WorldWideScience

Sample records for extremely high shear

  1. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2004-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continously increase the knowledge on wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describe the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of high-sampled full-scale time series measurements...... are consistent, given the inevitabel uncertainties associated with model as well as with the extreme value data analysis. Keywords: Statistical model, extreme wind conditions, statistical analysis, turbulence, wind loading, statistical analysis, turbulence, wind loading, wind shear, wind turbines....

  2. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.

    2005-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continuously increase the knowledge of wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describes the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of full-scale measurements recorded with a high sampling rate...

  3. Extremely high wall-shear stress events in a turbulent boundary layer

    Science.gov (United States)

    Pan, Chong; Kwon, Yongseok

    2018-04-01

    The present work studies the fluctuating characteristics of the streamwise wall-shear stress in a DNS of a turbulent boundary layer at Re τ =1500 from a structural view. The two-dimensional field of the fluctuating friction velocity u‧ τ (x,z) is decomposed into the large- and small-scale components via a recently proposed scale separation algorithm, Quasi-bivariate Variational Mode Decomposition (QB-VMD). Both components are found to be dominated by streak-like structures, which can be regarded as the wall signature of the inner-layer streaks and the outer-layer LSMs, respectively. Extreme positive/negative wall-shear stress fluctuation events are detected in the large-scale component. The former’s occurrence frequency is nearly one order of magnitude higher than the latter; therefore, they contribute a significant portion of the long tail of the wall-shear stress distribution. Both two-point correlations and conditional averages show that these extreme positive wall-shear stress events are embedded in the large-scale positive u‧ τ streaks. They seem to be formed by near-wall ‘splatting’ process, which are related to strong finger-like sweeping (Q4) events originated from the outer-layer positive LSMs.

  4. Toroidal plasmoid generation via extreme hydrodynamic shear.

    Science.gov (United States)

    Gharib, Morteza; Mendoza, Sean; Rosenfeld, Moshe; Beizai, Masoud; Alves Pereira, Francisco J

    2017-11-28

    Saint Elmo's fire and lightning are two known forms of naturally occurring atmospheric pressure plasmas. As a technology, nonthermal plasmas are induced from artificially created electromagnetic or electrostatic fields. Here we report the observation of arguably a unique case of a naturally formed such plasma, created in air at room temperature without external electromagnetic action, by impinging a high-speed microjet of deionized water on a dielectric solid surface. We demonstrate that tribo-electrification from extreme and focused hydrodynamic shear is the driving mechanism for the generation of energetic free electrons. Air ionization results in a plasma that, unlike the general family, is topologically well defined in the form of a coherent toroidal structure. Possibly confined through its self-induced electromagnetic field, this plasmoid is shown to emit strong luminescence and discrete-frequency radio waves. Our experimental study suggests the discovery of a unique platform to support experimentation in low-temperature plasma science. Copyright © 2017 the Author(s). Published by PNAS.

  5. SEDflume - High Shear Stress Flume

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Corps of Engineers High Shear Stress flume (SEDflume) is designed for estimating erosion rates of fine-grained and mixed fine/coarse grained sediments...

  6. Thrombus Formation at High Shear Rates.

    Science.gov (United States)

    Casa, Lauren D C; Ku, David N

    2017-06-21

    The final common pathway in myocardial infarction and ischemic stroke is occlusion of blood flow from a thrombus forming under high shear rates in arteries. A high-shear thrombus forms rapidly and is distinct from the slow formation of coagulation that occurs in stagnant blood. Thrombosis at high shear rates depends primarily on the long protein von Willebrand factor (vWF) and platelets, with hemodynamics playing an important role in each stage of thrombus formation, including vWF binding, platelet adhesion, platelet activation, and rapid thrombus growth. The prediction of high-shear thrombosis is a major area of biofluid mechanics in which point-of-care testing and computational modeling are promising future directions for clinically relevant research. Further research in this area will enable identification of patients at high risk for arterial thrombosis, improve prevention and treatment based on shear-dependent biological mechanisms, and improve blood-contacting device design to reduce thrombosis risk.

  7. High strength semi-active energy absorbers using shear- and mixedmode operation at high shear rates

    Science.gov (United States)

    Becnel, Andrew C.

    This body of research expands the design space of semi-active energy absorbers for shock isolation and crash safety by investigating and characterizing magnetorheological fluids (MRFs) at high shear rates ( > 25,000 1/s) under shear and mixed-mode operation. Magnetorheological energy absorbers (MREAs) work well as adaptive isolators due to their ability to quickly and controllably adjust to changes in system mass or impact speed while providing fail-safe operation. However, typical linear stroking MREAs using pressure-driven flows have been shown to exhibit reduced controllability as impact speed (shear rate) increases. The objective of this work is to develop MREAs that improve controllability at high shear rates by using pure shear and mixed shear-squeeze modes of operation, and to present the fundamental theory and models of MR fluids under these conditions. A proof of concept instrument verified that the MR effect persists in shear mode devices at shear rates corresponding to low speed impacts. This instrument, a concentric cylinder Searle cell magnetorheometer, was then used to characterize three commercially available MRFs across a wide range of shear rates, applied magnetic fields, and temperatures. Characterization results are presented both as flow curves according to established practice, and as an alternate nondimensionalized analysis based on Mason number. The Mason number plots show that, with appropriate correction coefficients for operating temperature, the varied flow curve data can be collapsed to a single master curve. This work represents the first shear mode characterization of MRFs at shear rates over 10 times greater than available with commercial rheometers, as well as the first validation of Mason number analysis to high shear rate flows in MRFs. Using the results from the magnetorheometer, a full scale rotary vane MREA was developed as part of the Lightweight Magnetorheological Energy Absorber System (LMEAS) for an SH-60 Seahawk helicopter

  8. Shear melting and high temperature embrittlement: theory and application to machining titanium.

    Science.gov (United States)

    Healy, Con; Koch, Sascha; Siemers, Carsten; Mukherji, Debashis; Ackland, Graeme J

    2015-04-24

    We describe a dynamical phase transition occurring within a shear band at high temperature and under extremely high shear rates. With increasing temperature, dislocation deformation and grain boundary sliding are supplanted by amorphization in a highly localized nanoscale band, which allows for massive strain and fracture. The mechanism is similar to shear melting and leads to liquid metal embrittlement at high temperature. From simulation, we find that the necessary conditions are lack of dislocation slip systems, low thermal conduction, and temperature near the melting point. The first two are exhibited by bcc titanium alloys, and we show that the final one can be achieved experimentally by adding low-melting-point elements: specifically, we use insoluble rare earth metals (REMs). Under high shear, the REM becomes mixed with the titanium, lowering the melting point within the shear band and triggering the shear-melting transition. This in turn generates heat which remains localized in the shear band due to poor heat conduction. The material fractures along the shear band. We show how to utilize this transition in the creation of new titanium-based alloys with improved machinability.

  9. High shear microfluidics and its application in rheological measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kai; Lee, L.James; Koelling, Kurt W. [The Ohio State University, Department of Chemical Engineering, Columbus, OH (United States)

    2005-02-01

    High shear rheology was explored experimentally in microchannels (150 x 150 {mu}m). Two aqueous polymer solutions, polyethylene oxide (viscoelastic fluid) and hydroxyethyl cellulose (viscous fluid) were tested. Bagley correction was applied to remove the end effect. Wall slip was investigated with Mooney's analysis. Shear rates as high as 10{sup 6} s {sup -1} were obtained in the pressure-driven microchannel flow, allowing a smooth extension of the low shear rheological data obtained from the conventional rheometers. At high shear rates, polymer degradation was observed for PEO solutions at a critical microchannel wall shear stress of 4.1 x 10 {sup 3} Pa. Stresses at the ends of the microchannel also contributed to PEO degradation significantly. (orig.)

  10. High shear microfluidics and its application in rheological measurement

    Science.gov (United States)

    Kang, Kai; Lee, L. James; Koelling, Kurt W.

    2005-02-01

    High shear rheology was explored experimentally in microchannels (150×150 μm). Two aqueous polymer solutions, polyethylene oxide (viscoelastic fluid) and hydroxyethyl cellulose (viscous fluid) were tested. Bagley correction was applied to remove the end effect. Wall slip was investigated with Mooney’s analysis. Shear rates as high as 106 s-1 were obtained in the pressure-driven microchannel flow, allowing a smooth extension of the low shear rheological data obtained from the conventional rheometers. At high shear rates, polymer degradation was observed for PEO solutions at a critical microchannel wall shear stress of 4.1×103 Pa. Stresses at the ends of the microchannel also contributed to PEO degradation significantly.

  11. Study of magnetorheological fluids at high shear rates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaojie; Gordaninejad, Faramarz [University of Nevada, Department of Mechanical Engineering, Reno, NV (United States)

    2006-08-15

    The tunable rheological properties of magnetorheological (MR) materials at high shear rates are studied using a piston-driven flow-mode-type rheometer. The proposed method provides measurement of the apparent viscosity and yield stress of MR fluids for a shear rate range of 50 to 40,000 s{sup -1}. The rheological properties of a commercial MR fluid, as well as a newly developed MR polymeric gel, and a ferrofluid-based MR fluid are investigated. The results for apparent viscosity and dynamic and static shear stresses under different applied magnetic fields are reported. (orig.)

  12. Measurement of viscosity of slush at high shear rates

    OpenAIRE

    小林, 俊一; 川村, 公之; 津川, 圭一; 和泉, 薫; Kobayashi, Shun'ichi; Kawamura, Kimiyuki; Tugawa, Keiichi; Izumi, Kaoru

    1988-01-01

    Measurements of viscosity of slush were carried out using a method of flow along an inclined smooth surface in a 0℃cold room. The method was used to get the values of viscosity under high shear rates (25 and 75s^). From our experiments two important results were obtained: 1) the viscosity of slush decreases with increasing shear rates; 2) The fluid behavior is pseudoplastic that the values of non-Newtonian index of viscosity were less than unity.

  13. Effects of extreme wind shear on aeroelastic modal damping of wind turbines

    DEFF Research Database (Denmark)

    Skjoldan, P.F.; Hansen, Morten Hartvig

    2013-01-01

    Wind shear is an important contributor to fatigue loads on wind turbines. Because it causes an azimuthal variation in angle of attack, it can also affect aerodynamic damping. In this paper, a linearized model of a wind turbine, based on the nonlinear aeroelastic code BHawC, is used to investigate...

  14. High performance experiments in JT-60U reversed shear discharges

    International Nuclear Information System (INIS)

    Fujita, T.; Kamada, Y.; Ishida, S.

    2001-01-01

    The operation of JT-60U reversed shear discharges has been extended to a high plasma current, low-q regime keeping a large radius of the internal transport barrier (ITB) and the record value of equivalent fusion multiplication factor in JT-60U, Q DT eq =1.25, has been achieved at 2.6 MA. Operational schemes to reach the low-q regime with good reproducibility have been developed. The reduction of Z eff was obtained in the newly installed W-shaped pumped divertor. The beta limit in the low-q min regime, which limited the performance of L-mode edge discharges, has been improved in H-mode edge discharges with a broader pressure profile, which was obtained by power flow control with ITB degradation. Sustainment of ITB and improved confinement for 5.5 seconds has been demonstrated in an ELMy H reversed shear discharge. (author)

  15. Extremely high frequency RF effects on electronics.

    Energy Technology Data Exchange (ETDEWEB)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  16. Extreme Transients in the High Energy Universe

    Science.gov (United States)

    Kouveliotou, Chryssa

    2013-01-01

    The High Energy Universe is rich in diverse populations of objects spanning the entire cosmological (time)scale, from our own present-day Milky Way to the re-ionization epoch. Several of these are associated with extreme conditions irreproducible in laboratories on Earth. Their study thus sheds light on the behavior of matter under extreme conditions, such as super-strong magnetic fields (in excess of 10^14 G), high gravitational potentials (e.g., Super Massive Black Holes), very energetic collimated explosions resulting in relativistic jet flows (e.g., Gamma Ray Bursts, exceeding 10^53 ergs). In the last thirty years, my work has been mostly focused on two apparently different but potentially linked populations of such transients: magnetars (highly magnetized neutron stars) and Gamma Ray Bursts (strongly beamed emission from relativistic jets), two populations that constitute unique astrophysical laboratories, while also giving us the tools to probe matter conditions in the Universe to redshifts beyond z=10, when the first stars and galaxies were assembled. I did not make this journey alone I have either led or participated in several international collaborations studying these phenomena in multi-wavelength observations; solitary perfection is not sufficient anymore in the world of High Energy Astrophysics. I will describe this journey, present crucial observational breakthroughs, discuss key results and muse on the future of this field.

  17. High resolution extremity CT for biomechanics modeling

    International Nuclear Information System (INIS)

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-01-01

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling

  18. High resolution extremity CT for biomechanics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  19. Development of Flexible Extremities Protection utilizing Shear Thickening Fluid/Fabric Composites

    Science.gov (United States)

    2012-01-19

    The influence of Interparticle Interactions and Hydrodynamic Forces on Shear Thickening in Concentrated Colloidal Dispersions and Slurries 10...Armor Using Fumed SiO2 Nanoparticles Dispersed into Polyethylene Glycol (PEG) through Sonic Cavitation , NSTI-Nanotech 2006. 2006/05/07 00:00:00...for a wide variety of suspensions such as clay–water [17], calcium carbonate–water [18], polystyrene spheres in silicon oil [19], iron particles in

  20. Production processes at extremely high energies

    CERN Document Server

    Gastmans, R; Wu, Tai Tsun

    2013-01-01

    The production processes are identified that contribute to the rise of the total cross section in proton-proton scattering at extremely high energies, s->~. At such energies, the scattering can be described by a black disk (completely absorptive) with a radius expanding logarithmically with energy surrounded by a gray fringe (partially absorptive). For the leading term of (lns)^2 in the increasing total cross section, the gray fringe is neglected, and geometrical optics is generalized to production processes. It is known that half of the rise in the total cross section is due to elastic scattering. The other half is found to originate from the production of jets with relatively small momenta in the center-of-mass system.

  1. High-frequency shear-horizontal surface acoustic wave sensor

    Science.gov (United States)

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  2. High Resolution Shear Profile Measurements in Entangled Polymers

    KAUST Repository

    Hayes, Keesha A.; Buckley, Mark R.; Cohen, Itai; Archer, Lynden A.

    2008-01-01

    spanning a wide range of molecular weights and number of entanglements (8≤Z≤56), but reveal large differences between the imposed and measured shear rates. These findings disagree with recent reports that shear banding is a characteristic flow response

  3. Shear wave elastography for breast masses is highly reproducible.

    Science.gov (United States)

    Cosgrove, David O; Berg, Wendie A; Doré, Caroline J; Skyba, Danny M; Henry, Jean-Pierre; Gay, Joel; Cohen-Bacrie, Claude

    2012-05-01

    To evaluate intra- and interobserver reproducibility of shear wave elastography (SWE) for breast masses. For intraobserver reproducibility, each observer obtained three consecutive SWE images of 758 masses that were visible on ultrasound. 144 (19%) were malignant. Weighted kappa was used to assess the agreement of qualitative elastographic features; the reliability of quantitative measurements was assessed by intraclass correlation coefficients (ICC). For the interobserver reproducibility, a blinded observer reviewed images and agreement on features was determined. Mean age was 50 years; mean mass size was 13 mm. Qualitatively, SWE images were at least reasonably similar for 666/758 (87.9%). Intraclass correlation for SWE diameter, area and perimeter was almost perfect (ICC ≥ 0.94). Intraobserver reliability for maximum and mean elasticity was almost perfect (ICC = 0.84 and 0.87) and was substantial for the ratio of mass-to-fat elasticity (ICC = 0.77). Interobserver agreement was moderate for SWE homogeneity (κ = 0.57), substantial for qualitative colour assessment of maximum elasticity (κ = 0.66), fair for SWE shape (κ = 0.40), fair for B-mode mass margins (κ = 0.38), and moderate for B-mode mass shape (κ = 0.58), orientation (κ = 0.53) and BI-RADS assessment (κ = 0.59). SWE is highly reproducible for assessing elastographic features of breast masses within and across observers. SWE interpretation is at least as consistent as that of BI-RADS ultrasound B-mode features. • Shear wave ultrasound elastography can measure the stiffness of breast tissue • It provides a qualitatively and quantitatively interpretable colour-coded map of tissue stiffness • Intraobserver reproducibility of SWE is almost perfect while intraobserver reproducibility of SWE proved to be moderate to substantial • The most reproducible SWE features between observers were SWE image homogeneity and maximum elasticity.

  4. The Role of Axisymmetric Reconnection Events in JET Discharges with Extreme Shear Reversal

    Energy Technology Data Exchange (ETDEWEB)

    B.C. Stratton; J.A. Breslau; R.V. Budny; S.C. Jardin; W. Park; H.R. Strauss; L.E. Zakharov; B. Alper; V. Drozdov; N.C. Hawkes; S. Reyes-Cortes; and Contributors to the EFDA-JET Work Programme

    2001-12-03

    Injection of Lower Hybrid Heating and Current Drive into the current ramp-up phase of Joint European Torus (JET) discharges can produce extremely reversed q-profiles characterized by a core region of very small or zero current density (within Motional Stark Effect diagnostic measurement errors) and q(subscript min) > 1. T(subscript e)-profiles show sawtooth-like collapses and the presence of an internal transport barrier. Accurate equilibrium reconstructions of these discharges are obtained using the ESC code, which was recently extended to allow equilibrium reconstructions in which a free boundary solver determines the plasma boundary and a fixed boundary solver provides the magnetic geometry and current density profile. The core current density does not appear to go negative, although current diffusion calculations indicate that sufficient non-inductive current drive to cause this is present. This is explained by nonlinear resistive MHD simulations in toroidal geometry which predict that these discharges undergo n=0 reconnection events (axisymmetric sawteeth) that redistribute the current to hold the core current density near zero.

  5. High Resolution Shear Profile Measurements in Entangled Polymers

    KAUST Repository

    Hayes, Keesha A.

    2008-11-17

    We use confocal microscopy and particle image velocimetry to visualize motion of 250-300 nm. fluorescent tracer particles in entangled polymers subject to a rectilinear shear flow. Our results show linear velocity profiles in polymer solutions spanning a wide range of molecular weights and number of entanglements (8≤Z≤56), but reveal large differences between the imposed and measured shear rates. These findings disagree with recent reports that shear banding is a characteristic flow response of entangled polymers, and instead point to interfacial slip as an important source of strain loss. © 2008 The American Physical Society.

  6. Baryonic effects in cosmic shear tomography: PCA parametrization and importance of extreme baryonic models

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Irshad [Fermilab; Gnedin, Nickolay Y. [Fermilab

    2017-07-07

    Baryonic effects are amongst the most severe systematics to the tomographic analysis of weak lensing data which is the principal probe in many future generations of cosmological surveys like LSST, Euclid etc.. Modeling or parameterizing these effects is essential in order to extract valuable constraints on cosmological parameters. In a recent paper, Eifler et al. (2015) suggested a reduction technique for baryonic effects by conducting a principal component analysis (PCA) and removing the largest baryonic eigenmodes from the data. In this article, we conducted the investigation further and addressed two critical aspects. Firstly, we performed the analysis by separating the simulations into training and test sets, computing a minimal set of principle components from the training set and examining the fits on the test set. We found that using only four parameters, corresponding to the four largest eigenmodes of the training set, the test sets can be fitted thoroughly with an RMS $\\sim 0.0011$. Secondly, we explored the significance of outliers, the most exotic/extreme baryonic scenarios, in this method. We found that excluding the outliers from the training set results in a relatively bad fit and degraded the RMS by nearly a factor of 3. Therefore, for a direct employment of this method to the tomographic analysis of the weak lensing data, the principle components should be derived from a training set that comprises adequately exotic but reasonable models such that the reality is included inside the parameter domain sampled by the training set. The baryonic effects can be parameterized as the coefficients of these principle components and should be marginalized over the cosmological parameter space.

  7. Thermoplastic encapsulation of waste surrogates by high-shear mixing

    International Nuclear Information System (INIS)

    Lageraaen, P.R.; Kalb, P.D.; Patel, B.R.

    1995-12-01

    Brookhaven National Laboratory (BNL) has developed a robust, extrusion-based polyethylene encapsulation process applicable to a wide range of solid and aqueous low-level radioactive, hazardous and mixed wastes. However, due to the broad range of physical and chemical properties of waste materials, pretreatment of these wastes is often required to make them amenable to processing with polyethylene. As part of the scope of work identified in FY95 open-quotes Removal and Encapsulation of Heavy Metals from Ground Water,close quotes EPA SERDP No. 387, that specifies a review of potential thermoplastic processing techniques, and in order to investigate possible pretreatment alternatives, BNL conducted a vendor test of the Draiswerke Gelimat (thermokinetic) mixer on April 25, 1995 at their test facility in Mahwah, NJ. The Gelimat is a batch operated, high-shear, high-intensity fluxing mixer that is often used for mixing various materials and specifically in the plastics industry for compounding additives such as stabilizers and/or colorants with polymers

  8. Shear and bulk viscosity of high-temperature gluon plasma

    Science.gov (United States)

    Zhang, Le; Hou, De-Fu

    2018-05-01

    We calculate the shear viscosity (η) and bulk viscosity (ζ) to entropy density (s) ratios η/s and ζ/s of a gluon plasma system in kinetic theory, including both the elastic {gg}≤ftrightarrow {gg} forward scattering and the inelastic soft gluon bremsstrahlung {gg}≤ftrightarrow {ggg} processes. Due to the suppressed contribution to η and ζ in the {gg}≤ftrightarrow {gg} forward scattering and the effective g≤ftrightarrow {gg} gluon splitting, Arnold, Moore and Yaffe (AMY) and Arnold, Dogan and Moore (ADM) have got the leading order computations for η and ζ in high-temperature QCD matter. In this paper, we calculate the correction to η and ζ in the soft gluon bremsstrahlung {gg}≤ftrightarrow {ggg} process with an analytic method. We find that the contribution of the collision term from the {gg}≤ftrightarrow {ggg} soft gluon bremsstrahlung process is just a small perturbation to the {gg}≤ftrightarrow {gg} scattering process and that the correction is at ∼5% level. Then, we obtain the bulk viscosity of the gluon plasma for the number-changing process. Furthermore, our leading-order result for bulk viscosity is the formula \\zeta \\propto \\tfrac{{α }s2{T}3}{ln}{α }s-1} in high-temperature gluon plasma. Supported by Ministry of Science and Technology of China (MSTC) under the “973” Project (2015CB856904(4)) and National Natural Science Foundation of China (11735007, 11521064)

  9. High-n helicity-induced shear Alfven eigenmodes

    International Nuclear Information System (INIS)

    Nakajima, N.; Cheng, C.Z.; Okamoto, M.

    1992-05-01

    The high-n Helicity-induced shear Alfven Eigenmodes (HAE) are considered both analytically and numerically for the straight helical magnetic system, where n is the toroidal mode number. The eigenmode equation for the high-n HAE modes is derived along the field line and with the aid of the averaging method is shown to reduce to the Mathieu equation asymptotically. The discrete HAE modes are shown to exist inside the continuum spectrum gaps. The continuous spectrum gaps appear around ω 2 = ω A 2 [N(lι-m)/2] 2 for N = 1,2,.., where ω A is the toroidal Alfven transit frequency, and l, m, and ι are the polarity of helical coils, the toroidal pitch number of helical coils, and the rotational transform, respectively. For the same ω A and ι, the frequency of the helical continuum gap is larger than that of the continuum gap in tokamak plasmas by |l-ι -1 m|. The polarity of helical coils l plays a crucial role in determining the spectrum gaps and the properties of the high-n HAE modes. The spectrum gaps near the magnetic axis are created by the helical ripple with circular flux surfaces for l = 1, and ≥ 3 helicals. For l = 2 helical systems, the spectrum gaps are created by the ellipticity of the flux surfaces. These analytical results for the continuum gaps and the existence of the high-n HAE modes in the continuum gaps are confirmed numerically for the l = 2 case, and we find that the HAE modes exist for mode structures with the even and the odd parities. (author)

  10. A new confined high pressure rotary shear apparatus: preliminary results

    Science.gov (United States)

    Faulkner, D.; Coughlan, G.; Bedford, J. D.

    2017-12-01

    The frictional properties of fault zone materials, and their evolution during slip, are of paramount importance for determining the earthquake mechanics of large tectonic faults. Friction is a parameter that is difficult to determine from seismological methods so much of our understanding comes from experiment. Rotary shear apparatuses have been widely used in experimental studies to elucidate the frictional properties of faults under realistic earthquake slip velocities (0.1-10 m/s) and displacements (>20 m). However one technical limitation of rotary shear experiments at seismic slip rates has been the lack of confinement. This has led to a limit on the normal stress (due to the strength of the forcing blocks) and also a lack of control of measurements of the pore fluid pressure. Here we present the first preliminary results from a rotary shear apparatus that has been developed to attempt to address this issue. The new fully confined ring shear apparatus has a fast-acting servo-hydraulic confining pressure system of up to 200 MPa and a servo-controlled upstream and downstream pore pressure system of up to 200 MPa. Displacement rates of 0.01μ/s to 2 m/s can be achieved. Fault gouge samples can therefore be sheared at earthquake speed whilst being subject to pressures typically associated with the depth of earthquake nucleation.

  11. High-mode-number ballooning modes in a heliotron/torsatron system: 1, Local magnetic shear

    International Nuclear Information System (INIS)

    Nakajima, N.

    1996-05-01

    The characteristics of the local magnetic shear, a quantity associated with high-mode-number ballooning mode stability, are considered in heliotron/torsatron devices that have a large Shafranov shift. The local magnetic shear is shown to vanish even in the stellarator-like region in which the global magnetic shear is positive. The reason for this is that the degree of the local compression of the poloidal magnetic field on the outer side of the torus, which maintains the toroidal force balance, is reduced in the stellarator-like region of global magnetic shear because the global rotational transform in heliotron/torsatron systems is a radially increasing function. This vanishing of the local magnetic shear is a universal property in heliotron/torsatron systems with a large Shafranov shift since it results from toroidal force balance in the stellarator-like global shear regime that is inherent to such systems

  12. Geckolike high shear strength by carbon nanotube fiber adhesives

    Science.gov (United States)

    Maeno, Y.; Nakayama, Y.

    2009-01-01

    Carbon nanotube adhesives can adhere strongly to surfaces as a gecko does. The number of carbon nanotube layers is an important determinant of the contact area for adhesion. Balancing the catalyst ratio and buffer layer used for chemical vapor deposition processing controls the number of carbon nanotube layers and their distribution. The features of carbon nanotubes determine the shear strength of adhesion. Carbon nanotubes with a broad distribution of layers exhibit enhanced shear strength with equivalent adhesive capability to that of a natural Tokay Gecko (Gekko gecko)

  13. High fluid shear strain causes injury in silver shark: Preliminary implications for Mekong hydropower turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, L. J. [New South Wales Department of Primary Industries, Narrandera Fisheries Centre, Narrandera NSW Australia; Institute of Land, Water and Society, Charles Sturt University, Albury NSW Australia; Thorncraft, G. [Faculty of Agriculture, Forestry and Fisheries, National University of Laos, Vientiane Lao People’s Democratic Republic; Phonekhampheng, O. [Faculty of Agriculture, Forestry and Fisheries, National University of Laos, Vientiane Lao People’s Democratic Republic; Boys, C. [New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Nelson Bay NSW Australia; Navarro, A. [Institute of Land, Water and Society, Charles Sturt University, Albury NSW Australia; Robinson, W. [Institute of Land, Water and Society, Charles Sturt University, Albury NSW Australia; Brown, R. [Pacific Northwest National Laboratory, Richland WA USA; Deng, Z. D. [Pacific Northwest National Laboratory, Richland WA USA

    2017-02-09

    Fluid shear arises when two bodies of water, travelling at different velocities, intersect. Fish entrained at the interface of these two water masses will experience shear stress; which can be harmful. The stress magnitude is dependent on waterbody mass and velocity; with the fish impact largely related to body size. Elevated shear stress occurs where rapidly flowing water passes near spillways, across screens, within turbine draft tubes or other passage routes. A flume was used to determine critical tolerances of silver shark (Balantiocheilos melanopterus) to different shear stress rates generated by a high velocity jet. Fish experienced higher levels of injury and mortality as shear stress was increased. Excessive shear forces had damaging impacts on fish. Mortality occurred at shear levels higher that 600/s. It is important that developers should attempt to model potential shear profiles expected during turbine passage in selected designs. These data will be critical to determine potential impacts on fish. If the likelihood of adverse impact is high, then alternative designs which have lower shear stress could be explored.

  14. Shear in high strength concrete bridge girders : technical report.

    Science.gov (United States)

    2013-04-01

    Prestressed Concrete (PC) I-girders are used extensively as the primary superstructure components in Texas highway bridges. : A simple semi-empirical equation was developed at the University of Houston (UH) to predict the shear strength of PC I-girde...

  15. On equivalent roughness of mobile bed at high shear stress

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Václav; Krupička, Jan

    2009-01-01

    Roč. 57, č. 3 (2009), s. 191-199 ISSN 0042-790X R&D Projects: GA ČR GA103/06/0428 Institutional research plan: CEZ:AV0Z20600510 Keywords : bed shear * experiment * hydraulic transport * sediment transport Subject RIV: BK - Fluid Dynamics Impact factor: 1.000, year: 2009

  16. High Shear Homogenization of Lignin to Nanolignin and Thermal Stability of Nanolignin-Polyvinyl Alcohol Blends

    Science.gov (United States)

    Sandeep S. Nair; Sudhir Sharma; Yunqiao Pu; Qining Sun; Shaobo Pan; J.Y. Zhu; Yulin Deng; Art J. Ragauskas

    2014-01-01

    A new method to prepare nanolignin using a simple high shear homogenizer is presented. The kraft lignin particles with a broad distribution ranging from large micron- to nano-sized particles were completely homogenized to nanolignin particles with sizes less than 100 nm after 4 h of mechanical shearing. The 13C nuclear magnetic resonance (NMR)...

  17. Evaluation of shear bond strength and shear stress on zirconia reinforced lithium silicate and high translucency zirconia.

    Directory of Open Access Journals (Sweden)

    Amanda Maria de Oliveira Dal Piva

    2018-01-01

    Full Text Available This study evaluated the shear stress distribution on the adhesive interface and the bond strength between resin cement and two ceramics. For finite element analysis (FEA, a tridimensional model was made using computer-aided design software. This model consisted of a ceramic slice (10x10x2mm partially embedded on acrylic resin with a resin cement cylinder (Ø=3.4 mm and h=3mm cemented on the external surface. Results of maximum principal stress and maximum principal shear were obtained to evaluate the stress generated on the ceramic and the cylinder surfaces. In order to reproduce the in vitro test, similar samples to the computational model were manufactured according to ceramic material (Zirconia reinforced lithium silicate - ZLS and high translucency Zirconia - YZHT, (N=48, n=12. Half of the specimens were submitted to shear bond test after 24h using a universal testing machine (0.5 mm/min, 50kgf until fracture. The other half was stored (a (180 days, water, 37ºC prior to the test. Bond strength was calculated in MPa and submitted to analysis of variance. The results showed that ceramic material influenced bond strength mean values (p=0.002, while aging did not: YZHT (19.80±6.44a, YZHTa (17.95±7.21a, ZLS (11.88±5.40b, ZLSa (11.76±3.32b. FEA results showed tensile and shear stress on ceramic and cylinder surfaces with more intensity on their periphery. Although the stress distribution was similar for both conditions, YZHT showed higher bond strength values; however, both materials seemed to promote durable bond strength.

  18. The unexpected stability of multiwall nanotubes under high pressure and shear deformation

    International Nuclear Information System (INIS)

    Pashkin, E. Y.; Pankov, A. M.; Kulnitskiy, B. A.; Mordkovich, V. Z.; Perezhogin, I. A.; Karaeva, A. R.; Popov, M. Y.; Sorokin, P. B.; Blank, V. D.

    2016-01-01

    The behavior of multiwall carbon nanotubes under a high pressure (up to 55 GPa) combined with shear deformation was studied by experimental and theoretical methods. The unexpectedly high stability of the nanotubes' structure under high stresses was observed. After the pressure was released, we observed that the nanotubes had restored their shapes. Atomistic simulations show that the hydrostatic and shear stresses affect the nanotubes' structure in a different way. It was found that the shear stress load in the multiwall nanotubes' outer walls can induce their connection and formation of an amorphized sp"3-hybridized region but internal core keeps the tubular structure.

  19. The unexpected stability of multiwall nanotubes under high pressure and shear deformation

    Energy Technology Data Exchange (ETDEWEB)

    Pashkin, E. Y.; Pankov, A. M.; Kulnitskiy, B. A.; Mordkovich, V. Z. [Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow 142190 (Russian Federation); Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700 (Russian Federation); Perezhogin, I. A. [Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow 142190 (Russian Federation); Lomonosov Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Karaeva, A. R. [Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow 142190 (Russian Federation); Popov, M. Y.; Sorokin, P. B.; Blank, V. D. [Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow 142190 (Russian Federation); Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700 (Russian Federation); National University of Science and Technology MISiS, 4 Leninskiy Prospekt, Moscow 119049 (Russian Federation)

    2016-08-22

    The behavior of multiwall carbon nanotubes under a high pressure (up to 55 GPa) combined with shear deformation was studied by experimental and theoretical methods. The unexpectedly high stability of the nanotubes' structure under high stresses was observed. After the pressure was released, we observed that the nanotubes had restored their shapes. Atomistic simulations show that the hydrostatic and shear stresses affect the nanotubes' structure in a different way. It was found that the shear stress load in the multiwall nanotubes' outer walls can induce their connection and formation of an amorphized sp{sup 3}-hybridized region but internal core keeps the tubular structure.

  20. Structure of high and low shear-stress events in a turbulent boundary layer

    Science.gov (United States)

    Gomit, G.; de Kat, R.; Ganapathisubramani, B.

    2018-01-01

    Simultaneous particle image velocimetry (PIV) and wall-shear-stress sensor measurements were performed to study structures associated with shear-stress events in a flat plate turbulent boundary layer at a Reynolds number Reτ≈4000 . The PIV field of view covers 8 δ (where δ is the boundary layer thickness) along the streamwise direction and captures the entire boundary layer in the wall-normal direction. Simultaneously, wall-shear-stress measurements that capture the large-scale fluctuations were taken using a spanwise array of hot-film skin-friction sensors (spanning 2 δ ). Based on this combination of measurements, the organization of the conditional wall-normal and streamwise velocity fluctuations (u and v ) and of the Reynolds shear stress (-u v ) can be extracted. Conditional averages of the velocity field are computed by dividing the histogram of the large-scale wall-shear-stress fluctuations into four quartiles, each containing 25% of the occurrences. The conditional events corresponding to the extreme quartiles of the histogram (positive and negative) predominantly contribute to a change of velocity profile associated with the large structures and in the modulation of the small scales. A detailed examination of the Reynolds shear-stress contribution related to each of the four quartiles shows that the flow above a low wall-shear-stress event carries a larger amount of Reynolds shear stress than the other quartiles. The contribution of the small and large scales to this observation is discussed based on a scale decomposition of the velocity field.

  1. Strength of precast concrete shear joints reinforced with high-strength wire ropes

    DEFF Research Database (Denmark)

    Joergensen, Henrik B.; Hoang, Linh Cao; Hagsten, Lars German

    2017-01-01

    This paper concerns the in-plane shear strength of connections between precast concrete wall elements reinforced with looped high-strength wire ropes. The looped wire ropes are pre-installed in so-called ‘wire boxes’ which function as shear keys. Although only a small amount of research...... on the shear strength of such connections can be found in the literature, this type of connection is increasingly being used because wire ropes are much more construction-friendly than traditional U-bars. A rigid plastic upper bound model for the shear strength of wall connections reinforced with looped wire...... ropes that are pre-installed in wire boxes is presented along with test results on the shear strength of connections with double-wire boxes. It is shown that the plastic solution agrees well with both the obtained test results and results from previously conducted tests....

  2. High speed all optical shear wave imaging optical coherence elastography (Conference Presentation)

    Science.gov (United States)

    Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; O'Donnell, Matthew; Wang, Ruikang K.

    2016-03-01

    Optical Coherence Elastography (OCE) is a non-invasive testing modality that maps the mechanical property of soft tissues with high sensitivity and spatial resolution using phase-sensitive optical coherence tomography (PhS-OCT). Shear wave OCE (SW-OCE) is a leading technique that relies on the speed of propagating shear waves to provide a quantitative elastography. Previous shear wave imaging OCT techniques are based on repeated M-B scans, which have several drawbacks such as long acquisition time and repeated wave stimulations. Recent developments of Fourier domain mode-locked high-speed swept-source OCT system has enabled enough speed to perform KHz B-scan rate OCT imaging. Here we propose ultra-high speed, single shot shear wave imaging to capture single-shot transient shear wave propagation to perform SW-OCE. The frame rate of shear wave imaging is 16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of high-frequency shear wave of up to 8 kHz. The shear wave is generated photothermal-acoustically, by ultra-violet pulsed laser, which requires no contact to OCE subjects, while launching high frequency shear waves that carries rich localized elasticity information. The image acquisition and processing can be performed at video-rate, which enables real-time 3D elastography. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine ocular tissue. This approach opens up the feasibility to perform real-time 3D SW-OCE in clinical applications, to obtain high-resolution localized quantitative measurement of tissue biomechanical property.

  3. Workshop on extremely high energy density plasmas and their diagnostics

    International Nuclear Information System (INIS)

    Ishii, Shozo

    2001-09-01

    Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)

  4. Workshop on extremely high energy density plasmas and their diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Shozo (ed.)

    2001-09-01

    Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)

  5. High resolution spectroscopy of six new extreme helium stars

    Science.gov (United States)

    Heber, U.; Jones, G.; Drilling, J. S.

    1986-01-01

    High resolution spectra of six newly discovered extreme helium stars are presented. LSS 5121 is shown to be a spectroscopical twin of the hot extreme helium star HD 160641. A preliminary LTE analysis of LSS 3184 yielded an effective temperature of 22,000 K and a surface gravity of log g = 3.2. Four stars form a new subgroup, classified by sharp-lined He I spectra and pronounced O II spectra, and it is conjectured that these lie close to the Eddington limit. The whole group of extreme helium stars apparently is inhomogeneous with respect to luminosity to mass ratio and chemical composition.

  6. Extreme Consumption Drinking Gaming and Prepartying among High School Students

    Science.gov (United States)

    Tomaso, Cara C.; Zamboanga, Byron L.; Haas, Amie L.; Kenney, Shannon R.; Ham, Lindsay S.; Borsari, Brian

    2016-01-01

    Drinking games and prepartying (i.e., drinking before going to a social gathering/event) have emerged as high-risk drinking behaviors in high school students. The present study examines the current prepartying behaviors of high school students who report current participation in extreme-consumption games (e.g., chugging) with those who do not.…

  7. Morphology and mechanical properties of PA12/plasticized starch blends prepared by high-shear extrusion

    International Nuclear Information System (INIS)

    Teyssandier, F.; Cassagnau, P.; Gérard, J.F.; Mignard, N.; Mélis, F.

    2012-01-01

    Highlights: ► High shear rate processing was found to greatly impact PA12/starch blend morphologies. ► The morphology was observed to be stable under subsequent processing conditions. ► The mechanical properties of the blends under high-shear rate were greatly improved. ► Polymer blend preparation via high-shear processing has proved to be very effective. ► Finally, polymer blends with improved mechanical properties were obtained. - Abstract: PA12/plasticized starch blends (PA12/TPS) were prepared by high-shear twin screw extruder. The morphology development and the mechanical properties of the blends were investigated as a function of the apparent shear rate. High-shear processing has proved to be an efficient method to finely disperse thermoplastic starch in polyamide 12 matrix. Blends containing TPS domains with a size at the nano-scale (R n ∼ 150 nm) homogeneously dispersed in PA12 matrix were obtained. From a modeling point of view, the variation of the droplet radius is closer to the Wu's predictions compared to the Serpe's predictions. From the basic hypothesis of these models, it can be then assumed that compatibilization between both phases occurs during the blend processing. Furthermore, this morphology of the blends has been proved to be stable after a reprocessing step in an internal mixer most likely due to either strong hydrogen bonds between the hydroxyl groups of starch and amide groups of polyamide 12 or to potentially cross reactions between macroradicals accounting for in situ formation of graft copolymers with the potential function of compatibilizers. Mechanical properties of the blends were found to be strongly dependent on the shear rate parameter of blend processing as the mechanical properties increase with shear rate. In agreement to the blend morphology, the elongation at break of the blends was greatly improved attesting of a good adhesion between both phases.

  8. High glucose attenuates shear-induced changes in endothelial hydraulic conductivity by degrading the glycocalyx.

    Directory of Open Access Journals (Sweden)

    Sandra V Lopez-Quintero

    Full Text Available Diabetes mellitus is a risk factor for cardiovascular disease; however, the mechanisms through which diabetes impairs homeostasis of the vasculature have not been completely elucidated. The endothelium interacts with circulating blood through the surface glycocalyx layer, which serves as a mechanosensor/transducer of fluid shear forces leading to biomolecular responses. Atherosclerosis localizes typically in regions of low or disturbed shear stress, but in diabetics, the distribution is more diffuse, suggesting that there is a fundamental difference in the way cells sense shear forces. In the present study, we examined the effect of hyperglycemia on mechanotranduction in bovine aortic endothelial cells (BAEC. After six days in high glucose media, we observed a decrease in heparan sulfate content coincident with a significant attenuation of the shear-induced hydraulic conductivity response, lower activation of eNOS after exposure to shear, and reduced cell alignment with shear stress. These studies are consistent with a diabetes-induced change to the glycocalyx altering endothelial response to shear stress that could affect the distribution of atherosclerotic plaques.

  9. Extreme states of matter high energy density physics

    CERN Document Server

    Fortov, Vladimir E

    2016-01-01

    With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams,electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets, and in many other situations characterized by extremely high pressures and temperatures.Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics, and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview. This second edition is thoroughly revised and expanded, in particular with new material on high energy-density physics, nuclear explosions and other nuclear transformation processes.

  10. Polygenic determinants in extremes of high-density lipoprotein cholesterol.

    Science.gov (United States)

    Dron, Jacqueline S; Wang, Jian; Low-Kam, Cécile; Khetarpal, Sumeet A; Robinson, John F; McIntyre, Adam D; Ban, Matthew R; Cao, Henian; Rhainds, David; Dubé, Marie-Pierre; Rader, Daniel J; Lettre, Guillaume; Tardif, Jean-Claude; Hegele, Robert A

    2017-11-01

    HDL cholesterol (HDL-C) remains a superior biochemical predictor of CVD risk, but its genetic basis is incompletely defined. In patients with extreme HDL-C concentrations, we concurrently evaluated the contributions of multiple large- and small-effect genetic variants. In a discovery cohort of 255 unrelated lipid clinic patients with extreme HDL-C levels, we used a targeted next-generation sequencing panel to evaluate rare variants in known HDL metabolism genes, simultaneously with common variants bundled into a polygenic trait score. Two additional cohorts were used for validation and included 1,746 individuals from the Montréal Heart Institute Biobank and 1,048 individuals from the University of Pennsylvania. Findings were consistent between cohorts: we found rare heterozygous large-effect variants in 18.7% and 10.9% of low- and high-HDL-C patients, respectively. We also found common variant accumulation, indicated by extreme polygenic trait scores, in an additional 12.8% and 19.3% of overall cases of low- and high-HDL-C extremes, respectively. Thus, the genetic basis of extreme HDL-C concentrations encountered clinically is frequently polygenic, with contributions from both rare large-effect and common small-effect variants. Multiple types of genetic variants should be considered as contributing factors in patients with extreme dyslipidemia. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  11. Microstructural evolution in adiabatic shear bands of copper at high strain rates: Electron backscatter diffraction characterization

    International Nuclear Information System (INIS)

    Tang Lin; Chen Zhiyong; Zhan Congkun; Yang Xuyue; Liu Chuming; Cai Hongnian

    2012-01-01

    The microstructural evolution of adiabatic shear bands in annealed copper with different large strains at high strain rates has been investigated by electron backscatter diffraction. The results show that mechanical twinning can occur with minimal contribution to shear localization under dynamic loading. Elongated ultrafine grains with widths of 100–300 nm are observed during the evolution of the adiabatic shear bands. A rotational dynamic recrystallization mechanism is proposed to explain the formation of the elongated ultrafine grains. - Highlights: ► The microstructural evolution of ASB is studied by electron backscatter diffraction. ► Twinning can occur in ASB while the contribution to shear localization is slight. ► Elongated ultrafine grains are observed during the evolution process of ASB. ► A possible mechanism is proposed to explain the microstructure evolution of ASB.

  12. Suppression of endothelial t-PA expression by prolonged high laminar shear stress

    International Nuclear Information System (INIS)

    Ulfhammer, Erik; Carlstroem, Maria; Bergh, Niklas; Larsson, Pia; Karlsson, Lena; Jern, Sverker

    2009-01-01

    Primary hypertension is associated with an impaired capacity for acute release of endothelial tissue-type plasminogen activator (t-PA), which is an important local protective response to prevent thrombus extension. As hypertensive vascular remodeling potentially results in increased vascular wall shear stress, we investigated the impact of shear on regulation of t-PA. Cultured human endothelial cells were exposed to low (≤1.5 dyn/cm 2 ) or high (25 dyn/cm 2 ) laminar shear stress for up to 48 h in two different experimental models. Using real-time RT-PCR and ELISA, shear stress was observed to time and magnitude-dependently suppress t-PA transcript and protein secretion to approximately 30% of basal levels. Mechanistic experiments revealed reduced nuclear protein binding to the t-PA specific CRE element (EMSA) and an almost completely abrogated shear response with pharmacologic JNK inhibition. We conclude that prolonged high laminar shear stress suppresses endothelial t-PA expression and may therefore contribute to the enhanced risk of arterial thrombosis in hypertensive disease.

  13. Is Extremely High Life Satisfaction during Adolescence Advantageous?

    Science.gov (United States)

    Suldo, Shannon M.; Huebner, E. Scott

    2006-01-01

    This study examined whether extremely high life satisfaction was associated with adaptive functioning or maladaptive functioning. Six hundred ninety-eight secondary level students completed the Students' Life Satisfaction Scale [Huebner, 1991a, School Psychology International, 12, pp. 231-240], Youth Self-Report of the Child Behavior Checklist…

  14. Effect of total cementitious content on shear strength of high-volume fly ash concrete beams

    International Nuclear Information System (INIS)

    Arezoumandi, Mahdi; Volz, Jeffery S.; Ortega, Carlos A.; Myers, John J.

    2013-01-01

    Highlights: ► Existing design standards conservatively predicted the capacity of the HVFAC beams. ► In general, the HVFAC beams exceeded the code predicted shear strengths. ► The cementitious content did not have effect on the shear behavior of the HVFAC beams. - Abstract: The production of portland cement – the key ingredient in concrete – generates a significant amount of carbon dioxide. However, due to its incredible versatility, availability, and relatively low cost, concrete is the most consumed manmade material on the planet. One method of reducing concrete’s contribution to greenhouse gas emissions is the use of fly ash to replace a significant amount of the cement. This paper compares two experimental studies that were conducted to investigate the shear strength of full-scale beams constructed with high-volume fly ash concrete (HVFAC) – concrete with at least 50% of the cement replaced with fly ash. The primary difference between the two studies involved the amount of cementitious material, with one mix having a relatively high total cementitious content (502 kg/m 3 ) and the other mix having a relatively low total cementitious content (337 kg/m 3 ). Both mixes utilized a 70% replacement of portland cement with a Class C fly ash. Each of these experimental programs consisted of eight beams (six without shear reinforcing and two with shear reinforcing in the form of stirrups) with three different longitudinal reinforcement ratios. The beams were tested under a simply supported four-point loading condition. The experimental shear strengths of the beams were compared with both the shear provisions of selected standards (US, Australia, Canada, Europe, and Japan) and a shear database of conventional concrete (CC) specimens. Furthermore, statistical data analyses (both parametric and nonparametric) were performed to evaluate whether or not there is any statistically significant difference between the shear strength of both mixes. Results of these

  15. Automatic residue removal for high-NA extreme illumination

    Science.gov (United States)

    Moon, James; Nam, Byong-Sub; Jeong, Joo-Hong; Kong, Dong-Ho; Nam, Byung-Ho; Yim, Dong Gyu

    2007-10-01

    An epidemic for smaller node has been that, as the device architecture shrinks, lithography process requires high Numerical Aperture (NA), and extreme illumination system. This, in turn, creates many lithography problems such as low lithography process margin (Depth of Focus, Exposure Latitude), unstable Critical Dimension (CD) uniformity and restricted guideline for device design rule and so on. Especially for high NA, extreme illumination such as immersion illumination systems, above all the related problems, restricted design rule due to forbidden pitch is critical and crucial issue. This forbidden pitch is composed of numerous optical effects but majority of these forbidden pitch compose of photo resist residue and these residue must be removed to relieve some room for already tight design rule. In this study, we propose automated algorithm to remove photo resist residue due to high NA and extreme illumination condition. This algorithm automatically self assembles assist patterns based on the original design layout, therefore insuring the safety and simplicity of the generated assist pattern to the original design and removes any resist residue created by extreme illumination condition. Also we tested our automated algorithm on full chip FLASH memory device and showed the residue removal effect by using commercial verification tools as well as on actual test wafer.

  16. Microturbulence and Flow Shear in High-performance JET ITB Plasma; TOPICAL

    International Nuclear Information System (INIS)

    R.V. Budny; A. Andre; A. Bicoulet; C. Challis; G.D. Conway; W. Dorland; D.R. Ernst; T.S. Hahm; T.C. Hender; D. McCune; G. Rewoldt; S.E. Sharapov

    2001-01-01

    The transport, flow shear, and linear growth rates of microturbulence are studied for a Joint European Torus (JET) plasma with high central q in which an internal transport barrier (ITB) forms and grows to a large radius. The linear microturbulence growth rates of the fastest growing (most unstable) toroidal modes with high toroidal mode number are calculated using the GS2 and FULL gyrokinetic codes. These linear growth rates, gamma (subscript lin) are large, but the flow-shearing rates, gamma (subscript ExB) (dominated by the toroidal rotation contribution) are also comparably large when and where the ITB exists

  17. Analyzing shear band formation with high resolution X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Pagan, Darren C.; Obstalecki, Mark; Park, Jun-Sang; Miller, Matthew P.

    2018-04-01

    Localization of crystallographic slip into shear bands during uniaxial compression of a copper single crystal is studied using very far-field high-energy diffraction microscopy (vff-HEDM). Diffracted intensity was collected in-situ as the crystal deformed using a unique mobile detector stage that provided access to multiple diffraction peaks with high-angular resolution. From the diffraction data, single crystal orientation pole figures (SCPFs) were generated and are used to track the evolution of the distribution of lattice orientation that develops as slip localizes. To aid the identification of 'signatures' of shear band formation and analyze the SCPF data, a model of slip-driven lattice reorientation within shear bands is introduced. Confidence is built in conclusions drawn from the SCPF data about the character of internal slip localization through comparisons with strain fields on the sample surface measured simultaneously using digital image correlation. From the diffraction data, we find that the active slip direction and slip plane are not directly aligned with the orientation of the shear bands that formed. In fact, by extracting the underlying slip system activity from the SCPF data, we show that intersecting shear bands measured on the surface of the sample arise from slip primarily on the same underlying single slip system. These new vff-HEDM results raise significant questions on the use of surface measurements for slip system activity estimation. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. An experimental study of high heat flux removal by shear-driven liquid films

    Directory of Open Access Journals (Sweden)

    Zaitsev Dmitry

    2017-01-01

    Full Text Available Intensively evaporating liquid films, moving under the friction of a co-current gas flow in a mini-channel (shear-driven liquid films, are promising for the use in cooling systems of modern semiconductor devices with high local heat release. In this work, the effect of various parameters, such as the liquid and gas flow rates and channel height, on the critical heat flux in the locally heated shear-driven water film has been studied. A record value of the critical heat flux of 1200 W/cm2 has been achieved in experiments. Heat leaks to the substrate and heat losses to the atmosphere in total do not exceed 25% for the heat flux above 400 W/cm2. Comparison of the critical heat fluxes for the shear-driven liquid film and for flow boiling in a minichannel shows that the critical heat flux is an order of magnitude higher for the shear-driven liquid film. This confirms the prospect of using shear-driven liquid films in the modern high-efficient cooling systems.

  19. Load carrying capacity of shear wall t-connections reinforced with high strength wire ropes

    DEFF Research Database (Denmark)

    Jørgensen, Henrik B.; Bryndom, Thor; Larsen, Michael

    2016-01-01

    -friendly solution. The wire ropes have no bending stiffness and therefore allow for an easier vertical installation of the wall elements. During the last 10 – 15 years, a number of shear tests on plane wire rope connections have been carried out. However, to the best knowledge of the authors, tests on wire rope......Traditionally, U-bar loop connections with keyed joints have been used in vertical shear connections between precast concrete wall elements. However, in the recent years, connections with looped high strength wire ropes instead of U-bar loops have proven to be a much more construction...... connections for assembly of precast elements in different planes, such as T- and L-connections, have not yet been published. This paper presents the results of a large test series recently conducted at the University of Southern Denmark to study the shear behaviour of high strength wire rope T...

  20. High resolution modelling of extreme precipitation events in urban areas

    Science.gov (United States)

    Siemerink, Martijn; Volp, Nicolette; Schuurmans, Wytze; Deckers, Dave

    2015-04-01

    The present day society needs to adjust to the effects of climate change. More extreme weather conditions are expected, which can lead to longer periods of drought, but also to more extreme precipitation events. Urban water systems are not designed for such extreme events. Most sewer systems are not able to drain the excessive storm water, causing urban flooding. This leads to high economic damage. In order to take appropriate measures against extreme urban storms, detailed knowledge about the behaviour of the urban water system above and below the streets is required. To investigate the behaviour of urban water systems during extreme precipitation events new assessment tools are necessary. These tools should provide a detailed and integral description of the flow in the full domain of overland runoff, sewer flow, surface water flow and groundwater flow. We developed a new assessment tool, called 3Di, which provides detailed insight in the urban water system. This tool is based on a new numerical methodology that can accurately deal with the interaction between overland runoff, sewer flow and surface water flow. A one-dimensional model for the sewer system and open channel flow is fully coupled to a two-dimensional depth-averaged model that simulates the overland flow. The tool uses a subgrid-based approach in order to take high resolution information of the sewer system and of the terrain into account [1, 2]. The combination of using the high resolution information and the subgrid based approach results in an accurate and efficient modelling tool. It is now possible to simulate entire urban water systems using extreme high resolution (0.5m x 0.5m) terrain data in combination with a detailed sewer and surface water network representation. The new tool has been tested in several Dutch cities, such as Rotterdam, Amsterdam and The Hague. We will present the results of an extreme precipitation event in the city of Schiedam (The Netherlands). This city deals with

  1. Experimental investigation of the effects of high-frequency electroactive morphing on the shear-layer

    Science.gov (United States)

    Scheller, Johannes; Rizzo, Karl-Joseph; Jodin, Gurvan; Duhayon, Eric; Rouchon, Jean-François; Hunt, Julian; Braza, Marianna

    2015-11-01

    Time-resolved PIV measurements are conducted at a Reynolds number of 270 . 000 downstream of the trailing edge of a NACA4412 airfoil equipped with trailing-edge piezoelectric tab actuators to investigate the high-frequency low-amplitude actuation's effect on the shear-layer. A comparison of the time-averaged Reynolds stress tensor components at different actuation frequency reveals a significant impact of the actuation on the shear-layer dynamics. A proper orthogonal decomposition analysis is conducted in order to investigate the actuation's impact on the vortex breakdown. It will be shown that a specific low-amplitude actuation frequency enables a reduction of the predominant shear-layer frequencies.

  2. Extremely high concentration of folates in premature newborns.

    Science.gov (United States)

    Zikavska, T; Brucknerova, I

    2014-01-01

    Extremely high concentration of folates in premature newborns: case reports. Folates are a group of water soluble compounds, which are important for metabolic processes in human body. These are important during periods of rapid cell growth. The most accurate indicator of long-term folate level status in the body is the determination of red blood cell (RBC) folate concentrations. The optimal level of RBC folate is not known in neonatal period. Authors discuss the reasons for extremely high level of RBC folate concentrations. In our work we present the cases of two premature newborns with extremely high level of RBC folate concentrations, which were analyzed immunochemically on the first day of life and after six weeks of life. In both cases we measured RBC folate concentrations on the 1st day of life. After 6 weeks we found extremely high RBC folate concentration level (5516.67 ng/ml) in the first case after RBC transfusions. In second case after two months of life the RBC folate concentration level was doubled (2335.1 ng/ml) until 24 hours after RBC transfusion compared to levels after birth. The normal range of RBC folate values vary in newborns. The upper limit of daily dose of folic acid in pregnancy and neonatal period is not known. On the other hand it is an easily excreted water-soluble vitamin but in premature newborn it can lead to the disruption of metabolic balance and slow its degradation. Some factors can have an impact on RBC folate concentration. Blood transfusion can be one of the main influences on RBC folate concentration. To clarify these mechanisms further studies are required (Ref. 29).

  3. High Energy Ion Acceleration by Extreme Laser Radiation Pressure

    Science.gov (United States)

    2017-03-14

    published in the internationally leading journal Physical Review Letters. We continued to progress this pionee 15.  SUBJECT TERMS ion therapy, heavy ion ...Thomson parabola spectrometer: To separate and provide a measurement of the charge -to-mass ratio and energy spectrum of the different ion species...AFRL-AFOSR-UK-TR-2017-0015 High energy ion acceleration by extreme laser radiation pressure Paul McKenna UNIVERSITY OF STRATHCLYDE VIZ ROYAL COLLEGE

  4. The high resolution shear wave seismic reflection technique

    International Nuclear Information System (INIS)

    Johnson, W.J.; Clark, J.C.

    1991-04-01

    This report presents the state-of-the-art of the high resolution S-wave reflection technique. Published and unpublished literature has been reviewed and discussions have been held with experts. Result is to confirm that the proposed theoretical and practical basis for identifying aquifer systems using both P- and S-wave reflections is sound. Knowledge of S-wave velocity and P-wave velocity is a powerful tool for assessing the fluid characteristics of subsurface layers. Material properties and lateral changes in material properties such as change from clay to sand, can be inferred from careful dual evaluation of P and S-wave records. The high resolution S-wave reflection technique has seen its greatest application to date as part of geotechnical studies for building foundations in the Far East. Information from this type of study has been evaluated and will be incorporated in field studies. In particular, useful information regarding S-wave sources, noise suppression and recording procedures will be incorporated within the field studies. Case histories indicate that the best type of site for demonstrating the power of the high resolution S-wave technique will be in unconsolidated soil without excessive structural complexities. More complex sites can form the basis for subsequent research after the basic principles of the technique can be established under relatively uncomplicated conditions

  5. Micro tectonic milonitas analysis in the extreme south of the Sarandi del Yi shear zone: Kinematics and deformation conditions

    International Nuclear Information System (INIS)

    Oyhantçabal, P; Suarez, I; Seluchi, N; Martinez, X.

    2010-01-01

    The Shear Zone divides Sarandi del Yi Craton River Plate in Piedra Alta and Nico Perez land . The southern end of this zone extends to north - south from the vicinity of the town of Minas to Punta Solis. The predominant lithology of the study area consists of a granitic mylonite with abundant muscovite and biotite. Structural data of foliation , stretching lineation and kinematic indicators were surveyed .Petrographic analysis shows that quartz is presented as ribbons polycrystalline product subgrain rotation recrystallization and grain boundary migration . Feldspar porphyroclasts are partially recrystallized in developing type structures c ore and mantle . Kinematic indicators such as sigma porphyroclasts , mica fish and oblique foliation defined consistently sinistral sense . The presence of stable and mirmequitas in the plane of biotite foliation along the microstructures described in quartz and feldspar , can be inferred temperature conditions between 450 ° C and 550° C during deformation

  6. The plane strain shear fracture of the advanced high strength steels

    International Nuclear Information System (INIS)

    Sun, Li

    2013-01-01

    The “shear fracture” which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of “shear fracture” phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a “shear fracture” in the component

  7. Load Carrying Capacity of Shear Wall T-Connections Reinforced with High Strength Wire Ropes

    DEFF Research Database (Denmark)

    Jørgensen, Henrik Brøner; Bryndum, Thor; Larsen, Michael

    2017-01-01

    Traditionally, U-bar loop connections with keyed joints have been used in vertical shear connections between precast concrete wall elements. However, in the recent years, connections with looped high strength wire ropes instead of U-bar loops have proven to be a much more construction-friendly so......Traditionally, U-bar loop connections with keyed joints have been used in vertical shear connections between precast concrete wall elements. However, in the recent years, connections with looped high strength wire ropes instead of U-bar loops have proven to be a much more construction......-friendly solution. The wire ropes have no bending stiffness and therefore allow for an easier vertical installation of the wall elements. During the last 10 – 15 years, a number of shear tests on plane wire rope connections have been carried out. However, to the best knowledge of the authors, tests on wire rope...... connections for assembly of precast elements in different planes, such as T- and L-connections, have not yet been published. This paper presents the results of a large test series recently conducted at the University of Southern Denmark to study the shear behaviour of high strength wire rope T...

  8. A study of graphite-epoxy laminate failures due to high transverse shear strains using the multi-span-beam shear test procedure

    Science.gov (United States)

    Jegley, Dawn C.

    1989-01-01

    The multi-span-beam shear test procedure is used to study failure mechanisms in graphite-epoxy laminates due to high transverse shear strains induced by severe local bending deformations in test specimens. Results of a series of tests on specimens with a variety of stacking sequences, including some with adhesive interleaving, are presented. These results indicate that laminates with stacking sequences with several + or - 45 and 90 deg plies next to each other are more susceptible to failures due to high transverse shear strains than laminates with + or - 45 and 0 deg plies next to each other or with + or - 45 deg plies next to layers of adhesive interleaving. Results of these tests are compared with analytical results based on finite elements.

  9. High resolution shear wave reflection surveying for hydrogeological investigations

    International Nuclear Information System (INIS)

    Johnson, W.J.; Clark, J.C.

    1992-08-01

    The high resolution S-wave method has been developed to be a powerful tool in mapping subsurface lithology and in conducting groundwater investigations. The research has demonstrated that the resolution obtainable using S-waves in a Coastal Plain environment is more than double than that obtained using conventional reflection, which already offers a higher resolution than any other surface method. Where the mapping of thin clay layers functioning as aquitards or thin sand layers functioning as aquifers are critical to the understanding of groundwater flow, S-wave reflections offer unparalleled possibilities for nondestructive exploration. The field experiment at Cooke Crossroads, South Carolina enabled the detection and mapping of beds in the thickness range of one to three feet. The S-wave reflection technique, in combination with conventional P-wave reflection, has potential to directly detect confined and unconfined aquifers. This is a breakthrough technology that still requires additional research before it can be applied on a commercial basis. Aquifer systems were interpreted from the test data at Cooke Crossroads consistent with theoretical model. Additional research is need in assessing the theoretical response of P- and S-waves to subsurface interfaces within unconsolidated sediments of varying moisture content and lithology. More theoretical modeling and in situ testing are needed to bring our knowledge of these phenomena to the level that oil and gas researchers have done for fluids in sandstones

  10. Characteristics of extreme ultraviolet emission from high-Z plasmas

    International Nuclear Information System (INIS)

    Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.

    2016-01-01

    We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics. (paper)

  11. Characteristics of extreme ultraviolet emission from high-Z plasmas

    Science.gov (United States)

    Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.

    2016-03-01

    We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics.

  12. Solidification at the High and Low Rate Extreme

    Energy Technology Data Exchange (ETDEWEB)

    Meco, Halim [Iowa State Univ., Ames, IA (United States)

    2004-12-19

    The microstructures formed upon solidification are strongly influenced by the imposed growth rates on an alloy system. Depending on the characteristics of the solidification process, a wide range of growth rates is accessible. The prevailing solidification mechanisms, and thus the final microstructure of the alloy, are governed by these imposed growth rates. At the high rate extreme, for instance, one can have access to novel microstructures that are unattainable at low growth rates. While the low growth rates can be utilized for the study of the intrinsic growth behavior of a certain phase growing from the melt. Although the length scales associated with certain processes, such as capillarity, and the diffusion of heat and solute, are different at low and high rate extremes, the phenomena that govern the selection of a certain microstructural length scale or a growth mode are the same. Consequently, one can analyze the solidification phenomena at both high and low rates by using the same governing principles. In this study, we examined the microstructural control at both low and high extremes. For the high rate extreme, the formation of crystalline products and factors that control the microstructure during rapid solidification by free-jet melt spinning are examined in Fe-Si-B system. Particular attention was given to the behavior of the melt pool at different quench-wheel speeds. Since the solidification process takes place within the melt-pool that forms on the rotating quench-wheel, we examined the influence of melt-pool dynamics on nucleation and growth of crystalline solidification products and glass formation. High-speed imaging of the melt-pool, analysis of ribbon microstructure, and measurement of ribbon geometry and surface character all indicate upper and lower limits for melt-spinning rates for which nucleation can be avoided, and fully amorphous ribbons can be achieved. Comparison of the relevant time scales reveals that surface-controlled melt

  13. Extremely-high vacuum pressure measurement by laser ionization

    International Nuclear Information System (INIS)

    Kokubun, Kiyohide

    1991-01-01

    Laser ionization method has the very high sensitivity for detecting atoms and molecules. Hurst et al. successfully detected a single Cs atom by means of resonance ionization spectroscopy developed by them. Noting this high sensitivity, the authors have attempted to apply the laser ionization method to measure gas pressure, particularly in the range down to extremely high vacuum. At present, hot cathode ionization gauges are used for measuring gas pressure down to ultrahigh vacuum, however, those have a number of disadvantages. The pressure measurement using lasers does not have such disadvantages. The pressure measurement utilizing the laser ionization method is based on the principle that when laser beam is focused through a lens, the amount of atom or molecule ions generated in the focused space region is proportional to gas pressure. In this paper, the experimental results are presented on the nonresonant multiphoton ionization characteristics of various kinds of gases, the ion detection system with high sensitivity and an extremely high vacuum system prepared for the laser ionization experiment. (K.I.)

  14. High-Strain Rate Failure Modeling Incorporating Shear Banding and Fracture

    Science.gov (United States)

    2017-11-22

    High Strain Rate Failure Modeling Incorporating Shear Banding and Fracture The views, opinions and/or findings contained in this report are those of...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS...Report as of 05-Dec-2017 Agreement Number: W911NF-13-1-0238 Organization: Columbia University Title: High Strain Rate Failure Modeling Incorporating

  15. Laser waveform control of extreme ultraviolet high harmonics from solids.

    Science.gov (United States)

    You, Yong Sing; Wu, Mengxi; Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Gholam-Mirzaei, Shima; Browne, Dana A; Chini, Michael; Chang, Zenghu; Schafer, Kenneth J; Gaarde, Mette B; Ghimire, Shambhu

    2017-05-01

    Solid-state high-harmonic sources offer the possibility of compact, high-repetition-rate attosecond light emitters. However, the time structure of high harmonics must be characterized at the sub-cycle level. We use strong two-cycle laser pulses to directly control the time-dependent nonlinear current in single-crystal MgO, leading to the generation of extreme ultraviolet harmonics. We find that harmonics are delayed with respect to each other, yielding an atto-chirp, the value of which depends on the laser field strength. Our results provide the foundation for attosecond pulse metrology based on solid-state harmonics and a new approach to studying sub-cycle dynamics in solids.

  16. High-shear granulation as a manufacturing method for cocrystal granules

    DEFF Research Database (Denmark)

    Rehder, Sönke; Christensen, Niels Peter Aae; Rantanen, Jukka

    2013-01-01

    and the respective excipients). The drug release was slightly decreased by cocrystal formation, most likely due to the lower solubility of the cocrystal. In the presence of calcium hydrogenphosphate however, no influence of cocrystal formation on either compactability or on drug release were observed, compared...... with the reference tablets. It was concluded that high-shear wet granulation is a valuable, however complex, manufacturing method for cocrystals. Cocrystal formation may influence compactability and drug release and thus affect drug performance and should be investigated during pre-formulation.......Cocrystal formation allows the tailoring of physicochemical as well as of mechanical properties of an API. However, there is a lack of large-scale manufacturing methods of cocrystals. Therefore, the objective of this work was to examine the suitability of high-shear wet granulation...

  17. The influence of high shear mixing on ternary dry powder inhaler formulations.

    Science.gov (United States)

    Hertel, Mats; Schwarz, Eugen; Kobler, Mirjam; Hauptstein, Sabine; Steckel, Hartwig; Scherließ, Regina

    2017-12-20

    The blending process is a key step in the production of dry powder inhaler formulations, but only little is known about the influence of process parameters. This is especially true for high shear blending of ternary formulations. For this reason, this study aims to investigate the influence of high shear mixing process parameters (mixing time and rotation speed) on the fine particle fraction (FPF) of ternary mixtures when using budesonide as model drug, two different carrier materials and two different mixing orders. Prolonged mixing time and higher rotation speeds led to lower FPFs, possibly due to higher press-on forces acting on the active pharmaceutical ingredients (API). In addition, a clear correlation between the energy consumption of the blender (the energy input into the blend) and the reduction of the FPF could be shown. Furthermore blending the carrier and the fines before adding the API was also found to be favorable. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Experimental and numerical study of plastic shear instability under high-speed loading conditions

    International Nuclear Information System (INIS)

    Sokovikov, Mikhail; Chudinov, Vasiliy; Bilalov, Dmitry; Oborin, Vladimir; Uvarov, Sergey; Plekhov, Oleg; Terekhina, Alena; Naimark, Oleg

    2014-01-01

    The behavior of specimens dynamically loaded during the split Hopkinson (Kolsky) bar tests in a regime close to simple shear conditions was studied. The lateral surface of the specimens was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. The process of target perforation involving plug formation and ejection was examined using a high-speed infra-red camera and a VISAR velocity measurement system. The microstructure of tested specimens was analyzed using an optical interferometer-profilometer and a scanning electron microscope. The development of plastic shear instability regions has been simulated numerically

  19. Heat transfer modeling in asymmetrical sheet rolling of aluminium alloys with ultra high shear strain

    Directory of Open Access Journals (Sweden)

    Pesin Alexander

    2016-01-01

    Full Text Available Asymmetrical sheet rolling is a method of severe plastic deformation (SPD for production of aluminium alloys with UFG structure. Prediction of sheet temperature during SPD is important. The temperature of sheet is changed due to the conversion of mechanical work into heat through sliding on contact surfaces and high shear strain. Paper presents the results of FEM simulation of the effect of contact friction, rolling speed and rolls speed ratio on the heating of aluminium sheets during asymmetrical rolling.

  20. Demonstration of high performance negative central magnetic shear discharges on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Rice, B.W.; Burrell, K.H.; Lao, L.L.

    1996-01-01

    Reliable operation of discharges with negative central magnetic shear has led to significant increases in plasma performance and reactivity in both low confinement, L-mode, and high confinement, H-mode, regimes in the DIII-D tokamak. Using neutral beam injection early in the initial current ramp, a large range of negative shear discharges have been produced with durations lasting up to 3.2 s. The total non- inductive current (beam plus bootstrap) ranges from 50% to 80% in these discharges. In the region of shear reversal, significant peaking of the toroidal rotation [f φ ∼ 30-60 kHz] and ion temperature [T i (0) ∼ 15-22 keV] profiles are observed. In high power discharges with an L-mode edge, peaked density profiles are also observed. Confinement enhancement factors up to H ≡ τ E /τ ITER-89P ∼ 2.5 with an L-mode edge, and H ∼ 3.3 in an Edge Localized Mode (ELM)-free H-mode, are obtained. Transport analysis shows both ion thermal diffusivity and particle diffusivity to be near or below standard neoclassical values in the core. Large pressure peaking in L- mode leads to high disruptivity with Β N ≡ Β T /(I/aB) ≤ 2.3, while broader pressure profiles in H- mode gives low disruptivity with Β N ≤ 4.2

  1. Characterization of commercial magnetorheological fluids at high shear rate: influence of the gap

    Science.gov (United States)

    Golinelli, Nicola; Spaggiari, Andrea

    2018-07-01

    This paper reports the experimental tests on the behaviour of a commercial MR fluid at high shear rates and the effect of the gap. Three gaps were considered at multiple magnetic fields and shear rates. From an extended set of almost two hundred experimental flow curves, a set of parameters for the apparent viscosity are retrieved by using the Ostwald de Waele model for non-Newtonian fluids. It is possible to simplify the parameter correlation by making the following considerations: the consistency of the model depends only on the magnetic field, the flow index depends on the fluid type and the gap shows an important effect only at null or very low magnetic fields. This lead to a simple and useful model, especially in the design phase of a MR based product. During the off state, with no applied field, it is possible to use a standard viscous model. During the active state, with high magnetic field, a strong non-Newtonian nature becomes prevalent over the viscous one even at very high shear rate; the magnetic field dominates the apparent viscosity change, while the gap does not play any relevant role on the system behaviour. This simple assumption allows the designer to dimension the gap only considering the non-active state, as in standard viscous systems, and taking into account only the magnetic effect in the active state, where the gap does not change the proposed fluid model.

  2. Degree of coupling in high-rise mixed shear walls structures

    Indian Academy of Sciences (India)

    A simple method of analysis is presented to determine the influence of single shear walls (SSW) on the degree of coupling DoC and on the peak shear demand PSD for beams of coupled shear walls (CSW) in mixed shear wall structures (MSW). Non-coupled lateral load resisting structures such as singular planar walls and ...

  3. Theory of high-n toroidicity-induced shear Alfven eigenmode in tokamaks

    International Nuclear Information System (INIS)

    Fu, G.Y.; Cheng, C.Z.; Princeton Univ., NJ

    1989-07-01

    High-n WKB-ballooning mode equation is employed to study toroidicity-induced shear Alfven eigenmodes (TAE) in the δ - α space, where δ = (r/q)(dq/dr) is the magnetic shear, and α = -(2Rq 2 /B 2 )(dp/dr) is the normalized pressure gradient for tokamak plasmas. In the ballooning mode first stability region, TAE modes are found to exist only for α less than some critical value α c . We also find that these TAE modes reappear in the ballooning mode second stability region for bands of α values. The global envelope structures of these TAE modes are studied by WKB method and are found to be bounded radially if the local mode frequency has a maximum in radius. 15 refs., 14 figs

  4. Shearing of saturated clays in rock joints at high confining pressures

    International Nuclear Information System (INIS)

    Wang, C.; Mao, N.

    1979-01-01

    Saturated clays are sheared between rock joints at various pore water pressures and at confining pressures up to 3 kb (300 Mpa). Sliding on these joints is stable. For a given clay, the shear stress required to initiate sliding increases linearly with the effective normal stress across the sliding surface, with a slope of 0.08 +- 0.01 for joints filled with saturated montmorillonite, 0.12 +- 0.01 with saturated chlorite, 0.15 +- 0.01 with saturated kaolinite, and 0.22 +- 0.02 with saturated silty illite. Thus at high confining pressures the shear stress required to initiate sliding on joints filled with saturated clays are very much smaller than that required to initiate sliding on clean rock joints or on joints filled with dry gouge materials. In the crust, saturation of gouge materials along active faults would greatly lower the frictional resistance to faulting and would stabilize fault movement. Different fault behaviors such as stable creep along some faults and intermittent but sudden slip along others may reflect in part different degrees of saturation of fault zones at depth

  5. Rotational and magnetic shear stabilization of magnetohydrodynamic modes and turbulence in DIII-D high performance discharges

    International Nuclear Information System (INIS)

    Lao, L.L.; Burrell, K.H.; Casper, T.S.

    1996-08-01

    The confinement and the stability properties of the DIII-D tokamak high performance discharges are evaluated in terms of rotational and magnetic shear with emphasis on the recent experimental results obtained from the negative central magnetic shear (NCS) experiments. In NCS discharges, a core transport barrier is often observed to form inside the NCS region accompanied by a reduction in core fluctuation amplitudes. Increasing negative magnetic shear contributes to the formation of this core transport barrier, but by itself is not sufficient to fully stabilize the toroidal drift mode (trapped- electron-η i mode) to explain this formation. Comparison of the Doppler shift shear rate to the growth rate of the η i mode suggests that the large core E x B flow shear can stabilize this mode and broaden the region of reduced core transport . Ideal and resistive stability analysis indicates the performance of NCS discharges with strongly peaked pressure profiles is limited by the resistive interchange mode to low Β N < 2.3. This mode is insensitive to the details of the rotational and the magnetic shear profiles. A new class of discharges which has a broad region of weak or slightly negative magnetic shear (WNS) is described. The WNS discharges have broader pressure profiles and higher values than the NCS discharges together with high confinement and high fusion reactivity

  6. Rheological Behavior of Tomato Fiber Suspensions Produced by High Shear and High Pressure Homogenization and Their Application in Tomato Products

    Science.gov (United States)

    Sun, Ping; Adhikari, Benu P.; Li, Dong

    2018-01-01

    This study investigated the effects of high shear and high pressure homogenization on the rheological properties (steady shear viscosity, storage and loss modulus, and deformation) and homogeneity in tomato fiber suspensions. The tomato fiber suspensions at different concentrations (0.1%–1%, w/w) were subjected to high shear and high pressure homogenization and the morphology (distribution of fiber particles), rheological properties, and color parameters of the homogenized suspensions were measured. The homogenized suspensions were significantly more uniform compared to unhomogenized suspension. The homogenized suspensions were found to better resist the deformation caused by external stress (creep behavior). The apparent viscosity and storage and loss modulus of homogenized tomato fiber suspension are comparable with those of commercial tomato ketchup even at the fiber concentration as low as 0.5% (w/w), implying the possibility of using tomato fiber as thickener. The model tomato sauce produced using tomato fiber showed desirable consistency and color. These results indicate that the application of tomato fiber in tomato-based food products would be desirable and beneficial. PMID:29743890

  7. Adjuvant radiotherapy in high-grade extremity sarcomas

    International Nuclear Information System (INIS)

    Franca, Carlos Antonio da Silva; Penna, Antonio Belmiro Rodrigues Campbell; Carvalho, Antonio Carlos Pires; Vieira, Sergio Lannes

    2010-01-01

    Objective: to evaluate the therapies utilized in the authors' institution for management of high-grade extremity sarcomas, analyzing the overall survival rates following multidisciplinary treatment. Materials and methods: retrospective study developed in the period from 1993 to 2007 with 36 patients diagnosed with stages IIb/III, submitted to postoperative external beam radiotherapy, with or without boost dose, utilizing high-dose brachytherapy. Results: thirty-six patients underwent surgery followed by adjuvant external beam radiation therapy. Four patients (11%) received boost dose with brachytherapy, and seven (19%) received chemotherapy. The average dose for radiotherapy was 50 Gy (CI 95%: 47-53 Gy), and the four patients with brachytherapy boost received doses ranging from 16.2 to 35 Gy. Chemotherapy was indicated for seven patients (19%) with positive margins. Fifteen patients (42%) presented local or distant recurrence, and all of them progressed to death. Twenty-one patients (58%) remain with no clinical/radiological evidence of local/distant recurrence. The mean follow-up time was 88 months (IC 95%: 74-102). The overall seven years survival rate was 80%. Conclusion: combined surgery and radiotherapy is an effective treatment with excellent outcomes in cases where brachytherapy is associated, with improved overall survival rates. (author)

  8. Application of MMC model on simulation of shearing process of thick hot-rolled high strength steel plate

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Liang; Li, Shuhui [Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240 (China); Yang, Bing; Gao, Yongsheng [Automotive Steel Research Institute, R and D Center, BaoShan Iron and Steel Co.,Ltd, Shanghai 201900 (China)

    2013-12-16

    Shear operation is widely used as the first step in sheet metal forming to cut the sheet or plate into the required size. The shear of thick hot-rolled High Strength Steel (HSS) requires large shearing force and the sheared edge quality is relatively poor because of the large thickness and high strength compared with the traditional low carbon steel. Bad sheared edge quality will easily lead to edge cracking during the post-forming process. This study investigates the shearing process of thick hot-rolled HSS plate metal, which is generally exploited as the beam of heavy trucks. The Modified Mohr-Coulomb fracture criterion (MMC) is employed in numerical simulation to calculate the initiation and propagation of cracks during the process evolution. Tensile specimens are designed to obtain various stress states in tension. Equivalent fracture strains are measured with Digital Image Correlation (DIC) equipment to constitute the fracture locus. Simulation of the tension test is carried out to check the fracture model. Then the MMC model is applied to the simulation of the shearing process, and the simulation results show that the MMC model predicts the ductile fracture successfully.

  9. Application of MMC model on simulation of shearing process of thick hot-rolled high strength steel plate

    International Nuclear Information System (INIS)

    Dong, Liang; Li, Shuhui; Yang, Bing; Gao, Yongsheng

    2013-01-01

    Shear operation is widely used as the first step in sheet metal forming to cut the sheet or plate into the required size. The shear of thick hot-rolled High Strength Steel (HSS) requires large shearing force and the sheared edge quality is relatively poor because of the large thickness and high strength compared with the traditional low carbon steel. Bad sheared edge quality will easily lead to edge cracking during the post-forming process. This study investigates the shearing process of thick hot-rolled HSS plate metal, which is generally exploited as the beam of heavy trucks. The Modified Mohr-Coulomb fracture criterion (MMC) is employed in numerical simulation to calculate the initiation and propagation of cracks during the process evolution. Tensile specimens are designed to obtain various stress states in tension. Equivalent fracture strains are measured with Digital Image Correlation (DIC) equipment to constitute the fracture locus. Simulation of the tension test is carried out to check the fracture model. Then the MMC model is applied to the simulation of the shearing process, and the simulation results show that the MMC model predicts the ductile fracture successfully

  10. Momentum Transport Studies in High E x B Shear Plasmas in NSTX

    International Nuclear Information System (INIS)

    Solomon, W.M.; Kaye, S.M.; Bell, S.M.; LeBlanc, B.P.; Menard, B.P.; Rewoldt, B.P.; Wang, W.; Levinton, F.M.; Yuh, H.; Sabbagh, S.A.

    2008-01-01

    Experiments have been conducted on NSTX to study both steady state and perturbative momentum transport. These studies are unique in their parameter space under investigation, where the low aspect ratio of NSTX results in rapid plasma rotation with E x B shearing rates high enough to suppress low-k turbulence. In some cases, the ratio of momentum to energy confinement time is found to exceed five. Momentum pinch velocities of order 10-40 m/s are inferred from the measured angular momentum flux evolution after non-resonant magnetic perturbations are applied to brake the plasma

  11. Permeability and 3-D melt geometry in shear-induced high melt fraction conduits

    Science.gov (United States)

    Zhu, W.; Cordonnier, B.; Qi, C.; Kohlstedt, D. L.

    2017-12-01

    Observations of dunite channels in ophiolites and uranium-series disequilibria in mid-ocean ridge basalt suggest that melt transport in the upper mantle beneath mid-ocean ridges is strongly channelized. Formation of high melt fraction conduits could result from mechanical shear, pyroxene dissolution, and lithological partitioning. Deformation experiments (e.g. Holtzman et al., 2003) demonstrate that shear stress causes initially homogeneously distributed melt to segregate into an array of melt-rich bands, flanked by melt-depleted regions. At the same average melt fraction, the permeability of high melt fraction conduits could be orders of magnitude higher than that of their homogenous counterparts. However, it is difficult to determine the permeability of melt-rich bands. Using X-ray synchrotron microtomography, we obtained high-resolution images of 3-dimensional (3-D) melt distribution in a partially molten rock containing shear-induced high melt fraction conduits. Sample CQ0705, an olivine-alkali basalt aggregate with a nominal melt fraction of 4%, was deformed in torsion at a temperature of 1473 K and a confining pressure of 300 MPa to a shear strain of 13.3. A sub-volume of CQ0705 encompassing 3-4 melt-rich bands was imaged. Microtomography data were reduced to binary form so that solid olivine is distinguishable from basalt glass. At a spatial resolution of 160 nm, the 3-D images reveal the shape and connectedness of melt pockets in the melt-rich bands. Thin melt channels formed at grain edges are connected at large melt nodes at grain corners. Initial data analysis shows a clear preferred orientation of melt pockets alignment subparallel to the melt-rich band. We use the experimentally determined geometrical parameters of melt topology to create a digital rock with identical 3-D microstructures. Stokes flow simulations are conducted on the digital rock to obtain the permeability tensor. Using this digital rock physics approach, we determine how deformation

  12. Degree of coupling in high-rise mixed shear walls structures

    Indian Academy of Sciences (India)

    assessment of the structural behaviour of coupled shear wall bents in mixed shear wall ... efficient lateral load resisting system against wind and earthquake effects. .... can be obtained from the second derivative of equation (11) which must be ...

  13. CO2-Philic polymer membrane with extremely high separation performance

    KAUST Repository

    Yave, Wilfredo

    2010-01-12

    Polymeric membranes are attractive for CO2 separation and concentration from different gas streams because of their versatility and energy efficiency; they can compete with, and they may even replace, traditional absorption processes. Here we describe a simple and powerful method for developing nanostructured and CO2-philic polymer membranes for CO2 separation. A poly(ethylene oxide)-poly(butylene terephthalate) multiblock copolymer is used as membrane material. Smart additives such as polyethylene glycol dibutyl ether are incorporated as spacers or fillers for producing nanostructured materials. The addition of these specific additives produces CO2-philic membranes and increases the CO2 permeability (750 barrer) up to five-fold without the loss of selectivity. The membranes present outstanding performance for CO2 separation, and the measured CO2 flux is extremely high ( > 2 m3 m -2 h-1 bar-1) with selectivity over H2 and N2 of 10 and 40, respectively, making them attractive for CO 2 capture. © 2009 American Chemical Society.

  14. High-energy roller injuries to the upper extremity.

    Science.gov (United States)

    Askins, G; Finley, R; Parenti, J; Bush, D; Brotman, S

    1986-12-01

    Eleven cases of high-energy industrial roller injuries treated between 1980 and 1984 were retrospectively reviewed. The dominant extremity was affected in nine. Six patients sustained fractures and/or dislocations, and three of these patients required fasciotomies for clinical signs of impending compartment syndromes. All fracture/dislocations, with the exception of a scapula fracture, anterior dislocation of a thumb interphalangeal joint, and a fractured coronoid process of the ulna, required open reduction with internal fixation. Three patients required split-thickness skin grafting for extensive skin degloving. Two patients required immediate amputation. Late sequelae included prolonged edema, nutritional depletion, neuroma formation of the superficial branch of the radial nerve, late carpal tunnel syndrome, and partial brachial plexus palsy. Industrial roller injuries continue to be an occupational hazard associated with more severe crushing trauma than the low-energy wringer washer injuries first described by MacCollum (11). Attention must be paid to the treatment of crushed skin, muscle, and nerves, fracture stabilization, nutritional support, and occupational therapy. Concurrent monitoring for signs of a developing compartment syndrome and complications of rhabdomyolysis is essential.

  15. CO2-Philic polymer membrane with extremely high separation performance

    KAUST Repository

    Yave, Wilfredo; Car, Anja; Funari, S.; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2010-01-01

    Polymeric membranes are attractive for CO2 separation and concentration from different gas streams because of their versatility and energy efficiency; they can compete with, and they may even replace, traditional absorption processes. Here we describe a simple and powerful method for developing nanostructured and CO2-philic polymer membranes for CO2 separation. A poly(ethylene oxide)-poly(butylene terephthalate) multiblock copolymer is used as membrane material. Smart additives such as polyethylene glycol dibutyl ether are incorporated as spacers or fillers for producing nanostructured materials. The addition of these specific additives produces CO2-philic membranes and increases the CO2 permeability (750 barrer) up to five-fold without the loss of selectivity. The membranes present outstanding performance for CO2 separation, and the measured CO2 flux is extremely high ( > 2 m3 m -2 h-1 bar-1) with selectivity over H2 and N2 of 10 and 40, respectively, making them attractive for CO 2 capture. © 2009 American Chemical Society.

  16. Mitigation of houses with extremely high indoor radon concentrations

    International Nuclear Information System (INIS)

    Jiranek, M.; Neznal, M.

    2006-01-01

    Full text of publication follows: The paper reports on the experience of the Czech Technical University in dealing with mitigation of houses in which unusually high indoor radon concentrations were found. The whole process of remediation is illustrated by example of an old single-family house that was built in the area formed by highly permeable soils with high radon content in the soil air. T he house has a small cellar located under 1/5 of the ground floor area. Two types of floors, i.e. timber floors and cracked concrete slabs were found in the house. As a result of extremely high radon concentration in the sub-floor region (up to 600 kBq/m 3 ) and leaky structures in contact with soil, radon concentrations around 100 kBq/m 3 in the cellar and up to 60 kBq/m 3 in the living rooms on the ground floor were measured prior to mitigation. Mitigation measures that were carried out in the house consist of reconstruction of timber floors and installation of active soil depressurization. Timber floors were replaced with concrete slab fitted with damp proof membrane, thermal insulation and floor covering. The soil depressurization system was made up of two sections. The first section is composed of the network of perforated pipes inserted in the drainage layer placed under the new floors and four perforated tubes drilled under the existing floors. The soil air from this section is extracted by means of a roof fan installed at the top of the vertical exhaust pipe running inside the living space and terminating above the roof. The second section was designed to withdraw by means of a small fan radon-laden air from the filling in the floor above the cellar and from perforated tubes drilled into the sub-floor region under the rooms adjacent to the cellar. It serves also for the active ventilation of the cellar. Pressure, temperature and radon concentration sensors were installed into the drainage layer during the reconstruction of floors to record variations in these

  17. Cross-flow shearing effects on the trajectory of highly buoyant bent-over plumes

    Science.gov (United States)

    Tohidi, Ali; Kaye, Nigel Berkeley; Gollner, Michael J.

    2017-11-01

    The dynamics of highly buoyant plumes in cross-flow is ubiquitous throughout both industrial and environmental phenomena. The rise of smoke from a chimney, wastewater discharge into river currents, and dispersion of wildfire plumes are only a few instances. There have been many previous studies investigating the behavior of jets and highly buoyant plumes in cross-flow. So far, however, very little attention has been paid to the role of shearing effects in the boundary layer on the plume trajectory, particularly on the rise height. Numerical simulations and dimensional analysis are conducted to characterize the near- and far-field behavior of a highly buoyant plume in a boundary layer cross-flow. The results show that shear in the cross-flow leads to large differences in the rise height of the plume in relation to a uniform cross-flow, especially at far-field. This material is based upon work supported by the National Science Foundation under Grant No.1200560. Any opinions, findings, and conclusions or recommendations expressed in the material are of the authors and do not necessarily reflect the views of NSF.

  18. Microstructural characteristics of adiabatic shear localization in a metastable beta titanium alloy deformed at high strain rate and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Hongyi, E-mail: h.zhan@uq.edu.au [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Zeng, Weidong [State Key Laboratory of Solidification Processing, School of Materials, Northwestern Polytechnical University, Xi' an 710072 (China); Wang, Gui [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Defence Material Technology Centre, Level 2, 24 Wakefield St, Hawthorn, VIC 3122 (Australia); Kent, Damon [School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4575 (Australia); Dargusch, Matthew [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Defence Material Technology Centre, Level 2, 24 Wakefield St, Hawthorn, VIC 3122 (Australia)

    2015-04-15

    The microstructural evolution and grain refinement within adiabatic shear bands in the Ti6554 alloy deformed at high strain rates and elevated temperatures have been characterized using transmission electron microscopy. No stress drops were observed in the corresponding stress–strain curve, indicating that the initiation of adiabatic shear bands does not lead to the loss of load capacity for the Ti6554 alloy. The outer region of the shear bands mainly consists of cell structures bounded by dislocation clusters. Equiaxed subgrains in the core area of the shear band can be evolved from the subdivision of cell structures or reconstruction and transverse segmentation of dislocation clusters. It is proposed that dislocation activity dominates the grain refinement process. The rotational recrystallization mechanism may operate as the kinetic requirements for it are fulfilled. The coexistence of different substructures across the shear bands implies that the microstructural evolution inside the shear bands is not homogeneous and different grain refinement mechanisms may operate simultaneously to refine the structure. - Graphical abstract: Display Omitted - Highlights: • The microstructure within the adiabatic shear band was characterized by TEM. • No stress drops were observed in the corresponding stress–strain curve. • Dislocation activity dominated the grain refinement process. • The kinetic requirements for rotational recrystallization mechanism were fulfilled. • Different grain refinement mechanisms operated simultaneously to refine the structure.

  19. Extreme Environment High Temperature Communication Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop and demonstrate a communications system capable of operation at extreme temperatures and pressures in hostile and corrosive...

  20. Integrated flow reactor that combines high-shear mixing and microwave irradiation for biodiesel production

    International Nuclear Information System (INIS)

    Choedkiatsakul, I.; Ngaosuwan, K.; Assabumrungrat, S.; Tabasso, S.; Cravotto, G.

    2015-01-01

    A new simple flow system which is made up of a multi-rotor high-shear mixer connected to a multimode microwave reactor has been assembled. This simple loop reactor has been successfully used in the NaOH-catalyzed transesterification of refined palm oil in methanol. Thanks to optimal mass/heat transfer, full conversion was achieved within 5 min (biodiesel yield of 99.80%). High-quality biodiesel was obtained that is in accordance with international specifications and analytical ASTM standards. The procedure's high efficiency and low energy consumption should pave the way for process scale up. - Highlights: • The combination of HSM-MW flow system for biodiesel production has been proposed. • Highly efficient mass and heat transfer in transesterification reaction. • The hybrid reactor enables a complete conversion in 5 min reaction time. • The new system halved the energy consumption of conventional processes

  1. Room Temperature Shear Band Development in Highly Twinned Wrought Magnesium AZ31B Sheet

    Science.gov (United States)

    Scott, Jon; Miles, Michael; Fullwood, David; Adams, Brent; Khosravani, Ali; Mishra, Raja K.

    2013-01-01

    Failure mechanisms were studied in wrought AZ31B magnesium alloy after forming under different strain paths. Optical micrographs were used to observe the shear band formation and regions of high twin density in samples strained under uniaxial, biaxial, and plane strain conditions. Interrupted testing at 4 pct effective strain increments, until failure, was used to observe the evolution of the microstructure. The results showed that shear bands, with a high percentage of twinned grains, appeared early in the samples strained under biaxial or plane strain tension. These bands are similar to those seen in uniaxial tension specimens just prior to failure where the uniaxial tensile ductility was much greater than that observed for plane strain or biaxial tension conditions. A forming limit diagram for AZ31B, which was developed from the strain data, showed that plane strain and biaxial tension had very similar limit strains; this contrasts with materials like steel or aluminum alloys, which typically have greater ductility in biaxial tension compared to plane strain tension.

  2. High Pressure Oxydesulphurisation of Coal—Effect of Oxidizing Agent, Solvent, Shear and Agitator Configuration

    Directory of Open Access Journals (Sweden)

    Moinuddin Ghauri

    2016-06-01

    Full Text Available The ambient temperature high pressure oxydesulphurisation technique was investigated to reduce the sulphur content. Prince of Wales coal was chosen for this study. The focus of the study was to investigate the reduction of both pyritic and organic sulphur while changing the KMnO4/Coal ratio, agitation speed, agitator configuration, and shear. The effect of different concentrations of acetone as a solvent and effect of particle size on the sulphur removal was also studied by a series of experimental runs at ambient temperature. Heating value recovery was found to be increased with the decreased KMnO4/Coal ratio and with decreased acetone concentration. It was found that sulphur removal was enhanced with the increase in shear using a turbine impeller. The effect of particle size was more significant on the pyritic sulphur removal as compared to the organic sulphur removal while heating value recovery was found to increase with decreased desulphurization tome for both, under atmospheric and high pressure.

  3. Developments in dynamic MR elastography for in vitro biomechanical assessment of hyaline cartilage under high-frequency cyclical shear.

    Science.gov (United States)

    Lopez, Orlando; Amrami, Kimberly K; Manduca, Armando; Rossman, Phillip J; Ehman, Richard L

    2007-02-01

    The design, construction, and evaluation of a customized dynamic magnetic resonance elastography (MRE) technique for biomechanical assessment of hyaline cartilage in vitro are described. For quantification of the dynamic shear properties of hyaline cartilage by dynamic MRE, mechanical excitation and motion sensitization were performed at frequencies in the kilohertz range. A custom electromechanical actuator and a z-axis gradient coil were used to generate and image shear waves throughout cartilage at 1000-10,000 Hz. A radiofrequency (RF) coil was also constructed for high-resolution imaging. The technique was validated at 4000 and 6000 Hz by quantifying differences in shear stiffness between soft ( approximately 200 kPa) and stiff ( approximately 300 kPa) layers of 5-mm-thick bilayered phantoms. The technique was then used to quantify the dynamic shear properties of bovine and shark hyaline cartilage samples at frequencies up to 9000 Hz. The results demonstrate that one can obtain high-resolution shear stiffness measurements of hyaline cartilage and small, stiff, multilayered phantoms at high frequencies by generating robust mechanical excitations and using large magnetic field gradients. Dynamic MRE can potentially be used to directly quantify the dynamic shear properties of hyaline and articular cartilage, as well as other cartilaginous materials and engineered constructs. (c) 2007 Wiley-Liss, Inc.

  4. Texture evolution by shear on two planes during ECAP of a high-strength aluminum alloy

    International Nuclear Information System (INIS)

    Wang Shuncai; Starink, Marco J.; Gao Nong; Qiao Xiaoguang; Xu Cheng; Langdon, Terence G.

    2008-01-01

    The evolution of texture was examined during equal-channel angular pressing (ECAP) of an Al-Zn-Mg-Cu alloy having a strong initial texture. An analysis of the local texture using electron backscatter diffraction demonstrates that shear occurs on two shear planes: the main shear plane (MSP) equivalent to the simple shear plane, and a secondary shear plane which is perpendicular to the MSP. Throughout most regions of the ECAP billet, the MSP is close to the intersection plane of the two channels but with a small (5 deg.) deviation. Only the {1 1 1} and {0 0 1} shear systems were activated and there was no experimental evidence for the existence of other shear systems. In a small region at the bottom edge of the billet that passed through the zone of intersection of the channels, the observed textures were fully consistent with the rolling textures of Copper and Goss

  5. Development of K-Basin High-Strength Homogeneous Sludge Simulants and Correlations Between Unconfined Compressive Strength and Shear Strength

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Baer, Ellen BK; Chun, Jaehun; Yokuda, Satoru T.; Schmidt, Andrew J.; Sande, Susan; Buchmiller, William C.

    2011-02-20

    K-Basin sludge will be stored in the Sludge Transport and Storage Containers (STSCs) at an interim storage location on Central Plateau before being treated and packaged for disposal. During the storage period, sludge in the STSCs may consolidate/agglomerate, potentially resulting in high-shear-strength material. The Sludge Treatment Project (STP) plans to use water jets to retrieve K-Basin sludge after the interim storage. STP has identified shear strength to be a key parameter that should be bounded to verify the operability and performance of sludge retrieval systems. Determining the range of sludge shear strength is important to gain high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from the STSCs. The shear strength measurements will provide a basis for bounding sludge properties for mobilization and erosion. Thus, it is also important to develop potential simulants to investigate these phenomena. Long-term sludge storage tests conducted by Pacific Northwest National Laboratory (PNNL) show that high-uranium-content K-Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has 'paste' and 'chunks' with shear strengths of approximately 3-5 kPa and 380-770 kPa, respectively. High-uranium-content sludge samples subjected to hydrothermal testing (e.g., 185 C, 10 hours) have been observed to form agglomerates with a shear strength up to 170 kPa. These high values were estimated by measured unconfined compressive strength (UCS) obtained with a pocket penetrometer. Due to its ease of use, it is anticipated that a pocket penetrometer will be used to acquire additional shear strength data from archived K-Basin sludge samples stored at the PNNL Radiochemical Processing Laboratory (RPL) hot cells. It is uncertain whether the pocket penetrometer provides accurate shear strength measurements of the material. To assess the bounding material strength and

  6. Gum tragacanth dispersions: Particle size and rheological properties affected by high-shear homogenization.

    Science.gov (United States)

    Farzi, Mina; Yarmand, Mohammad Saeed; Safari, Mohammad; Emam-Djomeh, Zahra; Mohammadifar, Mohammad Amin

    2015-08-01

    The effect of high-shear homogenization on the rheological and particle size characteristics of three species of gum tragacanth (GT) was detected. Dispersions were subjected to 0-20 min treatment. Static light scattering techniques and rheological tests were used to study the effect of treatment. The results showed that the process caused a decrease in particle size parameters for all three species, but interestingly, the apparent viscosities increased. The highest increase of apparent viscosity was found for solutions containing Astragalus gossypinus, which possessed the highest insoluble fraction. The viscoelastic behaviors of dispersions were also significantly influenced by the process. Homogenization caused an increase in both G' and G″, in all three species. The alterations seem to be highly dependent on GT species and structure. The results could be of high importance in the industry, since the process will lead to textural modifications of food products containing GT. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Frictional processes in smectite-rich gouges sheared at slow to high slip rates

    Science.gov (United States)

    Aretusini, Stefano; Mittempergher, Silvia; Gualtieri, Alessandro; Di Toro, Giulio

    2015-04-01

    The slipping zones of shallow sections of megathrusts and of large landslides are often smectite-rich (e.g., montmorillonite type). Consequently, similar "frictional" processes operating at high slip rates (> 1 m/s) might be responsible of the large slips estimated in megathrust (50 m for the 2011 Tohoku Mw 9.1 earthquake) and measured in large landslides (500 m for the 1963 Vajont slide, Italy). At present, only rotary shear apparatuses can reproduce simultaneously the large slips and slip rates of these events. Noteworthy, the frictional processes proposed so far (thermal and thermochemical pressurization, etc.) remain rather obscure. Here we present preliminary results obtained with the ROtary Shear Apparatus (ROSA) installed at Padua University. Thirty-one experiments were performed at ambient conditions on pure end-members of (1) smectite-rich standard powders (STx-1b: ~68 wt% Ca-montmorillonite, ~30 wt% opal-CT and ~2 wt% quartz), (2) quartz powders (qtz) and (3) on 80:20 = Stx-1b:qtz mixtures. The gouges were sandwiched between two (1) hollow (25/15 mm external/internal diameter) or (2) solid (25 mm in diameter) stainless-steel made cylinders and confined by inner and outer Teflon rings (only outer for solid cylinders). Gouges were sheared at a normal stress of 5 MPa, slip rates V from 300 μm/s to 1.5 m/s and total slip of 3 m. The deformed gouges were investigated with quantitative (Rietveld method with internal standard) X-ray powder diffraction (XRPD) and Scanning Electron Microscopy (SEM). In the smectite-rich standard endmember, (1) for 300 μm/s ≤ V ≤ 0.1 m/s, initial friction coefficient (μi) was 0.6±0.05 whereas the steady-state friction coefficient (μss) was velocity and slip strengthening (μss 0.85±0.05), (2) for 0.1 m/s 0.8 m/s, velocity and slip weakening (μi = 0.7±0.1 and μss = 0.25±0.05). In the 80:20 Stx-1b:qtz mixtures, (1) for 300 μm/s ≤ V ≤ 0.1 m/s, μi ranged was 0.7±0.05 and increased with slip to μss = 0.77±0

  8. Mechanical characterization of alloys in extreme conditions of high strain rates and high temperature

    Science.gov (United States)

    Cadoni, Ezio

    2018-03-01

    The aim of this paper is the description of the mechanical characterization of alloys under extreme conditions of temperature and loading. In fact, in the frame of the Cost Action CA15102 “Solutions for Critical Raw Materials Under Extreme Conditions (CRM-EXTREME)” this aspect is crucial and many industrial applications have to consider the dynamic response of materials. Indeed, for a reduction and substitution of CRMs in alloys is necessary to design the materials and understand if the new materials behave better or if the substitution or reduction badly affect their performance. For this reason, a deep knowledge of the mechanical behaviour at high strain-rates of considered materials is required. In general, machinery manufacturing industry or transport industry as well as energy industry have important dynamic phenomena that are simultaneously affected by extended strain, high strain-rate, damage and pressure, as well as conspicuous temperature gradients. The experimental results in extreme conditions of high strain rate and high temperature of an austenitic stainless steel as well as a high-chromium tempered martensitic reduced activation steel Eurofer97 are presented.

  9. High-resolution Sonographic Measurements of Lower Extremity Bursae in Chinese Healthy Young Men

    Directory of Open Access Journals (Sweden)

    Yong-Yan Gao

    2016-01-01

    Conclusions: Using HR-US imaging, we were able to analyze lower extremity bursae with high detection rates in healthy young men. The normal ranges of lower extremity bursa dimensions in healthy young men measured by HR-US in this study could be used as reference values for evaluation of bursa abnormalities in the lower extremity.

  10. Conditional analysis near strong shear layers in DNS of isotropic turbulence at high Reynolds number

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Takashi; Kaneda, Yukio [Graduate School of Engineering, Nagoya University (Japan); Hunt, Julian C R, E-mail: ishihara@cse.nagoya-u.ac.jp [University College of London (United Kingdom)

    2011-12-22

    Data analysis of high resolution DNS of isotropic turbulence with the Taylor scale Reynolds number R{sub {lambda}} = 1131 shows that there are thin shear layers consisting of a cluster of strong vortex tubes with typical diameter of order 10{eta}, where {eta} is the Kolmogorov length scale. The widths of the layers are of the order of the Taylor micro length scale. According to the analysis of one of the layers, coarse grained vorticity in the layer are aligned approximately in the plane of the layer so that there is a net mean shear across the layer with a mean velocity jump of the order of the root-mean-square of the fluctuating velocity, and energy dissipation averaged over the layer is larger than ten times the average over the whole flow. The mean and the standard deviation of the energy transfer T(x, {kappa}) from scales larger than 1/{kappa} to scales smaller than 1/{kappa} at position x are largest within the layers (where the most intense vortices and dissipation occur), but are also large just outside the layers (where viscous stresses are weak), by comparison with the average values of T over the whole region. The DNS data are consistent with exterior fluctuation being damped/filtered at the interface of the layer and then selectively amplified within the layer.

  11. Shear-lag effect and its effect on the design of high-rise buildings

    Directory of Open Access Journals (Sweden)

    Dat Bui Thanh

    2018-01-01

    Full Text Available For super high-rise buildings, the analysis and selection of suitable structural solutions are very important. The structure has not only to carry the gravity loads (self-weight, live load, etc., but also to resist lateral loads (wind and earthquake loads. As the buildings become taller, the demand on different structural systems dramatically increases. The article considers the division of the structural systems of tall buildings into two main categories - interior structures for which the major part of the lateral load resisting system is located within the interior of the building, and exterior structures for which the major part of the lateral load resisting system is located at the building perimeter. The basic types of each of the main structural categories are described. In particular, the framed tube structures, which belong to the second main category of exterior structures, seem to be very efficient. That type of structure system allows tall buildings resist the lateral loads. However, those tube systems are affected by shear lag effect - a nonlinear distribution of stresses across the sides of the section, which is commonly found in box girders under lateral loads. Based on a numerical example, some general conclusions for the influence of the shear-lag effect on frequencies, periods, distribution and variation of the magnitude of the internal forces in the structure are presented.

  12. Shear-lag effect and its effect on the design of high-rise buildings

    Science.gov (United States)

    Thanh Dat, Bui; Traykov, Alexander; Traykova, Marina

    2018-03-01

    For super high-rise buildings, the analysis and selection of suitable structural solutions are very important. The structure has not only to carry the gravity loads (self-weight, live load, etc.), but also to resist lateral loads (wind and earthquake loads). As the buildings become taller, the demand on different structural systems dramatically increases. The article considers the division of the structural systems of tall buildings into two main categories - interior structures for which the major part of the lateral load resisting system is located within the interior of the building, and exterior structures for which the major part of the lateral load resisting system is located at the building perimeter. The basic types of each of the main structural categories are described. In particular, the framed tube structures, which belong to the second main category of exterior structures, seem to be very efficient. That type of structure system allows tall buildings resist the lateral loads. However, those tube systems are affected by shear lag effect - a nonlinear distribution of stresses across the sides of the section, which is commonly found in box girders under lateral loads. Based on a numerical example, some general conclusions for the influence of the shear-lag effect on frequencies, periods, distribution and variation of the magnitude of the internal forces in the structure are presented.

  13. A Shear Horizontal Waveguide Technique for Monitoring of High Temperature Pipe Thinning

    International Nuclear Information System (INIS)

    Cheong, Yongmoo; Kim, Hongpyo; Lee, Duckhyun

    2014-01-01

    An ultrasonic thickness measurement method is a well-known and most commonly used non-destructive testing technique for wall thickness monitoring of a piping or plate. However, current commonly available ultrasonic transducers cannot withstand high temperatures of, above 200 .deg. C. Currently, the variation of wall thickness of the pipes is determined by a portable ultrasonic gauge during plant shutdowns. This manual ultrasonic method reveals several disadvantages: inspections have to be performed during shutdowns with the possible consequences of prolonging down time and increasing production losses, insulation has to be removed and replaced for each manual measurement, and scaffolding has to be installed to inaccessible areas, resulting in considerable cost for intervention. In addition, differences of the measurement conditions such as examiner, temperature, and couplant could result in measurement errors. It has been suggested that a structural health monitoring approach with permanently installed ultrasonic thickness gauges could have substantial benefits over current practices. In order to solve those fundamental problems occurring during the propagation of ultrasound at high temperature, a shear horizontal waveguide technique for wall thickness monitoring at high temperatures is developed. A dry clamping device without a couplant for the acoustic contact between waveguide and pipe surface was designed and fabricated. The shear horizontal waveguides and clamping device result in an excellent S/N ratio and high accuracy of measurement with long exposure in an elevated temperature condition. A computer program for on-line monitoring of the pipe thickness at high temperature for a long period of time was developed. The system can be applied to monitor the FAC in carbon steel piping in a nuclear power plant after a verification test for a long period of time

  14. Inelastic X-ray scattering experiments at extreme conditions: high temperatures and high pressures

    Directory of Open Access Journals (Sweden)

    S.Hosokawa

    2008-03-01

    Full Text Available In this article, we review the present status of experimental techniques under extreme conditions of high temperature and high pressure used for inelastic X-ray scattering (IXS experiments of liquid metals, semiconductors, molten salts, molecular liquids, and supercritical water and methanol. For high temperature experiments, some types of single-crystal sapphire cells were designed depending on the temperature of interest and the sample thickness for the X-ray transmission. Single-crystal diamond X-ray windows attached to the externally heated high-pressure vessel were used for the IXS experiment of supercritical water and methanol. Some typical experimental results are also given, and the perspective of IXS technique under extreme conditions is discussed.

  15. Shear machines

    International Nuclear Information System (INIS)

    Astill, M.; Sunderland, A.; Waine, M.G.

    1980-01-01

    A shear machine for irradiated nuclear fuel elements has a replaceable shear assembly comprising a fuel element support block, a shear blade support and a clamp assembly which hold the fuel element to be sheared in contact with the support block. A first clamp member contacts the fuel element remote from the shear blade and a second clamp member contacts the fuel element adjacent the shear blade and is advanced towards the support block during shearing to compensate for any compression of the fuel element caused by the shear blade (U.K.)

  16. High wall shear stress and spatial gradients in vascular pathology: a review.

    Science.gov (United States)

    Dolan, Jennifer M; Kolega, John; Meng, Hui

    2013-07-01

    Cardiovascular pathologies such as intracranial aneurysms (IAs) and atherosclerosis preferentially localize to bifurcations and curvatures where hemodynamics are complex. While extensive knowledge about low wall shear stress (WSS) has been generated in the past, due to its strong relevance to atherogenesis, high WSS (typically >3 Pa) has emerged as a key regulator of vascular biology and pathology as well, receiving renewed interests. As reviewed here, chronic high WSS not only stimulates adaptive outward remodeling, but also contributes to saccular IA formation (at bifurcation apices or outer curves) and atherosclerotic plaque destabilization (in stenosed vessels). Recent advances in understanding IA pathogenesis have shed new light on the role of high WSS in pathological vascular remodeling. In complex geometries, high WSS can couple with significant spatial WSS gradient (WSSG). A combination of high WSS and positive WSSG has been shown to trigger aneurysm initiation. Since endothelial cells (ECs) are sensors of WSS, we have begun to elucidate EC responses to high WSS alone and in combination with WSSG. Understanding such responses will provide insight into not only aneurysm formation, but also plaque destabilization and other vascular pathologies and potentially lead to improved strategies for disease management and novel targets for pharmacological intervention.

  17. Magnetically applied pressure-shear : a new technique for direct strength measurement at high pressure (final report for LDRD project 117856).

    Energy Technology Data Exchange (ETDEWEB)

    Lamppa, Derek C.; Haill, Thomas A.; Alexander, C. Scott; Asay, James Russell

    2010-09-01

    A new experimental technique to measure material shear strength at high pressures has been developed for use on magneto-hydrodynamic (MHD) drive pulsed power platforms. By applying an external static magnetic field to the sample region, the MHD drive directly induces a shear stress wave in addition to the usual longitudinal stress wave. Strength is probed by passing this shear wave through a sample material where the transmissible shear stress is limited to the sample strength. The magnitude of the transmitted shear wave is measured via a transverse VISAR system from which the sample strength is determined.

  18. Sustainment of high confinement in JT-60U reversed shear plasmas

    International Nuclear Information System (INIS)

    Fujita, T.; Kamada, Y.; Ide, S.; Takeji, S.; Sakamoto, Y.; Isayama, A.; Suzuki, T.; Oikawa, T.; Fukuda, T.

    2001-01-01

    confinement is achieved owing to strong internal transport barriers (ITBs), are reported. In a high current plasma with an L-mode edge, deuterium-tritium-equivalent fusion power gain, Q DT eq =0.5 was sustained for 0.8 s (∼ energy confinement time) by adjusting plasma beta precisely using feedback control of stored energy. In a high triangularity plasma with an ELMy H-mode edge, the shrinkage of reversed shear region was suppressed and quasi steady sustainment of high confinement was achieved by raising the poloidal beta and enhancing the bootstrap current peaked at the ITB layer. High bootstrap current fraction (∼80%) was obtained in a high q regime (q 95 ∼9), which leaded to full non-inductive current drive condition. The normalized beta (β N ) of ∼ 2 and H-factor of H 89 ∼3.5 (HH 98y2 ∼2.2) were sustained for 2.7 s (∼ 6 times energy confinement time). (author)

  19. The break-up of a viscous liquid drop in a high Reynolds number shear flow

    Science.gov (United States)

    Ng, Chin Hei; Aliseda, Alberto

    2015-11-01

    The break-up of a viscous liquid droplet in a sheared turbulent flow evolves in several steps, the most visually dominant of which is the formation of high aspect ratio ligaments. This feature takes them apart from the various break-up models based on the Hinze-Kolmogorov paradigm of eddy-spherical particle collisions. We investigate the development of ligaments in a high Reynolds number (up to 250,000) submerged round jet, within the high viscosity, near-unity density ratio regime. Unlike in H-K theory, applicable to the break-up of inviscid fluid particles, break-up of inertial-scale viscous droplets occurs through a sequence of eddy collisions and long-term deformation, as evidenced by measurements of the aspect ratio that fluctuates and increases progressively during the deformation stage, and results in non-binary break-up. Additionally, the ligament formation stretches a droplet to multiple times its original size, bringing the influence of integral-scale structures. High speed imaging has been statistically analyzed to inform and validate theoretical models for the break-up time and the break-up probability. In addition, a particle size scaling model has been developed and compared with the experimental measurements of the frozen-state particle size.

  20. Asthma in Patients Climbing to High and Extreme Altitudes in the Tibetan Everest Region

    NARCIS (Netherlands)

    Huismans, Henrike K.; Douma, W. Rob; Kerstjens, Huib A. M.; Renkema, Tineke E. J.

    Objectives: The aim of this study was to investigate the behavior of asthma in patients traveling to high and extreme altitudes. Methods: Twenty-four Dutch patients with mild asthma did a trekking at high and extreme altitudes (up to 6410 m = 21030 ft) in the Tibetan Everest region. Asthma symptoms,

  1. The roles of electric field shear and Shafranov shift in sustaining high confinement in enhanced reversed shear plasmas on the TFTR tokamak

    International Nuclear Information System (INIS)

    Synakowski, E.J.; Beer, M.A.

    1997-02-01

    The relaxation of core transport barriers in TFTR Enhanced Reversed Shear plasmas has been studied by varying the radial electric field using different applied torques from neutral beam injection. Transport rates and fluctuations remain low over a wide range of radial electric field shear, but increase when the local E x B shearing rates are driven below a threshold comparable to the fastest linear growth rates of the dominant instabilities. Shafranov-shift-induced stabilization alone is not able to sustain enhanced confinement

  2. Supersonic shear flows in laser driven high-energy-density plasmas created by the Nike laser

    Science.gov (United States)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.

    2008-11-01

    In high-energy-density (HED) plasmas the Kelvin-Helmholtz (KH) instability plays an important role in the evolution of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) unstable interfaces, as well as material interfaces that experience the passage one or multiple oblique shocks. Despite the potentially important role of the KH instability few experiments have been carried out to explore its behavior in the high-energy-density regime. We report on the evolution of a supersonic shear flow that is generated by the release of a high velocity (>100 km/s) aluminum plasma onto a CRF foam (ρ = 0.1 g/cc) surface. In order to seed the Kelvin-Helmholtz (KH) instability various two-dimensional sinusoidal perturbations (λ = 100, 200, and 300 μm with peak-to-valley amplitudes of 10, 20, and 30 μm respectively) have been machined into the foam surface. This experiment was performed using the Nike laser at the Naval Research Laboratory.

  3. Comminution of solids caused by kinetic energy of high shear strain rate, with implications for impact, shock, and shale fracturing.

    Science.gov (United States)

    Bazant, Zdenek P; Caner, Ferhun C

    2013-11-26

    Although there exists a vast literature on the dynamic comminution or fragmentation of rocks, concrete, metals, and ceramics, none of the known models suffices for macroscopic dynamic finite element analysis. This paper outlines the basic idea of the macroscopic model. Unlike static fracture, in which the driving force is the release of strain energy, here the essential idea is that the driving force of comminution under high-rate compression is the release of the local kinetic energy of shear strain rate. The density of this energy at strain rates >1,000/s is found to exceed the maximum possible strain energy density by orders of magnitude, making the strain energy irrelevant. It is shown that particle size is proportional to the -2/3 power of the shear strain rate and the 2/3 power of the interface fracture energy or interface shear stress, and that the comminution process is macroscopically equivalent to an apparent shear viscosity that is proportional (at constant interface stress) to the -1/3 power of this rate. A dimensionless indicator of the comminution intensity is formulated. The theory was inspired by noting that the local kinetic energy of shear strain rate plays a role analogous to the local kinetic energy of eddies in turbulent flow.

  4. Scaling results for the magnetic field line trajectories in the stochastic layer near the separatrix in divertor tokamaks with high magnetic shear using the higher shear map

    International Nuclear Information System (INIS)

    Punjabi, Alkesh; Ali, Halima; Farhat, Hamidullah

    2009-01-01

    Extra terms are added to the generating function of the simple map (Punjabi et al 1992 Phys. Rev. Lett. 69 3322) to adjust shear of magnetic field lines in divertor tokamaks. From this new generating function, a higher shear map is derived from a canonical transformation. A continuous analog of the higher shear map is also derived. The method of maps (Punjabi et al 1994 J. Plasma Phys. 52 91) is used to calculate the average shear, stochastic broadening of the ideal separatrix near the X-point in the principal plane of the tokamak, loss of poloidal magnetic flux from inside the ideal separatrix, magnetic footprint on the collector plate, and its area, and the radial diffusion coefficient of magnetic field lines near the X-point. It is found that the width of the stochastic layer near the X-point and the loss of poloidal flux from inside the ideal separatrix scale linearly with average shear. The area of magnetic footprints scales roughly linearly with average shear. Linear scaling of the area is quite good when the average shear is greater than or equal to 1.25. When the average shear is in the range 1.1-1.25, the area of the footprint fluctuates (as a function of average shear) and scales faster than linear scaling. Radial diffusion of field lines near the X-point increases very rapidly by about four orders of magnitude as average shear increases from about 1.15 to 1.5. For higher values of average shear, diffusion increases linearly, and comparatively very slowly. The very slow scaling of the radial diffusion of the field can flatten the plasma pressure gradient near the separatrix, and lead to the elimination of type-I edge localized modes.

  5. Remotely-Controlled Shear for Dismantling Highly Radioactive Tools In Rokkasho Vitrification Facility - 12204

    Energy Technology Data Exchange (ETDEWEB)

    Mitsui, Takashi; Sawa, Shusuke; Sadaki, Akira; Awano, Toshihiko [IHI Corporation, 1 Shin-Nakahara-cho, Isogo-ku, Yokohama, Kanagawa (Japan); Cole, Matt [S.A. Technology Inc, 3985 S. Lincoln Ave., Ste. 100, Loveland CO 80537 (United States); Miura, Yasuhiko; Ino, Tooru [Japan Nuclear Fuel Limited, 4-108, Aza Okitsuke, Oaza Obuchi, Rokkasho-Mura, Kamikita-gun, Aomori (Japan)

    2012-07-01

    A high-level liquid waste vitrification facility in the Japanese Rokkasho Reprocessing Plant (RRP) is right in the middle of hot commissioning tests toward starting operation in fall of 2012. In these tests, various tools were applied to address issues occurring in the vitrification cell. Because of these tools' unplanned placement in the cell it has been necessary to dismantle and dispose of them promptly. One of the tools requiring removal is a rod used in the glass melter to improve glass pouring. It is composed of a long rod made of Inconel 601 or 625 and has been highly contaminated. In order to dismantle these tools and to remotely put them in a designated waste basket, a custom electric shear machine was developed. It was installed in a dismantling area of the vitrification cell by remote cranes and manipulators and has been successfully operated. It can be remotely dismantled and placed in a waste basket for interim storage. This is a very good example of a successful deployment of a specialty remote tool in a hot cell environment. This paper also highlights how commissioning and operations are done in the Japanese Rokkasho Reprocessing Plant. (authors)

  6. High shear stress relates to intraplaque haemorrhage in asymptomatic carotid plaques

    DEFF Research Database (Denmark)

    Tuenter, A.; Selwaness, M.; Arias Lorza, A.

    2016-01-01

    estimating equations analysis, adjusting for age, sex and carotid wall thickness. RESULTS: The study group consisted of 93 atherosclerotic carotid arteries of 74 participants. In plaques with higher maximum shear stresses, IPH was more often present (OR per unit increase in maximum shear stress (log......BACKGROUND AND AIMS: Carotid artery plaques with vulnerable plaque components are related to a higher risk of cerebrovascular accidents. It is unknown which factors drive vulnerable plaque development. Shear stress, the frictional force of blood at the vessel wall, is known to influence plaque...... formation. We evaluated the association between shear stress and plaque components (intraplaque haemorrhage (IPH), lipid rich necrotic core (LRNC) and/or calcifications) in relatively small carotid artery plaques in asymptomatic persons. METHODS: Participants (n = 74) from the population-based Rotterdam...

  7. Laser-assisted shearing: new application for high-power diode lasers

    Science.gov (United States)

    Emonts, Michael; Brecher, Christian

    2010-02-01

    Due to the growing ranges of applications for stamped parts in the electrical and electronics industry (e.g. switch cabinet cladding and transformer plates) as well as in the automotive industry (e.g. stamp, bent and drawn components), flexible sheet metal forming has become a more important process. The inner and outer contours as well as the forming operations needed to reinforce metal sheets can be carried out by punching machines without re-clamping the metal sheet. In contrast, the potential of conventional punching machines is now exhausted in terms of the material spectrum that can be processed, the tool life and the quality of the machined product. Particularly in view of the machining quality of the sheared edges, the achievable clear-cut surface rates are limited due to the limited plasticity of the sheet materials. When cracks form between the grain boundaries of the sheet material during the conventional shearing process, the cutting edge is divided into a clear-cut surface zone (approx. 30% of the plate thickness when shearing stainless steel plates: 1.4301) and a shearing zone with crack formation. This shearing zone can not be used as a functional surface. The shearing process is divided into the four phases (DIN 8588) "warping", "clear-cutting", "fracture" and "ejection of the piece punched out".

  8. Effect of high shear mixing parameters and degassing temperature on the morphology of epoxy-clay nanocomposites

    KAUST Repository

    Al-Qadhi, Muneer; Merah, N.; Mezghani, Khaled S.; Khan, Zafarullah; Gasem, Zuhair Mattoug Asad; Sougrat, Rachid

    2013-01-01

    Epoxy-clay nanocomposites were prepared by high shear mixing method using Nanomer I.30E nanoclay as nano-reinforcement in diglycidyl ether of bisphenol A (DGEBA). The effect of mixing speed and time on the nature and degree of clay dispersion were investigated by varying the mixing speed in the range of 500-8000 RPM and mixing time in the range of 15-90 minutes. The effect of degassing temperature on the morphology of the resultant nanocomposites was also studied. Scanning and transmission microscopy (SEM and TEM) along with x-ray diffraction (XRD) have been used to characterize the effect of shear mixing speed, mixing time and degassing temperature on the structure of the resultant nanocomposites. The SEM, TEM and XRD examinations demonstrated that the degree of clay dispersion was improved with increasing the high shear mixing speed and mixing time. The results showed that the optimum high shear mixing speed and mixing time were 6000 rpm and 60 min, respectively. It was observed that the structure of the nanocomposites that have been degassed at 65°C was dominated by ordered intercalated morphology while disordered intercalated with some exfoliated morphology was found for the sample degassed at 100°C for the first 2 hours of the degassing process. © (2013) Trans Tech Publications, Switzerland.

  9. Mechanism of the formation of hollow spherical granules using a high shear granulator.

    Science.gov (United States)

    Asada, Takumi; Nishikawa, Mitsunori; Ochiai, Yasushi; Noguchi, Shuji; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-05-30

    Recently, we have developed a novel granulation technology to manufacture hollow spherical granules (HSGs) for controlled-release formulations; however, the mechanism of the granulation is still unclear. The aim of this study is to determine the mechanism of the formation of the HSGs using a high shear granulator. Samples of granulated material were collected at various times during granulation and were investigated using scanning electron microscope and X-ray computed tomography. It was observed that the granulation proceeded by drug layering to the polymer, followed by formation of a hollow in the granule. In addition, it was also found that generation of a crack in the adhered drug layer and air flow into the granules might be involved in forming the hollow in the structure. Observation of the granulation of formulations with different types of drugs and polymers indicated that negative pressure in the granules occurred and the granules caved in when the hollow was formed. The hollow-forming speed and the shell density of the hollow granules depended on the particular drug and polymer. Taken together, the granulation mechanism of HSGs was determined and this information will be valuable for HSGs technology development. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. High-Power Characteristics of Thickness Shear Mode for Textured SrBi2Nb2O9 Ceramics

    Science.gov (United States)

    Ogawa, Hirozumi; Kawada, Shinichiro; Kimura, Masahiko; Higuchi, Yukio; Takagi, Hiroshi

    2009-09-01

    The high-power piezoelectric characteristics of the thickness shear mode for oriented ceramics of bismuth layer structured ferroelectrics (BLSF), SrBi2Nb2O9 (SBN), were studied by the constant current driving method. These textured ceramics were fabricated by the templated grain growth (TGG) method, and the Lotgering factor was 95%. The vibration of the thickness shear mode in the textured SBN ceramics was stable at the vibration velocity of 2.0 m/s. The resonant frequency was almost constant with increasing vibration velocity in the textured SBN ceramics, however, it decreased with increasing vibration velocity in the randomly oriented SBN ceramics. In the case of Pb(Mn,Nb)O3-Pb(Zr,Ti)O3 ceramics, the vibration velocity of the thickness shear mode was saturated at more than 0.3 m/s, and the resonant frequency decreased at lower vibration velocity than in the case of SBN ceramics. The dissipation power density of the textured SBN ceramics was the lowest among those of the randomly oriented SBN and Pb(Mn,Nb)O3-PZT ceramics. The thickness shear mode of textured SBN ceramics is a good candidate for high-power piezoelectric applications.

  11. Extremely High Suction Performance Inducers for Space Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced pump inducer design technology that uses high inlet diffusion blades, operates at a very low flow coefficient, and employs a cavitation control and...

  12. Stability of DIII-D high-performance, negative central shear discharges

    Science.gov (United States)

    Hanson, J. M.; Berkery, J. W.; Bialek, J.; Clement, M.; Ferron, J. R.; Garofalo, A. M.; Holcomb, C. T.; La Haye, R. J.; Lanctot, M. J.; Luce, T. C.; Navratil, G. A.; Olofsson, K. E. J.; Strait, E. J.; Turco, F.; Turnbull, A. D.

    2017-05-01

    Tokamak plasma experiments on the DIII-D device (Luxon et al 2005 Fusion Sci. Tech. 48 807) demonstrate high-performance, negative central shear (NCS) equilibria with enhanced stability when the minimum safety factor {{q}\\text{min}} exceeds 2, qualitatively confirming theoretical predictions of favorable stability in the NCS regime. The discharges exhibit good confinement with an L-mode enhancement factor H 89  =  2.5, and are ultimately limited by the ideal-wall external kink stability boundary as predicted by ideal MHD theory, as long as tearing mode (TM) locking events, resistive wall modes (RWMs), and internal kink modes are properly avoided or controlled. Although the discharges exhibit rotating TMs, locking events are avoided as long as a threshold minimum safety factor value {{q}\\text{min}}>2 is maintained. Fast timescale magnetic feedback control ameliorates RWM activity, expanding the stable operating space and allowing access to {β\\text{N}} values approaching the ideal-wall limit. Quickly growing and rotating instabilities consistent with internal kink mode dynamics are encountered when the ideal-wall limit is reached. The RWM events largely occur between the no- and ideal-wall pressure limits predicted by ideal MHD. However, evaluating kinetic contributions to the RWM dispersion relation results in a prediction of passive stability in this regime due to high plasma rotation. In addition, the ideal MHD stability analysis predicts that the ideal-wall limit can be further increased to {β\\text{N}}>4 by broadening the current profile. This path toward improved stability has the potential advantage of being compatible with the bootstrap-dominated equilibria envisioned for advanced tokamak (AT) fusion reactors.

  13. Large-strain time-temperature equivalence in high density polyethylene for prediction of extreme deformation and damage

    Directory of Open Access Journals (Sweden)

    Gray G.T.

    2012-08-01

    Full Text Available Time-temperature equivalence is a widely recognized property of many time-dependent material systems, where there is a clear predictive link relating the deformation response at a nominal temperature and a high strain-rate to an equivalent response at a depressed temperature and nominal strain-rate. It has been found that high-density polyethylene (HDPE obeys a linear empirical formulation relating test temperature and strain-rate. This observation was extended to continuous stress-strain curves, such that material response measured in a load frame at large strains and low strain-rates (at depressed temperatures could be translated into a temperature-dependent response at high strain-rates and validated against Taylor impact results. Time-temperature equivalence was used in conjuction with jump-rate compression tests to investigate isothermal response at high strain-rate while exluding adiabatic heating. The validated constitutive response was then applied to the analysis of Dynamic-Tensile-Extrusion of HDPE, a tensile analog to Taylor impact developed at LANL. The Dyn-Ten-Ext test results and FEA found that HDPE deformed smoothly after exiting the die, and after substantial drawing appeared to undergo a pressure-dependent shear damage mechanism at intermediate velocities, while it fragmented at high velocities. Dynamic-Tensile-Extrusion, properly coupled with a validated constitutive model, can successfully probe extreme tensile deformation and damage of polymers.

  14. Adiabatic shear bands as predictors of strain rate in high speed machining of ramax-2

    International Nuclear Information System (INIS)

    Zeb, M.A.; Irfan, M.A.; Velduis, A.C.

    2008-01-01

    Shear band formation was studied in the chips obtained by turning of stainless steel- Ramax-2 (AISI 420F). The machining was performed on a CNC lathe using a PVD (Physical Vapor Deposition) cutting tool insert. The cutting speeds ranged from 50 m/ min to 250 m/min. Dry cutting conditions were employed. At cutting speeds higher than 30 m/mill, the chip did not remain intact with the workpiece using quick stop device. It was difficult to get the chip root SEM (Scanning Electron Microscope) micrographs at further higher speeds. Therefore, the width of the shear bands was used as the predictor of the strain rates involved at various cutting speeds. The results showed that the strain rates are quite in agreement with the amount of strain rate found during machining of such types of stainless steels. It was also observed that shear band density increased with increasing cutting speed. (author)

  15. Degradation of homogeneous polymer solutions in high shear turbulent pipe flow

    Science.gov (United States)

    Elbing, B. R.; Winkel, E. S.; Solomon, M. J.; Ceccio, S. L.

    2009-12-01

    This study quantifies degradation of polyethylene oxide (PEO) and polyacrylamide (PAM) polymer solutions in large diameter (2.72 cm) turbulent pipe flow at Reynolds numbers to 3 × 105 and shear rates greater than 105 1/s. The present results support a universal scaling law for polymer chain scission reported by Vanapalli et al. (2006) that predicts the maximum chain drag force to be proportional to Re 3/2, validating this scaling law at higher Reynolds numbers than prior studies. Use of this scaling gives estimated backbone bond strengths from PEO and PAM of 3.2 and 3.8 nN, respectively. Additionally, with the use of synthetic seawater as a solvent the onset of drag reduction occurred at higher shear rates relative to the pure water solvent solutions, but had little influence on the extent of degradation at higher shear rates. These results are significant for large diameter pipe flow applications that use polymers to reduce drag.

  16. Observation and modeling of mixing-layer development in high-energy-density, blast-wave-driven shear flow

    International Nuclear Information System (INIS)

    Di Stefano, C. A.; Kuranz, C. C.; Klein, S. R.; Drake, R. P.; Malamud, G.; Henry de Frahan, M. T.; Johnsen, E.; Shimony, A.; Shvarts, D.; Smalyuk, V. A.; Martinez, D.

    2014-01-01

    In this work, we examine the hydrodynamics of high-energy-density (HED) shear flows. Experiments, consisting of two materials of differing density, use the OMEGA-60 laser to drive a blast wave at a pressure of ∼50 Mbar into one of the media, creating a shear flow in the resulting shocked system. The interface between the two materials is Kelvin-Helmholtz unstable, and a mixing layer of growing width develops due to the shear. To theoretically analyze the instability's behavior, we rely on two sources of information. First, the interface spectrum is well-characterized, which allows us to identify how the shock front and the subsequent shear in the post-shock flow interact with the interface. These observations provide direct evidence that vortex merger dominates the evolution of the interface structure. Second, simulations calibrated to the experiment allow us to estimate the time-dependent evolution of the deposition of vorticity at the interface. The overall result is that we are able to choose a hydrodynamic model for the system, and consequently examine how well the flow in this HED system corresponds to a classical hydrodynamic description

  17. INLA goes extreme: Bayesian tail regression for the estimation of high spatio-temporal quantiles

    KAUST Repository

    Opitz, Thomas; Huser, Raphaë l; Bakka, Haakon; Rue, Haavard

    2018-01-01

    approach is based on a Bayesian generalized additive modeling framework that is designed to estimate complex trends in marginal extremes over space and time. First, we estimate a high non-stationary threshold using a gamma distribution for precipitation

  18. Extreme Environment Circuit Blocks for Spacecraft Power & Propulsion System & Other High Reliability Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Chronos Technology (DIv of FMI, Inc.) proposes to design, fabricate, and deliver a performance proven, and commercially available set of extreme high operating...

  19. Wide bandwidth transimpedance amplifier for extremely high sensitivity continuous measurements.

    Science.gov (United States)

    Ferrari, Giorgio; Sampietro, Marco

    2007-09-01

    This article presents a wide bandwidth transimpedance amplifier based on the series of an integrator and a differentiator stage, having an additional feedback loop to discharge the standing current from the device under test (DUT) to ensure an unlimited measuring time opportunity when compared to switched discharge configurations while maintaining a large signal amplification over the full bandwidth. The amplifier shows a flat response from 0.6 Hz to 1.4 MHz, the capability to operate with leakage currents from the DUT as high as tens of nanoamperes, and rail-to-rail dynamic range for sinusoidal current signals independent of the DUT leakage current. Also available is a monitor output of the stationary current to track experimental slow drifts. The circuit is ideal for noise spectral and impedance measurements of nanodevices and biomolecules when in the presence of a physiological medium and in all cases where high sensitivity current measurements are requested such as in scanning probe microscopy systems.

  20. Progress in extremely high brightness LED-based light sources

    Science.gov (United States)

    Hoelen, Christoph; Antonis, Piet; de Boer, Dick; Koole, Rolf; Kadijk, Simon; Li, Yun; Vanbroekhoven, Vincent; Van De Voorde, Patrick

    2017-09-01

    Although the maximum brightness of LEDs has been increasing continuously during the past decade, their luminance is still far from what is required for multiple applications that still rely on the high brightness of discharge lamps. In particular for high brightness applications with limited étendue, e.g. front projection, only very modest luminance values in the beam can be achieved with LEDs compared to systems based on discharge lamps or lasers. With dedicated architectures, phosphor-converted green LEDs for projection may achieve luminance values up to 200-300 Mnit. In this paper we report on the progress made in the development of light engines based on an elongated luminescent concentrator pumped by blue LEDs. This concept has recently been introduced to the market as ColorSpark High Lumen Density LED technology. These sources outperform the maximum brightness of LEDs by multiple factors. In LED front projection, green LEDs are the main limiting factor. With our green modules, we now have achieved peak luminance values of 2 Gnit, enabling LED-based projection systems with over 4000 ANSI lm. Extension of this concept to yellow and red light sources is presented. The light source efficiency has been increased considerably, reaching 45-60 lm/W for green under practical application conditions. The module architecture, beam shaping, and performance characteristics are reviewed, as well as system aspects. The performance increase, spectral range extensions, beam-shaping flexibility, and cost reductions realized with the new module architecture enable a breakthrough in LED-based projection systems and in a wide variety of other high brightness applications.

  1. Simple, parallel, high-performance virtual machines for extreme computations

    International Nuclear Information System (INIS)

    Chokoufe Nejad, Bijan; Ohl, Thorsten; Reuter, Jurgen

    2014-11-01

    We introduce a high-performance virtual machine (VM) written in a numerically fast language like Fortran or C to evaluate very large expressions. We discuss the general concept of how to perform computations in terms of a VM and present specifically a VM that is able to compute tree-level cross sections for any number of external legs, given the corresponding byte code from the optimal matrix element generator, O'Mega. Furthermore, this approach allows to formulate the parallel computation of a single phase space point in a simple and obvious way. We analyze hereby the scaling behaviour with multiple threads as well as the benefits and drawbacks that are introduced with this method. Our implementation of a VM can run faster than the corresponding native, compiled code for certain processes and compilers, especially for very high multiplicities, and has in general runtimes in the same order of magnitude. By avoiding the tedious compile and link steps, which may fail for source code files of gigabyte sizes, new processes or complex higher order corrections that are currently out of reach could be evaluated with a VM given enough computing power.

  2. High Performance Multivariate Visual Data Exploration for Extremely Large Data

    International Nuclear Information System (INIS)

    Ruebel, Oliver; Wu, Kesheng; Childs, Hank; Meredith, Jeremy; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Ahern, Sean; Weber, Gunther H.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes; Prabhat

    2008-01-01

    One of the central challenges in modern science is the need to quickly derive knowledge and understanding from large, complex collections of data. We present a new approach that deals with this challenge by combining and extending techniques from high performance visual data analysis and scientific data management. This approach is demonstrated within the context of gaining insight from complex, time-varying datasets produced by a laser wakefield accelerator simulation. Our approach leverages histogram-based parallel coordinates for both visual information display as well as a vehicle for guiding a data mining operation. Data extraction and subsetting are implemented with state-of-the-art index/query technology. This approach, while applied here to accelerator science, is generally applicable to a broad set of science applications, and is implemented in a production-quality visual data analysis infrastructure. We conduct a detailed performance analysis and demonstrate good scalability on a distributed memory Cray XT4 system

  3. High Performance Multivariate Visual Data Exploration for Extremely Large Data

    Energy Technology Data Exchange (ETDEWEB)

    Rubel, Oliver; Wu, Kesheng; Childs, Hank; Meredith, Jeremy; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Ahern, Sean; Weber, Gunther H.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes; Prabhat,

    2008-08-22

    One of the central challenges in modern science is the need to quickly derive knowledge and understanding from large, complex collections of data. We present a new approach that deals with this challenge by combining and extending techniques from high performance visual data analysis and scientific data management. This approach is demonstrated within the context of gaining insight from complex, time-varying datasets produced by a laser wakefield accelerator simulation. Our approach leverages histogram-based parallel coordinates for both visual information display as well as a vehicle for guiding a data mining operation. Data extraction and subsetting are implemented with state-of-the-art index/query technology. This approach, while applied here to accelerator science, is generally applicable to a broad set of science applications, and is implemented in a production-quality visual data analysis infrastructure. We conduct a detailed performance analysis and demonstrate good scalability on a distributed memory Cray XT4 system.

  4. SIP Shear Walls: Cyclic Performance of High-Aspect-Ratio Segments and Perforated Walls

    Science.gov (United States)

    Vladimir Kochkin; Douglas R. Rammer; Kevin Kauffman; Thomas Wiliamson; Robert J. Ross

    2015-01-01

    Increasing stringency of energy codes and the growing market demand for more energy efficient buildings gives structural insulated panel (SIP) construction an opportunity to increase its use in commercial and residential buildings. However, shear wall aspect ratio limitations and lack of knowledge on how to design SIPs with window and door openings are barriers to the...

  5. An extremely high altitude plume seen at Mars morning terminator

    Science.gov (United States)

    Sanchez-Lavega, Agustin; Garcia-Muñoz, Antonio; Garcia-Melendo, Enrique; Perez-Hoyos, Santiago; Gomez-Forrellad, Josep M.; Pellier, Christophe; Delcroix, Marc; Lopez-Valverde, Miguel Angel; Gonzalez-Galindo, Francisco; Jaeschke, Wayne; Parker, Donald C.; Phillips, James H.; Peach, Damian

    2014-11-01

    We report the occurrence in March and April 2012 of two bright very high altitude plumes at the Martian terminator at 250 km or more above the surface, thus well into the ionosphere and bordering on the exosphere. They were located at about 195 deg West longitude and -45 deg latitude (at Terra Cimmeria) and lasted for about 10 days. The features showed day-to-day variability, and were seen at the morning terminator but not at the evening limb, which indicates rapid evolution in less than 10 hours and a cyclic behavior. Photometric measurements are used to explore two possible scenarios to explain their nature. If the phenomenon is due to suspended particles (dust, CO2 or H2O ice clouds) reflecting solar radiation, the mean size is about 0.1 microns with a nadir optical depth > 0.06. Alternatively, the plume could be auroral emission above a region with a strong magnetic anomaly and where aurora has previously been detected. Importantly, both explanations defy our current understanding of the Mars upper atmosphere.AcknowledgementsThis work was supported by the Spanish MINECO projects AYA2012-36666 with FEDER support, CONSOLIDER program ASTROMOL CSD2009-00038 and AYA2011-30613-CO2-1. Grupos Gobierno Vasco IT765-13 and UPV/EHU UFI11/55.

  6. Shear Elasticity and Shear Viscosity Imaging in Soft Tissue

    Science.gov (United States)

    Yang, Yiqun

    In this thesis, a new approach is introduced that provides estimates of shear elasticity and shear viscosity using time-domain measurements of shear waves in viscoelastic media. Simulations of shear wave particle displacements induced by an acoustic radiation force are accelerated significantly by a GPU. The acoustic radiation force is first calculated using the fast near field method (FNM) and the angular spectrum approach (ASA). The shear waves induced by the acoustic radiation force are then simulated in elastic and viscoelastic media using Green's functions. A parallel algorithm is developed to perform these calculations on a GPU, where the shear wave particle displacements at different observation points are calculated in parallel. The resulting speed increase enables rapid evaluation of shear waves at discrete points, in 2D planes, and for push beams with different spatial samplings and for different values of the f-number (f/#). The results of these simulations show that push beams with smaller f/# require a higher spatial sampling rate. The significant amount of acceleration achieved by this approach suggests that shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs. Shear wave elasticity imaging determines the mechanical parameters of soft tissue by analyzing measured shear waves induced by an acoustic radiation force. To estimate the shear elasticity value, the widely used time-of-flight method calculates the correlation between shear wave particle velocities at adjacent lateral observation points. Although this method provides accurate estimates of the shear elasticity in purely elastic media, our experience suggests that the time-of-flight (TOF) method consistently overestimates the shear elasticity values in viscoelastic media because the combined effects of diffraction, attenuation, and dispersion are not considered. To address this problem, we have developed an approach that directly accounts for all

  7. High resolution 3-D shear wave velocity structure in South China from surface wave tomography

    Science.gov (United States)

    Ning, S.; Guo, Z.; Chen, Y. J.

    2017-12-01

    Using continuous data from a total of 638 seismic stations, including 484 from CEArray between 2008 and 2013 and 154 from SINOPROBE between 2014 and 2015, we perform both ambient noise and earthquake Rayleigh wave tomography across South China. Combining Rayleigh wave phase velocity between 6and 40s periods from ambient noise tomography and Rayleigh wave phase velocity between 20and 140s from teleseismic two-plane-wave tomography, we obtain phase velocity maps between 6 and140 s periods. We then invert Rayleigh wave phase velocity to construct a 3-D shear wave velocity structure of South China by Markov Chain Monte Carlo method. Similar to other inversion results, our results correspond topography well. Moreover, our results also reveal that velocity structure of the eastern South China in mantle depth is similar to eastern North China, the core of the western South China, Sichuan Block (SB),still exists thick lithosphere. However, owing to much more data employed and some data quality control techniques in this research, our results reveal more detailed structures. Along Qinling-Dabie Orogenic Belt (QDOB), North-South Gravity Lineament (NSGL) and the Sichuan-Yunnan Rhombic Block (SYRB), there are obvious high speed anomalies in depths of 10-20 km, which possibly imply ancient intrusions. Moreover, it seems that Tancheng-Lujiang Fault Zone (TLFZ) has already cut through QDOB, forming a deep fracture cutting through the crust of the whole China continent. Although SB still exists thick lithosphere, there are indications for thermal erosion. At the same time, the lithosphere of the central SYRB seems to be experiencing delamination process, obviously forming a barrier to prevent the hot Tibetan Plateau (TP) mantle material from flowing further southeast. Upwelling hot mantle material possibly triggered by this delamination process might be the cause of the Emeishan Large Igneous Province. There exists an intercontinental low velocity layer in the crust of the TP

  8. Regional-Scale High-Latitude Extreme Geoelectric Fields Pertaining to Geomagnetically Induced Currents

    Science.gov (United States)

    Pulkkinen, Antti; Bernabeu, Emanuel; Eichner, Jan; Viljanen, Ari; Ngwira, Chigomezyo

    2015-01-01

    Motivated by the needs of the high-voltage power transmission industry, we use data from the high-latitude IMAGE magnetometer array to study characteristics of extreme geoelectric fields at regional scales. We use 10-s resolution data for years 1993-2013, and the fields are characterized using average horizontal geoelectric field amplitudes taken over station groups that span about 500-km distance. We show that geoelectric field structures associated with localized extremes at single stations can be greatly different from structures associated with regionally uniform geoelectric fields, which are well represented by spatial averages over single stations. Visual extrapolation and rigorous extreme value analysis of spatially averaged fields indicate that the expected range for 1-in-100-year extreme events are 3-8 V/km and 3.4-7.1 V/km, respectively. The Quebec reference ground model is used in the calculations.

  9. Relationship between low-temperature boson heat capacity peak and high-temperature shear modulus relaxation in a metallic glass

    International Nuclear Information System (INIS)

    Vasiliev, A. N.; Voloshok, T. N.; Granato, A. V.; Joncich, D. M.; Mitrofanov, Yu. P.; Khonik, V. A.

    2009-01-01

    Low-temperature (2 K≤T≤350 K) heat capacity and room-temperature shear modulus measurements (ν=1.4 MHz) have been performed on bulk Pd 41.25 Cu 41.25 P 17.5 in the initial glassy, relaxed glassy, and crystallized states. It has been found that the height of the low-temperature Boson heat capacity peak strongly correlates with the changes in the shear modulus upon high-temperature annealing. It is this behavior that was earlier predicted by the interstitialcy theory, according to which dumbbell interstitialcy defects are responsible for a number of thermodynamic and kinetic properties of crystalline, (supercooled) liquid, and solid glassy states.

  10. Producing High-Performance, Stable, Sheared-Flow Z-Pinches in the FuZE project

    Science.gov (United States)

    Golingo, R. P.; Shumlak, U.,; Nelson, B. A.; Claveau, E. L.; Forbes, E. G.; Stepanov, A. D.; Weber, T. R.; Zhang, Y.; McLean, H. S.; Tummel, K. K.; Higginson, D. P.; Schmidt, A. E.; University of Washington (UW) Collaboration; Lawrence Livermore National Laboratory (LLNL) Collaboration

    2017-10-01

    The Fusion Z-Pinch Experiment (FuZE) has made significant strides towards generating high-performance, stable Z-pinch plasmas with goals of ne = 1018 cm-3 and T =1 keV. The Z-pinch plasmas are stabilized with a sheared axial flow that is driven by a coaxial accelerator. The new FuZE device has been constructed and reproduces the major scientific achievements the ZaP project at the University of Washington; ne = 1016 cm-3,T = 100 eV, r20 μs. These parameters are measured with an array of magnetic field probes, spectroscopy, and fast framing cameras. The plasma parameters are achieved using a small fraction of the maximum energy storage and gas injection capability of the FuZE device. Higher density, ne = 5×1017 cm-3, and temperature, T = 500 eV, Z-pinch plasmas are formed by increasing the pinch current. At the higher voltages and currents, the ionization rates in the accelerator increase. By modifying the neutral gas profile in the accelerator, the plasma flow from the accelerator is maintained, driving the flow shear. Formation and sustainment of the sheared-flow Z-pinch plasma will be discussed. Experimental data demonstrating high performance plasmas in a stable Z-pinches will be shown. This work is supported by an award from US ARPA-E.

  11. Scalable shear-exfoliation of high-quality phosphorene nanoflakes with reliable electrochemical cycleability in nano batteries

    International Nuclear Information System (INIS)

    Xu, Feng; Min, Huihua; Zhu, Chongyang; Xia, Weiwei; Li, Zhengrui; Li, Shengli; Yu, Kaihao; Sun, Litao; Ge, Binghui; Chen, Jing; Cui, Yiping; Nathan, Arokia; Xin, Linhuo L; Ma, Hongyu; Wu, Lijun; Zhu, Yimei

    2016-01-01

    Atomically thin black phosphorus (called phosphorene) holds great promise as an alternative to graphene and other two-dimensional transition-metal dichalcogenides as an anode material for lithium-ion batteries (LIBs). However, bulk black phosphorus (BP) suffers from rapid capacity fading and poor rechargeable performance. This work reports for the first time the use of in situ transmission electron microscopy (TEM) to construct nanoscale phosphorene LIBs. This enables direct visualization of the mechanisms underlying capacity fading in thick multilayer phosphorene through real-time capture of delithiation-induced structural decomposition, which serves to reduce electrical conductivity thus causing irreversibility of the lithiated phases. We further demonstrate that few-layer-thick phosphorene successfully circumvents the structural decomposition and holds superior structural restorability, even when subject to multi-cycle lithiation/delithiation processes and concomitant huge volume expansion. This finding provides breakthrough insights into thickness-dependent lithium diffusion kinetics in phosphorene. More importantly, a scalable liquid-phase shear exfoliation route has been developed to produce high-quality ultrathin phosphorene using simple means such as a high-speed shear mixer or even a household kitchen blender with the shear rate threshold of ∼1.25 × 10 4 s −1 . The results reported here will pave the way for industrial-scale applications of rechargeable phosphorene LIBs. (paper)

  12. Steel Plate Shear Walls: Efficient Structural Solution for Slender High-Rise in China

    International Nuclear Information System (INIS)

    Mathias, Neville; Long, Eric; Sarkisian, Mark; Huang Zhihui

    2008-01-01

    The 329.6 meter tall 74-story Jinta Tower in Tianjin, China, is expected, when complete, to be the tallest building in the world with slender steel plate shear walls used as the primary lateral load resisting system. The tower has an overall aspect ratio close to 1:8, and the main design challenge was to develop an efficient lateral system capable of resisting significant wind and seismic lateral loads, while simultaneously keeping wind induced oscillations under acceptable perception limits. This paper describes the process of selection of steel plate shear walls as the structural system, and presents the design philosophy, criteria and procedures that were arrived at by integrating the relevant requirements and recommendations of US and Chinese codes and standards, and current on-going research

  13. Evidence for modified transport due to sheared E x B flows in high-temperature plasmas

    International Nuclear Information System (INIS)

    Groebner, R.J.; Burrell, K.H.; Austin, M.E.

    1994-11-01

    Sheared mass flows are generated in many fluids and are often important for the dynamics of instabilities in these fluids. Similarly, large values of the E x B velocity have been observed in magnetic confinement machines and there is theoretical and experimental evidence that sufficiently large shear in this velocity may stabilize important instabilities. Two examples of this phenomenon have been observed in the DIII-D tokamak. In the first example, sufficient heating power can lead to the L-H transition, a rapid improvement in confinement in the boundary layer of the plasma. For discharges with heating power close to the threshold required to get the transition, changes in the edge radial electric field are observed to occur prior to the transition itself. In the second example, certain classes of discharges with toroidal momentum input from neutral beam injection exhibit a further improvement of confinement in the plasma core leading to a regime called the VH-mode. In both examples, the region of improved confinement is characterized by an increase of shear in the radial electric field E r , reduced levels of turbulence and increases in gradients of temperatures and densities. These observations are consistent with the hypothesis that the improved confinement is caused by an increase in shear of the E x B velocity which leads to a reduction of turbulence. For the VH-mode, the dominant term controlling E r is the toroidal rotation v φ , indicating that the E r profile is controlled by the source and transport of toroidal momentum

  14. Mechanical Properties and Shear Strengthening Capacity of High Volume Fly Ash-Cementitious Composite

    Science.gov (United States)

    Joseph, Aswin K.; Anand, K. B.

    2018-02-01

    This paper discusses development of Poly Vinyl Alcohol (PVA) fibre reinforced cementitious composites taking into account environmental sustainability. Composites with fly ash to cement ratios from 0 to 3 are investigated in this study. The mechanical properties of HVFA-cement composite are discussed in this paper at PVA fiber volume fraction maintained at 1% of total volume of composite. The optimum replacement of cement with fly ash was found to be 75%, i.e. fly ash to cement ratio (FA/C) of 3. The increase in fiber content from 1% to 2% showed better mechanical performance. A strain capacity of 2.38% was obtained for FA/C ratio of 3 with 2% volume fraction of fiber. With the objective of evaluating the performance of cementitious composites as a strengthening material in reinforced concrete beams, the beams deficient in shear capacity were strengthened with optimal mix having 2% volume fraction of fiber as the strengthening material and tested under four-point load. The reinforced concrete beams designed as shear deficient were loaded to failure and retrofitted with the composite in order to assess the efficiency as a repair material under shear.

  15. Polygenic determinants in extremes of high-density lipoprotein cholesterol[S

    Science.gov (United States)

    Dron, Jacqueline S.; Wang, Jian; Low-Kam, Cécile; Khetarpal, Sumeet A.; Robinson, John F.; McIntyre, Adam D.; Ban, Matthew R.; Cao, Henian; Rhainds, David; Dubé, Marie-Pierre; Rader, Daniel J.; Lettre, Guillaume; Tardif, Jean-Claude

    2017-01-01

    HDL cholesterol (HDL-C) remains a superior biochemical predictor of CVD risk, but its genetic basis is incompletely defined. In patients with extreme HDL-C concentrations, we concurrently evaluated the contributions of multiple large- and small-effect genetic variants. In a discovery cohort of 255 unrelated lipid clinic patients with extreme HDL-C levels, we used a targeted next-generation sequencing panel to evaluate rare variants in known HDL metabolism genes, simultaneously with common variants bundled into a polygenic trait score. Two additional cohorts were used for validation and included 1,746 individuals from the Montréal Heart Institute Biobank and 1,048 individuals from the University of Pennsylvania. Findings were consistent between cohorts: we found rare heterozygous large-effect variants in 18.7% and 10.9% of low- and high-HDL-C patients, respectively. We also found common variant accumulation, indicated by extreme polygenic trait scores, in an additional 12.8% and 19.3% of overall cases of low- and high-HDL-C extremes, respectively. Thus, the genetic basis of extreme HDL-C concentrations encountered clinically is frequently polygenic, with contributions from both rare large-effect and common small-effect variants. Multiple types of genetic variants should be considered as contributing factors in patients with extreme dyslipidemia. PMID:28870971

  16. WEAK LINE QUASARS AT HIGH REDSHIFT: EXTREMELY HIGH ACCRETION RATES OR ANEMIC BROAD-LINE REGIONS?

    International Nuclear Information System (INIS)

    Shemmer, Ohad; Trakhtenbrot, Benny; Netzer, Hagai; Anderson, Scott F.; Brandt, W. N.; Schneider, Donald P.; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Lira, Paulina; Plotkin, Richard M.; Richards, Gordon T.; Strauss, Michael A.

    2010-01-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z = 3.55 and SDSS J123743.08+630144.9 at z = 3.49. In both sources, we detect an unusually weak broad Hβ line and place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black hole mass determinations indicate normalized accretion rates of L/L Edd =0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ = 1.91 +0.24 -0.22 , which supports the virial L/L Edd determination in this source. Our results suggest that the weakness of the broad emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad emission line region properties.

  17. High-resolution stochastic generation of extreme rainfall intensity for urban drainage modelling applications

    Science.gov (United States)

    Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo

    2016-04-01

    Urban drainage response is highly dependent on the spatial and temporal structure of rainfall. Therefore, measuring and simulating rainfall at a high spatial and temporal resolution is a fundamental step to fully assess urban drainage system reliability and related uncertainties. This is even more relevant when considering extreme rainfall events. However, the current space-time rainfall models have limitations in capturing extreme rainfall intensity statistics for short durations. Here, we use the STREAP (Space-Time Realizations of Areal Precipitation) model, which is a novel stochastic rainfall generator for simulating high-resolution rainfall fields that preserve the spatio-temporal structure of rainfall and its statistical characteristics. The model enables a generation of rain fields at 102 m and minute scales in a fast and computer-efficient way matching the requirements for hydrological analysis of urban drainage systems. The STREAP model was applied successfully in the past to generate high-resolution extreme rainfall intensities over a small domain. A sub-catchment in the city of Luzern (Switzerland) was chosen as a case study to: (i) evaluate the ability of STREAP to disaggregate extreme rainfall intensities for urban drainage applications; (ii) assessing the role of stochastic climate variability of rainfall in flow response and (iii) evaluate the degree of non-linearity between extreme rainfall intensity and system response (i.e. flow) for a small urban catchment. The channel flow at the catchment outlet is simulated by means of a calibrated hydrodynamic sewer model.

  18. An Extreme Degree of Difficulty: The Educational Demographics of Urban Neighborhood High Schools

    Science.gov (United States)

    Neild, Ruth Curran; Balfanz, Robert

    2006-01-01

    Despite the growth of a variety of alternatives to the neighborhood high school, most students in big-city school systems still attend large comprehensive high schools that serve a particular residential area. The authors contend that the extreme concentration of educational need at these schools is often overlooked by policymakers, school reform…

  19. Local likelihood estimation of complex tail dependence structures in high dimensions, applied to US precipitation extremes

    KAUST Repository

    Camilo, Daniela Castro

    2017-10-02

    In order to model the complex non-stationary dependence structure of precipitation extremes over the entire contiguous U.S., we propose a flexible local approach based on factor copula models. Our sub-asymptotic spatial modeling framework yields non-trivial tail dependence structures, with a weakening dependence strength as events become more extreme, a feature commonly observed with precipitation data but not accounted for in classical asymptotic extreme-value models. To estimate the local extremal behavior, we fit the proposed model in small regional neighborhoods to high threshold exceedances, under the assumption of local stationarity. This allows us to gain in flexibility, while making inference for such a large and complex dataset feasible. Adopting a local censored likelihood approach, inference is made on a fine spatial grid, and local estimation is performed taking advantage of distributed computing resources and of the embarrassingly parallel nature of this estimation procedure. The local model is efficiently fitted at all grid points, and uncertainty is measured using a block bootstrap procedure. An extensive simulation study shows that our approach is able to adequately capture complex, non-stationary dependencies, while our study of U.S. winter precipitation data reveals interesting differences in local tail structures over space, which has important implications on regional risk assessment of extreme precipitation events. A comparison between past and current data suggests that extremes in certain areas might be slightly wider in extent nowadays than during the first half of the twentieth century.

  20. Local likelihood estimation of complex tail dependence structures in high dimensions, applied to US precipitation extremes

    KAUST Repository

    Camilo, Daniela Castro; Huser, Raphaë l

    2017-01-01

    In order to model the complex non-stationary dependence structure of precipitation extremes over the entire contiguous U.S., we propose a flexible local approach based on factor copula models. Our sub-asymptotic spatial modeling framework yields non-trivial tail dependence structures, with a weakening dependence strength as events become more extreme, a feature commonly observed with precipitation data but not accounted for in classical asymptotic extreme-value models. To estimate the local extremal behavior, we fit the proposed model in small regional neighborhoods to high threshold exceedances, under the assumption of local stationarity. This allows us to gain in flexibility, while making inference for such a large and complex dataset feasible. Adopting a local censored likelihood approach, inference is made on a fine spatial grid, and local estimation is performed taking advantage of distributed computing resources and of the embarrassingly parallel nature of this estimation procedure. The local model is efficiently fitted at all grid points, and uncertainty is measured using a block bootstrap procedure. An extensive simulation study shows that our approach is able to adequately capture complex, non-stationary dependencies, while our study of U.S. winter precipitation data reveals interesting differences in local tail structures over space, which has important implications on regional risk assessment of extreme precipitation events. A comparison between past and current data suggests that extremes in certain areas might be slightly wider in extent nowadays than during the first half of the twentieth century.

  1. Influence of steel fibers on the shear and flexural performance of high-strength concrete beams tested under blast loads

    Science.gov (United States)

    Algassem, O.; Li, Y.; Aoude, H.

    2017-09-01

    This paper presents the results of a study examining the effect of steel fibres on the blast behaviour of high-strength concrete beams. As part of the study, a series of three large-scale beams built with high-strength concrete and steel fibres are tested under simulated blast loading using the shock-tube testing facility at the University of Ottawa. The specimens include two beams built with conventional high-strength concrete (HSC) and one beam built with high-strength concrete and steel fibres (HSFRC). The effect of steel fibres on the blast behaviour is examined by comparing the failure mode, mid-span displacements and, overall blast resistance of the specimens. The results show that the addition of steel fibres in high-strength concrete beams can prevent shear failure and substitute for shear reinforcement if added in sufficient quantity. Moreover, the use of steel fibres improves flexural response under blast loading by reducing displacements and increasing blast capacity. Finally, the provision of steel fibres is found to improve the fragmentation resistance of high-strength concrete under blast loads.

  2. Wave-mixing with high-order harmonics in extreme ultraviolet region

    International Nuclear Information System (INIS)

    Dao, Lap Van; Dinh, Khuong Ba; Le, Hoang Vu; Gaffney, Naylyn; Hannaford, Peter

    2015-01-01

    We report studies of the wave-mixing process in the extreme ultraviolet region with two near-infrared driving and controlling pulses with incommensurate frequencies (at 1400 nm and 800 nm). A non-collinear scheme for the two beams is used in order to spatially separate and to characterise the properties of the high-order wave-mixing field. We show that the extreme ultraviolet frequency mixing can be treated by perturbative, very high-order nonlinear optics; the modification of the wave-packet of the free electron needs to be considered in this process

  3. Probability modeling of high flow extremes in Yingluoxia watershed, the upper reaches of Heihe River basin

    Science.gov (United States)

    Li, Zhanling; Li, Zhanjie; Li, Chengcheng

    2014-05-01

    Probability modeling of hydrological extremes is one of the major research areas in hydrological science. Most basins in humid and semi-humid south and east of China are concerned for probability modeling analysis of high flow extremes. While, for the inland river basin which occupies about 35% of the country area, there is a limited presence of such studies partly due to the limited data availability and a relatively low mean annual flow. The objective of this study is to carry out probability modeling of high flow extremes in the upper reach of Heihe River basin, the second largest inland river basin in China, by using the peak over threshold (POT) method and Generalized Pareto Distribution (GPD), in which the selection of threshold and inherent assumptions for POT series are elaborated in details. For comparison, other widely used probability distributions including generalized extreme value (GEV), Lognormal, Log-logistic and Gamma are employed as well. Maximum likelihood estimate is used for parameter estimations. Daily flow data at Yingluoxia station from 1978 to 2008 are used. Results show that, synthesizing the approaches of mean excess plot, stability features of model parameters, return level plot and the inherent independence assumption of POT series, an optimum threshold of 340m3/s is finally determined for high flow extremes in Yingluoxia watershed. The resulting POT series is proved to be stationary and independent based on Mann-Kendall test, Pettitt test and autocorrelation test. In terms of Kolmogorov-Smirnov test, Anderson-Darling test and several graphical diagnostics such as quantile and cumulative density function plots, GPD provides the best fit to high flow extremes in the study area. The estimated high flows for long return periods demonstrate that, as the return period increasing, the return level estimates are probably more uncertain. The frequency of high flow extremes exhibits a very slight but not significant decreasing trend from 1978 to

  4. A genome-wide analysis of putative functional and exonic variation associated with extremely high intelligence.

    Science.gov (United States)

    Spain, S L; Pedroso, I; Kadeva, N; Miller, M B; Iacono, W G; McGue, M; Stergiakouli, E; Davey Smith, G; Putallaz, M; Lubinski, D; Meaburn, E L; Plomin, R; Simpson, M A

    2016-08-01

    Although individual differences in intelligence (general cognitive ability) are highly heritable, molecular genetic analyses to date have had limited success in identifying specific loci responsible for its heritability. This study is the first to investigate exome variation in individuals of extremely high intelligence. Under the quantitative genetic model, sampling from the high extreme of the distribution should provide increased power to detect associations. We therefore performed a case-control association analysis with 1409 individuals drawn from the top 0.0003 (IQ >170) of the population distribution of intelligence and 3253 unselected population-based controls. Our analysis focused on putative functional exonic variants assayed on the Illumina HumanExome BeadChip. We did not observe any individual protein-altering variants that are reproducibly associated with extremely high intelligence and within the entire distribution of intelligence. Moreover, no significant associations were found for multiple rare alleles within individual genes. However, analyses using genome-wide similarity between unrelated individuals (genome-wide complex trait analysis) indicate that the genotyped functional protein-altering variation yields a heritability estimate of 17.4% (s.e. 1.7%) based on a liability model. In addition, investigation of nominally significant associations revealed fewer rare alleles associated with extremely high intelligence than would be expected under the null hypothesis. This observation is consistent with the hypothesis that rare functional alleles are more frequently detrimental than beneficial to intelligence.

  5. High Magnetic Shear Gain in a Liquid Sodium Stable Couette Flow Experiment: A Prelude to an α-Ω Dynamo

    International Nuclear Information System (INIS)

    Colgate, Stirling A.; Beckley, Howard; Si, Jiahe; Martinic, Joe; Westpfahl, David; Slutz, James; Westrom, Cebastian; Klein, Brianna; Schendel, Paul; Scharle, Cletus; McKinney, Travis; Ginanni, Rocky; Bentley, Ian; Mickey, Timothy; Ferrel, Regnar; Li, Hui; Pariev, Vladimir; Finn, John

    2011-01-01

    The Ω phase of the liquid sodium α-Ω dynamo experiment at New Mexico Institute of Mining and Technology in cooperation with Los Alamos National Laboratory has demonstrated a high toroidal field B φ that is ≅8xB r , where B r is the radial component of an applied poloidal magnetic field. This enhanced toroidal field is produced by the rotational shear in stable Couette flow within liquid sodium at a magnetic Reynolds number Rm≅120. Small turbulence in stable Taylor-Couette flow is caused by Ekman flow at the end walls, which causes an estimated turbulence energy fraction of (δv/v) 2 ∼10 -3 .

  6. The Effect of Sport Specialization on Lower Extremity Injury Rates in High School Athletes

    OpenAIRE

    McGuine, Timothy A.; Bell, David; Brooks, Margaret Alison; Hetzel, Scott; Pfaller, Adam; Post, Eric

    2017-01-01

    Objectives: Sport specialization has been shown to be associated with increased risk of musculoskeletal lower extremity injuries (LEI) in adolescent athletes presenting in clinical settings. However, the association of sport specialization and incidence of LEI has not been studied prospectively in a large population of adolescent athletes. The objective of this study was to compare the incidence of LEI in high school athletes identified as having low (LOW), moderate (MOD) or high (HIGH) level...

  7. A large, benign prostatic cyst presented with an extremely high serum prostate-specific antigen level.

    Science.gov (United States)

    Chen, Han-Kuang; Pemberton, Richard

    2016-01-08

    We report a case of a patient who presented with an extremely high serum prostate specific antigen (PSA) level and underwent radical prostatectomy for presumed prostate cancer. Surprisingly, the whole mount prostatectomy specimen showed only small volume, organ-confined prostate adenocarcinoma and a large, benign intraprostatic cyst, which was thought to be responsible for the PSA elevation. 2016 BMJ Publishing Group Ltd.

  8. Design, fabrication, and characterization of high-efficiency extreme ultraviolet diffusers

    Energy Technology Data Exchange (ETDEWEB)

    Naulleau, Patrick P.; Liddle, J. Alexander; Salmassi, Farhad; Anderson, Erik H.; Gullikson, Eric M.

    2004-02-19

    As the development of extreme ultraviolet (EUV) lithography progresses, interest grows in the extension of traditional optical components to the EUV regime. The strong absorption of EUV by most materials and its extremely short wavelength, however, makes it very difficult to implement many components that are commonplace in the longer wavelength regimes. One such example is the diffuser often implemented with ordinary ground glass in the visible light regime. Here we demonstrate the fabrication of reflective EUV diffusers with high efficiency within a controllable bandwidth. Using these techniques we have fabricated diffusers with efficiencies exceeding 10% within a moderate angular single-sided bandwidth of approximately 0.06 radians.

  9. The effect of plasma beta on high-n ballooning stability at low magnetic shear

    Science.gov (United States)

    Connor, J. W.; Ham, C. J.; Hastie, R. J.

    2016-08-01

    An explanation of the observed improvement in H-mode pedestal characteristics with increasing core plasma pressure or poloidal beta, {β\\text{pol}} , as observed in MAST and JET, is sought in terms of the impact of the Shafranov shift, {{Δ }\\prime} , on ideal ballooning MHD stability. To illustrate this succinctly, a self-consistent treatment of the low magnetic shear region of the ‘s-α ’ stability diagram is presented using the large aspect ratio Shafranov equilibrium, but enhancing both α and {{Δ }\\prime} so that they compete with each other. The method of averaging, valid at low s, is used to simplify the calculation and demonstrates how α , {{Δ }\\prime} , plasma shaping and ‘average favourable curvature’ all contribute to stability.

  10. Extremely high thermal conductivity anisotropy of double-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Zhaoji Ma

    2017-06-01

    Full Text Available Based on molecular dynamics simulations, we reveal that double-walled carbon nanotubes can possess an extremely high anisotropy ratio of radial to axial thermal conductivities. The mechanism is basically the same as that for the high thermal conductivity anisotropy of graphene layers - the in-plane strong sp2 bonds lead to a very high intralayer thermal conductivity while the weak van der Waals interactions to a very low interlayer thermal conductivity. However, different from flat graphene layers, the tubular structures of carbon nanotubes result in a diameter dependent thermal conductivity. The smaller the diameter, the larger the axial thermal conductivity but the smaller the radial thermal conductivity. As a result, a DWCNT with a small diameter may have an anisotropy ratio of thermal conductivity significantly higher than that for graphene layers. The extremely high thermal conductivity anisotropy allows DWCNTs to be a promising candidate for thermal management materials.

  11. Effects of physical properties of powder particles on binder liquid requirement and agglomerate growth mechanisms in a high shear mixer.

    Science.gov (United States)

    Johansen, A; Schaefer, T

    2001-09-01

    A study was performed in order to elucidate the effects of the physical properties of small powder particles on binder liquid requirement and agglomerate growth mechanisms. Three grades of calcium carbonate having different particle size distribution, surface area, and particle shape but approximately the same median particle size (4-5 microm), were melt agglomerated with polyethylene glycol (PEG) 3000 or 20,000 in an 8-l high shear mixer at three impeller speeds. The binder liquid requirement was found to be very dependent on the packing properties of the powder, a denser packing resulting in a lower binder liquid requirement. The densification of the agglomerates in the high shear mixer could be approximately predicted by compressing a powder sample in a compaction simulator. With the PEG having the highest viscosity (PEG 20,000), the agglomerate formation and growth occurred primarily by the immersion mechanism, whereas PEG 3000 gave rise to agglomerate growth by coalescence. Powder particles with a rounded shape and a narrow size distribution resulted in breakage of agglomerates with PEG 3000, whereas no breakage was seen with PEG 20,000. Powder particles having an irregular shape and surface structure could be agglomerated with PEG 20,000, whereas agglomerate growth became uncontrollable with PEG 3000. When PEG 20,000 was added as a powder instead of flakes, the resultant agglomerates became rounder and the size distribution narrower.

  12. High performance with modified shear in JET D-D and D-T plasmas

    International Nuclear Information System (INIS)

    2001-01-01

    The observation of Internal Transport Barriers (ITBs) in which ion thermal diffusivity is reduced to a neo- classical level and the electron thermal diffusivity is substantially reduced has been made in JET with the optimised shear scenario with the MkII divertor both in D-D and in D-T. Central ion temperatures of 40keV and plasma pressure gradient of 10 6 Pa/m were observed in D-T leading to a fusion triple product n i T i τ E =1x10 21 m -3 keVs and 8.2MW of fusion power. ITBs have also been produced in the new Gas Box divertor configuration with a similar behaviour. With the new divertor an L-mode edge has only been produced using edge radiation cooling. For the first time, ITBs have been triggered by radiating about 40% of the power with a krypton puff. A tentative scaling of the power needed to trigger an ITB with magnetic field is indicated. (author)

  13. Shear induced phase transition in PbO under high pressure

    International Nuclear Information System (INIS)

    Giefers, Hubertus; Porsch, Felix

    2007-01-01

    We have studied the structural behavior of lead monoxide (PbO) as a function of pressure via angular dispersive X-ray diffraction employing two different pressure transmitting media that were quasi-hydrostatic (N 2 ) and non-hydrostatic (MgO), respectively. Besides litharge (α-PbO) and massicot (β-PbO), which are both stable at ambient pressure, there is an orthorhombic γ-PbO phase which appears upon application of pressure to α-PbO. We have found that the orthorhombic γ-PbO phase is favored by shear stress under non-hydrostatic conditions. α-PbO shows strong anisotropy in compressibility. The a-axis is rather incompressible with a linear stiffness coefficient of K a0 =540(30) GPa whereas the c-axis stiffness is K c0 =25(1) GPa. The bulk modulus of α-PbO is K 0 =23.1(3) GPa and its derivative K 0 ' =7.0(3)

  14. High dose rate brachytherapy for the treatment of soft tissue sarcoma of the extremity

    International Nuclear Information System (INIS)

    Speight, J.L.; Streeter, O.E.; Chawla, S.; Menendez, L.E.

    1996-01-01

    Purpose: we examined the role of preoperative neoadjuvant chemoradiation and adjuvant high-dose rate brachytherapy on the management of prognostically unfavorable soft tissue sarcomas of the extremities. Our goal was to examine the effect of high dose rate interstitial brachytherapy (HDR IBT) on reducing the risk of local recurrence following limb-sparing resection, as well as shortening treatment duration. Materials and methods: eleven patients, ranging in age from 31 to 73 years old, with soft tissue sarcoma of the extremity were treated at USC/Norris Comprehensive Cancer Center during 1994 and 1995. All patients had biopsy proven soft tissue sarcoma, and all were suitable candidates for limb-sparing surgery. All lesions were greater than 5cm in size and were primarily high grade. Tumor histologies included malignant fibrous histiocytoma (45%), liposarcoma (18%) and leiomyosarcoma, synovial cell sarcoma and spindle cell sarcoma (36%). Sites of tumor origin were the lower extremity (55%), upper extremity (18%) and buttock (9%), 1 patient (9%) had lesions in both the upper and lower extremity. Patients received HDR IBT following combined chemotherapy and external beam irradiation (EBRT) and en bloc resection of the sarcoma. Neoadjuvant chemotherapy consisted of three to four cycles of either Ifosfamide/Mesna with or without Adriamycin, or Mesna, Adriamycin, Ifosfamide and Dacarbazine. One patient received Cis-platin in addition to Ifos/Adr. A minimum of two cycles of chemotherapy were administered prior to EBRT. Additional cycles of chemotherapy were completed concurrently with EBRT but prior to HDR IBT. Preoperative EBRT doses ranging from 40 to 59.4 Gy were given in daily fractions of 180 to 200cGy. Following en bloc resection, HDR IBT was administered using the Omnitron tm 2000 remote afterloading system. Doses ranging from 13 to 30 Gy were delivered to the surgical tumor bed at depths of 0.5mm to 0.75mm from the radioactive source. Results: median follow-up was

  15. Process analytical technology (PAT) approach to the formulation of thermosensitive protein-loaded pellets: Multi-point monitoring of temperature in a high-shear pelletization.

    Science.gov (United States)

    Kristó, Katalin; Kovács, Orsolya; Kelemen, András; Lajkó, Ferenc; Klivényi, Gábor; Jancsik, Béla; Pintye-Hódi, Klára; Regdon, Géza

    2016-12-01

    In the literature there are some publications about the effect of impeller and chopper speeds on product parameters. However, there is no information about the effect of temperature. Therefore our main aim was the investigation of elevated temperature and temperature distribution during pelletization in a high shear granulator according to process analytical technology. During our experimental work, pellets containing pepsin were formulated with a high-shear granulator. A specially designed chamber (Opulus Ltd.) was used for pelletization. This chamber contained four PyroButton-TH® sensors built in the wall and three PyroDiff® sensors 1, 2 and 3cm from the wall. The sensors were located in three different heights. The impeller and chopper speeds were set on the basis of 3 2 factorial design. The temperature was measured continuously in 7 different points during pelletization and the results were compared with the temperature values measured by the thermal sensor of the high-shear granulator. The optimization parameters were enzyme activity, average size, breaking hardness, surface free energy and aspect ratio. One of the novelties was the application of the specially designed chamber (Opulus Ltd.) for monitoring the temperature continuously in 7 different points during high-shear granulation. The other novelty of this study was the evaluation of the effect of temperature on the properties of pellets containing protein during high-shear pelletization. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Combined effects of extremely high frequency electromagnetic field and antibiotics on Enterococcus Hirae growth and survival

    International Nuclear Information System (INIS)

    Ohanyan, V.A.

    2012-01-01

    Combined effects of extremely high frequency electromagnetic field and antibiotics on Enterococcus hirae ATCC 9790 bacterial growth and survival were investigated using 51.8 GHz and 53 GHz frequencies in combination with two commonly used antibiotics: ampicillin and dalacin. Results revealed that, despite bacterial type and membrane structure and properties, the combined effect, especially with 53 GHz and dalacin, suppresses bacterial growth and decreases their survival

  17. Extreme ultraviolet spectroscopy of highly charged argon ions at the Berlin EBIT

    International Nuclear Information System (INIS)

    Biedermann, C; Radtke, R; Fussmann, G; Allen, F I

    2007-01-01

    Extreme ultraviolet radiation from highly charged argon was investigated at the Berlin Electron Beam Ion Trap with a 2 m grazing incidence spectrometer. Lines in the wavelength range 150 to 660 A originating from C-like Ar 12+ to Li-like Ar 15+ ions have been identified and are compared with database information from solar line lists and predictions. Line ratios for the observed resonance, intercombination and forbidden lines offer important diagnostic capabilities for low density, hot plasmas

  18. Extremely Durable, Flexible Supercapacitors with Greatly Improved Performance at High Temperatures.

    Science.gov (United States)

    Kim, Sung-Kon; Kim, Hae Jin; Lee, Jong-Chan; Braun, Paul V; Park, Ho Seok

    2015-08-25

    The reliability and durability of energy storage devices are as important as their essential characteristics (e.g., energy and power density) for stable power output and long lifespan and thus much more crucial under harsh conditions. However, energy storage under extreme conditions is still a big challenge because of unavoidable performance decays and the inevitable damage of components. Here, we report high-temperature operating, flexible supercapacitors (f-SCs) that can provide reliable power output and extreme durability under severe electrochemical, mechanical, and thermal conditions. The outstanding capacitive features (e.g., ∼40% enhancement of the rate capability and a maximum capacitances of 170 F g(-1) and 18.7 mF cm(-2) at 160 °C) are attributed to facilitated ion transport at elevated temperatures. Under high-temperature operation and/or a flexibility test in both static and dynamic modes at elevated temperatures >100 °C, the f-SCs showed extreme long-term stability of 100000 cycles (>93% of initial capacitance value) and mechanical durability after hundreds of bending cycles (at bend angles of 60-180°). Even at 120 °C, the versatile design of tandem serial and parallel f-SCs was demonstrated to provide both desirable energy and power requirements at high temperatures.

  19. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Sonal, E-mail: S.Choudhary@sheffield.ac.uk [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Management School, University of Sheffield, Conduit Road, Sheffield S10 1FL (United Kingdom); Blaud, Aimeric [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Osborn, A. Mark [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); School of Applied Sciences, RMIT University, PO Box 71, Bundoora, VIC 3083 (Australia); Press, Malcolm C. [School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Manchester Metropolitan University, Manchester, M15 6BH (United Kingdom); Phoenix, Gareth K. [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom)

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem {sup 15}N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g N m{sup −2} yr{sup −1}, applied as {sup 15}NH{sub 4}{sup 15}NO{sub 3} in Svalbard (79{sup °}N), during the summer. Separate applications of {sup 15}NO{sub 3}{sup −} and {sup 15}NH{sub 4}{sup +} were also made to determine the importance of N form in their retention. More than 95% of the total {sup 15}N applied was recovered after one growing season (~ 90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants > vascular plants > organic soil > litter > mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of {sup 15}N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater {sup 15}NO{sub 3}{sup −} than {sup 15}NH{sub 4}{sup +}, suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events

  20. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events

    International Nuclear Information System (INIS)

    Choudhary, Sonal; Blaud, Aimeric; Osborn, A. Mark; Press, Malcolm C.; Phoenix, Gareth K.

    2016-01-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem "1"5N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g N m"−"2 yr"−"1, applied as "1"5NH_4"1"5NO_3 in Svalbard (79"°N), during the summer. Separate applications of "1"5NO_3"− and "1"5NH_4"+ were also made to determine the importance of N form in their retention. More than 95% of the total "1"5N applied was recovered after one growing season (~ 90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants > vascular plants > organic soil > litter > mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of "1"5N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater "1"5NO_3"− than "1"5NH_4"+, suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication. - Highlights: • High Arctic tundra demonstrated a

  1. High-resolution projections of mean and extreme precipitations over China through PRECIS under RCPs

    Science.gov (United States)

    Zhu, Jinxin; Huang, Gordon; Wang, Xiuquan; Cheng, Guanhui; Wu, Yinghui

    2018-06-01

    The impact of global warming on the characteristics of mean and extreme precipitations over China is investigated by using the Providing REgional Climate Impacts for Studies (PRECIS) model. The PRECIS model was driven by the Hadley Centre Global Environment Model version 2 with Earth System components and coupling (HadGEM2-ES). The results of both models are analyzed in terms of mean precipitation and indices of precipitation extremes (R95p, R99p, SDII, WDF, and CWD) over China at the resolution of 25 km under the Representative Concentration Pathways 4.5 and 8.5 (RCP4.5 and RCP8.5) scenarios for the baseline period (1976-2005) and two future periods (2036-2065 and 2070-2099). With improved resolution, the PRECIS model is able to better represent the fine-scale physical process than HadGEM2-ES. It can provide reliable spatial patterns of precipitation and its related extremes with high correlations to observations. Moreover, there is a notable improvement in temporal patterns simulation through the PRECIS model. The PRECIS model better reproduces the regional annual cycle and frequencies of daily precipitation intensity than its driving GCM. Under RCP4.5 and RCP8.5, both the HadGEM2-ES and the precis project increasing annual precipitation over the entire country for two future periods. Precipitation increase in winter is greater than the increase in summer. The results suggest that increased radiative forcing from RCP4.5 to RCP8.5 would further intensify the magnitude of projected precipitation changes by both PRECIS and HadGEM2-ES. For example, some parts of south China with decreased precipitation under RCP4.5 would expect even less precipitation under RCP8.5; regions (northwest, northcentral and northeast China) with increased precipitation under RCP4.5 would expect more precipitation under RCP8.5. Apart from the projected increase in annual total precipitation, the results also suggest that there will be an increase in the days with precipitation higher than

  2. Evaluation of Shear Wall-RC Frame Interaction of High-Rise Buildings using 2-D model Approach

    Directory of Open Access Journals (Sweden)

    Dipali Patel

    2015-09-01

    Full Text Available The usefulness of structural walls in the framing of buildings has long been recognized. It is generally preferred to use shear wall in combination with moment resisting frame. In the present study, an effort is also made to investigate the shear wall-RC frame interaction using 2-D modeling of 20, 30 and 35 storey RC frame building with shear wall. In equivalent simplified 2-D model, two exterior frames with shear wall modeled as single frame with double stiffness, strength and weight. The interior frames without shear wall are modeled as a single frame with equivalent stiffness, strength and weight. The modeled frames are connected with rigid link at each floor level. Using 2-D plane frame model the lateral force distribution between Exterior frame with shear wall and Interior frame without shear wall is investigated. From the analysis, it is observed that up to bottom seven/eight storey more than 50% load is taken by frame with shear wall and the lower most three storeys take about 75% of total storey shear.

  3. Effects of Coating Materials and Processing Conditions on Flow Enhancement of Cohesive Acetaminophen Powders by High-Shear Processing With Pharmaceutical Lubricants.

    Science.gov (United States)

    Wei, Guoguang; Mangal, Sharad; Denman, John; Gengenbach, Thomas; Lee Bonar, Kevin; Khan, Rubayat I; Qu, Li; Li, Tonglei; Zhou, Qi Tony

    2017-10-01

    This study has investigated the surface coating efficiency and powder flow improvement of a model cohesive acetaminophen powder by high-shear processing with pharmaceutical lubricants through 2 common equipment, conical comil and high-shear mixer. Effects of coating materials and processing parameters on powder flow and surface coating coverage were evaluated. Both Carr's index and shear cell data indicated that processing with the lubricants using comil or high-shear mixer substantially improved the flow of the cohesive acetaminophen powder. Flow improvement was most pronounced for those processed with 1% wt/wt magnesium stearate, from "cohesive" for the V-blended sample to "easy flowing" for the optimally coated sample. Qualitative and quantitative characterizations demonstrated a greater degree of surface coverage for high-shear mixing compared with comilling; nevertheless, flow properties of the samples at the corresponding optimized conditions were comparable between 2 techniques. Scanning electron microscopy images demonstrated different coating mechanisms with magnesium stearate or l-leucine (magnesium stearate forms a coating layer and leucine coating increases surface roughness). Furthermore, surface coating with hydrophobic magnesium stearate did not retard the dissolution kinetics of acetaminophen. Future studies are warranted to evaluate tableting behavior of such dry-coated pharmaceutical powders. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Massing in high shear wet granulation can simultaneously improve powder flow and deteriorate powder compaction: a double-edged sword.

    Science.gov (United States)

    Shi, Limin; Feng, Yushi; Sun, Changquan Calvin

    2011-05-18

    The influence of massing during high shear wet granulation (HSWG) process on granule properties and performance was investigated using microcrystalline cellulose (MCC). Massing time varied from 0 to 40 min while other factors were fixed. Granule physical properties, including morphology, size, porosity, and specific surface area (SSA), were characterized. Changes in powder properties were profound in the first 10 min of massing but negligible beyond 10 min. With 10 min of massing, granule tabletability decreased by 75% while flowability increased by 75%. The significantly deteriorated tabletability and improved flowability resulted from dramatic changes in granule morphology, porosity, and SSA. The results confirm that massing time is a key process parameter in HSWG, and it must be carefully evaluated and controlled during process development, scale up, and manufacturing. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Study on extreme high temperature of cooling water in Chinese coastal nuclear power plant

    International Nuclear Information System (INIS)

    Yu Fan; Jiang Ziying

    2012-01-01

    In order to protect aquatic life from the harmful effects of thermal discharge, the appropriate water temperature limits or the scope of the mixing zone is a key issue in the regulatory control of the environmental impact of thermal discharge. Based on the sea surface temperature in the Chinese coastal waters, the extreme value of the seawater temperature change was analyzed by using the Gumbel model. The limit of the design temperature rise of cooling water in the outfall is 9 ℃, and the limit of the temperature rise of cooling water in the edge of the mixing zone is 4 ℃. The extreme high temperature of the cooling water in Chinese coastal nuclear power plant is 37 ℃ in the Bohai Sea, Yellow Sea, and is 40 ℃ in East China Sea, South China Sea. (authors)

  6. Transition to Pulse-Like Rupture, With and Without Inclusion of Evolving Temperature and Pore Pressure, When Accounting for Extreme Weakening at High Slip Rates

    Science.gov (United States)

    Noda, H.; Dunham, E. M.; Rice, J. R.

    2007-12-01

    We have conducted rupture propagation simulations incorporating the combined effects of thermal pressurization of pore fluid by distributed heating within a finite width shear zone, and flash heating of microscopic contacts. These are probably the primary weakening mechanisms at high coseismic slip rates. For flash heating, we use a rate- and state-dependent friction law in the slip law formulation, accounting for extreme velocity weakening above a weakening slip rate Vw ~ 0.1 m/s that depends on the background temperature, and a very short state evolution distance, L, of ~ 10 μm, which is comparable to the asperity length. We have also conducted a series of calculations with neglecting evolving change in macroscopic temperature, T, and pore pressure, p, and compared the results. Slip rate, V, at a point on a fault increases when a rupture front approaches, and decreases behind it. In the pulse-like solutions, V decreases below Vw, and the point is eventually locked. On the other hand, in the crack-like solutions, V increases again only if we allow evolving change in T and p. In the cases when we neglect changes in T and p, V continues to decrease behind the rupture front as long as we simulate. Here, a question emerges; is the solution crack-like because of the short calculation time? Zheng and Rice [1998] proposed an intuitive criterion between crack-like and pulse-like solutions as follows: If and only if the background shear stress, τb, is larger than a critical value, τpulse, there are roots of τss(V) = τb - μ V/2 cs, where τss is steady-state strength, μ is shear modulus and cs is shear speed. If TZR = - (μ/2cs)/(dτss/dV) at the largest root is near unity, the solution is pulse-like. Our calculations without T and p changes show that the pulse-like solution regime extends above τpulse, at least up to the point where TZR = 0.176, if a rupture is initiated by a perturbation in shear stress in a certain manner. The transition time to pulse

  7. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic

    International Nuclear Information System (INIS)

    Hansen, Brage B; Isaksen, Ketil; Benestad, Rasmus E; Kohler, Jack; Pedersen, Åshild Ø; Loe, Leif E; Coulson, Stephen J; Larsen, Jan Otto; Varpe, Øystein

    2014-01-01

    One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January–February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (∼5–20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties. (letter)

  8. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic

    Science.gov (United States)

    Hansen, Brage B.; Isaksen, Ketil; Benestad, Rasmus E.; Kohler, Jack; Pedersen, Åshild Ø.; Loe, Leif E.; Coulson, Stephen J.; Larsen, Jan Otto; Varpe, Øystein

    2014-11-01

    One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January-February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (˜5-20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties.

  9. Performance of High Temperature Operational Amplifier, Type LM2904WH, under Extreme Temperatures

    Science.gov (United States)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Operation of electronic parts and circuits under extreme temperatures is anticipated in NASA space exploration missions as well as terrestrial applications. Exposure of electronics to extreme temperatures and wide-range thermal swings greatly affects their performance via induced changes in the semiconductor material properties, packaging and interconnects, or due to incompatibility issues between interfaces that result from thermal expansion/contraction mismatch. Electronics that are designed to withstand operation and perform efficiently in extreme temperatures would mitigate risks for failure due to thermal stresses and, therefore, improve system reliability. In addition, they contribute to reducing system size and weight, simplifying its design, and reducing development cost through the elimination of otherwise required thermal control elements for proper ambient operation. A large DC voltage gain (100 dB) operational amplifier with a maximum junction temperature of 150 C was recently introduced by STMicroelectronics [1]. This LM2904WH chip comes in a plastic package and is designed specifically for automotive and industrial control systems. It operates from a single power supply over a wide range of voltages, and it consists of two independent, high gain, internally frequency compensated operational amplifiers. Table I shows some of the device manufacturer s specifications.

  10. Evaluation of trends in high temperature extremes in north-western Europe in regional climate models

    International Nuclear Information System (INIS)

    Min, E; Hazeleger, W; Van Oldenborgh, G J; Sterl, A

    2013-01-01

    Projections of future changes in weather extremes on the regional and local scale depend on a realistic representation of trends in extremes in regional climate models (RCMs). We have tested this assumption for moderate high temperature extremes (the annual maximum of the daily maximum 2 m temperature, T ann.max ). Linear trends in T ann.max from historical runs of 14 RCMs driven by atmospheric reanalysis data are compared with trends in gridded station data. The ensemble of RCMs significantly underestimates the observed trends over most of the north-western European land surface. Individual models do not fare much better, with even the best performing models underestimating observed trends over large areas. We argue that the inability of RCMs to reproduce observed trends is probably not due to errors in large-scale circulation. There is also no significant correlation between the RCM T ann.max trends and trends in radiation or Bowen ratio. We conclude that care should be taken when using RCM data for adaptation decisions. (letter)

  11. Study of a pressure measurement method using laser ionization for extremely-high vacuum

    International Nuclear Information System (INIS)

    Kokubun, Kiyohide

    1991-01-01

    A method of measuring pressures in the range of extremely-high vacuum (XHV) using the laser ionization has been studied. For this purpose, nonresonant multiphoton ionization of various kinds of gases has been studied, and highly-sensitive ion-detection systems and an extremely-high vacuum equipment were fabricated. These results are presented in detail. Two ion-detection systems were fabricated and tested: the one is based on the pulse-counting method, and the other utilizes the image-processing technique. The former is superior in detecting a few ions or less. The latter was processing technique. The former is superior in detecting a few ions or less. The latter was verified to able to count accurately the number of ions in the range of a few to several hundreds. To obtain the information on residual gases and test our pressure measurement system, an extremely-high vacuum system was fabricated in our own fashion, attained a pressure lower than 1 x 10 -10 Pa, measured with an extractor gauge. The outgassing rate of this vacuum vessel was measured to be 7.8 x 10 -11 Pa·m 3 /s·m 2 . The surface structures and the surface compositions of the raw material, the machined material, and the machined-and-outgased material were studied by SEM and AES. Besides, the pumping characteristics and the residual gases of the XHV system were investigated in detail at each pumping stage. On the course of these studies, the method of pressure measurement using the laser-ionization has been verified to be very effective for measuring pressures in XHV. (J.P.N.)

  12. High-Resolution Dynamical Downscaling Ensemble Projections of Future Extreme Temperature Distributions for the United States

    Science.gov (United States)

    Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.; Kotamarthi, V. Rao

    2017-12-01

    The aim of this study is to examine projections of extreme temperatures over the continental United States (CONUS) for the 21st century using an ensemble of high spatial resolution dynamically downscaled model simulations with different boundary conditions. The downscaling uses the Weather Research and Forecast model at a spatial resolution of 12 km along with outputs from three different Coupled Model Intercomparison Project Phase 5 global climate models that provide boundary conditions under two different future greenhouse gas (GHG) concentration trajectories. The results from two decadal-length time slices (2045-2054 and 2085-2094) are compared with a historical decade (1995-2004). Probability density functions of daily maximum/minimum temperatures are analyzed over seven climatologically cohesive regions of the CONUS. The impacts of different boundary conditions as well as future GHG concentrations on extreme events such as heat waves and days with temperature higher than 95°F are also investigated. The results show that the intensity of extreme warm temperature in future summer is significantly increased, while the frequency of extreme cold temperature in future winter decreases. The distribution of summer daily maximum temperature experiences a significant warm-side shift and increased variability, while the distribution of winter daily minimum temperature is projected to have a less significant warm-side shift with decreased variability. Using "business-as-usual" scenario, 5-day heat waves are projected to occur at least 5-10 times per year in most CONUS and ≥95°F days will increase by 1-2 months by the end of the century.

  13. Nitrogen-Doped Carbon Nanoparticles for Oxygen Reduction Prepared via a Crushing Method Involving a High Shear Mixer

    Directory of Open Access Journals (Sweden)

    Lei Shi

    2017-09-01

    Full Text Available The disposal of agricultural wastes such as fresh banana peels (BPs is an environmental issue. In this work, fresh BPs were successfully transformed into nitrogen-doped carbon nanoparticles (N-CNPs by using a high shear mixer facilitated crushing method (HSM-FCM followed by carbonization under Ar atmosphere. Ammonia-activated N-CNPs (N-CNPs-NH3 were prepared via subsequent ammonia activation treatments at a high temperature. The as-prepared N-CNPs and N-CNPs-NH3 materials both exhibited high surface areas (above 700 m2/g and mean particle size of 50 nm. N-CNPs-NH3 showed a relatively higher content of pyridinic and graphitic N compared to N-CNPs. In alkaline media, N-CNPs-NH3 showed superior performances as an oxygen reduction reaction (ORR catalyst (E0 = −0.033 V, J = 2.4 mA/cm2 compared to N-CNPs (E0 = 0.07 V, J = 1.8 mA/cm2. In addition, N-CNPs-NH3 showed greater oxygen reduction stability and superior methanol crossover avoidance than a conventional Pt/C catalyst. This study provides a novel, simple, and scalable approach to valorize biomass wastes by synthesizing highly efficient electrochemical ORR catalysts.

  14. Fabrication of surfaces with extremely high contact angle hysteresis from polyelectrolyte multilayer.

    Science.gov (United States)

    Wang, Liming; Wei, Jingjing; Su, Zhaohui

    2011-12-20

    High contact angle hysteresis on polyelectrolyte multilayers (PEMs) ion-paired with hydrophobic perfluorooctanoate anions is reported. Both the bilayer number of PEMs and the ionic strength of deposition solutions have significant influence on contact angle hysteresis: higher ionic strength and greater bilayer number cause increased contact angle hysteresis values. The hysteresis values of ~100° were observed on smooth PEMs and pinning of the receding contact line on hydrophilic defects is implicated as the cause of hysteresis. Surface roughness can be used to further tune the contact angle hysteresis on the PEMs. A surface with extremely high contact angle hysteresis of 156° was fabricated when a PEM was deposited on a rough substrate coated with submicrometer scale silica spheres. It was demonstrated that this extremely high value of contact angle hysteresis resulted from the penetration of water into the rough asperities on the substrate. The same substrate hydrophobized by chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltriethoxysilane exhibits high advancing contact angle and low hysteresis. © 2011 American Chemical Society

  15. Foundations of high-energy-density physics physical processes of matter at extreme conditions

    CERN Document Server

    Larsen, Jon

    2017-01-01

    High-energy-density physics explores the dynamics of matter at extreme conditions. This encompasses temperatures and densities far greater than we experience on Earth. It applies to normal stars, exploding stars, active galaxies, and planetary interiors. High-energy-density matter is found on Earth in the explosion of nuclear weapons and in laboratories with high-powered lasers or pulsed-power machines. The physics explored in this book is the basis for large-scale simulation codes needed to interpret experimental results whether from astrophysical observations or laboratory-scale experiments. The key elements of high-energy-density physics covered are gas dynamics, ionization, thermal energy transport, and radiation transfer, intense electromagnetic waves, and their dynamical coupling. Implicit in this is a fundamental understanding of hydrodynamics, plasma physics, atomic physics, quantum mechanics, and electromagnetic theory. Beginning with a summary of the topics and exploring the major ones in depth, thi...

  16. Image-based motion compensation for high-resolution extremities cone-beam CT

    Science.gov (United States)

    Sisniega, A.; Stayman, J. W.; Cao, Q.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.

    2016-03-01

    Purpose: Cone-beam CT (CBCT) of the extremities provides high spatial resolution, but its quantitative accuracy may be challenged by involuntary sub-mm patient motion that cannot be eliminated with simple means of external immobilization. We investigate a two-step iterative motion compensation based on a multi-component metric of image sharpness. Methods: Motion is considered with respect to locally rigid motion within a particular region of interest, and the method supports application to multiple locally rigid regions. Motion is estimated by maximizing a cost function with three components: a gradient metric encouraging image sharpness, an entropy term that favors high contrast and penalizes streaks, and a penalty term encouraging smooth motion. Motion compensation involved initial coarse estimation of gross motion followed by estimation of fine-scale displacements using high resolution reconstructions. The method was evaluated in simulations with synthetic motion (1-4 mm) applied to a wrist volume obtained on a CMOS-based CBCT testbench. Structural similarity index (SSIM) quantified the agreement between motion-compensated and static data. The algorithm was also tested on a motion contaminated patient scan from dedicated extremities CBCT. Results: Excellent correction was achieved for the investigated range of displacements, indicated by good visual agreement with the static data. 10-15% improvement in SSIM was attained for 2-4 mm motions. The compensation was robust against increasing motion (4% decrease in SSIM across the investigated range, compared to 14% with no compensation). Consistent performance was achieved across a range of noise levels. Significant mitigation of artifacts was shown in patient data. Conclusion: The results indicate feasibility of image-based motion correction in extremities CBCT without the need for a priori motion models, external trackers, or fiducials.

  17. Very high cycle fatigue crack initiation in electroplated Ni films under extreme stress gradients

    International Nuclear Information System (INIS)

    Baumert, E.K.; Pierron, O.N.

    2012-01-01

    A characterization technique based on kilohertz micro-resonators is presented to investigate the very high cycle fatigue behavior of 20 μm thick electroplated Ni films with a columnar microstructure (grain diameter less than 2 μm). The films exhibit superior fatigue resistance due to the extreme stress gradients at the surface. The effects of stress amplitude and environment on the formation of fatigue extrusions and micro-cracks are discussed based on scanning electron microscopy and the tracking of the specimens’ resonant frequency.

  18. Extreme-ultraviolet wavelength and lifetime measurements in highly ionized krypton

    CERN Document Server

    Kukla, K W; Vogt, C M V; Berry, H G; Dunford, R W; Curtis, L J; Cheng, S

    2005-01-01

    We have studied the spectrum of highly ionized krypton in the extreme-ultraviolet wavelength region (50-300 Aa), using beam-foil excitation of fast krypton ions at the Argonne ATLAS accelerator facility. We report measurements of transition wavelengths and excited-state lifetimes for n=2 states in the lithiumlike, berylliumlike, and boronlike ions, Kr/sup 31+,32+,33+/. Excited state lifetimes ranging from 10 ps to 3 ns were measured by acquiring time- of-flight-delayed spectra with a position-sensitive multichannel detector.

  19. Acclimation to extremely high ammonia levels in continuous biomethanation process and the associated microbial community dynamics

    DEFF Research Database (Denmark)

    Tian, Hailin; Fotidis, Ioannis; Mancini, Enrico

    2018-01-01

    Acclimatized anaerobic communities to high ammonia levels can offer a solution to the ammonia toxicity problem in biogas reactors. In the current study, a stepwise acclimation strategy up to 10 g NH4+-N L−1, was performed in mesophilic (37 ± 1 °C) continuously stirred tank reactors. The reactors...... change throughout the ammonia acclimation process. Clostridium ultunense, a syntrophic acetate oxidizing bacteria, increased significantly alongside with hydrogenotrophic methanogen Methanoculleus spp., indicating strong hydrogenotrophic methanogenic activity at extreme ammonia levels (>7 g NH4+-N L−1...

  20. Extremely high efficiency phosphorescent organic light-emitting diodes with horizontal emitting dipoles

    Science.gov (United States)

    Kim, Kwon-Hyeon; Moon, Chang-Ki; Lee, Jeong-Hwan; Kim, Jang-Joo

    2014-10-01

    We present the factors influencing the orientation of the phosphorescent dyes in phosphorescent OLEDs. And, we report that an OLED containing a phosphorescent emitter with horizontally oriented dipoles in an exciplex-forming co-host that exhibits an extremely high EQE of 32.3% and power efficiency of 142 lm/W, the highest values ever reported in literature. Furthermore, we experimentally and theoretically correlated the EQE of OLEDs to the PL quantum yield and the horizontal dipole ratio of phosphorescent dyes using three different dyes.

  1. CLASH: EXTREME EMISSION-LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES

    International Nuclear Information System (INIS)

    Huang, Xingxing; Wang, Junxian; Shu, Xinwen; Zheng, Wei; Ford, Holland; Lemze, Doron; Moustakas, John; Van der Wel, Arjen; Zitrin, Adi; Frye, Brenda L.; Postman, Marc; Bradley, Larry; Coe, Dan; Bartelmann, Matthias; Benítez, Narciso; Broadhurst, Tom; Donahue, Megan; Infante, Leopoldo

    2015-01-01

    We utilize the Cluster Lensing And Supernova survey with Hubble observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y 105 ) and F125W (J 125 ), as the flux of the central bands could be enhanced by the presence of [O III] λλ4959, 5007 at redshifts of ∼0.93-1.14 and 1.57-1.79, respectively. The multiband observations help to constrain the equivalent widths (EWs) of emission lines. Thanks to cluster lensing, we are able to identify 52 candidates down to an intrinsic limiting magnitude of 28.5 and to a rest-frame [O III] λλ4959, 5007 EW of ≅ 3700 Å. Our samples include a number of EELGs at lower luminosities that are missed in other surveys, and the extremely high EW can only be found in such faint galaxies. These EELGs can mimic a dropout feature similar to that of high-redshift galaxies and contaminate the color-color selection of high-redshift galaxies when the signal-to-noise ratio is limited or the band coverage is incomplete

  2. CLASH: EXTREME EMISSION-LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xingxing; Wang, Junxian; Shu, Xinwen [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zheng, Wei; Ford, Holland; Lemze, Doron [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Moustakas, John [Department of Physics and Astronomy, Siena College, 515 Loudon Road, Loudonville, NY 12211 (United States); Van der Wel, Arjen [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg (Germany); Zitrin, Adi [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Frye, Brenda L. [Steward Observatory/Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Postman, Marc; Bradley, Larry; Coe, Dan [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21208 (United States); Bartelmann, Matthias [Leiden Observatory, Leiden University, P. O. Box 9513, 2300 RA Leiden (Netherlands); Benítez, Narciso [Instituto de Astrofísica de Andalucía (CSIC), C/Camino Bajo de Huétor 24, Granada E-18008 (Spain); Broadhurst, Tom [Department of Theoretical Physics, University of Basque Country UPV/EHU E-Bilbao (Spain); Donahue, Megan [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Infante, Leopoldo, E-mail: hxx@mail.ustc.edu.cn [Departamento de Astronoía y Astrofísica, Pontificia Universidad Católica de Chile, V. Mackenna 4860 Santiago 22 (Chile); and others

    2015-03-01

    We utilize the Cluster Lensing And Supernova survey with Hubble observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y {sub 105}) and F125W (J {sub 125}), as the flux of the central bands could be enhanced by the presence of [O III] λλ4959, 5007 at redshifts of ∼0.93-1.14 and 1.57-1.79, respectively. The multiband observations help to constrain the equivalent widths (EWs) of emission lines. Thanks to cluster lensing, we are able to identify 52 candidates down to an intrinsic limiting magnitude of 28.5 and to a rest-frame [O III] λλ4959, 5007 EW of ≅ 3700 Å. Our samples include a number of EELGs at lower luminosities that are missed in other surveys, and the extremely high EW can only be found in such faint galaxies. These EELGs can mimic a dropout feature similar to that of high-redshift galaxies and contaminate the color-color selection of high-redshift galaxies when the signal-to-noise ratio is limited or the band coverage is incomplete.

  3. Characteristics of Extreme Extratropical Cyclones in a High-Resolution Global Climate Model

    Science.gov (United States)

    Catalano, A. J.; Broccoli, A. J.; Kapnick, S. B.; Janoski, T. P.

    2017-12-01

    In the northeastern United States, many of the strongest impacts from extratropical cyclones (ETCs) are associated with storms that exhibit slow movement, unusual tracks, or exceptional intensity. Examples of extreme ETCs include the Appalachian storm of November 1950, the Perfect Storm of October 1991, and the Superstorm of March 1993. Owing to the rare nature of these events, it is difficult to quantify the associated risks (e.g. high winds, storm surge) given the limited duration of high-quality observational datasets. Furthermore, storms with even greater impacts than those observed may be possible, particularly in a warming climate. In the context of tropical cyclones, Lin and Emanuel (2016) have used the metaphor "grey swans" to refer to high-impact events that have not been observed but may be physically possible. One method for analyzing "grey swans" is to generate a larger sample of ETCs using a coupled climate model. Therefore, we use long simulations (over 1,000 years with atmospheric constituents fixed at 1990 levels) from a global climate model (GFDL FLOR) with 50km atmospheric resolution. FLOR has been shown to realistically simulate the spatial distribution and climatology of ETCs during the reanalysis era. We will discuss the climatological features of these extreme ETC events.

  4. The evolution of extreme precipitations in high resolution scenarios over France

    Science.gov (United States)

    Colin, J.; Déqué, M.; Somot, S.

    2009-09-01

    Over the past years, improving the modelling of extreme events and their variability at climatic time scales has become one of the challenging issue raised in the regional climate research field. This study shows the results of a high resolution (12 km) scenario run over France with the limited area model (LAM) ALADIN-Climat, regarding the representation of extreme precipitations. The runs were conducted in the framework of the ANR-SCAMPEI national project on high resolution scenarios over French mountains. As a first step, we attempt to quantify one of the uncertainties implied by the use of LAM : the size of the area on which the model is run. In particular, we address the issue of whether a relatively small domain allows the model to create its small scale process. Indeed, high resolution scenarios cannot be run on large domains because of the computation time. Therefore one needs to answer this preliminary question before producing and analyzing such scenarios. To do so, we worked in the framework of a « big brother » experiment. We performed a 23-year long global simulation in present-day climate (1979-2001) with the ARPEGE-Climat GCM, at a resolution of approximately 50 km over Europe (stretched grid). This first simulation, named ARP50, constitutes the « big brother » reference of our experiment. It has been validated in comparison with the CRU climatology. Then we filtered the short waves (up to 200 km) from ARP50 in order to obtain the equivalent of coarse resolution lateral boundary conditions (LBC). We have carried out three ALADIN-Climat simulations at a 50 km resolution with these LBC, using different configurations of the model : * FRA50, run over a small domain (2000 x 2000 km, centered over France), * EUR50, run over a larger domain (5000 x 5000 km, centered over France as well), * EUR50-SN, run over the large domain (using spectral nudging). Considering the facts that ARPEGE-Climat and ALADIN-Climat models share the same physics and dynamics

  5. Improved brachial artery shear patterns and increased flow-mediated dilation after low-volume high-intensity interval training in type 2 diabetes.

    Science.gov (United States)

    Ghardashi Afousi, Alireza; Izadi, Mohammad Reza; Rakhshan, Kamran; Mafi, Farnoosh; Biglari, Soheil; Gandomkar Bagheri, Habibalah

    2018-06-22

    What is the central question of this study? Endothelial function is impaired because of increased oscillatory and retrograde shear in patients with type 2 diabetes. It is unclear whether low-volume high-intensity interval training and continuous moderate intensity exercise can modulate oscillatory and retrograde shear, blood flow and flow-mediated arterial dilation in these patients. What is the main finding and its importance? We found that low-volume high-intensity interval training, by increasing anterograde shear and decreasing retrograde shear and oscillatory index, can increase nitric oxide production and consequently result in increased flow-mediated dilation and outward arterial remodelling in patients with type 2 diabetes. Atherosclerosis in patients with type 2 diabetes is characterized by endothelial dysfunction associated with impaired flow-mediated dilation (FMD) and increases retrograde and oscillatory shear. The present study investigated endothelium-dependent vasodilation and shear rate in patients with type 2 diabetes at baseline and follow-up after 12 weeks of low-volume high-intensity interval training (LV-HIIT) or continuous moderate intensity training (CMIT). Seventy five sedentary patients with type 2 diabetes and untreated pre- or stage I hypertension were randomly divided into LV-HIIT, CMIT and control groups. The LV-HIIT group intervention was 12 intervals of 1.5 min at 85%-90% HR max and 2 min at 55%-60% HR max . The CMIT group intervention was 42 min of exercise at 70% HR max for 3 sessions per week during 12 weeks. High-resolution Doppler ultrasound was used to measure FMD, arterial diameter, anterograde and retrograde blood flow and shear rate patterns. Brachial artery FMD increased significantly in the LV-HIIT group (3.83 ± 1.13 baseline, 7.39 ± 3.6% follow-up), whereas there were no significant increase in the CMIT group (3.45 ± 0.97 baseline, 4.81 ± 2.36% follow-up) compared to the control group (3.16 ± 0

  6. High strength reinforcing steel bars : concrete shear friction interface : final report : Part A.

    Science.gov (United States)

    2017-03-01

    High-strength steel (HSS) reinforcement, specifically ASTM A706 Grade 80 (550), is now permitted by the AASHTO LRFD Bridge Design Specifications for use in reinforced concrete bridge components in non-seismic regions. Using Grade 80 (550) steel reinf...

  7. Design, analysis, and initial testing of a fiber-optic shear gage for three-dimensional, high-temperature flows

    Science.gov (United States)

    Orr, Matthew W.

    This investigation concerns the design, analysis, and initial testing of a new, two-component wall shear gage for 3D, high-temperature flows. This gage is a direct-measuring, non-nulling design with a round head surrounded by a small gap. Two flexure wheels are used to allow small motions of the floating head. Fiber-optic displacement sensors measure how far the polished faces of counterweights on the wheels move in relation to a fixed housing as the primary measurement system. No viscous damping was required. The gage has both fiber-optic instrumentation and strain gages mounted on the flexures for validation of the newer fiber optics. The sensor is constructed of Haynes RTM 230RTM, a high-temperature nickel alloy. The gage housing is made of 316 stainless steel. All components of the gage in pure fiber-optic form can survive to a temperature of 1073 K. The bonding methods of the backup strain gages limit their maximum temperature to 473 K. The dynamic range of the gage is from 0--500 Pa (0--10g) and higher shears can be measured by changing the floating head size. Extensive use of finite element modeling was critical to the design and analysis of the gage. Static structural, modal, and thermal analyses were performed on the flexures using the ANSYS finite element package. Static finite element analysis predicted the response of the flexures to a given load, and static calibrations using a direct force method confirmed these results. Finite element modal analysis results were within 16.4% for the first mode and within 30% for the second mode when compared with the experimentally determined modes. Vibration characteristics of the gage were determined from experimental free vibration data after the gage was subjected to an impulse. Uncertainties in the finished geometry make this level of error acceptable. A transient thermal analysis examined the effects of a very high heat flux on the exposed head of the gage. The 100,000 W/m2 heat flux used in this analysis is

  8. Enhancing protein to extremely high content in photosynthetic bacteria during biogas slurry treatment.

    Science.gov (United States)

    Yang, Anqi; Zhang, Guangming; Meng, Fan; Lu, Pei; Wang, Xintian; Peng, Meng

    2017-12-01

    This work proposed a novel approach to achieve an extremely high protein content in photosynthetic bacteria (PSB) using biogas slurry as a culturing medium. The results showed the protein content of PSB could be enhanced strongly to 90% in the biogas slurry, which was much higher than reported microbial protein contents. The slurry was partially purified at the same time. Dark-aerobic was more beneficial than light-anaerobic condition for protein accumulation. High salinity and high ammonia of the biogas slurry were the main causes for protein enhancement. In addition, the biogas slurry provided a good buffer system for PSB to grow. The biosynthesis mechanism of protein in PSB was explored according to theoretical analysis. During biogas slurry treatment, the activities of glutamate synthase and glutamine synthetase were increased by 26.55%, 46.95% respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments

    Science.gov (United States)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan

    2016-01-01

    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  10. Effects of interactions between powder particle size and binder viscosity on agglomerate growth mechanisms in a high shear mixer.

    Science.gov (United States)

    Johansen, A; Schaefer, T

    2001-01-01

    A study was performed in order to elucidate the effects of the interactions between powder particle size and binder viscosity on the mechanisms involved in agglomerate formation and growth. Calcium carbonates having mean particle sizes in the range of 5-214 microm and polyethylene glycols having viscosities in the range of approximately 50-100000 mPas were melt agglomerated in a high shear mixer. Agglomerate growth by nucleation and coalescence was found to dominate when agglomerating small powder particles and binders with a low viscosity. Increasing the binder viscosity increased the formation of agglomerates by immersion of powder particles in the surface of the binder droplets. With a larger powder particle size, an increasing binder viscosity was necessary in order to obtain an agglomerate strength being sufficient to avoid breakage. Due to a low agglomerate strength, a satisfying agglomeration of very large particles (214 microm) could not be obtained, even with very viscous binders. The study demonstrated that the optimum agglomerate growth occurred when the agglomerates were of an intermediate strength causing an intermediate deformability of the agglomerates. In order to produce spherical agglomerates (pellets), a low viscosity binder has to be chosen when agglomerating a powder with a small particle size, and a high viscosity binder must be applied in agglomeration of powders with large particles.

  11. A web-based study of bipolarity and impulsivity in athletes engaging in extreme and high-risk sports.

    Science.gov (United States)

    Dudek, Dominika; Siwek, Marcin; Jaeschke, Rafał; Drozdowicz, Katarzyna; Styczeń, Krzysztof; Arciszewska, Aleksandra; Chrobak, Adrian A; Rybakowski, Janusz K

    2016-06-01

    We hypothesised that men and women who engage in extreme or high-risk sports would score higher on standardised measures of bipolarity and impulsivity compared to age and gender matched controls. Four-hundred and eighty extreme or high-risk athletes (255 males and 225 females) and 235 age-matched control persons (107 males and 128 females) were enrolled into the web-based case-control study. The Mood Disorder Questionnaire (MDQ) and Barratt Impulsiveness Scale (BIS-11) were administered to screen for bipolarity and impulsive behaviours, respectively. Results indicated that extreme or high-risk athletes had significantly higher scores of bipolarity and impulsivity, and lower scores on cognitive complexity of the BIS-11, compared to controls. Further, there were positive correlations between the MDQ and BIS-11 scores. These results showed greater rates of bipolarity and impulsivity, in the extreme or high-risk athletes, suggesting these measures are sensitive to high-risk behaviours.

  12. Clarithromycin highly-loaded gastro-floating fine granules prepared by high-shear melt granulation can enhance the efficacy of Helicobacter pylori eradication.

    Science.gov (United States)

    Aoki, Hajime; Iwao, Yasunori; Mizoguchi, Midori; Noguchi, Shuji; Itai, Shigeru

    2015-05-01

    In an effort to develop a new gastro-retentive drug delivery system (GRDDS) without a large amount of additives, 75% clarithromycin (CAM) loaded fine granules were prepared with three different hydrophobic binders by high-shear melt granulation and their properties were evaluated. Granules containing the higher hydrophobic binder showed sustained drug release and were able to float over 24h. The synchrotron X-ray CT measurement indicated that both the high hydrophobicity of the binder and the void space inside the granules might be involved in their buoyancy. In an in vivo experiment, the floating granules more effectively eradicated Helicobacter pylori than a CAM suspension by remaining in the stomach for a longer period. In short, CAM highly-loaded gastro-floating fine granules can enhance the eradication efficiency of H. pylori compared with CAM alone. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Design of highly oriented (HOR) media for extremely high density recording

    International Nuclear Information System (INIS)

    Hee, C.H.; Wang, J.P.; Chong, T.C.; Low, T.S.

    2001-01-01

    The magnetic properties and recording performance of highly oriented (HOR) longitudinal media are systematically studied via micromagnetic simulation. It was found that highly oriented longitudinal media could be achieved by controlling the anisotropy axes distribution. The effect of anisotropy constant, saturated magnetization and exchange coupling constants on the hysteresis loops are presented. It was further found that highly oriented media show an ultra-low transition noise. Another interesting observation made was that increasing M s for the HOR media decreases the coercivity, which suggests practical usage of this media with current head field. A 500 Gbit/in 2 recording media is simulated to support the application of the highly oriented longitudinal media for ultra high density recording

  14. Gene expression profiles in testis of pigs with extreme high and low levels of androstenone

    Directory of Open Access Journals (Sweden)

    Bendixen Christian

    2007-11-01

    Full Text Available Abstract Background: Boar taint is a major obstacle when using uncastrated male pigs for swine production. One of the main compounds causing this taint is androstenone, a pheromone produced in porcine testis. Here we use microarrays to study the expression of thousands of genes simultaneously in testis of high and low androstenone boars. The study allows identification of genes and pathways associated with elevated androstenone levels, which is essential for recognising potential molecular markers for breeding purposes. Results: Testicular tissue was collected from 60 boars, 30 with extreme high and 30 with extreme low levels of androstenone, from each of the two breeds Duroc and Norwegian Landrace. The samples were hybridised to porcine arrays containing 26,877 cDNA clones, detecting 563 and 160 genes that were differentially expressed (p Conclusion: This study contributes to the understanding of the complex genetic system controlling and responding to androstenone levels in pig testis. The identification of new pathways and genes involved in the biosynthesis and metabolism of androstenone is an important first step towards finding molecular markers to reduce boar taint.

  15. Definitive intraoperative very high-dose radiotherapy for localized osteosarcoma in the extremities

    International Nuclear Information System (INIS)

    Oya, Natsuo; Kokubo, Masaki; Mizowaki, Takashi; Shibamoto, Yuta; Nagata, Yasushi; Sasai, Keisuke; Nishimura, Yasumasa; Tsuboyama, Tadao; Toguchida, Junya; Nakamura, Takashi; Hiraoka, Masahiro

    2001-01-01

    Purpose: To evaluate the outcome and adverse effects in patients with osteosarcoma treated with very high-dose definitive intraoperative radiotherapy (IORT), with the intention of saving the affected limb. Methods and Materials: Thirty-nine patients with osteosarcoma in their extremities were treated with definitive IORT. The irradiation field included the tumor plus an adequate wide margin and excluded the major vessels and nerves. Forty-five to 80 Gy of electrons or X-rays were delivered. The median follow-up of the surviving patients was 124 months. Results: The cause-specific and relapse-free 5-year survival rate was 50% and 43%, respectively. Distant metastasis developed in 23 patients; 19 died and 4 were alive for >10 years. Nine local recurrences were found 4-29 months after IORT in the affected limb. No radiation-induced skin reaction or nerve palsy was observed in the patients treated with X-rays. Experiments using phantoms also confirmed that the scatter dose was below the toxic level in the IORT setting with X-rays. Conclusions: Very high-dose definitive IORT combined with preventive nailing and chemotherapy appeared to be a promising quality-of-life-oriented alternative to treating patients with osteosarcomas in the extremities, although the problem of recurrences from the surrounding unirradiated soft tissue remains to be solved

  16. Artificial Intelligence Tools for Scaling Up of High Shear Wet Granulation Process.

    Science.gov (United States)

    Landin, Mariana

    2017-01-01

    The results presented in this article demonstrate the potential of artificial intelligence tools for predicting the endpoint of the granulation process in high-speed mixer granulators of different scales from 25L to 600L. The combination of neurofuzzy logic and gene expression programing technologies allowed the modeling of the impeller power as a function of operation conditions and wet granule properties, establishing the critical variables that affect the response and obtaining a unique experimental polynomial equation (transparent model) of high predictability (R 2 > 86.78%) for all size equipment. Gene expression programing allowed the modeling of the granulation process for granulators of similar and dissimilar geometries and can be improved by implementing additional characteristics of the process, as composition variables or operation parameters (e.g., batch size, chopper speed). The principles and the methodology proposed here can be applied to understand and control manufacturing process, using any other granulation equipment, including continuous granulation processes. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Extreme emulsification: formation and structure of nanoemulsions

    Directory of Open Access Journals (Sweden)

    T.G.Mason

    2006-01-01

    Full Text Available Nanoemulsions are metastable dispersions of nanodroplets of one liquid that have been ruptured by shear in another immiscible liquid. The ruptured droplets are stabilized against subsequent coalescence by a surfactant. Because the nanodroplets do not form spontaneously, as they can in lyotropic ``microemulsion'' phases, the structure of nanoemulsions is primarily dependent on the history of the applied shear stresses relative to the interfacial restoring stresses. By applying extremely high shear rates and controlling the composition of the emulsion, we have been able to rupture microscale droplets down to diameters as small as 30 nm in a microfluidic process that yields bulk quantities suitable for commercial production. Following ultracentrifugal fractionation to make the droplets uniform, we study the structure of these emulsions using small angle neutron scattering (SANS at dilute and concentrated volume fractions. We contrast the structure of a concentrated nanoemulsion with the structure factor of hard spheres at a similar volume fraction.

  18. Ultra-high field upper extremity peripheral nerve and non-contrast enhanced vascular imaging.

    Directory of Open Access Journals (Sweden)

    Shailesh B Raval

    Full Text Available The purpose of this study was to explore the efficacy of Ultra-high field [UHF] 7 Tesla [T] MRI as compared to 3T MRI in non-contrast enhanced [nCE] imaging of structural anatomy in the elbow, forearm, and hand [upper extremity].A wide range of sequences including T1 weighted [T1] volumetric interpolate breath-hold exam [VIBE], T2 weighted [T2] double-echo steady state [DESS], susceptibility weighted imaging [SWI], time-of-flight [TOF], diffusion tensor imaging [DTI], and diffusion spectrum imaging [DSI] were optimized and incorporated with a radiofrequency [RF] coil system composed of a transverse electromagnetic [TEM] transmit coil combined with an 8-channel receive-only array for 7T upper extremity [UE] imaging. In addition, Siemens optimized protocol/sequences were used on a 3T scanner and the resulting images from T1 VIBE and T2 DESS were compared to that obtained at 7T qualitatively and quantitatively [SWI was only qualitatively compared]. DSI studio was utilized to identify nerves based on analysis of diffusion weighted derived fractional anisotropy images. Images of forearm vasculature were extracted using a paint grow manual segmentation method based on MIPAV [Medical Image Processing, Analysis, and Visualization].High resolution and high quality signal-to-noise ratio [SNR] and contrast-to-noise ratio [CNR]-images of the hand, forearm, and elbow were acquired with nearly homogeneous 7T excitation. Measured [performed on the T1 VIBE and T2 DESS sequences] SNR and CNR values were almost doubled at 7T vs. 3T. Cartilage, synovial fluid and tendon structures could be seen with higher clarity in the 7T T1 and T2 weighted images. SWI allowed high resolution and better quality imaging of large and medium sized arteries and veins, capillary networks and arteriovenous anastomoses at 7T when compared to 3T. 7T diffusion weighted sequence [not performed at 3T] demonstrates that the forearm nerves are clearly delineated by fiber tractography. The

  19. Acoustic emission monitoring from a lab scale high shear granulator--a novel approach.

    Science.gov (United States)

    Watson, N J; Povey, M J W; Reynolds, G K; Xu, B H; Ding, Y

    2014-04-25

    A new approach to the monitoring of granulation processes using passive acoustics together with precise control over the granulation process has highlighted the importance of particle-particle and particle-bowl collisions in acoustic emission. The results have shown that repeatable acoustic results could be obtained but only when a spray nozzle water addition system was used. Acoustic emissions were recorded from a transducer attached to the bowl and an airborne transducer. It was found that the airborne transducer detected very little from the granulation and only experienced small changes throughout the process. The results from the bowl transducer showed that during granulation the frequency content of the acoustic emission shifted towards the lower frequencies. Results from the discrete element model indicate that when larger particles are used the number of collisions the particles experience reduces. This is a result of the volume conservation methodology used in this study, therefore larger particles results in less particles. These simulation results coupled with previous theoretical work on the frequency content of an impacting sphere explain why the frequency content of the acoustic emissions reduces during granule growth. The acoustic system used was also clearly able to identify when large over-wetted granules were present in the system, highlighting its benefit for detecting undesirable operational conditions. High-speed photography was used to study if visual changes in the granule properties could be linked with the changing acoustic emissions. The high speed photography was only possible towards the latter stages of the granulation process and it was found that larger granules produced a higher magnitude of acoustic emission across a broader frequency range. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Beyond Extreme Ultra Violet (BEUV) Radiation from Spherically symmetrical High-Z plasmas

    Science.gov (United States)

    Yoshida, Kensuke; Fujioka, Shinsuke; Higashiguchi, Takeshi; Ugomori, Teruyuki; Tanaka, Nozomi; Kawasaki, Masato; Suzuki, Yuhei; Suzuki, Chihiro; Tomita, Kentaro; Hirose, Ryouichi; Eshima, Takeo; Ohashi, Hayato; Nishikino, Masaharu; Scally, Enda; Nshimura, Hiroaki; Azechi, Hiroshi; O'Sullivan, Gerard

    2016-03-01

    Photo-lithography is a key technology for volume manufacture of high performance and compact semiconductor devices. Smaller and more complex structures can be fabricated by using shorter wavelength light in the photolithography. One of the most critical issues in development of the next generation photo-lithography is to increase energy conversion efficiency (CE) from laser to shorter wavelength light. Experimental database of beyond extreme ultraviolet (BEUV) radiation was obtained by using spherically symmetrical high-Z plasmas generated with spherically allocated laser beams. Absolute energy and spectra of BEUV light emitted from Tb, Gd, and Mo plasmas were measured with a absolutely calibrated BEUV calorimeter and a transmission grating spectrometer. 1.0 x 1012 W/cm2 is the optimal laser intensity to produced efficient BEUV light source plasmas with Tb and Gd targets. Maximum CE is achieved at 0.8% that is two times higher than the published CEs obtained with planar targets.

  1. Extremely short duration high intensity interval training substantially improves insulin action in young healthy males

    DEFF Research Database (Denmark)

    Babraj, John A; Vollaard, Niels B J; Keast, Cameron

    2009-01-01

    BACKGROUND: Traditional high volume aerobic exercise training reduces cardiovascular and metabolic disease risk but involves a substantial time commitment. Extremely low volume high-intensity interval training (HIT) has recently been demonstrated to produce improvements to aerobic function...... cycle sprints per session). Aerobic performance (250-kJ self-paced cycling time trial), and glucose, insulin and NEFA responses to a 75-g oral glucose load (oral glucose tolerance test; OGTT) were determined before and after training. RESULTS: Following 2 weeks of HIT, the area under the plasma glucose......, to substantially improve insulin action in young sedentary subjects is remarkable. This novel time-efficient training paradigm can be used as a strategy to reduce metabolic risk factors in young and middle aged sedentary populations who otherwise would not adhere to time consuming traditional aerobic exercise...

  2. Extreme Energy Events Project: Construction of the detectors and installation in Italian High Schools

    International Nuclear Information System (INIS)

    Abbrescia, M.; An, S.; Antolini, R.; Badala, A.; Baldini Ferroli, R.; Bencivenni, G.; Blanco, F.; Bressan, E.; Chiavassa, A.; Chiri, C.; Cifarelli, L.; Cindolo, F.; Coccia, E.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Fabbri, F.L.; Frolov, V.; Garbini, M.; Gustavino, C.

    2008-01-01

    The EEE Project, conceived by its leader Antonino Zichichi, aims to detect Extreme Energy Events of cosmic rays with an array of muon telescopes distributed over the Italian territory. The Project involves Italian High Schools in order to introduce young people to Physics, also countervailing the recent crisis of university scientific classes inscriptions. The detectors for the EEE telescopes are Multigap Resistive Plate Chambers (MRPC) and have been constructed by teams of High School students who went in shift at the CERN laboratories. The mechanics and the electronics were developed by groups of researchers from CERN, the Italian Centro Fermi and INFN. The first group of schools of the EEE Project has inaugurated their telescopes recently. A status report of the Project and the preliminary results are presented

  3. Extreme Energy Events Project: Construction of the detectors and installation in Italian High Schools

    CERN Document Server

    Abbrescia, M; An, S; Antolini, R; Badalà, A; Baldini Ferroli, R; Bencivenni, G; Blanco, F; Bressan, E; Chiavassa, A; Chiri, C; Cifarelli, L; Cindolo, F; Coccia, E; De Pasquale, S; Di Giovanni, A; D’Incecco, M; Fabbri, F L; Frolov, V; Garbini, M; Gustavino, C; Hatzifotiadou, D; Imponente, G; Kim, J; La Rocca, P; Librizzi, F; Maggiora, A; Menghetti, H; Miozzi, S; Moro, R; Panareo, M; Pappalardo, G S; Piragino, G; Riggi, F; Romano, F; Sartorelli, G; Sbarra, C; Selvi, M; Serci, S; Williams, C; Zuyeuski, R

    2008-01-01

    The EEE Project, conceived by its leader Antonino Zichichi, aims to detect Extreme Energy Events of cosmic rays with an array of muon telescopes distributed over the Italian territory. The Project involves Italian High Schools in order to introduce young people to Physics, also countervailing the recent crisis of university scientific classes inscriptions. The detectors for the EEE telescopes are Multigap Resistive Plate Chambers (MRPC) and have been constructed by teams of High School students who went in shift at the CERN laboratories. The mechanics and the electronics were developed by groups of researchers from CERN, the Italian Centro Fermi and INFN. The first group of schools of the EEE Project has inaugurated their telescopes recently. A status report of the Project and the preliminary results are presented.

  4. EPS-LASSO: Test for High-Dimensional Regression Under Extreme Phenotype Sampling of Continuous Traits.

    Science.gov (United States)

    Xu, Chao; Fang, Jian; Shen, Hui; Wang, Yu-Ping; Deng, Hong-Wen

    2018-01-25

    Extreme phenotype sampling (EPS) is a broadly-used design to identify candidate genetic factors contributing to the variation of quantitative traits. By enriching the signals in extreme phenotypic samples, EPS can boost the association power compared to random sampling. Most existing statistical methods for EPS examine the genetic factors individually, despite many quantitative traits have multiple genetic factors underlying their variation. It is desirable to model the joint effects of genetic factors, which may increase the power and identify novel quantitative trait loci under EPS. The joint analysis of genetic data in high-dimensional situations requires specialized techniques, e.g., the least absolute shrinkage and selection operator (LASSO). Although there are extensive research and application related to LASSO, the statistical inference and testing for the sparse model under EPS remain unknown. We propose a novel sparse model (EPS-LASSO) with hypothesis test for high-dimensional regression under EPS based on a decorrelated score function. The comprehensive simulation shows EPS-LASSO outperforms existing methods with stable type I error and FDR control. EPS-LASSO can provide a consistent power for both low- and high-dimensional situations compared with the other methods dealing with high-dimensional situations. The power of EPS-LASSO is close to other low-dimensional methods when the causal effect sizes are small and is superior when the effects are large. Applying EPS-LASSO to a transcriptome-wide gene expression study for obesity reveals 10 significant body mass index associated genes. Our results indicate that EPS-LASSO is an effective method for EPS data analysis, which can account for correlated predictors. The source code is available at https://github.com/xu1912/EPSLASSO. hdeng2@tulane.edu. Supplementary data are available at Bioinformatics online. © The Author (2018). Published by Oxford University Press. All rights reserved. For Permissions, please

  5. Recent and future warm extreme events and high-mountain slope stability.

    Science.gov (United States)

    Huggel, C; Salzmann, N; Allen, S; Caplan-Auerbach, J; Fischer, L; Haeberli, W; Larsen, C; Schneider, D; Wessels, R

    2010-05-28

    The number of large slope failures in some high-mountain regions such as the European Alps has increased during the past two to three decades. There is concern that recent climate change is driving this increase in slope failures, thus possibly further exacerbating the hazard in the future. Although the effects of a gradual temperature rise on glaciers and permafrost have been extensively studied, the impacts of short-term, unusually warm temperature increases on slope stability in high mountains remain largely unexplored. We describe several large slope failures in rock and ice in recent years in Alaska, New Zealand and the European Alps, and analyse weather patterns in the days and weeks before the failures. Although we did not find one general temperature pattern, all the failures were preceded by unusually warm periods; some happened immediately after temperatures suddenly dropped to freezing. We assessed the frequency of warm extremes in the future by analysing eight regional climate models from the recently completed European Union programme ENSEMBLES for the central Swiss Alps. The models show an increase in the higher frequency of high-temperature events for the period 2001-2050 compared with a 1951-2000 reference period. Warm events lasting 5, 10 and 30 days are projected to increase by about 1.5-4 times by 2050 and in some models by up to 10 times. Warm extremes can trigger large landslides in temperature-sensitive high mountains by enhancing the production of water by melt of snow and ice, and by rapid thaw. Although these processes reduce slope strength, they must be considered within the local geological, glaciological and topographic context of a slope.

  6. Structure and conformation of α-glucan extracted from Agaricus blazei Murill by high-speed shearing homogenization.

    Science.gov (United States)

    Zhang, Anqiang; Deng, Jiaying; Liu, Xiaoqing; He, Pengfei; He, Liang; Zhang, Fuming; Linhardt, Robert J; Sun, Peilong

    2018-07-01

    Agaricus blazei Murill is an edible and medicinal mushroom favored in many countries, by virtue of both its delicious taste and its potential health benefits such as its purported anticancer activity. A neutral α-glucan (ABM40-1) with a carbohydrate content of 96% was purified from the high-speed shearing homogenization extracts of A. Blazei Murill by ethanol precipitation and column chromatography. Methylation analysis along with nuclear magnetic resonance spectroscopy revealed that ABM40-1 was an α-(1→4)-d-glucopyranan with O-6 position occasionally occupied with α-Glcp-(1→or α-Glcp-(1→6)-β-Glcp-(1→side chains. A weight-average molecular weight of 7.34×10 6 Da was determined for ABM40-1 and its chain in solution was revealed as a compact sphere by size exclusion chromatography (SEC) coupled with a laser light scattering. This spherical conformation was also further confirmed by Congo red test and using atom force microscopy. These results suggest it would be worthwhile to further study the potential bioactivities of ABM40-1. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Characteristics of the scrape-off layer in DIII-D high-performance negative central magnetic shear discharges

    Energy Technology Data Exchange (ETDEWEB)

    Lasnier, C.J. [General Atomics, San Diego, CA (United States); Maingi, R. [General Atomics, San Diego, CA (United States); Leonard, A.W. [General Atomics, San Diego, CA (United States); Allen, S.L. [General Atomics, San Diego, CA (United States); Buchenauer, D.A. [General Atomics, San Diego, CA (United States); Burrell, K.H. [General Atomics, San Diego, CA (United States); Casper, T.A. [General Atomics, San Diego, CA (United States); Cuthbertson, J.W. [General Atomics, San Diego, CA (United States); Fenstermacher, M.E. [General Atomics, San Diego, CA (United States); Hill, D.N. [General Atomics, San Diego, CA (United States); Jong, R.A. [General Atomics, San Diego, CA (United States); Lao, L.L. [General Atomics, San Diego, CA (United States); Lazarus, E.A. [General Atomics, San Diego, CA (United States); Moyer, R.A. [General Atomics, San Diego, CA (United States); Petrie, T.W. [General Atomics, San Diego, CA (United States); Porter, G.D. [General Atomics, San Diego, CA (United States); Rice, B.W. [General Atomics, San Diego, CA (United States); Stallard, B.W. [General Atomics, San Diego, CA (United States); Taylor, T.S. [General Atomics, San Diego, CA (United States); Watkins, J.G. [General Atomics, San Diego, CA (United States)

    1997-02-01

    In this paper we present measurements of the global power and particle balance in the high-performance phase of negative central magnetic shear (NCS) discharges and compare with reference VH-mode discharges. The principal differences observed are that NCS has a much lower fraction of the total input power flowing into the boundary, less core radiation, and larger rate of stored energy increase as a fraction of total power. Scrape-off layer (SOL) temperature and divertor heat flux profiles, and radiation profiles at the midplane, are similar to VH-mode. Due to the good core particle confinement and efficient fueling by neutral beam injection (NBI), with little gas puffing, the gas load on the walls and the recycling are very low during the NCS discharges. This results in a rate of density rise relative to beam fueling at the L to H transition time which is 1/3 of the value for VH transitions, which is in turn 1/2 that for L-to-ELMing-H-mode transitions. (orig.).

  8. PHASE QUANTIZATION STUDY OF SPATIAL LIGHT MODULATOR FOR EXTREME HIGH-CONTRAST IMAGING

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Jiangpei; Ren, Deqing, E-mail: jpdou@niaot.ac.cn, E-mail: jiangpeidou@gmail.com [Physics and Astronomy Department, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330 (United States)

    2016-11-20

    Direct imaging of exoplanets by reflected starlight is extremely challenging due to the large luminosity ratio to the primary star. Wave-front control is a critical technique to attenuate the speckle noise in order to achieve an extremely high contrast. We present a phase quantization study of a spatial light modulator (SLM) for wave-front control to meet the contrast requirement of detection of a terrestrial planet in the habitable zone of a solar-type star. We perform the numerical simulation by employing the SLM with different phase accuracy and actuator numbers, which are related to the achievable contrast. We use an optimization algorithm to solve the quantization problems that is matched to the controllable phase step of the SLM. Two optical configurations are discussed with the SLM located before and after the coronagraph focal plane mask. The simulation result has constrained the specification for SLM phase accuracy in the above two optical configurations, which gives us a phase accuracy of 0.4/1000 and 1/1000 waves to achieve a contrast of 10{sup -10}. Finally, we have demonstrated that an SLM with more actuators can deliver a competitive contrast performance on the order of 10{sup -10} in comparison to that by using a deformable mirror.

  9. An Extremely Halophilic Proteobacterium Combines a Highly Acidic Proteome with a Low Cytoplasmic Potassium Content*

    Science.gov (United States)

    Deole, Ratnakar; Challacombe, Jean; Raiford, Douglas W.; Hoff, Wouter D.

    2013-01-01

    Halophilic archaea accumulate molar concentrations of KCl in their cytoplasm as an osmoprotectant and have evolved highly acidic proteomes that function only at high salinity. We examined osmoprotection in the photosynthetic Proteobacteria Halorhodospira halophila and Halorhodospira halochloris. Genome sequencing and isoelectric focusing gel electrophoresis showed that the proteome of H. halophila is acidic. In line with this finding, H. halophila accumulated molar concentrations of KCl when grown in high salt medium as detected by x-ray microanalysis and plasma emission spectrometry. This result extends the taxonomic range of organisms using KCl as a main osmoprotectant to the Proteobacteria. The closely related organism H. halochloris does not exhibit an acidic proteome, matching its inability to accumulate K+. This observation indicates recent evolutionary changes in the osmoprotection strategy of these organisms. Upon growth of H. halophila in low salt medium, its cytoplasmic K+ content matches that of Escherichia coli, revealing an acidic proteome that can function in the absence of high cytoplasmic salt concentrations. These findings necessitate a reassessment of two central aspects of theories for understanding extreme halophiles. First, we conclude that proteome acidity is not driven by stabilizing interactions between K+ ions and acidic side chains but by the need for maintaining sufficient solvation and hydration of the protein surface at high salinity through strongly hydrated carboxylates. Second, we propose that obligate protein halophilicity is a non-adaptive property resulting from genetic drift in which constructive neutral evolution progressively incorporates weakly stabilizing K+-binding sites on an increasingly acidic protein surface. PMID:23144460

  10. A Piezoelectric Shear Stress Sensor

    Science.gov (United States)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-01-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  11. Ultimate waveform reproducibility of extreme-ultraviolet pulses by high-harmonic generation in quartz

    Science.gov (United States)

    Garg, M.; Kim, H. Y.; Goulielmakis, E.

    2018-05-01

    Optical waveforms of light reproducible with subcycle precision underlie applications of lasers in ultrafast spectroscopies, quantum control of matter and light-based signal processing. Nonlinear upconversion of optical pulses via high-harmonic generation in gas media extends these capabilities to the extreme ultraviolet (EUV). However, the waveform reproducibility of the generated EUV pulses in gases is inherently sensitive to intensity and phase fluctuations of the driving field. We used photoelectron interferometry to study the effects of intensity and carrier-envelope phase of an intense single-cycle optical pulse on the field waveform of EUV pulses generated in quartz nanofilms, and contrasted the results with those obtained in gas argon. The EUV waveforms generated in quartz were found to be virtually immune to the intensity and phase of the driving field, implying a non-recollisional character of the underlying emission mechanism. Waveform-sensitive photonic applications and precision measurements of fundamental processes in optics will benefit from these findings.

  12. High-resolution Fourier-transform extreme ultraviolet photoabsorption spectroscopy of 14N15N

    Science.gov (United States)

    Heays, A. N.; Dickenson, G. D.; Salumbides, E. J.; de Oliveira, N.; Joyeux, D.; Nahon, L.; Lewis, B. R.; Ubachs, W.

    2011-12-01

    The first comprehensive high-resolution photoabsorption spectrum of 14N15N has been recorded using the Fourier-transform spectrometer attached to the Desirs beamline at the Soleil synchrotron. Observations are made in the extreme ultraviolet and span 100 000-109 000 cm-1 (100-91.7 nm). The observed absorption lines have been assigned to 25 bands and reduced to a set of transition energies, f values, and linewidths. This analysis has verified the predictions of a theoretical model of N2 that simulates its photoabsorption and photodissociation cross section by solution of an isotopomer independent formulation of the coupled-channel Schrödinger equation. The mass dependence of predissociation linewidths and oscillator strengths is clearly evident and many local perturbations of transition energies, strengths, and widths within individual rotational series have been observed.

  13. High dark matter densities and the formation of extreme dwarf galaxies

    International Nuclear Information System (INIS)

    Lake, G.

    1990-01-01

    The extreme dwarfs of the Local Group, GR 8, Draco, and Ursa Minor have high densities of dark matter. If the dark matter is dissipationless, then there is a simple relation between the redshift of turnaround z(turn) and its current mean density. Three alternatives for the dSphs are discussed. If the dark matter follows the light, then z(turn) is greater than 30. If a density profile is adopted so that the mean density becomes low enough to be barely consistent with the standard density fluctuation spectrum of cold dark matter, then the mass-to-light ratios are greater than 1000 solar mass/solar luminosity. The last alternative is dissipational dark matter. In this case, the additional collapse factor owing to dissipation allows a later epoch of formation. 39 refs

  14. Sensitivity Analysis of Expected Wind Extremes over the Northwestern Sahara and High Atlas Region.

    Science.gov (United States)

    Garcia-Bustamante, E.; González-Rouco, F. J.; Navarro, J.

    2017-12-01

    A robust statistical framework in the scientific literature allows for the estimation of probabilities of occurrence of severe wind speeds and wind gusts, but does not prevent however from large uncertainties associated with the particular numerical estimates. An analysis of such uncertainties is thus required. A large portion of this uncertainty arises from the fact that historical observations are inherently shorter that the timescales of interest for the analysis of return periods. Additional uncertainties stem from the different choices of probability distributions and other aspects related to methodological issues or physical processes involved. The present study is focused on historical observations over the Ouarzazate Valley (Morocco) and in a high-resolution regional simulation of the wind in the area of interest. The aim is to provide extreme wind speed and wind gust return values and confidence ranges based on a systematic sampling of the uncertainty space for return periods up to 120 years.

  15. Extremely high efficient nanoreactor with Au@ZnO catalyst for photocatalysis

    Science.gov (United States)

    Su, Chung-Yi; Yang, Tung-Han; Gurylev, Vitaly; Huang, Sheng-Hsin; Wu, Jenn-Ming; Perng, Tsong-Pyng

    2015-10-01

    We fabricated a photocatalytic Au@ZnO@PC (polycarbonate) nanoreactor composed of monolayered Au nanoparticles chemisorbed on conformal ZnO nanochannel arrays within the PC membrane. A commercial PC membrane was used as the template for deposition of a ZnO shell into the pores by atomic layer deposition (ALD). Thioctic acid (TA) with sufficient steric stabilization was used as a molecular linker for functionalization of Au nanoparticles in a diameter of 10 nm. High coverage of Au nanoparticles anchored on the inner wall of ZnO nanochannels greatly improved the photocatalytic activity for degradation of Rhodamine B. The membrane nanoreactor achieved 63% degradation of Rhodamine B within only 26.88 ms of effective reaction time owing to its superior mass transfer efficiency based on Damköhler number analysis. Mass transfer limitation can be eliminated in the present study due to extremely large surface-to-volume ratio of the membrane nanoreactor.

  16. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Y., E-mail: y.hirano@aist.go.jp, E-mail: hirano.yoichi@phys.cst.nihon-u.ac.jp [Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); College of Science and Technologies, Nihon University, Chiyodaku, Tokyo 101-0897 (Japan); Kiyama, S.; Koguchi, H. [Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Fujiwara, Y.; Sakakita, H. [Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Department of Engineering Mechanics and Energy, University of Tsukuba, Ibaraki 305-8577 (Japan)

    2015-11-15

    A high current density (≈3 mA/cm{sup 2}) hydrogen ion beam source operating in an extremely low-energy region (E{sub ib} ≈ 150–200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E{sub ib} is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  17. INLA goes extreme: Bayesian tail regression for the estimation of high spatio-temporal quantiles

    KAUST Repository

    Opitz, Thomas

    2018-05-25

    This work is motivated by the challenge organized for the 10th International Conference on Extreme-Value Analysis (EVA2017) to predict daily precipitation quantiles at the 99.8% level for each month at observed and unobserved locations. Our approach is based on a Bayesian generalized additive modeling framework that is designed to estimate complex trends in marginal extremes over space and time. First, we estimate a high non-stationary threshold using a gamma distribution for precipitation intensities that incorporates spatial and temporal random effects. Then, we use the Bernoulli and generalized Pareto (GP) distributions to model the rate and size of threshold exceedances, respectively, which we also assume to vary in space and time. The latent random effects are modeled additively using Gaussian process priors, which provide high flexibility and interpretability. We develop a penalized complexity (PC) prior specification for the tail index that shrinks the GP model towards the exponential distribution, thus preventing unrealistically heavy tails. Fast and accurate estimation of the posterior distributions is performed thanks to the integrated nested Laplace approximation (INLA). We illustrate this methodology by modeling the daily precipitation data provided by the EVA2017 challenge, which consist of observations from 40 stations in the Netherlands recorded during the period 1972–2016. Capitalizing on INLA’s fast computational capacity and powerful distributed computing resources, we conduct an extensive cross-validation study to select the model parameters that govern the smoothness of trends. Our results clearly outperform simple benchmarks and are comparable to the best-scoring approaches of the other teams.

  18. Internal helical modes with m > 1 in a tokamak with a small shear and high plasma pressure

    International Nuclear Information System (INIS)

    Mikha lovskij, A.B.; Aburdzhaniya, G.D.; Krymskij, A.M.

    1979-01-01

    Internal helical modes with m>1 in a circular cross-section tokamak with a small shear and large value of the parameter β (β is the ratio between the mean plasma pressure and the mean pressure of the poloidal magnetic field) are investigated. The equations obtained are used to study the destabilizing effects leading to helical instabilities. The role of destabilizing effects is regarded both in local and in a nonlocal approximations on the assumption that the radial plasma pressure is distributed parabolically and that the radial current distribution is also parabolic though slightly varying. It has been established that the profiling of current may lead to the tokamak plasma stability with respect to the modes under investigation. A tokamak with a small shear has been shown to be more stable relative to these modes than that with a large shear

  19. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. II - Wall shear stress

    Science.gov (United States)

    Liou, M. S.; Adamson, T. C., Jr.

    1980-01-01

    Asymptotic methods are used to calculate the shear stress at the wall for the interaction between a normal shock wave and a turbulent boundary layer on a flat plate. A mixing length model is used for the eddy viscosity. The shock wave is taken to be strong enough that the sonic line is deep in the boundary layer and the upstream influence is thus very small. It is shown that unlike the result found for laminar flow an asymptotic criterion for separation is not found; however, conditions for incipient separation are computed numerically using the derived solution for the shear stress at the wall. Results are compared with available experimental measurements.

  20. High diversity and suggested endemicity of culturable Actinobacteria in an extremely oligotrophic desert oasis

    Directory of Open Access Journals (Sweden)

    Hector Fernando Arocha-Garza

    2017-05-01

    shows that our isolation effort produced 38 unique OTUs in six new monophyletic clades. This high biodiversity and uniqueness of Actinobacteria in an extreme oligotrophic environment, which has previously been reported for its diversity and endemicity, is a suggestive sign of microbial biogeography of Actinobacteria and it also represents an invaluable source of biological material for future ecological and bioprospecting studies.

  1. High diversity and suggested endemicity of culturable Actinobacteria in an extremely oligotrophic desert oasis

    Science.gov (United States)

    Arocha-Garza, Hector Fernando; Canales-Del Castillo, Ricardo; Eguiarte, Luis E.; Souza, Valeria

    2017-01-01

    isolation effort produced 38 unique OTUs in six new monophyletic clades. This high biodiversity and uniqueness of Actinobacteria in an extreme oligotrophic environment, which has previously been reported for its diversity and endemicity, is a suggestive sign of microbial biogeography of Actinobacteria and it also represents an invaluable source of biological material for future ecological and bioprospecting studies. PMID:28480140

  2. Pathological characteristics of extremely severe acute radiation injury in a patient's legs and hands after a very uneven accidental exposure to an extremely high dose of 192Ir

    International Nuclear Information System (INIS)

    Li Qing; Li Guomin; Liu Shujun; Yang Yijing; Li Fumeng; Yang Junhua

    1997-01-01

    The pathological characteristics of an extremely high dose radiation in the legs and hands of a patient is reported. the patient was exposed to 192 Ir γ-rays for 9 hours and 20 minutes, the activity of which was 2.76 TBq. The amputations of the right thigh and left forearm had to be performed 8 days after the irradiation and the debridements and skin graftings were performed on the right hand and the inner side of left knee 55 days after the radiation. Microscopically, massive necrosis of cells of the epidermis, cutaneous appendages, hypodermics and skeletal muscles, and hemorrhage in the dermis, hypodermics and skeletal muscles were seen in the local irradiated parts of the right shank. But the arrector pili muscles in the dermis of the right shank remained. On the fingers and the palm of the left hand, vacuolar degeneration and massive necrosis of the cells of epidermis were present with extensive neutrophil infiltration. Cysts of large or small size were formed from the necrotic cells, separating epidermis from dermis. There were degeneration and necrosis of glandular epithelium cells of sweat glands. Hemorrhage was present in dermis and hypodermics. All the hematopoietic tissues in the bone marrow in the upper ends of the tibia and fibula and in the lower ends of the femur, the radius and the ulna disappeared. Acute radiation ulcers were present on the skin of the left knee and on the skin of the thumb, index finger and middle finger of the right hand. The extremely severe acute radiation injury caused by extremely high dose of 192 Ir led to the necrosis of the extensive soft tissues deep to skeletal muscles and the disappearance of the hematopoietic tissues in the bone marrow

  3. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies.

    Science.gov (United States)

    Balal, Nezah; Pinhasi, Gad A; Pinhasi, Yosef

    2016-05-23

    The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide "chirped" Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution.

  4. The paradox of extreme high-altitude migration in bar-headed geese Anser indicus

    Science.gov (United States)

    Hawkes, L. A.; Balachandran, S.; Batbayar, N.; Butler, P. J.; Chua, B.; Douglas, D. C.; Frappell, P. B.; Hou, Y.; Milsom, W. K.; Newman, S. H.; Prosser, D. J.; Sathiyaselvam, P.; Scott, G. R.; Takekawa, J. Y.; Natsagdorj, T.; Wikelski, M.; Witt, M. J.; Yan, B.; Bishop, C. M.

    2013-01-01

    Bar-headed geese are renowned for migratory flights at extremely high altitudes over the world's tallest mountains, the Himalayas, where partial pressure of oxygen is dramatically reduced while flight costs, in terms of rate of oxygen consumption, are greatly increased. Such a mismatch is paradoxical, and it is not clear why geese might fly higher than is absolutely necessary. In addition, direct empirical measurements of high-altitude flight are lacking. We test whether migrating bar-headed geese actually minimize flight altitude and make use of favourable winds to reduce flight costs. By tracking 91 geese, we show that these birds typically travel through the valleys of the Himalayas and not over the summits. We report maximum flight altitudes of 7290 m and 6540 m for southbound and northbound geese, respectively, but with 95 per cent of locations received from less than 5489 m. Geese travelled along a route that was 112 km longer than the great circle (shortest distance) route, with transit ground speeds suggesting that they rarely profited from tailwinds. Bar-headed geese from these eastern populations generally travel only as high as the terrain beneath them dictates and rarely in profitable winds. Nevertheless, their migration represents an enormous challenge in conditions where humans and other mammals are only able to operate at levels well below their sea-level maxima. PMID:23118436

  5. Impacts of extreme weather events on highly eutrophic marine ecosystem (Rogoznica Lake, Adriatic coast)

    Science.gov (United States)

    Ciglenečki, I.; Janeković, I.; Marguš, M.; Bura-Nakić, E.; Carić, M.; Ljubešić, Z.; Batistić, M.; Hrustić, E.; Dupčić, I.; Garić, R.

    2015-10-01

    Rogoznica Lake is highly eutrophic marine system located on the Eastern Adriatic coast (43°32‧N, 15°58‧E). Because of the relatively small size (10,276 m2) and depth (15 m) it experiences strong natural and indirect anthropogenic influences. Dynamics within the lake is characterized by the extreme and highly variable environmental conditions (seasonal variations in salinity and temperature, water stratification and mixing, redox and euxinic conditions, concentrations of nutrients) which significantly influence the biology inside the lake. Due to the high phytoplankton activity, the upper part of the water column is well oxygenated, while hypoxia/anoxia usually occurs in the bottom layers. Anoxic part of the water column is characterized with high concentrations of sulfide (up to 5 mM) and nutrients (NH4+ up to 315 μM; PO43- up to 53 μM; SiO44- up to 680 μM) indicating the pronounced remineralization of the allochthonous organic matter, produced in the surface waters. The mixolimnion varies significantly within a season feeling effects of the Adriatic atmospheric and ocean dynamics (temperature, wind, heat fluxes, rainfall) which all affect the vertical stability and possibly induce vertical mixing and/or turnover. Seasonal vertical mixing usually occurs during the autumn/winter upon the breakdown of the stratification, injecting oxygen-rich water from the surface into the deeper layers. Depending on the intensity and duration of the vertical dynamics (slower diffusion and/or faster turnover of the water layers) anoxic conditions could developed within the whole water column. Extreme weather events such as abrupt change in the air temperature accompanied with a strong wind and consequently heat flux are found to be a key triggering mechanism for the fast turnover, introducing a large amount of nutrients and sulfur species from deeper parts to the surface. Increased concentration of nutrients, especially ammonium, phosphate, and silicates persisting for

  6. Liquid jet impingement cooling with diamond substrates for extremely high heat flux applications

    International Nuclear Information System (INIS)

    Lienhard V, J.H.

    1993-01-01

    The combination of impinging jets and diamond substrates may provide an effective solution to a class of extremely high heat flux problems in which very localized heat loads must be removed. Some potential applications include the cooling of high-heat-load components in synchrotron x-ray, fusion, and semiconductor laser systems. Impinging liquid jets are a very effective vehicle for removing high heat fluxes. The liquid supply arrangement is relatively simple, and low thermal resistances can be routinely achieved. A jet's cooling ability is a strong function of the size of the cooled area relative to the jet diameter. For relatively large area targets, the critical heat fluxes can approach 20 W/mm 2 . In this situation, burnout usually originates at the outer edge of the cooled region as increasing heat flux inhibits the liquid supply. Limitations from liquid supply are minimized when heating is restricted to the jet stagnation zone. The high stagnation pressure and high velocity gradients appear to suppress critical flux phenomena, and fluxes of up to 400 W/mm 2 have been reached without evidence of burnout. Instead, the restrictions on heat flux are closely related to properties of the cooled target. Target properties become an issue owing to the large temperatures and large temperature gradients that accompany heat fluxes over 100 W/mm 2 . These conditions necessitate a target with both high thermal conductivity to prevent excessive temperatures and good mechanical properties to prevent mechanical failures. Recent developments in synthetic diamond technology present a possible solution to some of the solid-side constraints on heat flux. Polycrystalline diamond foils can now be produced by chemical vapor deposition in reasonable quantity and at reasonable cost. Synthetic single crystal diamonds as large as 1 cm 2 are also available

  7. Extreme implanting in Si: A study of ion-induced damage at high temperature and high dose

    International Nuclear Information System (INIS)

    Holland, O.W.

    1994-01-01

    Ion-solid interactions near room temperature and below have been well studied in single-crystal Si. While this has led to a better understanding of the mechanisms responsible for nucleation and growth of lattice damage during irradiation, these studies have not, in general, been extended to high temperatures (e.g., >200 degrees C). This is the case despite the commercialization of ion beam technologies which utilize high-temperature processing, such as separation by implantation of oxygen (SIMOX). In this process, a silicon-on-insulator (SOI) material is produced by implanting a high dose of oxygen ions into a Si wafer to form a buried, stoichiometric oxide layer. Results will be presented of a study of damage accumulation during high-dose implantation of Si at elevated temperatures. In particular, O + -ions were used because of the potential impact of the results on the SIMOX technology. It will be shown that the nature of the damage accumulation at elevated temperatures is quite distinctive and portends the presence of a new mechanism, one which is only dominant under the extreme conditions encountered during ion beam synthesis (i.e., high temperature and high dose). This mechanism is discussed and shown to be quite general and not dependent on the chemical identity of the ions. Also, techniques for suppressing this mechanism by open-quotes defect engineeringclose quotes are discussed. Such techniques are technologically relevant because they offer the possibility of reducing the defect density of the SOI produced by SIMOX

  8. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part 2: Wall shear stress

    Science.gov (United States)

    Liou, M. S.; Adamson, T. C., Jr.

    1979-01-01

    An analysis is presented of the flow in the two inner layers, the Reynolds stress sublayer and the wall layer. Included is the calculation of the shear stress at the wall in the interaction region. The limit processes considered are those used for an inviscid flow.

  9. SHEAR ACCELERATION IN EXPANDING FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Rieger, F. M. [ZAH, Institut für Theoretische Astrophysik, Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg (Germany); Duffy, P., E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: peter.duffy@ucd.ie [University College Dublin, Belfield, Dublin 4 (Ireland)

    2016-12-10

    Shear flows are naturally expected to occur in astrophysical environments and potential sites of continuous non-thermal Fermi-type particle acceleration. Here we investigate the efficiency of expanding relativistic outflows to facilitate the acceleration of energetic charged particles to higher energies. To this end, the gradual shear acceleration coefficient is derived based on an analytical treatment. The results are applied to the context of the relativistic jets from active galactic nuclei. The inferred acceleration timescale is investigated for a variety of conical flow profiles (i.e., power law, Gaussian, Fermi–Dirac) and compared to the relevant radiative and non-radiative loss timescales. The results exemplify that relativistic shear flows are capable of boosting cosmic-rays to extreme energies. Efficient electron acceleration, on the other hand, requires weak magnetic fields and may thus be accompanied by a delayed onset of particle energization and affect the overall jet appearance (e.g., core, ridge line, and limb-brightening).

  10. Monitoring of multiple solvent induced form changes during high shear wet granulation and drying processes using online Raman spectroscopy.

    Science.gov (United States)

    Reddy, Jay Poorna; Jones, John W; Wray, Patrick S; Dennis, Andrew B; Brown, Jonathan; Timmins, Peter

    2018-04-25

    Form changes during drug product processing can be a risk to the final product quality in terms of chemical stability and bioavailability. In this study, online Raman spectroscopy was used to monitor the form changes in real time during high shear wet granulation of Compound A, a highly soluble drug present at a high drug load in an extended release formulation. The effect of water content, temperature, wet massing time and drying technique on the degree of drug transformation were examined. A designed set of calibration standards were employed to develop quantitative partial least square regression models to predict the concentration of each drug form during both wet granulation and the drying process. Throughout all our experiments we observed complex changes of the drug form during granulation, manifest as conversions between the initial non-solvated form of Compound A, the hemi-hydrate form and the "apparent" amorphous form (dissolved drug). The online Raman data demonstrate that the non-solvated form converts to an "apparent" amorphous form (dissolved drug) due to drug dissolution with no appearance of the hemi-hydrate form during water addition stage. The extent of conversion of the non-solvated form was governed by the amount of water added and the rate of conversion was accelerated at higher temperatures. Interestingly, in the wet massing zone, the formation of the hemi-hydrate form was observed at a rate equivalent to the rate of depletion of the non-solvated form with no change in the level of the "apparent amorphous" form generated. The level of hemi-hydrate increased with an increase in wet massing time. The drying process had a significant effect on the proportion of each form. During tray drying, changes in drug form continued for hours. In contrast fluid bed drying appeared to lock the final proportions of drug form product attained during granulation, with comparatively small changes observed during drying. In conclusion, it was possible to

  11. The extremely high 137Cs inventory in the Sulu Sea: a possible mechanism

    International Nuclear Information System (INIS)

    Yamada, Masatoshi; Wang Zhongliang; Zheng Jian

    2006-01-01

    Large-volume seawater samples were collected in the Sulu and South China Seas and their 137 Cs activities were determined by γ-ray spectrometry using a low background type high-purity Ge detector. Vertical distributions of 137 Cs activity showed an exponential decrease in the South China Sea, whereas a subsurface maximum at 200 m depth and monotonic decrease below 300 m were observed in the Sulu Sea. A significant difference in intermediate water 137 Cs activities in the 500-2000 m depth was observed between the Sulu and South China Seas, i.e., the 137 Cs activities in the Sulu Sea were remarkably higher than those in the South China Sea. The difference in the 137 Cs inventory below 500 m was ∼1200 Bq m -2 between the Sulu and South China Seas. The 137 Cs total inventory of 3200 Bq m -2 in the Sulu Sea was 5.7 times higher than that expected from global fallout. A possible mechanism controlling this extremely high 137 Cs total inventory may be inflows of the 137 Cs rich water masses through the Luzon Strait, lateral transport across the Mindoro Strait into the Sulu Sea, and then subduction into the deep layer in the basin

  12. User characteristics and effect profile of Butane Hash Oil: An extremely high-potency cannabis concentrate.

    Science.gov (United States)

    Chan, Gary C K; Hall, Wayne; Freeman, Tom P; Ferris, Jason; Kelly, Adrian B; Winstock, Adam

    2017-09-01

    Recent reports suggest an increase in use of extremely potent cannabis concentrates such as Butane Hash Oil (BHO) in some developed countries. The aims of this study were to examine the characteristics of BHO users and the effect profiles of BHO. Anonymous online survey in over 20 countries in 2014 and 2015. Participants aged 18 years or older were recruited through onward promotion and online social networks. The overall sample size was 181,870. In this sample, 46% (N=83,867) reported using some form of cannabis in the past year, and 3% reported BHO use (n=5922). Participants reported their use of 7 types of cannabis in the past 12 months, the source of their cannabis, reasons for use, use of other illegal substances, and lifetime diagnosis for depression, anxiety and psychosis. Participants were asked to rate subjective effects of BHO and high potency herbal cannabis. Participants who reported a lifetime diagnosis of depression (OR=1.15, p=0.003), anxiety (OR=1.72, pcannabis. BHO users also reported stronger negative effects and less positive effects when using BHO than high potency herbal cannabis (pcannabis. Copyright © 2017. Published by Elsevier B.V.

  13. Microsystem for remote sensing of high energy radiation with associated extremely low photon flux densities

    Science.gov (United States)

    Otten, A.; Jain, V. K.

    2015-08-01

    This paper presents a microsystem for remote sensing of high energy radiation in extremely low flux density conditions. With wide deployment in mind, potential applications range from nuclear non-proliferation, to hospital radiation-safety. The daunting challenge is the low level of photon flux densities - emerging from a Scintillation Crystal (SC) on to a ~1 mm-square detector, which are a factor of 10000 or so lower than those acceptable to recently reported photonic chips (including `single-photon detection' chips), due to a combination of low Lux, small detector size, and short duration SC output pulses - on the order of 1 μs. These challenges are attempted to be overcome by the design of an innovative `System on a Chip' type microchip, with high detector sensitivity, and effective coupling from the SC to the photodetector. The microchip houses a tiny n+ diff p-epi photodiode (PD) as well as the associated analog amplification and other related circuitry, all fabricated in 0.5micron, 3-metal 2-poly CMOS technology. The amplification, together with pulse-shaping of the photocurrent-induced voltage signal, is achieved through a tandem of two capacitively coupled, double-cascode amplifiers. Included in the paper are theoretical estimates and experimental results.

  14. Isolated psychosis during exposure to very high and extreme altitude - characterisation of a new medical entity.

    Science.gov (United States)

    Hüfner, Katharina; Brugger, Hermann; Kuster, Eva; Dünsser, Franziska; Stawinoga, Agnieszka E; Turner, Rachel; Tomazin, Iztok; Sperner-Unterweger, Barbara

    2017-12-05

    Psychotic episodes during exposure to very high or extreme altitude have been frequently reported in mountain literature, but not systematically analysed and acknowledged as a distinct clinical entity. Episodes reported above 3500 m altitude with possible psychosis were collected from the lay literature and provide the basis for this observational study. Dimensional criteria of the Diagnostic and Statistical Manual of Mental Disorders were used for psychosis, and the Lake Louise Scoring criteria for acute mountain sickness and high-altitude cerebral oedema (HACE). Eighty-three of the episodes collected underwent a cluster analysis to identify similar groups. Ratings were done by two independent, trained researchers (κ values 0.6-1). Findings Cluster 1 included 51% (42/83) episodes without psychosis; cluster 2 22% (18/83) cases with psychosis, plus symptoms of HACE or mental status change from other origins; and cluster 3 28% (23/83) episodes with isolated psychosis. Possible risk factors of psychosis and associated somatic symptoms were analysed between the three clusters and revealed differences regarding the factors 'starvation' (χ2 test, p = 0.002), 'frostbite' (p = 0.024) and 'supplemental oxygen' (p = 0.046). Episodes with psychosis were reversible but associated with near accidents and accidents (p = 0.007, odds ratio 4.44). Episodes of psychosis during exposure to high altitude are frequently reported, but have not been specifically examined or assigned to medical diagnoses. In addition to the risk of suffering from somatic mountain illnesses, climbers and workers at high altitude should be aware of the potential occurrence of psychotic episodes, the associated risks and respective coping strategies.

  15. Maslov shear-waveforms in highly anisotropic shales and implications for shear-wave splitting analyses; Formes d`onde transversales de Maslov dans les argiles fortement anisotropes et implications dans les analyses de birefringence des ondes transversales

    Energy Technology Data Exchange (ETDEWEB)

    Caddick, J. [Leeds Univ. (United Kingdom). Dept. of Earth Sciences; Kendall, J.M.; Raymer, D.G. [Western Geophysical, Middlesex (United Kingdom). Dept. of Earth Sciences

    1998-09-01

    Shales are the most common sedimentary rocks in hydrocarbon environments often forming the source rock and trapping rock for a reservoir. Due to the platy nature of the constituent grains, shales are commonly anisotropic. In this paper we calculate seismic waveforms for highly anisotropic shales using Maslow asymptotic theory (MAT). This theory is an extension of classical ray theory which provides valid waveforms in regions of caustics (wavefront folding) where ray theory amplitudes are unstable. Asymptotic ray theory (ART) is based on the Fermat or geometrical ray which connects the source and receiver. In contrast, the Maslov solution integrates the contributions from neighbouring non-Fermat rays. Ray-paths, travel-times, amplitudes and synthetic seismograms are presented for three highly anisotropic shales using a very simple 1D model comprised of an anisotropic shale overlying an isotropic shale. The ART waveforms fail to account for complex waveform effects due to triplications. In comparison, the MAT waveforms predict nonsingular amplitudes at wavefront cusps and it predicts the diffracted signals from these cusps. A Maslov solution which integrates ray contributions over a single slowness component will break down when rays focus in 3D (at a point rather than along a line). One of the tested shales shows such a point caustic and integration over 2 slowness components is required to remove the amplitude singularity. Finally, we examine the effects of wavefront triplications on Alford rotations which are used to estimate shear-wave splitting. In such cases, the rotation successfully finds the fast shear-wave polarization, but it can be unreliable in its estimate of the time separation. (authors) 21 refs.

  16. Future Projection of Summer Extreme Precipitation from High Resolution Multi-RCMs over East Asia

    Science.gov (United States)

    Kim, Gayoung; Park, Changyong; Cha, Dong-Hyun; Lee, Dong-Kyou; Suh, Myoung-Seok; Ahn, Joong-Bae; Min, Seung-Ki; Hong, Song-You; Kang, Hyun-Suk

    2017-04-01

    Recently, the frequency and intensity of natural hazards have been increasing due to human-induced climate change. Because most damages of natural hazards over East Asia have been related to extreme precipitation events, it is important to estimate future change in extreme precipitation characteristics caused by climate change. We investigate future changes in extremal values of summer precipitation simulated by five regional climate models participating in the CORDEX-East Asia project (i.e., HadGEM3-RA, RegCM4, MM5, WRF, and GRIMs) over East Asia. 100-year return value calculated from the generalized extreme value (GEV) parameters is analysed as an indicator of extreme intensity. In the future climate, the mean values as well as the extreme values of daily precipitation tend to increase over land region. The increase of 100-year return value can be significantly associated with the changes in the location (intensity) and scale (variability) GEV parameters for extreme precipitation. It is expected that the results of this study can be used as fruitful references when making the policy of disaster management. Acknowledgements The research was supported by the Ministry of Public Safety and Security of Korean government and Development program under grant MPSS-NH-2013-63 and the National Research Foundation of Korea Grant funded by the Ministry of Science, ICT and Future Planning of Korea (NRF-2016M3C4A7952637) for its support and assistant in completion of the study.

  17. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.

    Science.gov (United States)

    Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A H

    2015-01-01

    Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal.

  18. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.

    Directory of Open Access Journals (Sweden)

    Longbin Huang

    Full Text Available Elevated inorganic phosphate (Pi concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu-lead (Pb-zinc (Zn mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7, the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5, EHM-TD (fresh Cu-stream, high magnetite content and local soil (weathered shale and schist, respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed, oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2, ankerite (Ca(Fe Mg(CO32 and siderite (FeCO3, as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,FeS, ZnS, (Zn,CdS may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal.

  19. Shear behaviour of reinforced phyllite concrete beams

    International Nuclear Information System (INIS)

    Adom-Asamoah, Mark; Owusu Afrifa, Russell

    2013-01-01

    Highlights: ► Phyllite concrete beams often exhibited shear with anchorage bond failure. ► Different shear design provisions for reinforced phyllite beams are compared. ► Predicted shear capacity of phyllite beams must be modified by a reduction factor. -- Abstract: The shear behaviour of concrete beams made from phyllite aggregates subjected to monotonic and cyclic loading is reported. First diagonal shear crack load of beams with and without shear reinforcement was between 42–58% and 42–92% of the failure loads respectively. The phyllite concrete beams without shear links had lower post-diagonal cracking shear resistance compared to corresponding phyllite beams with shear links. As a result of hysteretic energy dissipation, limited cyclic loading affected the stiffness, strength and deformation of the phyllite beams with shear reinforcement. Generally, beams with and without shear reinforcement showed anchorage bond failure in addition to the shear failure due to high stress concentration near the supports. The ACI, BS and EC codes are conservative for the prediction of phyllite concrete beams without shear reinforcement but they all overestimate the shear strength of phyllite concrete beams with shear reinforcement. It is recommended that the predicted shear capacity of phyllite beams reinforced with steel stirrups be modified by a reduction factor of 0.7 in order to specify a high enough safety factor on their ultimate strength. It is also recommended that susceptibility of phyllite concrete beams to undergo anchorage bond failure is averted in design by the provision of greater anchorage lengths than usually permitted.

  20. Single-photon detector operating under extremely high background photon flux conditions

    International Nuclear Information System (INIS)

    Prochazka, Ivan; Sopko, Bruno; Blazej, Josef

    2009-01-01

    We are reporting our results in research and development in the field of avalanche semiconductor single-photon detectors and their application. Our goal was a development of a solid-state photon-counting detector capable of high-precision photon arrival time tagging in extremely harsh operating conditions. The background photon flux exceeding 10 9 photons per second hitting the detector active area should not avoid the useful signal detection and recognition on the signal level of units of photons per second. This is background photon flux about two orders of magnitude higher than what the conventional solid-state photon counters accept. The detection timing resolution should be better than 100 ps and the delay stability should be on picosecond level. We have developed and tested the active quenched and gated avalanche structure on silicon providing the required features in connection with the K14 detection chips. The detector is capable of gated operation under the conditions of background photon flux of 5x10 9 photons per second. The operational detector tolerates long term exposures to the input photon flux exceeding 10 15 photons (>1 mW) per second without damage.

  1. Probing neutrino dark energy with extremely high-energy cosmic neutrinos

    International Nuclear Information System (INIS)

    Ringwald, A.; Schrempp, L.

    2006-06-01

    Recently, a new non-Standard Model neutrino interaction mediated by a light scalar field was proposed, which renders the big-bang relic neutrinos of the cosmic neutrino background a natural dark energy candidate, the so-called Neutrino Dark Energy. As a further consequence of this interaction, the neutrino masses become functions of the neutrino energy densities and are thus promoted to dynamical, time/redshift dependent quantities. Such a possible neutrino mass variation introduces a redshift dependence into the resonance energies associated with the annihilation of extremely high-energy cosmic neutrinos on relic anti-neutrinos and vice versa into Z-bosons. In general, this annihilation process is expected to lead to sizeable absorption dips in the spectra to be observed on earth by neutrino observatories operating in the relevant energy region above 10 13 GeV. In our analysis, we contrast the characteristic absorption features produced by constant and varying neutrino masses, including all thermal background effects caused by the relic neutrino motion. We firstly consider neutrinos from astrophysical sources and secondly neutrinos originating from the decomposition of topological defects using the appropriate fragmentation functions. On the one hand, independent of the nature of neutrino masses, our results illustrate the discovery potential for the cosmic neutrino background by means of relic neutrino absorption spectroscopy. On the other hand, they allow to estimate the prospects for testing its possible interpretation as source of Neutrino Dark Energy within the next decade by the neutrino observatories ANITA and LOFAR. (Orig.)

  2. Morbidity in extreme low birth weight newborns hospitalized in a high risk public maternity

    Directory of Open Access Journals (Sweden)

    Derijulie Siqueira Sousa

    Full Text Available Abstract Objectives: to determine the prevalence of the most common morbidities in extremely low birth weight (ELBW infants hospitalized in a newborn intensive care unit (NICU and to evaluate the influence of these morbidities through the length of in-hospital stay. Methods: observational, longitudinal, prospective and analytical study in a high risk reference maternity NICU from Sergipe, realized with 158 ELBW infants admitted between March 2014 and April 2015. The analysis of the hospitalization time was realized through the Kaplan-Meier method. Results: the average weight of premature was 785,2g ± 138,2g. The gestational age vary from 22 to 35 weeks and the average was 26,8 weeks. Of those admitted at NICU, sixty three (39,9% were discharged and 95 (60,1% died. The time of hospitalization was influenced for morbidities as: patent ductus arteriosus (PDA, intraventricular hemorrhage and sepsis. Acute respiratory distress syndrome was the most common complication (157 - 99,4%. The incidence of persistent arterial duct, intraventricular hemorrhage, sepsis, hypothermia, hypoglycemia and retinopathy of prematurity was 39,2%, 17,1%, 32,3%,50,3%, 52,3% e 16,6% respectively. Conclusions: the morbidities from respiratory tract, cardiac, neurological and infectious were the most prevalent, whilst PDA, intraventricular hemorrhage and sepsis were the morbidities that significantly influenced the time of hospitalization.

  3. The fire-walker's high: affect and physiological responses in an extreme collective ritual.

    Directory of Open Access Journals (Sweden)

    Ronald Fischer

    Full Text Available How do people feel during extreme collective rituals? Despite longstanding speculation, few studies have attempted to quantify ritual experiences. Using a novel pre/post design, we quantified physiological fluctuations (heart rates and self-reported affective states from a collective fire-walking ritual in a Mauritian Hindu community. Specifically, we compared changes in levels of happiness, fatigue, and heart rate reactivity among high-ordeal participants (fire-walkers, low-ordeal participants (non-fire-walking participants with familial bonds to fire-walkers and spectators (unrelated/unknown to the fire-walkers. We observed that fire-walkers experienced the highest increase in heart rate and reported greater happiness post-ritual compared to low-ordeal participants and spectators. Low-ordeal participants reported increased fatigue after the ritual compared to both fire-walkers and spectators, suggesting empathetic identification effects. Thus, witnessing the ritualistic suffering of loved ones may be more exhausting than experiencing suffering oneself. The findings demonstrate that the level of ritual involvement is important for shaping affective responses to collective rituals. Enduring a ritual ordeal is associated with greater happiness, whereas observing a loved-one endure a ritual ordeal is associated with greater fatigue post-ritual.

  4. Quasistationary Plasma Predator-Prey System of Coupled Turbulence, Drive, and Sheared E ×B Flow During High Performance DIII-D Tokamak Discharges

    Science.gov (United States)

    Barada, K.; Rhodes, T. L.; Burrell, K. H.; Zeng, L.; Bardóczi, L.; Chen, Xi; Muscatello, C. M.; Peebles, W. A.

    2018-03-01

    A new, long-lived limit cycle oscillation (LCO) regime has been observed in the edge of near zero torque high performance DIII-D tokamak plasma discharges. These LCOs are localized and composed of density turbulence, gradient drives, and E ×B velocity shear damping (E and B are the local radial electric and total magnetic fields). Density turbulence sequentially acts as a predator (via turbulence transport) of profile gradients and a prey (via shear suppression) to the E ×B velocity shear. Reported here for the first time is a unique spatiotemporal variation of the local E ×B velocity, which is found to be essential for the existence of this system. The LCO system is quasistationary, existing from 3 to 12 plasma energy confinement times (˜30 - 900 LCO cycles) limited by hardware constraints. This plasma system appears to contribute strongly to the edge transport in these high performance and transient-free plasmas, as evident from oscillations in transport relevant edge parameters at LCO time scale.

  5. Silicic, high- to extremely high-grade ignimbrites and associated deposits from the Paraná Magmatic Province, southern Brazil

    Science.gov (United States)

    Luchetti, Ana Carolina F.; Nardy, Antonio J. R.; Madeira, José

    2018-04-01

    The Cretaceous trachydacites and dacites of Chapecó type (ATC) and dacites and rhyolites of Palmas type (ATP) make up 2.5% of the 800.000 km3 of volcanic pile in the Paraná Magmatic Province (PMP), emplaced at the onset of Gondwana breakup. Together they cover extensive areas in southern Brazil, overlapping volcanic sequences of tholeiitic basalts and andesites; occasional mafic units are also found within the silicic sequence. In the central region of the PMP silicic volcanism comprises porphyritic ATC-type, trachydacite high-grade ignimbrites (strongly welded) overlying aphyric ATP-type, rhyolite high- to extremely high-grade ignimbrites (strongly welded to lava-like). In the southwestern region strongly welded to lava-like high-grade ignimbrites overlie ATP lava domes, while in the southeast lava domes are found intercalated within the ignimbrite sequence. Characteristics of these ignimbrites are: widespread sheet-like deposits (tens to hundreds of km across); absence of basal breccias and basal fallout layers; ubiquitous horizontal to sub-horizontal sheet jointing; massive, structureless to horizontally banded-laminated rock bodies locally presenting flow folding; thoroughly homogeneous vitrophyres or with flow banding-lamination; phenocryst abundance presenting upward and lateral decrease; welded glass blobs in an 'eutaxitic'-like texture; negligible phenocryst breakage; vitroclastic texture locally preserved; scarcity of lithic fragments. These features, combined with high eruption temperatures (≥ 1000 °C), low water content (≤ 2%) and low viscosities (104-7 Pa s) suggest that the eruptions were characterized by low fountaining, little heat loss during collapse, and high mass fluxes producing extensive deposits.

  6. Effect of fluid elasticity on the numerical stability of high-resolution schemes for high shearing contraction flows using OpenFOAM

    Directory of Open Access Journals (Sweden)

    T. Chourushi

    2017-01-01

    Full Text Available Viscoelastic fluids due to their non-linear nature play an important role in process and polymer industries. These non-linear characteristics of fluid, influence final outcome of the product. Such processes though look simple are numerically challenging to study, due to the loss of numerical stability. Over the years, various methodologies have been developed to overcome this numerical limitation. In spite of this, numerical solutions are considered distant from accuracy, as first-order upwind-differencing scheme (UDS is often employed for improving the stability of algorithm. To elude this effect, some works been reported in the past, where high-resolution-schemes (HRS were employed and Deborah number was varied. However, these works are limited to creeping flows and do not detail any information on the numerical stability of HRS. Hence, this article presents the numerical study of high shearing contraction flows, where stability of HRS are addressed in reference to fluid elasticity. Results suggest that all HRS show some order of undue oscillations in flow variable profiles, measured along vertical lines placed near contraction region in the upstream section of domain, at varied elasticity number E≈5. Furthermore, by E, a clear relationship between numerical stability of HRS and E was obtained, which states that the order of undue oscillations in flow variable profiles is directly proportional to E.

  7. THE HIGH-RESOLUTION EXTREME-ULTRAVIOLET SPECTRUM OF N{sub 2} BY ELECTRON IMPACT

    Energy Technology Data Exchange (ETDEWEB)

    Heays, A. N. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Ajello, J. M.; Aguilar, A. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Lewis, B. R.; Gibson, S. T., E-mail: heays@strw.leidenuniv.nl [Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)

    2014-04-01

    We have analyzed high-resolution (FWHM = 0.2 Å) extreme-ultraviolet (EUV, 800-1350 Å) laboratory emission spectra of molecular nitrogen excited by an electron impact at 20 and 100 eV under (mostly) optically thin, single-scattering experimental conditions. A total of 491 emission features were observed from N{sub 2} electronic-vibrational transitions and atomic N I and N II multiplets and their emission cross sections were measured. Molecular emission was observed at vibrationally excited ground-state levels as high as v'' = 17, from the a {sup 1}Π {sub g} , b {sup 1}Π {sub u} , and b'{sup 1}Σ {sub u} {sup +} excited valence states and the Rydberg series c'{sub n} {sub +1} {sup 1}Σ {sub u} {sup +}, c{sub n} {sup 1}Π {sub u} , and o{sub n} {sup 1}Π {sub u} for n between 3 and 9. The frequently blended molecular emission bands were disentangled with the aid of a sophisticated and predictive quantum-mechanical model of excited states that includes the strong coupling between valence and Rydberg electronic states and the effects of predissociation. Improved model parameters describing electronic transition moments were obtained from the experiment and allowed for a reliable prediction of the vibrationally summed electronic emission cross section, including an extrapolation to unobserved emission bands and those that are optically thick in the experimental spectra. Vibrationally dependent electronic excitation functions were inferred from a comparison of emission features following 20 and 100 eV electron-impact collisional excitation. The electron-impact-induced fluorescence measurements are compared with Cassini Ultraviolet Imaging Spectrograph observations of emissions from Titan's upper atmosphere.

  8. The extreme condition analyzing for NEMPI shielding of electronic system in high-intensity pulsed radiation diagnosing

    International Nuclear Information System (INIS)

    Cheng Xiaolei; Liu Fang; Ouyang Xiaoping

    2012-01-01

    The difficulty for estimating the NEMPI (electromagnetic pulsed interference caused by the nuclear reaction) on the electronic system in high-intensity pulsed radiation diagnosing is analyzed in this article. To solve the difficulty, a method called 'Extreme Condition Analyzing' is presented for estimating the NEMPI conservatively and reliably. Through an extreme condition hypothesizing which could be described as 'Entire Coupling of Electric Field Energy', the E max (maximum electric field intensity which could be endured by the electronic system in the high-intensity pulsed radiation) could be figured out without any other information of the EMP caused by the nuclear reaction. Then a feasibility inspection is introduced, to confirm that the EMPI shielding request according to E max is not too extreme to be achieved. (authors)

  9. Modifying mixing and instability growth through the adjustment of initial conditions in a high-energy-density counter-propagating shear experiment on OMEGA

    International Nuclear Information System (INIS)

    Merritt, E. C.; Doss, F. W.; Loomis, E. N.; Flippo, K. A.; Kline, J. L.

    2015-01-01

    Counter-propagating shear experiments conducted at the OMEGA Laser Facility have been evaluating the effect of target initial conditions, specifically the characteristics of a tracer foil located at the shear boundary, on Kelvin-Helmholtz instability evolution and experiment transition toward nonlinearity and turbulence in the high-energy-density (HED) regime. Experiments are focused on both identifying and uncoupling the dependence of the model initial turbulent length scale in variable-density turbulence models of k-ϵ type on competing physical instability seed lengths as well as developing a path toward fully developed turbulent HED experiments. We present results from a series of experiments controllably and independently varying two initial types of scale lengths in the experiment: the thickness and surface roughness (surface perturbation scale spectrum) of a tracer layer at the shear interface. We show that decreasing the layer thickness and increasing the surface roughness both have the ability to increase the relative mixing in the system, and thus theoretically decrease the time required to begin transitioning to turbulence in the system. We also show that we can connect a change in observed mix width growth due to increased foil surface roughness to an analytically predicted change in model initial turbulent scale lengths

  10. Frequency Analysis of High Flow Extremes in the Yingluoxia Watershed in Northwest China

    Directory of Open Access Journals (Sweden)

    Zhanling Li

    2016-05-01

    Full Text Available Statistical modeling of hydrological extremes is significant to the construction of hydraulic engineering. This paper, taking the Yingluoxia watershed as the study area, compares the annual maximum (AM series and the peaks over a threshold (POT series in order to study the hydrological extremes, examines the stationarity and independence assumptions for the two series, and discusses the estimations and uncertainties of return levels from the two series using the Generalized Extreme Value (GEV and Generalized Pareto distribution (GPD models. For comparison, the return levels from all threshold excesses with considering the extremal index are also estimated. For the POT series, the threshold is selected by examining the mean excess plot and the stability of the parameter estimates and by using common-sense. The serial correlation is reduced by filtering out a set of dependent threshold excesses. Results show that both series are approximately stationary and independent. The GEV model fits the AM series well and the GPD model fits the POT series well. The estimated return levels are fairly comparable for the AM series, the POT series, and all threshold excesses with considering the extremal index, with the difference being less than 10% for return periods longer than 10 years. The uncertainties of the estimated return levels are the highest for the AM series, and next for the POT series and then for all threshold excesses series in turn.

  11. Serpentinization-Influenced Groundwater Harbors Extremely Low Diversity Microbial Communities Adapted to High pH.

    Science.gov (United States)

    Twing, Katrina I; Brazelton, William J; Kubo, Michael D Y; Hyer, Alex J; Cardace, Dawn; Hoehler, Tori M; McCollom, Tom M; Schrenk, Matthew O

    2017-01-01

    Serpentinization is a widespread geochemical process associated with aqueous alteration of ultramafic rocks that produces abundant reductants (H 2 and CH 4 ) for life to exploit, but also potentially challenging conditions, including high pH, limited availability of terminal electron acceptors, and low concentrations of inorganic carbon. As a consequence, past studies of serpentinites have reported low cellular abundances and limited microbial diversity. Establishment of the Coast Range Ophiolite Microbial Observatory (California, U.S.A.) allowed a comparison of microbial communities and physicochemical parameters directly within serpentinization-influenced subsurface aquifers. Samples collected from seven wells were subjected to a range of analyses, including solute and gas chemistry, microbial diversity by 16S rRNA gene sequencing, and metabolic potential by shotgun metagenomics, in an attempt to elucidate what factors drive microbial activities in serpentinite habitats. This study describes the first comprehensive interdisciplinary analysis of microbial communities in hyperalkaline groundwater directly accessed by boreholes into serpentinite rocks. Several environmental factors, including pH, methane, and carbon monoxide, were strongly associated with the predominant subsurface microbial communities. A single operational taxonomic unit (OTU) of Betaproteobacteria and a few OTUs of Clostridia were the almost exclusive inhabitants of fluids exhibiting the most serpentinized character. Metagenomes from these extreme samples contained abundant sequences encoding proteins associated with hydrogen metabolism, carbon monoxide oxidation, carbon fixation, and acetogenesis. Metabolic pathways encoded by Clostridia and Betaproteobacteria, in particular, are likely to play important roles in the ecosystems of serpentinizing groundwater. These data provide a basis for further biogeochemical studies of key processes in serpentinite subsurface environments.

  12. Influence of Mascarene High and Indian Ocean dipole on East African extreme weather events

    Directory of Open Access Journals (Sweden)

    Ogwang Bob Alex

    2015-01-01

    Full Text Available Extreme weather and climate events such as floods and droughts are common in East Africa, causing huge socio-economic losses. This study links the east African October-December (OND rainfall, Indian Ocean Dipole (IOD and Mascarene High (MH.Correlation analysis is applied to quantify the relationship between the index of IOD (Dipole Mode Index (DMI and OND rainfall. Results show that there exists a significant correlation between OND rainfall and DMI, with a correlation coefficient of 0.6. During dry years, MH is observed to intensify and align itself in the southeast-northwest orientation, stretching up to the continent, which in turn inhibits the influx of moisture from Indian Ocean into East Africa. During wet years, MH weakens, shifts to the east and aligns itself in the zonal orientation. Moisture from Indian Ocean is freely transported into east Africa during wet years. Analysis of the drought and flood years with respect to the different variables including wind, velocity potential and divergence/ convergence revealed that the drought (flood years were characterized by divergence (convergence in the lower troposphere and convergence (divergence at the upper level, implying sinking (rising motion, especially over the western Indian Ocean and the study area. Convergence at low level gives rise to vertical stretching, whereas divergence results in vertical shrinking, which suppresses convection due to subsidence. Positive IOD (Negative IOD event results into flood (drought in the region. The evolution of these phenomena can thus be keenly observed for utilization in the update of seasonal forecasts.

  13. Mechanism of de-activation and clustering of B in Si at extremely high concentration

    International Nuclear Information System (INIS)

    Romano, L.; Piro, A.M.; Privitera, V.; Rimini, E.; Fortunato, G.; Svensson, B.G.; Foad, M.; Grimaldi, M.G.

    2006-01-01

    It is known that B deactivation and clustering occur in the presence of an excess of Si self-interstitials (Is). First principle calculations predicted the path of clusters growth, but the precursor complexes are too small to be visible even by the highest resolution microscopy. Channeling with nuclear reaction analyses allowed to detect the location of small B-Is complexes into the lattice formed as a consequence of the B interaction with the Is. In this work we extend this method to determine the complexes formed during the initial stage of B precipitation in Si doped at extremely high concentration (4 at%) and subjected to thermal treatment. The samples were prepared by excimer laser annealing (ELA) of Si implanted with 1 keV B. The thickness of the molten layer was 100 nm and the B profile was boxlike with a maximum hole concentration of ∼2 x 10 21 cm -3 . The electrical deactivation and carrier mobility of this metastable system has been studied as a function of subsequent annealing in the temperature range between 200 and 850 deg. C. Channeling analyses have been performed to investigate the B lattice location at the initial stage of precipitation. The difference, with respect to previous investigations, is the very small distance (<1 nm) between adjacent B atoms substitutional located in the lattice and the absence of Is that can be released during annealing, since the end of range defects were completely dissolved by ELA. In this way, information on the B complex evolution in a free-of-defects sample have been obtained

  14. Probing the origin of cosmic-rays with extremely high energy neutrinos using the IceCube Observatory

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Abbasi, R.; Ackermann, M.

    2013-01-01

    originate from cosmogenic neutrinos produced in the interactions of ultrahigh energy cosmic rays with ambient photons while propagating through intergalactic space. Exploiting IceCube’s large exposure for extremely high energy neutrinos and the lack of observed events above 100 PeV, we can rule out...

  15. Evolution of extreme high waters along the east coast of India and at the head of the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, C.; Unnikrishnan, A.S.; Woodworth, P.L.

    . The highest water levels above mean sea level have the greatest magnitude towards the northern part of the Bay, which decreases towards its south-west. Extreme high waters were observed to result from a combination of moderate, or even small, surges with large...

  16. Extreme ultra-violet emission spectroscopy of highly charged gadolinium ions with an electron beam ion trap

    International Nuclear Information System (INIS)

    Ohashi, Hayato; Nakamura, Nobuyuki; Sakaue, Hiroyuki A

    2013-01-01

    We present extreme ultra-violet emission spectra of highly charged gadolinium ions obtained with an electron beam ion trap at electron energies of 0.53–1.51 keV. The electron energy dependence of the spectra in the 5.7–11.3 nm range is compared with calculation with the flexible atomic code. (paper)

  17. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    Energy Technology Data Exchange (ETDEWEB)

    Wang, He [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Xu, Yiming [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Ulonska, Stefan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Robinson, Joseph S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Ranitovic, Predrag [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Kaindl, Robert A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division

    2015-06-11

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. In this article, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s-1 is generated at 22.3 eV, with 5 × 10-5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Finally, spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications.

  18. Evaluation of high resolution spatio-temporal precipitation extremes from a stochastic weather generator

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Christensen, O. B.; Arnbjerg-Nielsen, Karsten

    2017-01-01

    Spatio-temporal rainfall is modelled for the North-Eastern part of Zealand (Denmark) using the Spatio-Temporal Neyman-Scott Rectangular Pulses model as implemented in the RainSim software. Hourly precipitation series for fitting the model are obtained from a dense network of tipping bucket rain...... gauges in the model area. The spatiotemporal performance of the model with respect to precipitation extremes is evaluated in the points of a 2x2 km regular grid covering the full model area. The model satisfactorily reproduces the extreme behaviour of the observed precipitation with respect to event...... intensity levels and unconditional spatial correlation when evaluated using an event based ranking approach at point scale and an advanced spatiotemporal coupling of extreme events. Prospectively the model can be used as a tool to evaluate the impact of climate change without relying on precipitation output...

  19. Evaluation of high resolution spatio-temporal precipitation extremes from a stochastic weather generator

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Christensen, O. B.; Arnbjerg-Nielsen, Karsten

    gauges in the model area. The spatio-temporal performance of the model with respect to precipitation extremes is evaluated in the points of a 2x2 km regular grid covering the full model area. The model satisfactorily reproduces the extreme behaviour of the observed precipitation with respect to event...... intensity levels and unconditional spatial correlation when evaluated using an event based ranking approach at point scale and an advanced spatio-temporal coupling of extreme events. Prospectively the model can be used as a tool to evaluate the impact of climate change without relying onprecipitation output......Spatio-temporal rainfall is modelled for the North-Eastern part of Zealand (Denmark) using the Spatio-Temporal Neyman-Scott Rectangular Pulses model as implemented in the RainSim software. Hourly precipitation series for fitting the model are obtained from a dense network of tipping bucket rain...

  20. Nitrogen-enriched carbon with extremely high mesoporosity and tunable mesopore size for high-performance supercapacitors

    Science.gov (United States)

    Yang, Xiaoqing; Li, Chengfei; Fu, Ruowen

    2016-07-01

    As one of the most potential electrode materials for supercapacitors, nitrogen-enriched nanocarbons are still facing challenge of constructing developed mesoporosity for rapid mass transportation and tailoring their pore size for performance optimization and expanding their application scopes. Herein we develop a series of nitrogen-enriched mesoporous carbon (NMC) with extremely high mesoporosity and tunable mesopore size by a two-step method using silica gel as template. In our approach, mesopore size can be easily tailored from 4.7 to 35 nm by increasing the HF/TEOS volume ratio from 1/100 to 1/4. The NMC with mesopores of 6.2 nm presents the largest mesopore volume, surface area and mesopore ratio of 2.56 cm3 g-1, 1003 m2 g-1 and 97.7%, respectively. As a result, the highest specific capacitance of 325 F g-1 can be obtained at the current density of 0.1 A g-1, which can stay over 88% (286 F g-1) as the current density increases by 100 times (10 A g-1). This approach may open the doors for preparation of nitrogen-enriched nanocarbons with desired nanostructure for numerous applications.

  1. Quaternary layer anomalies around the Carlsberg Fault zone mapped with high-resolution shear-wave seismics south of Copenhagen

    DEFF Research Database (Denmark)

    Kammann, Janina; Hübscher, Christian; Nielsen, Lars

    Fault zone. The portable compact vibrator source ElViS III S8 was used to acquire a 1150 m long seismic section on the island Amager, south of Copenhagen. The shallow subsurface in the investigation area is dominated by Quaternary glacial till deposits in the upper 5-11 m and Danian limestone below....... In the shear-wave profile, we imaged the 30 m of the upward continuation of the Carlsberg Fault zone. In our area of investigation, the fault zone appears to comprise normal block faults and one reverse block fault showing the complexity of the fault zone. The observed faults appear to affect both the Danian...

  2. Strain-dependent evolution of garnets in a high pressure ductile shear zone using Synchroton x-ray microtomography

    Science.gov (United States)

    Macente, Alice; Fusseis, Florian; Menegon, Luca; John, Timm

    2016-04-01

    Synkinematic reaction microfabrics carry important information on the kinetics, timing and rheology of tectonometamorphic processes. Despite being routinely interpreted in metamorphic and structural studies, reaction and deformation microfabrics are usually described in two dimensions. We applied Synchrotron-based x-ray microtomography to document the evolution of a pristine olivine gabbro into a deformed omphacite-garnet eclogite in 3D. In the investigated samples, which cover a strain gradient into a shear zone from the Western Gneiss Region (Norway) previously described by John et al., (2009), we focused on the spatial transformation of garnet coronas into elongated clusters of garnets. Our microtomographic data allowed us to quantify changes to the garnet volume, their shapes and their spatial arrangement. We combined microtomographic observations with light microscope- and backscatter electron images as well as electron microprobe- (EMPA) and electron backscatter diffraction (EBSD) analyses to correlate mineral composition and orientation data with the x-ray absorption signal of the same mineral grains. This allowed us to extrapolate our interpretation of the metamorphic microfabric evolution to the third dimension, effectively yielding a 4-dimensional dataset. We found that: - The x-ray absorption contrast between individual mineral phases in our microtomographic data is sufficient to allow the same petrographic observations than in light- and electron microscopy, but extended to 3D. - Amongst the major constituents of the synkinematic reactions, garnet is the only phase that can be segmented confidently from the microtomographic data. - With increasing deformation, the garnet volume increases from about 9% to 25%. - Garnet coronas in the gabbros never completely encapsulate olivine grains. This may indicate that the reaction progressed preferentially in some directions, but also leaves pathways for element transport to and from the olivines that are

  3. Fifty years of shear zones

    Science.gov (United States)

    Graham, Rodney

    2017-04-01

    We are here, of course, because 1967 saw the publication of John Ramsay's famous book. Two years later a memorable field trip from Imperial College to the Outer Hebrides saw John on a bleak headland on the coast of North Uist where a relatively undeformed metadolerite within Lewisian (Precambrian) gneisses contained ductile shear zones with metamorphic fabrics in amphibolite facies. One particular outcrop was very special - a shear zone cutting otherwise completely isotropic, undeformed metadolerite, with an incremental foliation starting to develop at 45° to the deformation zone, and increasing in intensity as it approached the shear direction. Here was proof of the process of simple shear under ductile metamorphic conditions - the principles of simple shear outlined in John Ramsay's 1967 book clearly visible in nature, and verified by Ramsay's mathematical proofs in the eventual paper (Ramsay and Graham, 1970). Later work on the Lewisian on the mainland of Scotland, in South Harris, in Africa, and elsewhere applied Ramsay's simple shear principles more liberally, more imprecisely and on larger scale than at Caisteal Odair, but in retrospect it documented what seems now to be the generality of mid and lower crustal deformation. Deep seismic reflection data show us that on passive margins hyper-stretched continental crust (whether or not cloaked by Seaward Dipping Reflectors) seems to have collapsed onto the mantle. Crustal faults mostly sole out at or above the mantle - so the Moho is a detachment- an 'outer marginal detachment', if you like, and, of course, it must be a ductile shear. On non-volcanic margins this shear zone forms the first formed ocean floor before true sea floor spreading gets going to create real oceanic crust. Gianreto Manatschal, Marcel Lemoine and others realised that the serpentinites described in parts of the Alps are exposed remnants of this ductile shear zone. Associated ophicalcite breccias tell of sea floor exposure, while high

  4. Analysis of the Shear Behavior of Stubby Y-Type Perfobond Rib Shear Connectors for a Composite Frame Structure.

    Science.gov (United States)

    Kim, Sang-Hyo; Kim, Kun-Soo; Lee, Do-Hoon; Park, Jun-Seung; Han, Oneil

    2017-11-22

    Shear connectors are used in steel beam-concrete slabs of composite frame and bridge structures to transfer shear force according to design loads. The existing Y-type perfobond rib shear connectors are designed for girder slabs of composite bridges. Therefore, the rib and transverse rebars of the conventional Y-type perfobond rib shear connectors are extremely large for the composite frames of building structures. Thus, this paper proposes stubby Y-type perfobond rib shear connectors, redefining the existing connectors, for composite frames of building structures; these were used to perform push-out tests. These shear connectors have relatively small ribs compared to the conventional Y-type perfobond rib shear connectors. To confirm the shear resistance of these stubby shear connectors, we performed an experiment by using transverse rebars D13 and D16. The results indicate that these shear connectors have suitable shear strength and ductility for application in composite frame structures. The shear strengths obtained using D13 and D16 were not significantly different. However, the ductility of the shear connectors with D16 was 45.1% higher than that of the shear connectors with D13.

  5. Number of Black Children in Extreme Poverty Hits Record High. Analysis Background.

    Science.gov (United States)

    Children's Defense Fund, Washington, DC.

    To examine the experiences of black children and poverty, researchers conducted a computer analysis of data from the U.S. Census Bureau's Current Population Survey, the source of official government poverty statistics. The data are through 2001. Results indicated that nearly 1 million black children were living in extreme poverty, with after-tax…

  6. Quantification of climate change effects on extreme precipitation used for high resolution hydrologic design

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten

    2012-01-01

    are studied, all based on output from historical rain series of the present climate and output from Regional Climate Models. Two models are applied, one being based on an extreme value model, the Partial Duration Series Approach, and the other based on a stochastic rainfall generator model. Finally...

  7. Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotaga elfii

    NARCIS (Netherlands)

    Niel, van E.W.J.; Budde, M.A.W.; Haas, de G.G.; Wal, van der F.J.; Claassen, P.A.M.; Stams, A.J.M.

    2002-01-01

    Growth and hydrogen production by two extreme thermophiles during sugar fermentation was investigated. In cultures of Caldicellulosiruptor saccharolyticus grown on sucrose and Thermotoga elfii grown on glucose stoichiometries of 3.3 mol of hydrogen and 2 mol of acetate per mol C6-sugar unit were

  8. Extreme Weight-Control Behaviors and Suicide Risk among High School Students

    Science.gov (United States)

    Johnson, Emily R.; Weiler, Robert M.; Barnett, Tracey E.; Pealer, Lisa N.

    2016-01-01

    Background: Suicide is the third leading cause of death for people ages 15-19. Research has established an association across numerous risk factors and suicide, including depression, substance abuse, bullying victimization, and feelings of alienation. However, the connection between disordered eating as manifested in extreme weight-control…

  9. Effect of high-energy electron irradiation of chicken meat on thiobarbituric acid values, shear values, odor, and cooked yield

    International Nuclear Information System (INIS)

    Heath, J.L.; Owens, S.L.; Tesch, S.; Hannah, K.W.

    1990-01-01

    Experiments were conducted to determine whether electron-beam irradiation would affect shear values, yield, odor, and thiobarbituric acid (TBA) values of chicken tissues. Broiler breasts (pectoralis superficialis) and whole thighs were irradiated with an electron-beam accelerator at levels to produce adsorbed doses of 100, 200, and 300 krads on the surface of the sample. The thigh samples were stored for 2, 4, and 8 days before testing for TBA values. The depth to which the radiation had penetrated the pectoralis superficialis muscle was also determined. Radiation penetrated 22 mm into slices of pectoralis superficialis muscle when 100 krad was absorbed by the surface of the tissue. The dose absorbed beneath the tissue surface to a depth of 10 mm was larger than the dose absorbed at the surface. The absorbed dose decreased as the depth of penetration increased. For cooked breast tissue, the shear values and moisture content were not affected by the absorbed radiation. Cooking losses of aged breast tissue were not affected by irradiation, but cooking losses were reduced in breast tissue that had not been aged. Irradiating uncooked thigh and uncooked breast samples produced a characteristic odor that remained after the thighs were cooked but was not detectable after the breast samples were cooked. With two exceptions, no significantly different TBA values were found that could be attributed to irradiation

  10. A new highly adaptable design of shear-flow device for orientation of macromolecules for Linear Dichroism (LD) measurement

    KAUST Repository

    Lundahl, P. Johan; Kitts, Catherine C.; Nordé n, Bengt

    2011-01-01

    This article presents a new design of flow-orientation device for the study of bio-macromolecules, including DNA and protein complexes, as well as aggregates such as amyloid fibrils and liposome membranes, using Linear Dichroism (LD) spectroscopy. The design provides a number of technical advantages that should make the device inexpensive to manufacture, easier to use and more reliable than existing techniques. The degree of orientation achieved is of the same order of magnitude as that of the commonly used concentric cylinders Couette flow cell, however, since the device exploits a set of flat strain-free quartz plates, a number of problems associated with refraction and birefringence of light are eliminated, increasing the sensitivity and accuracy of measurement. The device provides similar shear rates to those of the Couette cell but is superior in that the shear rate is constant across the gap. Other major advantages of the design is the possibility to change parts and vary sample volume and path length easily and at a low cost. © 2011 The Royal Society of Chemistry.

  11. Generation and emplacement of shear-related highly mobile crustal melts: the synkinematic leucogranites from the Variscan Tormes Dome, Western Spain

    Science.gov (United States)

    López-Moro, Francisco Javier; López-Plaza, Miguel; Romer, Rolf L.

    2012-07-01

    The Tormes dome consists of S-type granites that intruded into Ordovician augen gneisses and Neoproterozoic-Lower Cambrian metapelites/metagreywackes at different extents of migmatization. S-type granites are mainly equigranular two-mica granites, occurring as: (1) enclave-laden subvertical feeder dykes, (2) small external sill-like bodies with size and shape relations indicative for self-similar pluton growth, and (3) as large pluton bodies, emplaced at higher levels than the external ones. These magmas were highly mobile as it is inferred from the high contents of fluxing components, the disintegration and alignment of pelitic xenoliths in feeder dykes and at the bottom of some sill-like bodies. Field relations relate this 311 Ma magmatism (U-Pb monazite) to the regional shearing of the D3 Variscan event. Partial melting modeling and the relatively high estimated liquidus temperatures indicate biotite-dehydration partial melting (800-840°C and 400-650 MPa) rather than water-fluxed melting, implying that there was no partial melting triggered by externally derived fluids in the shear zones. Instead, the subvertical shear zones favored extraction of melts that formed during the regional migmatization event around 320 Ma. Nd isotope variation among the granites might reflect disequilibrium partial melting or different protoliths. Mass-balance and trace element partial melting modeling strongly suggest two kinds of fertile crustal protoliths: augen gneisses and metapelites. Slight compositional variation among the leucogranites does not reflect different extent of protolith melting but is related to a small amount of fractional crystallization (bodies. The lower extent of fractional crystallization and the higher-pressure emplacement conditions of the sill-like bodies support a more restricted movement through the crust than for batholitic leucogranites.

  12. EXTREME METEOROLOGICAL CONDITIONS AND METABOLIC PROFILE IN HIGH YIELDING HOLSTEINFRIESIAN DAIRY COWS

    Directory of Open Access Journals (Sweden)

    Z. GERGÁCZ

    2008-10-01

    Full Text Available The impact of two years (2002 and 2003 with different summer temperature extremes on variation in metabolic profile was analyzed in blood and urine samples taken from healthy, primiparous (n = 371 and multiparous (n = 795 high yielding Holstein-Friesian dairy cows. In this study main focus was lead on three most critical physiological phases, thus cows were assigned into three groups as follows: (1 dry cows for 10 days prior to calving; (2 cows 1-30 days after delivery, and (3 cows with more than 31 days post partum. Findings reveal clear response of the cows to heat in selected blood (hemoglobin, plasma aceto-acetic-acid, FFA, AST, glucose, urea and urine (pH, NABE and urea parameters. In the majority of cows, glucose and hemoglobin level, one of the most significant blood parameters, indicated symptoms of insufficient energy supply. Further metabolic indicators differed more or less from reference values depending on actual condition. Due to heat load dry matter intake has been decreased even by 10-15 per cent in primiparous cows. They were expected to increase body weight and size and simultaneously produce attain at large milk yields. In doing so that cows would have require large amount of nutrients. Out of parameters such as hemoglobin, glucose, FFA, AST and blood-urea differed from the reference values in most cases; however, this phenomenon seemed to be present in almost every case for hemoglobin and glucose. The lack of energy caused by heat stress can be contributed to the decrease of dry matter intake which has been indicated by the urea levels and pH both in blood and urine prevailing unfavorable and insufficient feeding practice. The results reconfirm the need to reconsider both the actual feeding practice (e.g. to increase of nutrient content in rations, reduce the intake of soluble proteins in rumen, pay attention of crude fiber in Total Mixed Rations (TMR, NDF and ADF, avoid overfeeding of inorganic buffers, to control moisture

  13. Simulations of Granular Particles Under Cyclic Shear

    Science.gov (United States)

    Royer, John; Chaikin, Paul

    2012-02-01

    We perform molecular dynamics (MD) simulations of spherical grains subjected to cyclic, quasi-static shear in a 3D parallelepiped shear cell. This virtual shear cell is constructed out of rough, bumpy walls in order to minimize wall-induced ordering and has an open top surface to allow the packing to readily dilate or compact. Using a standard routine for MD simulations of frictional grains, we simulate over 1000 shear cycles, measuring grain displacements, the local packing density and changes in the contact network. Varying the shear amplitude and the friction coefficient between grains, we map out a phase diagram for the different types of behavior exhibited by these sheared grains. With low friction and high enough shear, the grains can spontaneously order into densely packed crystals. With low shear and increasing friction the packing remains disordered, yet the grains arrange themselves into configurations which exhibit limit cycles where all grains return to the same position after each full shear cycle. At higher shear and friction there is a transition to a diffusive state, where grains continue rearrange and move throughout the shear cell.

  14. Projected changes of extreme weather events in the eastern United States based on a high resolution climate modeling system

    International Nuclear Information System (INIS)

    Gao, Y; Fu, J S; Drake, J B; Liu, Y; Lamarque, J-F

    2012-01-01

    This study is the first evaluation of dynamical downscaling using the Weather Research and Forecasting (WRF) Model on a 4 km × 4 km high resolution scale in the eastern US driven by the new Community Earth System Model version 1.0 (CESM v1.0). First we examined the global and regional climate model results, and corrected an inconsistency in skin temperature during the downscaling process by modifying the land/sea mask. In comparison with observations, WRF shows statistically significant improvement over CESM in reproducing extreme weather events, with improvement for heat wave frequency estimation as high as 98%. The fossil fuel intensive scenario Representative Concentration Pathway (RCP) 8.5 was used to study a possible future mid-century climate extreme in 2057–9. Both the heat waves and the extreme precipitation in 2057–9 are more severe than the present climate in the Eastern US. The Northeastern US shows large increases in both heat wave intensity (3.05 °C higher) and annual extreme precipitation (107.3 mm more per year). (letter)

  15. Pyogenic Arthritis of the Ankle Joint Following a High-Voltage Electrical Burn in the Lower Extremity: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kuk Seon; Lee, Gyung Kyu; Kang, Ik Won; Hwang, Dae Hyun; Lee, Eil Seong; Min, Seon Jung; Han, You Mie [Dept. of Radiology, Hangang Scared Heart Hospital, Hallym University College of Medicine, Seoul (Korea, Republic of); Lee, Eil Seong [Dept.of Radiology, Gyeongju Hospital, Dongguk University College of Medicine, Gyeongju (Korea, Republic of)

    2011-04-15

    A high-voltage electrical burn caused extensive deep muscle injuries beneath a relatively small skin wound at the contact point. Hidden, undetected deep muscle injuries have a tendency for progressive tissue necrosis, which can lead to major amputations or sepsis. The radiologic features of this rare, sometimes life-threatening injury have occasionally been described in the literature. However, to the best of our knowledge, there have been no reports on a case of pyogenic arthritis of the ankle joint following a high-voltage electrical burn involving the lower extremity. We report a case of the pyogenic arthritis of the ankle joint following a high-voltage electrical burn involving the lower extremity.

  16. New gentle-wing high-shear granulator: impact of processing variables on granules and tablets characteristics of high-drug loading formulation using design of experiment approach.

    Science.gov (United States)

    Fayed, Mohamed H; Abdel-Rahman, Sayed I; Alanazi, Fars K; Ahmed, Mahrous O; Tawfeek, Hesham M; Al-Shdefat, Ramadan I

    2017-10-01

    The aim of this work was to study the application of design of experiment (DoE) approach in defining design space for granulation and tableting processes using a novel gentle-wing high-shear granulator. According to quality-by-design (QbD) prospective, critical attributes of granules, and tablets should be ensured by manufacturing process design. A face-centered central composite design has been employed in order to investigate the effect of water amount (X 1 ), impeller speed (X 2 ), wet massing time (X 3 ), and water addition rate (X 4 ) as independent process variables on granules and tablets characteristics. Acetaminophen was used as a model drug and granulation experiments were carried out using dry addition of povidone k30. The dried granules have been analyzed for their size distribution, density, and flow pattern. Additionally, the produced tablets have been investigated for; weight uniformity, breaking force, friability and percent capping, disintegration time, and drug dissolution. Results of regression analysis showed that water amount, impeller speed and wet massing time have significant (p tablets characteristics. However, the water amount had the most pronounced effect as indicated by its higher parameter estimate. On the other hand, water addition rate showed a minimal impact on granules and tablets properties. In conclusion, water amount, impeller speed, and wet massing time could be considered as critical process variables. Thus, understanding the relationship between these variables and quality attributes of granules and corresponding tablets provides the basis for adjusting granulation variables in order to optimize product performance.

  17. High temperature extremes in the Czech Republic 1961–2010 and their synoptic variants

    Czech Academy of Sciences Publication Activity Database

    Valeriánová, A.; Crhová, L.; Holtanová, E.; Kašpar, Marek; Müller, Miloslav; Pecho, Jozef

    2016-01-01

    Roč. 127, 1-2 (2016), s. 17-29 ISSN 0177-798X R&D Projects: GA ČR(CZ) GAP209/11/1990 Institutional support: RVO:68378289 Keywords : weather extreme * heat waves * Central Europe * atmospheric circulation Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.640, year: 2016 http://link.springer.com/article/10.1007/s00704-015-1614-8/fulltext.html

  18. Detection of irradiated peppers by viscosity measurement at extremely high pH

    International Nuclear Information System (INIS)

    Hayashi, Toru; Todoriki, Setsuko

    1996-01-01

    The viscosities of aqueous suspensions of irradiated peppers determined after heat gelatinization were influenced by the pH of the suspension to a greater degree than those of unirradiated ones. Viscosity measurement under an extremely alkaline condition (pH 13.8) resulted in a significant different between irradiated peppers and unirradiated ones, irrespective of the planting locality and storage period. All of the pepper samples irradiated at 5 kGy showed viscosity values significantly lower than unirradiated ones. (Author)

  19. Electromyographic evaluation of high-intensity elastic resistance exercises for lower extremity muscles during bed rest

    DEFF Research Database (Denmark)

    Vinstrup, Jonas; Skals, Sebastian; Calatayud, Joaquin

    2017-01-01

    PURPOSE: Prolonged hospital bed rest after severe injury or disease leads to rapid muscle atrophy and strength loss. Therefore, the main aim of this study was to evaluate the efficacy of lower extremity strengthening exercises using elastic resistance that can be performed while lying in a hospit......, the present study has the potential to provide a reference table of exercises to select from when individualizing and progressing strengthening exercises during the early rehabilitation of bedridden individuals....

  20. High prevalence of abnormal motor repertoire at 3 months corrected age in extremely preterm infants.

    Science.gov (United States)

    Fjørtoft, Toril; Evensen, Kari Anne I; Øberg, Gunn Kristin; Songstad, Nils Thomas; Labori, Cathrine; Silberg, Inger Elisabeth; Loennecken, Marianne; Møinichen, Unn Inger; Vågen, Randi; Støen, Ragnhild; Adde, Lars

    2016-03-01

    To compare early motor repertoire between extremely preterm and term-born infants. An association between the motor repertoire and gestational age and birth weight was explored in extremely preterm infants without severe ultrasound abnormalities. In a multicentre study, the early motor repertoire of 82 infants born extremely preterm (ELGAN:<28 weeks) and/or with extremely low birth weight (ELBW:<1000 g) and 87 term-born infants were assessed by the "Assessment of Motor Repertoire - 2 to 5 Months" (AMR) which is part of Prechtl's "General Movement Assessment", at 12 weeks post-term age. Fidgety movements were classified as normal if present and abnormal if absent, sporadic or exaggerated. Concurrent motor repertoire was classified as normal if smooth and fluent and abnormal if monotonous, stiff, jerky and/or predominantly fast or slow. Eight-teen ELBW/ELGAN infants had abnormal fidgety movements (8 absent, 7 sporadic and 3 exaggerated fidgety movements) compared with 2 control infants (OR:12.0; 95%CI:2.7-53.4) and 46 ELBW/ELGAN infants had abnormal concurrent motor repertoire compared with 17 control infants (OR:5.3; 95%CI:2.6-10.5). Almost all detailed aspects of the AMR differed between the groups. Results were the same when three infants with severe ultrasound abnormalities were excluded. In the remaining ELBW/ELGAN infants, there was no association between motor repertoire and gestational age or birth weight. ELBW/ELGAN infants had poorer quality of early motor repertoire than term-born infants.The findings were not explained by severe abnormalities on neonatal ultrasound scans and were not correlated to the degree of prematurity. The consequences of these abnormal movement patterns remain to be seen in future follow-up studies. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  1. Structural studies of disordered materials using high-energy x-ray diffraction from ambient to extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kohara, Shinji [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Itou, Masayoshi [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Suzuya, Kentaro [Japan Atomic Energy Agency (J-PARC/JAEA), Tokai, Naka, Ibaraki 319-1195 (Japan); Inamura, Yasuhiro [Japan Atomic Energy Agency (J-PARC/JAEA), Tokai, Naka, Ibaraki 319-1195 (Japan); Sakurai, Yoshiharu [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Ohishi, Yasuo [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Takata, Masaki [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2007-12-19

    High-energy x-rays from a synchrotron radiation source allow us to obtain high-quality diffraction data for disordered materials from ambient to extreme conditions, which is necessary for revealing the detailed structures of glass, liquid and amorphous materials. We introduced high-energy x-ray diffraction beamlines and a dedicated diffractometer for glass, liquid and amorphous materials at SPring-8 and report the recent developments of ancillary equipment. Furthermore, the structures of liquid and amorphous materials determined from the high-energy x-ray diffraction data obtained at SPring-8 are discussed.

  2. Use of Mixer Torque Rheometer to Clarify the Relationship between the Kneading States of Wet Mass and the Dissolution of Final Product in High Shear Granulation.

    Science.gov (United States)

    Otsuka, Tomoko; Kuroiwa, Yosuke; Sato, Kazunari; Yamashita, Kazunari; Hakomori, Tadashi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-01-01

    The properties of wet mass, which indicate the progress of high shear granulation processes, usually have an effect on final product properties, such as tablet dissolution. The mixer torque rheometer (MTR) is a useful tool for quantitatively measuring the 'kneading state' of wet mass and detecting differences in granules. However, there have been no studies of the relationship between the MTR torque and the final product properties to date. In this study, we measured the MTR torque of wet granules at different kneading states, which were prepared by changing the granulation conditions. We then evaluated the relationship between the MTR torque and the dissolution rate of the final product properties. The amperage of the high shear granulator is usually monitored during granulation, but we could not detect a difference in the kneading state through the amperage. However, using MTR torque we were able to quantify the difference of the wet mass. Moreover, MTR torque showed a high correlation with dissolution, compared with the correlations with other intermediate properties, such as granules particle size and tablet hardness. These other properties are affected by following processes and are not properties that directly relate to the kneading state. Thus, MTR torque is a property of wet mass after granulation, and it can be used to directly evaluate differences of the kneading state, and as a result, dissolution. These results indicate the importance of controlling the kneading state, i.e., the progress of granulation, and the utility of MTR for detecting differences in wet mass.

  3. Assessment of homogeneity of the shear-strain pattern in Al–7 wt%Si casting alloy processed by high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Cepeda-Jiménez, C.M., E-mail: carmen.cepeda@imdea.org [Department of Physical Metallurgy, CENIM, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain); Orozco-Caballero, A.; García-Infanta, J.M. [Department of Physical Metallurgy, CENIM, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain); Zhilyaev, A.P. [Institute for Metals Superplasticity Problems, Russian Academy of Science, 39 Khalturina, 450001 Ufa (Russian Federation); Ruano, O.A.; Carreño, F. [Department of Physical Metallurgy, CENIM, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain)

    2014-03-01

    An as-cast Al–7 wt%Si alloy was subjected to processing by high-pressure torsion (HPT) at room temperature, through 1/4, 1/2, 1 and 5 turns at a pressure of 6 GPa and two rotation speeds, 0.1 and 1 rpm. Vickers microhardness was measured along diameters of HPT disk surfaces. The final hardness values were higher than in the initial as-cast condition and, unexpectedly, nearly constant under all different processing conditions, and along the disk diameter. The microstructure was characterised by optical and scanning electron microscopy. The as-cast microstructure comprises equiaxed primary α dendrite cells embedded in the Al–Si eutectic constituent. The morphology and distribution of the eutectic constituent in the HPT processed materials is used to delineate the shear strain, which was analysed in the cross-section planes of the disks. A high degree of homogeneity in the imposed shear strain throughout the samples was observed, being congruent with the ideal rigid-body torsion. In addition, the high compressive pressure applied, causing compressive strain prior to the torsional strain, is responsible for the deformation-induced precipitation of small Si particles and for the (sub)grain refinement in the primary Al constituent. The role of torsional strain is that of increasing monothonically the redistribution of the eutectic silicon and the misorientation of the (sub)grains.

  4. Temperature-dependent residual shear strength characteristics of smectite-rich landslide soils

    Science.gov (United States)

    Shibasaki, Tatsuya; Matsuura, Sumio; Okamoto, Takashi

    2015-04-01

    On gentle clayey slopes in weathered argillaceous rock areas, there exist many landslides which repeatedly reactivate with slow movement. The slip surface soils of these landslides are sometimes composed dominantly of swelling clay mineral (smectite) which is well known to show extremely low residual friction angle. From field data monitored at landslide sites in Japan, it has become clear that some landslides with relatively shallow slip surface begin to move and become active in late autumn or early winter every year. In such cases, the triggering mechanisms of landslides have not been understood well enough, because landslide initiation and movement are not always clearly linked with rises in pore water pressures (ground water levels). In this study, we focus on the influence of seasonal variation in ground temperature on slope stability and have investigated the effect of temperature on the shear strength of slip surface soils. Undisturbed soil samples were collected by boring from the Busuno landslide in Japan. We performed box shear experiments on undisturbed slip surface soils at low temperature ranges (approximately 5-25 °C). XRD analysis revealed that these soils contain high fraction of smectite. Slickensided slip surface within test specimen was coincided with the shearing plane of the shear box and shear displacement was applied precisely along the localized slip surface. Experiments were performed under slow shearing rate condition (0.005mm/min) and the results showed that shear strength decreased with decreasing temperature. Temperature effect was rather significant on frictional angle than on cohesion. Ring shear experiments were also performed on normally-consolidated remoulded samples. Under residual strength condition, temperature-change experiments (cooling-event tests) ranging approximately from 5 to 25 °C were performed on smectite-rich landslide soils and commercial bentonites. As well as the results by box shear test, shear weakening

  5. Detection and Attribution of Climate Change : From global mean temperature change to climate extremes and high impact weather.

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    This talk will describe how evidence has grown in recent years for a human influence on climate and explain how the Fifth Assessment Report of the Intergovernmental Panel on Climate Change concluded that it is extremely likely (>95% probability) that human influence on climate has been the dominant cause of the observed global-mean warming since the mid-20th century. The fingerprint of human activities has also been detected in warming of the ocean, in changes in the global water cycle, in reductions in snow and ice, and in changes in some climate extremes. The strengthening of evidence for the effects of human influence on climate extremes is in line with long-held basic understanding of the consequences of mean warming for temperature extremes and for atmospheric moisture. Despite such compelling evidence this does not mean that every instance of high impact weather can be attributed to anthropogenic climate change, because climate variability is often a major factor in many locations, especially for rain...

  6. Absolute hypoxic exercise training enhances in vitro thrombin generation by increasing procoagulant platelet-derived microparticles under high shear stress in sedentary men.

    Science.gov (United States)

    Chen, Yu-Wen; Chen, Yi-Ching; Wang, Jong-Shyan

    2013-05-01

    HS (high shear) stress associated with artery stenosis facilitates TG (thrombin generation) by increasing the release of procoagulant PDMPs (platelet-derived microparticles). Physical exercise and hypoxia may paradoxically modulate vascular thrombotic risks. The aim of the present study was to investigate how exercise training with/without hypoxia affected TG mediated by PDMPs under physio-pathological shear flows. A total of 75 sedentary males were randomly divided into five groups (n=15 in each group): 21% O2 [NC (normoxic control)] or 15% O2 [HC (hypoxic control)] at rest or were trained at 50% of peak work rate under 21% O2 [NT (normoxic training)] or 15% O2 [HAT (hypoxic-absolute training)], or 50% of HR (heart rate) reserve under 15% O2 [HRT (hypoxic-relative training)] for 30 min/day, 5 days/week for 4 weeks. The PDMP characteristics and dynamic TG were measured by flow cytometry and thrombinography respectively. Before the intervention, strenuous exercise markedly increased the PDMP count (14.8%) and TG rate (19.5%) in PDMP-rich plasma at 100 dynes/cm2 of shear stress (Pexercise. Conversely, HAT notably promoted the PDMP count (37.3%) and TG rate (38.9%) induced by HS (Pexercise. We conclude that both HRT and NT depress similarly HS-mediated TG during exercise, but HAT accelerates the prothrombotic response to vigorous exercise. These findings provide new insights into how exercise training under a hypoxic condition influences the risk of thrombosis associated with stenotic arteries.

  7. Microinstabilities in complex magnetic field geometries and highsheared sheath structure. Progress report, June 1, 1975--February 27, 1976

    International Nuclear Information System (INIS)

    Bakshi, P.; Kalman, G.

    1976-02-01

    A new approach for the solution of the Vlasov equation for complex magnetic field geometries has been developed using operator techniques. The general approach is illustrated by determining the perturbed distribution function and density operator for the problem of shear stabilization of drift waves for transverse and arbitrary directions of propagation. The ensuing corrections to stability criteria of current theories are obtained for certain domains of physical parameters. Preliminary work on the integral equation approach to the dispersion relation has been initiated. As a prelude to the study of particle orbits in complex mirror geometries, the adiabatic and non-adiabatic behavior of a harmonic oscillator has been studied using operator methods. High-β, high shear plasma sheath configurations have been studied with the full ion dynamics taken into account and electrons treated in the zero and first order approximation, in the ratio of the electron Larmor radius to the scale length. The resulting sheath structure equation in the lowest order approximation has been solved for certain entering ion distributions, and prepared for computer analysis for others. In this approximation the electron current parallel to magnetic field lines has to be assumed suppressed or predetermined. Equations in the next order approximation include the finite Larmor radius stress tensor. This equation is under study

  8. Influence of High Shear Dispersion on the Production of Cellulose Nanofibers by Ultrasound-Assisted TEMPO-Oxidation of Kraft Pulp

    Directory of Open Access Journals (Sweden)

    Claude Daneault

    2012-09-01

    Full Text Available Cellulose nanofibers can be produced using a combination of TEMPO, sodium bromide (NaBr and sodium hypochlorite, and mechanical dispersion. Recently, this process has been the subject of intensive investigation. However, studies on the aspects of mechanical treatment of this process remain marginal. The main objective of this study is to evaluate the high shear dispersion parameters (e.g., consistency, stator-rotor gap, recirculation rate and pH and determine their influences on nanocellulose production using ultrasound-assisted TEMPO-oxidation of Kraft pulp. All nanofiber gels produced in this study exhibited rheological behaviors known as shear thinning. From all the dispersion parameters, the following conditions were identified as optimal: 0.042 mm stator-rotor gap, 200 mL/min recycle rate, dispersion pH of 7 and a feed consistency of 2%. High quality cellulose gel could be produced under these conditions. This finding is surely of great interest for the pulp and paper industry.

  9. Tolerance to High Temperature Extremes in an Invasive Lace Bug, Corythucha ciliata (Hemiptera: Tingidae), in Subtropical China

    OpenAIRE

    Ju, Rui-Ting; Gao, Lei; Zhou, Xu-Hui; Li, Bo

    2013-01-01

    Biological invasions are predicted to be more frequent as climate change is increasing its positive impact on the prevalence of invasive exotic species. Success of insect invaders in different temperature zones is closely related to their tolerance to temperature extremes. In this study, we used an exotic lace bug (Corythucha ciliata) as the study organism to address the hypotheses that an insect species invading a subtropical zone from temperate regions has a high capacity to survive and ada...

  10. The effect of extremely high glucose concentrations on 21 routine chemistry and thyroid Abbott assays: interference study

    OpenAIRE

    ?uhadar, Serap; K?seo?lu, Mehmet; ?inpolat, Yasemin; Bu?dayc?, G?ler; Usta, Murat; Semerci, Tuna

    2016-01-01

    Abstract Introduction: Extremely high glucose concentrations have been shown to interfere with creatinine assays especially with Jaffe method in peritoneal dialysate. Because diabetes is the fastest growing chronic disease in the world, laboratories study with varying glucose concentrations. We investigated whether different levels of glucose spiked in serum interfere with 21 routine chemistry and thyroid assays at glucose concentrations between 17-51 mmol/L. Materials and methods: Base...

  11. Fixed-site high-frequency transcutaneous electrical nerve stimulation for treatment of chronic low back and lower extremity pain

    OpenAIRE

    Gozani, Shai

    2016-01-01

    Shai N Gozani NeuroMetrix, Inc., Waltham, MA, USA Objective: The objective of this study was to determine if fixed-site high-frequency transcutaneous electrical nerve stimulation (FS-TENS) is effective in treating chronic low back and lower extremity pain. Background: Transcutaneous electrical nerve stimulation is widely used for treatment of chronic pain. General-purpose transcutaneous electrical nerve stimulation devices are designed for stimulation anywhere on the body and often cannot be ...

  12. Focusing of Shear Shock Waves

    Science.gov (United States)

    Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco

    2018-01-01

    Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.

  13. High-energy synchrotron x-ray diffraction studies on disordered materials. From ambient condition to an extreme condition

    International Nuclear Information System (INIS)

    Kohara, Shinji; Ohishi, Yasuo; Suzuya, Kentaro; Takata, Masaki

    2007-01-01

    High-energy x-rays from synchrotron radiation source allow us to measure high-quality diffraction data of the disordered materials from under ambient condition to an extreme condition, which is necessary to reveal the detailed structure of glass, liquid, and amorphous materials. We introduce the high-energy x-ray diffraction beamline and dedicated diffractometer for glass, liquid, and amorphous materials with the recent developments of ancillary equipments. Furthermore our recent studies on the structures of disordered materials reviewed. (author)

  14. Semiconductor laser shearing interferometer

    International Nuclear Information System (INIS)

    Ming Hai; Li Ming; Chen Nong; Xie Jiaping

    1988-03-01

    The application of semiconductor laser on grating shearing interferometry is studied experimentally in the present paper. The method measuring the coherence of semiconductor laser beam by ion etching double frequency grating is proposed. The experimental result of lens aberration with semiconductor laser shearing interferometer is given. Talbot shearing interferometry of semiconductor laser is also described. (author). 2 refs, 9 figs

  15. ACUTE EFFECTS OF STATIC STRETCHING, DYNAMIC EXERCISES, AND HIGH VOLUME UPPER EXTREMITY PLYOMETRIC ACTIVITY ON TENNIS SERVE PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Ertugrul Gelen

    2012-12-01

    Full Text Available The purpose of this study was to compare the acute effects of static stretching; dynamic exercises and high volume upper extremity plyometric activity on tennis serve performance. Twenty-six elite young tennis players (15.1 ± 4.2 years, 167.9 ± 5.8 cm and 61.6 ± 8.1 kg performed 4 different warm-up (WU routines in a random order on non-consecutive days. The WU methods consisted of traditional WU (jogging, rally and serve practice (TRAD; traditional WU and static stretching (TRSS; traditional WU and dynamic exercise (TRDE; and traditional WU and high volume upper extremity plyometric activity (TRPLYP. Following each WU session, subjects were tested on a tennis serve ball speed test. TRAD, TRSS, TRDE and TRPLYO were compared by repeated measurement analyses of variance and post-hoc comparisons. In this study a 1 to 3 percent increase in tennis serve ball speed was recorded in TRDE and TRPLYO when compared to TRAD (p 0.05. ICCs for ball speed showed strong reliability (0.82 to 0.93 for the ball speed measurements.The results of this study indicate that dynamic and high volume upper extremity plyometric WU activities are likely beneficial to serve speed of elite junior tennis players.

  16. High-efficiency collector design for extreme-ultraviolet and x-ray applications

    International Nuclear Information System (INIS)

    Zocchi, Fabio E.

    2006-01-01

    A design of a two-reflection mirror for nested grazing-incidence optics is proposed in which maximum overall reflectivity is achieved by making the two grazing-incidence angles equal for each ray. The design is proposed mainly for application to nonimaging collector optics for extreme-ultraviolet microlithography where the radiation emitted from a hot plasma source needs to be collected and focused on the illuminator optics. For completeness, the design of a double-reflection mirror with equal reflection angles is also briefly outlined for the case of an object at infinity for possible use in x-ray applications

  17. Extremely high Q-factor mechanical modes in quartz bulk acoustic wave resonators at millikelvin temperature

    Energy Technology Data Exchange (ETDEWEB)

    Goryachev, M.; Creedon, D. L.; Ivanov, E. N.; Tobar, M. E. [ARC Centre of Excellence for Engineered Quantum Systems, University of Western Australia, 35 Stirling Highway, Crawley WA 6009 (Australia); Galliou, S.; Bourquin, R. [Department of Time and Frequency, FEMTO-ST Institute, ENSMM, 26 Chemin de l' Épitaphe, 25000, Besançon (France)

    2014-12-04

    We demonstrate that Bulk Acoustic Wave (BAW) quartz resonator cooled down to millikelvin temperatures are excellent building blocks for hybrid quantum systems with extremely long coherence times. Two overtones of the longitudinal mode at frequencies of 15.6 and 65.4 MHz demonstrate a maximum f.Q product of 7.8×10{sup 16} Hz. With this result, the Q-factor in such devices near the quantum ground state can be four orders of magnitude better than previously attained in other mechanical systems. Tested quartz resonators possess the ultra low acoustic losses crucial for electromagnetic cooling to the phonon ground state.

  18. High-efficiency collector design for extreme-ultraviolet and x-ray applications.

    Science.gov (United States)

    Zocchi, Fabio E

    2006-12-10

    A design of a two-reflection mirror for nested grazing-incidence optics is proposed in which maximum overall reflectivity is achieved by making the two grazing-incidence angles equal for each ray. The design is proposed mainly for application to nonimaging collector optics for extreme-ultraviolet microlithography where the radiation emitted from a hot plasma source needs to be collected and focused on the illuminator optics. For completeness, the design of a double- reflection mirror with equal reflection angles is also briefly outlined for the case of an object at infinity for possible use in x-ray applications.

  19. Spatial extreme value analysis to project extremes of large-scale indicators for severe weather.

    Science.gov (United States)

    Gilleland, Eric; Brown, Barbara G; Ammann, Caspar M

    2013-09-01

    Concurrently high values of the maximum potential wind speed of updrafts ( W max ) and 0-6 km wind shear (Shear) have been found to represent conducive environments for severe weather, which subsequently provides a way to study severe weather in future climates. Here, we employ a model for the product of these variables (WmSh) from the National Center for Atmospheric Research/United States National Center for Environmental Prediction reanalysis over North America conditioned on their having extreme energy in the spatial field in order to project the predominant spatial patterns of WmSh. The approach is based on the Heffernan and Tawn conditional extreme value model. Results suggest that this technique estimates the spatial behavior of WmSh well, which allows for exploring possible changes in the patterns over time. While the model enables a method for inferring the uncertainty in the patterns, such analysis is difficult with the currently available inference approach. A variation of the method is also explored to investigate how this type of model might be used to qualitatively understand how the spatial patterns of WmSh correspond to extreme river flow events. A case study for river flows from three rivers in northwestern Tennessee is studied, and it is found that advection of WmSh from the Gulf of Mexico prevails while elsewhere, WmSh is generally very low during such extreme events. © 2013 The Authors. Environmetrics published by JohnWiley & Sons, Ltd.

  20. The Cora Lake Shear Zone: Strain Localization in an Ultramylonitic, Deep Crustal Shear Zone, Athabasca Granulite Terrain, Western Churchill Province, Canada

    Science.gov (United States)

    Regan, S.; Williams, M. L.; Mahan, K. H.; Orlandini, O. F.; Jercinovic, M. J.; Leslie, S. R.; Holland, M.

    2012-12-01

    Ultramylonitic shear zones typically involve intense strain localization, and when developed over large regions can introduce considerable heterogeneity into the crust. The Cora Lake shear zone (CLsz) displays several 10's to 100's of meters-wide zones of ultramylonite distributed throughout its full 3-5 km mylonitized width. Detailed mapping, petrography, thermobarometry, and in-situ monazite geochronology suggest that it formed during the waning phases of granulite grade metamorphism and deformation, within one of North America's largest exposures of polydeformed lower continental crust. Anastomosing zones of ultramylonite contain recrystallized grain-sizes approaching the micron scale and might appear to suggest lower temperature mylonitization. However, feldspar and even clinopyroxene are dynamically recrystallized, and quantitative thermobarometry of syn-deformational assemblages indicate high P and T conditions ranging from 0.9 -10.6 GPa and 775-850 °C. Even at these high T's, dynamic recovery and recrystallization were extremely limited. Rocks with low modal quartz have extremely small equilibrium volumes. This is likely the result of inefficient diffusion, which is further supported by the unannealed nature of the crystals. Local carbonate veins suggests that H2O poor, CO2 rich conditions may have aided in the preservation of fine grain sizes, and may have inhibited dynamic recovery and recrystallization. The Cora Lake shear zone is interpreted to have been relatively strong and to have hardened during progressive deformation. Garnet is commonly fractured perpendicular to host rock fabric, and statically replaced by both biotite and muscovite. Pseudotachylite, with the same sense of shear, occurs in several ultramylonitized mafic granulites. Thus, cataclasis and frictional melt are interpreted to have been produced in the lower continental crust, not during later reactivation. We suggest that strengthening of rheologically stiffer lithologies led to

  1. State-of-the-Art of Extreme Pressure Lubrication Realized with the High Thermal Diffusivity of Liquid Metal.

    Science.gov (United States)

    Li, Haijiang; Tian, Pengyi; Lu, Hongyu; Jia, Wenpeng; Du, Haodong; Zhang, Xiangjun; Li, Qunyang; Tian, Yu

    2017-02-15

    Sliding between two objects under very high load generally involves direct solid-solid contact at molecular/atomic level, the mechanism of which is far from clearly disclosed yet. Those microscopic solid-solid contacts could easily lead to local melting of rough surfaces. At extreme conditions, this local melting could propagate to the seizure and welding of the entire interface. Traditionally, the microscopic solid-solid contact is alleviated by various lubricants and additives based on their improved mechanical properties. In this work, we realized the state-of-the-art of extreme pressure lubrication by utilizing the high thermal diffusivity of liquid metal, 2 orders of magnitude higher than general organic lubricants. The extreme pressure lubrication property of gallium based liquid metal (GBLM) was compared with gear oil and poly-α-olefin in a four-ball test. The liquid metal lubricates very well at an extremely high load (10 kN, the maximum capability of a four-ball tester) at a rotation speed of 1800 rpm for a duration of several minutes, much better than traditional organic lubricants which typically break down within seconds at a load of a few kN. Our comparative experiments and analysis showed that this superextreme pressure lubrication capability of GBLM was attributed to the synergetic effect of the ultrafast heat dissipation of GBLM and the low friction coefficient of FeGa 3 tribo-film. The present work demonstrated a novel way of improving lubrication capability by enhancing the lubricant thermal properties, which might lead to mechanical systems with much higher reliability.

  2. So small, so loud: extremely high sound pressure level from a pygmy aquatic insect (Corixidae, Micronectinae).

    Science.gov (United States)

    Sueur, Jérôme; Mackie, David; Windmill, James F C

    2011-01-01

    To communicate at long range, animals have to produce intense but intelligible signals. This task might be difficult to achieve due to mechanical constraints, in particular relating to body size. Whilst the acoustic behaviour of large marine and terrestrial animals has been thoroughly studied, very little is known about the sound produced by small arthropods living in freshwater habitats. Here we analyse for the first time the calling song produced by the male of a small insect, the water boatman Micronecta scholtzi. The song is made of three distinct parts differing in their temporal and amplitude parameters, but not in their frequency content. Sound is produced at 78.9 (63.6-82.2) SPL rms re 2.10(-5) Pa with a peak at 99.2 (85.7-104.6) SPL re 2.10(-5) Pa estimated at a distance of one metre. This energy output is significant considering the small size of the insect. When scaled to body length and compared to 227 other acoustic species, the acoustic energy produced by M. scholtzi appears as an extreme value, outperforming marine and terrestrial mammal vocalisations. Such an extreme display may be interpreted as an exaggerated secondary sexual trait resulting from a runaway sexual selection without predation pressure.

  3. So small, so loud: extremely high sound pressure level from a pygmy aquatic insect (Corixidae, Micronectinae.

    Directory of Open Access Journals (Sweden)

    Jérôme Sueur

    Full Text Available To communicate at long range, animals have to produce intense but intelligible signals. This task might be difficult to achieve due to mechanical constraints, in particular relating to body size. Whilst the acoustic behaviour of large marine and terrestrial animals has been thoroughly studied, very little is known about the sound produced by small arthropods living in freshwater habitats. Here we analyse for the first time the calling song produced by the male of a small insect, the water boatman Micronecta scholtzi. The song is made of three distinct parts differing in their temporal and amplitude parameters, but not in their frequency content. Sound is produced at 78.9 (63.6-82.2 SPL rms re 2.10(-5 Pa with a peak at 99.2 (85.7-104.6 SPL re 2.10(-5 Pa estimated at a distance of one metre. This energy output is significant considering the small size of the insect. When scaled to body length and compared to 227 other acoustic species, the acoustic energy produced by M. scholtzi appears as an extreme value, outperforming marine and terrestrial mammal vocalisations. Such an extreme display may be interpreted as an exaggerated secondary sexual trait resulting from a runaway sexual selection without predation pressure.

  4. Lateral Displacement And Shear Lag Effect Of High-Rise Buildings With Diagrid SystemThat Is Constructed Above A Frame

    Directory of Open Access Journals (Sweden)

    Abd. Samat Roslida

    2017-01-01

    Full Text Available Diagrid system has gained a wide acceptance in the design of tall buildings due to its many advantages including its high structural efficiency in resisting both gravity and lateral loads. Most diagrid structures that had been studied have full triangulated members from the ground level to the top of the buildings where comparison in the effectiveness in minimizing the lateral displacement was often made between structures with full diagrid, frame and outrigger system. Nevertheless, no study has been performed on the effectiveness of the diagrid that is constructed above a frame system. The objective of this research is to understand the behavior of the lateral displacement and shear lag effect due to wind load when the diagrid structure is constructed above a frame. Models of sixty storey buildings were analyzed by using Staad.Pro software. The level where the diagrid members started and the spacing of vertical base columns of the frame were altered. The lateral displacement and shear lag effect resembled closely of those of the model of full diagrid when the diagrid was started at level 3, and the vertical base columns were uniformly spaced at 6 metres.

  5. A new model of cavern diameter based on a validated CFD study on stirring of a highly shear-thinning fluid.

    Science.gov (United States)

    Story, Anna; Jaworski, Zdzisław

    2017-01-01

    Results of numerical simulations of momentum transfer for a highly shear-thinning fluid (0.2% Carbopol) in a stirred tank equipped with a Prochem Maxflo T type impeller are presented. The simulation results were validated using LDA data and both tangential and axial force measurements in the laminar and early transitional flow range. A good agreement between the predicted and experimental results of the local fluid velocity components was found. From the predicted and experimental values of both tangential and axial forces, the power number, Po , and thrust number, Th , were also calculated. Values of the absolute relative deviations were below 4.0 and 10.5%, respectively, for Po and Th , which confirms a satisfactory agreement with experiments. An intensive mixing zone, known as cavern, was observed near the impeller. In this zone, the local values of fluid velocity, strain rate, Metzner-Otto coefficient, shear stress and intensity of energy dissipation were all characterized by strong variability. Based on the results of experimental study a new model using non-dimensional impeller force number was proposed to predict the cavern diameter. Comparative numerical simulations were also carried out for a Newtonian fluid (water) and their results were similarly well verified using LDA measurements, as well as experimental power number values.

  6. Spin-resolved photoelectron spectroscopy using femtosecond extreme ultraviolet light pulses from high-order harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Plötzing, M.; Adam, R., E-mail: r.adam@fz-juelich.de; Weier, C.; Plucinski, L.; Schneider, C. M. [Forschungszentrum Jülich GmbH, Peter Grünberg Institut (PGI-6), 52425 Jülich (Germany); Eich, S.; Emmerich, S.; Rollinger, M.; Aeschlimann, M. [University of Kaiserslautern and Research Center OPTIMAS, 67663 Kaiserslautern (Germany); Mathias, S. [Georg-August-Universität Göttingen, I. Physikalisches Institut, 37077 Göttingen (Germany)

    2016-04-15

    The fundamental mechanism responsible for optically induced magnetization dynamics in ferromagnetic thin films has been under intense debate since almost two decades. Currently, numerous competing theoretical models are in strong need for a decisive experimental confirmation such as monitoring the triggered changes in the spin-dependent band structure on ultrashort time scales. Our approach explores the possibility of observing femtosecond band structure dynamics by giving access to extended parts of the Brillouin zone in a simultaneously time-, energy- and spin-resolved photoemission experiment. For this purpose, our setup uses a state-of-the-art, highly efficient spin detector and ultrashort, extreme ultraviolet light pulses created by laser-based high-order harmonic generation. In this paper, we present the setup and first spin-resolved spectra obtained with our experiment within an acquisition time short enough to allow pump-probe studies. Further, we characterize the influence of the excitation with femtosecond extreme ultraviolet pulses by comparing the results with data acquired using a continuous wave light source with similar photon energy. In addition, changes in the spectra induced by vacuum space-charge effects due to both the extreme ultraviolet probe- and near-infrared pump-pulses are studied by analyzing the resulting spectral distortions. The combination of energy resolution and electron count rate achieved in our setup confirms its suitability for spin-resolved studies of the band structure on ultrashort time scales.

  7. A low cost, high precision extreme/harsh cold environment, autonomous sensor data gathering and transmission platform.

    Science.gov (United States)

    Chetty, S.; Field, L. A.

    2014-12-01

    SWIMS III, is a low cost, autonomous sensor data gathering platform developed specifically for extreme/harsh cold environments. Arctic ocean's continuing decrease of summer-time ice is related to rapidly diminishing multi-year ice due to the effects of climate change. Ice911 Research aims to develop environmentally inert materials that when deployed will increase the albedo, enabling the formation and/preservation of multi-year ice. SWIMS III's sophisticated autonomous sensors are designed to measure the albedo, weather, water temperature and other environmental parameters. This platform uses low cost, high accuracy/precision sensors, extreme environment command and data handling computer system using satellite and terrestrial wireless solution. The system also incorporates tilt sensors and sonar based ice thickness sensors. The system is light weight and can be deployed by hand by a single person. This presentation covers the technical, and design challenges in developing and deploying these platforms.

  8. Using extreme value theory approaches to forecast the probability of outbreak of highly pathogenic influenza in Zhejiang, China.

    Directory of Open Access Journals (Sweden)

    Jiangpeng Chen

    Full Text Available Influenza is a contagious disease with high transmissibility to spread around the world with considerable morbidity and mortality and presents an enormous burden on worldwide public health. Few mathematical models can be used because influenza incidence data are generally not normally distributed. We developed a mathematical model using Extreme Value Theory (EVT to forecast the probability of outbreak of highly pathogenic influenza.The incidence data of highly pathogenic influenza in Zhejiang province from April 2009 to November 2013 were retrieved from the website of Health and Family Planning Commission of Zhejiang Province. MATLAB "VIEM" toolbox was used to analyze data and modelling. In the present work, we used the Peak Over Threshold (POT model, assuming the frequency as a Poisson process and the intensity to be Pareto distributed, to characterize the temporal variability of the long-term extreme incidence of highly pathogenic influenza in Zhejiang, China.The skewness and kurtosis of the incidence of highly pathogenic influenza in Zhejiang between April 2009 and November 2013 were 4.49 and 21.12, which indicated a "fat tail" distribution. A QQ plot and a mean excess plot were used to further validate the features of the distribution. After determining the threshold, we modeled the extremes and estimated the shape parameter and scale parameter by the maximum likelihood method. The results showed that months in which the incidence of highly pathogenic influenza is about 4462/2286/1311/487 are predicted to occur once every five/three/two/one year, respectively.Despite the simplicity, the present study successfully offers the sound modeling strategy and a methodological avenue to implement forecasting of an epidemic in the midst of its course.

  9. Laser-produced dense plasma in extremely high pressure gas and its application to a plasma-bridged gap switch

    International Nuclear Information System (INIS)

    Yamada, J.; Okuda, A.

    1989-01-01

    When an extremely high pressure gas is irradiated by an intense laser light, a dense plasma produced at the focal spot moves towards the focusing lens with a high velocity. Making use of this phenomenon, a new plasma-bridged gap switch is proposed and its switching characteristics is experimentally examined. From the experiments, it is confirmed that the switching time is almost constant with the applied voltage only when the focal spot is just on the positive electrode, indicating that the bridging of gap is caused by the laser light. (author)

  10. High resolution modelling of the extreme precipitation event over Algiers in November 2001

    Directory of Open Access Journals (Sweden)

    S. A. Moore

    2005-01-01

    Full Text Available Between 18:00UTC on Friday 9th November and 12:00UTC on Saturday 10th November 2001 260mm of rainfall was recorded at Bouzareah, compared to the November average of just 96mm. This extreme rainfall resulted in landslides and flooding, causing immense damage to the Bab-el-Oued district of Algiers and affected the lives of more than 2000 people. In this paper, key results from a modelling study of this event using the UK Met Office Unified Model at global (60km, regional (20km and national (4km horizontal resolutions are described. In general, it is found that the event could be well forecast with increases in resolution leading to better predictions of both the distribution and intensity of the rainfall. The role of the local orography and latent heating are also discussed.

  11. Extremely Stable Polypyrrole Achieved via Molecular Ordering for Highly Flexible Supercapacitors.

    Science.gov (United States)

    Huang, Yan; Zhu, Minshen; Pei, Zengxia; Huang, Yang; Geng, Huiyuan; Zhi, Chunyi

    2016-01-27

    The cycling stability of flexible supercapacitors with conducting polymers as electrodes is limited by the structural breakdown arising from repetitive counterion flow during charging/discharging. Supercapacitors made of facilely electropolymerized polypyrrole (e-PPy) have ultrahigh capacitance retentions of more than 97, 91, and 86% after 15000, 50000, and 100000 charging/discharging cycles, respectively, and can sustain more than 230000 charging/discharging cycles with still approximately half of the initial capacitance retained. To the best of our knowledge, such excellent long-term cycling stability was never reported. The fully controllable electropolymerization shows superiority in molecular ordering, favoring uniform stress distribution and charge transfer. Being left at ambient conditions for even 8 months, e-PPy supercapacitors completely retain the good electrochemical performance. The extremely stable supercapacitors with excellent flexibility and scalability hold considerable promise for the commerical application of flexible and wearable electronics.

  12. High intensity vacuum ultraviolet and extreme ultraviolet production by noncollinear mixing in laser vaporized media

    Energy Technology Data Exchange (ETDEWEB)

    Todt, Michael A.; Albert, Daniel R.; Davis, H. Floyd, E-mail: hfd1@cornell.edu [Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301 (United States)

    2016-06-15

    A method is described for generating intense pulsed vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) laser radiation by resonance enhanced four-wave mixing of commercial pulsed nanosecond lasers in laser vaporized mercury under windowless conditions. By employing noncollinear mixing of the input beams, the need of dispersive elements such as gratings for separating the VUV/XUV from the residual UV and visible beams is eliminated. A number of schemes are described, facilitating access to the 9.9–14.6 eV range. A simple and convenient scheme for generating wavelengths of 125 nm, 112 nm, and 104 nm (10 eV, 11 eV, and 12 eV) using two dye lasers without the need for dye changes is described.

  13. The effects of extracorporeal shockwave on acute high-energy long bone fractures of the lower extremity.

    Science.gov (United States)

    Wang, Ching-Jen; Liu, Hao-Chen; Fu, Te-Hu

    2007-02-01

    High-energy long bone fractures of the lower extremity are at risk of poor fracture healing and high rate of non-union. Extracorporeal shockwave was shown effective to heal non-union of long bone fracture. However, the effect of shockwave on acute fractures is unknown. The purpose of this study was to investigate the effects of shockwave on acute high-energy fractures of the lower extremity. Between January and October 2004, 56 patients with 59 acute high-energy fractures were enrolled in this study. Patients were randomly divided into two groups with 28 patients with 28 fractures in the study group and 28 patients with 31 fractures in the control group. Both groups showed similar age, gender, type of fracture and follow-up time. Patients in the study group received open reduction and internal fixation and shockwave treatment immediately after surgery on odd-numbered days of the week, whereas, patients in the control group received open reduction and internal fixation without shockwave treatment on even-numbered days of the week. Postoperative managements were similarly performed in both groups including crutch walking with non-weight bearing on the affected limb until fracture healing shown on radiographs. The evaluation parameters included clinical assessments of pain score and weight bearing status of the affected leg and serial radiographs at 3, 6 and 12 months. The primary end-point is the rate of non-union at 12 months, and the secondary end point is the rate of fracture healing at 3, 6 and 12 months. At 12 months, the rate of non-union was 11% for the study group versus 20% for the control group (P fracture healing was noted in the study group than the control group at 3, 6 and 12 months (P fracture healing and decreasing the rate of non-union in acute high-energy fractures of the lower extremity.

  14. FLUID EVOLUTION AND MINERAL REACTIONS DURING SHEAR ZONE FORMATION AT NUSFJORD, LOFOTEN, NORWAY (Invited)

    Science.gov (United States)

    Kullerud, K.

    2009-12-01

    At Nusfjord in Lofoten, Norway, three 0.3 - 3 m thick shear zones occur in a gabbro-anorthosite. During deformation, the shear zones were infiltrated by a hydrous fluid enriched in Cl. In the central parts of the shear zones, fluid-rock interaction resulted in complete break-down of the primary mafic silicates. Complete hydration of these minerals to Cl-free amphibole and biotite suggests that the hydrous fluid was present in excess during deformation in these parts of the shear zones. Along the margins of the shear zones, however, the igneous mafic silicates (Cpx, Bt, Opx) were only partly overgrown by hydrous minerals. Here, Cl-enriched minerals (Amph, Bt, Scp, Ap) can be observed. Amphibole shows compositions covering the range 0.1 - 4.0 wt % Cl within single thin sections. Mineral textures and extreme compositional variations of the Cl-bearing minerals indicate large chemical gradients of the fluid phase. Relics of primary mafic silicates and compositionally zoned reaction coronas around primary mafic silicates suggest that the free fluid was totally consumed before the alteration of the primary phases were completed. The extreme variations in the Cl-content of amphibole are inferred to monitor a gradual desiccation of the Cl-bearing grain-boundary fluid during fluid-mineral reactions accordingly: 1) The first amphibole that formed during the reactions principally extracted water from the fluid, resulting in a slight increase in the Cl content of the fluid. 2) Continued amphibole-forming reactions resulted in gradual consumption of the free fluid phase, principally by extracting water from the fluid, resulting in an increase in its Cl-content. Higher Cl-content of the fluid resulted in higher Cl-content of the equilibrium amphibole. 3) The most Cl-enriched amphibole (4 wt % Cl) formed in equilibrium with the last volumes of the grain-boundary fluid, which had evolved to a highly saline solution. Mineral reactions within a 1-2 thick zone of the host rock along

  15. Clinical Implications of Diffuse Excessive High Signal Intensity (DEHSI on Neonatal MRI in School Age Children Born Extremely Preterm.

    Directory of Open Access Journals (Sweden)

    Lina Broström

    Full Text Available Magnetic resonance imaging (MRI of the brain carried out during the neonatal period shows that 55-80% of extremely preterm infants display white matter diffuse excessive high signal intensity (DEHSI. Our aim was to study differences in developmental outcome at the age of 6.5 years in children born extremely preterm with and without DEHSI.This was a prospective cohort study of 83 children who were born in Stockholm, Sweden, between 2004 and 2007, born at gestational age of < 27 weeks + 0 days and who underwent an MRI scan of their brain at term equivalent age. The outcome measures at 6.5 years included testing 66 children with the modified Touwen neurology examination, the Movement Assessment Battery for Children 2, the Wechsler Intelligence Scale for Children-Fourth Edition, Beery Visual-motor Integration test-Sixth Edition, and the Strengths and Difficulties Questionnaire. Group-wise comparisons were done between children with and without DEHSI using Student t-test, Mann Whitney U test, Chi square test and regression analysis.DEHSI was detected in 39 (59% of the 66 children who were assessed at 6.5 years. The presence of DEHSI was not associated with mild neurological dysfunction, scores on M-ABC assessment, cognition, visual-motor integration, or behavior at 6.5 years.The presence of qualitatively defined DEHSI on neonatal MRI did not prove to be a useful predictor of long-term impairment in children born extremely preterm.

  16. Improved Survival With Radiation Therapy in High-Grade Soft Tissue Sarcomas of the Extremities: A SEER Analysis

    International Nuclear Information System (INIS)

    Koshy, Matthew; Rich, Shayna E.; Mohiuddin, Majid M.

    2010-01-01

    Purpose: The benefit of radiation therapy in extremity soft tissue sarcomas remains controversial. The purpose of this study was to determine the effect of radiation therapy on overall survival among patients with primary soft tissue sarcomas of the extremity who underwent limb-sparing surgery. Methods and Materials: A retrospective study from the Surveillance, Epidemiology, and End Results (SEER) database that included data from January 1, 1988, to December 31, 2005. A total of 6,960 patients constituted the study population. Overall survival curves were constructed using the Kaplan-Meir method and for patients with low- and high-grade tumors. Hazard ratios were calculated based on multivariable Cox proportional hazards models. Results: Of the cohort, 47% received radiation therapy. There was no significant difference in overall survival among patients with low-grade tumors by radiation therapy. In high-grade tumors, the 3-year overall survival was 73% in patients who received radiation therapy vs. 63% for those who did not receive radiation therapy (p < 0.001). On multivariate analysis, patients with high-grade tumors who received radiation therapy had an improved overall survival (hazard ratio 0.67, 95% confidence interval 0.57-0.79). In patients receiving radiation therapy, 13.5% received it in a neoadjuvant setting. The incidence of patients receiving neoadjuvant radiation did not change significantly between 1988 and 2005. Conclusions: To our knowledge, this is the largest population-based study reported in patients undergoing limb-sparing surgery for soft tissue sarcomas of the extremities. It reports that radiation was associated with improved survival in patients with high-grade tumors.

  17. Flame structure of methane/oxygen shear coaxial jet with velocity ratio using high-speed imaging and OH*, CH* chemiluminescence

    Science.gov (United States)

    Shim, Myungbo; Noh, Kwanyoung; Yoon, Woongsup

    2018-06-01

    In this study, the effects of gaseous methane/oxygen injection velocity ratio on the shear coaxial jet flame structure are analyzed using high-speed imaging along with OH* and CH* chemiluminescence. The images show that, as the velocity ratio is increased, the visual flame length increases and wrinkles of the flame front are developed further downstream. The region near the equivalence ratio 1 condition in the flame could be identified by the maximum OH* position, and this region is located further downstream as the velocity ratio is increased. The dominant CH* chemiluminescence is found in the near-injector region. As the velocity ratio is decreased, the signal intensity is higher at the same downstream distance in each flame. From the results, as the velocity ratio is decreased, there is increased entrainment of the external jet, the mixing of the two jets is enhanced, the region near the stoichiometric mixture condition is located further upstream, and consequently, the flame length decreases.

  18. SPREAD: a high-resolution daily gridded precipitation dataset for Spain – an extreme events frequency and intensity overview

    Directory of Open Access Journals (Sweden)

    R. Serrano-Notivoli

    2017-09-01

    Full Text Available A high-resolution daily gridded precipitation dataset was built from raw data of 12 858 observatories covering a period from 1950 to 2012 in peninsular Spain and 1971 to 2012 in Balearic and Canary islands. The original data were quality-controlled and gaps were filled on each day and location independently. Using the serially complete dataset, a grid with a 5 × 5 km spatial resolution was constructed by estimating daily precipitation amounts and their corresponding uncertainty at each grid node. Daily precipitation estimations were compared to original observations to assess the quality of the gridded dataset. Four daily precipitation indices were computed to characterise the spatial distribution of daily precipitation and nine extreme precipitation indices were used to describe the frequency and intensity of extreme precipitation events. The Mediterranean coast and the Central Range showed the highest frequency and intensity of extreme events, while the number of wet days and dry and wet spells followed a north-west to south-east gradient in peninsular Spain, from high to low values in the number of wet days and wet spells and reverse in dry spells. The use of the total available data in Spain, the independent estimation of precipitation for each day and the high spatial resolution of the grid allowed for a precise spatial and temporal assessment of daily precipitation that is difficult to achieve when using other methods, pre-selected long-term stations or global gridded datasets. SPREAD dataset is publicly available at https://doi.org/10.20350/digitalCSIC/7393.

  19. Superconductivity induced by extremely high pressures in organic Mott-insulator β'-(BEDT-TTF)2IBrCl

    International Nuclear Information System (INIS)

    Kano, M; Uchiyama, K; Taniguchi, H; Hedo, M; Matsubayashi, K; Uwatoko, Y

    2009-01-01

    Previous research revealed that, at a pressure of 8.2 GPa, β'-(BEDT-TTF)2ICl2 possesses the highest transition temperature (T C ) among the organic conductors[1]. In the present work, transport studies under extremely high pressure of up to 10.0 GPa, using a cubic anvil press are reported for a related material, β'-(BEDT-TTF)2IBrCl which is an organic Mott-insulator in ambient pressure. Superconductivity with the highest T c (8.5 K, onset) was observed at P = 8.6 GPa.

  20. Detection of extremely high bit density signals with a narrow track width GMR head in double layered perpendicular recording media

    International Nuclear Information System (INIS)

    Kiya, T.; Honda, N.; Ariake, J.; Ouchi, K.; Iwasaki, S.

    2001-01-01

    Recording resolution, medium noise and thermal stability have been investigated for double layered perpendicular magnetic recording media. The recording performance was improved by introducing a stacked intermediate layer between a soft magnetic backlayer and a storage layer due to increased crystal orientation with a small magnetic domain size and suppressed initial growing layer of the storage layer. The reproduced output at an extremely high linear density of 950 kFRPI was detected by using a contact-type CF-SPT head for write and a GMR head with a narrow read track width of 0.4 μm

  1. Highly Efficient Method for the Synthesis of Activated Mesoporous Biocarbons with Extremely High Surface Area for High-Pressure CO2 Adsorption.

    Science.gov (United States)

    Singh, Gurwinder; Lakhi, Kripal S; Kim, In Young; Kim, Sungho; Srivastava, Prashant; Naidu, Ravi; Vinu, Ajayan

    2017-09-06

    A simple and efficient way to synthesize activated mesoporous biocarbons (AMBs) with extremely high BET surface area and large pore volume has been achieved for the first time through a simple solid state activation of freely available biomass, Arundo donax, with zinc chloride. The textural parameters of the AMB can easily be controlled by varying the activation temperature. It is demonstrated that the mesoporosity of AMB can be finely tuned with a simple adjustment of the amount of activating agent. AMB with almost 100% mesoporosity can be achieved using the activating agent and the biomass ratio of 5 and carbonization at 500 °C. Under the optimized conditions, AMB with a BET surface area of 3298 m 2 g -1 and a pore volume of 1.9 cm 3 g -1 can be prepared. While being used as an adsorbent for CO 2 capture, AMB registers an impressively high pressure CO 2 adsorption capacity of 30.2 mmol g -1 at 30 bar which is much higher than that of activated carbon (AC), multiwalled carbon nanotubes (MWCNTs), highly ordered mesoporous carbons, and mesoporous carbon nitrides. AMB also shows high stability with excellent regeneration properties under vacuum and temperatures of up to 250 °C. These impressive textural parameters and high CO 2 adsorption capacity of AMB clearly reveal its potential as a promising adsorbent for high-pressure CO 2 capture and storage application. Also, the simple one-step synthesis strategy outlined in this work would provide a pathway to generate a series of novel mesoporous activated biocarbons from different biomasses.

  2. Fixed-site high-frequency transcutaneous electrical nerve stimulation for treatment of chronic low back and lower extremity pain

    Science.gov (United States)

    Gozani, Shai N

    2016-01-01

    Objective The objective of this study was to determine if fixed-site high-frequency transcutaneous electrical nerve stimulation (FS-TENS) is effective in treating chronic low back and lower extremity pain. Background Transcutaneous electrical nerve stimulation is widely used for treatment of chronic pain. General-purpose transcutaneous electrical nerve stimulation devices are designed for stimulation anywhere on the body and often cannot be used while the user is active or sleeping. FS-TENS devices are designed for placement at a pre-determined location, which enables development of a wearable device for use over extended time periods. Methods Study participants with chronic low back and/or lower extremity pain self-administered an FS-TENS device for 60 days. Baseline, 30-, and 60-day follow-up data were obtained through an online questionnaire. The primary outcome measure was the patient global impression of change. Pain intensity and interference were assessed using the Brief Pain Inventory. Changes in use of concomitant pain medications were evaluated with a single-item global self-rating. Results One hundred and thirty participants were enrolled, with 88 completing the 60-day follow-up questionnaire. Most participants (73.9%) were 50 years of age or older. At baseline, low back pain was identified by 85.3%, lower extremity pain by 71.6%, and upper extremity pain by 62.5%. Participants reported widespread pain, at baseline, with a mean of 3.4 (standard deviation 1.1) pain sites. At the 60-day follow-up, 80.7% of participants reported that their chronic pain had improved and they were classified as responders. Baseline characteristics did not differentiate non-responders from responders. There were numerical trends toward reduced pain interference with walking ability and sleep, and greater pain relief in responders. There was a large difference in use of concomitant pain medications, with 80.3% of responders reporting a reduction compared to 11.8% of non

  3. Fixed-site high-frequency transcutaneous electrical nerve stimulation for treatment of chronic low back and lower extremity pain.

    Science.gov (United States)

    Gozani, Shai N

    2016-01-01

    The objective of this study was to determine if fixed-site high-frequency transcutaneous electrical nerve stimulation (FS-TENS) is effective in treating chronic low back and lower extremity pain. Transcutaneous electrical nerve stimulation is widely used for treatment of chronic pain. General-purpose transcutaneous electrical nerve stimulation devices are designed for stimulation anywhere on the body and often cannot be used while the user is active or sleeping. FS-TENS devices are designed for placement at a pre-determined location, which enables development of a wearable device for use over extended time periods. Study participants with chronic low back and/or lower extremity pain self-administered an FS-TENS device for 60 days. Baseline, 30-, and 60-day follow-up data were obtained through an online questionnaire. The primary outcome measure was the patient global impression of change. Pain intensity and interference were assessed using the Brief Pain Inventory. Changes in use of concomitant pain medications were evaluated with a single-item global self-rating. One hundred and thirty participants were enrolled, with 88 completing the 60-day follow-up questionnaire. Most participants (73.9%) were 50 years of age or older. At baseline, low back pain was identified by 85.3%, lower extremity pain by 71.6%, and upper extremity pain by 62.5%. Participants reported widespread pain, at baseline, with a mean of 3.4 (standard deviation 1.1) pain sites. At the 60-day follow-up, 80.7% of participants reported that their chronic pain had improved and they were classified as responders. Baseline characteristics did not differentiate non-responders from responders. There were numerical trends toward reduced pain interference with walking ability and sleep, and greater pain relief in responders. There was a large difference in use of concomitant pain medications, with 80.3% of responders reporting a reduction compared to 11.8% of non-responders. FS-TENS is a safe and effective

  4. Fixed-site high-frequency transcutaneous electrical nerve stimulation for treatment of chronic low back and lower extremity pain

    Directory of Open Access Journals (Sweden)

    Gozani SN

    2016-06-01

    Full Text Available Shai N Gozani NeuroMetrix, Inc., Waltham, MA, USA Objective: The objective of this study was to determine if fixed-site high-frequency transcutaneous electrical nerve stimulation (FS-TENS is effective in treating chronic low back and lower extremity pain. Background: Transcutaneous electrical nerve stimulation is widely used for treatment of chronic pain. General-purpose transcutaneous electrical nerve stimulation devices are designed for stimulation anywhere on the body and often cannot be used while the user is active or sleeping. FS-TENS devices are designed for placement at a pre-determined location, which enables development of a wearable device for use over extended time periods. Methods: Study participants with chronic low back and/or lower extremity pain self-administered an FS-TENS device for 60 days. Baseline, 30-, and 60-day follow-up data were obtained through an online questionnaire. The primary outcome measure was the patient global impression of change. Pain intensity and interference were assessed using the Brief Pain Inventory. Changes in use of concomitant pain medications were evaluated with a single-item global self-rating. Results: One hundred and thirty participants were enrolled, with 88 completing the 60-day follow-up questionnaire. Most participants (73.9% were 50 years of age or older. At baseline, low back pain was identified by 85.3%, lower extremity pain by 71.6%, and upper extremity pain by 62.5%. Participants reported widespread pain, at baseline, with a mean of 3.4 (standard deviation 1.1 pain sites. At the 60-day follow-up, 80.7% of participants reported that their chronic pain had improved and they were classified as responders. Baseline characteristics did not differentiate non-responders from responders. There were numerical trends toward reduced pain interference with walking ability and sleep, and greater pain relief in responders. There was a large difference in use of concomitant pain medications, with 80

  5. Modeling and evaluation of a high-resolution CMOS detector for cone-beam CT of the extremities.

    Science.gov (United States)

    Cao, Qian; Sisniega, Alejandro; Brehler, Michael; Stayman, J Webster; Yorkston, John; Siewerdsen, Jeffrey H; Zbijewski, Wojciech

    2018-01-01

    Quantitative assessment of trabecular bone microarchitecture in extremity cone-beam CT (CBCT) would benefit from the high spatial resolution, low electronic noise, and fast scan time provided by complementary metal-oxide semiconductor (CMOS) x-ray detectors. We investigate the performance of CMOS sensors in extremity CBCT, in particular with respect to potential advantages of thin (CMOS x-ray detector incorporating the effects of CsI:Tl scintillator thickness was developed. Simulation studies were performed using nominal extremity CBCT acquisition protocols (90 kVp, 0.126 mAs/projection). A range of scintillator thickness (0.35-0.75 mm), pixel size (0.05-0.4 mm), focal spot size (0.05-0.7 mm), magnification (1.1-2.1), and dose (15-40 mGy) was considered. The detectability index was evaluated for both CMOS and a-Si:H flat-panel detector (FPD) configurations for a range of imaging tasks emphasizing spatial frequencies associated with feature size aobj. Experimental validation was performed on a CBCT test bench in the geometry of a compact orthopedic CBCT system (SAD = 43.1 cm, SDD = 56.0 cm, matching that of the Carestream OnSight 3D system). The test-bench studies involved a 0.3 mm focal spot x-ray source and two CMOS detectors (Dalsa Xineos-3030HR, 0.099 mm pixel pitch) - one with the standard CsI:Tl thickness of 0.7 mm (C700) and one with a custom 0.4 mm thick scintillator (C400). Measurements of modulation transfer function (MTF), detective quantum efficiency (DQE), and CBCT scans of a cadaveric knee (15 mGy) were obtained for each detector. Optimal detectability for high-frequency tasks (feature size of ~0.06 mm, consistent with the size of trabeculae) was ~4× for the C700 CMOS detector compared to the a-Si:H FPD at nominal system geometry of extremity CBCT. This is due to ~5× lower electronic noise of a CMOS sensor, which enables input quantum-limited imaging at smaller pixel size. Optimal pixel size for high-frequency tasks was CMOS

  6. Experimental Investigation of Adiabatic Shear Banding at Different Impact Velocities

    Science.gov (United States)

    1993-01-01

    plasticity and ASB’s is the Double-notch Shear specimen, it has been decided to use this concept in shear testing at medium and high strain rates...is the Double-notch Shear specimen. it has been decided to use this concept in shear testing at medium and high strain rates. Originally, Campbell...7] C. Fressengeas, Analyse dynamique 61asto-viscoplastique de l’h6tdrogdndit6 de la ddforma- tion plastique de cisalllement, Proc. Int. Conf. on

  7. The brittle-viscous-plastic evolution of shear bands in the South Armorican Shear Zone

    Science.gov (United States)

    Bukovská, Zita; Jeřábek, Petr; Morales, Luiz F. G.; Lexa, Ondrej; Milke, Ralf

    2014-05-01

    Shear bands are microscale shear zones that obliquely crosscut an existing anisotropy such as a foliation. The resulting S-C fabrics are characterized by angles lower than 45° and the C plane parallel to shear zone boundaries. The S-C fabrics typically occur in granitoids deformed at greenschist facies conditions in the vicinity of major shear zones. Despite their long recognition, mechanical reasons for localization of deformation into shear bands and their evolution is still poorly understood. In this work we focus on microscale characterization of the shear bands in the South Armorican Shear Zone, where the S-C fabrics were first recognized by Berthé et al. (1979). The initiation of shear bands in the right-lateral South Armorican Shear Zone is associated with the occurrence of microcracks crosscutting the recrystallized quartz aggregates that define the S fabric. In more advanced stages of shear band evolution, newly formed dominant K-feldspar, together with plagioclase, muscovite and chlorite occur in the microcracks, and the shear bands start to widen. K-feldspar replaces quartz by progressively bulging into the grain boundaries of recrystallized quartz grains, leading to disintegration of quartz aggregates and formation of fine-grained multiphase matrix mixture. The late stages of shear band development are marked by interconnection of fine-grained white mica into a band that crosscuts the original shear band matrix. In its extremity, the shear band widening may lead to the formation of ultramylonites. With the increasing proportion of shear band matrix from ~1% to ~12%, the angular relationship between S and C fabrics increases from ~30° to ~40°. The matrix phases within shear bands show differences in chemical composition related to distinct evolutionary stages of shear band formation. The chemical evolution is well documented in K-feldspar, where the albite component is highest in porphyroclasts within S fabric, lower in the newly formed grains within

  8. Extremely High-Birefringent Asymmetric Slotted-Core Photonic Crystal Fiber in THz Regime

    DEFF Research Database (Denmark)

    Islam, Raonaqul; Habib, Selim; Hasanuzzaman, G.K.M.

    2015-01-01

    We present a thorough numerical analysis of a highly birefringent slotted porous-core circular photonic crystal fiber (PCF) for terahertz (THz) wave guidance. The slot shaped air-holes break the symmetry of the porous-core which offers a very high birefringence whereas the compact geometry of the...

  9. Generation of Bright Phase-matched Circularly-polarized Extreme Ultraviolet High Harmonics

    Science.gov (United States)

    2014-12-08

    1995). 42. Eichmann , H. et al. Polarization-dependent high-order two-color mixing. Phys. Rev. A 51, R3414–R3417 (1995). 43. Fleischer, A., Kfir, O...calculations of polarization-dependent two- color high-harmonic generation. Phys. Rev. A 52, 2262–2278 (1995). 10. Eichmann , H. et al. polarization

  10. Theoretical study of the flow in a fluid damper containing high viscosity silicone oil: Effects of shear-thinning and viscoelasticity

    Science.gov (United States)

    Syrakos, Alexandros; Dimakopoulos, Yannis; Tsamopoulos, John

    2018-03-01

    The flow inside a fluid damper where a piston reciprocates sinusoidally inside an outer casing containing high-viscosity silicone oil is simulated using a finite volume method, at various excitation frequencies. The oil is modeled by the Carreau-Yasuda (CY) and Phan-Thien and Tanner (PTT) constitutive equations. Both models account for shear-thinning, but only the PTT model accounts for elasticity. The CY and other generalised Newtonian models have been previously used in theoretical studies of fluid dampers, but the present study is the first to perform full two-dimensional (axisymmetric) simulations employing a viscoelastic constitutive equation. It is found that the CY and PTT predictions are similar when the excitation frequency is low, but at medium and higher frequencies, the CY model fails to describe important phenomena that are predicted by the PTT model and observed in experimental studies found in the literature, such as the hysteresis of the force-displacement and force-velocity loops. Elastic effects are quantified by applying a decomposition of the damper force into elastic and viscous components, inspired from large amplitude oscillatory shear theory. The CY model also overestimates the damper force relative to the PTT model because it underpredicts the flow development length inside the piston-cylinder gap. It is thus concluded that (a) fluid elasticity must be accounted for and (b) theoretical approaches that rely on the assumption of one-dimensional flow in the piston-cylinder gap are of limited accuracy, even if they account for fluid viscoelasticity. The consequences of using lower-viscosity silicone oil are also briefly examined.

  11. Mandelbrot's Extremism

    NARCIS (Netherlands)

    Beirlant, J.; Schoutens, W.; Segers, J.J.J.

    2004-01-01

    In the sixties Mandelbrot already showed that extreme price swings are more likely than some of us think or incorporate in our models.A modern toolbox for analyzing such rare events can be found in the field of extreme value theory.At the core of extreme value theory lies the modelling of maxima

  12. High energy density and extreme field physics in the transparent-overdense regime

    Energy Technology Data Exchange (ETDEWEB)

    Hegelich, Bjorn Manuel [Los Alamos National Laboratory; Yin, Kin [Los Alamos National Laboratory; Albright, Brian J [Los Alamos National Laboratory; Bowers, Kevin J [Los Alamos National Laboratory; Gautier, C [Los Alamos National Laboratory; Huang, C [Los Alamos National Laboratory; Jung, D [Los Alamos National Laboratory; Letzring, S [Los Alamos National Laboratory; Palaniyappan, S [Los Alamos National Laboratory; Shah, R [Los Alamos National Laboratory; Wu, H [Los Alamos National Laboratory; Fernandez, J. C. [Los Alamos National Laboratory; Dromey, B [QUEENS UNIV BELFAST; Henig, A [LUDWIG-MAXIMILLAN-UNIV MUNCHEN; Horlein, R [LUDWIG-MAXIMILLAN-UNIV MUNCHEN; Kefer, D. [LUDWIG-MAXIMILLAN-UNIV MUNCHEN; Tajima, T [LUDWIG-MAXIMILIN-UNIV MUNCHEN; Yan, X [QUEENS UNIV BELFAST; Habs, D [LUDWIG-MAXIMILIAN-UNIV MUNCHEN

    2011-01-31

    Conclusions of this report are: (1) high harmonics generated on solid surfaces are a very versatile source of intense coherent XUV radiation; (2) high harmonics can be used to probe and monitor the interaction of intense femtosecond laser pulses with nm-scale foil targets; (3) direct measurement of target density during relativistic interaction; (4) high harmonics generated with PW-scale short-pulse lasers could serve as unique backlighting sources for a wide range experiments; and (5) Trident can be a test bed to develop such experiments and the required instrumentation.

  13. MR imaging findings of high-voltage electrical burns in the upper extremities: correlation with angiographic findings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyung Kyu; Kang, Ik Won; Hwang, Dae Hyun; Min, Seon Jung; Han, You Mi (Dept. of Radiology, Hallym Univ. College of Medicine, Hangang Sacred Heart Hospital, Seoul (Korea, Republic of)); Suh, Kyung Jin (Dept. of Radiology, Dongguk Univ. College of Medicine, Gyeongju Hospital, Gyeongju (Korea, Republic of)), email: kyungjin.suh@gmail.com; Choi, Min Ho (Dept. of Internal Medicine, Hallym Univ. College of Medicine, Hangang Sacred Heart Hospital, Seoul (Korea, Republic of))

    2011-02-15

    Background: A high-voltage electrical burn is often associated with deep muscle injuries. Hidden, undetected deep muscle injuries have a tendency for progressive tissue necrosis, and this can lead to major amputations or sepsis. MRI has excellent soft tissue contrast and it may aid in differentiating the areas of viable deep muscle from the areas of non-viable deep muscle. Purpose: To describe the MR imaging findings of a high-voltage electrical burn in the upper extremity with emphasis on the usefulness of the gadolinium-enhanced MRI and to compare the MR imaging findings with angiography. Material and Methods: We retrospectively reviewed the imaging studies of six patients with high-voltage electrical burns who underwent both MRI and angiography at the burn center of our hospital from January 2005 to December 2009. The imaging features were evaluated for the involved locations, the MR signal intensity of the affected muscles, the MR enhancement pattern, the involved arteries and the angiographic findings (classified as normal, sluggish flow, stenosis or occlusion) of the angiography of the upper extremity. We assessed the relationship between the MR imaging findings and the angiographic findings. Results: The signal intensities of affected muscles were isointense or of slightly high signal intensity as compared with the adjacent unaffected skeletal muscle on the T1-weighted MR images. Affected muscles showed heterogenous high signal intensity relative to the adjacent unaffected skeletal muscle on the T2- weighted images. The gadolinium-enhanced T1-weighted images showed diffuse inhomogeneous enhancement or peripheral rim enhancement of the affected muscles. The angiographic findings of the arterial injuries showed complete occlusion in three patients, severe stenosis in two patients and sluggish flow in one patient. Of these, the five patients with complete occlusion or severe stenosis on angiography showed non-perfused and non-viable areas of edematous muscle on

  14. Radiation Hardened High Speed Integrated Circuits SERDES I/O for Extreme Operating Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Manned and robotic space missions require high-performance electronic control systems capable of operating for extended periods in harsh environments subject to...

  15. Probing physics at extreme energies with cosmic ultra-high energy ...

    Indian Academy of Sciences (India)

    testing new particle physics. Keywords. Ultra-high ... conventional theories of CR origin based on acceleration of charged particles in powerful ... Before discussing specific scenarios for UHECR origin we give a short account of the numerical ...

  16. Foldable Compactly Stowable Extremely High Power Solar Array System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS) has developed a high performance solar array system that has game-changing performance metrics in terms of ultra-compact stowage...

  17. [The action of low-intensity extremely high-freguency electromagnetic radiation on growth parameters for bacteria Enterococcus hirae].

    Science.gov (United States)

    Oganian, V; Sarkisian, A; Tadevosian, A; Torchunian, A

    2008-01-01

    It has been found that the exposure of Enterococcus hirae ATCC9790, grown under anaerobic conditions for 30 min or 1 h, to low-intensity (flux capacity 0.06 mW/sm2) coherent electromagnetic radiation (EMI) of extremely high-frequency 45 - 53 GHz), or millimeter waves causes a marked prolongation of the lag-growth phase and a decrease in their specific growth rate, the inhibitory effect increasing in the frequency range from 49 to 53 GHz. The effect enhanced as duration of expocure was encreased from 30 min to 1 h; however, further increase in exposure duration to 2 h did not cause an enhancement of the effect. It has been shown that the action of extremely high-frequency EMI on these bacteria does not depend on medium pH (pH 8.0 or pH 6.0). It is proposed that these bacteria have defensive or reparation mechanisms which compensate for the action of radiation; the occurrence of different mechanisms for pH regulation is not ruled out.

  18. Millimeter waves or extremely high frequency electromagnetic fields in the environment: what are their effects on bacteria?

    Science.gov (United States)

    Soghomonyan, Diana; Trchounian, Karen; Trchounian, Armen

    2016-06-01

    Millimeter waves (MMW) or electromagnetic fields of extremely high frequencies at low intensity is a new environmental factor, the level of which is increased as technology advance. It is of interest that bacteria and other cells might communicate with each other by electromagnetic field of sub-extremely high frequency range. These MMW affected Escherichia coli and many other bacteria, mainly depressing their growth and changing properties and activity. These effects were non-thermal and depended on different factors. The significant cellular targets for MMW effects could be water, cell plasma membrane, and genome. The model for the MMW interaction with bacteria is suggested; a role of the membrane-associated proton FOF1-ATPase, key enzyme of bioenergetic relevance, is proposed. The consequences of MMW interaction with bacteria are the changes in their sensitivity to different biologically active chemicals, including antibiotics. Novel data on MMW effects on bacteria and their sensitivity to different antibiotics are presented and discussed; the combined action of MMW and antibiotics resulted with more strong effects. These effects are of significance for understanding changed metabolic pathways and distinguish role of bacteria in environment; they might be leading to antibiotic resistance in bacteria. The effects might have applications in the development of technique, therapeutic practices, and food protection technology.

  19. Extremely high magnetoresistance and conductivity in the type-II Weyl semimetals WP2 and MoP2.

    Science.gov (United States)

    Kumar, Nitesh; Sun, Yan; Xu, Nan; Manna, Kaustuv; Yao, Mengyu; Süss, Vicky; Leermakers, Inge; Young, Olga; Förster, Tobias; Schmidt, Marcus; Borrmann, Horst; Yan, Binghai; Zeitler, Uli; Shi, Ming; Felser, Claudia; Shekhar, Chandra

    2017-11-21

    The peculiar band structure of semimetals exhibiting Dirac and Weyl crossings can lead to spectacular electronic properties such as large mobilities accompanied by extremely high magnetoresistance. In particular, two closely neighboring Weyl points of the same chirality are protected from annihilation by structural distortions or defects, thereby significantly reducing the scattering probability between them. Here we present the electronic properties of the transition metal diphosphides, WP 2 and MoP 2 , which are type-II Weyl semimetals with robust Weyl points by transport, angle resolved photoemission spectroscopy and first principles calculations. Our single crystals of WP 2 display an extremely low residual low-temperature resistivity of 3 nΩ cm accompanied by an enormous and highly anisotropic magnetoresistance above 200 million % at 63 T and 2.5 K. We observe a large suppression of charge carrier backscattering in WP 2 from transport measurements. These properties are likely a consequence of the novel Weyl fermions expressed in this compound.

  20. Extreme triple asymmetric (ETAS) epitaxial designs for increased efficiency at high powers in 9xx-nm diode lasers

    Science.gov (United States)

    Kaul, T.; Erbert, G.; Maaßdorf, A.; Martin, D.; Crump, P.

    2018-02-01

    Broad area lasers that are tailored to be most efficient at the highest achievable optical output power are sought by industry to decrease operation costs and improve system performance. Devices using Extreme-Double-ASymmetric (EDAS) epitaxial designs are promising candidates for improved efficiency at high optical output powers due to low series resistance, low optical loss and low carrier leakage. However, EDAS designs leverage ultra-thin p-side waveguides, meaning that the optical mode is shifted into the n-side waveguide, resulting in a low optical confinement in the active region, low gain and hence high threshold current, limiting peak performance. We introduce here explicit design considerations that enable EDAS-based devices to be developed with increased optical confinement in the active layer without changing the p-side layer thicknesses. Specifically, this is realized by introducing a third asymmetric component in the vicinity of the quantum well. We call this approach Extreme-Triple-ASymmetric (ETAS) design. A series of ETAS-based vertical designs were fabricated into broad area lasers that deliver up to 63% power conversion efficiency at 14 W CW optical output power from a 100 μm stripe laser, which corresponds to the operation point of a kW optical output power in a laser bar. The design process, the impact of structural changes on power saturation mechanisms and finally devices with improved performance will be presented.

  1. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    International Nuclear Information System (INIS)

    Horioka, Kazuhiko

    2002-06-01

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  2. Intermittent dynamics of nonlinear resistive tearing modes at extremely high magnetic Reynolds number

    International Nuclear Information System (INIS)

    Miyoshi, Takahiro; Becchaku, Masahiro; Kusano, Kanya

    2008-01-01

    Nonlinear dynamics of the resistive tearing instability in high magnetic Reynolds number (R m ) plasmas is studied by newly developing an accurate and robust resistive magnetohydrodynamic (MHD) scheme. The results show that reconnection processes strongly depend on R m . Particularly, in a high R m case, small-scale plasmoids induced by a secondary instability are intermittently generated and ejected accompanied by fast shocks. According to the intermittent processes, the reconnection rate increases intermittently at a later nonlinear stage. (author)

  3. Extreme genetic structure in a social bird species despite high dispersal capacity.

    Science.gov (United States)

    Morinha, Francisco; Dávila, José A; Bastos, Estela; Cabral, João A; Frías, Óscar; González, José L; Travassos, Paulo; Carvalho, Diogo; Milá, Borja; Blanco, Guillermo

    2017-05-01

    Social barriers have been shown to reduce gene flow and contribute to genetic structure among populations in species with high cognitive capacity and complex societies, such as cetaceans, apes and humans. In birds, high dispersal capacity is thought to prevent population divergence unless major geographical or habitat barriers induce isolation patterns by dispersal, colonization or adaptation limitation. We report that Iberian populations of the red-billed chough, a social, gregarious corvid with high dispersal capacity, show a striking degree of genetic structure composed of at least 15 distinct genetic units. Monitoring of marked individuals over 30 years revealed that long-distance movements over hundreds of kilometres are common, yet recruitment into breeding populations is infrequent and highly philopatric. Genetic differentiation is weakly related to geographical distance, and habitat types used are overall qualitatively similar among regions and regularly shared by individuals of different populations, so that genetic structure is unlikely to be due solely to isolation by distance or isolation by adaptation. Moreover, most population nuclei showed relatively high levels of genetic diversity, suggesting a limited role for genetic drift in significantly differentiating populations. We propose that social mechanisms may underlie this unprecedented level of genetic structure in birds through a pattern of isolation by social barriers not yet described, which may have driven this remarkable population divergence in the absence of geographical and environmental barriers. © 2017 John Wiley & Sons Ltd.

  4. High genetic diversity in a potentially vulnerable tropical tree species despite extreme habitat loss.

    Directory of Open Access Journals (Sweden)

    Annika M E Noreen

    Full Text Available Over the last 150 years, Singapore's primary forest has been reduced to less than 0.2% of its previous area, resulting in extinctions of native flora and fauna. Remaining species may be threatened by genetic erosion and inbreeding. We surveyed >95% of the remaining primary forest in Singapore and used eight highly polymorphic microsatellite loci to assess genetic diversity indices of 179 adults (>30 cm stem diameter, 193 saplings (>1 yr, and 1,822 seedlings (<1 yr of the canopy tree Koompassia malaccensis (Fabaceae. We tested hypotheses relevant to the genetic consequences of habitat loss: (1 that the K. malaccensis population in Singapore experienced a genetic bottleneck and a reduction in effective population size, and (2 K. malaccensis recruits would exhibit genetic erosion and inbreeding compared to adults. Contrary to expectations, we detected neither a population bottleneck nor a reduction in effective population size, and high genetic diversity in all age classes. Genetic diversity indices among age classes were not significantly different: we detected overall high expected heterozygosity (He = 0.843-0.854, high allelic richness (R = 16.7-19.5, low inbreeding co-efficients (FIS = 0.013-0.076, and a large proportion (30.1% of rare alleles (i.e. frequency <1%. However, spatial genetic structure (SGS analyses showed significant differences between the adults and the recruits. We detected significantly greater SGS intensity, as well as higher relatedness in the 0-10 m distance class, for seedlings and saplings compared to the adults. Demographic factors for this population (i.e. <200 adult trees are a cause for concern, as rare alleles could be lost due to stochastic factors. The high outcrossing rate (tm = 0.961, calculated from seedlings, may be instrumental in maintaining genetic diversity and suggests that pollination by highly mobile bee species in the genus Apis may provide resilience to acute habitat loss.

  5. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    Energy Technology Data Exchange (ETDEWEB)

    Horioka, Kazuhiko (ed.)

    2002-06-01

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  6. Gene expression profiles in testis of pigs with extreme high and low levels of androstenone

    DEFF Research Database (Denmark)

    Moe, Maren; Meuwissen, Theo; Lien, Sigbjørn

    2007-01-01

    Boar taint is a major obstacle when using uncastrated male pigs for swine production. One of the main compounds causing this taint is androstenone, a pheromone produced in porcine testis. Here we use microarrays to study the expression of thousands of genes simultaneously in testis of high and low...

  7. Lyman Break Analogs: Constraints on the Formation of Extreme Starbursts at Low and High Redshift

    Science.gov (United States)

    Goncalves, Thiago S.; Overzier, Roderik; Basu-Zych, Antara; Martin, D. Christopher

    2011-01-01

    Lyman Break Analogs (LBAs), characterized by high far-UV luminosities and surface brightnesses as detected by GALEX, are intensely star-forming galaxies in the low-redshift universe (z approximately equal to 0.2), with star formation rates reaching up to 50 times that of the Milky Way. These objects present metallicities, morphologies and other physical properties similar to higher redshift Lyman Break Galaxies (LBGs), motivating the detailed study of LBAs as local laboratories of this high-redshift galaxy population. We present results from our recent integral-field spectroscopy survey of LBAs with Keck/OSIRIS, which shows that these galaxies have the same nebular gas kinematic properties as high-redshift LBGs. We argue that such kinematic studies alone are not an appropriate diagnostic to rule out merger events as the trigger for the observed starburst. Comparison between the kinematic analysis and morphological indices from HST imaging illustrates the difficulties of properly identifying (minor or major) merger events, with no clear correlation between the results using either of the two methods. Artificial redshifting of our data indicates that this problem becomes even worse at high redshift due to surface brightness dimming and resolution loss. Whether mergers could generate the observed kinematic properties is strongly dependent on gas fractions in these galaxies. We present preliminary results of a CARMA survey for LBAs and discuss the implications of the inferred molecular gas masses for formation models.

  8. High risk of misinterpreting liver and spleen stiffness using 2D shear-wave and transient elastography after a moderate or high calorie meal

    DEFF Research Database (Denmark)

    Kjærgaard, Maria; Thiele, Maja; Jansen, Christian

    2017-01-01

    ) and real-time 2-dimensional shear wave elastography (2D-SWE). Patients ingested a 625 kcal and a 1250 kcal liquid meal on two consecutive days. We measured liver and spleen elasticity, Controlled attenuation parameter (CAP) and portal flow at baseline and after 20, 40, 60, 120 and 180 minutes. Sixty......Food intake increases liver stiffness, but it is believed that liver stiffness returns to baseline two hours after a meal. The aim of this study was to investigate the impact of different sized meals on liver stiffness. Liver and spleen stiffness was measured with transient elastography (TE...... patients participated, 83% with alcoholic liver disease. Twenty-eight patients had METAVIR fibrosis score F0-3 and 32 patients had cirrhosis. Liver stiffness, spleen stiffness and CAP increased after both meals for all stages of fibrosis. False positive 2D-SWE liver stiffness measurements caused 36% and 52...

  9. Novel spin transition between S = 5/2 and S = 3/2 in highly saddled iron(III) porphyrin complexes at extremely low temperatures.

    Science.gov (United States)

    Ohgo, Yoshiki; Chiba, Yuya; Hashizume, Daisuke; Uekusa, Hidehiro; Ozeki, Tomoji; Nakamura, Mikio

    2006-05-14

    A novel spin transition between S = 5/2 and S = 3/2 has been observed for the first time in five-coordinate, highly saddled iron(III) porphyrinates by EPR and SQUID measurements at extremely low temperatures.

  10. The influence of non thermal coherent EMR with low intensity and extremely high frequency on total activity and isoenzyme composition of peroxidase

    International Nuclear Information System (INIS)

    Nerkararyan, A.V.; Shahinyan, M.A.; Khachatryan, A.V.; Vardevanyan, P.O.

    2011-01-01

    In this work the influence of non-thermal coherent electromagnetic radiation (EMR) with low intensity and extremely high frequency on intensity of wheat developing germ metabolism has been investigated. Particularly, total activity and isoenzymatic composition of peroxidase of germ cells have been determined during their growth. The role of water in formation of organism response reaction to the external physical field effect has also been investigated. It has been shown, that water appears to be a primary element of extremely high frequency EMR effect on bio system. Extremely high frequency EMR irradiation of germinating seeds and the cultivation of dry seeds and their germs by irradiated water stimulate peroxidase synthesis in germ cells. The redistribution of quantitative composition of peroxidase molecular forms takes place in germ cells effected by EMR with extremely high frequency and low intensity

  11. Topic 14+16: High-performance and scientific applications and extreme-scale computing (Introduction)

    KAUST Repository

    Downes, Turlough P.

    2013-01-01

    As our understanding of the world around us increases it becomes more challenging to make use of what we already know, and to increase our understanding still further. Computational modeling and simulation have become critical tools in addressing this challenge. The requirements of high-resolution, accurate modeling have outstripped the ability of desktop computers and even small clusters to provide the necessary compute power. Many applications in the scientific and engineering domains now need very large amounts of compute time, while other applications, particularly in the life sciences, frequently have large data I/O requirements. There is thus a growing need for a range of high performance applications which can utilize parallel compute systems effectively, which have efficient data handling strategies and which have the capacity to utilise current and future systems. The High Performance and Scientific Applications topic aims to highlight recent progress in the use of advanced computing and algorithms to address the varied, complex and increasing challenges of modern research throughout both the "hard" and "soft" sciences. This necessitates being able to use large numbers of compute nodes, many of which are equipped with accelerators, and to deal with difficult I/O requirements. © 2013 Springer-Verlag.

  12. Effects of sample size on estimation of rainfall extremes at high temperatures

    Science.gov (United States)

    Boessenkool, Berry; Bürger, Gerd; Heistermann, Maik

    2017-09-01

    High precipitation quantiles tend to rise with temperature, following the so-called Clausius-Clapeyron (CC) scaling. It is often reported that the CC-scaling relation breaks down and even reverts for very high temperatures. In our study, we investigate this reversal using observational climate data from 142 stations across Germany. One of the suggested meteorological explanations for the breakdown is limited moisture supply. Here we argue that, instead, it could simply originate from undersampling. As rainfall frequency generally decreases with higher temperatures, rainfall intensities as dictated by CC scaling are less likely to be recorded than for moderate temperatures. Empirical quantiles are conventionally estimated from order statistics via various forms of plotting position formulas. They have in common that their largest representable return period is given by the sample size. In small samples, high quantiles are underestimated accordingly. The small-sample effect is weaker, or disappears completely, when using parametric quantile estimates from a generalized Pareto distribution (GPD) fitted with L moments. For those, we obtain quantiles of rainfall intensities that continue to rise with temperature.

  13. Effects of sample size on estimation of rainfall extremes at high temperatures

    Directory of Open Access Journals (Sweden)

    B. Boessenkool

    2017-09-01

    Full Text Available High precipitation quantiles tend to rise with temperature, following the so-called Clausius–Clapeyron (CC scaling. It is often reported that the CC-scaling relation breaks down and even reverts for very high temperatures. In our study, we investigate this reversal using observational climate data from 142 stations across Germany. One of the suggested meteorological explanations for the breakdown is limited moisture supply. Here we argue that, instead, it could simply originate from undersampling. As rainfall frequency generally decreases with higher temperatures, rainfall intensities as dictated by CC scaling are less likely to be recorded than for moderate temperatures. Empirical quantiles are conventionally estimated from order statistics via various forms of plotting position formulas. They have in common that their largest representable return period is given by the sample size. In small samples, high quantiles are underestimated accordingly. The small-sample effect is weaker, or disappears completely, when using parametric quantile estimates from a generalized Pareto distribution (GPD fitted with L moments. For those, we obtain quantiles of rainfall intensities that continue to rise with temperature.

  14. High-z X-ray Obscured Quasars in Galaxies with Extreme Mid-IR/Optical Colors

    Science.gov (United States)

    Piconcelli, E.; Lanzuisi, G.; Fiore, F.; Feruglio, C.; Vignali, C.; Salvato, M.; Grappioni, C.

    2009-05-01

    Extreme Optical/Mid-IR color cuts have been used to uncover a population of dust-enshrouded, mid-IR luminous galaxies at high redshifts. Several lines of evidence point towards the presence of an heavily absorbed, possibly Compton-thick quasar at the heart of these systems. Nonetheless, the X-ray spectral properties of these intriguing sources still remain largely unexplored. Here we present an X-ray spectroscopic study of a large sample of 44 extreme dust-obscured galaxies (EDOGs) with F24 μm/FR>2000 and F24 μm>1.3 mJy selected from a 6 deg2 region in the SWIRE fields. The application of our selection criteria to a wide area survey has been capable of unveiling a population of X-ray luminous, absorbed z>1 quasars which is mostly missed in the traditional optical/X-ray surveys performed so far. Advances in the understanding of the X-ray properties of these recently-discovered sources by Simbol-X observations will be also discussed.

  15. Solving Component Structural Dynamic Failures Due to Extremely High Frequency Structural Response on the Space Shuttle Program

    Science.gov (United States)

    Frady, Greg; Nesman, Thomas; Zoladz, Thomas; Szabo, Roland

    2010-01-01

    For many years, the capabilities to determine the root-cause failure of component failures have been limited to the analytical tools and the state of the art data acquisition systems. With this limited capability, many anomalies have been resolved by adding material to the design to increase robustness without the ability to determine if the design solution was satisfactory until after a series of expensive test programs were complete. The risk of failure and multiple design, test, and redesign cycles were high. During the Space Shuttle Program, many crack investigations in high energy density turbomachines, like the SSME turbopumps and high energy flows in the main propulsion system, have led to the discovery of numerous root-cause failures and anomalies due to the coexistences of acoustic forcing functions, structural natural modes, and a high energy excitation, such as an edge tone or shedding flow, leading the technical community to understand many of the primary contributors to extremely high frequency high cycle fatique fluid-structure interaction anomalies. These contributors have been identified using advanced analysis tools and verified using component and system tests during component ground tests, systems tests, and flight. The structural dynamics and fluid dynamics communities have developed a special sensitivity to the fluid-structure interaction problems and have been able to adjust and solve these problems in a time effective manner to meet budget and schedule deadlines of operational vehicle programs, such as the Space Shuttle Program over the years.

  16. Highly efficient periodically poled KTP-isomorphs with large apertures and extreme domain aspect-ratios

    Science.gov (United States)

    Canalias, Carlota; Zukauskas, Andrius; Tjörnhamman, Staffan; Viotti, Anne-Lise; Pasiskevicius, Valdas; Laurell, Fredrik

    2018-02-01

    Since the early 1990's, a substantial effort has been devoted to the development of quasi-phased-matched (QPM) nonlinear devices, not only in ferroelectric oxides like LiNbO3, LiTaO3 and KTiOPO4 (KTP), but also in semiconductors as GaAs, and GaP. The technology to implement QPM structures in ferroelectric oxides has by now matured enough to satisfy the most basic frequency-conversion schemes without substantial modification of the poling procedures. Here, we present a qualitative leap in periodic poling techniques that allows us to demonstrate devices and frequency conversion schemes that were deemed unfeasible just a few years ago. Thanks to our short-pulse poling and coercive-field engineering techniques, we are able to demonstrate large aperture (5 mm) periodically poled Rb-doped KTP devices with a highly-uniform conversion efficiency over the whole aperture. These devices allow parametric conversion with energies larger than 60 mJ. Moreover, by employing our coercive-field engineering technique we fabricate highlyefficient sub-µm periodically poled devices, with periodicities as short as 500 nm, uniform over 1 mm-thick crystals, which allow us to realize mirrorless optical parametric oscillators with counter-propagating signal and idler waves. These novel devices present unique spectral and tuning properties, superior to those of conventional OPOs. Furthermore, our techniques are compatible with KTA, a KTP isomorph with extended transparency in the mid-IR range. We demonstrate that our highly-efficient PPKTA is superior both for mid-IR and for green light generation - as a result of improved transmission properties in the visible range. Our KTP-isomorph poling techniques leading to highly-efficient QPM devices will be presented. Their optical performance and attractive damage thresholds will be discussed.

  17. Estimation of the high-spatial-resolution variability in extreme wind speeds for forestry applications

    Directory of Open Access Journals (Sweden)

    A. Venäläinen

    2017-07-01

    Full Text Available The bioeconomy has an increasing role to play in climate change mitigation and the sustainable development of national economies. In Finland, a forested country, over 50 % of the current bioeconomy relies on the sustainable management and utilization of forest resources. Wind storms are a major risk that forests are exposed to and high-spatial-resolution analysis of the most vulnerable locations can produce risk assessment of forest management planning. In this paper, we examine the feasibility of the wind multiplier approach for downscaling of maximum wind speed, using 20 m spatial resolution CORINE land-use dataset and high-resolution digital elevation data. A coarse spatial resolution estimate of the 10-year return level of maximum wind speed was obtained from the ERA-Interim reanalyzed data. Using a geospatial re-mapping technique the data were downscaled to 26 meteorological station locations to represent very diverse environments. Applying a comparison, we find that the downscaled 10-year return levels represent 66 % of the observed variation among the stations examined. In addition, the spatial variation in wind-multiplier-downscaled 10-year return level wind was compared with the WAsP model-simulated wind. The heterogeneous test area was situated in northern Finland, and it was found that the major features of the spatial variation were similar, but in some locations, there were relatively large differences. The results indicate that the wind multiplier method offers a pragmatic and computationally feasible tool for identifying at a high spatial resolution those locations with the highest forest wind damage risks. It can also be used to provide the necessary wind climate information for wind damage risk model calculations, thus making it possible to estimate the probability of predicted threshold wind speeds for wind damage and consequently the probability (and amount of wind damage for certain forest stand configurations.

  18. Experimental Research on Boundary Shear Stress in Typical Meandering Channel

    Science.gov (United States)

    Chen, Kai-hua; Xia, Yun-feng; Zhang, Shi-zhao; Wen, Yun-cheng; Xu, Hua

    2018-06-01

    A novel instrument named Micro-Electro-Mechanical System (MEMS) flexible hot-film shear stress sensor was used to study the boundary shear stress distribution in the generalized natural meandering open channel, and the mean sidewall shear stress distribution along the meandering channel, and the lateral boundary shear stress distribution in the typical cross-section of the meandering channel was analysed. Based on the measurement of the boundary shear stress, a semi-empirical semi-theoretical computing approach of the boundary shear stress was derived including the effects of the secondary flow, sidewall roughness factor, eddy viscosity and the additional Reynolds stress, and more importantly, for the first time, it combined the effects of the cross-section central angle and the Reynolds number into the expressions. Afterwards, a comparison between the previous research and this study was developed. Following the result, we found that the semi-empirical semi-theoretical boundary shear stress distribution algorithm can predict the boundary shear stress distribution precisely. Finally, a single factor analysis was conducted on the relationship between the average sidewall shear stress on the convex and concave bank and the flow rate, water depth, slope ratio, or the cross-section central angle of the open channel bend. The functional relationship with each of the above factors was established, and then the distance from the location of the extreme sidewall shear stress to the bottom of the open channel was deduced based on the statistical theory.

  19. Enumeration of an extremely high particle-to-PFU ratio for Varicella-zoster virus.

    Science.gov (United States)

    Carpenter, John E; Henderson, Ernesto P; Grose, Charles

    2009-07-01

    Varicella-zoster virus (VZV) is renowned for its low titers. Yet investigations to explore the low infectivity are hampered by the fact that the VZV particle-to-PFU ratio has never been determined with precision. Herein, we accomplish that task by applying newer imaging technology. More than 300 images were taken of VZV-infected cells on 4 different samples at high magnification. We enumerated the total number of viral particles within 25 cm(2) of the infected monolayer at 415 million. Based on these numbers, the VZV particle:PFU ratio was approximately 40,000:1 for a cell-free inoculum.

  20. The Fire-Walker’s High: Affect and Physiological Responses in an Extreme Collective Ritual

    DEFF Research Database (Denmark)

    Fischer, Ronald; Xygalatas, Dimitris; Mitkidis, Panagiotis

    2014-01-01

    -walking ritual in a Mauritian Hindu community. Specifically, we compared changes in levels of happiness, fatigue, and heart rate reactivity among high-ordeal participants (fire-walkers), low-ordeal participants (non-fire-walking participants with familial bonds to fire-walkers) and spectators (unrelated....../unknown to the fire-walkers). We observed that fire-walkers experienced the highest increase in heart rate and reported greater happiness post-ritual compared to low-ordeal participants and spectators. Low-ordeal participants reported increased fatigue after the ritual compared to both fire-walkers and spectators...

  1. Design and evaluation of high-volume fly ash (HVFA) concrete mixes, report C : shear behavior of HVFA reinforced concrete.

    Science.gov (United States)

    2012-10-01

    Concrete is the most widely used man-made material on the planet. Unfortunately, producing Portland cement generates carbon dioxide (a greenhouse gas) at roughly a pound for pound ratio. High-volume fly ash (HVFA) concrete concrete with at least ...

  2. Properties of cellulose micro/nanofibers obtained from eucalyptus pulp fiber treated with anaerobic digestate and high shear mixing

    Science.gov (United States)

    High production costs remain the single greatest factor limiting wider use of cellulose micro/nanofibers in the industry. The objective of the present study was to investigate the potential of using a low-cost bacteria-rich digestate (liquid anaerobic digestate – AD supernatant) on milled eucalyptus...

  3. Assessing Climate Variability using Extreme Rainfall and ...

    African Journals Online (AJOL)

    user1

    extreme frequency); the average intensity of rainfall from extreme events ... frequency and extreme intensity indices, suggesting that extreme events are more frequent and intense during years with high rainfall. The proportion of total rainfall from ...

  4. The effect of extremely high glucose concentrations on 21 routine chemistry and thyroid Abbott assays: interference study.

    Science.gov (United States)

    Çuhadar, Serap; Köseoğlu, Mehmet; Çinpolat, Yasemin; Buğdaycı, Güler; Usta, Murat; Semerci, Tuna

    2016-01-01

    Extremely high glucose concentrations have been shown to interfere with creatinine assays especially with Jaffe method in peritoneal dialysate. Because diabetes is the fastest growing chronic disease in the world, laboratories study with varying glucose concentrations. We investigated whether different levels of glucose spiked in serum interfere with 21 routine chemistry and thyroid assays at glucose concentrations between 17-51 mmol/L. Baseline (group I) serum pool with glucose concentration of 5.55 (5.44-5.61) mmol/L was prepared from patient sera. Spiking with 20% dextrose solution, sample groups were obtained with glucose concentrations: 17.09, 34.52, and 50.95 mmol/L (group II, III, IV, respectively). Total of 21 biochemistry analytes and thyroid tests were studied on Abbott c8000 and i2000sr with commercial reagents. Bias from baseline value was checked statistically and clinically. Creatinine increased significantly by 8.74%, 31.66%, 55.31% at groups II, III, IV, respectively with P values of < 0.001. At the median glucose concentration of 50.95 mmol/L, calcium, albumin, chloride and FT4 biased significantly clinically (-0.85%, 1.63%, 0.65%, 7.4% with P values 0.138, 0.214, 0.004, < 0.001, respectively). Remaining assays were free of interference. Among the numerous biochemical parameters studied, only a few parameters are affected by dramatically increased glucose concentration. The creatinine measurements obtained in human sera with the Jaffe alkaline method at high glucose concentrations should be interpreted with caution. Other tests that were affected with extremely high glucose concentrations were calcium, albumin, chloride and FT4, hence results should be taken into consideration in patients with poor diabetic control.

  5. A highly efficient multi-core algorithm for clustering extremely large datasets

    Directory of Open Access Journals (Sweden)

    Kraus Johann M

    2010-04-01

    Full Text Available Abstract Background In recent years, the demand for computational power in computational biology has increased due to rapidly growing data sets from microarray and other high-throughput technologies. This demand is likely to increase. Standard algorithms for analyzing data, such as cluster algorithms, need to be parallelized for fast processing. Unfortunately, most approaches for parallelizing algorithms largely rely on network communication protocols connecting and requiring multiple computers. One answer to this problem is to utilize the intrinsic capabilities in current multi-core hardware to distribute the tasks among the different cores of one computer. Results We introduce a multi-core parallelization of the k-means and k-modes cluster algorithms based on the design principles of transactional memory for clustering gene expression microarray type data and categorial SNP data. Our new shared memory parallel algorithms show to be highly efficient. We demonstrate their computational power and show their utility in cluster stability and sensitivity analysis employing repeated runs with slightly changed parameters. Computation speed of our Java based algorithm was increased by a factor of 10 for large data sets while preserving computational accuracy compared to single-core implementations and a recently published network based parallelization. Conclusions Most desktop computers and even notebooks provide at least dual-core processors. Our multi-core algorithms show that using modern algorithmic concepts, parallelization makes it possible to perform even such laborious tasks as cluster sensitivity and cluster number estimation on the laboratory computer.

  6. Attosecond pulse generation in noble gases in the presence of extreme high intensity THz pulses

    International Nuclear Information System (INIS)

    Balogh, E.; Varju, K.

    2010-01-01

    Complete text of publication follows. The shortest - attosecond - light pulses available today are produced by high harmonic generation (HHG) of near-infrared (NIR) laser pulses in noble gas jets, providing a broad spectral plateau of XUV radiation ending in a cutoff. The minimum pulse duration is determined by the achievable bandwidth (i.e. the position of the cutoff), and the chirp of the produced pulses. The extension of the cutoff by increasing the laser intensity is limited by the depletion and phase matching problems of the medium. An alternative method demonstrated to produce higher harmonic orders is by using longer pump pulse wavelength, with the disadvantage of decreased efficiency. Recently it was shown that application of a quasi-DC high strength electric field results in an increase of more than a factor of two in the order of efficiently generated high harmonics. However, the possibility to implement the method proposed in [3] of using a CO 2 laser to create a quasi-DC field for assisting HHG of the NIR laser is questionable, because it's technically very challenging to synchronize pulses from different laser sources. Alternatively, synchronous production of THz pulses with the NIR laser pulse offers a more promising route. The first numerical test of this idea has been reported in [4]. In this contribution we further investigate the method for realistic THz field strengths and short driving pulses, exploring the effect of longer pump laser wavelength on the process. We assume the presence of high intensity THz pulses for supplying the high-strength quasi-DC electric field. The spectrum as well as the chirp of the produced radiation is calculated. We use the non-adiabatic saddle point method to determine the generated radiation described in [6]. We simulate harmonic generation in noble gas atoms, with few cycle NIR pulses of peak intensity at and above 2 x 10 14 W/cm 2 (388 MV/cm) and wavelengths 800 nm and 1560 nm. The THz field strength is varied

  7. Extremely high resolution corrosion monitoring of pipelines: retrofittable, non-invasive and real-time

    Energy Technology Data Exchange (ETDEWEB)

    Baltzersen, Oeystein; Tveit, Edd [Sensorlink AS, Trondheim (Norway); Verley, Richard [StatoilHydro ASA, Stockholm (Sweden)

    2009-07-01

    The Ultramonit unit is a clamp-on tool (removable) that uses an array of sensors to provide online, real-time, reliable and repeatable high accuracy ultrasonic wall thickness measurements and corrosion monitoring at selected locations along the pipeline. The unit can be installed on new or existing pipelines by diver or ROV. The system is based on the well-established ultrasonic pulse-echo method (A-scan). Special processing methods, and the fact that the unit is fixed to the pipeline, enable detection of changes in wall thickness in the micro-meter range. By utilizing this kind of resolution, it is possible to project corrosion rates in hours or days. The tool is used for calibration of corrosion inhibitor programs, verification and calibration of inspection pig data and general corrosion monitoring of new and existing pipelines. (author)

  8. Extremely high-brightness kW-class fiber coupled diode lasers with wavelength stabilization

    Science.gov (United States)

    Huang, Robin K.; Chann, Bien; Glenn, John D.

    2011-06-01

    TeraDiode has produced ultra-high brightness fiber-coupled direct diode lasers. A fiber-coupled direct diode laser with a power level of 1,040 W from a 200 μm core diameter, 0.18 numerical aperture (NA) output fiber at a single center wavelength was demonstrated. This was achieved with a novel beam combining and shaping technique using COTS diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 18 mm-mrad and is the lowest BPP kW-class direct diode laser yet reported. The laser has been used to demonstrate laser cutting and welding of steel sheet metal up to 6.65 mm thick. Higher brightness fiber-coupled diode lasers, including a module with 418 W of power coupled to a 100 μm, 0.15 NA fiber, have also been demonstrated.

  9. Anomalously high intercombination line ratios in symbiotic stars; extreme Bowen pumping?

    International Nuclear Information System (INIS)

    Kastner, S.O.; Bhatia, A.K.; Feibelman, W.A.

    1989-01-01

    We assemble International Ultraviolet Explorer observations of the ratio of the O III intercombination lines near 1660 A, showing that the observed ratios in symbiotic stars are significantly higher than the theoretically predicted optically thin limit of 2.5. The presence of an enhancing physical process is thereby indicated. It is suggested that Bowen pumping of the lower level of the 1666.2 A line in an 'external saturation' limit, coupled with appreciable optical depth, could logically explain the high ratios. Some tentative evidence for this is presented and the relevance of far-infrared observations of the O III 51.8 and 88.3 μm lines in symbiotic sources is emphasized. (author)

  10. Generation of 25-TW Femtosecond Laser Pulses at 515 nm with Extremely High Temporal Contrast

    Directory of Open Access Journals (Sweden)

    Marco Hornung

    2015-12-01

    Full Text Available We report on the frequency doubling of femtosecond laser pulses at 1030 nm center wavelength generated from the fully diode-pumped laser system POLARIS. The newly generated pulses at a center wavelength of 515 nm have a pulse energy of 3 J with a pulse duration of 120 fs. On the basis of initially ultra-high contrast seed pulses we expect a temporal intensity contrast better 10 17 200 ps before the peak of the main pulse. We analyzed the temporal intensity contrast from milliseconds to femtoseconds with a dynamic range covering more than 20 orders of magnitude. The pulses were focussed with a f/2-focussing parabola resulting in a peak intensity exceeding 10 20 W / cm 2 . The peak power and intensity are to the best of our knowledge the highest values for 515 nm-laser-pulses achieved so far.

  11. Novel cookie-with-chocolate carbon dots displaying extremely acidophilic high luminescence

    Science.gov (United States)

    Lu, Siyu; Zhao, Xiaohuan; Zhu, Shoujun; Song, Yubin; Yang, Bai

    2014-10-01

    A fluorescent carbon dot with a cookie-with-chocolate film structure (about 5 × 5 μm2) showed a high fluorescence quantum yield (61.12%) at low pH. It was hydrothermally synthesized from l-serine and l-tryptophan. The formation mechanism of the film with carbon dots (CDs) was investigated. The film structure was formed by hydrogen bonding and π-π stacking interactions between aromatic rings. The strong blue fluorescence of the CDs increased under strong acidic conditions owing to the changes in the N-groups. These cookie-like CDs are attractive for their potential use as effective fluorescent probes for the sensitive detection of aqueous H+ and Fe3+.A fluorescent carbon dot with a cookie-with-chocolate film structure (about 5 × 5 μm2) showed a high fluorescence quantum yield (61.12%) at low pH. It was hydrothermally synthesized from l-serine and l-tryptophan. The formation mechanism of the film with carbon dots (CDs) was investigated. The film structure was formed by hydrogen bonding and π-π stacking interactions between aromatic rings. The strong blue fluorescence of the CDs increased under strong acidic conditions owing to the changes in the N-groups. These cookie-like CDs are attractive for their potential use as effective fluorescent probes for the sensitive detection of aqueous H+ and Fe3+. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03965c

  12. Extremely high Tp53 mutation load in esophageal squamous cell carcinoma in Golestan Province, Iran.

    Directory of Open Access Journals (Sweden)

    Behnoush Abedi-Ardekani

    Full Text Available BACKGROUND: Golestan Province in northeastern Iran has one of the highest incidences of esophageal squamous cell carcinoma (ESCC in the world with rates over 50 per 100,000 person-years in both sexes. We have analyzed TP53 mutation patterns in tumors from this high-risk geographic area in search of clues to the mutagenic processes involved in causing ESCC. METHODOLOGY/PRINCIPAL FINDINGS: Biopsies of 119 confirmed ESCC tumor tissue from subjects enrolled in a case-control study conducted in Golestan Province were analyzed by direct sequencing of TP53 exons 2 through 11. Immunohistochemical staining for p53 was carried out using two monoclonal antibodies, DO7 and 1801. A total of 120 TP53 mutations were detected in 107/119 cases (89.9%, including 11 patients with double or triple mutations. The mutation pattern was heterogeneous with infrequent mutations at common TP53 "hotspots" but frequent transversions potentially attributable to environmental carcinogens forming bulky DNA adducts, including 40% at bases known as site of mutagenesis by polycyclic aromatic hydrocarbons (PAHs. Mutations showed different patterns according to the reported temperature of tea consumption, but no variation was observed in relation to ethnicity, tobacco or opium use, and alcoholic beverage consumption or urban versus rural residence. CONCLUSION/SIGNIFICANCE: ESCC tumors in people from Golestan Province show the highest rate of TP53 mutations ever reported in any cancer anywhere. The heterogeneous mutation pattern is highly suggestive of a causative role for multiple environmental carcinogens, including PAHs. The temperature and composition of tea may also influence mutagenesis.

  13. Extremely high hole concentrations in c-plane GaN

    Energy Technology Data Exchange (ETDEWEB)

    Trybus, Elaissa; Moseley, Michael; Henderson, Walter; Billingsley, Daniel [Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA (United States); Namkoong, Gon [Old Dominion University, Applied Research Center, Newport News, VA (United States); Look, David C. [Wright State University, Semiconductor Research Center, Dayton, OH (United States); Doolittle, W.A.

    2009-06-15

    Metal Modulated Epitaxy (S. D. Burnham et al., J. Appl. Phys. 104, 024902 (2008)[1]) is extended to include modulation of both the shutters of Ga and Mg, the Mg being delivered from a Veeco corrosive series valved cracker (S. D. Burnham et al., Mater. Res. Soc. Proc. 798, Y8.11 (2003)[2]). The Ga fluxes used are sufficiently large that droplets rapidly form when the Ga shutter opens and are subsequently depleted when the Ga shutter closes. The result is the ability to limit surface faceting while predominantly growing under average N-rich growth conditions and thus, possibly reduce N-vacancy defects. N-vacancy defects are known to result in compensation. This ability to grow higher quality materials under N-rich conditions results in very high hole concentrations and low resistivity p-type materials. Hole concentrations as high as 2 x 10{sup 19} cm{sup -3} have been achieved on c-plane GaN resulting in resistivities as low as 0.38 ohm-cm. The dependence on Ga flux, shutter timing, the corresponding RHEED images for each condition is detailed and clearly show minimization of faceting and crystal quality variations as determined by X-ray diffraction. Quantification of the Mg incorporation and residual impurities such as hydrogen, oxygen, and carbon by SIMS, eliminates co-doping, while temperature dependent hall measurements show reduced activation energies. X-ray diffraction data compares crystalline quality with hole concentration. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Shear localization and microstructure in coarse grained beta titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingfeng, E-mail: biw009@ucsd.edu [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Key Lab of Nonferrous Materials, Ministry of Education, Central South University, Changsha, Hunan (China); Wang, Xiaoyan [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Li, Zezhou [Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Ma, Rui [School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Zhao, Shiteng [Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Xie, Fangyu [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Zhang, Xiaoyong [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China)

    2016-01-15

    Adiabatic shear localization plays an important role in the deformation and failure of the coarse grained beta titanium alloy Ti-5 Al-5 Mo-5 V-1 Cr-1 Fe with grain size about 1 mm at high strain rate deformation. Hat shaped specimens with different nominal shear strains are used to induce the formation of shear bands under the controlled shock-loading experiments. The true stress in the specimens can reach about 1040 MPa where the strain is about 1.83. The whole shear localization process lasts about 35 μs. The microstructures within the shear band are investigated by optical microscopy, scanning electron microscopy / electron backscatter diffraction, and transmission electron microscopy. The results show that the width of the shear bands decreases with increasing nominal shear strain, and the grains in the transition region near the shear band are elongated along the shear band, and the core of the shear band consists of the ultrafine deformed grains with width of 0.1 μm and heavy dislocations. With the aims of accommodating the imposed shear strain and maintaining neighboring grain compatibility, the grain subdivision continues to take place within the band. A fiber texture is formed in the core of the shear band. The calculated temperature rise in the shear band can reach about 722 K. Dynamic recovery is responsible for the formation of the microstructure in coarse grained beta titanium alloy.

  15. Error quantification of abnormal extreme high waves in Operational Oceanographic System in Korea

    Science.gov (United States)

    Jeong, Sang-Hun; Kim, Jinah; Heo, Ki-Young; Park, Kwang-Soon

    2017-04-01

    In winter season, large-height swell-like waves have occurred on the East coast of Korea, causing property damages and loss of human life. It is known that those waves are generated by a local strong wind made by temperate cyclone moving to eastward in the East Sea of Korean peninsula. Because the waves are often occurred in the clear weather, in particular, the damages are to be maximized. Therefore, it is necessary to predict and forecast large-height swell-like waves to prevent and correspond to the coastal damages. In Korea, an operational oceanographic system (KOOS) has been developed by the Korea institute of ocean science and technology (KIOST) and KOOS provides daily basis 72-hours' ocean forecasts such as wind, water elevation, sea currents, water temperature, salinity, and waves which are computed from not only meteorological and hydrodynamic model (WRF, ROMS, MOM, and MOHID) but also wave models (WW-III and SWAN). In order to evaluate the model performance and guarantee a certain level of accuracy of ocean forecasts, a Skill Assessment (SA) system was established as a one of module in KOOS. It has been performed through comparison of model results with in-situ observation data and model errors have been quantified with skill scores. Statistics which are used in skill assessment are including a measure of both errors and correlations such as root-mean-square-error (RMSE), root-mean-square-error percentage (RMSE%), mean bias (MB), correlation coefficient (R), scatter index (SI), circular correlation (CC) and central frequency (CF) that is a frequency with which errors lie within acceptable error criteria. It should be utilized simultaneously not only to quantify an error but also to improve an accuracy of forecasts by providing a feedback interactively. However, in an abnormal phenomena such as high-height swell-like waves in the East coast of Korea, it requires more advanced and optimized error quantification method that allows to predict the abnormal

  16. Deformation and failure in extreme regimes by high-energy pulsed lasers: A review

    Energy Technology Data Exchange (ETDEWEB)

    Remington, Tane P. [The University of California, San Diego, La Jolla, CA 92093 (United States); Remington, Bruce A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Hahn, Eric N. [The University of California, San Diego, La Jolla, CA 92093 (United States); Meyers, Marc A., E-mail: mameyers@ucsd.edu [The University of California, San Diego, La Jolla, CA 92093 (United States)

    2017-03-14

    The use of high-power pulsed lasers to probe the response of materials at pressures of hundreds of GPa up to several TPa, time durations of nanoseconds, and strain rates of 10{sup 6}–10{sup 1}° s{sup −1} is revealing novel mechanisms of plastic deformation, phase transformations, and even amorphization. This unique experimental tool, aided by advanced diagnostics, analysis, and characterization, allows us to explore these new regimes that simulate those encountered in the interiors of planets. Fundamental Materials Science questions such as dislocation velocity regimes, the transition between thermally-activated and phonon drag regimes, the slip-twinning transition, the ultimate tensile strength of metals, the dislocation mechanisms of void growth are being answered through this powerful tool. In parallel with experiments, molecular dynamics simulations provide modeling and visualization at comparable strain rates (10{sup 8}–10{sup 10} s{sup −1}) and time durations (hundreds of picoseconds). This powerful synergy is illustrated in our past and current work, using representative face-centered cubic (fcc) copper, body-centered cubic (bcc) tantalum and diamond cubic silicon as model structures.

  17. Extremely low recycling and high power density handling in CDX-U lithium experiments

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Doerner, R.; Gray, T.; Kugel, H.; Lynch, T.; Maingi, R.; Mansfield, D.; Soukhanovskii, V.; Spaleta, J.; Timberlake, J.; Zakharov, L.

    2007-01-01

    The mission of the Current Drive eXperiment-Upgrade (CDX-U) spherical tokamak is to investigate lithium as a plasma-facing component (PFC). The latest CDX-U experiments used a combination of a toroidal liquid lithium limiter and lithium wall coatings applied between plasma shots. Recycling coefficients for these plasmas were deduced to be 30% or below, and are the lowest ever observed in magnetically-confined plasmas. The corresponding energy confinement times showed nearly a factor of six improvement over discharges without lithium PFC's. An electron beam (e-beam) for evaporating lithium from the toroidal limiter was one of the techniques used to create lithium wall coatings in CDX-U. The evaporation was not localized to the e-beam spot, but occurred only after the entire volume of lithium in toroidal limiter was liquefied. This demonstration of the ability of lithium to handle high heat loads can have significant consequences for PFC's in future burning plasma devices

  18. Conceptualising the agency of highly marginalised women: Intimate partner violence in extreme settings.

    Science.gov (United States)

    Campbell, Catherine; Mannell, Jenevieve

    2016-01-01

    How is the agency of women best conceptualised in highly coercive settings? We explore this in the context of international efforts to reduce intimate partner violence (IPV) against women in heterosexual relationships. Articles critique the tendency to think of women's agency and programme endpoints in terms of individual actions, such as reporting violent men or leaving violent relationships, whilst neglecting the interlocking social, economic and cultural contexts that make such actions unlikely or impossible. Three themes cut across the articles. (1) Unhelpful understandings of gender and power implicit in commonly used 'men-women' and 'victim-agent' binaries obscure multi-faceted and hidden forms of women's agency, and the complexity of agency-violence intersections. (2) This neglect of complexity results in a poor fit between policy and interventions to reduce IPV, and women's lives. (3) Such neglect also obscures the multiplicities of women's agency, including the competing challenges they juggle alongside IPV, differing levels of response, and the temporality of agency. We outline a notion of 'distributed agency' as a multi-level, incremental and non-linear process distributed across time, space and social networks, and across a continuum of action ranging from survival to resistance. This understanding of agency implies a different approach to those currently underpinning policies and interventions.

  19. Handheld highly selective plasmonic chem/biosensor using engineered binding proteins for extreme conformational changes

    Science.gov (United States)

    Kosciolek, Derek J.; Sonar, Ajay; Lepak, Lori A.; Schnatz, Peter; Bendoym, Igor; Brown, Mia C.; Koder, Ronald L.; Crouse, David T.

    2017-08-01

    In this project we develop a handheld, portable, highly selective and sensitive chem/biosensor that has potential applications in both airborne and water-based environmental sensing. The device relies on a plasmonic chip of subwavelength-scale periodic gold rods engineered to resonate in the near infrared. The chip is functionalized with a novel class of proteins that exhibit large conformational changes upon binding to a specific target analyte. The subsequent change in local refractive index near the surface of the gold is one to two orders of magnitude greater than current conventional methods, which produces a readily measurable 5 to 10 percent difference in light transmission. This allows us to forgo traditional, bulky tabletop setups in favor of a compact form factor. Using commercially available optics to construct a transmission-based optical train, measured changes in bulk refractive index are presented here. While synthesis of binding protein efforts are focused on heme as analyte for proof of concept validation, the functionalized protein can be engineered to pair with a wide variety of analytes with minimal alterations to the plasmonic chip or device design. Such flexibility allows for this device to potentially meet the needs of first responders and health care professionals in a multitude of scenarios.

  20. Flooding Simulation of Extreme Event on Barnegat Bay by High-Resolution Two Dimensional Hydrodynamic Model

    Science.gov (United States)

    Wang, Y.; Ramaswamy, V.; Saleh, F.

    2017-12-01

    Barnegat Bay located on the east coast of New Jersey, United States and is separated from the Atlantic Ocean by the narrow Barnegat Peninsula which acts as a barrier island. The bay is fed by several rivers which empty through small estuaries along the inner shore. In terms of vulnerability from flooding, the Barnegat Peninsula is under the influence of both coastal storm surge and riverine flooding. Barnegat Bay was hit by Hurricane Sandy causing flood damages with extensive cross-island flow at many streets perpendicular to the shoreline. The objective of this work is to identify and quantify the sources of flooding using a two dimensional inland hydrodynamic model. The hydrodynamic model was forced by three observed coastal boundary conditions, and one hydrologic boundary condition from United States Geological Survey (USGS). The model reliability was evaluated with both FEMA spatial flooding extend and USGS High water marks. Simulated flooding extent showed good agreement with the reanalysis spatial inundation extents. Results offered important perspectives on the flow of the water into the bay, the velocity and the depth of the inundated areas. Using such information can enable emergency managers and decision makers identify evacuation and deploy flood defenses.

  1. Multitude of Core-Localized Shear Alfvén Waves in a High-Temperature Fusion Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nazikian, R. [Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States); Berk, H. L. [Univ. of Texas, Austin, TX (United States); Budny, R. V. [Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States); Burrell, K. H. [General Atomics, San Diego, CA (United States); Doyle, E. J. [Univ. of California, Los Angeles, CA (United States); Fonck, R. J. [Univ. of Wisconsin, Madison, WI (United States); Gorelenkov, N. N. [Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States); Holcomb, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kramer, G. J. [Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States); Jayakumar, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); La Haye, R. J. [General Atomics, San Diego, CA (United States); McKee, G. R. [Univ. of Wisconsin, Madison, WI (United States); Makowski, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Peebles, W. A. [Univ. of California, Los Angeles, CA (United States); Rhodes, T. L. [Univ. of California, Los Angeles, CA (United States); Solomon, W. M. [Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States); Strait, E. J. [General Atomics, San Diego, CA (United States); VanZeeland, M. A. [Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States); Zeng, L. [Univ. of California, Los Angeles, CA (United States)

    2006-03-01

    Evidence is provided for a multitude of discrete frequency Alfvén waves in the core of magnetically confined high-temperature fusion plasmas. Multiple diagnostic instruments verify wave excitation over a wide spatial range from the device size at the longest wavelengths down to the thermal ion Larmor radius. At the shortest scales, the poloidal wavelengths are like the scale length of electrostatic drift wave turbulence. Theoretical analysis verifies a dominant interaction of the modes with particles in the thermal ion distribution traveling well below the Alfvén velocity.

  2. ZnO quantum dot-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity

    Science.gov (United States)

    Lu, Yanghua; Wu, Zhiqian; Xu, Wenli; Lin, Shisheng

    2016-12-01

    A ZnO quantum dot photo-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity of more than 1915 A W-1 and detectivity of more than 1.02 × 1013 Jones (Jones = cm Hz1/2 W-1) has been demonstrated. The interfaced h-BN layer increases the barrier height at the graphene/GaN heterojunction, which decreases the dark current and improves the on/off current ratio of the device. The photo-doping effect increases the barrier height and carrier concentration at the graphene/h-BN/GaN heterojunction, thus the responsivity is improved from 1473 A W-1 to 1915 A W-1 and the detectivity is improved from 5.8 × 1012 to 1.0 × 1013 Jones. Moreover, all of the responsivity and detectivity values are the highest values among all the graphene-based ultraviolet photodetectors.

  3. The enhanced effects of antibiotics irradiated of extremely high frequency electromagnetic field on Escherichia coli growth properties.

    Science.gov (United States)

    Torgomyan, Heghine; Trchounian, Armen

    2015-01-01

    The effects of extremely high frequency electromagnetic irradiation and antibiotics on Escherichia coli can create new opportunities for applications in different areas—medicine, agriculture, and food industry. Previously was shown that irradiated bacterial sensitivity against antibiotics was changed. In this work, it was presented the results that irradiation of antibiotics and then adding into growth medium was more effective compared with non-irradiated antibiotics bactericidal action. The selected antibiotics (tetracycline, kanamycin, chloramphenicol, and ceftriaxone) were from different groups. Antibiotics irradiation was performed with low intensity 53 GHz frequency during 1 h. The E. coli growth properties—lag-phase duration and specific growth rate—were markedly changed. Enhanced bacterial sensitivity to irradiated antibiotics is similar to the effects of antibiotics of higher concentrations.

  4. Extreme hydrological events and the influence of reservoirs in a highly regulated river basin of northeastern Spain

    Directory of Open Access Journals (Sweden)

    S.M. Vicente-Serrano

    2017-08-01

    New hydrological insights: Results reveal a general reduction in the occurrence of extreme precipitation events in the Segre basin from 1950 to 2013, which corresponded to a general reduction in high flows measured at various gauged stations across the basin. While this study demonstrates spatial differences in the decrease of streamflow between the headwaters and the lower parts of the basin, mainly associated with changes in river regulation, there was no reduction in the frequency of the extraordinary floods. Changes in water management practices in the basin have significantly impacted the frequency, duration, and severity of hydrological droughts downstream of the main dams, as a consequence of the intense water regulation to meet water demands for irrigation and livestock farms. Nonetheless, the hydrological response of the headwaters to these droughts differed markedly from that of the lower areas of the basin.

  5. Toward Improving Predictability of Extreme Hydrometeorological Events: the Use of Multi-scale Climate Modeling in the Northern High Plains

    Science.gov (United States)

    Munoz-Arriola, F.; Torres-Alavez, J.; Mohamad Abadi, A.; Walko, R. L.

    2014-12-01

    Our goal is to investigate possible sources of predictability of hydrometeorological extreme events in the Northern High Plains. Hydrometeorological extreme events are considered the most costly natural phenomena. Water deficits and surpluses highlight how the water-climate interdependence becomes crucial in areas where single activities drive economies such as Agriculture in the NHP. Nonetheless we recognize the Water-Climate interdependence and the regulatory role that human activities play, we still grapple to identify what sources of predictability could be added to flood and drought forecasts. To identify the benefit of multi-scale climate modeling and the role of initial conditions on flood and drought predictability on the NHP, we use the Ocean Land Atmospheric Model (OLAM). OLAM is characterized by a dynamic core with a global geodesic grid with hexagonal (and variably refined) mesh cells and a finite volume discretization of the full compressible Navier Stokes equations, a cut-grid cell method for topography (that reduces error in computational gradient computation and anomalous vertical dispersion). Our hypothesis is that wet conditions will drive OLAM's simulations of precipitation to wetter conditions affecting both flood forecast and drought forecast. To test this hypothesis we simulate precipitation during identified historical flood events followed by drought events in the NHP (i.e. 2011-2012 years). We initialized OLAM with CFS-data 1-10 days previous to a flooding event (as initial conditions) to explore (1) short-term and high-resolution and (2) long-term and coarse-resolution simulations of flood and drought events, respectively. While floods are assessed during a maximum of 15-days refined-mesh simulations, drought is evaluated during the following 15 months. Simulated precipitation will be compared with the Sub-continental Observation Dataset, a gridded 1/16th degree resolution data obtained from climatological stations in Canada, US, and

  6. Relationship Between Endothelial Wall Shear Stress and High-Risk Atherosclerotic Plaque Characteristics for Identification of Coronary Lesions That Cause Ischemia: A Direct Comparison With Fractional Flow Reserve.

    Science.gov (United States)

    Han, Donghee; Starikov, Anna; Ó Hartaigh, Bríain; Gransar, Heidi; Kolli, Kranthi K; Lee, Ji Hyun; Rizvi, Asim; Baskaran, Lohendran; Schulman-Marcus, Joshua; Lin, Fay Y; Min, James K

    2016-12-19

    Wall shear stress (WSS) is an established predictor of coronary atherosclerosis progression. Prior studies have reported that high WSS has been associated with high-risk atherosclerotic plaque characteristics (APCs). WSS and APCs are quantifiable by coronary computed tomography angiography, but the relationship of coronary lesion ischemia-evaluated by fractional flow reserve-to WSS and APCs has not been examined. WSS measures were obtained from 100 evaluable patients who underwent coronary computed tomography angiography and invasive coronary angiography with fractional flow reserve. Patients were categorized according to tertiles of mean WSS values defined as low, intermediate, and high. Coronary ischemia was defined as fractional flow reserve ≤0.80. Stenosis severity was determined by minimal luminal diameter. APCs were defined as positive remodeling, low attenuation plaque, and spotty calcification. The likelihood of having positive remodeling and low-attenuation plaque was greater in the high WSS group compared with the low WSS group after adjusting for minimal luminal diameter (odds ratio for positive remodeling: 2.54, 95% CI 1.12-5.77; odds ratio for low-attenuation plaque: 2.68, 95% CI 1.02-7.06; both Prelationship was observed between WSS and fractional flow reserve when adjusting for either minimal luminal diameter or APCs. WSS displayed no incremental benefit above stenosis severity and APCs for detecting lesions that caused ischemia (area under the curve for stenosis and APCs: 0.87, 95% CI 0.81-0.93; area under the curve for stenosis, APCs, and WSS: 0.88, 95% CI 0.82-0.93; P=0.30 for difference). High WSS is associated with APCs independent of stenosis severity. WSS provided no added value beyond stenosis severity and APCs for detecting lesions with significant ischemia. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  7. High mass star formation to the extremes: NGC 3603 at high angular resolution in the near-infrared

    International Nuclear Information System (INIS)

    Nuernberger, Dieter E A

    2008-01-01

    High angular resolution observations play a decisive role for our understanding of high mass star formation processes, both within our Galaxy and in extragalactic starburst regions. We take the Galactic starburst template NGC 3603 as paradigm and report here on high angular resolution JHK s L' observations of the enigmatic, highly reddened sources IRS 9A-C in the NGC 3603 region, which were performed with NACO at ESO's Very Large Telescope Yepun. These broad-band imaging data strongly support the classification of IRS 9A-C as high mass protostellar candidates. We also confirm unambiguously the membership of IRS 9A-C with the NGC 3603 region as gas and dust is seen to be stripped off from their circumstellar envelopes by strong stellar winds, originating from the high mass main sequence stars of the nearby OB cluster. The orientation of these gas and dust streamers coincides with that of a very faint, only marginally detected mini-pillar protruding from the adjacent molecular clump NGC 3603 MM 2. The L' data show extended envelopes around IRS 9A-C and reveal sub-structures therein which are indicative for non-spherically distributed material. It seems obvious that protostellar mass outflows are at work to clear cavities along the polar axes of the central protostar, and / or that circumstellar disks are taking shape.

  8. Plasma dynamics in solar macrospicules from high-cadence extreme-UV observations

    Science.gov (United States)

    Loboda, I. P.; Bogachev, S. A.

    2017-01-01

    Macrospicules are relatively large spicule-like formations found mainly over the polar coronal holes when observing in the transition region spectral lines. In this study, we took advantage of the two short series of observations in the He II 304 Å line obtained by the TESIS solar observatory with a cadence of up to 3.5 s to study the dynamics of macrospicules in unprecedented detail. We used a one-dimensional hydrodynamic method based on the assumption of their axial symmetry and on a simple radiative transfer model to reconstruct the evolution of the internal velocity field of 18 macrospicules from this dataset. Besides the internal dynamics, we studied the motion of the apparent end points of the same 18 macrospicules and found 15 of them to follow parabolic trajectories with high precision which correspond closely to the obtained velocity fields. We found that in a clear, unperturbed case these macrospicules move with a constant deceleration inconsistent with a purely ballistic motion and have roughly the same velocity along their entire axis, with the obtained decelerations typically ranging from 160 to 230 m s-2, and initial velocities from 80 to 130 km s-1. We also found a propagating acoustic wave for one of the macrospicules and a clear linear correlation between the initial velocities of the macrospicules and their decelerations, which indicates that they may be driven by magneto-acoustic shocks. Finally, we inverted our previous method by taking velocities from the parabolic fits to give rough estimates of the percentage of mass lost by 12 of the macrospicules. We found that typically from 10 to 30% of their observed mass fades out of the line (presumably being heated to higher coronal temperatures) with three exceptions of 50% and one of 80%.

  9. Treatment strategy for metastatic prostate cancer with extremely high PSA level: reconsidering the value of vintage therapy.

    Science.gov (United States)

    Yamada, Yasutaka; Sakamoto, Shinichi; Amiya, Yoshiyasu; Sasaki, Makoto; Shima, Takayuki; Komiya, Akira; Suzuki, Noriyuki; Akakura, Koichiro; Ichikawa, Tomohiko; Nakatsu, Hiroomi

    2018-05-04

    The prognostic significance of initial prostate-specific antigen (PSA) level for metastatic prostate cancer remains uncertain. We investigated the differences in prognosis and response to hormonal therapies of metastatic prostate cancer patients according to initial PSA levels. We analyzed 184 patients diagnosed with metastatic prostate cancer and divided them into three PSA level groups as follows: low (PSA progression-free survival (PFS) for first-line ADT and overall survival (OS) within each of the three groups. Furthermore, we analyzed response to antiandrogen withdrawal (AW) and alternative antiandrogen (AA) therapies after development of castration-resistant prostate cancer (CRPC). No significant differences in OS were observed among the three groups (P = 0.654). Patients with high PSA levels had significantly short PFS for first-line ADT (P = 0.037). Conversely, patients in the high PSA level group had significantly longer PFS when treated with AW than those in the low PSA level group (P = 0.047). Furthermore, patients with high PSA levels had significantly longer PFS when provided with AA therapy (P = 0.049). PSA responders to AW and AA therapies had significantly longer survival after CRPC development than nonresponders (P = 0.011 and P PSA level predicted favorable response to vintage sequential ADT and AW. The current data suggest a novel aspect of extremely high PSA value as a favorable prognostic marker after development of CRPC.

  10. Specialized or opportunistic-how does the high mountain endemic butterfly Erebia nivalis survive in its extreme habitats?

    Science.gov (United States)

    Ehl, Stefan; Dalstein, Vivian; Tull, Fabienne; Gros, Patrick; Schmitt, Thomas

    2018-02-01

    High mountain ecosystems are a challenge for the survival of animal and plant species, which have to evolve specific adaptations to cope with the prevailing extreme conditions. The strategies to survive may reach from opportunistic to highly adapted traits. One species successfully surviving under these conditions is the here studied butterfly Erebia nivalis. In a mark-release-recapture study performed in the Hohe Tauern National Park (Austria) from 22 July to 26 August 2013, we marked 1386 individuals and recaptured 342 of these. For each capture event, we recorded the exact point of capture and various other traits (wing conditions, behavior, nectar sources). The population showed a partial protandrous demography with the minority of males emerging prior to the females, but the majority being synchronized with them. Males and females differed significantly in their behavior with males being more flight active and females nectaring and resting more. Both sexes showed preferences for the same plant species as nectar sources, but this specialization apparently is the result of a rapid individual adaptation to the locally available flowers. Estimates of the realized dispersal distances predicted a comparatively high amount of long-distance flights, especially for females. Therefore, the adaptation of Erebia nivalis to the unpredictable high mountain conditions might be a mixture of opportunism and specialized traits. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  11. A novel femtosecond-gated, high-resolution, frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experiments

    Energy Technology Data Exchange (ETDEWEB)

    Feister, S., E-mail: feister.7@osu.edu; Orban, C. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Innovative Scientific Solutions, Inc., Dayton, Ohio 45459 (United States); Nees, J. A. [Innovative Scientific Solutions, Inc., Dayton, Ohio 45459 (United States); Center for Ultra-Fast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Morrison, J. T. [Fellow, National Research Council, Washington, D.C. 20001 (United States); Frische, K. D. [Innovative Scientific Solutions, Inc., Dayton, Ohio 45459 (United States); Chowdhury, E. A. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Intense Energy Solutions, LLC., Plain City, Ohio 43064 (United States); Roquemore, W. M. [Air Force Research Laboratory, Dayton, Ohio 45433 (United States)

    2014-11-15

    Ultra-intense laser-matter interaction experiments (>10{sup 18} W/cm{sup 2}) with dense targets are highly sensitive to the effect of laser “noise” (in the form of pre-pulses) preceding the main ultra-intense pulse. These system-dependent pre-pulses in the nanosecond and/or picosecond regimes are often intense enough to modify the target significantly by ionizing and forming a plasma layer in front of the target before the arrival of the main pulse. Time resolved interferometry offers a robust way to characterize the expanding plasma during this period. We have developed a novel pump-probe interferometry system for an ultra-intense laser experiment that uses two short-pulse amplifiers synchronized by one ultra-fast seed oscillator to achieve 40-fs time resolution over hundreds of nanoseconds, using a variable delay line and other techniques. The first of these amplifiers acts as the pump and delivers maximal energy to the interaction region. The second amplifier is frequency shifted and then frequency doubled to generate the femtosecond probe pulse. After passing through the laser-target interaction region, the probe pulse is split and recombined in a laterally sheared Michelson interferometer. Importantly, the frequency shift in the probe allows strong plasma self-emission at the second harmonic of the pump to be filtered out, allowing plasma expansion near the critical surface and elsewhere to be clearly visible in the interferograms. To aid in the reconstruction of phase dependent imagery from fringe shifts, three separate 120° phase-shifted (temporally sheared) interferograms are acquired for each probe delay. Three-phase reconstructions of the electron densities are then inferred by Abel inversion. This interferometric system delivers precise measurements of pre-plasma expansion that can identify the condition of the target at the moment that the ultra-intense pulse arrives. Such measurements are indispensable for correlating laser pre-pulse measurements

  12. HIGH-RESOLUTION CALCULATION OF THE SOLAR GLOBAL CONVECTION WITH THE REDUCED SPEED OF SOUND TECHNIQUE. II. NEAR SURFACE SHEAR LAYER WITH THE ROTATION

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, H.; Rempel, M. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO (United States); Yokoyama, T., E-mail: hotta@ucar.edu [Department of Earth and Planetary Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2015-01-01

    We present a high-resolution, highly stratified numerical simulation of rotating thermal convection in a spherical shell. Our aim is to study in detail the processes that can maintain a near surface shear layer (NSSL) as inferred from helioseismology. Using the reduced speed of sound technique, we can extend our global convection simulation to 0.99 R {sub ☉} and include, near the top of our domain, small-scale convection with short timescales that is only weakly influenced by rotation. We find the formation of an NSSL preferentially in high latitudes in the depth range of r = 0.95-0.975 R {sub ☉}. The maintenance mechanisms are summarized as follows. Convection under the weak influence of rotation leads to Reynolds stresses that transport angular momentum radially inward in all latitudes. This leads to the formation of a strong poleward-directed meridional flow and an NSSL, which is balanced in the meridional plane by forces resulting from the 〈v{sub r}{sup ′}v{sub θ}{sup ′}〉 correlation of turbulent velocities. The origin of the required correlations depends to some degree on latitude. In high latitudes, a positive correlation 〈v{sub r}{sup ′}v{sub θ}{sup ′}〉 is induced in the NSSL by the poleward meridional flow whose amplitude increases with the radius, while a negative correlation is generated by the Coriolis force in bulk of the convection zone. In low latitudes, a positive correlation 〈v{sub r}{sup ′}v{sub θ}{sup ′}〉 results from rotationally aligned convection cells ({sup b}anana cells{sup )}. The force caused by these Reynolds stresses is in balance with the Coriolis force in the NSSL.

  13. Distribution of a viscous binder during high shear granulation--sensitivity to the method of delivery and its impact on product properties.

    Science.gov (United States)

    Tan, Bernice Mei Jin; Loh, Zhi Hui; Soh, Josephine Lay Peng; Liew, Celine Valeria; Heng, Paul Wan Sia

    2014-01-02

    Binder distribution in the powder mass during high shear granulation is especially critical with the use of viscous liquid binders and with short processing times. A viscous liquid binder was delivered into the powder mass at two flow rates using three methods: pouring, pumping and spraying from a pressure pot. Binder content analyses at the scale of individual granules were conducted to investigate the impact of different delivery conditions on the homogeneity of binder distribution. There was clear evidence of non-uniformity of binder content among individual granules across all delivery conditions, particularly for the fast rates of delivery. Poorer reproducibility values of tablet thickness and disintegration time were observed when binder was poured but this may be overcome by pumping or spraying from the pressure pot. Greater homogeneity of binder distribution occurred with the slow rates of delivery and led to the earlier onset of granule growth and a consequent increase in granule size. Larger granule size and lower proportion of fines were in turn associated with increased granule bulk density and improvement of granule flow. In conclusion, delivery of a viscous binder at a slow rate either by pumping or via a pressure pot was most desirable during granulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Interfacial Shear Strength Evaluation of Pinewood Residue/High-Density Polyethylene Composites Exposed to UV Radiation and Moisture Absorption-Desorption Cycles

    Directory of Open Access Journals (Sweden)

    Soledad C. Pech-Cohuo

    2016-03-01

    Full Text Available In outdoor applications, the mechanical performance of wood-plastic composites (WPCs is affected by UV radiation, facilitating moisture intake and damaging the wood-polymer interfacial region. The purpose of this study was to evaluate the effect of moisture absorption-desorption cycles (MADCs, and the exposure to UV radiation on the interfacial shear strength (IFSS of WPCs with 40% pinewood residue and 60% high-density polyethylene. One of the WPCs incorporated 5% coupling agent (CA with respect to wood content. The IFSS was evaluated following the Iosipescu test method. The specimens were exposed to UV radiation using an accelerated weathering test device and subsequently subjected to four MADCs. Characterization was also performed by scanning electron microscopy (SEM and Fourier transform infrared spectroscopy (FTIR. The absorption and desorption of moisture was slower in non-UV-irradiated WPCs, particularly in those with the CA. The UV radiation did not significantly contribute to the loss of the IFSS. Statistically, the CA had a favorable effect on the IFSS. Exposure of the samples to MADCs contributed to reduce the IFSS. The FTIR showed lignin degradation and the occurrence of hydrolysis reactions after exposure to MADCs. SEM confirmed that UV radiation did not significantly affect the IFSS.

  15. On target : extreme engineering's tools used for fundamental and high-end drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Cope, G.

    2006-09-15

    Positioned at the bottom of the drillstring, measurement-while-drilling systems can discern the location of the drillbit and transmit information back to the surface in the form of pulses in the mud system. The technology is costly, time-consuming and provides a limited amount of information. This article presented details of new devices developed by Extreme Engineering Ltd. to communicate drillbit location information from the bottom of the well to the surface in real time. The XPulse is a mud pulse system with continuous directional measuring capacity that allows operators on location to perform fundamental directional drilling operations without using a technician to interpret data. Installed behind the drillbit, the device records azimuth and inclination when the bit is sitting idle. Inclination is measured using a set of 3 axis accelerometers, quartz crystal devices that are sensitive to the Earth's gravitational force. Azimuth is measured with a flux gate magnetometer that senses its orientation to the Earth's magnetic field. The 2 data are computed to give an orientation of the drillbit in three-dimensional space. Extreme Engineering Ltd. has also developed XAct, a new set of tools using acoustic telemetry to transmit data to the surface using piezo ceramic materials. The acoustic energy is transmitted up the steel drillpipe at the rate of 20 bits per second to the surface, where an electro acoustic receiver detects it. The rate is sufficient to transmit large amounts of geological and drilling information to the surface in real time. Designed for high-end applications, the new suite of tools has cost the company almost $30 million to develop. It was concluded that industry response to the new technologies has been positive. 4 figs.

  16. High Flow Nasal Cannula Use Is Associated with Increased Morbidity and Length of Hospitalization in Extremely Low Birth Weight Infants.

    Science.gov (United States)

    Taha, Dalal K; Kornhauser, Michael; Greenspan, Jay S; Dysart, Kevin C; Aghai, Zubair H

    2016-06-01

    To determine differences in the incidence of bronchopulmonary dysplasia (BPD) or death in extremely low birth weight infants managed on high flow nasal cannula (HFNC) vs continuous positive airway pressure (CPAP). This is a retrospective data analysis from the Alere Neonatal Database for infants born between January 2008 and July 2013, weighing ≤1000 g at birth, and received HFNC or CPAP. Baseline demographics, clinical characteristics, and neonatal outcomes were compared between the infants who received CPAP and HFNC, or HFNC ± CPAP. Multivariable regression analysis was performed to control for the variables that differ in bivariate analysis. A total of 2487 infants met the inclusion criteria (941 CPAP group, 333 HFNC group, and 1546 HFNC ± CPAP group). The primary outcome of BPD or death was significantly higher in the HFNC group (56.8%) compared with the CPAP group (50.4%, P CPAP group compared with the CPAP group (OR 1.085, 95% CI 1.035-1.137, P = .001). The number of ventilator days, postnatal steroid use, days to room air, days to initiate or reach full oral feeds, and length of hospitalization were significantly higher in the HFNC and HFNC ± CPAP groups compared with the CPAP group. In this retrospective study, use of HFNC in extremely low birth weight infants is associated with a higher risk of death or BPD, increased respiratory morbidities, delayed oral feeding, and prolonged hospitalization. A large clinical trial is needed to evaluate long-term safety and efficacy of HFNC in preterm infants. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. High Flow Nasal Cannula Use Is Associated with Increased Morbidity and Length of Hospitalization in Extremely Low Birth Weight Infants

    Science.gov (United States)

    Taha, Dalal K.; Kornhauser, Michael; Greenspan, Jay S.; Dysart, Kevin C.; Aghai, Zubair H.

    2017-01-01

    Objective To determine differences in the incidence of bronchopulmonary dysplasia (BPD) or death in extremely low birth weight infants managed on high flow nasal cannula (HFNC) vs continuous positive airway pressure (CPAP). Study design This is aretrospective data analysis from the Alere Neonatal Database for infants born between January 2008 and July 2013, weighing ≤ 1000 g at birth, and received HFNC or CPAP. Baseline demographics, clinical characteristics, and neonatal outcomes were compared between the infants who received CPAP and HFNC, or HFNC ± CPAP. Multivariable regression analysis was performed to control for the variables that differ in bivariate analysis. Results A total of 2487 infants met the inclusion criteria (941 CPAP group, 333 HFNC group, and 1546 HFNC ± CPAP group). The primary outcome of BPD or death was significantly higher in the HFNC group (56.8%) compared with the CPAP group (50.4%, P < .05). Similarly, adjusted odds of developing BPD or death was greater in the HFNC ± CPAP group compared with the CPAP group (OR 1.085, 95% CI 1.035–1.137, P = .001). The number of ventilator days, postnatal steroid use, days to room air, days to initiate or reach full oral feeds, and length of hospitalization were significantly higher in the HFNC and HFNC ± CPAP groups compared with the CPAP group. Conclusions In this retrospective study, use of HFNC in extremely low birth weight infants is associated with a higher risk of death or BPD, increased respiratory morbidities, delayed oral feeding, and prolonged hospitalization. A large clinical trial is needed to evaluate long-term safety and efficacy of HFNC in preterm infants. PMID:27004673

  18. Steep Hard-X-ray Spectra Indicate Extremely High Accretion Rates in Weak Emission-Line Quasars

    Science.gov (United States)

    Marlar, Andrea; Shemmer, Ohad; Anderson, Scott F.; Brandt, W. Niel; Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Luo, Bin; Plotkin, Richard; Richards, Gordon T.; Schneider, Donald P.; Wu, Jianfeng

    2018-06-01

    We present XMM-Newton imaging spectroscopy of ten weak emission-line quasars (WLQs) at 0.928 ≤ z ≤ 3.767, six of which are radio quiet and four which are radio intermediate. The new X-ray data enabled us to measure the hard-X-ray power-law photon index (Γ) in each source with relatively high accuracy. These measurements allowed us to confirm previous reports that WLQs have steeper X-ray spectra, therefore indicating higher accretion rates with respect to "typical" quasars. A comparison between the Γ values of our radio-quiet WLQs and those of a carefully-selected, uniform sample of 84 quasars shows that the first are significantly higher, at the ≥ 3σ level. Collectively, the four radio-intermediate WLQs have lower Γ values with respect to the six radio-quiet WLQs, as may be expected if the spectra of the first group are contaminated by X-ray emission from a jet. These results suggest that, in the absence of significant jet emission along our line of sight, WLQs constitute the extreme high end of the accretion rate distribution in quasars. We detect soft excess emission in our lowest-redshift radio-quiet WLQ, in agreement with previous findings suggesting that the prominence of this feature is associated with a high accretion rate. We have not detected signatures of Compton reflection, Fe Kα lines, or strong variability between two X-ray epochs in any of our WLQs.

  19. Excluded volume effects caused by high concentration addition of acid generators in chemically amplified resists used for extreme ultraviolet lithography

    Science.gov (United States)

    Kozawa, Takahiro; Watanabe, Kyoko; Matsuoka, Kyoko; Yamamoto, Hiroki; Komuro, Yoshitaka; Kawana, Daisuke; Yamazaki, Akiyoshi

    2017-08-01

    The resolution of lithography used for the high-volume production of semiconductor devices has been improved to meet the market demands for highly integrated circuits. With the reduction in feature size, the molecular size becomes non-negligible in the resist material design. In this study, the excluded volume effects caused by adding high-concentration acid generators were investigated for triphenylsulfonium nonaflate. The resist film density was measured by X-ray diffractometry. The dependences of absorption coefficient and protected unit concentration on acid generator weight ratio were calculated from the measured film density. Using these values, the effects on the decomposition yield of acid generators, the protected unit fluctuation, and the line edge roughness (LER) were evaluated by simulation on the basis of sensitization and reaction mechanisms of chemically amplified extreme ultraviolet resists. The positive effects of the increase in acid generator weight ratio on LER were predominant below the acid generator weight ratio of 0.3, while the negative effects became equivalent to the positive effects above the acid generator weight ratio of 0.3 owing to the excluded volume effects.

  20. Development of a high-resolution apparatus to monitor physiological state of a person undergoing extreme conditions

    Directory of Open Access Journals (Sweden)

    Kodermyatov Radik

    2016-01-01

    Full Text Available The present research has shown that ECG recordings and parameters of the body functional state are crucial for all kinds of the astronaut pre-flight preparations (centrifuge, thermal chamber, pressure chamber, pressure chamber with special equipment. It is, therefore, important to develop methods and tools for early detection of the preclinical forms of the functional state disorders in patients undergoing high-intensity loads of mixed character. The method based on the hardware-software compleх (HSC with nanosensors of high resolution has been proposed to measure the electrophysiological characteristics and bioelectrical impedance of the body tissues directly exposed to loading. The hardware-software compleх is subjected to clinical trials in Tomsk Research Institute for Cardiology. The obtained results show that the use of nanosensors of high resolution in the HSC without standard filters allows elimination of the power-line interference in ECG recordings. Monitoring of the tissue bioimpedance parameters under test loads enables the detection of preclinical (latent forms of various diseases. After clinical trials in Tomsk Institute for Cardiology the developed apparatus will be proposed for in-depth study of the cardiovascular system and the functional state of the body of astronauts and other persons exposed to extreme loads.

  1. The Extremely Luminous Quasar Survey (ELQS) in SDSS and the high-z bright-end Quasar Luminosity Function

    Science.gov (United States)

    Schindler, Jan-Torge; Fan, Xiaohui; McGreer, Ian

    2018-01-01

    Studies of the most luminous quasars at high redshift directly probe the evolution of the most massive black holes in the early Universe and their connection to massive galaxy formation. Unfortunately, extremely luminous quasars at high redshift are very rare objects. Only wide area surveys have a chance to constrain their population. The Sloan Digital Sky Survey (SDSS) nd the Baryon Oscillation Spectroscopic Survey (BOSS) have so far provided the most widely adopted measurements of the type I quasar luminosity function (QLF) at z>3. However, a careful re-examination of the SDSS quasar sample revealed that the SDSS quasar selection is in fact missing a significant fraction of $z~3$ quasars at the brightest end.We have identified the purely optical color selection of SDSS, where quasars at these redshifts are strongly contaminated by late-type dwarfs, and the spectroscopic incompleteness of the SDSS footprint as the main reasons. Therefore we have designed the Extremely Luminous Quasar Survey (ELQS), based on a novel near-infrared JKW2 color cut using WISE AllWISE and 2MASS all-sky photometry, to yield high completeness for very bright (i < 18.0) quasars in the redshift range of 2.8<= z<=5.0. It effectively uses Random Forest machine-learning algorithms on SDSS and WISE photometry for quasar-star classification and photometric redshift estimation.The ELQS is spectroscopically following up ~230 new quasar candidates in an area of ~12000 deg2 in the SDSS footprint, to obtain a well-defined and complete quasar sample for an accurate measurement of the bright-end quasar luminosity function (QLF) at 2.8<= z<=5.0. So far the ELQS has identified 75 bright new quasars in this redshift range and observations of the fall sky will continue until the end of the year. At the AAS winter meeting we will present the full spectroscopic results of the survey, including a re-estimation and extension of the high-z QLF toward higher luminosities.

  2. Influence of an extreme high water event on survival, reproduction, and distribution of snail kites in Florida, USA

    Science.gov (United States)

    Bennetts, R.E.; Kitchens, W.M.; Dreitz, V.J.

    2002-01-01

    Hydrology frequently has been reported as the environmental variable having the greatest influence on Florida snail kite (Rostrhamus sociabilis) populations. Although drought has received the most attention, high-water conditions also have been reported to affect kites. Years of high water generally have been reported to be favorable for nesting, although prolonged high water may be detrimental to sustaining suitable habitat. During 1994 and 1995, southern Florida experienced an extreme high water event. This event enabled us to compare survival, nesting success, number of young per successful nest, and spatial distribution of nesting before, during, and after the event. We found no evidence of an effect (either negative or positive) on survival of adult kites. In contrast, juvenile kites experienced the highest survival during the event, although our data suggest greater annual variability than can be explained by the event alone. We found no evidence of an effect of the high water event on nest success or number of young per successful nest. Nest success was highest during the event in the southern portion of the range but was quite similar to other years, both before and after the event. Our data do indicate a substantial shift in the spatial distribution of nesting birds. During the event, nesting activity shifted to higher elevations (i.e., shallower water) in the major nesting areas of the Everglades region. Nesting also occurred in Big Cypress National Preserve during the event, which is typically too dry to support nesting kites. Thus, our data indicate a potential short-term benefit of increased juvenile survival and an expansion of nesting habitat. However, the deterioration of habitat quality from prolonged high water precludes any recommendation for such conditions to be maintained for extended periods. ?? 2002, The Society of Wetland Scientists.

  3. Optimization with Extremal Dynamics

    International Nuclear Information System (INIS)

    Boettcher, Stefan; Percus, Allon G.

    2001-01-01

    We explore a new general-purpose heuristic for finding high-quality solutions to hard discrete optimization problems. The method, called extremal optimization, is inspired by self-organized criticality, a concept introduced to describe emergent complexity in physical systems. Extremal optimization successively updates extremely undesirable variables of a single suboptimal solution, assigning them new, random values. Large fluctuations ensue, efficiently exploring many local optima. We use extremal optimization to elucidate the phase transition in the 3-coloring problem, and we provide independent confirmation of previously reported extrapolations for the ground-state energy of ±J spin glasses in d=3 and 4

  4. Particle Acceleration in Mildly Relativistic Shearing Flows: The Interplay of Systematic and Stochastic Effects, and the Origin of the Extended High-energy Emission in AGN Jets

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ruo-Yu; Rieger, F. M.; Aharonian, F. A., E-mail: ruoyu@mpi-hd.mpg.de, E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: aharon@mpi-hd.mpg.de [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2017-06-10

    The origin of the extended X-ray emission in the large-scale jets of active galactic nuclei (AGNs) poses challenges to conventional models of acceleration and emission. Although electron synchrotron radiation is considered the most feasible radiation mechanism, the formation of the continuous large-scale X-ray structure remains an open issue. As astrophysical jets are expected to exhibit some turbulence and shearing motion, we here investigate the potential of shearing flows to facilitate an extended acceleration of particles and evaluate its impact on the resultant particle distribution. Our treatment incorporates systematic shear and stochastic second-order Fermi effects. We show that for typical parameters applicable to large-scale AGN jets, stochastic second-order Fermi acceleration, which always accompanies shear particle acceleration, can play an important role in facilitating the whole process of particle energization. We study the time-dependent evolution of the resultant particle distribution in the presence of second-order Fermi acceleration, shear acceleration, and synchrotron losses using a simple Fokker–Planck approach and provide illustrations for the possible emergence of a complex (multicomponent) particle energy distribution with different spectral branches. We present examples for typical parameters applicable to large-scale AGN jets, indicating the relevance of the underlying processes for understanding the extended X-ray emission and the origin of ultrahigh-energy cosmic rays.

  5. Fluid Effects on Shear Waves in Finely Layered Porous Media

    International Nuclear Information System (INIS)

    Berryman, J G

    2004-01-01

    Although there are five effective shear moduli for any layered VTI medium, one and only one effective shear modulus for the layered system contains all the dependence of pore fluids on the elastic or poroelastic constants that can be observed in vertically polarized shear waves. Pore fluids can increase the magnitude the shear energy stored by this modulus by a term that ranges from the smallest to the largest shear moduli of the VTI system. But, since there are five shear moduli in play, the increase in shear energy overall is reduced by a factor of about 5 in general. We can therefore give definite bounds on the maximum increase of shear modulus, being about 20% of the permitted range, when gas is fully replaced by liquid. An attendant increase of density (depending on porosity and fluid density) by approximately 5 to 10% partially offsets the effect of this shear modulus increase. Thus, an increase of shear wave speed on the order of 5 to 10% is shown to be possible when circumstances are favorable - i.e., when the shear modulus fluctuations are large (resulting in strong anisotropy), and the medium behaves in an undrained fashion due to fluid trapping. At frequencies higher than seismic (such as sonic and ultrasonic waves for well-logging or laboratory experiments), short response times also produce the requisite undrained behavior and, therefore, fluids also affect shear waves at high frequencies by increasing rigidity

  6. Non-homogeneous flow profiles in sheared bacterial suspensions

    Science.gov (United States)

    Samanta, Devranjan; Cheng, Xiang

    Bacterial suspensions under shear exhibit interesting rheological behaviors including the remarkable ``superfluidic'' state with vanishing viscosity at low shear rates. Theoretical studies have shown that such ``superfluidic'' state is linked with non-homogeneous shear flows, which are induced by coupling between nematic order of active fluids and hydrodynamics of shear flows. However, although bulk rheology of bacterial suspensions has been experimentally studied, shear profiles within bacterial suspensions have not been explored so far. Here, we experimentally investigate the flow behaviors of E. coli suspensions under planar oscillatory shear. Using confocal microscopy and PIV, we measure velocity profiles across gap between two shear plates. We find that with increasing shear rates, high-concentration bacterial suspensions exhibit an array of non-homogeneous flow behaviors like yield-stress flows and shear banding. We show that these non-homogeneous flows are due to collective motion of bacterial suspensions. The phase diagram of sheared bacterial suspensions is systematically mapped as functions of shear rates an bacterial concentrations. Our experiments provide new insights into rheology of bacterial suspensions and shed light on shear induced dynamics of active fluids. Chemical Engineering and Material Science department.

  7. Extreme cosmos

    CERN Document Server

    Gaensler, Bryan

    2011-01-01

    The universe is all about extremes. Space has a temperature 270°C below freezing. Stars die in catastrophic supernova explosions a billion times brighter than the Sun. A black hole can generate 10 million trillion volts of electricity. And hypergiants are stars 2 billion kilometres across, larger than the orbit of Jupiter. Extreme Cosmos provides a stunning new view of the way the Universe works, seen through the lens of extremes: the fastest, hottest, heaviest, brightest, oldest, densest and even the loudest. This is an astronomy book that not only offers amazing facts and figures but also re

  8. High incidence of rickets in extremely low birth weight infants with severe parenteral nutrition-associated cholestasis and bronchopulmonary dysplasia.

    Science.gov (United States)

    Lee, Soon Min; Namgung, Ran; Park, Min Soo; Eun, Ho Sun; Park, Kook In; Lee, Chul

    2012-12-01

    Risk factors for rickets of prematurity have not been re-examined since introduction of high mineral formula, particularly in ELBW infants. We analyzed the incidence and the risk factors of rickets in extremely low birth weight (ELBW) infants. As a retrospective case-control study from 2004 to 2008, risk factors were analyzed in 24 patients with rickets versus 31 patients without. The frequency of rickets in ELBW infants was 24/55 (44%). Infants with rickets were diagnosed at 48.2 ± 16.1 days of age, and improved by 85.3 ± 25.3 days. By radiologic evaluation, 29% were grade 1 rickets, 58% grade 2 and 13% grade 3. In univariate analysis, infants with rickets had significantly higher incidence of patent ductus arteriosus, parenteral nutrition associated cholestasis (PNAC), severe PNAC and moderate/severe bronchopulmonary dysplasia (BPD). In multiple regression analysis, after adjustment for gestation and birth weight, rickets significantly correlated with severe PNAC and with moderate/severe BPD. Serum peak alkaline phosphatase levels were significantly elevated in rickets (P rickets of prematurity remains high and the incidence of severe PNAC and moderate/severe BPD was significantly increased 18 and 3 times, respectively.

  9. FURTHER EVIDENCE ON THE “COSTS OF PRIVILEGE”: PERFECTIONISM IN HIGH-ACHIEVING YOUTH AT SOCIOECONOMIC EXTREMES

    Science.gov (United States)

    LYMAN, EMILY L.; LUTHAR, SUNIYA S.

    2015-01-01

    This study involved two academically-gifted samples of 11th and 12th grade youth at the socioeconomic status (SES) extremes; one from an exclusive private, affluent school, and the other from a magnet school with low-income students. Negative and positive adjustment outcomes were examined in relation to multiple dimensions of perfectionism including perceived parental pressures to be perfect, personal perfectionistic self-presentation, and envy of peers. The low-income students showed some areas of relative vulnerability, but when large group differences were found, it was the affluent youth who were at a disadvantage, with substantially higher substance use and peer envy. Affluent girls seemed particularly vulnerable, with pronounced elevations in perfectionistic tendencies, peer envy, as well as body dissatisfaction. Examination of risk and protective processes showed that relationships with mothers were associated with students’ distress as well as positive adjustment. Additionally, findings showed links between (a) envy of peers and multiple outcomes (among high SES girls in particular), (b) dimensions of perfectionism in relation to internalizing symptoms, and (c) high extrinsic versus intrinsic values in relation to externalizing symptoms. PMID:26345229

  10. Alginate Adsorbent Immobilization Technique Promotes Biobutanol Production by Clostridium acetobutylicum Under Extreme Condition of High Concentration of Organic Solvent

    Directory of Open Access Journals (Sweden)

    Zhuoliang Ye

    2018-05-01

    Full Text Available In Acetone-Butanol-Ethanol fermentation, bacteria should tolerate high concentrations of solvent products, which inhibit bacteria growth and limit further increase of solvents to more than 20 g/L. Moreover, this limited solvent concentration significantly increases the cost of solvent separation through traditional approaches. In this study, alginate adsorbent immobilization technique was successfully developed to assist in situ extraction using octanol which is effective in extracting butanol but presents strong toxic effect to bacteria. The adsorbent improved solvent tolerance of Clostridium acetobutylicum under extreme condition of high concentration of organic solvent. Using the developed technique, more than 42% of added bacteria can be adsorbed to the adsorbent. Surface area of the adsorbent was more than 10 times greater than sodium alginate. Scanning electron microscope image shows that an abundant amount of pore structure was successfully developed on adsorbents, promoting bacteria adsorption. In adsorbent assisted ABE fermentation, there was 21.64 g/L butanol in extracting layer compared to negligible butanol produced with only the extractant but without the adsorbent, for the reason that adsorbent can reduce damaging exposure of C. acetobutylicum to octanol. The strategy can improve total butanol production with respect to traditional culture approach by more than 2.5 fold and save energy for subsequent butanol recovery, which effects can potentially make the biobutanol production more economically practical.

  11. The Yosemite Extreme Panoramic Imaging Project: Monitoring Rockfall in Yosemite Valley with High-Resolution, Three-Dimensional Imagery

    Science.gov (United States)

    Stock, G. M.; Hansen, E.; Downing, G.

    2008-12-01

    Yosemite Valley experiences numerous rockfalls each year, with over 600 rockfall events documented since 1850. However, monitoring rockfall activity has proved challenging without high-resolution "basemap" imagery of the Valley walls. The Yosemite Extreme Panoramic Imaging Project, a partnership between the National Park Service and xRez Studio, has created an unprecedented image of Yosemite Valley's walls by utilizing gigapixel panoramic photography, LiDAR-based digital terrain modeling, and three-dimensional computer rendering. Photographic capture was accomplished by 20 separate teams shooting from key overlapping locations throughout Yosemite Valley. The shots were taken simultaneously in order to ensure uniform lighting, with each team taking over 500 overlapping shots from each vantage point. Each team's shots were then assembled into 20 gigapixel panoramas. In addition, all 20 gigapixel panoramas were projected onto a 1 meter resolution digital terrain model in three-dimensional rendering software, unifying Yosemite Valley's walls into a vertical orthographic view. The resulting image reveals the geologic complexity of Yosemite Valley in high resolution and represents one of the world's largest photographic captures of a single area. Several rockfalls have already occurred since image capture, and repeat photography of these areas clearly delineates rockfall source areas and failure dynamics. Thus, the imagery has already proven to be a valuable tool for monitoring and understanding rockfall in Yosemite Valley. It also sets a new benchmark for the quality of information a photographic image, enabled with powerful new imaging technology, can provide for the earth sciences.

  12. Shear induced orientation of edible fat and chocolate crystals

    Science.gov (United States)

    Mazzanti, Gianfranco; Welch, Sarah E.; Marangoni, Alejandro G.; Sirota, Eric B.; Idziak, Stefan H. J.

    2003-03-01

    Shear-induced orientation of fat crystallites was observed during crystallization of cocoa butter, milk fat, stripped milk fat and palm oil. This universal effect was observed in systems crystallized under high shear. The minor polar components naturally present in milk fat were found to decrease the shear-induced orientation effect in this system. The competition between Brownian and shear forces, described by the Peclet number, determines the crystallite orientation. The critical radius size, from the Gibbs-Thomson equation, provides a tool to understand the effect of shear at the onset stages of crystallization.

  13. Diurnal variability and biogeochemical reactivity of mercury species in an extreme high-altitude lake ecosystem of the Bolivian Altiplano.

    Science.gov (United States)

    Alanoca, L; Amouroux, D; Monperrus, M; Tessier, E; Goni, M; Guyoneaud, R; Acha, D; Gassie, C; Audry, S; Garcia, M E; Quintanilla, J; Point, D

    2016-04-01

    Methylation and demethylation represent major transformation pathways regulating the net production of methylmercury (MMHg). Very few studies have documented Hg reactivity and transformation in extreme high-altitude lake ecosystems. Mercury (Hg) species concentrations (IHg, MMHg, Hg°, and DMHg) and in situ Hg methylation (M) and MMHg demethylation (D) potentials were determined in water, sediment, floating organic aggregates, and periphyton compartments of a shallow productive Lake of the Bolivian Altiplano (Uru Uru Lake, 3686 m). Samples were collected during late dry season (October 2010) and late wet season (May 2011) at a north (NS) and a south (SS) site of the lake, respectively. Mercury species concentrations exhibited significant diurnal variability as influenced by the strong diurnal biogeochemical gradients. Particularly high methylated mercury concentrations (0.2 to 4.5 ng L(-1) for MMHgT) were determined in the water column evidencing important Hg methylation in this ecosystem. Methylation and D potentials range were, respectively, production in both water (up to 0.45 ng MMHg L(-1) day(-1)) and sediment compartments (2.0 to 19.7 ng MMHg g(-1) day(-1)). While the sediment compartment appears to represent a major source of MMHg in this shallow ecosystem, floating organic aggregates (dry season, SS) and Totora's periphyton (wet season, NS) were found to act as a significant source (5.8 ng MMHg g(-1) day(-1)) and a sink (-2.1 ng MMHg g(-1) day(-1)) of MMHg, respectively. This work demonstrates that high-altitude productive lake ecosystems can promote MMHg formation in various compartments supporting recent observations of high Hg contents in fish and water birds.

  14. Effects of anthropogenic heat due to air-conditioning systems on an extreme high temperature event in Hong Kong

    Science.gov (United States)

    Wang, Y.; Li, Y.; Di Sabatino, S.; Martilli, A.; Chan, P. W.

    2018-03-01

    Anthropogenic heat flux is the heat generated by human activities in the urban canopy layer, which is considered the main contributor to the urban heat island (UHI). The UHI can in turn increase the use and energy consumption of air-conditioning systems. In this study, two effective methods for water-cooling air-conditioning systems in non-domestic areas, including the direct cooling system and central piped cooling towers (CPCTs), are physically based, parameterized, and implemented in a weather research and forecasting model at the city scale of Hong Kong. An extreme high temperature event (June 23-28, 2016) in the urban areas was examined, and we assessed the effects on the surface thermal environment, the interaction of sea-land breeze circulation and urban heat island circulation, boundary layer dynamics, and a possible reduction of energy consumption. The results showed that both water-cooled air-conditioning systems could reduce the 2 m air temperature by around 0.5 °C-0.8 °C during the daytime, and around 1.5 °C around 7:00-8:00 pm when the planetary boundary layer (PBL) height was confined to a few hundred meters. The CPCT contributed around 80%-90% latent heat flux and significantly increased the water vapor mixing ratio in the atmosphere by around 0.29 g kg-1 on average. The implementation of the two alternative air-conditioning systems could modify the heat and momentum of turbulence, which inhibited the evolution of the PBL height (a reduction of 100-150 m), reduced the vertical mixing, presented lower horizontal wind speed and buoyant production of turbulent kinetic energy, and reduced the strength of sea breeze and UHI circulation, which in turn affected the removal of air pollutants. Moreover, the two alternative air-conditioning systems could significantly reduce the energy consumption by around 30% during extreme high temperature events. The results of this study suggest potential UHI mitigation strategies and can be extended to

  15. Shear induced structures in crystallizing cocoa butter

    Science.gov (United States)

    Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.

    2004-03-01

    Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.

  16. High C/O Chemistry and Weak Thermal Inversion in the Extremely Irradiated Atmosphere of Exoplanet WASP-12b

    Science.gov (United States)

    Madhusudhan, Nikku; Harrington, Joseph; Nymeyer, Sarah; Campo, Christopher J.; Wheatley, Peter J.; Deming, Drake; Blecie, Jasmina; Hardy, Ryan A.; Lust, Nate B.; Anderson, David R.; hide

    2010-01-01

    The carbon-to-oxygen ratio (C/O) in a planet provides critical information about its primordial origins and subsequent evolution. A primordial C/O greater than 0.8 causes a carbide-dominated interior as opposed to the silicate-dominated composition as found on Earth; the solar C/O is 0.54. Theory, shows that high C/O leads to a diversity of carbon-rich planets that can have very different interiors and atmospheres from those in the solar system. Here we report the detection of C/O greater than or equal to 1 in a planetary atmosphere. The transiting hot Jupiter WASP-12b has a dayside atmosphere depleted in water vapour and enhanced in methane by over two orders of magnitude compared to a solar-abundance chemical equilibrium model at the expected temperatures. The observed concentrations of the prominent molecules CO, CH4, and H2O are consistent with theoretical expectations for an atmosphere with the observed C/O = 1. The C/O ratios are not known for giant planets in the solar system, although they are expected to equal the solar value. If high C/O ratios are common, then extrasolar planets are likely very different in interior composition, and formed very differently, from expectations based on solar composition, potentially explaining the large diversity in observed radii. We also find that the extremely irradiated atmosphere (greater than 2500 K) of WASP-12b lacks a prominent thermal inversion, or a stratosphere, and has very efficient day-night energy circulation. The absence of a strong thermal inversion is in stark contrast to theoretical predictions for the most highly irradiated hot-Jupiter atmospheres.

  17. Tolerance to high temperature extremes in an invasive lace bug, Corythucha ciliata (Hemiptera: Tingidae, in subtropical China.

    Directory of Open Access Journals (Sweden)

    Rui-Ting Ju

    Full Text Available Biological invasions are predicted to be more frequent as climate change is increasing its positive impact on the prevalence of invasive exotic species. Success of insect invaders in different temperature zones is closely related to their tolerance to temperature extremes. In this study, we used an exotic lace bug (Corythucha ciliata as the study organism to address the hypotheses that an insect species invading a subtropical zone from temperate regions has a high capacity to survive and adapt to high temperatures, and that its thermal tolerance plays an important role in determining its seasonal abundance and geographic distribution. To test these hypotheses, the effects of heat shock on the survival and reproduction of C. ciliata adults were assessed in the laboratory. Adults were exposed to 26 (control, 35, 37, 39, 41, 43, and 45°C for 2 h, and then were transferred to 26°C. Heat-shock temperatures ranging from 35 to 41°C did not significantly affect survival pattern, longevity, and fecundity of adults, but heat shock at 43 and 45°C significantly reduced these traits. Exposing parent females to heat-shock treatments from 35 to 41°C did not significantly affect the hatching rate of their eggs, survival of the nymphs, and the proportion of female F(1 progeny, while no progeny were produced with treatments of 43 and 45°C. The results indicate that C. ciliata can tolerate high temperatures less than 41°C, which may contribute to its expansion into the lower latitudes in China where its hosts (Platanus trees are widely planted. Our findings have important implications for predicting seasonal abundance and understanding invasion mechanisms of this important urban invader under climate change.

  18. Tolerance to high temperature extremes in an invasive lace bug, Corythucha ciliata (Hemiptera: Tingidae), in subtropical China.

    Science.gov (United States)

    Ju, Rui-Ting; Gao, Lei; Zhou, Xu-Hui; Li, Bo

    2013-01-01

    Biological invasions are predicted to be more frequent as climate change is increasing its positive impact on the prevalence of invasive exotic species. Success of insect invaders in different temperature zones is closely related to their tolerance to temperature extremes. In this study, we used an exotic lace bug (Corythucha ciliata) as the study organism to address the hypotheses that an insect species invading a subtropical zone from temperate regions has a high capacity to survive and adapt to high temperatures, and that its thermal tolerance plays an important role in determining its seasonal abundance and geographic distribution. To test these hypotheses, the effects of heat shock on the survival and reproduction of C. ciliata adults were assessed in the laboratory. Adults were exposed to 26 (control), 35, 37, 39, 41, 43, and 45°C for 2 h, and then were transferred to 26°C. Heat-shock temperatures ranging from 35 to 41°C did not significantly affect survival pattern, longevity, and fecundity of adults, but heat shock at 43 and 45°C significantly reduced these traits. Exposing parent females to heat-shock treatments from 35 to 41°C did not significantly affect the hatching rate of their eggs, survival of the nymphs, and the proportion of female F(1) progeny, while no progeny were produced with treatments of 43 and 45°C. The results indicate that C. ciliata can tolerate high temperatures less than 41°C, which may contribute to its expansion into the lower latitudes in China where its hosts (Platanus trees) are widely planted. Our findings have important implications for predicting seasonal abundance and understanding invasion mechanisms of this important urban invader under climate change.

  19. Adiabatic shear localization in ultrafine grained 6061 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingfeng, E-mail: biw009@ucsd.edu [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego (United States); State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); Key Lab of Nonferrous Materials, Ministry of Education, Central South University, Changsha 410083 (China); Ma, Rui; Zhou, Jindian [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Li, Zezhou; Zhao, Shiteng [Department of Mechanical and Aerospace Engineering, University of California, San Diego (United States); Huang, Xiaoxia [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2016-10-15

    Localized shear is an important mode of deformation; it leads to catastrophic failure with low ductility, and occurs frequently during high strain-rate deformation. The hat-shaped specimen has been successfully used to generate shear bands under controlled shock-loading tests. The microstructure in the forced shear band was characterized by optical microscopy, microhardness, and transmission electron microscopy. The true flow stress in the shear region can reach 800 MPa where the strain is about 2.2. The whole shear localization process lasts for about 100 μs. The shear band is a long and straight band distinguished from the matrix by boundaries. It can be seen that the grains in the boundary of the shear band are highly elongated along the shear direction and form the elongated cell structures (0.2 µm in width), and the core of the shear band consists of a number of recrystallized equiaxed grains with 0.2−0.3 µm in diameters, and the second phase particles distribute in the boundary of the ultrafine equiaxed new grains. The calculated temperature in the shear band can reach about 667 K. Finally, the formation of the shear band in the ultrafine grained 6061 aluminum alloy and its microstructural evolution are proposed.

  20. Mixing of low-dose cohesive drug and overcoming of pre-blending step using a new gentle-wing high-shear mixer granulator.

    Science.gov (United States)

    Alsulays, Bader B; Fayed, Mohamed H; Alalaiwe, Ahmed; Alshahrani, Saad M; Alshetaili, Abdullah S; Alshehri, Sultan M; Alanazi, Fars K

    2018-05-16

    The objective of this study was to examine the influence of drug amount and mixing time on the homogeneity and content uniformity of a low-dose drug formulation during the dry mixing step using a new gentle-wing high-shear mixer. Moreover, the study investigated the influence of drug incorporation mode on the content uniformity of tablets manufactured by different methods. Albuterol sulfate was selected as a model drug and was blended with the other excipients at two different levels, 1% w/w and 5% w/w at impeller speed of 300 rpm and chopper speed of 3000 rpm for 30 min. Utilizing a 1 ml unit side-sampling thief probe, triplicate samples were taken from nine different positions in the mixer bowl at selected time points. Two methods were used for manufacturing of tablets, direct compression and wet granulation. The produced tablets were sampled at the beginning, middle, and end of the compression cycle. An analysis of variance analysis indicated the significant effect (p drug amount on the content uniformity of the powder blend and the corresponding tablets. For 1% w/w and 5% w/w formulations, incorporation of the drug in the granulating fluid provided tablets with excellent content uniformity and very low relative standard deviation (∼0.61%) during the whole tableting cycle compared to direct compression and granulation method with dry incorporation mode of the drug. Overall, gentle-wing mixer is a good candidate for mixing of low-dose cohesive drug and provides tablets with acceptable content uniformity with no need for pre-blending step.

  1. Study on the Extremely Low Frequency (ELF) Electromagnetic Field (EMF) emission from overhead High-Voltage Transmission Lines

    International Nuclear Information System (INIS)

    Parthasarathy, S.R.; Roha Tukimin; Wan Saffiey Wan Abdullah; Zulkifli Yusof; Mohd Azizi Mohd Jali

    2016-01-01

    The paper highlights the study on the Extremely Low Frequency (ELF) Electromagnetic Field (EMF) emission performed at an overhead 275-kV High-Voltage Transmission Lines. The study comprised of assessment at the transmission lines on 3 different cases and locations in Klang Valley, specifically on a vacant land near the transmission line, inside and around the house at the vicinity of the transmission line and the area directly under the transmission line. The instrument setup and measurement protocols during the assessment were adopted from standard measurement method and procedures stipulated under the Institute of Electrical and Electronics Engineers (IEEE) Standard. The results were compared with the standards recommended in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. The results showed that the measured field strengths are within the safety limit with the highest measured exposure was 10.8 % and 1.8 % of the permissible exposure limit for the electric and magnetic field respectively. Both the field strengths were found to drop significantly against distance from the transmission lines where closer distances showed higher field strengths. Furthermore, the study revealed that buildings and other object such as trees and shrubs screen out the electric field, resulting in a lower value at indoor measurements and near the stated objects. In addition, higher value of electric and magnetic field strengths were recorded when assessment was being done directly under the transmission line compared to the lateral measurement. (author)

  2. ZnO quantum dot-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity.

    Science.gov (United States)

    Lu, Yanghua; Wu, Zhiqian; Xu, Wenli; Lin, Shisheng

    2016-12-02

    A ZnO quantum dot  photo-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity of more than 1915 A W -1 and detectivity of more than 1.02 × 10 13 Jones (Jones = cm Hz 1/2 W -1 ) has been demonstrated. The interfaced h-BN layer increases the barrier height at the graphene/GaN heterojunction, which decreases the dark current and improves the on/off current ratio of the device. The photo-doping effect increases the barrier height and carrier concentration at the graphene/h-BN/GaN heterojunction, thus the responsivity is improved from 1473 A W -1 to 1915 A W -1 and the detectivity is improved from 5.8 × 10 12 to 1.0 × 10 13 Jones. Moreover, all of the responsivity and detectivity values are the highest values among all the graphene-based ultraviolet photodetectors.

  3. High frequencies of elevated alkaline phosphatase activity and rickets exist in extremely low birth weight infants despite current nutritional support

    Directory of Open Access Journals (Sweden)

    Parker Bruce R

    2009-07-01

    Full Text Available Abstract Background Osteopenia and rickets are common among extremely low birth weight infants (ELBW, Methods We evaluated all ELBW infants admitted to Texas Children's Hospital NICU in 2006 and 2007. Of 211 admissions, we excluded 98 patients who were admitted at >30 days of age or did not survive/stay for >6 weeks. Bone radiographs obtained in 32 infants were reviewed by a radiologist masked to laboratory values. Results In this cohort of 113 infants, P-APA was found to have a significant inverse relationship with BW, gestational age and serum phosphorus. In paired comparisons, P-APA of infants Conclusion Elevation of P-APA >600 IU/L was very common in ELBW infants. BW was significantly inversely related to both P-APA and radiologic rickets. No single value of P-APA was related to radiological findings of rickets. Given the very high risk of osteopenia and rickets among ELBW infants, we recommend consideration of early screening and early mineral supplementation, especially among infants

  4. Bell Test over Extremely High-Loss Channels: Towards Distributing Entangled Photon Pairs between Earth and the Moon

    Science.gov (United States)

    Cao, Yuan; Li, Yu-Huai; Zou, Wen-Jie; Li, Zheng-Ping; Shen, Qi; Liao, Sheng-Kai; Ren, Ji-Gang; Yin, Juan; Chen, Yu-Ao; Peng, Cheng-Zhi; Pan, Jian-Wei

    2018-04-01

    Quantum entanglement was termed "spooky action at a distance" in the well-known paper by Einstein, Podolsky, and Rosen. Entanglement is expected to be distributed over longer and longer distances in both practical applications and fundamental research into the principles of nature. Here, we present a proposal for distributing entangled photon pairs between Earth and the Moon using a Lagrangian point at a distance of 1.28 light seconds. One of the most fascinating features in this long-distance distribution of entanglement is as follows. One can perform the Bell test with human supplying the random measurement settings and recording the results while still maintaining spacelike intervals. To realize a proof-of-principle experiment, we develop an entangled photon source with 1 GHz generation rate, about 2 orders of magnitude higher than previous results. Violation of Bell's inequality was observed under a total simulated loss of 103 dB with measurement settings chosen by two experimenters. This demonstrates the feasibility of such long-distance Bell test over extremely high-loss channels, paving the way for one of the ultimate tests of the foundations of quantum mechanics.

  5. Carbon isotope ratios of organic matter in Bering Sea settling particles. Extremely high remineralization of organic carbon derived from diatoms

    International Nuclear Information System (INIS)

    Yasuda, Saki; Akagi, Tasuku; Naraoka, Hiroshi; Kitajima, Fumio; Takahashi, Kozo

    2016-01-01

    The carbon isotope ratios of organic carbon in settling particles collected in the highly-diatom-productive Bering Sea were determined. Wet decomposition was employed to oxidize relatively fresh organic matter. The amount of unoxidised organic carbon in the residue following wet decomposition was negligible. The δ 13 C of organic carbon in the settling particles showed a clear relationship against SiO 2 /CaCO 3 ratio of settling particles: approximately -26‰ and -19‰ at lower and higher SiO 2 /CaCO 3 ratios, respectively. The δ 13 C values were largely interpreted in terms of mixing of two major plankton sources. Both δ 13 C and compositional data can be explained consistently only by assuming that more than 98% of diatomaceous organic matter decays and that organic matter derived from carbonate-shelled plankton may remain much less remineralized. A greater amount of diatom-derived organic matter is discovered to be trapped with the increase of SiO 2 /CaCO 3 ratio of the settling particles. The ratio of organic carbon to inorganic carbon, known as the rain ratio, therefore, tends to increase proportionally with the SiO 2 /CaCO 3 ratio under an extremely diatom-productive condition. (author)

  6. A Dual-Phase Ceramic Membrane with Extremely High H2 Permeation Flux Prepared by Autoseparation of a Ceramic Precursor.

    Science.gov (United States)

    Cheng, Shunfan; Wang, Yanjie; Zhuang, Libin; Xue, Jian; Wei, Yanying; Feldhoff, Armin; Caro, Jürgen; Wang, Haihui

    2016-08-26

    A novel concept for the preparation of multiphase composite ceramics based on demixing of a single ceramic precursor has been developed and used for the synthesis of a dual-phase H2 -permeable ceramic membrane. The precursor BaCe0.5 Fe0.5 O3-δ decomposes on calcination at 1370 °C for 10 h into two thermodynamically stable oxides with perovskite structures: the cerium-rich oxide BaCe0.85 Fe0.15 O3-δ (BCF8515) and the iron-rich oxide BaCe0.15 Fe0.85 O3-δ (BCF1585), 50 mol % each. In the resulting dual-phase material, the orthorhombic perovskite BCF8515 acts as the main proton conductor and the cubic perovskite BCF1585 as the main electron conductor. The dual-phase membrane shows an extremely high H2 permeation flux of 0.76 mL min(-1)  cm(-2) at 950 °C with 1.0 mm thickness. This auto-demixing concept should be applicable to the synthesis of other ionic-electronic conducting ceramics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The environmental plasticity of diverse body color caused by extremely long photoperiods and high temperature in Saccharosydne procerus (Homoptera: Delphacidae

    Directory of Open Access Journals (Sweden)

    Haichen Yin

    2016-09-01

    Full Text Available Melanization reflects not only body color variation but also environmental plasticity. It is a strategy that helps insects adapt to environmental change. Different color morphs may have distinct life history traits, e.g., development time, growth rate, and body weight. The green slender planthopper Saccharosydne procerus (Matsumura is the main pest of water bamboo (Zizania latifolia. This insect has two color morphs. The present study explored the influence of photoperiod and its interaction with temperature in nymph stage on adult melanism. Additionally, the longevity, fecundity, mating rate, and hatching rate of S. procerus were examined to determine whether the fitness of the insect was influenced by melanism under different temperature and photoperiod. The results showed that a greater number of melanic morphs occurred if the photoperiod was extremely long. A two-factor ANOVA showed that temperature and photoperiod both have a significant influence on melanism. The percentages of variation explained by these factors were 45.53% and 48.71%, respectively. Moreover, melanic morphs had greater advantages than non-melanic morphs under an environmental regime of high temperatures and a long photoperiod, whereas non-melanic morphs were better adapted to cold temperatures and a short photoperiod. These results cannot be explained by the thermal melanism hypothesis. Thus, it may be unavailable to seek to explain melanism in terms of only one hypothesis.

  8. AN EXTREME HIGH-VELOCITY BIPOLAR OUTFLOW IN THE PRE-PLANETARY NEBULA IRAS 08005-2356

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, R. [Jet Propulsion Laboratory, California Institute of Technology, MS 183-900, Pasadena, CA 91109 (United States); Patel, N. A., E-mail: raghvendra.sahai@jpl.nasa.gov [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)

    2015-09-01

    We report interferometric mapping of the bipolar pre-planetary nebula IRAS 08005-2356 (I 08005) with an angular resolution of ∼1″–5″, using the Submillimeter Array, in the {sup 12}CO J = 2–1, 3–2, {sup 13}CO J = 2–1, and SiO J = 5–4 (v = 0) lines. Single-dish observations, using the SMT 10 m, were made in these lines as well as in the CO J = 4–3 and SiO J = 6–5 (v = 0) lines. The line profiles are very broad, showing the presence of a massive (>0.1 M{sub ⊙}), extreme high velocity outflow (V ∼ 200 km s{sup −1}) directed along the nebular symmetry axis derived from the Hubble Space Telescope imaging of this object. The outflow's scalar momentum far exceeds that available from radiation pressure of the central post-AGB star, and it may be launched from an accretion disk around a main-sequence companion. We provide indirect evidence for such a disk from its previously published, broad Hα emission profile, which we propose results from Lyβ emission generated in the disk followed by Raman-scattering in the innermost regions of a fast, neutral wind.

  9. Extremely fast vertical displacement event induced by a plasma βp collapse in high βp tokamak disruptions

    International Nuclear Information System (INIS)

    Nakamura, Yukiharu; Yoshino, Ryuji; Pomphrey, N.; Jardin, S.C.

    1996-05-01

    In a vertically elongated (κ ∼ 1.5), high β p (β p ∼ 1.7) tokamak with a resistive shell, extremely fast vertical displacement events (VDE's) induced by a model of strong β p collapse were found through computer simulations using the Tokamak Simulation Code. Although the plasma current quench, which had been shown to be the prime cause of VDE's in a relatively low β p tokamak (β p ∼ 0.2), was not observed during the VDE evolution, the observed growth rate of VDE's was almost five times (γ ∼ 655 sec -1 ) faster than the growth rate of the usual positional instability (γ ∼ 149 sec -1 ). The essential mechanism of the β p collapse-induced VDE was clarified to be the significant destabilization of positional instability due to a large and sudden degradation of the decay n-index in addition to a reduction of the stability index n s . It is pointed out that the shell-geometry characterizes the VDE dynamics, and that the VDE rate depends strongly both on the magnitude of the β p collapse and the n-index of the equilibria just before the β p collapse occurs. A new guide line for designing the fusion reactor is proposed with considering the impact of disruptions. (author)

  10. Root-induced Changes in the Rhizosphere of Extreme High Yield Tropical Rice: 2. Soil Solution Chemical Properties

    Directory of Open Access Journals (Sweden)

    Mitsuru Osaki

    2012-09-01

    Full Text Available Our previous studies showed that the extreme high yield tropical rice (Padi Panjang produced 3-8 t ha-1 without fertilizers. We also found that the rice yield did not correlate with some soil properties. We thought that it may be due to ability of root in affecting soil properties in the root zone. Therefore, we studied the extent of rice root in affecting the chemical properties of soil solution surrounding the root zone. A homemade rhizobox (14x10x12 cm was used in this experiment. The rhizobox was vertically segmented 2 cm interval using nylon cloth that could be penetrated neither root nor mycorrhiza, but, soil solution was freely passing the cloth. Three soils of different origins (Kuin, Bunipah and Guntung Papuyu were used. The segment in the center was sown with 20 seeds of either Padi Panjang or IR64 rice varieties. After emerging, 10 seedlings were maintained for 5 weeks. At 4 weeks after sowing, some chemical properties of the soil solution were determined. These were ammonium (NH4+, nitrate (NO3-, phosphorus (P and iron (Fe2+ concentrations and pH, electric conductivity (EC and oxidation reduction potential (ORP. In general, the plant root changed solution chemical properties both in- and outside the soil rhizosphere. The patterns of changes were affected by the properties of soil origins. The release of exudates and change in ORP may have been responsible for the changes soil solution chemical properties.

  11. EXTREMELY BROAD RADIO RECOMBINATION MASER LINES TOWARD THE HIGH-VELOCITY IONIZED JET IN CEPHEUS A HW2

    International Nuclear Information System (INIS)

    Jimenez-Serra, I.; Patel, N.; Martin-Pintado, J.; Baez-Rubio, A.; Thum, C.

    2011-01-01

    We present the first detection of the H40α, H34α, and H31α radio recombination lines (RRLs) at millimeter wavelengths toward the high-velocity ionized jet in the Cepheus A HW2 star-forming region. From our single-dish and interferometric observations, we find that the measured RRLs show extremely broad asymmetric line profiles with zero-intensity line widths of ∼1100 km s -1 . From the line widths, we estimate a terminal velocity for the ionized gas in the jet of ≥500 km s -1 , consistent with that obtained from the proper motions of the HW2 radio jet. The total integrated line-to-continuum flux ratios of the H40α, H34α, and H31α lines are 43, 229, and 280 km s -1 , clearly deviating from LTE predictions. These ratios are very similar to those observed for the RRL masers toward MWC349A, suggesting that the intensities of the RRLs toward HW2 are affected by maser emission. Our radiative transfer modeling of the RRLs shows that their asymmetric profiles could be explained by maser emission arising from a bi-conical radio jet with a semi-opening angle of 18 deg., electron density distribution varying as r -2.11 , and turbulent and expanding wind velocities of 60 and 500 km s -1 .

  12. High-Q energy trapping of temperature-stable shear waves with Lamé cross-sectional polarization in a single crystal silicon waveguide

    Science.gov (United States)

    Tabrizian, R.; Daruwalla, A.; Ayazi, F.

    2016-03-01

    A multi-port electrostatically driven silicon acoustic cavity is implemented that efficiently traps the energy of a temperature-stable eigen-mode with Lamé cross-sectional polarization. Dispersive behavior of propagating and evanescent guided waves in a ⟨100⟩-aligned single crystal silicon waveguide is used to engineer the acoustic energy distribution of a specific shear eigen-mode that is well known for its low temperature sensitivity when implemented in doped single crystal silicon. Such an acoustic energy trapping in the central region of the acoustic cavity geometry and far from substrate obviates the need for narrow tethers that are conventionally used for non-destructive and high quality factor (Q) energy suspension in MEMS resonators; therefore, the acoustically engineered waveguide can simultaneously serve as in-situ self-oven by passing large uniformly distributed DC currents through its body and without any concern about perturbing the mode shape or deforming narrow supports. Such a stable thermo-structural performance besides large turnover temperatures than can be realized in Lamé eigen-modes make this device suitable for implementation of ultra-stable oven-controlled oscillators. 78 MHz prototypes implemented in arsenic-doped single crystal silicon substrates with different resistivity are transduced by in- and out-of-plane narrow-gap capacitive ports, showing high Q of ˜43k. The low resistivity device shows an overall temperature-induced frequency drift of 200 ppm over the range of -20 °C to 80 °C, which is ˜15× smaller compared to overall frequency drift measured for the similar yet high resistivity device in the same temperature range. Furthermore, a frequency tuning of ˜2100 ppm is achieved in high resistivity device by passing 45 mA DC current through its body. Continuous operation of the device under such a self-ovenizing current over 10 days did not induce frequency instability or degradation in Q.

  13. TOPoS. IV. Chemical abundances from high-resolution observations of seven extremely metal-poor stars

    Science.gov (United States)

    Bonifacio, P.; Caffau, E.; Spite, M.; Spite, F.; Sbordone, L.; Monaco, L.; François, P.; Plez, B.; Molaro, P.; Gallagher, A. J.; Cayrel, R.; Christlieb, N.; Klessen, R. S.; Koch, A.; Ludwig, H.-G.; Steffen, M.; Zaggia, S.; Abate, C.

    2018-04-01

    Context. Extremely metal-poor (EMP) stars provide us with indirect information on the first generations of massive stars. The TOPoS survey has been designed to increase the census of these stars and to provide a chemical inventory that is as detailed as possible. Aims: Seven of the most iron-poor stars have been observed with the UVES spectrograph at the ESO VLT Kueyen 8.2 m telescope to refine their chemical composition. Methods: We analysed the spectra based on 1D LTE model atmospheres, but also used 3D hydrodynamical simulations of stellar atmospheres. Results: We measured carbon in six of the seven stars: all are carbon-enhanced and belong to the low-carbon band, defined in the TOPoS II paper. We measured lithium (A(Li) = 1.9) in the most iron-poor star (SDSS J1035+0641, [Fe/H] measure Li in three stars at [Fe/H] -4.0, two of which lie on the Spite plateau. We confirm that SDSS J1349+1407 is extremely rich in Mg, but not in Ca. It is also very rich in Na. Several of our stars are characterised by low α-to-iron ratios. Conclusions: The lack of high-carbon band stars at low metallicity can be understood in terms of evolutionary timescales of binary systems. The detection of Li in SDSS J1035+0641 places a strong constraint on theories that aim at solving the cosmological lithium problem. The Li abundance of the two warmer stars at [Fe/H] -4.0 places them on the Spite plateau, while the third, cooler star, lies below. We argue that this suggests that the temperature at which Li depletion begins increases with decreasing [Fe/H]. SDSS J1349+1407 may belong to a class of Mg-rich EMP stars. We cannot assess if there is a scatter in α-to-iron ratios among the EMP stars or if there are several discrete populations. However, the existence of stars with low α-to-iron ratios is supported by our observations. Based on observations obtained at ESO Paranal Observatory, Programmes 189.D-0165,090.D-0306, 093.D-0136, and 096.D-0468.

  14. Localization in inelastic rate dependent shearing deformations

    KAUST Repository

    Katsaounis, Theodoros

    2016-09-18

    Metals deformed at high strain rates can exhibit failure through formation of shear bands, a phenomenon often attributed to Hadamard instability and localization of the strain into an emerging coherent structure. We verify formation of shear bands for a nonlinear model exhibiting strain softening and strain rate sensitivity. The effects of strain softening and strain rate sensitivity are first assessed by linearized analysis, indicating that the combined effect leads to Turing instability. For the nonlinear model a class of self-similar solutions is constructed, that depicts a coherent localizing structure and the formation of a shear band. This solution is associated to a heteroclinic orbit of a dynamical system. The orbit is constructed numerically and yields explicit shear localizing solutions. © 2016 Elsevier Ltd

  15. Localization in inelastic rate dependent shearing deformations

    KAUST Repository

    Katsaounis, Theodoros; Lee, Min-Gi; Tzavaras, Athanasios

    2016-01-01

    Metals deformed at high strain rates can exhibit failure through formation of shear bands, a phenomenon often attributed to Hadamard instability and localization of the strain into an emerging coherent structure. We verify formation of shear bands for a nonlinear model exhibiting strain softening and strain rate sensitivity. The effects of strain softening and strain rate sensitivity are first assessed by linearized analysis, indicating that the combined effect leads to Turing instability. For the nonlinear model a class of self-similar solutions is constructed, that depicts a coherent localizing structure and the formation of a shear band. This solution is associated to a heteroclinic orbit of a dynamical system. The orbit is constructed numerically and yields explicit shear localizing solutions. © 2016 Elsevier Ltd

  16. Combined shearing interferometer and hartmann wavefront sensor

    International Nuclear Information System (INIS)

    Hutchin, R. A.

    1985-01-01

    A sensitive wavefront sensor combining attributes of both a Hartmann type of wavefront sensor and an AC shearing interferometer type of wavefront sensor. An incident wavefront, the slope of which is to be detected, is focussed to first and second focal points at which first and second diffraction gratings are positioned to shear and modulate the wavefront, which then diverges therefrom. The diffraction patterns of the first and second gratings are positioned substantially orthogonal to each other to shear the wavefront in two directions to produce two dimensional wavefront slope data for the AC shearing interferometer portion of the wavefront sensor. First and second dividing optical systems are positioned in the two diverging wavefronts to divide the sheared wavefront into an array of subapertures and also to focus the wavefront in each subaperture to a focal point. A quadrant detector is provided for each subaperture to detect the position of the focal point therein, which provides a first indication, in the manner of a Hartmann wavefront sensor, of the local wavefront slope in each subaperture. The total radiation in each subaperture, as modulated by the diffraction grating, is also detected by the quadrant detector which produces a modulated output signal representative thereof, the phase of which relative to modulation by the diffraction grating provides a second indication of the local wavefront slope in each subaperture, in the manner of an AC shearing interferometer wavefront sensor. The data from both types of sensors is then combined by long term averaging thereof to provide an extremely sensitive wavefront sensor

  17. A new class of photoactivatable and carbene generating reagents with extremely high specific radioactivity. Synthesis, characterization and applications

    International Nuclear Information System (INIS)

    Weber, T.

    1994-01-01

    The main objective of this work was the development of new photocrosslinking and labeling reagents which show favourable photochemical properties and can be synthesized in an extremely high specific radioactivity. A key compound in the synthesis of these reagents was 2-tributyltin-4-(3-trifluormethyl-3H-diazirin-3-yl)-benzyl alcohol. Esters of this alcohol can be easily radioiodinated at a specific radioactivity of >2000 Ci/mmol under mild conditions. By experiments with a model compound it was shown that 2-iodo-4-(3-trifluormethyl-3H-diazirin-3-yl)-benzyl esters, upon photolysis, generate highly reactive (singlet) carbenes capable of inserting into CH-bonds. Equally important, there is no indication of loss of iodine under the photolysis conditions applied. Therefore two key requirements for photolabeling reagents are fulfilled. Several photoactivatable radioiodinated phospholipids have been synthesized. Their properties have been evaluated by labeling of the the membranes of intact erythrocytes and influenza viruses. Currently these lipids are used to study the interaction of various proteins (shown are experiments with MARCKS) with membranes. Furthermore a new class of actual label transfer crosslinkers (two thiol specific and one amino specific) have been developed. The range of potentialities of these reagents is currently being investigated. Finally a photoactivatable radioiodinated ceramide analogue suitable as a photoaffinity crosslinker has been developed with the goal of identifying the putative receptor of this second messenger-like lipid. Preliminary studies towards this goal are described. We are convinced that the reagents and methods presented in this work are valuable tools, and that they will find widespread use in future cell-biological and biochemical research. (author) figs., tabs., refs

  18. Dilatancy of Shear Transformations in a Colloidal Glass

    Science.gov (United States)

    Lu, Y. Z.; Jiang, M. Q.; Lu, X.; Qin, Z. X.; Huang, Y. J.; Shen, J.

    2018-01-01

    Shear transformations, as fundamental rearrangement events operating in local regions, hold the key of plastic flow of amorphous solids. Despite their importance, the dynamic features of shear transformations are far from clear, which is the focus of the present study. Here, we use a colloidal glass under shear as the prototype to directly observe the shear-transformation events in real space. By tracing the colloidal-particle rearrangements, we quantitatively determine two basic properties of shear transformations: local shear strain and dilatation (or free volume). It is revealed that the local free volume undergoes a significantly temporary increase prior to shear transformations, eventually leading to a jump of local shear strain. We clearly demonstrate that shear transformations have no memory of the initial free volume of local regions. Instead, their emergence strongly depends on the dilatancy ability of these local regions, i.e., the dynamic creation of free volume. More specifically, the particles processing the high dilatancy ability directly participate in subsequent shear transformations. These results experimentally enrich Argon's statement about the dilatancy nature of shear transformations and also shed insight into the structural origin of amorphous plasticity.

  19. Extreme Unconditional Dependence Vs. Multivariate GARCH Effect in the Analysis of Dependence Between High Losses on Polish and German Stock Indexes

    Science.gov (United States)

    Rokita, Pawel

    Classical portfolio diversification methods do not take account of any dependence between extreme returns (losses). Many researchers provide, however, some empirical evidence for various assets that extreme-losses co-occur. If the co-occurrence is frequent enough to be statistically significant, it may seriously influence portfolio risk. Such effects may result from a few different properties of financial time series, like for instance: (1) extreme dependence in a (long-term) unconditional distribution, (2) extreme dependence in subsequent conditional distributions, (3) time-varying conditional covariance, (4) time-varying (long-term) unconditional covariance, (5) market contagion. Moreover, a mix of these properties may be present in return time series. Modeling each of them requires different approaches. It seams reasonable to investigate whether distinguishing between the properties is highly significant for portfolio risk measurement. If it is, identifying the effect responsible for high loss co-occurrence would be of a great importance. If it is not, the best solution would be selecting the easiest-to-apply model. This article concentrates on two of the aforementioned properties: extreme dependence (in a long-term unconditional distribution) and time-varying conditional covariance.

  20. Effects of elevated mean and extremely high temperatures on the physio-ecological characteristics of geographically distinctive populations of Cunninghamia lanceolata

    Science.gov (United States)

    Zhou, Ting; Jia, Xiaorong; Liao, Huixuan; Peng, Shijia; Peng, Shaolin

    2016-12-01

    Conventional models for predicting species distribution under global warming scenarios often treat one species as a homogeneous whole. In the present study, we selected Cunninghamia lanceolata (C. lanceolata), a widely distributed species in China, to investigate the physio-ecological responses of five populations under different temperature regimes. The results demonstrate that increased mean temperatures induce increased growth performance among northern populations, which exhibited the greatest germination capacity and largest increase in the overlap between the growth curve and the monthly average temperature. However,tolerance of the southern population to extremely high temperatures was stronger than among the population from the northern region,shown by the best growth and the most stable photosynthetic system of the southern population under extremely high temperature. This result indicates that the growth advantage among northern populations due to increased mean temperatures may be weakened by lower tolerance to extremely high temperatures. This finding is antithetical to the predicted results. The theoretical coupling model constructed here illustrates that the difference in growth between populations at high and low latitudes and altitudes under global warming will decrease because of the frequent occurrence of extremely high temperatures.

  1. Comparative outcome of bomb explosion injuries versus high-powered gunshot injuries of the upper extremity in a civilian setting.

    Science.gov (United States)

    Luria, Shai; Rivkin, Gurion; Avitzour, Malka; Liebergall, Meir; Mintz, Yoav; Mosheiff, Ram

    2013-03-01

    Explosion injuries to the upper extremity have specific clinical characteristics that differ from injuries due to other mechanisms. To evaluate the upper extremity injury pattern of attacks on civilian targets, comparing bomb explosion injuries to gunshot injuries and their functional recovery using standard outcome measures. Of 157 patients admitted to the hospital between 2000 and 2004, 72 (46%) sustained explosion injuries and 85 (54%) gunshot injuries. The trauma registry files were reviewed and the patients completed the DASH Questionnaire (Disabilities of Arm, Shoulder and Hand) and SF-12 (Short Form-12) after a minimum period of 1 year. Of the 157 patients, 72 (46%) had blast injuries and 85 (54%) had shooting injuries. The blast casualties had higher Injury Severity Scores (47% vs. 22% with a score of > 16, P = 0.02) and higher percent of patients treated in intensive care units (47% vs. 28%, P = 0.02). Although the Abbreviated Injury Scale score of the upper extremity injury was similar in the two groups, the blast casualties were found to have more bilateral and complex soft tissue injuries and were treated surgically more often. No difference was found in the SF-12 or DASH scores between the groups at follow up. The casualties with upper extremity blast injuries were more severely injured and sustained more bilateral and complex soft tissue injuries to the upper extremity. However, the rating of the local injury to the isolated limb is similar, as was the subjective functional recovery.

  2. Keyed shear joints

    DEFF Research Database (Denmark)

    Hansen, Klaus

    This report gives a summary of the present information on the behaviour of vertical keyed shear joints in large panel structures. An attemp is made to outline the implications which this information might have on the analysis and design of a complete wall. The publications also gives a short...

  3. Sheared Electroconvective Instability

    Science.gov (United States)

    Kwak, Rhokyun; Pham, Van Sang; Lim, Kiang Meng; Han, Jongyoon

    2012-11-01

    Recently, ion concentration polarization (ICP) and related phenomena draw attention from physicists, due to its importance in understanding electrochemical systems. Researchers have been actively studying, but the complexity of this multiscale, multiphysics phenomenon has been limitation for gaining a detailed picture. Here, we consider electroconvective(EC) instability initiated by ICP under pressure-driven flow, a scenario often found in electrochemical desalinations. Combining scaling analysis, experiment, and numerical modeling, we reveal unique behaviors of sheared EC: unidirectional vortex structures, its size selection and vortex propagation. Selected by balancing the external pressure gradient and the electric body force, which generates Hagen-Poiseuille(HP) flow and vortical EC, the dimensionless EC thickness scales as (φ2 /UHP)1/3. The pressure-driven flow(or shear) suppresses unfavorably-directed vortices, and simultaneously pushes favorably-directed vortices with constant speed, which is linearly proportional to the total shear of HP flow. This is the first systematic characterization of sheared EC, which has significant implications on the optimization of electrodialysis and other electrochemical systems.

  4. An underwater shear compactor

    International Nuclear Information System (INIS)

    Biver, E.; Sims, J.

    1997-01-01

    This paper, originally presented at the WM'96 Conference in Tucson Arizona, describes a concept of a specialised decommissioning tool designed to operate underwater and to reduce the volume of radioactive components by shearing and compacting. The shear compactor was originally conceived to manage the size reduction of a variety of decommissioned stainless steel tubes stored within a reactor fuel cooling pond and which were consuming a substantial volume of the pond. The main objective of this tool was to cut the long tubes into shorter lengths and to compact them into a flat rectangular form which could be stacked on the pond floor, thus saving valuable space. The development programme, undertaken on this project, investigated a wide range of factors which could contribute to an extended cutting blade performance, ie: materials of construction, cutting blade shape and cutting loads required, shock effects, etc. The second phase was to review other aspects of the design, such as radiological protection, cutting blade replacement, maintenance, pond installation and resultant wall loads, water hydraulics, collection of products of shearing/compacting operations, corrosion of the equipment, control system, operational safety and the ability of the equipment to operate in dry environments. The paper summarises the extended work programme involved with this shear compactor tool. (author)

  5. Vacuum-assisted closure downgrades reconstructive demands in high-risk patients with severe lower extremity injuries.

    Science.gov (United States)

    Kakagia, D; Karadimas, E; Drosos, G; Ververidis, A; Kazakos, D; Lazarides, M; Verettas, D

    2009-01-01

    Primary soft tissue reconstruction in complex leg injuries is mandatory in order to protect exposed tissues; however, it may be precluded by the patient's clinical status or by local wound conditions. This retrospective study aims to evaluate the use of negative pressure as an adjunct to delayed soft tissue reconstruction in patients with complex lower limb trauma. Forty-two patients with 49 complex lower limb injuries were treated with Vacuum assisted closure (VAC) 48 hours after bone fixation, vascular repair and surgical debridement. Wound swab cultures were obtained before and after every VAC application. Duration of therapy, wound flora, final reconstructive technique required, outcome and follow-up period were retrieved from medical records. Twenty-four male and eighteen female patients were recruited, with a mean age of 47 years. All were treated with VAC therapy for 15-42 days. Reconstruction was delayed due to the patients' critical condition, advanced age, medical co-morbidities, heavily exuding wounds and questionable viability of soft tissues. Patients were followed up for 90-895 days. Two wounds healed spontaneously, 6 were managed with delayed direct suture, 31 with split thickness skin grafts and 9 required local cutaneous, fasciocutaneous or muscular flaps. One patient died due to fat embolism. Wound bacterial flora progressively decreased in all but one patient. Scar formation was aesthetically acceptable by the patients while function depended on the initial injury. Negative pressure is a safe and effective adjunct to delayed soft tissue reconstruction in high-risk patients with severe lower extremity injuries, minimizing reconstructive requirements and therefore postoperative morbidity.

  6. Extremely stable soluble high molecular mass multi-protein complex with DNase activity in human placental tissue.

    Directory of Open Access Journals (Sweden)

    Evgeniya E Burkova

    Full Text Available Human placenta is an organ which protects, feeds, and regulates the grooving of the embryo. Therefore, identification and characterization of placental components including proteins and their multi-protein complexes is an important step to understanding the placenta function. We have obtained and analyzed for the first time an extremely stable multi-protein complex (SPC, ∼ 1000 kDa from the soluble fraction of three human placentas. By gel filtration on Sepharose-4B, the SPC was well separated from other proteins of the placenta extract. Light scattering measurements and gel filtration showed that the SPC is stable in the presence of NaCl, MgCl2, acetonitrile, guanidinium chloride, and Triton in high concentrations, but dissociates efficiently in the presence of 8 M urea, 50 mM EDTA, and 0.5 M NaCl. Such a stable complex is unlikely to be a casual associate of different proteins. According to SDS-PAGE and MALDI mass spectrometry data, this complex contains many major glycosylated proteins with low and moderate molecular masses (MMs 4-14 kDa and several moderately abundant (79.3, 68.5, 52.8, and 27.2 kDa as well as minor proteins with higher MMs. The SPC treatment with dithiothreitol led to a disappearance of some protein bands and revealed proteins with lower MMs. The SPCs from three placentas efficiently hydrolyzed plasmid supercoiled DNA with comparable rates and possess at least two DNA-binding sites with different affinities for a 12-mer oligonucleotide. Progress in study of placental protein complexes can promote understanding of their biological functions.

  7. A prediction model for treatment decisions in high-grade extremity soft-tissue sarcomas: Personalised sarcoma care (PERSARC).

    Science.gov (United States)

    van Praag, Veroniek M; Rueten-Budde, Anja J; Jeys, Lee M; Laitinen, Minna K; Pollock, Rob; Aston, Will; van der Hage, Jos A; Dijkstra, P D Sander; Ferguson, Peter C; Griffin, Anthony M; Willeumier, Julie J; Wunder, Jay S; van de Sande, Michiel A J; Fiocco, Marta

    2017-09-01

    To support shared decision-making, we developed the first prediction model for patients with primary soft-tissue sarcomas of the extremities (ESTS) which takes into account treatment modalities, including applied radiotherapy (RT) and achieved surgical margins. The PERsonalised SARcoma Care (PERSARC) model, predicts overall survival (OS) and the probability of local recurrence (LR) at 3, 5 and 10 years. Development and validation, by internal validation, of the PERSARC prediction model. The cohort used to develop the model consists of 766 ESTS patients who underwent surgery, between 2000 and 2014, at five specialised international sarcoma centres. To assess the effect of prognostic factors on OS and on the cumulative incidence of LR (CILR), a multivariate Cox proportional hazard regression and the Fine and Gray model were estimated. Predictive performance was investigated by using internal cross validation (CV) and calibration. The discriminative ability of the model was determined with the C-index. Multivariate Cox regression revealed that age and tumour size had a significant effect on OS. More importantly, patients who received RT showed better outcomes, in terms of OS and CILR, than those treated with surgery alone. Internal validation of the model showed good calibration and discrimination, with a C-index of 0.677 and 0.696 for OS and CILR, respectively. The PERSARC model is the first to incorporate known clinical risk factors with the use of different treatments and surgical outcome measures. The developed model is internally validated to provide a reliable prediction of post-operative OS and CILR for patients with primary high-grade ESTS. LEVEL OF SIGNIFICANCE: level III. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Vesicle dynamics in shear and capillary flows

    International Nuclear Information System (INIS)

    Noguchi, Hiroshi; Gompper, Gerhard

    2005-01-01

    The deformation of vesicles in flow is studied by a mesoscopic simulation technique, which combines multi-particle collision dynamics for the solvent with a dynamically triangulated surface model for the membrane. Shape transitions are investigated both in simple shear flows and in cylindrical capillary flows. We focus on reduced volumes, where the discocyte shape of fluid vesicles is stable, and the prolate shape is metastable. In simple shear flow at low membrane viscosity, the shear induces a transformation from discocyte to prolate with increasing shear rate, while at high membrane viscosity, the shear induces a transformation from prolate to discocyte, or tumbling motion accompanied by oscillations between these two morphologies. In capillary flow, at small flow velocities the symmetry axis of the discocyte is found not to be oriented perpendicular to the cylinder axis. With increasing flow velocity, a transition to a prolate shape occurs for fluid vesicles, while vesicles with shear-elastic membranes (like red blood cells) transform into a coaxial parachute-like shape

  9. Effect of Boundary Condition on the Shear Behaviour of Rock Joints in the Direct Shear Test

    Science.gov (United States)

    Bahaaddini, M.

    2017-05-01

    The common method for determination of the mechanical properties of the rock joints is the direct shear test. This paper aims to study the effect of boundary condition on the results of direct shear tests. Experimental studies undertaken in this research showed that the peak shear strength is mostly overestimated. This problem is more pronounced for steep asperities and under high normal stresses. Investigation of the failure mode of these samples showed that tensile cracks are generated at the boundary of sample close to the specimen holders and propagated inside the intact materials. In order to discover the reason of observed failure mechanism in experiments, the direct shear test was simulated using PFC2D. Results of numerical models showed that the gap zone size between the upper and lower specimen holders has a significant effect on the shear mechanism. For the high gap size, stresses concentrate at the vicinity of the tips of specimen holders and result in generation and propagation of tensile cracks inside the intact material. However, by reducing the gap size, stresses are concentrated on asperities, and damage of specimen at its boundary is not observed. Results of this paper show that understanding the shear mechanism of rock joints is an essential step prior to interpreting the results of direct shear tests.

  10. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    The paper deals with the plastic shear strength of non shear reinforced T-beams.The influence of an un-reinforced flange on the shear capacity is investigated by considering a failure mechanism involving crack sliding in the web and a kind of membrane action over an effective width of the flange...

  11. Mean and extreme temperatures in a warming climate: EURO CORDEX and WRF regional climate high-resolution projections for Portugal

    Science.gov (United States)

    Cardoso, Rita M.; Soares, Pedro M. M.; Lima, Daniela C. A.; Miranda, Pedro M. A.

    2018-02-01

    Large temperature spatio-temporal gradients are a common feature of Mediterranean climates. The Portuguese complex topography and coastlines enhances such features, and in a small region large temperature gradients with high interannual variability is detected. In this study, the EURO-CORDEX high-resolution regional climate simulations (0.11° and 0.44° resolutions) are used to investigate the maximum and minimum temperature projections across the twenty-first century according to RCP4.5 and RCP8.5. An additional WRF simulation with even higher resolution (9 km) for RCP8.5 scenario is also examined. All simulations for the historical period (1971-2000) are evaluated against the available station observations and the EURO-CORDEX model results are ranked in order to build multi-model ensembles. In present climate models are able to reproduce the main topography/coast related temperature gradients. Although there are discernible differences between models, most present a cold bias. The multi-model ensembles improve the overall representation of the temperature. The ensembles project a significant increase of the maximum and minimum temperatures in all seasons and scenarios. Maximum increments of 8 °C in summer and autumn and between 2 and 4 °C in winter and spring are projected in RCP8.5. The temperature distributions for all models show a significant increase in the upper tails of the PDFs. In RCP8.5 more than half of the extended summer (MJJAS) has maximum temperatures exceeding the historical 90th percentile and, on average, 60 tropical nights are projected for the end of the century, whilst there are only 7 tropical nights in the historical period. Conversely, the number of cold days almost disappears. The yearly average number of heat waves increases by seven to ninefold by 2100 and the most frequent length rises from 5 to 22 days throughout the twenty-first century. 5% of the longest events will last for more than one month. The amplitude is overwhelming

  12. Experiments on sheet metal shearing

    OpenAIRE

    Gustafsson, Emil

    2013-01-01

    Within the sheet metal industry, different shear cutting technologies are commonly used in several processing steps, e.g. in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material.Numerical models to predict forces and sheared edge geometry for different sheet metal grades and different shear parameter set-ups a...

  13. High frequencies of elevated alkaline phosphatase activity and rickets exist in extremely low birth weight infants despite current nutritional support

    Science.gov (United States)

    Osteopenia and rickets are common among extremely low birth weight infants (ELBW, <1000 g birth weight) despite current practices of vitamin and mineral supplementation. Few data are available evaluating the usual course of markers of mineral status in this population. Our objectives in this study w...

  14. CAT LIDAR wind shear studies

    Science.gov (United States)

    Goff, R. W.

    1978-01-01

    The studies considered the major meteorological factors producing wind shear, methods to define and classify wind shear in terms significant from an aircraft perturbation standpoint, the significance of sensor location and scan geometry on the detection and measurement of wind shear, and the tradeoffs involved in sensor performance such as range/velocity resolution, update frequency and data averaging interval.

  15. High-resolution magnetic resonance angiography of the lower extremities with a dedicated 36-element matrix coil at 3 Tesla.

    Science.gov (United States)

    Kramer, Harald; Michaely, Henrik J; Matschl, Volker; Schmitt, Peter; Reiser, Maximilian F; Schoenberg, Stefan O

    2007-06-01

    Recent developments in hard- and software help to significantly increase image quality of magnetic resonance angiography (MRA). Parallel acquisition techniques (PAT) help to increase spatial resolution and to decrease acquisition time but also suffer from a decrease in signal-to-noise ratio (SNR). The movement to higher field strength and the use of dedicated angiography coils can further increase spatial resolution while decreasing acquisition times at the same SNR as it is known from contemporary exams. The goal of our study was to compare the image quality of MRA datasets acquired with a standard matrix coil in comparison to MRA datasets acquired with a dedicated peripheral angio matrix coil and higher factors of parallel imaging. Before the first volunteer examination, unaccelerated phantom measurements were performed with the different coils. After institutional review board approval, 15 healthy volunteers underwent MRA of the lower extremity on a 32 channel 3.0 Tesla MR System. In 5 of them MRA of the calves was performed with a PAT acceleration factor of 2 and a standard body-matrix surface coil placed at the legs. Ten volunteers underwent MRA of the calves with a dedicated 36-element angiography matrix coil: 5 with a PAT acceleration of 3 and 5 with a PAT acceleration factor of 4, respectively. The acquired volume and acquisition time was approximately the same in all examinations, only the spatial resolution was increased with the acceleration factor. The acquisition time per voxel was calculated. Image quality was rated independently by 2 readers in terms of vessel conspicuity, venous overlay, and occurrence of artifacts. The inter-reader agreement was calculated by the kappa-statistics. SNR and contrast-to-noise ratios from the different examinations were evaluated. All 15 volunteers completed the examination, no adverse events occurred. None of the examinations showed venous overlay; 70% of the examinations showed an excellent vessel conspicuity

  16. Modeling combined tension-shear failure of ductile materials

    International Nuclear Information System (INIS)

    Partom, Y

    2014-01-01

    Failure of ductile materials is usually expressed in terms of effective plastic strain. Ductile materials can fail by two different failure modes, shear failure and tensile failure. Under dynamic loading shear failure has to do with shear localization and formation of adiabatic shear bands. In these bands plastic strain rate is very high, dissipative heating is extensive, and shear strength is lost. Shear localization starts at a certain value of effective plastic strain, when thermal softening overcomes strain hardening. Shear failure is therefore represented in terms of effective plastic strain. On the other hand, tensile failure comes about by void growth under tension. For voids in a tension field there is a threshold state of the remote field for which voids grow spontaneously (cavitation), and the material there fails. Cavitation depends on the remote field stress components and on the flow stress. In this way failure in tension is related to shear strength and to failure in shear. Here we first evaluate the cavitation threshold for different remote field situations, using 2D numerical simulations with a hydro code. We then use the results to compute examples of rate dependent tension-shear failure of a ductile material.

  17. Evaluation of composite shear walls behavior (parametric study

    Directory of Open Access Journals (Sweden)

    Ali Nikkhoo

    2017-11-01

    Full Text Available Composite shear walls which are made of a layer of steel plate with a concrete cover in one or both sides of the steel plate, are counted as the third generation of the shear walls. Nowadays, composite shear walls are widely utilized in building new resisting structures as well as rehabilitating of the existing structures in earthquake-prone countries. Despite of its advantages, use of the composite shear walls is not yet prevalent as it demands more detailed appropriate investigation. Serving higher strength, flexibility and better energy absorption, while being more economical are the main advantages of this system which has paved its path to be used in high-rise buildings, structural retrofit and reservoir tanks. In this research, channel shear connectors are utilized to connect the concrete cover to the steel plate. As a key parameter, variation in the distance of shear connectors and their arrangement on the behavior of composite shear walls has been scrutinized. In addition, the shear stiffness, flexibility, out of plane displacement and the energy absorption of the structural system has been explored. For this purpose, several structural models with different shear distances and arrangements have been investigated. The obtained results reveal that with increase in shear connectors’ distance, the wall stiffness would reduce while its lateral displacement increases up to eighty percent While the out of plane displacement of the steel plate will reduce up to three times.

  18. Gelation under shear

    Energy Technology Data Exchange (ETDEWEB)

    Butler, B.D.; Hanley, H.J.M.; Straty, G.C. [National Institute of Standards and Technology, Boulder, CO (United States); Muzny, C.D. [Univ. of Colorado, Boulder, CO (United States)

    1995-12-31

    An experimental small angle neutron scattering (SANS) study of dense silica gels, prepared from suspensions of 24 nm colloidal silica particles at several volume fractions {theta} is discussed. Provided that {theta}{approx_lt}0.18, the scattered intensity at small wave vectors q increases as the gelation proceeds, and the structure factor S(q, t {yields} {infinity}) of the gel exhibits apparent power law behavior. Power law behavior is also observed, even for samples with {theta}>0.18, when the gel is formed under an applied shear. Shear also enhances the diffraction maximum corresponding to the inter-particle contact distance of the gel. Difficulties encountered when trying to interpret SANS data from these dense systems are outlined. Results of computer simulations intended to mimic gel formation, including computations of S(q, t), are discussed. Comments on a method to extract a fractal dimension characterizing the gel are included.

  19. Forflytning: shear og friktion

    DEFF Research Database (Denmark)

    2005-01-01

    friktion). Formålet med filmprojektet er: At give personalet i Apopleksiafsnittet viden om shear og friktion, så det motiveres til forebyggelse. Mål At udarbejde et enkelt undervisningsmateriale til bed-side-brug Projektbeskrivelse (resume) Patienter med apopleksi er særligt udsatte for tryksår, fordi de...... ofte er immobile, har svært ved at opretholde en god siddestilling eller ligger tungt i sengen som følger efter apopleksien Hvis personalet bruger forkert lejrings-og forflytningsteknik, udsættes patienterne for shear og friktion. Målgruppen i projektet er de personer, der omgås patienterne, dvs...

  20. Shear Roll Mill Reactivation

    Science.gov (United States)

    2012-09-13

    pneumatically operated paste dumper and belt conveyor system, the loss in weight feeder system, the hydraulically operated shear roll mill, the pellet...out feed belt conveyor , and the pack out system comprised of the metal detector, scale, and pack out empty and full drum roller conveyors . Page | 4...feed hopper and conveyor supplying the loss in weight feeder were turned on, and it was verified that these items functioned as designed . The

  1. Novel all-extremity high-intensity interval training improves aerobic fitness, cardiac function and insulin resistance in healthy older adults.

    Science.gov (United States)

    Hwang, Chueh-Lung; Yoo, Jeung-Ki; Kim, Han-Kyul; Hwang, Moon-Hyon; Handberg, Eileen M; Petersen, John W; Christou, Demetra D

    2016-09-01

    Aging is associated with decreased aerobic fitness and cardiac remodeling leading to increased risk for cardiovascular disease. High-intensity interval training (HIIT) on the treadmill has been reported to be more effective in ameliorating these risk factors compared with moderate-intensity continuous training (MICT) in patients with cardiometabolic disease. In older adults, however, weight-bearing activities are frequently limited due to musculoskeletal and balance problems. The purpose of this study was to examine the feasibility and safety of non-weight-bearing all-extremity HIIT in older adults. In addition, we tested the hypothesis that all-extremity HIIT will be more effective in improving aerobic fitness, cardiac function, and metabolic risk factors compared with all-extremity MICT. Fifty-one healthy sedentary older adults (age: 65±1years) were randomized to HIIT (n=17), MICT (n=18) or non-exercise control (CONT; n=16). HIIT (4×4min 90% of peak heart rate; HRpeak) and isocaloric MICT (70% of HRpeak) were performed on a non-weight-bearing all-extremity ergometer, 4×/week for 8weeks under supervision. All-extremity HIIT was feasible in older adults and resulted in no adverse events. Aerobic fitness (peak oxygen consumption; VO2peak) and ejection fraction (echocardiography) improved by 11% (PHIIT, while no changes were observed in MICT and CONT (P≥0.1). Greater improvements in ejection fraction were associated with greater improvements in VO2peak (r=0.57; PHIIT by 26% (P=0.016). Diastolic function, body composition, glucose and lipids were unaffected (P≥0.1). In conclusion, all-extremity HIIT is feasible and safe in older adults. HIIT, but not MICT, improved aerobic fitness, ejection fraction, and insulin resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Novel All-Extremity High-Intensity Interval Training Improves Aerobic Fitness, Cardiac Function and Insulin Resistance in Healthy Older Adults

    Science.gov (United States)

    Hwang, Chueh-Lung; Yoo, Jeung-Ki; Kim, Han-Kyul; Hwang, Moon-Hyon; Handberg, Eileen M.; Petersen, John W.; Christou, Demetra D.

    2016-01-01

    Aging is associated with decreased aerobic fitness and cardiac remodeling leading to increased risk for cardiovascular disease. High-intensity interval training (HIIT) on the treadmill has been reported to be more effective in ameliorating these risk factors compared with moderate-intensity continuous training (MICT) in patients with cardiometabolic disease. In older adults, however, weight-bearing activities are frequently limited due to musculoskeletal and balance problems. The purpose of this study was to examine the feasibility and safety of non-weight-bearing all-extremity HIIT in older adults. In addition, we tested the hypothesis that all-extremity HIIT will be more effective in improving aerobic fitness, cardiac function, and metabolic risk factors compared with all-extremity MICT. Fifty-one healthy sedentary older adults (age: 65±1 years) were randomized to HIIT (n=17), MICT (n=18) or non-exercise control (CONT; n=16). HIIT (4×4 minutes 90% of peak heart rate; HRpeak) and isocaloric MICT (70% of HRpeak) were performed on a non-weight-bearing all-extremity ergometer, 4x/week for 8 weeks under supervision. All-extremity HIIT was feasible in older adults and resulted in no adverse events. Aerobic fitness (peak oxygen consumption; VO2peak) and ejection fraction (echocardiography) improved by 11% (PHIIT, while no changes were observed in MICT and CONT (P≥0.1). Greater improvements in ejection fraction were associated with greater improvements in VO2peak (r=0.57; PHIIT by 26% (P=0.016). Diastolic function, body composition, glucose and lipids were unaffected (P≥0.1). In conclusion, all-extremity HIIT is feasible and safe in older adults. HIIT, but not MICT, improved aerobic fitness, ejection fraction, and insulin resistance. PMID:27346646

  3. Strain gradient drives shear banding in metallic glasses

    Science.gov (United States)

    Tian, Zhi-Li; Wang, Yun-Jiang; Chen, Yan; Dai, Lan-Hong

    2017-09-01

    Shear banding is a nucleation-controlled process in metallic glasses (MGs) involving multiple temporal-spatial scales, which hinders a concrete understanding of its structural origin down to the atomic scale. Here, inspired by the morphology of composite materials, we propose a different perspective of MGs as a hard particle-reinforced material based on atomic-scale structural heterogeneity. The local stable structures indicated by a high level of local fivefold symmetry (L5FS) act as hard "particles" which are embedded in the relatively soft matrix. We demonstrate this concept by performing atomistic simulations of shear banding in CuZr MG. A shear band is prone to form in a sample with a high degree of L5FS which is slowly quenched from the liquid. An atomic-scale analysis on strain and the structural evolution reveals that it is the strain gradient effect that has originated from structural heterogeneity that facilitates shear transformation zones (STZs) to mature shear bands. An artificial composite model with a high degree of strain gradient, generated by inserting hard MG strips into a soft MG matrix, demonstrates a great propensity for shear banding. It therefore confirms the critical role strain gradient plays in shear banding. The strain gradient effect on shear banding is further quantified with a continuum model and a mechanical instability analysis. These physical insights might highlight the strain gradient as the hidden driving force in transforming STZs into shear bands in MGs.

  4. Examining shear processes during magma ascent

    Science.gov (United States)

    Kendrick, J. E.; Wallace, P. A.; Coats, R.; Lamur, A.; Lavallée, Y.

    2017-12-01

    Lava dome eruptions are prone to rapid shifts from effusive to explosive behaviour which reflects the rheology of magma. Magma rheology is governed by composition, porosity and crystal content, which during ascent evolves to yield a rock-like, viscous suspension in the upper conduit. Geophysical monitoring, laboratory experiments and detailed field studies offer the opportunity to explore the complexities associated with the ascent and eruption of such magmas, which rest at a pivotal position with regard to the glass transition, allowing them to either flow or fracture. Crystal interaction during flow results in strain-partitioning and shear-thinning behaviour of the suspension. In a conduit, such characteristics favour the formation of localised shear zones as strain is concentrated along conduit margins, where magma can rupture and heal in repetitive cycles. Sheared magmas often record a history of deformation in the form of: grain size reduction; anisotropic permeable fluid pathways; mineral reactions; injection features; recrystallisation; and magnetic anomalies, providing a signature of the repetitive earthquakes often observed during lava dome eruptions. The repetitive fracture of magma at ( fixed) depth in the conduit and the fault-like products exhumed at spine surfaces indicate that the last hundreds of meters of ascent may be controlled by frictional slip. Experiments on a low-to-high velocity rotary shear apparatus indicate that shear stress on a slip plane is highly velocity dependent, and here we examine how this influences magma ascent and its characteristic geophysical signals.

  5. Plasticity Approach to Shear Design

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1998-01-01

    The paper presents some plastic models for shear design of reinforced concrete beams. Distinction is made between two shear failure modes, namely web crushing and crack sliding. The first mentioned mode is met in beams with large shear reinforcement degrees. The mode of crack sliding is met in non......-shear reinforced beams as well as in lightly shear reinforced beams. For such beams the shear strength is determined by the recently developed crack sliding model. This model is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed...... in uncracked concrete. Good agree between theory and tests has been found.Keywords: dsign, plasticity, reinforced concrete, reinforcement, shear, web crushing....

  6. Microalga propels along vorticity direction in a shear flow

    Science.gov (United States)

    Chengala, Anwar; Hondzo, Miki; Sheng, Jian

    2013-05-01

    Using high-speed digital holographic microscopy and microfluidics, we discover that, when encountering fluid flow shear above a threshold, unicellular green alga Dunaliella primolecta migrates unambiguously in the cross-stream direction that is normal to the plane of shear and coincides with the local fluid flow vorticity. The flow shear drives motile microalgae to collectively migrate in a thin two-dimensional horizontal plane and consequently alters the spatial distribution of microalgal cells within a given suspension. This shear-induced algal migration differs substantially from periodic rotational motion of passive ellipsoids, known as Jeffery orbits, as well as gyrotaxis by bottom-heavy swimming microalgae in a shear flow due to the subtle interplay between torques generated by gravity and viscous shear. Our findings could facilitate mechanistic solutions for modeling planktonic thin layers and sustainable cultivation of microalgae for human nutrition and bioenergy feedstock.

  7. Stable, Extreme Temperature, High Radiation, Compact. Low Power Clock Oscillator for Space, Geothermal, Down-Hole & other High Reliability Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Efficient and stable clock signal generation requirements at extreme temperatures (-180C to +450C)and radiation (>250 Krad TID) are not met with the current...

  8. Shear flow stabilization of the hydromagnetic Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Roderick, N.F.; Shumlak, U.; Douglas, M.; Peterkin, R.E. Jr.; Ruden, E.

    1997-01-01

    Numerical simulations have indicated that shear flow may help stabilize the hydromagnetic Rayleigh-Taylor instability in imploding plasma z-pinches. A simple extension to a model presented in Chandrasekhar has been developed to study the linear stability of incompressible plasma subjected to both a shear flow and acceleration. The model has been used to investigate the stability plasma implosion schemes using externally imposed velocity shear which develops from the plasma flow itself. Specific parameters were chosen to represent plasma implosions driven by the Saturn and PBFA-Z, pulsed power generators at Sandia National Laboratories. Results indicate a high shear is necessary to stabilize the z-pinch implosions studied

  9. Wind and Wave Setup Contributions to Extreme Sea Levels at a Tropical High Island: A Stochastic Cyclone Simulation Study for Apia, Samoa

    Directory of Open Access Journals (Sweden)

    Ron Karl Hoeke

    2015-09-01

    Full Text Available Wind-wave contributions to tropical cyclone (TC-induced extreme sea levels are known to be significant in areas with narrow littoral zones, particularly at oceanic islands. Despite this, little information exists in many of these locations to assess the likelihood of inundation, the relative contribution of wind and wave setup to this inundation, and how it may change with sea level rise (SLR, particularly at scales relevant to coastal infrastructure. In this study, we explore TC-induced extreme sea levels at spatial scales on the order of tens of meters at Apia, the capitol of Samoa, a nation in the tropical South Pacific with typical high-island fringing reef morphology. Ensembles of stochastically generated TCs (based on historical information are combined with numerical simulations of wind waves, storm-surge, and wave setup to develop high-resolution statistical information on extreme sea levels and local contributions of wind setup and wave setup. The results indicate that storm track and local morphological details lead to local differences in extreme sea levels on the order of 1 m at spatial scales of less than 1 km. Wave setup is the overall largest contributor at most locations; however, wind setup may exceed wave setup in some sheltered bays. When an arbitrary SLR scenario (+1 m is introduced, overall extreme sea levels are found to modestly decrease relative to SLR, but wave energy near the shoreline greatly increases, consistent with a number of other recent studies. These differences have implications for coastal adaptation strategies.

  10. Quantitative methods for stochastic high frequency spatio-temporal and non-linear analysis: Assessing health effects of exposure to extreme ambient temperature

    Science.gov (United States)

    Liss, Alexander

    Extreme weather events, such as heat waves and cold spells, cause substantial excess mortality and morbidity in the vulnerable elderly population, and cost billions of dollars. The accurate and reliable assessment of adverse effects of extreme weather events on human health is crucial for environmental scientists, economists, and public health officials to ensure proper protection of vulnerable populations and efficient allocation of scarce resources. However, the methodology for the analysis of large national databases is yet to be developed. The overarching objective of this dissertation is to examine the effect of extreme weather on the elderly population of the Conterminous US (ConUS) with respect to seasonality in temperature in different climatic regions by utilizing heterogeneous high frequency and spatio-temporal resolution data. To achieve these goals the author: 1) incorporated dissimilar stochastic high frequency big data streams and distinct data types into the integrated data base for use in analytical and decision support frameworks; 2) created an automated climate regionalization system based on remote sensing and machine learning to define climate regions for the Conterminous US; 3) systematically surveyed the current state of the art and identified existing gaps in the scientific knowledge; 4) assessed the dose-response relationship of exposure to temperature extremes on human health in relatively homogeneous climate regions using different statistical models, such as parametric and non-parametric, contemporaneous and asynchronous, applied to the same data; 5) assessed seasonal peak timing and synchronization delay of the exposure and the disease within the framework of contemporaneous high frequency harmonic time series analysis and modification of the effect by the regional climate; 6) modeled using hyperbolic functional form non-linear properties of the effect of exposure to extreme temperature on human health. The proposed climate

  11. Full Solar Spectrum Light Driven Thermocatalysis with Extremely High Efficiency on Nanostructured Ce Ion Substituted OMS-2 Catalyst for VOCs Purification

    DEFF Research Database (Denmark)

    Hou, J.T.; Li, Y.Z.; Mao, M.Y.

    2015-01-01

    solar spectrum, visible-infrared, and infrared light, the Ce ion substituted OMS-2 catalyst exhibits extremely high catalytic activity and excellent durability for the oxidation of volatile organic pollutants such as benzene, toluene, and acetone. Based on the experimental evidence, we propose a novel...... in a considerable increase of temperature. By combining the efficient photothermal conversion and thermocatalytic activity of the Ce ion substituted OMS-2 catalyst, we carried out full solar spectrum, visible-infrared, and infrared light driven catalysis with extremely high efficiency. Under the irradiation of full...... mechanism of solar light driven thermocatalysis for the Ce ion substituted OMS-2 catalyst. The reason why the Ce ion substituted OMS-2 catalyst exhibits much higher catalytic activity than pure OMS-2 and CeO2/OMS-2 nano composite under the full solar spectrum irradiation is discussed....

  12. Piezoelectric energy harvesting through shear mode operation

    International Nuclear Information System (INIS)

    Malakooti, Mohammad H; Sodano, Henry A

    2015-01-01

    Piezoelectric materials are excellent candidates for use in energy harvesting applications due to their high electromechanical coupling properties that enable them to convert input mechanical energy into useful electric power. The electromechanical coupling coefficient of the piezoelectric material is one of the most significant parameters affecting energy conversion and is dependent on the piezoelectric mode of operation. In most piezoceramics, the d 15 piezoelectric shear coefficient is the highest coefficient compared to the commonly used axial and transverse modes that utilize the d 33 and the d 31 piezoelectric strain coefficients. However, complicated electroding methods and challenges in evaluating the performance of energy harvesting devices operating in the shear mode have slowed research in this area. The shear deformation of a piezoelectric layer can be induced in a vibrating sandwich beam with a piezoelectric core. Here, a model based on Timoshenko beam theory is developed to predict the electric power output from a cantilever piezoelectric sandwich beam under base excitations. It is shown that the energy harvester operating in the shear mode is able to generate ∼50% more power compared to the transverse mode for a numerical case study. Reduced models of both shear and transverse energy harvesters are obtained to determine the optimal load resistance in the system and perform an efficiency comparison between two models with fixed and adaptive resistances. (paper)

  13. Evaluation of shear mounted elastomeric damper

    Science.gov (United States)

    Zorzi, E.; Walton, J.

    1982-01-01

    Viton-70 elastomeric shear mounted damper was built and tested on a T-55 power turbine spool in the rotor's high speed balancing rig. This application of a shear mounted elastomeric damper demonstrated for the first time, the feasibility of using elastomers as the primary rotor damping source in production turbine engine hardware. The shear damper design was selected because it was compatible with actual gas turbine engine radial space constraints, could accommodate both the radial and axial thrust loads present in gas turbine engines, and was capable of controlled axial preload. The shear damper was interchangeable with the production T-55 power turbine roller bearing support so that a direct comparison between the shear damper and the production support structure could be made. Test results show that the Viton-70 elastomer damper operated successfully and provided excellent control of both synchronous and nonsynchronous vibrations through all phases of testing up to the maximum rotor speed of 16,000 rpm. Excellent correlation between the predicted and experienced critical speeds, mode shapes and log decrements for the power turbine rotor and elastomer damper assembly was also achieved.

  14. Ballooning mode stabilization by moderate sheared rotation

    International Nuclear Information System (INIS)

    Hameiri, E.

    1996-01-01