    2009-12-01

    Sheep shearing is the most demanding occupation in the wool harvesting industry and is known to have a high prevalence of low back pain. While use of a commercially available trunk harness reduces load on the low back, the extreme trunk flexion associated with shearing still remains. A novel, upright posture shearing technique has been designed to allow a more neutral spine posture. This study assessed this upright technique and found significant reductions in both trunk flexion and cumulative low back loading when compared to either the traditional method or the use of the trunk harness. Moments about the shoulder tended to be higher while using the upright shearing technique and further investigation of shoulder kinetics will be required to assess whether this creates injury risk to the upper extremity. Despite increased shoulder moments, the reduction in flexion and cumulative loading with the use of the upright technique has the potential to reduce risk of low back pain among shearers.

  2. Global Distribution of Extreme Precipitation and High-Impact Landslides in 2010 Relative to Previous Years

    Science.gov (United States)

    Kirschbaum, Dalia; Adler, Robert; Adler, David; Peters-Lidard, Christa; Huffman, George

    2012-01-01

    It is well known that extreme or prolonged rainfall is the dominant trigger of landslides worldwide. While research has evaluated the spatiotemporal distribution of extreme rainfall and landslides at local or regional scales using in situ data, few studies have mapped rainfall-triggered landslide distribution globally due to the dearth of landslide data and consistent precipitation information. This study uses a newly developed Global Landslide Catalog (GLC) and a 13-year satellite-based precipitation record from TRMM data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurrence of precipitation and landslides globally. Evaluation of the GLC indicates that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan Arc, and central-eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This study characterizes the variability of satellite precipitation data and reported landslide activity at the globally scale in order to improve landslide cataloging, forecasting and quantify potential triggering sources at daily, monthly and yearly time scales.

  3. Extreme Learning Machines on High Dimensional and Large Data Applications: A Survey

    Directory of Open Access Journals (Sweden)

    Jiuwen Cao

    2015-01-01

    Full Text Available Extreme learning machine (ELM has been developed for single hidden layer feedforward neural networks (SLFNs. In ELM algorithm, the connections between the input layer and the hidden neurons are randomly assigned and remain unchanged during the learning process. The output connections are then tuned via minimizing the cost function through a linear system. The computational burden of ELM has been significantly reduced as the only cost is solving a linear system. The low computational complexity attracted a great deal of attention from the research community, especially for high dimensional and large data applications. This paper provides an up-to-date survey on the recent developments of ELM and its applications in high dimensional and large data. Comprehensive reviews on image processing, video processing, medical signal processing, and other popular large data applications with ELM are presented in the paper.

  4. Extreme ultraviolet spectroscopy and atomic models of highly charged heavy ions in the Large Helical Device

    Science.gov (United States)

    Suzuki, C.; Murakami, I.; Koike, F.; Tamura, N.; Sakaue, H. A.; Morita, S.; Goto, M.; Kato, D.; Ohashi, H.; Higashiguchi, T.; Sudo, S.; O'Sullivan, G.

    2017-01-01

    We report recent results of extreme ultraviolet (EUV) spectroscopy of highly charged heavy ions in plasmas produced in the Large Helical Device (LHD). The LHD is an ideal source of experimental databases of EUV spectra because of high brightness and low opacity, combined with the availability of pellet injection systems and reliable diagnostic tools. The measured heavy elements include tungsten, tin, lanthanides and bismuth, which are motivated by ITER as well as a variety of plasma applications such as EUV lithography and biological microscopy. The observed spectral features drastically change between quasicontinuum and discrete depending on the plasma temperature, which leads to some new experimental identifications of spectral lines. We have developed collisional-radiative models for some of these ions based on the measurements. The atomic number dependence of the spectral feature is also discussed.

  5. Extreme Energy Events Project: Construction of the detectors and installation in Italian High Schools

    CERN Document Server

    Abbrescia, M; An, S; Antolini, R; Badalà, A; Baldini Ferroli, R; Bencivenni, G; Blanco, F; Bressan, E; Chiavassa, A; Chiri, C; Cifarelli, L; Cindolo, F; Coccia, E; De Pasquale, S; Di Giovanni, A; D’Incecco, M; Fabbri, F L; Frolov, V; Garbini, M; Gustavino, C; Hatzifotiadou, D; Imponente, G; Kim, J; La Rocca, P; Librizzi, F; Maggiora, A; Menghetti, H; Miozzi, S; Moro, R; Panareo, M; Pappalardo, G S; Piragino, G; Riggi, F; Romano, F; Sartorelli, G; Sbarra, C; Selvi, M; Serci, S; Williams, C; Zuyeuski, R

    2008-01-01

    The EEE Project, conceived by its leader Antonino Zichichi, aims to detect Extreme Energy Events of cosmic rays with an array of muon telescopes distributed over the Italian territory. The Project involves Italian High Schools in order to introduce young people to Physics, also countervailing the recent crisis of university scientific classes inscriptions. The detectors for the EEE telescopes are Multigap Resistive Plate Chambers (MRPC) and have been constructed by teams of High School students who went in shift at the CERN laboratories. The mechanics and the electronics were developed by groups of researchers from CERN, the Italian Centro Fermi and INFN. The first group of schools of the EEE Project has inaugurated their telescopes recently. A status report of the Project and the preliminary results are presented.

  6. The physiology of extremes: Ancel Keys and the International High Altitude Expedition of 1935.

    Science.gov (United States)

    Tracy, Sarah W

    2012-01-01

    This article examines the International High Altitude Expedition of 1935 and its significance in the life and science of Ancel Keys. Both the expedition and Keys's story afford excellent opportunities to explore the growing reach of interwar physiology into extreme climates-whether built or natural. As IHAE scientists assessed human performance and adaptation to hypoxia, low barometric pressure, and cold, they not only illuminated the physiological and psychological processes of high altitude acclimatization, but they also drew borderlines between the normal and the pathological, paved the way for the neocolonial exploitation of natural and human resources in Latin America, and pioneered field methods in physiology that were adapted and adopted by the Allied Forces during the Second World War. This case study in the physiology of place reveals the power and persistence of environmental determinism within biomedicine well into the twentieth century.

  7. Feasibility of High-Repetition, Task-Specific Training for Individuals With Upper-Extremity Paresis

    Science.gov (United States)

    Waddell, Kimberly J.; Birkenmeier, Rebecca L.; Moore, Jennifer L.; Hornby, T. George

    2014-01-01

    OBJECTIVE. We investigated the feasibility of delivering an individualized, progressive, high-repetition upper-extremity (UE) task-specific training protocol for people with stroke in the inpatient rehabilitation setting. METHOD. Fifteen patients with UE paresis participated in this study. Task-specific UE training was scheduled for 60 min/day, 4 days/wk, during occupational therapy for the duration of a participant’s inpatient stay. During each session, participants were challenged to complete ≥300 repetitions of various tasks. RESULTS. Participants averaged 289 repetitions/session, spending 47 of 60 min in active training. Participants improved on impairment and activity level outcome measures. CONCLUSION. People with stroke in an inpatient setting can achieve hundreds of repetitions of task-specific training in 1-hr sessions. As expected, all participants improved on functional outcome measures. Future studies are needed to determine whether this high-repetition training program results in better outcomes than current UE interventions. PMID:25005508

  8. Beyond Extreme Ultra Violet (BEUV) Radiation from Spherically symmetrical High-Z plasmas

    Science.gov (United States)

    Yoshida, Kensuke; Fujioka, Shinsuke; Higashiguchi, Takeshi; Ugomori, Teruyuki; Tanaka, Nozomi; Kawasaki, Masato; Suzuki, Yuhei; Suzuki, Chihiro; Tomita, Kentaro; Hirose, Ryouichi; Eshima, Takeo; Ohashi, Hayato; Nishikino, Masaharu; Scally, Enda; Nshimura, Hiroaki; Azechi, Hiroshi; O'Sullivan, Gerard

    2016-03-01

    Photo-lithography is a key technology for volume manufacture of high performance and compact semiconductor devices. Smaller and more complex structures can be fabricated by using shorter wavelength light in the photolithography. One of the most critical issues in development of the next generation photo-lithography is to increase energy conversion efficiency (CE) from laser to shorter wavelength light. Experimental database of beyond extreme ultraviolet (BEUV) radiation was obtained by using spherically symmetrical high-Z plasmas generated with spherically allocated laser beams. Absolute energy and spectra of BEUV light emitted from Tb, Gd, and Mo plasmas were measured with a absolutely calibrated BEUV calorimeter and a transmission grating spectrometer. 1.0 x 1012 W/cm2 is the optimal laser intensity to produced efficient BEUV light source plasmas with Tb and Gd targets. Maximum CE is achieved at 0.8% that is two times higher than the published CEs obtained with planar targets.

  9. Nitrogen-Doped Carbon Nanoparticles for Oxygen Reduction Prepared via a Crushing Method Involving a High Shear Mixer

    Directory of Open Access Journals (Sweden)

    Lei Shi

    2017-09-01

    Full Text Available The disposal of agricultural wastes such as fresh banana peels (BPs is an environmental issue. In this work, fresh BPs were successfully transformed into nitrogen-doped carbon nanoparticles (N-CNPs by using a high shear mixer facilitated crushing method (HSM-FCM followed by carbonization under Ar atmosphere. Ammonia-activated N-CNPs (N-CNPs-NH3 were prepared via subsequent ammonia activation treatments at a high temperature. The as-prepared N-CNPs and N-CNPs-NH3 materials both exhibited high surface areas (above 700 m2/g and mean particle size of 50 nm. N-CNPs-NH3 showed a relatively higher content of pyridinic and graphitic N compared to N-CNPs. In alkaline media, N-CNPs-NH3 showed superior performances as an oxygen reduction reaction (ORR catalyst (E0 = −0.033 V, J = 2.4 mA/cm2 compared to N-CNPs (E0 = 0.07 V, J = 1.8 mA/cm2. In addition, N-CNPs-NH3 showed greater oxygen reduction stability and superior methanol crossover avoidance than a conventional Pt/C catalyst. This study provides a novel, simple, and scalable approach to valorize biomass wastes by synthesizing highly efficient electrochemical ORR catalysts.

  10. Phthalocyanine dye as an extremely photostable and highly fluorescent near-infrared labeling reagent

    Science.gov (United States)

    Peng, Xinzhan; Draney, Daniel R.; Volcheck, William M.; Bashford, Gregory R.; Lamb, Donald T.; Grone, Daniel L.; Zhang, Yonghong; Johnson, Craig M.

    2006-02-01

    Current organic fluorophores used as labeling reagents for biomolecule conjugation have significant limitations in photostability. This compromises their performance in applications that require a photostable fluorescent reporting group. For example, in molecular imaging and single molecule microscopy, photostable fluorescent labels are important for observing and tracking individual molecular events over extended period of time. We report in this paper an extremely photostable and highly fluorescent phthalocyanine dye, IRDye TM 700DX, as a near-infrared fluorescence labeling reagent to conjugate with biomolecules. This novel water-soluble silicon phthalocyanine dye has an isomericly pure chemical structure. The dye is about 45 to 128 times more photostable than current near-IR fluorophores, e.g. Alexa Fluor"R"680, Cy TM 5.5, Cy TM 7 and IRDye TM 800CW dyes; and about 27 times more photostable than tetramethylrhodamine (TMR), one of the most photostable organic dyes. This dye also meets all the other stringent requirements as an ideal fluorophore for biomolecules labeling such as excellent water solubility, no aggregation in high ionic strength buffer, large extinction coefficient and high fluorescent quantum yield. Antibodies conjugated with IRDye TM 700DX at high D/P ratio exist as monomeric species in high ionic buffer and have bright fluorescence. The IRDye TM 700DX conjugated antibodies generate sensitive, highly specific detection with very low background in Western blot and cytoblot assays.

  11. High-shear, jet-cooking, and alkali treatment of corn distillers' dried grains to obtain products with enhanced protein, oil and phenolic antioxidants.

    Science.gov (United States)

    Inglett, G E; Chen, D; Rose, D J; Berhow, M

    2010-08-01

    Distillers dried grains (DDG) have potential to be a nutritionally important source of protein, oil and phenolic antioxidants. DDG was subjected to high-shear and jet-cooking, with or without alkaline pH adjustment and autoclaving. Soluble and insoluble fractions were analyzed for protein, oil and ash. Extracts were analyzed for phenolic acids and antioxidant activity. Protein contents were significantly elevated in the insoluble fractions after treatment and the oil content was drastically increased in the insoluble fraction after high-shear and jet-cooking without pH adjustment. Alkaline pH adjustment resulted in a soluble fraction that was highest in phenolic acids, but not antioxidant activity. The highest antioxidant activity was found in the 50% ethanol extract from DDG that had been subjected to high-shear and jet-cooking. These results suggest that high-shear and jet-cooking may be useful processing treatments to increase the value of DDG by producing fractions high in protein, oil and extractable phenolic acids with high antioxidant activity. The DDG fractions and extracts described herein may be useful as food and nutraceutical ingredients, and, if used for these applications, will increase the value of DDG and ease economic burdens on ethanol producers, allowing them to compete in the bio-fuel marketplace.

  12. Environmental extremes versus ecological extremes: impact of a massive iceberg on the population dynamics of a high-level Antarctic marine predator†

    Science.gov (United States)

    Chambert, Thierry; Rotella, Jay J.; Garrott, Robert A.

    2012-01-01

    Extreme events have been suggested to play a disproportionate role in shaping ecological processes, but our understanding of the types of environmental conditions that elicit extreme consequences in natural ecosystems is limited. Here, we investigated the impact of a massive iceberg on the dynamics of a population of Weddell seals. Reproductive rates of females were reduced, but survival appeared unaffected. We also found suggestive evidence for a prolonged shift towards higher variability in reproductive rates. The annual number of females attending colonies showed unusual swings during the iceberg period, a pattern that was apparently the consequence of changes in sea-ice conditions. In contrast to the dramatic effects that were recorded in nearby populations of emperor penguins, our results suggest that this unusual environmental event did not have an extreme impact on the population of seals in the short-term, as they managed to avoid survival costs and were able to rapidly re-achieve high levels of reproduction by the end of the perturbation. Nevertheless, population projections suggest that even this modest impact on reproductive rates could negatively affect the population in the long run if such events were to occur more frequently, as is predicted by models of climate change. PMID:23015628

  13. High-shear granulation as a manufacturing method for cocrystal granules

    DEFF Research Database (Denmark)

    Rehder, Sönke; Christensen, Niels Peter Aae; Rantanen, Jukka

    2013-01-01

    influenced by the excipients, since in presence of calcium hydrogenphosphate, the poorly water-soluble salt calcium tartrate monohydrate was formed at high relative humidity. Interestingly, compactability was increased by cocrystal formation compared to that of the reference granules (piracetam...

  14. Measurements and identifications of extreme ultraviolet spectra of highly-charged Sm and Er

    CERN Document Server

    Podpaly, Y A; Reader, J; Ralchenko, Yu

    2014-01-01

    We report spectroscopic measurements of highly charged samarium and erbium performed at the National Institute of Standards and Technology (NIST) Electron Beam Ion Trap (EBIT). These measurements are in the extreme ultraviolet (EUV) range, and span electron beam energies from 0.98 keV to 3.00 keV. We observed 71 lines from Kr-like Sm$^{26+}$ to Ni-like Sm$^{34+}$, connecting 83 energy levels, and 64 lines from Rb-like Er$^{32+}$ to Ni-like Er$^{40+}$, connecting 78 energy levels. Of these lines, 64 in Sm and 60 in Er are new. Line identifications are performed using collisional-radiative modeling of the EBIT plasma. All spectral lines are assigned individual uncertainties, most in the $\\sim$0.001 nm range. Energy levels are derived from the wavelength measurements.

  15. High-Resolution Spectroscopy of G191-B2B in the Extreme Ultraviolet

    CERN Document Server

    Cruddace, R G; Yentis, D J; Brown, C M; Gursky, H; Barstow, M A; Bannister, N P; Fraser, G W; Spragg, J E; Lapington, J S; Tandy, J A; Sanderson, B; Culhane, J L; Barbee, T W; Kordas, J F; Goldstein, W H; Fritz, G G

    2001-01-01

    We report a high-resolution (R=3000-4000) spectroscopic observation of the DA white dwarf G191-B2B in the extreme ultraviolet band 220-245 A. A low- density ionised He component is clearly present along the line-of-sight, which if completely interstellar implies a He ionisation fraction considerably higher than is typical of the local interstellar medium. However, some of this material may be associated with circumstellar gas, which has been detected by analysis of the C IV absorption line doublet in an HST STIS spectrum. A stellar atmosphere model assuming a uniform element distribution yields a best fit to the data which includes a significant abundance of photospheric He. The 99-percent confidence contour for the fit parameters excludes solutions in which photospheric He is absent, but this result needs to be tested using models allowing abundance gradients.

  16. Nano-materials for adhesive-free adsorbers for bakable extreme high vacuum cryopump surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stutzman, Marcy; Jordan, Kevin; Whitney, Roy R.

    2016-10-11

    A cryosorber panel having nanomaterials used for the cryosorption material, with nanomaterial either grown directly on the cryopanel or freestanding nanomaterials attached to the cryopanel mechanically without the use of adhesives. Such nanomaterial cryosorber materials can be used in place of conventional charcoals that are attached to cryosorber panels with special low outgassing, low temperature capable adhesives. Carbon nanotubes and other nanomaterials could serve the same purpose as conventional charcoal cryosorbers, providing a large surface area for cryosorption without the need for adhesive since the nanomaterials can be grown directly on a metallic substrate or mechanically attached. The nanomaterials would be capable of being fully baked by heating above 100.degree. C., thereby eliminating water vapor from the system, eliminating adhesives from the system, and allowing a full bake of the system to reduce hydrogen outgassing, with the goal of obtaining extreme high vacuum where the pump can produce pressures below 1.times.10.sup.-12 Torr.

  17. First search for extremely high energy cosmogenic neutrinos with the IceCube Neutrino Observatory

    Science.gov (United States)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Davis, J. C.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Knops, S.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Lehmann, R.; Lennarz, D.; Lünemann, J.; Madsen, J.; Majumdar, P.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; IceCube Collaboration

    2010-10-01

    We report on the results of the search for extremely-high energy neutrinos with energies above 107GeV obtained with the partially (˜30%) constructed IceCube in 2007. From the absence of signal events in the sample of 242.1 days of effective live time, we derive a 90% C.L. model independent differential upper limit based on the number of signal events per energy decade at E2ϕνe+νμ+ντ≃1.4×10-6GeVcm-2sec⁡-1sr-1 for neutrinos in the energy range from 3×107 to 3×109GeV.

  18. Acclimation to extremely high ammonia levels in continuous biomethanation process and the associated microbial community dynamics

    DEFF Research Database (Denmark)

    Tian, Hailin; Fotidis, Ioannis; Mancini, Enrico

    2017-01-01

    Acclimatized anaerobic communities to high ammonia levels can offer a solution to the ammonia toxicity problem in biogas reactors. In the current study, a stepwise acclimation strategy up to 10 g NH4+-N L−1, was performed in mesophilic (37 ± 1 °C) continuously stirred tank reactors. The reactors...... were co-digesting (20/80 based on volatile solid) cattle slurry and microalgae, a protein-rich, 3rd generation biomass. Throughout the acclimation period, methane production was stable with more than 95% of the uninhibited yield. Next generation 16S rRNA gene sequencing revealed a dramatic microbiome...... change throughout the ammonia acclimation process. Clostridium ultunense, a syntrophic acetate oxidizing bacteria, increased significantly alongside with hydrogenotrophic methanogen Methanoculleus spp., indicating strong hydrogenotrophic methanogenic activity at extreme ammonia levels (>7 g NH4+-N L−1...

  19. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region.

    Science.gov (United States)

    Hirano, Y; Kiyama, S; Fujiwara, Y; Koguchi, H; Sakakita, H

    2015-11-01

    A high current density (≈3 mA/cm(2)) hydrogen ion beam source operating in an extremely low-energy region (E(ib) ≈ 150-200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E(ib) is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  20. Elevated Electrochemical Impedance in the Endoluminal Regions with High Shear Stress: Implication for Assessing Lipid-Rich Atherosclerotic Lesions

    Science.gov (United States)

    Yu, Fei; Lee, Juhyun; Jen, Nelson; Li, Xiang; Zhang, Qian; Tang, Rui; Zhou, Qifa; Kim, Eun. S.; Hsiai, Tzung K.

    2012-01-01

    Background Identifying metabolically active atherosclerotic lesions remains an unmet clinical challenge during coronary intervention. Electrochemical impedance (EIS) increased in response to oxidized low density lipoprotein (oxLDL)-laden lesions. We hereby assessed whether integrating EIS with intravascular ultrasound (IVUS) and shear stress (ISS) provided a new strategy to assess oxLDL-laden lesions in the fat-fed New Zealand White (NZW) rabbits. Methods and Results A micro-heat transfer sensor was deployed to acquire the ISS profiles at baseline and post high-fat diet (HD) in the NZW rabbits (n=8). After 9 weeks of HD, serum oxLDL levels (mg/dL) increased by 140-fold, accompanied by a 1.5-fold increase in kinematic viscosity (cP) in the HD group. Time-averaged ISS (ISSave) in the thoracic aorta also increased in the HD group (baseline: 17.61±0.24 vs. 9 weeks: 25.22±0.95 dyne/cm2, n=4), but remained unchanged in the normal diet group (baseline: 22.85±0.53 dyne/cm2 vs. 9 weeks: 22.37±0.57 dyne/cm2, n=4). High-frequency Intravascular Ultrasound (IVUS) revealed atherosclerotic lesions in the regions with augmented ISSave, and concentric bipolar microelectrodes demonstrated elevated EIS signals, which were correlated with prominent anti-oxLDL immuno-staining (oxLDL-free regions: 497±55 Ω, n = 8 vs. oxLDL-rich lesions: 679±125 Ω, n = 12, P < 0.05). The equivalent circuit model for tissue resistance between the lesion-free and ox-LDL-rich lesions further validated the experimental EIS signals. Conclusions By applying electrochemical impedance in conjunction with shear stress and high-frequency ultrasound sensors, we provided a new strategy to identify oxLDL-laden lesions. The study demonstrated the feasibility of integrating EIS, ISS, and IVUS for a catheter-based approach to assess mechanically unstable plaque. PMID:23318546

  1. Lateral shear interferometry with holo shear lens

    Science.gov (United States)

    Joenathan, C.; Mohanty, R. K.; Sirohi, R. S.

    1984-12-01

    A simple method for obtaining lateral shear using holo shear lenses (HSL) has been discussed. This simple device which produces lateral shears in the orthogonal directions has been used for lens testing. The holo shear lens is placed at or near the focus of the lens to be tested. It has also been shown that HSL can be used in speckle shear interferometry as it performs both the functions of shearing and imaging.

  2. High-resolution compact shear stress sensor for direct measurement of skin friction in fluid flow

    Science.gov (United States)

    Xu, Muchen; Kim, Chang-Jin ``Cj''

    2015-11-01

    The high-resolution measurement of skin friction in complex flows has long been of great interest but also a challenge in fluid mechanics. Compared with indirect measurement methods (e.g., laser Doppler velocimetry), direct measurement methods (e.g., floating element) do not involve any analogy and assumption but tend to suffer from instrumentation challenges, such as low sensing resolution or misalignments. Recently, silicon micromachined floating plates showed good resolution and perfect alignment but were too small for general purposes and too fragile to attach other surface samples repeatedly. In this work, we report a skin friction sensor consisting of a monolithic floating plate and a high-resolution optical encoder to measure its displacement. The key for the high resolution is in the suspension beams, which are very narrow (e.g., 0.25 mm) to sense small frictions along the flow direction but thick (e.g., 5 mm) to be robust along all other directions. This compact, low profile, and complete sensor is easy to use and allows repeated attachment and detachment of surface samples. The sheer-stress sensor has been tested in water tunnel and towing tank at different flow conditions, showing high sensing resolution for skin friction measurement. Supported by National Science Foundation (NSF) (No. 1336966) and Defense Advanced Research Projects Agency (DARPA) (No. HR0011-15-2-0021).

  3. Multiresolution iterative reconstruction in high-resolution extremity cone-beam CT

    Science.gov (United States)

    Cao, Qian; Zbijewski, Wojciech; Sisniega, Alejandro; Yorkston, John; Siewerdsen, Jeffrey H.; Webster Stayman, J.

    2016-10-01

    Application of model-based iterative reconstruction (MBIR) to high resolution cone-beam CT (CBCT) is computationally challenging because of the very fine discretization (voxel size  <100 µm) of the reconstructed volume. Moreover, standard MBIR techniques require that the complete transaxial support for the acquired projections is reconstructed, thus precluding acceleration by restricting the reconstruction to a region-of-interest. To reduce the computational burden of high resolution MBIR, we propose a multiresolution penalized-weighted least squares (PWLS) algorithm, where the volume is parameterized as a union of fine and coarse voxel grids as well as selective binning of detector pixels. We introduce a penalty function designed to regularize across the boundaries between the two grids. The algorithm was evaluated in simulation studies emulating an extremity CBCT system and in a physical study on a test-bench. Artifacts arising from the mismatched discretization of the fine and coarse sub-volumes were investigated. The fine grid region was parameterized using 0.15 mm voxels and the voxel size in the coarse grid region was varied by changing a downsampling factor. No significant artifacts were found in either of the regions for downsampling factors of up to 4×. For a typical extremities CBCT volume size, this downsampling corresponds to an acceleration of the reconstruction that is more than five times faster than a brute force solution that applies fine voxel parameterization to the entire volume. For certain configurations of the coarse and fine grid regions, in particular when the boundary between the regions does not cross high attenuation gradients, downsampling factors as high as 10×  can be used without introducing artifacts, yielding a ~50×  speedup in PWLS. The proposed multiresolution algorithm significantly reduces the computational burden of high resolution iterative CBCT reconstruction and can be extended to other applications of

  4. Versatility of Biofilm Matrix Molecules in Staphylococcus epidermidis Clinical Isolates and Importance of Polysaccharide Intercellular Adhesin Expression during High Shear Stress

    Science.gov (United States)

    Schaeffer, Carolyn R.; Hoang, Tra-My N.; Sudbeck, Craig M.; Alawi, Malik; Tolo, Isaiah E.; Robinson, D. Ashley; Horswill, Alexander R.; Rohde, Holger

    2016-01-01

    ABSTRACT Staphylococcus epidermidis is a leading cause of hospital-associated infections, including those of intravascular catheters, cerebrospinal fluid shunts, and orthopedic implants. Multiple biofilm matrix molecules with heterogeneous characteristics have been identified, including proteinaceous, polysaccharide, and nucleic acid factors. Two of the best-studied components in S. epidermidis include accumulation-associated protein (Aap) and polysaccharide intercellular adhesin (PIA), produced by the enzymatic products of the icaADBC operon. Biofilm composition varies by strain as well as environmental conditions, and strains producing PIA-mediated biofilms are more robust. Clinically, biofilm-mediated infections occur in a variety of anatomical sites with diverse physiological properties. To test the hypothesis that matrix composition exhibits niche specificity, biofilm-related genetic and physical properties were compared between S. epidermidis strains isolated from high-shear and low-shear environments. Among a collection of 105 clinical strains, significantly more isolates from high-shear environments carried the icaADBC operon than did those from low-shear settings (43.9% versus 22.9%, P 0.05). Additionally, a significantly greater number of high-shear isolates were capable of forming biofilm in vitro in a microtiter assay (82.5% versus 45.8%, P biofilm mechanisms. Sequencing of selected variants identified substitutions capable of enhancing biofilm formation in multiple genes, further highlighting the heterogeneity of S. epidermidis biofilm molecules and mechanisms. IMPORTANCE Staphylococcus epidermidis is a leading cause of infections related to biomaterials, mostly due to their ability to form biofilm. Biofilm accumulation mechanisms vary, including those that are dependent on specific proteins, environmental DNA (eDNA), or polysaccharide intercellular adhesin (PIA). We found that those isolates obtained from high-shear environments, such as the lumen

  5. Droplet-based, high-brightness extreme ultraviolet laser plasma source for metrology

    Science.gov (United States)

    Vinokhodov, A. Yu.; Krivokorytov, M. S.; Sidelnikov, Yu. V.; Krivtsun, V. M.; Medvedev, V. V.; Koshelev, K. N.

    2016-10-01

    We report on the development of a high brightness source of extreme ultraviolet radiation (EUV) with a working wavelength of 13.5 nm. The source is based on a laser-produced plasma driven by pulsed radiation of a Nd:YAG laser system. Liquid droplets of Sn-In eutectic alloy were used as the source fuel. The droplets were created by a droplet generator operating in the jet break-up regime. The EUV emission properties of the plasma, including the emission spectrum, time profile, and conversion efficiency of laser radiation into useful 13.5 nm photons, have been characterized. Using the shadowgraphy technique, we demonstrated the production of corpuscular debris by the plasma source and the influence of the plasma on the neighboring droplet targets. The high-frequency laser operation was simulated by usage of the dual pulse regime. Based on the experimental results, we discuss the physical phenomena that could affect the source operation at high repetition rates. Finally, we estimate that an average source brightness of 1.2 kW/mm2 sr is feasible at a high repetition rate.

  6. Benchmark analysis on diabetics at high risk for lower extremity amputation.

    Science.gov (United States)

    Pinzur, M S; Stuck, R; Sage, R; Pocius, L; Trout, B; Wolf, B; Vrbos, L

    1996-11-01

    After the 1990 establishment of a multidisciplinary foot salvage clinic, 1346 diabetic patients, at high risk for the development of foot ulcers and eventual lower limb amputation, were followed for 4 years. Of the 224 high-risk patients admitted to the hospital, 74 amputations (5.5%) of all or part of a lower limb were performed. Patients undergoing amputation were younger, more severely ill, and required more frequent hospitalizations because of greater organ system involvement. They were also more likely to be institutionalized after discharge. Overall, patients with long-standing adult-onset diabetes, identified as at high risk for foot ulcer development, have a substantially increased risk for lower limb amputation, multiple organ system failure, hospitalization, and institutionalization than do diabetic patients as a whole. Clinical benchmarking facilitates the identification and reduction of unnecessary variations in patient care practices. Here, a formal benchmark analysis provides the current outcome expectations for amputation rates and co-morbidities in patients with diabetes who are classified as at high risk for lower extremity amputation. Management of these patients in a structured, multidisciplinary foot salvage clinic, augmentation of baseline services, and preliminary benchmark data may provide a standard for the measurement of therapeutic interventions that improve patient care.

  7. Design, analysis, and initial testing of a fiber-optic shear gage for three-dimensional, high-temperature flows

    Science.gov (United States)

    Orr, Matthew W.

    This investigation concerns the design, analysis, and initial testing of a new, two-component wall shear gage for 3D, high-temperature flows. This gage is a direct-measuring, non-nulling design with a round head surrounded by a small gap. Two flexure wheels are used to allow small motions of the floating head. Fiber-optic displacement sensors measure how far the polished faces of counterweights on the wheels move in relation to a fixed housing as the primary measurement system. No viscous damping was required. The gage has both fiber-optic instrumentation and strain gages mounted on the flexures for validation of the newer fiber optics. The sensor is constructed of Haynes RTM 230RTM, a high-temperature nickel alloy. The gage housing is made of 316 stainless steel. All components of the gage in pure fiber-optic form can survive to a temperature of 1073 K. The bonding methods of the backup strain gages limit their maximum temperature to 473 K. The dynamic range of the gage is from 0--500 Pa (0--10g) and higher shears can be measured by changing the floating head size. Extensive use of finite element modeling was critical to the design and analysis of the gage. Static structural, modal, and thermal analyses were performed on the flexures using the ANSYS finite element package. Static finite element analysis predicted the response of the flexures to a given load, and static calibrations using a direct force method confirmed these results. Finite element modal analysis results were within 16.4% for the first mode and within 30% for the second mode when compared with the experimentally determined modes. Vibration characteristics of the gage were determined from experimental free vibration data after the gage was subjected to an impulse. Uncertainties in the finished geometry make this level of error acceptable. A transient thermal analysis examined the effects of a very high heat flux on the exposed head of the gage. The 100,000 W/m2 heat flux used in this analysis is

  8. Clarithromycin highly-loaded gastro-floating fine granules prepared by high-shear melt granulation can enhance the efficacy of Helicobacter pylori eradication.

    Science.gov (United States)

    Aoki, Hajime; Iwao, Yasunori; Mizoguchi, Midori; Noguchi, Shuji; Itai, Shigeru

    2015-05-01

    In an effort to develop a new gastro-retentive drug delivery system (GRDDS) without a large amount of additives, 75% clarithromycin (CAM) loaded fine granules were prepared with three different hydrophobic binders by high-shear melt granulation and their properties were evaluated. Granules containing the higher hydrophobic binder showed sustained drug release and were able to float over 24h. The synchrotron X-ray CT measurement indicated that both the high hydrophobicity of the binder and the void space inside the granules might be involved in their buoyancy. In an in vivo experiment, the floating granules more effectively eradicated Helicobacter pylori than a CAM suspension by remaining in the stomach for a longer period. In short, CAM highly-loaded gastro-floating fine granules can enhance the eradication efficiency of H. pylori compared with CAM alone. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Artificial Intelligence Tools for Scaling Up of High Shear Wet Granulation Process.

    Science.gov (United States)

    Landin, Mariana

    2017-01-01

    The results presented in this article demonstrate the potential of artificial intelligence tools for predicting the endpoint of the granulation process in high-speed mixer granulators of different scales from 25L to 600L. The combination of neurofuzzy logic and gene expression programing technologies allowed the modeling of the impeller power as a function of operation conditions and wet granule properties, establishing the critical variables that affect the response and obtaining a unique experimental polynomial equation (transparent model) of high predictability (R(2) > 86.78%) for all size equipment. Gene expression programing allowed the modeling of the granulation process for granulators of similar and dissimilar geometries and can be improved by implementing additional characteristics of the process, as composition variables or operation parameters (e.g., batch size, chopper speed). The principles and the methodology proposed here can be applied to understand and control manufacturing process, using any other granulation equipment, including continuous granulation processes.

  10. Validation of a turbulent Kelvin-Helmholtz shear layer model using a high-energy-density OMEGA laser experiment.

    Science.gov (United States)

    Hurricane, O A; Smalyuk, V A; Raman, K; Schilling, O; Hansen, J F; Langstaff, G; Martinez, D; Park, H-S; Remington, B A; Robey, H F; Greenough, J A; Wallace, R; Di Stefano, C A; Drake, R P; Marion, D; Krauland, C M; Kuranz, C C

    2012-10-12

    Following the successful demonstration of an OMEGA laser-driven platform for generating and studying nearly two-dimensional unstable plasma shear layers [Hurricane et al., Phys. Plasmas 16, 056305 (2009); Harding et al., Phys. Rev. Lett. 103, 045005 (2009)], this Letter reports on the first quantitative measurement of turbulent mixing in a high-energy-density plasma. As a blast wave moves parallel to an unperturbed interface between a low-density foam and a high-density plastic, baroclinic vorticity is deposited at the interface and a Kelvin-Helmholtz instability-driven turbulent mixing layer is created in the postshock flow due to surface roughness. The spatial scale and density profile of the turbulent layer are diagnosed using x-ray radiography with sufficiently small uncertainty so that the data can be used to ~0.17 μm) in the postshock plasma flow are consistent with an "inertial subrange," within which a Kolmogorov turbulent energy cascade can be active. An illustration of comparing the data set with the predictions of a two-equation turbulence model in the ares radiation hydrodynamics code is also presented.

  11. High diversity and suggested endemicity of culturable Actinobacteria in an extremely oligotrophic desert oasis

    Directory of Open Access Journals (Sweden)

    Hector Fernando Arocha-Garza

    2017-05-01

    shows that our isolation effort produced 38 unique OTUs in six new monophyletic clades. This high biodiversity and uniqueness of Actinobacteria in an extreme oligotrophic environment, which has previously been reported for its diversity and endemicity, is a suggestive sign of microbial biogeography of Actinobacteria and it also represents an invaluable source of biological material for future ecological and bioprospecting studies.

  12. High diversity and suggested endemicity of culturable Actinobacteria in an extremely oligotrophic desert oasis.

    Science.gov (United States)

    Arocha-Garza, Hector Fernando; Canales-Del Castillo, Ricardo; Eguiarte, Luis E; Souza, Valeria; De la Torre-Zavala, Susana

    2017-01-01

    isolation effort produced 38 unique OTUs in six new monophyletic clades. This high biodiversity and uniqueness of Actinobacteria in an extreme oligotrophic environment, which has previously been reported for its diversity and endemicity, is a suggestive sign of microbial biogeography of Actinobacteria and it also represents an invaluable source of biological material for future ecological and bioprospecting studies.

  13. Quantifying imaging performance bounds of extreme dipole illumination in high NA optical lithography

    Science.gov (United States)

    Lee, Myungjun; Smith, Mark D.; Biafore, John; Graves, Trey; Levy, Ady

    2016-10-01

    We present a framework to analyze the performance of optical imaging in a hyper numerical aperture (NA) immersion lithography scanner. We investigate the method to quantify imaging performance by computing upperand lower-bounds on the threshold normalized image log-slope (NILS) and the depth of focus (DOF) in conjunction with the traditional image quality metrics such as the mask error enhancement factor (MEEF) and the linearity for various different pitches and line to space (LS) duty cycles. The effects of the interaction between the light illumination and the feature size are extensively characterized based on the aerial image (AI) behavior in particular for the extreme dipole illumination that is one of the commonly used off-axis illuminations for sub-100nm logic and memory devices, providing resolution near the physical limit of an optical single patterning step. The proposed aerial imaging-based DOF bounds are compared to the results obtained from an experimentally calibrated resist model, and we observed good agreement. In general, the extreme dipole illumination is only optimal for a single particular pitch, therefore understanding the through-pitch imaging performance bound, which depends on the illumination shape, pattern size, and process conditions, is critically important. We find that overall imaging performance varies depending upon the number of diffracted beams passing through the scanner optics. An even number of beams provides very different trends compared to the results from an odd-number of beams. This significant non-linear behavior occurs in certain pitch regions corresponding to 3 beam interference imaging. In this region the imaging performance and the pattern printability become extremely sensitive to the LS duty cycle. In addition, there is a notable tradeoff between the DOF and the NILS that is observed in the problematic 3-beam region and this tradeoff eventually affects the achievable process window (PW). Given the practical real

  14. The paradox of extreme high-altitude migration in bar-headed geese Anser indicus

    Science.gov (United States)

    Hawkes, L.A.; Balachandran, S.; Batbayar, N.; Butler, P.J.; Chua, B.; Douglas, D.C.; Frappell, P.B.; Hou, Y.; Milsom, W.K.; Newman, S.H.; Prosser, D.J.; Sathiyaselvam, P.; Scott, G.R.; Takekawa, John Y.; Natsagdorj, T.; Wikelski, M.; Witt, M.J.; Yan, B.; Bishop, C.M.

    2012-01-01

    Bar-headed geese are renowned for migratory flights at extremely high altitudes over the world's tallest mountains, the Himalayas, where partial pressure of oxygen is dramatically reduced while flight costs, in terms of rate of oxygen consumption, are greatly increased. Such a mismatch is paradoxical, and it is not clear why geese might fly higher than is absolutely necessary. In addition, direct empirical measurements of high-altitude flight are lacking. We test whether migrating bar-headed geese actually minimize flight altitude and make use of favourable winds to reduce flight costs. By tracking 91 geese, we show that these birds typically travel through the valleys of the Himalayas and not over the summits. We report maximum flight altitudes of 7290 m and 6540 m for southbound and northbound geese, respectively, but with 95 per cent of locations received from less than 5489 m. Geese travelled along a route that was 112 km longer than the great circle (shortest distance) route, with transit ground speeds suggesting that they rarely profited from tailwinds. Bar-headed geese from these eastern populations generally travel only as high as the terrain beneath them dictates and rarely in profitable winds. Nevertheless, their migration represents an enormous challenge in conditions where humans and other mammals are only able to operate at levels well below their sea-level maxima.

  15. The Sedentary Survey of Extreme High Energy Peaked BL Lacs. II. The Catalog and Spectral Properties

    CERN Document Server

    Giommi, P; Perri, M; Padovani, P

    2004-01-01

    The multi-frequency `Sedentary Survey' is a deep, statistically complete, radio flux limited sample comprising 150 BL Lacertae objects distinguished by their extremely high X-ray to radio flux ratio, ranging from five hundred to over five thousand times that of typical BL Lacs discovered in radio surveys. This paper presents the final, 100% identified, catalog together with the optical, X-ray and broad-band SEDs constructed combining literature multi-frequency data with non-simultaneous optical observations and BeppoSAX X-ray data, when available. The SEDs confirm that the peak of the synchrotron power in these objects is located at very high energies. BeppoSAX wide band X-ray observations show that, in most cases, the X-ray spectra are convex and well described by a logarithmic parabola model peaking (in a E f(E) vs E representation) between 0.02 to several keV. Owing to the high synchrotron energies involved most of the sources in the catalog are likely to be TeV emitters, with the closest and brightest one...

  16. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies.

    Science.gov (United States)

    Balal, Nezah; Pinhasi, Gad A; Pinhasi, Yosef

    2016-05-23

    The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide "chirped" Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution.

  17. A method of batch-purifying microalgae with multiple antibiotics at extremely high concentrations

    Science.gov (United States)

    Han, Jichang; Wang, Song; Zhang, Lin; Yang, Guanpin; Zhao, Lu; Pan, Kehou

    2016-01-01

    Axenic microalgal strains are highly valued in diverse microalgal studies and applications. Antibiotics, alone or in combination, are often used to avoid bacterial contamination during microalgal isolation and culture. In our preliminary trials, we found that many microalgae ceased growing in antibiotics at extremely high concentrations but could resume growth quickly when returned to an antibiotics-free liquid medium and formed colonies when spread on a solid medium. We developed a simple and highly efficient method of obtaining axenic microalgal cultures based on this observation. First, microalgal strains of different species or strains were treated with a mixture of ampicillin, gentamycin sulfate, kanamycin, neomycin and streptomycin (each at a concentration of 600 mg/L) for 3 days; they were then transferred to antibiotics-free medium for 5 days; and finally they were spread on solid f/2 media to allow algal colonies to form. With this method, five strains of Nannochloropsis sp. (Eustigmatophyceae), two strains of Cylindrotheca sp. (Bacillariophyceae), two strains of Tetraselmis sp. (Chlorodendrophyceae) and one strain of Amphikrikos sp. (Trebouxiophyceae) were purified successfully. The method shows promise for batch-purifying microalgal cultures.

  18. A Novel Gravity Compensation Method for High Precision Free-INS Based on "Extreme Learning Machine".

    Science.gov (United States)

    Zhou, Xiao; Yang, Gongliu; Cai, Qingzhong; Wang, Jing

    2016-11-29

    In recent years, with the emergency of high precision inertial sensors (accelerometers and gyros), gravity compensation has become a major source influencing the navigation accuracy in inertial navigation systems (INS), especially for high-precision INS. This paper presents preliminary results concerning the effect of gravity disturbance on INS. Meanwhile, this paper proposes a novel gravity compensation method for high-precision INS, which estimates the gravity disturbance on the track using the extreme learning machine (ELM) method based on measured gravity data on the geoid and processes the gravity disturbance to the height where INS has an upward continuation, then compensates the obtained gravity disturbance into the error equations of INS to restrain the INS error propagation. The estimation accuracy of the gravity disturbance data is verified by numerical tests. The root mean square error (RMSE) of the ELM estimation method can be improved by 23% and 44% compared with the bilinear interpolation method in plain and mountain areas, respectively. To further validate the proposed gravity compensation method, field experiments with an experimental vehicle were carried out in two regions. Test 1 was carried out in a plain area and Test 2 in a mountain area. The field experiment results also prove that the proposed gravity compensation method can significantly improve the positioning accuracy. During the 2-h field experiments, the positioning accuracy can be improved by 13% and 29% respectively, in Tests 1 and 2, when the navigation scheme is compensated by the proposed gravity compensation method.

  19. Scaling and Intensification of Extreme Precipitation in High-Resolution Climate Change Simulations

    Science.gov (United States)

    Ban, Nikolina; Leutwyler, David; Lüthi, Daniel; Schär, Christoph

    2017-04-01

    Climate change projections of extreme precipitation are of great interest due to hydrological impacts such as droughts, floods, erosion, landslides and debris flows. Despite the trend towards dryer conditions over Europe, many climate simulations project increases of heavy precipitation events, while some theoretical studies have raised the possibility of dramatic increases in hourly events (by up to 14% per degree warming). However, conventional climate models are not suited to assess short-term heavy events due to the need to parameterize deep convection. High-resolution climate models with kilometer-scale grid spacing at which parameterization of convection can be switched off, significantly improve the simulation of heavy precipitation and can alter the climate change signal (e.g., Ban et al., 2015). Here we present decade-long high-resolution climate change simulations at horizontal resolution of 2.2 km over Europe on a computational domain with 1536x1536x60 grid points. These simulations have become feasible with a new version of the COSMO model that runs entirely on Graphics Processing Units. We compare a present-day climate simulation, driven by ERA-Interim reanalysis (Leutwyler at al., 2016), with a Pseudo-Global Warming (PGW) simulation The PGW simulation is driven by the slowly evolving mean seasonal cycle of the climate changes (derived from the CMIP5 model), superimposed on the ERA-Interim reanalysis. With this approach, the resulting changes are due to large scale warming of the atmosphere and due to slow-varying circulation changes. We will present the differences in climate change signal between conventional and high-resolution climate models, and discuss the thermodynamic effects on intensification of extreme precipitation. Ban N., J. Schmidli and C. Schär, 2015: Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster? Geophys. Res. Lett., 42 (4), 1165-1172 Leutwyler, D., D. Lüthi, N. Ban, O. Fuhrer and C

  20. Characterizing the Chemical Stability of High Temperature Materials for Application in Extreme Environments

    Science.gov (United States)

    Opila, Elizabeth

    2005-01-01

    The chemical stability of high temperature materials must be known for use in the extreme environments of combustion applications. The characterization techniques available at NASA Glenn Research Center vary from fundamental thermodynamic property determination to material durability testing in actual engine environments. In this paper some of the unique techniques and facilities available at NASA Glenn will be reviewed. Multiple cell Knudsen effusion mass spectrometry is used to determine thermodynamic data by sampling gas species formed by reaction or equilibration in a Knudsen cell held in a vacuum. The transpiration technique can also be used to determine thermodynamic data of volatile species but at atmospheric pressures. Thermodynamic data in the Si-O-H(g) system were determined with this technique. Free Jet Sampling Mass Spectrometry can be used to study gas-solid interactions at a pressure of one atmosphere. Volatile Si(OH)4(g) was identified by this mass spectrometry technique. A High Pressure Burner Rig is used to expose high temperature materials in hydrocarbon-fueled combustion environments. Silicon carbide (SiC) volatility rates were measured in the burner rig as a function of total pressure, gas velocity and temperature. Finally, the Research Combustion Lab Rocket Test Cell is used to expose high temperature materials in hydrogen/oxygen rocket engine environments to assess material durability. SiC recession due to rocket engine exposures was measured as a function of oxidant/fuel ratio, temperature, and total pressure. The emphasis of the discussion for all techniques will be placed on experimental factors that must be controlled for accurate acquisition of results and reliable prediction of high temperature material chemical stability.

  1. Quantification of climate change effects on extreme precipitation used for high resolution hydrologic design

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten

    2012-01-01

    Design of urban drainage structures should include the climatic changes anticipated over the technical lifetime of the system. In Northern Europe climate changes implies increasing occurrences of extreme rainfall. Three approaches to quantify the impact of climate changes on extreme rainfall are ...

  2. Rheology linked with phase changes as recorded by development of shear bands in the South Armorican Shear Zone

    Science.gov (United States)

    Jeřábek, Petr; Bukovská, Zita

    2015-04-01

    The South Armorican Shear Zone in France represents a major right-lateral strike slip shear zone formed in the late stages of Variscan orogeny. The active deformation in this shear zone is associated with the development of S-C fabrics in granitoids where thin shear bands (C) overprint an earlier higher grade metamorphic foliation (S). In the studied samples covering low to high intensity of shear band overprint, we identified three stages of shear band evolution associated with distinct microstructures and deformation mechanisms. The initiation of shear bands stage I is associated with the formation of microcracks crosscutting the S fabric and detected namely in the recrystallized quartz aggregates. The microcracks of suitable orientation are filled by microcline, albite, muscovite and chlorite which is a typical assemblage also for the well developed shear bands. Phase equilibrium modeling in PERPLEX indicates that this assemblage formed at pressure-temperature range of 0.1-0.4 GPa and 300-340 °C. Stage II of shear band evolution is characterized by dynamic recrystallization and grain size reduction of quartz aggregates along the microcracks and replacement of quartz by microcline along grain boundaries. This process leads to disintegration of quartz aggregate fabric and phase mixing in the shear bands. The inferred deformation mechanism for this stage is solution-precipitation creep although recrystallization of quartz is still active at the contact between quartz aggregates and shear bands. The coarse grained microstructure of quartz aggregates with ca ~250 microns average grain size reduces to ~10 microns grain size when recrystallized along extremely thin shear bands/microcracks and to ~20 microns grain size when recrystallized along the thicker shear bands. By using the flow law of Patterson and Luan (1990) for dislocation creep in quartz and the quartz piezometer of Stipp and Tullis (2003) corrected after Holyoke and Kronenberg (2010), the quartz

  3. The age of extremely red and massive galaxies at very high redshift

    CERN Document Server

    Castro-Rodriguez, N

    2011-01-01

    Aims. We present a determination of the intrinsic colors and ages of galaxies at very high redshift, in particular old galaxies (OGs) within extremely red objects (EROs). To date, the definition of EROs has been restricted to objects with z2.5). We therefore, refer to these objects as very high-redshift EROs (Z-EROS, herein). Methods. We analyze 63,550 galaxies selected in the XMM-LSS field. To obtain a reasonably sized sample of EROs, it is essential to consider a very wide area surveys. We identify targets within an area of 0.77 square degrees for which optical to mid-infrared data are available from SUBARU, UKIDSS, and Spitzer. We select Z-EROs based on their colors, and then perform a selection of only OGs. One of our novel innovations is to adapt the traditional method of EROs selection based on the filters I and K, to higher redshifts. Using our method, we identify 20 objects that satisfy the conditions required to be Z-EROs/OGs at redshifts 2.5~4.7. After including additional galaxies with z<2.5 ana...

  4. The use of bone allografts for limb salvage in high-grade extremity osteosarcoma.

    Science.gov (United States)

    Gebhardt, M C; Flugstad, D I; Springfield, D S; Mankin, H J

    1991-09-01

    Limb preservation is increasingly being employed in the local treatment of high-grade extremity osteosarcoma. Bone allografts used to reconstruct the bony defects following tumor resection offer many advantages, including joint reconstruction and incorporation of the graft to the host bone in these relatively young patients. The results of 53 patients 30 years of age or younger were assessed to determine functional outcome. Fresh-frozen allografts were employed as osteoarticular grafts, allograft-arthrodeses, allograft-prosthesis composites, or intercalary grafts. Follow-up intervals averaged 25 months (range, two to 63 months). Life-table analysis showed that the probability of a satisfactory functional result was 73% if local tumor recurrences were excluded. Complications included 16 infections, six fractures, 12 nonunions, and six unstable joints. There were five local recurrences. Eighteen grafts ultimately failed, and in six patients, this resulted in an above-knee amputation. An additional five received a second graft. The functional "end results" of the 38 patients with two or more years of follow-up examinations were 70% satisfactory in those without a local recurrence. There was no statistically significant difference in functional outcome or local or distant relapse in those patients receiving preoperative chemotherapy. The authors conclude that allografts can be used for limb reconstruction in patients with high-grade osteosarcoma who receive aggressive adjuvant chemotherapy. The functional results are comparable to other methods of reconstruction, and once incorporated by the host, offer the advantage of longevity, compared with metallic implants.

  5. Microsystem for remote sensing of high energy radiation with associated extremely low photon flux densities

    Science.gov (United States)

    Otten, A.; Jain, V. K.

    2015-08-01

    This paper presents a microsystem for remote sensing of high energy radiation in extremely low flux density conditions. With wide deployment in mind, potential applications range from nuclear non-proliferation, to hospital radiation-safety. The daunting challenge is the low level of photon flux densities - emerging from a Scintillation Crystal (SC) on to a ~1 mm-square detector, which are a factor of 10000 or so lower than those acceptable to recently reported photonic chips (including `single-photon detection' chips), due to a combination of low Lux, small detector size, and short duration SC output pulses - on the order of 1 μs. These challenges are attempted to be overcome by the design of an innovative `System on a Chip' type microchip, with high detector sensitivity, and effective coupling from the SC to the photodetector. The microchip houses a tiny n+ diff p-epi photodiode (PD) as well as the associated analog amplification and other related circuitry, all fabricated in 0.5micron, 3-metal 2-poly CMOS technology. The amplification, together with pulse-shaping of the photocurrent-induced voltage signal, is achieved through a tandem of two capacitively coupled, double-cascode amplifiers. Included in the paper are theoretical estimates and experimental results.

  6. Significant mobility enhancement in extremely thin highly doped ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Look, David C., E-mail: david.look@wright.edu [Semiconductor Research Center, Wright State University, 3640 Colonel Glenn Hwy., Dayton, Ohio 45435 (United States); Wyle Laboratories, Inc., 2601 Mission Point Blvd., Dayton, Ohio 45431 (United States); Air Force Research Laboratory Sensors Directorate, 2241 Avionics Circle, Wright-Patterson AFB, Ohio 45433 (United States); Heller, Eric R. [Air Force Research Laboratory Materials and Manufacturing Directorate, 3005 Hobson Way, Wright-Patterson AFB, Ohio 45433 (United States); Yao, Yu-Feng; Yang, C. C., E-mail: ccycc@ntu.edu.tw [Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (China)

    2015-04-13

    Highly Ga-doped ZnO (GZO) films of thicknesses d = 5, 25, 50, and 300 nm, grown on 160-nm ZnO buffer layers by molecular beam epitaxy, had 294-K Hall-effect mobilities μ{sub H} of 64.1, 43.4, 37.0, and 34.2 cm{sup 2}/V-s, respectively. This extremely unusual ordering of μ{sub H} vs d is explained by the existence of a very high-mobility Debye tail in the ZnO, arising from the large Fermi-level mismatch between the GZO and the ZnO. Scattering theory in conjunction with Poisson analysis predicts a Debye-tail mobility of 206 cm{sup 2}/V-s at the interface (z = d), falling to 58 cm{sup 2}/V-s at z = d + 2 nm. Excellent fits to μ{sub H} vs d and sheet concentration n{sub s} vs d are obtained with no adjustable parameters.

  7. Potential therapeutic mechanism of extremely low-frequency high-voltage electric fields in cells.

    Science.gov (United States)

    Kim, Ka-Eun; Park, Soon-Kwon; Nam, Sang-Yun; Han, Tae-Jong; Cho, Il-Young

    2016-05-18

    The aim of this survey was to provide background theory based on previous research to elucidate the potential pathway by which medical devices using extremely low-frequency high-voltage electric fields (ELF-HVEF) exert therapeutic effects on the human body, and to increase understanding of the AC high-voltage electrotherapeutic apparatus for consumers and suppliers of the relevant devices. Our review revealed that an ELF field as weak as 1-10 μ V/m can induce diverse alterations of membrane proteins such as transporters and channel proteins, including changes in Ca + + binding to a specific site of the cell surface, changes in ion (e.g., Ca + + ) influx or efflux, and alterations in the ligand-receptor interaction. These alterations then induce cytoplasmic responses within cells (Ca + + , cAMP, kinases, etc.) that can have impacts on cell growth, differentiation, and other functional properties by promoting the synthesis of macromolecules. Moreover, increased cytoplasmic Ca + + involves calmodulin-dependent signaling and consequent Ca + + /calmodulin-dependent stimulation of nitric oxide synthesis. This event in turn induces the nitric oxide-cGMP-protein kinase G pathway, which may be an essential factor in the observed physiological and therapeutic responses.

  8. User characteristics and effect profile of Butane Hash Oil: An extremely high-potency cannabis concentrate.

    Science.gov (United States)

    Chan, Gary C K; Hall, Wayne; Freeman, Tom P; Ferris, Jason; Kelly, Adrian B; Winstock, Adam

    2017-09-01

    Recent reports suggest an increase in use of extremely potent cannabis concentrates such as Butane Hash Oil (BHO) in some developed countries. The aims of this study were to examine the characteristics of BHO users and the effect profiles of BHO. Anonymous online survey in over 20 countries in 2014 and 2015. Participants aged 18 years or older were recruited through onward promotion and online social networks. The overall sample size was 181,870. In this sample, 46% (N=83,867) reported using some form of cannabis in the past year, and 3% reported BHO use (n=5922). Participants reported their use of 7 types of cannabis in the past 12 months, the source of their cannabis, reasons for use, use of other illegal substances, and lifetime diagnosis for depression, anxiety and psychosis. Participants were asked to rate subjective effects of BHO and high potency herbal cannabis. Participants who reported a lifetime diagnosis of depression (OR=1.15, p=0.003), anxiety (OR=1.72, pcannabis. BHO users also reported stronger negative effects and less positive effects when using BHO than high potency herbal cannabis (pcannabis. Copyright © 2017. Published by Elsevier B.V.

  9. Role of shear stress in the blister formation of cerebral aneurysms.

    Science.gov (United States)

    Shojima, Masaaki; Nemoto, Shigeru; Morita, Akio; Oshima, Marie; Watanabe, Eiju; Saito, Nobuhito

    2010-11-01

    The development of cerebral aneurysms is related to hemodynamic stress. To elucidate the role of shear stress in the blister formation of cerebral aneurysms. Among 82 aneurysms detected during catheter-based 3D rotational angiography (3DRA), 4 aneurysms enlarged with blister formation during a mean follow-up period of 10.1 month. Three of these 4 aneurysms were analyzed in this study. The regions of blister formation were characterized by comparing 3DRA before and after blister formation, and computational fluid dynamic simulations were performed based on the aneurysm geometry before blister formation. The spatially averaged shear magnitude was lower in the aneurysm region (0.97 ± 0.39 Pa) than in the parent artery (2.75 ± 0.92 Pa). The spatially averaged shear magnitude of the blister-forming area was extremely low (0.48 ± 0.12 Pa), and the shear magnitude dropped precipitately to subphysiological levels, resulting in a high shear gradient near the border of the blister-forming area. These data suggest that low shear magnitude may trigger the progression of cerebral aneurysms and that blister formation is associated with high shear gradient in the large region of low shear magnitude on the aneurysm wall.

  10. Yolk-shelled cathode materials with extremely high electrochemical performances prepared by spray pyrolysis

    Science.gov (United States)

    Choi, Seung Ho; Hong, Young Jun; Kang, Yun Chan

    2013-08-01

    A facile, continuous preparation process of yolk-shell-structured lithium-metal oxide powders without a template for use as cathode materials in lithium ion batteries is introduced for the first time. Single and double-shelled LiNi0.5Mn1.5O4 yolk-shell powders as the first target materials are prepared directly by spray pyrolysis from a spray solution with sucrose, at a short residence time of 4 s. Fast combustion and contraction of a carbon-mixed oxide composite intermediate, formed from a micro-sized droplet inside a hot wall reactor maintained at 700 °C, produces the yolk-shell powders. The yolk-shell structure of the precursor powders directly prepared by spray pyrolysis is well maintained even at a high post-treatment temperature of 750 °C. The yolk-shell LiNi0.5Mn1.5O4 powders delivered a 1000th high discharge capacity of 108 mA h g-1 at 10 C. The discharge capacities are as high as 103, 95, and 91 mA h g-1 at extremely high discharge rates of 100, 200, and 300 C and the corresponding specific energy densities are 420, 370, and 328 W h kg-1. The capacity retention at a constant discharge rate of 200 C is 90% after 500 cycles.A facile, continuous preparation process of yolk-shell-structured lithium-metal oxide powders without a template for use as cathode materials in lithium ion batteries is introduced for the first time. Single and double-shelled LiNi0.5Mn1.5O4 yolk-shell powders as the first target materials are prepared directly by spray pyrolysis from a spray solution with sucrose, at a short residence time of 4 s. Fast combustion and contraction of a carbon-mixed oxide composite intermediate, formed from a micro-sized droplet inside a hot wall reactor maintained at 700 °C, produces the yolk-shell powders. The yolk-shell structure of the precursor powders directly prepared by spray pyrolysis is well maintained even at a high post-treatment temperature of 750 °C. The yolk-shell LiNi0.5Mn1.5O4 powders delivered a 1000th high discharge capacity of 108 m

  11. Real-time monitoring of high-intensity focused ultrasound treatment using axial strain and axial-shear strain elastograms.

    Science.gov (United States)

    Xia, Rongmin; Thittai, Arun K

    2014-03-01

    Axial strain elastograms (ASEs) have been found to help visualize sonographically invisible thermal lesions. However, in most studies involving high-intensity focused ultrasound (HIFU)-induced thermal lesions, elastography imaging was performed separately later, after the lesion was formed. In this article, the feasibility of monitoring, in real time, tissue elasticity variation during HIFU treatment and immediately thereafter is explored using quasi-static elastography. Further, in addition to ASEs, we also explore the use of simultaneously acquired axial-shear strain elastograms (ASSEs) for HIFU lesion visualization. Experiments were performed on commercial porcine liver samples in vitro. The HIFU experiments were conducted at two applied acoustic power settings, 35 and 20 W. The experimental setup allowed us to interrupt the HIFU pulse momentarily several different times during treatment to perform elastographic compression and data acquisition. At the end of the experiments, the samples were cut along the imaging plane and photographed to compare size and location of the formed lesion with those visualized on ASEs and ASSEs. Single-lesion and multiple-lesion experiments were performed to assess the contribution of ASEs and ASSEs to lesion visualization and treatment monitoring tasks. At both power settings, ASEs and ASSEs provided accurate location information during HIFU treatment. At the low-power setting case, ASEs and ASSEs provide accurate lesion size in real-time monitoring. Lesion appearance in ASEs and ASSEs was affected by the cavitation bubbles produced at the high-power setting. The results further indicate that the cavitation bubbles influence lesion appearance more in ASEs than in ASSEs. Both ASEs and ASSEs provided accurate size information after a waiting period that allowed the cavitation bubbles to disappear. The results indicate that ASSEs not only improve lesion visualization and size measurement of a single lesion, but, under certain

  12. Review of the Shearing Process for Sheet Steels and Its Effect on Sheared-Edge Stretching

    Science.gov (United States)

    Levy, B. S.; Van Tyne, C. J.

    2012-07-01

    Failure in sheared-edge stretching often limits the use of advanced high-strength steel sheets in automotive applications. The present study analyzes data in the literature from laboratory experiments on both the shearing process and the characteristics of sheared edges. Shearing produces a surface with regions of rollover, burnish, fracture, and burr. The effect of clearance and tensile strength on the shear face characteristics is quantified. Higher strength, lower ductility steels exhibit an increase in percent fracture region. The shearing process also creates a zone of deformation adjacent to the shear face called the shear-affected zone (SAZ). From an analysis of data in the literature, it is concluded that deformation in the SAZ is the dominant factor in controlling failure during sheared-edge stretching. The characteristics of the shear face are generally important for failures during sheared-edge stretching only as there is a correlation between the characteristics of the shear face and the characteristics of the SAZ. The effect of the shear burr on shear-edge stretching is also related to a correlation with the characteristics of the SAZ. In reviewing the literature, many shearing variables that could affect sheared-edge stretching limits are not identified or if identified, not quantified. It is likely that some of these variables could affect subsequent sheared-edge stretching limits.

  13. Ultra-high performance fibre-reinforced concrete under impact: experimental analysis of the mechanical response in extreme conditions and modelling using the Pontiroli, Rouquand and Mazars model

    Science.gov (United States)

    Erzar, Benjamin; Pontiroli, Christophe; Buzaud, Eric

    2017-01-01

    To evaluate the vulnerability of ultra-high performance fibre-reinforced concrete (UHPFRC) infrastructure to rigid projectile penetration, over the last few years CEA-Gramat has led an experimental and numerical research programme in collaboration with French universities. During the penetration process, concrete is subjected to extreme conditions of pressure and strain rate. Plasticity mechanisms as well as dynamic tensile and/or shear damage are activated during the tunnelling phase and the cratering of the concrete target. Each mechanism has been investigated independently at the laboratory scale and the role of steel fibres especially has been analysed to understand their influence on the macroscopic behaviour. To extend the experimental results to the structural scale, penetration tests on UHPFRC slabs have been conducted by CEA-Gramat. The analysis of this dataset combined with material characterization experiments allows the role of steel fibres to be identified in the different plasticity and damage mechanisms occurring during penetration. In parallel, some improvements have been introduced into the concrete model developed by Pontiroli, Rouquand and Mazars (PRM model), especially to take into account the contribution made by the fibres in the tensile fracture process. After a primary phase of validation, the capabilities of the PRM model are illustrated by performing numerical simulations of projectile penetration into UHPFRC concrete structures. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  14. Ultra-high performance fibre-reinforced concrete under impact: experimental analysis of the mechanical response in extreme conditions and modelling using the Pontiroli, Rouquand and Mazars model.

    Science.gov (United States)

    Erzar, Benjamin; Pontiroli, Christophe; Buzaud, Eric

    2017-01-28

    To evaluate the vulnerability of ultra-high performance fibre-reinforced concrete (UHPFRC) infrastructure to rigid projectile penetration, over the last few years CEA-Gramat has led an experimental and numerical research programme in collaboration with French universities. During the penetration process, concrete is subjected to extreme conditions of pressure and strain rate. Plasticity mechanisms as well as dynamic tensile and/or shear damage are activated during the tunnelling phase and the cratering of the concrete target. Each mechanism has been investigated independently at the laboratory scale and the role of steel fibres especially has been analysed to understand their influence on the macroscopic behaviour. To extend the experimental results to the structural scale, penetration tests on UHPFRC slabs have been conducted by CEA-Gramat. The analysis of this dataset combined with material characterization experiments allows the role of steel fibres to be identified in the different plasticity and damage mechanisms occurring during penetration. In parallel, some improvements have been introduced into the concrete model developed by Pontiroli, Rouquand and Mazars (PRM model), especially to take into account the contribution made by the fibres in the tensile fracture process. After a primary phase of validation, the capabilities of the PRM model are illustrated by performing numerical simulations of projectile penetration into UHPFRC concrete structures.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  15. SOME PECULIARITIES OF DUCTILE SHEAR FAILURE OF AMORPHOUS ALLOY RIBBONS

    NARCIS (Netherlands)

    BENGUS, VZ; TABACHNIKOVA, ED; SHUMILIN, SE; GOLOVIN, YI; MAKAROV, MV; SHIBKOV, AA; MISKUF, J; CSACH, K; Ocelik, Vaclav

    1993-01-01

    The kinetics of a shear crack propagation under ductile shear failure of amorphous alloys ribbons is studied experimentally. Some phenomena that accompany this failure are also studied: repeated alternation of the shear crack orientation, plastic corrugation of a ribbon, extreme local heating at the

  16. Failure During Sheared Edge Stretching

    Science.gov (United States)

    Levy, B. S.; van Tyne, C. J.

    2008-12-01

    Failure during sheared edge stretching of sheet steels is a serious concern, especially in advanced high-strength steel (AHSS) grades. The shearing process produces a shear face and a zone of deformation behind the shear face, which is the shear-affected zone (SAZ). A failure during sheared edge stretching depends on prior deformation in the sheet, the shearing process, and the subsequent strain path in the SAZ during stretching. Data from laboratory hole expansion tests and hole extrusion tests for multiple lots of fourteen grades of steel were analyzed. The forming limit curve (FLC), regression equations, measurement uncertainty calculations, and difference calculations were used in the analyses. From these analyses, an assessment of the primary factors that contribute to the fracture during sheared edge stretching was made. It was found that the forming limit strain with consideration of strain path in the SAZ is a major factor that contributes to the failure of a sheared edge during stretching. Although metallurgical factors are important, they appear to play a somewhat lesser role.

  17. Future Projection of Summer Extreme Precipitation from High Resolution Multi-RCMs over East Asia

    Science.gov (United States)

    Kim, Gayoung; Park, Changyong; Cha, Dong-Hyun; Lee, Dong-Kyou; Suh, Myoung-Seok; Ahn, Joong-Bae; Min, Seung-Ki; Hong, Song-You; Kang, Hyun-Suk

    2017-04-01

    Recently, the frequency and intensity of natural hazards have been increasing due to human-induced climate change. Because most damages of natural hazards over East Asia have been related to extreme precipitation events, it is important to estimate future change in extreme precipitation characteristics caused by climate change. We investigate future changes in extremal values of summer precipitation simulated by five regional climate models participating in the CORDEX-East Asia project (i.e., HadGEM3-RA, RegCM4, MM5, WRF, and GRIMs) over East Asia. 100-year return value calculated from the generalized extreme value (GEV) parameters is analysed as an indicator of extreme intensity. In the future climate, the mean values as well as the extreme values of daily precipitation tend to increase over land region. The increase of 100-year return value can be significantly associated with the changes in the location (intensity) and scale (variability) GEV parameters for extreme precipitation. It is expected that the results of this study can be used as fruitful references when making the policy of disaster management. Acknowledgements The research was supported by the Ministry of Public Safety and Security of Korean government and Development program under grant MPSS-NH-2013-63 and the National Research Foundation of Korea Grant funded by the Ministry of Science, ICT and Future Planning of Korea (NRF-2016M3C4A7952637) for its support and assistant in completion of the study.

  18. Active Control of Shear Thickening in Suspensions

    CERN Document Server

    Lin, Neil Y C; Cates, Michael E; Sun, Jin; Cohen, Itai

    2016-01-01

    Shear thickening, an increase of viscosity with shear rate, is a ubiquitous phenomena in suspended materials that has implications for broad technological applications. Controlling this thickening behavior remains a major challenge and has led to empirical strategies ranging from altering the particle surfaces and shape to modifying the solvent properties. However, none of these methods allow for active control of flow properties during shear itself. Here, we demonstrate that by strategic imposition of a high-frequency and low-amplitude shear perturbation orthogonal to the primary shearing flow, we can largely eradicate shear thickening. The orthogonal shear effectively becomes a regulator for controlling thickening in the suspension, allowing the viscosity to be reduced by up to two decades on demand. In a separate setup, we show that such effects can be induced by simply agitating the sample transversely to the primary shear direction. Overall, the ability of in situ manipulation of shear thickening paves a...

  19. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.

    Science.gov (United States)

    Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A H

    2015-01-01

    Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal.

  20. Extremely short duration high intensity interval training substantially improves insulin action in young healthy males

    Directory of Open Access Journals (Sweden)

    Cottrell Greg

    2009-01-01

    Full Text Available Abstract Background Traditional high volume aerobic exercise training reduces cardiovascular and metabolic disease risk but involves a substantial time commitment. Extremely low volume high-intensity interval training (HIT has recently been demonstrated to produce improvements to aerobic function, but it is unknown whether HIT has the capacity to improve insulin action and hence glycemic control. Methods Sixteen young men (age: 21 ± 2 y; BMI: 23.7 ± 3.1 kg·m-2; VO2peak: 48 ± 9 ml·kg-1·min-1 performed 2 weeks of supervised HIT comprising of a total of 15 min of exercise (6 sessions; 4–6 × 30-s cycle sprints per session. Aerobic performance (250-kJ self-paced cycling time trial, and glucose, insulin and NEFA responses to a 75-g oral glucose load (oral glucose tolerance test; OGTT were determined before and after training. Results Following 2 weeks of HIT, the area under the plasma glucose, insulin and NEFA concentration-time curves were all reduced (12%, 37%, 26% respectively, all P -1, P = 0.058. Insulin sensitivity, as measured by the Cederholm index, was improved by 23% (P Conclusion The efficacy of a high intensity exercise protocol, involving only ~250 kcal of work each week, to substantially improve insulin action in young sedentary subjects is remarkable. This novel time-efficient training paradigm can be used as a strategy to reduce metabolic risk factors in young and middle aged sedentary populations who otherwise would not adhere to time consuming traditional aerobic exercise regimes.

  1. Extremely high frequency electromagnetic radiation enforces bacterial effects of inhibitors and antibiotics.

    Science.gov (United States)

    Tadevosyan, Hasmik; Kalantaryan, Vitaly; Trchounian, Armen

    2008-01-01

    The coherent electromagnetic radiation (EMR) of the frequency of 51.8 and 53 GHz with low intensity (the power flux density of 0.06 mW/cm(2)) affected the growth of Escherichia coli K12(lambda) under fermentation conditions: the lowering of the growth specific rate was considerably (approximately 2-fold) increased with exposure duration of 30-60 min; a significant decrease in the number of viable cells was also shown. Moreover, the enforced effects of the N,N'-dicyclohexylcarbodiimide (DCCD), inhibitor of H(+)-transporting F(0)F(1)-ATPase, on energy-dependent H(+) efflux by whole cells and of antibiotics like tetracycline and chloramphenicol on the following bacterial growth and survival were also determined after radiation. In addition, the lowering in DCCD-inhibited ATPase activity of membrane vesicles from exposed cells was defined. The results confirmed the input of membranous changes in bacterial action of low intensity extremely high frequency EMR, when the F(0)F(1)-ATPase is probably playing a key role. The radiation of bacteria might lead to changed metabolic pathways and to antibiotic resistance. It may also give bacteria with a specific role in biosphere.

  2. The fire-walker's high: affect and physiological responses in an extreme collective ritual.

    Science.gov (United States)

    Fischer, Ronald; Xygalatas, Dimitris; Mitkidis, Panagiotis; Reddish, Paul; Tok, Penny; Konvalinka, Ivana; Bulbulia, Joseph

    2014-01-01

    How do people feel during extreme collective rituals? Despite longstanding speculation, few studies have attempted to quantify ritual experiences. Using a novel pre/post design, we quantified physiological fluctuations (heart rates) and self-reported affective states from a collective fire-walking ritual in a Mauritian Hindu community. Specifically, we compared changes in levels of happiness, fatigue, and heart rate reactivity among high-ordeal participants (fire-walkers), low-ordeal participants (non-fire-walking participants with familial bonds to fire-walkers) and spectators (unrelated/unknown to the fire-walkers). We observed that fire-walkers experienced the highest increase in heart rate and reported greater happiness post-ritual compared to low-ordeal participants and spectators. Low-ordeal participants reported increased fatigue after the ritual compared to both fire-walkers and spectators, suggesting empathetic identification effects. Thus, witnessing the ritualistic suffering of loved ones may be more exhausting than experiencing suffering oneself. The findings demonstrate that the level of ritual involvement is important for shaping affective responses to collective rituals. Enduring a ritual ordeal is associated with greater happiness, whereas observing a loved-one endure a ritual ordeal is associated with greater fatigue post-ritual.

  3. The fire-walker's high: affect and physiological responses in an extreme collective ritual.

    Directory of Open Access Journals (Sweden)

    Ronald Fischer

    Full Text Available How do people feel during extreme collective rituals? Despite longstanding speculation, few studies have attempted to quantify ritual experiences. Using a novel pre/post design, we quantified physiological fluctuations (heart rates and self-reported affective states from a collective fire-walking ritual in a Mauritian Hindu community. Specifically, we compared changes in levels of happiness, fatigue, and heart rate reactivity among high-ordeal participants (fire-walkers, low-ordeal participants (non-fire-walking participants with familial bonds to fire-walkers and spectators (unrelated/unknown to the fire-walkers. We observed that fire-walkers experienced the highest increase in heart rate and reported greater happiness post-ritual compared to low-ordeal participants and spectators. Low-ordeal participants reported increased fatigue after the ritual compared to both fire-walkers and spectators, suggesting empathetic identification effects. Thus, witnessing the ritualistic suffering of loved ones may be more exhausting than experiencing suffering oneself. The findings demonstrate that the level of ritual involvement is important for shaping affective responses to collective rituals. Enduring a ritual ordeal is associated with greater happiness, whereas observing a loved-one endure a ritual ordeal is associated with greater fatigue post-ritual.

  4. European Extremely Large Telescope Site Characterization II: High angular resolution parameters

    CERN Document Server

    Ramió, Héctor Vázquez; Muñoz-Tuñón, Casiana; Sarazin, Marc; Varela, Antonia M; Trinquet, Hervé; Delgado, José Miguel; Fuensalida, Jesús J; Reyes, Marcos; Benhida, Abdelmajid; Benkhaldoun, Zouhair; Lambas, Diego García; Hach, Youssef; Lazrek, M; Lombardi, Gianluca; Navarrete, Julio; Recabarren, Pablo; Renzi, Victor; Sabil, Mohammed; Vrech, Rubén

    2012-01-01

    This is the second article of a series devoted to European Extremely Large Telescope (E-ELT) site characterization. In this article we present the main properties of the parameters involved in high angular resolution observations from the data collected in the site testing campaign of the E-ELT during the Design Study (DS) phase. Observations were made in 2008 and 2009, in the four sites selected to shelter the future E-ELT (characterized under the ELT-DS contract): Aklim mountain in Morocco, Observatorio del Roque de los Muchachos (ORM) in Spain, Mac\\'on range in Argentina, and Cerro Ventarrones in Chile. The same techniques, instruments and acquisition procedures were taken on each site. A Multiple Aperture Scintillation Sensor (MASS) and a Differential Image Motion Monitor (DIMM) were installed at each site. Global statistics of the integrated seeing, the free atmosphere seeing, the boundary layer seeing and the isoplanatic angle were studied for each site, and the results are presented here. In order to e...

  5. European Extremely Large Telescope Site Characterization. II. High Angular Resolution Parameters

    Science.gov (United States)

    Vázquez Ramió, Héctor; Vernin, Jean; Muñoz-Tuñón, Casiana; Sarazin, Marc; Varela, Antonia M.; Trinquet, Hervé; Delgado, José Miguel; Fuensalida, Jesús J.; Reyes, Marcos; Benhida, Abdelmajid; Benkhaldoun, Zouhair; García Lambas, Diego; Hach, Youssef; Lazrek, M.; Lombardi, Gianluca; Navarrete, Julio; Recabarren, Pablo; Renzi, Victor; Sabil, Mohammed; Vrech, Rubén

    2012-08-01

    This is the second article of a series devoted to European Extremely Large Telescope (E-ELT) site characterization. In this article we present the main properties of the parameters involved in high angular resolution observations from the data collected in the site testing campaign of the E-ELT during the design study (DS) phase. Observations were made in 2008 and 2009, in the four sites selected to shelter the future E-ELT (characterized under the ELT-DS contract): Aklim mountain in Morocco, Observatorio del Roque de los Muchachos (ORM) in Spain, Macón range in Argentina, and Cerro Ventarrones in Chile. The same techniques, instruments, and acquisition procedures were taken on each site. A multiple aperture scintillation sensor (MASS) and a differential image motion monitor (DIMM) were installed at each site. Global statistics of the integrated seeing, the free atmosphere seeing, the boundary layer seeing, and the isoplanatic angle were studied for each site, and the results are presented here. In order to estimate other important parameters, such as the coherence time of the wavefront and the overall parameter “coherence étendue,” additional information of vertical profiles of the wind speed was needed. Data were retrieved from the National Oceanic and Atmospheric Administration (NOAA) archive. Ground wind speed was measured by automatic weather stations (AWS). More aspects of the turbulence parameters, such as their seasonal trend, their nightly evolution, and their temporal stability, were also obtained and analyzed.

  6. Probing neutrino dark energy with extremely high-energy cosmic neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ringwald, A.; Schrempp, L.

    2006-06-15

    Recently, a new non-Standard Model neutrino interaction mediated by a light scalar field was proposed, which renders the big-bang relic neutrinos of the cosmic neutrino background a natural dark energy candidate, the so-called Neutrino Dark Energy. As a further consequence of this interaction, the neutrino masses become functions of the neutrino energy densities and are thus promoted to dynamical, time/redshift dependent quantities. Such a possible neutrino mass variation introduces a redshift dependence into the resonance energies associated with the annihilation of extremely high-energy cosmic neutrinos on relic anti-neutrinos and vice versa into Z-bosons. In general, this annihilation process is expected to lead to sizeable absorption dips in the spectra to be observed on earth by neutrino observatories operating in the relevant energy region above 10{sup 13} GeV. In our analysis, we contrast the characteristic absorption features produced by constant and varying neutrino masses, including all thermal background effects caused by the relic neutrino motion. We firstly consider neutrinos from astrophysical sources and secondly neutrinos originating from the decomposition of topological defects using the appropriate fragmentation functions. On the one hand, independent of the nature of neutrino masses, our results illustrate the discovery potential for the cosmic neutrino background by means of relic neutrino absorption spectroscopy. On the other hand, they allow to estimate the prospects for testing its possible interpretation as source of Neutrino Dark Energy within the next decade by the neutrino observatories ANITA and LOFAR. (Orig.)

  7. Stable droplet generator for a high brightness laser produced plasma extreme ultraviolet source

    Science.gov (United States)

    Vinokhodov, A.; Krivokorytov, M.; Sidelnikov, Yu.; Krivtsun, V.; Medvedev, V.; Bushuev, V.; Koshelev, K.; Glushkov, D.; Ellwi, S.

    2016-10-01

    We present the results of the low-melting liquid metal droplets generation based on excited Rayleigh jet breakup. We discuss on the operation of the industrial and in-house designed and manufactured dispensing devices for the droplets generation. Droplet diameter can be varied in the range of 30-90 μm. The working frequency of the droplets, velocity, and the operating temperature were in the ranges of 20-150 kHz, 4-15 m/s, and up to 250 °C, respectively. The standard deviations for the droplet center of mass position both their diameter σ < 1 μm at the distance of 45 mm from the nozzle. Stable operation in the long-term (over 1.5 h) was demonstrated for a wide range of the droplet parameters: diameters, frequencies, and velocities. Physical factors affecting the stability of the generator operation have been identified. The technique for droplet synchronization, allowing using the droplet as a target for laser produced plasma, has been created; in particular, the generator has been successfully used in a high brightness extreme ultraviolet (EUV) light source. The operation with frequency up to 8 kHz was demonstrated as a result of the experimental simulation, which can provide an average brightness of the EUV source up to ˜1.2 kW/mm2 sr.

  8. Cry me a river: identifying the behavioral consequences of extremely high-stakes interpersonal deception.

    Science.gov (United States)

    Ten Brinke, Leanne; Porter, Stephen

    2012-12-01

    Deception evolved as a fundamental aspect of human social interaction. Numerous studies have examined behavioral cues to deception, but most have involved inconsequential lies and unmotivated liars in a laboratory context. We conducted the most comprehensive study to date of the behavioral consequences of extremely high-stakes, real-life deception--relative to comparable real-life sincere displays--via 3 communication channels: speech, body language, and emotional facial expressions. Televised footage of a large international sample of individuals (N = 78) emotionally pleading to the public for the return of a missing relative was meticulously coded frame-by-frame (30 frames/s for a total of 74,731 frames). About half of the pleaders eventually were convicted of killing the missing person on the basis of overwhelming evidence. Failed attempts to simulate sadness and leakage of happiness revealed deceptive pleaders' covert emotions. Liars used fewer words but more tentative words than truth-tellers, likely relating to increased cognitive load and psychological distancing. Further, each of these cues explained unique variance in predicting pleader sincerity.

  9. Identification and Plasma Diagnostics Study of Extreme Ultraviolet Transitions in Highly Charged Yttrium

    Directory of Open Access Journals (Sweden)

    Roshani Silwal

    2017-09-01

    Full Text Available Extreme ultraviolet spectra of the L-shell ions of highly charged yttrium (Y 26 + –Y 36 + were observed in the electron beam ion trap of the National Institute of Standards and Technology using a flat-field grazing-incidence spectrometer in the wavelength range of 4 nm-20 nm. The electron beam energy was systematically varied from 2.3 keV–6.0 keV to selectively produce different ionization stages. Fifty-nine spectral lines corresponding to Δ n = 0 transitions within the n = 2 and n = 3 shells have been identified using detailed collisional-radiative (CR modeling of the non-Maxwellian plasma. The uncertainties of the wavelength determinations ranged between 0.0004 nm and 0.0020 nm. Li-like resonance lines, 2s– 2 p 1 / 2 and 2s–2 p 3 / 2 , and the Na-like D lines, 3s– 3 p 1 / 2 and 3s– 3 p 3 / 2 , have been measured and compared with previous measurements and calculations. Forbidden magnetic dipole (M1 transitions were identified and analyzed for their potential applicability in plasma diagnostics using large-scale CR calculations including approximately 1.5 million transitions. Several line ratios were found to show strong dependence on electron density and, hence, may be implemented in the diagnostics of hot plasmas, in particular in fusion devices.

  10. Ionized sputter deposition using an extremely high plasma density pulsed magnetron discharge

    Energy Technology Data Exchange (ETDEWEB)

    Macak, Karol [Department of Physics, Linkoeping University, SE-581 83 Linkoeping, (Sweden); Kouznetsov, Vladimir [Department of Physics, Linkoeping University, SE-581 83 Linkoeping, (Sweden); Schneider, Jochen [Department of Physics, Linkoeping University, SE-581 83 Linkoeping, (Sweden); Helmersson, Ulf [Department of Physics, Linkoeping University, SE-581 83 Linkoeping, (Sweden); Petrov, Ivan [Materials Science Department and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States)

    2000-07-01

    Time resolved plasma probe measurements of a novel high power density pulsed plasma discharge are presented. Extreme peak power densities in the pulse (on the order of several kW cm{sup -2}) result in a very dense plasma with substrate ionic flux densities of up to 1 A cm{sup -2} at source-to-substrate distances of several cm and at a pressure of 0.13 Pa (1 mTorr). The pulse duration was {approx}100 {mu}s with a pulse repetition frequency of 50 Hz. The plasma consists of metallic and inert gas ions, as determined from time resolved Langmuir probe measurements and in situ optical emission spectroscopy data. It was found that the plasma composition at the beginning of the pulse was dominated by Ar ions. As time elapsed metal ions were detected and finally dominated the ion composition. The effect of the process parameters on the temporal development of the ionic fluxes is discussed. The ionized portion of the sputtered metal flux was found to have an average velocity of 2500 m s{sup -1} at 6 cm distance from the source, which conforms to the collisional cascade sputtering theory. The degree of ionization of the sputtered metal flux at a pressure of 0.13 Pa was found to be 40%{+-}20% by comparing the total flux of deposited atoms with the charge measured for the metal ions in the pulse. (c) 2000 American Vacuum Society.

  11. Mesoscale high-resolution modeling of extreme wind speeds over western water areas of the Russian Arctic

    Science.gov (United States)

    Platonov, Vladimir S.; Kislov, Alexander V.

    2016-11-01

    A statistical analysis of extreme weather events over coastal areas of the Russian Arctic based on observational data has revealed many interesting features of wind velocity distributions. It has been shown that the extremes contain data belonging to two different statistical populations. Each of them is reliably described by a Weibull distribution. According to the standard terminology, these sets of extremes are named ‘black swans’ and ‘dragons’. The ‘dragons’ are responsible for most extremes, surpassing the ‘black swans’ by 10 - 30 %. Since the data of the global climate model INM-CM4 do not contain ‘dragons’, the wind speed extremes are investigated on the mesoscale using the COSMO-CLM model. The modelling results reveal no differences between the ‘swans’ and ‘dragons’ situations. It could be associated with the poor sample data used. However, according to many case studies and modeling results we assume that it is caused by a rare superposition of large-scale synoptic factors and many local meso- and microscale factors (surface, coastline configuration, etc.). Further studies of extreme wind speeds in the Arctic, such as ‘black swans’ and ‘dragons’, are necessary to focus on non-hydrostatic high-resolution atmospheric modelling using downscaling techniques.

  12. Free-fillet flap harvested in 'severe, high-energy landmine explosion' injuries of lower extremity: a case report.

    Science.gov (United States)

    Keklikçi, Kenan; Uygur, Fatih; Cengiz Bayram, Fazli; Cilli, Feridun

    2010-01-01

    Fillet flaps harvested from the non-replantable or unsalvageable amputated segment can be used to cover tissue defects. We discuss the case of a patient who had suffered a severe high-energy landmine injury, including severe leg damage, resulting in a below-knee amputation and soft-tissue defect around the forearm region. We successfully harvested the fillet from the amputated part of the extremity to the forearm region. We conclude that harvesting of a fillet flap from severely injured lower extremity, resulting from a high-energy landmine explosion, is technically feasible.

  13. Probing the origin of cosmic-rays with extremely high energy neutrinos using the IceCube Observatory

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Abbasi, R.; Ackermann, M.

    2013-01-01

    We have searched for extremely high energy neutrinos using data taken with the IceCube detector between May 2010 andMay 2012. Two neutrino-induced particle shower events with energies around 1 PeV were observed, as reported previously. In this work, we investigate whether these events could...... originate from cosmogenic neutrinos produced in the interactions of ultrahigh energy cosmic rays with ambient photons while propagating through intergalactic space. Exploiting IceCube’s large exposure for extremely high energy neutrinos and the lack of observed events above 100 PeV, we can rule out...

  14. A Piezoelectric Shear Stress Sensor

    Science.gov (United States)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-01-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  15. Multi-scenario-based hazard analysis of high temperature extremes experienced in China during 1951-2010

    Institute of Scientific and Technical Information of China (English)

    YIN Zhan'e; YIN Jie; ZHANG Xiaowei

    2013-01-01

    China is physically and socio-economically susceptible to global warming-derived high temperature extremes because of its vast area and high urban population density.This article presents a scenario-based analysis method for high temperature extremes aimed at illustrating the latter's hazardous potential and exposure across China.Based on probability analysis,high temperature extreme scenarios with return periods of 5,10,20,and 50 years were designed,with a high temperature hazard index calculated by integrating two differentially-weighted extreme temperature indices (maximum temperature and high temperature days).To perform the exposure analysis,a land use map was employed to determine the spatial distribution of susceptible human activities under the different scenarios.The results indicate that there are two heat-prone regions and a sub-hotspot occupying a relatively small land area.However,the societal and economic consequences of such an environmental impact upon the North China Plain and middle/lower Yangtze River Basin would be substantial due to the concentration of human activities in these areas.

  16. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. II - Wall shear stress

    Science.gov (United States)

    Liou, M. S.; Adamson, T. C., Jr.

    1980-01-01

    Asymptotic methods are used to calculate the shear stress at the wall for the interaction between a normal shock wave and a turbulent boundary layer on a flat plate. A mixing length model is used for the eddy viscosity. The shock wave is taken to be strong enough that the sonic line is deep in the boundary layer and the upstream influence is thus very small. It is shown that unlike the result found for laminar flow an asymptotic criterion for separation is not found; however, conditions for incipient separation are computed numerically using the derived solution for the shear stress at the wall. Results are compared with available experimental measurements.

  17. Radiation-damped profiles of extremely high column density neutral hydrogen: implications of cosmic reionization

    Science.gov (United States)

    Bach, Kiehunn

    2017-01-01

    Incorporating the time-dependent second-order perturbation theory for the Lyman scattering cross-section, we investigate the intergalactic absorption profiles of extremely high column density systems near the end of cosmic reionization. Assuming a representative set of the redshift distribution of neutral hydrogen, we quantitatively examined the impact of inhomogeneous density on the intrinsic absorption profiles. The cumulative absorption by neutral patches in the line of sight mainly affects the far off-centre region of the red damping wing, but the effect is not significant. The shape of the line centre can be modified by the near-zone distribution due to high opacities of the near-resonance scattering. On the other hand, the HWHM (half width at half-maximum) as an effective line width is relatively less sensitive to the local inhomogeneity. Specifically, when the two local damping wings of Lyα and Lyβ are close in spectra of the strongly damped systems, accurate profiles of both lines are required. In the case of N_{H I}≲ 10^{21} { cm^{-2}}, the two-level approximation is marginally applicable for the damping wing fit within 5 - 7 per cent errors. However, as the local column density reaches N_{H I}˜ 10^{22.3} { cm^{-2}}, this classical approximation yields a relative error of a 10 per cent overestimation in the red wing and a 20 per cent underestimation in the blue wing of Lyα. If severe extinction by the Lyα forests is carefully subtracted, the intrinsic absorption profile will provide a better constraint on the local ionized states. For practical applications, an analytic fitting function for the Lyβ scattering is derived.

  18. THE HIGH-RESOLUTION EXTREME-ULTRAVIOLET SPECTRUM OF N{sub 2} BY ELECTRON IMPACT

    Energy Technology Data Exchange (ETDEWEB)

    Heays, A. N. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Ajello, J. M.; Aguilar, A. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Lewis, B. R.; Gibson, S. T., E-mail: heays@strw.leidenuniv.nl [Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)

    2014-04-01

    We have analyzed high-resolution (FWHM = 0.2 Å) extreme-ultraviolet (EUV, 800-1350 Å) laboratory emission spectra of molecular nitrogen excited by an electron impact at 20 and 100 eV under (mostly) optically thin, single-scattering experimental conditions. A total of 491 emission features were observed from N{sub 2} electronic-vibrational transitions and atomic N I and N II multiplets and their emission cross sections were measured. Molecular emission was observed at vibrationally excited ground-state levels as high as v'' = 17, from the a {sup 1}Π {sub g} , b {sup 1}Π {sub u} , and b'{sup 1}Σ {sub u} {sup +} excited valence states and the Rydberg series c'{sub n} {sub +1} {sup 1}Σ {sub u} {sup +}, c{sub n} {sup 1}Π {sub u} , and o{sub n} {sup 1}Π {sub u} for n between 3 and 9. The frequently blended molecular emission bands were disentangled with the aid of a sophisticated and predictive quantum-mechanical model of excited states that includes the strong coupling between valence and Rydberg electronic states and the effects of predissociation. Improved model parameters describing electronic transition moments were obtained from the experiment and allowed for a reliable prediction of the vibrationally summed electronic emission cross section, including an extrapolation to unobserved emission bands and those that are optically thick in the experimental spectra. Vibrationally dependent electronic excitation functions were inferred from a comparison of emission features following 20 and 100 eV electron-impact collisional excitation. The electron-impact-induced fluorescence measurements are compared with Cassini Ultraviolet Imaging Spectrograph observations of emissions from Titan's upper atmosphere.

  19. Parasitic slow extraction of extremely weak beam from a high-intensity proton rapid cycling synchrotron

    Science.gov (United States)

    Zou, Ye; Tang, Jingyu; Yang, Zheng; Jing, Hantao

    2014-02-01

    This paper proposes a novel method to extract extremely weak beam from a high-intensity proton rapid cycling synchrotron (RCS) in the parasitic mode, while maintaining the normal fast extraction. The usual slow extraction method from a synchrotron by employing third-order resonance cannot be applied in a high-intensity RCS due to a very short flat-top at the extraction energy and the strict control on beam loss. The proposed parasitic slow extraction method moves the beam to scrape a scattering foil prior to the fast beam extraction by employing either a local orbit bump or momentum deviation or their combination, so that the halo part of the beam will be scattered. A part of the scattered particles will be extracted from the RCS and guided to the experimental area. The slow extraction process can last about a few milliseconds before the beam is extracted by the fast extraction system. The method has been applied to the RCS of China Spallation Neutron Source. With 1.6 GeV in the extraction energy, 62.5 μA in the average current and 25 Hz in the repetition rate for the RCS, the proton intensity by the slow extraction method can be up to 2×104 protons per cycle or 5×105 protons per second. The extracted beam has also a good time structure of approximately uniform in a spill which is required for many applications such as detector tests. Detailed studies including the scattering effect in the foil, the local orbit bump by the bump magnets and dispersive orbit bump by modifying the RF pattern, the multi-particle simulations by ORBIT and TURTLE codes, and some technical features for the extraction magnets are presented.

  20. Radiation Damped Profiles of Extremely High Column Density Neutral Hydrogen : Implications of Cosmic Reionization

    Science.gov (United States)

    Bach, Kiehunn

    2016-09-01

    Incorporating the time-dependent second-order perturbation theory for the Lyman scattering cross-section, we investigate the intergalactic absorption profiles of extremely high column density systems near the end of cosmic reionization. Assuming a representative set of the redshift distribution of neutral hydrogen, we quantitatively examined the impact of inhomogeneous density on the intrinsic absorption profiles. The cumulative absorption by neutral patches in the line-of-sight mainly affects the far off-center region of the red damping wing, but the effect is not significant. The shape of the line-center can be modified by the near-zone distribution due to high opacities of the near-resonance scattering. On the other hand, the HWHM (half width at half maximum) as an effective line-width is relatively less sensitive to the local inhomogeneity. Specifically, when the two local damping wings of Lyα and Lyβ are close in spectra of the strongly damped systems, accurate profiles of both lines are required. In the case of N HI ≲ 1021 cm-2, the two-level approximation is marginally applicable for the damping wing fit within 5 - 7% errors. However, as the local column density reaches N HI ˜ 1022.3 cm-2, this classical approximation yields a relative error of a 10% overestimation in the red wing and a 20% underestimation in the blue wing of Lyα. If severe extinction by the Lyα forests is carefully subtracted, the intrinsic absorption profile will provide a better constraint on the local ionized states. For practical applications, an analytic fitting function for the Lyβ scattering is derived.

  1. Crossing historical and sedimentary archives to reconstruct an extreme flood event calendar in high alpine areas

    Science.gov (United States)

    Wilhelm, B.; Giguet-Covex, C.; Arnaud, F.; Allignol, F.; Legaz, A.; Melo, A.

    2010-09-01

    to reconstruct a high-resolution flood calendar to assess a reliable frequency of extreme flood events which can be compared with precise climatic parameters as the instrumental and reconstructed temperature. Finally it was equally possible to compare the recorded intensity of flood events between the both archives and thus estimate the hazard perception and vulnerability of local people throughout the last three centuries.

  2. Weak-Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-Line Regions?

    CERN Document Server

    Shemmer, Ohad; Anderson, Scott F; Brandt, W N; Diamond-Stanic, Aleksandar M; Fan, Xiaohui; Lira, Paulina; Netzer, Hagai; Plotkin, Richard M; Richards, Gordon T; Schneider, Donald P; Strauss, Michael A

    2010-01-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z=3.55 and SDSS J123743.08+630144.9 at z=3.49. In both sources we detect an unusually weak broad H_beta line and we place tight upper limits on the strengths of their [O III] lines. Virial, H_beta-based black-hole mass determinations indicate normalized accretion rates of L/L_Edd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Gamma=1.91^{+0.24}_{-0.22} which supports the virial L/L_Edd determination in this source. Our results suggest that the weakness of the broad-emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad-emission line region proper...

  3. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part 2: Wall shear stress

    Science.gov (United States)

    Liou, M. S.; Adamson, T. C., Jr.

    1979-01-01

    An analysis is presented of the flow in the two inner layers, the Reynolds stress sublayer and the wall layer. Included is the calculation of the shear stress at the wall in the interaction region. The limit processes considered are those used for an inviscid flow.

  4. Suppression of repeated adiabatic shear banding by dynamic large strain extrusion machining

    Science.gov (United States)

    Cai, S. L.; Dai, L. H.

    2014-12-01

    High speed machining (HSM) is an advanced production technology with great future potential. Chip serration or segmentation is a commonly observed phenomenon during high speed machining of metals, which is found to be ascribed to a repeated shear band formation fueled by thermo-plastic instability occurring within the primary shear zone. The occurrence of serrated chips leads to the cutting force fluctuation, decreased tool life, degradation of the surface finish and less accuracy in machine parts during high speed machining. Hence, understanding and controlling serrated chip formation in HSM are extremely important. In this work, a novel dynamic large strain extrusion machining (DLSEM) technique is developed for suppressing formation of serrated chips. The systematic DLSEM experiments of Ti-6Al-4V and Inconel 718 alloy with varying degrees of imposed extrusion constraint were carried out. It is found that there is a prominent chip morphology transition from serrated to continuous state and shear band spacing decreases with the constraint degree increasing. In order to uncover underlying mechanism of the imposed extrusion constraint suppressing repeated adiabatic shear banding in DLSEM, new theoretical models are developed where the effects of extrusion constraint, material convection due to chip flow and momentum diffusion during shear band propagation are included. The analytical expressions for the onset criterion of adiabatic shear band and shear band spacing in DLSEM are obtained. The theoretical predictions are in agreement with the experimental results.

  5. Effect of extremely low frequency electromagnetic field exposure on sleep quality in high voltage substations.

    Science.gov (United States)

    Barsam, Tayebeh; Monazzam, Mohammad Reza; Haghdoost, Ali Akbar; Ghotbi, Mohammad Reza; Dehghan, Somayeh Farhang

    2012-11-30

    This study aims to investigate the effect of extremely low frequency electromagnetic fields exposure on sleep quality in high voltage substations (132, 230 and 400 KV) in Kerman city and the suburbs. For this purpose, the electric field intensity and magnetic flux density were measured in different parts of substations, and then the occupational exposure was estimated by averaging electric field intensity and magnetic flux density in a shift work. The cases comprised 67 workers who had been exposed to electromagnetic fields in age range of 24-57 and the controls were 110 persons the age ranged 24-50 years. Sleep quality of both groups was evaluated by the Pittsburgh Sleep Quality Index questionnaire (PSQI). Finally, these data were subjected to statistical analysis. The results indicated that 90.5% of cases and 85.3% of controls had the poor quality sleep according to PSQI (P-value=0.615). Total sleep quality score mean for the case and control groups were 10.22 ± 3.4 and 9.74 ± 3.62 (P-value=0.415) ,respectively. Meantime to fall asleep for cases(35.68 ± 26.25 min) was significantly higher than for controls (28.89 ± 20.18 min) (P-value=0.002). Cases had average sleep duration of 5.49 ± 1.31 hours, which was lower ascompared with control subjects (5.90 ± 1.67hours). Although there was a higher percentage for the case group with poor sleep quality than the control group, but no statistically significant difference was observed.

  6. Effect of extremely low frequency electromagnetic field exposure on sleep quality in high voltage substations

    Directory of Open Access Journals (Sweden)

    Barsam Tayebeh

    2012-11-01

    Full Text Available Abstract This study aims to investigate the effect of extremely low frequency electromagnetic fields exposure on sleep quality in high voltage substations (132, 230 and 400 KV in Kerman city and the suburbs. For this purpose, the electric field intensity and magnetic flux density were measured in different parts of substations, and then the occupational exposure was estimated by averaging electric field intensity and magnetic flux density in a shift work. The cases comprised 67 workers who had been exposed to electromagnetic fields in age range of 24–57 and the controls were 110 persons the age ranged 24–50 years. Sleep quality of both groups was evaluated by the Pittsburgh Sleep Quality Index questionnaire (PSQI. Finally, these data were subjected to statistical analysis. The results indicated that 90.5% of cases and 85.3% of controls had the poor quality sleep according to PSQI (P-value=0.615. Total sleep quality score mean for the case and control groups were 10.22 ± 3.4 and 9.74 ± 3.62 (P-value=0.415 ,respectively. Meantime to fall asleep for cases(35.68 ± 26.25 min was significantly higher than for controls (28.89 ± 20.18 min (P-value=0.002. Cases had average sleep duration of 5.49 ± 1.31 hours, which was lower ascompared with control subjects (5.90 ± 1.67hours. Although there was a higher percentage for the case group with poor sleep quality than the control group, but no statistically significant difference was observed.

  7. Extremely high ferritin level after an acute myocardial infarction in an end stage renal disease patient.

    Science.gov (United States)

    Sandhu, Gagangeet; Mankal, Pavan; Gupta, Isha; Tagani, Adrian; Ranade, Aditi; Jones, James; Bansal, Anip

    2014-07-01

    We present here a case of an asymptomatic end-stage renal disease (ESRD) patient, who had an unexplained persistent mild leukocytosis in the setting of an extremely high ferritin level (8,997 ng/ml; reference range: 12 - 300 ng/ml) 3 weeks after she suffered from a myocardial infarction (MI). Infection as the cause of these laboratory abnormalities was ruled out. A week later, the patient was noted to have asymptomatic hypotension (100/60 mmHg; her baseline blood pressure was 120/70 mmHg) during a maintenance hemodialysis session. An echocardiography revealed an interval development of moderate pericardial effusion when compared to her previous echocardiography 4 weeks before. In the setting of a recent MI with other laboratory markers suggesting an ongoing inflammatory process, a tentative diagnosis of Dressler's syndrome was made. A pericardial tap yielded exudative (bloody) fluid, thus, confirming our suspicion. Dressler's syndrome results from an inflammation of the pericardium as a consequence of an underlying autoimmune process few weeks to months after a myocardial infarction or post-cardiac surgery. Although it typically presents with pleuritic chest pain, fever, leukocytosis, and a friction rub; our case illustrates that the initial presentation may be asymptomatic in ESRD patients. For the same reason, it is likely an under-recognized entity in such patients. An unexplained elevated ferritin in an ESRD patient with recent history of MI should prompt an investigation for Dressler's syndrome. In those with associated significant pericardial effusion, daily HD should be initiated and anticoagulation should be avoided. Unlike other ESRD associated pericarditis, steroids and NSAIDs should be avoided in Dressler's syndrome as they may hamper cardiac remodeling in the immediate post-MI period. Colchicine may offer some benefit in patients with associated chest pain. For those failing medical management or manifesting overt signs of tamponade, surgical drainage

  8. Extreme climatic events: impacts of drought and high temperature on physiological processes in agronomically important plants

    Directory of Open Access Journals (Sweden)

    Urs eFeller

    2014-10-01

    Full Text Available Climate models predict more frequent and more severe extreme events (e.g. heat waves, extended drought periods, flooding in many regions for the next decades. The impact of adverse environmental conditions on crop plants is ecologically and economically relevant. This review is focused on drought and heat effects on physiological status and productivity of agronomically important plants. Stomatal opening represents an important regulatory mechanism during drought and heat stress since it influences simultaneously water loss via transpiration and CO2 diffusion into the leaf apoplast which further is utilized in photosynthesis. Along with the reversible short-term control of stomatal opening, stomata and leaf epidermis may produce waxy deposits and irreversibly down-regulate the stomatal conductance and non-stomatal transpiration. As a consequence photosynthesis will be negatively affected. Rubisco activase - a key enzyme in keeping the Calvin cycle functional – is heat-sensitive and may become a limiting factor at elevated temperature. The accumulated reactive oxygen species during stress represent an additional challenge under unfavorable conditions. Drought and heat cause accumulation of free amino acids which are partially converted into compatible solutes such as proline. This is accompanied by lower rates of both nitrate reduction and de novo amino acid biosynthesis. Protective proteins (e.g. dehydrins, chaperones, antioxidant enzymes or the key enzyme for proline biosynthesis play an important role in leaves and may be present at higher levels under water deprivation or high temperatures. On the whole plant level, effects on long-distance translocation of solutes via xylem and phloem and on leaf senescence (e.g. anticipated, accelerated or delayed senescence are important. The factors mentioned above are relevant for the overall performance of crops under drought and heat and must be considered for genotype selection and breeding programs.

  9. Continuous and discrete extreme climatic events affecting the dynamics of a high-arctic reindeer population.

    Science.gov (United States)

    Chan, Kung-Sik; Mysterud, Atle; Øritsland, Nils Are; Severinsen, Torbjørn; Stenseth, Nils Chr

    2005-10-01

    Climate at northern latitudes are currently changing both with regard to the mean and the temporal variability at any given site, increasing the frequency of extreme events such as cold and warm spells. Here we use a conceptually new modelling approach with two different dynamic terms of the climatic effects on a Svalbard reindeer population (the Brøggerhalvøya population) which underwent an extreme icing event ("locked pastures") with 80% reduction in population size during one winter (1993/94). One term captures the continuous and linear effect depending upon the Arctic Oscillation and another the discrete (rare) "event" process. The introduction of an "event" parameter describing the discrete extreme winter resulted in a more parsimonious model. Such an approach may be useful in strongly age-structured ungulate populations, with young and very old individuals being particularly prone to mortality factors during adverse conditions (resulting in a population structure that differs before and after extreme climatic events). A simulation study demonstrates that our approach is able to properly detect the ecological effects of such extreme climate events.

  10. Frequency Analysis of High Flow Extremes in the Yingluoxia Watershed in Northwest China

    Directory of Open Access Journals (Sweden)

    Zhanling Li

    2016-05-01

    Full Text Available Statistical modeling of hydrological extremes is significant to the construction of hydraulic engineering. This paper, taking the Yingluoxia watershed as the study area, compares the annual maximum (AM series and the peaks over a threshold (POT series in order to study the hydrological extremes, examines the stationarity and independence assumptions for the two series, and discusses the estimations and uncertainties of return levels from the two series using the Generalized Extreme Value (GEV and Generalized Pareto distribution (GPD models. For comparison, the return levels from all threshold excesses with considering the extremal index are also estimated. For the POT series, the threshold is selected by examining the mean excess plot and the stability of the parameter estimates and by using common-sense. The serial correlation is reduced by filtering out a set of dependent threshold excesses. Results show that both series are approximately stationary and independent. The GEV model fits the AM series well and the GPD model fits the POT series well. The estimated return levels are fairly comparable for the AM series, the POT series, and all threshold excesses with considering the extremal index, with the difference being less than 10% for return periods longer than 10 years. The uncertainties of the estimated return levels are the highest for the AM series, and next for the POT series and then for all threshold excesses series in turn.

  11. A General Shear-Dependent Model for Thrombus Formation.

    Science.gov (United States)

    Yazdani, Alireza; Li, He; Humphrey, Jay D; Karniadakis, George Em

    2017-01-01

    Modeling the transport, activation, and adhesion of platelets is crucial in predicting thrombus formation and growth following a thrombotic event in normal or pathological conditions. We propose a shear-dependent platelet adhesive model based on the Morse potential that is calibrated by existing in vivo and in vitro experimental data and can be used over a wide range of flow shear rates ([Formula: see text]). We introduce an Eulerian-Lagrangian model where hemodynamics is solved on a fixed Eulerian grid, while platelets are tracked using a Lagrangian framework. A force coupling method is introduced for bidirectional coupling of platelet motion with blood flow. Further, we couple the calibrated platelet aggregation model with a tissue-factor/contact pathway coagulation cascade, representing the relevant biology of thrombin generation and the subsequent fibrin deposition. The range of shear rates covered by the proposed model encompass venous and arterial thrombosis, ranging from low-shear-rate conditions in abdominal aortic aneurysms and thoracic aortic dissections to thrombosis in stenotic arteries following plaque rupture, where local shear rates are extremely high.

  12. Fluorescent Organic Planar pn Heterojunction Light-Emitting Diodes with Simplified Structure, Extremely Low Driving Voltage, and High Efficiency.

    Science.gov (United States)

    Chen, Dongcheng; Xie, Gaozhan; Cai, Xinyi; Liu, Ming; Cao, Yong; Su, Shi-Jian

    2016-01-13

    Fluorescent organic light-emitting diodes capable of radiative utilization of both singlet and triplet excitons are achieved via a simple double-layer planar pn hetero-junction configuration without a conventional emission layer, leading to high external quantum efficiency above 10% and extremely low driving voltages close to the theoretical minima.

  13. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    Energy Technology Data Exchange (ETDEWEB)

    Wang, He [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Xu, Yiming [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Ulonska, Stefan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Robinson, Joseph S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Ranitovic, Predrag [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Kaindl, Robert A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division

    2015-06-11

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. In this article, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s-1 is generated at 22.3 eV, with 5 × 10-5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Finally, spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications.

  14. Shear Acceleration in Expanding Flows

    CERN Document Server

    Rieger, F M

    2016-01-01

    Shear flows are naturally expected to occur in astrophysical environments and potential sites of continuous non-thermal Fermi-type particle acceleration. Here we investigate the efficiency of expanding relativistic outflows to facilitate the acceleration of energetic charged particles to higher energies. To this end, the gradual shear acceleration coefficient is derived based on an analytical treatment. The results are applied to the context of the relativistic jets of active galactic nuclei. The inferred acceleration timescale is investigated for a variety of conical flow profiles (i.e., power law, Gaussian, Fermi-Dirac) and compared to the relevant radiative and non-radiative loss timescales. The results exemplify that relativistic shear flows are capable of boosting cosmic-rays to extreme energies. Efficient electron acceleration, on the other hand, requires weak magnetic fields and may thus be accompanied by a delayed onset of particle energization and affect the overall jet appearance (e.g., core, ridge ...

  15. Sheared solid materials

    Indian Academy of Sciences (India)

    Akira Onuki; Akira Furukawa; Akihiko Minami

    2005-05-01

    We present a time-dependent Ginzburg–Landau model of nonlinear elasticity in solid materials. We assume that the elastic energy density is a periodic function of the shear and tetragonal strains owing to the underlying lattice structure. With this new ingredient, solving the equations yields formation of dislocation dipoles or slips. In plastic flow high-density dislocations emerge at large strains to accumulate and grow into shear bands where the strains are localized. In addition to the elastic displacement, we also introduce the local free volume . For very small the defect structures are metastable and long-lived where the dislocations are pinned by the Peierls potential barrier. However, if the shear modulus decreases with increasing , accumulation of around dislocation cores eventually breaks the Peierls potential leading to slow relaxations in the stress and the free energy (aging). As another application of our scheme, we also study dislocation formation in two-phase alloys (coherency loss) under shear strains, where dislocations glide preferentially in the softer regions and are trapped at the interfaces.

  16. Maslov shear-waveforms in highly anisotropic shales and implications for shear-wave splitting analyses; Formes d`onde transversales de Maslov dans les argiles fortement anisotropes et implications dans les analyses de birefringence des ondes transversales

    Energy Technology Data Exchange (ETDEWEB)

    Caddick, J. [Leeds Univ. (United Kingdom). Dept. of Earth Sciences; Kendall, J.M.; Raymer, D.G. [Western Geophysical, Middlesex (United Kingdom). Dept. of Earth Sciences

    1998-09-01

    Shales are the most common sedimentary rocks in hydrocarbon environments often forming the source rock and trapping rock for a reservoir. Due to the platy nature of the constituent grains, shales are commonly anisotropic. In this paper we calculate seismic waveforms for highly anisotropic shales using Maslow asymptotic theory (MAT). This theory is an extension of classical ray theory which provides valid waveforms in regions of caustics (wavefront folding) where ray theory amplitudes are unstable. Asymptotic ray theory (ART) is based on the Fermat or geometrical ray which connects the source and receiver. In contrast, the Maslov solution integrates the contributions from neighbouring non-Fermat rays. Ray-paths, travel-times, amplitudes and synthetic seismograms are presented for three highly anisotropic shales using a very simple 1D model comprised of an anisotropic shale overlying an isotropic shale. The ART waveforms fail to account for complex waveform effects due to triplications. In comparison, the MAT waveforms predict nonsingular amplitudes at wavefront cusps and it predicts the diffracted signals from these cusps. A Maslov solution which integrates ray contributions over a single slowness component will break down when rays focus in 3D (at a point rather than along a line). One of the tested shales shows such a point caustic and integration over 2 slowness components is required to remove the amplitude singularity. Finally, we examine the effects of wavefront triplications on Alford rotations which are used to estimate shear-wave splitting. In such cases, the rotation successfully finds the fast shear-wave polarization, but it can be unreliable in its estimate of the time separation. (authors) 21 refs.

  17. Removal mechanisms for extremely high-level fluoroquinolone antibiotics in pharmaceutical wastewater treatment plants.

    Science.gov (United States)

    Guo, Xinyan; Yan, Zheng; Zhang, Yi; Kong, Xiangji; Kong, Deyang; Shan, Zhengjun; Wang, Na

    2017-03-01

    Pharmaceutical wastewater treatment plants (PWWTPs) receive industrial effluents from the plant that contain extremely high levels of antibiotics and are regarded as one of the major sources of antibiotics in the environment. Two PWWTPs have been selected in Zhejiang Province, China, to assess the removal mechanisms of fluoroquinolone antibiotics (FQs). PWWTP A uses activated sludge with biocarriers in a moving bed biofilm reactor in anoxic and aerobic units, and PWWTP B uses biological units under anaerobic, aerobic, and anoxic conditions. The wastewater samples and solid samples (sludge and suspended solid matter) were analyzed using solid-phase extraction and ultra-performance liquid chromatography-mass spectrometry. Ofloxacin (OFX) was detected in each stage of PWWTP A, and enrofloxacin and ciprofloxacin were detected in PWWTP B. The concentrations of FQs ranged from 0.32 μg/L to 5.7 mg/L. Although the FQs were largely removed in the biological units (94.5 to 99.9%), large amounts were still discharged in the final effluent (up to 88.0 ± 7.0 μg/L) and dewatered sludge (up to 0.85 ± 0.24 mg/kg). Mass balance analyses of samples from PWWTP A indicated that biodegradation (93.8%) was the major mechanism responsible for the removal of OFX, whereas the contribution of sorption by sludge (0.79%) was less significant, deviating from the findings of most similar studies. Using linear analysis and correlation analysis, we found that the log10 values of the FQ concentration in the sludge were positively related with the log10 values of the equilibrium concentration in water (C w ). These relationships can be described by a Freundlich-like equation. However, these relationships were negative when the C w values were high. Our preliminary explanation is that the equilibrium C w plays an important role in controlling the sorption behavior of FQs in activated sludge.

  18. Metamaterial Demonstrates Both a High Refractive Index and Extremely Low Reflection in the 0.3-THz Band

    Science.gov (United States)

    Ishihara, Koki; Suzuki, Takehito

    2017-07-01

    Communication and imaging in the terahertz waveband have advanced rapidly in offering industrial applications. However, optical elements such as collimated lenses in the terahertz waveband are bulky compared with the wavelength due to the lack of naturally occurring substances with a high refractive index and low loss. It is essential to miniaturize optical elements in the terahertz waveband for industrial application. Metamaterials consisting of subwavelength structures can arbitrarily control permittivity and permeability and provide a range of refractive indices. Here, we demonstrate a metamaterial with both a high refractive index and extremely low reflection consisting of symmetrically aligned paired cut metal wires with 18,800 units on the front and back surfaces of a dielectric substrate. Measurements by terahertz time-domain spectroscopy (THz-TDS) confirm a high effective refractive index of 6.66 + j0.123, extremely low reflection power of 1.16%, and the unprecedented high figure of merit (FOM = |n real/n imag|) of above 300 in the 0.3-THz band. Components with such specifications would enable miniature, high-performance optical elements in the terahertz waveband such as ultrathin flat antennas with high directivity. Further, the concept of the metamaterial with both a high refractive index and extremely low reflection potentially offers a wide range of attractive applications such as solid immersion lenses and cloaking devices.

  19. Metamaterial Demonstrates Both a High Refractive Index and Extremely Low Reflection in the 0.3-THz Band

    Science.gov (United States)

    Ishihara, Koki; Suzuki, Takehito

    2017-09-01

    Communication and imaging in the terahertz waveband have advanced rapidly in offering industrial applications. However, optical elements such as collimated lenses in the terahertz waveband are bulky compared with the wavelength due to the lack of naturally occurring substances with a high refractive index and low loss. It is essential to miniaturize optical elements in the terahertz waveband for industrial application. Metamaterials consisting of subwavelength structures can arbitrarily control permittivity and permeability and provide a range of refractive indices. Here, we demonstrate a metamaterial with both a high refractive index and extremely low reflection consisting of symmetrically aligned paired cut metal wires with 18,800 units on the front and back surfaces of a dielectric substrate. Measurements by terahertz time-domain spectroscopy (THz-TDS) confirm a high effective refractive index of 6.66 + j0.123, extremely low reflection power of 1.16%, and the unprecedented high figure of merit (FOM = | n real/ n imag|) of above 300 in the 0.3-THz band. Components with such specifications would enable miniature, high-performance optical elements in the terahertz waveband such as ultrathin flat antennas with high directivity. Further, the concept of the metamaterial with both a high refractive index and extremely low reflection potentially offers a wide range of attractive applications such as solid immersion lenses and cloaking devices.

  20. Extreme ultraviolet (EUV) source and ultra-high vacuum chamber for studying EUV-induced processes

    NARCIS (Netherlands)

    Dolgov, A.; Yakushev, O.; Abrikosov, A.; Snegirev, E.; Krivtsun, V.M.; Lee, C.J.; Bijkerk, F.

    2015-01-01

    An experimental setup that directly reproduces extreme ultraviolet (EUV) lithography relevant conditions for detailed component exposure tests is described. The EUV setup includes a pulsed plasma radiation source, operating at 13.5 nm; a debris mitigation system; collection and filtering optics; and

  1. Number of Black Children in Extreme Poverty Hits Record High. Analysis Background.

    Science.gov (United States)

    Children's Defense Fund, Washington, DC.

    To examine the experiences of black children and poverty, researchers conducted a computer analysis of data from the U.S. Census Bureau's Current Population Survey, the source of official government poverty statistics. The data are through 2001. Results indicated that nearly 1 million black children were living in extreme poverty, with after-tax…

  2. Extreme Weight-Control Behaviors and Suicide Risk among High School Students

    Science.gov (United States)

    Johnson, Emily R.; Weiler, Robert M.; Barnett, Tracey E.; Pealer, Lisa N.

    2016-01-01

    Background: Suicide is the third leading cause of death for people ages 15-19. Research has established an association across numerous risk factors and suicide, including depression, substance abuse, bullying victimization, and feelings of alienation. However, the connection between disordered eating as manifested in extreme weight-control…

  3. Discovery of extreme [O III] λ5007 Å outflows in high-redshift red quasars

    Science.gov (United States)

    Zakamska, Nadia L.; Hamann, Fred; Pâris, Isabelle; Brandt, W. N.; Greene, Jenny E.; Strauss, Michael A.; Villforth, Carolin; Wylezalek, Dominika; Alexandroff, Rachael M.; Ross, Nicholas P.

    2016-07-01

    Black hole feedback is now a standard component of galaxy formation models. These models predict that the impact of black hole activity on its host galaxy likely peaked at z = 2-3, the epoch of strongest star formation activity and black hole accretion activity in the Universe. We used XSHOOTER on the Very Large Telescope to measure rest-frame optical spectra of four z ˜ 2.5 extremely red quasars with infrared luminosities ˜1047 erg s-1. We present the discovery of very broad (full width at half max = 2600-5000 km s-1), strongly blueshifted (by up to 1500 km s-1) [O III] λ5007 Å emission lines in these objects. In a large sample of type 2 and red quasars, [O III] kinematics are positively correlated with infrared luminosity, and the four objects in our sample are on the extreme end in both [O III] kinematics and infrared luminosity. We estimate that at least 3 per cent of the bolometric luminosity in these objects is being converted into the kinetic power of the observed wind. Photo-ionization estimates suggest that the [O III] emission might be extended on a few kpc scales, which would suggest that the extreme outflow is affecting the entire host galaxy of the quasar. These sources may be the signposts of the most extreme form of quasar feedback at the peak epoch of galaxy formation, and may represent an active `blow-out' phase of quasar evolution.

  4. Further Evidence on the "Costs of Privilege": Perfectionism in High-Achieving Youth at Socioeconomic Extremes

    Science.gov (United States)

    Lyman, Emily L.; Luthar, Suniya S.

    2014-01-01

    This study involved two academically-gifted samples of 11th and 12th grade youth at the socioeconomic status (SES) extremes; one from an exclusive private, affluent school, and the other from a magnet school with low-income students. Negative and positive adjustment outcomes were examined in relation to multiple dimensions of perfectionism…

  5. Extreme Weight-Control Behaviors and Suicide Risk among High School Students

    Science.gov (United States)

    Johnson, Emily R.; Weiler, Robert M.; Barnett, Tracey E.; Pealer, Lisa N.

    2016-01-01

    Background: Suicide is the third leading cause of death for people ages 15-19. Research has established an association across numerous risk factors and suicide, including depression, substance abuse, bullying victimization, and feelings of alienation. However, the connection between disordered eating as manifested in extreme weight-control…

  6. Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotaga elfii

    NARCIS (Netherlands)

    Niel, van E.W.J.; Budde, M.A.W.; Haas, de G.G.; Wal, van der F.J.; Claassen, P.A.M.; Stams, A.J.M.

    2002-01-01

    Growth and hydrogen production by two extreme thermophiles during sugar fermentation was investigated. In cultures of Caldicellulosiruptor saccharolyticus grown on sucrose and Thermotoga elfii grown on glucose stoichiometries of 3.3 mol of hydrogen and 2 mol of acetate per mol C6-sugar unit were obt

  7. Improvement of PCR-free NGS Library Preparation to Obtain Uniform Read Coverage of Genome with Extremely High AT Content

    OpenAIRE

    Williams, A.; Storton, D.; Buckles, J.; Llinas, M.; Wang, Wei

    2012-01-01

    PCR amplification is commonly used in generating libraries for Next-Generation Sequencing (NGS) to efficiently enrich and amplify sequenceable DNA fragments. However, it introduces bias in the representation of the original complex template DNA. Such artifact has devastating effects in sequencing genomes with highly unbalanced base composition: regions of extremely high or low GC content, which are a substantial fraction of such genomes, are often covered with zero or near-zero read depth. PC...

  8. Laboratory Earthquake Measurements with the High-speed Digital Image Correlation Method and Applications to Super-shear Transition

    Science.gov (United States)

    Rubino, V.; Lapusta, N.; Rosakis, A.

    2012-12-01

    Mapping full-field displacements and strains on the Earth's surface during an earthquake is of paramount importance to enhance our understanding of earthquake mechanics. In this study, the feasibility of such measurements using image correlation methods is investigated in a laboratory earthquake setup. Earthquakes are mimicked in the laboratory by dynamic rupture propagating along an inclined frictional interface formed by two Homalite plates under compression, using the configuration developed by Rosakis and coworkers (e.g., Rosakis et al., 2007). In our study, the interface is partially glued, in order to confine the rupture before it reaches the ends of the specimen. The specimens are painted with a speckle pattern to provide the surface with characteristic features for image matching. Images of the specimens are taken before and after dynamic rupture with a 4 Megapixels resolution CCD camera. The digital images are analyzed with two software packages: VIC-2D (Correlated Solutions Inc.) and COSI-Corr (Leprince et. al, 2007). Both VIC-2D and COSI-Corr are able to characterize the full-field static displacement of a dynamic crack. For example, in a case with secondary mode I cracks, the correlation analysis performed with either software clearly shows (i) the relative displacement (slip) along the frictional interface, (ii) the rupture arrest on the glued boundaries, and (iii) the presence of two wing cracks. The obtained displacement measurements are converted to strains, using de-noising techniques. The digital image correlation method is then used in combination with high-speed photography. We will report our progress on the study of a spontaneously expanding sub-Rayleigh shear crack advancing along an interface containing a patch of favorable heterogeneity, such as a preexisting subcritical crack or a patch with higher prestress. According to the predictions of Liu and Lapusta (2008), intersonic transition and propagation can be achieved in the presence of a

  9. Effect of fluid elasticity on the numerical stability of high-resolution schemes for high shearing contraction flows using OpenFOAM

    Directory of Open Access Journals (Sweden)

    T. Chourushi

    2017-01-01

    Full Text Available Viscoelastic fluids due to their non-linear nature play an important role in process and polymer industries. These non-linear characteristics of fluid, influence final outcome of the product. Such processes though look simple are numerically challenging to study, due to the loss of numerical stability. Over the years, various methodologies have been developed to overcome this numerical limitation. In spite of this, numerical solutions are considered distant from accuracy, as first-order upwind-differencing scheme (UDS is often employed for improving the stability of algorithm. To elude this effect, some works been reported in the past, where high-resolution-schemes (HRS were employed and Deborah number was varied. However, these works are limited to creeping flows and do not detail any information on the numerical stability of HRS. Hence, this article presents the numerical study of high shearing contraction flows, where stability of HRS are addressed in reference to fluid elasticity. Results suggest that all HRS show some order of undue oscillations in flow variable profiles, measured along vertical lines placed near contraction region in the upstream section of domain, at varied elasticity number E≈5. Furthermore, by E, a clear relationship between numerical stability of HRS and E was obtained, which states that the order of undue oscillations in flow variable profiles is directly proportional to E.

  10. Research on the performance index of high-strength concrete shear walls%高强混凝土剪力墙性能指标研究

    Institute of Scientific and Technical Information of China (English)

    梁兴文; 寇佳亮; 邓明科

    2012-01-01

    在基于性能的抗震设计中,结构的性能指标是一个必需的重要参数。基于21个剪跨比分别为2.1,1.5和1.0的矩形截面、带端柱和型钢高强混凝土剪力墙的抗震性能试验资料,分析了各种剪力墙的破坏形态。将剪力墙的性能划分为三个水平,即:使用良好、生命安全和防止倒塌,分别给出了剪力墙发生弯曲(弯曲剪切)破坏和剪切破坏时三性能水平的失效判别标准,确定了三性能水平极限状态时各剪力墙的位移角平均值。分析结果表明,高强混凝土剪力墙在三性能水平的位移角分布均基本符合正态分布,其在生命安全和防止倒塌性能水平位移角平均值与FEMA273的建议值很接近,而我国抗震规范建议的弹性位移角限值和弹塑性位移角限值的保证率系数分别为2.18和1.58。根据试验结果,提出了高强混凝土剪力墙结构三性能水平具有95%保证率的位移角限值。%In the performance-based seismic design,performance index of the structure is a necessary and important parameter.According to the seismic performance test data of 21 high-strength concrete shear walls with rectangular cross-section,boundary column and steel which shear span ratio are 2.1,1.5 and 1.0,various failure modes of shear walls are analyzed.The performance of shear walls is divided into three levels,that is namely serviceability,life-safety and collapse protection,and the failure criterions of the three performance levels are presented respectively when flexural(flexural-shear) failure and shear failure are occurred on shear walls.Meanwhile,the mean values of all the shear wall drift ratios for ultimate state of the three performance levels are determined.The analysis results show that the drift ratio distribution of shear walls for three performance levels are basically consistent with normal distribution,and drift ratio mean values of life-safety and collapse protection performances are closed

  11. Ultrasonic shear velocities of MgSiO3-perovskite at high pressure and temperature and lower mantle composition

    Energy Technology Data Exchange (ETDEWEB)

    Sinelnikov,Y.; Chen, G.; Neuville, D.; Liebermann, R.

    1998-01-01

    Ultrasonic interferometric measurements of the shear elastic properties of MgSiO{sub 3} perovskite were conducted on three polycrystalline specimens at conditions up to pressures of 8 gigapascals and temperatures of 800 kelvin. The acoustic measurements produced the pressure (P) and temperature (T) derivatives of the shear modulus (G), namely ({partial_derivative}G/{partial_derivative}P){sub T} = 1.8 {+-} 0.4 and ({partial_derivative}G/{partial_derivative}T){sub P} = 2.9 {+-} 0.3 x 10{sup 2} gigapascals per kelvin. Combining these derivatives with the derivatives that were measured for the bulk modulus and thermal expansion of MgSiO{sub 3} perovskite provided data that suggest lower mantle compositions between pyrolite and C1 carbonaceous chondrite and a lower mantle potential temperature of 1500 {+-} 200 kelvin.

  12. High Resolution Modeling in Mountainous Terrain for Water Resource Management: AN Extreme Precipitation Event Case Study

    Science.gov (United States)

    Masarik, M. T.; Watson, K. A.; Flores, A. N.; Anderson, K.; Tangen, S.

    2016-12-01

    The water resources infrastructure of the Western US is designed to deliver reliable water supply to users and provide recreational opportunities for the public, as well as afford flood control for communities by buffering variability in precipitation and snow storage. Thus water resource management is a balancing act of meeting multiple objectives while trying to anticipate and mitigate natural variability of water supply. Currently, the forecast guidance available to personnel managing resources in mountainous terrain is lacking in two ways: the spatial resolution is too coarse, and there is a gap in the intermediate time range (10-30 days). To address this need we examine the effectiveness of using the Weather Research and Forecasting (WRF) model, a state of the art, regional, numerical weather prediction model, as a means to generate high-resolution weather guidance in the intermediate time range. This presentation will focus on a reanalysis and hindcasting case study of the extreme precipitation and flooding event in the Payette River Basin of Idaho during the period of June 2nd-4th, 2010. For the reanalysis exercise we use NCEP's Climate Forecast System Reanalysis (CFSR) and the North American Regional Reanalysis (NARR) data sets as input boundary conditions to WRF. The model configuration includes a horizontal spatial resolution of 3km in the outer nest, and 1 km in the inner nest, with output temporal resolution of 3 hrs and 1 hr, respectively. The hindcast simulations, which are currently underway, will make use of the NCEP Climate Forecast System Reforecast (CFSRR) data. The current state of these runs will be discussed. Preparations for the second of two components in this project, weekly WRF forecasts during the intense portion of the water year, will be briefly described. These forecasts will use the NCEP Climate Forecast System version 2 (CFSv2) operational forecast data as boundary conditions to provide forecast guidance geared towards water resource

  13. Solar cosmic rays during the extremely high ground level enhancement on 23 February 1956

    Directory of Open Access Journals (Sweden)

    A. Belov

    2005-09-01

    Full Text Available The 23 February 1956 ground level enhancement of the solar cosmic ray intensity (GLE05 is the most famous among the proton events observed since 1942. But we do not have a great deal of information on this event due to the absence of solar wind and interplanetary magnetic field measurements at that time. Furthermore, there were no X-Ray or gamma observations and the information on the associated flare is limited. Cosmic ray data was obtained exclusively by ground level detectors of small size and in some cases of a non-standard design. In the present work all available data from neutron monitors operating in 1956 were analyzed, in order to develop a model of the solar cosmic ray behavior during the event. The time-dependent characteristics of the cosmic ray energy spectrum, cosmic ray anisotropy, and differential and integral fluxes have been evaluated utilizing different isotropic and anisotropic models. It is shown that the most outstanding features of this proton enhancement were a narrow and extremely intense beam of ultra-relativistic particles arriving at Earth just after the onset and the unusually high maximum solar particle energy. However, the contribution of this beam to the overall solar particle density and fluency was not significant because of its very short duration and small width. Our estimate of the integral flux for particles with energies over 100 MeV places this event above all subsequent. Perhaps the number of accelerated low energy particles was closer to a record value, but these particles passed mainly to the west of Earth.

    Many features of this GLE are apparently explained by the peculiarity of the particle interplanetary propagation from a remote (near the limb source. The quality of the available neutron monitor data does not allow us to be certain of some details; these may be cleared up by the incorporation into the analysis of data from muonic telescopes and ionization chambers

  14. Changes in extreme high-temperature tolerance and activities of antioxidant enzymes of sacred lotus seeds.

    Science.gov (United States)

    Ding, YanFen; Cheng, HongYan; Song, SongQuan

    2008-09-01

    Sacred lotus (Nelumbo nucifera Gaertn. 'Tielian') seed is long-lived and extremely tolerant of high temperature. Water content of lotus and maize seeds was 0.103 and 0.129 g H2O [g DW](-1), respectively. Water content, germination percentage and fresh weight of seedlings produced by surviving seeds gradually decreased with increasing treatment time at 100 degrees C. Germination percentage of maize (Zea mays L. 'Huangbaogu') seeds was zero after they were treated at 100 degrees C for 15 min and that of lotus seeds was 13.5% following the treatment at 100 degrees C for 24 h. The time in which 50% of lotus and maize seeds were killed by 100 degrees C was about 14.5 h and 6 min, respectively. With increasing treatment time at 100 degrees C, relative electrolyte leakage of lotus axes increased significantly, and total chlorophyll content of lotus axes markedly decreased. When treatment time at 100 degrees C was less than 12 h, subcellular structure of lotus hypocotyls remained fully intact. When treatment time at 100 degrees C was more than 12 h, plasmolysis gradually occurred, endoplasmic reticulum became unclear, nuclei and nucleoli broke down, most of mitochondria swelled, lipid granules accumulated at the cell periphery, and organelles and plasmolemma collapsed. Malondialdehyde (MDA) content of lotus axes and cotyledons decreased during 0 -12 h of the treatment at 100 degrees C and then increased. By contrast, the MDA content of maize embryos and endosperms increased during 5-10 min of the treatment at 100 degrees C and then decreased slightly. For lotus seeds: (1) activities of superoxide dismutase (SOD) and glutathione reductase (GR) of axes and cotyledons and of catalase (CAT) of axes increased during the early phase of treatment at 100 degrees C and then decreased; and (2) activities of ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) of axes and cotyledons and of CAT of cotyledons gradually decreased with increasing treatment time at 100 degrees

  15. Changes in extreme high-temperature tolerance and activities of antioxidant enzymes of sacred lotus seeds

    Institute of Scientific and Technical Information of China (English)

    DING YanFen; CHENG HongYan; SONG SongQuan

    2008-01-01

    Sacred lotus (Nelumbo nucifera Gaertn. 'Tielian') seed is long-lived and extremely tolerant of high temperature. Water content of lotus and maize seeds was 0.103 and 0.129 g H2O [g DW]-1, respectively. Water content, germination percentage and fresh weight of seedlings produced by surviving seeds gradually decreased with increasing treatment time at 100℃. Germination percentage of maize (Zea mays L. 'Huangbaogu') seeds was zero after they were treated at 100℃ for 15 min and that of lotus seeds was 13.5% following the treatment at 100℃ for 24 h. The time in which 50% of lotus and maize seeds were killed by 100℃ was about 14.5 h and 6 min, respectively. With increasing treatment time at 100℃, relative electrolyte leakage of lotus axes increased significantly, and total chlorophyll content of lotus axes markedly decreased. When treatment time at 100℃ was less than 12 h, subcellular structure of lotus hypocotyls remained fully intact. When treatment time at 100℃ was more than 12 h, plasmoly-sis gradually occurred, endoplasmic reticulum became unclear, nuclei and nucleoli broke down, most of mitochondria swelled, lipid granules accumulated at the cell periphery, and organelles and plas-molemma collapsed. Malondialdehyde (MDA) content of lotus axes and cotyledons decreased during 0 -12 h of the treatment at 100℃ and then increased. By contrast, the MDA content of maize embryos and endosperms increased during 5-10 min of the treatment at 100℃ and then decreased slightly. For lotus seeds: (1) activities of superoxide dismutase (SOD) and glutathione reductase (GR) of axes and cotyledons and of catalase (CAT) of axes increased during the early phase of treatment at 100℃ and then decreased; and (2) activities of ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) of axes and cotyledons and of CAT of cotyledons gradually decreased with increasing treat-ment time at 100℃. For maize seeds: (1) activities of SOD and DHAR of embryos and

  16. Changes in extreme high-temperature tolerance and activities of antioxidant enzymes of sacred lotus seeds

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Sacred lotus (Nelumbo nucifera Gaertn. ‘Tielian’) seed is long-lived and extremely tolerant of high temperature. Water content of lotus and maize seeds was 0.103 and 0.129 g H2O [g DW] ?1, respectively. Water content, germination percentage and fresh weight of seedlings produced by surviving seeds gradually decreased with increasing treatment time at 100℃. Germination percentage of maize (Zea mays L. ‘Huangbaogu’) seeds was zero after they were treated at 100℃ for 15 min and that of lotus seeds was 13.5% following the treatment at 100℃ for 24 h. The time in which 50% of lotus and maize seeds were killed by 100℃ was about 14.5 h and 6 min, respectively. With increasing treatment time at 100℃, relative electrolyte leakage of lotus axes increased significantly, and total chlorophyll content of lotus axes markedly decreased. When treatment time at 100℃ was less than 12 h, subcellular structure of lotus hypocotyls remained fully intact. When treatment time at 100℃ was more than 12 h, plasmoly-sis gradually occurred, endoplasmic reticulum became unclear, nuclei and nucleoli broke down, most of mitochondria swelled, lipid granules accumulated at the cell periphery, and organelles and plas-molemma collapsed. Malondialdehyde (MDA) content of lotus axes and cotyledons decreased during 0-12 h of the treatment at 100℃ and then increased. By contrast, the MDA content of maize embryos and endosperms increased during 5-10 min of the treatment at 100℃ and then decreased slightly. For lotus seeds: (1) activities of superoxide dismutase (SOD) and glutathione reductase (GR) of axes and cotyledons and of catalase (CAT) of axes increased during the early phase of treatment at 100℃ and then decreased; and (2) activities of ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) of axes and cotyledons and of CAT of cotyledons gradually decreased with increasing treat-ment time at 100℃. For maize seeds: (1) activities of SOD and DHAR of embryos and

  17. Temporal Changes in Extreme High Temerature, Heat Waves in Istanbul Between 1960-2014

    Science.gov (United States)

    Yürük, C.; Ünal, Y. S.; Bilgen, S. I.; Menteş, Ş. S.; İncecik, S.

    2015-12-01

    Climate change has crucial effects on cities and especially for informal settlements, urban poor and other vulnerable groups by influencing human health, assets and livelihoods. These impacts directly result from the variations in temperature and precipitation, and emergence of heat waves, droughts, floods and fires (IPCC, 2014). Summertime episodes with extremely high air temperatures which last for several days or longer are addressed to as heat waves and affect the weather and climate in the globe. The aim of this study is to analyze the occurrence of heat waves in terms of quantity, duration and frequency and also to evaluate the accuracy of the COSMO-CLM (CCLM) model in reproducing the characteristics of heat waves in Istanbul. The summer maximum temperatures of six Turkish State Meteorological Service (TSMS) stations are selected between 1960 and 2014 to estimate the characteristics of heat waves in Istanbul. We define the heat wave if the maximum temperatures exceed a threshold value for at least three consecutive days. The threshold value is determined as 30.5 from the 90th percentile of all six station's observations. Then it is used in the detection of the hot days, heat waves and their durations. The results show that not only the number of heat waves but also duration of heat waves increase towards the end of the study period. Especially, a significant increase in heat wave events is evident after 1990s. In 2012, the number of hot days reaches the maximum value in all stations and Kartal station located southern part of city, has the highest value of 60 hot days. Furthermore, Kartal as an urban area in the Asian side of the city, exhibits highest heat wave duration with 18 consecutive days in 1998. To estimate the relationship between urban heat island intensity and the heat waves, we examined data at 43 stations collected by Disaster Coordination Center and TSMS between 2007 and 2012. Urban heat island phenomenon is found to be related to higher

  18. EXTREME METEOROLOGICAL CONDITIONS AND METABOLIC PROFILE IN HIGH YIELDING HOLSTEINFRIESIAN DAIRY COWS

    Directory of Open Access Journals (Sweden)

    Z. GERGÁCZ

    2013-12-01

    Full Text Available The impact of two years (2002 and 2003 with different summer temperature extremes on variation in metabolic profile was analyzed in blood and urine samples taken from healthy, primiparous (n = 371 and multiparous (n = 795 high yielding Holstein-Friesian dairy cows. In this study main focus was lead on three most critical physiological phases, thus cows were assigned into three groups as follows: (1 dry cows for 10 days prior to calving; (2 cows 1-30 days after delivery, and (3 cows with more than 31 days post partum. Findings reveal clear response of the cows to heat in selected blood (hemoglobin, plasma aceto-acetic-acid, FFA, AST, glucose, urea and urine (pH, NABE and urea parameters. In the majority of cows, glucose and hemoglobin level, one of the most significant blood parameters, indicated symptoms of insufficient energy supply. Further metabolic indicators differed more or less from reference values depending on actual condition. Due to heat load dry matter intake has been decreased even by 10-15 per cent in primiparous cows. They were expected to increase body weight and size and simultaneously produce attain at large milk yields. In doing so that cows would have require large amount of nutrients. Out of parameters such as hemoglobin, glucose, FFA, AST and blood-urea differed from the reference values in most cases; however, this phenomenon seemed to be present in almost every case for hemoglobin and glucose. The lack of energy caused by heat stress can be contributed to the decrease of dry matter intake which has been indicated by the urea levels and pH both in blood and urine prevailing unfavorable and insufficient feeding practice. The results reconfirm the need to reconsider both the actual feeding practice (e.g. to increase of nutrient content in rations, reduce the intake of soluble proteins in rumen, pay attention of crude fiber in Total Mixed Rations (TMR, NDF and ADF, avoid overfeeding of inorganic buffers, to control moisture

  19. Extreme High and Low Temperature Operation of the Silicon-On-Insulator Type CHT-OPA Operational Amplifier

    Science.gov (United States)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    A new operational amplifier chip based on silicon-on-insulator technology was evaluated for potential use in extreme temperature environments. The CHT-OPA device is a low power, precision operational amplifier with rail-to-rail output swing capability, and it is rated for operation between -55 C and +225 C. A unity gain inverting circuit was constructed utilizing the CHT-OPA chip and a few passive components. The circuit was evaluated in the temperature range from -190 C to +200 C in terms of signal gain and phase shift, and supply current. The investigations were carried out to determine suitability of this device for use in space exploration missions and aeronautic applications under wide temperature incursion. Re-restart capability at extreme temperatures, i.e. power switched on while the device was soaked at extreme temperatures, was also investigated. In addition, the effects of thermal cycling under a wide temperature range on the operation of this high performance amplifier were determined. The results from this work indicate that this silicon-on-insulator amplifier chip maintained very good operation between +200 C and -190 C. The limited thermal cycling had no effect on the performance of the amplifier, and it was able to re-start at both -190 C and +200 C. In addition, no physical degradation or packaging damage was introduced due to either extreme temperature exposure or thermal cycling. The good performance demonstrated by this silicon-on-insulator operational amplifier renders it a potential candidate for use in space exploration missions or other environments under extreme temperatures. Additional and more comprehensive characterization is, however, required to establish the reliability and suitability of such devices for long term use in extreme temperature applications.

  20. Pyogenic Arthritis of the Ankle Joint Following a High-Voltage Electrical Burn in the Lower Extremity: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kuk Seon; Lee, Gyung Kyu; Kang, Ik Won; Hwang, Dae Hyun; Lee, Eil Seong; Min, Seon Jung; Han, You Mie [Dept. of Radiology, Hangang Scared Heart Hospital, Hallym University College of Medicine, Seoul (Korea, Republic of); Lee, Eil Seong [Dept.of Radiology, Gyeongju Hospital, Dongguk University College of Medicine, Gyeongju (Korea, Republic of)

    2011-04-15

    A high-voltage electrical burn caused extensive deep muscle injuries beneath a relatively small skin wound at the contact point. Hidden, undetected deep muscle injuries have a tendency for progressive tissue necrosis, which can lead to major amputations or sepsis. The radiologic features of this rare, sometimes life-threatening injury have occasionally been described in the literature. However, to the best of our knowledge, there have been no reports on a case of pyogenic arthritis of the ankle joint following a high-voltage electrical burn involving the lower extremity. We report a case of the pyogenic arthritis of the ankle joint following a high-voltage electrical burn involving the lower extremity.

  1. Probing the origin of cosmic-rays with extremely high energy neutrinos using the IceCube Observatory

    CERN Document Server

    Aartsen, M G; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Arguelles, C; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H -P; Brown, A M; Bruijn, R; Casey, J; Casier, M; Chirkin, D; Christov, A; Christy, B; Clark, K; Clevermann, F; Coenders, S; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; Day, M; De Clercq, C; De Ridder, S; Desiati, P; de Vries, K D; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eisch, J; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grandmont, D T; Grant, D; Gretskov, P; Groh, J C; Groß, A; Ha, C; Ismail, A Haj; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Jagielski, K; Japaridze, G S; Jero, K; Jlelati, O; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Kelley, J L; Kiryluk, J; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kriesten, A; Krings, K; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leute, J; Lünemann, J; Macías, O; Madsen, J; Maggi, G; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Omairat, A; O'Murchadha, A; Paul, L; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Reimann, R; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Shanidze, R; Sheremata, C; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Toscano, S; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zoll, M

    2013-01-01

    We have searched for extremely high energy neutrinos using data taken with the IceCube detector between May 2010 and May 2012. Two neutrino induced particle shower events with energies around 1 PeV were observed, as reported previously. In this work, we investigate whether these events could originate from cosmogenic neutrinos produced in the interactions of ultra-high energy cosmic-rays with ambient photons while propagating through intergalactic space. Exploiting IceCube's large exposure for extremely high energy neutrinos and the lack of observed events above 100 PeV, we can rule out the corresponding models at more than 90% confidence level. The model independent quasi-differential 90% CL upper limit, which amounts to $E^2 \\phi_{\

  2. Greater increases in temperature extremes in low versus high income countries

    Science.gov (United States)

    Herold, Nicholas; Alexander, Lisa; Green, Donna; Donat, Markus

    2017-03-01

    It is commonly expected that the world’s lowest income countries will face some of the worst impacts of global warming, despite contributing the least to greenhouse gas emissions. Using global atmospheric reanalyses we show that the world’s lowest income countries are already experiencing greater increases in the occurrence of temperature extremes compared to the highest income countries, and have been for over two decades. Not only are low income countries less able to support mitigation and adaptation efforts, but their typically equatorial location predisposes them to lower natural temperature variability and thus greater changes in the occurrence of temperature extremes with global warming. This aspect of global warming is well known but overlooked in current international climate policy agreements and we argue that it is an important factor in reducing inequity due to climate impacts.

  3. Comparison of coronagraphs for high contrast imaging in the context of Extremely Large Telescopes

    CERN Document Server

    Martínez, P; Kasper, M; Cavarroc, C; Yaitskova, N; Fusco, T; Verinaud, C

    2008-01-01

    We compare coronagraph concepts and investigate their behavior and suitability for planet finder projects with Extremely Large Telescopes (ELTs, 30-42 meters class telescopes). For this task, we analyze the impact of major error sources that occur in a coronagraphic telescope (central obscuration, secondary support, low-order segment aberrations, segment reflectivity variations, pointing errors) for phase, amplitude and interferometric type coronagraphs. This analysis is performed at two different levels of the detection process: under residual phase left uncorrected by an eXtreme Adaptive Optics system (XAO) for a large range of Strehl ratio and after a general and simple model of speckle calibration, assuming common phase aberrations between the XAO and the coronagraph (static phase aberrations of the instrument) and non-common phase aberrations downstream of the coronagraph (differential aberrations provided by the calibration unit). We derive critical parameters that each concept will have to cope with by...

  4. Kelp and seaweed feeding by High-Arctic wild reindeer under extreme winter conditions

    OpenAIRE

    2012-01-01

    One challenge in current Arctic ecological research is to understand and predict how wildlife may respond to increased frequencies of ‘‘extreme’’ weather events. Heavy rain-on-snow (ROS) is one such extreme phenomenon associated with winter warming that is not well studied but has potentially profound ecosystem effects through changes in snow-pack properties and ice formation. Here, we document how ice-locked pastures following substantial amounts of ROS forced coastal Svalbard reindeer (Rang...

  5. Weather extremes in very large, high-resolution ensembles: the weatherathome experiment

    Science.gov (United States)

    Allen, M. R.; Rosier, S.; Massey, N.; Rye, C.; Bowery, A.; Miller, J.; Otto, F.; Jones, R.; Wilson, S.; Mote, P.; Stone, D. A.; Yamazaki, Y. H.; Carrington, D.

    2011-12-01

    Resolution and ensemble size are often seen as alternatives in climate modelling. Models with sufficient resolution to simulate many classes of extreme weather cannot normally be run often enough to assess the statistics of rare events, still less how these statistics may be changing. As a result, assessments of the impact of external forcing on regional climate extremes must be based either on statistical downscaling from relatively coarse-resolution models, or statistical extrapolation from 10-year to 100-year events. Under the weatherathome experiment, part of the climateprediction.net initiative, we have compiled the Met Office Regional Climate Model HadRM3P to run on personal computer volunteered by the general public at 25 and 50km resolution, embedded within the HadAM3P global atmosphere model. With a global network of about 50,000 volunteers, this allows us to run time-slice ensembles of essentially unlimited size, exploring the statistics of extreme weather under a range of scenarios for surface forcing and atmospheric composition, allowing for uncertainty in both boundary conditions and model parameters. Current experiments, developed with the support of Microsoft Research, focus on three regions, the Western USA, Europe and Southern Africa. We initially simulate the period 1959-2010 to establish which variables are realistically simulated by the model and on what scales. Our next experiments are focussing on the Event Attribution problem, exploring how the probability of various types of extreme weather would have been different over the recent past in a world unaffected by human influence, following the design of Pall et al (2011), but extended to a longer period and higher spatial resolution. We will present the first results of the unique, global, participatory experiment and discuss the implications for the attribution of recent weather events to anthropogenic influence on climate.

  6. Discovery of extreme [OIII]5007A outflows in high-redshift red quasars

    CERN Document Server

    Zakamska, Nadia L; Pâris, Isabelle; Brandt, W N; Greene, Jenny E; Strauss, Michael A; Villforth, Carolin; Wylezalek, Dominika; Alexandroff, Rachael M; Ross, Nicholas P

    2015-01-01

    Black hole feedback is now a standard component of galaxy formation models. These models predict that the impact of black hole activity on its host galaxy likely peaked at z=2-3, the epoch of strongest star formation activity and black hole accretion activity in the Universe. We used XShooter on the Very Large Telescope to measure rest-frame optical spectra of four z~2.5 extremely red quasars with infrared luminosities ~10^47 erg/sec. We present the discovery of very broad (full width at half max= 2600-5000 km/sec), strongly blue-shifted (by up to 1500 km/sec) [OIII]5007A emission lines in these objects. In a large sample of obscured and red quasars, [OIII] kinematics are positively correlated with infrared luminosity, and the four objects in our sample are on the extreme end both in [OIII] kinematics and infrared luminosity. We estimate that ~3% of the bolometric luminosity in these objects is being converted into the kinetic power of the observed wind. These sources may be the signposts of the most extreme ...

  7. Correlation of PUV and SUV in the extremities while using PEM as a high-resolution positron emission scanner

    Energy Technology Data Exchange (ETDEWEB)

    Rahim, Sania [The University of Texas MD Anderson Cancer Center, Division of Diagnostic Imaging, Houston, TX (United States); MD Anderson Cancer Center, Houston, TX (United States); Mawlawi, Osama; Taylor, Shree; Millican, Richelle; Swanston, Nancy M.; Rohren, Eric M. [The University of Texas MD Anderson Cancer Center, Division of Diagnostic Imaging, Houston, TX (United States); Fox, Patricia [The University of Texas MD Anderson Cancer Center, Division of Biostatistics, Houston, TX (United States); Brown, J.E. [Yale University Hospital, Department of Radiology, New Haven, CT (United States)

    2014-04-15

    Owing to its unique configuration of two adjustable plate detectors positron emission mammography, or PEM, could theoretically also function as a high-resolution positron emission scanner for the extremities or neck. PEM quantitates its activity via a ''PEM uptake value,'' or PUV, and although its relationship to the standardized uptake value, or SUV, has been demonstrated in the breasts, to our knowledge there are no studies validating PUV in other sites such as the extremities. This was a retrospective chart review of two separate protocols of a total of 15 patients. The patients all had hypermetabolic lesions in the extremities or neck on imaging with PET/CT and were sent after their PET/CT to PEM for further imaging. Owing to the sequential nature of these examinations no additional radiotracer was administered. Spearman's rank order correlation was calculated between the PUVmax obtained from PEM images, and the SUVmax for all. Spearman's rank order correlation for all sites was 0.42, which is not significantly different from 0 (p = 0.13). When neck lesions were excluded from the group, there was a strong and statistically significant correlation between PUVmax and SUVmax, with Spearman's rank correlation of 0.73, and significantly different from 0 (p = 0.0068). The correlation of PUV and SUV in the extremities indicates the potential use of PEM as a semiquantitative, high-resolution positron emission scanner and warrants further investigation, especially in the realms of disease processes that often present in the extremities, such as melanoma, osteomyelitis, and arthritis, as well as playing a role in the imaging of patients with metallic hardware post-limb salvage surgery. (orig.)

  8. Detection and Attribution of Climate Change : From global mean temperature change to climate extremes and high impact weather.

    CERN Document Server

    CERN. Geneva

    2013-01-01

    This talk will describe how evidence has grown in recent years for a human influence on climate and explain how the Fifth Assessment Report of the Intergovernmental Panel on Climate Change concluded that it is extremely likely (>95% probability) that human influence on climate has been the dominant cause of the observed global-mean warming since the mid-20th century. The fingerprint of human activities has also been detected in warming of the ocean, in changes in the global water cycle, in reductions in snow and ice, and in changes in some climate extremes. The strengthening of evidence for the effects of human influence on climate extremes is in line with long-held basic understanding of the consequences of mean warming for temperature extremes and for atmospheric moisture. Despite such compelling evidence this does not mean that every instance of high impact weather can be attributed to anthropogenic climate change, because climate variability is often a major factor in many locations, especially for rain...

  9. Fluid-Assisted Shear Failure Within a Ductile Shear Zone

    Science.gov (United States)

    Kirkpatrick, J. D.; Compton, K.; Holk, G. J.

    2015-12-01

    Exhumed shear zones often contain folded and/or dynamically recrystallized structures such as veins and pseudotachylytes that record contemporaneous brittle and ductile deformation representing mixed bulk rheology. Here, we constrain the conditions that promote the transitions between ductile and brittle deformation by investigating quartz veins with shear offsets in the Saddlebag Lake shear zone in the central Sierra Nevada, California. Mesozoic metasedimentary rocks within the shear zone contain transposed bedding, strong cleavage, dextrally rotated porphyroclasts, and a steep mineral lineation, which together suggest an overall transpressive kinematic regime for the ductile deformation. Foliation sub-parallel veins are one subset of the veins in the shear zone. They have observed horizontal trace lengths of up to around 5 meters, though most are obscured by limited exposure, and displacements range from ~3-30 mm, with 1-5 mm of opening. Foliation sub-parallel veins are folded with the foliation and quartz microstructures and fluid inclusion thermobarometry measurements from vein samples indicate temperatures during vein formation by fracture were between 300-680°C. Quartz δ18O values (+5.9 to +16.5) suggest extended fluid-rock interaction that involved magmatic (δ18O ~ +8 to +10) and meteoric (δ18O down to -1) fluids. Foliation sub-parallel veins are most abundant in relatively massive, quartz-rich rocks where they are boudinaged, indicating they were rigid inclusions after formation. Based on the orientation and spatial distribution of the veins, we infer that they formed under high differential stress with pore pressures sufficiently high for the rocks to be critically stressed for shear failure along mechanically weak foliation planes. These observations suggest high pore pressures and mechanical heterogeneity at a variety of scales are necessary conditions for nucleation of shear fractures within ductile shear zones.

  10. A new extension of the polarizable continuum model: Toward a quantum chemical description of chemical reactions at extreme high pressure.

    Science.gov (United States)

    Cammi, Roberto

    2015-11-15

    A quantum chemical method for studying potential energy surfaces of reactive molecular systems at extreme high pressures is presented. The method is an extension of the standard Polarizable Continuum Model that is usually used for Quantum Chemical study of chemical reactions at a standard condition of pressure. The physical basis of the method and the corresponding computational protocol are described in necessary detail, and an application of the method to the dimerization of cyclopentadiene (up to 20 GPa) is reported.

  11. Probing the origin of cosmic-rays with extremely high energy neutrinos using the IceCube Observatory

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Abbasi, R.; Ackermann, M.;

    2013-01-01

    originate from cosmogenic neutrinos produced in the interactions of ultrahigh energy cosmic rays with ambient photons while propagating through intergalactic space. Exploiting IceCube’s large exposure for extremely high energy neutrinos and the lack of observed events above 100 PeV, we can rule out...... cosmological evolution of the highest energy cosmic-ray sources such as the Fanaroff-Riley type II class of radio galaxies....

  12. The first search for extremely-high energy cosmogenic neutrinos with the IceCube Neutrino Observatory

    CERN Document Server

    Abbasi, R; Abu-Zayyad, T; Adams, J; Aguilar, J A; Ahlers, M; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Bay, R; Alba, J L Bazo; Beattie, K; Beatty, J J; Bechet, S; Becker, J K; Becker, K -H; Benabderrahmane, M L; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bissok, M; Blaufuss, E; Boersma, D J; Bohm, C; B?oser, S; Botner, O; Bradley, L; Braun, J; Buitink, S; Carson, M; Chirkin, D; Christy, B; Clem, J; Clevermann, F; Cohen, S; Colnard, C; Cowen, D F; D'Agostino, M V; Danninger, M; Davis, J C; De Clercq, C; Demir?ors, L; Depaepe, O; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; D?ıaz-V?elez, J C; Dreyer, J; Dumm, J P; Duvoort, M R; Ehrlich, R; Eisch, J; Ellsworth, R W; Engdeg°ard, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Feusels, T; Filimonov, K; Finley, C; Foerster, M M; Fox, B D; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Ganugapati, R; Geisler, M; Gerhardt, L; Gladstone, L; Gl?usenkamp, T; Goldschmidt, A; Goodman, J A; Grant, D; Griesel, T; Groß, A; Grullon, S; Gurtner, M; Ha, C; Hallgren, A; Halzen, F; Han, K; Hanson, K; Helbing, K; Herquet, P; Hickford, S; Hill, G C; Hoffman, K D; Homeier, A; Hoshina, K; Hubert, D; Huelsnitz, W; H?ulß, J -P; Hulth, P O; Hultqvist, K; Hussain, S; Imlay, R L; Ishihara, A; Jacobsen, J; Japaridze, G S; Johansson, H; Joseph, J M; Kampert, K -H; Kappes, A; Karg, T; Karle, A; Kelley, J L; Kemming, N; Kenny, P; Kiryluk, J; Kislat, F; Klein, S R; Knops, S; K?ohne, J -H; Kohnen, G; Kolanoski, H; K?opke, L; Koskinen, D J; Kowalski, M; Kowarik, T; Krasberg, M; Krings, T; Kroll, G; Kuehn, K; Kuwabara, T; Labare, M; Lafebre, S; Laihem, K; Landsman, H; Lauer, R; Lehmann, R; Lennarz, D; L?unemann, J; Madsen, J; Majumdar, P; Maruyama, R; Mase, K; Matis, H S; Matusik, M; Meagher, K; Merck, M; M?esz?aros, P; Meures, T; Middell, E; Milke, N; Miller, J; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Nam, J W; Naumann, U; Nießen, P; Nygren, D R; Odrowski, S; Olivas, A; Olivo, M; Panknin, S; Paul, L; Heros, C P?erez de los; Petrovic, J; Piegsa, A; Pieloth, D; Porrata, R; Posselt, J; Price, P B; Prikockis, M; Przybylski, G T; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Rizzo, A; Rodrigues, J P; Roth, P; Rothmaier, F; Rott, C; Roucelle, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Sander, H -G; Sarkar, S; Schatto, K; Schlenstedt, S; Schmidt, T; Schneider, D; Schukraft, A; Schultes, A; Schulz, O; Schunck, M; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Slipak, A; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stephens, G; Stezelberger, T; Stokstad, R G; Stoyanov, S; Strahler, E A; Straszheim, T; Sullivan, G W; Swillens, Q; Taboada, I; Tamburro, A; Tarasova, O; Tepe, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Tosi, D; Tur?can, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; van Santen, J; Voigt, B; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Wikstr?om, G; Williams, D R; Wischnewski, R; Wissing, H; Woschnagg, K; Xu, C; Xu, X W; Yodh, G; Yoshida, S; Zarzhitsky, P

    2010-01-01

    We report on the results of the search for extremely-high energy (EHE) neutrinos with energies above $10^7$ GeV obtained with the partially ($\\sim$30%) constructed IceCube in 2007. From the absence of signal events in the sample of 242.1 days of effective livetime, we derive a 90% C.L. model independent differential upper limit based on the number of signal events per energy decade at $E^2 \\phi_{\

  13. ACUTE EFFECTS OF STATIC STRETCHING, DYNAMIC EXERCISES, AND HIGH VOLUME UPPER EXTREMITY PLYOMETRIC ACTIVITY ON TENNIS SERVE PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Ertugrul Gelen

    2012-12-01

    Full Text Available The purpose of this study was to compare the acute effects of static stretching; dynamic exercises and high volume upper extremity plyometric activity on tennis serve performance. Twenty-six elite young tennis players (15.1 ± 4.2 years, 167.9 ± 5.8 cm and 61.6 ± 8.1 kg performed 4 different warm-up (WU routines in a random order on non-consecutive days. The WU methods consisted of traditional WU (jogging, rally and serve practice (TRAD; traditional WU and static stretching (TRSS; traditional WU and dynamic exercise (TRDE; and traditional WU and high volume upper extremity plyometric activity (TRPLYP. Following each WU session, subjects were tested on a tennis serve ball speed test. TRAD, TRSS, TRDE and TRPLYO were compared by repeated measurement analyses of variance and post-hoc comparisons. In this study a 1 to 3 percent increase in tennis serve ball speed was recorded in TRDE and TRPLYO when compared to TRAD (p 0.05. ICCs for ball speed showed strong reliability (0.82 to 0.93 for the ball speed measurements.The results of this study indicate that dynamic and high volume upper extremity plyometric WU activities are likely beneficial to serve speed of elite junior tennis players.

  14. Strain-dependent evolution of garnets in a high pressure ductile shear zone using Synchroton x-ray microtomography

    Science.gov (United States)

    Macente, Alice; Fusseis, Florian; Menegon, Luca; John, Timm

    2016-04-01

    Synkinematic reaction microfabrics carry important information on the kinetics, timing and rheology of tectonometamorphic processes. Despite being routinely interpreted in metamorphic and structural studies, reaction and deformation microfabrics are usually described in two dimensions. We applied Synchrotron-based x-ray microtomography to document the evolution of a pristine olivine gabbro into a deformed omphacite-garnet eclogite in 3D. In the investigated samples, which cover a strain gradient into a shear zone from the Western Gneiss Region (Norway) previously described by John et al., (2009), we focused on the spatial transformation of garnet coronas into elongated clusters of garnets. Our microtomographic data allowed us to quantify changes to the garnet volume, their shapes and their spatial arrangement. We combined microtomographic observations with light microscope- and backscatter electron images as well as electron microprobe- (EMPA) and electron backscatter diffraction (EBSD) analyses to correlate mineral composition and orientation data with the x-ray absorption signal of the same mineral grains. This allowed us to extrapolate our interpretation of the metamorphic microfabric evolution to the third dimension, effectively yielding a 4-dimensional dataset. We found that: - The x-ray absorption contrast between individual mineral phases in our microtomographic data is sufficient to allow the same petrographic observations than in light- and electron microscopy, but extended to 3D. - Amongst the major constituents of the synkinematic reactions, garnet is the only phase that can be segmented confidently from the microtomographic data. - With increasing deformation, the garnet volume increases from about 9% to 25%. - Garnet coronas in the gabbros never completely encapsulate olivine grains. This may indicate that the reaction progressed preferentially in some directions, but also leaves pathways for element transport to and from the olivines that are

  15. The Influence of Tropical Forcing on Westerly Disturbances: Implications for Extreme Precipitation in High Asia

    Science.gov (United States)

    Cannon, F.; Carvalho, L. V.; Jones, C.; Norris, J.; Kiladis, G. N.; Hoell, A.

    2015-12-01

    Extratropical cyclones, including winter westerly disturbances (WD) over central Asia, are fundamental features of the atmosphere that redistribute energy, momentum, and moisture from global to regional scales. Within the Karakoram and western Himalaya (KH), snowfall from only a few WD each winter maintains the region's snowpack and its vast network of glaciers, which seasonally melt to sustain water resources for downstream populations across Asia. WD activity and subsequent precipitation in the mountains are influenced by global atmospheric variability and tropical-extratropical interactions. This research explores the independent influences of the Madden Julian Oscillation (MJO) and El Niño Southern Oscillation on WD and extreme precipitation events in the KH. On interannual time-scales, El Niño suppresses convection in the Indian Ocean and induces a Rossby wave response over Southwest Asia that is linked with enhanced dynamical forcing of WD and available moisture content. Consequently, extreme orographic precipitation events are more frequent during El Niño than La Niña or neutral conditions. A similar spatial pattern of tropical diabatic heating anomalies is produced by the MJO at intraseasonal scales. In comparison to El Niño, the Rossby wave response to MJO activity is less spatially uniform over southwest Asia and exists on a much shorter time-scale. Consequently, this mode's relationship with WD behavior and KH precipitation is more complex. Phases of the MJO propagation cycle that favor the dynamical enhancement of WD simultaneously suppress available moisture over southwest Asia, and vice versa. As a result, extreme precipitation events in the KH occur with similar frequency in most phases of the MJO, however, the relative importance of the dynamic and thermodynamic components of WD to orographic precipitation in the KH transitions as the MJO propagates. These findings give insight into the dynamics and predictability of extreme precipitation

  16. Extreme Multiplex Spectrograph: An efficient mechanical design for high-demanding requirements

    CERN Document Server

    Becerril, S; Dubbeldam, C M; Content, R; Rohloff, R R; Prada, F; Shanks, T; Sharples, R

    2010-01-01

    XMS is a multi-channel wide-field spectrograph designed for the prime focus of the 3.5m Calar-Alto telescope. The instrument is composed by four quadrants, each of which contains a spectrograph channel. An innovative mechanical design -at concept/preliminary stage- has been implemented to: 1) Minimize the separation between the channels to achieve maximal filling factor; 2) Cope with the very constraining space and mass overall requirements; 3) Achieve very tight alignment tolerances; 4) Provide lens self-centering under large temperature excursions; 5) Provide masks including 4000 slits (edges thinner than 100\\mu). An overview of this extremely challenging mechanical design is here presented.

  17. Outlier robustness for wind turbine extrapolated extreme loads

    DEFF Research Database (Denmark)

    Natarajan, Anand; Verelst, David Robert

    2012-01-01

    Methods for extrapolating extreme loads to a 50 year probability of exceedance, which display robustness to the presence of outliers in simulated loads data set, are described. Case studies of isolated high extreme out-of-plane loads are discussed to emphasize their underlying physical reasons....... Stochastic identification of numerical artifacts in simulated loads is demonstrated using the method of principal component analysis. The extrapolation methodology is made robust to outliers through a weighted loads approach, whereby the eigenvalues of the correlation matrix obtained using the loads with its...... simulation is demonstrated and compared with published results. Further effects of varying wind inflow angles and shear exponent is brought out. Parametric fitting techniques that consider all extreme loads including ‘outliers’ are proposed, and the physical reasons that result in isolated high extreme loads...

  18. State-of-the-Art of Extreme Pressure Lubrication Realized with the High Thermal Diffusivity of Liquid Metal.

    Science.gov (United States)

    Li, Haijiang; Tian, Pengyi; Lu, Hongyu; Jia, Wenpeng; Du, Haodong; Zhang, Xiangjun; Li, Qunyang; Tian, Yu

    2017-02-15

    Sliding between two objects under very high load generally involves direct solid-solid contact at molecular/atomic level, the mechanism of which is far from clearly disclosed yet. Those microscopic solid-solid contacts could easily lead to local melting of rough surfaces. At extreme conditions, this local melting could propagate to the seizure and welding of the entire interface. Traditionally, the microscopic solid-solid contact is alleviated by various lubricants and additives based on their improved mechanical properties. In this work, we realized the state-of-the-art of extreme pressure lubrication by utilizing the high thermal diffusivity of liquid metal, 2 orders of magnitude higher than general organic lubricants. The extreme pressure lubrication property of gallium based liquid metal (GBLM) was compared with gear oil and poly-α-olefin in a four-ball test. The liquid metal lubricates very well at an extremely high load (10 kN, the maximum capability of a four-ball tester) at a rotation speed of 1800 rpm for a duration of several minutes, much better than traditional organic lubricants which typically break down within seconds at a load of a few kN. Our comparative experiments and analysis showed that this superextreme pressure lubrication capability of GBLM was attributed to the synergetic effect of the ultrafast heat dissipation of GBLM and the low friction coefficient of FeGa3 tribo-film. The present work demonstrated a novel way of improving lubrication capability by enhancing the lubricant thermal properties, which might lead to mechanical systems with much higher reliability.

  19. A new highly adaptable design of shear-flow device for orientation of macromolecules for Linear Dichroism (LD) measurement

    KAUST Repository

    Lundahl, P. Johan

    2011-01-01

    This article presents a new design of flow-orientation device for the study of bio-macromolecules, including DNA and protein complexes, as well as aggregates such as amyloid fibrils and liposome membranes, using Linear Dichroism (LD) spectroscopy. The design provides a number of technical advantages that should make the device inexpensive to manufacture, easier to use and more reliable than existing techniques. The degree of orientation achieved is of the same order of magnitude as that of the commonly used concentric cylinders Couette flow cell, however, since the device exploits a set of flat strain-free quartz plates, a number of problems associated with refraction and birefringence of light are eliminated, increasing the sensitivity and accuracy of measurement. The device provides similar shear rates to those of the Couette cell but is superior in that the shear rate is constant across the gap. Other major advantages of the design is the possibility to change parts and vary sample volume and path length easily and at a low cost. © 2011 The Royal Society of Chemistry.

  20. Kelp and seaweed feeding by High-Arctic wild reindeer under extreme winter conditions

    Directory of Open Access Journals (Sweden)

    Brage Bremset Hansen

    2012-03-01

    Full Text Available One challenge in current Arctic ecological research is to understand and predict how wildlife may respond to increased frequencies of “extreme” weather events. Heavy rain-on-snow (ROS is one such extreme phenomenon associated with winter warming that is not well studied but has potentially profound ecosystem effects through changes in snow-pack properties and ice formation. Here, we document how ice-locked pastures following substantial amounts of ROS forced coastal Svalbard reindeer (Rangifer tarandus platyrhynchus to use marine habitat in late winter 2010. A thick coat of ground ice covered 98% of the lowland ranges, almost completely blocking access to terrestrial forage. Accordingly, a population census revealed that 13% of the total population (n=26 of 206 individuals and 21% of one sub-population were feeding on washed-up kelp and seaweed on the sea-ice foot. Calves were overrepresented among the individuals that applied this foraging strategy, which probably represents a last attempt to avoid starvation under particularly severe foraging conditions. The study adds to the impression that extreme weather events such as heavy ROS and associated icing can trigger large changes in the realized foraging niche of Arctic herbivores.

  1. Fifty years of shear zones

    Science.gov (United States)

    Graham, Rodney

    2017-04-01

    We are here, of course, because 1967 saw the publication of John Ramsay's famous book. Two years later a memorable field trip from Imperial College to the Outer Hebrides saw John on a bleak headland on the coast of North Uist where a relatively undeformed metadolerite within Lewisian (Precambrian) gneisses contained ductile shear zones with metamorphic fabrics in amphibolite facies. One particular outcrop was very special - a shear zone cutting otherwise completely isotropic, undeformed metadolerite, with an incremental foliation starting to develop at 45° to the deformation zone, and increasing in intensity as it approached the shear direction. Here was proof of the process of simple shear under ductile metamorphic conditions - the principles of simple shear outlined in John Ramsay's 1967 book clearly visible in nature, and verified by Ramsay's mathematical proofs in the eventual paper (Ramsay and Graham, 1970). Later work on the Lewisian on the mainland of Scotland, in South Harris, in Africa, and elsewhere applied Ramsay's simple shear principles more liberally, more imprecisely and on larger scale than at Caisteal Odair, but in retrospect it documented what seems now to be the generality of mid and lower crustal deformation. Deep seismic reflection data show us that on passive margins hyper-stretched continental crust (whether or not cloaked by Seaward Dipping Reflectors) seems to have collapsed onto the mantle. Crustal faults mostly sole out at or above the mantle - so the Moho is a detachment- an 'outer marginal detachment', if you like, and, of course, it must be a ductile shear. On non-volcanic margins this shear zone forms the first formed ocean floor before true sea floor spreading gets going to create real oceanic crust. Gianreto Manatschal, Marcel Lemoine and others realised that the serpentinites described in parts of the Alps are exposed remnants of this ductile shear zone. Associated ophicalcite breccias tell of sea floor exposure, while high

  2. Grafted polymer under shear flow

    Science.gov (United States)

    Kumar, Sanjiv; Foster, Damien P.; Giri, Debaprasad; Kumar, Sanjay

    2016-04-01

    A self-attracting-self-avoiding walk model of polymer chain on a square lattice has been used to gain an insight into the behaviour of a polymer chain under shear flow in a slit of width L. Using exact enumeration technique, we show that at high temperature, the polymer acquires the extended state continuously increasing with shear stress. However, at low temperature the polymer exhibits two transitions: a transition from the coiled to the globule state and a transition to a stem-flower like state. For a chain of finite length, we obtained the exact monomer density distributions across the layers at different temperatures. The change in density profile with shear stress suggests that the polymer under shear flow can be used as a molecular gate with potential application as a sensor.

  3. High Resolution Simulation of a Colorado Rockies Extreme Snow and Rain Event in both a Current and Future Climate

    Science.gov (United States)

    Rasmussen, Roy; Ikeda, Kyoko; Liu, Changhai; Gutmann, Ethan; Gochis, David

    2016-04-01

    Modeling of extreme weather events often require very finely resolved treatment of atmospheric circulation structures in order to produce and localize the large moisture fluxes that result in extreme precipitation. This is particularly true for cool season orographic precipitation processes where the representation of the landform can significantly impact vertical velocity profiles and cloud moisture entrainment rates. This study presents results for high resolution regional climate modeling study of the Colorado Headwaters region using an updated version of the Weather Research and Forecasting (WRF) model run at 4 km horizontal resolution and a hydrological extension package called WRF-Hydro. Previous work has shown that the WRF modeling system can produce credible depictions of winter orographic precipitation over the Colorado Rockies if run at horizontal resolutions warming on total precipitation, snow-rain partitioning and surface hydrological fluxes (evapotranspiration and runoff) will be discussed in the context of how potential changes in temperature impact the amount of precipitation, the phase of precipitation (rain vs. snow) and the timing and amplitude of streamflow responses. The results show using the Pseudo Global Warming technique that intense precipitation rates significantly increased during the event and a significant fraction of the snowfall converts to rain which significantly amplifies the runoff response from one where runoff is produced gradually to one in which runoff is rapidly translated into streamflow values that approach significant flooding risks. Results from a new, CONUS scale high resolution climate simulation of extreme events in a current and future climate will be presented as time permits.

  4. XMM-Newton analysis of a newly discovered, extremely X-ray luminous galaxy cluster at high redshift

    Science.gov (United States)

    Thoelken, S.; Schrabback, T.

    2016-06-01

    Galaxy clusters, the largest virialized structures in the universe, provide an excellent method to test cosmology on large scales. The galaxy cluster mass function as a function of redshift is a key tool to determine the fundamental cosmological parameters and especially measurements at high redshifts can e.g. provide constraints on dark energy. The fgas test as a direct cosmological probe is of special importance. Therefore, relaxed galaxy clusters at high redshifts are needed but these objects are considered to be extremely rare in current structure formation models. Here we present first results from an XMM-Newton analysis of an extremely X-ray luminous, newly discovered and potentially cool core cluster at a redshift of z=0.9. We carefully account for background emission and PSF effects and model the cluster emission in three radial bins. Our preliminary results suggest that this cluster is indeed a good candidate for a cool core cluster and thus potentially of extreme value for cosmology.

  5. Spin-resolved photoelectron spectroscopy using femtosecond extreme ultraviolet light pulses from high-order harmonic generation

    Science.gov (United States)

    Plötzing, M.; Adam, R.; Weier, C.; Plucinski, L.; Eich, S.; Emmerich, S.; Rollinger, M.; Aeschlimann, M.; Mathias, S.; Schneider, C. M.

    2016-04-01

    The fundamental mechanism responsible for optically induced magnetization dynamics in ferromagnetic thin films has been under intense debate since almost two decades. Currently, numerous competing theoretical models are in strong need for a decisive experimental confirmation such as monitoring the triggered changes in the spin-dependent band structure on ultrashort time scales. Our approach explores the possibility of observing femtosecond band structure dynamics by giving access to extended parts of the Brillouin zone in a simultaneously time-, energy- and spin-resolved photoemission experiment. For this purpose, our setup uses a state-of-the-art, highly efficient spin detector and ultrashort, extreme ultraviolet light pulses created by laser-based high-order harmonic generation. In this paper, we present the setup and first spin-resolved spectra obtained with our experiment within an acquisition time short enough to allow pump-probe studies. Further, we characterize the influence of the excitation with femtosecond extreme ultraviolet pulses by comparing the results with data acquired using a continuous wave light source with similar photon energy. In addition, changes in the spectra induced by vacuum space-charge effects due to both the extreme ultraviolet probe- and near-infrared pump-pulses are studied by analyzing the resulting spectral distortions. The combination of energy resolution and electron count rate achieved in our setup confirms its suitability for spin-resolved studies of the band structure on ultrashort time scales.

  6. High resolution three-dimensional (256 to the 3rd) spatio-temporal measurements of the conserved scalar field in turbulent shear flows

    Science.gov (United States)

    Dahm, Werner J. A.; Buch, Kenneth A.

    Results from highly resolved three-dimensional spatio-temporal measurements of the conserved scalar field zeta(x,t) in a turbulent shear flow. Each of these experiments consists of 256 to the 3rd individual point measurements of the local instantaneous conserved scalar value in the flow. The spatial and temporal resolution of these measurements reach beyond the local Kolmogorov scale and resolve the local strain-limited molecular diffusion scale in the flow. The results clearly show molecular mixing occurring in thin strained laminar diffusion layers in a turbulent flow.

  7. Shallow gene pools in the high intertidal: extreme loss of genetic diversity in viviparous sea stars (Parvulastra).

    Science.gov (United States)

    Keever, Carson C; Puritz, Jonathan B; Addison, Jason A; Byrne, Maria; Grosberg, Richard K; Toonen, Robert J; Hart, Michael W

    2013-10-23

    We document an extreme example of reproductive trait evolution that affects population genetic structure in sister species of Parvulastra cushion stars from Australia. Self-fertilization by hermaphroditic adults and brood protection of benthic larvae causes strong inbreeding and range-wide genetic poverty. Most samples were fixed for a single allele at nearly all nuclear loci; heterozygotes were extremely rare (0.18%); mitochondrial DNA sequences were more variable, but few populations shared haplotypes in common. Isolation-with-migration models suggest that these patterns are caused by population bottlenecks (relative to ancestral population size) and low gene flow. Loss of genetic diversity and low potential for dispersal between high-intertidal habitats may have dire consequences for extinction risk and potential for future adaptive evolution in response to climate and other selective agents.

  8. Using extreme value theory approaches to forecast the probability of outbreak of highly pathogenic influenza in Zhejiang, China.

    Directory of Open Access Journals (Sweden)

    Jiangpeng Chen

    Full Text Available Influenza is a contagious disease with high transmissibility to spread around the world with considerable morbidity and mortality and presents an enormous burden on worldwide public health. Few mathematical models can be used because influenza incidence data are generally not normally distributed. We developed a mathematical model using Extreme Value Theory (EVT to forecast the probability of outbreak of highly pathogenic influenza.The incidence data of highly pathogenic influenza in Zhejiang province from April 2009 to November 2013 were retrieved from the website of Health and Family Planning Commission of Zhejiang Province. MATLAB "VIEM" toolbox was used to analyze data and modelling. In the present work, we used the Peak Over Threshold (POT model, assuming the frequency as a Poisson process and the intensity to be Pareto distributed, to characterize the temporal variability of the long-term extreme incidence of highly pathogenic influenza in Zhejiang, China.The skewness and kurtosis of the incidence of highly pathogenic influenza in Zhejiang between April 2009 and November 2013 were 4.49 and 21.12, which indicated a "fat tail" distribution. A QQ plot and a mean excess plot were used to further validate the features of the distribution. After determining the threshold, we modeled the extremes and estimated the shape parameter and scale parameter by the maximum likelihood method. The results showed that months in which the incidence of highly pathogenic influenza is about 4462/2286/1311/487 are predicted to occur once every five/three/two/one year, respectively.Despite the simplicity, the present study successfully offers the sound modeling strategy and a methodological avenue to implement forecasting of an epidemic in the midst of its course.

  9. High risk of misinterpreting liver and spleen stiffness using 2D shear-wave and transient elastography after a moderate or high calorie meal.

    Science.gov (United States)

    Kjærgaard, Maria; Thiele, Maja; Jansen, Christian; Stæhr Madsen, Bjørn; Görtzen, Jan; Strassburg, Christian; Trebicka, Jonel; Krag, Aleksander

    2017-01-01

    Food intake increases liver stiffness, but it is believed that liver stiffness returns to baseline two hours after a meal. The aim of this study was to investigate the impact of different sized meals on liver stiffness. Liver and spleen stiffness was measured with transient elastography (TE) and real-time 2-dimensional shear wave elastography (2D-SWE). Patients ingested a 625 kcal and a 1250 kcal liquid meal on two consecutive days. We measured liver and spleen elasticity, Controlled attenuation parameter (CAP) and portal flow at baseline and after 20, 40, 60, 120 and 180 minutes. Sixty patients participated, 83% with alcoholic liver disease. Twenty-eight patients had METAVIR fibrosis score F0-3 and 32 patients had cirrhosis. Liver stiffness, spleen stiffness and CAP increased after both meals for all stages of fibrosis. False positive 2D-SWE liver stiffness measurements caused 36% and 52% of patients with F0-3 fibrosis to be misclassified with higher stages of fibrosis after the moderate and high caloric meal. Likewise, 10% and 13% of compensated cirrhosis patients were misclassified with clinically significant portal hypertension after the two meals. We observed similar misclassification rates with TE. After three hours, liver stiffness remained elevated more than 20% from baseline in up to 50% of patients. Liver stiffness, spleen stiffness and CAP increase after a meal across all stages of fibrosis and across elastography techniques. Up to half of patients may be misclassified with higher stages of fibrosis, if they are assessed after less than three hours fasting period.

  10. High Precision Astrometry with MICADO at the European Extremely Large Telescope

    CERN Document Server

    Trippe, S; Eisenhauer, F; Förster-Schreiber, N M; Fritz, T K; Genzel, R

    2009-01-01

    In this article we identify and discuss various statistical and systematic effects influencing the astrometric accuracy achievable with MICADO, the near-infrared imaging camera proposed for the 42-metre European Extremely Large Telescope (E-ELT). These effects are instrumental (e.g. geometric distortion), atmospheric (e.g. chromatic differential refraction), and astronomical (reference source selection). We find that there are several phenomena having impact on ~100 micro-arcsec scales, meaning they can be substantially larger than the theoretical statistical astrometric accuracy of an optical/NIR 42m-telescope. Depending on type, these effects need to be controlled via dedicated instrumental design properties or via dedicated calibration procedures. We conclude that if this is done properly, astrometric accuracies of 40 micro-arcsec or better - with 40 micro-arcsec/year in proper motions corresponding to ~20 km/s at 100 kpc distance - can be achieved in one epoch of actual observations

  11. GTC optical imaging of extremely red 5C radio galaxies at high redshift

    CERN Document Server

    Humphrey, A; Lagos, P

    2015-01-01

    We investigate the nature of seven unusual radio galaxies from the 5C catalogue that were previously known to have extremely red R-K colours, and for which emission lines were previously found to be weak or absent in their optical spectra. We present and discuss u, g, or r images of these radio galaxies, obtained using the Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) at the Gran Telescopio Canarias (GTC). We have detected all seven targets in our g-band imaging. Their optical emission is extended, and we tentatively detect a radio-optical alignment effect in this sample. A subset of our sample (three sources) shows broad-band spectral energy distributions that flatten out near the wavelength range of the g-band, implying a dominant contribution there due to young stars and/or scattered or reprocessed radiation from the active nucleus.

  12. Shear Wave Imaging of Breast Tissue by Color Doppler Shear Wave Elastography.

    Science.gov (United States)

    Yamakoshi, Yoshiki; Nakajima, Takahito; Kasahara, Toshihiro; Yamazaki, Mayuko; Koda, Ren; Sunaguchi, Naoki

    2017-02-01

    Shear wave elastography is a distinctive method to access the viscoelastic characteristic of the soft tissue that is difficult to obtain by other imaging modalities. This paper proposes a novel shear wave elastography [color Doppler shear wave imaging (CD SWI)] for breast tissue. Continuous shear wave is produced by a small lightweight actuator, which is attached to the tissue surface. Shear wave wavefront that propagates in tissue is reconstructed as a binary pattern that consists of zero and the maximum flow velocities on color flow image (CFI). Neither any modifications of the ultrasound color flow imaging instrument nor a high frame rate ultrasound imaging instrument is required to obtain the shear wave wavefront map. However, two conditions of shear wave displacement amplitude and shear wave frequency are needed to obtain the map. However, these conditions are not severe restrictions in breast imaging. This is because the minimum displacement amplitude is [Formula: see text] for an ultrasonic wave frequency of 12 MHz and the shear wave frequency is available from several frequencies suited for breast imaging. Fourier analysis along time axis suppresses clutter noise in CFI. A directional filter extracts shear wave, which propagates in the forward direction. Several maps, such as shear wave phase, velocity, and propagation maps, are reconstructed by CD SWI. The accuracy of shear wave velocity measurement is evaluated for homogeneous agar gel phantom by comparing with the acoustic radiation force impulse method. The experimental results for breast tissue are shown for a shear wave frequency of 296.6 Hz.

  13. High-fidelity numerical modeling of the Upper Mississippi River under extreme flood condition

    Science.gov (United States)

    Khosronejad, Ali; Le, Trung; DeWall, Petra; Bartelt, Nicole; Woldeamlak, Solomon; Yang, Xiaolei; Sotiropoulos, Fotis

    2016-12-01

    We present data-driven numerical simulations of extreme flooding in a large-scale river coupling coherent-structure resolving hydrodynamics with bed morphodynamics under live-bed conditions. The study area is a ∼ 3.2 km long and ∼ 300 m wide reach of the Upper Mississippi River, near Minneapolis MN, which contains several natural islands and man-made hydraulic structures. We employ the large-eddy simulation (LES) and bed-morphodynamic modules of the Virtual Flow Simulator (VFS-Rivers) model, a recently developed in-house code, to investigate the flow and bed evolution of the river during a 100-year flood event. The coupling of the two modules is carried out via a fluid-structure interaction approach using a nested domain approach to enhance the resolution of bridge scour predictions. We integrate data from airborne Light Detection and Ranging (LiDAR), sub-aqueous sonar apparatus on-board a boat and in-situ laser scanners to construct a digital elevation model of the river bathymetry and surrounding flood plain, including islands and bridge piers. A field campaign under base-flow condition is also carried out to collect mean flow measurements via Acoustic Doppler Current Profiler (ADCP) to validate the hydrodynamic module of the VFS-Rivers model. Our simulation results for the bed evolution of the river under the 100-year flood reveal complex sediment transport dynamics near the bridge piers consisting of both scour and refilling events due to the continuous passage of sand dunes. We find that the scour depth near the bridge piers can reach to a maximum of ∼ 9 m. The data-driven simulation strategy we present in this work exemplifies a practical simulation-based-engineering-approach to investigate the resilience of infrastructures to extreme flood events in intricate field-scale riverine systems.

  14. High-resolution shear-wave seismics across the Carlsberg Fault zone south of Copenhagen - Implications for linking Mesozoic and late Pleistocene structures

    Science.gov (United States)

    Kammann, Janina; Hübscher, Christian; Boldreel, Lars Ole; Nielsen, Lars

    2016-07-01

    The Carlsberg Fault zone (CFZ) is a NNW-SSE striking structure close to the transition zone between the Danish Basin and the Baltic Shield. We examine the fault evolution by combining very-high-resolution onshore shear-wave seismic data, one conventional onshore seismic profile and marine reflection seismic profiles. The faulting geometry indicates a strong influence of Triassic subsidence and rifting in the Central European Basin System. Growth strata within the CFZ surrounding Höllviken Graben reveal syntectonic sedimentation in the Lower Triassic, indicating the opening to be a result of Triassic rifting. In the Upper Cretaceous growth faulting documents continued rifting. These findings contrast the Late Cretaceous to Paleogene inversion tectonics in neighboring structures, such as the Tornquist Zone. The high-resolution shear-wave seismic method was used to image faulting in Quaternary and Danian layers in the CFZ. The portable compact vibrator source ElViS III S8 was used to acquire a 1150 m long seismic section on the island Amager, south of Copenhagen. The shallow subsurface in the investigation area is dominated by Quaternary glacial till deposits in the upper 5-11 m and Danian limestone below. In the shear-wave profile, we imaged the uppermost 30 m of the western part of CFZ. The complex fault zone comprises normal block faults and one reverse block fault. The observed faults cut through the Danian as well as the Quaternary overburden. Hence, there are strong indicators for ongoing faulting, like mapped faulting in Quaternary sediments and ongoing subsidence of the eastern block of the CFZ as interpreted by other authors. The lack of earthquakes localized in the fault zone implies that either the frequency of occurring earthquakes is too small to be recorded in the observation time-span, or that the movement of the shallow sub-surface layers may be due to other sources than purely tectonic processes.

  15. Assessment of homogeneity of the shear-strain pattern in Al–7 wt%Si casting alloy processed by high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Cepeda-Jiménez, C.M., E-mail: carmen.cepeda@imdea.org [Department of Physical Metallurgy, CENIM, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain); Orozco-Caballero, A.; García-Infanta, J.M. [Department of Physical Metallurgy, CENIM, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain); Zhilyaev, A.P. [Institute for Metals Superplasticity Problems, Russian Academy of Science, 39 Khalturina, 450001 Ufa (Russian Federation); Ruano, O.A.; Carreño, F. [Department of Physical Metallurgy, CENIM, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain)

    2014-03-01

    An as-cast Al–7 wt%Si alloy was subjected to processing by high-pressure torsion (HPT) at room temperature, through 1/4, 1/2, 1 and 5 turns at a pressure of 6 GPa and two rotation speeds, 0.1 and 1 rpm. Vickers microhardness was measured along diameters of HPT disk surfaces. The final hardness values were higher than in the initial as-cast condition and, unexpectedly, nearly constant under all different processing conditions, and along the disk diameter. The microstructure was characterised by optical and scanning electron microscopy. The as-cast microstructure comprises equiaxed primary α dendrite cells embedded in the Al–Si eutectic constituent. The morphology and distribution of the eutectic constituent in the HPT processed materials is used to delineate the shear strain, which was analysed in the cross-section planes of the disks. A high degree of homogeneity in the imposed shear strain throughout the samples was observed, being congruent with the ideal rigid-body torsion. In addition, the high compressive pressure applied, causing compressive strain prior to the torsional strain, is responsible for the deformation-induced precipitation of small Si particles and for the (sub)grain refinement in the primary Al constituent. The role of torsional strain is that of increasing monothonically the redistribution of the eutectic silicon and the misorientation of the (sub)grains.

  16. Geology and geochemistry of radon in shear zones: End of year progress report

    Energy Technology Data Exchange (ETDEWEB)

    Gundersen, L.C.S.; Schultz, A.P.; Wanty, R.B.; Gates, A.E.; Crespi, J.M.

    1989-01-01

    The objective of this project is to understand the geology of radon gas behavior in areas where shared fault zones cause localized, anomalously high concentrations of radon. Sheared fault zones in bedrock have been identified as the cause of some of the highest indoor radon and water borne radon problems recorded in the United States. This study will provide detailed geological and geochemical models of the processes that create high concentration of radon in shear zones. The main research goals are to: (1) characterize and quantify uranium enrichment in shear zones by examining the chemical and deformational processes involved; (2) develop predictive models that will identify severe radon occurrences by rock type, amount of deformation (shear strain), deformational style, and amount of radionuclide enrichment; (3) characterize and quantify the effect of deformation on the development of soils, permeability, radon migration and emanation, alteration, and radium distribution; (4) characterize and quantify the rock-water equilibria within shear zones that produce the extreme concentrations of radon in water derived from sheared rock aquifers, and examine the contribution of radon in water to indoor radon concentrations. 4 refs.

  17. Clinical Implications of Diffuse Excessive High Signal Intensity (DEHSI on Neonatal MRI in School Age Children Born Extremely Preterm.

    Directory of Open Access Journals (Sweden)

    Lina Broström

    Full Text Available Magnetic resonance imaging (MRI of the brain carried out during the neonatal period shows that 55-80% of extremely preterm infants display white matter diffuse excessive high signal intensity (DEHSI. Our aim was to study differences in developmental outcome at the age of 6.5 years in children born extremely preterm with and without DEHSI.This was a prospective cohort study of 83 children who were born in Stockholm, Sweden, between 2004 and 2007, born at gestational age of < 27 weeks + 0 days and who underwent an MRI scan of their brain at term equivalent age. The outcome measures at 6.5 years included testing 66 children with the modified Touwen neurology examination, the Movement Assessment Battery for Children 2, the Wechsler Intelligence Scale for Children-Fourth Edition, Beery Visual-motor Integration test-Sixth Edition, and the Strengths and Difficulties Questionnaire. Group-wise comparisons were done between children with and without DEHSI using Student t-test, Mann Whitney U test, Chi square test and regression analysis.DEHSI was detected in 39 (59% of the 66 children who were assessed at 6.5 years. The presence of DEHSI was not associated with mild neurological dysfunction, scores on M-ABC assessment, cognition, visual-motor integration, or behavior at 6.5 years.The presence of qualitatively defined DEHSI on neonatal MRI did not prove to be a useful predictor of long-term impairment in children born extremely preterm.

  18. Local impact analysis of climate change on precipitation extremes: are high-resolution climate models needed for realistic simulations?

    Science.gov (United States)

    Tabari, Hossein; De Troch, Rozemien; Giot, Olivier; Hamdi, Rafiq; Termonia, Piet; Saeed, Sajjad; Brisson, Erwan; Van Lipzig, Nicole; Willems, Patrick

    2016-09-01

    This study explores whether climate models with higher spatial resolutions provide higher accuracy for precipitation simulations and/or different climate change signals. The outputs from two convection-permitting climate models (ALARO and CCLM) with a spatial resolution of 3-4 km are compared with those from the coarse-scale driving models or reanalysis data for simulating/projecting daily and sub-daily precipitation quantiles. Validation of historical design precipitation statistics derived from intensity-duration-frequency (IDF) curves shows a better match of the convection-permitting model results with the observations-based IDF statistics compared to the driving GCMs and reanalysis data. This is the case for simulation of local sub-daily precipitation extremes during the summer season, while the convection-permitting models do not appear to bring added value to simulation of daily precipitation extremes. Results moreover indicate that one has to be careful in assuming spatial-scale independency of climate change signals for the delta change downscaling method, as high-resolution models may show larger changes in extreme precipitation. These larger changes appear to be dependent on the timescale, since such intensification is not observed for daily timescales for both the ALARO and CCLM models.

  19. The Imprint of Extreme Climate Events in Century-Long Time Series of Wood Anatomical Traits in High-Elevation Conifers.

    Science.gov (United States)

    Carrer, Marco; Brunetti, Michele; Castagneri, Daniele

    2016-01-01

    Extreme climate events are of key importance for forest ecosystems. However, both the inherent infrequency, stochasticity and multiplicity of extreme climate events, and the array of biological responses, challenges investigations. To cope with the long life cycle of trees and the paucity of the extreme events themselves, our inferences should be based on long-term observations. In this context, tree rings and the related xylem anatomical traits represent promising sources of information, due to the wide time perspective and quality of the information they can provide. Here we test, on two high-elevation conifers (Larix decidua and Picea abies sampled at 2100 m a.s.l. in the Eastern Alps), the associations among temperature extremes during the growing season and xylem anatomical traits, specifically the number of cells per ring (CN), cell wall thickness (CWT), and cell diameter (CD). To better track the effect of extreme events over the growing season, tree rings were partitioned in 10 sectors. Climate variability has been reconstructed, for 1800-2011 at monthly resolution and for 1926-2011 at daily resolution, by exploiting the excellent availability of very long and high quality instrumental records available for the surrounding area, and taking into account the relationship between meteorological variables and site topographical settings. Summer temperature influenced anatomical traits of both species, and tree-ring anatomical profiles resulted as being associated to temperature extremes. Most of the extreme values in anatomical traits occurred with warm (positive extremes) or cold (negative) conditions. However, 0-34% of occurrences did not match a temperature extreme event. Specifically, CWT and CN extremes were more clearly associated to climate than CD, which presented a bias to track cold extremes. Dendroanatomical analysis, coupled to high-quality daily-resolved climate records, seems a promising approach to study the effects of extreme events on trees

  20. 探究某高层建筑工程钢板剪力墙设计与施工%Design and Construction of Steel Plate Shear Wall of a High-rise Building

    Institute of Scientific and Technical Information of China (English)

    张清晓

    2014-01-01

    Based on a super-high building project cases, this paper introduces the design and construction conditions of steel plate shear wall and steel plate shear wall construction points.%本文根据某超高层建筑工程案例,介绍了钢板剪力墙的设计与施工细则以及钢板剪力墙施工要点。

  1. Influence of High Shear Dispersion on the Production of Cellulose Nanofibers by Ultrasound-Assisted TEMPO-Oxidation of Kraft Pulp

    Directory of Open Access Journals (Sweden)

    Claude Daneault

    2012-09-01

    Full Text Available Cellulose nanofibers can be produced using a combination of TEMPO, sodium bromide (NaBr and sodium hypochlorite, and mechanical dispersion. Recently, this process has been the subject of intensive investigation. However, studies on the aspects of mechanical treatment of this process remain marginal. The main objective of this study is to evaluate the high shear dispersion parameters (e.g., consistency, stator-rotor gap, recirculation rate and pH and determine their influences on nanocellulose production using ultrasound-assisted TEMPO-oxidation of Kraft pulp. All nanofiber gels produced in this study exhibited rheological behaviors known as shear thinning. From all the dispersion parameters, the following conditions were identified as optimal: 0.042 mm stator-rotor gap, 200 mL/min recycle rate, dispersion pH of 7 and a feed consistency of 2%. High quality cellulose gel could be produced under these conditions. This finding is surely of great interest for the pulp and paper industry.

  2. Statistical analysis and comparison of a continuous high shear granulator with a twin screw granulator: Effect of process parameters on critical granule attributes and granulation mechanisms.

    Science.gov (United States)

    Meng, Wei; Kotamarthy, Lalith; Panikar, Savitha; Sen, Maitraye; Pradhan, Shankali; Marc, Michaelis; Litster, James D; Muzzio, Fernando J; Ramachandran, Rohit

    2016-11-20

    This study is concerned with identifying the design space of two different continuous granulators and their respective granulation mechanisms. Performance of a continuous high shear granulator and a twin screw granulator with paracetamol formulations were examined by face-centered cubic design, which focused on investigating key performance metrics, namely, granule size, porosity, flowability and particle morphology of granules as a function of essential input process parameters (liquid content, throughput and rotation speed). Liquid and residence time distribution tests were also performed to gain insights into the liquid-powder mixing and flow behavior. The results indicated that continuous high shear granulation was more sensitive to process variation and produced spherical granules with monomodal size distribution and distinct internal structure and strength variation. Twin screw granulation with such a particular screw configuration showed narrower design space and granules were featured with multimodal size distribution, irregular shape, less detectible porosity difference and tighter range of strength. Granulation mechanisms explored on the basis of nucleation and growth regime maps revealed that for most cases liquid binder was uniformly distributed with fast droplet penetration into the powder bed and that granule consolidation and coalescence mainly took place in the nucleation, steady growth and rapid growth regimes.

  3. First Frontier Field Constraints on the Cosmic Star-Formation Rate Density at z~10 - The Impact of Lensing Shear on Completeness of High-Redshift Galaxy Samples

    CERN Document Server

    Oesch, P A; Illingworth, G D; Franx, M; Ammons, S M; van Dokkum, P G; Trenti, M; Labbe, I

    2014-01-01

    We search the complete Hubble Frontier Field dataset of Abell 2744 and its parallel field for z~10 sources to further refine the evolution of the cosmic star-formation rate density (SFRD) at z>8. We independently confirm two images of the recently discovered triply-imaged z~9.8 source by Zitrin et al. (2014) and set an upper limit for similar z~10 galaxies with red colors of J_125-H_160>1.2 in the parallel field of Abell 2744. We utilize extensive simulations to derive the effective selection volume of Lyman-break galaxies at z~10, both in the lensed cluster field and in the adjacent parallel field. Particular care is taken to include position-dependent lensing shear to accurately account for the expected sizes and morphologies of highly-magnified sources. We show that both source blending and shear reduce the completeness at a given observed magnitude in the cluster, particularly near the critical curves. These effects have a significant, but largely overlooked, impact on the detectability of high-redshift s...

  4. Shear System Debugging and Shear Test

    Institute of Scientific and Technical Information of China (English)

    YANG; Dong-xue; JIAO; Hai-yang

    2015-01-01

    Shear system is the essential equipment of head-end processing in the spent fuel reprocessing process,with the aim of cutting spent fuels into appropriate lengths for dissolve,separatingspent fuel core from jacket.Shear system of CRARL is mainly set in 01Bhot cell,element rods will be cut into short lengths of 10-30mm

  5. Effects of Fusion Zone Size and Failure Mode on Peak Load and Energy Absorption of Advanced High Strength Steel Spot Welds under Lap Shear Loading Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2008-06-01

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS) under lap shear loading condition. DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. Static weld strength tests using lap shear samples were performed on the joint populations with various fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied for all the weld populations using statistical data analysis tools. The results in this study show that AHSS spot welds with conventionally required fusion zone size of can not produce nugget pullout mode for both the DP800 and TRIP800 welds under lap shear loading. Moreover, failure mode has strong influence on weld peak load and energy absorption for all the DP800 welds and the TRIP800 small welds: welds failed in pullout mode have statistically higher strength and energy absorption than those failed in interfacial fracture mode. For TRIP800 welds above the critical fusion zone level, the influence of weld failure modes on peak load and energy absorption diminishes. Scatter plots of peak load and energy absorption versus weld fusion zone size were then constructed, and the results indicate that fusion zone size is the most critical factor in weld quality in terms of peak load and energy absorption for both DP800 and TRIP800 spot welds.

  6. An extremely low power voltage reference with high PSRR for power-aware ASICs

    Science.gov (United States)

    Jihai, Duan; Dongyu, Deng; Weilin, Xu; Baolin, Wei

    2015-09-01

    An extremely low power voltage reference without resistors is presented for power-aware ASICs. In order to reduce the power dissipation, an Oguey current reference source is used to reduce the static current; a cascode current mirror is used to increase the power supply rejection ratio (PSRR) and reduce the line sensitivity of the circuit. The voltage reference is fabricated in SMIC 0.18-μm CMOS process. The measured results for the voltage reference demonstrate that the temperature coefficient of the voltage is 66 ppm/°C in a range from 25 to 100 °C. The line sensitivity is 0.9% in a supply voltage range of 1.8 to 3.3 V, and PSRR is -49 dB at 100 Hz. The power dissipation is 200 nW. The chip area is 0.01 mm2. The circuit can be used as an elementary circuit block for power-aware ASICs. Project supported by the National Natural Science Foundation of China (Nos. 61161003, 61264001, 61166004) and the Guangxi Natural Science Foundation (No. 2013GXNSFAA019333).

  7. Brain Tumour Segmentation based on Extremely Randomized Forest with high-level features.

    Science.gov (United States)

    Pinto, Adriano; Pereira, Sergio; Correia, Higino; Oliveira, J; Rasteiro, Deolinda M L D; Silva, Carlos A

    2015-08-01

    Gliomas are among the most common and aggressive brain tumours. Segmentation of these tumours is important for surgery and treatment planning, but also for follow-up evaluations. However, it is a difficult task, given that its size and locations are variable, and the delineation of all tumour tissue is not trivial, even with all the different modalities of the Magnetic Resonance Imaging (MRI). We propose a discriminative and fully automatic method for the segmentation of gliomas, using appearance- and context-based features to feed an Extremely Randomized Forest (Extra-Trees). Some of these features are computed over a non-linear transformation of the image. The proposed method was evaluated using the publicly available Challenge database from BraTS 2013, having obtained a Dice score of 0.83, 0.78 and 0.73 for the complete tumour, and the core and the enhanced regions, respectively. Our results are competitive, when compared against other results reported using the same database.

  8. The Cora Lake Shear Zone: Strain Localization in an Ultramylonitic, Deep Crustal Shear Zone, Athabasca Granulite Terrain, Western Churchill Province, Canada

    Science.gov (United States)

    Regan, S.; Williams, M. L.; Mahan, K. H.; Orlandini, O. F.; Jercinovic, M. J.; Leslie, S. R.; Holland, M.

    2012-12-01

    Ultramylonitic shear zones typically involve intense strain localization, and when developed over large regions can introduce considerable heterogeneity into the crust. The Cora Lake shear zone (CLsz) displays several 10's to 100's of meters-wide zones of ultramylonite distributed throughout its full 3-5 km mylonitized width. Detailed mapping, petrography, thermobarometry, and in-situ monazite geochronology suggest that it formed during the waning phases of granulite grade metamorphism and deformation, within one of North America's largest exposures of polydeformed lower continental crust. Anastomosing zones of ultramylonite contain recrystallized grain-sizes approaching the micron scale and might appear to suggest lower temperature mylonitization. However, feldspar and even clinopyroxene are dynamically recrystallized, and quantitative thermobarometry of syn-deformational assemblages indicate high P and T conditions ranging from 0.9 -10.6 GPa and 775-850 °C. Even at these high T's, dynamic recovery and recrystallization were extremely limited. Rocks with low modal quartz have extremely small equilibrium volumes. This is likely the result of inefficient diffusion, which is further supported by the unannealed nature of the crystals. Local carbonate veins suggests that H2O poor, CO2 rich conditions may have aided in the preservation of fine grain sizes, and may have inhibited dynamic recovery and recrystallization. The Cora Lake shear zone is interpreted to have been relatively strong and to have hardened during progressive deformation. Garnet is commonly fractured perpendicular to host rock fabric, and statically replaced by both biotite and muscovite. Pseudotachylite, with the same sense of shear, occurs in several ultramylonitized mafic granulites. Thus, cataclasis and frictional melt are interpreted to have been produced in the lower continental crust, not during later reactivation. We suggest that strengthening of rheologically stiffer lithologies led to

  9. Elastic Properties in Tension and Shear of High Strength Nonferrous Metals and Stainless Steel - Effect of Previous Deformation and Heat Treatment

    Science.gov (United States)

    Mebs, R W; Mcadam, D J

    1947-01-01

    A resume is given of an investigation of the influence of plastic deformation and of annealing temperature on the tensile and shear elastic properties of high strength nonferrous metals and stainless steels in the form of rods and tubes. The data were obtained from earlier technical reports and notes, and from unpublished work in this investigation. There are also included data obtained from published and unpublished work performed on an independent investigation. The rod materials, namely, nickel, monel, inconel, copper, 13:2 Cr-Ni steel, and 18:8 Cr-Ni steel, were tested in tension; 18:8 Cr-Ni steel tubes were tested in shear, and nickel, monel, aluminum-monel, and Inconel tubes were tested in both tension and shear. There are first described experiments on the relationship between hysteresis and creep, as obtained with repeated cyclic stressing of annealed stainless steel specimens over a constant load range. These tests, which preceded the measurements of elastic properties, assisted in devising the loading time schedule used in such measurements. From corrected stress-set curves are derived the five proof stresses used as indices of elastic or yield strength. From corrected stress-strain curves are derived the secant modulus and its variation with stress. The relationship between the forms of the stress-set and stress-strain curves and the values of the properties derived is discussed. Curves of variation of proof stress and modulus with prior extension, as obtained with single rod specimens, consist in wavelike basic curves with superposed oscillations due to differences of rest interval and extension spacing; the effects of these differences are studied. Oscillations of proof stress and modulus are generally opposite in manner. The use of a series of tubular specimens corresponding to different amounts of prior extension of cold reduction gave curves almost devoid of oscillation since the effects of variation of rest interval and extension spacing were

  10. Shear zone junctions: Of zippers and freeways

    Science.gov (United States)

    Passchier, Cees W.; Platt, John P.

    2017-02-01

    Ductile shear zones are commonly treated as straight high-strain domains with uniform shear sense and characteristic curved foliation trails, bounded by non-deforming wall rock. Many shear zones, however, are branched, and if movement on such branches is contemporaneous, the resulting shape can be complicated and lead to unusual shear sense arrangement and foliation geometries in the wall rock. For Y-shaped shear zone triple junctions with three joining branches and transport direction at a high angle to the branchline, only eight basic types of junction are thought to be stable and to produce significant displacement. The simplest type, called freeway junctions, have similar shear sense in all three branches. The other types show joining or separating behaviour of shear zone branches similar to the action of a zipper. Such junctions may have shear zone branches that join to form a single branch (closing zipper junction), or a single shear zone that splits to form two branches, (opening zipper junction). All categories of shear zone junctions show characteristic foliation patterns and deflection of markers in the wall rock. Closing zipper junctions are unusual, since they form a non-active zone with opposite deflection of foliations in the wall rock known as an extraction fault or wake. Shear zipper junctions can form domains of overprinting shear sense along their flanks. A small and large field example are given from NE Spain and Eastern Anatolia. The geometry of more complex, 3D shear zone junctions with slip parallel and oblique to the branchline is briefly discussed.

  11. Eruptive shearing of tube pumice: pure and simple

    Science.gov (United States)

    Dingwell, Donald B.; Lavallée, Yan; Hess, Kai-Uwe; Flaws, Asher; Marti, Joan; Nichols, Alexander R. L.; Gilg, H. Albert; Schillinger, Burkhard

    2016-09-01

    Understanding the physicochemical conditions extant and mechanisms operative during explosive volcanism is essential for reliable forecasting and mitigation of volcanic events. Rhyolitic pumices reflect highly vesiculated magma whose bubbles can serve as a strain indicator for inferring the state of stress operative immediately prior to eruptive fragmentation. Obtaining the full kinematic picture reflected in bubble population geometry has been extremely difficult, involving dissection of a small number of delicate samples. The advent of reliable high-resolution tomography has changed this situation radically. Here we demonstrate via the use of tomography how a statistically powerful picture of the shapes and connectivity of thousands of individual bubbles within a single sample of tube pumice emerges. The strain record of tube pumice is modelled using empirical models of bubble geometry and liquid rheology, reliant on a constraint of magmatic water concentration. FTIR analysis reveals an imbalance in water speciation, suggesting post-eruption hydration, further supported by hydrogen and oxygen isotope measurements. Our work demonstrates that the strain recorded in the tube pumice dominated by simple shear (not pure shear) in the late deformational history of vesicular magma before eruption. This constraint in turn implies that magma ascent is conditioned by a velocity gradient (across the conduit) at the point of origin of tube pumice. Magma ascent accompanied by simple shear should enhance high eruption rates inferred independently for these highly viscous systems.

  12. CHANGES IN FREQUENCY, PERSISTENCE AND INTENSITY OF EXTREME HIGH-TEMPERATURE EVENTS IN THE ROMANIAN PLAIN

    Directory of Open Access Journals (Sweden)

    DRAGOTĂ CARMEN-SOFIA

    2015-03-01

    Full Text Available Recent summer heat waves (2003, 2010 had a strong socio-economic impact in different parts of the continent by means of crop shortfalls and forest fires. Sustained hot days became more frequent in the recent decades in many European regions, affecting human health and leading to additional deaths. This signal has been outlined in many studies conducted in Romania, suggesting that the southern region of Romania is particularly subject to large temperature increase. This work investigates the changing annual and seasonal heat waves at regional scale of the Romanian Plain, over period 1961-2014. Daily maximum temperature recorded at six weather stations available from the ECA&D project (European Climate Assessment and Datasets were analyzed. The changes in the seasonal frequency, duration and intensity of heat waves were studied using the Mann-Kendall nonparametric trend test, as recommended by the scientific expert team on climate change detection. The likelyhood of higher maximum temperatures rise, particularly after the mid 1980s, and the changes in the upper tail of the probability density functions of these temperatures, within the extreme domain (beyond the 95% percentile level, explain the persistence and intensity of heat waves. The upward trends are dominant most of the year, and many of the calculated decadal slopes were found statistically significant (relative to the 5% level, proving an ongoing and strong warming all over the region. Our findings are in good agreement with several recent studies carried out at European and national scale and pledge for further scientific analyses i.e. heat stress impact on public health and agriculture.

  13. Nonaffine Network Structural Model for Molten Low-Density Polyethylene and High-Density Polyethylene in Oscillatory Shear%振动剪切作用下LDPE和HDPE熔体的非仿射网络结构模型

    Institute of Scientific and Technical Information of China (English)

    张娟; 瞿金平

    2002-01-01

    We propose molten polymer's entanglement network deformation to be nonaffine and use transient network structural theory with the revised Liu's kinetics rate equation and the revised upper convected Maxwell constitutive equation to establish a nonaffine network structural constitutive model for studying the rheological behavior of molten Low-Density Polyethylene (LDPE) and HighDensity Polyethylene (HDPE) in oscillatory shear. As a result, when the strain amplitude or frequency increases, the shear stress amplitude increases. At the same time, the accuracy of the nonaffine network model is higher than that of affine network model. It is clear that there is a small amount of nonaffine network deformation for LDPE melts which have long-chain branches, and there is a larger amount of nonaffine network deformation in oscillatory shear for HDPE melts which has no long-chain branches. So we had better consider the network deformation nonaffine when we establish the constitutive equations of polymer melts in oscillatory shear.

  14. Fixed-site high-frequency transcutaneous electrical nerve stimulation for treatment of chronic low back and lower extremity pain

    Science.gov (United States)

    Gozani, Shai N

    2016-01-01

    Objective The objective of this study was to determine if fixed-site high-frequency transcutaneous electrical nerve stimulation (FS-TENS) is effective in treating chronic low back and lower extremity pain. Background Transcutaneous electrical nerve stimulation is widely used for treatment of chronic pain. General-purpose transcutaneous electrical nerve stimulation devices are designed for stimulation anywhere on the body and often cannot be used while the user is active or sleeping. FS-TENS devices are designed for placement at a pre-determined location, which enables development of a wearable device for use over extended time periods. Methods Study participants with chronic low back and/or lower extremity pain self-administered an FS-TENS device for 60 days. Baseline, 30-, and 60-day follow-up data were obtained through an online questionnaire. The primary outcome measure was the patient global impression of change. Pain intensity and interference were assessed using the Brief Pain Inventory. Changes in use of concomitant pain medications were evaluated with a single-item global self-rating. Results One hundred and thirty participants were enrolled, with 88 completing the 60-day follow-up questionnaire. Most participants (73.9%) were 50 years of age or older. At baseline, low back pain was identified by 85.3%, lower extremity pain by 71.6%, and upper extremity pain by 62.5%. Participants reported widespread pain, at baseline, with a mean of 3.4 (standard deviation 1.1) pain sites. At the 60-day follow-up, 80.7% of participants reported that their chronic pain had improved and they were classified as responders. Baseline characteristics did not differentiate non-responders from responders. There were numerical trends toward reduced pain interference with walking ability and sleep, and greater pain relief in responders. There was a large difference in use of concomitant pain medications, with 80.3% of responders reporting a reduction compared to 11.8% of non

  15. Reduced shear power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, Scott; /Fermilab /Chicago U., Astron. Astrophys. Ctr. /Northwestern U.; Shapiro, Charles; /Chicago U. /KICP, Chicago; White, Martin J.; /UC, Berkeley, Astron.

    2005-08-01

    Measurements of ellipticities of background galaxies are sensitive to the reduced shear, the cosmic shear divided by (1-{kappa}) where {kappa} is the projected density field. They compute the difference between shear and reduced shear both analytically and with simulations. The difference becomes more important an smaller scales, and will impact cosmological parameter estimation from upcoming experiments. A simple recipe is presented to carry out the required correction.

  16. Reduced shear power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, Scott; /Fermilab /Chicago U., Astron. Astrophys. Ctr. /Northwestern U.; Shapiro, Charles; /Chicago U. /KICP, Chicago; White, Martin J.; /UC, Berkeley, Astron.

    2005-08-01

    Measurements of ellipticities of background galaxies are sensitive to the reduced shear, the cosmic shear divided by (1-{kappa}) where {kappa} is the projected density field. They compute the difference between shear and reduced shear both analytically and with simulations. The difference becomes more important an smaller scales, and will impact cosmological parameter estimation from upcoming experiments. A simple recipe is presented to carry out the required correction.

  17. Extreme Heat

    Science.gov (United States)

    ... Landslides & Debris Flow Nuclear Blast Nuclear Power Plants Power Outages Pandemic Radiological Dispersion Device Severe Weather Snowstorms & Extreme ... Landslides & Debris Flow Nuclear Blast Nuclear Power Plants Power Outages Pandemic Radiological Dispersion Device Severe Weather Snowstorms & Extreme ...

  18. Extended-range grazing-incidence spectrometer for high-resolution extreme ultraviolet measurements on an electron beam ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.; Träbert, E.; Widmann, K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hell, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, 96049 Bamberg (Germany)

    2014-11-15

    A high-resolution grazing-incidence grating spectrometer has been implemented on the Livermore electron beam ion traps for performing very high-resolution measurements in the soft x-ray and extreme ultraviolet region spanning from below 10 Å to above 300 Å. The instrument operates without an entrance slit and focuses the light emitted by highly charged ions located in the roughly 50 μm wide electron beam onto a cryogenically cooled back-illuminated charge-coupled device detector. The measured line widths are below 0.025 Å above 100 Å, and the resolving power appears to be limited by the source size and Doppler broadening of the trapped ions. Comparisons with spectra obtained with existing grating spectrometers show an order of magnitude improvement in spectral resolution.

  19. Comb-based radio-frequency photonic filters: rounts to nanosecond tuning speed and extremely high stopband attenuation

    CERN Document Server

    Supradeepa, V R; Wu, Rui; Ferdous, Fahmida; Hamidi, Ehsan; Leaird, Daniel E; Weiner, Andrew M

    2011-01-01

    Photonic technologies have received considerable attention for enhancement of radio-frequency (RF) electrical systems, including high-frequency analog signal transmission, control of phased arrays, analog-to-digital conversion, and signal processing. Although the potential of radio-frequency photonics for implementation of tunable electrical filters over broad RF bandwidths has been much discussed, realization of programmable filters with highly selective filter lineshapes has faced significant challenges. In this paper we show that a new approach based on optical frequency combs enables dramatic progress. A novel comb generation scheme employing tailored electro-optic modulation and cascaded four-wave mixing results in approximately Gaussian RF filter lineshapes with extremely high (>60 dB) out-of-band suppression. A modification of our approach provides RF filter tuning through optical delay variation and decouples filter tuning and lineshape control. By exploiting a dual-comb scheme, the optical delay and ...

  20. Generation of Shear Alfvén Waves by Repetitive High Power Microwave Pulses Near the Electron Plasma Frequency - A laboratory study of a ``Virtual Antenna''

    Science.gov (United States)

    Wang, Yuhou; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Papadopoulos, Konstantinos

    2015-11-01

    ELF / ULF waves are important in terrestrial radio communications but difficult to launch using ground-based structures due to their enormous wavelengths. In spite of this generation of such waves by field-aligned ionospheric heating modulation was first demonstrated using the HAARP facility. In the future heaters near the equator will be constructed and laboratory experiments on cross-field wave propagation could be key to the program's success. Here we report a detailed laboratory study conducted on the Large Plasma Device (LaPD) at UCLA. In this experiment, ten rapid pulses of high power microwaves (250 kW X-band) near the plasma frequency were launched transverse to the background field, and were modulated at a variable fraction (0.1-1.0) of fci. Along with bulk electron heating and density modification, the microwave pulses generated a population of fast electrons. The field-aligned current carried by the fast electrons acted as an antenna that radiated shear Alfvén waves. It was demonstrated that a controllable arbitrary frequency (f shear Alfvén wave can be generated by this method. The radiation pattern, frequency variation and power dependence of the virtual antenna is also presented. This work is supported by an AFOSR MURI award, and conducted at the Basic Plasma Science Facility at UCLA funded by DoE and NSF.

  1. Relationship of breast fillet deboning time to shear force, pH, cooking loss and color in broilers stunned by high electrical current

    Directory of Open Access Journals (Sweden)

    P. PAPINAHO

    2008-12-01

    Full Text Available Experiments were conducted to determine the relationships between deboning time and broiler breast meat quality, as determined by objective meat tenderness, pH, color and cooking loss. All birds were processed in a European commercial processing plant using a high current, constant voltage stunning system and air chilling. According to a modified Mitscherlich response equation, p11 values reached their ultimate value by 5.77 h post-mortem, with an asymptotic 95 % confidence interval of 5.72 h-5.81 h post-mortem. The shear force data, which were analyzed using a logistic model, suggested that broiler breast fillets should be aged intact on the carcass for 10.58 h, 5.94 h or 2.28 h to guarantee that over 95 % of the fillets reach Allo-Kramer shear forces of 8.0, 9.0 or 11.0 kg/g, respectively. Since acceptable meat tenderness values vary with country, geographical area, or consumer groups, acceptable ranges should be determined according to potential market demands. No relationships between deboning time and fresh meat color or cooking loss was found.;

  2. Visualization tools for extremely high resolution DEM from the LRO and other orbiter satellites

    Science.gov (United States)

    Montgomery, J.; McDonald, John

    2012-10-01

    Recent space missions have included laser altimetry instrumentation that provides precise high-resolution global topographic data products. These products are critical in analyzing geomorphological surface processes of planets and moons. Although highly valued, the high-resolution data is often overlooked by researchers due to the high level of IT sophistication necessary to use the high-resolution data products, which can be as large as several hundred gigabytes. Researchers have developed software tools to assist in viewing and manipulating data products derived from altimetry data, however current software tools require substantial off-line processing, provide rudimentary visualization or are not suited for viewing the new high-resolution data. We have adapted mVTK, a novel software visualization tool, to work with NASA's recently acquired Lunar Reconnaissance Orbiter data. mVTK is a software visualization package that dynamically creates cylindrical cartographic map projections from gridded high-resolution altimetry data in real-time. The projections are interactive 2D shade relief, false color maps that allow the user to make simple slope and distance measurements on the actual underlying high-resolution data. We have tested mVTK on several laser altimetry data sets including binned gridded record data from NASA's Mars Global Surveyor and Lunar Reconnaissance Orbiter space missions.

  3. Centrifugal Step Emulsification can Produce Water in Oil Emulsions with Extremely High Internal Volume Fractions

    Directory of Open Access Journals (Sweden)

    Friedrich Schuler

    2015-08-01

    Full Text Available The high throughput preparation of emulsions with high internal volume fractions is important for many different applications, e.g., drug delivery. However, most emulsification techniques reach only low internal volume fractions and need stable flow rates that are often difficult to control. Here, we present a centrifugal high throughput step emulsification disk for the fast and easy production of emulsions with high internal volume fractions above 95%. The disk produces droplets at generation rates of up to 3700 droplets/s and, for the first time, enables the generation of emulsions with internal volume fractions of >97%. The coefficient of variation between droplet sizes is very good (4%. We apply our system to show the in situ generation of gel emulsion. In the future, the recently introduced unit operation of centrifugal step emulsification may be used for the high throughput production of droplets as reaction compartments for clinical diagnostics or as starting material for micromaterial synthesis.

  4. High-space resolution imaging plate analysis of extreme ultraviolet (EUV) light from tin laser-produced plasmas.

    Science.gov (United States)

    Musgrave, Christopher S A; Murakami, Takehiro; Ugomori, Teruyuki; Yoshida, Kensuke; Fujioka, Shinsuke; Nishimura, Hiroaki; Atarashi, Hironori; Iyoda, Tomokazu; Nagai, Keiji

    2017-03-01

    With the advent of high volume manufacturing capabilities by extreme ultraviolet lithography, constant improvements in light source design and cost-efficiency are required. Currently, light intensity and conversion efficiency (CE) measurments are obtained by charged couple devices, faraday cups etc, but also phoshpor imaging plates (IPs) (BaFBr:Eu). IPs are sensitive to light and high-energy species, which is ideal for studying extreme ultraviolet (EUV) light from laser produced plasmas (LPPs). In this work, we used IPs to observe a large angular distribution (10°-90°). We ablated a tin target by high-energy lasers (1064 nm Nd:YAG, 10(10) and 10(11) W/cm(2)) to generate the EUV light. The europium ions in the IP were trapped in a higher energy state from exposure to EUV light and high-energy species. The light intensity was angular dependent; therefore excitation of the IP depends on the angle, and so highly informative about the LPP. We obtained high-space resolution (345 μm, 0.2°) angular distribution and grazing spectrometer (5-20 nm grate) data simultaneously at different target to IP distances (103 mm and 200 mm). Two laser systems and IP types (BAS-TR and BAS-SR) were also compared. The cosine fitting values from the IP data were used to calculate the CE to be 1.6% (SD ± 0.2) at 13.5 nm 2% bandwidth. Finally, a practical assessment of IPs and a damage issue are disclosed.

  5. High-space resolution imaging plate analysis of extreme ultraviolet (EUV) light from tin laser-produced plasmas

    Science.gov (United States)

    Musgrave, Christopher S. A.; Murakami, Takehiro; Ugomori, Teruyuki; Yoshida, Kensuke; Fujioka, Shinsuke; Nishimura, Hiroaki; Atarashi, Hironori; Iyoda, Tomokazu; Nagai, Keiji

    2017-03-01

    With the advent of high volume manufacturing capabilities by extreme ultraviolet lithography, constant improvements in light source design and cost-efficiency are required. Currently, light intensity and conversion efficiency (CE) measurments are obtained by charged couple devices, faraday cups etc, but also phoshpor imaging plates (IPs) (BaFBr:Eu). IPs are sensitive to light and high-energy species, which is ideal for studying extreme ultraviolet (EUV) light from laser produced plasmas (LPPs). In this work, we used IPs to observe a large angular distribution (10°-90°). We ablated a tin target by high-energy lasers (1064 nm Nd:YAG, 1010 and 1011 W/cm2) to generate the EUV light. The europium ions in the IP were trapped in a higher energy state from exposure to EUV light and high-energy species. The light intensity was angular dependent; therefore excitation of the IP depends on the angle, and so highly informative about the LPP. We obtained high-space resolution (345 μm, 0.2°) angular distribution and grazing spectrometer (5-20 nm grate) data simultaneously at different target to IP distances (103 mm and 200 mm). Two laser systems and IP types (BAS-TR and BAS-SR) were also compared. The cosine fitting values from the IP data were used to calculate the CE to be 1.6% (SD ± 0.2) at 13.5 nm 2% bandwidth. Finally, a practical assessment of IPs and a damage issue are disclosed.

  6. Mandelbrot's Extremism

    NARCIS (Netherlands)

    Beirlant, J.; Schoutens, W.; Segers, J.J.J.

    2004-01-01

    In the sixties Mandelbrot already showed that extreme price swings are more likely than some of us think or incorporate in our models.A modern toolbox for analyzing such rare events can be found in the field of extreme value theory.At the core of extreme value theory lies the modelling of maxima

  7. High energy density and extreme field physics in the transparent-overdense regime

    Energy Technology Data Exchange (ETDEWEB)

    Hegelich, Bjorn Manuel [Los Alamos National Laboratory; Yin, Kin [Los Alamos National Laboratory; Albright, Brian J [Los Alamos National Laboratory; Bowers, Kevin J [Los Alamos National Laboratory; Gautier, C [Los Alamos National Laboratory; Huang, C [Los Alamos National Laboratory; Jung, D [Los Alamos National Laboratory; Letzring, S [Los Alamos National Laboratory; Palaniyappan, S [Los Alamos National Laboratory; Shah, R [Los Alamos National Laboratory; Wu, H [Los Alamos National Laboratory; Fernandez, J. C. [Los Alamos National Laboratory; Dromey, B [QUEENS UNIV BELFAST; Henig, A [LUDWIG-MAXIMILLAN-UNIV MUNCHEN; Horlein, R [LUDWIG-MAXIMILLAN-UNIV MUNCHEN; Kefer, D. [LUDWIG-MAXIMILLAN-UNIV MUNCHEN; Tajima, T [LUDWIG-MAXIMILIN-UNIV MUNCHEN; Yan, X [QUEENS UNIV BELFAST; Habs, D [LUDWIG-MAXIMILIAN-UNIV MUNCHEN

    2011-01-31

    Conclusions of this report are: (1) high harmonics generated on solid surfaces are a very versatile source of intense coherent XUV radiation; (2) high harmonics can be used to probe and monitor the interaction of intense femtosecond laser pulses with nm-scale foil targets; (3) direct measurement of target density during relativistic interaction; (4) high harmonics generated with PW-scale short-pulse lasers could serve as unique backlighting sources for a wide range experiments; and (5) Trident can be a test bed to develop such experiments and the required instrumentation.

  8. MR imaging findings of high-voltage electrical burns in the upper extremities: correlation with angiographic findings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyung Kyu; Kang, Ik Won; Hwang, Dae Hyun; Min, Seon Jung; Han, You Mi (Dept. of Radiology, Hallym Univ. College of Medicine, Hangang Sacred Heart Hospital, Seoul (Korea, Republic of)); Suh, Kyung Jin (Dept. of Radiology, Dongguk Univ. College of Medicine, Gyeongju Hospital, Gyeongju (Korea, Republic of)), email: kyungjin.suh@gmail.com; Choi, Min Ho (Dept. of Internal Medicine, Hallym Univ. College of Medicine, Hangang Sacred Heart Hospital, Seoul (Korea, Republic of))

    2011-02-15

    Background: A high-voltage electrical burn is often associated with deep muscle injuries. Hidden, undetected deep muscle injuries have a tendency for progressive tissue necrosis, and this can lead to major amputations or sepsis. MRI has excellent soft tissue contrast and it may aid in differentiating the areas of viable deep muscle from the areas of non-viable deep muscle. Purpose: To describe the MR imaging findings of a high-voltage electrical burn in the upper extremity with emphasis on the usefulness of the gadolinium-enhanced MRI and to compare the MR imaging findings with angiography. Material and Methods: We retrospectively reviewed the imaging studies of six patients with high-voltage electrical burns who underwent both MRI and angiography at the burn center of our hospital from January 2005 to December 2009. The imaging features were evaluated for the involved locations, the MR signal intensity of the affected muscles, the MR enhancement pattern, the involved arteries and the angiographic findings (classified as normal, sluggish flow, stenosis or occlusion) of the angiography of the upper extremity. We assessed the relationship between the MR imaging findings and the angiographic findings. Results: The signal intensities of affected muscles were isointense or of slightly high signal intensity as compared with the adjacent unaffected skeletal muscle on the T1-weighted MR images. Affected muscles showed heterogenous high signal intensity relative to the adjacent unaffected skeletal muscle on the T2- weighted images. The gadolinium-enhanced T1-weighted images showed diffuse inhomogeneous enhancement or peripheral rim enhancement of the affected muscles. The angiographic findings of the arterial injuries showed complete occlusion in three patients, severe stenosis in two patients and sluggish flow in one patient. Of these, the five patients with complete occlusion or severe stenosis on angiography showed non-perfused and non-viable areas of edematous muscle on

  9. Extreme Cosmic-Ray-Dominated-Regions: a new paradigm for high star formation density events in the Universe

    CERN Document Server

    Thi, Wing-Fai; Viti, Serena

    2010-01-01

    We examine in detail the recent proposal that extreme Cosmic-Ray-Dominated-Regions (CRDRs) characterize the ISM of galaxies during events of high-density star formation, fundamentally altering its initial conditions (Papadopoulos 2010). Solving the coupled chemical and thermal state equations for dense UV-shielded gas reveals that the large cosmic ray energy densities in such systems (U_{CR}~(few)x(10^3-10^4) U_{CR,Gal}) will indeed raise the minimum temperature of this phase (where the initial conditions of star formation are set) from ~10K (as in the Milky Way) to ~(50-100)K. Moreover in such extreme CRDRs the gas temperature remains fully decoupled from that of the dust, with T_{kin} >> T_{dust}, even at high densities (n(H_2)~10^5--10^6 cm^{-3}), quite unlike CRDRs in the Milky Way where T_k~T_{dust} when n(H_2) >= 10^5 cm^{-3}. These dramatically different star formation initial conditions will: a) boost the Jeans mass of UV-shielded gas regions by factors of ~10--100 with respect to those in quiescent o...

  10. Millimeter waves or extremely high frequency electromagnetic fields in the environment: what are their effects on bacteria?

    Science.gov (United States)

    Soghomonyan, Diana; Trchounian, Karen; Trchounian, Armen

    2016-06-01

    Millimeter waves (MMW) or electromagnetic fields of extremely high frequencies at low intensity is a new environmental factor, the level of which is increased as technology advance. It is of interest that bacteria and other cells might communicate with each other by electromagnetic field of sub-extremely high frequency range. These MMW affected Escherichia coli and many other bacteria, mainly depressing their growth and changing properties and activity. These effects were non-thermal and depended on different factors. The significant cellular targets for MMW effects could be water, cell plasma membrane, and genome. The model for the MMW interaction with bacteria is suggested; a role of the membrane-associated proton FOF1-ATPase, key enzyme of bioenergetic relevance, is proposed. The consequences of MMW interaction with bacteria are the changes in their sensitivity to different biologically active chemicals, including antibiotics. Novel data on MMW effects on bacteria and their sensitivity to different antibiotics are presented and discussed; the combined action of MMW and antibiotics resulted with more strong effects. These effects are of significance for understanding changed metabolic pathways and distinguish role of bacteria in environment; they might be leading to antibiotic resistance in bacteria. The effects might have applications in the development of technique, therapeutic practices, and food protection technology.

  11. Novel High-Temperature Pressure Sensors for Extreme Service Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I research will result in a prototype high temperature pressure sensing cell based on the piezoresistive properties of platinum:tungsten alloys. The...

  12. Assessment of high latitude variability and extreme events in the Bering Sea as simulated by a global climate model

    Science.gov (United States)

    Walston, Joshua M.

    Atmospheric and Oceanic observations of the Arctic and Subarctic are relatively sparse and hinder our ability to analyze short term variability and long-duration anomalies of physical and biological variables over decadal time scales. Earth System Models (ESM's), such as the Community Earth System Model (CESM1), represent a useful tool to advance the understanding and the predictive potential of large-scale shifts in the climate and climate related impacts. This thesis initially focuses on assessing the skill of the Community Climate System Model (CCSM4), to capture natural variability of the climate system. Subsequently, I examine the impacts of variability and seasonal-scale extremes of the physical environment on the marine ecosystem of the eastern Bering Sea as simulated by an earth system model, the CESM1, which includes the CCSM4 and earth system elements. A performance assessment of key atmospheric components (air temperature, sea level pressure, wind speed and direction) simulated by the CCSM4 over the Bering Sea and Arctic domains suggests a general improvement in model predictions at high latitudes relative to the model's predecessor, the CCSM3. However, several shortcomings, with possible implications for marine ecosystem modeling, still remain in this version of the CCSM. The most important of which includes an under-simulated Siberian High and a large northwest displacement of the Aleutian Low resulting in a negative bias of up to 8 hPa over the Bering Sea. The simulated inter-annual variability of surface air temperature and sea level pressure over the Bering Sea was found to exceed observed variability by ˜1.5 to 2 times. The displaced pressure systems and increased variability could have important ramifications for modeling efforts that use CCSM atmospheric output as drivers for marine ecosystem studies. When the CCSM was combined with other earth system elements to form the CESM, the coupled model was found to simulate strong linear relationships

  13. Pilot Experimental Tests on Punching Shear Strength of Flat Plates Reinforced with Stirrups Punching Shear Reinforcement

    Directory of Open Access Journals (Sweden)

    Mohamed Hassan

    2017-03-01

    Full Text Available Flat plates are favor structure systems usually used in parking garages and high-rise buildings due to its simplicity for construction. However, flat plates have some inherent structural problems, due to high shear stress surrounding the supporting columns which cause a catastrophic brittle type of failure called "Punching Shear Failure". Several solutions are used to avoid punching shear failure, including the use of drop panels or punching shear reinforcement. The latter is being a more sophisticated solution from the structural ductility, the architectural and the economical point of view. This study aims at investigating the effect of stirrups as shear reinforcement in enhancing the punching strength of interior slab-column connections. A total of four full-scale interior slab-column connections were tested up to failure. All slabs had a side length of 1700 mm and 160 mm thickness with 200 mm x 200 mm square column. The test parameters were the presence of shear reinforcement and stirrups concentration around the supporting column. The test results showed that the distribution of stirrups over the critical punching shear zone was an efficient solution to enhance not only the punching shear capacity but also the ductility of the connection. Furthermore, the concentrating of stirrups shear reinforcement in the vicinity of the column for the tested slabs increases the punching shear capacity by 13 % compared to the uniform distribution at same amount of shear reinforcement.

  14. Venus High Temperature Atmospheric Dropsonde and Extreme-Environment Seismometer (HADES)

    Science.gov (United States)

    Boll, Nathan J.; Salazar, Denise; Stelter, Christopher J.; Landis, Geoffrey A.; Colozza, Anthony J.

    2014-01-01

    The atmospheric composition and geologic structure of Venus have been identified by the US National Research Council's Decadal Survey for Planetary Science as priority targets for scientific exploration, however the high temperature and pressure at the surface, along with the highly corrosive chemistry of the Venus atmosphere, present significant obstacles to spacecraft design that have severely limited past and proposed landed missions. Following the methodology of the NASA Innovative Advanced Concepts (NIAC) proposal regime and the Collaborative Modeling and Parametric Assessment of Space Systems (COMPASS) design protocol, this paper presents a conceptual study and initial feasibility analysis for a Discovery-class Venus lander capable of an extended-duration mission at ambient temperature and pressure, incorporating emerging technologies within the field of high temperature electronics in combination with novel configurations of proven, high Technology Readiness Level (TRL) systems. Radioisotope Thermal Power (RTG) systems and silicon carbide (SiC) communications and data handling are examined in detail, and various high-temperature instruments are proposed, including a seismometer and an advanced photodiode imager. The study combines this technological analysis with proposals for a descent instrument package and a relay orbiter to demonstrate the viability of an integrated atmospheric and in-situ geologic exploratory mission that differs from previous proposals by greatly reducing the mass, power requirements, and cost, while achieving important scientific goals.

  15. Microstructural description of shear-thickening suspensions

    Directory of Open Access Journals (Sweden)

    Singh Abhinendra

    2017-01-01

    Full Text Available Dynamic particle-scale numerical simulations are used to study the variation of microstructure with shear stress during shear thickening in dense non-Brownian suspensions. The microscale information is used to characterize the differences between the shear thickened (frictional and non-thickened (lubricated, frictionless states. Here, we focus on the force and contact networks and study the evolution of associated anisotropies with increase in shear stress. The force and contact networks are both more isotropic in the shear-thickened state than in non-thickened state. We also find that both force and structural anisotropies are rate independent for both low and high stress, while they are rate (or stress dependent for the intermediate stress range where the shear thickening occurs. This behavior is similar to the evolution of viscosity with increasing stress, showing a clear correlation between the microstructure and the macroscopic rheology.

  16. High genetic diversity in a potentially vulnerable tropical tree species despite extreme habitat loss.

    Directory of Open Access Journals (Sweden)

    Annika M E Noreen

    Full Text Available Over the last 150 years, Singapore's primary forest has been reduced to less than 0.2% of its previous area, resulting in extinctions of native flora and fauna. Remaining species may be threatened by genetic erosion and inbreeding. We surveyed >95% of the remaining primary forest in Singapore and used eight highly polymorphic microsatellite loci to assess genetic diversity indices of 179 adults (>30 cm stem diameter, 193 saplings (>1 yr, and 1,822 seedlings (<1 yr of the canopy tree Koompassia malaccensis (Fabaceae. We tested hypotheses relevant to the genetic consequences of habitat loss: (1 that the K. malaccensis population in Singapore experienced a genetic bottleneck and a reduction in effective population size, and (2 K. malaccensis recruits would exhibit genetic erosion and inbreeding compared to adults. Contrary to expectations, we detected neither a population bottleneck nor a reduction in effective population size, and high genetic diversity in all age classes. Genetic diversity indices among age classes were not significantly different: we detected overall high expected heterozygosity (He = 0.843-0.854, high allelic richness (R = 16.7-19.5, low inbreeding co-efficients (FIS = 0.013-0.076, and a large proportion (30.1% of rare alleles (i.e. frequency <1%. However, spatial genetic structure (SGS analyses showed significant differences between the adults and the recruits. We detected significantly greater SGS intensity, as well as higher relatedness in the 0-10 m distance class, for seedlings and saplings compared to the adults. Demographic factors for this population (i.e. <200 adult trees are a cause for concern, as rare alleles could be lost due to stochastic factors. The high outcrossing rate (tm = 0.961, calculated from seedlings, may be instrumental in maintaining genetic diversity and suggests that pollination by highly mobile bee species in the genus Apis may provide resilience to acute habitat loss.

  17. High genetic diversity in a potentially vulnerable tropical tree species despite extreme habitat loss.

    Science.gov (United States)

    Noreen, Annika M E; Webb, Edward L

    2013-01-01

    Over the last 150 years, Singapore's primary forest has been reduced to less than 0.2% of its previous area, resulting in extinctions of native flora and fauna. Remaining species may be threatened by genetic erosion and inbreeding. We surveyed >95% of the remaining primary forest in Singapore and used eight highly polymorphic microsatellite loci to assess genetic diversity indices of 179 adults (>30 cm stem diameter), 193 saplings (>1 yr), and 1,822 seedlings (tree Koompassia malaccensis (Fabaceae). We tested hypotheses relevant to the genetic consequences of habitat loss: (1) that the K. malaccensis population in Singapore experienced a genetic bottleneck and a reduction in effective population size, and (2) K. malaccensis recruits would exhibit genetic erosion and inbreeding compared to adults. Contrary to expectations, we detected neither a population bottleneck nor a reduction in effective population size, and high genetic diversity in all age classes. Genetic diversity indices among age classes were not significantly different: we detected overall high expected heterozygosity (He = 0.843-0.854), high allelic richness (R = 16.7-19.5), low inbreeding co-efficients (FIS = 0.013-0.076), and a large proportion (30.1%) of rare alleles (i.e. frequency trees) are a cause for concern, as rare alleles could be lost due to stochastic factors. The high outcrossing rate (tm = 0.961), calculated from seedlings, may be instrumental in maintaining genetic diversity and suggests that pollination by highly mobile bee species in the genus Apis may provide resilience to acute habitat loss.

  18. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    Energy Technology Data Exchange (ETDEWEB)

    Horioka, Kazuhiko (ed.)

    2002-06-01

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  19. Generation of Bright Phase-matched Circularly-polarized Extreme Ultraviolet High Harmonics

    Science.gov (United States)

    2014-12-08

    relation to local moments. Phys. Scr . 1993, 302 (1993). 7. Stöhr, J. et al. Element-specific magnetic microscopy with circularly polarized X-rays...Becker, W. & Kopold, R. Generation of circularly polarized high-order harmonics by two-color coplanar field mixing . Phys. Rev. A 61, 063403 (2000). 38...1995). 42. Eichmann, H. et al. Polarization-dependent high-order two-color mixing . Phys. Rev. A 51, R3414–R3417 (1995). 43. Fleischer, A., Kfir, O

  20. The Evolving HIV-1 Epidemic in Warao Amerindians Is Dominated by an Extremely High Frequency of CXCR4-Utilizing Strains.

    Science.gov (United States)

    Rangel, Héctor R; Bello, Gonzalo; Villalba, Julian A; Sulbaran, Yoneira F; Garzaro, Domingo; Maes, Mailis; Loureiro, Carmen L; de Waard, Jacobus H; Pujol, Flor H

    2015-12-01

    We previously reported a high prevalence of HIV-1 infection in Warao Amerindians from Venezuela due to the rapid spread of a single B subtype strain. In this study we evaluated the coreceptor use of the HIV-1 strains infecting this Amerindian community. Sequences of the HIV-1 V3 loop from 56 plasma samples were genotyped for coreceptor use. An extremely high frequency of CXCR4 strains was found among HIV-1-infecting Waraos (47/49, 96%), compared to HIV-1 strains infecting the non-Amerindian Venezuelan population (35/79, 44%, p HIV-1 transmissions occurred within the very early phase of infection (≤12 months). This is consistent with an initial infection dominated by an X4 strain or a very rapid selection of X4 variants after infection. This Amerindian population also exhibits the highest prevalence of tuberculosis in Venezuela, being synergistically bad prognostic factors for the evolution of morbidity and mortality in this vulnerable population.

  1. Exoplanet Science with the European Extremely Large Telescope. The Case for Visible and Near-IR Spectroscopy at High Resolution

    CERN Document Server

    Udry, S; Bouchy, F; Cameron, A Collier; Henning, T; Mayor, M; Pepe, F; Piskunov, N; Pollacco, D; Queloz, D; Quirrenbach, A; Rauer, H; Rebolo, R; Santos, N C; Snellen, I; Zerbi, F

    2014-01-01

    Exoplanet science is booming. In 20 years our knowledge has expanded considerably, from the first discovery of a Hot Jupiter, to the detection of a large population of Neptunes and super-Earths, to the first steps toward the characterization of exoplanet atmospheres. Between today and 2025, the field will evolve at an even faster pace with the advent of several space-based transit search missions, ground-based spectrographs, high-contrast imaging facilities, and the James Webb Space Telescope. Especially the ESA M-class PLATO mission will be a game changer in the field. From 2024 onwards, PLATO will find transiting terrestrial planets orbiting within the habitable zones of nearby, bright stars. These objects will require the power of Extremely Large Telescopes (ELTs) to be characterized further. The technique of ground-based high-resolution spectroscopy is establishing itself as a crucial pathway to measure chemical composition, atmospheric structure and atmospheric circulation in transiting exoplanets. A hig...

  2. Transapical Implantation of a 2nd-Generation JenaValve Device in Patient with Extremely High Surgical Risk

    Directory of Open Access Journals (Sweden)

    Juan Mieres

    2015-01-01

    Full Text Available Transcatheter Aortic Valve Replacement (TAVR is performed in patients who are poor surgical candidates. Many patients have inadequate femoral access, and alternative access sites have been used such as the transapical approach discussed in this paper. We present an elderly and fragile patient not suitable for surgery for unacceptable high risk, including poor ventricular function, previous myocardial infarction with percutaneous coronary intervention, pericardial effusion, and previous cardiac surgery with replacement of mechanical mitral valve. Transapical aortic valve replacement with a second-generation self-expanding JenaValve is performed. The JenaValve is a second-generation transapical TAVR valve consisting of a porcine root valve mounted on a low-profile nitinol stent. The valve is fully retrievable and repositionable. We discuss transapical access, implantation technique, and feasibility of valve implantation in this extremely high surgical risk patient.

  3. Highly selective etching of SnO2 absorber in binary mask structure for extreme ultra-violet lithography.

    Science.gov (United States)

    Lee, Soo Jin; Jung, Chang Yong; Park, Sung Jin; Hwangbo, Chang Kweun; Seo, Hwan Seok; Kim, Sung Soo; Lee, Nae-Eung

    2012-04-01

    Among the core EUVL (extreme ultra-violet lithography) technologies for nanoscale patterning below the 30 nm node for Si chip manufacturing, new materials and fabrication processes for high-performance EUVL masks are of considerable importance due to the use of new reflective optics. In this work, the selective etching of SnO2 (tin oxide) as a new absorber material, with high EUV absorbance due to its large extinction coefficient, for the binary mask structure of SnO2 (absorber layer)/Ru (capping/etch stop layer)/Mo-Si multilayer (reflective layer)/Si (substrate), was investigated. Because infinitely high selectivity of the SnO2 layer to the Ru ESL is required due to the ultrathin nature of the Ru layer, various etch parameters were assessed in the inductively coupled Cl2/Ar plasmas in order to find the process window required for infinitely high etch selectivity of the SnO2 layer. The results showed that the gas flow ratio and V(dc) value play an important role in determining the process window for the infinitely high etch selectivity of SnO2 to Ru ESL. The high EUV-absorbance SnO2 layer, patternable by a dry process, allows a smaller absorber thickness, which can mitigate the geometric shadowing effects observed for high-performance binary EUVL masks.

  4. Observing Ultra High Energy Cosmic Particles from Space: SEUSO, the Super Extreme Universe Space Observatory Mission

    CERN Document Server

    Santangelo, Andrea

    2009-01-01

    The experimental search for ultra high energy cosmic messengers, from $E\\sim 10^{19}$ eV to beyond $E\\sim 10^{20}$ eV, at the very end of the known energy spectrum, constitutes an extraordinary opportunity to explore a largely unknown aspect of our universe. Key scientific goals are the identification of the sources of ultra high energy particles, the measurement of their spectra and the study of galactic and local intergalactic magnetic fields. Ultra high energy particles might, also, carry evidence of unknown physics or of exotic particles relics of the early universe. To meet this challenge a significant increase in the integrated exposure is required. This implies a new class of experiments with larger acceptances and good understanding of the systematic uncertainties. Space based observatories can reach the instantaneous aperture and the integrated exposure necessary to systematically explore the ultra high energy universe. In this paper, after briefly summarising the science case of the mission, we desc...

  5. Gene expression profiles in testis of pigs with extreme high and low levels of androstenone

    DEFF Research Database (Denmark)

    Moe, Maren; Meuwissen, Theo; Lien, Sigbjørn

    2007-01-01

    Boar taint is a major obstacle when using uncastrated male pigs for swine production. One of the main compounds causing this taint is androstenone, a pheromone produced in porcine testis. Here we use microarrays to study the expression of thousands of genes simultaneously in testis of high and low...

  6. The Fire-Walker’s High: Affect and Physiological Responses in an Extreme Collective Ritual

    DEFF Research Database (Denmark)

    Fischer, Ronald; Xygalatas, Dimitris; Mitkidis, Panagiotis;

    2014-01-01

    -walking ritual in a Mauritian Hindu community. Specifically, we compared changes in levels of happiness, fatigue, and heart rate reactivity among high-ordeal participants (fire-walkers), low-ordeal participants (non-fire-walking participants with familial bonds to fire-walkers) and spectators (unrelated...

  7. STEM High School Teaching Enhancement through Collaborative Engineering Research on Extreme Winds

    Science.gov (United States)

    Reynolds, Danielle; Yazdani, Nur; Manzur, Tanvir

    2013-01-01

    The Research Experiences for Teachers (RET) program on Hazard Mitigation at the University of Texas at Arlington (UT Arlington) involved area high school STEM teachers in engineering research with faculty and graduate students. The primary objective of the project was to train participating teachers in inquiry based research learning, research…

  8. Nanoscale imaging with table-top coherent extreme ultraviolet source based on high harmonic generation

    Science.gov (United States)

    Ba Dinh, Khuong; Le, Hoang Vu; Hannaford, Peter; Van Dao, Lap

    2017-08-01

    A table-top coherent diffractive imaging experiment on a sample with biological-like characteristics using a focused narrow-bandwidth high harmonic source around 30 nm is performed. An approach involving a beam stop and a new reconstruction algorithm to enhance the quality of reconstructed the image is described.

  9. Effect of High Temperature on Extreme Substrate Acidification by Geranium (Pelargonium x hortorum Bailey)

    Science.gov (United States)

    The cause of sudden substrate pH decline by geranium is unknown and previous reports suggest it may be due to high temperature. The first of 2 experiments compared plants grown at 4 temperatures (14/10, 18/14, 22/18 and 26/22º C day/night). With increasing increments of temperature, substrate pH de...

  10. Extremely High-Birefringent Asymmetric Slotted-Core Photonic Crystal Fiber in THz Regime

    DEFF Research Database (Denmark)

    Islam, Raonaqul; Habib, Selim; Hasanuzzaman, G.K.M.

    2015-01-01

    of the circular cladding confines most of the power in the fiber-core. The fiber structure reported in this letter exhibits simultaneously ultrahigh modal birefringence of 7.5 × 10−2 and a very low effective absorption loss of 0.07 cm−1 for y-polarization mode at an operating frequency of 1 THz. It is highly...

  11. Association of Competition Volume, Club Sports, and Sport Specialization With Sex and Lower Extremity Injury History in High School Athletes.

    Science.gov (United States)

    Post, Eric G; Bell, David R; Trigsted, Stephanie M; Pfaller, Adam Y; Hetzel, Scott J; Brooks, M Alison; McGuine, Timothy A

    2017-06-01

    High school athletes are increasingly encouraged to participate in 1 sport year-round to increase their sport skills. However, no study has examined the association of competition volume, club sport participation, and sport specialization with sex and lower extremity injury (LEI) in a large sample of high school athletes. Increased competition volume, participating on a club team outside of school sports, and high levels of specialization will all be associated with a history of LEI. Girls will be more likely to engage in higher competition volume, participate on a club team, and be classified as highly specialized. Cross-sectional study. Level 3. High school athletes completed a questionnaire prior to the start of their competitive season regarding their sport participation and previous injury history. Multivariable logistic regression analyses were used to investigate associations of competition volume, club sport participation, and sport specialization with history of LEI, adjusting for sex. A cohort of 1544 high school athletes (780 girls; grades 9-12) from 29 high schools completed the questionnaire. Girls were more likely to participate at high competition volume (23.2% vs 11.0%, χ(2) = 84.7, P sport, or who were highly specialized had greater odds of reporting a previous LEI than those with low competition volume (odds ratio [OR], 2.08; 95% CI, 1.55-2.80; P sport participation (OR, 1.50; 95% CI, 1.20-1.88; P sport volume, on a club team, or being highly specialized was associated with history of LEI. Girls were more likely to participate at high volumes, be active on club teams, or be highly specialized, potentially placing them at increased risk of injury. Youth athletes, parents, and clinicians should be aware of the potential risks of intense, year-round participation in organized sports.

  12. Novel shear mechanism in nanolayered composites

    Energy Technology Data Exchange (ETDEWEB)

    Mara, Nathan [Los Alamos National Laboratory; Bhattacharyya, Dhriti [Los Alamos National Laboratory; Hirth, John P [Los Alamos National Laboratory; Dickerson, Patricia O [Los Alamos National Laboratory; Misra, Amit [Los Alamos National Laboratory

    2009-01-01

    Recent studies have shown that two-phase nanocomposite materials with semicoherent interfaces exhibit enhanced strength, deformability, and radiation damage resistance. The remarkable behavior exhibited by these materials has been attributed to the atomistic structure of the bi-metal interface that results in interfaces with low shear strength and hence, strong barriers for slip transmission due to dislocation core spreading along the weak interfaces. In this work, the low interfacial shear strength of Cu/Nb nanoscale multilayers dictates a new mechanism for shear banding and strain softening during micropillar compression. Previous work investigating shear band formation in nanocrystalline materials has shown a connection between insufficient strain hardening and the onset of shear banding in Fe and Fe-10% Cu, but has also shown that hardening does not necessarily offset shear banding in Pd nanomaterials. Therefore, the mechanisms behind shear localization in nanocrystalline materials are not completely understood. Our findings, supported by molecular dynamics simulations, provide insight on the design of nanocomposites with tailored interface structures and geometry to obtain a combination of high strength and deformability. High strength is derived from the ability of the interfaces to trap dislocations through relative ease of interfacial shear, while deformability can be maximized by controlling the effects of loading geometry on shear band formation.

  13. Modified Shear Box Test Apparatus for Measuring Shear Strength of Unsaturated Residual Soil

    Directory of Open Access Journals (Sweden)

    Bujang B.K. Huat

    2005-01-01

    Full Text Available Residual soils occur in most countries of the world but the greater areas and depths are normally found in tropical humid areas. Most of these soils exhibit high suctions for most of the year. The shear strength parameters, c’ and Φ’, of soil can be obtained using conventional shear strength tests. However the conventional shear strength test equipments would not be able to measure Φb value (change of shear strength to change in suction without certain modification to them. This study describes the modifications that have been made to a standard shear box test apparatus to enable it to test soil samples in unsaturated conditions. The modifications include fabrication of an air pressure chamber, modifications of the shear box assembly inside the air pressure chamber, modification to the normal loading system, as well as additions of data acquisition devices to enhance the performance and simplify the usage of the modified shear box test apparatus.

  14. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard.

    Science.gov (United States)

    Semenchuk, Philipp R; Elberling, Bo; Cooper, Elisabeth J

    2013-08-01

    The High Arctic winter is expected to be altered through ongoing and future climate change. Winter precipitation and snow depth are projected to increase and melt out dates change accordingly. Also, snow cover and depth will play an important role in protecting plant canopy from increasingly more frequent extreme winter warming events. Flower production of many Arctic plants is dependent on melt out timing, since season length determines resource availability for flower preformation. We erected snow fences to increase snow depth and shorten growing season, and counted flowers of six species over 5 years, during which we experienced two extreme winter warming events. Most species were resistant to snow cover increase, but two species reduced flower abundance due to shortened growing seasons. Cassiope tetragona responded strongly with fewer flowers in deep snow regimes during years without extreme events, while Stellaria crassipes responded partly. Snow pack thickness determined whether winter warming events had an effect on flower abundance of some species. Warming events clearly reduced flower abundance in shallow but not in deep snow regimes of Cassiope tetragona, but only marginally for Dryas octopetala. However, the affected species were resilient and individuals did not experience any long term effects. In the case of short or cold summers, a subset of species suffered reduced reproductive success, which may affect future plant composition through possible cascading competition effects. Extreme winter warming events were shown to expose the canopy to cold winter air. The following summer most of the overwintering flower buds could not produce flowers. Thus reproductive success is reduced if this occurs in subsequent years. We conclude that snow depth influences flower abundance by altering season length and by protecting or exposing flower buds to cold winter air, but most species studied are resistant to changes. Winter warming events, often occurring

  15. ALMA observation of high-z extreme star-forming environments discovered by Planck/Herschel

    Science.gov (United States)

    Kneissl, R.

    2016-05-01

    The Comic Microwave Background satellite Planck with its High Frequency Instrument has surveyed the mm/sub-mm sky in six frequency channels from 100 to 900 GHz. A sample of 228 cold sources of the Cosmic Infrared Background was observed in follow-up with Herschel SPIRE. The majority of sources appear to be over-densities of star-forming galaxies matching the size of high-z proto-cluster regions, while a 3% fraction are individual bright, lensed galaxies. A large observing program is underway with the aim of resolving the regions into the constituent members of the Planck sources. First ALMA data have been received on one Planck/Herschel proto-cluster candidate, showing the expected large over-abundance of bright mm/sub-mm sources within the cluster region. ALMA long baseline data of the brightest lensed galaxy in the sample with > 1 Jy at 350 μm are also forthcoming.

  16. Photochemical activation of extremely weak nucleophiles: highly fluorinated urethanes and polyurethanes from polyfluoro alcohols.

    Science.gov (United States)

    Soto, Marc; Sebastián, Rosa María; Marquet, Jordi

    2014-06-06

    An efficient and environmentally friendly photoreaction between phenyl isocyanate or pentafluorophenyl isocyanate and polyfluorinated alcohols and diols is described for the first time. New highly fluorinated urethanes and diurethanes, derived from aromatic isocyanates, are produced in good yields in a photoreaction that is apparently governed by the acidic properties of the polyfluoro alcohols and diols. The wettability properties of the new polyfluorinated diurethanes have been tested, some of them showing significantly high values of hydrophobicity and oleophobicity. This new photoreaction has also been tested in the production of a model polyfluorinated polyurethane, establishing the influence of the irradiation power in the outcome of the process, and directly achieving a molecular weight distribution corresponding to a number-average DP(n) = 12 and a highest DP(n) = 20 after 4 h of irradiation (DP(n): "number-average degree of polymerization").

  17. High Mortality of Nearctic River Otters on a Florida, USA Interstate Highway During an Extreme Drought

    Directory of Open Access Journals (Sweden)

    Kinlaw A.

    2004-10-01

    Full Text Available From 28 December 1999 until 15 July 2000, I recorded 15 river otters killed on a 16 km segment of Interstate highway in Polk County, Florida, USA. This included 9 during a 37 day period, the highest road mortality rate reported for North American otters. This compares to 22 otters killed on a south Florida road during a 2 year period. My sample of 15 killed on I-4 is a negatively biased count of the true number killed, due to the minimal sampling period and sampling method. Possible reasons for such a high number counted during such a short period are discussed, including the impact of a major drought, high traffic density, and possible dieldrin bioaccumulation.

  18. Extremely high frequency (EHF) satellite communications (SATCOM) technology-transmitters and receivers

    Science.gov (United States)

    Raue, Jorg E.

    1983-10-01

    During the past three years, interest in satellite communications in the frequency bands above Ku-band has expanded dramatically. As a result, a number of key technology developments, targeted to meet specific next generation spaceborne needs, were undertaken. The state-of-the-art in solid state power transmitters and low noise receivers, including critical passive component technology, is presented. This includes filters as well as a series of rugged high performance ferrite components such as isolators, circulators and latching switches.

  19. A High Fraction of Ly-alpha-Emitters Among Galaxies with Extreme Emission Line Ratios at z ~ 2

    CERN Document Server

    Erb, Dawn K; Steidel, Charles C; Strom, Allison L; Rudie, Gwen C; Trainor, Ryan F; Shapley, Alice E; Reddy, Naveen A

    2016-01-01

    Star-forming galaxies form a sequence in the [OIII]/H-beta vs. [NII]/H-alpha diagnostic diagram, with low metallicity, highly ionized galaxies falling in the upper left corner. Drawing from a large sample of UV-selected star-forming galaxies at z~2 with rest-frame optical nebular emission line measurements from Keck-MOSFIRE, we select the extreme ~5% of the galaxies lying in this upper left corner, requiring log([NII]/H-alpha) = 0.75. These cuts identify galaxies with 12 + log(O/H) 20 A. We compare the equivalent width distribution of a sample of 522 UV-selected galaxies at 2.0extreme galaxies typically have lower attenuation at Ly-alpha than those in the comparison sample, and have ~50% lower median oxygen abundances. Both factors are likely to facilitate the escape of Ly-alpha: in less dusty galaxies Ly-alpha photons are l...

  20. Synchrotron Radiation and High Pressure: New Light on Materials Under Extreme Conditions

    Science.gov (United States)

    Hemley, Russell

    2005-03-01

    Current technological advances now make it possible to perform experiments on materials subjected to static or sustained conditions up to multimegabar pressures (>300 GPa) and from cryogenic temperatures to several thousand degrees (˜0.5 eV range). With these techniques, densities of condensed matter can be increased over an order of magnitude, causing numerous transformations and new physical and chemical phenomena to occur. Growth in this area largely been made possible by accelerating developments in diamond-anvil cell methods coupled with new synchrotron radiation techniques. Significant advances have occurred in x-ray diffraction, spectroscopy, inelastic scattering, radiography, and infrared spectroscopy. With recent developments, structure refinements based on polycrystalline data up to multimegabar pressures have been possible. Single-crystal methods have been extended to megabar pressure, with the prospect of full crystallographic refinements. `Three- dimensional' diffraction data can be collected for determining strength, deformation, and elastic tensors at high P-T conditions. Studies carried out during the past three years provide numerous breakthroughs in high-pressure x-ray spectroscopy and a broad range of inelastic scattering methods. Other experiments have exploited the use of x-ray radiography over a range of pressures. Finally, synchrotron infrared measurements have revealed a wealth of high-pressure phenomena, particularly for molecular systems. Examples to be discussed include investigations of dense hydrogen; transformations in molecular materials; novel ceramics; new types of superconductors, electronic, and magnetic materials; and liquids and amorphous materials.

  1. Topic 14+16: High-performance and scientific applications and extreme-scale computing (Introduction)

    KAUST Repository

    Downes, Turlough P.

    2013-01-01

    As our understanding of the world around us increases it becomes more challenging to make use of what we already know, and to increase our understanding still further. Computational modeling and simulation have become critical tools in addressing this challenge. The requirements of high-resolution, accurate modeling have outstripped the ability of desktop computers and even small clusters to provide the necessary compute power. Many applications in the scientific and engineering domains now need very large amounts of compute time, while other applications, particularly in the life sciences, frequently have large data I/O requirements. There is thus a growing need for a range of high performance applications which can utilize parallel compute systems effectively, which have efficient data handling strategies and which have the capacity to utilise current and future systems. The High Performance and Scientific Applications topic aims to highlight recent progress in the use of advanced computing and algorithms to address the varied, complex and increasing challenges of modern research throughout both the "hard" and "soft" sciences. This necessitates being able to use large numbers of compute nodes, many of which are equipped with accelerators, and to deal with difficult I/O requirements. © 2013 Springer-Verlag.

  2. Macroscopic birefringence in liquid crystals from novel cyanobacterial polysaccharide with an extremely high molecular weight

    Science.gov (United States)

    Okajima-Kaneko, Maiko; Hayasaka-Kaneko, Daisaku; Miyazato, Shinji; Kaneko, Tatsuo

    2007-05-01

    We report an efficient method for extraction of anionic polysaccharides (PS) from cyanobacteria, Aphanothece sacrum; we used a hot alkaline solution (0.01 N NaOH) as an elution solvent in the first step of the extraction and isopropanol as a precipitation solvent in the last step. Thin fibers of PS were obtained at a high yield (50-80 % to the weight of the raw cyanobacterial sample). The spectroscopy and elemental analyses indicated the PS contains fucose, uronic acids (14.2 % by a carbazole-sulfuric acid method), a sugar unit containing amides. The solution of PS with a concentration of 1 wt% showed a very high viscosity (80 000cps) implying a high molecular weight, and a strong macroscopic birefringence with a texture typical of nematic liquid crystals was confirmed by crossed-polarizing microscopy (more than 0.5 wt%). The PS from A. sacrum may form a special structure rigid-rod enough to show LC phase and macroscopic birefringence.

  3. Effects of sample size on estimation of rainfall extremes at high temperatures

    Directory of Open Access Journals (Sweden)

    B. Boessenkool

    2017-09-01

    Full Text Available High precipitation quantiles tend to rise with temperature, following the so-called Clausius–Clapeyron (CC scaling. It is often reported that the CC-scaling relation breaks down and even reverts for very high temperatures. In our study, we investigate this reversal using observational climate data from 142 stations across Germany. One of the suggested meteorological explanations for the breakdown is limited moisture supply. Here we argue that, instead, it could simply originate from undersampling. As rainfall frequency generally decreases with higher temperatures, rainfall intensities as dictated by CC scaling are less likely to be recorded than for moderate temperatures. Empirical quantiles are conventionally estimated from order statistics via various forms of plotting position formulas. They have in common that their largest representable return period is given by the sample size. In small samples, high quantiles are underestimated accordingly. The small-sample effect is weaker, or disappears completely, when using parametric quantile estimates from a generalized Pareto distribution (GPD fitted with L moments. For those, we obtain quantiles of rainfall intensities that continue to rise with temperature.

  4. Estimation of the high-spatial-resolution variability in extreme wind speeds for forestry applications

    Science.gov (United States)

    Venäläinen, Ari; Laapas, Mikko; Pirinen, Pentti; Horttanainen, Matti; Hyvönen, Reijo; Lehtonen, Ilari; Junila, Päivi; Hou, Meiting; Peltola, Heli M.

    2017-07-01

    The bioeconomy has an increasing role to play in climate change mitigation and the sustainable development of national economies. In Finland, a forested country, over 50 % of the current bioeconomy relies on the sustainable management and utilization of forest resources. Wind storms are a major risk that forests are exposed to and high-spatial-resolution analysis of the most vulnerable locations can produce risk assessment of forest management planning. In this paper, we examine the feasibility of the wind multiplier approach for downscaling of maximum wind speed, using 20 m spatial resolution CORINE land-use dataset and high-resolution digital elevation data. A coarse spatial resolution estimate of the 10-year return level of maximum wind speed was obtained from the ERA-Interim reanalyzed data. Using a geospatial re-mapping technique the data were downscaled to 26 meteorological station locations to represent very diverse environments. Applying a comparison, we find that the downscaled 10-year return levels represent 66 % of the observed variation among the stations examined. In addition, the spatial variation in wind-multiplier-downscaled 10-year return level wind was compared with the WAsP model-simulated wind. The heterogeneous test area was situated in northern Finland, and it was found that the major features of the spatial variation were similar, but in some locations, there were relatively large differences. The results indicate that the wind multiplier method offers a pragmatic and computationally feasible tool for identifying at a high spatial resolution those locations with the highest forest wind damage risks. It can also be used to provide the necessary wind climate information for wind damage risk model calculations, thus making it possible to estimate the probability of predicted threshold wind speeds for wind damage and consequently the probability (and amount) of wind damage for certain forest stand configurations.

  5. Extensive pollen flow but few pollen donors and high reproductive variance in an extremely fragmented landscape.

    Directory of Open Access Journals (Sweden)

    Rafael G Albaladejo

    Full Text Available Analysing pollen movement is a key to understanding the reproductive system of plant species and how it is influenced by the spatial distribution of potential mating partners in fragmented populations. Here we infer parameters related to levels of pollen movement and diversity of the effective pollen cloud for the wind-pollinated shrub Pistacia lentiscus across a highly disturbed landscape using microsatellite loci. Paternity analysis and the indirect KinDist and Mixed Effect Mating models were used to assess mating patterns, the pollen dispersal kernel, the effective number of males (N(ep and their relative individual fertility, as well as the existence of fine-scale spatial genetic structure in adult plants. All methods showed extensive pollen movement, with high rates of pollen flow from outside the study site (up to 73-93%, fat-tailed dispersal kernels and large average pollination distances (δ = 229-412 m. However, they also agreed in detecting very few pollen donors (N(ep = 4.3-10.2 and a large variance in their reproductive success: 70% of males did not sire any offspring among the studied female plants and 5.5% of males were responsible for 50% of pollinations. Although we did not find reduced levels of genetic diversity, the adult population showed high levels of biparental inbreeding (14% and strong spatial genetic structure (S(p = 0.012, probably due to restricted seed dispersal and scarce safe sites for recruitment. Overall, limited seed dispersal and the scarcity of successful pollen donors can be contributing to generate local pedigrees and to increase inbreeding, the prelude of genetic impoverishment.

  6. Coupled hydro-meteorological modelling on a HPC platform for high-resolution extreme weather impact study

    Science.gov (United States)

    Zhu, Dehua; Echendu, Shirley; Xuan, Yunqing; Webster, Mike; Cluckie, Ian

    2016-11-01

    Impact-focused studies of extreme weather require coupling of accurate simulations of weather and climate systems and impact-measuring hydrological models which themselves demand larger computer resources. In this paper, we present a preliminary analysis of a high-performance computing (HPC)-based hydrological modelling approach, which is aimed at utilizing and maximizing HPC power resources, to support the study on extreme weather impact due to climate change. Here, four case studies are presented through implementation on the HPC Wales platform of the UK mesoscale meteorological Unified Model (UM) with high-resolution simulation suite UKV, alongside a Linux-based hydrological model, Hydrological Predictions for the Environment (HYPE). The results of this study suggest that the coupled hydro-meteorological model was still able to capture the major flood peaks, compared with the conventional gauge- or radar-driving forecast, but with the added value of much extended forecast lead time. The high-resolution rainfall estimation produced by the UKV performs similarly to that of radar rainfall products in the first 2-3 days of tested flood events, but the uncertainties particularly increased as the forecast horizon goes beyond 3 days. This study takes a step forward to identify how the online mode approach can be used, where both numerical weather prediction and the hydrological model are executed, either simultaneously or on the same hardware infrastructures, so that more effective interaction and communication can be achieved and maintained between the models. But the concluding comments are that running the entire system on a reasonably powerful HPC platform does not yet allow for real-time simulations, even without the most complex and demanding data simulation part.

  7. Graphene Embedded Modulator with Extremely Small Footprint and High Modulation Efficiency

    Directory of Open Access Journals (Sweden)

    Ran Hao

    2014-01-01

    Full Text Available By embedding graphene sheet in the silicon waveguide, the overall effective mode index displays unexpected symmetry and the electrorefraction effect has been significantly enhanced near the epsilon-near-zero point. An eight-layer graphene embedded Mach-Zehnder Modulator has been theoretically demonstrated with the advantage of ultracompact footprint (4 × 2 μm2, high modulation efficiency (1.316 V·μm, ultrafast modulation speed, and large extinction ratio. Our results may promote various on-chip active components, boosting the utilization of graphene in optical applications.

  8. Extreme ultraviolet radiation for coherent diffractive imaging with high spatial resolution

    Institute of Scientific and Technical Information of China (English)

    L.V.; DAO; S.; TEICHMANN; B.; CHEN; R.A.; DILANIAN; K.B.; DINH; P.; HANNAFORD

    2010-01-01

    Using different noble gases,argon,neon and helium,we are able to generate by high-harmonic generation(HHG) just a few harmonic orders in the spectral range 10-35 nm with a photon flux of~2.10 12 photons/(harmonic cm2 s) for argon and~10 10 photons/(harmonic cm2 s) for helium. The few-harmonic-order radiation is used for coherent diffractive imaging direct