WorldWideScience

Sample records for extremely high sensitivity

  1. Detection and Attribution of Simulated Climatic Extreme Events and Impacts: High Sensitivity to Bias Correction

    Science.gov (United States)

    Sippel, S.; Otto, F. E. L.; Forkel, M.; Allen, M. R.; Guillod, B. P.; Heimann, M.; Reichstein, M.; Seneviratne, S. I.; Kirsten, T.; Mahecha, M. D.

    2015-12-01

    Understanding, quantifying and attributing the impacts of climatic extreme events and variability is crucial for societal adaptation in a changing climate. However, climate model simulations generated for this purpose typically exhibit pronounced biases in their output that hinders any straightforward assessment of impacts. To overcome this issue, various bias correction strategies are routinely used to alleviate climate model deficiencies most of which have been criticized for physical inconsistency and the non-preservation of the multivariate correlation structure. We assess how biases and their correction affect the quantification and attribution of simulated extremes and variability in i) climatological variables and ii) impacts on ecosystem functioning as simulated by a terrestrial biosphere model. Our study demonstrates that assessments of simulated climatic extreme events and impacts in the terrestrial biosphere are highly sensitive to bias correction schemes with major implications for the detection and attribution of these events. We introduce a novel ensemble-based resampling scheme based on a large regional climate model ensemble generated by the distributed weather@home setup[1], which fully preserves the physical consistency and multivariate correlation structure of the model output. We use extreme value statistics to show that this procedure considerably improves the representation of climatic extremes and variability. Subsequently, biosphere-atmosphere carbon fluxes are simulated using a terrestrial ecosystem model (LPJ-GSI) to further demonstrate the sensitivity of ecosystem impacts to the methodology of bias correcting climate model output. We find that uncertainties arising from bias correction schemes are comparable in magnitude to model structural and parameter uncertainties. The present study consists of a first attempt to alleviate climate model biases in a physically consistent way and demonstrates that this yields improved simulations of

  2. Absolute sensitivity calibration of extreme ultraviolet photoresists

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Juanita; Naulleau, Patrick P.; Gullikson, Eric M.; Aquila, Andrew; George, Simi; Niakoula, Dimitra

    2008-05-16

    One of the major challenges facing the commercialization of extreme ultraviolet (EUV) lithography remains simultaneously achieving resist sensitivity, line-edge roughness, and resolution requirement. Sensitivity is of particular concern owing to its direct impact on source power requirements. Most current EUV exposure tools have been calibrated against a resist standard with the actual calibration of the standard resist dating back to EUV exposures at Sandia National Laboratories in the mid 1990s. Here they report on an independent sensitivity calibration of two baseline resists from the SEMATECH Berkeley MET tool performed at the Advanced Light Source Calibrations and Standards beamline. The results show the baseline resists to be approximately 1.9 times faster than previously thought based on calibration against the long standing resist standard.

  3. Highly sensitive visible-blind extreme ultraviolet Ni/4H-SiC Schottky photodiodes with large detection area.

    Science.gov (United States)

    Hu, Jun; Xin, Xiaobin; Zhao, Jian H; Yan, Feng; Guan, Bing; Seely, John; Kjornrattanawanich, Benjawan

    2006-06-01

    Ni/4H-SiC Schottky photodiodes of 5 mm x 5 mm area have been fabricated and characterized. The photodiodes show less than 0.1 pA dark current at -4 V and an ideality factor of 1.06. A quantum efficiency (QE) between 3 and 400 nm has been calibrated and compared with Si photodiodes optimized for extreme ultraviolet (EUV) detection. In the EUV region, the QE of SiC detectors increases from 0.14 electrons/photon at 120 nm to 30 electrons/photon at 3 nm. The mean energy of electron-hole pair generation of 4H-SiC estimated from the spectral QE is found to be 7.9 eV.

  4. Optimised, low cost, low field dedicated extremity MRI is highly specific and sensitive for synovitis and bone erosions in rheumatoid arthritis wrist and finger joints: comparison with conventional high field MRI and radiography

    DEFF Research Database (Denmark)

    Ejbjerg, B.J; Narvestad, E; Jacobsen, S;

    2005-01-01

    of the wrist and 2nd-5th MCP joints was performed on a low field MRI unit (0.2 T Esaote Artoscan) and a high field MRI unit (1.0 T Siemens Impact) on 2 subsequent days. MRI was performed and evaluated according to OMERACT recommendations. Additionally, conventional x ray, clinical, and biochemical examinations......OBJECTIVE: To evaluate a low field dedicated extremity MRI unit for detection of bone erosions, synovitis, and bone marrow oedema in wrist and metacarpophalangeal (MCP) joints, with a high field MRI unit as the standard reference. METHODS: In 37 patients with RA and 28 healthy controls MRI...... were performed. In an initial low field MRI 'sequence selection phase', based on a subset of 10 patients and 10 controls, sequences for comparison with high field MRI were selected. RESULTS: With high field, spin echo MRI considered as the reference method, the sensitivity, specificity, and accuracy...

  5. Lower extremity angle measurement with accelerometers - error and sensitivity analysis

    NARCIS (Netherlands)

    Willemsen, Antoon Th.M.; Frigo, Carlo; Boom, Herman B.K.

    1991-01-01

    The use of accelerometers for angle assessment of the lower extremities is investigated. This method is evaluated by an error-and-sensitivity analysis using healthy subject data. Of three potential error sources (the reference system, the accelerometers, and the model assumptions) the last is found

  6. Extreme Sensitivity of Botulinum Neurotoxin Domains Toward Mild Agitation

    Science.gov (United States)

    2009-09-01

    stirring, as was carboxypeptidase B, another zinc-containing enzyme. However, the metalloproteins anthrax lethal factor and alcohol dehydrogenase were...subjected to identical agitation conditions. Being metalloproteins , these BoNT LCs were again extremely sensitive to mechanical agitation when compared with

  7. Extreme sensitivity biosensing platform based on hyperbolic metamaterials

    Science.gov (United States)

    Sreekanth, Kandammathe Valiyaveedu; Alapan, Yunus; ElKabbash, Mohamed; Ilker, Efe; Hinczewski, Michael; Gurkan, Umut A.; De Luca, Antonio; Strangi, Giuseppe

    2016-01-01

    Optical sensor technology offers significant opportunities in the field of medical research and clinical diagnostics, particularly for the detection of small numbers of molecules in highly diluted solutions. Several methods have been developed for this purpose, including label-free plasmonic biosensors based on metamaterials. However, the detection of lower-molecular-weight (<500 Da) biomolecules in highly diluted solutions is still a challenging issue owing to their lower polarizability. In this context, we have developed a miniaturized plasmonic biosensor platform based on a hyperbolic metamaterial that can support highly confined bulk plasmon guided modes over a broad wavelength range from visible to near infrared. By exciting these modes using a grating-coupling technique, we achieved different extreme sensitivity modes with a maximum of 30,000 nm per refractive index unit (RIU) and a record figure of merit (FOM) of 590. We report the ability of the metamaterial platform to detect ultralow-molecular-weight (244 Da) biomolecules at picomolar concentrations using a standard affinity model streptavidin–biotin. PMID:27019384

  8. Extreme sensitivity biosensing platform based on hyperbolic metamaterials

    Science.gov (United States)

    Sreekanth, Kandammathe Valiyaveedu; Alapan, Yunus; Elkabbash, Mohamed; Ilker, Efe; Hinczewski, Michael; Gurkan, Umut A.; de Luca, Antonio; Strangi, Giuseppe

    2016-06-01

    Optical sensor technology offers significant opportunities in the field of medical research and clinical diagnostics, particularly for the detection of small numbers of molecules in highly diluted solutions. Several methods have been developed for this purpose, including label-free plasmonic biosensors based on metamaterials. However, the detection of lower-molecular-weight (solutions is still a challenging issue owing to their lower polarizability. In this context, we have developed a miniaturized plasmonic biosensor platform based on a hyperbolic metamaterial that can support highly confined bulk plasmon guided modes over a broad wavelength range from visible to near infrared. By exciting these modes using a grating-coupling technique, we achieved different extreme sensitivity modes with a maximum of 30,000 nm per refractive index unit (RIU) and a record figure of merit (FOM) of 590. We report the ability of the metamaterial platform to detect ultralow-molecular-weight (244 Da) biomolecules at picomolar concentrations using a standard affinity model streptavidin-biotin.

  9. High-Sensitivity Spectrophotometry.

    Science.gov (United States)

    Harris, T. D.

    1982-01-01

    Selected high-sensitivity spectrophotometric methods are examined, and comparisons are made of their relative strengths and weaknesses and the circumstances for which each can best be applied. Methods include long path cells, noise reduction, laser intracavity absorption, thermocouple calorimetry, photoacoustic methods, and thermo-optical methods.…

  10. Highly Sensitive Optical Receivers

    CERN Document Server

    Schneider, Kerstin

    2006-01-01

    Highly Sensitive Optical Receivers primarily treats the circuit design of optical receivers with external photodiodes. Continuous-mode and burst-mode receivers are compared. The monograph first summarizes the basics of III/V photodetectors, transistor and noise models, bit-error rate, sensitivity and analog circuit design, thus enabling readers to understand the circuits described in the main part of the book. In order to cover the topic comprehensively, detailed descriptions of receivers for optical data communication in general and, in particular, optical burst-mode receivers in deep-sub-µm CMOS are presented. Numerous detailed and elaborate illustrations facilitate better understanding.

  11. Estimation of resist sensitivity for extreme ultraviolet lithography using an electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Tomoko Gowa, E-mail: ohyama.tomoko@qst.go.jp [Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Oshima, Akihiro; Tagawa, Seiichi, E-mail: tagawa@sanken.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2016-08-15

    It is a challenge to obtain sufficient extreme ultraviolet (EUV) exposure time for fundamental research on developing a new class of high sensitivity resists for extreme ultraviolet lithography (EUVL) because there are few EUV exposure tools that are very expensive. In this paper, we introduce an easy method for predicting EUV resist sensitivity by using conventional electron beam (EB) sources. If the chemical reactions induced by two ionizing sources (EB and EUV) are the same, the required absorbed energies corresponding to each required exposure dose (sensitivity) for the EB and EUV would be almost equivalent. Based on this theory, we calculated the resist sensitivities for the EUV/soft X-ray region. The estimated sensitivities were found to be comparable to the experimentally obtained sensitivities. It was concluded that EB is a very useful exposure tool that accelerates the development of new resists and sensitivity enhancement processes for 13.5 nm EUVL and 6.x nm beyond-EUVL (BEUVL).

  12. Extreme parameter sensitivity of transient persistence in spatially coupled ecological systems

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper investigates persistence of transient dynamics depending on parameters in spatially coupled ecological systems. We emphasis that the persistence time can be obtained by populations of species or Lyapunov exponents of transient dynamics. It is found that extreme sensitive dependence of persistence on parameters occurs commonly in ecological models. A non-zero uncertainty exponent is used to characterize the high sensitivity in a reasonable parameter region. The result of a small uncertainty expone...

  13. Extreme sensitivity and the practical implications of risk assessment thresholds.

    Science.gov (United States)

    Bukowski, John; Nicolich, Mark; Lewis, R Jeffrey

    2013-01-01

    Traditional risk-assessment theory assumes the existence of a threshold for non-cancer health effects. However, a recent trend in environmental regulation rejects this assumption in favor of non-threshold linearity for these endpoints. This trend is driven largely by two related concepts: (1) a theoretical assumption of wide-ranging human sensitivity, and (2) inability to detect thresholds in epidemiologic models. Wide-ranging sensitivity assumes a subpopulation with extreme background vulnerability, so that even trivial environmental exposures are hazardous to someone somewhere. We use examples from the real world of clinical medicine to show that this theoretical assumption is inconsistent with the biology of mammalian systems and the realities of patient care. Using examples from particulate-matter air-pollution research, we further show that failure to reject linearity is usually driven by statistical rather than biological considerations, and that nonlinear/threshold models often have a similar or better fit than their linear counterparts. This evidence suggests the existence of practical, real-world thresholds for most chemical exposures.

  14. Estimation of resist sensitivity for extreme ultraviolet lithography using an electron beam

    Directory of Open Access Journals (Sweden)

    Tomoko Gowa Oyama

    2016-08-01

    Full Text Available It is a challenge to obtain sufficient extreme ultraviolet (EUV exposure time for fundamental research on developing a new class of high sensitivity resists for extreme ultraviolet lithography (EUVL because there are few EUV exposure tools that are very expensive. In this paper, we introduce an easy method for predicting EUV resist sensitivity by using conventional electron beam (EB sources. If the chemical reactions induced by two ionizing sources (EB and EUV are the same, the required absorbed energies corresponding to each required exposure dose (sensitivity for the EB and EUV would be almost equivalent. Based on this theory, we calculated the resist sensitivities for the EUV/soft X-ray region. The estimated sensitivities were found to be comparable to the experimentally obtained sensitivities. It was concluded that EB is a very useful exposure tool that accelerates the development of new resists and sensitivity enhancement processes for 13.5 nm EUVL and 6.x nm beyond-EUVL (BEUVL.

  15. Relativistic QED Plasma at Extremely High Temperature

    CERN Document Server

    Masood, Samina S

    2016-01-01

    Renormalization scheme of QED (Quantum Electrodynamics) at high temperatures is used to calculate the effective parameters of relativistic plasma in the early universe. Renormalization constants of QED play role of effective parameters of the theory and can be used to determine the collective behavior of the medium. We explicitly show that the dielectric constant, magnetic reluctivity, Debye length and the plasma frequency depend on temperature in the early universe. Propagation speed, refractive index, plasma frequency and Debye shielding length of a QED plasma are computed at extremely high temperatures in the early universe. We also found the favorable conditions for the relativistic plasma from this calculations.

  16. Extreme Transients in the High Energy Universe

    Science.gov (United States)

    Kouveliotou, Chryssa

    2013-01-01

    The High Energy Universe is rich in diverse populations of objects spanning the entire cosmological (time)scale, from our own present-day Milky Way to the re-ionization epoch. Several of these are associated with extreme conditions irreproducible in laboratories on Earth. Their study thus sheds light on the behavior of matter under extreme conditions, such as super-strong magnetic fields (in excess of 10^14 G), high gravitational potentials (e.g., Super Massive Black Holes), very energetic collimated explosions resulting in relativistic jet flows (e.g., Gamma Ray Bursts, exceeding 10^53 ergs). In the last thirty years, my work has been mostly focused on two apparently different but potentially linked populations of such transients: magnetars (highly magnetized neutron stars) and Gamma Ray Bursts (strongly beamed emission from relativistic jets), two populations that constitute unique astrophysical laboratories, while also giving us the tools to probe matter conditions in the Universe to redshifts beyond z=10, when the first stars and galaxies were assembled. I did not make this journey alone I have either led or participated in several international collaborations studying these phenomena in multi-wavelength observations; solitary perfection is not sufficient anymore in the world of High Energy Astrophysics. I will describe this journey, present crucial observational breakthroughs, discuss key results and muse on the future of this field.

  17. Extremely high frequency RF effects on electronics.

    Energy Technology Data Exchange (ETDEWEB)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  18. Extremely compliant and highly stretchable patterned graphene

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Shuze; Huang, Yinjun; Li, Teng, E-mail: LiT@umd.edu [Department of Mechanical Engineering and Maryland NanoCenter, University of Maryland, College Park, Maryland 20742 (United States)

    2014-04-28

    Graphene is intrinsically ultra-stiff in its plane. Its huge mechanical mismatch when interfacing with ultra-compliant biological tissues and elastomers (7–9 orders of magnitude difference in stiffness) poses significant challenge in its application to functional devices such as epidermal electronics and sensing prosthesis. We offer a feasible and promising solution to this significant challenge by suitably patterning graphene into a nanomesh. Through systematic coarse-grained simulations, we show that graphene nanomesh can be made extremely compliant with nearly zero stiffness up to about 20% elongation and then remain highly compliant up to about 50% elongation.

  19. High-Sensitivity Magnetization Measurements

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The three most common instruments for high-sensitivity magnetization measurements (the vibrating-sample magnetometer, the alternating gradient magnetometer, and the SQUID magne tometer) are described and their limiting sensitivities are discussed. The advantages and disad vantages of each are described. Magnetometers using micro-machined force detectors are briefly mentioned.

  20. Extreme Precipitation and High-Impact Landslides

    Science.gov (United States)

    Kirschbaum, Dalia; Adler, Robert; Huffman, George; Peters-Lidard, Christa

    2012-01-01

    It is well known that extreme or prolonged rainfall is the dominant trigger of landslides; however, there remain large uncertainties in characterizing the distribution of these hazards and meteorological triggers at the global scale. Researchers have evaluated the spatiotemporal distribution of extreme rainfall and landslides at local and regional scale primarily using in situ data, yet few studies have mapped rainfall-triggered landslide distribution globally due to the dearth of landslide data and consistent precipitation information. This research uses a newly developed Global Landslide Catalog (GLC) and a 13-year satellite-based precipitation record from Tropical Rainfall Measuring Mission (TRMM) data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurence of precipitation and rainfall-triggered landslides globally. The GLC, available from 2007 to the present, contains information on reported rainfall-triggered landslide events around the world using online media reports, disaster databases, etc. When evaluating this database, we observed that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan Arc, and central-eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This research also considers the sources for this extreme rainfall, citing

  1. Extreme Environment High Temperature Communication Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop and demonstrate a communications system capable of operation at extreme temperatures and pressures in hostile and corrosive...

  2. Variability of temperature sensitivity of extreme precipitation from a regional-to-local impact scale perspective

    Science.gov (United States)

    Schroeer, K.; Kirchengast, G.

    2016-12-01

    Relating precipitation intensity to temperature is a popular approach to assess potential changes of extreme events in a warming climate. Potential increases in extreme rainfall induced hazards, such as flash flooding, serve as motivation. It has not been addressed whether the temperature-precipitation scaling approach is meaningful on a regional to local level, where the risk of climate and weather impact is dealt with. Substantial variability of temperature sensitivity of extreme precipitation has been found that results from differing methodological assumptions as well as from varying climatological settings of the study domains. Two aspects are consistently found: First, temperature sensitivities beyond the expected consistency with the Clausius-Clapeyron (CC) equation are a feature of short-duration, convective, sub-daily to sub-hourly high-percentile rainfall intensities at mid-latitudes. Second, exponential growth ceases or reverts at threshold temperatures that vary from region to region, as moisture supply becomes limited. Analyses of pooled data, or of single or dispersed stations over large areas make it difficult to estimate the consequences in terms of local climate risk. In this study we test the meaningfulness of the scaling approach from an impact scale perspective. Temperature sensitivities are assessed using quantile regression on hourly and sub-hourly precipitation data from 189 stations in the Austrian south-eastern Alpine region. The observed scaling rates vary substantially, but distinct regional and seasonal patterns emerge. High sensitivity exceeding CC-scaling is seen on the 10-minute scale more than on the hourly scale, in storms shorter than 2 hours duration, and in shoulder seasons, but it is not necessarily a significant feature of the extremes. To be impact relevant, change rates need to be linked to absolute rainfall amounts. We show that high scaling rates occur in lower temperature conditions and thus have smaller effect on absolute

  3. Sensitivity of UK butterflies to local climatic extremes: which life stages are most at risk?

    Science.gov (United States)

    McDermott Long, Osgur; Warren, Rachel; Price, Jeff; Brereton, Tom M; Botham, Marc S; Franco, Aldina M A

    2017-01-01

    There is growing recognition as to the importance of extreme climatic events (ECEs) in determining changes in species populations. In fact, it is often the extent of climate variability that determines a population's ability to persist at a given site. This study examined the impact of ECEs on the resident UK butterfly species (n = 41) over a 37-year period. The study investigated the sensitivity of butterflies to four extremes (drought, extreme precipitation, extreme heat and extreme cold), identified at the site level, across each species' life stages. Variations in the vulnerability of butterflies at the site level were also compared based on three life-history traits (voltinism, habitat requirement and range). This is the first study to examine the effects of ECEs at the site level across all life stages of a butterfly, identifying sensitive life stages and unravelling the role life-history traits play in species sensitivity to ECEs. Butterfly population changes were found to be primarily driven by temperature extremes. Extreme heat was detrimental during overwintering periods and beneficial during adult periods and extreme cold had opposite impacts on both of these life stages. Previously undocumented detrimental effects were identified for extreme precipitation during the pupal life stage for univoltine species. Generalists were found to have significantly more negative associations with ECEs than specialists. With future projections of warmer, wetter winters and more severe weather events, UK butterflies could come under severe pressure given the findings of this study.

  4. Sensitivity enhancement of chemically amplified resists and performance study using extreme ultraviolet interference lithography

    Science.gov (United States)

    Buitrago, Elizabeth; Nagahara, Seiji; Yildirim, Oktay; Nakagawa, Hisashi; Tagawa, Seiichi; Meeuwissen, Marieke; Nagai, Tomoki; Naruoka, Takehiko; Verspaget, Coen; Hoefnagels, Rik; Rispens, Gijsbert; Shiraishi, Gosuke; Terashita, Yuichi; Minekawa, Yukie; Yoshihara, Kosuke; Oshima, Akihiro; Vockenhuber, Michaela; Ekinci, Yasin

    2016-07-01

    Extreme ultraviolet lithography (EUVL, λ=13.5 nm) is the most promising candidate to manufacture electronic devices for future technology nodes in the semiconductor industry. Nonetheless, EUVL still faces many technological challenges as it moves toward high-volume manufacturing (HVM). A key bottleneck from the tool design and performance point of view has been the development of an efficient, high-power EUV light source for high throughput production. Consequently, there has been extensive research on different methodologies to enhance EUV resist sensitivity. Resist performance is measured in terms of its ultimate printing resolution, line width roughness (LWR), sensitivity [S or best energy (BE)], and exposure latitude (EL). However, there are well-known fundamental trade-off relationships (line width roughness, resolution and sensitivity trade-off) among these parameters for chemically amplified resists (CARs). We present early proof-of-principle results for a multiexposure lithography process that has the potential for high sensitivity enhancement without compromising other important performance characteristics by the use of a "Photosensitized Chemically Amplified Resist™" (PSCAR™). With this method, we seek to increase the sensitivity by combining a first EUV pattern exposure with a second UV-flood exposure (λ=365 nm) and the use of a PSCAR. In addition, we have evaluated over 50 different state-of-the-art EUV CARs. Among these, we have identified several promising candidates that simultaneously meet sensitivity, LWR, and EL high-performance requirements with the aim of resolving line space (L/S) features for the 7- and 5-nm logic node [16- and 13-nm half-pitch (HP), respectively] for HVM. Several CARs were additionally found to be well resolved down to 12- and 11-nm HP with minimal pattern collapse and bridging, a remarkable feat for CARs. Finally, the performance of two negative tone state-of-the-art alternative resist platforms previously investigated

  5. SENSITIVITY OF COMPUTER ESTHESIOMETRY ON DISTAL PARTS OF THE UPPER EXTREMITIES AT PATIENTS WITH HEREDITARY NEUROPATHY CHARCOT-MARIE-TOOTH

    Directory of Open Access Journals (Sweden)

    NATALIA SHNAYDER

    2011-11-01

    Full Text Available The purpose: to define the diagnostic importance of computer esthesiometry for use in diagnostics of hereditary neuropathy with primary defeat of myelin sheath of peripheral nerves of the upper extremities. Materials and methods: 47 individuals in a condition of relative health (control group from 21 to 50 years, comparable group % 40 patients from 6 to 81 years, with hereditary neuropathy Charcot%Marie%Tooth (CMT. Vibrating sensitivity was investigated by means of computer vibrometer “Vibrotester MBN” VТ%02%1 (MBN, RF in a wide strip of frequencies of vibration (8, 16, 32, 64, 125, 250, 500 Hz. Statistical data processing of research was lead by means of programs STATISTICA v. 7.0 (StatSoft, USA. Results and discussion: We compared received corridors vibrating sensitivity on the upper extremities for healthy volunteers with those at patients with CMT. Statistically significant increase of vibration sensitivity thresholds in a wide range of vibration frequencies on upper extremities and at patients with CMT versus healthy volunteers is shown. Computer esthesiometry method demonstrates high sensitivity in diagnostics of hereditary neuropathy with primary damage of myelin sheath of peripheral nerves of upper extremities on an example of CMT.

  6. Extreme Thermal Sensitivity and Pain-Induced Sensitization in a Fibromyalgia Patient

    Directory of Open Access Journals (Sweden)

    Fong Wong

    2010-01-01

    Full Text Available During the course of a psychophysical study of fibromyalgia syndrome (FMS, one of the subjects with a long history of headache and facial pain displayed an extraordinarily severe thermal allodynia. Her stimulus-response function for ratings of cutaneous heat pain revealed a sensitivity clearly beyond that of normal controls and most FMS subjects. Specially designed psychophysical methods showed that heat sensitivity sometimes increased dramatically within a series of stimuli. Prior exposure to moderate heat pain served as a trigger for allodynic ratings of series of normally neutral thermal stimulation. These observations document a case of breakthrough pain sensitivity with implications for mechanisms of FMS pain.

  7. Common lower extremity injuries in female high school soccer ...

    African Journals Online (AJOL)

    Common lower extremity injuries in female high school soccer players in ... and fitness and not wearing shin guards are risk factors for injury in female soccer ... do not differ from the studies done in male adolescent and adult soccer players.

  8. Advanced Extremely High Frequency Satellite (AEHF)

    Science.gov (United States)

    2015-12-01

    High Frequency Satellite (AEHF) is a joint service satellite communications system that provides global , survivable, secure, protected, and jam...three satellites fully integrated into the Milstar constellation. October 2014: On October 16, 2014, the program received PEO certification for the...Combined Orbital Operation, Logistics Sustainment ( COOLS ) contract, it will be completed and coordinated in CY 2016. The AEHF system being sustained

  9. Extremely high Q-factor toroidal metamaterials

    CERN Document Server

    Basharin, Alexey A; Volsky, Nikita; Kafesaki, Maria; Economou, Eleftherios N; Ustinov, Alexey V

    2016-01-01

    We demonstrate that, owing to the unique topology of the toroidal dipolar mode, its electric/magnetic field can be spatially confined within subwavelength, externally accessible regions of the metamolecules, which makes the toroidal planar metamaterials a viable platform for high Q-factor resonators due to interfering toroidal and other dipolar modes in metamolecules.

  10. Extreme sensitivity of circular dichroism to long-range excitonic couplings in helical supramolecular assemblies.

    Science.gov (United States)

    van Dijk, Leon; Bobbert, Peter A; Spano, Frank C

    2010-01-21

    Circular dichroism (CD) spectroscopy is an ideal tool for studying the self-assembly of helical supramolecular assemblies since it is very sensitive to extended excitonic couplings between chiral chromophores. We show that the CD spectrum retains its high sensitivity to long-range interactions even in the presence of extreme disorder and strong interaction with vibrations when excitations are mainly localized on individual molecules. We derive a universal expression for the first moment of the CD spectrum of helical assemblies in terms of a modulated sum over excitonic couplings, which is independent of the strength of the energetic disorder, the spatial correlation of the disorder, and the strength of the interaction with vibrations. This demonstrates that excitonic couplings can be directly extracted from experimental CD spectra without having information about the energetic disorder and vibrational interactions. We apply our results to helical assemblies of functionalized chiral oligo(p-phenylenevinylene) molecules and show that existing theoretical values for the excitonic couplings should be adapted in order to obtain agreement with the experimental CD spectrum.

  11. Extreme Sensitivity of Room-Temperature Photoelectric Effect for Terahertz Detection.

    Science.gov (United States)

    Huang, Zhiming; Zhou, Wei; Tong, Jinchao; Huang, Jingguo; Ouyang, Cheng; Qu, Yue; Wu, Jing; Gao, Yanqing; Chu, Junhao

    2016-01-01

    Extreme sensitivity of room-temperature photoelectric effect for terahertz (THz) detection is demonstrated by generating extra carriers in an electromagnetic induced well located at the semiconductor, using a wrapped metal-semiconductor-metal configuration. The excellent performance achieved with THz detectors shows great potential to open avenues for THz detection.

  12. Workshop on extremely high energy density plasmas and their diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Shozo (ed.)

    2001-09-01

    Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)

  13. High sensitivity RNA pseudoknot prediction

    OpenAIRE

    Huang, Xiaolu; Ali, Hesham

    2006-01-01

    Most ab initio pseudoknot predicting methods provide very few folding scenarios for a given RNA sequence and have low sensitivities. RNA researchers, in many cases, would rather sacrifice the specificity for a much higher sensitivity for pseudoknot detection. In this study, we introduce the Pseudoknot Local Motif Model and Dynamic Partner Sequence Stacking (PLMM_DPSS) algorithm which predicts all PLM model pseudoknots within an RNA sequence in a neighboring-region-interference-free fashion. T...

  14. High resolution spectroscopy of six new extreme helium stars

    Science.gov (United States)

    Heber, U.; Jones, G.; Drilling, J. S.

    1986-01-01

    High resolution spectra of six newly discovered extreme helium stars are presented. LSS 5121 is shown to be a spectroscopical twin of the hot extreme helium star HD 160641. A preliminary LTE analysis of LSS 3184 yielded an effective temperature of 22,000 K and a surface gravity of log g = 3.2. Four stars form a new subgroup, classified by sharp-lined He I spectra and pronounced O II spectra, and it is conjectured that these lie close to the Eddington limit. The whole group of extreme helium stars apparently is inhomogeneous with respect to luminosity to mass ratio and chemical composition.

  15. High sensitivity RNA pseudoknot prediction.

    Science.gov (United States)

    Huang, Xiaolu; Ali, Hesham

    2007-01-01

    Most ab initio pseudoknot predicting methods provide very few folding scenarios for a given RNA sequence and have low sensitivities. RNA researchers, in many cases, would rather sacrifice the specificity for a much higher sensitivity for pseudoknot detection. In this study, we introduce the Pseudoknot Local Motif Model and Dynamic Partner Sequence Stacking (PLMM_DPSS) algorithm which predicts all PLM model pseudoknots within an RNA sequence in a neighboring-region-interference-free fashion. The PLM model is derived from the existing Pseudobase entries. The innovative DPSS approach calculates the optimally lowest stacking energy between two partner sequences. Combined with the Mfold, PLMM_DPSS can also be used in predicting complicated pseudoknots. The test results of PLMM_DPSS, PKNOTS, iterated loop matching, pknotsRG and HotKnots with Pseudobase sequences have shown that PLMM_DPSS is the most sensitive among the five methods. PLMM_DPSS also provides manageable pseudoknot folding scenarios for further structure determination.

  16. Extreme states of matter high energy density physics

    CERN Document Server

    Fortov, Vladimir E

    2016-01-01

    With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams,electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets, and in many other situations characterized by extremely high pressures and temperatures.Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics, and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview. This second edition is thoroughly revised and expanded, in particular with new material on high energy-density physics, nuclear explosions and other nuclear transformation processes.

  17. Effects of ocean acidification increase embryonic sensitivity to thermal extremes in Atlantic cod, Gadus morhua.

    Science.gov (United States)

    Dahlke, Flemming T; Leo, Elettra; Mark, Felix C; Pörtner, Hans-Otto; Bickmeyer, Ulf; Frickenhaus, Stephan; Storch, Daniela

    2017-04-01

    Thermal tolerance windows serve as a powerful tool for estimating the vulnerability of marine species and their life stages to increasing temperature means and extremes. However, it remains uncertain to which extent additional drivers, such as ocean acidification, modify organismal responses to temperature. This study investigated the effects of CO2 -driven ocean acidification on embryonic thermal sensitivity and performance in Atlantic cod, Gadus morhua, from the Kattegat. Fertilized eggs were exposed to factorial combinations of two PCO2 conditions (400 μatm vs. 1100 μatm) and five temperature treatments (0, 3, 6, 9 and 12 °C), which allow identifying both lower and upper thermal tolerance thresholds. We quantified hatching success, oxygen consumption (MO2 ) and mitochondrial functioning of embryos as well as larval morphometrics at hatch and the abundance of acid-base-relevant ionocytes on the yolk sac epithelium of newly hatched larvae. Hatching success was high under ambient spawning conditions (3-6 °C), but decreased towards both cold and warm temperature extremes. Elevated PCO2 caused a significant decrease in hatching success, particularly at cold (3 and 0 °C) and warm (12 °C) temperatures. Warming imposed limitations to MO2 and mitochondrial capacities. Elevated PCO2 stimulated MO2 at cold and intermediate temperatures, but exacerbated warming-induced constraints on MO2 , indicating a synergistic interaction with temperature. Mitochondrial functioning was not affected by PCO2 . Increased MO2 in response to elevated PCO2 was paralleled by reduced larval size at hatch. Finally, ionocyte abundance decreased with increasing temperature, but did not differ between PCO2 treatments. Our results demonstrate increased thermal sensitivity of cod embryos under future PCO2 conditions and suggest that acclimation to elevated PCO2 requires reallocation of limited resources at the expense of embryonic growth. We conclude that ocean acidification constrains

  18. Extremely High Q-factor metamaterials due to Anapole Excitation

    CERN Document Server

    Basharin, Alexey A; Volsky, Nikita; Kafesaki, Maria; Economou, Eleftherios N

    2016-01-01

    We demonstrate that ideal anapole metamaterials have infinite Q-factor. We have designed and fabricated a metamaterial consisting of planar metamolecules which exhibit anapole behavior in the sense that the electric dipole radiation is almost cancelled by the toroidal dipole one, producing thus an extremely high Q-factor at the resonance frequency. The size of the system, at the mm range, and the parasitic magnetic quadrupole radiation are the factors limiting the size of the Q-factor. In spite of the very low radiation losses the local fields at the metamolecules are extremely high, of the order of higher than the external incoming field.

  19. High sensitivity radon emanation measurements.

    Science.gov (United States)

    Zuzel, G; Simgen, H

    2009-05-01

    The presented radon detection technique employs miniaturized ultra-low background proportional counters. (222)Rn samples are purified, mixed with a counting gas and filled into a counter using a special glass vacuum line. The absolute sensitivity of the system is estimated to be 40 microBq (20 (222)Rn atoms). For emanation investigations two metal sealed stainless steel vessels and several glass vials are available. Taking into account their blank contributions, measurements at a minimum detectable activity of about 100 microBq can be performed.

  20. Cryogenic High-Sensitivity Magnetometer

    Science.gov (United States)

    Day, Peter; Chui, Talso; Goodstein, David

    2005-01-01

    A proposed magnetometer for use in a cryogenic environment would be sensitive enough to measure a magnetic-flux density as small as a picogauss (10(exp -16) Tesla). In contrast, a typical conventional flux-gate magnetometer cannot measure a magnetic-flux density smaller that about 1 microgauss (10(exp -10) Tesla). One version of this device, for operation near the low end of the cryogenic temperature range, would include a piece of a paramagnetic material on a platform, the temperature of which would be controlled with a periodic variation. The variation in temperature would be measured by use of a conventional germanium resistance thermometer. A superconducting coil would be wound around the paramagnetic material and coupled to a superconducting quantum interference device (SQUID) magnetometer.

  1. Is Extremely High Life Satisfaction during Adolescence Advantageous?

    Science.gov (United States)

    Suldo, Shannon M.; Huebner, E. Scott

    2006-01-01

    This study examined whether extremely high life satisfaction was associated with adaptive functioning or maladaptive functioning. Six hundred ninety-eight secondary level students completed the Students' Life Satisfaction Scale [Huebner, 1991a, School Psychology International, 12, pp. 231-240], Youth Self-Report of the Child Behavior Checklist…

  2. common lower extremity injuries in female high school soccer ...

    African Journals Online (AJOL)

    studies on soccer concentrate on male soccer players.5-7 Although participation ... the prevalence and injury profile of lower extremity injuries in female high school ... An extended duration of skills (p=0.0001) and fitness (p=0.02) training in this .... The results (Table V) show that shin guards were associated with a reduced ...

  3. Extreme high-head portables provide more pumping options

    Energy Technology Data Exchange (ETDEWEB)

    Fiscor, S.

    2006-10-15

    Three years ago, Godwin Pumps, one of the largest manufacturers of portable pumps, introduced its Extreme Duty High Lift (HL) series of pumps and more mines are finding unique applications for these pumps. The Extreme HL series is a range single-stage Dri-Prime pumps with heads up to 600 feet and flows up to 5,000 gallons per minute. The American Coal Co.'s Galatia mine, an underground longwall mine in southern Illinois, used an HL 160 to replace a multiple-staged centrifugal pump. It provided Galatia with 1,500 gpm at 465 ft. 3 photos.

  4. Nano-textured high sensitivity ion sensitive field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Hajmirzaheydarali, M.; Sadeghipari, M.; Akbari, M.; Shahsafi, A.; Mohajerzadeh, S., E-mail: mohajer@ut.ac.ir [Thin Film and Nanoelectronics Lab, Nanoelectronics Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran 143957131 (Iran, Islamic Republic of)

    2016-02-07

    Nano-textured gate engineered ion sensitive field effect transistors (ISFETs), suitable for high sensitivity pH sensors, have been realized. Utilizing a mask-less deep reactive ion etching results in ultra-fine poly-Si features on the gate of ISFET devices where spacing of the order of 10 nm and less is achieved. Incorporation of these nano-sized features on the gate is responsible for high sensitivities up to 400 mV/pH in contrast to conventional planar structures. The fabrication process for this transistor is inexpensive, and it is fully compatible with standard complementary metal oxide semiconductor fabrication procedure. A theoretical modeling has also been presented to predict the extension of the diffuse layer into the electrolyte solution for highly featured structures and to correlate this extension with the high sensitivity of the device. The observed ultra-fine features by means of scanning electron microscopy and transmission electron microscopy tools corroborate the theoretical prediction.

  5. High resolution modelling of extreme precipitation events in urban areas

    Science.gov (United States)

    Siemerink, Martijn; Volp, Nicolette; Schuurmans, Wytze; Deckers, Dave

    2015-04-01

    The present day society needs to adjust to the effects of climate change. More extreme weather conditions are expected, which can lead to longer periods of drought, but also to more extreme precipitation events. Urban water systems are not designed for such extreme events. Most sewer systems are not able to drain the excessive storm water, causing urban flooding. This leads to high economic damage. In order to take appropriate measures against extreme urban storms, detailed knowledge about the behaviour of the urban water system above and below the streets is required. To investigate the behaviour of urban water systems during extreme precipitation events new assessment tools are necessary. These tools should provide a detailed and integral description of the flow in the full domain of overland runoff, sewer flow, surface water flow and groundwater flow. We developed a new assessment tool, called 3Di, which provides detailed insight in the urban water system. This tool is based on a new numerical methodology that can accurately deal with the interaction between overland runoff, sewer flow and surface water flow. A one-dimensional model for the sewer system and open channel flow is fully coupled to a two-dimensional depth-averaged model that simulates the overland flow. The tool uses a subgrid-based approach in order to take high resolution information of the sewer system and of the terrain into account [1, 2]. The combination of using the high resolution information and the subgrid based approach results in an accurate and efficient modelling tool. It is now possible to simulate entire urban water systems using extreme high resolution (0.5m x 0.5m) terrain data in combination with a detailed sewer and surface water network representation. The new tool has been tested in several Dutch cities, such as Rotterdam, Amsterdam and The Hague. We will present the results of an extreme precipitation event in the city of Schiedam (The Netherlands). This city deals with

  6. Extremely high Q -factor metamaterials due to anapole excitation

    Science.gov (United States)

    Basharin, Alexey A.; Chuguevsky, Vitaly; Volsky, Nikita; Kafesaki, Maria; Economou, Eleftherios N.

    2017-01-01

    We have designed and fabricated a metamaterial consisting of planar metamolecules which exhibit unusual, almost perfect anapole behavior in the sense that the electric dipole radiation is almost canceled by the toroidal dipole one, producing thus an extremely high Q -factor at the resonance frequency. Thus we have demonstrated theoretically and experimentally that metamaterials approaching ideal anapole behavior have very high Q -factor. The size of the system, at the millimeter range, and the parasitic magnetic quadrupole radiation are the factors limiting the size of the Q -factor. In spite of the very low radiation losses the estimated local fields at the metamolecules are extremely high, of the order of 104 higher than the external incoming field.

  7. Towards Extremely Sensitive Ultraviolet-Light Sensors Employing Photochromic Optical Microfiber

    Directory of Open Access Journals (Sweden)

    George Y. Chen

    2015-01-01

    Full Text Available We propose an extremely responsive ultraviolet-light sensor (−1.39 × 106 dB/(W/cm2 based on photochromic optical microfiber. A densely packed planar coil of ZBLAN optical microfiber is doped with photochromic dyes. Under ultraviolet radiation, the photochromic microfiber experiences temporary photodarkening, and the change in the transmission of the probe light provides a measure of the incident ultraviolet light. This novel design grants an enhancement in sensitivity (3.13 nW/cm2 by at least one order of magnitude compared to traditional electrical counterparts.

  8. Theoretical study of relationships among resolution, line width roughness, and sensitivity of chemically amplified extreme ultraviolet resists with photodecomposable quenchers

    Science.gov (United States)

    Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro

    2016-11-01

    The resolution of chemically amplified extreme ultraviolet (EUV) resists has reached 13-15 nm. However, the line width roughness (LWR) and sensitivity are still inadequate for their application to the high-volume production of semiconductor devices. In this study, the performance of chemically amplified resists with photodecomposable quenchers were investigated by simulation based on the sensitization and reaction mechanisms of chemically amplified EUV resists. The relationships among resolution, LWR, and sensitivity were evaluated in the half-pitch ranges of 12-16 nm. The requirements for 20 mJ cm-2 and 10% critical dimension (CD) LWR are considered to be within the physical limits in the half-pitch range of 12-16 nm when an optical image with a contrast of 1 (normalized image log slope of π) is given. Depending on the given image quality and the required sensitivity, the optimization of sensitizer concentration and the increase in resist absorption coefficient and/or effective reaction radius for deprotection are required to achieve 10% CD LWR.

  9. Extremely High Current, High-Brightness Energy Recovery Linac

    CERN Document Server

    Ben-Zvi, Ilan; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Burger, Al; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Favale, Anthony; Gassner, David M; Grimes, Jacob T; Hahn, Harald; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Lambiase, Robert; Litvinenko, Vladimir N; McIntyre, Gary; Meng, Wuzheng; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Segalov, Zvi; Smith, Kevin T; Todd, Alan M M; Warren-Funk, L; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Yip, Kin; Zaltsman, Alex; Zhao, Yongxiang

    2005-01-01

    Next generation ERL light-sources, high-energy electron coolers, high-power Free-Electron Lasers, powerful Compton X-ray sources and many other accelerators were made possible by the emerging technology of high-power, high-brightness electron beams. In order to get the anticipated performance level of ampere-class currents, many technological barriers are yet to be broken. BNL's Collider-Accelerator Department is pursuing some of these technologies for its electron cooling of RHIC application, as well as a possible future electron-hadron collider. We will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun and an accelerator cavity capable of producing low emittance (about 1 micron rms normalized) one nano-Coulomb bunches at currents of the order of one ampere average.

  10. Characteristics of extreme ultraviolet emission from high-Z plasmas

    Science.gov (United States)

    Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.

    2016-03-01

    We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics.

  11. Solidification at the High and Low Rate Extreme

    Energy Technology Data Exchange (ETDEWEB)

    Meco, Halim [Iowa State Univ., Ames, IA (United States)

    2004-12-19

    The microstructures formed upon solidification are strongly influenced by the imposed growth rates on an alloy system. Depending on the characteristics of the solidification process, a wide range of growth rates is accessible. The prevailing solidification mechanisms, and thus the final microstructure of the alloy, are governed by these imposed growth rates. At the high rate extreme, for instance, one can have access to novel microstructures that are unattainable at low growth rates. While the low growth rates can be utilized for the study of the intrinsic growth behavior of a certain phase growing from the melt. Although the length scales associated with certain processes, such as capillarity, and the diffusion of heat and solute, are different at low and high rate extremes, the phenomena that govern the selection of a certain microstructural length scale or a growth mode are the same. Consequently, one can analyze the solidification phenomena at both high and low rates by using the same governing principles. In this study, we examined the microstructural control at both low and high extremes. For the high rate extreme, the formation of crystalline products and factors that control the microstructure during rapid solidification by free-jet melt spinning are examined in Fe-Si-B system. Particular attention was given to the behavior of the melt pool at different quench-wheel speeds. Since the solidification process takes place within the melt-pool that forms on the rotating quench-wheel, we examined the influence of melt-pool dynamics on nucleation and growth of crystalline solidification products and glass formation. High-speed imaging of the melt-pool, analysis of ribbon microstructure, and measurement of ribbon geometry and surface character all indicate upper and lower limits for melt-spinning rates for which nucleation can be avoided, and fully amorphous ribbons can be achieved. Comparison of the relevant time scales reveals that surface-controlled melt

  12. Are Inflationary Predictions Sensitive to Very High Energy Physics?

    CERN Document Server

    Burgess, C P; Lemieux, F; Holman, R

    2003-01-01

    It has been proposed that the successful inflationary description of density perturbations on cosmological scales is sensitive to the details of physics at extremely high (trans-Planckian) energies. We test this proposal by examining how inflationary predictions depend on higher-energy scales within a simple model where the higher-energy physics is well understood. We find the best of all possible worlds: inflationary predictions are robust against the vast majority of high-energy effects, but can be sensitive to some effects in certain circumstances, in a way which does not violate ordinary notions of decoupling. This implies both that the comparison of inflationary predictions with CMB data is meaningful, and that it is also worth searching for small deviations from the standard results in the hopes of learning about very high energies.

  13. High sensitivity knitted fabric strain sensors

    Science.gov (United States)

    Xie, Juan; Long, Hairu; Miao, Menghe

    2016-10-01

    Wearable sensors are increasingly used in smart garments for detecting and transferring vital signals and body posture, movement and respiration. Existing fabric strain sensors made from metallized yarns have low sensitivity, poor comfort and low durability to washing. Here we report a knitted fabric strain sensor made from a cotton/stainless steel (SS) fibre blended yarn which shows much higher sensitivity than sensors knitted from metallized yarns. The fabric feels softer than pure cotton textiles owing to the ultrafine stainless steel fibres and does not lose its electrical property after washing. The reason for the high sensitivity of the cotton/SS knitted fabric sensor was explored by comparing its sensing mechanism with the knitted fabric sensor made from metallized yarns. The results show that the cotton/SS yarn-to-yarn contact resistance is highly sensitive to strain applied to hooked yarn loops.

  14. High Sensitivity deflection detection of nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Sanii, Babak; Ashby, Paul

    2009-10-28

    A critical limitation of nanoelectromechanical systems (NEMS) is the lack of a high-sensitivity position detection mechanism. We introduce a noninterferometric optical approach to determine the position of nanowires with a high sensitivity and bandwidth. Its physical origins and limitations are determined by Mie scattering analysis. This enables a dramatic miniaturization of detectable cantilevers, with attendant reductions to the fundamental minimum force noise in highly damping environments. We measure the force noise of an 81{+-}9??nm radius Ag{sub 2}Ga nanowire cantilever in water at 6{+-}3??fN/{radical}Hz.

  15. Forecasting extreme wave events in moderate and high sea states

    Science.gov (United States)

    Magnusson, Anne Karin; Reistad, Magnar; Bitner-Gregersen, Elzbieta Maria

    2013-04-01

    Empirical studies on measurements have not yet come to conclusive relations between occurrence of rogue waves and - parameters which could be forecasted . Theoretical and tank experiments have demonstrated that high spectral peakedness and low spectral width combined (high Benjamin-Feir instability index, Onorato et al., 2006) give higher probability of rogue wave occurrence. Directional spread seems to reduce the probability of occurrence of rogue waves in these studies. Many years of experience with forecasting and discussions with people working in ocean environment indicate that rogue waves may as well occur in crossing seas. This was also indicated in a study in the Maxwave project (Toffoli et al., 2003) and the EXTREME SEAS project (Toffoli et al., 2011). We have here experimented with some indexes describing both high BFI and crossing seas and run the WAM model for some North Sea storm cases. Wave distributions measured at Ekofisk are analysed in the different cases. References • Onorato, M., Osborne, A., Serio, M., Cavaleri, L., Brandini, C., and Stansberg, C.: Extreme waves, modulational instability and second order theory: wave flume experiments on irregular waves,Europ. J. Mech. B/Fluids, 25, 586-601, 2006. • Toffoli, A., Lefevre, J.M., Monbaliu, J., Savina, H., and Bitner-Gregersen, E., "Freak Waves:Clues for Prediction in Ship Accidents?", Proc. ISOPE'2003 Conf. Hawai, USA, 2003. • Toffoli A., Bitner-Gregersen E. M., Osborne A. R., Serio M. Monbaliu J., Onorato M. (2011) Extreme Waves in Random Crossing Seas: Laboratory Experiments and Numerical Simulations. Geophys. Res. Lett., Vol. 38, L06605, 5 pp. doi: 10.1029/2011.

  16. Low-pressure systems and extreme precipitation in central India: sensitivity to temperature changes

    Science.gov (United States)

    Sørland, Silje Lund; Sorteberg, Asgeir

    2016-07-01

    Extreme rainfall events in the central Indian region are often related to the passage of synoptic scale monsoon low-pressure systems (LPS). This study uses the surrogate climate change method on ten monsoon LPS cases connected to observed extreme rainfall events, to investigate how sensitive the precipitation and runoff are to an idealized warmer and moister atmosphere. The ten cases are simulated with three different initial and lateral boundary conditions: the unperturbed control run, and two sets of perturbed runs where the atmospheric temperature is increased uniformly throughout the atmosphere, the specific humidity increased according to Clausius Clapeyron's relation, but the large-scale flow is unchanged. The difference between the control and perturbed simulations are mainly due to the imposed warming and feedback influencing the synoptic flow. The mean precipitation change with warming in the central Indian region is 18-20 %/K, with largest changes at the end of the LPS tracks. The LPS in the warmer runs are bringing more moisture further inland that is released as precipitation. In the perturbed runs the precipitation rate is increasing at all percentiles, and there is more frequent rainfall with very heavy intensities. This leads to a shift in which category that contributes most to the total precipitation: more of the precipitation is coming from the category with very heavy intensities. The runoff changes are similar to the precipitation changes, except the response in intensity of very heavy runoff, which is around twice the change in intensity of very heavy precipitation.

  17. [Membranotropic effects of electromagnetic radiation of extremely high frequency on Escherichia coli].

    Science.gov (United States)

    Trchunian, A; Ogandzhanian, E; Sarkisian, E; Gonian, S; Oganesian, A; Oganesian, S

    2001-01-01

    It was found that "sound" electromagnetic radiations of extremely high frequencies (53.5-68 GHz) or millimeter waves (wavelength range of 4.2-5.6 mm) of low intensity (power density 0.01 mW) have a bactericidal effect on Escherichia coli bacteria. It was shown that exposure to irradiation of extremely high frequencies increases the electrokinetic potential and surface change density of bacteria and decreases of membrane potential. The total secretion of hydrogen ions was suppressed, the H+ flux from the cytoplasm to medium decreased, and the flux of N,N'-dicyclohexylcarbodiimide-sensitive potassium ions increased, which was accompanied by changes in the stoichiometry of these fluxes and an increase in the sensitivity of H+ ions to N,N'-dicyclohexylcarbodiimide. The effects depended on duration of exposure: as the time of exposure increased, the bactericidal effect increased, whereas the membranotropic effects decreased. The effects also depended on growth phase of bacteria: the irradiation affected the cells in the stationary but not in the logarithmic phase. It is assumed that the H(+)-ATPase complex F0F1 is involved in membranotropic effects of electromagnetic radiation of extremely high frequencies. Presumably, there are some compensatory mechanisms that eliminate the membranotropic effects.

  18. High sensitivity optically pumped quantum magnetometer.

    Science.gov (United States)

    Tiporlini, Valentina; Alameh, Kamal

    2013-01-01

    Quantum magnetometers based on optical pumping can achieve sensitivity as high as what SQUID-based devices can attain. In this paper, we discuss the principle of operation and the optimal design of an optically pumped quantum magnetometer. The ultimate intrinsic sensitivity is calculated showing that optimal performance of the magnetometer is attained with an optical pump power of 20 μW and an operation temperature of 48°C. Results show that the ultimate intrinsic sensitivity of the quantum magnetometer that can be achieved is 327 fT/Hz(½) over a bandwidth of 26 Hz and that this sensitivity drops to 130 pT/Hz(½) in the presence of environmental noise. The quantum magnetometer is shown to be capable of detecting a sinusoidal magnetic field of amplitude as low as 15 pT oscillating at 25 Hz.

  19. Aluminum nanocantilevers for high sensitivity mass sensors

    DEFF Research Database (Denmark)

    Davis, Zachary James; Boisen, Anja

    2005-01-01

    We have fabricated Al nanocantilevers using a simple, one mask contact UV lithography technique with lateral and vertical dimensions under 500 and 100 nm, respectively. These devices are demonstrated as highly sensitive mass sensors by measuring their dynamic properties. Furthermore, it is shown ...

  20. Nonclassical characteristic functions for highly sensitive measurements

    CERN Document Server

    Richter, T; Richter, Th.

    2007-01-01

    Characteristic functions are shown to be useful for highly sensitive measurements. Redistributions of motional Fock states of a trapped atom can be directly monitored via the most fragile nonclassical part of the characteristic function. The method can also be used for decoherence measurements in optical quantum-information systems.

  1. Treatment algorithms for high-energy traumas of lower extremities

    Directory of Open Access Journals (Sweden)

    Jovanović Mladen

    2002-01-01

    Full Text Available Introduction High-energy traumas are open or closed injuries caused by force (missile, traffic injuries, crush or blust injuries, falling from heights, affecting the body surface and transferring high amount of kinetic energy inducing great damage to the tissue. Management of such lower extremity injuries has evolved over past several decades, but still remains a difficult task for every surgical team. Specific anatomic and functional characteristics combined with extensive injuries demands specific treatment protocols. Multiple injuries In a multiple injured patient the first priority is management of life-threatening trauma. Despite other injuries, surgical treatment of limb-threatening injuries must start as soon as life-threatening condition has been managed. Treatment algorithms Algorithms are especially beneficial in management of severely injured, but salvageable extremities and in making decision on amputation. Insight into mechanisms of injury, as well as systematic examination of the affected limb, should help us understand the extensiveness of trauma and make an adequate management plan. Prevention of infection and surgical approach Prevention of wound infection and surgical approach to high- energy limb trauma, which includes wound extension, wound excision, skeletal stabilization and if necessary muscle compartment release, should be done in the first 6 hours after injury. Methods of soft tissue reconstruction Commonly used methods for soft tissue defects must provide wound coverage in less than five days following injury. Rehabilitation Early passive and active mobilization and verticalization of patients is very important for successful treatment. Conclusion Good and timely evaluation of the injured and collaboration between plastic and orthopedic surgeons from the beginning of treatment, are crucial for final outcome.

  2. High blood pressure and visual sensitivity

    Science.gov (United States)

    Eisner, Alvin; Samples, John R.

    2003-09-01

    The study had two main purposes: (1) to determine whether the foveal visual sensitivities of people treated for high blood pressure (vascular hypertension) differ from the sensitivities of people who have not been diagnosed with high blood pressure and (2) to understand how visual adaptation is related to standard measures of systemic cardiovascular function. Two groups of middle-aged subjects-hypertensive and normotensive-were examined with a series of test/background stimulus combinations. All subjects met rigorous inclusion criteria for excellent ocular health. Although the visual sensitivities of the two subject groups overlapped extensively, the age-related rate of sensitivity loss was, for some measures, greater for the hypertensive subjects, possibly because of adaptation differences between the two groups. Overall, the degree of steady-state sensitivity loss resulting from an increase of background illuminance (for 580-nm backgrounds) was slightly less for the hypertensive subjects. Among normotensive subjects, the ability of a bright (3.8-log-td), long-wavelength (640-nm) adapting background to selectively suppress the flicker response of long-wavelength-sensitive (LWS) cones was related inversely to the ratio of mean arterial blood pressure to heart rate. The degree of selective suppression was also related to heart rate alone, and there was evidence that short-term changes of cardiovascular response were important. The results suggest that (1) vascular hypertension, or possibly its treatment, subtly affects visual function even in the absence of eye disease and (2) changes in blood flow affect retinal light-adaptation processes involved in the selective suppression of the flicker response from LWS cones caused by bright, long-wavelength backgrounds.

  3. Ptychographic hyperspectral spectromicroscopy with an extreme ultraviolet high harmonic comb

    CERN Document Server

    Zhang, Bosheng; Seaberg, Matthew H; Shanblatt, Elisabeth R; Porter, Christina L; Karl,, Robert; Mancuso, Christopher A; Kapteyn, Henry C; Murnane, Margaret M; Adams, Daniel E

    2016-01-01

    We demonstrate a new scheme of spectromicroscopy in the extreme ultraviolet (EUV) spectral range, where the spectral response of the sample at different wavelengths is imaged simultaneously. It is enabled by applying ptychographical information multiplexing (PIM) to a tabletop EUV source based on high harmonic generation, where four spectrally narrow harmonics near 30 nm form a spectral comb structure. Extending PIM from previously demonstrated visible wavelengths to the EUV/X-ray wavelengths promises much higher spatial resolution and more powerful spectral contrast mechanism, making PIM an attractive spectromicroscopy method in both the microscopy and the spectroscopy aspects. Besides the sample, the multicolor EUV beam is also imaged in situ, making our method a powerful beam characterization technique. No hardware is used to separate or narrow down the wavelengths, leading to efficient use of the EUV radiation.

  4. Highly Energetic, Low Sensitivity Aromatic Peroxy Acids.

    Science.gov (United States)

    Gamage, Nipuni-Dhanesha H; Stiasny, Benedikt; Stierstorfer, Jörg; Martin, Philip D; Klapötke, Thomas M; Winter, Charles H

    2016-02-18

    The synthesis, structure, and energetic materials properties of a series of aromatic peroxy acid compounds are described. Benzene-1,3,5-tris(carboperoxoic) acid is a highly sensitive primary energetic material, with impact and friction sensitivities similar to those of triacetone triperoxide. By contrast, benzene-1,4-bis(carboperoxoic) acid, 4-nitrobenzoperoxoic acid, and 3,5-dinitrobenzoperoxoic acid are much less sensitive, with impact and friction sensitivities close to those of the secondary energetic material 2,4,6-trinitrotoluene. Additionally, the calculated detonation velocities of 3,5-dinitrobenzoperoxoic acid and 2,4,6-trinitrobenzoperoxoic acid exceed that of 2,4,6-trinitrotoluene. The solid-state structure of 3,5-dinitrobenzoperoxoic acid contains intermolecular O-H⋅⋅⋅O hydrogen bonds and numerous N⋅⋅⋅O, C⋅⋅⋅O, and O⋅⋅⋅O close contacts. These attractive lattice interactions may account for the less sensitive nature of 3,5-dinitrobenzoperoxoic acid.

  5. Trends and sensitivities of low streamflow extremes to discharge timing and magnitude in Pacific Northwest mountain streams

    Science.gov (United States)

    Kormos, Patrick R.; Luce, Charles H.; Wenger, Seth J.; Berghuijs, Wouter R.

    2016-07-01

    Path analyses of historical streamflow data from the Pacific Northwest indicate that the precipitation amount has been the dominant control on the magnitude of low streamflow extremes compared to the air temperature-affected timing of snowmelt runoff. The relative sensitivities of low streamflow to precipitation and temperature changes have important implications for adaptation planning because global circulation models produce relatively robust estimates of air temperature changes but have large uncertainties in projected precipitation amounts in the Pacific Northwest U.S. Quantile regression analyses indicate that low streamflow extremes from the majority of catchments in this study have declined from 1948 to 2013, which may significantly affect terrestrial and aquatic ecosystems, and water resource management. Trends in the 25th percentile of mean annual streamflow have declined and the center of timing has occurred earlier. We quantify the relative influences of total precipitation and air temperature on the annual low streamflow extremes from 42 stream gauges using mean annual streamflow as a proxy for precipitation amount effects and streamflow center of timing as a proxy for temperature effects on low flow metrics, including 7q10 summer (the minimum 7 day flow during summer with a 10 year return period), mean August, mean September, mean summer, 7q10 winter, and mean winter flow metrics. These methods have the benefit of using only readily available streamflow data, which makes our results robust against systematic errors in high elevation distributed precipitation data. Winter low flow metrics are weakly tied to both mean annual streamflow and center of timing.

  6. Extremely narrow resonances, giant sensitivity and field enhancement in low-loss waveguide sensors

    Science.gov (United States)

    Nesterenko, D. V.; Hayashi, S.; Sekkat, Z.

    2016-06-01

    Low-loss waveguides (WGs), which support excitation of waveguide modes (WMs), are based on a dielectric WG separated from an absorptive film by a low-index dielectric spacer layer. We perform numerical and analytical study of the impact of the losses imposed to the WG in a planar sensing structure in the Kretschmann configuration on the resonance properties of the excitation. We demonstrate that the loss degree of the WMs can be controlled by the thickness of the spacer layer for both s and p polarizations. Extremely narrow resonances are discovered in the reflectivity spectra due to excitation of the low-loss WMs, and the maximum of the estimated sensitivity by intensity is found to be of 105-fold higher as compared to the conventional surface plasmon and WG-coupled surface plasmon sensors. We reveal the giant field intensity enhancement of 107-fold on the surface of the sensing structure in aqueous sensing media that can provide stronger fluorescence intensity at lower sample volumes for fluorescent labeling sensing.

  7. Highly sensitive catalytic spectrophotometric determination of ruthenium

    Science.gov (United States)

    Naik, Radhey M.; Srivastava, Abhishek; Prasad, Surendra

    2008-01-01

    A new and highly sensitive catalytic kinetic method (CKM) for the determination of ruthenium(III) has been established based on its catalytic effect on the oxidation of L-phenylalanine ( L-Pheala) by KMnO 4 in highly alkaline medium. The reaction has been followed spectrophotometrically by measuring the decrease in the absorbance at 526 nm. The proposed CKM is based on the fixed time procedure under optimum reaction conditions. It relies on the linear relationship where the change in the absorbance (Δ At) versus added Ru(III) amounts in the range of 0.101-2.526 ng ml -1 is plotted. Under the optimum conditions, the sensitivity of the proposed method, i.e. the limit of detection corresponding to 5 min is 0.08 ng ml -1, and decreases with increased time of analysis. The method is featured with good accuracy and reproducibility for ruthenium(III) determination. The ruthenium(III) has also been determined in presence of several interfering and non-interfering cations, anions and polyaminocarboxylates. No foreign ions interfered in the determination ruthenium(III) up to 20-fold higher concentration of foreign ions. In addition to standard solutions analysis, this method was successfully applied for the quantitative determination of ruthenium(III) in drinking water samples. The method is highly sensitive, selective and very stable. A review of recently published catalytic spectrophotometric methods for the determination of ruthenium(III) has also been presented for comparison.

  8. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment

    Science.gov (United States)

    Schoepf, Verena; Stat, Michael; Falter, James L.; McCulloch, Malcolm T.

    2015-12-01

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events.

  9. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment.

    Science.gov (United States)

    Schoepf, Verena; Stat, Michael; Falter, James L; McCulloch, Malcolm T

    2015-12-02

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events.

  10. High photon flux table-top coherent extreme ultraviolet source

    CERN Document Server

    Hädrich, Steffen; Rothhardt, Jan; Krebs, Manuel; Hoffmann, Armin; Pronin, Oleg; Pervak, Vladimir; Limpert, Jens; Tünnermann, Andreas

    2014-01-01

    High harmonic generation (HHG) enables extreme ultraviolet radiation with table-top setups. Its exceptional properties, such as coherence and (sub)-femtosecond pulse durations, have led to a diversity of applications. Some of these require a high photon flux and megahertz repetition rates, e.g. to avoid space charge effects in photoelectron spectroscopy. To date this has only been achieved with enhancement cavities. Here, we establish a novel route towards powerful HHG sources. By achieving phase-matched HHG of a megahertz fibre laser we generate a broad plateau (25 eV - 40 eV) of strong harmonics, each containing more than $10^{12}$ photons/s, which constitutes an increase by more than one order of magnitude in that wavelength range. The strongest harmonic (H25, 30 eV) has an average power of 143 $\\mu$W ($3\\cdot10^{13}$ photons/s). This concept will greatly advance and facilitate applications in photoelectron or coincidence spectroscopy, coherent diffractive imaging or (multidimensional) surface science.

  11. Small-scale characteristics of extremely high latitude aurora

    Directory of Open Access Journals (Sweden)

    J. A. Cumnock

    2009-09-01

    Full Text Available We examine 14 cases of an interesting type of extremely high latitude aurora as identified in the precipitating particles measured by the DMSP F13 satellite. In particular we investigate structures within large-scale arcs for which the particle signatures are made up of a group of multiple distinct thin arcs. These cases are chosen without regard to IMF orientation and are part of a group of 87 events where DMSP F13 SSJ/4 measures emissions which occur near the noon-midnight meridian and are spatially separated from both the dawnside and duskside auroral ovals by wide regions with precipitating particles typical of the polar cap. For 73 of these events the high-latitude aurora consists of a continuous region of precipitating particles. We focus on the remaining 14 of these events where the particle signatures show multiple distinct thin arcs. These events occur during northward or weakly southward IMF conditions and follow a change in IMF By. Correlations are seen between the field-aligned currents and plasma flows associated with the arcs, implying local closure of the FACs. Strong correlations are seen only in the sunlit hemisphere. The convection associated with the multiple thin arcs is localized and has little influence on the large-scale convection. This also implies that the sunward flow along the arcs is unrelated to the overall ionospheric convection.

  12. Extremely high-frequency micro-Doppler measurements of humans

    Science.gov (United States)

    Hedden, Abigail S.; Silvious, Jerry L.; Dietlein, Charles R.; Green, Jeremy A.; Wikner, David A.

    2014-05-01

    The development of sensors that are capable of penetrating smoke, dust, fog, clouds, and rain is critical for maintaining situational awareness in degraded visual environments and for providing support to the Warfighter. Atmospheric penetration properties, the ability to form high-resolution imagery with modest apertures, and available source power make the extremely high-frequency (EHF) portion of the spectrum promising for the development of radio frequency (RF) sensors capable of penetrating visual obscurants. Comprehensive phenomenology studies including polarization and backscatter properties of relevant targets are lacking at these frequencies. The Army Research Laboratory (ARL) is developing a fully-polarimetric frequency-modulated continuous-wave (FMCW) instrumentation radar to explore polarization and backscatter properties of in-situ rain, scattering from natural and man-made surfaces, and the radar cross section and micro-Doppler signatures of humans at EHF frequencies, specifically, around the 220 GHz atmospheric window. This work presents an overview of the design and construction of the radar system, hardware performance, data acquisition software, and initial results including an analysis of human micro-Doppler signatures.

  13. Trends and sensitivities of low streamflow extremes to discharge timing and magnitude in pacific northwest mountain streams

    Science.gov (United States)

    Historical streamflow data from the Pacific Northwest indicate that the precipitation amount has been the dominant control on the magnitude of low streamflow extremes compared to the air temperature-affected timing of snowmelt runoff. The relative sensitivities of low streamflow to precipitation and...

  14. High-sensitive cardiac troponin T

    Institute of Scientific and Technical Information of China (English)

    Ru-Yi Xu; Xiao-Fa Zhu; Ye Yang; Ping Ye

    2013-01-01

    Cardiac troponin is the preferred biomarker for the diagnosis of acute myocardial infarction (AMI). The recent development of a high-sensitive cardiac troponin T (hs-cTnT) assay permits detection of very low levels of cTnT. Using the hs-cTnT assay improves the overall diagnostic accuracy in patients with suspected AMI, while a negative result also has a high negative predictive value. The gain in sensitivity may be particularly important in patients with a short duration from symptom onset to admission. Measurement of cardiac troponin T with the hs-cTnT assay may provide strong prognostic information in patients with acute coronary syndromes, stable coronary artery disease, heart failure and even in the general population; however, increased sensitivity comes at a cost of decreased specificity. Serial testing, as well as clinical context and co-existing diseases, are likely to become increasingly important for the interpretation of hs-cTnT assay results.

  15. Sensitivity study of reliable, high-throughput resolution metricsfor photoresists

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Christopher N.; Naulleau, Patrick P.

    2007-07-30

    The resolution of chemically amplified resists is becoming an increasing concern, especially for lithography in the extreme ultraviolet (EUV) regime. Large-scale screening and performance-based down-selection is currently underway to identify resist platforms that can support shrinking feature sizes. Resist screening efforts, however, are hampered by the absence of reliable resolution metrics that can objectively quantify resist resolution in a high-throughput fashion. Here we examine two high-throughput metrics for resist resolution determination. After summarizing their details and justifying their utility, we characterize the sensitivity of both metrics to two of the main experimental uncertainties associated with lithographic exposure tools, namely: limited focus control and limited knowledge of optical aberrations. For an implementation at EUV wavelengths, we report aberration and focus limited error bars in extracted resolution of {approx} 1.25 nm RMS for both metrics making them attractive candidates for future screening and down-selection efforts.

  16. CO2-Philic polymer membrane with extremely high separation performance

    KAUST Repository

    Yave, Wilfredo

    2010-01-12

    Polymeric membranes are attractive for CO2 separation and concentration from different gas streams because of their versatility and energy efficiency; they can compete with, and they may even replace, traditional absorption processes. Here we describe a simple and powerful method for developing nanostructured and CO2-philic polymer membranes for CO2 separation. A poly(ethylene oxide)-poly(butylene terephthalate) multiblock copolymer is used as membrane material. Smart additives such as polyethylene glycol dibutyl ether are incorporated as spacers or fillers for producing nanostructured materials. The addition of these specific additives produces CO2-philic membranes and increases the CO2 permeability (750 barrer) up to five-fold without the loss of selectivity. The membranes present outstanding performance for CO2 separation, and the measured CO2 flux is extremely high ( > 2 m3 m -2 h-1 bar-1) with selectivity over H2 and N2 of 10 and 40, respectively, making them attractive for CO 2 capture. © 2009 American Chemical Society.

  17. Synoptic conditions leading to extremely high temperatures in Madrid

    Directory of Open Access Journals (Sweden)

    R. García

    Full Text Available Extremely hot days (EHD in Madrid have been analysed to determine the synoptic patterns that produce EHDs during the period of 1955–1998. An EHD is defined as a day with maximum temperature higher than 36.5°C, a value which is the threshold for the intense effects on mortatility and it coincides with the 95 percentile of the series. Two different situations have been detected as being responsible for an EHD occurrence, one more dynamical, produced by southern fluxes, and another associated with a stagnation situation over Iberia of a longer duration. Both account for 92% of the total number of days, thus providing an efficient classification framework. A circulation index has been derived to characterise and forecast an EHD occurrence. This paper shows that EHD occur in Madrid during short duration events, and no long heat waves, like those recorded in other cities, are present. Additionally, no clear pattern can be detected in the EHD frequency; the occurrence is tied to changes in the summer location of the Azores high.

    Key words. Meteorology and atmospheric dynamics (Climatology; synoptic-scale meteorology; general or miscellaneous

  18. Extremely high-intensity laser interactions with fundamental quantum systems

    CERN Document Server

    Di Piazza, A; Hatsagortsyan, K Z; Keitel, C H

    2011-01-01

    The field of laser-matter interaction traditionally deals with the response of atoms, molecules and plasmas to an external light wave. However, the recent sustained technological progress is opening the possibility of employing intense laser radiation to prompt or substantially influence physical processes beyond atomic-physics energy scales. Available optical laser intensities exceeding $10^{22}\\;\\text{W/cm$^2$}$ can push the fundamental light-electron interaction to the extreme limit where radiation-reaction effects dominate the electron dynamics, can shed light on the structure of the quantum vacuum and can prime the creation of particles like electrons, muons and pions and the corresponding antiparticles. Also, novel sources of intense coherent high-energy photons and laser-based particle colliders can pave the way to nuclear quantum optics and can even allow for potential discovery of new particles beyond the Standard Model. These are the main topics of the present article, which is devoted to a review o...

  19. Synoptic conditions leading to extremely high temperatures in Madrid

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, R.; Prieto, L.; Hernandez, E.; Teso, T. del [Dept. Fisica de la Tierra II, Fac. CC. Fisicas, Univ. Camplutense de Madrid (Spain); Diaz, J. [Centro Universitario de Salud Publica, Univ. Autonoma de Madrid (Spain)

    2002-02-01

    Extremely hot days (EHD) in Madrid have been analysed to determine the synoptic patterns that produce EHDs during the period of 1955-1998. An EHD is defined as a day with maximum temperature higher than 36.5 C, a value which is the threshold for the intense effects on mortatility and it coincides with the 95 percentile of the series. Two different situations have been detected as being responsible for an EHD occurrence, one more dynamical, produced by southern fluxes, and another associated with a stagnation situation over Iberia of a longer duration. Both account for 92% of the total number of days, thus providing an efficient classification framework. A circulation index has been derived to characterise and forecast an EHD occurrence. This paper shows that EHD occur in Madrid during short duration events, and no long heat waves, like those recorded in other cities, are present. Additionally, no clear pattern can be detected in the EHD frequency; the occurrence is tied to changes in the summer location of the Azores high. (orig.)

  20. Sensitivity of precipitation extremes to radiative forcing of greenhouse gases and aerosols

    Science.gov (United States)

    Lin, Lei; Wang, Zhili; Xu, Yangyang; Fu, Qiang

    2016-09-01

    Greenhouse gases (GHGs) and aerosols are the two most important anthropogenic forcing agents in the 21st century. The expected declines of anthropogenic aerosols in the 21st century from present-day levels would cause an additional warming of the Earth's climate system, which would aggravate the climate extremes caused by GHG warming. We examine the increased rate of precipitation extremes with global mean surface warming in the 21st century caused by anthropogenic GHGs and aerosols, using an Earth system model ensemble simulation. Similar to mean precipitation, the increased rate of precipitation extremes caused by aerosol forcing is significantly larger than that caused by GHG forcing. The aerosol forcing in the coming decades can play a critical role in inducing change in precipitation extremes if a lower GHG emission pathway is adopted. Our results have implications for policy-making on climate adaptation to extreme precipitation events.

  1. Photodetector having high speed and sensitivity

    Science.gov (United States)

    Morse, Jeffrey D.; Mariella, Jr., Raymond P.

    1991-01-01

    The present invention provides a photodetector having an advantageous combination of sensitivity and speed; it has a high sensitivity while retaining high speed. In a preferred embodiment, visible light is detected, but in some embodiments, x-rays can be detected, and in other embodiments infrared can be detected. The present invention comprises a photodetector having an active layer, and a recombination layer. The active layer has a surface exposed to light to be detected, and comprises a semiconductor, having a bandgap graded so that carriers formed due to interaction of the active layer with the incident radiation tend to be swept away from the exposed surface. The graded semiconductor material in the active layer preferably comprises Al.sub.1-x Ga.sub.x As. An additional sub-layer of graded In.sub.1-y Ga.sub.y As may be included between the Al.sub.1-x Ga.sub.x As layer and the recombination layer. The recombination layer comprises a semiconductor material having a short recombination time such as a defective GaAs layer grown in a low temperature process. The recombination layer is positioned adjacent to the active layer so that carriers from the active layer tend to be swept into the recombination layer. In an embodiment, the photodetector may comprise one or more additional layers stacked below the active and recombination layers. These additional layers may include another active layer and another recombination layer to absorb radiation not absorbed while passing through the first layers. A photodetector having a stacked configuration may have enhanced sensitivity and responsiveness at selected wavelengths such as infrared.

  2. High sensitivity troponin and valvular heart disease.

    Science.gov (United States)

    McCarthy, Cian P; Donnellan, Eoin; Phelan, Dermot; Griffin, Brian P; Sarano, Maurice Enriquez-; McEvoy, John W

    2017-01-16

    Blood-based biomarkers have been extensively studied in a range of cardiovascular diseases and have established utility in routine clinical care, most notably in the diagnosis of acute coronary syndrome (e.g., troponin) and the management of heart failure (e.g., brain-natriuretic peptide). The role of biomarkers is less well established in the management of valvular heart disease (VHD), in which the optimal timing of surgical intervention is often challenging. One promising biomarker that has been the subject of a number of recent VHD research studies is high sensitivity troponin (hs-cTn). Novel high-sensitivity assays can detect subclinical myocardial damage in asymptomatic individuals. Thus, hs-cTn may have utility in the assessment of asymptomatic patients with severe VHD who do not have a clear traditional indication for surgical intervention. In this state-of-the-art review, we examine the current evidence for hs-cTn as a potential biomarker in the most commonly encountered VHD conditions, aortic stenosis and mitral regurgitation. This review provides a synopsis of early evidence indicating that hs-cTn has promise as a biomarker in VHD. However, the impact of its measurement on clinical practice and VHD outcomes needs to be further assessed in prospective studies before routine clinical use becomes a reality.

  3. High-resolution Sonographic Measurements of Lower Extremity Bursae in Chinese Healthy Young Men

    Directory of Open Access Journals (Sweden)

    Yong-Yan Gao

    2016-01-01

    Conclusions: Using HR-US imaging, we were able to analyze lower extremity bursae with high detection rates in healthy young men. The normal ranges of lower extremity bursa dimensions in healthy young men measured by HR-US in this study could be used as reference values for evaluation of bursa abnormalities in the lower extremity.

  4. High resolution simulations of extreme weather event in south Sardinia

    Science.gov (United States)

    Dessy, C.

    2010-05-01

    In the last decade, like most region of Mediterranean Europe, Sardinia has experienced severe precipitation events generating flash floods resulting in loss of lives and large economic damage. A numerical meteorological operational set-up is applied in the local weather service with the aim to improve the operational short range weather forecast of the Service with particular attention to intense, mostly rare and potentially severe, events. On the early hours of 22 October 2008 an intense and almost stationary mesoscale convective system interested particularly the south of Sardinia, heavy precipitation caused a flash flood with fatalities and numerous property damages. The event was particularly intense: about 400 mm of rain in 12 hours (a peak of 150 mm in an hour) were misured by the regional network of weather stations and these values appear extremely meaningfulls since those are about seven times the climatological monthly rainfall for that area and nearly the climatological annual rainfall. With the aim to improve significantly quantitative precipitation forecasting, it was evaluated a different set-up of a high resolution convection resolving model (MM5) initialised with different initial and boundary conditions (ECMWF and NCAR). In this paper it is discussed the meteorological system related to the mentioned event by using different numerical weather models (GCM and LAM) combined with conventional data, radar Doppler and Meteosat images. Preliminary results say that a different set-up of a non hydrostatic model can forecast severe convection events in advance of about one day and produce more realistic rainfall than that current operational and also improve the weather forecasts to respect the ECMWF-GCM. So it could drive an operational alert system in order to limit the risks associated with heavy precipitation events.

  5. An extremely sensitive species-specific ARMs PCR test for the presence of tiger bone DNA.

    Science.gov (United States)

    Wetton, Jon H; Tsang, Carol S F; Roney, Chris A; Spriggs, Adrian C

    2004-02-10

    The survival of the tiger (Panthera tigris) is seriously threatened by poaching to provide raw materials for Traditional Chinese Medicines (TCMs). Most highly prized are the tiger's bones, which are used in combination with other animal and plant derivatives in pills and plasters for the treatment of rheumatism and other ailments. Hundreds of patent remedies have been produced which claim to contain tiger bone, but proof of its presence is needed, if legislation prohibiting the trade in endangered species is to be enforced. A highly sensitive tiger-specific real-time PCR assay has been developed to address this problem. Using primers specific to the tiger mitochondrial cytochrome b gene, successful amplification has been reliably achieved from blood, hair and bone as well as from a range of TCMs spiked with 0.5% tiger bone. Although capable of detecting fewer than 10 substrate molecules, the seven varieties of TCM pills and plasters tested showed no detectable trace of tiger DNA before spiking. Furthermore, sequencing several "tiger bone" fragments seized from TCM shops has shown that they actually originated from cattle and pigs. The potential effects of traditional bone preparation methods, evidence that much lower concentrations are used than alleged on TCM packaging, and substitution of bones from other species all suggest a low likelihood of detecting tiger DNA in patent medicines. Despite this, the basic methods have been thoroughly proven and can be readily applied to derivatives from other CITES protected species providing a rapid and highly sensitive forensic test for species of origin. Potential applications to the monitoring of wild populations are demonstrated by the successful identification of shed hairs and faecal samples.

  6. High speed digital phonoscopy of selected extreme vocalization (Conference Presentation)

    Science.gov (United States)

    Izdebski, Krzysztof; Blanco, Matthew; Di Lorenzo, Enrico; Yan, Yuling

    2017-02-01

    We used HSDP (KayPENTAX Model 9710, NJ, USA) to capture the kinematics of vocal folds in the production of extreme vocalization used by heavy metal performers. The vibrations of the VF were captured at 4000 f/s using transoral rigid scope. Growl, scream and inhalatory phonations were recoded. Results showed that these extreme sounds are produced predominantly by supraglottic tissues rather than by the true vocal folds, which explains while these sounds do not injure the mucosa of the true vocal folds. In addition, the HSDI were processed using custom software (Vocalizer®) that clearly demonstrated the contribution of each vocal fold to the generation of the sound.

  7. Highly Sensitive Electro-Optic Modulators

    Energy Technology Data Exchange (ETDEWEB)

    DeVore, Peter S [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    There are very important diagnostic and communication applications that receive faint electrical signals to be transmitted over long distances for capture. Optical links reduce bandwidth and distance restrictions of metal transmission lines; however, such signals are only weakly imprinted onto the optical carrier, resulting in low fidelity transmission. Increasing signal fidelity often necessitates insertion of radio-frequency (RF) amplifiers before the electro-optic modulator, but (especially at high frequencies) RF amplification results in large irreversible distortions. We have investigated the feasibility of a Sensitive and Linear Modulation by Optical Nonlinearity (SALMON) modulator to supersede RF-amplified modulators. SALMON uses cross-phase modulation, a manifestation of the Kerr effect, to enhance the modulation depth of an RF-modulated optical wave. This ultrafast process has the potential to result in less irreversible distortions as compared to a RF-amplified modulator due to the broadband nature of the Kerr effect. Here, we prove that a SALMON modulator is a feasible alternative to an RFamplified modulator, by demonstrating a sensitivity enhancement factor greater than 20 and significantly reduced distortion.

  8. Heterogeneous catalysis in highly sensitive microreactors

    DEFF Research Database (Denmark)

    Olsen, Jakob Lind

    This thesis present a highly sensitive silicon microreactor and examples of its use in studying catalysis. The experimental setup built for gas handling and temperature control for the microreactor is described. The implementation of LabVIEW interfacing for all the experimental parts makes...... automated experiments and data collection possible. An argon ush at the O-rings (used to interface the silicon microreactor with the gas system), which was developed, is presented. It enables experiments with temperatures up to 400., and up to 500. for short periods of time. The CO oxidation reaction...... of adsorbates readily converted to methanol as the source of the transient increase in methanol production, is eliminated. A study of mass selected ruthenium nanoparticles from a magnetron-sputter gas-aggregation source, deposited in microreactors, is presented. It is, shown that CO methanation can be measured...

  9. High-sensitivity fiber optic acoustic sensors

    Science.gov (United States)

    Lu, Ping; Liu, Deming; Liao, Hao

    2016-11-01

    Due to the overwhelming advantages compared with traditional electronicsensors, fiber-optic acoustic sensors have arisen enormous interest in multiple disciplines. In this paper we present the recent research achievements of our group on fiber-optic acoustic sensors. The main point of our research is high sensitivity interferometric acoustic sensors, including Michelson, Sagnac, and Fabry-Pérot interferometers. In addition, some advanced technologies have been proposed for acoustic or acoustic pressure sensing such as single-mode/multimode fiber coupler, dual FBGs and multi-longitudinal mode fiber laser based acoustic sensors. Moreover, our attention we have also been paid on signal demodulation schemes. The intensity-based quadrature point (Q-point) demodulation, two-wavelength quadrature demodulation and symmetric 3×3 coupler methodare discussed and compared in this paper.

  10. High sensitive radiation detector for radiology dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Valente, M.; Malano, F. [Instituto de Fisica Enrique Gaviola, Oficina 102 FaMAF - UNC, Av. Luis Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina); Molina, W.; Vedelago, J., E-mail: valente@famac.unc.edu.ar [Laboratorio de Investigaciones e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Laboratorio 448 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2014-08-15

    Fricke solution has a wide range of applications as radiation detector and dosimetry. It is particularly appreciated in terms of relevant comparative advantages, like tissue equivalence when prepared in aqueous media like gel matrix, continuous mapping capability, dose rate recorded and incident direction independence as well as linear dose response. This work presents the development and characterization of a novel Fricke gel system, based on modified chemical compositions making possible its application in clinical radiology. Properties of standard Fricke gel dosimeter for high dose levels are used as starting point and suitable chemical modifications are introduced and carefully investigated in order to attain high resolution for low dose ranges, like those corresponding to radiology interventions. The developed Fricke gel radiation dosimeter system achieves the expected typical dose dependency, actually showing linear response in the dose range from 20 up to 4000 mGy. Systematic investigations including several chemical compositions are carried out in order to obtain a good enough dosimeter response for low dose levels. A suitable composition among those studied is selected as a good candidate for low dose level radiation dosimetry consisting on a modified Fricke solution fixed to a gel matrix containing benzoic acid along with sulfuric acid, ferrous sulfate, xylenol orange and ultra-pure reactive grade water. Dosimeter samples are prepared in standard vials for its in phantom irradiation and further characterization by spectrophotometry measuring visible light transmission and absorbance before and after irradiation. Samples are irradiated by typical kV X-ray tubes and calibrated Farmer type ionization chamber is used as reference to measure dose rates inside phantoms in at vials locations. Once sensitive material composition is already optimized, dose-response curves show significant improvement regarding overall sensitivity for low dose levels. According to

  11. Inelastic X-ray scattering experiments at extreme conditions: high temperatures and high pressures

    Directory of Open Access Journals (Sweden)

    S.Hosokawa

    2008-03-01

    Full Text Available In this article, we review the present status of experimental techniques under extreme conditions of high temperature and high pressure used for inelastic X-ray scattering (IXS experiments of liquid metals, semiconductors, molten salts, molecular liquids, and supercritical water and methanol. For high temperature experiments, some types of single-crystal sapphire cells were designed depending on the temperature of interest and the sample thickness for the X-ray transmission. Single-crystal diamond X-ray windows attached to the externally heated high-pressure vessel were used for the IXS experiment of supercritical water and methanol. Some typical experimental results are also given, and the perspective of IXS technique under extreme conditions is discussed.

  12. High sensitivity field asymmetric ion mobility spectrometer

    Science.gov (United States)

    Chavarria, Mario A.; Matheoud, Alessandro V.; Marmillod, Philippe; Liu, Youjiang; Kong, Deyi; Brugger, Jürgen; Boero, Giovanni

    2017-03-01

    A high sensitivity field asymmetric ion mobility spectrometer (FAIMS) was designed, fabricated, and tested. The main components of the system are a 10.6 eV UV photoionization source, an ion filter driven by a high voltage/high frequency n-MOS inverter circuit, and a low noise ion detector. The ion filter electronics are capable to generate square waveforms with peak-to-peak voltages up to 1000 V at frequencies up to 1 MHz with adjustable duty cycles. The ion detector current amplifier has a gain up to 1012 V/A with an effective equivalent input noise level down to about 1 fA/Hz1/2 during operation with the ion filter at the maximum voltage and frequency. The FAIMS system was characterized by detecting different standard chemical compounds. Additionally, we investigated the use of a synchronous modulation/demodulation technique to improve the signal-to-noise ratio in FAIMS measurements. In particular, we implemented the modulation of the compensation voltage with the synchronous demodulation of the ion current. The analysis of the measurements at low concentration levels led to an extrapolated limit of detection for acetone of 10 ppt with an averaging time of 1 s.

  13. Sensitivity of the WRF model to the lower boundary in an extreme precipitation event - Madeira island case study

    Science.gov (United States)

    Teixeira, J. C.; Carvalho, A. C.; Carvalho, M. J.; Luna, T.; Rocha, A.

    2014-08-01

    The advances in satellite technology in recent years have made feasible the acquisition of high-resolution information on the Earth's surface. Examples of such information include elevation and land use, which have become more detailed. Including this information in numerical atmospheric models can improve their results in simulating lower boundary forced events, by providing detailed information on their characteristics. Consequently, this work aims to study the sensitivity of the weather research and forecast (WRF) model to different topography as well as land-use simulations in an extreme precipitation event. The test case focused on a topographically driven precipitation event over the island of Madeira, which triggered flash floods and mudslides in the southern parts of the island. Difference fields between simulations were computed, showing that the change in the data sets produced statistically significant changes to the flow, the planetary boundary layer structure and precipitation patterns. Moreover, model results show an improvement in model skill in the windward region for precipitation and in the leeward region for wind, in spite of the non-significant enhancement in the overall results with higher-resolution data sets of topography and land use.

  14. Highly Sensitive Assay for Measurement of Arenavirus-cell Attachment.

    Science.gov (United States)

    Klaus, Joseph P; Botten, Jason

    2016-03-02

    Arenaviruses are a family of enveloped RNA viruses that cause severe human disease. The first step in the arenavirus life cycle is attachment of viral particles to host cells. While virus-cell attachment can be measured through the use of virions labeled with biotin, radioactive isotopes, or fluorescent dyes, these approaches typically require high multiplicities of infection (MOI) to enable detection of bound virus. We describe a quantitative (q)RT-PCR-based assay that measures Junin virus strain Candid 1 attachment via quantitation of virion-packaged viral genomic RNA. This assay has several advantages including its extreme sensitivity and ability to measure attachment over a large dynamic range of MOIs without the need to purify or label input virus. Importantly, this approach can be easily tailored for use with other viruses through the use of virus-specific qRT-PCR reagents. Further, this assay can be modified to permit measurement of particle endocytosis and genome uncoating. In conclusion, we describe a simple, yet robust assay for highly sensitive measurement of arenavirus-cell attachment.

  15. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    Science.gov (United States)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non

  16. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    Science.gov (United States)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non

  17. Highly sensitive direct conversion ultrasound interferometer

    Science.gov (United States)

    Svitelskiy, Oleksiy; Grossmann, John; Suslov, Alexey

    2015-03-01

    Being invented more than fifty years ago, the ultrasonic pulse-echo technique has proven itself as a valuable and indispensable non-destructive tool to explore elastic properties of materials in engineering and scientific tasks. We propose a new design for the instrument based on mass-produced integral microchips. In our design the radiofrequency echo-pulse signal is processed by AD8302 RF gain and phase detector (www.analog.com).Its phase output is linearly proportional to the phase difference between the exciting and response signals. The gain output is proportional to the log of the ratio of amplitudes of the received to the exciting signals. To exclude the non-linear fragments and to enable exploring large phase changes, we employ parallel connection of two detectors, fed by in-phase and quadrature signals respectively. The instrument allowed us exploring phase transitions with precision of ΔV / V ~10-7 (V is the ultrasound speed). The high sensitivity of the logarithmic amplifiers embedded into AD8302 requires good grounding and screening of the receiving circuitry.

  18. Evaluation of resist sensitivity in extreme ultraviolet/soft x-ray region for next-generation lithography

    Directory of Open Access Journals (Sweden)

    Tomoko Gowa Oyama

    2011-12-01

    Full Text Available At and below the 11 nm node, shortening the exposure wavelength to >10 nm (extreme ultraviolet (EUV/soft x-ray region, especially at 6.6-6.8 nm, has been discussed as next-generation EUV lithography. In this study, dose/sensitivities of typical resists were obtained at several wavelengths down to 3.1 nm and were found to depend on the wavelength. However, it was confirmed that the absorbed dose, calculated from the dose/sensitivity and the respective linear absorption coefficient, was almost independent of the wavelength and constant for each resist. Thus, the resist sensitivity for next-generation lithography was predicted at wavelengths <10 nm.

  19. High Sensitivity, High Frequency and High Time Resolution Decimetric Spectroscope

    Science.gov (United States)

    Sawant, H. S.; Rosa, R. R.

    1990-11-01

    RESUMEN. Se ha desarrollado el primer espectroscopio decimetrico latino americano operando en una banda de 100 MHz con alta resoluci6n de fre- cuencia (100 KHz) y tiempo (10 ms), alrededor de cualquier centro de frecuencia en el intervalo de 2000-200 MHz. El prop6sito de esta nota es describir investigaciones solares y no solares que se planean, progra ma de investigaci6n y la situaci6n actual de desarrollo de este espectroscopio. ABSTRACT. First Latin American Decimetric Spectroscope operating over a band of 100 MHz with high resolution in frequency (100 KHz) and time (10 ms), around any center frequency in the range of 2000-200 MHz is being developed. The purpose of this note is to describe planned solar, and non-solar, research programmes and present status of development of this spectroscope. Keq wo : INSTRUMENTS - SPECTROSCOPY

  20. Phthalocyanine dye as an extremely photostable and highly fluorescent near-infrared labeling reagent

    Science.gov (United States)

    Peng, Xinzhan; Draney, Daniel R.; Volcheck, William M.; Bashford, Gregory R.; Lamb, Donald T.; Grone, Daniel L.; Zhang, Yonghong; Johnson, Craig M.

    2006-02-01

    Current organic fluorophores used as labeling reagents for biomolecule conjugation have significant limitations in photostability. This compromises their performance in applications that require a photostable fluorescent reporting group. For example, in molecular imaging and single molecule microscopy, photostable fluorescent labels are important for observing and tracking individual molecular events over extended period of time. We report in this paper an extremely photostable and highly fluorescent phthalocyanine dye, IRDye TM 700DX, as a near-infrared fluorescence labeling reagent to conjugate with biomolecules. This novel water-soluble silicon phthalocyanine dye has an isomericly pure chemical structure. The dye is about 45 to 128 times more photostable than current near-IR fluorophores, e.g. Alexa Fluor"R"680, Cy TM 5.5, Cy TM 7 and IRDye TM 800CW dyes; and about 27 times more photostable than tetramethylrhodamine (TMR), one of the most photostable organic dyes. This dye also meets all the other stringent requirements as an ideal fluorophore for biomolecules labeling such as excellent water solubility, no aggregation in high ionic strength buffer, large extinction coefficient and high fluorescent quantum yield. Antibodies conjugated with IRDye TM 700DX at high D/P ratio exist as monomeric species in high ionic buffer and have bright fluorescence. The IRDye TM 700DX conjugated antibodies generate sensitive, highly specific detection with very low background in Western blot and cytoblot assays.

  1. Creep strength of iridium at extremely high temperatures; Zeitstandfestigkeit von Iridium bei extrem hohen Temperaturen

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, B. [Fachhochschule Jena (Germany). Fachbereich Werkstofftechnik; Lupton, D. [Heraeus (W.C.) GmbH, Hanau (Germany). Produktbereich Materialtechnik; Braun, F. [Heraeus (W.C.) GmbH, Hanau (Germany). Produktbereich Materialtechnik; Merker, J. [Jena Univ. (Germany). Technisches Inst.; Helmich, R. [Jena Univ. (Germany). Technisches Inst.

    1994-12-31

    On iridium in the initial state and after carrying out creep tests, apart from metallographic and fractographic work, investigations on the distribution of trace impurities were done by means of secondary ion mass spectroscopy and investigations of the crystal structure were carried out with the aid of Kossel technique, a special field of X-ray bending. Although iridium of high purity was used for the investigations, enrichment of hydrogen, carbon, sodium, potassium, calcium, magnesium, silicon, iron, nickel and chromium was proved by means of secondary ion mass spectroscopy at the grain boundaries, where the average contents in iridium were only about 1 {mu}g/g. In the creep test, creep fracture lines were found in the range of 1800 to 2300 C and about 0.5 to 12 hours on iridium samples with a square cross section of 1 mm. It follows from the results that this noble metal has a considerable resistance to heat at these temperatures, which makes its use up to 2300 C possible. (orig./RHM) [Deutsch] Es erfolgten am Iridium im Ausgangszustand und nach Durchfuehrung der Zeitstandversuche neben metallographischen und fraktographischen Arbeiten Untersuchungen zur Verteilung der Spurenverunreinigungen mittels Sekundaerionen-Massenspektroskopie sowie Untersuchungen der Kristallstruktur mit Hilfe der Kossel-Technik, einem Spezialgebiet der Roentgenbeugung. Obwohl fuer die Untersuchungen hochreines Iridium verwendet wurde, konnten mittels Sekundaerionen-Massenspektroskopie in den Korngrenzen Anreicherungen von Wasserstoff, Kohlenstoff, Natrium, Kalium, Calcium, Magnesium, Silizium, Eisen, Nickel und Chrom nachgewiesen werden, wobei die durchschnittlichen Gehalte in Iridium nur um 1 {mu}g/g lagen. Im Zeitstandversuch wurden an Iridiumproben mit 1 mm Vierkantquerschnitt Zeitbruchlinien im Bereich von 1800 bis 2300 C und etwa 0,5 bis 12 Stunden aufgenommen. Aus den Ergebnissen folgt, dass das Edelmetall bei diesen Temperaturen noch eine beachtliche Warmfestigkeit besitzt, die

  2. Extremely short duration high intensity interval training substantially improves insulin action in young healthy males

    DEFF Research Database (Denmark)

    Babraj, John A; Vollaard, Niels B J; Keast, Cameron

    2009-01-01

    BACKGROUND: Traditional high volume aerobic exercise training reduces cardiovascular and metabolic disease risk but involves a substantial time commitment. Extremely low volume high-intensity interval training (HIT) has recently been demonstrated to produce improvements to aerobic function, but i...

  3. Probability and Sensitivity Nonlinear Analysis of the Hermetic Cover of Main Shut-off Valve under Extreme Pressure and Temperature

    Directory of Open Access Journals (Sweden)

    Králik Juraj

    2017-06-01

    Full Text Available This paper describes the probabilistic nonlinear analysis of the containment hermetic cover of main shut-off valve (MSV under an extreme internal overpressure and temperature. The scenario of the hard accident in NPP and the methodology of the calculation of the fragility curve of the failure overpressure using the probabilistic safety assessment PSA 2 level are presented. The elasto-plastic behavior of steel material dependent on temperature was considered in software ANSYS. The method of central composite design sampling (CCD of the response surface methodology (RSM was used to probability and sensitivity analysis of the hermetic cover reliability.

  4. [A simple highly sensitive recording microspectrophotometer].

    Science.gov (United States)

    Govardovskiĭ, V I; Zueva, L V

    1988-04-01

    A design of the recording microspectrophotometer is described. The instrument possesses an absolutely flat base line and quantum-noise limited detection threshold. Two principal elements of the design are the "jumping" stage, and the logarithmic amplifier with the phase-sensitive detector which converts the photomultiplier output into the optical density signal. The performance of the instrument is illustrated by the recordings of visual pigment spectra in single photoreceptors.

  5. Extremely High Suction Performance Inducers for Space Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced pump inducer design technology that uses high inlet diffusion blades, operates at a very low flow coefficient, and employs a cavitation control and...

  6. Extreme sensitivity of enveloped viruses, including herpes simplex, to long-chain unsaturated monoglycerides and alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Sands, J.; Auperin, D.; Snipes, W.

    1979-01-01

    Unsaturated monoglycerides and alcohols of chain lengths of 16 to 18 carbons were found to be extremely potent inactivators of two enveloped viruses, herpes simplex virus type 2 and bacteriophage phi 6. The lipid-containing bacteriophage PM2 was also inactivated by some of these amphiphilic molecules. Treatment of herpes simplex virus type 2 with these compounds at concentrations as low as 0.2 ..mu..M reduced virus survival to 50% in 30 min, making these agents the most potent inactivators of herpes simplex viruses discovered that are not cytotoxic to mammalian cells. Detailed characterizations of the effects of unsaturated monoglycerides and alcohols on bacteriophages phi 6 and PM2 showed that the inactivated phi 6 virion remained nearly intact but that PM2 was almost completely disrupted by the inactivating treatment. Some of the compounds inactivate the viruses even at low temperature (0/sup 0/C). Excess amounts of diglycerides and phospholipids interfere with the inactivating abilities of some of the unsaturated monoglycerides and alcohols against phi 6 and PM2. Our findings suggest that the unsaturated monoglycerides and some of the unsaturated alcohols should be further studied as potential antiviral agents. Particularly for application to herpesvirus-infected areas of the skin and accessible epithelium.

  7. Effect of low-intensity extremely high frequency radiation on reproductive function in wistar rats.

    Science.gov (United States)

    Subbotina, T I; Tereshkina, O V; Khadartsev, A A; Yashin, A A

    2006-08-01

    The exposure to low-intensity extremely high frequency electromagnetic radiation during spermatogenesis was accompanied by pathological changes, which resulted in degeneration and polymorphism of spermatozoa. The number of newborn rats increased in the progeny of irradiated animals.

  8. Extreme Environment Circuit Blocks for Spacecraft Power & Propulsion System & Other High Reliability Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Chronos Technology (DIv of FMI, Inc.) proposes to design, fabricate, and deliver a performance proven, and commercially available set of extreme high operating...

  9. Extremely high-power tongue projection in plethodontid salamanders

    NARCIS (Netherlands)

    Deban, S.M.; O'Reilly, J.C.; Dicke, U.; Leeuwen, van J.L.

    2007-01-01

    Many plethodontid salamanders project their tongues ballistically at high speed and for relatively great distances. Capturing evasive prey relies on the tongue reaching the target in minimum time, therefore it is expected that power production, or the rate of energy release, is maximized during tong

  10. Mass Spectrometry-based Assay for High Throughput and High Sensitivity Biomarker Verification

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xuejiang; Tang, Keqi

    2017-06-14

    Searching for disease specific biomarkers has become a major undertaking in the biomedical research field as the effective diagnosis, prognosis and treatment of many complex human diseases are largely determined by the availability and the quality of the biomarkers. A successful biomarker as an indicator to a specific biological or pathological process is usually selected from a large group of candidates by a strict verification and validation process. To be clinically useful, the validated biomarkers must be detectable and quantifiable by the selected testing techniques in their related tissues or body fluids. Due to its easy accessibility, protein biomarkers would ideally be identified in blood plasma or serum. However, most disease related protein biomarkers in blood exist at very low concentrations (<1ng/mL) and are “masked” by many none significant species at orders of magnitude higher concentrations. The extreme requirements of measurement sensitivity, dynamic range and specificity make the method development extremely challenging. The current clinical protein biomarker measurement primarily relies on antibody based immunoassays, such as ELISA. Although the technique is sensitive and highly specific, the development of high quality protein antibody is both expensive and time consuming. The limited capability of assay multiplexing also makes the measurement an extremely low throughput one rendering it impractical when hundreds to thousands potential biomarkers need to be quantitatively measured across multiple samples. Mass spectrometry (MS)-based assays have recently shown to be a viable alternative for high throughput and quantitative candidate protein biomarker verification. Among them, the triple quadrupole MS based assay is the most promising one. When it is coupled with liquid chromatography (LC) separation and electrospray ionization (ESI) source, a triple quadrupole mass spectrometer operating in a special selected reaction monitoring (SRM) mode

  11. Experimental evidence for extreme surface sensitivity in Auger-Photoelectron Coincidence Spectroscopy (APECS) from solids

    Energy Technology Data Exchange (ETDEWEB)

    Liscio, A.; Gotter, R.; Ruocco, A.; Iacobucci, S.; Danese, A.G.; Bartynski, R.A.; Stefani, G

    2004-07-01

    Core hole creation and subsequent Auger decay processes are studied with unprecedented discrimination by Auger-Photoelectron Coincidence Spectroscopy (APECS). Early works in this field have already pointed out the intrinsic surface sensitivity of these experiments. However, it was not until recently that a model calculation was developed to quantitatively evaluate it. Here we present the first attempt to experimentally establish an effective target thickness for such experiments. The angular distribution of 3p{sub 3/2} photoelectron with kinetic energy of 160 eV is measured in coincidence with the M{sub 3}VV Auger electron with kinetic energy of 55 eV on a Cu (1 1 1) surface. Coincidence and non-coincidence photoelectron angular distributions display differences that, to large extent, are explained by confining the source of the coincident signal within the first two layers of Cu target, thus establishing an experimental upper limit for the effective target thickness of the APECS experiment.

  12. High Energy Ion Acceleration by Extreme Laser Radiation Pressure

    Science.gov (United States)

    2017-03-14

    was used instead. This code makes the assumption that the background ion and electron behaviour can be approximated with a fluid model whilst...electron behaviour occurring from this aperture was also published in High Power Laser Science and Engineering [4]. A significant breakthrough was also...acceleration to transparency. This was published in Physics of Plasmas [12]. Through one- dimensional modelling of the interaction, it was also

  13. The extremely high stability of carbofuran pesticide in acidic media

    Directory of Open Access Journals (Sweden)

    Tomašević Anđelka V.

    2007-01-01

    Full Text Available Environment friendly iron catalysts were applied in the decomposition reactions of some toxic compounds like phenol, methomyl and corbofuran pesticide. The applied catalytic processes belong to photo-Fenton reactions. Heterogeneous iron catalysts showed significant activity in phenol and methomyl conversion, however, these catalysts were completely inactive in destruction of carbofuran molecule, even in the catalytic reaction promoted with UV light at high temperature.

  14. Adaptation potential of naturally ventilated barns to high temperature extremes: The OptiBarn project

    Science.gov (United States)

    Menz, Christoph

    2016-04-01

    Climate change interferes with various aspects of the socio-economic system. One important aspect is its influence on animal husbandry, especially dairy faming. Dairy cows are usually kept in naturally ventilated barns (NVBs) which are particular vulnerable to extreme events due to their low adaptation capabilities. An effective adaptation to high outdoor temperatures for example, is only possible under certain wind and humidity conditions. High temperature extremes are expected to increase in number and strength under climate change. To assess the impact of this change on NVBs and dairy cows also the changes in wind and humidity needs to be considered. Hence we need to consider the multivariate structure of future temperature extremes. The OptiBarn project aims to develop sustainable adaptation strategies for dairy housings under climate change for Europe, by considering the multivariate structure of high temperature extremes. In a first step we identify various multivariate high temperature extremes for three core regions in Europe. With respect to dairy cows in NVBs we will focus on the wind and humidity field during high temperature events. In a second step we will use the CORDEX-EUR-11 ensemble to evaluate the capability of the RCMs to model such events and assess their future change potential. By transferring the outdoor conditions to indoor climate and animal wellbeing the results of this assessment can be used to develop technical, architectural and animal specific adaptation strategies for high temperature extremes.

  15. Vulnerability and Sensitivity of Women and the Aged to Hydrological Extremes in Rural Communities of South Eastern Nigeria

    Science.gov (United States)

    Mbajiorgu, Constantine; Ezenne, Gloria I.; Ndulue, Emeka L.

    2017-04-01

    Annual rainfall total of Southeastern Nigeria varies widely from year to year and across the seasons. Southeastern Nigeria is marked with two distinctive seasons, namely: the rainy season (occurs March through November) and the dry season (December through February). Highest daily rainfall of this area occurs in the months of July through September. Climate change has brought about either prolonged rainy or dry season in this region. Flash floods are common features in Southeastern Nigeria during the rainy (wet) season, but the unprecedented floods of 2012 represent the worst with 21 million people displaced, 597,476 houses destroyed or damaged, over 363 people killed and an estimated loss of USD 19.6 billion. Hydrological extremes such as these affect men and women differently because of the different roles socio-culturally assigned to them. Women are more vulnerable and sensitive to floods and drought because of their conventional gender responsibilities. This study assesses how women and the elderly of rural communities of Southeastern Nigeria are affected by hydrological extremes, their vulnerability to the effects as well as risk reduction approaches to cope with and/or adapt to the impacts of climate change. In the study area, women are predominantly the providers of food, water and fuel, and climate change has adverse impacts on all three. Women in these rural communities practice subsistence farming during the rainy season. Their farm lands are submerged during flood events destroying their crops and they are helpless during prolonged dry seasons. Inadequacy of hydrological data makes it difficult to predict and forecast hydrological extremes in the region. Several other factors exacerbate vulnerability of women and the aged to the impacts of hydrological extremes, such as rural poverty, limited livelihood options, education, lack of basic services, and socio-cultural norms. The poverty level affects their resilience and recovery from any flood disaster. It

  16. Microsystem for remote sensing of high energy radiation with associated extremely low photon flux densities

    Science.gov (United States)

    Otten, A.; Jain, V. K.

    2015-08-01

    This paper presents a microsystem for remote sensing of high energy radiation in extremely low flux density conditions. With wide deployment in mind, potential applications range from nuclear non-proliferation, to hospital radiation-safety. The daunting challenge is the low level of photon flux densities - emerging from a Scintillation Crystal (SC) on to a ~1 mm-square detector, which are a factor of 10000 or so lower than those acceptable to recently reported photonic chips (including `single-photon detection' chips), due to a combination of low Lux, small detector size, and short duration SC output pulses - on the order of 1 μs. These challenges are attempted to be overcome by the design of an innovative `System on a Chip' type microchip, with high detector sensitivity, and effective coupling from the SC to the photodetector. The microchip houses a tiny n+ diff p-epi photodiode (PD) as well as the associated analog amplification and other related circuitry, all fabricated in 0.5micron, 3-metal 2-poly CMOS technology. The amplification, together with pulse-shaping of the photocurrent-induced voltage signal, is achieved through a tandem of two capacitively coupled, double-cascode amplifiers. Included in the paper are theoretical estimates and experimental results.

  17. High Performance Multivariate Visual Data Exploration for Extremely Large Data

    Energy Technology Data Exchange (ETDEWEB)

    Rubel, Oliver; Wu, Kesheng; Childs, Hank; Meredith, Jeremy; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Ahern, Sean; Weber, Gunther H.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes; Prabhat,

    2008-08-22

    One of the central challenges in modern science is the need to quickly derive knowledge and understanding from large, complex collections of data. We present a new approach that deals with this challenge by combining and extending techniques from high performance visual data analysis and scientific data management. This approach is demonstrated within the context of gaining insight from complex, time-varying datasets produced by a laser wakefield accelerator simulation. Our approach leverages histogram-based parallel coordinates for both visual information display as well as a vehicle for guiding a data mining operation. Data extraction and subsetting are implemented with state-of-the-art index/query technology. This approach, while applied here to accelerator science, is generally applicable to a broad set of science applications, and is implemented in a production-quality visual data analysis infrastructure. We conduct a detailed performance analysis and demonstrate good scalability on a distributed memory Cray XT4 system.

  18. Intensity ratio measurements for density sensitive lines of highly charged Fe ions

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Safdar, E-mail: safdaruetian@gmail.com; Shimizu, Erina [Institute for Laser Science, The University of Electro-Communications (Japan); Sakaue, Hiroyuki A.; Kato, Daiji; Murakami, Izumi [National Institute for Fusion Science (Japan); Yamamoto, Norimasa [Chubu University (Japan); Hara, Hirohisa; Watanabe, Tetsuya [The Graduate University of Advanced Studies (SOKENDAI) (Japan); Nakamura, Nobuyuki, E-mail: n-nakamu@ils.uec.ac.jp [Institute for Laser Science, The University of Electro-Communications (Japan)

    2015-11-15

    Intensity ratio of density sensitive emission lines emitted from Fe ions in the extreme ultraviolet region is important for astrophysics applications. We report high-resolution intensity ratio measurements for Fe ions performed at Tokyo EBIT laboratory by employing a flat-field grazing incidence spectrometer. The experimental intensity ratios of Fe X and Fe XII are plotted as a function of electron density for different electron beam currents. The experimental results are compared with the predicted intensity ratios from the model calculations.

  19. High-Sensitivity GaN Microchemical Sensors

    Science.gov (United States)

    Son, Kyung-ah; Yang, Baohua; Liao, Anna; Moon, Jeongsun; Prokopuk, Nicholas

    2009-01-01

    Systematic studies have been performed on the sensitivity of GaN HEMT (high electron mobility transistor) sensors using various gate electrode designs and operational parameters. The results here show that a higher sensitivity can be achieved with a larger W/L ratio (W = gate width, L = gate length) at a given D (D = source-drain distance), and multi-finger gate electrodes offer a higher sensitivity than a one-finger gate electrode. In terms of operating conditions, sensor sensitivity is strongly dependent on transconductance of the sensor. The highest sensitivity can be achieved at the gate voltage where the slope of the transconductance curve is the largest. This work provides critical information about how the gate electrode of a GaN HEMT, which has been identified as the most sensitive among GaN microsensors, needs to be designed, and what operation parameters should be used for high sensitivity detection.

  20. An extremely high altitude plume seen at Mars morning terminator

    Science.gov (United States)

    Sanchez-Lavega, Agustin; Garcia-Muñoz, Antonio; Garcia-Melendo, Enrique; Perez-Hoyos, Santiago; Gomez-Forrellad, Josep M.; Pellier, Christophe; Delcroix, Marc; Lopez-Valverde, Miguel Angel; Gonzalez-Galindo, Francisco; Jaeschke, Wayne; Parker, Donald C.; Phillips, James H.; Peach, Damian

    2014-11-01

    We report the occurrence in March and April 2012 of two bright very high altitude plumes at the Martian terminator at 250 km or more above the surface, thus well into the ionosphere and bordering on the exosphere. They were located at about 195 deg West longitude and -45 deg latitude (at Terra Cimmeria) and lasted for about 10 days. The features showed day-to-day variability, and were seen at the morning terminator but not at the evening limb, which indicates rapid evolution in less than 10 hours and a cyclic behavior. Photometric measurements are used to explore two possible scenarios to explain their nature. If the phenomenon is due to suspended particles (dust, CO2 or H2O ice clouds) reflecting solar radiation, the mean size is about 0.1 microns with a nadir optical depth > 0.06. Alternatively, the plume could be auroral emission above a region with a strong magnetic anomaly and where aurora has previously been detected. Importantly, both explanations defy our current understanding of the Mars upper atmosphere.AcknowledgementsThis work was supported by the Spanish MINECO projects AYA2012-36666 with FEDER support, CONSOLIDER program ASTROMOL CSD2009-00038 and AYA2011-30613-CO2-1. Grupos Gobierno Vasco IT765-13 and UPV/EHU UFI11/55.

  1. Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria

    DEFF Research Database (Denmark)

    Eitzinger, J; Thaler, S; Schmid, E;

    2013-01-01

    The objective of the present study was to compare the performance of seven different, widely applied crop models in predicting heat and drought stress effects. The study was part of a recent suite of model inter-comparisons initiated at European level and constitutes a component that has been...... lacking in the analysis of sources of uncertainties in crop models used to study the impacts of climate change. There was a specific focus on the sensitivity of models for winter wheat and maize to extreme weather conditions (heat and drought) during the short but critical period of 2 weeks after...... or minimum tillage. Since no comprehensive field experimental data sets were available, a relative comparison of simulated grain yields and soil moisture contents under defined weather scenarios with modified temperatures and precipitation was performed for a 2-week period after flowering. The results may...

  2. Quantifying imaging performance bounds of extreme dipole illumination in high NA optical lithography

    Science.gov (United States)

    Lee, Myungjun; Smith, Mark D.; Biafore, John; Graves, Trey; Levy, Ady

    2016-10-01

    We present a framework to analyze the performance of optical imaging in a hyper numerical aperture (NA) immersion lithography scanner. We investigate the method to quantify imaging performance by computing upperand lower-bounds on the threshold normalized image log-slope (NILS) and the depth of focus (DOF) in conjunction with the traditional image quality metrics such as the mask error enhancement factor (MEEF) and the linearity for various different pitches and line to space (LS) duty cycles. The effects of the interaction between the light illumination and the feature size are extensively characterized based on the aerial image (AI) behavior in particular for the extreme dipole illumination that is one of the commonly used off-axis illuminations for sub-100nm logic and memory devices, providing resolution near the physical limit of an optical single patterning step. The proposed aerial imaging-based DOF bounds are compared to the results obtained from an experimentally calibrated resist model, and we observed good agreement. In general, the extreme dipole illumination is only optimal for a single particular pitch, therefore understanding the through-pitch imaging performance bound, which depends on the illumination shape, pattern size, and process conditions, is critically important. We find that overall imaging performance varies depending upon the number of diffracted beams passing through the scanner optics. An even number of beams provides very different trends compared to the results from an odd-number of beams. This significant non-linear behavior occurs in certain pitch regions corresponding to 3 beam interference imaging. In this region the imaging performance and the pattern printability become extremely sensitive to the LS duty cycle. In addition, there is a notable tradeoff between the DOF and the NILS that is observed in the problematic 3-beam region and this tradeoff eventually affects the achievable process window (PW). Given the practical real

  3. Triggers for a high sensitivity charm experiment

    Energy Technology Data Exchange (ETDEWEB)

    Christian, D.C.

    1994-07-01

    Any future charm experiment clearly should implement an E{sub T} trigger and a {mu} trigger. In order to reach the 10{sup 8} reconstructed charm level for hadronic final states, a high quality vertex trigger will almost certainly also be necessary. The best hope for the development of an offline quality vertex trigger lies in further development of the ideas of data-driven processing pioneered by the Nevis/U. Mass. group.

  4. Scalloped electrodes for highly sensitive electrical measurements

    DEFF Research Database (Denmark)

    Vazquez Rodriguez, Patricia; Dimaki, Maria; Svendsen, Winnie Edith

    2011-01-01

    In this work we introduce a novel out-of-plane electrode with pronounced scalloped surface and high aspect ratio for electrical recordings of brain tissue in vitro, with the aim to reduce significantly the impedance of the measuring system. The profile and height of the structures is tailored...... by means of silicon fabrication techniques that sharpen them progressively and in a controlled manner. We will show that the use of the scalloped area achieves a great decrease in impedance, which is very significant for a reduction of noise in electrical measurements. The measured impedance reflects...

  5. Prospects of hydroacoustic detection of ultra-high and extremely high energy cosmic neutrinos

    Science.gov (United States)

    Dedenko, L. G.; Karlik, Ya. S.; Learned, J. G.; Svet, V. D.; Zheleznykh, I. M.

    2001-07-01

    The prospects of construction of deep underwater neutrino telescopes in the world's oceans for the goals of ultra-high and super-high energy neutrino astrophysics (astronomy) using acoustic technologies are reviewed. The effective detection volume of the acoustic neutrino telescopes can be far greater than a cubic kilometer for extreme energies. In recent years, it was proposed that an existing hydroacoustic array of 2400 hydrophones in the Pacific Ocean near Kamchatka Peninsula could be used as a test base for an acoustic neutrino telescope SADCO (Sea-based Acoustic Detector of Cosmic Objects) which should be capable of detecting acoustic signals produced in water by the cosmic neutrinos with energies 1019-21 eV (e.g., topological defect neutrinos). We report on simulations of super-high energy electron-hadron and electron-photon cascades with the Landau-Pomeranchuk-Migdal effect taken into account. Acoustic signals emitted by neutrino-induced cascades with energies 1020-21 eV were calculated. The possibilities of using a converted hydroacoustic station MG-10 (MG-10M) of 132 hydrophones as a basic module for a deep water acoustic neutrino detector with the threshold detection energy 1015 eV in the Mediterranean Sea are analyzed (with the aim of searching for neutrinos with energies 1015-16 eV from Active Galactic Nuclei). .

  6. Extremely sensitive sandwich assay of kanamycin using surface-enhanced Raman scattering of 2-mercaptobenzothiazole labeled gold@silver nanoparticles.

    Science.gov (United States)

    Zengin, Adem; Tamer, Ugur; Caykara, Tuncer

    2014-03-19

    Herein, we report the development of extremely sensitive sandwich assay of kanamycin using a combination of anti-kanamycin functionalized hybrid magnetic (Fe3O4) nanoparticles (MNPs) and 2-mercaptobenzothiazole labeled Au-core@Ag-shell nanoparticles as the recognition and surface-enhanced Raman scattering (SERS) substrate, respectively. The hybrid MNPs were first prepared via surface-mediated RAFT polymerization of N-acryloyl-L-glutamic acid in the presence of 2-(butylsulfanylcarbonylthiolsulfanyl) propionic acid-modified MNPs as a RAFT agent and then biofunctionalized with anti-kanamycin, which are both specific for kanamycin and can be collected via a simple magnet. After separating kanamycin from the sample matrix, they were sandwiched with the SERS substrate. According to our experimental results, the limit of detection (LOD) was determined to be 2pg mL(-1), this value being about 3-7 times more than sensitive than the LOD of previously reported results, which can be explained by the higher SERS activity of silver coated gold nanoparticles. The analysis time took less than 10min, including washing and optical detection steps. Furthermore, the sandwich assay was evaluated for investigating the kanamycin specificity on neomycin, gentamycin and streptomycin and detecting kanamycin in artificially contaminated milk.

  7. Critical dimension uniformity and contact edge roughness in extreme ultraviolet lithography: effect of photoacid generator, sensitizer and quencher

    Science.gov (United States)

    Kuppuswamy, Vijaya-Kumar Murugesan; Constantoudis, Vassilios; Gogolides, Evangelos; Pret, Alessandro Vaglio; Gronheid, Roel

    2013-04-01

    One of the main challenges for developing extreme ultraviolet resists is to satisfy critical dimension uniformity (CDU) and sidewall roughness of contacts to the allowable limit. To this end, further understanding of the effects of resist ingredients on CDU and contact edge roughness (CER) is required. We investigate the effects of a photoacid generator (PAG), sensitizer and quencher concentrations on the CDU and CER. We find that the dependencies of CDU on sensitizer and quencher are dominated by photon shot noise (PSN) effects whereas a more complicated interplay between PSN and PAG distribution statistics should be considered in the dependence of CDU on PAG concentration. The estimated CER parameters [root mean square (RMS) value and correlation length ξ] exhibit a merging trend when plotted against the final critical dimension (CD). In addition, RMS value increases with exposure dose and PAG loading contrary to shot noise expectations. Power spectrum analysis reveals the dominant contribution of low-frequency undulations to CER, which is attributed to the enhanced interaction along specific directions between the aerial image and/or acid kinetics of nearby contacts. This inter-contact effect is further intensified with CD for fixed pitch and may explain the observed CER behavior.

  8. Inverse regulation of inflammation and mitochondrial function in adipose tissue defines extreme insulin sensitivity in morbidly obese patients.

    Science.gov (United States)

    Qatanani, Mohammed; Tan, Yejun; Dobrin, Radu; Greenawalt, Danielle M; Hu, Guanghui; Zhao, Wenqing; Olefsky, Jerrold M; Sears, Dorothy D; Kaplan, Lee M; Kemp, Daniel M

    2013-03-01

    Obesity is associated with insulin resistance, a major risk factor for type 2 diabetes and cardiovascular disease. However, not all obese individuals are insulin resistant, which confounds our understanding of the mechanistic link between these conditions. We conducted transcriptome analyses on 835 obese subjects with mean BMI of 48.8, on which we have previously reported genetic associations of gene expression. Here, we selected ~320 nondiabetic (HbA(1c) immune response and inflammation-related genes were significantly downregulated in the omental adipose tissue of obese individuals with extreme insulin sensitivity and, to a much lesser extent, in subcutaneous adipose tissue. In contrast, genes related to β-oxidation and the citric acid cycle were relatively overexpressed in adipose of insulin-sensitive patients. These observations were verified by querying an independent cohort of our published dataset of 37 subjects whose subcutaneous adipose tissue was sampled before and after treatment with thiazolidinediones. Whereas the immune response and inflammation pathway genes were downregulated by thiazolidinedione treatment, β-oxidation and citric acid cycle genes were upregulated. This work highlights the critical role that omental adipose inflammatory pathways might play in the pathophysiology of insulin resistance, independent of body weight.

  9. Multipurpose High Sensitivity Radiation Detector: Terradex

    Energy Technology Data Exchange (ETDEWEB)

    Alpat, Behcet [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy)]. E-mail: behcet.alpat@pg.infn.it; Aisa, Damiano [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Bizzarri, Marco [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Blasko, Sandor [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Esposito, Gennaro [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Farnesini, Lucio [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Fiori, Emmanuel [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Papi, Andrea [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Postolache, Vasile [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Renzi, Francesca [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Ionica, Romeo [Politecnica University of Bucarest, Splaiul Indipendentei, Bucharest (Romania); Manolescu, Florentina [Space Science Institute of Bucharest, Maugurele, Bucharest (Romania); Ozkorucuklu, Suat [Suleyman Demirel Universitesi, Isparta (Turkey); Denizli, Haluk [Abant Izzet Baysal Universitesi, Bolu (Turkey); Tapan, Ilhan [Uludag Universitesi, Bursa (Turkey); Ercan Pilicer [Uludag Universitesi, Bursa (Turkey); Egidi, Felice [SITE Technology, Carsoli (Italy); Moretti, Cesare [SITE Technology, Carsoli(AQ) (Italy); Dicola, Luca [SITE Technology, Carsoli(AQ) (Italy)

    2007-05-11

    Terradex project aims to realise an accurate and programmable multiparametric tool which will measure relevant physical quantities such as observation time, energy and type of all decay products of three naturally occurring decay chains of uranium and thorium series present in nature as well as the decay products of man-made radioactivity. The measurements described in this work are based on the performance tests of the first version of an instrument that is designed to provide high counting accuracy, by introducing self-triggering, delayed time-coincidence technique, of products of a given decay chain. In order to qualify the technique and to calibrate the Terradex, a {sup 222}Rn source is used. The continuous and accurate monitoring of radon concentration in air is realised by observing the alpha and beta particles produced by the decay of {sup 222}Rn and its daughters and tag each of them with a precise occurrence time. The validity of delayed coincident technique by using the state of the art electronics with application of novel data sampling and analysis methods are discussed. The flexibility of sampling protocols and the advantages of online calibration capability to achieve the highest level of precision in natural and man-made radiation measurements are also described.

  10. Extremely short duration high intensity interval training substantially improves insulin action in young healthy males

    Directory of Open Access Journals (Sweden)

    Cottrell Greg

    2009-01-01

    Full Text Available Abstract Background Traditional high volume aerobic exercise training reduces cardiovascular and metabolic disease risk but involves a substantial time commitment. Extremely low volume high-intensity interval training (HIT has recently been demonstrated to produce improvements to aerobic function, but it is unknown whether HIT has the capacity to improve insulin action and hence glycemic control. Methods Sixteen young men (age: 21 ± 2 y; BMI: 23.7 ± 3.1 kg·m-2; VO2peak: 48 ± 9 ml·kg-1·min-1 performed 2 weeks of supervised HIT comprising of a total of 15 min of exercise (6 sessions; 4–6 × 30-s cycle sprints per session. Aerobic performance (250-kJ self-paced cycling time trial, and glucose, insulin and NEFA responses to a 75-g oral glucose load (oral glucose tolerance test; OGTT were determined before and after training. Results Following 2 weeks of HIT, the area under the plasma glucose, insulin and NEFA concentration-time curves were all reduced (12%, 37%, 26% respectively, all P -1, P = 0.058. Insulin sensitivity, as measured by the Cederholm index, was improved by 23% (P Conclusion The efficacy of a high intensity exercise protocol, involving only ~250 kcal of work each week, to substantially improve insulin action in young sedentary subjects is remarkable. This novel time-efficient training paradigm can be used as a strategy to reduce metabolic risk factors in young and middle aged sedentary populations who otherwise would not adhere to time consuming traditional aerobic exercise regimes.

  11. High Sensitivity Optomechanical Reference Accelerometer over 10 kHz

    Science.gov (United States)

    2014-06-05

    characterizing fast mechanical dynamics and piezo -electric devices, but typically not both. Yet extremely high resolution maintained over large...applying a ringdown technique in vacuum. To this end, we used a piezo -shaker to excite the oscillator at its resonance frequency and measured the...exponential decay response. The resonance peak was determined by spectral analysis and then honed in by a high resolution function generator driving the piezo

  12. Design optimization of high pressure and high temperature piezoresistive pressure sensor for high sensitivity

    Science.gov (United States)

    Niu, Zhe; Zhao, Yulong; Tian, Bian

    2014-01-01

    This paper describes a design method for optimizing sensitivity of piezoresistive pressure sensor in high-pressure and high-temperature environment. In order to prove the method, a piezoresistive pressure sensor (HPTSS) is designed. With the purpose of increasing sensitivity and to improve the measurement range, the piezoresistive sensor adopts rectangular membrane and thick film structure. The configuration of piezoresistors is arranged according to the characteristic of the rectangular membrane. The structure and configuration of the sensor chip are analyzed theoretically and simulated by the finite element method. This design enables the sensor chip to operate in high pressure condition (such as 150 MPa) with a high sensitivity and accuracy. The silicon on insulator wafer is selected to guarantee the thermo stability of the sensor chip. In order to optimize the fabrication and improve the yield of production, an electric conduction step is devised. Series of experiments demonstrates a favorable linearity of 0.13% and a high accuracy of 0.48%. And the sensitivity of HTPSS is about six times as high as a conventional square-membrane sensor chip in the experiment. Compared with the square-membrane pressure sensor and current production, the strength of HPTTS lies in sensitivity and measurement. The performance of the HPTSS indicates that it could be an ideal candidate for high-pressure and high-temperature sensing in real application.

  13. Design optimization of high pressure and high temperature piezoresistive pressure sensor for high sensitivity.

    Science.gov (United States)

    Niu, Zhe; Zhao, Yulong; Tian, Bian

    2014-01-01

    This paper describes a design method for optimizing sensitivity of piezoresistive pressure sensor in high-pressure and high-temperature environment. In order to prove the method, a piezoresistive pressure sensor (HPTSS) is designed. With the purpose of increasing sensitivity and to improve the measurement range, the piezoresistive sensor adopts rectangular membrane and thick film structure. The configuration of piezoresistors is arranged according to the characteristic of the rectangular membrane. The structure and configuration of the sensor chip are analyzed theoretically and simulated by the finite element method. This design enables the sensor chip to operate in high pressure condition (such as 150 MPa) with a high sensitivity and accuracy. The silicon on insulator wafer is selected to guarantee the thermo stability of the sensor chip. In order to optimize the fabrication and improve the yield of production, an electric conduction step is devised. Series of experiments demonstrates a favorable linearity of 0.13% and a high accuracy of 0.48%. And the sensitivity of HTPSS is about six times as high as a conventional square-membrane sensor chip in the experiment. Compared with the square-membrane pressure sensor and current production, the strength of HPTTS lies in sensitivity and measurement. The performance of the HPTSS indicates that it could be an ideal candidate for high-pressure and high-temperature sensing in real application.

  14. How extreme are extremes?

    Science.gov (United States)

    Cucchi, Marco; Petitta, Marcello; Calmanti, Sandro

    2016-04-01

    High temperatures have an impact on the energy balance of any living organism and on the operational capabilities of critical infrastructures. Heat-wave indicators have been mainly developed with the aim of capturing the potential impacts on specific sectors (agriculture, health, wildfires, transport, power generation and distribution). However, the ability to capture the occurrence of extreme temperature events is an essential property of a multi-hazard extreme climate indicator. Aim of this study is to develop a standardized heat-wave indicator, that can be combined with other indices in order to describe multiple hazards in a single indicator. The proposed approach can be used in order to have a quantified indicator of the strenght of a certain extreme. As a matter of fact, extremes are usually distributed in exponential or exponential-exponential functions and it is difficult to quickly asses how strong was an extreme events considering only its magnitude. The proposed approach simplify the quantitative and qualitative communication of extreme magnitude

  15. Generation of bright circularly-polarized extreme ultraviolet high harmonics for magnetic circular dichroism spectroscopy

    CERN Document Server

    Kfir, Ofer; Turgut, Emrah; Knut, Ronny; Zusin, Dmitriy; Popmintchev, Dimitar; Popmintchev, Tenio; Nembach, Hans; Shaw, Justin M; Fleicher, Avner; Kapteyn, Henry; Murnane, Margaret; Cohen, Oren

    2014-01-01

    Circularly-polarized extreme UV and X-ray radiation provides valuable access to the structural, electronic and magnetic properties of materials. To date, such experiments have been possible only using large-scale free-electron lasers or synchrotrons. Here we demonstrate the first bright extreme UV circularly-polarized high harmonics and use this new light source for magnetic circular dichroism measurements at the M-shell absorption edges of cobalt. This work paves the way towards element-specific imaging and spectroscopy of multiple elements simultaneously in magnetic and other chiral media with very high spatio-temporal resolution, all on a tabletop.

  16. Radiation-damped profiles of extremely high column density neutral hydrogen: implications of cosmic reionization

    Science.gov (United States)

    Bach, Kiehunn

    2017-01-01

    Incorporating the time-dependent second-order perturbation theory for the Lyman scattering cross-section, we investigate the intergalactic absorption profiles of extremely high column density systems near the end of cosmic reionization. Assuming a representative set of the redshift distribution of neutral hydrogen, we quantitatively examined the impact of inhomogeneous density on the intrinsic absorption profiles. The cumulative absorption by neutral patches in the line of sight mainly affects the far off-centre region of the red damping wing, but the effect is not significant. The shape of the line centre can be modified by the near-zone distribution due to high opacities of the near-resonance scattering. On the other hand, the HWHM (half width at half-maximum) as an effective line width is relatively less sensitive to the local inhomogeneity. Specifically, when the two local damping wings of Lyα and Lyβ are close in spectra of the strongly damped systems, accurate profiles of both lines are required. In the case of N_{H I}≲ 10^{21} { cm^{-2}}, the two-level approximation is marginally applicable for the damping wing fit within 5 - 7 per cent errors. However, as the local column density reaches N_{H I}˜ 10^{22.3} { cm^{-2}}, this classical approximation yields a relative error of a 10 per cent overestimation in the red wing and a 20 per cent underestimation in the blue wing of Lyα. If severe extinction by the Lyα forests is carefully subtracted, the intrinsic absorption profile will provide a better constraint on the local ionized states. For practical applications, an analytic fitting function for the Lyβ scattering is derived.

  17. Radiation Damped Profiles of Extremely High Column Density Neutral Hydrogen : Implications of Cosmic Reionization

    Science.gov (United States)

    Bach, Kiehunn

    2016-09-01

    Incorporating the time-dependent second-order perturbation theory for the Lyman scattering cross-section, we investigate the intergalactic absorption profiles of extremely high column density systems near the end of cosmic reionization. Assuming a representative set of the redshift distribution of neutral hydrogen, we quantitatively examined the impact of inhomogeneous density on the intrinsic absorption profiles. The cumulative absorption by neutral patches in the line-of-sight mainly affects the far off-center region of the red damping wing, but the effect is not significant. The shape of the line-center can be modified by the near-zone distribution due to high opacities of the near-resonance scattering. On the other hand, the HWHM (half width at half maximum) as an effective line-width is relatively less sensitive to the local inhomogeneity. Specifically, when the two local damping wings of Lyα and Lyβ are close in spectra of the strongly damped systems, accurate profiles of both lines are required. In the case of N HI ≲ 1021 cm-2, the two-level approximation is marginally applicable for the damping wing fit within 5 - 7% errors. However, as the local column density reaches N HI ˜ 1022.3 cm-2, this classical approximation yields a relative error of a 10% overestimation in the red wing and a 20% underestimation in the blue wing of Lyα. If severe extinction by the Lyα forests is carefully subtracted, the intrinsic absorption profile will provide a better constraint on the local ionized states. For practical applications, an analytic fitting function for the Lyβ scattering is derived.

  18. A highly sensitive colorimetric and ratiometric sensor for fluoride ion

    Institute of Scientific and Technical Information of China (English)

    Zhao Wu Xu; Jin Tang; He Tian

    2008-01-01

    A new benzoimidazole-naphthalimide derivative 4 was synthesized and its photophysical properties were studied.This compound showed highly selectively and sensitive colorimetric and ratiometric sensing ability for fluoride anion.

  19. Millimeter waves or extremely high frequency electromagnetic fields in the environment: what are their effects on bacteria?

    Science.gov (United States)

    Soghomonyan, Diana; Trchounian, Karen; Trchounian, Armen

    2016-06-01

    Millimeter waves (MMW) or electromagnetic fields of extremely high frequencies at low intensity is a new environmental factor, the level of which is increased as technology advance. It is of interest that bacteria and other cells might communicate with each other by electromagnetic field of sub-extremely high frequency range. These MMW affected Escherichia coli and many other bacteria, mainly depressing their growth and changing properties and activity. These effects were non-thermal and depended on different factors. The significant cellular targets for MMW effects could be water, cell plasma membrane, and genome. The model for the MMW interaction with bacteria is suggested; a role of the membrane-associated proton FOF1-ATPase, key enzyme of bioenergetic relevance, is proposed. The consequences of MMW interaction with bacteria are the changes in their sensitivity to different biologically active chemicals, including antibiotics. Novel data on MMW effects on bacteria and their sensitivity to different antibiotics are presented and discussed; the combined action of MMW and antibiotics resulted with more strong effects. These effects are of significance for understanding changed metabolic pathways and distinguish role of bacteria in environment; they might be leading to antibiotic resistance in bacteria. The effects might have applications in the development of technique, therapeutic practices, and food protection technology.

  20. High aspect ratio tungsten grating on ultrathin Si membranes for extreme UV lithography

    Science.gov (United States)

    Peng, Xinsheng; Ying, Yulong

    2016-09-01

    Extreme ultraviolet lithography is one of the modern lithography tools for high-volume manufacturing with 22 nm resolution and beyond. But critical challenges exist to the design and fabrication of large-scale and highly efficient diffraction transmission gratings, significantly reducing the feature sizes down to 22 nm and beyond. To achieve such a grating, the surface flatness, the line edge roughness, the transmission efficiency and aspect ratio should be improved significantly. Delachat et al (2015 Nanotechnology 26 108262) develop a full process to fabricate a tungsten diffraction grating on an ultrathin silicon membrane with higher aspect ratio up to 8.75 that met all the aforementioned requirements for extreme ultraviolet lithography. This process is fully compatible with standard industrial extreme ultraviolet lithography.

  1. High aspect ratio tungsten grating on ultrathin Si membranes for extreme UV lithography.

    Science.gov (United States)

    Peng, Xinsheng; Ying, Yulong

    2016-09-02

    Extreme ultraviolet lithography is one of the modern lithography tools for high-volume manufacturing with 22 nm resolution and beyond. But critical challenges exist to the design and fabrication of large-scale and highly efficient diffraction transmission gratings, significantly reducing the feature sizes down to 22 nm and beyond. To achieve such a grating, the surface flatness, the line edge roughness, the transmission efficiency and aspect ratio should be improved significantly. Delachat et al (2015 Nanotechnology 26 108262) develop a full process to fabricate a tungsten diffraction grating on an ultrathin silicon membrane with higher aspect ratio up to 8.75 that met all the aforementioned requirements for extreme ultraviolet lithography. This process is fully compatible with standard industrial extreme ultraviolet lithography.

  2. Probability modeling of high flow extremes in Yingluoxia watershed, the upper reaches of Heihe River basin

    Science.gov (United States)

    Li, Zhanling; Li, Zhanjie; Li, Chengcheng

    2014-05-01

    Probability modeling of hydrological extremes is one of the major research areas in hydrological science. Most basins in humid and semi-humid south and east of China are concerned for probability modeling analysis of high flow extremes. While, for the inland river basin which occupies about 35% of the country area, there is a limited presence of such studies partly due to the limited data availability and a relatively low mean annual flow. The objective of this study is to carry out probability modeling of high flow extremes in the upper reach of Heihe River basin, the second largest inland river basin in China, by using the peak over threshold (POT) method and Generalized Pareto Distribution (GPD), in which the selection of threshold and inherent assumptions for POT series are elaborated in details. For comparison, other widely used probability distributions including generalized extreme value (GEV), Lognormal, Log-logistic and Gamma are employed as well. Maximum likelihood estimate is used for parameter estimations. Daily flow data at Yingluoxia station from 1978 to 2008 are used. Results show that, synthesizing the approaches of mean excess plot, stability features of model parameters, return level plot and the inherent independence assumption of POT series, an optimum threshold of 340m3/s is finally determined for high flow extremes in Yingluoxia watershed. The resulting POT series is proved to be stationary and independent based on Mann-Kendall test, Pettitt test and autocorrelation test. In terms of Kolmogorov-Smirnov test, Anderson-Darling test and several graphical diagnostics such as quantile and cumulative density function plots, GPD provides the best fit to high flow extremes in the study area. The estimated high flows for long return periods demonstrate that, as the return period increasing, the return level estimates are probably more uncertain. The frequency of high flow extremes exhibits a very slight but not significant decreasing trend from 1978 to

  3. A genome-wide analysis of putative functional and exonic variation associated with extremely high intelligence.

    Science.gov (United States)

    Spain, S L; Pedroso, I; Kadeva, N; Miller, M B; Iacono, W G; McGue, M; Stergiakouli, E; Smith, G D; Putallaz, M; Lubinski, D; Meaburn, E L; Plomin, R; Simpson, M A

    2016-08-01

    Although individual differences in intelligence (general cognitive ability) are highly heritable, molecular genetic analyses to date have had limited success in identifying specific loci responsible for its heritability. This study is the first to investigate exome variation in individuals of extremely high intelligence. Under the quantitative genetic model, sampling from the high extreme of the distribution should provide increased power to detect associations. We therefore performed a case-control association analysis with 1409 individuals drawn from the top 0.0003 (IQ >170) of the population distribution of intelligence and 3253 unselected population-based controls. Our analysis focused on putative functional exonic variants assayed on the Illumina HumanExome BeadChip. We did not observe any individual protein-altering variants that are reproducibly associated with extremely high intelligence and within the entire distribution of intelligence. Moreover, no significant associations were found for multiple rare alleles within individual genes. However, analyses using genome-wide similarity between unrelated individuals (genome-wide complex trait analysis) indicate that the genotyped functional protein-altering variation yields a heritability estimate of 17.4% (s.e. 1.7%) based on a liability model. In addition, investigation of nominally significant associations revealed fewer rare alleles associated with extremely high intelligence than would be expected under the null hypothesis. This observation is consistent with the hypothesis that rare functional alleles are more frequently detrimental than beneficial to intelligence.

  4. The Complementary Role of High Sensitivity C-Reactive Protein in the Diagnosis and Severity Assessment of Autism

    Science.gov (United States)

    Khakzad, Mohammad Reza; Javanbakht, Maryam; Shayegan, Mohammad Reza; Kianoush, Sina; Omid, Fatemeh; Hojati, Maryam; Meshkat, Mojtaba

    2012-01-01

    C-reactive protein (CRP) is a beneficial diagnostic test for the evaluation of inflammatory response. Extremely low levels of CRP can be detected using high-sensitivity CRP (hs-CRP) test. A considerable body of evidence has demonstrated that inflammatory response has an important role in the pathophysiology of autism. In this study, we evaluated…

  5. Sensitivity of MENA Tropical Rainbelt to Dust Shortwave Absorption: A High Resolution AGCM Experiment

    KAUST Repository

    Bangalath, Hamza Kunhu

    2016-06-13

    Shortwave absorption is one of the most important, but the most uncertain, components of direct radiative effect by mineral dust. It has a broad range of estimates from different observational and modeling studies and there is no consensus on the strength of absorption. To elucidate the sensitivity of the Middle East and North Africa (MENA) tropical summer rainbelt to a plausible range of uncertainty in dust shortwave absorption, AMIP-style global high resolution (25 km) simulations are conducted with and without dust, using the High-Resolution Atmospheric Model (HiRAM). Simulations with dust comprise three different cases by assuming dust as a very efficient, standard and inefficient absorber. Inter-comparison of these simulations shows that the response of the MENA tropical rainbelt is extremely sensitive to the strength of shortwave absorption. Further analyses reveal that the sensitivity of the rainbelt stems from the sensitivity of the multi-scale circulations that define the rainbelt. The maximum response and sensitivity are predicted over the northern edge of the rainbelt, geographically over Sahel. The sensitivity of the responses over the Sahel, especially that of precipitation, is comparable to the mean state. Locally, the response in precipitation reaches up to 50% of the mean, while dust is assumed to be a very efficient absorber. Taking into account that Sahel has a very high climate variability and is extremely vulnerable to changes in precipitation, the present study suggests the importance of reducing uncertainty in dust shortwave absorption for a better simulation and interpretation of the Sahel climate.

  6. Extreme climatic events: impacts of drought and high temperature on physiological processes in agronomically important plants

    Directory of Open Access Journals (Sweden)

    Urs eFeller

    2014-10-01

    Full Text Available Climate models predict more frequent and more severe extreme events (e.g. heat waves, extended drought periods, flooding in many regions for the next decades. The impact of adverse environmental conditions on crop plants is ecologically and economically relevant. This review is focused on drought and heat effects on physiological status and productivity of agronomically important plants. Stomatal opening represents an important regulatory mechanism during drought and heat stress since it influences simultaneously water loss via transpiration and CO2 diffusion into the leaf apoplast which further is utilized in photosynthesis. Along with the reversible short-term control of stomatal opening, stomata and leaf epidermis may produce waxy deposits and irreversibly down-regulate the stomatal conductance and non-stomatal transpiration. As a consequence photosynthesis will be negatively affected. Rubisco activase - a key enzyme in keeping the Calvin cycle functional – is heat-sensitive and may become a limiting factor at elevated temperature. The accumulated reactive oxygen species during stress represent an additional challenge under unfavorable conditions. Drought and heat cause accumulation of free amino acids which are partially converted into compatible solutes such as proline. This is accompanied by lower rates of both nitrate reduction and de novo amino acid biosynthesis. Protective proteins (e.g. dehydrins, chaperones, antioxidant enzymes or the key enzyme for proline biosynthesis play an important role in leaves and may be present at higher levels under water deprivation or high temperatures. On the whole plant level, effects on long-distance translocation of solutes via xylem and phloem and on leaf senescence (e.g. anticipated, accelerated or delayed senescence are important. The factors mentioned above are relevant for the overall performance of crops under drought and heat and must be considered for genotype selection and breeding programs.

  7. High-resolution analysis of 1 day extreme precipitation in Sicily

    Science.gov (United States)

    Maugeri, M.; Brunetti, M.; Garzoglio, M.; Simolo, C.

    2015-04-01

    Sicily, the major Mediterranean island, experienced several exceptional precipitation episodes and floods during the last century, with dramatic consequences on human life and environment. A long term, rational planning of urban development is mandatory for protecting population and avoiding huge economic losses in the future. This requires a deep knowledge of the distributional features of extreme precipitation over the complex territory of Sicily. In the present study, we address this issue, and attempt a detailed investigation of observed 1-day precipitation extremes and their frequency distribution, based on a dense data-set of high-quality, homogenized station records in 1921-2005. We extrapolate very high quantiles (return levels) corresponding to 10-, 50- and 100-year return periods, as predicted by a generalized extreme value distribution. Return level estimates are produced on a regular high-resolution grid (30 arcsec) using a variant of regional frequency analysis combined with regression techniques. Results clearly reflect the complexity of this region, and make evident the high vulnerability of its eastern and northeastern parts as those prone to the most intense and potentially damaging events. This analysis thus provides an operational tool for extreme precipitation risk assessment and, at the same time, is an useful basis for validation and downscaling of regional climate models.

  8. High quality factor and high sensitivity chalcogenide 1D photonic crystal microbridge cavity for mid-infrared sensing

    Science.gov (United States)

    Xu, Peipeng; Yu, Zenghui; Shen, Xiang; Dai, Shixun

    2017-01-01

    We present and theoretically investigate a mid-infrared (mid-IR) optical sensor based on a Ge11.5As24Se64.5 one-dimensional photonic crystal microbridge cavity (PhC-MC). Optimizing the structure of the PhC-MC strongly confines the resonant mode field to the air region, thereby greatly enhancing the overlap and interaction of the light field and target analytes. A high calculated sensitivity (2280 nm per refractive index unit) is achieved with a resonant wavelength of 4132 nm. The figure of merit of the device for sensing is extremely high (929,750) because of the high quality factor and sensitivity of the cavity. The sensing part of the cavity is also small (50×3 μm2). The proposed PhC-MC can be an ideal platform for on-chip integrated mid-IR optical sensing.

  9. Transplantation in highly HLA-sensitized patients: challenges and solutions

    Directory of Open Access Journals (Sweden)

    Kim IK

    2014-09-01

    Full Text Available Irene K Kim, Ashley Vo, Stanley C Jordan Transplant Immunotherapy Program, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA Abstract: Despite better understanding of the impact of development of the human leukocyte antigen (HLA antibody and numerous advancements in immunosuppressive therapy, the ability to successfully transplant highly sensitized patients remains a significant challenge. As the percentage of the waiting list becomes increasingly populated with highly sensitized patients, there is a growing demand for effective strategies to manage these patients. Over the past 20 years, desensitization therapies have been modified and developed, and are mainly utilized at transplant centers that have developed expertise. In addition, recognition that the highly sensitized patient population is disadvantaged on the transplant waiting list has led to recent changes in national kidney allocation policy. Furthermore, creative strategies, such as enrollment of sensitized patients into paired kidney exchange programs, have been developed to find compatible matches for these patients. The goal of this article is to address some of the specific challenges related to transplanting the highly sensitized patient at a high-volume transplant center with experience in desensitization and to review established and emerging solutions to help this patient population. Keywords: human leukocyte antigen, antibodies, desensitization, high-dose intravenous immunoglobulin, rituximab

  10. Extreme deformations and clusterization at high spin in the A ~ 40 mass region

    Science.gov (United States)

    Ray, Debisree; Afanasjev, Anatoli

    2015-10-01

    Recent revival of the interest to the study of superdeformation and clusterization in light nuclei has motivated us to undertake the study of extreme deformations in the A ~ 32 - 50 N ~ Z nuclei. Unfortunately, at spin zero the predicted structures with extreme deformation are located at high excitation energies which prevents their experimental observation. On the other hand, the rotation brings such structures closer to the yrast line and, in principle, makes their observation possible with future generation of facilities such as GRETA. Thus, the systematic study of the extremely deformed structures and clusterization has been performed in the framework of cranked relativistic mean field theory. The major features of such structures, the spins at which they become yrast and the possiblities of their experimental observation will be discussed in this presentation. This work has been supported by the U.S. Department of Energy under the Grant DE-FG02-07ER41459.

  11. Mutagen sensitivity has high heritability: evidence from a twin study.

    Science.gov (United States)

    Wu, Xifeng; Spitz, Margaret R; Amos, Christopher I; Lin, Jie; Shao, Lina; Gu, Jian; de Andrade, Mariza; Benowitz, Neal L; Shields, Peter G; Swan, Gary E

    2006-06-15

    Despite numerous studies showing that mutagen sensitivity is a cancer predisposition factor, the heritability of mutagen sensitivity has not been clearly established. In this report, we used a classic twin study design to examine the role of genetic and environmental factors on the mutagen sensitivity phenotype. Mutagen sensitivity was measured in peripheral blood lymphocytes from 460 individuals [148 pairs of monozygotic (MZ) twins, 57 pairs of dizygotic (DZ) twins, and 50 siblings]. The intraclass correlation coefficients were all significantly higher in MZ twins than in dizygotes (DZ pairs and MZ-sibling pairs combined) for sensitivity to four different mutagen challenges. Applying biometric genetic modeling, we calculated a genetic heritability of 40.7%, 48.0%, 62.5%, and 58.8% for bleomycin, benzo[a]pyrene diol epoxide, gamma-radiation, and 4-nitroquinoline-1-oxide sensitivity, respectively. This study provides the strongest and most direct evidence that mutagen sensitivity is highly heritable, thereby validating the use of mutagen sensitivity as a cancer susceptibility factor.

  12. Extremely high thermal conductivity anisotropy of double-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Zhaoji Ma

    2017-06-01

    Full Text Available Based on molecular dynamics simulations, we reveal that double-walled carbon nanotubes can possess an extremely high anisotropy ratio of radial to axial thermal conductivities. The mechanism is basically the same as that for the high thermal conductivity anisotropy of graphene layers - the in-plane strong sp2 bonds lead to a very high intralayer thermal conductivity while the weak van der Waals interactions to a very low interlayer thermal conductivity. However, different from flat graphene layers, the tubular structures of carbon nanotubes result in a diameter dependent thermal conductivity. The smaller the diameter, the larger the axial thermal conductivity but the smaller the radial thermal conductivity. As a result, a DWCNT with a small diameter may have an anisotropy ratio of thermal conductivity significantly higher than that for graphene layers. The extremely high thermal conductivity anisotropy allows DWCNTs to be a promising candidate for thermal management materials.

  13. Extremely high thermal conductivity anisotropy of double-walled carbon nanotubes

    Science.gov (United States)

    Ma, Zhaoji; Guo, Zhengrong; Zhang, Hongwei; Chang, Tienchong

    2017-06-01

    Based on molecular dynamics simulations, we reveal that double-walled carbon nanotubes can possess an extremely high anisotropy ratio of radial to axial thermal conductivities. The mechanism is basically the same as that for the high thermal conductivity anisotropy of graphene layers - the in-plane strong sp2 bonds lead to a very high intralayer thermal conductivity while the weak van der Waals interactions to a very low interlayer thermal conductivity. However, different from flat graphene layers, the tubular structures of carbon nanotubes result in a diameter dependent thermal conductivity. The smaller the diameter, the larger the axial thermal conductivity but the smaller the radial thermal conductivity. As a result, a DWCNT with a small diameter may have an anisotropy ratio of thermal conductivity significantly higher than that for graphene layers. The extremely high thermal conductivity anisotropy allows DWCNTs to be a promising candidate for thermal management materials.

  14. Achieving sensitive, high-resolution laser spectroscopy at CRIS

    Energy Technology Data Exchange (ETDEWEB)

    Groote, R. P. de [Instituut voor Kern- en Stralingsfysica, KU Leuven (Belgium); Lynch, K. M., E-mail: kara.marie.lynch@cern.ch [EP Department, CERN, ISOLDE (Switzerland); Wilkins, S. G. [The University of Manchester, School of Physics and Astronomy (United Kingdom); Collaboration: the CRIS collaboration

    2017-11-15

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE facility, has recently performed high-resolution laser spectroscopy, with linewidths down to 20 MHz. In this article, we present the modifications to the beam line and the newly-installed laser systems that have made sensitive, high-resolution measurements possible. Highlights of recent experimental campaigns are presented.

  15. A highly sensitive optical detector for use in deep underwater.

    Science.gov (United States)

    Hanada, H.; Hayashino, T.; Ito, M.; Iwasaki, A.; Kawamorita, K.; Kawamoto, H.; Matsumoto, T.; Narita, S.; Takayama, T.; Tanaka, S.; Yamaguchi, A.; Aoki, T.; Mitsui, K.; Ohashi, Y.; Okada, A.; Fukawa, M.; Uehara, S.; Bolesta, J. W.; Gorham, P. W.; Kondo, S.; Learned, J. G.; Matsuno, S.; Mignard, M.; Mitiguy, R.; O'Connor, D. J.; Peterson, V. Z.; Roberts, A.; Rosen, M.; Stenger, V. J.; Takemori, D.; Wilkins, G.; Grieder, P. K. F.; Minkowski, P.; Kitamura, T.; Camerini, U.; Grogan, W.; Jaworski, M.; March, R.; Narita, T.; Nicklaus, D.

    1998-05-01

    The authors have developed an optical detector module for use in deep underwater experiments that will search for high-energy neutrinos from cosmic rays and astronomical sources. This module is sensitive to single photons, is operable under high pressure, functions automatically and is remotely controlled.

  16. Engineered nanoconstructs for the multiplexed and sensitive detection of high-risk pathogens

    Science.gov (United States)

    Seo, Youngmin; Kim, Ji-Eun; Jeong, Yoon; Lee, Kwan Hong; Hwang, Jangsun; Hong, Jongwook; Park, Hansoo; Choi, Jonghoon

    2016-01-01

    Many countries categorize the causative agents of severe infectious diseases as high-risk pathogens. Given their extreme infectivity and potential to be used as biological weapons, a rapid and sensitive method for detection of high-risk pathogens (e.g., Bacillus anthracis, Francisella tularensis, Yersinia pestis, and Vaccinia virus) is highly desirable. Here, we report the construction of a novel detection platform comprising two units: (1) magnetic beads separately conjugated with multiple capturing antibodies against four different high-risk pathogens for simple and rapid isolation, and (2) genetically engineered apoferritin nanoparticles conjugated with multiple quantum dots and detection antibodies against four different high-risk pathogens for signal amplification. For each high-risk pathogen, we demonstrated at least 10-fold increase in sensitivity compared to traditional lateral flow devices that utilize enzyme-based detection methods. Multiplexed detection of high-risk pathogens in a sample was also successful by using the nanoconstructs harboring the dye molecules with fluorescence at different wavelengths. We ultimately envision the use of this novel nanoprobe detection platform in future applications that require highly sensitive on-site detection of high-risk pathogens.

  17. Carbon nanotube quantum dots as highly sensitive THz spectrometers

    Science.gov (United States)

    Rinzan, Mohamed; Jenkins, Greg; Drew, Dennis; Shafranjuk, Serhii; Barbara, Paola

    2012-02-01

    We show that carbon nanotube quantum dots (CNT-Dots) coupled to antennas are extremely sensitive, broad-band, terahertz quantum detectors. Their response is due to photon-assisted single-electron tunneling (PASET)[1], but cannot be fully understood with orthodox PASET models[2]. We consider intra-dot excitations and non-equilibrium cooling to explain the anomalous response. REFERENCES: [1] Y. Kawano, S. Toyokawa, T. Uchida and K. Ishibashi, THz photon assisted tunneling in carbon-nanotube quantum dots, Journal of Applied Physics 103, 034307 (2008). [2] P. K. Tien and J. P. Gordon, Multiphoton Process Observed in the Interaction of Microwave Fields with the Tunneling between Superconductor Films, Phys. Rev. 129, 647 (1963).

  18. Research of High Sensitivity Uncooled Infrared Detector Array

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Pingchuan [Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, Bo, E-mail: redmoon123456@126.com, E-mail: lhzyzb@126.com [Luohe Vocational Technology College, Luohe 462002 (China)

    2011-02-01

    The infrared thermal imaging technology has been widely used in military and civilian fields and the field of the infrared detection and infrared thermal imaging technology has been of concern for a long time. On infrared thermal imaging, its core components for the infrared focal plane arrays, how to develop a high sensitivity of the multi-focal plane infrared detector is a key issue. Although the Common focal plane array of quantum has high sensitivity, but it requires low temperature cooling work environment and led to complexity and high cost, difficult to compact. Conventional uncooled infrared focal plane array is contrast to the quantum focal plane arrays. Therefore, this article preceded by the uncooled infrared detector array to improve the wide temperature sensitivity in examining the feasibility PMN composite film, materials composition, structure design and preparation process technology.

  19. Physical Exam Risk Factors for Lower Extremity Injury in High School Athletes: A Systematic Review.

    Science.gov (United States)

    Onate, James A; Everhart, Joshua S; Clifton, Daniel R; Best, Thomas M; Borchers, James R; Chaudhari, Ajit M W

    2016-11-01

    A stated goal of the preparticipation physical evaluation (PPE) is to reduce musculoskeletal injury, yet the musculoskeletal portion of the PPE is reportedly of questionable use in assessing lower extremity injury risk in high school-aged athletes. The objectives of this study are: (1) identify clinical assessment tools demonstrated to effectively determine lower extremity injury risk in a prospective setting, and (2) critically assess the methodological quality of prospective lower extremity risk assessment studies that use these tools. A systematic search was performed in PubMed, CINAHL, UptoDate, Google Scholar, Cochrane Reviews, and SportDiscus. Inclusion criteria were prospective injury risk assessment studies involving athletes primarily ages 13 to 19 that used screening methods that did not require highly specialized equipment. Methodological quality was evaluated with a modified physiotherapy evidence database (PEDro) scale. Nine studies were included. The mean modified PEDro score was 6.0/10 (SD, 1.5). Multidirectional balance (odds ratio [OR], 3.0; CI, 1.5-6.1; P < 0.05) and physical maturation status (P < 0.05) were predictive of overall injury risk, knee hyperextension was predictive of anterior cruciate ligament injury (OR, 5.0; CI, 1.2-18.4; P < 0.05), hip external:internal rotator strength ratio of patellofemoral pain syndrome (P = 0.02), and foot posture index of ankle sprain (r = -0.339, P = 0.008). Minimal prospective evidence supports or refutes the use of the functional musculoskeletal exam portion of the current PPE to assess lower extremity injury risk in high school athletes. Limited evidence does support inclusion of multidirectional balance assessment and physical maturation status in a musculoskeletal exam as both are generalizable risk factors for lower extremity injury.

  20. Physical Exam Risk Factors for Lower Extremity Injury in High School Athletes: A Systematic Review

    Science.gov (United States)

    Onate, James A.; Everhart, Joshua S.; Clifton, Daniel R.; Best, Thomas M.; Borchers, James R.; Chaudhari, Ajit M.W.

    2016-01-01

    Objective A stated goal of the preparticipation physical evaluation (PPE) is to reduce musculoskeletal injury, yet the musculoskeletal portion of the PPE is reportedly of questionable use in assessing lower extremity injury risk in high school-aged athletes. The objectives of this study are: (1) identify clinical assessment tools demonstrated to effectively determine lower extremity injury risk in a prospective setting, and (2) critically assess the methodological quality of prospective lower extremity risk assessment studies that use these tools. Data Sources A systematic search was performed in PubMed, CINAHL, UptoDate, Google Scholar, Cochrane Reviews, and SportDiscus. Inclusion criteria were prospective injury risk assessment studies involving athletes primarily ages 13 to 19 that used screening methods that did not require highly specialized equipment. Methodological quality was evaluated with a modified physiotherapy evidence database (PEDro) scale. Main Results Nine studies were included. The mean modified PEDro score was 6.0/10 (SD, 1.5). Multidirectional balance (odds ratio [OR], 3.0; CI, 1.5–6.1; P anterior cruciate ligament injury (OR, 5.0; CI, 1.2–18.4; P < 0.05), hip external: internal rotator strength ratio of patellofemoral pain syndrome (P = 0.02), and foot posture index of ankle sprain (r = −0.339, P = 0.008). Conclusions Minimal prospective evidence supports or refutes the use of the functional musculoskeletal exam portion of the current PPE to assess lower extremity injury risk in high school athletes. Limited evidence does support inclusion of multidirectional balance assessment and physical maturation status in a musculoskeletal exam as both are generalizable risk factors for lower extremity injury. PMID:26978166

  1. Highly sensitive optical sensor system for blood leakage detection

    Science.gov (United States)

    Ueda, Masahiro; Ishikawa, Kazuhiko; Jie, Chen; Sanae, Mizuno; Touma, Yasunori

    A highly sensitive method for the detection of blood leakage has been developed, and a practical sensor system for blood concentration measurement has been constructed. The present method is based on the attenuation of laser light by blood cells. The effects of the fluctuations of the incident laser light power are eliminated by normalizing the attenuated light intensity by the incident light intensity. A part of the incident laser light is reflected by a beam splitter mounted at the entrance of the test cell, of which the power is measured to provide base data for normalization. The optical path is extended to enhance sensitivity by using a pair of side mirrors. This multi-reflection method is very effective to increase sensitivity; the maximum sensitivity obtained for blood concentration is about 4 X 10 -6 by volume, which is significantly higher than that of the conventional sensors.

  2. Scalable photonic crystal chips for high sensitivity protein detection.

    Science.gov (United States)

    Liang, Feng; Clarke, Nigel; Patel, Parth; Loncar, Marko; Quan, Qimin

    2013-12-30

    Scalable microfabrication technology has enabled semiconductor and microelectronics industries, among other fields. Meanwhile, rapid and sensitive bio-molecule detection is increasingly important for drug discovery and biomedical diagnostics. In this work, we designed and demonstrated that photonic crystal sensor chips have high sensitivity for protein detection and can be mass-produced with scalable deep-UV lithography. We demonstrated label-free detection of carcinoembryonic antigen from pg/mL to μg/mL, with high quality factor photonic crystal nanobeam cavities.

  3. Experimental Investigation on a Highly Sensitive Atomic Magnetometer

    Institute of Scientific and Technical Information of China (English)

    LI Shu-Guang; XU Yun-Fei; WANG Zhao-Ying; LIU Yun-Xian; LIN Qiang

    2009-01-01

    A highly sensitive all-optical atomic magnetometer based on the magnetooptical effect which uses the advanced technique of single laser beam detection is reported and demonstrated experimentally.A sensitivityof 0.5 pT/Hz1/2 is obtained by analyzing the magnetic noise spectrum,which exceeds that of most traditional magnetometers.This kind of atomic magnetometer is very compact,has a low power consumption,and has a high theoretical sensitivity limit,which make it suitable for many applications.

  4. High-sensitivity, high-speed continuous imaging system

    Science.gov (United States)

    Watson, Scott A; Bender, III, Howard A

    2014-11-18

    A continuous imaging system for recording low levels of light typically extending over small distances with high-frame rates and with a large number of frames is described. Photodiode pixels disposed in an array having a chosen geometry, each pixel having a dedicated amplifier, analog-to-digital convertor, and memory, provide parallel operation of the system. When combined with a plurality of scintillators responsive to a selected source of radiation, in a scintillator array, the light from each scintillator being directed to a single corresponding photodiode in close proximity or lens-coupled thereto, embodiments of the present imaging system may provide images of x-ray, gamma ray, proton, and neutron sources with high efficiency.

  5. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.

    Science.gov (United States)

    Imahori, Hiroshi; Umeyama, Tomokazu; Ito, Seigo

    2009-11-17

    Recently, dye-sensitized solar cells have attracted much attention relevant to global environmental issues. Thus far, ruthenium(II) bipyridyl complexes have proven to be the most efficient TiO(2) sensitizers in dye-sensitized solar cells. However, a gradual increment in the highest power conversion efficiency has been recognized in the past decade. More importantly, considering that ruthenium is a rare metal, novel dyes without metal or using inexpensive metal are desirable for highly efficient dye-sensitized solar cells. Large pi-aromatic molecules, such as porphyrins, phthalocyanines, and perylenes, are important classes of potential sensitizers for highly efficient dye-sensitized solar cells, owing to their photostability and high light-harvesting capabilities that can allow applications in thinner, low-cost dye-sensitized solar cells. Porphyrins possess an intense Soret band at 400 nm and moderate Q bands at 600 nm. Nevertheless, the poor light-harvesting properties relative to the ruthenium complexes have limited the cell performance of porphyrin-sensitized TiO(2) cells. Elongation of the pi conjugation and loss of symmetry in porphyrins cause broadening and a red shift of the absorption bands together with an increasing intensity of the Q bands relative to that of the Soret band. On the basis of the strategy, the cell performance of porphyrin-sensitized solar cells has been improved intensively by the enhanced light absorption. Actually, some push-pull-type porphyrins have disclosed a remarkably high power conversion efficiency (6-7%) that was close to that of the ruthenium complexes. Phthalocyanines exhibit strong absorption around 300 and 700 nm and redox features that are similar to porphyrins. Moreover, phthalocyanines are transparent over a large region of the visible spectrum, thereby enabling the possibility of using them as "photovoltaic windows". However, the cell performance was poor, owing to strong aggregation and lack of directionality in the

  6. Portable High Sensitivity and High Resolution Sensor to Determine Oxygen Purity Levels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this Phase I STTR project is to develop a highly sensitive oxygen (O2) sensor, with high accuracy and precision, to determine purity levels of high...

  7. Large Differences in Bacterial Community Composition among Three Nearby Extreme Waterbodies of the High Andean Plateau.

    Science.gov (United States)

    Aguilar, Pablo; Acosta, Eduardo; Dorador, Cristina; Sommaruga, Ruben

    2016-01-01

    The high Andean plateau or Altiplano contains different waterbodies that are subjected to extreme fluctuations in abiotic conditions on a daily and an annual scale. The bacterial diversity and community composition of those shallow waterbodies is largely unexplored, particularly, of the ponds embedded within the peatland landscape (i.e., Bofedales). Here we compare the small-scale spatial variability (Altiplano peatland ponds represent a hitherto unknown source of microbial diversity.

  8. B-2 Extremely High Frequency SATCOM and Computer Increment 1 (B-2 EHF Inc 1)

    Science.gov (United States)

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-224 B-2 Extremely High Frequency SATCOM and Computer Increment 1 (B-2 EHF Inc 1) As of FY...10 Track to Budget 11 Cost and Funding 13 Low Rate Initial Production 19 Foreign Military Sales 20 Nuclear Costs 20 Unit Cost...Document CLIN - Contract Line Item Number CPD - Capability Production Document CY - Calendar Year DAB - Defense Acquisition Board DAE - Defense

  9. Environmental Assessment for the Advanced Extremely High Frequency Satellite Beddown and Deployment Program

    Science.gov (United States)

    2010-07-01

    Fish and Wildlife Service Advanced Extremely High Frequency Satellite Final Environmental Assessment v VIF Vehicle Integration Facility WMO World...Vehicle Mate Operations Upon arrival on CCAFS, the transporter would take the encapsulated payload to the Vehicle Integration Facility ( VIF ), which...is located just south of LC-41 (Figure 2-2). At the VIF , the encapsulated payload would be mated to the Atlas V Launch Vehicle (LV) using a mobile

  10. Aluminum nano-cantilevers for high sensitivity mass sensors

    DEFF Research Database (Denmark)

    Davis, Zachary James; Boisen, Anja

    2005-01-01

    We have fabricated Al nano-cantilevers using a very simple one mask contact UV lithography technique with lateral dimensions under 500 nm and vertical dimensions of approximately 100 nm. These devices are demonstrated as highly sensitive mass sensors by measuring their dynamic properties. Further...

  11. Highly Sensitive AMS Measurement of 53Mn at CIAE

    Institute of Scientific and Technical Information of China (English)

    DONG; Ke-jun; HU; Hao; LIU; Guang-shan; HE; Ming; LI; Zhen-yu; DOU; Liang; XIE; Lin-bo; LIU; Jian-cheng; WANG; Xiang-gao; SHEN; Hong-tao; LIN; De-yu; ZHENG; Guo-wen; WANG; Xiao-bo; LI; Heng; LI; Chao-li; WU; Shao-yong; YOU; Qu-bo; JIN; Chun-sheng; CHEN; Zhi-gang; YUAN; Jian; JIANG; Shan

    2013-01-01

    Methods for highly sensitive AMS measurement of 53Mn were explored by extracting different Mn-containing molecular ions in ion source and using different chemical forms of sample materials.Preliminary results indicate that a method for AMS measurement of 53Mn has been established and a-155355

  12. Sensitivity Study of Strapdown Inertial Sensors in High Performance Applications

    Science.gov (United States)

    1980-12-01

    system error varied with a change in heading 7K. ( xii 1 SENSITIVITY STUDY OF STRAPDOWN INERTIAL SENSORS IN HIGH PERFORMANCE APPLICATIONS I. Introduction...given in Tabla 10. 23 State Meaning o Basic Altitude Damped INS x(1) Error in East Longitude 5.7735 x 1O Ŗ arc min x(2) Error in North Latitude

  13. [Burner head with high sensitivity in atomic absorption spectroscopy].

    Science.gov (United States)

    Feng, X; Yang, Y

    1998-12-01

    This paper presents a burner head with gas-sample separate entrance and double access, which is used for atomic absorption spectroscopy. According to comparison and detection, the device can improve sensitivity by a factor of 1 to 5. In the meantime it has properties of high stability and resistance to interference.

  14. Microelectromechanical Resonant Accelerometer Designed with a High Sensitivity

    Science.gov (United States)

    Zhang, Jing; Su, Yan; Shi, Qin; Qiu, An-Ping

    2015-01-01

    This paper describes the design and experimental evaluation of a silicon micro-machined resonant accelerometer (SMRA). This type of accelerometer works on the principle that a proof mass under acceleration applies force to two double-ended tuning fork (DETF) resonators, and the frequency output of two DETFs exhibits a differential shift. The dies of an SMRA are fabricated using silicon-on-insulator (SOI) processing and wafer-level vacuum packaging. This research aims to design a high-sensitivity SMRA because a high sensitivity allows for the acceleration signal to be easily demodulated by frequency counting techniques and decreases the noise level. This study applies the energy-consumed concept and the Nelder-Mead algorithm in the SMRA to address the design issues and further increase its sensitivity. Using this novel method, the sensitivity of the SMRA has been increased by 66.1%, which attributes to both the re-designed DETF and the reduced energy loss on the micro-lever. The results of both the closed-form and finite-element analyses are described and are in agreement with one another. A resonant frequency of approximately 22 kHz, a frequency sensitivity of over 250 Hz per g, a one-hour bias stability of 55 μg, a bias repeatability (1σ) of 48 μg and the bias-instability of 4.8 μg have been achieved. PMID:26633425

  15. Microelectromechanical Resonant Accelerometer Designed with a High Sensitivity

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2015-12-01

    Full Text Available This paper describes the design and experimental evaluation of a silicon micro-machined resonant accelerometer (SMRA. This type of accelerometer works on the principle that a proof mass under acceleration applies force to two double-ended tuning fork (DETF resonators, and the frequency output of two DETFs exhibits a differential shift. The dies of an SMRA are fabricated using silicon-on-insulator (SOI processing and wafer-level vacuum packaging. This research aims to design a high-sensitivity SMRA because a high sensitivity allows for the acceleration signal to be easily demodulated by frequency counting techniques and decreases the noise level. This study applies the energy-consumed concept and the Nelder-Mead algorithm in the SMRA to address the design issues and further increase its sensitivity. Using this novel method, the sensitivity of the SMRA has been increased by 66.1%, which attributes to both the re-designed DETF and the reduced energy loss on the micro-lever. The results of both the closed-form and finite-element analyses are described and are in agreement with one another. A resonant frequency of approximately 22 kHz, a frequency sensitivity of over 250 Hz per g, a one-hour bias stability of 55 μg, a bias repeatability (1σ of 48 μg and the bias-instability of 4.8 μg have been achieved.

  16. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events.

    Science.gov (United States)

    Choudhary, Sonal; Blaud, Aimeric; Osborn, A Mark; Press, Malcolm C; Phoenix, Gareth K

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem (15)N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g Nm(-2)yr(-1), applied as (15)NH4(15)NO3 in Svalbard (79(°)N), during the summer. Separate applications of (15)NO3(-) and (15)NH4(+) were also made to determine the importance of N form in their retention. More than 95% of the total (15)N applied was recovered after one growing season (~90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants>vascular plants>organic soil>litter>mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of (15)N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater (15)NO3(-) than (15)NH4(+), suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication.

  17. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Sonal, E-mail: S.Choudhary@sheffield.ac.uk [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Management School, University of Sheffield, Conduit Road, Sheffield S10 1FL (United Kingdom); Blaud, Aimeric [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Osborn, A. Mark [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); School of Applied Sciences, RMIT University, PO Box 71, Bundoora, VIC 3083 (Australia); Press, Malcolm C. [School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Manchester Metropolitan University, Manchester, M15 6BH (United Kingdom); Phoenix, Gareth K. [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom)

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem {sup 15}N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g N m{sup −2} yr{sup −1}, applied as {sup 15}NH{sub 4}{sup 15}NO{sub 3} in Svalbard (79{sup °}N), during the summer. Separate applications of {sup 15}NO{sub 3}{sup −} and {sup 15}NH{sub 4}{sup +} were also made to determine the importance of N form in their retention. More than 95% of the total {sup 15}N applied was recovered after one growing season (~ 90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants > vascular plants > organic soil > litter > mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of {sup 15}N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater {sup 15}NO{sub 3}{sup −} than {sup 15}NH{sub 4}{sup +}, suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events

  18. High-resolution projections of mean and extreme precipitations over China through PRECIS under RCPs

    Science.gov (United States)

    Zhu, Jinxin; Huang, Gordon; Wang, Xiuquan; Cheng, Guanhui; Wu, Yinghui

    2017-08-01

    The impact of global warming on the characteristics of mean and extreme precipitations over China is investigated by using the Providing REgional Climate Impacts for Studies (PRECIS) model. The PRECIS model was driven by the Hadley Centre Global Environment Model version 2 with Earth System components and coupling (HadGEM2-ES). The results of both models are analyzed in terms of mean precipitation and indices of precipitation extremes (R95p, R99p, SDII, WDF, and CWD) over China at the resolution of 25 km under the Representative Concentration Pathways 4.5 and 8.5 (RCP4.5 and RCP8.5) scenarios for the baseline period (1976-2005) and two future periods (2036-2065 and 2070-2099). With improved resolution, the PRECIS model is able to better represent the fine-scale physical process than HadGEM2-ES. It can provide reliable spatial patterns of precipitation and its related extremes with high correlations to observations. Moreover, there is a notable improvement in temporal patterns simulation through the PRECIS model. The PRECIS model better reproduces the regional annual cycle and frequencies of daily precipitation intensity than its driving GCM. Under RCP4.5 and RCP8.5, both the HadGEM2-ES and the precis project increasing annual precipitation over the entire country for two future periods. Precipitation increase in winter is greater than the increase in summer. The results suggest that increased radiative forcing from RCP4.5 to RCP8.5 would further intensify the magnitude of projected precipitation changes by both PRECIS and HadGEM2-ES. For example, some parts of south China with decreased precipitation under RCP4.5 would expect even less precipitation under RCP8.5; regions (northwest, northcentral and northeast China) with increased precipitation under RCP4.5 would expect more precipitation under RCP8.5. Apart from the projected increase in annual total precipitation, the results also suggest that there will be an increase in the days with precipitation higher than

  19. Highly sensitive detection using microring resonator and nanopores

    Science.gov (United States)

    Bougot-Robin, K.; Hoste, J. W.; Le Thomas, N.; Bienstman, P.; Edel, J. B.

    2016-04-01

    One of the most significant challenges facing physical and biological scientists is the accurate detection and identification of single molecules in free-solution environments. The ability to perform such sensitive and selective measurements opens new avenues for a large number of applications in biological, medical and chemical analysis, where small sample volumes and low analyte concentrations are the norm. Access to information at the single or few molecules scale is rendered possible by a fine combination of recent advances in technologies. We propose a novel detection method that combines highly sensitive label-free resonant sensing obtained with high-Q microcavities and position control in nanoscale pores (nanopores). In addition to be label-free and highly sensitive, our technique is immobilization free and does not rely on surface biochemistry to bind probes on a chip. This is a significant advantage, both in term of biology uncertainties and fewer biological preparation steps. Through combination of high-Q photonic structures with translocation through nanopore at the end of a pipette, or through a solid-state membrane, we believe significant advances can be achieved in the field of biosensing. Silicon microrings are highly advantageous in term of sensitivity, multiplexing, and microfabrication and are chosen for this study. In term of nanopores, we both consider nanopore at the end of a nanopipette, with the pore being approach from the pipette with nanoprecise mechanical control. Alternatively, solid state nanopores can be fabricated through a membrane, supporting the ring. Both configuration are discussed in this paper, in term of implementation and sensitivity.

  20. High-space resolution imaging plate analysis of extreme ultraviolet (EUV) light from tin laser-produced plasmas.

    Science.gov (United States)

    Musgrave, Christopher S A; Murakami, Takehiro; Ugomori, Teruyuki; Yoshida, Kensuke; Fujioka, Shinsuke; Nishimura, Hiroaki; Atarashi, Hironori; Iyoda, Tomokazu; Nagai, Keiji

    2017-03-01

    With the advent of high volume manufacturing capabilities by extreme ultraviolet lithography, constant improvements in light source design and cost-efficiency are required. Currently, light intensity and conversion efficiency (CE) measurments are obtained by charged couple devices, faraday cups etc, but also phoshpor imaging plates (IPs) (BaFBr:Eu). IPs are sensitive to light and high-energy species, which is ideal for studying extreme ultraviolet (EUV) light from laser produced plasmas (LPPs). In this work, we used IPs to observe a large angular distribution (10°-90°). We ablated a tin target by high-energy lasers (1064 nm Nd:YAG, 10(10) and 10(11) W/cm(2)) to generate the EUV light. The europium ions in the IP were trapped in a higher energy state from exposure to EUV light and high-energy species. The light intensity was angular dependent; therefore excitation of the IP depends on the angle, and so highly informative about the LPP. We obtained high-space resolution (345 μm, 0.2°) angular distribution and grazing spectrometer (5-20 nm grate) data simultaneously at different target to IP distances (103 mm and 200 mm). Two laser systems and IP types (BAS-TR and BAS-SR) were also compared. The cosine fitting values from the IP data were used to calculate the CE to be 1.6% (SD ± 0.2) at 13.5 nm 2% bandwidth. Finally, a practical assessment of IPs and a damage issue are disclosed.

  1. High-space resolution imaging plate analysis of extreme ultraviolet (EUV) light from tin laser-produced plasmas

    Science.gov (United States)

    Musgrave, Christopher S. A.; Murakami, Takehiro; Ugomori, Teruyuki; Yoshida, Kensuke; Fujioka, Shinsuke; Nishimura, Hiroaki; Atarashi, Hironori; Iyoda, Tomokazu; Nagai, Keiji

    2017-03-01

    With the advent of high volume manufacturing capabilities by extreme ultraviolet lithography, constant improvements in light source design and cost-efficiency are required. Currently, light intensity and conversion efficiency (CE) measurments are obtained by charged couple devices, faraday cups etc, but also phoshpor imaging plates (IPs) (BaFBr:Eu). IPs are sensitive to light and high-energy species, which is ideal for studying extreme ultraviolet (EUV) light from laser produced plasmas (LPPs). In this work, we used IPs to observe a large angular distribution (10°-90°). We ablated a tin target by high-energy lasers (1064 nm Nd:YAG, 1010 and 1011 W/cm2) to generate the EUV light. The europium ions in the IP were trapped in a higher energy state from exposure to EUV light and high-energy species. The light intensity was angular dependent; therefore excitation of the IP depends on the angle, and so highly informative about the LPP. We obtained high-space resolution (345 μm, 0.2°) angular distribution and grazing spectrometer (5-20 nm grate) data simultaneously at different target to IP distances (103 mm and 200 mm). Two laser systems and IP types (BAS-TR and BAS-SR) were also compared. The cosine fitting values from the IP data were used to calculate the CE to be 1.6% (SD ± 0.2) at 13.5 nm 2% bandwidth. Finally, a practical assessment of IPs and a damage issue are disclosed.

  2. Highly Mass-Sensitive Thin Film Plate Acoustic Resonators (FPAR)

    Science.gov (United States)

    Arapan, Lilia; Alexieva, Gergana; Avramov, Ivan D.; Radeva, Ekaterina; Strashilov, Vesseline; Katardjiev, Ilia; Yantchev, Ventsislav

    2011-01-01

    The mass sensitivity of thin aluminum nitride (AlN) film S0 Lamb wave resonators is theoretically and experimentally studied. Theoretical predictions based on modal and finite elements method analysis are experimentally verified. Here, two-port 888 MHz synchronous FPARs are micromachined and subsequently coated with hexamethyl-disiloxane(HMDSO)-plasma-polymerized thin films of various thicknesses. Systematic data on frequency shift and insertion loss versus film thickness are presented. FPARs demonstrate high mass-loading sensitivity as well as good tolerance towards the HMDSO viscous losses. Initial measurements in gas phase environment are further presented. PMID:22163994

  3. Highly mass-sensitive thin film plate acoustic resonators (FPAR).

    Science.gov (United States)

    Arapan, Lilia; Alexieva, Gergana; Avramov, Ivan D; Radeva, Ekaterina; Strashilov, Vesseline; Katardjiev, Ilia; Yantchev, Ventsislav

    2011-01-01

    The mass sensitivity of thin aluminum nitride (AlN) film S0 Lamb wave resonators is theoretically and experimentally studied. Theoretical predictions based on modal and finite elements method analysis are experimentally verified. Here, two-port 888 MHz synchronous FPARs are micromachined and subsequently coated with hexamethyl-disiloxane(HMDSO)-plasma-polymerized thin films of various thicknesses. Systematic data on frequency shift and insertion loss versus film thickness are presented. FPARs demonstrate high mass-loading sensitivity as well as good tolerance towards the HMDSO viscous losses. Initial measurements in gas phase environment are further presented.

  4. Design and Fabrication of High Sensitive Piezoresistive MEMS Accelerometer

    Directory of Open Access Journals (Sweden)

    JOSHI A.B

    2008-04-01

    Full Text Available This paper addresses the design and fabrication of high sensitive single axis piezoresistive micro-accelerometer for 50 g application. MEMS based accelerometer structure comprise of flexure fixed at one end and having attached proof mass at other end. This structure is designed and simulated using Coventorware. The simulation results show the sensitivity of 4mV/g. The structure is fabricated in N type silicon (100 substrate using Silicon bulk micromachining. This paper also discuses the use of PECVD Si3N4 layer as a masking material for silicon micromachining and process flow for accelerometer.

  5. Cardiac troponins and high-sensitivity cardiac troponin assays.

    Science.gov (United States)

    Conrad, Michael J; Jarolim, Petr

    2014-03-01

    Measurement of circulating cardiac troponins I and T has become integral to the diagnosis of myocardial infarction. This article discusses the structure and function of the troponin complex and the release of cardiac troponin molecules from the injured cardiomyocyte into the circulation. An overview of current cardiac troponin assays and their classification according to sensitivity is presented. The diagnostic criteria, role, and usefulness of cardiac troponin for myocardial infarction are discussed. In addition, several examples are given of the usefulness of high-sensitivity cardiac troponin assays for short-term and long-term prediction of adverse events.

  6. Highly Mass-Sensitive Thin Film Plate Acoustic Resonators (FPAR

    Directory of Open Access Journals (Sweden)

    Ventsislav Yantchev

    2011-07-01

    Full Text Available The mass sensitivity of thin aluminum nitride (AlN film S0 Lamb wave resonators is theoretically and experimentally studied. Theoretical predictions based on modal and finite elements method analysis are experimentally verified. Here, two-port 888 MHz synchronous FPARs are micromachined and subsequently coated with hexamethyl-disiloxane(HMDSO-plasma-polymerized thin films of various thicknesses. Systematic data on frequency shift and insertion loss versus film thickness are presented. FPARs demonstrate high mass-loading sensitivity as well as good tolerance towards the HMDSO viscous losses. Initial measurements in gas phase environment are further presented.

  7. Multiplex APLP System for High-Resolution Haplogrouping of Extremely Degraded East-Asian Mitochondrial DNAs

    Science.gov (United States)

    Kakuda, Tsuneo; Shojo, Hideki; Tanaka, Mayumi; Nambiar, Phrabhakaran; Minaguchi, Kiyoshi; Umetsu, Kazuo; Adachi, Noboru

    2016-01-01

    Mitochondrial DNA (mtDNA) serves as a powerful tool for exploring matrilineal phylogeographic ancestry, as well as for analyzing highly degraded samples, because of its polymorphic nature and high copy numbers per cell. The recent advent of complete mitochondrial genome sequencing has led to improved techniques for phylogenetic analyses based on mtDNA, and many multiplex genotyping methods have been developed for the hierarchical analysis of phylogenetically important mutations. However, few high-resolution multiplex genotyping systems for analyzing East-Asian mtDNA can be applied to extremely degraded samples. Here, we present a multiplex system for analyzing mitochondrial single nucleotide polymorphisms (mtSNPs), which relies on a novel amplified product-length polymorphisms (APLP) method that uses inosine-flapped primers and is specifically designed for the detailed haplogrouping of extremely degraded East-Asian mtDNAs. We used fourteen 6-plex polymerase chain reactions (PCRs) and subsequent electrophoresis to examine 81 haplogroup-defining SNPs and 3 insertion/deletion sites, and we were able to securely assign the studied mtDNAs to relevant haplogroups. Our system requires only 1×10−13 g (100 fg) of crude DNA to obtain a full profile. Owing to its small amplicon size (<110 bp), this new APLP system was successfully applied to extremely degraded samples for which direct sequencing of hypervariable segments using mini-primer sets was unsuccessful, and proved to be more robust than conventional APLP analysis. Thus, our new APLP system is effective for retrieving reliable data from extremely degraded East-Asian mtDNAs. PMID:27355212

  8. Impact of the extreme 2009 wildfire Victoria the wettability of naturally highly water repellent soils

    Science.gov (United States)

    Doerr, Stefan H.; Shakesby, Richard A.; Sheridan, Gary J.; Lane, Patrick Nj; Smith, Hugh G.; Bell, Tina; Blake, William H.

    2010-05-01

    The recent catastrophic wildfires near Melbourne, which peaked on Feb. 7 2009, burned ca 400,000 ha and caused the tragic loss of 173 people. They occurred during unprecedented extreme fire weather where dry northerly winds gusting up to 100 km/h coincided with the highest temperatures ever recorded in this region. These conditions, combined with the very high biomass of mature eucalypt forests, very low fuel moisture conditions and steep slopes, generated extreme burning conditions. A rapid response project was launched under the NERC Urgency Scheme aimed at determining the effects of this extreme event on soil properties. Three replicate sites each were sampled for extremely high burn severity, high burn severity and unburnt control terrain, within mature mixed-species eucalypt forests near Marysville in April 2009. Ash and surface soil (0-2.5 cm and 2.5-5 cm) were collected at 20 sample grid points at each site. Here we report on outcomes from Water Drop Penetration Time (WDPT) tests carried out on soil samples to determine the impact of this extreme event on the wettability of a naturally highly water repellent soil. Field assessment suggested that the impact of this extreme wildfire on the soil was less than might be supposed given the extreme burn severity (indicated by the complete elimination of the ground vegetation). This was confirmed by the laboratory results. No major difference in WDPT was detected between (i) burned and control samples, and (ii) between surface and subsurface WDPT patterns, indicating that soil temperatures in the top 0-2.5 cm did not exceed ~200° C. Seedling germination in burned soil was reduced by at least 2/3 compared to the control samples, however, this reduction is indicative an only modest heat input into the soil. The limited heat input into the soil stands in stark contrast to the extreme burn severity (based on vegetation destruction parameters). We speculate that limited soil heating resulted perhaps from the unusually

  9. High Sensitivity Very Low Frequency Receiver for Earthquake Data Acquisition.

    Science.gov (United States)

    Munir, A.; Najmurrokhman, A.

    2017-03-01

    high sensitivity very low frequency (VLF) receiver is developed based on AD744 monolithic operational amplifier (Op-Amp) for earthquake data acquisition. In research related natural phenomena such as atmospheric noise, lightning and earthquake, a VLF receiver particularly with high sensitivity is utterly required due to the low power of VLF wave signals received by the antenna. The developed receiver is intended to have high sensitivity reception for the signals in frequency range of 10-30kHz allocated for earthquake observation. The VLF receiver which is portably designed is also equipped with an output port connectable to the soundcard of personal computer for further data acquisition. After obtaining the optimum design, the hardware realization is implemented on a printed circuit board (PCB) for experimental characterization. It shows that the sensitivity of realized VLF receiver is almost linear in the predefined frequency range for the input signals lower than -12dBm and to be quadratic for the higher level input signals.

  10. High Sensitivity Polymer Optical Fiber-Bragg-Grating-Based Accelerometer

    DEFF Research Database (Denmark)

    Stefani, Alessio; Andresen, Søren; Yuan, Wu

    2012-01-01

    We report on the fabrication and characterization of the first accelerometer based on a polymer optical fiber Bragg grating (FBG) for operation at both 850 and 1550 nm. The devices have a flat frequency response over a 1-kHz bandwidth and a resonance frequency of about 3 kHz. The response is linear...... up to at least 15 g and sensitivities as high as 19 pm/g (shift in resonance wavelength per unit acceleration) have been demonstrated. Given that 15 g corresponds to a strain of less than 0.02% and that polymer fibers have an elastic limit of more than 1%, the polymer FBG accelerometer can measure...... very strong accelerations. We compare with corresponding silica FBG accelerometers and demonstrate that using polymer FBGs improves the sensitivity by more than a factor of four and increases the figure of merit, defined as the sensitivity times the resonance frequency squared....

  11. Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor

    Science.gov (United States)

    Hameed, Mohamed Farhat O.; Alrayk, Yassmin K. A.; Shaalan, Abdelhamid A.; El Deeb, Walid S.; Obayya, Salah S. A.

    2016-10-01

    A design of a highly sensitive multichannel biosensor based on photonic crystal fiber is proposed and analyzed. The suggested design has a silver layer as a plasmonic material coated by a gold layer to protect silver oxidation. The reported sensor is based on detection using the quasi transverse electric (TE) and quasi transverse magnetic (TM) modes, which offers the possibility of multichannel/multianalyte sensing. The numerical results are obtained using a finite element method with perfect matched layer boundary conditions. The sensor geometrical parameters are optimized to achieve high sensitivity for the two polarized modes. High-refractive index sensitivity of about 4750 nm/RIU (refractive index unit) and 4300 nm/RIU with corresponding resolutions of 2.1×10-5 RIU, and 2.33×10-5 RIU can be obtained according to the quasi TM and quasi TE modes of the proposed sensor, respectively. Further, the reported design can be used as a self-calibration biosensor within an unknown analyte refractive index ranging from 1.33 to 1.35 with high linearity and high accuracy. Moreover, the suggested biosensor has advantages in terms of compactness and better integration of microfluidics setup, waveguide, and metallic layers into a single structure.

  12. Extreme risk taker who wants to continue taking part in high risk sports after serious injury.

    Science.gov (United States)

    Pain, M; Kerr, J H

    2004-06-01

    The case is reported of a 40 year old male high risk sport athlete who had seriously injured himself several times and as a result was partially physically disabled and had trouble with mental tasks requiring concentration such as spelling, reading numbers, and writing. The athlete was referred to a sports psychologist. In consultations, it became clear that he was having difficulty reconciling the difference between his life as it used to be and as it would be in the future. Part of his difficulty was dealing with the frustration and anger "outbursts" which resulted from not being able to perform straightforward everyday motor skills. In spite of his injuries and disability, the patient badly wanted to continue participating in extreme sports. Reversal theory is used in the discussion to provide theoretical explanations of the motivation for his extreme risk taking behaviour.

  13. Carbon coatings for extreme-ultraviolet high-order laser harmonics

    Energy Technology Data Exchange (ETDEWEB)

    Coraggia, S.; Frassetto, F. [CNR-Institute of Photonics and Nanotechnologies, Laboratory for UV and X-Ray Optical Research, via Trasea 7, 35131 Padova (Italy); Aznarez, J.A.; Larruquert, J.I.; Mendez, J.A. [GOLD-Instituto de Optica-Consejo Superior de Investigaciones Cientificas, Serrano 144, 28006 Madrid (Spain); Negro, M.; Stagira, S.; Vozzi, C. [Department of Physics-Politecnico of Milano and CNR-Institute of Photonics and Nanotechnologies, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Poletto, L., E-mail: poletto@dei.unipd.i [CNR-Institute of Photonics and Nanotechnologies, Laboratory for UV and X-Ray Optical Research, via Trasea 7, 35131 Padova (Italy)

    2011-04-11

    The experimental study of the optical properties of thin carbon films to be used as grazing-incidence coatings for extreme-ultraviolet high-order harmonics is presented. The carbon samples were deposited on plane glass substrates by the electron beam evaporation technique. The optical constants (real and imaginary parts of the refraction index) have been calculated through reflectivity measurements. The results are in good agreement with what reported in the literature, and confirm that carbon-coated optics operated at grazing incidence have a remarkable gain over conventional metallic coatings in the extreme ultraviolet. Since the harmonics co-propagate with the intense infrared laser generating beam, the carbon damage threshold when exposed to ultrashort infrared laser pulses has been measured.

  14. Phase Quantization Study of Spatial Light Modulator for Extreme High contrast Imaging

    CERN Document Server

    Dou, Jiangpei

    2016-01-01

    Direct imaging of exoplanets by reflected starlight is extremely challenging due to the large luminosity ratio to the primary star. Wave front control is a critical technique to attenuate the speckle noise in order to achieve an extreme high contrast. We present the phase quantization study of spatial light modulator for wave front control to meet the contrast requirement of detection of a terrestrial planet in the habitable zone of a solar-type star. We perform the numerical simulation by employing the SLM with different phase accuracy and actuator numbers, which are related to the achievable contrast. We use an optimization algorithm to solve the quantization problems that is matched to the controllable phase step of the SLM. Two optical configurations are discussed with the SLM located before and after the coronagraph focal plane mask, respectively. The simulation result has constrained the specification for phase accuracy of SLM in above two optical configurations. Finally, we have demonstrated that the S...

  15. Sensitivity of HAWC to high-mass dark matter annihilations

    Science.gov (United States)

    Abeysekara, A. U.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Ayala Solares, H. A.; Barber, A. S.; Baughman, B. M.; Bautista-Elivar, N.; Becerra Gonzalez, J.; Belmont, E.; BenZvi, S. Y.; Berley, D.; Bonilla Rosales, M.; Braun, J.; Caballero-Lopez, R. A.; Caballero-Mora, K. S.; Carramiñana, A.; Castillo, M.; Cotti, U.; Cotzomi, J.; de la Fuente, E.; De León, C.; DeYoung, T.; Diaz Hernandez, R.; Diaz-Cruz, L.; Díaz-Vélez, J. C.; Dingus, B. L.; DuVernois, M. A.; Ellsworth, R. W.; Fiorino, D. W.; Fraija, N.; Galindo, A.; Garfias, F.; González, M. M.; Goodman, J. A.; Grabski, V.; Gussert, M.; Hampel-Arias, Z.; Harding, J. P.; Hui, C. M.; Hüntemeyer, P.; Imran, A.; Iriarte, A.; Karn, P.; Kieda, D.; Kunde, G. J.; Lara, A.; Lauer, R. J.; Lee, W. H.; Lennarz, D.; León Vargas, H.; Linares, E. C.; Linnemann, J. T.; Longo, M.; Luna-Garcia, R.; Marinelli, A.; Martinez, H.; Martinez, O.; Martínez-Castro, J.; Matthews, J. A. J.; McEnery, J.; Mendoza Torres, E.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Noriega-Papaqui, R.; Oceguera-Becerra, T.; Patricelli, B.; Pelayo, R.; Pérez-Pérez, E. G.; Pretz, J.; Rivière, C.; Rosa-González, D.; Ryan, J.; Salazar, H.; Salesa, F.; Sanchez, F. E.; Sandoval, A.; Schneider, M.; Silich, S.; Sinnis, G.; Smith, A. J.; Sparks Woodle, K.; Springer, R. W.; Taboada, I.; Toale, P. A.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Villaseñor, L.; Weisgarber, T.; Westerhoff, S.; Wisher, I. G.; Wood, J.; Yodh, G. B.; Younk, P. W.; Zaborov, D.; Zepeda, A.; Zhou, H.; Abazajian, K. N.; Milagro Collaboration

    2014-12-01

    The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view detector sensitive to gamma rays of 100 GeV to a few hundred TeV. Located in central Mexico at 19° North latitude and 4100 m above sea level, HAWC will observe gamma rays and cosmic rays with an array of water Cherenkov detectors. The full HAWC array is scheduled to be operational in Spring 2015. In this paper, we study the HAWC sensitivity to the gamma-ray signatures of high-mass (multi-TeV) dark matter annihilation. The HAWC observatory will be sensitive to diverse searches for dark matter annihilation, including annihilation from extended dark matter sources, the diffuse gamma-ray emission from dark matter annihilation, and gamma-ray emission from nonluminous dark matter subhalos. Here we consider the HAWC sensitivity to a subset of these sources, including dwarf galaxies, the M31 galaxy, the Virgo cluster, and the Galactic center. We simulate the HAWC response to gamma rays from these sources in several well-motivated dark matter annihilation channels. If no gamma-ray excess is observed, we show the limits HAWC can place on the dark matter cross section from these sources. In particular, in the case of dark matter annihilation into gauge bosons, HAWC will be able to detect a narrow range of dark matter masses to cross sections below thermal. HAWC should also be sensitive to nonthermal cross sections for masses up to nearly 1000 TeV. The constraints placed by HAWC on the dark matter cross section from known sources should be competitive with current limits in the mass range where HAWC has similar sensitivity. HAWC can additionally explore higher dark matter masses than are currently constrained.

  16. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic

    Science.gov (United States)

    Hansen, Brage B.; Isaksen, Ketil; Benestad, Rasmus E.; Kohler, Jack; Pedersen, Åshild Ø.; Loe, Leif E.; Coulson, Stephen J.; Larsen, Jan Otto; Varpe, Øystein

    2014-11-01

    One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January-February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (˜5-20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties.

  17. The value of crossdating to retain high-frequency variability, climate signals, and extreme events in environmental proxies.

    Science.gov (United States)

    Black, Bryan A; Griffin, Daniel; van der Sleen, Peter; Wanamaker, Alan D; Speer, James H; Frank, David C; Stahle, David W; Pederson, Neil; Copenheaver, Carolyn A; Trouet, Valerie; Griffin, Shelly; Gillanders, Bronwyn M

    2016-07-01

    High-resolution biogenic and geologic proxies in which one increment or layer is formed per year are crucial to describing natural ranges of environmental variability in Earth's physical and biological systems. However, dating controls are necessary to ensure temporal precision and accuracy; simple counts cannot ensure that all layers are placed correctly in time. Originally developed for tree-ring data, crossdating is the only such procedure that ensures all increments have been assigned the correct calendar year of formation. Here, we use growth-increment data from two tree species, two marine bivalve species, and a marine fish species to illustrate sensitivity of environmental signals to modest dating error rates. When falsely added or missed increments are induced at one and five percent rates, errors propagate back through time and eliminate high-frequency variability, climate signals, and evidence of extreme events while incorrectly dating and distorting major disturbances or other low-frequency processes. Our consecutive Monte Carlo experiments show that inaccuracies begin to accumulate in as little as two decades and can remove all but decadal-scale processes after as little as two centuries. Real-world scenarios may have even greater consequence in the absence of crossdating. Given this sensitivity to signal loss, the fundamental tenets of crossdating must be applied to fully resolve environmental signals, a point we underscore as the frontiers of growth-increment analysis continue to expand into tropical, freshwater, and marine environments. © 2016 John Wiley & Sons Ltd.

  18. Development of High Sensitivity Nuclear Emulsion and Fine Grained Emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Kawahara, H.; Asada, T. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Naka, T. [Institute of Advanced Research, Nagoya University (Japan); Naganawa, N.; Kuwabara, K.; Nakamura, M. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)

    2014-08-15

    Nuclear emulsion is a particle detector having high spacial resolution and angular resolution. It became useful for large statistics experiment thanks to the development of automatic scanning system. In 2010, a facility for emulsion production was introduced and R and D of nuclear emulsion began at Nagoya university. In this paper, we present results of development of the high sensitivity emulsion and fine grained emulsion for dark matter search experiment. Improvement of sensitivity is achieved by raising density of silver halide crystals and doping well-adjusted amount of chemicals. Production of fine grained emulsion was difficult because of unexpected crystal condensation. By mixing polyvinyl alcohol (PVA) to gelatin as a binder, we succeeded in making a stable fine grained emulsion.

  19. Highly sensitive troponin T in patients with acute ischemic stroke

    DEFF Research Database (Denmark)

    Jensen, J K; Ueland, T; Aukrust, P;

    2012-01-01

    in decedents than in survivors. After adjustment for stroke severity, C-reactive protein, age, NT-proBNP and prior heart and/or renal failure, hsTnT levels were not a significant predictor of long-term all-cause or cardiovascular mortality. Conclusion: Elevated levels of hsTnT are frequently present......Background: Newly developed troponin assays have superior diagnostic and prognostic performance in acute coronary syndrome (ACS), when compared to conventional troponin assays; however, highly sensitive troponin has not been evaluated in patients with acute ischemic stroke. Methods: Highly...... sensitive troponin T (hsTnT) was measured daily during the first 4 days in 193 consecutive patients with acute ischemic stroke without overt ACS or atrial fibrillation. The patients were previously tested normal with a fourth-generation TnT assay. The patients were followed for 47 months, with all...

  20. Lower Extremity Function following Partial Calcanectomy in High-Risk Limb Salvage Patients

    Directory of Open Access Journals (Sweden)

    Noah G. Oliver

    2015-01-01

    Full Text Available Partial calcanectomy (PC is an established limb salvage procedure for treatment of deep heel ulceration with concomitant calcaneal osteomyelitis. The purpose of this study is to determine if a relationship exists between the amount of calcaneus removed during PC and the resulting lower extremity function and limb salvage outcomes. Consecutive PC patients were retrospectively divided into two cohorts defined by the amount of calcaneus resected before wound closure: patients in cohort 1 retained = 50% of calcaneus, while patients in cohort 2 underwent resection of >50% of the calcaneus. The Lower Extremity Function Scale (LEFS was used to assess postoperative lower extremity function. The average amount of calcaneus resected was 13% ± 9.2 (1–39% and 74% ± 19.5 (51–100 in cohorts 1 and 2, respectively (P<0.0001. Below knee amputation was performed in 7 (28% and 5 (29% of subjects in cohorts 1 and 2, respectively (P=1.0. The average LEFS score was 33.9 ± 15.0 for subjects in cohort 1 and 36.2 ± 19.9 for the subjects cohort 2 (P=0.8257 which correlates to “moderate to quite a bit of difficulty.” Our study suggests that regardless of the amount of calcaneus resected, PC provides a viable treatment option for high-risk patients with calcaneal osteomyelitis.

  1. Performance of High Temperature Operational Amplifier, Type LM2904WH, under Extreme Temperatures

    Science.gov (United States)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Operation of electronic parts and circuits under extreme temperatures is anticipated in NASA space exploration missions as well as terrestrial applications. Exposure of electronics to extreme temperatures and wide-range thermal swings greatly affects their performance via induced changes in the semiconductor material properties, packaging and interconnects, or due to incompatibility issues between interfaces that result from thermal expansion/contraction mismatch. Electronics that are designed to withstand operation and perform efficiently in extreme temperatures would mitigate risks for failure due to thermal stresses and, therefore, improve system reliability. In addition, they contribute to reducing system size and weight, simplifying its design, and reducing development cost through the elimination of otherwise required thermal control elements for proper ambient operation. A large DC voltage gain (100 dB) operational amplifier with a maximum junction temperature of 150 C was recently introduced by STMicroelectronics [1]. This LM2904WH chip comes in a plastic package and is designed specifically for automotive and industrial control systems. It operates from a single power supply over a wide range of voltages, and it consists of two independent, high gain, internally frequency compensated operational amplifiers. Table I shows some of the device manufacturer s specifications.

  2. A Stable, Extreme Temperature, High Radiation, Compact. Low Power Clock Oscillator for Space, Geothermal, Down-Hole & other High Reliability Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Efficient and stable clock signal generation requirements at extreme temperatures and high radiation are not met with the current solutions. Chronos Technology...

  3. Structural Glycomic Analyses at High Sensitivity: A Decade of Progress

    Science.gov (United States)

    Alley, William R.; Novotny, Milos V.

    2013-06-01

    The field of glycomics has recently advanced in response to the urgent need for structural characterization and quantification of complex carbohydrates in biologically and medically important applications. The recent success of analytical glycobiology at high sensitivity reflects numerous advances in biomolecular mass spectrometry and its instrumentation, capillary and microchip separation techniques, and microchemical manipulations of carbohydrate reactivity. The multimethodological approach appears to be necessary to gain an in-depth understanding of very complex glycomes in different biological systems.

  4. Highly Sensitive Flexible Magnetic Sensor Based on Anisotropic Magnetoresistance Effect.

    Science.gov (United States)

    Wang, Zhiguang; Wang, Xinjun; Li, Menghui; Gao, Yuan; Hu, Zhongqiang; Nan, Tianxiang; Liang, Xianfeng; Chen, Huaihao; Yang, Jia; Cash, Syd; Sun, Nian-Xiang

    2016-11-01

    A highly sensitive flexible magnetic sensor based on the anisotropic magnetoresistance effect is fabricated. A limit of detection of 150 nT is observed and excellent deformation stability is achieved after wrapping of the flexible sensor, with bending radii down to 5 mm. The flexible AMR sensor is used to read a magnetic pattern with a thickness of 10 μm that is formed by ferrite magnetic inks.

  5. Fabrication of surfaces with extremely high contact angle hysteresis from polyelectrolyte multilayer.

    Science.gov (United States)

    Wang, Liming; Wei, Jingjing; Su, Zhaohui

    2011-12-20

    High contact angle hysteresis on polyelectrolyte multilayers (PEMs) ion-paired with hydrophobic perfluorooctanoate anions is reported. Both the bilayer number of PEMs and the ionic strength of deposition solutions have significant influence on contact angle hysteresis: higher ionic strength and greater bilayer number cause increased contact angle hysteresis values. The hysteresis values of ~100° were observed on smooth PEMs and pinning of the receding contact line on hydrophilic defects is implicated as the cause of hysteresis. Surface roughness can be used to further tune the contact angle hysteresis on the PEMs. A surface with extremely high contact angle hysteresis of 156° was fabricated when a PEM was deposited on a rough substrate coated with submicrometer scale silica spheres. It was demonstrated that this extremely high value of contact angle hysteresis resulted from the penetration of water into the rough asperities on the substrate. The same substrate hydrophobized by chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltriethoxysilane exhibits high advancing contact angle and low hysteresis.

  6. Recent trends in high spin sensitivity magnetic resonance

    Science.gov (United States)

    Blank, Aharon; Twig, Ygal; Ishay, Yakir

    2017-07-01

    new ideas, show how these limiting factors can be mitigated to significantly improve the sensitivity of induction detection. Finally, we outline some directions for the possible applications of high-sensitivity induction detection in the field of electron spin resonance.

  7. Pulsed Discharge Helium Ionization Detector for Highly Sensitive Aquametry.

    Science.gov (United States)

    Mowry, Curtis D; Pimentel, Adam S; Sparks, Elizabeth S; Moorman, Matthew W; Achyuthan, Komandoor E; Manginell, Ronald P

    2016-01-01

    Trace moisture quantitation is crucial in medical, civilian and military applications. Current aquametry technologies are limited by the sample volume, reactivity, or interferences, and/or instrument size, weight, power, cost, and complexity. We report for the first time on the use of a pulsed discharge helium ionization detector (PDHID-D2) (∼196 cm(3)) for the sensitive (limit of detection, 0.047 ng; 26 ppm), linear (r(2) >0.99), and rapid (volume of liquid or gas. The relative humidity sensitivity was 0.22% (61.4 ppmv) with a limit of detection of less than 1 ng moisture with gaseous samples. The sensitivity was 10 to 100 to fold superior to competing technologies without the disadvantages inherent to these technologies. The PDHID-D2, due to its small footprint and low power requirement, has good size, weight, and power-portability (SWAPP) factors. The relatively low cost (∼$5000) and commercial availability of the PDHID-D2 makes our technique applicable to highly sensitive aquametry.

  8. An extremely low power voltage reference with high PSRR for power-aware ASICs

    Science.gov (United States)

    Jihai, Duan; Dongyu, Deng; Weilin, Xu; Baolin, Wei

    2015-09-01

    An extremely low power voltage reference without resistors is presented for power-aware ASICs. In order to reduce the power dissipation, an Oguey current reference source is used to reduce the static current; a cascode current mirror is used to increase the power supply rejection ratio (PSRR) and reduce the line sensitivity of the circuit. The voltage reference is fabricated in SMIC 0.18-μm CMOS process. The measured results for the voltage reference demonstrate that the temperature coefficient of the voltage is 66 ppm/°C in a range from 25 to 100 °C. The line sensitivity is 0.9% in a supply voltage range of 1.8 to 3.3 V, and PSRR is -49 dB at 100 Hz. The power dissipation is 200 nW. The chip area is 0.01 mm2. The circuit can be used as an elementary circuit block for power-aware ASICs. Project supported by the National Natural Science Foundation of China (Nos. 61161003, 61264001, 61166004) and the Guangxi Natural Science Foundation (No. 2013GXNSFAA019333).

  9. In situ observation and measurement of composites subjected to extremely high temperature

    Science.gov (United States)

    Fang, Xufei; Yu, Helong; Zhang, Guobing; Su, Hengqiang; Tang, Hongxiang; Feng, Xue

    2014-03-01

    In this work, we develop an instrument to study the ablation and oxidation process of materials such as C/SiC (carbon fiber reinforced silicon carbide composites) and ultra-high temperature ceramic in extremely high temperature environment. The instrument is integrated with high speed cameras with filtering lens, infrared thermometers and water vapor generator for image capture, temperature measurement, and humid atmosphere, respectively. The ablation process and thermal shock as well as the temperature on both sides of the specimen can be in situ monitored. The results show clearly the dynamic ablation and liquid oxide flowing. In addition, we develop an algorithm for the post-processing of the captured images to obtain the deformation of the specimens, in order to better understand the behavior of the specimen subjected to high temperature.

  10. Foundations of high-energy-density physics physical processes of matter at extreme conditions

    CERN Document Server

    Larsen, Jon

    2017-01-01

    High-energy-density physics explores the dynamics of matter at extreme conditions. This encompasses temperatures and densities far greater than we experience on Earth. It applies to normal stars, exploding stars, active galaxies, and planetary interiors. High-energy-density matter is found on Earth in the explosion of nuclear weapons and in laboratories with high-powered lasers or pulsed-power machines. The physics explored in this book is the basis for large-scale simulation codes needed to interpret experimental results whether from astrophysical observations or laboratory-scale experiments. The key elements of high-energy-density physics covered are gas dynamics, ionization, thermal energy transport, and radiation transfer, intense electromagnetic waves, and their dynamical coupling. Implicit in this is a fundamental understanding of hydrodynamics, plasma physics, atomic physics, quantum mechanics, and electromagnetic theory. Beginning with a summary of the topics and exploring the major ones in depth, thi...

  11. Poly(acrylamide-MWNTs hybrid hydrogel with extremely high mechanical strength

    Directory of Open Access Journals (Sweden)

    Feng Huanhuan

    2016-01-01

    Full Text Available Poly(acrylamide-multiwalled carbon nanotubes (PAAm-MWNTs hybrid hydrogels were prepared through the radiation-induced polymerization and crosslinking of the aqueous solution of acrylamide and well-dispersed MWNTs for the first time. The PAAm gels obtained by the radiation-induced polymerization and cosslinking showed very high mechanical strengths, and the PAAm-MWNTs hybrid hydrogels had improved mechanical properties compared with the PAAm gels, and hence the PAAm-MWNTs hybrid hydrogels showed extremely high compressive and tensile strengths. The hybrid hydrogels with water contents more than 80 wt.% usually did not fracture even at compressive strengths close to or even more than 60 MPa and strains more than 97%. And the hybrid hydrogels had very high elongations (more than 2000% in some cases, especially when the water content was high. The tensile strengths were in sub-MPa. The hybrid PAAm-MWNTs hydrogel is one of the strongest hydrogel even made.

  12. Table-Top Milliwatt-Class Extreme Ultraviolet High Harmonic Light Source

    CERN Document Server

    Klas, Robert; Tschernajew, Maxim; Hädrich, Steffen; Shamir, Yariv; Tünnermann, Andreas; Rothhardt, Jan; Limpert, Jens

    2016-01-01

    Extreme ultraviolet (XUV) lasers are essential for the investigation of fundamental physics. Especially high repetition rate, high photon flux sources are of major interest for reducing acquisition times and improving signal to noise ratios in a plethora of applications. Here, an XUV source based on cascaded frequency conversion is presented, which delivers due to the drastic better single atom response for short wavelength drivers, an average output power of (832 +- 204) {\\mu}W at 21.7 eV. This is the highest average power produced by any HHG source in this spectral range surpassing precious demonstrations by more than a factor of four. Furthermore, a narrow-band harmonic at 26.6 eV with a relative energy bandwidth of only {\\Delta}E/E= 1.8 x 10E-3 has been generated, which is of high interest for high precision spectroscopy experiments.

  13. EEE - Extreme Energy Events: an astroparticle physics experiment in Italian High Schools

    Science.gov (United States)

    Abbrescia, M.; Avanzini, C.; Baldini, L.; Baldini Ferroli, R.; Batignani, G.; Bencivenni, G.; Bossini, E.; Bressan, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccia, E.; Corvaglia, A.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Dreucci, M.; Fabbri, F. L.; Fattibene, E.; Ferrarov, A.; Forster, R.; Frolov, V.; Galeotti, P.; Garbini, M.; Gemme, G.; Gnesi, I.; Grazzi, S.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Maggiora, A.; Maron, G.; Mazziotta, M. N.; Miozzi, S.; Noferini, F.; Nozzoli, F.; Panareo, M.; Panetta, M. P.; Paoletti, R.; Perasso, L.; Pilo, F.; Piragino, G.; Riggi, F.; Righini, G. C.; Rodriguez Rodriguez, A.; Sartorelli, G.; Scapparone, E.; Schioppa, M.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Squarcia, S.; Taiuti, M.; Terreni, G.; Vistoli, M. C.; Votano, L.; Williams, M. C. S.; Zani, S.; Zichichi, A.; Zuyeuski, R.

    2016-05-01

    The Extreme Energy Events project (EEE) is aimed to study Extensive Air Showers (EAS) from primary cosmic rays of more than 1018 eV energy detecting the ground secondary muon component using an array of telescopes with high spatial and time resolution. The second goal of the EEE project is to involve High School teachers and students in this advanced research work and to initiate them in scientific culture: to reach both purposes the telescopes are located inside High School buildings and the detector construction, assembling and monitoring - together with data taking and analysis - are done by researchers from scientific institutions in close collaboration with them. At present there are 42 telescopes in just as many High Schools scattered all over Italy, islands included, plus two at CERN and three in INFN units. We report here some preliminary physics results from the first two common data taking periods together with the outreach impact of the project.

  14. Image-based motion compensation for high-resolution extremities cone-beam CT

    Science.gov (United States)

    Sisniega, A.; Stayman, J. W.; Cao, Q.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.

    2016-03-01

    Purpose: Cone-beam CT (CBCT) of the extremities provides high spatial resolution, but its quantitative accuracy may be challenged by involuntary sub-mm patient motion that cannot be eliminated with simple means of external immobilization. We investigate a two-step iterative motion compensation based on a multi-component metric of image sharpness. Methods: Motion is considered with respect to locally rigid motion within a particular region of interest, and the method supports application to multiple locally rigid regions. Motion is estimated by maximizing a cost function with three components: a gradient metric encouraging image sharpness, an entropy term that favors high contrast and penalizes streaks, and a penalty term encouraging smooth motion. Motion compensation involved initial coarse estimation of gross motion followed by estimation of fine-scale displacements using high resolution reconstructions. The method was evaluated in simulations with synthetic motion (1-4 mm) applied to a wrist volume obtained on a CMOS-based CBCT testbench. Structural similarity index (SSIM) quantified the agreement between motion-compensated and static data. The algorithm was also tested on a motion contaminated patient scan from dedicated extremities CBCT. Results: Excellent correction was achieved for the investigated range of displacements, indicated by good visual agreement with the static data. 10-15% improvement in SSIM was attained for 2-4 mm motions. The compensation was robust against increasing motion (4% decrease in SSIM across the investigated range, compared to 14% with no compensation). Consistent performance was achieved across a range of noise levels. Significant mitigation of artifacts was shown in patient data. Conclusion: The results indicate feasibility of image-based motion correction in extremities CBCT without the need for a priori motion models, external trackers, or fiducials.

  15. High yield simultaneous hydrogen and ethanol production under extreme-thermophilic (70 C) mixed culture environment

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chenxi [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby (Denmark); O-Thong, Sompong [Department of Biology, Faculty of Science, Thaksin University, Patthalung 93110 (Thailand); Karakashev, Dimitar; Angelidaki, Irini [Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby (Denmark); Lu, Wenjing; Wang, Hongtao [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2009-07-15

    The effect of pH and medium composition on extreme-thermophilic (70 C) dark fermentative simultaneous hydrogen and ethanol production (process performance and microbial ecology) was investigated. Hydrogen and ethanol yields were optimized with respect to glucose, peptone, FeSO{sub 4}, NaHCO{sub 3}, yeast extract, trace mineral salts, vitamins, and phosphate buffer concentrations as well as initial pH as independent variables. A combination of low levels of both glucose ({<=}2 g/L) and vitamin solutions ({<=}1 mL/L) and high levels of initial pH ({>=}7), mineral salts solution ({>=}5 mL/L) and FeSO{sub 4} ({>=}100 mg/L) stimulated the hydrogen production, while high level of glucose ({>=}5 g/L) and low levels of both initial pH ({<=}5.5) and mineral salts solution ({<=}1 mL/L) enhanced the ethanol production. High yield of simultaneous hydrogen and ethanol production (1.58 mol H{sub 2}/mol glucose combined with an ethanol yield of 0.90 mol ethanol/mol glucose) was achieved under extreme-thermophilic mixed culture environment. Results obtained showed that the shift of the metabolic pathways favouring either hydrogen or ethanol production was affected by the change in cultivation conditions (pH and medium composition). The mixed culture in this study demonstrated flexible ability for simultaneous hydrogen and ethanol production, depending on pH and nutrients formulation. The microorganisms involved could be regarded as simultaneous hydrogen/ethanol producers, as hydrogen and ethanol fermentation under all conditions was carried out by a group of extreme-thermophilic bacterial species related to Thermoanaerobacter, Thermoanaerobacterium and Caldanaerobacter. (author)

  16. Development of a highly sensitive galvanic cell oxygen sensor.

    Science.gov (United States)

    Ogino, H; Asakura, K

    1995-02-01

    A highly sensitive galvanic cell oxygen sensor was successfully developed for determining parts per billion of oxygen in high purity gases such as nitrogen, argon, etc. The response of this improved sensor was proportional in the range of oxygen concentrations from 10.0 ppm to the detection limit. The response speed in this study was improved to within 90 sec for a 90% response. The detection limit was tentatively found to be less than 0.4 ppb corresponding to S N = 2 .

  17. Prospects of extreme ultraviolet radiation sources based on microwave discharge for high-resolution lithography

    Science.gov (United States)

    Abramov, I. S.; Gospodchikov, E. D.; Shalashov, A. G.

    2017-07-01

    In this paper, inspired by the success of recent experiments, we discuss a new possible type of sources of extreme ultraviolet radiation for the semiconductor industry, based on the radiating plasma with multiply charged ions supported in a mirror magnetic trap by high-power microwaves. We propose a simple theory that describes the main features of such source, perform modeling for a wide range of plasma parameters and magnetic configurations, compare the results to the existing experimental data, and study the prospects of the new scheme in present technological circumstances.

  18. Extremely high reflection of solar wind protons as neutral hydrogen atoms from regolith in space

    CERN Document Server

    Wieser, Martin; Futaana, Yoshifumi; Holmström, Mats; Bhardwaj, Anil; Sridharan, R; Dhanya, MB; Wurz, Peter; Schaufelberger, Audrey; Asamura, Kazushi; 10.1016/j.pss.2009.09.012

    2010-01-01

    We report on measurements of extremely high reflection rates of solar wind particles from regolith-covered lunar surfaces. Measurements by the Sub-keV Atom Reflecting Analyzer (SARA) instrument on the Indian Chandrayaan-1 spacecraft in orbit around the Moon show that up to 20% of the impinging solar wind protons are reflected from the lunar surface back to space as neutral hydrogen atoms. This finding, generally applicable to regolith-covered atmosphereless bodies, invalidates the widely accepted assumption that regolith almost completely absorbs the impinging solar wind.

  19. CLASH: Extreme Emission Line Galaxies and Their Implication on Selection of High-Redshift Galaxies

    CERN Document Server

    Huang, Xingxing; Wang, Junxian; Ford, Holland; Lemze, Doron; Moustakas, John; Shu, Xinwen; Van der Wel, Arjen; Zitrin, Adi; Frye, Brenda L; Postman, Marc; Bartelmann, Matthias; Benitez, Narciso; Bradley, Larry; Broadhurst, Tom; Coe, Dan; Donahue, Megan; Infante, Leopoldo; Kelson, Daniel; Koekemoer, Anton; Lahav, Ofer; Medezinski, Elinor; Moustakas, Leonidas; Rosati, Piero; Seitz, Stella; Umetsu, Keiichi

    2014-01-01

    We utilize the CLASH (Cluster Lensing And Supernova survey with Hubble) observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y105) and F125W (J125), as the flux of the central bands could be enhanced by the presence of [O III] 4959, 5007 at redshift of about 0.93-1.14 and 1.57-1.79, respectively. The multi-band observations help to constrain the equivalent widths of emission lines. Thanks to cluster lensing, we are able to identify 52 candidates down to an intrinsic limiting magnitude of 28.5 and to a rest-frame [O III] 4959,5007 equivalent width of about 3737 angstrom. Our samples include a number of EELGs at lower luminosities that are missed in other surveys, and the extremely high equivalent width can be only found in such faint galaxies. These EELGs can mimic the dropout feature similar to that of high redshift galaxies and contaminate the color-color selection of high redshift galaxies when the S/N ratio is limited ...

  20. CLASH: EXTREME EMISSION-LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xingxing; Wang, Junxian; Shu, Xinwen [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zheng, Wei; Ford, Holland; Lemze, Doron [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Moustakas, John [Department of Physics and Astronomy, Siena College, 515 Loudon Road, Loudonville, NY 12211 (United States); Van der Wel, Arjen [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg (Germany); Zitrin, Adi [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Frye, Brenda L. [Steward Observatory/Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Postman, Marc; Bradley, Larry; Coe, Dan [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21208 (United States); Bartelmann, Matthias [Leiden Observatory, Leiden University, P. O. Box 9513, 2300 RA Leiden (Netherlands); Benítez, Narciso [Instituto de Astrofísica de Andalucía (CSIC), C/Camino Bajo de Huétor 24, Granada E-18008 (Spain); Broadhurst, Tom [Department of Theoretical Physics, University of Basque Country UPV/EHU E-Bilbao (Spain); Donahue, Megan [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Infante, Leopoldo, E-mail: hxx@mail.ustc.edu.cn [Departamento de Astronoía y Astrofísica, Pontificia Universidad Católica de Chile, V. Mackenna 4860 Santiago 22 (Chile); and others

    2015-03-01

    We utilize the Cluster Lensing And Supernova survey with Hubble observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y {sub 105}) and F125W (J {sub 125}), as the flux of the central bands could be enhanced by the presence of [O III] λλ4959, 5007 at redshifts of ∼0.93-1.14 and 1.57-1.79, respectively. The multiband observations help to constrain the equivalent widths (EWs) of emission lines. Thanks to cluster lensing, we are able to identify 52 candidates down to an intrinsic limiting magnitude of 28.5 and to a rest-frame [O III] λλ4959, 5007 EW of ≅ 3700 Å. Our samples include a number of EELGs at lower luminosities that are missed in other surveys, and the extremely high EW can only be found in such faint galaxies. These EELGs can mimic a dropout feature similar to that of high-redshift galaxies and contaminate the color-color selection of high-redshift galaxies when the signal-to-noise ratio is limited or the band coverage is incomplete.

  1. Laboratory measurements of materials in extreme conditions; The use of high energy radiation sources for high pressure studies

    Energy Technology Data Exchange (ETDEWEB)

    Cauble, R.; Remington, B.A.

    1998-06-01

    High energy lasers can be used to study material conditions that are appropriate fort inertial confinement fusion: that is, materials at high densities, temperatures, and pressures. Pulsed power devices can offer similar opportunities. The National Ignition Facility (NIF) will be a high energy multi-beam laser designed to achieve the thermonuclear ignition of a mm-scale DT-filled target in the laboratory. At the same time, NE will provide the physics community with a unique tool for the study of high energy density matter at states unreachable by any other laboratory technique. Here we describe how these lasers and pulsed power tools can contribute to investigations of high energy density matter in the areas of material properties and equations of state, extend present laboratory shock techniques such as high-speed jets to new regimes, and allow study of extreme conditions found in astrophysical phenomena.

  2. Performance of terahertz metamaterials as high-sensitivity sensor

    Science.gov (United States)

    He, Yanan; Zhang, Bo; Shen, Jingling

    2017-09-01

    A high-sensitivity sensor based on the resonant transmission characteristics of terahertz (THz) metamaterials was investigated, with the proposal and fabrication of rectangular bar arrays of THz metamaterials exhibiting a period of 180 μm on a 25 μm thick flexible polyimide. Varying the size of the metamaterial structure revealed that the length of the rectangular unit modulated the resonant frequency, which was verified by both experiment and simulation. The sensing characteristics upon varying the surrounding media in the sample were tested by simulation and experiment. Changing the surrounding medium from that of air to that of alcohol or oil produced resonant frequency redshifts of 80 GHz or 150 GHz, respectively, which indicates that the sensor possessed a high sensitivity of 667 GHz per unit of refractive index. Finally, the influence of the sample substrate thickness on the sensor sensitivity was investigated by simulation. It may be a reference for future sensor design.

  3. High-sensitivity strain visualization using electroluminescence technologies

    Science.gov (United States)

    Xu, Jian; Jo, Hongki

    2016-04-01

    Visualizing mechanical strain/stress changes is an emerging area in structural health monitoring. Several ways are available for strain change visualization through the color/brightness change of the materials subjected to the mechanical stresses, for example, using mechanoluminescence (ML) materials and mechanoresponsive polymers (MRP). However, these approaches were not effectively applicable for civil engineering system yet, due to insufficient sensitivity to low-level strain of typical civil structures and limitation in measuring both static and dynamic strain. In this study, design and validation for high-sensitivity strain visualization using electroluminescence technologies are presented. A high-sensitivity Wheatstone bridge, of which bridge balance is precisely controllable circuits, is used with a gain-adjustable amplifier. The monochrome electroluminescence (EL) technology is employed to convert both static and dynamic strain change into brightness/color change of the EL materials, through either brightness change mode (BCM) or color alternation mode (CAM). A prototype has been made and calibrated in lab, the linearity between strain and brightness change has been investigated.

  4. High-sensitive scanning laser magneto-optical imaging system.

    Science.gov (United States)

    Murakami, Hironaru; Tonouchi, Masayoshi

    2010-01-01

    A high-sensitive scanning laser magneto-optical (MO) imaging system has been developed. The system is mainly composed of a laser source, galvano meters, and a high-sensitive differential optical-detector. Preliminary evaluation of system performance by using a Faraday indicator with a Faraday rotation coefficient of 3.47 x 10(-5) rad/microm Oe shows a magnetic sensitivity of about 5 microT, without any need for accumulation or averaging processing. Using the developed MO system we have succeeded in the fast and quantitative imaging of a rotationally symmetric magnetic field distribution around an YBa(2)Cu(3)O(7-delta) (YBCO) strip line applied with dc-biased current, and also succeeded in the detection of quantized fine signals corresponding to magnetic flux quantum generation in a superconducting loop of an YBCO Josephson vortex flow transistor. Thus, the developed system enables us not only to do fast imaging and local signal detection but also to directly evaluate both the strength and direction of a magnetic signal.

  5. HIGHLY SENSITIVE CATALASE ELECTRODE BASED ON POLYPYRROLE FILMS WITH MICROCONTAINERS

    Institute of Scientific and Technical Information of China (English)

    Yu-ying Gao; Gao-quan Shi

    2006-01-01

    Highly sensitive catalase electrodes for sensing hydrogen peroxide have been fabricated based on polypyrrole films with microcontainers. The microcontainers have a cup-like morphology and are arranged in a density of 4000 units cm-2.Catalase was immobilized into the polypyrrole films with microcontainers (Ppy-mc), which were coated on a Pt substrate electrode. The catalase/Ppy-mc/Pt electrode showed linear response to hydrogen peroxide in the range of 0-18 mmol/L at a potential of -0.3 V (versus SCE). Its sensitivity was measured to be approximately 3.64 μA (mmol/L)-1 cm-2, which is about two times that of the electrode fabricated from a flat Ppy film (catalase/Ppy-flat/Pt electrode). The electrode is highly selective for hydrogen peroxide and its sensitivity is interfered by potential interferents such as ascorbic acid, urea and fructose. Furthermore, such catalase electrodes showed long-term storage stability of 15 days under dry conditions at 4℃.

  6. Development of highly sensitive monolithic interferometer for infrared planet search

    Directory of Open Access Journals (Sweden)

    Jiang P.

    2011-07-01

    Full Text Available We present the design, fabrication and testing of a highly sensitive monolithic interferometer for InfraRed Exoplanet Tracker (IR-ET. This interferometer is field-compensated, thermal-stable for working in the wavelength range between 0.8 and 1.35 μm. Two arms of the interferometer creates a fixed delay of 18.0 mm, which is optimized to have the best sensitivity for radial velocity measurements of slow-rotating M dwarfs for planet detection. IR-ET is aiming to reach 3–20 m/s Doppler precision for J<10 M dwarfs in less than 15 min exposures. We plan to conduct a planet survey around hundreds of nearby M dwarfs through collaborations with Astrophysical Research Consortium scientists in 2011–2014.

  7. Polymer-Particle Pressure-Sensitive Paint with High Photostability

    Directory of Open Access Journals (Sweden)

    Yu Matsuda

    2016-04-01

    Full Text Available We propose a novel fast-responding and paintable pressure-sensitive paint (PSP based on polymer particles, i.e. polymer-particle (pp-PSP. As a fast-responding PSP, polymer-ceramic (PC-PSP is widely studied. Since PC-PSP generally consists of titanium (IV oxide (TiO2 particles, a large reduction in the luminescent intensity will occur due to the photocatalytic action of TiO2. We propose the usage of polymer particles instead of TiO2 particles to prevent the reduction in the luminescent intensity. Here, we fabricate pp-PSP based on the polystyrene particle with a diameter of 1 μm, and investigate the pressure- and temperature-sensitives, the response time, and the photostability. The performances of pp-PSP are compared with those of PC-PSP, indicating the high photostability with the other characteristics comparable to PC-PSP.

  8. New application of superconductors: high sensitivity cryogenic light detectors

    CERN Document Server

    Cardani, L; Casali, N; Casellano, M G; Colantoni, I; Coppolecchia, A; Cosmelli, C; Cruciani, A; D'Addabbo, A; Di Domizio, S; Martinez, M; Tomei, C; Vignati, M

    2016-01-01

    In this paper we describe the current status of the CALDER project, which is developing ultra-sensitive light detectors based on superconductors for cryogenic applications. When we apply an AC current to a superconductor, the Cooper pairs oscillate and acquire kinetic inductance, that can be measured by inserting the superconductor in a LC circuit with high merit factor. Interactions in the superconductor can break the Cooper pairs, causing sizable variations in the kinetic inductance and, thus, in the response of the LC circuit. The continuous monitoring of the amplitude and frequency modulation allows to reconstruct the incident energy with excellent sensitivity. This concept is at the basis of Kinetic Inductance Detectors (KIDs), that are characterized by natural aptitude to multiplexed read-out (several sensors can be tuned to different resonant frequencies and coupled to the same line), resolution of few eV, stable behavior over a wide temperature range, and ease in fabrication. We present the results ob...

  9. High-Sensitivity Phased Arrays for Radio Astronomy and Satellite Communications

    Science.gov (United States)

    Diao, Junming

    Radio astronomy is used to study stars, galaxies, black holes and gas clouds radiation at radio frequencies. Detecting extremely weak signals from deep space radio sources requires high sensitive feed system associated with large dish antennas. The key figure of merit is survey speed, or the time required to map a region of the sky to a given source flux density. Survey speed is proportional to the frequency bandwidth, the field of view or observable region of the sky, and the squared sensitivity, where sensitivity is related to reflector aperture efficiency and system noise temperature. Compared to the traditional single feed, phased array feeds with significantly expanded field of view are considered as the next generation feed for radio telescope. This dissertation outlines the design, analysis and measurement of high sensitivity L-band and mm-wave phased array feeds for the 100-meter Green Bank Telescope. Theoretical works for radio astronomy includes design guideline for high sensitivity phased array feed, fundamental frequency bandwidth limit, array antenna loss influenced by mutual coupling and beamformer coefficients and possibility of superdirectivity for radio telescopes and other antennas. These study are helpful to understand and guide the design of a phased array feed system. In the absence of dish antennas, sparse phased arrays with aperiodic structure have been developed for satellite communications. A compromise between the peak side lobe level, array element density, directivity and design complexity is studied. We have found that the array peak side lobe level can be reduced by enhancing the array element direction at the main lobe direction, increasing the array element density and enlarging the array size. A Poynting streamline approach develops to understand the properties of a receiving antenna and the mutual coupling effects between array elements. This method has been successfully used to generate effective area shape for many types of

  10. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments

    Science.gov (United States)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan

    2016-01-01

    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  11. Relationship between sensitizer concentration and resist performance of chemically amplified extreme ultraviolet resists in sub-10 nm half-pitch resolution region

    Science.gov (United States)

    Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro

    2017-01-01

    The development of lithography processes with sub-10 nm resolution is challenging. Stochastic phenomena such as line width roughness (LWR) are significant problems. In this study, the feasibility of sub-10 nm fabrication using chemically amplified extreme ultraviolet resists with photodecomposable quenchers was investigated from the viewpoint of the suppression of LWR. The relationship between sensitizer concentration (the sum of acid generator and photodecomposable quencher concentrations) and resist performance was clarified, using the simulation based on the sensitization and reaction mechanisms of chemically amplified resists. For the total sensitizer concentration of 0.5 nm-3 and the effective reaction radius for the deprotection of 0.1 nm, the reachable half-pitch while maintaining 10% critical dimension (CD) LWR was 11 nm. The reachable half-pitch was 7 nm for 20% CD LWR. The increase in the effective reaction radius is required to realize the sub-10 nm fabrication with 10% CD LWR.

  12. Highly sensitive detection of urinary cadmium to assess personal exposure

    Energy Technology Data Exchange (ETDEWEB)

    Argun, Avni A.; Banks, Ashley M.; Merlen, Gwendolynne; Tempelman, Linda A. [Giner, Inc., 89 Rumford Ave., Newton 02466, MA United States (United States); Becker, Michael F.; Schuelke, Thomas [Fraunhofer USA – CCL, 1449 Engineering Research Ct., East Lansing 48824, MI (United States); Dweik, Badawi M., E-mail: bdweik@ginerinc.com [Giner, Inc., 89 Rumford Ave., Newton 02466, MA United States (United States)

    2013-04-22

    Highlights: ► An electrochemical sensor capable of detecting cadmium at parts-per-billion levels in urine. ► A novel fabrication method for Boron-Doped Diamond (BDD) ultramicroelectrode (UME) arrays. ► Unique combination of BDD UME arrays and a differential pulse voltammetry algorithm. ► High sensitivity, high reproducibility, and very low noise levels. ► Opportunity for portable operation to assess on-site personal exposure. -- Abstract: A series of Boron-Doped Diamond (BDD) ultramicroelectrode arrays were fabricated and investigated for their performance as electrochemical sensors to detect trace level metals such as cadmium. The steady-state diffusion behavior of these sensors was validated using cyclic voltammetry followed by electrochemical detection of cadmium in water and in human urine to demonstrate high sensitivity (>200 μA ppb{sup −1} cm{sup −2}) and low background current (<4 nA). When an array of ultramicroelectrodes was positioned with optimal spacing, these BDD sensors showed a sigmoidal diffusion behavior. They also demonstrated high accuracy with linear dose dependence for quantification of cadmium in a certified reference river water sample from the U.S. National Institute of Standards and Technology (NIST) as well as in a human urine sample spiked with 0.25–1 ppb cadmium.

  13. [Highly sensitive detection technology for biological toxins applying sugar epitopes].

    Science.gov (United States)

    Uzawa, Hirotaka

    2009-01-01

    The Shiga toxin is a highly poisonous protein produced by enterohemorrhagic Escherichia coli O157. This bacterial toxin causes the hemolytic uremic syndrome. Another plant toxin from castor beans, ricin, is also highly toxic. The toxin was used for assassination in London. Recently, there were several cases of postal matter containing ricin. Both toxins are categorized as biological warfare agents by the Centers of Disease Control and Prevention. Conventional detection methods based on the antigen-antibody reaction, PCR and other cell-free assays have been proposed. However, those approaches have drawbacks in terms of sensitivity, analytical time, or stability of the detection reagents. Therefore, development of a facile and sensitive detection method is essential. Here we describe new detection methods applying carbohydrate epitopes as the toxin ligands, which is based on the fact that the toxins bind cell-surface oligosaccharides. Namely, the Shiga toxin has an affinity for globobiosyl (Gb(2)) disaccharide, and ricin binds the beta-D-galactose residue. For Shiga toxin detection, surface plasmon resonance (SPR) was applied. A polyanionic Gb(2)-glycopolymer was designed for this purpose, and it was used for the assembly of Gb(2)-chips using alternating layer-by-layer technology. The method allowed us to detect the toxin at a low concentration of LD(50). A synthetic carbohydrate ligand for ricin was designed and immobilized on the chips. SPR analysis with the chips allows us to detect ricin in a highly sensitive and facile manner (10 pg/ml, 5 min). Our present approaches provide a highly effective way to counter bioterrorism.

  14. Clinical value of high-sensitivity cardiac troponin assays after acute ischemic stroke

    Directory of Open Access Journals (Sweden)

    Yi-rui CAO

    2016-11-01

    Full Text Available In view of a variety of cardiovascular events complicated by acute ischemic stroke, the importance of monitoring myocardial ischemic symptoms and signs, electrocardiogram, echocardiogram and myocardial injury markers has been gradually recognized by clinicians. Cardiac troponin (cTn by conventional assay has been a unique marker of myocardial injury for its extremely high specificity. However, with the utilization of high-sensitivity cardiac troponin (hs-cTn, cTn is no longer exclusive of a disease, but was given more significance in the diagnosis and application value. Therefore, we described the clinical significance of alterations of serum hs-cTn concentration after ischemic stroke. DOI: 10.3969/j.issn.1672-6731.2016.11.015

  15. Design, performance, and early results from extremely high Doppler precision instruments in a global network

    Science.gov (United States)

    Ge, Jian; Zhao, Bo; Groot, John; Chang, Liang; Varosi, Frank; Wan, Xiaoke; Powell, Scott; Jiang, Peng; Hanna, Kevin; Wang, Ji; Pais, Rohan; Liu, Jian; Dou, Liming; Schofield, Sidney; McDowell, Shaun; Costello, Erin; Delgado-Navarro, Adriana; Fleming, Scott; Lee, Brian; Bollampally, Sandeep R.; Bosman, Troy; Jakeman, Hali; Fletcher, Adam; Marquez, Gabriel

    2010-07-01

    We report design, performance and early results from two of the Extremely High Precision Extrasolar Planet Tracker Instruments (EXPERT) as part of a global network for hunting for low mass planets in the next decade. EXPERT is a combination of a thermally compensated monolithic Michelson interferometer and a cross-dispersed echelle spectrograph for extremely high precision Doppler measurements for nearby bright stars (e.g., 1m/s for a V=8 solar type star in 15 min exposure). It has R=18,000 with a 72 micron slit and a simultaneous coverage of 390-694 nm. The commissioning results show that the instrument has already produced a Doppler precision of about 1 m/s for a solar type star with S/N~100 per pixel. The instrument has reached ~4 mK (P-V) temperature stability, ~1 mpsi pressure stability over a week and a total instrument throughput of ~30% at 550 nm from the fiber input to the detector. EXPERT also has a direct cross-dispersed echelle spectroscopy mode fed with 50 micron fibers. It has spectral resolution of R=27,000 and a simultaneous wavelength coverage of 390-1000 nm.

  16. Influence of Smoking on Ultra-High-Frequency Auditory Sensitivity.

    Science.gov (United States)

    Prabhu, Prashanth; Varma, Gowtham; Dutta, Kristi Kaveri; Kumar, Prajwal; Goyal, Swati

    2017-04-01

    In this study, an attempt was made to determine the effect of smoking on ultra-high-frequency auditory sensitivity. The study also attempted to determine the relationship between the nature of smoking and ultra-high-frequency otoacoustic emissions (OAEs) and thresholds. The study sample included 25 smokers and 25 non-smokers. A detailed history regarding their smoking habits was collected. High-frequency audiometric thresholds and amplitudes of high-frequency distortion-product OAEs were analyzed for both ears from all participants. The results showed that the ultra-high-frequency thresholds were elevated and that there was reduction in the amplitudes of ultra-high-frequency OAEs in smokers. There was an increased risk of auditory damage with chronic smoking. The study results highlight the application of ultra-high-frequency OAEs and ultra-high-frequency audiometry for the early detection of auditory impairment. However, similar studies should be conducted on a larger population for better generalization of the results.

  17. Excluded volume effects caused by high concentration addition of acid generators in chemically amplified resists used for extreme ultraviolet lithography

    Science.gov (United States)

    Kozawa, Takahiro; Watanabe, Kyoko; Matsuoka, Kyoko; Yamamoto, Hiroki; Komuro, Yoshitaka; Kawana, Daisuke; Yamazaki, Akiyoshi

    2017-08-01

    The resolution of lithography used for the high-volume production of semiconductor devices has been improved to meet the market demands for highly integrated circuits. With the reduction in feature size, the molecular size becomes non-negligible in the resist material design. In this study, the excluded volume effects caused by adding high-concentration acid generators were investigated for triphenylsulfonium nonaflate. The resist film density was measured by X-ray diffractometry. The dependences of absorption coefficient and protected unit concentration on acid generator weight ratio were calculated from the measured film density. Using these values, the effects on the decomposition yield of acid generators, the protected unit fluctuation, and the line edge roughness (LER) were evaluated by simulation on the basis of sensitization and reaction mechanisms of chemically amplified extreme ultraviolet resists. The positive effects of the increase in acid generator weight ratio on LER were predominant below the acid generator weight ratio of 0.3, while the negative effects became equivalent to the positive effects above the acid generator weight ratio of 0.3 owing to the excluded volume effects.

  18. Ultrathin plasmonic nanogratings for rapid and highly-sensitive detection

    CERN Document Server

    Zeng, Beibei; Bartoli, Filbert J

    2014-01-01

    We developed a nanoplasmonic sensor platform employing the extraordinary optical properties of one-dimensional nanogratings patterned on 30nm-thick ultrathin Ag films. Excitation of Fano resonances in the ultrathin Ag nanogratings results in transmission spectra with high amplitude, large contrast, and narrow bandwidth, making them well-suited for rapid and highly-sensitive sensing applications. The ultrathin nanoplasmonic sensor chip was integrated with a polydimethylsiloxane (PDMS) microfluidic channel, and the measured refractive index resolution was found to be 1.46x10-6 refractive index units (RIU) with a high temporal resolution of 1 sec. This compares favorably with commercial prism-based surface plasmon resonance sensors, but is achieved using a more convenient collinear transmission geometry and a significantly smaller sensor footprint of 50x50um2. In addition, an order-of-magnitude improvement in the temporal and spatial resolutions was achieved relative to state-of-the-art nanoplasmonic sensors, fo...

  19. Potential programs for high sensitivity FIR spectroscopy with SPICA

    CERN Document Server

    Spinoglio, L; Saraceno, P; Spinoglio, Luigi; Giorgio, Anna Maria Di; Saraceno, Paolo

    2006-01-01

    We discuss the potential of high sensitivity mid-IR and far-IR spectroscopy to proof the physical properties of active nuclei and starburst regions of local and distant galaxies. For local galaxies, it will be possible to map the discs and ISM through the low ionization ionic lines and a variety of molecular tracers, such as OH, H2O and high-J CO. At increasing distance, most of the ionic nebular lines (typical of stars and AGNs) are shifted into the FIR, making possible to compare the observed spectra with those predicted by different evolutionary scenarios. At the very high redshift of 10-15, sensitive mid-to-far-IR spectrometers, such as those planned to be at the focal plane of the future SPICA mision, could be adequate to detect the H recombination lines excited in the HII regions around population III stars, if these stars happened to reside in large clusters of more than 10^5 members.

  20. High-sensitivity piezoelectric perovskites for magnetoelectric composites

    Science.gov (United States)

    Amorín, Harvey; Algueró, Miguel; Campo, Rubén Del; Vila, Eladio; Ramos, Pablo; Dollé, Mickael; Romaguera-Barcelay, Yonny; Cruz, Javier Pérez De La; Castro, Alicia

    2015-01-01

    A highly topical set of perovskite oxides are high-sensitivity piezoelectric ones, among which Pb(Zr,Ti)O3 at the morphotropic phase boundary (MPB) between ferroelectric rhombohedral and tetragonal polymorphic phases is reckoned a case study. Piezoelectric ceramics are used in a wide range of mature, electromechanical transduction technologies like piezoelectric sensors, actuators and ultrasound generation, to name only a few examples, and more recently for demonstrating novel applications like magnetoelectric composites. In this case, piezoelectric perovskites are combined with magnetostrictive materials to provide magnetoelectricity as a product property of the piezoelectricity and piezomagnetism of the component phases. Interfaces play a key issue, for they control the mechanical coupling between the piezoresponsive phases. We present here main results of our investigation on the suitability of the high sensitivity MPB piezoelectric perovskite BiScO3–PbTiO3 in combination with ferrimagnetic spinel oxides for magnetoelectric composites. Emphasis has been put on the processing at low temperature to control reactions and interdiffusion between the two oxides. The role of the grain size effects is extensively addressed. PMID:27877758

  1. Global Distribution of Extreme Precipitation and High-Impact Landslides in 2010 Relative to Previous Years

    Science.gov (United States)

    Kirschbaum, Dalia; Adler, Robert; Adler, David; Peters-Lidard, Christa; Huffman, George

    2012-01-01

    It is well known that extreme or prolonged rainfall is the dominant trigger of landslides worldwide. While research has evaluated the spatiotemporal distribution of extreme rainfall and landslides at local or regional scales using in situ data, few studies have mapped rainfall-triggered landslide distribution globally due to the dearth of landslide data and consistent precipitation information. This study uses a newly developed Global Landslide Catalog (GLC) and a 13-year satellite-based precipitation record from TRMM data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurrence of precipitation and landslides globally. Evaluation of the GLC indicates that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan Arc, and central-eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This study characterizes the variability of satellite precipitation data and reported landslide activity at the globally scale in order to improve landslide cataloging, forecasting and quantify potential triggering sources at daily, monthly and yearly time scales.

  2. High-Sensitivity Measurement of Density by Magnetic Levitation.

    Science.gov (United States)

    Nemiroski, Alex; Kumar, A A; Soh, Siowling; Harburg, Daniel V; Yu, Hai-Dong; Whitesides, George M

    2016-03-01

    This paper presents methods that use Magnetic Levitation (MagLev) to measure very small differences in density of solid diamagnetic objects suspended in a paramagnetic medium. Previous work in this field has shown that, while it is a convenient method, standard MagLev (i.e., where the direction of magnetization and gravitational force are parallel) cannot resolve differences in density mm) because (i) objects close in density prevent each other from reaching an equilibrium height due to hard contact and excluded volume, and (ii) using weaker magnets or reducing the magnetic susceptibility of the medium destabilizes the magnetic trap. The present work investigates the use of weak magnetic gradients parallel to the faces of the magnets as a means of increasing the sensitivity of MagLev without destabilization. Configuring the MagLev device in a rotated state (i.e., where the direction of magnetization and gravitational force are perpendicular) relative to the standard configuration enables simple measurements along the axes with the highest sensitivity to changes in density. Manipulating the distance of separation between the magnets or the lengths of the magnets (along the axis of measurement) enables the sensitivity to be tuned. These modifications enable an improvement in the resolution up to 100-fold over the standard configuration, and measurements with resolution down to 10(-6) g/cm(3). Three examples of characterizing the small differences in density among samples of materials having ostensibly indistinguishable densities-Nylon spheres, PMMA spheres, and drug spheres-demonstrate the applicability of rotated Maglev to measuring the density of small (0.1-1 mm) objects with high sensitivity. This capability will be useful in materials science, separations, and quality control of manufactured objects.

  3. Extreme Learning Machines on High Dimensional and Large Data Applications: A Survey

    Directory of Open Access Journals (Sweden)

    Jiuwen Cao

    2015-01-01

    Full Text Available Extreme learning machine (ELM has been developed for single hidden layer feedforward neural networks (SLFNs. In ELM algorithm, the connections between the input layer and the hidden neurons are randomly assigned and remain unchanged during the learning process. The output connections are then tuned via minimizing the cost function through a linear system. The computational burden of ELM has been significantly reduced as the only cost is solving a linear system. The low computational complexity attracted a great deal of attention from the research community, especially for high dimensional and large data applications. This paper provides an up-to-date survey on the recent developments of ELM and its applications in high dimensional and large data. Comprehensive reviews on image processing, video processing, medical signal processing, and other popular large data applications with ELM are presented in the paper.

  4. Extreme ultraviolet spectroscopy and atomic models of highly charged heavy ions in the Large Helical Device

    Science.gov (United States)

    Suzuki, C.; Murakami, I.; Koike, F.; Tamura, N.; Sakaue, H. A.; Morita, S.; Goto, M.; Kato, D.; Ohashi, H.; Higashiguchi, T.; Sudo, S.; O'Sullivan, G.

    2017-01-01

    We report recent results of extreme ultraviolet (EUV) spectroscopy of highly charged heavy ions in plasmas produced in the Large Helical Device (LHD). The LHD is an ideal source of experimental databases of EUV spectra because of high brightness and low opacity, combined with the availability of pellet injection systems and reliable diagnostic tools. The measured heavy elements include tungsten, tin, lanthanides and bismuth, which are motivated by ITER as well as a variety of plasma applications such as EUV lithography and biological microscopy. The observed spectral features drastically change between quasicontinuum and discrete depending on the plasma temperature, which leads to some new experimental identifications of spectral lines. We have developed collisional-radiative models for some of these ions based on the measurements. The atomic number dependence of the spectral feature is also discussed.

  5. Extreme Energy Events Project: Construction of the detectors and installation in Italian High Schools

    CERN Document Server

    Abbrescia, M; An, S; Antolini, R; Badalà, A; Baldini Ferroli, R; Bencivenni, G; Blanco, F; Bressan, E; Chiavassa, A; Chiri, C; Cifarelli, L; Cindolo, F; Coccia, E; De Pasquale, S; Di Giovanni, A; D’Incecco, M; Fabbri, F L; Frolov, V; Garbini, M; Gustavino, C; Hatzifotiadou, D; Imponente, G; Kim, J; La Rocca, P; Librizzi, F; Maggiora, A; Menghetti, H; Miozzi, S; Moro, R; Panareo, M; Pappalardo, G S; Piragino, G; Riggi, F; Romano, F; Sartorelli, G; Sbarra, C; Selvi, M; Serci, S; Williams, C; Zuyeuski, R

    2008-01-01

    The EEE Project, conceived by its leader Antonino Zichichi, aims to detect Extreme Energy Events of cosmic rays with an array of muon telescopes distributed over the Italian territory. The Project involves Italian High Schools in order to introduce young people to Physics, also countervailing the recent crisis of university scientific classes inscriptions. The detectors for the EEE telescopes are Multigap Resistive Plate Chambers (MRPC) and have been constructed by teams of High School students who went in shift at the CERN laboratories. The mechanics and the electronics were developed by groups of researchers from CERN, the Italian Centro Fermi and INFN. The first group of schools of the EEE Project has inaugurated their telescopes recently. A status report of the Project and the preliminary results are presented.

  6. The physiology of extremes: Ancel Keys and the International High Altitude Expedition of 1935.

    Science.gov (United States)

    Tracy, Sarah W

    2012-01-01

    This article examines the International High Altitude Expedition of 1935 and its significance in the life and science of Ancel Keys. Both the expedition and Keys's story afford excellent opportunities to explore the growing reach of interwar physiology into extreme climates-whether built or natural. As IHAE scientists assessed human performance and adaptation to hypoxia, low barometric pressure, and cold, they not only illuminated the physiological and psychological processes of high altitude acclimatization, but they also drew borderlines between the normal and the pathological, paved the way for the neocolonial exploitation of natural and human resources in Latin America, and pioneered field methods in physiology that were adapted and adopted by the Allied Forces during the Second World War. This case study in the physiology of place reveals the power and persistence of environmental determinism within biomedicine well into the twentieth century.

  7. Feasibility of High-Repetition, Task-Specific Training for Individuals With Upper-Extremity Paresis

    Science.gov (United States)

    Waddell, Kimberly J.; Birkenmeier, Rebecca L.; Moore, Jennifer L.; Hornby, T. George

    2014-01-01

    OBJECTIVE. We investigated the feasibility of delivering an individualized, progressive, high-repetition upper-extremity (UE) task-specific training protocol for people with stroke in the inpatient rehabilitation setting. METHOD. Fifteen patients with UE paresis participated in this study. Task-specific UE training was scheduled for 60 min/day, 4 days/wk, during occupational therapy for the duration of a participant’s inpatient stay. During each session, participants were challenged to complete ≥300 repetitions of various tasks. RESULTS. Participants averaged 289 repetitions/session, spending 47 of 60 min in active training. Participants improved on impairment and activity level outcome measures. CONCLUSION. People with stroke in an inpatient setting can achieve hundreds of repetitions of task-specific training in 1-hr sessions. As expected, all participants improved on functional outcome measures. Future studies are needed to determine whether this high-repetition training program results in better outcomes than current UE interventions. PMID:25005508

  8. Beyond Extreme Ultra Violet (BEUV) Radiation from Spherically symmetrical High-Z plasmas

    Science.gov (United States)

    Yoshida, Kensuke; Fujioka, Shinsuke; Higashiguchi, Takeshi; Ugomori, Teruyuki; Tanaka, Nozomi; Kawasaki, Masato; Suzuki, Yuhei; Suzuki, Chihiro; Tomita, Kentaro; Hirose, Ryouichi; Eshima, Takeo; Ohashi, Hayato; Nishikino, Masaharu; Scally, Enda; Nshimura, Hiroaki; Azechi, Hiroshi; O'Sullivan, Gerard

    2016-03-01

    Photo-lithography is a key technology for volume manufacture of high performance and compact semiconductor devices. Smaller and more complex structures can be fabricated by using shorter wavelength light in the photolithography. One of the most critical issues in development of the next generation photo-lithography is to increase energy conversion efficiency (CE) from laser to shorter wavelength light. Experimental database of beyond extreme ultraviolet (BEUV) radiation was obtained by using spherically symmetrical high-Z plasmas generated with spherically allocated laser beams. Absolute energy and spectra of BEUV light emitted from Tb, Gd, and Mo plasmas were measured with a absolutely calibrated BEUV calorimeter and a transmission grating spectrometer. 1.0 x 1012 W/cm2 is the optimal laser intensity to produced efficient BEUV light source plasmas with Tb and Gd targets. Maximum CE is achieved at 0.8% that is two times higher than the published CEs obtained with planar targets.

  9. High pressure-sensitive gene expression in Lactobacillus sanfranciscensis

    Directory of Open Access Journals (Sweden)

    R.F. Vogel

    2005-08-01

    Full Text Available Lactobacillus sanfranciscensis is a Gram-positive lactic acid bacterium used in food biotechnology. It is necessary to investigate many aspects of a model organism to elucidate mechanisms of stress response, to facilitate preparation, application and performance in food fermentation, to understand mechanisms of inactivation, and to identify novel tools for high pressure biotechnology. To investigate the mechanisms of the complex bacterial response to high pressure we have analyzed changes in the proteome and transcriptome by 2-D electrophoresis, and by microarrays and real time PCR, respectively. More than 16 proteins were found to be differentially expressed upon high pressure stress and were compared to those sensitive to other stresses. Except for one apparently high pressure-specific stress protein, no pressure-specific stress proteins were found, and the proteome response to pressure was found to differ from that induced by other stresses. Selected pressure-sensitive proteins were partially sequenced and their genes were identified by reverse genetics. In a transcriptome analysis of a redundancy cleared shot gun library, about 7% of the genes investigated were found to be affected. Most of them appeared to be up-regulated 2- to 4-fold and these results were confirmed by real time PCR. Gene induction was shown for some genes up-regulated at the proteome level (clpL/groEL/rbsK, while the response of others to high hydrostatic pressure at the transcriptome level seemed to differ from that observed at the proteome level. The up-regulation of selected genes supports the view that the cell tries to compensate for pressure-induced impairment of translation and membrane transport.

  10. The Megapixel EBCCD: A high-resolution imaging tube sensitive to single photons

    Energy Technology Data Exchange (ETDEWEB)

    Buontempo, S.; Ereditato, A.; Frenkel, A.; Galeazzi, F.; Garufi, F.; Martellotti, G.; Penso, G. [Universita ' Federico II' and INFN Napoli (Italy); Chiodi, G.; Liberti, B. [Universita di Roma ' La Sapienza' and INFN Roma (Italy); Dalinenko, I.N.; Kossov, V.G.; Lasovsky, L.Y.; Malyarov, A.V.; Vishnevsky, G.I.; Zhuk, A. [Nat. Res. Inst. ' Electron' , St. Petersburg (Russian Federation); Ekimov, A.V.; Golovkin, S.V.; Govorun, V.N.; Medvedkov, A.M. [IHEP, Protvino (Russian Federation); Fabre, J.P. [CERN, Geneve (Switzerland); Fedorov, V.Y.; Kalashnikova, N.N. [Inst. of Electron Devices, Moscow (Russian Federation); Kozarenko, E.N.; Kreslo, I.E. [JINR, Dubna (Russian Federation); Wolff, T. [Westfaelische Wilhelms-Universitaet, Muenster (Germany)

    1998-08-21

    A hybrid image-intensifier tube, suitable for extremely low-light imaging, has been tested. This device is based on an Electron-Bombarded CCD chip (EBCCD) with 1024x1024 sensitive pixels. The tube, which has a photocathode diameter of 40 mm, is gateable and zoomable, with an image magnification varying from 0.62 to 1.3. The high gain (about 4000 collected electrons per photoelectron at the operational voltage of 15 kV) and the relatively low noise (180 electrons per pixel at 10 MHz pixel-readout frequency), allows single-photoelectron signals to be separated from noise with a signal-to-noise ratio greater than 10. By applying an appropriate threshold on the signal amplitude, the background can almost be eliminated, with a loss of few percent in single-photoelectron counting. High inner gain, low-noise, single-photoelectron sensitivity, and high spatial resolution make the EBCCD imaging tube a unique device, attractive for many applications in high-energy physics, astrophysics and biomedical diagnostics. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. Rituximab induction therapy in highly sensitized kidney transplant recipients

    Institute of Scientific and Technical Information of China (English)

    YIN Hang; WAN Hao; HU Xiao-peng; LI Xiao-bei; WANG Wei; LIU Hang; REN Liang; ZHANG Xiao-dong

    2011-01-01

    Background The number of highly sensitized patients is rising, and sensitization can lead to renal transplant failure.The present study aimed to investigate the safety and efficacy of renal transplantation following induction therapy with rituximab in highly sensitized kidney transplant recipients.Methods Seven highly sensitized kidney transplant recipients who underwent rituximab therapy from December 2008 to December 2009 were retrospectively analyzed. There were 3 men and 4 women, with a mean age of 38.5 years (range, 21-47 years). The duration of hemodialysis was 3-12 months, with a mean duration of 11 months. For 4 patients,this was the second transplant; the previous graft survival time was 2-11 years, with a mean survival time of 5.8 years. All the female recipients had history of multiple pregnancies, and all patients had previously received blood transfusions. All donors were men, with a mean age of 32.5 years (range, 25-37 years). In 2 of the 7 patients, both class I and class II of panel reactive antibody were high; the remaining 5 patients showed either high in class I or in class II of panel reactive antibody. The mean panel reactive antibody value was 31% for class I and 51% for class II respectively. The donors and the recipients had the same blood type, with low lymphocyte cytotoxicity ranging from 2% to 5%. The human leukocyte antigen (HLA) mismatch numbers were from 2 to 4. All patients received tacrolimus (0.1 mg·kg-1·d-1) and mycophenolate mofetil (750 mg twice per day) orally 3 days prior to surgery. All patients received a single dose of 600 mg rituximab (375 mg/m2) infusion on the day before surgery and polyclonal antibody (antithymocyte globulin) on the day of surgery.Postoperative creatinine, creatinine clearance rate, and occurrence of rejection by pathological biopsy confirmation were monitored.Results No patient had delayed graft function after surgery. Two patients had acute rejection, one on day 7 and the other on day 13 post

  12. Highly sensitive detection of Staphylococcus aureus directly from patient blood.

    Directory of Open Access Journals (Sweden)

    Padmapriya P Banada

    Full Text Available BACKGROUND: Rapid detection of bloodstream infections (BSIs can be lifesaving. We investigated the sample processing and assay parameters necessary for highly-sensitive detection of bloodstream bacteria, using Staphylococcus aureus as a model pathogen and an automated fluidic sample processing-polymerase chain reaction (PCR platform as a model diagnostic system. METHODOLOGY/PRINCIPAL FINDINGS: We compared a short 128 bp amplicon hemi-nested PCR and a relatively shorter 79 bp amplicon nested PCR targeting the S. aureus nuc and sodA genes, respectively. The sodA nested assay showed an enhanced limit of detection (LOD of 5 genomic copies per reaction or 10 colony forming units (CFU per ml blood over 50 copies per reaction or 50 CFU/ml for the nuc assay. To establish optimal extraction protocols, we investigated the relative abundance of the bacteria in different components of the blood (white blood cells (WBCs, plasma or whole blood, using the above assays. The blood samples were obtained from the patients who were culture positive for S. aureus. Whole blood resulted in maximum PCR positives with sodA assay (90% positive as opposed to cell-associated bacteria (in WBCs (71% samples positive or free bacterial DNA in plasma (62.5% samples positive. Both the assays were further tested for direct detection of S. aureus in patient whole blood samples that were contemporaneous culture positive. S. aureus was detected in 40/45 of culture-positive patients (sensitivity 89%, 95% CI 0.75-0.96 and 0/59 negative controls with the sodA assay (specificity 100%, 95% CI 0.92-1. CONCLUSIONS: We have demonstrated a highly sensitive two-hour assay for detection of sepsis causing bacteria like S. aureus directly in 1 ml of whole blood, without the need for blood culture.

  13. Coumarin-bearing triarylamine sensitizers with high molar extinction coefficient for dye-sensitized solar cells

    Science.gov (United States)

    Zhong, Changjian; Gao, Jianrong; Cui, Yanhong; Li, Ting; Han, Liang

    2015-01-01

    Coumarin unit is introduced into triarylamine and three organic sensitizers are designed and synthesized with triarylamine bearing coumarin moiety as the electron donor, conjugated system containing thiophene unit as the π-bridge, and cyanoacetic acid moiety as the electron acceptor. The light-harvesting capabilities and photovoltaic performance of these dyes are investigated systematically with the comparison of different π-bridges. High molar extinction coefficients are observed in these triarylamine dyes and the photocurrent and photovoltage are increased with the introduction of another thiophene or benzene. Optimal photovoltaic performance (η = 6.24%, Voc = 690 mV, Jsc = 14.33 mA cm-2, and ff = 0.63) is observed in the DSSC based on dye with thiophene-phenyl unit as the π-conjugated bridge under 100 mW cm-2 simulated AM 1.5 G solar irradiation.

  14. A highly sensitive method for quantification of iohexol

    DEFF Research Database (Denmark)

    Schulz, A.; Boeringer, F.; Swifka, J.

    2014-01-01

    lohexol (1-N,3-N-bis(2,3-dihydroxypropyl)-5-IN-(2,3-dihydroxypropyl) acetamide-2,4,6-triiodobenzene1,3-dicarboxamide) is used for accurate determination of the glomerular filtration rate (GFR) in chronic kidney disease (CKD) patients. However, high iohexol amounts might lead to adverse effects in...... in organisms. In order to minimize the iohexol dosage required for the GFR determination in humans, the development of a sensitive quantification method is essential. Therefore, the objective of our preclinical study was to establish and validate a simple and robust liquid...... with a cut-off of 3 kDa. The chromatographic separation was achieved on an analytical Zorbax SB C18 column. The detection and quantification were performed on a high capacity trap mass spectrometer using positive ion ESI in the multiple reaction monitoring (MRM) mode. Furthermore, using real-time polymerase...

  15. Correcting systematic errors in high-sensitivity deuteron polarization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Brantjes, N.P.M. [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Dzordzhadze, V. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Gebel, R. [Institut fuer Kernphysik, Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Gonnella, F. [Physica Department of ' Tor Vergata' University, Rome (Italy); INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Gray, F.E. [Regis University, Denver, CO 80221 (United States); Hoek, D.J. van der [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Imig, A. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Kruithof, W.L. [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Lazarus, D.M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Lehrach, A.; Lorentz, B. [Institut fuer Kernphysik, Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Messi, R. [Physica Department of ' Tor Vergata' University, Rome (Italy); INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Moricciani, D. [INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Morse, W.M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Noid, G.A. [Indiana University Cyclotron Facility, Bloomington, IN 47408 (United States); and others

    2012-02-01

    This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY at Juelich. By measuring with very high statistical precision, the contributions that are second-order in the systematic errors become apparent. By calibrating the sensitivity of the polarimeter to such errors, it becomes possible to obtain information from the raw count rate values on the size of the errors and to use this information to correct the polarization measurements. During the experiment, it was possible to demonstrate that corrections were satisfactory at the level of 10{sup -5} for deliberately large errors. This may facilitate the real time observation of vector polarization changes smaller than 10{sup -6} in a search for an electric dipole moment using a storage ring.

  16. Environmental extremes versus ecological extremes: impact of a massive iceberg on the population dynamics of a high-level Antarctic marine predator†

    Science.gov (United States)

    Chambert, Thierry; Rotella, Jay J.; Garrott, Robert A.

    2012-01-01

    Extreme events have been suggested to play a disproportionate role in shaping ecological processes, but our understanding of the types of environmental conditions that elicit extreme consequences in natural ecosystems is limited. Here, we investigated the impact of a massive iceberg on the dynamics of a population of Weddell seals. Reproductive rates of females were reduced, but survival appeared unaffected. We also found suggestive evidence for a prolonged shift towards higher variability in reproductive rates. The annual number of females attending colonies showed unusual swings during the iceberg period, a pattern that was apparently the consequence of changes in sea-ice conditions. In contrast to the dramatic effects that were recorded in nearby populations of emperor penguins, our results suggest that this unusual environmental event did not have an extreme impact on the population of seals in the short-term, as they managed to avoid survival costs and were able to rapidly re-achieve high levels of reproduction by the end of the perturbation. Nevertheless, population projections suggest that even this modest impact on reproductive rates could negatively affect the population in the long run if such events were to occur more frequently, as is predicted by models of climate change. PMID:23015628

  17. Monolayer MoS2/GaAs heterostructure self-driven photodetector with extremely high detectivity

    CERN Document Server

    Xu, Zhijuan; Li, Xiaoqiang; Zhang, Shengjiao; Wu, Zhiqian; Xu, Wenli; Lu, Yanghua; Xu, Sen

    2015-01-01

    Two dimensional material/semiconductor heterostructures offer alternative platforms for optoelectronic devices other than conventional Schottky and p-n junction devices. Herein, we use MoS2/GaAs heterojunction as a self-driven photodetector with wide response band width from ultraviolet to visible light, which exhibits high sensitivity to the incident light of 650 nm with responsivity as 446 mA/W and detectivity as 5.9E13 Jones (Jones = cm Hz^1/2 W^-1), respectively. Employing interface design by inserting h-BN and photo-induced doping by covering Si quantum dots on the device, the responsivity is increased to 582 mA/W for incident light of 650 nm. Distinctly, attributing to the low dark current of the MoS2/h-BN/GaAs sandwich structure based on the self-driven operation condition, the detectivity shows extremely high value of 3.2E14 Jones for incident light of 650 nm, which is higher than all the reported values of the MoS2 based photodetectors. Further investigations reveal that the MoS2/GaAs based photodete...

  18. High Sensitivity MEMS Strain Sensor: Design and Simulation

    Directory of Open Access Journals (Sweden)

    Edmond Lou

    2008-04-01

    Full Text Available In this article, we report on the new design of a miniaturized strain microsensor. The proposed sensor utilizes the piezoresistive properties of doped single crystal silicon. Employing the Micro Electro Mechanical Systems (MEMS technology, high sensor sensitivities and resolutions have been achieved. The current sensor design employs different levels of signal amplifications. These amplifications include geometric, material and electronic levels. The sensor and the electronic circuits can be integrated on a single chip, and packaged as a small functional unit. The sensor converts input strain to resistance change, which can be transformed to bridge imbalance voltage. An analog output that demonstrates high sensitivity (0.03mV/me, high absolute resolution (1μe and low power consumption (100μA with a maximum range of ±4000μe has been reported. These performance characteristics have been achieved with high signal stability over a wide temperature range (±50oC, which introduces the proposed MEMS strain sensor as a strong candidate for wireless strain sensing applications under harsh environmental conditions. Moreover, this sensor has been designed, verified and can be easily modified to measure other values such as force, torque…etc. In this work, the sensor design is achieved using Finite Element Method (FEM with the application of the piezoresistivity theory. This design process and the microfabrication process flow to prototype the design have been presented.

  19. A High Sensitivity IDC-Electronic Tongue Using Dielectric/Sensing Membranes with Solvatochromic Dyes

    Directory of Open Access Journals (Sweden)

    Md. Rajibur Rahaman Khan

    2016-05-01

    Full Text Available In this paper, an electronic tongue/taste sensor array containing different interdigitated capacitor (IDC sensing elements to detect different types of tastes, such as sweetness (glucose, saltiness (NaCl, sourness (HCl, bitterness (quinine-HCl, and umami (monosodium glutamate is proposed. We present for the first time an IDC electronic tongue using sensing membranes containing solvatochromic dyes. The proposed highly sensitive (30.64 mV/decade sensitivity IDC electronic tongue has fast response and recovery times of about 6 s and 5 s, respectively, with extremely stable responses, and is capable of linear sensing performance (R2 ≈ 0.985 correlation coefficient over the wide dynamic range of 1 µM to 1 M. The designed IDC electronic tongue offers excellent reproducibility, with a relative standard deviation (RSD of about 0.029. The proposed device was found to have better sensing performance than potentiometric-, cascoded compatible lateral bipolar transistor (C-CLBT-, Electronic Tongue (SA402-, and fiber-optic-based taste sensing systems in what concerns dynamic range width, response time, sensitivity, and linearity. Finally, we applied principal component analysis (PCA to distinguish between various kinds of taste in mixed taste compounds.

  20. Stereo-SCIDAR: Optical turbulence profiling with high sensitivity using a modified SCIDAR instrument

    CERN Document Server

    Shepherd, H W; Wilson, R W; Butterley, T; Avila, R; Dhillon, V S; Morris, T J

    2013-01-01

    The next generation of adaptive optics (AO) systems will require tomographic reconstruction techniques to map the optical refractive index fluctuations, generated by the atmospheric turbulence, along the line of sight to the astronomical target. These systems can be enhanced with data from an external atmospheric profiler. This is important for Extremely Large Telescope scale tomography. Here we propose a new instrument which utilises the generalised SCIntillation Detection And Ranging (SCIDAR) technique to allow high sensitivity vertical profiles of the atmospheric optical turbulence and wind velocity profile above astronomical observatories. The new approach, which we refer to as 'Stereo-SCIDAR', uses a stereoscopic system with the scintillation pattern from each star of a double-star target incident on a separate detector. Separating the pupil images for each star has several advantages including: increased magnitude difference tolerance for the target stars; negating the need for re-calibration due to the...

  1. 2,5-PRODAN Derivatives as Highly Sensitive Sensors of Low Solvent Acidity

    Directory of Open Access Journals (Sweden)

    Alexandra H. Yoon

    2014-05-01

    Full Text Available Two 5-acyl-2-dimethylaminonaphthalene derivatives, one with a propionyl group and the other with a fused cyclohexanone ring, are investigated as sensors of H-bond-donating ability in protic solvents of low solvent acidity. Their fluorescence is highly quenched in protic solvents, and the quenching order of magnitude is linearly related to the H-bond-donating ability of the solvent as quantified by the solvent acidity (SA scale. As the solvent acidity increases from 0.15 to 0.40, the fluorescence for both is quenched by more than a factor of ten; thus, they are extremely sensitive sensors of the hydrogen-bond-donating ability in this weakly acidic range. Preferential solvation studies suggest that quenching occurs from a doubly H-bonded excited state.

  2. Measurements and identifications of extreme ultraviolet spectra of highly-charged Sm and Er

    CERN Document Server

    Podpaly, Y A; Reader, J; Ralchenko, Yu

    2014-01-01

    We report spectroscopic measurements of highly charged samarium and erbium performed at the National Institute of Standards and Technology (NIST) Electron Beam Ion Trap (EBIT). These measurements are in the extreme ultraviolet (EUV) range, and span electron beam energies from 0.98 keV to 3.00 keV. We observed 71 lines from Kr-like Sm$^{26+}$ to Ni-like Sm$^{34+}$, connecting 83 energy levels, and 64 lines from Rb-like Er$^{32+}$ to Ni-like Er$^{40+}$, connecting 78 energy levels. Of these lines, 64 in Sm and 60 in Er are new. Line identifications are performed using collisional-radiative modeling of the EBIT plasma. All spectral lines are assigned individual uncertainties, most in the $\\sim$0.001 nm range. Energy levels are derived from the wavelength measurements.

  3. High-Resolution Spectroscopy of G191-B2B in the Extreme Ultraviolet

    CERN Document Server

    Cruddace, R G; Yentis, D J; Brown, C M; Gursky, H; Barstow, M A; Bannister, N P; Fraser, G W; Spragg, J E; Lapington, J S; Tandy, J A; Sanderson, B; Culhane, J L; Barbee, T W; Kordas, J F; Goldstein, W H; Fritz, G G

    2001-01-01

    We report a high-resolution (R=3000-4000) spectroscopic observation of the DA white dwarf G191-B2B in the extreme ultraviolet band 220-245 A. A low- density ionised He component is clearly present along the line-of-sight, which if completely interstellar implies a He ionisation fraction considerably higher than is typical of the local interstellar medium. However, some of this material may be associated with circumstellar gas, which has been detected by analysis of the C IV absorption line doublet in an HST STIS spectrum. A stellar atmosphere model assuming a uniform element distribution yields a best fit to the data which includes a significant abundance of photospheric He. The 99-percent confidence contour for the fit parameters excludes solutions in which photospheric He is absent, but this result needs to be tested using models allowing abundance gradients.

  4. Nano-materials for adhesive-free adsorbers for bakable extreme high vacuum cryopump surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stutzman, Marcy; Jordan, Kevin; Whitney, Roy R.

    2016-10-11

    A cryosorber panel having nanomaterials used for the cryosorption material, with nanomaterial either grown directly on the cryopanel or freestanding nanomaterials attached to the cryopanel mechanically without the use of adhesives. Such nanomaterial cryosorber materials can be used in place of conventional charcoals that are attached to cryosorber panels with special low outgassing, low temperature capable adhesives. Carbon nanotubes and other nanomaterials could serve the same purpose as conventional charcoal cryosorbers, providing a large surface area for cryosorption without the need for adhesive since the nanomaterials can be grown directly on a metallic substrate or mechanically attached. The nanomaterials would be capable of being fully baked by heating above 100.degree. C., thereby eliminating water vapor from the system, eliminating adhesives from the system, and allowing a full bake of the system to reduce hydrogen outgassing, with the goal of obtaining extreme high vacuum where the pump can produce pressures below 1.times.10.sup.-12 Torr.

  5. First search for extremely high energy cosmogenic neutrinos with the IceCube Neutrino Observatory

    Science.gov (United States)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Davis, J. C.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Knops, S.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Lehmann, R.; Lennarz, D.; Lünemann, J.; Madsen, J.; Majumdar, P.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; IceCube Collaboration

    2010-10-01

    We report on the results of the search for extremely-high energy neutrinos with energies above 107GeV obtained with the partially (˜30%) constructed IceCube in 2007. From the absence of signal events in the sample of 242.1 days of effective live time, we derive a 90% C.L. model independent differential upper limit based on the number of signal events per energy decade at E2ϕνe+νμ+ντ≃1.4×10-6GeVcm-2sec⁡-1sr-1 for neutrinos in the energy range from 3×107 to 3×109GeV.

  6. Acclimation to extremely high ammonia levels in continuous biomethanation process and the associated microbial community dynamics

    DEFF Research Database (Denmark)

    Tian, Hailin; Fotidis, Ioannis; Mancini, Enrico

    2017-01-01

    Acclimatized anaerobic communities to high ammonia levels can offer a solution to the ammonia toxicity problem in biogas reactors. In the current study, a stepwise acclimation strategy up to 10 g NH4+-N L−1, was performed in mesophilic (37 ± 1 °C) continuously stirred tank reactors. The reactors...... were co-digesting (20/80 based on volatile solid) cattle slurry and microalgae, a protein-rich, 3rd generation biomass. Throughout the acclimation period, methane production was stable with more than 95% of the uninhibited yield. Next generation 16S rRNA gene sequencing revealed a dramatic microbiome...... change throughout the ammonia acclimation process. Clostridium ultunense, a syntrophic acetate oxidizing bacteria, increased significantly alongside with hydrogenotrophic methanogen Methanoculleus spp., indicating strong hydrogenotrophic methanogenic activity at extreme ammonia levels (>7 g NH4+-N L−1...

  7. The Megapixel EBCCD a high-resolution imaging tube sensitive to single photons

    CERN Document Server

    Buontempo, S; Dalinenko, I N; Ereditato, A; Ekimov, A V; Fabre, Jean-Paul; Fedorov, V Yu; Frenkel, A; Galeazzi, F; Garufi, F; Golovkin, S V; Govorun, V N; Kalashnikova, N N; Kosov, V G; Kozarenko, E N; Kreslo, I E; Lasovsky, L Y; Liberti, B; Malyarov, A V; Martellotti, G; Medvedkov, A M; Penso, G; Vishnevski, G I; Wolff, T; Zhuk, A

    1998-01-01

    A hybrid image-intensifier tube, suitable for extremely low-light imaging, has been tested. This device is based on an Electron-Bombarded CCD chip (EBCCD) with $1024 \\times 1024$ sensitive pixe ls. The tube, which has a photocathode diameter of 40 mm, is gateable and zoomable, with an image magnification varying from 0.62 to 1.3. The high gain (about 4000 collected electrons per photo electron at the operational voltage of 15 kV) and the relatively low noise (180 electrons per pixel at 10 MHz pixel-readout frequency), allows single-photoelectron signals to be separated from n oise with a signal-to-noise ratio greater than 10. By applying an appropriate threshold on the signal amplitude, the background can almost be eliminated, with a loss of few percent in single-ph otoelectron counting. High inner gain, low noise, single-photoelectron sensitivity, and high spatial resolution make the EBCCD imaging tube a unique device, attractive for many applications in h igh-energy physics, astrophysics, biomedical diagnos...

  8. Performance studies on high pressure 1-D position sensitive neutron detectors

    Indian Academy of Sciences (India)

    S S Desai; A M Shaikh

    2008-11-01

    The powder diffractometer and Hi-Q diffractometer at Dhruva reactor make use of five identical 1-D position sensitive detectors (PSDs) to scan scattering angles in the range 3° to 140°. In order to improve the overall throughput of these spectrometers, it is planned to install a bank of 15 high-efficiency and high-resolution PSDs arranged in three layers with five PSDs in each layer. With each high pressure PSD (3He 10 bar + Kr 2 bar) showing the efficiency gain of 1.8 at 1.2 Å, detector bank is expected to show overall gain of 5.5 times the present detection efficiency and reduction in data collection time by equivalent factor. The 1-D PSDs are developed in batches of five, and are characterized so that all PSDs operate at uniform parameters such as position resolution, uniformity of efficiency and linearity of response. Position spectrum indicates the differential position resolution to be ∼ 1 mm and integral position resolution to be 3–4 mm. Broadening of position spectrum at the extreme end of sensitive length of PSD is analysed using fine shift of the beam. Dependence of position resolution and dynamic range of output pulse on the input impedance of pre-amplifier is also presented.

  9. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region.

    Science.gov (United States)

    Hirano, Y; Kiyama, S; Fujiwara, Y; Koguchi, H; Sakakita, H

    2015-11-01

    A high current density (≈3 mA/cm(2)) hydrogen ion beam source operating in an extremely low-energy region (E(ib) ≈ 150-200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E(ib) is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  10. Multiresolution iterative reconstruction in high-resolution extremity cone-beam CT

    Science.gov (United States)

    Cao, Qian; Zbijewski, Wojciech; Sisniega, Alejandro; Yorkston, John; Siewerdsen, Jeffrey H.; Webster Stayman, J.

    2016-10-01

    Application of model-based iterative reconstruction (MBIR) to high resolution cone-beam CT (CBCT) is computationally challenging because of the very fine discretization (voxel size  <100 µm) of the reconstructed volume. Moreover, standard MBIR techniques require that the complete transaxial support for the acquired projections is reconstructed, thus precluding acceleration by restricting the reconstruction to a region-of-interest. To reduce the computational burden of high resolution MBIR, we propose a multiresolution penalized-weighted least squares (PWLS) algorithm, where the volume is parameterized as a union of fine and coarse voxel grids as well as selective binning of detector pixels. We introduce a penalty function designed to regularize across the boundaries between the two grids. The algorithm was evaluated in simulation studies emulating an extremity CBCT system and in a physical study on a test-bench. Artifacts arising from the mismatched discretization of the fine and coarse sub-volumes were investigated. The fine grid region was parameterized using 0.15 mm voxels and the voxel size in the coarse grid region was varied by changing a downsampling factor. No significant artifacts were found in either of the regions for downsampling factors of up to 4×. For a typical extremities CBCT volume size, this downsampling corresponds to an acceleration of the reconstruction that is more than five times faster than a brute force solution that applies fine voxel parameterization to the entire volume. For certain configurations of the coarse and fine grid regions, in particular when the boundary between the regions does not cross high attenuation gradients, downsampling factors as high as 10×  can be used without introducing artifacts, yielding a ~50×  speedup in PWLS. The proposed multiresolution algorithm significantly reduces the computational burden of high resolution iterative CBCT reconstruction and can be extended to other applications of

  11. Droplet-based, high-brightness extreme ultraviolet laser plasma source for metrology

    Science.gov (United States)

    Vinokhodov, A. Yu.; Krivokorytov, M. S.; Sidelnikov, Yu. V.; Krivtsun, V. M.; Medvedev, V. V.; Koshelev, K. N.

    2016-10-01

    We report on the development of a high brightness source of extreme ultraviolet radiation (EUV) with a working wavelength of 13.5 nm. The source is based on a laser-produced plasma driven by pulsed radiation of a Nd:YAG laser system. Liquid droplets of Sn-In eutectic alloy were used as the source fuel. The droplets were created by a droplet generator operating in the jet break-up regime. The EUV emission properties of the plasma, including the emission spectrum, time profile, and conversion efficiency of laser radiation into useful 13.5 nm photons, have been characterized. Using the shadowgraphy technique, we demonstrated the production of corpuscular debris by the plasma source and the influence of the plasma on the neighboring droplet targets. The high-frequency laser operation was simulated by usage of the dual pulse regime. Based on the experimental results, we discuss the physical phenomena that could affect the source operation at high repetition rates. Finally, we estimate that an average source brightness of 1.2 kW/mm2 sr is feasible at a high repetition rate.

  12. Benchmark analysis on diabetics at high risk for lower extremity amputation.

    Science.gov (United States)

    Pinzur, M S; Stuck, R; Sage, R; Pocius, L; Trout, B; Wolf, B; Vrbos, L

    1996-11-01

    After the 1990 establishment of a multidisciplinary foot salvage clinic, 1346 diabetic patients, at high risk for the development of foot ulcers and eventual lower limb amputation, were followed for 4 years. Of the 224 high-risk patients admitted to the hospital, 74 amputations (5.5%) of all or part of a lower limb were performed. Patients undergoing amputation were younger, more severely ill, and required more frequent hospitalizations because of greater organ system involvement. They were also more likely to be institutionalized after discharge. Overall, patients with long-standing adult-onset diabetes, identified as at high risk for foot ulcer development, have a substantially increased risk for lower limb amputation, multiple organ system failure, hospitalization, and institutionalization than do diabetic patients as a whole. Clinical benchmarking facilitates the identification and reduction of unnecessary variations in patient care practices. Here, a formal benchmark analysis provides the current outcome expectations for amputation rates and co-morbidities in patients with diabetes who are classified as at high risk for lower extremity amputation. Management of these patients in a structured, multidisciplinary foot salvage clinic, augmentation of baseline services, and preliminary benchmark data may provide a standard for the measurement of therapeutic interventions that improve patient care.

  13. Highly sensitive flow-injection chemiluminescence determination of pyrogallol compounds

    Science.gov (United States)

    Kanwal, Shamsa; Fu, Xiaohong; Su, Xingguang

    2009-12-01

    A highly sensitive flow-injection chemiluminescent method for the direct determination of pyrogallol compounds has been developed. Proposed method is based on the enhanced effect of pyrogallol compounds on the chemiluminescence signals of KMnO 4-H 2O 2 system in slightly alkaline medium. Three important pyrogallol compounds, pyrogallic acid, gallic acid and tannic acid, have been detected by this method, and the possible mechanism of the CL reaction is also discussed. The proposed method is simple, convenient, rapid (60 samples h -1), and sensitive, has a linear range of 8 × 10 -10 mol L -1 to 1 × 10 -5 mol L -1, for pyrogallic acid, with a detection limit of 6 × 10 -11 mol L -1, 4 × 10 -8 mol L -1 to 5 × 10 -3 mol L -1 for gallic acid with a detection limit of 9 × 10 -10 mol L -1, and 8 × 10 -8 mol L -1 to 5 × 10 -2 mol L -1 for tannic acid, with a detection limit of 2 × 10 -9 mol L -1, respectively. The relative standard deviation (RSD, n = 15) was 0.8, 1.1 and 1.3% for 5 × 10 -6 mol L -1 pyrogallic acid, gallic acid and tannic acid, respectively. The proposed method was successfully applied to the determination of pyrogallol compounds in tea and coffee samples.

  14. PlanetPol: A Very High Sensitivity Polarimeter

    Science.gov (United States)

    Hough, J. H.; Lucas, P. W.; Bailey, J. A.; Tamura, M.; Hirst, E.; Harrison, D.; Bartholomew-Biggs, M.

    2006-09-01

    We have built and used on several occasions an optical broadband stellar polarimeter, PlanetPol, which employs photoelastic modulators and avalanche photodiodes and achieves a photon-noise-limited sensitivity of at least 1 in 106 in fractional polarization. Observations of a number of polarized standards taken from the literature show that the accuracy of polarization measurements is ~1%. We have developed a method for accurately measuring the polarization of altitude-azimuth mounted telescopes by observing bright nearby stars at different parallactic angles, and we find that the on-axis polarization of the William Herschel Telescope is typically ~15 × 10-6, measured with an accuracy of a few parts in 107. The nearby stars (distance less than 32 pc) are found to have very low polarizations, typically a few ×10-6, indicating that very little interstellar polarization is produced close to the Sun and that their intrinsic polarization is also low. Although the polarimeter can be used for a wide range of astronomy, the very high sensitivity was set by the goal of detecting the polarization signature of unresolved extrasolar planets.

  15. Kinetics of Highly Sensitive Troponin T after Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    Amr S. Omar

    2015-01-01

    Full Text Available Perioperative myocardial infarction (PMI confers a considerable risk in cardiac surgery settings; finding the ideal biomarker seems to be an ideal goal. Our aim was to assess the diagnostic accuracy of highly sensitive troponin T (hsTnT in cardiac surgery settings and to define a diagnostic level for PMI diagnosis. This was a single-center prospective observational study analyzing data from all patients who underwent cardiac surgeries. The primary outcome was the diagnosis of PMI through a specific level. The secondary outcome measures were the lengths of mechanical ventilation (LOV, stay in the intensive care unit (LOSICU, and hospitalization. Based on the third universal definition of PMI, patients were divided into two groups: no PMI (Group I and PMI (Group II. Data from 413 patients were analyzed. Nine patients fulfilled the diagnostic criteria of PMI, while 41 patients were identified with a 5-fold increase in their CK-MB (≥120 U/L. Using ROC analysis, a hsTnT level of 3,466 ng/L or above showed 90% sensitivity and 90% specificity for the diagnosis of PMI. Secondary outcome measures in patients with PMI were significantly prolonged. In conclusion, the hsTnT levels detected here paralleled those of CK-MB and a cut-off level of 3466 ng/L could be diagnostic of PMI.

  16. Development of a New, High Sensitivity 2000 kg Mechanical Balance.

    Science.gov (United States)

    Wang, Jian

    2017-04-13

    Mass measurement of more than 500 kg on an electronic mass comparator has no better repeatability and linearity of measurement for meeting the calibration requirement of over class F1 weights from pharmacy and power generation plants. For this purpose, a new 2000 kg mechanical balance was developed by the National Institute of Metrology (NIM). The advantages of measurement of more than 500 kg on a new 2000 kg mechanical balance are introduced in the paper. In order to obtain high measurement uncertainty, four vertical forces of two sides of beam are measured and used as reference for adjustment of the beam position. Laser displacement sensors in the indication system are more effective for decreasing reading errors caused by human vision. To improve the repeatability and sensitivity of the equipment, a synchronous lifting control is designed for synchronously lifting the beam ends along the vertical direction. A counterweight selection system is developed to get any combination of weights in a limited space. The sensitivity of the new mechanical balance for 2000 kg is more than 1.7 parts in 10(-4) rad/g. The extended uncertainties for the mechanical balance of 500 kg, 1000 kg and 2000 kg are 0.47 g, 1.8 g and 3.5 g respectively.

  17. New application of superconductors: High sensitivity cryogenic light detectors

    Science.gov (United States)

    Cardani, L.; Bellini, F.; Casali, N.; Castellano, M. G.; Colantoni, I.; Coppolecchia, A.; Cosmelli, C.; Cruciani, A.; D'Addabbo, A.; Di Domizio, S.; Martinez, M.; Tomei, C.; Vignati, M.

    2017-02-01

    In this paper we describe the current status of the CALDER project, which is developing ultra-sensitive light detectors based on superconductors for cryogenic applications. When we apply an AC current to a superconductor, the Cooper pairs oscillate and acquire kinetic inductance, that can be measured by inserting the superconductor in a LC circuit with high merit factor. Interactions in the superconductor can break the Cooper pairs, causing sizable variations in the kinetic inductance and, thus, in the response of the LC circuit. The continuous monitoring of the amplitude and frequency modulation allows to reconstruct the incident energy with excellent sensitivity. This concept is at the basis of Kinetic Inductance Detectors (KIDs) that are characterized by natural aptitude to multiplexed read-out (several sensors can be tuned to different resonant frequencies and coupled to the same line), resolution of few eV, stable behavior over a wide temperature range, and ease in fabrication. We present the results obtained by the CALDER collaboration with 2×2 cm2 substrates sampled by 1 or 4 Aluminum KIDs. We show that the performances of the first prototypes are already competitive with those of other commonly used light detectors, and we discuss the strategies for a further improvement.

  18. A highly sensitive fiber Bragg grating diaphragm pressure transducer

    Science.gov (United States)

    Allwood, Gary; Wild, Graham; Lubansky, Alex; Hinckley, Steven

    2015-10-01

    In this work, a novel diaphragm based pressure transducer with high sensitivity is described, including the physical design structure, in-depth analysis of optical response to changes in pressure, and a discussion of practical implementation and limitations. A flat circular rubber membrane bonded to a cylinder forms the body of the transducer. A fiber Bragg grating bonded to the center of the diaphragm structure enables the fractional change in pressure to be determined by analyzing the change in Bragg wavelength of the reflected spectra. Extensive evaluation of the physical properties and optical characteristics of the transducer has been performed through experimentation, and modeling using small deformation theory. The results show the transducer has a sensitivity of 0.116 nm/kPa, across a range of 15 kPa. Ultra-low cost interrogation of the optical signal was achieved through the use of an optically mismatched Bragg grating acting as an edge filter to convert the spectral change into an intensity change. A numerical model of the intensity based interrogation was implemented in order to validate the experimental results. Utilizing this interrogation technique and housing both the sensing and reference Bragg gratings within the main body of the transducer means it is effectively temperature insensitive and easily connected to electronic systems.

  19. Sensitivity of once-shocked, weathered high explosives

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K.L.; Harris, B.W.

    1998-07-01

    Effects caused by stimulating once-shocked, weathered high explosives (OSW-HE) are investigated. The sensitivity of OSW-HE to mechanical stimuli was determined using standard industry tests. Some initial results are given. Pieces of OSW-HE were collected from active and inactive firing sites and from an area surrounding a drop tower at Los Alamos where skid and spigot tests were done. Samples evaluated were cast explosives or plastic bonded explosive (PBX) formulations containing cyclotrimethylenetrinitramine (RDX), cyclotetramethylene tetranitramine (HMX), 2,4,6-trinitrotoluene (TNT), mock or inert HE [tris(beta-chloroethyl)phosphate (CEF)], barium nitrate, cyanuric acid, talc, and Kel-F. Once-shocked, weathered LX-10 Livermore explosive [HMX/Viton A, (95/5 wt %)], PBX 9011 [HMX/Estane, (90/10 wt %)], PBX 9404 [HMX/nitrocellulose, tris(beta-chloroethyl) phosphate, (94/3/3 wt %)], Composition B or cyclotol (TNT/RDX explosives), and PBX 9007 (90% RDX, 9.1% styrene, 0.5% dioctyl phthalate, and 0.45 resin) were subjected to the hammer test, the drop-weight impact sensitivity test, differential thermal analysis (DTA), the spark test, the Henkin`s critical temperature test, and the flame test. Samples were subjected to remote, wet cutting and drilling; remote, liquid-nitrogen-cooled grinding and crushing; and scanning electron microscope (SEM) surface analyses for morphological changes.

  20. Luminescent Lanthanide Reporters for High-Sensitivity Novel Bioassays.

    Energy Technology Data Exchange (ETDEWEB)

    Anstey, Mitchell R.; Fruetel, Julia A.; Foster, Michael E.; Hayden, Carl C.; Buckley, Heather L.; Arnold, John

    2013-09-01

    Biological imaging and assay technologies rely on fluorescent organic dyes as reporters for a number of interesting targets and processes. However, limitations of organic dyes such as small Stokes shifts, spectral overlap of emission signals with native biological fluorescence background, and photobleaching have all inhibited the development of highly sensitive assays. To overcome the limitations of organic dyes for bioassays, we propose to develop lanthanide-based luminescent dyes and demonstrate them for molecular reporting applications. This relatively new family of dyes was selected for their attractive spectral and chemical properties. Luminescence is imparted by the lanthanide atom and allows for relatively simple chemical structures that can be tailored to the application. The photophysical properties offer unique features such as narrow and non-overlapping emission bands, long luminescent lifetimes, and long wavelength emission, which enable significant sensitivity improvements over organic dyes through spectral and temporal gating of the luminescent signal.Growth in this field has been hindered due to the necessary advanced synthetic chemistry techniques and access to experts in biological assay development. Our strategy for the development of a new lanthanide-based fluorescent reporter system is based on chelation of the lanthanide metal center using absorbing chromophores. Our first strategy involves "Click" chemistry to develop 3-fold symmetric chelators and the other involves use of a new class of tetrapyrrole ligands called corroles. This two-pronged approach is geared towards the optimization of chromophores to enhance light output.

  1. Urban population vulnerability to climate extremes: mitigating urban heat through technology and water-sensitive urban design in Australian cities (Invited)

    Science.gov (United States)

    Tapper, N. J.

    2013-12-01

    Australia recently endured what was arguably its worst drought in 200 years. The 'Millennium Drought' lasted from 1999 until 2009, producing acute water shortages for several major Australian cities. Towards the end of the drought an extreme heat wave with temperatures approaching 50 C claimed the lives of several hundred people in Melbourne and Adelaide. One outcome of the extreme conditions was that the spectre of climate change and its impacts became very real for most Australians and contributed to the 2007 signing of the Kyoto Protocol by the Australian Government. Issues of extreme heat and water security also led to increased interest in adapting Australian cities to climate change. These concerns ultimately led to the establishment of the Australian Cooperative Research Centre (CRC) for Water Sensitive Cities, a $110 million research initiative to utilise storm water in Australian cities to create cooler and more liveable environments with increased levels of water security. This paper provides an overview of the work being undertaken within the urban climate program of the CRC to identify heat-health vulnerability in our cities and to evaluate the efficacy of irrigated green infrastructure to produce more liveable environments. This papers discusses some of the early research outputs that involve measurement, modelling and remote sensing at a range of scales in Australian cities.

  2. Tunable diameter electrostatically formed nanowire for high sensitivity gas sensing

    Institute of Scientific and Technical Information of China (English)

    Alex Henning; Nandhini Swaminathan; Andrey Godkin; Gil Shalev; Iddo Amit; Yossi Rosenwaks

    2015-01-01

    We report on an electrostatically formed nanowire (EFN)-based sensor with tunable diameters in the range of 16 nm to 46 nm and demonstrate an EFN- based field-effect transistor as a highly sensitive and robust room temperature gas sensor. The device was carefully designed and fabricated using standard integrated processing to achieve the 16 nm EFN that can be used for sensing without any need for surface modification. The effective diameter for the EFN was determined using Kelvin probe force microscopy accompanied by three- dimensional electrostatic simulations. We show that the EFN transistor is capable of detecting 100 parts per million of ethanol gas with bare SiO2.

  3. Magnetic probe array with high sensitivity for fluctuating field.

    Science.gov (United States)

    Kanamaru, Yuki; Gota, Hiroshi; Fujimoto, Kayoko; Ikeyama, Taeko; Asai, Tomohiko; Takahashi, Tsutomu; Nogi, Yasuyuki

    2007-03-01

    A magnetic probe array is constructed to measure precisely the spatial structure of a small fluctuating field included in a strong confinement field that varies with time. To exclude the effect of the confinement field, the magnetic probes consisting of figure-eight-wound coils are prepared. The spatial structure of the fluctuating field is obtained from a Fourier analysis of the probe signal. It is found that the probe array is more sensitive to the fluctuating field with a high mode number than that with a low mode number. An experimental demonstration of the present method is attempted using a field-reversed configuration plasma, where the fluctuating field with 0.1% of the confinement field is successfully detected.

  4. High Efficiency of Dye-Sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    Liyuan Han

    2005-01-01

    @@ 1Introduction Much attention has been paid to the development of dye-sensitized solar cells (DSCs) during the past decade. In general, a DSC comprises a nanocrystalline titanium dioxide (TiO2) electrode modified with a dye fabricated on a transparent conducting oxide (TCO), a platinum (Pt) counter electrode, and an electrolyte solution with a dissolved iodide ion/tri-iodide ion redox couple between the electrodes. Although a DSC using black dye with high efficiency of 10.4%, which was measured by NREL(U. S. A. ), was reported by Graetzel et al. [1], the efficiency of DSCs should be further improved for practical use in comparison with silicon solar cells.

  5. High efficiency solid-state sensitized heterojunction photovoltaic device

    KAUST Repository

    Wang, Mingkui

    2010-06-01

    The high molar extinction coefficient heteroleptic ruthenium dye, NaRu(4,4′-bis(5-(hexylthio)thiophen-2-yl)-2,2′-bipyridine) (4-carboxylic acid-4′-carboxylate-2,2′-bipyridine) (NCS) 2, exhibits certified 5% electric power conversion efficiency at AM 1.5 solar irradiation (100 mW cm-2) in a solid-state dye-sensitized solar cell using 2,2′,7,7′-tetrakis-(N,N-di-pmethoxyphenylamine)-9, 9′-spirobifluorene (spiro-MeOTAD) as the organic hole-transporting material. This demonstration elucidates a class of photovoltaic devices with potential for low-cost power generation. © 2010 Elsevier Ltd. All rights reserved.

  6. Probing deep photospheric layers of the quiet Sun with high magnetic sensitivity

    Science.gov (United States)

    Lagg, A.; Solanki, S. K.; Doerr, H.-P.; Martínez González, M. J.; Riethmüller, T.; Collados Vera, M.; Schlichenmaier, R.; Orozco Suárez, D.; Franz, M.; Feller, A.; Kuckein, C.; Schmidt, W.; Asensio Ramos, A.; Pastor Yabar, A.; von der Lühe, O.; Denker, C.; Balthasar, H.; Volkmer, R.; Staude, J.; Hofmann, A.; Strassmeier, K.; Kneer, F.; Waldmann, T.; Borrero, J. M.; Sobotka, M.; Verma, M.; Louis, R. E.; Rezaei, R.; Soltau, D.; Berkefeld, T.; Sigwarth, M.; Schmidt, D.; Kiess, C.; Nicklas, H.

    2016-11-01

    Context. Investigations of the magnetism of the quiet Sun are hindered by extremely weak polarization signals in Fraunhofer spectral lines. Photon noise, straylight, and the systematically different sensitivity of the Zeeman effect to longitudinal and transversal magnetic fields result in controversial results in terms of the strength and angular distribution of the magnetic field vector. Aims: The information content of Stokes measurements close to the diffraction limit of the 1.5 m GREGOR telescope is analyzed. We took the effects of spatial straylight and photon noise into account. Methods: Highly sensitive full Stokes measurements of a quiet-Sun region at disk center in the deep photospheric Fe i lines in the 1.56 μm region were obtained with the infrared spectropolarimeter GRIS at the GREGOR telescope. Noise statistics and Stokes V asymmetries were analyzed and compared to a similar data set of the Hinode spectropolarimeter (SOT/SP). Simple diagnostics based directly on the shape and strength of the profiles were applied to the GRIS data. We made use of the magnetic line ratio technique, which was tested against realistic magneto-hydrodynamic simulations (MURaM). Results: About 80% of the GRIS spectra of a very quiet solar region show polarimetric signals above a 3σ level. Area and amplitude asymmetries agree well with small-scale surface dynamo-magneto hydrodynamic simulations. The magnetic line ratio analysis reveals ubiquitous magnetic regions in the ten to hundred Gauss range with some concentrations of kilo-Gauss fields. Conclusions: The GRIS spectropolarimetric data at a spatial resolution of ≈0.̋4 are so far unique in the combination of high spatial resolution scans and high magnetic field sensitivity. Nevertheless, the unavoidable effect of spatial straylight and the resulting dilution of the weak Stokes profiles means that inversion techniques still bear a high risk of misinterpretating the data.

  7. High diversity and suggested endemicity of culturable Actinobacteria in an extremely oligotrophic desert oasis

    Directory of Open Access Journals (Sweden)

    Hector Fernando Arocha-Garza

    2017-05-01

    shows that our isolation effort produced 38 unique OTUs in six new monophyletic clades. This high biodiversity and uniqueness of Actinobacteria in an extreme oligotrophic environment, which has previously been reported for its diversity and endemicity, is a suggestive sign of microbial biogeography of Actinobacteria and it also represents an invaluable source of biological material for future ecological and bioprospecting studies.

  8. High diversity and suggested endemicity of culturable Actinobacteria in an extremely oligotrophic desert oasis.

    Science.gov (United States)

    Arocha-Garza, Hector Fernando; Canales-Del Castillo, Ricardo; Eguiarte, Luis E; Souza, Valeria; De la Torre-Zavala, Susana

    2017-01-01

    isolation effort produced 38 unique OTUs in six new monophyletic clades. This high biodiversity and uniqueness of Actinobacteria in an extreme oligotrophic environment, which has previously been reported for its diversity and endemicity, is a suggestive sign of microbial biogeography of Actinobacteria and it also represents an invaluable source of biological material for future ecological and bioprospecting studies.

  9. High sensitivity moiré interferometry with compact achromatic interferometry

    Science.gov (United States)

    Czarnek, Robert

    Experimental observations and measurements are the sources of information essential for correct development of mathematical models of real structural materials. Moiré interferometry offers high sensitivity in full-field measurements of in-plane displacements on the surface of a specimen. Although it is a powerful method in experimental stress analysis, it has some shortcomings. One is that existing systems require highly coherent light. The only sufficient source of light for this application is a long cavity laser, which is relatively expensive and at best cumbersome. Another shortcoming is that measurements must be performed in a vibration-free environment, such as that found on a holographic table. These requirements limit the use of existing moiré interferometers to a holographic laboratory. In this paper a modified concept of compensation is presented, which permits the use of a chromatic source of light in a compact moiré system. The compensator provides order in the angles of incident light for each separate wavelength, so that the virtual reference grating created by each wavelength in a continuous spectrum is identical in frequency and spatial position. The result is a virtual reference grating that behaves exactly like that created in coherent light. With this development the use of a laser diode, which is a non-coherent light source of tiny dimensions, becomes practical. The special configuration of the optics that create the virtual grating allows its synchronization with the specimen grating and leads to an interferometer design that is relatively insensitive to the vibrations found in a mechanical testing laboratory. Sensitivity to relative motion is analyzed theoretically. This development provides the oppurtunity to apply moiré interferometry to solid mechanics problems that cannot be studied in an optics laboratory. Experimental verification of the optical concepts is provided. A compact moiré interferometer based on the presented idea was

  10. Scanning Auger microscopy for high lateral and depth elemental sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, E., E-mail: eugenie.martinez@cea.fr [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Yadav, P. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Bouttemy, M. [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France); Renault, O.; Borowik, Ł.; Bertin, F. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Etcheberry, A. [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France); Chabli, A. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2013-12-15

    Highlights: •SAM performances and limitations are illustrated on real practical cases such as the analysis of nanowires and nanodots. •High spatial elemental resolution is shown with the analysis of reference semiconducting Al{sub 0.7}Ga{sub 0.3}As/GaAs multilayers. •High in-depth elemental resolution is also illustrated. Auger depth profiling with low energy ion beams allows revealing ultra-thin layers (∼1 nm). •Analysis of cross-sectional samples is another effective approach to obtain in-depth elemental information. -- Abstract: Scanning Auger microscopy is currently gaining interest for investigating nanostructures or thin multilayers stacks developed for nanotechnologies. New generation Auger nanoprobes combine high lateral (∼10 nm), energy (0.1%) and depth (∼2 nm) resolutions thus offering the possibility to analyze the elemental composition as well as the chemical state, at the nanometre scale. We report here on the performances and limitations on practical examples from nanotechnology research. The spatial elemental sensitivity is illustrated with the analysis of Al{sub 0.7}Ga{sub 0.3}As/GaAs heterostructures, Si nanowires and SiC nanodots. Regarding the elemental in-depth composition, two effective approaches are presented: low energy depth profiling to reveal ultra-thin layers (∼1 nm) and analysis of cross-sectional samples.

  11. The paradox of extreme high-altitude migration in bar-headed geese Anser indicus

    Science.gov (United States)

    Hawkes, L.A.; Balachandran, S.; Batbayar, N.; Butler, P.J.; Chua, B.; Douglas, D.C.; Frappell, P.B.; Hou, Y.; Milsom, W.K.; Newman, S.H.; Prosser, D.J.; Sathiyaselvam, P.; Scott, G.R.; Takekawa, John Y.; Natsagdorj, T.; Wikelski, M.; Witt, M.J.; Yan, B.; Bishop, C.M.

    2012-01-01

    Bar-headed geese are renowned for migratory flights at extremely high altitudes over the world's tallest mountains, the Himalayas, where partial pressure of oxygen is dramatically reduced while flight costs, in terms of rate of oxygen consumption, are greatly increased. Such a mismatch is paradoxical, and it is not clear why geese might fly higher than is absolutely necessary. In addition, direct empirical measurements of high-altitude flight are lacking. We test whether migrating bar-headed geese actually minimize flight altitude and make use of favourable winds to reduce flight costs. By tracking 91 geese, we show that these birds typically travel through the valleys of the Himalayas and not over the summits. We report maximum flight altitudes of 7290 m and 6540 m for southbound and northbound geese, respectively, but with 95 per cent of locations received from less than 5489 m. Geese travelled along a route that was 112 km longer than the great circle (shortest distance) route, with transit ground speeds suggesting that they rarely profited from tailwinds. Bar-headed geese from these eastern populations generally travel only as high as the terrain beneath them dictates and rarely in profitable winds. Nevertheless, their migration represents an enormous challenge in conditions where humans and other mammals are only able to operate at levels well below their sea-level maxima.

  12. The Sedentary Survey of Extreme High Energy Peaked BL Lacs. II. The Catalog and Spectral Properties

    CERN Document Server

    Giommi, P; Perri, M; Padovani, P

    2004-01-01

    The multi-frequency `Sedentary Survey' is a deep, statistically complete, radio flux limited sample comprising 150 BL Lacertae objects distinguished by their extremely high X-ray to radio flux ratio, ranging from five hundred to over five thousand times that of typical BL Lacs discovered in radio surveys. This paper presents the final, 100% identified, catalog together with the optical, X-ray and broad-band SEDs constructed combining literature multi-frequency data with non-simultaneous optical observations and BeppoSAX X-ray data, when available. The SEDs confirm that the peak of the synchrotron power in these objects is located at very high energies. BeppoSAX wide band X-ray observations show that, in most cases, the X-ray spectra are convex and well described by a logarithmic parabola model peaking (in a E f(E) vs E representation) between 0.02 to several keV. Owing to the high synchrotron energies involved most of the sources in the catalog are likely to be TeV emitters, with the closest and brightest one...

  13. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies.

    Science.gov (United States)

    Balal, Nezah; Pinhasi, Gad A; Pinhasi, Yosef

    2016-05-23

    The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide "chirped" Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution.

  14. A method of batch-purifying microalgae with multiple antibiotics at extremely high concentrations

    Science.gov (United States)

    Han, Jichang; Wang, Song; Zhang, Lin; Yang, Guanpin; Zhao, Lu; Pan, Kehou

    2016-01-01

    Axenic microalgal strains are highly valued in diverse microalgal studies and applications. Antibiotics, alone or in combination, are often used to avoid bacterial contamination during microalgal isolation and culture. In our preliminary trials, we found that many microalgae ceased growing in antibiotics at extremely high concentrations but could resume growth quickly when returned to an antibiotics-free liquid medium and formed colonies when spread on a solid medium. We developed a simple and highly efficient method of obtaining axenic microalgal cultures based on this observation. First, microalgal strains of different species or strains were treated with a mixture of ampicillin, gentamycin sulfate, kanamycin, neomycin and streptomycin (each at a concentration of 600 mg/L) for 3 days; they were then transferred to antibiotics-free medium for 5 days; and finally they were spread on solid f/2 media to allow algal colonies to form. With this method, five strains of Nannochloropsis sp. (Eustigmatophyceae), two strains of Cylindrotheca sp. (Bacillariophyceae), two strains of Tetraselmis sp. (Chlorodendrophyceae) and one strain of Amphikrikos sp. (Trebouxiophyceae) were purified successfully. The method shows promise for batch-purifying microalgal cultures.

  15. A Novel Gravity Compensation Method for High Precision Free-INS Based on "Extreme Learning Machine".

    Science.gov (United States)

    Zhou, Xiao; Yang, Gongliu; Cai, Qingzhong; Wang, Jing

    2016-11-29

    In recent years, with the emergency of high precision inertial sensors (accelerometers and gyros), gravity compensation has become a major source influencing the navigation accuracy in inertial navigation systems (INS), especially for high-precision INS. This paper presents preliminary results concerning the effect of gravity disturbance on INS. Meanwhile, this paper proposes a novel gravity compensation method for high-precision INS, which estimates the gravity disturbance on the track using the extreme learning machine (ELM) method based on measured gravity data on the geoid and processes the gravity disturbance to the height where INS has an upward continuation, then compensates the obtained gravity disturbance into the error equations of INS to restrain the INS error propagation. The estimation accuracy of the gravity disturbance data is verified by numerical tests. The root mean square error (RMSE) of the ELM estimation method can be improved by 23% and 44% compared with the bilinear interpolation method in plain and mountain areas, respectively. To further validate the proposed gravity compensation method, field experiments with an experimental vehicle were carried out in two regions. Test 1 was carried out in a plain area and Test 2 in a mountain area. The field experiment results also prove that the proposed gravity compensation method can significantly improve the positioning accuracy. During the 2-h field experiments, the positioning accuracy can be improved by 13% and 29% respectively, in Tests 1 and 2, when the navigation scheme is compensated by the proposed gravity compensation method.

  16. Laser-engraved carbon nanotube paper for instilling high sensitivity, high stretchability, and high linearity in strain sensors

    KAUST Repository

    Xin, Yangyang

    2017-06-29

    There is an increasing demand for strain sensors with high sensitivity and high stretchability for new applications such as robotics or wearable electronics. However, for the available technologies, the sensitivity of the sensors varies widely. These sensors are also highly nonlinear, making reliable measurement challenging. Here we introduce a new family of sensors composed of a laser-engraved carbon nanotube paper embedded in an elastomer. A roll-to-roll pressing of these sensors activates a pre-defined fragmentation process, which results in a well-controlled, fragmented microstructure. Such sensors are reproducible and durable and can attain ultrahigh sensitivity and high stretchability (with a gauge factor of over 4.2 × 10(4) at 150% strain). Moreover, they can attain high linearity from 0% to 15% and from 22% to 150% strain. They are good candidates for stretchable electronic applications that require high sensitivity and linearity at large strains.

  17. Highly Sensitive and Patchable Pressure Sensors Mimicking Ion-Channel-Engaged Sensory Organs.

    Science.gov (United States)

    Chun, Kyoung-Yong; Son, Young Jun; Han, Chang-Soo

    2016-04-26

    Biological ion channels have led to much inspiration because of their unique and exquisite operational functions in living cells. Specifically, their extreme and dynamic sensing abilities can be realized by the combination of receptors and nanopores coupled together to construct an ion channel system. In the current study, we demonstrated that artificial ion channel pressure sensors inspired by nature for detecting pressure are highly sensitive and patchable. Our ion channel pressure sensors basically consisted of receptors and nanopore membranes, enabling dynamic current responses to external forces for multiple applications. The ion channel pressure sensors had a sensitivity of ∼5.6 kPa(-1) and a response time of ∼12 ms at a frequency of 1 Hz. The power consumption was recorded as less than a few μW. Moreover, a reliability test showed stability over 10 000 loading-unloading cycles. Additionally, linear regression was performed in terms of temperature, which showed no significant variations, and there were no significant current variations with humidity. The patchable ion channel pressure sensors were then used to detect blood pressure/pulse in humans, and different signals were clearly observed for each person. Additionally, modified ion channel pressure sensors detected complex motions including pressing and folding in a high-pressure range (10-20 kPa).

  18. Alemtuzumab induction therapy in highly sensitized kidney transplant recipients

    Institute of Scientific and Technical Information of China (English)

    L(U) Tie-ming; YANG Shun-liang; WU Wei-zhen; TAN Jian-ming

    2011-01-01

    Background Immunosuppression for immunologically high-risk kidney transplant patients usually involves antithymocyte globulin induction with triple drug maintenance therapy. Alemtuzumab, a humanized anti-CD52 antibody,was expected to be a promising induction therapy agent for kidney transplantation. However, currently no consensus is available about its efficacy and safety. This study aimed to evaluate the efficacy and safety of alemtuzumab as immune induction therapy in highly sensitized kidney transplant recipients.Methods In this prospective, open-label, randomized, controlled trial, we enrolled 23 highly immunological risk patients (panel reactive antibody >20%). They were divided into two groups: alemtuzumab group (trial group) and anti-thymocyte globulin (ATG) group (control group). Patients in the alemtuzumab group received intravenous alemtuzumab (15 mg) as a single dose before reperfusion. At the 24th hour post-operation, another dosage of alemtuzumab (15 mg) was given.The control group received a bolus of rabbit ATG (9 mg/kg), which was given 2 hours before kidney transplantation and lasted until the removal of vascular clamps when the anastomoses were completed. Maintenance immunosuppression in both groups comprised standard triple therapy consisting of tacrolimus, prednisone, and mycophenolate mofetil (MMF).Acute rejection (AR) and infection episodes were recorded, and kidney function was monitored during a 2-year follow-up.χ2 test, t test and Kaplan-Meier analysis were performed with SPSS17.0 software.Results Median follow-up was 338 days. In both the alemtuzumab group and ATG group, creatinine and blood urea nitrogen values in surviving recipients were similar (P >0.05). White blood cell counts were significantly reduced in the alemtuzumab group for the most time points up to 6 months (P <0.05). One patient receiving alemtuzumab died for acute myocardial infarction at the 65th day post-operation. Two ATG patients died for severe pulmonary

  19. High-Angular-Resolution and High-Sensitivity Science Enabled by Beamformed ALMA

    CERN Document Server

    Fish, Vincent; Anderson, James; Asada, Keiichi; Baudry, Alain; Broderick, Avery; Carilli, Chris; Colomer, Francisco; Conway, John; Dexter, Jason; Doeleman, Sheperd; Eatough, Ralph; Falcke, Heino; Frey, Sándor; Gabányi, Krisztina; Gálvan-Madrid, Roberto; Gammie, Charles; Giroletti, Marcello; Goddi, Ciriaco; Gómez, Jose L; Hada, Kazuhiro; Hecht, Michael; Honma, Mareki; Humphreys, Elizabeth; Impellizzeri, Violette; Johannsen, Tim; Jorstad, Svetlana; Kino, Motoki; Körding, Elmar; Kramer, Michael; Krichbaum, Thomas; Kudryavtseva, Nadia; Laing, Robert; Lazio, Joseph; Loeb, Abraham; Lu, Ru-Sen; Maccarone, Thomas; Marscher, Alan; Mart'ı-Vidal, Iván; Martins, Carlos; Matthews, Lynn; Menten, Karl; Miller, Jon; Miller-Jones, James; Mirabel, Félix; Muller, Sebastien; Nagai, Hiroshi; Nagar, Neil; Nakamura, Masanori; Paragi, Zsolt; Pradel, Nicolas; Psaltis, Dimitrios; Ransom, Scott; Rodr'\\iguez, Luis; Rottmann, Helge; Rushton, Anthony; Shen, Zhi-Qiang; Smith, David; Stappers, Benjamin; Takahashi, Rohta; Tarchi, Andrea; Tilanus, Remo; Verbiest, Joris; Vlemmings, Wouter; Walker, R Craig; Wardle, John; Wiik, Kaj; Zackrisson, Erik; Zensus, J Anton

    2013-01-01

    An international consortium is presently constructing a beamformer for the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile that will be available as a facility instrument. The beamformer will aggregate the entire collecting area of the array into a single, very large aperture. The extraordinary sensitivity of phased ALMA, combined with the extremely fine angular resolution available on baselines to the Northern Hemisphere, will enable transformational new very long baseline interferometry (VLBI) observations in Bands 6 and 7 (1.3 and 0.8 mm) and provide substantial improvements to existing VLBI arrays in Bands 1 and 3 (7 and 3 mm). The ALMA beamformer will have impact on a variety of scientific topics, including accretion and outflow processes around black holes in active galactic nuclei (AGN), tests of general relativity near black holes, jet launch and collimation from AGN and microquasars, pulsar and magnetar emission processes, the chemical history of the universe and the evolution of fundame...

  20. Scaling and Intensification of Extreme Precipitation in High-Resolution Climate Change Simulations

    Science.gov (United States)

    Ban, Nikolina; Leutwyler, David; Lüthi, Daniel; Schär, Christoph

    2017-04-01

    Climate change projections of extreme precipitation are of great interest due to hydrological impacts such as droughts, floods, erosion, landslides and debris flows. Despite the trend towards dryer conditions over Europe, many climate simulations project increases of heavy precipitation events, while some theoretical studies have raised the possibility of dramatic increases in hourly events (by up to 14% per degree warming). However, conventional climate models are not suited to assess short-term heavy events due to the need to parameterize deep convection. High-resolution climate models with kilometer-scale grid spacing at which parameterization of convection can be switched off, significantly improve the simulation of heavy precipitation and can alter the climate change signal (e.g., Ban et al., 2015). Here we present decade-long high-resolution climate change simulations at horizontal resolution of 2.2 km over Europe on a computational domain with 1536x1536x60 grid points. These simulations have become feasible with a new version of the COSMO model that runs entirely on Graphics Processing Units. We compare a present-day climate simulation, driven by ERA-Interim reanalysis (Leutwyler at al., 2016), with a Pseudo-Global Warming (PGW) simulation The PGW simulation is driven by the slowly evolving mean seasonal cycle of the climate changes (derived from the CMIP5 model), superimposed on the ERA-Interim reanalysis. With this approach, the resulting changes are due to large scale warming of the atmosphere and due to slow-varying circulation changes. We will present the differences in climate change signal between conventional and high-resolution climate models, and discuss the thermodynamic effects on intensification of extreme precipitation. Ban N., J. Schmidli and C. Schär, 2015: Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster? Geophys. Res. Lett., 42 (4), 1165-1172 Leutwyler, D., D. Lüthi, N. Ban, O. Fuhrer and C

  1. Characterizing the Chemical Stability of High Temperature Materials for Application in Extreme Environments

    Science.gov (United States)

    Opila, Elizabeth

    2005-01-01

    The chemical stability of high temperature materials must be known for use in the extreme environments of combustion applications. The characterization techniques available at NASA Glenn Research Center vary from fundamental thermodynamic property determination to material durability testing in actual engine environments. In this paper some of the unique techniques and facilities available at NASA Glenn will be reviewed. Multiple cell Knudsen effusion mass spectrometry is used to determine thermodynamic data by sampling gas species formed by reaction or equilibration in a Knudsen cell held in a vacuum. The transpiration technique can also be used to determine thermodynamic data of volatile species but at atmospheric pressures. Thermodynamic data in the Si-O-H(g) system were determined with this technique. Free Jet Sampling Mass Spectrometry can be used to study gas-solid interactions at a pressure of one atmosphere. Volatile Si(OH)4(g) was identified by this mass spectrometry technique. A High Pressure Burner Rig is used to expose high temperature materials in hydrocarbon-fueled combustion environments. Silicon carbide (SiC) volatility rates were measured in the burner rig as a function of total pressure, gas velocity and temperature. Finally, the Research Combustion Lab Rocket Test Cell is used to expose high temperature materials in hydrogen/oxygen rocket engine environments to assess material durability. SiC recession due to rocket engine exposures was measured as a function of oxidant/fuel ratio, temperature, and total pressure. The emphasis of the discussion for all techniques will be placed on experimental factors that must be controlled for accurate acquisition of results and reliable prediction of high temperature material chemical stability.

  2. Quantification of climate change effects on extreme precipitation used for high resolution hydrologic design

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten

    2012-01-01

    Design of urban drainage structures should include the climatic changes anticipated over the technical lifetime of the system. In Northern Europe climate changes implies increasing occurrences of extreme rainfall. Three approaches to quantify the impact of climate changes on extreme rainfall are ...

  3. Innovative nanostructures for highly sensitive vibrational biosensing (Conference Presentation)

    Science.gov (United States)

    Popp, Juergen; Mayerhöfer, Thomas; Cialla-May, Dana; Weber, Karina; Huebner, Uwe

    2016-03-01

    Employing vibrational spectroscopy (IR-absorption and Raman spectroscopy) allows for the labelfree detection of molecular specific fingerprints of inorganic, organic and biological substances. The sensitivity of vibrational spectroscopy can be improved by several orders of magnitude via the application of plasmonic active surfaces. Within this contribution we will discuss two such approaches, namely surface enhanced Raman spectroscopy (SERS) as well as surface enhanced IR absorption (SEIRA). It will be shown that SERS using metal colloids as SERS active substrate in combination with a microfluidic lab-on-a-chip (LOC) device enables high throughput and reproducible measurements with highest sensitivity and specificity. The application of such a LOC-SERS approach for therapeutic drug monitoring (e.g. quantitative detection of antibiotics in a urine matrix) will be presented. Furthermore, we will introduce innovative bottom-up strategies to prepare SERS-active nanostructures coated with a lipophilic sensor layer as one-time use SERS substrates for specific food analysis (e.g. quantitative detection of toxic food colorants). The second part of this contribution presents a slit array metamaterial perfect absorber for IR sensing applications consisting of a dielectric layer sandwiched between two metallic layers of which the upper layer is perforated with a periodic array of slits. Light-matter interaction is greatly amplified in the slits, where also the analyte is concentrated, as the surface of the substrate is covered by a thin silica layer. Thus, already small concentrations of analytes down to a monolayer can be detected by refractive index sensing and identified by their spectral fingerprints with a standard mid-infrared lab spectrometer.

  4. Sugar nanowires based on cyclodextrin on quartz crystal microbalance for gas sensing with ultra-high sensitivity

    Science.gov (United States)

    Asano, Atsushi; Maeyoshi, Yuta; Watanabe, Shogo; Saeki, Akinori; Sugimoto, Masaki; Yoshikawa, Masahito; Nanto, Hidehito; Tsukuda, Satoshi; Tanaka, Shun-Ichiro; Seki, Shu

    2013-03-01

    Cyclodextrins (CDs), hosting selectively a wide range of guest molecules in their hydrophobic cavity, were directly fabricated into 1-dimensional nanostructures with extremely wide surface area by single particle nanofabrication technique in the present paper. The copolymers of acrylamide and mono(6-allyl)-β-CD were synthesized, and the crosslinking reaction of the polymer alloys with poly(4-bromostyrene) (PBrS) in SPNT gave nanowires on the quarts substrate with high number density of 5×109 cm-2. Quartz crystal microbalance (QCM) measurement suggested 320 fold high sensitivity for formic acid vapor adsorption in the nanowire fabricated surfaces compared with that in the thin solid film of PBrS, due to the incorporation of CD units and extremely wide surface area of the nanowires.

  5. Conducting polymer nanofibers for high sensitivity detection of chemical analytes.

    Science.gov (United States)

    Kumar, Abhishek; Leshchiner, Ignaty; Nagarajan, Subhalakshmi; Nagarajan, Ramaswamy; Kumar, Jayant

    2008-03-01

    Possessing large surface area materials is vital for high sensitivity detection of analyte. We report a novel, inexpensive and simple technique to make high surface area sensing interfaces using electrospinning. Conducting polymers (CP) nanotubes were made by electrospinning a solution of a catalyst (ferric tosylate) along with poly (lactic acid), which is an environment friendly biodegradable polymer. Further vapor deposition polymerization of the monomer ethylenedioxy thiophene (EDOT) on the nanofiber surface yielded poly (EDOT) covered fibers. X-ray photo electron spectroscopy (XPS) study reveals the presence of PEDOT predominantly on the surface of nanofibers. Conducting nanotubes had been received by dissolving the polymer in the fiber core. By a similar technique we had covalently incorporated fluorescent dyes on the nanofiber surface. The materials obtained show promise as efficient sensing elements. UV-Vis characterization confirms the formation of PEDOT nanotubes and incorporation of chromophores on the fiber surface. The morphological characterization was carried out using scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  6. The age of extremely red and massive galaxies at very high redshift

    CERN Document Server

    Castro-Rodriguez, N

    2011-01-01

    Aims. We present a determination of the intrinsic colors and ages of galaxies at very high redshift, in particular old galaxies (OGs) within extremely red objects (EROs). To date, the definition of EROs has been restricted to objects with z2.5). We therefore, refer to these objects as very high-redshift EROs (Z-EROS, herein). Methods. We analyze 63,550 galaxies selected in the XMM-LSS field. To obtain a reasonably sized sample of EROs, it is essential to consider a very wide area surveys. We identify targets within an area of 0.77 square degrees for which optical to mid-infrared data are available from SUBARU, UKIDSS, and Spitzer. We select Z-EROs based on their colors, and then perform a selection of only OGs. One of our novel innovations is to adapt the traditional method of EROs selection based on the filters I and K, to higher redshifts. Using our method, we identify 20 objects that satisfy the conditions required to be Z-EROs/OGs at redshifts 2.5~4.7. After including additional galaxies with z<2.5 ana...

  7. The use of bone allografts for limb salvage in high-grade extremity osteosarcoma.

    Science.gov (United States)

    Gebhardt, M C; Flugstad, D I; Springfield, D S; Mankin, H J

    1991-09-01

    Limb preservation is increasingly being employed in the local treatment of high-grade extremity osteosarcoma. Bone allografts used to reconstruct the bony defects following tumor resection offer many advantages, including joint reconstruction and incorporation of the graft to the host bone in these relatively young patients. The results of 53 patients 30 years of age or younger were assessed to determine functional outcome. Fresh-frozen allografts were employed as osteoarticular grafts, allograft-arthrodeses, allograft-prosthesis composites, or intercalary grafts. Follow-up intervals averaged 25 months (range, two to 63 months). Life-table analysis showed that the probability of a satisfactory functional result was 73% if local tumor recurrences were excluded. Complications included 16 infections, six fractures, 12 nonunions, and six unstable joints. There were five local recurrences. Eighteen grafts ultimately failed, and in six patients, this resulted in an above-knee amputation. An additional five received a second graft. The functional "end results" of the 38 patients with two or more years of follow-up examinations were 70% satisfactory in those without a local recurrence. There was no statistically significant difference in functional outcome or local or distant relapse in those patients receiving preoperative chemotherapy. The authors conclude that allografts can be used for limb reconstruction in patients with high-grade osteosarcoma who receive aggressive adjuvant chemotherapy. The functional results are comparable to other methods of reconstruction, and once incorporated by the host, offer the advantage of longevity, compared with metallic implants.

  8. Significant mobility enhancement in extremely thin highly doped ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Look, David C., E-mail: david.look@wright.edu [Semiconductor Research Center, Wright State University, 3640 Colonel Glenn Hwy., Dayton, Ohio 45435 (United States); Wyle Laboratories, Inc., 2601 Mission Point Blvd., Dayton, Ohio 45431 (United States); Air Force Research Laboratory Sensors Directorate, 2241 Avionics Circle, Wright-Patterson AFB, Ohio 45433 (United States); Heller, Eric R. [Air Force Research Laboratory Materials and Manufacturing Directorate, 3005 Hobson Way, Wright-Patterson AFB, Ohio 45433 (United States); Yao, Yu-Feng; Yang, C. C., E-mail: ccycc@ntu.edu.tw [Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (China)

    2015-04-13

    Highly Ga-doped ZnO (GZO) films of thicknesses d = 5, 25, 50, and 300 nm, grown on 160-nm ZnO buffer layers by molecular beam epitaxy, had 294-K Hall-effect mobilities μ{sub H} of 64.1, 43.4, 37.0, and 34.2 cm{sup 2}/V-s, respectively. This extremely unusual ordering of μ{sub H} vs d is explained by the existence of a very high-mobility Debye tail in the ZnO, arising from the large Fermi-level mismatch between the GZO and the ZnO. Scattering theory in conjunction with Poisson analysis predicts a Debye-tail mobility of 206 cm{sup 2}/V-s at the interface (z = d), falling to 58 cm{sup 2}/V-s at z = d + 2 nm. Excellent fits to μ{sub H} vs d and sheet concentration n{sub s} vs d are obtained with no adjustable parameters.

  9. Potential therapeutic mechanism of extremely low-frequency high-voltage electric fields in cells.

    Science.gov (United States)

    Kim, Ka-Eun; Park, Soon-Kwon; Nam, Sang-Yun; Han, Tae-Jong; Cho, Il-Young

    2016-05-18

    The aim of this survey was to provide background theory based on previous research to elucidate the potential pathway by which medical devices using extremely low-frequency high-voltage electric fields (ELF-HVEF) exert therapeutic effects on the human body, and to increase understanding of the AC high-voltage electrotherapeutic apparatus for consumers and suppliers of the relevant devices. Our review revealed that an ELF field as weak as 1-10 μ V/m can induce diverse alterations of membrane proteins such as transporters and channel proteins, including changes in Ca + + binding to a specific site of the cell surface, changes in ion (e.g., Ca + + ) influx or efflux, and alterations in the ligand-receptor interaction. These alterations then induce cytoplasmic responses within cells (Ca + + , cAMP, kinases, etc.) that can have impacts on cell growth, differentiation, and other functional properties by promoting the synthesis of macromolecules. Moreover, increased cytoplasmic Ca + + involves calmodulin-dependent signaling and consequent Ca + + /calmodulin-dependent stimulation of nitric oxide synthesis. This event in turn induces the nitric oxide-cGMP-protein kinase G pathway, which may be an essential factor in the observed physiological and therapeutic responses.

  10. User characteristics and effect profile of Butane Hash Oil: An extremely high-potency cannabis concentrate.

    Science.gov (United States)

    Chan, Gary C K; Hall, Wayne; Freeman, Tom P; Ferris, Jason; Kelly, Adrian B; Winstock, Adam

    2017-09-01

    Recent reports suggest an increase in use of extremely potent cannabis concentrates such as Butane Hash Oil (BHO) in some developed countries. The aims of this study were to examine the characteristics of BHO users and the effect profiles of BHO. Anonymous online survey in over 20 countries in 2014 and 2015. Participants aged 18 years or older were recruited through onward promotion and online social networks. The overall sample size was 181,870. In this sample, 46% (N=83,867) reported using some form of cannabis in the past year, and 3% reported BHO use (n=5922). Participants reported their use of 7 types of cannabis in the past 12 months, the source of their cannabis, reasons for use, use of other illegal substances, and lifetime diagnosis for depression, anxiety and psychosis. Participants were asked to rate subjective effects of BHO and high potency herbal cannabis. Participants who reported a lifetime diagnosis of depression (OR=1.15, p=0.003), anxiety (OR=1.72, pcannabis. BHO users also reported stronger negative effects and less positive effects when using BHO than high potency herbal cannabis (pcannabis. Copyright © 2017. Published by Elsevier B.V.

  11. Accelerated Sensitivity Analysis in High-Dimensional Stochastic Reaction Networks.

    Science.gov (United States)

    Arampatzis, Georgios; Katsoulakis, Markos A; Pantazis, Yannis

    2015-01-01

    Existing sensitivity analysis approaches are not able to handle efficiently stochastic reaction networks with a large number of parameters and species, which are typical in the modeling and simulation of complex biochemical phenomena. In this paper, a two-step strategy for parametric sensitivity analysis for such systems is proposed, exploiting advantages and synergies between two recently proposed sensitivity analysis methodologies for stochastic dynamics. The first method performs sensitivity analysis of the stochastic dynamics by means of the Fisher Information Matrix on the underlying distribution of the trajectories; the second method is a reduced-variance, finite-difference, gradient-type sensitivity approach relying on stochastic coupling techniques for variance reduction. Here we demonstrate that these two methods can be combined and deployed together by means of a new sensitivity bound which incorporates the variance of the quantity of interest as well as the Fisher Information Matrix estimated from the first method. The first step of the proposed strategy labels sensitivities using the bound and screens out the insensitive parameters in a controlled manner. In the second step of the proposed strategy, a finite-difference method is applied only for the sensitivity estimation of the (potentially) sensitive parameters that have not been screened out in the first step. Results on an epidermal growth factor network with fifty parameters and on a protein homeostasis with eighty parameters demonstrate that the proposed strategy is able to quickly discover and discard the insensitive parameters and in the remaining potentially sensitive parameters it accurately estimates the sensitivities. The new sensitivity strategy can be several times faster than current state-of-the-art approaches that test all parameters, especially in "sloppy" systems. In particular, the computational acceleration is quantified by the ratio between the total number of parameters over the

  12. Yolk-shelled cathode materials with extremely high electrochemical performances prepared by spray pyrolysis

    Science.gov (United States)

    Choi, Seung Ho; Hong, Young Jun; Kang, Yun Chan

    2013-08-01

    A facile, continuous preparation process of yolk-shell-structured lithium-metal oxide powders without a template for use as cathode materials in lithium ion batteries is introduced for the first time. Single and double-shelled LiNi0.5Mn1.5O4 yolk-shell powders as the first target materials are prepared directly by spray pyrolysis from a spray solution with sucrose, at a short residence time of 4 s. Fast combustion and contraction of a carbon-mixed oxide composite intermediate, formed from a micro-sized droplet inside a hot wall reactor maintained at 700 °C, produces the yolk-shell powders. The yolk-shell structure of the precursor powders directly prepared by spray pyrolysis is well maintained even at a high post-treatment temperature of 750 °C. The yolk-shell LiNi0.5Mn1.5O4 powders delivered a 1000th high discharge capacity of 108 mA h g-1 at 10 C. The discharge capacities are as high as 103, 95, and 91 mA h g-1 at extremely high discharge rates of 100, 200, and 300 C and the corresponding specific energy densities are 420, 370, and 328 W h kg-1. The capacity retention at a constant discharge rate of 200 C is 90% after 500 cycles.A facile, continuous preparation process of yolk-shell-structured lithium-metal oxide powders without a template for use as cathode materials in lithium ion batteries is introduced for the first time. Single and double-shelled LiNi0.5Mn1.5O4 yolk-shell powders as the first target materials are prepared directly by spray pyrolysis from a spray solution with sucrose, at a short residence time of 4 s. Fast combustion and contraction of a carbon-mixed oxide composite intermediate, formed from a micro-sized droplet inside a hot wall reactor maintained at 700 °C, produces the yolk-shell powders. The yolk-shell structure of the precursor powders directly prepared by spray pyrolysis is well maintained even at a high post-treatment temperature of 750 °C. The yolk-shell LiNi0.5Mn1.5O4 powders delivered a 1000th high discharge capacity of 108 m

  13. A highly efficient multi-core algorithm for clustering extremely large datasets

    Directory of Open Access Journals (Sweden)

    Kraus Johann M

    2010-04-01

    Full Text Available Abstract Background In recent years, the demand for computational power in computational biology has increased due to rapidly growing data sets from microarray and other high-throughput technologies. This demand is likely to increase. Standard algorithms for analyzing data, such as cluster algorithms, need to be parallelized for fast processing. Unfortunately, most approaches for parallelizing algorithms largely rely on network communication protocols connecting and requiring multiple computers. One answer to this problem is to utilize the intrinsic capabilities in current multi-core hardware to distribute the tasks among the different cores of one computer. Results We introduce a multi-core parallelization of the k-means and k-modes cluster algorithms based on the design principles of transactional memory for clustering gene expression microarray type data and categorial SNP data. Our new shared memory parallel algorithms show to be highly efficient. We demonstrate their computational power and show their utility in cluster stability and sensitivity analysis employing repeated runs with slightly changed parameters. Computation speed of our Java based algorithm was increased by a factor of 10 for large data sets while preserving computational accuracy compared to single-core implementations and a recently published network based parallelization. Conclusions Most desktop computers and even notebooks provide at least dual-core processors. Our multi-core algorithms show that using modern algorithmic concepts, parallelization makes it possible to perform even such laborious tasks as cluster sensitivity and cluster number estimation on the laboratory computer.

  14. Highly sensitive and multiplexed platforms for allergy diagnostics

    Science.gov (United States)

    Monroe, Margo R.

    Allergy is a disorder of the immune system caused by an immune response to otherwise harmless environmental allergens. Currently 20% of the US population is allergic and 90% of pediatric patients and 60% of adult patients with asthma have allergies. These percentages have increased by 18.5% in the past decade, with predicted similar trends for the future. Here we design sensitive, multiplexed platforms to detect allergen-specific IgE using the Interferometric Reflectance Imaging Sensor (IRIS) for various clinical settings. A microarray platform for allergy diagnosis allows for testing of specific IgE sensitivity to a multitude of allergens, while requiring only small volumes of patient blood sample. However, conventional fluorescent microarray technology is limited by i) the variation of probe immobilization, which hinders the ability to make quantitative, assertive, and statistically relevant conclusions necessary in immunodiagnostics and ii) the use of fluorophore labels, which is not suitable for some clinical applications due to the tendency of fluorophores to stick to blood particulates and require daily calibration methods. This calibrated fluorescence enhancement (CaFE) method integrates the low magnification modality of IRIS with enhanced fluorescence sensing in order to directly correlate immobilized probe (major allergens) density to allergen-specific IgE in patient serum. However, this platform only operates in processed serum samples, which is not ideal for point of care testing. Thus, a high magnification modality of IRIS was adapted as an alternative allergy diagnostic platform to automatically discriminate and size single nanoparticles bound to specific IgE in unprocessed, characterized human blood and serum samples. These features make IRIS an ideal candidate for clinical and diagnostic applications, such a POC testing. The high magnification (nanoparticle counting) modality in conjunction with low magnification of IRIS in a combined instrument

  15. High-temperature sensitivity and its acclimation for photosynthetic electron transport reactions of desert succulents.

    Science.gov (United States)

    Chetti, M B; Nobel, P S

    1987-08-01

    Photosynthetic electron transport reactions of succulent plants from hot deserts are able to tolerate extremely high temperatures and to acclimate to seasonal increases in temperature. In this study, we report the influence of relatively long, in vivo, high-temperature treatments on electron transport reactions for two desert succulents, Agave deserti and Opuntia ficus-indica, species which can tolerate 60 degrees C. Whole chain electron transport averaged 3 degrees C more sensitive to a 1-hour high-temperature treatment than did PSII (Photosystem II) which in turn averaged 3 degrees C more sensitive than did PSI. For plants maintained at day/night air temperatures of 30 degrees C/20 degrees C, treatment at 50 degrees C caused these reactions to be inhibited an average of 39% during the first hour, an additional 31% during the next 4 hours, and 100% by 12 hours. Upon shifting the plants from 30 degrees C/20 degrees C to 45 degrees C/35 degrees C, the high temperatures where activity was inhibited 50% increased 3 degrees C to 8 degrees C for the three electron transport reactions, the half-times for acclimation averaging 5 days for A. deserti and 4 days for O. ficus-indica. For the 45 degrees C/35 degrees C plants treated at 60 degrees C for 1 hour, PSI activity was reduced by 54% for A. deserti and 36% for O. ficus-indica. Acclimation leads to a toleration of very high temperatures without substantial disruption of electron transport for these desert succulents, facilitating their survival in hot deserts. Indeed, the electron transport reactions of these species tolerate longer periods at higher temperatures than any other vascular plant so far reported.

  16. High-temperature sensitivity and its acclimation for photosynthetic electron reactions of desert succulents

    Energy Technology Data Exchange (ETDEWEB)

    Chetti, M.B.; Nobel, P.S. (Univ. of California, Los Angeles (USA))

    1987-08-01

    Photosynthetic electron reactions of succulent plants from hot deserts are able to tolerate extremely high temperatures and to acclimate to seasonal increase in temperature. In this study, we report the influence of relatively long, in vivo, high-temperature treatments on electron transport reactions for two desert succulents, Agave deserti and Opuntia ficus-indica, species which can tolerate 60{degree}C. Whole chain electron transport averaged 3{degree}C more sensitive to a 1-hour high-temperature treatment than did PSII (Photosystem II) which in turn averaged 3{degree}C more sensitive than did PSI. For plants maintained at day/night air temperatures of 30{degree}C/20{degree}C, treatment at 50{degree}C cause these reactions to be inhibited an average of 39% during the first hour, an additional 31% during the next 4 hours, and 100% by 12 hours. Upon shifting the plants from 30{degree}C/20{degree}C to 45{degree}C/35{degree}C, the high temperatures where activity was inhibited 50% increased 3{degree}C to 8{degree}C for the three electron transport reactions, the half-times for acclimation averaging 5 days for A. deserti and 4 days for O. ficus-indica. For the 45{degree}C/35{degree}C plants treated at 60{degree}C for 1 hour, PSI activity was reduced by 54% for A. deserti and 36% for O. ficus-indica. Acclimation leads to a toleration of very high temperatures without substantial disruption of electron transport for these desert succulents, facilitating their survival in hot deserts. Indeed, the electron transport reactions of these species tolerate longer periods at higher temperatures than any other vascular plants so far reported.

  17. Future Projection of Summer Extreme Precipitation from High Resolution Multi-RCMs over East Asia

    Science.gov (United States)

    Kim, Gayoung; Park, Changyong; Cha, Dong-Hyun; Lee, Dong-Kyou; Suh, Myoung-Seok; Ahn, Joong-Bae; Min, Seung-Ki; Hong, Song-You; Kang, Hyun-Suk

    2017-04-01

    Recently, the frequency and intensity of natural hazards have been increasing due to human-induced climate change. Because most damages of natural hazards over East Asia have been related to extreme precipitation events, it is important to estimate future change in extreme precipitation characteristics caused by climate change. We investigate future changes in extremal values of summer precipitation simulated by five regional climate models participating in the CORDEX-East Asia project (i.e., HadGEM3-RA, RegCM4, MM5, WRF, and GRIMs) over East Asia. 100-year return value calculated from the generalized extreme value (GEV) parameters is analysed as an indicator of extreme intensity. In the future climate, the mean values as well as the extreme values of daily precipitation tend to increase over land region. The increase of 100-year return value can be significantly associated with the changes in the location (intensity) and scale (variability) GEV parameters for extreme precipitation. It is expected that the results of this study can be used as fruitful references when making the policy of disaster management. Acknowledgements The research was supported by the Ministry of Public Safety and Security of Korean government and Development program under grant MPSS-NH-2013-63 and the National Research Foundation of Korea Grant funded by the Ministry of Science, ICT and Future Planning of Korea (NRF-2016M3C4A7952637) for its support and assistant in completion of the study.

  18. Catbirds are the New Chickens: High Sensitivity to a Dioxin-like Compound in a Wildlife Species.

    Science.gov (United States)

    Eng, Margaret L; Bishop, Christine A; Crump, Doug; Jones, Stephanie P; Williams, Tony D; Drouillard, Kenneth G; Elliott, John E

    2017-05-02

    Dioxins and dioxin-like compounds (DLCs) are highly toxic and persistent global pollutants with extremely large differences in sensitivity across taxonomic groups. The chicken has long been considered uniquely sensitive to DLCs among avian species; but DLC toxicity in nondomesticated birds is largely untested, and the relevance of the chicken as an ecological model is uncertain. New approaches that use genotyping of the AHR1 ligand binding domain to screen for DLC sensitivity among avian species predicted that the gray catbird, a relevant wildlife species, is also highly sensitive. We tested this prediction using egg injections of a dioxin-like PCB (PCB-126) and found that the catbird is at least as sensitive as the chicken to DLCs, based on both embryotoxicity and mRNA induction of phase I metabolizing enzymes (CYP1A4/5). This study is the first to confirm that there are wildlife species as sensitive as the chicken and demonstrates how using predictive genotyping methods and targeted bioassays can focus toxicity assessments on ecologically relevant species.

  19. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.

    Science.gov (United States)

    Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A H

    2015-01-01

    Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal.

  20. Part 2. Association of daily mortality with ambient air pollution, and effect modification by extremely high temperature in Wuhan, China.

    Science.gov (United States)

    Qian, Zhengmin; He, Qingci; Lin, Hung-Mo; Kong, Lingli; Zhou, Dunjin; Liang, Shengwen; Zhu, Zhichao; Liao, Duanping; Liu, Wenshan; Bentley, Christy M; Dan, Jijun; Wang, Beiwei; Yang, Niannian; Xu, Shuangqing; Gong, Jie; Wei, Hongming; Sun, Huilin; Qin, Zudian

    2010-11-01

    , 0.25 to 0.88), CARD (0.49%; 95% CI, 0.04 to 0.94), RD (0.87%; 95% CI, 0.34 to 1.41), CP (0.52%; 95% CI, 0.27 to 0.77), and non-CP (0.30%; 95% CI, 0.05 to 0.54). In general, these effects were stronger in females than in males and were also stronger among the elderly (> or = 65 years) than among the young. The results of sensitivity testing over the range of exposures from 24.8 to 477.8 microg/m3 also suggest the appropriateness of assuming a linear relation between daily mortality and PM10. Among the gaseous pollutants, we also observed statistically significant associations of mortality with NO, and SO2, and that the estimated effects of these two pollutants were stronger than the PM10 effects. The patterns of NO2 and SO2 associations were similar to those of PM10 in terms of sex, age, and linearity. O3 was not associated with mortality. In the analysis of the effect modification of extremely high temperature on the association between air pollution and daily mortality, only the interaction of PM10 with temperature was statistically significant. Specifically, the interaction terms were statistically significant for mortality due to all natural (P = 0.014), CVD (P = 0.007), and CP (P = 0.014) causes. Across the three temperature groups, the strongest PM10 effects occurred mainly on days with extremely high temperatures for mortality due to all natural (2.20%; 95% CI, 0.74 to 3.68), CVD (3.28%; 95% CI, 1.24 to 5.37), and CP (3.02%; 95% CI, 1.03 to 5.04) causes. The weakest effects occurred at normal temperature days, with the effects on days with low temperatures in the middle. To assess the uncertainty of the effect estimates caused by the change from ICD-9-coded mortality data to ICD-10-coded mortality data, we compared the two sets of data and found high concordance rates (> 99.3%) and kappa statistics close to 1.0 (> 0.98). All effect estimates showed very little change. All statistically significant levels of the estimated effects remained unchanged. In

  1. Probing deep photospheric layers of the quiet Sun with high magnetic sensitivity

    CERN Document Server

    Lagg, A; Doerr, H -P; González, M J Martínez; Riethmüller, T; Vera, M Collados; Schlichenmaier, R; Suárez, D Orozco; Franz, M; Feller, A; Kuckein, C; Schmidt, W; Ramos, A Asensio; Yabar, A Pastor; von der Lühe, O; Denker, C; Balthasar, H; Volkmer, R; Staude, J; Hofmann, A; Strassmeier, K; Kneer, F; Waldmann, T; Borrero, J M; Sobotka, M; Verma, M; Louis, R E; Rezaei, R; Soltau, D; Berkefeld, T; Sigwarth, M; Schmidt, D; Kiess, C; Nicklas, H

    2016-01-01

    Context. Investigations of the magnetism of the quiet Sun are hindered by extremely weak polarization signals in Fraunhofer spectral lines. Photon noise, straylight, and the systematically different sensitivity of the Zeeman effect to longitudinal and transversal magnetic fields result in controversial results in terms of the strength and angular distribution of the magnetic field vector. Aims. The information content of Stokes measurements close to the diffraction limit of the 1.5 m GREGOR telescope is analyzed. We took the effects of spatial straylight and photon noise into account. Methods. Highly sensitive full Stokes measurements of a quiet-Sun region at disk center in the deep photospheric Fe I lines in the 1.56 {\\mu}m region were obtained with the infrared spectropolarimeter GRIS at the GREGOR telescope. Noise statistics and Stokes V asymmetries were analyzed and compared to a similar data set of the Hinode spectropolarimeter (SOT/SP). Simple diagnostics based directly on the shape and strength of the ...

  2. Characterization of Three High Efficiency and Blue Sensitive Silicon Photomultipliers

    CERN Document Server

    Otte, Adam Nepomuk; Nguyen, Thanh; Purushotham, Dhruv

    2016-01-01

    We report about the optical and electrical characterization of three high efficiency and blue sensitive Silicon photomultipliers from FBK, Hamamatsu, and SensL. Key features of the tested devices when operated at 90% breakdown probability are peak photon detection efficiencies between 40% and 55%, temperature dependencies of gain and PDE that are less than 1%/$^{\\circ}$C, dark rates of $\\sim$50\\,kHz/mm$^{2}$ at room temperature, afterpulsing of about 2%, and direct optical crosstalk between 6% and 20%. The characteristics of all three devices impressively demonstrate how the Silicon-photomultiplier technology has improved over the past ten years. It is further demonstrated how the voltage and temperature characteristics of a number of quantities can be parameterized on the basis of physical models. The models provide a deeper understanding of the device characteristics over a wide bias and temperature range. They also serve as examples how producers could provide the characteristics of their SiPMs to users. A...

  3. Characterization of three high efficiency and blue sensitive silicon photomultipliers

    Science.gov (United States)

    Otte, Adam Nepomuk; Garcia, Distefano; Nguyen, Thanh; Purushotham, Dhruv

    2017-02-01

    We report about the optical and electrical characterization of three high efficiency and blue sensitive Silicon photomultipliers from FBK, Hamamatsu, and SensL. Key features of the tested devices when operated at 90% breakdown probability are peak photon detection efficiencies between 40% and 55%, temperature dependencies of gain and PDE that are less than 1%/°C, dark rates of ∼50 kHz/mm2 at room temperature, afterpulsing of about 2%, and direct optical crosstalk between 6% and 20%. The characteristics of all three devices impressively demonstrate how the Silicon-photomultiplier technology has improved over the past ten years. It is further demonstrated how the voltage and temperature characteristics of a number of quantities can be parameterized on the basis of physical models. The models provide a deeper understanding of the device characteristics over a wide bias and temperature range. They also serve as examples how producers could provide the characteristics of their SiPMs to users. A standardized parameterization of SiPMs would enable users to find the optimal SiPM for their application and the operating point of SiPMs without having to perform measurements thus significantly reducing design and development cycles.

  4. High Speed Pressure Sensitive Paint for Dynamic Testing

    Science.gov (United States)

    Pena, Carolina; Chism, Kyle; Hubner, Paul

    2016-11-01

    Pressure sensitive paint (PSP) allows engineers to obtain accurate, high-spatial-resolution measurements of pressure fields over a structure. The pressure is directly related to the luminescence emitted by the paint due to oxygen quenching. Fast PSP has a higher surface area due to its porosity compared to conventional PSP, which enables faster diffusion and measurements to be acquired three orders of magnitude faster than with conventional PSP. A fast time response is needed when testing vibrating structures due to fluid-structure interaction. The goal of this summer project was to set-up, test and analyze the pressure field of an impinging air jet on a vibrating cantilever beam using Fast PSP. Software routines were developed for the processing of the emission images, videos of a static beam coated with Fast PSP were acquired with the air jet on and off, and the intensities of these two cases were ratioed and calibrated to pressure. Going forward, unsteady pressures on a vibrating beam will be measured and presented. Eventually, the long-term goal is to integrate luminescent pressure and strain measurement techniques, simultaneously using Fast PSP and a luminescent photoelastic coating on vibrating structures. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  5. Ultra-high sensitivity imaging of cancer using SERRS nanoparticles

    Science.gov (United States)

    Kircher, Moritz F.

    2016-05-01

    "Surface-enhanced Raman spectroscopy" (SERS) nanoparticles have gained much attention in recent years for in silico, in vitro and in vivo sensing applications. Our group has developed novel generations of biocompatible "surfaceenhanced resonance Raman spectroscopy" (SERRS) nanoparticles as novel molecular imaging agents. Via rigorous optimization of the different variables contributing to the Raman enhancement, we were able to design SERRS nanoparticles with so far unprecedented sensitivity of detection under in vivo imaging conditions (femto-attomolar range). This has resulted in our ability to visualize, with a single nanoparticle, many different cancer types (after intravenous injection) in mouse models. The cancer types we have tested so far include brain, breast, esophagus, stomach, pancreas, colon, sarcoma, and prostate cancer. All mouse models used are state-of-the-art and closely mimic the tumor biology in their human counterparts. In these animals, we were able to visualize not only the bulk tumors, but importantly also microscopic extensions and locoregional satellite metastases, thus delineating for the first time the true extent of tumor spread. Moreover, the particles enable the detection of premalignant lesions. Given their inert composition they are expected to have a high chance for clinical translation, where we envision them to have an impact in various scenarios ranging from early detection, image-guidance in open or minimally invasive surgical procedures, to noninvasive imaging in conjunction with spatially offset (SESORS) Raman detection devices.

  6. Fabrication of highly efficient flexible dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H., E-mail: f10381@ntut.edu.t [Department of Mechanical Engineering, National Taipei University of Technology, No.1 Sec.3, Chung Hsiao E. Rd., Taipei 10608, Taiwan (China); Chen, T.L. [Department of Industrial Design, National Taipei University of Technology, No.1 Sec.3, Chung Hsiao E. Rd., Taipei 10608, Taiwan (China); Huang, K.D. [Department of Vehicle Engineering, National Taipei University of Technology, No.1 Sec.3, Chung Hsiao E. Rd., Taipei 10608, Taiwan (China); Chien, S.H. [Institute of Chemistry, Academia Sinica, No. 128 Sec.2, Academia Rd., Nankang, Taipei 11529, Taiwan (China); Hung, K.C. [Department of Mechanical Engineering, National Taipei University of Technology, No.1 Sec.3, Chung Hsiao E. Rd., Taipei 10608, Taiwan (China)

    2010-08-15

    The paper studies the fabrication of a flexible dye-sensitized solar cell (DSSC). The photoelectrode substrates are flexible stainless steel sheet with thickness 0.07 mm and titanium (Ti) sheet with thickness 0.25 mm. For the photoelectrode fabrication process, eletrophoresis deposition (EPD) was employed for its merits of low-cost and fast fabrication. With an electric field of 40 V/cm, after undergoing EPD process twice, the TiO{sub 2} nanofilm thickness could be controlled to around 13 {mu}m thick. In addition, to achieve counter electrode, sputtering method was applied to deposit Pt on ITO-PET, resulting in thin films with four different thicknesses of 5, 8, 11 and 14 nm. The experimental results showed that the best colloid solution used in EPD process was a mixture of 100 ml isopropyl alcohol (IPA) and 0.4 g commercial TiO{sub 2} nanoparticles, Degussa P25. The best flatness for a 13 {mu}m thick film could be acquired under an electric field of 40 V/cm. Comparing the photoelectric conversion efficiency values of DSSC assembled by counter electrodes with different Pt thicknesses, the experimental results showed that the best Pt thickness was 11 nm, and the conversion efficiency could reach as high as 2.91%.

  7. ASIC for High Rate 3D Position Sensitive Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, E.; De Geronimo, G.; Ackley, K.; Fried, J.; He, Z.; Herman, C.; Zhang, F.

    2010-06-16

    We report on the development of an application specific integrated circuit (ASIC) for 3D position sensitive detectors (3D PSD). The ASIC is designed to operate with pixelated wide bandgap sensors like Cadmium-Zinc-Telluride (CZT), Mercuric Iodide (Hgl2) and Thallium Bromide (TIBr). It measures the amplitudes and timings associated with an ionizing event on 128 anodes, the anode grid, and the cathode. Each channel provides low-noise charge amplification, high-order shaping with peaking time adjustable from 250 ns to 12 {micro}s, gain adjustable to 20 mV/fC or 120 mV/fC (for a dynamic range of 3.2 MeV and 530 keV in CZT), amplitude discrimination with 5-bit trimming, and positive and negative peak and timing detections. The readout can be full or sparse, based on a flag and single- or multi-cycle token passing. All channels, triggered channels only, or triggered with neighbors can be read out thus increasing the rate capability of the system to more than 10 kcps. The ASIC dissipates 330 mW which corresponds to about 2.5 mW per channel.

  8. Extremely high frequency electromagnetic radiation enforces bacterial effects of inhibitors and antibiotics.

    Science.gov (United States)

    Tadevosyan, Hasmik; Kalantaryan, Vitaly; Trchounian, Armen

    2008-01-01

    The coherent electromagnetic radiation (EMR) of the frequency of 51.8 and 53 GHz with low intensity (the power flux density of 0.06 mW/cm(2)) affected the growth of Escherichia coli K12(lambda) under fermentation conditions: the lowering of the growth specific rate was considerably (approximately 2-fold) increased with exposure duration of 30-60 min; a significant decrease in the number of viable cells was also shown. Moreover, the enforced effects of the N,N'-dicyclohexylcarbodiimide (DCCD), inhibitor of H(+)-transporting F(0)F(1)-ATPase, on energy-dependent H(+) efflux by whole cells and of antibiotics like tetracycline and chloramphenicol on the following bacterial growth and survival were also determined after radiation. In addition, the lowering in DCCD-inhibited ATPase activity of membrane vesicles from exposed cells was defined. The results confirmed the input of membranous changes in bacterial action of low intensity extremely high frequency EMR, when the F(0)F(1)-ATPase is probably playing a key role. The radiation of bacteria might lead to changed metabolic pathways and to antibiotic resistance. It may also give bacteria with a specific role in biosphere.

  9. The fire-walker's high: affect and physiological responses in an extreme collective ritual.

    Science.gov (United States)

    Fischer, Ronald; Xygalatas, Dimitris; Mitkidis, Panagiotis; Reddish, Paul; Tok, Penny; Konvalinka, Ivana; Bulbulia, Joseph

    2014-01-01

    How do people feel during extreme collective rituals? Despite longstanding speculation, few studies have attempted to quantify ritual experiences. Using a novel pre/post design, we quantified physiological fluctuations (heart rates) and self-reported affective states from a collective fire-walking ritual in a Mauritian Hindu community. Specifically, we compared changes in levels of happiness, fatigue, and heart rate reactivity among high-ordeal participants (fire-walkers), low-ordeal participants (non-fire-walking participants with familial bonds to fire-walkers) and spectators (unrelated/unknown to the fire-walkers). We observed that fire-walkers experienced the highest increase in heart rate and reported greater happiness post-ritual compared to low-ordeal participants and spectators. Low-ordeal participants reported increased fatigue after the ritual compared to both fire-walkers and spectators, suggesting empathetic identification effects. Thus, witnessing the ritualistic suffering of loved ones may be more exhausting than experiencing suffering oneself. The findings demonstrate that the level of ritual involvement is important for shaping affective responses to collective rituals. Enduring a ritual ordeal is associated with greater happiness, whereas observing a loved-one endure a ritual ordeal is associated with greater fatigue post-ritual.

  10. The fire-walker's high: affect and physiological responses in an extreme collective ritual.

    Directory of Open Access Journals (Sweden)

    Ronald Fischer

    Full Text Available How do people feel during extreme collective rituals? Despite longstanding speculation, few studies have attempted to quantify ritual experiences. Using a novel pre/post design, we quantified physiological fluctuations (heart rates and self-reported affective states from a collective fire-walking ritual in a Mauritian Hindu community. Specifically, we compared changes in levels of happiness, fatigue, and heart rate reactivity among high-ordeal participants (fire-walkers, low-ordeal participants (non-fire-walking participants with familial bonds to fire-walkers and spectators (unrelated/unknown to the fire-walkers. We observed that fire-walkers experienced the highest increase in heart rate and reported greater happiness post-ritual compared to low-ordeal participants and spectators. Low-ordeal participants reported increased fatigue after the ritual compared to both fire-walkers and spectators, suggesting empathetic identification effects. Thus, witnessing the ritualistic suffering of loved ones may be more exhausting than experiencing suffering oneself. The findings demonstrate that the level of ritual involvement is important for shaping affective responses to collective rituals. Enduring a ritual ordeal is associated with greater happiness, whereas observing a loved-one endure a ritual ordeal is associated with greater fatigue post-ritual.

  11. European Extremely Large Telescope Site Characterization II: High angular resolution parameters

    CERN Document Server

    Ramió, Héctor Vázquez; Muñoz-Tuñón, Casiana; Sarazin, Marc; Varela, Antonia M; Trinquet, Hervé; Delgado, José Miguel; Fuensalida, Jesús J; Reyes, Marcos; Benhida, Abdelmajid; Benkhaldoun, Zouhair; Lambas, Diego García; Hach, Youssef; Lazrek, M; Lombardi, Gianluca; Navarrete, Julio; Recabarren, Pablo; Renzi, Victor; Sabil, Mohammed; Vrech, Rubén

    2012-01-01

    This is the second article of a series devoted to European Extremely Large Telescope (E-ELT) site characterization. In this article we present the main properties of the parameters involved in high angular resolution observations from the data collected in the site testing campaign of the E-ELT during the Design Study (DS) phase. Observations were made in 2008 and 2009, in the four sites selected to shelter the future E-ELT (characterized under the ELT-DS contract): Aklim mountain in Morocco, Observatorio del Roque de los Muchachos (ORM) in Spain, Mac\\'on range in Argentina, and Cerro Ventarrones in Chile. The same techniques, instruments and acquisition procedures were taken on each site. A Multiple Aperture Scintillation Sensor (MASS) and a Differential Image Motion Monitor (DIMM) were installed at each site. Global statistics of the integrated seeing, the free atmosphere seeing, the boundary layer seeing and the isoplanatic angle were studied for each site, and the results are presented here. In order to e...

  12. European Extremely Large Telescope Site Characterization. II. High Angular Resolution Parameters

    Science.gov (United States)

    Vázquez Ramió, Héctor; Vernin, Jean; Muñoz-Tuñón, Casiana; Sarazin, Marc; Varela, Antonia M.; Trinquet, Hervé; Delgado, José Miguel; Fuensalida, Jesús J.; Reyes, Marcos; Benhida, Abdelmajid; Benkhaldoun, Zouhair; García Lambas, Diego; Hach, Youssef; Lazrek, M.; Lombardi, Gianluca; Navarrete, Julio; Recabarren, Pablo; Renzi, Victor; Sabil, Mohammed; Vrech, Rubén

    2012-08-01

    This is the second article of a series devoted to European Extremely Large Telescope (E-ELT) site characterization. In this article we present the main properties of the parameters involved in high angular resolution observations from the data collected in the site testing campaign of the E-ELT during the design study (DS) phase. Observations were made in 2008 and 2009, in the four sites selected to shelter the future E-ELT (characterized under the ELT-DS contract): Aklim mountain in Morocco, Observatorio del Roque de los Muchachos (ORM) in Spain, Macón range in Argentina, and Cerro Ventarrones in Chile. The same techniques, instruments, and acquisition procedures were taken on each site. A multiple aperture scintillation sensor (MASS) and a differential image motion monitor (DIMM) were installed at each site. Global statistics of the integrated seeing, the free atmosphere seeing, the boundary layer seeing, and the isoplanatic angle were studied for each site, and the results are presented here. In order to estimate other important parameters, such as the coherence time of the wavefront and the overall parameter “coherence étendue,” additional information of vertical profiles of the wind speed was needed. Data were retrieved from the National Oceanic and Atmospheric Administration (NOAA) archive. Ground wind speed was measured by automatic weather stations (AWS). More aspects of the turbulence parameters, such as their seasonal trend, their nightly evolution, and their temporal stability, were also obtained and analyzed.

  13. Probing neutrino dark energy with extremely high-energy cosmic neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ringwald, A.; Schrempp, L.

    2006-06-15

    Recently, a new non-Standard Model neutrino interaction mediated by a light scalar field was proposed, which renders the big-bang relic neutrinos of the cosmic neutrino background a natural dark energy candidate, the so-called Neutrino Dark Energy. As a further consequence of this interaction, the neutrino masses become functions of the neutrino energy densities and are thus promoted to dynamical, time/redshift dependent quantities. Such a possible neutrino mass variation introduces a redshift dependence into the resonance energies associated with the annihilation of extremely high-energy cosmic neutrinos on relic anti-neutrinos and vice versa into Z-bosons. In general, this annihilation process is expected to lead to sizeable absorption dips in the spectra to be observed on earth by neutrino observatories operating in the relevant energy region above 10{sup 13} GeV. In our analysis, we contrast the characteristic absorption features produced by constant and varying neutrino masses, including all thermal background effects caused by the relic neutrino motion. We firstly consider neutrinos from astrophysical sources and secondly neutrinos originating from the decomposition of topological defects using the appropriate fragmentation functions. On the one hand, independent of the nature of neutrino masses, our results illustrate the discovery potential for the cosmic neutrino background by means of relic neutrino absorption spectroscopy. On the other hand, they allow to estimate the prospects for testing its possible interpretation as source of Neutrino Dark Energy within the next decade by the neutrino observatories ANITA and LOFAR. (Orig.)

  14. Stable droplet generator for a high brightness laser produced plasma extreme ultraviolet source

    Science.gov (United States)

    Vinokhodov, A.; Krivokorytov, M.; Sidelnikov, Yu.; Krivtsun, V.; Medvedev, V.; Bushuev, V.; Koshelev, K.; Glushkov, D.; Ellwi, S.

    2016-10-01

    We present the results of the low-melting liquid metal droplets generation based on excited Rayleigh jet breakup. We discuss on the operation of the industrial and in-house designed and manufactured dispensing devices for the droplets generation. Droplet diameter can be varied in the range of 30-90 μm. The working frequency of the droplets, velocity, and the operating temperature were in the ranges of 20-150 kHz, 4-15 m/s, and up to 250 °C, respectively. The standard deviations for the droplet center of mass position both their diameter σ < 1 μm at the distance of 45 mm from the nozzle. Stable operation in the long-term (over 1.5 h) was demonstrated for a wide range of the droplet parameters: diameters, frequencies, and velocities. Physical factors affecting the stability of the generator operation have been identified. The technique for droplet synchronization, allowing using the droplet as a target for laser produced plasma, has been created; in particular, the generator has been successfully used in a high brightness extreme ultraviolet (EUV) light source. The operation with frequency up to 8 kHz was demonstrated as a result of the experimental simulation, which can provide an average brightness of the EUV source up to ˜1.2 kW/mm2 sr.

  15. Cry me a river: identifying the behavioral consequences of extremely high-stakes interpersonal deception.

    Science.gov (United States)

    Ten Brinke, Leanne; Porter, Stephen

    2012-12-01

    Deception evolved as a fundamental aspect of human social interaction. Numerous studies have examined behavioral cues to deception, but most have involved inconsequential lies and unmotivated liars in a laboratory context. We conducted the most comprehensive study to date of the behavioral consequences of extremely high-stakes, real-life deception--relative to comparable real-life sincere displays--via 3 communication channels: speech, body language, and emotional facial expressions. Televised footage of a large international sample of individuals (N = 78) emotionally pleading to the public for the return of a missing relative was meticulously coded frame-by-frame (30 frames/s for a total of 74,731 frames). About half of the pleaders eventually were convicted of killing the missing person on the basis of overwhelming evidence. Failed attempts to simulate sadness and leakage of happiness revealed deceptive pleaders' covert emotions. Liars used fewer words but more tentative words than truth-tellers, likely relating to increased cognitive load and psychological distancing. Further, each of these cues explained unique variance in predicting pleader sincerity.

  16. Identification and Plasma Diagnostics Study of Extreme Ultraviolet Transitions in Highly Charged Yttrium

    Directory of Open Access Journals (Sweden)

    Roshani Silwal

    2017-09-01

    Full Text Available Extreme ultraviolet spectra of the L-shell ions of highly charged yttrium (Y 26 + –Y 36 + were observed in the electron beam ion trap of the National Institute of Standards and Technology using a flat-field grazing-incidence spectrometer in the wavelength range of 4 nm-20 nm. The electron beam energy was systematically varied from 2.3 keV–6.0 keV to selectively produce different ionization stages. Fifty-nine spectral lines corresponding to Δ n = 0 transitions within the n = 2 and n = 3 shells have been identified using detailed collisional-radiative (CR modeling of the non-Maxwellian plasma. The uncertainties of the wavelength determinations ranged between 0.0004 nm and 0.0020 nm. Li-like resonance lines, 2s– 2 p 1 / 2 and 2s–2 p 3 / 2 , and the Na-like D lines, 3s– 3 p 1 / 2 and 3s– 3 p 3 / 2 , have been measured and compared with previous measurements and calculations. Forbidden magnetic dipole (M1 transitions were identified and analyzed for their potential applicability in plasma diagnostics using large-scale CR calculations including approximately 1.5 million transitions. Several line ratios were found to show strong dependence on electron density and, hence, may be implemented in the diagnostics of hot plasmas, in particular in fusion devices.

  17. Ionized sputter deposition using an extremely high plasma density pulsed magnetron discharge

    Energy Technology Data Exchange (ETDEWEB)

    Macak, Karol [Department of Physics, Linkoeping University, SE-581 83 Linkoeping, (Sweden); Kouznetsov, Vladimir [Department of Physics, Linkoeping University, SE-581 83 Linkoeping, (Sweden); Schneider, Jochen [Department of Physics, Linkoeping University, SE-581 83 Linkoeping, (Sweden); Helmersson, Ulf [Department of Physics, Linkoeping University, SE-581 83 Linkoeping, (Sweden); Petrov, Ivan [Materials Science Department and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States)

    2000-07-01

    Time resolved plasma probe measurements of a novel high power density pulsed plasma discharge are presented. Extreme peak power densities in the pulse (on the order of several kW cm{sup -2}) result in a very dense plasma with substrate ionic flux densities of up to 1 A cm{sup -2} at source-to-substrate distances of several cm and at a pressure of 0.13 Pa (1 mTorr). The pulse duration was {approx}100 {mu}s with a pulse repetition frequency of 50 Hz. The plasma consists of metallic and inert gas ions, as determined from time resolved Langmuir probe measurements and in situ optical emission spectroscopy data. It was found that the plasma composition at the beginning of the pulse was dominated by Ar ions. As time elapsed metal ions were detected and finally dominated the ion composition. The effect of the process parameters on the temporal development of the ionic fluxes is discussed. The ionized portion of the sputtered metal flux was found to have an average velocity of 2500 m s{sup -1} at 6 cm distance from the source, which conforms to the collisional cascade sputtering theory. The degree of ionization of the sputtered metal flux at a pressure of 0.13 Pa was found to be 40%{+-}20% by comparing the total flux of deposited atoms with the charge measured for the metal ions in the pulse. (c) 2000 American Vacuum Society.

  18. Adjoint sensitivity analysis of high frequency structures with Matlab

    CERN Document Server

    Bakr, Mohamed; Demir, Veysel

    2017-01-01

    This book covers the theory of adjoint sensitivity analysis and uses the popular FDTD (finite-difference time-domain) method to show how wideband sensitivities can be efficiently estimated for different types of materials and structures. It includes a variety of MATLAB® examples to help readers absorb the content more easily.

  19. Mesoscale high-resolution modeling of extreme wind speeds over western water areas of the Russian Arctic

    Science.gov (United States)

    Platonov, Vladimir S.; Kislov, Alexander V.

    2016-11-01

    A statistical analysis of extreme weather events over coastal areas of the Russian Arctic based on observational data has revealed many interesting features of wind velocity distributions. It has been shown that the extremes contain data belonging to two different statistical populations. Each of them is reliably described by a Weibull distribution. According to the standard terminology, these sets of extremes are named ‘black swans’ and ‘dragons’. The ‘dragons’ are responsible for most extremes, surpassing the ‘black swans’ by 10 - 30 %. Since the data of the global climate model INM-CM4 do not contain ‘dragons’, the wind speed extremes are investigated on the mesoscale using the COSMO-CLM model. The modelling results reveal no differences between the ‘swans’ and ‘dragons’ situations. It could be associated with the poor sample data used. However, according to many case studies and modeling results we assume that it is caused by a rare superposition of large-scale synoptic factors and many local meso- and microscale factors (surface, coastline configuration, etc.). Further studies of extreme wind speeds in the Arctic, such as ‘black swans’ and ‘dragons’, are necessary to focus on non-hydrostatic high-resolution atmospheric modelling using downscaling techniques.

  20. Free-fillet flap harvested in 'severe, high-energy landmine explosion' injuries of lower extremity: a case report.

    Science.gov (United States)

    Keklikçi, Kenan; Uygur, Fatih; Cengiz Bayram, Fazli; Cilli, Feridun

    2010-01-01

    Fillet flaps harvested from the non-replantable or unsalvageable amputated segment can be used to cover tissue defects. We discuss the case of a patient who had suffered a severe high-energy landmine injury, including severe leg damage, resulting in a below-knee amputation and soft-tissue defect around the forearm region. We successfully harvested the fillet from the amputated part of the extremity to the forearm region. We conclude that harvesting of a fillet flap from severely injured lower extremity, resulting from a high-energy landmine explosion, is technically feasible.

  1. Probing the origin of cosmic-rays with extremely high energy neutrinos using the IceCube Observatory

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Abbasi, R.; Ackermann, M.

    2013-01-01

    We have searched for extremely high energy neutrinos using data taken with the IceCube detector between May 2010 andMay 2012. Two neutrino-induced particle shower events with energies around 1 PeV were observed, as reported previously. In this work, we investigate whether these events could...... originate from cosmogenic neutrinos produced in the interactions of ultrahigh energy cosmic rays with ambient photons while propagating through intergalactic space. Exploiting IceCube’s large exposure for extremely high energy neutrinos and the lack of observed events above 100 PeV, we can rule out...

  2. Highly sensitive NIR PtSi/Si-nanostructure detectors

    Science.gov (United States)

    Li, Hua-gao; Guo, Pei; Yuan, An-bo; Long, Fei; Li, Rui-zhi; Li, Ping; Li, Yi

    2016-10-01

    We report a high external quantum efficiency (EQE) photodiode detector with PtSi/Si-nanostructures. Black silicon nanostructures were fabricated by metal-assist chemical etching (MCE), a 2 nm Pt layer was subsequently deposited on black silicon surface by DC magnetron sputtering system, and PtSi/Si-nanostructures were formed in vacuum annealing at 450 oC for 5 min. As the PtSi/Si-nanostructures presented a spiky shape, the absorption of incident light was remarkably enhanced for the repeat reflection and absorption. The breakdown voltage, dark current, threshold voltage and responsivity of the device were investigated to evaluate the performance of the PtSi/Si-nanostructures detector. The threshold voltage and dark currents of the PtSi/Si-nanostructure photodiode tends to be slightly higher than those of the standard diodes. The breakdown voltage remarkably was reduced because of existing avalanche breakdown in PtSi/Si-nanostructures. However, the photodiodes had high response at room temperature in near infrared region. At -5 V reverse bias voltage, the responsivity was 0.72 A/W in 1064 nm wavelength, and the EQE was 83.9%. By increasing the reverse bias voltage, the responsivity increased. At -60 V reverse bias voltage, the responsivity was 3.5 A/W, and the EQE was 407.5%, which means the quantum efficiency of PtSi/Si-nanostructure photodiodes was about 10 times higher than that of a standard diode. Future research includes how to apply this technology to enhance the NIR sensitivity of image sensors, such as Charge Coupled Devices (CCD).

  3. High throughput modular chambers for rapid evaluation of anesthetic sensitivity

    Directory of Open Access Journals (Sweden)

    Eckmann David M

    2006-11-01

    Full Text Available Abstract Background Anesthetic sensitivity is determined by the interaction of multiple genes. Hence, a dissection of genetic contributors would be aided by precise and high throughput behavioral screens. Traditionally, anesthetic phenotyping has addressed only induction of anesthesia, evaluated with dose-response curves, while ignoring potentially important data on emergence from anesthesia. Methods We designed and built a controlled environment apparatus to permit rapid phenotyping of twenty-four mice simultaneously. We used the loss of righting reflex to indicate anesthetic-induced unconsciousness. After fitting the data to a sigmoidal dose-response curve with variable slope, we calculated the MACLORR (EC50, the Hill coefficient, and the 95% confidence intervals bracketing these values. Upon termination of the anesthetic, Emergence timeRR was determined and expressed as the mean ± standard error for each inhaled anesthetic. Results In agreement with several previously published reports we find that the MACLORR of halothane, isoflurane, and sevoflurane in 8–12 week old C57BL/6J mice is 0.79% (95% confidence interval = 0.78 – 0.79%, 0.91% (95% confidence interval = 0.90 – 0.93%, and 1.96% (95% confidence interval = 1.94 – 1.97%, respectively. Hill coefficients for halothane, isoflurane, and sevoflurane are 24.7 (95% confidence interval = 19.8 – 29.7%, 19.2 (95% confidence interval = 14.0 – 24.3%, and 33.1 (95% confidence interval = 27.3 – 38.8%, respectively. After roughly 2.5 MACLORR • hr exposures, mice take 16.00 ± 1.07, 6.19 ± 0.32, and 2.15 ± 0.12 minutes to emerge from halothane, isoflurane, and sevoflurane, respectively. Conclusion This system enabled assessment of inhaled anesthetic responsiveness with a higher precision than that previously reported. It is broadly adaptable for delivering an inhaled therapeutic (or toxin to a population while monitoring its vital signs, motor reflexes, and providing precise control

  4. Reprogramming the body weight set point by a reciprocal interaction of hypothalamic leptin sensitivity and Pomc gene expression reverts extreme obesity

    Directory of Open Access Journals (Sweden)

    Kavaljit H. Chhabra

    2016-10-01

    Conclusions: Pomc reactivation in previously obese, calorie-restricted ArcPomc−/− mice normalized energy homeostasis, suggesting that their body weight set point was restored to control levels. In contrast, massively obese and hyperleptinemic ArcPomc−/− mice or those weight-matched and treated with PASylated leptin to maintain extreme hyperleptinemia prior to Pomc reactivation converged to an intermediate set point relative to lean control and obese ArcPomc−/− mice. We conclude that restoration of hypothalamic leptin sensitivity and Pomc expression is necessary for obese ArcPomc−/− mice to achieve and sustain normal metabolic homeostasis; whereas deficits in either parameter set a maladaptive allostatic balance that defends increased adiposity and body weight.

  5. Multi-scenario-based hazard analysis of high temperature extremes experienced in China during 1951-2010

    Institute of Scientific and Technical Information of China (English)

    YIN Zhan'e; YIN Jie; ZHANG Xiaowei

    2013-01-01

    China is physically and socio-economically susceptible to global warming-derived high temperature extremes because of its vast area and high urban population density.This article presents a scenario-based analysis method for high temperature extremes aimed at illustrating the latter's hazardous potential and exposure across China.Based on probability analysis,high temperature extreme scenarios with return periods of 5,10,20,and 50 years were designed,with a high temperature hazard index calculated by integrating two differentially-weighted extreme temperature indices (maximum temperature and high temperature days).To perform the exposure analysis,a land use map was employed to determine the spatial distribution of susceptible human activities under the different scenarios.The results indicate that there are two heat-prone regions and a sub-hotspot occupying a relatively small land area.However,the societal and economic consequences of such an environmental impact upon the North China Plain and middle/lower Yangtze River Basin would be substantial due to the concentration of human activities in these areas.

  6. Development of a Highly Sensitive Cell-Based Assay for Detecting Botulinum Neurotoxin Type A through Neural Culture Media Optimization.

    Science.gov (United States)

    Hong, Won S; Pezzi, Hannah M; Schuster, Andrea R; Berry, Scott M; Sung, Kyung E; Beebe, David J

    2016-01-01

    Botulinum neurotoxin (BoNT) is the most lethal naturally produced neurotoxin. Due to the extreme toxicity, BoNTs are implicated in bioterrorism, while the specific mechanism of action and long-lasting effect was found to be medically applicable in treating various neurological disorders. Therefore, for both public and patient safety, a highly sensitive, physiologic, and specific assay is needed. In this paper, we show a method for achieving a highly sensitive cell-based assay for BoNT/A detection using the motor neuron-like continuous cell line NG108-15. To achieve high sensitivity, we performed a media optimization study evaluating three commercially available neural supplements in combination with retinoic acid, purmorphamine, transforming growth factor β1 (TGFβ1), and ganglioside GT1b. We found nonlinear combinatorial effects on BoNT/A detection sensitivity, achieving an EC50 of 7.4 U ± 1.5 SD (or ~7.9 pM). The achieved detection sensitivity is comparable to that of assays that used primary and stem cell-derived neurons as well as the mouse lethality assay.

  7. High-sensitivity high-throughput chip based biosensor array for multiplexed detection of heavy metals

    Science.gov (United States)

    Yan, Hai; Tang, Naimei; Jairo, Grace A.; Chakravarty, Swapnajit; Blake, Diane A.; Chen, Ray T.

    2016-03-01

    Heavy metal ions released into the environment from industrial processes lead to various health hazards. We propose an on-chip label-free detection approach that allows high-sensitivity and high-throughput detection of heavy metals. The sensing device consists of 2-dimensional photonic crystal microcavities that are combined by multimode interferometer to form a sensor array. We experimentally demonstrate the detection of cadmium-chelate conjugate with concentration as low as 5 parts-per-billion (ppb).

  8. THE HIGH-RESOLUTION EXTREME-ULTRAVIOLET SPECTRUM OF N{sub 2} BY ELECTRON IMPACT

    Energy Technology Data Exchange (ETDEWEB)

    Heays, A. N. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Ajello, J. M.; Aguilar, A. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Lewis, B. R.; Gibson, S. T., E-mail: heays@strw.leidenuniv.nl [Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)

    2014-04-01

    We have analyzed high-resolution (FWHM = 0.2 Å) extreme-ultraviolet (EUV, 800-1350 Å) laboratory emission spectra of molecular nitrogen excited by an electron impact at 20 and 100 eV under (mostly) optically thin, single-scattering experimental conditions. A total of 491 emission features were observed from N{sub 2} electronic-vibrational transitions and atomic N I and N II multiplets and their emission cross sections were measured. Molecular emission was observed at vibrationally excited ground-state levels as high as v'' = 17, from the a {sup 1}Π {sub g} , b {sup 1}Π {sub u} , and b'{sup 1}Σ {sub u} {sup +} excited valence states and the Rydberg series c'{sub n} {sub +1} {sup 1}Σ {sub u} {sup +}, c{sub n} {sup 1}Π {sub u} , and o{sub n} {sup 1}Π {sub u} for n between 3 and 9. The frequently blended molecular emission bands were disentangled with the aid of a sophisticated and predictive quantum-mechanical model of excited states that includes the strong coupling between valence and Rydberg electronic states and the effects of predissociation. Improved model parameters describing electronic transition moments were obtained from the experiment and allowed for a reliable prediction of the vibrationally summed electronic emission cross section, including an extrapolation to unobserved emission bands and those that are optically thick in the experimental spectra. Vibrationally dependent electronic excitation functions were inferred from a comparison of emission features following 20 and 100 eV electron-impact collisional excitation. The electron-impact-induced fluorescence measurements are compared with Cassini Ultraviolet Imaging Spectrograph observations of emissions from Titan's upper atmosphere.

  9. Parasitic slow extraction of extremely weak beam from a high-intensity proton rapid cycling synchrotron

    Science.gov (United States)

    Zou, Ye; Tang, Jingyu; Yang, Zheng; Jing, Hantao

    2014-02-01

    This paper proposes a novel method to extract extremely weak beam from a high-intensity proton rapid cycling synchrotron (RCS) in the parasitic mode, while maintaining the normal fast extraction. The usual slow extraction method from a synchrotron by employing third-order resonance cannot be applied in a high-intensity RCS due to a very short flat-top at the extraction energy and the strict control on beam loss. The proposed parasitic slow extraction method moves the beam to scrape a scattering foil prior to the fast beam extraction by employing either a local orbit bump or momentum deviation or their combination, so that the halo part of the beam will be scattered. A part of the scattered particles will be extracted from the RCS and guided to the experimental area. The slow extraction process can last about a few milliseconds before the beam is extracted by the fast extraction system. The method has been applied to the RCS of China Spallation Neutron Source. With 1.6 GeV in the extraction energy, 62.5 μA in the average current and 25 Hz in the repetition rate for the RCS, the proton intensity by the slow extraction method can be up to 2×104 protons per cycle or 5×105 protons per second. The extracted beam has also a good time structure of approximately uniform in a spill which is required for many applications such as detector tests. Detailed studies including the scattering effect in the foil, the local orbit bump by the bump magnets and dispersive orbit bump by modifying the RF pattern, the multi-particle simulations by ORBIT and TURTLE codes, and some technical features for the extraction magnets are presented.

  10. Crossing historical and sedimentary archives to reconstruct an extreme flood event calendar in high alpine areas

    Science.gov (United States)

    Wilhelm, B.; Giguet-Covex, C.; Arnaud, F.; Allignol, F.; Legaz, A.; Melo, A.

    2010-09-01

    to reconstruct a high-resolution flood calendar to assess a reliable frequency of extreme flood events which can be compared with precise climatic parameters as the instrumental and reconstructed temperature. Finally it was equally possible to compare the recorded intensity of flood events between the both archives and thus estimate the hazard perception and vulnerability of local people throughout the last three centuries.

  11. Extreme ultraviolet and soft x-ray diagnostics of high-temperature plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Moos, W.

    1986-10-02

    This report describes recent progress and plans for calendar year 1987 in the Johns Hopkins University program to develop and improve spectroscopic diagnostics for the high temperature plasmas used in magnetic fusion research. An EUV spectrograph which provides time resolved spectra along fifteen chords of a plasma device has been completed and evaluation on DIII-D will began in late 1986. Other instrumentation work includes the evaluation of a sensitive detector for ion temperature/velocity distribution determinations and a feasibility study of Zeeman polarimetry for determining magnetic fields. A comprehensive data set taken on the TEXT tokamak is undergoing analysis as a means of improving the ionic parameters used in diagnostic studies and to expand the capabilities of existing instruments. Potential new advanced in spectroscopic technology are being monitored to determine if they provide advantages for fusion research.

  12. Extreme ultraviolet and soft x-ray diagnostics of high-temperature plasmas. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Moos, W.

    1986-10-02

    This report describes recent progress and plans for calendar year 1987 in the Johns Hopkins University program to develop and improve spectroscopic diagnostics for the high temperature plasmas used in magnetic fusion research. An EUV spectrograph which provides time resolved spectra along fifteen chords of a plasma device has been completed and evaluation on DIII-D will began in late 1986. Other instrumentation work includes the evaluation of a sensitive detector for ion temperature/velocity distribution determinations and a feasibility study of Zeeman polarimetry for determining magnetic fields. A comprehensive data set taken on the TEXT tokamak is undergoing analysis as a means of improving the ionic parameters used in diagnostic studies and to expand the capabilities of existing instruments. Potential new advanced in spectroscopic technology are being monitored to determine if they provide advantages for fusion research.

  13. Weak-Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-Line Regions?

    CERN Document Server

    Shemmer, Ohad; Anderson, Scott F; Brandt, W N; Diamond-Stanic, Aleksandar M; Fan, Xiaohui; Lira, Paulina; Netzer, Hagai; Plotkin, Richard M; Richards, Gordon T; Schneider, Donald P; Strauss, Michael A

    2010-01-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z=3.55 and SDSS J123743.08+630144.9 at z=3.49. In both sources we detect an unusually weak broad H_beta line and we place tight upper limits on the strengths of their [O III] lines. Virial, H_beta-based black-hole mass determinations indicate normalized accretion rates of L/L_Edd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Gamma=1.91^{+0.24}_{-0.22} which supports the virial L/L_Edd determination in this source. Our results suggest that the weakness of the broad-emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad-emission line region proper...

  14. Novel cookie-with-chocolate carbon dots displaying extremely acidophilic high luminescence

    Science.gov (United States)

    Lu, Siyu; Zhao, Xiaohuan; Zhu, Shoujun; Song, Yubin; Yang, Bai

    2014-10-01

    A fluorescent carbon dot with a cookie-with-chocolate film structure (about 5 × 5 μm2) showed a high fluorescence quantum yield (61.12%) at low pH. It was hydrothermally synthesized from l-serine and l-tryptophan. The formation mechanism of the film with carbon dots (CDs) was investigated. The film structure was formed by hydrogen bonding and π-π stacking interactions between aromatic rings. The strong blue fluorescence of the CDs increased under strong acidic conditions owing to the changes in the N-groups. These cookie-like CDs are attractive for their potential use as effective fluorescent probes for the sensitive detection of aqueous H+ and Fe3+.A fluorescent carbon dot with a cookie-with-chocolate film structure (about 5 × 5 μm2) showed a high fluorescence quantum yield (61.12%) at low pH. It was hydrothermally synthesized from l-serine and l-tryptophan. The formation mechanism of the film with carbon dots (CDs) was investigated. The film structure was formed by hydrogen bonding and π-π stacking interactions between aromatic rings. The strong blue fluorescence of the CDs increased under strong acidic conditions owing to the changes in the N-groups. These cookie-like CDs are attractive for their potential use as effective fluorescent probes for the sensitive detection of aqueous H+ and Fe3+. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03965c

  15. High sensitivity fiber Bragg grating pressure difference sensor

    Institute of Scientific and Technical Information of China (English)

    Haiwei Fu(傅海威); Junmei Fu(傅君眉); Xueguang Qiao(乔学光)

    2004-01-01

    Based on the effect of fiber Bragg grating (FBG) pressure difference sensitivity enhancement by encapsulating the FBG with uniform strength beam and metal bellows, a FBG pressure difference sensor is proposed, and its mechanism is also discussed. The relationship between Bragg wavelength and the pressure difference is derived, and the expression of the pressure difference sensitivity coefficient is also given. It is indicated that there is good linear relation between the Bragg wavelength shift and the pressure difference of the sensor. The theoretical and experimental pressure difference sensitivity coefficients are 38.67 and 37.6 nm/MPa, which are 12890 and 12533 times of that of the bare FBG, respectively. The pressure difference sensitivity and dynamic range can be easily changed by changing the size, Young's modulus, and Poisson's ratio of the beam and the bellows.

  16. Design of a High Sensitivity GNSS receiver for Lunar missions

    Science.gov (United States)

    Musumeci, Luciano; Dovis, Fabio; Silva, João S.; da Silva, Pedro F.; Lopes, Hugo D.

    2016-06-01

    This paper presents the design of a satellite navigation receiver architecture tailored for future Lunar exploration missions, demonstrating the feasibility of using Global Navigation Satellite Systems signals integrated with an orbital filter to achieve such a scope. It analyzes the performance of a navigation solution based on pseudorange and pseudorange rate measurements, generated through the processing of very weak signals of the Global Positioning System (GPS) L1/L5 and Galileo E1/E5 frequency bands. In critical scenarios (e.g. during manoeuvres) acceleration and attitude measurements from additional sensors complementing the GNSS measurements are integrated with the GNSS measurement to match the positioning requirement. A review of environment characteristics (dynamics, geometry and signal power) for the different phases of a reference Lunar mission is provided, focusing on the stringent requirements of the Descent, Approach and Hazard Detection and Avoidance phase. The design of High Sensitivity acquisition and tracking schemes is supported by an extensive simulation test campaign using a software receiver implementation and navigation results are validated by means of an end-to-end software simulator. Acquisition and tracking of GPS and Galileo signals of the L1/E1 and L5/E5a bands was successfully demonstrated for Carrier-to-Noise density ratios as low as 5-8 dB-Hz. The proposed navigation architecture provides acceptable performances during the considered critical phases, granting position and velocity errors below 61.4 m and 3.2 m/s, respectively, for the 99.7% of the mission time.

  17. A high sensitive fiber-optic strain sensor with tunable temperature sensitivity for temperature-compensation measurement

    Science.gov (United States)

    Hu, Jie; Huang, Hui; Bai, Min; Zhan, Tingting; Yang, Zhibo; Yu, Yan; Qu, Bo

    2017-02-01

    A high sensitive fiber-optic strain sensor, which consists of a cantilever, a tandem rod and a fiber collimator, was proposed. The tandem rod, which transfer the applied strain to the cantilever, was used for tuning the temperature sensitivity from ‑0.15 to 0.19 dB/°C via changing the length ratio of the rods. Moreover, due to the small beam divergence of the collimator, high strain sensitivity can be realized via incident-angle sensitive detection-mechanism. A strain detection-range of 1.1 × 103 με (with a sensing length of 21.5 mm), a detection limit of 5.7 × 10‑3 με, and a maximum operating frequency of 1.18 KHz were demonstrated. This sensor is promising for compensating the thermal-expansion of various target objects.

  18. Synthesis of one-molecule-thick single-crystalline nanosheets of energetic material for high-sensitive force sensor.

    Science.gov (United States)

    Yang, Guangcheng; Hu, Hailong; Zhou, Yong; Hu, Yingjie; Huang, Hui; Nie, Fude; Shi, Weimei

    2012-01-01

    Energetic material is a reactive substance that contains a great amount of potential energy, which is extremely sensitive to external stimuli like force. In this work, one-molecule-thick single-crystalline nanosheets of energetic material were synthesized. Very small force applied on the nanosheet proves to lead to the rotation of the tilted nitro groups, and subsequently change of current of the nanosheet. We apply this principle to design high-sensitive force sensor. A theoretical model of force-current dependence was established based on the nanosheets' molecular packing structure model that was well supported with the high resolution XPS, AFM analysis results. An ultra-low-force with range of several picoNewton to several nanoNewton can be measured by determination of corresponding current value.

  19. High-resolution numerical modeling of mesoscale island wakes and sensitivity to static topographic relief data

    Directory of Open Access Journals (Sweden)

    C. G. Nunalee

    2015-08-01

    Full Text Available Recent decades have witnessed a drastic increase in the fidelity of numerical weather prediction (NWP modeling. Currently, both research-grade and operational NWP models regularly perform simulations with horizontal grid spacings as fine as 1 km. This migration towards higher resolution potentially improves NWP model solutions by increasing the resolvability of mesoscale processes and reducing dependency on empirical physics parameterizations. However, at the same time, the accuracy of high-resolution simulations, particularly in the atmospheric boundary layer (ABL, is also sensitive to orographic forcing which can have significant variability on the same spatial scale as, or smaller than, NWP model grids. Despite this sensitivity, many high-resolution atmospheric simulations do not consider uncertainty with respect to selection of static terrain height data set. In this paper, we use the Weather Research and Forecasting (WRF model to simulate realistic cases of lower tropospheric flow over and downstream of mountainous islands using the default global 30 s United States Geographic Survey terrain height data set (GTOPO30, the Shuttle Radar Topography Mission (SRTM, and the Global Multi-resolution Terrain Elevation Data set (GMTED2010 terrain height data sets. While the differences between the SRTM-based and GMTED2010-based simulations are extremely small, the GTOPO30-based simulations differ significantly. Our results demonstrate cases where the differences between the source terrain data sets are significant enough to produce entirely different orographic wake mechanics, such as vortex shedding vs. no vortex shedding. These results are also compared to MODIS visible satellite imagery and ASCAT near-surface wind retrievals. Collectively, these results highlight the importance of utilizing accurate static orographic boundary conditions when running high-resolution mesoscale models.

  20. Effect of extremely low frequency electromagnetic field exposure on sleep quality in high voltage substations.

    Science.gov (United States)

    Barsam, Tayebeh; Monazzam, Mohammad Reza; Haghdoost, Ali Akbar; Ghotbi, Mohammad Reza; Dehghan, Somayeh Farhang

    2012-11-30

    This study aims to investigate the effect of extremely low frequency electromagnetic fields exposure on sleep quality in high voltage substations (132, 230 and 400 KV) in Kerman city and the suburbs. For this purpose, the electric field intensity and magnetic flux density were measured in different parts of substations, and then the occupational exposure was estimated by averaging electric field intensity and magnetic flux density in a shift work. The cases comprised 67 workers who had been exposed to electromagnetic fields in age range of 24-57 and the controls were 110 persons the age ranged 24-50 years. Sleep quality of both groups was evaluated by the Pittsburgh Sleep Quality Index questionnaire (PSQI). Finally, these data were subjected to statistical analysis. The results indicated that 90.5% of cases and 85.3% of controls had the poor quality sleep according to PSQI (P-value=0.615). Total sleep quality score mean for the case and control groups were 10.22 ± 3.4 and 9.74 ± 3.62 (P-value=0.415) ,respectively. Meantime to fall asleep for cases(35.68 ± 26.25 min) was significantly higher than for controls (28.89 ± 20.18 min) (P-value=0.002). Cases had average sleep duration of 5.49 ± 1.31 hours, which was lower ascompared with control subjects (5.90 ± 1.67hours). Although there was a higher percentage for the case group with poor sleep quality than the control group, but no statistically significant difference was observed.

  1. Effect of extremely low frequency electromagnetic field exposure on sleep quality in high voltage substations

    Directory of Open Access Journals (Sweden)

    Barsam Tayebeh

    2012-11-01

    Full Text Available Abstract This study aims to investigate the effect of extremely low frequency electromagnetic fields exposure on sleep quality in high voltage substations (132, 230 and 400 KV in Kerman city and the suburbs. For this purpose, the electric field intensity and magnetic flux density were measured in different parts of substations, and then the occupational exposure was estimated by averaging electric field intensity and magnetic flux density in a shift work. The cases comprised 67 workers who had been exposed to electromagnetic fields in age range of 24–57 and the controls were 110 persons the age ranged 24–50 years. Sleep quality of both groups was evaluated by the Pittsburgh Sleep Quality Index questionnaire (PSQI. Finally, these data were subjected to statistical analysis. The results indicated that 90.5% of cases and 85.3% of controls had the poor quality sleep according to PSQI (P-value=0.615. Total sleep quality score mean for the case and control groups were 10.22 ± 3.4 and 9.74 ± 3.62 (P-value=0.415 ,respectively. Meantime to fall asleep for cases(35.68 ± 26.25 min was significantly higher than for controls (28.89 ± 20.18 min (P-value=0.002. Cases had average sleep duration of 5.49 ± 1.31 hours, which was lower ascompared with control subjects (5.90 ± 1.67hours. Although there was a higher percentage for the case group with poor sleep quality than the control group, but no statistically significant difference was observed.

  2. Extremely high ferritin level after an acute myocardial infarction in an end stage renal disease patient.

    Science.gov (United States)

    Sandhu, Gagangeet; Mankal, Pavan; Gupta, Isha; Tagani, Adrian; Ranade, Aditi; Jones, James; Bansal, Anip

    2014-07-01

    We present here a case of an asymptomatic end-stage renal disease (ESRD) patient, who had an unexplained persistent mild leukocytosis in the setting of an extremely high ferritin level (8,997 ng/ml; reference range: 12 - 300 ng/ml) 3 weeks after she suffered from a myocardial infarction (MI). Infection as the cause of these laboratory abnormalities was ruled out. A week later, the patient was noted to have asymptomatic hypotension (100/60 mmHg; her baseline blood pressure was 120/70 mmHg) during a maintenance hemodialysis session. An echocardiography revealed an interval development of moderate pericardial effusion when compared to her previous echocardiography 4 weeks before. In the setting of a recent MI with other laboratory markers suggesting an ongoing inflammatory process, a tentative diagnosis of Dressler's syndrome was made. A pericardial tap yielded exudative (bloody) fluid, thus, confirming our suspicion. Dressler's syndrome results from an inflammation of the pericardium as a consequence of an underlying autoimmune process few weeks to months after a myocardial infarction or post-cardiac surgery. Although it typically presents with pleuritic chest pain, fever, leukocytosis, and a friction rub; our case illustrates that the initial presentation may be asymptomatic in ESRD patients. For the same reason, it is likely an under-recognized entity in such patients. An unexplained elevated ferritin in an ESRD patient with recent history of MI should prompt an investigation for Dressler's syndrome. In those with associated significant pericardial effusion, daily HD should be initiated and anticoagulation should be avoided. Unlike other ESRD associated pericarditis, steroids and NSAIDs should be avoided in Dressler's syndrome as they may hamper cardiac remodeling in the immediate post-MI period. Colchicine may offer some benefit in patients with associated chest pain. For those failing medical management or manifesting overt signs of tamponade, surgical drainage

  3. Continuous and discrete extreme climatic events affecting the dynamics of a high-arctic reindeer population.

    Science.gov (United States)

    Chan, Kung-Sik; Mysterud, Atle; Øritsland, Nils Are; Severinsen, Torbjørn; Stenseth, Nils Chr

    2005-10-01

    Climate at northern latitudes are currently changing both with regard to the mean and the temporal variability at any given site, increasing the frequency of extreme events such as cold and warm spells. Here we use a conceptually new modelling approach with two different dynamic terms of the climatic effects on a Svalbard reindeer population (the Brøggerhalvøya population) which underwent an extreme icing event ("locked pastures") with 80% reduction in population size during one winter (1993/94). One term captures the continuous and linear effect depending upon the Arctic Oscillation and another the discrete (rare) "event" process. The introduction of an "event" parameter describing the discrete extreme winter resulted in a more parsimonious model. Such an approach may be useful in strongly age-structured ungulate populations, with young and very old individuals being particularly prone to mortality factors during adverse conditions (resulting in a population structure that differs before and after extreme climatic events). A simulation study demonstrates that our approach is able to properly detect the ecological effects of such extreme climate events.

  4. Frequency Analysis of High Flow Extremes in the Yingluoxia Watershed in Northwest China

    Directory of Open Access Journals (Sweden)

    Zhanling Li

    2016-05-01

    Full Text Available Statistical modeling of hydrological extremes is significant to the construction of hydraulic engineering. This paper, taking the Yingluoxia watershed as the study area, compares the annual maximum (AM series and the peaks over a threshold (POT series in order to study the hydrological extremes, examines the stationarity and independence assumptions for the two series, and discusses the estimations and uncertainties of return levels from the two series using the Generalized Extreme Value (GEV and Generalized Pareto distribution (GPD models. For comparison, the return levels from all threshold excesses with considering the extremal index are also estimated. For the POT series, the threshold is selected by examining the mean excess plot and the stability of the parameter estimates and by using common-sense. The serial correlation is reduced by filtering out a set of dependent threshold excesses. Results show that both series are approximately stationary and independent. The GEV model fits the AM series well and the GPD model fits the POT series well. The estimated return levels are fairly comparable for the AM series, the POT series, and all threshold excesses with considering the extremal index, with the difference being less than 10% for return periods longer than 10 years. The uncertainties of the estimated return levels are the highest for the AM series, and next for the POT series and then for all threshold excesses series in turn.

  5. Fluorescent Organic Planar pn Heterojunction Light-Emitting Diodes with Simplified Structure, Extremely Low Driving Voltage, and High Efficiency.

    Science.gov (United States)

    Chen, Dongcheng; Xie, Gaozhan; Cai, Xinyi; Liu, Ming; Cao, Yong; Su, Shi-Jian

    2016-01-13

    Fluorescent organic light-emitting diodes capable of radiative utilization of both singlet and triplet excitons are achieved via a simple double-layer planar pn hetero-junction configuration without a conventional emission layer, leading to high external quantum efficiency above 10% and extremely low driving voltages close to the theoretical minima.

  6. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    Energy Technology Data Exchange (ETDEWEB)

    Wang, He [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Xu, Yiming [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Ulonska, Stefan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Robinson, Joseph S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Ranitovic, Predrag [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Kaindl, Robert A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division

    2015-06-11

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. In this article, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s-1 is generated at 22.3 eV, with 5 × 10-5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Finally, spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications.

  7. Reprogramming the body weight set point by a reciprocal interaction of hypothalamic leptin sensitivity and Pomc gene expression reverts extreme obesity.

    Science.gov (United States)

    Chhabra, Kavaljit H; Adams, Jessica M; Jones, Graham L; Yamashita, Miho; Schlapschy, Martin; Skerra, Arne; Rubinstein, Marcelo; Low, Malcolm J

    2016-10-01

    A major challenge for obesity treatment is the maintenance of reduced body weight. Diet-induced obese mice are resistant to achieving normoweight once the obesogenic conditions are reversed, in part because lowered circulating leptin leads to a reduction in metabolic rate and a rebound of hyperphagia that defend the previously elevated body weight set point. Because hypothalamic POMC is a central leptin target, we investigated whether changes in circulating leptin modify Pomc expression to maintain normal energy balance in genetically predisposed obese mice. Mice with reversible Pomc silencing in the arcuate nucleus (ArcPomc (-/-)) become morbidly obese eating low-fat chow. We measured body composition, food intake, plasma leptin, and leptin sensitivity in ArcPomc (-/-) mice weight-matched to littermate controls by calorie restriction, either from weaning or after developing obesity. Pomc was reactivated by tamoxifen-dependent Cre recombinase transgenes. Long acting PASylated leptin was administered to weight-reduced ArcPomc (-/-) mice to mimic the super-elevated leptin levels of obese mice. ArcPomc (-/-) mice had increased adiposity and leptin levels shortly after weaning. Despite chronic calorie restriction to achieve normoweight, ArcPomc (-/-) mice remained moderately hyperleptinemic and resistant to exogenous leptin's effects to reduce weight and food intake. However, subsequent Pomc reactivation in weight-matched ArcPomc (-/-) mice normalized plasma leptin, leptin sensitivity, adiposity, and food intake. In contrast, extreme hyperleptinemia induced by PASylated leptin blocked the full restoration of hypothalamic Pomc expression in calorie restricted ArcPomc (-/-) mice, which consequently regained 30% of their lost body weight and attained a metabolic steady state similar to that of tamoxifen treated obese ArcPomc (-/-) mice. Pomc reactivation in previously obese, calorie-restricted ArcPomc (-/-) mice normalized energy homeostasis, suggesting that their body

  8. High spectral response heteroleptic ruthenium (II) complexes as sensitizers for dye sensitized solar cells

    Indian Academy of Sciences (India)

    M Chandrasekharam; Ch Srinivasarao; T Suresh; M Anil Reddy; M Raghavender; G Rajkumar; M Srinivasu; P Yella Reddy

    2011-01-01

    Heteroleptic ruthenium(II) bipyridyl complex, cis-Ru(II)(4,4'-bis(4-tert-butylstyryl)-2,2'-bipyridyl) (4,4'-dicarboxy-2,2'-bipyridyl) (NCS2) (H112) was synthesized and characterized by 1H-NMR, MASS, Spectrofluorometer and UV-Vis spectroscopes. The photo-voltaic performance of the sensitizer was evaluated in Dye Sensitized Solar Cell (DSSC) under irradiation of AM 1.5 G solar light and the photovoltaic characteristics were compared with those of reference cells of HRS1 and N719 fabricated under comparable conditions. Compared to N719, H112 sensitizer showed enhanced molar extinction coefficient and relatively better monochromatic incident photon-to-current conversion efficiency (IPCE) across the spectral range of 400 to 800 nm with solar energy-to-electrical conversion efficiency () of 2.43% [open circuit photovoltage (VOC) = 0.631V, short-circuit photocurrent density (JSC) = 8.96 mA/cm2, fill factor (ff) = 0.430], while values of 2.51% (VOC = 0.651V, JSC = 9.41 mA/cm2, ff = 0.410) and 2.74% (VOC = 0.705 V, JSC = 8.62 mA/cm2, ff = 0.455) were obtained for HRS1 and N719 sensitized solar cells respectively. The introduction of 4,4'-bis(4-tert-butylstyryl) moieties on one of the bipyridine moieties of N719 complex shows higher light absorption abilities, IPCE and JSC.

  9. Removal mechanisms for extremely high-level fluoroquinolone antibiotics in pharmaceutical wastewater treatment plants.

    Science.gov (United States)

    Guo, Xinyan; Yan, Zheng; Zhang, Yi; Kong, Xiangji; Kong, Deyang; Shan, Zhengjun; Wang, Na

    2017-03-01

    Pharmaceutical wastewater treatment plants (PWWTPs) receive industrial effluents from the plant that contain extremely high levels of antibiotics and are regarded as one of the major sources of antibiotics in the environment. Two PWWTPs have been selected in Zhejiang Province, China, to assess the removal mechanisms of fluoroquinolone antibiotics (FQs). PWWTP A uses activated sludge with biocarriers in a moving bed biofilm reactor in anoxic and aerobic units, and PWWTP B uses biological units under anaerobic, aerobic, and anoxic conditions. The wastewater samples and solid samples (sludge and suspended solid matter) were analyzed using solid-phase extraction and ultra-performance liquid chromatography-mass spectrometry. Ofloxacin (OFX) was detected in each stage of PWWTP A, and enrofloxacin and ciprofloxacin were detected in PWWTP B. The concentrations of FQs ranged from 0.32 μg/L to 5.7 mg/L. Although the FQs were largely removed in the biological units (94.5 to 99.9%), large amounts were still discharged in the final effluent (up to 88.0 ± 7.0 μg/L) and dewatered sludge (up to 0.85 ± 0.24 mg/kg). Mass balance analyses of samples from PWWTP A indicated that biodegradation (93.8%) was the major mechanism responsible for the removal of OFX, whereas the contribution of sorption by sludge (0.79%) was less significant, deviating from the findings of most similar studies. Using linear analysis and correlation analysis, we found that the log10 values of the FQ concentration in the sludge were positively related with the log10 values of the equilibrium concentration in water (C w ). These relationships can be described by a Freundlich-like equation. However, these relationships were negative when the C w values were high. Our preliminary explanation is that the equilibrium C w plays an important role in controlling the sorption behavior of FQs in activated sludge.

  10. Development of High Temperature/High Sensitivity Novel Chemical Resistive Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chonglin; Nash, Patrick; Ma, Chunrui; Enriquez, Erik; Wang, Haibing; Xu, Xing; Bao, Shangyong; Collins, Gregory

    2013-08-13

    The research has been focused to design, fabricate, and develop high temperature/high sensitivity novel multifunctional chemical sensors for the selective detection of fossil energy gases used in power and fuel systems. By systematically studying the physical properties of the LnBaCo{sub 2}O{sub 5+d} (LBCO) [Ln=Pr or La] thin-films, a new concept chemical sensor based high temperature chemical resistant change has been developed for the application for the next generation highly efficient and near zero emission power generation technologies. We also discovered that the superfast chemical dynamic behavior and an ultrafast surface exchange kinetics in the highly epitaxial LBCO thin films. Furthermore, our research indicates that hydrogen can superfast diffuse in the ordered oxygen vacancy structures in the highly epitaxial LBCO thin films, which suggest that the LBCO thin film not only can be an excellent candidate for the fabrication of high temperature ultra sensitive chemical sensors and control systems for power and fuel monitoring systems, but also can be an excellent candidate for the low temperature solid oxide fuel cell anode and cathode materials.

  11. Highly sensitive detection of cancer cells with an electrochemical cytosensor based on boronic acid functional polythiophene.

    Science.gov (United States)

    Dervisevic, Muamer; Senel, Mehmet; Sagir, Tugba; Isik, Sevim

    2017-04-15

    The detection of cancer cells through important molecular recognition target such as sialic acid is significant for the clinical diagnosis and treatment. There are many electrochemical cytosensors developed for cancer cells detection but most of them have complicated fabrication processes which results in poor reproducibility and reliability. In this study, a simple, low-cost, and highly sensitive electrochemical cytosensor was designed based on boronic acid-functionalized polythiophene. In cytosensors fabrication simple single-step procedure was used which includes coating pencil graphite electrode (PGE) by means of electro-polymerization of 3-Thienyl boronic acid and Thiophen. Electrochemical impedance spectroscopy and cyclic voltammetry were used as an analytical methods to optimize and measure analytical performances of PGE/P(TBA0.5Th0.5) based electrode. Cytosensor showed extremely good analytical performances in detection of cancer cells with linear rage of 1×10(1) to 1×10(6) cellsmL(-1) exhibiting low detection limit of 10 cellsmL(-1) and incubation time of 10min. Next to excellent analytical performances, it showed high selectivity towards AGS cancer cells when compared to HEK 293 normal cells and bone marrow mesenchymal stem cells (BM-hMSCs). This method is promising for future applications in early stage cancer diagnosis.

  12. A highly selective and sensitive fluorescence probe for the hypochlorite anion.

    Science.gov (United States)

    Chen, Xinqi; Wang, Xiaochun; Wang, Shujuan; Shi, Wen; Wang, Ke; Ma, Huimin

    2008-01-01

    A new rhodamine B-based fluorescent probe for the hypochlorite anion (OCl(-)) has been designed, synthesized, and characterized. The probe comprises a spectroscopic unit of rhodamine B and an OCl(-)-specific reactive moiety of dibenzoylhydrazine. The probe itself is nearly nonfluorescent because of its spirolactam structure. Upon reaction with OCl(-), however, a largely enhanced fluorescence is produced due to the opening of the spirolactam ring by the oxidation of the exocyclic hydrazide and subsequently the formation of the hydrolytic product rhodamine B. Most notably, the fluorescence-on reaction shows high sensitivity and extremely high selectivity for OCl(-) over other common ions and oxidants, which makes it possible for OCl(-) to be detected directly in their presence. In addition, the reaction mechanism has been investigated and proposed. The OCl(-) anion selectively oxidizes the hydrazo group in the probe, and forms the analogue of dibenzoyl diimide, which in turn hydrolyzes and releases the fluorophore. The reaction mechanism that is described here might be useful in developing excellent spectroscopic probes with cleavable active bonds for other species.

  13. A high-sensitivity push-pull magnetometer

    Science.gov (United States)

    Breschi, E.; Grujić, Z. D.; Knowles, P.; Weis, A.

    2014-01-01

    We describe our approach to atomic magnetometry based on the push-pull optical pumping technique. Cesium vapor is pumped and probed by a resonant laser beam whose circular polarization is modulated synchronously with the spin evolution dynamics induced by a static magnetic field. The magnetometer is operated in a phase-locked loop, and it has an intrinsic sensitivity below 20fT/√Hz , using a room temperature paraffin-coated cell. We use the magnetometer to monitor magnetic field fluctuations with a sensitivity of 300fT/√Hz .

  14. A high-sensitivity push-pull magnetometer

    CERN Document Server

    Breschi, E; Knowles, P; Weis, A

    2013-01-01

    We describe our approach to atomic magnetometry based on the push-pull optical pumping technique. Cesium vapor is pumped and probed by a resonant laser beam whose circular polarization is modulated synchronously with the spin evolution dynamics induced by a static magnetic field. The magnetometer is operated in a phase-locked loop, and it has an intrinsic sensitivity below 20fT/\\sqrt(Hz) using a room temperature paraffin-coated cell. We use the magnetometer to monitor magnetic field fluctuations with a sensitivity of 300fT/\\sqrt(Hz).

  15. High Sensitivity SPECT for Small Animals and Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Gregory S. [UC Davis

    2015-02-28

    Imaging systems using single gamma-ray emitting radioisotopes typically implement collimators in order to form the images. However, a tradeoff in sensitivity is inherent in the use of collimators, and modern preclinical single-photon emission computed tomography (SPECT) systems detect a very small fraction of emitted gamma-rays (<0.3%). We have built a collimator-less system, which can reach sensitivity of 40% for 99mTc imaging, while still producing images of sufficient spatial resolution for certain applications in thin objects such as mice, small plants, and well plates used for in vitro experiments.

  16. Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber.

    Science.gov (United States)

    U S, Dinish; Fu, Chit Yaw; Soh, Kiat Seng; Ramaswamy, Bhuvaneswari; Kumar, Anil; Olivo, Malini

    2012-03-15

    Enzyme-linked immunosorbent assays (ELISA) are commonly used for detecting cancer proteins at concentration in the range of about ng-μg/mL. Hence it often fails to detect tumor markers at the early stages of cancer and other diseases where the amount of protein is extremely low. Herein, we report a novel photonic crystal fiber (PCF) based surface enhanced Raman scattering (SERS) sensing platform for the ultrasensitive detection of cancer proteins in an extremely low sample volume. As a proof of concept, epidermal growth factor receptors (EGFRs) in a lysate solution from human epithelial carcinoma cells were immobilized into the hollow core PCF. Highly sensitive detection of protein was achieved using anti-EGFR antibody conjugated SERS nanotag. This SERS nanotag probe was realized by anchoring highly active Raman molecules onto the gold nanoparticles followed by bioconjugation. The proposed sensing method can detect low amount of proteins at ∼100 pg in a sample volume of ∼10 nL. Our approach may lead to the highly sensitive protein sensing methodology for the early detection of diseases.

  17. Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis.

    Science.gov (United States)

    Soler, Maria; Mesa-Antunez, Pablo; Estevez, M-Carmen; Ruiz-Sanchez, Antonio Jesus; Otte, Marinus A; Sepulveda, Borja; Collado, Daniel; Mayorga, Cristobalina; Torres, Maria Jose; Perez-Inestrosa, Ezequiel; Lechuga, Laura M

    2015-04-15

    A label-free biosensing strategy for amoxicillin (AX) allergy diagnosis based on the combination of novel dendrimer-based conjugates and a recently developed nanoplasmonic sensor technology is reported. Gold nanodisks were functionalized with a custom-designed thiol-ending-polyamido-based dendron (d-BAPAD) peripherally decorated with amoxicilloyl (AXO) groups (d-BAPAD-AXO) in order to detect specific IgE generated in patient's serum against this antibiotic during an allergy outbreak. This innovative strategy, which follows a simple one-step immobilization procedure, shows exceptional results in terms of sensitivity and robustness, leading to a highly-reproducible and long-term stable surface which allows achieving extremely low limits of detection. Moreover, the viability of this biosensor approach to analyze human biological samples has been demonstrated by directly analyzing and quantifying specific anti-AX antibodies in patient's serum without any sample pretreatment. An excellent limit of detection (LoD) of 0.6ng/mL (i.e. 0.25kU/L) has been achieved in the evaluation of clinical samples evidencing the potential of our nanoplasmonic biosensor as an advanced diagnostic tool to quickly identify allergic patients. The results have been compared and validated with a conventional clinical immunofluorescence assay (ImmunoCAP test), confirming an excellent correlation between both techniques. The combination of a novel compact nanoplasmonic platform and a dendrimer-based strategy provides a highly sensitive label free biosensor approach with over two times better detectability than conventional SPR. Both the biosensor device and the carrier structure hold great potential in clinical diagnosis for biomarker analysis in whole serum samples and other human biological samples.

  18. Metamaterial Demonstrates Both a High Refractive Index and Extremely Low Reflection in the 0.3-THz Band

    Science.gov (United States)

    Ishihara, Koki; Suzuki, Takehito

    2017-07-01

    Communication and imaging in the terahertz waveband have advanced rapidly in offering industrial applications. However, optical elements such as collimated lenses in the terahertz waveband are bulky compared with the wavelength due to the lack of naturally occurring substances with a high refractive index and low loss. It is essential to miniaturize optical elements in the terahertz waveband for industrial application. Metamaterials consisting of subwavelength structures can arbitrarily control permittivity and permeability and provide a range of refractive indices. Here, we demonstrate a metamaterial with both a high refractive index and extremely low reflection consisting of symmetrically aligned paired cut metal wires with 18,800 units on the front and back surfaces of a dielectric substrate. Measurements by terahertz time-domain spectroscopy (THz-TDS) confirm a high effective refractive index of 6.66 + j0.123, extremely low reflection power of 1.16%, and the unprecedented high figure of merit (FOM = |n real/n imag|) of above 300 in the 0.3-THz band. Components with such specifications would enable miniature, high-performance optical elements in the terahertz waveband such as ultrathin flat antennas with high directivity. Further, the concept of the metamaterial with both a high refractive index and extremely low reflection potentially offers a wide range of attractive applications such as solid immersion lenses and cloaking devices.

  19. Metamaterial Demonstrates Both a High Refractive Index and Extremely Low Reflection in the 0.3-THz Band

    Science.gov (United States)

    Ishihara, Koki; Suzuki, Takehito

    2017-09-01

    Communication and imaging in the terahertz waveband have advanced rapidly in offering industrial applications. However, optical elements such as collimated lenses in the terahertz waveband are bulky compared with the wavelength due to the lack of naturally occurring substances with a high refractive index and low loss. It is essential to miniaturize optical elements in the terahertz waveband for industrial application. Metamaterials consisting of subwavelength structures can arbitrarily control permittivity and permeability and provide a range of refractive indices. Here, we demonstrate a metamaterial with both a high refractive index and extremely low reflection consisting of symmetrically aligned paired cut metal wires with 18,800 units on the front and back surfaces of a dielectric substrate. Measurements by terahertz time-domain spectroscopy (THz-TDS) confirm a high effective refractive index of 6.66 + j0.123, extremely low reflection power of 1.16%, and the unprecedented high figure of merit (FOM = | n real/ n imag|) of above 300 in the 0.3-THz band. Components with such specifications would enable miniature, high-performance optical elements in the terahertz waveband such as ultrathin flat antennas with high directivity. Further, the concept of the metamaterial with both a high refractive index and extremely low reflection potentially offers a wide range of attractive applications such as solid immersion lenses and cloaking devices.

  20. High-speed high-sensitivity infrared spectroscopy using mid-infrared swept lasers (Conference Presentation)

    Science.gov (United States)

    Childs, David T. D.; Groom, Kristian M.; Hogg, Richard A.; Revin, Dmitry G.; Cockburn, John W.; Rehman, Ihtesham U.; Matcher, Stephen J.

    2016-03-01

    Infrared spectroscopy is a highly attractive read-out technology for compositional analysis of biomedical specimens because of its unique combination of high molecular sensitivity without the need for exogenous labels. Traditional techniques such as FTIR and Raman have suffered from comparatively low speed and sensitivity however recent innovations are challenging this situation. Direct mid-IR spectroscopy is being speeded up by innovations such as MEMS-based FTIR instruments with very high mirror speeds and supercontinuum sources producing very high sample irradiation levels. Here we explore another possible method - external cavity quantum cascade lasers (EC-QCL's) with high cavity tuning speeds (mid-IR swept lasers). Swept lasers have been heavily developed in the near-infrared where they are used for non-destructive low-coherence imaging (OCT). We adapt these concepts in two ways. Firstly by combining mid-IR quantum cascade gain chips with external cavity designs adapted from OCT we achieve spectral acquisition rates approaching 1 kHz and demonstrate potential to reach 100 kHz. Secondly we show that mid-IR swept lasers share a fundamental sensitivity advantage with near-IR OCT swept lasers. This makes them potentially able to achieve the same spectral SNR as an FTIR instrument in a time x N shorter (N being the number of spectral points) under otherwise matched conditions. This effect is demonstrated using measurements of a PDMS sample. The combination of potentially very high spectral acquisition rates, fundamental SNR advantage and the use of low-cost detector systems could make mid-IR swept lasers a powerful technology for high-throughput biomedical spectroscopy.

  1. Cavity Enhanced Optical Vernier Spectroscopy, Broad Band, High Resolution, High Sensitivity

    CERN Document Server

    Gohle, Christoph; Schliesser, Albert; Udem, Thomas; Hänsch, Theodor W

    2007-01-01

    A femtosecond frequency comb provides a vast number of equidistantly spaced narrow band laser modes that can be simultaneously tuned and frequency calibrated with 15 digits accuracy. Our Vernier spectrometer utilizes all of theses modes in a massively parallel manner to rapidly record both absorption and dispersion spectra with a sensitivity that is provided by a high finesse broad band optical resonator and a resolution that is only limited by the frequency comb line width while keeping the required setup simple.

  2. Pajarito Monitor: a high-sensitivity monitoring system for highly enriched uranium

    Energy Technology Data Exchange (ETDEWEB)

    Fehlau, P.E.; Coop, K.; Garcia, C. Jr.; Martinez, J.

    1984-01-01

    The Pajarito Monitor for Special Nuclear Material is a high-sensitivity gamma-ray monitoring system for detecting small quantities of highly enriched uranium transported by pedestrians or motor vehicles. The monitor consists of two components: a walk-through personnel monitor and a vehicle monitor. The personnel monitor has a plastic-scintillator detector portal, a microwave occupancy monitor, and a microprocessor control unit that measures the radiation intensity during background and monitoring periods to detect transient diversion signals. The vehicle monitor examines stationary motor vehicles while the vehicle's occupants pass through the personnel portal to exchange their badges. The vehicle monitor has four groups of large plastic scintillators that scan the vehicle from above and below. Its microprocessor control unit measures separate radiation intensities in each detector group. Vehicle occupancy is sensed by a highway traffic detection system. Each monitor's controller is responsible for detecting diversion as well as serving as a calibration and trouble-shooting aid. Diversion signals are detected by a sequential probability ratio hypothesis test that minimizes the monitoring time in the vehicle monitor and adapts itself well to variations in individual passage speed in the personnel monitor. Designed to be highly sensitive to diverted enriched uranium, the monitoring system also exhibits exceptional sensitivity for plutonium. 6 references, 9 figures, 2 tables.

  3. Extreme ultraviolet (EUV) source and ultra-high vacuum chamber for studying EUV-induced processes

    NARCIS (Netherlands)

    Dolgov, A.; Yakushev, O.; Abrikosov, A.; Snegirev, E.; Krivtsun, V.M.; Lee, C.J.; Bijkerk, F.

    2015-01-01

    An experimental setup that directly reproduces extreme ultraviolet (EUV) lithography relevant conditions for detailed component exposure tests is described. The EUV setup includes a pulsed plasma radiation source, operating at 13.5 nm; a debris mitigation system; collection and filtering optics; and

  4. Number of Black Children in Extreme Poverty Hits Record High. Analysis Background.

    Science.gov (United States)

    Children's Defense Fund, Washington, DC.

    To examine the experiences of black children and poverty, researchers conducted a computer analysis of data from the U.S. Census Bureau's Current Population Survey, the source of official government poverty statistics. The data are through 2001. Results indicated that nearly 1 million black children were living in extreme poverty, with after-tax…

  5. Extreme Weight-Control Behaviors and Suicide Risk among High School Students

    Science.gov (United States)

    Johnson, Emily R.; Weiler, Robert M.; Barnett, Tracey E.; Pealer, Lisa N.

    2016-01-01

    Background: Suicide is the third leading cause of death for people ages 15-19. Research has established an association across numerous risk factors and suicide, including depression, substance abuse, bullying victimization, and feelings of alienation. However, the connection between disordered eating as manifested in extreme weight-control…

  6. Discovery of extreme [O III] λ5007 Å outflows in high-redshift red quasars

    Science.gov (United States)

    Zakamska, Nadia L.; Hamann, Fred; Pâris, Isabelle; Brandt, W. N.; Greene, Jenny E.; Strauss, Michael A.; Villforth, Carolin; Wylezalek, Dominika; Alexandroff, Rachael M.; Ross, Nicholas P.

    2016-07-01

    Black hole feedback is now a standard component of galaxy formation models. These models predict that the impact of black hole activity on its host galaxy likely peaked at z = 2-3, the epoch of strongest star formation activity and black hole accretion activity in the Universe. We used XSHOOTER on the Very Large Telescope to measure rest-frame optical spectra of four z ˜ 2.5 extremely red quasars with infrared luminosities ˜1047 erg s-1. We present the discovery of very broad (full width at half max = 2600-5000 km s-1), strongly blueshifted (by up to 1500 km s-1) [O III] λ5007 Å emission lines in these objects. In a large sample of type 2 and red quasars, [O III] kinematics are positively correlated with infrared luminosity, and the four objects in our sample are on the extreme end in both [O III] kinematics and infrared luminosity. We estimate that at least 3 per cent of the bolometric luminosity in these objects is being converted into the kinetic power of the observed wind. Photo-ionization estimates suggest that the [O III] emission might be extended on a few kpc scales, which would suggest that the extreme outflow is affecting the entire host galaxy of the quasar. These sources may be the signposts of the most extreme form of quasar feedback at the peak epoch of galaxy formation, and may represent an active `blow-out' phase of quasar evolution.

  7. Further Evidence on the "Costs of Privilege": Perfectionism in High-Achieving Youth at Socioeconomic Extremes

    Science.gov (United States)

    Lyman, Emily L.; Luthar, Suniya S.

    2014-01-01

    This study involved two academically-gifted samples of 11th and 12th grade youth at the socioeconomic status (SES) extremes; one from an exclusive private, affluent school, and the other from a magnet school with low-income students. Negative and positive adjustment outcomes were examined in relation to multiple dimensions of perfectionism…

  8. Extreme Weight-Control Behaviors and Suicide Risk among High School Students

    Science.gov (United States)

    Johnson, Emily R.; Weiler, Robert M.; Barnett, Tracey E.; Pealer, Lisa N.

    2016-01-01

    Background: Suicide is the third leading cause of death for people ages 15-19. Research has established an association across numerous risk factors and suicide, including depression, substance abuse, bullying victimization, and feelings of alienation. However, the connection between disordered eating as manifested in extreme weight-control…

  9. Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotaga elfii

    NARCIS (Netherlands)

    Niel, van E.W.J.; Budde, M.A.W.; Haas, de G.G.; Wal, van der F.J.; Claassen, P.A.M.; Stams, A.J.M.

    2002-01-01

    Growth and hydrogen production by two extreme thermophiles during sugar fermentation was investigated. In cultures of Caldicellulosiruptor saccharolyticus grown on sucrose and Thermotoga elfii grown on glucose stoichiometries of 3.3 mol of hydrogen and 2 mol of acetate per mol C6-sugar unit were obt

  10. Improvement of PCR-free NGS Library Preparation to Obtain Uniform Read Coverage of Genome with Extremely High AT Content

    OpenAIRE

    Williams, A.; Storton, D.; Buckles, J.; Llinas, M.; Wang, Wei

    2012-01-01

    PCR amplification is commonly used in generating libraries for Next-Generation Sequencing (NGS) to efficiently enrich and amplify sequenceable DNA fragments. However, it introduces bias in the representation of the original complex template DNA. Such artifact has devastating effects in sequencing genomes with highly unbalanced base composition: regions of extremely high or low GC content, which are a substantial fraction of such genomes, are often covered with zero or near-zero read depth. PC...

  11. Desensitization protocol in highly HLA-sensitized and ABO-incompatible high titer kidney transplantation.

    Science.gov (United States)

    Uchida, J; Machida, Y; Iwai, T; Naganuma, T; Kitamoto, K; Iguchi, T; Maeda, S; Kamada, Y; Kuwabara, N; Kim, T; Nakatani, T

    2010-12-01

    A positive crossmatch indicates the presence of donor-specific alloantibodies and is associated with a graft loss rate of >80%; anti-ABO blood group antibodies develop in response to exposure to foreign blood groups, resulting in immediate graft loss. However, a desensitization protocol for highly HLA-sensitized and ABO-incompatible high-titer kidney transplantation has not yet been established. We treated 6 patients with high (≥1:512) anti-A/B antibody titers and 2 highly HLA-sensitized patients. Our immunosuppression protocol was initiated 1 month before surgery and included mycophenolate mofetil (1 g/d) and/or low-dose steroid (methylprednisolone 8 mg/d). Two doses of the anti-CD20 antibody rituximab (150 mg/m(2)) were administered 2 weeks before and on the day of transplantation. We performed antibody removal with 6-12 sessions of plasmapheresis (plasma exchange or double-filtration plasmapheresis) before transplantation. Splenectomy was also performed on the day of transplantation. Postoperative immunosuppression followed the same regimen as ABO-compatible cases, in which calcineurin inhibitors were initiated 3 days before transplantation, combined with 2 doses of basiliximab. Of the 8 patients, 7 subsequently underwent successful living-donor kidney transplantation. Follow-up of our recipients showed that the patient and graft survival rates were 100%. Acute cellular rejection and antibody-mediated rejection episodes occurred in 1 of the 7 recipients. These findings suggest that our immunosuppression regimen consisting of rituximab infusions, splenectomy, plasmapheresis, and pharmacologic immunosuppression may prove to be effective as a desensitization protocol for highly HLA-sensitized and ABO-incompatible high-titer kidney transplantation. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Nielsen, Kristian; Stefani, Alessio

    2016-01-01

    sensitivity and a high hysteresis in the humidity response, in particular when operated at high temperature. PMMA mPOFBGs annealed at high humidity show higher and more linear humidity sensitivity with negligible hysteresis. We also report how annealing at high humidity can blue-shift the FBG wavelength more...

  13. High Resolution Modeling in Mountainous Terrain for Water Resource Management: AN Extreme Precipitation Event Case Study

    Science.gov (United States)

    Masarik, M. T.; Watson, K. A.; Flores, A. N.; Anderson, K.; Tangen, S.

    2016-12-01

    The water resources infrastructure of the Western US is designed to deliver reliable water supply to users and provide recreational opportunities for the public, as well as afford flood control for communities by buffering variability in precipitation and snow storage. Thus water resource management is a balancing act of meeting multiple objectives while trying to anticipate and mitigate natural variability of water supply. Currently, the forecast guidance available to personnel managing resources in mountainous terrain is lacking in two ways: the spatial resolution is too coarse, and there is a gap in the intermediate time range (10-30 days). To address this need we examine the effectiveness of using the Weather Research and Forecasting (WRF) model, a state of the art, regional, numerical weather prediction model, as a means to generate high-resolution weather guidance in the intermediate time range. This presentation will focus on a reanalysis and hindcasting case study of the extreme precipitation and flooding event in the Payette River Basin of Idaho during the period of June 2nd-4th, 2010. For the reanalysis exercise we use NCEP's Climate Forecast System Reanalysis (CFSR) and the North American Regional Reanalysis (NARR) data sets as input boundary conditions to WRF. The model configuration includes a horizontal spatial resolution of 3km in the outer nest, and 1 km in the inner nest, with output temporal resolution of 3 hrs and 1 hr, respectively. The hindcast simulations, which are currently underway, will make use of the NCEP Climate Forecast System Reforecast (CFSRR) data. The current state of these runs will be discussed. Preparations for the second of two components in this project, weekly WRF forecasts during the intense portion of the water year, will be briefly described. These forecasts will use the NCEP Climate Forecast System version 2 (CFSv2) operational forecast data as boundary conditions to provide forecast guidance geared towards water resource

  14. Solar cosmic rays during the extremely high ground level enhancement on 23 February 1956

    Directory of Open Access Journals (Sweden)

    A. Belov

    2005-09-01

    Full Text Available The 23 February 1956 ground level enhancement of the solar cosmic ray intensity (GLE05 is the most famous among the proton events observed since 1942. But we do not have a great deal of information on this event due to the absence of solar wind and interplanetary magnetic field measurements at that time. Furthermore, there were no X-Ray or gamma observations and the information on the associated flare is limited. Cosmic ray data was obtained exclusively by ground level detectors of small size and in some cases of a non-standard design. In the present work all available data from neutron monitors operating in 1956 were analyzed, in order to develop a model of the solar cosmic ray behavior during the event. The time-dependent characteristics of the cosmic ray energy spectrum, cosmic ray anisotropy, and differential and integral fluxes have been evaluated utilizing different isotropic and anisotropic models. It is shown that the most outstanding features of this proton enhancement were a narrow and extremely intense beam of ultra-relativistic particles arriving at Earth just after the onset and the unusually high maximum solar particle energy. However, the contribution of this beam to the overall solar particle density and fluency was not significant because of its very short duration and small width. Our estimate of the integral flux for particles with energies over 100 MeV places this event above all subsequent. Perhaps the number of accelerated low energy particles was closer to a record value, but these particles passed mainly to the west of Earth.

    Many features of this GLE are apparently explained by the peculiarity of the particle interplanetary propagation from a remote (near the limb source. The quality of the available neutron monitor data does not allow us to be certain of some details; these may be cleared up by the incorporation into the analysis of data from muonic telescopes and ionization chambers

  15. Changes in extreme high-temperature tolerance and activities of antioxidant enzymes of sacred lotus seeds.

    Science.gov (United States)

    Ding, YanFen; Cheng, HongYan; Song, SongQuan

    2008-09-01

    Sacred lotus (Nelumbo nucifera Gaertn. 'Tielian') seed is long-lived and extremely tolerant of high temperature. Water content of lotus and maize seeds was 0.103 and 0.129 g H2O [g DW](-1), respectively. Water content, germination percentage and fresh weight of seedlings produced by surviving seeds gradually decreased with increasing treatment time at 100 degrees C. Germination percentage of maize (Zea mays L. 'Huangbaogu') seeds was zero after they were treated at 100 degrees C for 15 min and that of lotus seeds was 13.5% following the treatment at 100 degrees C for 24 h. The time in which 50% of lotus and maize seeds were killed by 100 degrees C was about 14.5 h and 6 min, respectively. With increasing treatment time at 100 degrees C, relative electrolyte leakage of lotus axes increased significantly, and total chlorophyll content of lotus axes markedly decreased. When treatment time at 100 degrees C was less than 12 h, subcellular structure of lotus hypocotyls remained fully intact. When treatment time at 100 degrees C was more than 12 h, plasmolysis gradually occurred, endoplasmic reticulum became unclear, nuclei and nucleoli broke down, most of mitochondria swelled, lipid granules accumulated at the cell periphery, and organelles and plasmolemma collapsed. Malondialdehyde (MDA) content of lotus axes and cotyledons decreased during 0 -12 h of the treatment at 100 degrees C and then increased. By contrast, the MDA content of maize embryos and endosperms increased during 5-10 min of the treatment at 100 degrees C and then decreased slightly. For lotus seeds: (1) activities of superoxide dismutase (SOD) and glutathione reductase (GR) of axes and cotyledons and of catalase (CAT) of axes increased during the early phase of treatment at 100 degrees C and then decreased; and (2) activities of ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) of axes and cotyledons and of CAT of cotyledons gradually decreased with increasing treatment time at 100 degrees

  16. Changes in extreme high-temperature tolerance and activities of antioxidant enzymes of sacred lotus seeds

    Institute of Scientific and Technical Information of China (English)

    DING YanFen; CHENG HongYan; SONG SongQuan

    2008-01-01

    Sacred lotus (Nelumbo nucifera Gaertn. 'Tielian') seed is long-lived and extremely tolerant of high temperature. Water content of lotus and maize seeds was 0.103 and 0.129 g H2O [g DW]-1, respectively. Water content, germination percentage and fresh weight of seedlings produced by surviving seeds gradually decreased with increasing treatment time at 100℃. Germination percentage of maize (Zea mays L. 'Huangbaogu') seeds was zero after they were treated at 100℃ for 15 min and that of lotus seeds was 13.5% following the treatment at 100℃ for 24 h. The time in which 50% of lotus and maize seeds were killed by 100℃ was about 14.5 h and 6 min, respectively. With increasing treatment time at 100℃, relative electrolyte leakage of lotus axes increased significantly, and total chlorophyll content of lotus axes markedly decreased. When treatment time at 100℃ was less than 12 h, subcellular structure of lotus hypocotyls remained fully intact. When treatment time at 100℃ was more than 12 h, plasmoly-sis gradually occurred, endoplasmic reticulum became unclear, nuclei and nucleoli broke down, most of mitochondria swelled, lipid granules accumulated at the cell periphery, and organelles and plas-molemma collapsed. Malondialdehyde (MDA) content of lotus axes and cotyledons decreased during 0 -12 h of the treatment at 100℃ and then increased. By contrast, the MDA content of maize embryos and endosperms increased during 5-10 min of the treatment at 100℃ and then decreased slightly. For lotus seeds: (1) activities of superoxide dismutase (SOD) and glutathione reductase (GR) of axes and cotyledons and of catalase (CAT) of axes increased during the early phase of treatment at 100℃ and then decreased; and (2) activities of ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) of axes and cotyledons and of CAT of cotyledons gradually decreased with increasing treat-ment time at 100℃. For maize seeds: (1) activities of SOD and DHAR of embryos and

  17. Changes in extreme high-temperature tolerance and activities of antioxidant enzymes of sacred lotus seeds

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Sacred lotus (Nelumbo nucifera Gaertn. ‘Tielian’) seed is long-lived and extremely tolerant of high temperature. Water content of lotus and maize seeds was 0.103 and 0.129 g H2O [g DW] ?1, respectively. Water content, germination percentage and fresh weight of seedlings produced by surviving seeds gradually decreased with increasing treatment time at 100℃. Germination percentage of maize (Zea mays L. ‘Huangbaogu’) seeds was zero after they were treated at 100℃ for 15 min and that of lotus seeds was 13.5% following the treatment at 100℃ for 24 h. The time in which 50% of lotus and maize seeds were killed by 100℃ was about 14.5 h and 6 min, respectively. With increasing treatment time at 100℃, relative electrolyte leakage of lotus axes increased significantly, and total chlorophyll content of lotus axes markedly decreased. When treatment time at 100℃ was less than 12 h, subcellular structure of lotus hypocotyls remained fully intact. When treatment time at 100℃ was more than 12 h, plasmoly-sis gradually occurred, endoplasmic reticulum became unclear, nuclei and nucleoli broke down, most of mitochondria swelled, lipid granules accumulated at the cell periphery, and organelles and plas-molemma collapsed. Malondialdehyde (MDA) content of lotus axes and cotyledons decreased during 0-12 h of the treatment at 100℃ and then increased. By contrast, the MDA content of maize embryos and endosperms increased during 5-10 min of the treatment at 100℃ and then decreased slightly. For lotus seeds: (1) activities of superoxide dismutase (SOD) and glutathione reductase (GR) of axes and cotyledons and of catalase (CAT) of axes increased during the early phase of treatment at 100℃ and then decreased; and (2) activities of ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) of axes and cotyledons and of CAT of cotyledons gradually decreased with increasing treat-ment time at 100℃. For maize seeds: (1) activities of SOD and DHAR of embryos and

  18. Temporal Changes in Extreme High Temerature, Heat Waves in Istanbul Between 1960-2014

    Science.gov (United States)

    Yürük, C.; Ünal, Y. S.; Bilgen, S. I.; Menteş, Ş. S.; İncecik, S.

    2015-12-01

    Climate change has crucial effects on cities and especially for informal settlements, urban poor and other vulnerable groups by influencing human health, assets and livelihoods. These impacts directly result from the variations in temperature and precipitation, and emergence of heat waves, droughts, floods and fires (IPCC, 2014). Summertime episodes with extremely high air temperatures which last for several days or longer are addressed to as heat waves and affect the weather and climate in the globe. The aim of this study is to analyze the occurrence of heat waves in terms of quantity, duration and frequency and also to evaluate the accuracy of the COSMO-CLM (CCLM) model in reproducing the characteristics of heat waves in Istanbul. The summer maximum temperatures of six Turkish State Meteorological Service (TSMS) stations are selected between 1960 and 2014 to estimate the characteristics of heat waves in Istanbul. We define the heat wave if the maximum temperatures exceed a threshold value for at least three consecutive days. The threshold value is determined as 30.5 from the 90th percentile of all six station's observations. Then it is used in the detection of the hot days, heat waves and their durations. The results show that not only the number of heat waves but also duration of heat waves increase towards the end of the study period. Especially, a significant increase in heat wave events is evident after 1990s. In 2012, the number of hot days reaches the maximum value in all stations and Kartal station located southern part of city, has the highest value of 60 hot days. Furthermore, Kartal as an urban area in the Asian side of the city, exhibits highest heat wave duration with 18 consecutive days in 1998. To estimate the relationship between urban heat island intensity and the heat waves, we examined data at 43 stations collected by Disaster Coordination Center and TSMS between 2007 and 2012. Urban heat island phenomenon is found to be related to higher

  19. EXTREME METEOROLOGICAL CONDITIONS AND METABOLIC PROFILE IN HIGH YIELDING HOLSTEINFRIESIAN DAIRY COWS

    Directory of Open Access Journals (Sweden)

    Z. GERGÁCZ

    2013-12-01

    Full Text Available The impact of two years (2002 and 2003 with different summer temperature extremes on variation in metabolic profile was analyzed in blood and urine samples taken from healthy, primiparous (n = 371 and multiparous (n = 795 high yielding Holstein-Friesian dairy cows. In this study main focus was lead on three most critical physiological phases, thus cows were assigned into three groups as follows: (1 dry cows for 10 days prior to calving; (2 cows 1-30 days after delivery, and (3 cows with more than 31 days post partum. Findings reveal clear response of the cows to heat in selected blood (hemoglobin, plasma aceto-acetic-acid, FFA, AST, glucose, urea and urine (pH, NABE and urea parameters. In the majority of cows, glucose and hemoglobin level, one of the most significant blood parameters, indicated symptoms of insufficient energy supply. Further metabolic indicators differed more or less from reference values depending on actual condition. Due to heat load dry matter intake has been decreased even by 10-15 per cent in primiparous cows. They were expected to increase body weight and size and simultaneously produce attain at large milk yields. In doing so that cows would have require large amount of nutrients. Out of parameters such as hemoglobin, glucose, FFA, AST and blood-urea differed from the reference values in most cases; however, this phenomenon seemed to be present in almost every case for hemoglobin and glucose. The lack of energy caused by heat stress can be contributed to the decrease of dry matter intake which has been indicated by the urea levels and pH both in blood and urine prevailing unfavorable and insufficient feeding practice. The results reconfirm the need to reconsider both the actual feeding practice (e.g. to increase of nutrient content in rations, reduce the intake of soluble proteins in rumen, pay attention of crude fiber in Total Mixed Rations (TMR, NDF and ADF, avoid overfeeding of inorganic buffers, to control moisture

  20. Extreme High and Low Temperature Operation of the Silicon-On-Insulator Type CHT-OPA Operational Amplifier

    Science.gov (United States)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    A new operational amplifier chip based on silicon-on-insulator technology was evaluated for potential use in extreme temperature environments. The CHT-OPA device is a low power, precision operational amplifier with rail-to-rail output swing capability, and it is rated for operation between -55 C and +225 C. A unity gain inverting circuit was constructed utilizing the CHT-OPA chip and a few passive components. The circuit was evaluated in the temperature range from -190 C to +200 C in terms of signal gain and phase shift, and supply current. The investigations were carried out to determine suitability of this device for use in space exploration missions and aeronautic applications under wide temperature incursion. Re-restart capability at extreme temperatures, i.e. power switched on while the device was soaked at extreme temperatures, was also investigated. In addition, the effects of thermal cycling under a wide temperature range on the operation of this high performance amplifier were determined. The results from this work indicate that this silicon-on-insulator amplifier chip maintained very good operation between +200 C and -190 C. The limited thermal cycling had no effect on the performance of the amplifier, and it was able to re-start at both -190 C and +200 C. In addition, no physical degradation or packaging damage was introduced due to either extreme temperature exposure or thermal cycling. The good performance demonstrated by this silicon-on-insulator operational amplifier renders it a potential candidate for use in space exploration missions or other environments under extreme temperatures. Additional and more comprehensive characterization is, however, required to establish the reliability and suitability of such devices for long term use in extreme temperature applications.

  1. Pyogenic Arthritis of the Ankle Joint Following a High-Voltage Electrical Burn in the Lower Extremity: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kuk Seon; Lee, Gyung Kyu; Kang, Ik Won; Hwang, Dae Hyun; Lee, Eil Seong; Min, Seon Jung; Han, You Mie [Dept. of Radiology, Hangang Scared Heart Hospital, Hallym University College of Medicine, Seoul (Korea, Republic of); Lee, Eil Seong [Dept.of Radiology, Gyeongju Hospital, Dongguk University College of Medicine, Gyeongju (Korea, Republic of)

    2011-04-15

    A high-voltage electrical burn caused extensive deep muscle injuries beneath a relatively small skin wound at the contact point. Hidden, undetected deep muscle injuries have a tendency for progressive tissue necrosis, which can lead to major amputations or sepsis. The radiologic features of this rare, sometimes life-threatening injury have occasionally been described in the literature. However, to the best of our knowledge, there have been no reports on a case of pyogenic arthritis of the ankle joint following a high-voltage electrical burn involving the lower extremity. We report a case of the pyogenic arthritis of the ankle joint following a high-voltage electrical burn involving the lower extremity.

  2. Probing the origin of cosmic-rays with extremely high energy neutrinos using the IceCube Observatory

    CERN Document Server

    Aartsen, M G; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Arguelles, C; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H -P; Brown, A M; Bruijn, R; Casey, J; Casier, M; Chirkin, D; Christov, A; Christy, B; Clark, K; Clevermann, F; Coenders, S; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; Day, M; De Clercq, C; De Ridder, S; Desiati, P; de Vries, K D; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eisch, J; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grandmont, D T; Grant, D; Gretskov, P; Groh, J C; Groß, A; Ha, C; Ismail, A Haj; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Jagielski, K; Japaridze, G S; Jero, K; Jlelati, O; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Kelley, J L; Kiryluk, J; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kriesten, A; Krings, K; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leute, J; Lünemann, J; Macías, O; Madsen, J; Maggi, G; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Omairat, A; O'Murchadha, A; Paul, L; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Reimann, R; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Shanidze, R; Sheremata, C; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Toscano, S; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zoll, M

    2013-01-01

    We have searched for extremely high energy neutrinos using data taken with the IceCube detector between May 2010 and May 2012. Two neutrino induced particle shower events with energies around 1 PeV were observed, as reported previously. In this work, we investigate whether these events could originate from cosmogenic neutrinos produced in the interactions of ultra-high energy cosmic-rays with ambient photons while propagating through intergalactic space. Exploiting IceCube's large exposure for extremely high energy neutrinos and the lack of observed events above 100 PeV, we can rule out the corresponding models at more than 90% confidence level. The model independent quasi-differential 90% CL upper limit, which amounts to $E^2 \\phi_{\

  3. Highly sensitive BTX detection using surface functionalized QCM sensor

    Energy Technology Data Exchange (ETDEWEB)

    Bozkurt, Asuman Aşıkoğlu; Özdemir, Okan; Altındal, Ahmet, E-mail: altindal@yildiz.edu.tr [Department of Physics, Yildiz Technical University, Davutpasa, 34210 Istanbul (Turkey)

    2016-03-25

    A novel organic compound was designed and successfully synthesized for the fabrication of QCM based sensors to detect the low concentrations of BTX gases in indoor air. The effect of the long-range electron orbital delocalization on the BTX vapour sensing properties of azo-bridged Pcs based chemiresistor-type sensors have also been investigated in this work. The sensing behaviour of the film for the online detection of volatile organic solvent vapors was investigated by utilizing an AT-cut quartz crystal resonator. It was observed that the adsorption of the target molecules on the coating surface cause a reversible negative frequency shift of the resonator. Thus, a variety of solvent vapors can be detected by using the phthalocyanine film as sensitive coating, with sensitivity in the ppm range and response times in the order of several seconds depending on the molecular structure of the organic solvent.

  4. Highly Sensitive Cadmium Concentration Sensor Using Long Period Grating

    Directory of Open Access Journals (Sweden)

    A. S. Lalasangi

    2011-08-01

    Full Text Available In this paper we have proposed a simple and effective Long Period Grating chemical sensor for detecting the traces of Cadmium (Cd++ in drinking water at ppm level. Long Period gratings (LPG were fabricated by point-by-point technique with CO2 laser. We have characterized the LPG concentration sensor sensitivity for different solutions of Cd concentrations varying from 0.01 ppm to 0.04 ppm by injecting white Light source and observed transmitted spectra using Optical Spectrum Analyzer (OSA. Proper reagents have been used in the solutions for detection of the Cd species. The overall shift in wavelength is 10 nm when surrounding medium gradually changed from water to 0.04 ppm of cadmium concentrations. A comparative study has been done using sophisticated spectroscopic atomic absorption spectrometer (AAS and Inductively Coupled Plasma (ICP instruments. The spectral sensitivity enhancement was done by modifying grating surface with gold nanoparticles.

  5. Highly sensitive detection using Herriott cell for laser absorption spectroscopy

    Science.gov (United States)

    Zhao, Chongyi; Song, Guangming; Du, Yang; Zhao, Xiaojun; Wang, Wenju; Zhong, Liujun; Hu, Mai

    2016-11-01

    The tunable diode laser absorption spectroscopy combined with the long absorption path technique is a significant method to detect harmful gas. The long optical path could come true by Herriott cell reducing the size of the spectrometers. A 15 cm long Herriott cell with 28.8 m optical absorption path after 96 times reflection was designed that enhanced detection sensitivity of absorption spectroscopy. According to the theory data of calculation, Herriott cell is analyzed and simulated by softwares Matlab and Lighttools.

  6. HIGH SENSITIVE C-REACTIVE PROTEIN IN CEREBROVASCULAR ISCHEMIA

    OpenAIRE

    Padmalatha; Neeraja

    2016-01-01

    BACKGROUND Cerebrovascular ischemia is recognized as a major health problem, which causes significant morbidity and mortality. The main pathophysiology of ischemic stroke is atherosclerosis of cerebral vessels. Hs-CRP is a sensitive marker of inflammation tissue injury in the arterial wall, which contributes to atherosclerosis. In this study, we aim to investigate the association of hs-CRP in patients with ischemic stroke and to correlate hs-CRP levels with possible risk facto...

  7. The Southeast Asia Regional Climate Downscaling (SEACLID) / CORDEX Southeast Asia Project and The Results of Its Sensitivity Experiments of RegCM4 Cumulus and Ocean Fluxes Parameterization Schemes on Temperature and Extremes.

    Science.gov (United States)

    Tangang, Fredolin; Juneng, Liew; Cruz, Faye; Narisma, Gemma; Dado, Julie; Van, Tan-Phan; Ngo-Duc, Thanh; Trinh-Tuan, Long; Nguyen-Xuan, Thanh; Santisirisomboon, Jerasorn; Singhruck, Patama; Gunawan, Dodo; Aldrian, Edvin

    2015-04-01

    The Southeast Asia (SEA) region is one of the more vulnerable regions to the impacts of climate change because of the large population exposed to climate-related hazards, mostly living in countries with low adaptive capabilities. In order to adequately prepare and adapt to these future climate change impacts, it is therefore crucial for high-resolution climate projections to be available for this region. The Southeast Asia Regional Climate Downscaling/CORDEX Southeast Asia (SEACLID/CORDEX-SEA) project aims to provide these projections through a collaborative effort in regional climate downscaling. As a first step, model simulations with the 4th version of Regional Climate Model system (RegCM4) developed by International Centre for Theoretical Physics (ICTP) were performed for the SEA domain (80°E-145°E; 15°S-40°N) at 36 km spatial resolution, to determine an optimal configuration of the model for the region. Using the ECMWF ERA Interim data as boundary condition, a total of 18 sensitivity experiments were done with different cumulus parameterization and ocean flux schemes for the period of 1989-2008. In this study, the model's performance in simulating mean temperature is evaluated against APHRODITE, a gridded observed temperature dataset. Initial results showed that RegCM4 tends to enhance the cold bias from the boundary forcing. There is also a consistent cold bias among all simulations over the Tibetan plateau and Indochina, especially during the boreal winter. Consequently, simulations had the smallest biases during boreal summer. The correlation of the model with the observed data is high over the northern half of the region, in contrast with the low correlation over the southern half, which may be due to uncertainties in the APHRODITE dataset over this region. Consistent with the spatial analysis, the analysis of the regional means indicates an overall better performance of the MIT Emanuel scheme, in terms of seasonality and spatial distribution. The

  8. The strain-rate sensitivity of high-strength high-toughness steels.

    Energy Technology Data Exchange (ETDEWEB)

    Dilmore, M.F. (AFRL/MNMW, Eglin AFB, FL); Crenshaw, Thomas B.; Boyce, Brad Lee

    2006-01-01

    The present study examines the strain-rate sensitivity of four high strength, high-toughness alloys at strain rates ranging from 0.0002 s-1 to 200 s-1: Aermet 100, a modified 4340, modified HP9-4-20, and a recently developed Eglin AFB steel alloy, ES-1c. A refined dynamic servohydraulic method was used to perform tensile tests over this entire range. Each of these alloys exhibit only modest strain-rate sensitivity. Specifically, the strain-rate sensitivity exponent m, is found to be in the range of 0.004-0.007 depending on the alloy. This corresponds to a {approx}10% increase in the yield strength over the 7-orders of magnitude change in strain-rate. Interestingly, while three of the alloys showed a concominant {approx}3-10% drop in their ductility with increasing strain-rate, the ES1-c alloy actually exhibited a 25% increase in ductility with increasing strain-rate. Fractography suggests the possibility that at higher strain-rates ES-1c evolves towards a more ductile dimple fracture mode associated with microvoid coalescence.

  9. Antibody desensitization therapy in highly sensitized lung transplant candidates.

    Science.gov (United States)

    Snyder, L D; Gray, A L; Reynolds, J M; Arepally, G M; Bedoya, A; Hartwig, M G; Davis, R D; Lopes, K E; Wegner, W E; Chen, D F; Palmer, S M

    2014-04-01

    As HLAs antibody detection technology has evolved, there is now detailed HLA antibody information available on prospective transplant recipients. Determining single antigen antibody specificity allows for a calculated panel reactive antibodies (cPRA) value, providing an estimate of the effective donor pool. For broadly sensitized lung transplant candidates (cPRA ≥ 80%), our center adopted a pretransplant multi-modal desensitization protocol in an effort to decrease the cPRA and expand the donor pool. This desensitization protocol included plasmapheresis, solumedrol, bortezomib and rituximab given in combination over 19 days followed by intravenous immunoglobulin. Eight of 18 candidates completed therapy with the primary reasons for early discontinuation being transplant (by avoiding unacceptable antigens) or thrombocytopenia. In a mixed-model analysis, there were no significant changes in PRA or cPRA changes over time with the protocol. A sub-analysis of the median fluorescence intensity (MFI) change indicated a small decline that was significant in antibodies with MFI 5000-10,000. Nine of 18 candidates subsequently had a transplant. Posttransplant survival in these nine recipients was comparable to other pretransplant-sensitized recipients who did not receive therapy. In summary, an aggressive multi-modal desensitization protocol does not significantly reduce pretransplant HLA antibodies in a broadly sensitized lung transplant candidate cohort. © Copyright 2014 The American Society of Transplantation and the American Society of Transplant Surgeons.

  10. Greater increases in temperature extremes in low versus high income countries

    Science.gov (United States)

    Herold, Nicholas; Alexander, Lisa; Green, Donna; Donat, Markus

    2017-03-01

    It is commonly expected that the world’s lowest income countries will face some of the worst impacts of global warming, despite contributing the least to greenhouse gas emissions. Using global atmospheric reanalyses we show that the world’s lowest income countries are already experiencing greater increases in the occurrence of temperature extremes compared to the highest income countries, and have been for over two decades. Not only are low income countries less able to support mitigation and adaptation efforts, but their typically equatorial location predisposes them to lower natural temperature variability and thus greater changes in the occurrence of temperature extremes with global warming. This aspect of global warming is well known but overlooked in current international climate policy agreements and we argue that it is an important factor in reducing inequity due to climate impacts.

  11. Comparison of coronagraphs for high contrast imaging in the context of Extremely Large Telescopes

    CERN Document Server

    Martínez, P; Kasper, M; Cavarroc, C; Yaitskova, N; Fusco, T; Verinaud, C

    2008-01-01

    We compare coronagraph concepts and investigate their behavior and suitability for planet finder projects with Extremely Large Telescopes (ELTs, 30-42 meters class telescopes). For this task, we analyze the impact of major error sources that occur in a coronagraphic telescope (central obscuration, secondary support, low-order segment aberrations, segment reflectivity variations, pointing errors) for phase, amplitude and interferometric type coronagraphs. This analysis is performed at two different levels of the detection process: under residual phase left uncorrected by an eXtreme Adaptive Optics system (XAO) for a large range of Strehl ratio and after a general and simple model of speckle calibration, assuming common phase aberrations between the XAO and the coronagraph (static phase aberrations of the instrument) and non-common phase aberrations downstream of the coronagraph (differential aberrations provided by the calibration unit). We derive critical parameters that each concept will have to cope with by...

  12. Kelp and seaweed feeding by High-Arctic wild reindeer under extreme winter conditions

    OpenAIRE

    2012-01-01

    One challenge in current Arctic ecological research is to understand and predict how wildlife may respond to increased frequencies of ‘‘extreme’’ weather events. Heavy rain-on-snow (ROS) is one such extreme phenomenon associated with winter warming that is not well studied but has potentially profound ecosystem effects through changes in snow-pack properties and ice formation. Here, we document how ice-locked pastures following substantial amounts of ROS forced coastal Svalbard reindeer (Rang...

  13. Weather extremes in very large, high-resolution ensembles: the weatherathome experiment

    Science.gov (United States)

    Allen, M. R.; Rosier, S.; Massey, N.; Rye, C.; Bowery, A.; Miller, J.; Otto, F.; Jones, R.; Wilson, S.; Mote, P.; Stone, D. A.; Yamazaki, Y. H.; Carrington, D.

    2011-12-01

    Resolution and ensemble size are often seen as alternatives in climate modelling. Models with sufficient resolution to simulate many classes of extreme weather cannot normally be run often enough to assess the statistics of rare events, still less how these statistics may be changing. As a result, assessments of the impact of external forcing on regional climate extremes must be based either on statistical downscaling from relatively coarse-resolution models, or statistical extrapolation from 10-year to 100-year events. Under the weatherathome experiment, part of the climateprediction.net initiative, we have compiled the Met Office Regional Climate Model HadRM3P to run on personal computer volunteered by the general public at 25 and 50km resolution, embedded within the HadAM3P global atmosphere model. With a global network of about 50,000 volunteers, this allows us to run time-slice ensembles of essentially unlimited size, exploring the statistics of extreme weather under a range of scenarios for surface forcing and atmospheric composition, allowing for uncertainty in both boundary conditions and model parameters. Current experiments, developed with the support of Microsoft Research, focus on three regions, the Western USA, Europe and Southern Africa. We initially simulate the period 1959-2010 to establish which variables are realistically simulated by the model and on what scales. Our next experiments are focussing on the Event Attribution problem, exploring how the probability of various types of extreme weather would have been different over the recent past in a world unaffected by human influence, following the design of Pall et al (2011), but extended to a longer period and higher spatial resolution. We will present the first results of the unique, global, participatory experiment and discuss the implications for the attribution of recent weather events to anthropogenic influence on climate.

  14. Turbulence velocity profiling for high sensitivity and vertical-resolution atmospheric characterization with Stereo-SCIDAR

    Science.gov (United States)

    Osborn, J.; Butterley, T.; Townson, M. J.; Reeves, A. P.; Morris, T. J.; Wilson, R. W.

    2017-02-01

    As telescopes become larger, into the era of ˜40 m Extremely Large Telescopes, the high-resolution vertical profile of the optical turbulence strength is critical for the validation, optimization and operation of optical systems. The velocity of atmospheric optical turbulence is an important parameter for several applications including astronomical adaptive optics systems. Here, we compare the vertical profile of the velocity of the atmospheric wind above La Palma by means of a comparison of Stereo-SCIntillation Detection And Ranging (Stereo-SCIDAR) with the Global Forecast System models and nearby balloon-borne radiosondes. We use these data to validate the automated optical turbulence velocity identification from the Stereo-SCIDAR instrument mounted on the 2.5 m Isaac Newton Telescope, La Palma. By comparing these data we infer that the turbulence velocity and the wind velocity are consistent and that the automated turbulence velocity identification of the Stereo-SCIDAR is precise. The turbulence velocities can be used to increase the sensitivity of the turbulence strength profiles, as weaker turbulence that may be misinterpreted as noise can be detected with a velocity vector. The turbulence velocities can also be used to increase the altitude resolution of a detected layer, as the altitude of the velocity vectors can be identified to a greater precision than the native resolution of the system. We also show examples of complex velocity structure within a turbulent layer caused by wind shear at the interface of atmospheric zones.

  15. Highly sensitive immunoassay of protein molecules based on single nanoparticle fluorescence detection in a nanowell

    Science.gov (United States)

    Han, Jin-Hee; Kim, Hee-Joo; Lakshmana, Sudheendra; Gee, Shirley J.; Hammock, Bruce D.; Kennedy, Ian M.

    2011-03-01

    A nanoarray based-single molecule detection system was developed for detecting proteins with extremely high sensitivity. The nanoarray was able to effectively trap nanoparticles conjugated with biological sample into nanowells by integrating with an electrophoretic particle entrapment system (EPES). The nanoarray/EPES is superior to other biosensor using immunoassays in terms of saving the amounts of biological solution and enhancing kinetics of antibody binding due to reduced steric hindrance from the neighboring biological molecules. The nanoarray patterned onto a layer of PMMA and LOL on conductive and transparent indium tin oxide (ITO)-glass slide by using e-beam lithography. The suspension of 500 nm-fluorescent (green emission)-carboxylated polystyrene (PS) particles coated with protein-A followed by BDE 47 polyclonal antibody was added to the chip that was connected to the positive voltage. The droplet was covered by another ITO-coated-glass slide and connected to a ground terminal. After trapping the particles into the nanowells, the solution of different concentrations of anti-rabbit- IgG labeled with Alexa 532 was added for an immunoassay. A single molecule detection system could quantify the anti-rabbit IgG down to atto-mole level by counting photons emitted from the fluorescent dye bound to a single nanoparticle in a nanowell.

  16. Discovery of extreme [OIII]5007A outflows in high-redshift red quasars

    CERN Document Server

    Zakamska, Nadia L; Pâris, Isabelle; Brandt, W N; Greene, Jenny E; Strauss, Michael A; Villforth, Carolin; Wylezalek, Dominika; Alexandroff, Rachael M; Ross, Nicholas P

    2015-01-01

    Black hole feedback is now a standard component of galaxy formation models. These models predict that the impact of black hole activity on its host galaxy likely peaked at z=2-3, the epoch of strongest star formation activity and black hole accretion activity in the Universe. We used XShooter on the Very Large Telescope to measure rest-frame optical spectra of four z~2.5 extremely red quasars with infrared luminosities ~10^47 erg/sec. We present the discovery of very broad (full width at half max= 2600-5000 km/sec), strongly blue-shifted (by up to 1500 km/sec) [OIII]5007A emission lines in these objects. In a large sample of obscured and red quasars, [OIII] kinematics are positively correlated with infrared luminosity, and the four objects in our sample are on the extreme end both in [OIII] kinematics and infrared luminosity. We estimate that ~3% of the bolometric luminosity in these objects is being converted into the kinetic power of the observed wind. These sources may be the signposts of the most extreme ...

  17. High-performance and high-sensitivity applications of graphene transistors with self-assembled monolayers.

    Science.gov (United States)

    Yeh, Chao-Hui; Kumar, Vinod; Moyano, David Ricardo; Wen, Shao-Hsuan; Parashar, Vyom; Hsiao, She-Hsin; Srivastava, Anchal; Saxena, Preeti S; Huang, Kun-Ping; Chang, Chien-Chung; Chiu, Po-Wen

    2016-03-15

    Charge impurities and polar molecules on the surface of dielectric substrates has long been a critical obstacle to using graphene for its niche applications that involve graphene's high mobility and high sensitivity nature. Self-assembled monolayers (SAMs) have been found to effectively reduce the impact of long-range scatterings induced by the external charges. Yet, demonstrations of scalable device applications using the SAMs technique remains missing due to the difficulties in the device fabrication arising from the strong surface tension of the modified dielectric environment. Here, we use patterned SAM arrays to build graphene electronic devices with transport channels confined on the modified areas. For high-mobility applications, both rigid and flexible radio-frequency graphene field-effect transistors (G-FETs) were demonstrated, with extrinsic cutoff frequency and maximum oscillation frequency enhanced by a factor of ~2 on SiO2/Si substrates. For high sensitivity applications, G-FETs were functionalized by monoclonal antibodies specific to cancer biomarker chondroitin sulfate proteoglycan 4, enabling its detection at a concentration of 0.01 fM, five orders of magnitude lower than that detectable by a conventional colorimetric assay. These devices can be very useful in the early diagnosis and monitoring of a malignant disease.

  18. Correlation of PUV and SUV in the extremities while using PEM as a high-resolution positron emission scanner

    Energy Technology Data Exchange (ETDEWEB)

    Rahim, Sania [The University of Texas MD Anderson Cancer Center, Division of Diagnostic Imaging, Houston, TX (United States); MD Anderson Cancer Center, Houston, TX (United States); Mawlawi, Osama; Taylor, Shree; Millican, Richelle; Swanston, Nancy M.; Rohren, Eric M. [The University of Texas MD Anderson Cancer Center, Division of Diagnostic Imaging, Houston, TX (United States); Fox, Patricia [The University of Texas MD Anderson Cancer Center, Division of Biostatistics, Houston, TX (United States); Brown, J.E. [Yale University Hospital, Department of Radiology, New Haven, CT (United States)

    2014-04-15

    Owing to its unique configuration of two adjustable plate detectors positron emission mammography, or PEM, could theoretically also function as a high-resolution positron emission scanner for the extremities or neck. PEM quantitates its activity via a ''PEM uptake value,'' or PUV, and although its relationship to the standardized uptake value, or SUV, has been demonstrated in the breasts, to our knowledge there are no studies validating PUV in other sites such as the extremities. This was a retrospective chart review of two separate protocols of a total of 15 patients. The patients all had hypermetabolic lesions in the extremities or neck on imaging with PET/CT and were sent after their PET/CT to PEM for further imaging. Owing to the sequential nature of these examinations no additional radiotracer was administered. Spearman's rank order correlation was calculated between the PUVmax obtained from PEM images, and the SUVmax for all. Spearman's rank order correlation for all sites was 0.42, which is not significantly different from 0 (p = 0.13). When neck lesions were excluded from the group, there was a strong and statistically significant correlation between PUVmax and SUVmax, with Spearman's rank correlation of 0.73, and significantly different from 0 (p = 0.0068). The correlation of PUV and SUV in the extremities indicates the potential use of PEM as a semiquantitative, high-resolution positron emission scanner and warrants further investigation, especially in the realms of disease processes that often present in the extremities, such as melanoma, osteomyelitis, and arthritis, as well as playing a role in the imaging of patients with metallic hardware post-limb salvage surgery. (orig.)

  19. Highly sensitive method for diagnosis of subclinical B. ovis infection.

    Science.gov (United States)

    Horta, Sara; Barreto, Maria C; Pepe, Ana; Campos, Joana; Oliva, Abel

    2014-10-01

    Babesia ovis is a tick-transmitted protozoa parasite that infects small ruminants causing fever, anaemia, hemoglobinuria, anorexia and, in acute cases, death. Common in tropical and sub-tropical areas, the presence of this parasite in sheep herds has an economic impact on industry and therefore sensitive methods for the diagnosis and disease eradication are required. To achieve this goal, a semi-nested PCR for B. ovis specific identification was developed and consequent reaction conditions and enzymes were optimized and tested with field samples. 300 blood samples from small ruminants and 39 ticks from Rhipicephalus genus were collected from different regions of Portugal. Afterwards, DNA extraction was performed and conventional and semi-nested PCR were accomplished for all samples. The results obtained from both methodologies were compared and the sensitivity was evaluated. Employing the semi-nested PCR it was possible to identify a higher number of positive cases among the evaluated samples than using the conventional PCR, namely 38/300 blood samples and 7/39 ticks. However, fragment amplification was only observed in 5 out of 300 blood samples and in none of the 39 ticks when a conventional PCR was employed. The validation of the results was achieved by sequencing the DNA fragments corresponding to the hypervariable v4 region of the 18S ribosomal RNA gene and performing an alignment with sequences already published on GenBank(®). The ticks collected in this study belong to the Rhipicephalus genus, although other species could be involved as a vector in the Babesia spread. The diagnostic assay here described is presently the most effective and sensitive method for detection of B. ovis in field blood samples and ticks, enabling the detection up to 1 parasite into 10(9) erythrocytes. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. HIGHLY SENSITIVE TIMER-BASED RESISTANCE DEVIATION TO TIME CONVERTER

    Directory of Open Access Journals (Sweden)

    Sheroz Khan

    2012-02-01

    Full Text Available Based on an inexpensive popular precision timing chip 555 timer, a resistance to time converter is proposed in this paper which is indeed capable of converting resistive and capacitive changes into pulse widths of proportional durations. This converter exhibits a compatibility of wider conversion range with a reasonable level of sensitivity required for industrial applications. The circuit is expected to have utility in oil and water supply schemes. Simulated results are shown to be compared with mathematical derivations, both reporting a good level of resemblance and similarities.

  1. High order sensitivity analysis of complex, coupled systems

    Science.gov (United States)

    Sobieszczanski-Sobieski, Jaroslaw

    1990-01-01

    The Sobieszczanski-Sobieski (1988) algorithm is extended to include second- and higher-order derivatives while retaining the obviation of finite-differencing of the system analysis. This is accomplished by means of a recursive application of the same implicit function theorem as in the original algorithm. In optimization, the computational cost of the higher-order derivatives is relative to the aggregate cost of analysis together with a repetition of the first-order sensitivity analysis as often as is required to produce the equivalent information by successive linearizations within move limits.

  2. Analysis of Cyberbullying Sensitivity Levels of High School Students and Their Perceived Social Support Levels

    Science.gov (United States)

    Akturk, Ahmet Oguz

    2015-01-01

    Purpose: The purpose of this paper is to determine the cyberbullying sensitivity levels of high school students and their perceived social supports levels, and analyze the variables that predict cyberbullying sensitivity. In addition, whether cyberbullying sensitivity levels and social support levels differed according to gender was also…

  3. Analysis of Cyberbullying Sensitivity Levels of High School Students and Their Perceived Social Support Levels

    Science.gov (United States)

    Akturk, Ahmet Oguz

    2015-01-01

    Purpose: The purpose of this paper is to determine the cyberbullying sensitivity levels of high school students and their perceived social supports levels, and analyze the variables that predict cyberbullying sensitivity. In addition, whether cyberbullying sensitivity levels and social support levels differed according to gender was also…

  4. Detection and Attribution of Climate Change : From global mean temperature change to climate extremes and high impact weather.

    CERN Document Server

    CERN. Geneva

    2013-01-01

    This talk will describe how evidence has grown in recent years for a human influence on climate and explain how the Fifth Assessment Report of the Intergovernmental Panel on Climate Change concluded that it is extremely likely (>95% probability) that human influence on climate has been the dominant cause of the observed global-mean warming since the mid-20th century. The fingerprint of human activities has also been detected in warming of the ocean, in changes in the global water cycle, in reductions in snow and ice, and in changes in some climate extremes. The strengthening of evidence for the effects of human influence on climate extremes is in line with long-held basic understanding of the consequences of mean warming for temperature extremes and for atmospheric moisture. Despite such compelling evidence this does not mean that every instance of high impact weather can be attributed to anthropogenic climate change, because climate variability is often a major factor in many locations, especially for rain...

  5. Highly sensitive phage-based biosensor for the detection of beta-galactosidase.

    Science.gov (United States)

    Nanduri, Viswaprakash; Balasubramanian, Shankar; Sista, Srinivas; Vodyanoy, Vitaly J; Simonian, Aleksandr L

    2007-04-25

    Development of real-time sensor based on the target-specific probe that make possible sensitive, rapid and selective detection and monitoring of the particular antigen molecules could be of substantial importance to the many applications. Because of its high specificity to the target molecules, excellent temperature stability, and easy production, bacterial phage might serve as a powerful biorecognition probe in biosensor applications. Here, we report extremely sensitive and specific label-free direct detection of model antigen, beta-galactosidase (beta-gal), based on surface plasmon resonance (SPR) spectroscopy. The beta-gal specific landscape phage 1G40 has been immobilized on the gold surface of SPR SPREETA sensor chip through physical adsorption [V. Nanduri, A.M. Samoylova, V.Petrenko, V. Vodyanoy and A.L.Simonian, Comparison of optical and acoustic wave phage biosensors, 206th Meeting of The Electrochemical Society, Honolulu, Hawaii, October 3-8, (2004)]. Another non-specific to the beta-gal phage, a wild-type phage F8-5, was used in the reference channel. The concentration-dependent binding of beta-gal in both channels were assessed by monitoring the sensor optical response as a function of time under different experimental conditions, and the concentration of beta-gal was computed in differential mode. Concentrations of beta-gal between 10(-12) M and 10(-7) M could be readily detected, with linear part of calibration curve between 10(-9) M and 10(-6) M. When beta-gal was pre-incubated with different concentrations of free 1G40 phage prior to exposure to the biosensor, concentration-dependent inhibition was observed, indicating on biosensor high specificity toward beta-gal. Apart from a flow through mode used to deliver the samples to the surface for the SPR sensor, batch mode sensing was also employed to study the binding of beta-gal to immobilized phage on the SPR sensor surface. Experiments using a flow through mode provided more consistent results in the

  6. Sensitivity analysis for high accuracy proximity effect correction

    Science.gov (United States)

    Thrun, Xaver; Browning, Clyde; Choi, Kang-Hoon; Figueiro, Thiago; Hohle, Christoph; Saib, Mohamed; Schiavone, Patrick; Bartha, Johann W.

    2015-10-01

    A sensitivity analysis (SA) algorithm was developed and tested to comprehend the influences of different test pattern sets on the calibration of a point spread function (PSF) model with complementary approaches. Variance-based SA is the method of choice. It allows attributing the variance of the output of a model to the sum of variance of each input of the model and their correlated factors.1 The objective of this development is increasing the accuracy of the resolved PSF model in the complementary technique through the optimization of test pattern sets. Inscale® from Aselta Nanographics is used to prepare the various pattern sets and to check the consequences of development. Fraunhofer IPMS-CNT exposed the prepared data and observed those to visualize the link of sensitivities between the PSF parameters and the test pattern. First, the SA can assess the influence of test pattern sets for the determination of PSF parameters, such as which PSF parameter is affected on the employments of certain pattern. Secondly, throughout the evaluation, the SA enhances the precision of PSF through the optimization of test patterns. Finally, the developed algorithm is able to appraise what ranges of proximity effect correction is crucial on which portion of a real application pattern in the electron beam exposure.

  7. Development of a high sensitive MEMS hydrophone using PVDF

    Science.gov (United States)

    Varadan, Vijay K.; Zhu, Bei; K. A, Jose

    2002-05-01

    The design and experimental evaluation of a PVDF-based MEMS hydrophone is presented in this paper. The basic structure of the hydrophone was fabricated on a silicon wafer using standard NMOS process technology. A MOSFET with extended gate electrode was designed as the interface circuit to the sensing material, which is a piezoelectric polymer, polyvinylidene difluoride (PVDF). Acoustic impedance possessed by this piezoelectric material provides a reasonable match to water, which makes it very attractive for underwater applications. The electrical signal generated by the PVDF film was directly coupled to the gate of the MOSFET. To minimize the parasitic capacitance underneath the PVDF film and hence improve the device sensitivity, a thick photoresist was first employed as the dielectric layer under the extended gate electrode. For underwater operation, a waterproof Rho-C rubber encapsulated the hydrophone. A silicon nitride layer passivated the active device, which is a good barrier material to most mobile ions and solvents. The device after passivation also shows a lower noise level. The theoretical model developed to predict the sensitivity of the hydrophone shows a reasonable agreement between the theory and the experiment.

  8. Error quantification of abnormal extreme high waves in Operational Oceanographic System in Korea

    Science.gov (United States)

    Jeong, Sang-Hun; Kim, Jinah; Heo, Ki-Young; Park, Kwang-Soon

    2017-04-01

    waves well and to improve the accuracy of forecasts by supporting modification of physics and numeric on numerical models through sensitivity test. In this study, we proposed an appropriate method of error quantification especially on abnormal high waves which are occurred by local weather condition. Furthermore, we introduced that how the quantification errors are contributed to improve wind-wave modeling by applying data assimilation and utilizing reanalysis data.

  9. Photothermal Microscopy for High Sensitivity and High Resolution Absorption Contrast Imaging of Biological Tissues

    Directory of Open Access Journals (Sweden)

    Jun Miyazaki

    2017-04-01

    Full Text Available Photothermal microscopy is useful to visualize the distribution of non-fluorescence chromoproteins in biological specimens. Here, we developed a high sensitivity and high resolution photothermal microscopy with low-cost and compact laser diodes as light sources. A new detection scheme for improving signal to noise ratio more than 4-fold is presented. It is demonstrated that spatial resolution in photothermal microscopy is up to nearly twice as high as that in the conventional widefield microscopy. Furthermore, we demonstrated the ability for distinguishing or identifying biological molecules with simultaneous muti-wavelength imaging. Simultaneous photothermal and fluorescence imaging of mouse brain tissue was conducted to visualize both neurons expressing yellow fluorescent protein and endogenous non-fluorescent chromophores.

  10. A new extension of the polarizable continuum model: Toward a quantum chemical description of chemical reactions at extreme high pressure.

    Science.gov (United States)

    Cammi, Roberto

    2015-11-15

    A quantum chemical method for studying potential energy surfaces of reactive molecular systems at extreme high pressures is presented. The method is an extension of the standard Polarizable Continuum Model that is usually used for Quantum Chemical study of chemical reactions at a standard condition of pressure. The physical basis of the method and the corresponding computational protocol are described in necessary detail, and an application of the method to the dimerization of cyclopentadiene (up to 20 GPa) is reported.

  11. Probing the origin of cosmic-rays with extremely high energy neutrinos using the IceCube Observatory

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Abbasi, R.; Ackermann, M.;

    2013-01-01

    originate from cosmogenic neutrinos produced in the interactions of ultrahigh energy cosmic rays with ambient photons while propagating through intergalactic space. Exploiting IceCube’s large exposure for extremely high energy neutrinos and the lack of observed events above 100 PeV, we can rule out...... cosmological evolution of the highest energy cosmic-ray sources such as the Fanaroff-Riley type II class of radio galaxies....

  12. The first search for extremely-high energy cosmogenic neutrinos with the IceCube Neutrino Observatory

    CERN Document Server

    Abbasi, R; Abu-Zayyad, T; Adams, J; Aguilar, J A; Ahlers, M; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Bay, R; Alba, J L Bazo; Beattie, K; Beatty, J J; Bechet, S; Becker, J K; Becker, K -H; Benabderrahmane, M L; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bissok, M; Blaufuss, E; Boersma, D J; Bohm, C; B?oser, S; Botner, O; Bradley, L; Braun, J; Buitink, S; Carson, M; Chirkin, D; Christy, B; Clem, J; Clevermann, F; Cohen, S; Colnard, C; Cowen, D F; D'Agostino, M V; Danninger, M; Davis, J C; De Clercq, C; Demir?ors, L; Depaepe, O; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; D?ıaz-V?elez, J C; Dreyer, J; Dumm, J P; Duvoort, M R; Ehrlich, R; Eisch, J; Ellsworth, R W; Engdeg°ard, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Feusels, T; Filimonov, K; Finley, C; Foerster, M M; Fox, B D; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Ganugapati, R; Geisler, M; Gerhardt, L; Gladstone, L; Gl?usenkamp, T; Goldschmidt, A; Goodman, J A; Grant, D; Griesel, T; Groß, A; Grullon, S; Gurtner, M; Ha, C; Hallgren, A; Halzen, F; Han, K; Hanson, K; Helbing, K; Herquet, P; Hickford, S; Hill, G C; Hoffman, K D; Homeier, A; Hoshina, K; Hubert, D; Huelsnitz, W; H?ulß, J -P; Hulth, P O; Hultqvist, K; Hussain, S; Imlay, R L; Ishihara, A; Jacobsen, J; Japaridze, G S; Johansson, H; Joseph, J M; Kampert, K -H; Kappes, A; Karg, T; Karle, A; Kelley, J L; Kemming, N; Kenny, P; Kiryluk, J; Kislat, F; Klein, S R; Knops, S; K?ohne, J -H; Kohnen, G; Kolanoski, H; K?opke, L; Koskinen, D J; Kowalski, M; Kowarik, T; Krasberg, M; Krings, T; Kroll, G; Kuehn, K; Kuwabara, T; Labare, M; Lafebre, S; Laihem, K; Landsman, H; Lauer, R; Lehmann, R; Lennarz, D; L?unemann, J; Madsen, J; Majumdar, P; Maruyama, R; Mase, K; Matis, H S; Matusik, M; Meagher, K; Merck, M; M?esz?aros, P; Meures, T; Middell, E; Milke, N; Miller, J; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Nam, J W; Naumann, U; Nießen, P; Nygren, D R; Odrowski, S; Olivas, A; Olivo, M; Panknin, S; Paul, L; Heros, C P?erez de los; Petrovic, J; Piegsa, A; Pieloth, D; Porrata, R; Posselt, J; Price, P B; Prikockis, M; Przybylski, G T; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Rizzo, A; Rodrigues, J P; Roth, P; Rothmaier, F; Rott, C; Roucelle, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Sander, H -G; Sarkar, S; Schatto, K; Schlenstedt, S; Schmidt, T; Schneider, D; Schukraft, A; Schultes, A; Schulz, O; Schunck, M; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Slipak, A; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stephens, G; Stezelberger, T; Stokstad, R G; Stoyanov, S; Strahler, E A; Straszheim, T; Sullivan, G W; Swillens, Q; Taboada, I; Tamburro, A; Tarasova, O; Tepe, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Tosi, D; Tur?can, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; van Santen, J; Voigt, B; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Wikstr?om, G; Williams, D R; Wischnewski, R; Wissing, H; Woschnagg, K; Xu, C; Xu, X W; Yodh, G; Yoshida, S; Zarzhitsky, P

    2010-01-01

    We report on the results of the search for extremely-high energy (EHE) neutrinos with energies above $10^7$ GeV obtained with the partially ($\\sim$30%) constructed IceCube in 2007. From the absence of signal events in the sample of 242.1 days of effective livetime, we derive a 90% C.L. model independent differential upper limit based on the number of signal events per energy decade at $E^2 \\phi_{\

  13. High temperature probe sensor with high sensitivity based on Michelson interferometer

    Science.gov (United States)

    Zhao, Na; Fu, Haiwei; Shao, Min; Yan, Xu; Li, Huidong; Liu, Qinpeng; Gao, Hong; Liu, Yinggang; Qiao, Xueguang

    2015-05-01

    A novel Michelson interferometer based on a bi-taper is achieved. Such a device is fabricated by splicing a section of thin core fiber (TCF) at one end of single-mode fiber (SMF). Due to the fiber bi-taper at the splicing point of SMF and TCF, the light is coupled into the fiber core and cladding from lead in fiber core. The light will be reflected at the end of the fiber and then will be recoupled back into the lead out fiber core by the fiber bi-taper. While the light returns back to the lead out fiber, the intermodal interference will occur for the optical path difference between core mode and cladding mode. A high temperature sensitivity of 0.140 nm/°C is achieved from 30 to 800 °C, and the linearity is 99.9%. The configuration features the advantages of easy fabrication, a compact size, high sensitivity, wide sensing range and high mechanical strength, making it a good candidate for distant temperature sensing and oil prospecting.

  14. ACUTE EFFECTS OF STATIC STRETCHING, DYNAMIC EXERCISES, AND HIGH VOLUME UPPER EXTREMITY PLYOMETRIC ACTIVITY ON TENNIS SERVE PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Ertugrul Gelen

    2012-12-01

    Full Text Available The purpose of this study was to compare the acute effects of static stretching; dynamic exercises and high volume upper extremity plyometric activity on tennis serve performance. Twenty-six elite young tennis players (15.1 ± 4.2 years, 167.9 ± 5.8 cm and 61.6 ± 8.1 kg performed 4 different warm-up (WU routines in a random order on non-consecutive days. The WU methods consisted of traditional WU (jogging, rally and serve practice (TRAD; traditional WU and static stretching (TRSS; traditional WU and dynamic exercise (TRDE; and traditional WU and high volume upper extremity plyometric activity (TRPLYP. Following each WU session, subjects were tested on a tennis serve ball speed test. TRAD, TRSS, TRDE and TRPLYO were compared by repeated measurement analyses of variance and post-hoc comparisons. In this study a 1 to 3 percent increase in tennis serve ball speed was recorded in TRDE and TRPLYO when compared to TRAD (p 0.05. ICCs for ball speed showed strong reliability (0.82 to 0.93 for the ball speed measurements.The results of this study indicate that dynamic and high volume upper extremity plyometric WU activities are likely beneficial to serve speed of elite junior tennis players.

  15. Analysis of line-and-space resist patterns with sub-20 nm half-pitch fabricated using high-numerical-aperture exposure tool of extreme ultraviolet lithography

    Science.gov (United States)

    Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro

    2016-09-01

    The resolution of resist processes for extreme ultraviolet (EUV) lithography has been steadily improved and has reached the sub-20 nm half-pitch region. Currently, the resist materials capable of resolving 11 nm half-pitch line-and-space patterns are being developed in industrial fields. In this study, the line-and-space resist patterns with sub-20 nm half-pitches were fabricated using a high-numerical-aperture (NA) EUV exposure tool and analyzed by the Monte Carlo simulation. The scanning electron microscopy (SEM) images of resist patterns after their development were compared with the latent images calculated on the basis of the sensitization and reaction mechanisms of chemically amplified EUV resists. The approximate relationship between resist patterns and latent images was clarified for the sub-20 nm half-pitch region. For the realization of 11 nm half-pitch fabrication, the suppression of the stochastic effects in the development process is an important consideration.

  16. The Influence of Tropical Forcing on Westerly Disturbances: Implications for Extreme Precipitation in High Asia

    Science.gov (United States)

    Cannon, F.; Carvalho, L. V.; Jones, C.; Norris, J.; Kiladis, G. N.; Hoell, A.

    2015-12-01

    Extratropical cyclones, including winter westerly disturbances (WD) over central Asia, are fundamental features of the atmosphere that redistribute energy, momentum, and moisture from global to regional scales. Within the Karakoram and western Himalaya (KH), snowfall from only a few WD each winter maintains the region's snowpack and its vast network of glaciers, which seasonally melt to sustain water resources for downstream populations across Asia. WD activity and subsequent precipitation in the mountains are influenced by global atmospheric variability and tropical-extratropical interactions. This research explores the independent influences of the Madden Julian Oscillation (MJO) and El Niño Southern Oscillation on WD and extreme precipitation events in the KH. On interannual time-scales, El Niño suppresses convection in the Indian Ocean and induces a Rossby wave response over Southwest Asia that is linked with enhanced dynamical forcing of WD and available moisture content. Consequently, extreme orographic precipitation events are more frequent during El Niño than La Niña or neutral conditions. A similar spatial pattern of tropical diabatic heating anomalies is produced by the MJO at intraseasonal scales. In comparison to El Niño, the Rossby wave response to MJO activity is less spatially uniform over southwest Asia and exists on a much shorter time-scale. Consequently, this mode's relationship with WD behavior and KH precipitation is more complex. Phases of the MJO propagation cycle that favor the dynamical enhancement of WD simultaneously suppress available moisture over southwest Asia, and vice versa. As a result, extreme precipitation events in the KH occur with similar frequency in most phases of the MJO, however, the relative importance of the dynamic and thermodynamic components of WD to orographic precipitation in the KH transitions as the MJO propagates. These findings give insight into the dynamics and predictability of extreme precipitation

  17. Extreme Multiplex Spectrograph: An efficient mechanical design for high-demanding requirements

    CERN Document Server

    Becerril, S; Dubbeldam, C M; Content, R; Rohloff, R R; Prada, F; Shanks, T; Sharples, R

    2010-01-01

    XMS is a multi-channel wide-field spectrograph designed for the prime focus of the 3.5m Calar-Alto telescope. The instrument is composed by four quadrants, each of which contains a spectrograph channel. An innovative mechanical design -at concept/preliminary stage- has been implemented to: 1) Minimize the separation between the channels to achieve maximal filling factor; 2) Cope with the very constraining space and mass overall requirements; 3) Achieve very tight alignment tolerances; 4) Provide lens self-centering under large temperature excursions; 5) Provide masks including 4000 slits (edges thinner than 100\\mu). An overview of this extremely challenging mechanical design is here presented.

  18. Highly sensitive methods for electroanalytical chemistry based on nanotubule membranes.

    Science.gov (United States)

    Kobayashi, Y; Martin, C R

    1999-09-01

    Two new methods of electroanalysis are described. These methods are based on membranes containing monodisperse Au nanotubules with inside diameters approaching molecular dimensions. In one method, the analyte species is detected by measuring the change in trans-membrane current when the analyte is added to the nanotubule-based cell. The second method entails the use of a concentration cell based on the nanotubule membrane. In this case, the change in membrane potential is used to detect the analyte. Detection limits as low as 10(-11) M have been achieved. Hence, these methods compete with even the most sensitive of modern analytical methodologies. In addition, excellent molecular-sized-based selectivity is observed.

  19. A new compact, high sensitivity neutron imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Caillaud, T.; Landoas, O.; Briat, M.; Rosse, B.; Thfoin, I.; Philippe, F.; Casner, A.; Bourgade, J. L.; Disdier, L. [CEA, DAM, DIF,F-91297 Arpajon (France); Glebov, V. Yu.; Marshall, F. J.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Park, H. S.; Robey, H. F.; Amendt, P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2012-10-15

    We have developed a new small neutron imaging system (SNIS) diagnostic for the OMEGA laser facility. The SNIS uses a penumbral coded aperture and has been designed to record images from low yield (10{sup 9}-10{sup 10} neutrons) implosions such as those using deuterium as the fuel. This camera was tested at OMEGA in 2009 on a rugby hohlraum energetics experiment where it recorded an image at a yield of 1.4 Multiplication-Sign 10{sup 10}. The resolution of this image was 54 {mu}m and the camera was located only 4 meters from target chamber centre. We recently improved the instrument by adding a cooled CCD camera. The sensitivity of the new camera has been fully characterized using a linear accelerator and a {sup 60}Co {gamma}-ray source. The calibration showed that the signal-to-noise ratio could be improved by using raw binning detection.

  20. High-sensitivity observations of solar flare decimeter radiation

    CERN Document Server

    Benz, Arnold O; Monstein, C; Benz, Arnold O.; Messmer, Peter; Monstein, Christian

    2000-01-01

    A new acousto-optic radio spectrometer has observed the 1 - 2 GHz radio emission of solar flares with unprecedented sensitivity. The number of detected decimeter type III bursts is greatly enhanced compared to observations by conventional spectrometers observing only one frequency at the time. The observations indicate a large number of electron beams propagating in dense plasmas. For the first time, we report weak, reversed drifting type III bursts at frequencies above simultaneous narrowband decimeter spikes. The type III bursts are reliable signatures of electron beams propagating downward in the corona, apparently away from the source of the spikes. The observations contradict the most popular spike model that places the spike sources at the footpoints of loops. Conspicuous also was an apparent bidirectional type U burst forming a fish-like pattern. It occurs simultaneously with an intense U-burst at 600-370 MHz observed in Tremsdorf. We suggest that it intermodulated with strong terrestrial interference ...

  1. Highly sensitive biosensors based on water-soluble conjugated polymers

    Institute of Scientific and Technical Information of China (English)

    XU Hui; WU Haiping; FAN Chunhai; LI Wenxin; ZHANG Zhizhou; HE Lin

    2004-01-01

    Conjugated, conductive polymers are a kind of important organic macromolecules, which has found applications in a variety of areas. The application of conjugated polymers in developing fluorescent biosensors represents the merge of polymer sciences and biological sciences. Conjugated polymers are very good light harvesters as well as fluorescent polymers, and they are also "molecular wires". Through elaborate designs, these important features, i.e. efficient light harvesting and electron/energy transfer, can be used as signal amplification in fluorescent biosensors. This might significantly improve the sensitivity of conjugated polymer-based biosensors. In this article, we reviewed the application of conjugated polymers, via either electron transfer or energy transfer, to detections of gene targets, antibodies or enzymes. We also reviewed recent efforts in conjugated polymer-based solid-state sensor designs as well as chip-based multiple target detection. Possible directions in this conjugated polymer-based biosensor area are also discussed.

  2. Highly sensitive urea sensing with ion-irradiated polymer foils

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Dietmar, E-mail: fink@daad-alumni.de [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 Mexico, D.F. (Mexico); Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 Rez (Czech Republic); Munoz Hernandez, Gerardo [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 Mexico, D.F. (Mexico); Division de Ciencias Naturales e Ingenieria, Universidad Autonoma Metropolitana-Cuajimalpa, Pedro Antonio de los Santos 84, Col. Sn. Miguel Chapultepec, C.P. 11850, Mexico, D.F. (Mexico); Alfonta, Lital, E-mail: alfontal@bgu.ac.il [Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel)

    2012-02-15

    Recently we prepared urea-sensors by attaching urease to the inner walls of etched ion tracks within thin polymer foil. Here, alternative track-based sensor configurations are examined where the enzyme remained in solution. The conductivities of systems consisting of two parallel irradiated polymer foils and confining different urea/urease mixtures in between were examined. The correlations between conductivity and urea concentration differed strongly for foils with unetched and etched tracks, which points at different sensing mechanisms - tentatively attributed to the adsorption of enzymatic reaction products on the latent track entrances and to the enhanced conductivity of reaction product-filled etched tracks, respectively. All examined systems enable in principle, urea sensing. They point at the possibility of sensor cascade construction for more sensitive or selective sensor systems.

  3. State-of-the-Art of Extreme Pressure Lubrication Realized with the High Thermal Diffusivity of Liquid Metal.

    Science.gov (United States)

    Li, Haijiang; Tian, Pengyi; Lu, Hongyu; Jia, Wenpeng; Du, Haodong; Zhang, Xiangjun; Li, Qunyang; Tian, Yu

    2017-02-15

    Sliding between two objects under very high load generally involves direct solid-solid contact at molecular/atomic level, the mechanism of which is far from clearly disclosed yet. Those microscopic solid-solid contacts could easily lead to local melting of rough surfaces. At extreme conditions, this local melting could propagate to the seizure and welding of the entire interface. Traditionally, the microscopic solid-solid contact is alleviated by various lubricants and additives based on their improved mechanical properties. In this work, we realized the state-of-the-art of extreme pressure lubrication by utilizing the high thermal diffusivity of liquid metal, 2 orders of magnitude higher than general organic lubricants. The extreme pressure lubrication property of gallium based liquid metal (GBLM) was compared with gear oil and poly-α-olefin in a four-ball test. The liquid metal lubricates very well at an extremely high load (10 kN, the maximum capability of a four-ball tester) at a rotation speed of 1800 rpm for a duration of several minutes, much better than traditional organic lubricants which typically break down within seconds at a load of a few kN. Our comparative experiments and analysis showed that this superextreme pressure lubrication capability of GBLM was attributed to the synergetic effect of the ultrafast heat dissipation of GBLM and the low friction coefficient of FeGa3 tribo-film. The present work demonstrated a novel way of improving lubrication capability by enhancing the lubricant thermal properties, which might lead to mechanical systems with much higher reliability.

  4. Development of highly sensitive and selective antibodies for the detection of the explosive pentaerythritol tetranitrate (PETN) by bioisosteric replacement.

    Science.gov (United States)

    Hesse, Almut; Biyikal, Mustafa; Rurack, Knut; Weller, Michael G

    2016-02-01

    An improved antibody against the explosive pentaerythritol tetranitrate (PETN) was developed. The immunogen was designed by the concept of bioisosteric replacement, which led to an excellent polyclonal antibody with extreme selectivity and immunoassays of very good sensitivity. Compounds such as nitroglycerine, 2,4,6-trinitrotoluene, 1,3,5-trinitrobenzene, hexogen (RDX), 2,4,6-trinitroaniline, 1,3-dinitrobenzene, octogen (HMX), triacetone triperoxide, ammonium nitrate, 2,4,6-trinitrophenol and nitrobenzene were tested for potential cross-reactivity. The detection limit of a competitive enzyme-linked immunosorbent assay was determined to be around 0.5 µg/l. The dynamic range of the assay was found to be between 1 and 1000 µg/l, covering a concentration range of three decades. This work shows the successful application of the bioisosteric concept in immunochemistry by exchange of a nitroester to a carbonate diester. The antiserum might be used for the development of quick tests, biosensors, microtitration plate immunoassays, microarrays and other analytical methods for the highly sensitive detection of PETN, an explosive frequently used by terrorists, exploiting the extreme difficulty of its detection. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Kelp and seaweed feeding by High-Arctic wild reindeer under extreme winter conditions

    Directory of Open Access Journals (Sweden)

    Brage Bremset Hansen

    2012-03-01

    Full Text Available One challenge in current Arctic ecological research is to understand and predict how wildlife may respond to increased frequencies of “extreme” weather events. Heavy rain-on-snow (ROS is one such extreme phenomenon associated with winter warming that is not well studied but has potentially profound ecosystem effects through changes in snow-pack properties and ice formation. Here, we document how ice-locked pastures following substantial amounts of ROS forced coastal Svalbard reindeer (Rangifer tarandus platyrhynchus to use marine habitat in late winter 2010. A thick coat of ground ice covered 98% of the lowland ranges, almost completely blocking access to terrestrial forage. Accordingly, a population census revealed that 13% of the total population (n=26 of 206 individuals and 21% of one sub-population were feeding on washed-up kelp and seaweed on the sea-ice foot. Calves were overrepresented among the individuals that applied this foraging strategy, which probably represents a last attempt to avoid starvation under particularly severe foraging conditions. The study adds to the impression that extreme weather events such as heavy ROS and associated icing can trigger large changes in the realized foraging niche of Arctic herbivores.

  6. High-sensitivity in situ QCLAS-based ammonia concentration sensor for high-temperature applications

    Science.gov (United States)

    Peng, W. Y.; Sur, R.; Strand, C. L.; Spearrin, R. M.; Jeffries, J. B.; Hanson, R. K.

    2016-07-01

    A novel quantum cascade laser (QCL) absorption sensor is presented for high-sensitivity in situ measurements of ammonia (hbox {NH}_3) in high-temperature environments, using scanned wavelength modulation spectroscopy (WMS) with first-harmonic-normalized second-harmonic detection (scanned WMS-2 f/1 f) to neutralize the effect of non-absorption losses in the harsh environment. The sensor utilized the sQ(9,9) transition of the fundamental symmetric stretch band of hbox {NH}_3 at 10.39 {\\upmu }hbox {m} and was sinusoidally modulated at 10 kHz and scanned across the peak of the absorption feature at 50 Hz, leading to a detection bandwidth of 100 Hz. A novel technique was used to select an optimal WMS modulation depth parameter that reduced the sensor's sensitivity to spectral interference from hbox {H}_2hbox {O} and hbox {CO}_2 without significantly sacrificing signal-to-noise ratio. The sensor performance was validated by measuring known concentrations of hbox {NH}_3 in a flowing gas cell. The sensor was then demonstrated in a laboratory-scale methane-air burner seeded with hbox {NH}_3, achieving a demonstrated detection limit of 2.8 ± 0.26 ppm hbox {NH}_3 by mole at a path length of 179 cm, equivalence ratio of 0.6, pressure of 1 atm, and temperatures of up to 600 K.

  7. Highly sensitive glucose biosensor based on Au-Ni coaxial nanorod array having high aspect ratio.

    Science.gov (United States)

    Hsu, Che-Wei; Wang, Gou-Jen

    2014-06-15

    An effective glucose biosensor requires a sufficient amount of GOx immobilizing on the electrode surface. An electrode of a 3D nanorod array, having a larger surface-to-volume ratio than a 2D nanostructure, can accommodate more GOx molecules to immobilize onto the surface of the nanorods. In this study, a highly sensitive Au-Ni coaxial nanorod array electrode fabricated through the integration of nano electroforming and immersion gold (IG) method for glucose detection was developed. The average diameter of the as-synthesized Ni nanorods and that of the Au-Ni nanorods were estimated to be 150 and 250 nm, respectively; both had a height of 30 μm. The aspect ratio was 120. Compared to that of a flat Au electrode, the effective sensing area was enhanced by 79.8 folds. Actual glucose detections demonstrated that the proposed Au-Ni coaxial nanorod array electrode could operate in a linear range of 27.5 μM-27.5mM with a detection limit of 5.5μM and a very high sensitivity of 769.6 μA mM(-1)cm(-2). Good selectivity of the proposed sensing device was verified by sequential injections of uric acid (UA) and ascorbic acid (AA). Long-term stability was examined through successive detections over a period of 30 days.

  8. Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Koh [National Institute for Advanced Industrial Science and Technology, Molecular Profiling Research Center for Drug Discovery (Japan); Arthanari, Haribabu [Harvard Medical School, Department of Biochemistry and Molecular Pharmacology (United States); Shimada, Ichio, E-mail: shimada@iw-nmr.f.u-tokyo.ac.jp [National Institute for Advanced Industrial Science and Technology, Molecular Profiling Research Center for Drug Discovery (Japan); Wagner, Gerhard, E-mail: gerhard-wagner@hms.harvard.edu [Harvard Medical School, Department of Biochemistry and Molecular Pharmacology (United States)

    2015-12-15

    Detection of {sup 15}N in multidimensional NMR experiments of proteins has sparsely been utilized because of the low gyromagnetic ratio (γ) of nitrogen and the presumed low sensitivity of such experiments. Here we show that selecting the TROSY components of proton-attached {sup 15}N nuclei (TROSY {sup 15}N{sub H}) yields high quality spectra in high field magnets (>600 MHz) by taking advantage of the slow {sup 15}N transverse relaxation and compensating for the inherently low {sup 15}N sensitivity. The {sup 15}N TROSY transverse relaxation rates increase modestly with molecular weight but the TROSY gain in peak heights depends strongly on the magnetic field strength. Theoretical simulations predict that the narrowest line width for the TROSY {sup 15}N{sub H} component can be obtained at 900 MHz, but sensitivity reaches its maximum around 1.2 GHz. Based on these considerations, a {sup 15}N-detected 2D {sup 1}H–{sup 15}N TROSY-HSQC ({sup 15}N-detected TROSY-HSQC) experiment was developed and high-quality 2D spectra were recorded at 800 MHz in 2 h for 1 mM maltose-binding protein at 278 K (τ{sub c} ∼ 40 ns). Unlike for {sup 1}H detected TROSY, deuteration is not mandatory to benefit {sup 15}N detected TROSY due to reduced dipolar broadening, which facilitates studies of proteins that cannot be deuterated, especially in cases where production requires eukaryotic expression systems. The option of recording {sup 15}N TROSY of proteins expressed in H{sub 2}O media also alleviates the problem of incomplete amide proton back exchange, which often hampers the detection of amide groups in the core of large molecular weight proteins that are expressed in D{sub 2}O culture media and cannot be refolded for amide back exchange. These results illustrate the potential of {sup 15}N{sub H}-detected TROSY experiments as a means to exploit the high resolution offered by high field magnets near and above 1 GHz.

  9. A low-cost smartphone-based platform for highly sensitive point-of-care testing with persistent luminescent phosphors.

    Science.gov (United States)

    Paterson, Andrew S; Raja, Balakrishnan; Mandadi, Vinay; Townsend, Blane; Lee, Miles; Buell, Alex; Vu, Binh; Brgoch, Jakoah; Willson, Richard C

    2017-03-14

    Through their computational power and connectivity, smartphones are poised to rapidly expand telemedicine and transform healthcare by enabling better personal health monitoring and rapid diagnostics. Recently, a variety of platforms have been developed to enable smartphone-based point-of-care testing using imaging-based readout with the smartphone camera as the detector. Fluorescent reporters have been shown to improve the sensitivity of assays over colorimetric labels, but fluorescence readout necessitates incorporating optical hardware into the detection system, adding to the cost and complexity of the device. Here we present a simple, low-cost smartphone-based detection platform for highly sensitive luminescence imaging readout of point-of-care tests run with persistent luminescent phosphors as reporters. The extremely bright and long-lived emission of persistent phosphors allows sensitive analyte detection with a smartphone by a facile time-gated imaging strategy. Phosphors are first briefly excited with the phone's camera flash, followed by switching off the flash, and subsequent imaging of phosphor luminescence with the camera. Using this approach, we demonstrate detection of human chorionic gonadotropin using a lateral flow assay and the smartphone platform with strontium aluminate nanoparticles as reporters, giving a detection limit of ≈45 pg mL(-1) (1.2 pM) in buffer. Time-gated imaging on a smartphone can be readily adapted for sensitive and potentially quantitative testing using other point-of-care formats, and is workable with a variety of persistent luminescent materials.

  10. High Resolution Simulation of a Colorado Rockies Extreme Snow and Rain Event in both a Current and Future Climate

    Science.gov (United States)

    Rasmussen, Roy; Ikeda, Kyoko; Liu, Changhai; Gutmann, Ethan; Gochis, David

    2016-04-01

    Modeling of extreme weather events often require very finely resolved treatment of atmospheric circulation structures in order to produce and localize the large moisture fluxes that result in extreme precipitation. This is particularly true for cool season orographic precipitation processes where the representation of the landform can significantly impact vertical velocity profiles and cloud moisture entrainment rates. This study presents results for high resolution regional climate modeling study of the Colorado Headwaters region using an updated version of the Weather Research and Forecasting (WRF) model run at 4 km horizontal resolution and a hydrological extension package called WRF-Hydro. Previous work has shown that the WRF modeling system can produce credible depictions of winter orographic precipitation over the Colorado Rockies if run at horizontal resolutions warming on total precipitation, snow-rain partitioning and surface hydrological fluxes (evapotranspiration and runoff) will be discussed in the context of how potential changes in temperature impact the amount of precipitation, the phase of precipitation (rain vs. snow) and the timing and amplitude of streamflow responses. The results show using the Pseudo Global Warming technique that intense precipitation rates significantly increased during the event and a significant fraction of the snowfall converts to rain which significantly amplifies the runoff response from one where runoff is produced gradually to one in which runoff is rapidly translated into streamflow values that approach significant flooding risks. Results from a new, CONUS scale high resolution climate simulation of extreme events in a current and future climate will be presented as time permits.

  11. XMM-Newton analysis of a newly discovered, extremely X-ray luminous galaxy cluster at high redshift

    Science.gov (United States)

    Thoelken, S.; Schrabback, T.

    2016-06-01

    Galaxy clusters, the largest virialized structures in the universe, provide an excellent method to test cosmology on large scales. The galaxy cluster mass function as a function of redshift is a key tool to determine the fundamental cosmological parameters and especially measurements at high redshifts can e.g. provide constraints on dark energy. The fgas test as a direct cosmological probe is of special importance. Therefore, relaxed galaxy clusters at high redshifts are needed but these objects are considered to be extremely rare in current structure formation models. Here we present first results from an XMM-Newton analysis of an extremely X-ray luminous, newly discovered and potentially cool core cluster at a redshift of z=0.9. We carefully account for background emission and PSF effects and model the cluster emission in three radial bins. Our preliminary results suggest that this cluster is indeed a good candidate for a cool core cluster and thus potentially of extreme value for cosmology.

  12. Spin-resolved photoelectron spectroscopy using femtosecond extreme ultraviolet light pulses from high-order harmonic generation

    Science.gov (United States)

    Plötzing, M.; Adam, R.; Weier, C.; Plucinski, L.; Eich, S.; Emmerich, S.; Rollinger, M.; Aeschlimann, M.; Mathias, S.; Schneider, C. M.

    2016-04-01

    The fundamental mechanism responsible for optically induced magnetization dynamics in ferromagnetic thin films has been under intense debate since almost two decades. Currently, numerous competing theoretical models are in strong need for a decisive experimental confirmation such as monitoring the triggered changes in the spin-dependent band structure on ultrashort time scales. Our approach explores the possibility of observing femtosecond band structure dynamics by giving access to extended parts of the Brillouin zone in a simultaneously time-, energy- and spin-resolved photoemission experiment. For this purpose, our setup uses a state-of-the-art, highly efficient spin detector and ultrashort, extreme ultraviolet light pulses created by laser-based high-order harmonic generation. In this paper, we present the setup and first spin-resolved spectra obtained with our experiment within an acquisition time short enough to allow pump-probe studies. Further, we characterize the influence of the excitation with femtosecond extreme ultraviolet pulses by comparing the results with data acquired using a continuous wave light source with similar photon energy. In addition, changes in the spectra induced by vacuum space-charge effects due to both the extreme ultraviolet probe- and near-infrared pump-pulses are studied by analyzing the resulting spectral distortions. The combination of energy resolution and electron count rate achieved in our setup confirms its suitability for spin-resolved studies of the band structure on ultrashort time scales.

  13. Shallow gene pools in the high intertidal: extreme loss of genetic diversity in viviparous sea stars (Parvulastra).

    Science.gov (United States)

    Keever, Carson C; Puritz, Jonathan B; Addison, Jason A; Byrne, Maria; Grosberg, Richard K; Toonen, Robert J; Hart, Michael W

    2013-10-23

    We document an extreme example of reproductive trait evolution that affects population genetic structure in sister species of Parvulastra cushion stars from Australia. Self-fertilization by hermaphroditic adults and brood protection of benthic larvae causes strong inbreeding and range-wide genetic poverty. Most samples were fixed for a single allele at nearly all nuclear loci; heterozygotes were extremely rare (0.18%); mitochondrial DNA sequences were more variable, but few populations shared haplotypes in common. Isolation-with-migration models suggest that these patterns are caused by population bottlenecks (relative to ancestral population size) and low gene flow. Loss of genetic diversity and low potential for dispersal between high-intertidal habitats may have dire consequences for extinction risk and potential for future adaptive evolution in response to climate and other selective agents.

  14. Using extreme value theory approaches to forecast the probability of outbreak of highly pathogenic influenza in Zhejiang, China.

    Directory of Open Access Journals (Sweden)

    Jiangpeng Chen

    Full Text Available Influenza is a contagious disease with high transmissibility to spread around the world with considerable morbidity and mortality and presents an enormous burden on worldwide public health. Few mathematical models can be used because influenza incidence data are generally not normally distributed. We developed a mathematical model using Extreme Value Theory (EVT to forecast the probability of outbreak of highly pathogenic influenza.The incidence data of highly pathogenic influenza in Zhejiang province from April 2009 to November 2013 were retrieved from the website of Health and Family Planning Commission of Zhejiang Province. MATLAB "VIEM" toolbox was used to analyze data and modelling. In the present work, we used the Peak Over Threshold (POT model, assuming the frequency as a Poisson process and the intensity to be Pareto distributed, to characterize the temporal variability of the long-term extreme incidence of highly pathogenic influenza in Zhejiang, China.The skewness and kurtosis of the incidence of highly pathogenic influenza in Zhejiang between April 2009 and November 2013 were 4.49 and 21.12, which indicated a "fat tail" distribution. A QQ plot and a mean excess plot were used to further validate the features of the distribution. After determining the threshold, we modeled the extremes and estimated the shape parameter and scale parameter by the maximum likelihood method. The results showed that months in which the incidence of highly pathogenic influenza is about 4462/2286/1311/487 are predicted to occur once every five/three/two/one year, respectively.Despite the simplicity, the present study successfully offers the sound modeling strategy and a methodological avenue to implement forecasting of an epidemic in the midst of its course.

  15. Achieving tunable sensitivity in composite high-energy density materials

    Science.gov (United States)

    Kuklja, Maija M.; Tsyshevsky, Roman V.; Rashkeev, Sergey

    2017-01-01

    Laser irradiation provides a unique opportunity for selective, predictive, and controlled initiation of energetic materials. We propose a consistent micro-scale mechanism of photoexcitation at the interface, formed by a molecular energetic material and a metal oxide. A specific PETN-MgO model composite is used to illustrate and explain seemingly puzzling experiments on selective laser initiation of energetic materials, which reported that the presence of metal oxide additives triggered the photoinitiation by an unusually low energy. We suggest that PETN photodecomposition is catalyzed by oxygen vacancies (F0 centers) at the MgO surface. The proposed model suggests ways to tune sensitivity of energetic molecular materials to photoinitiation. Our quantum-chemical calculations suggest that the structural point defects (e.g., oxygen vacancies) strongly interact with the molecular material (e.g., adsorbed energetic molecules) by inducing a charge transfer at the interface and hence play an imperative role in governing both energy absorption and energy release in the system. Our approach and conclusions provide a solid basis for novel design of energetic interfaces with desired properties and offers a new perspective in the field of explosive materials and devices.

  16. High-sensitivity observations of solar flare decimeter radiation

    Science.gov (United States)

    Benz, A. O.; Messmer, P.; Monstein, C.

    2001-01-01

    A new acousto-optic radio spectrometer has observed the 1-2 GHz radio emission of solar flares with unprecedented sensitivity. The number of detected decimeter type III bursts is greatly enhanced compared to observations by conventional spectrometers observing only one frequency at the time. The observations indicate a large number of electron beams propagating in dense plasmas. For the first time, we report weak, reversed drifting type III bursts at frequencies above simultaneous narrowband decimeter spikes. The type III bursts are reliable signatures of electron beams propagating downward in the corona, apparently away from the source of the spikes. The observations contradict the most popular spike model that places the spike sources at the footpoints of loops. Conspicuous also was an apparent bidirectional type U burst forming a fish-like pattern. It occurs simultaneously with an intense U-burst at 600-370 MHz observed in Tremsdorf. We suggest that it intermodulated with strong terrestrial interference(cellular phones) causing a spurious symmetric pattern in the spectrogram at 1.4 GHz. Symmetric features in the 1-2 GHz range, some already reported in the literature, therefore must be considered with utmost caution.

  17. Chronic lower extremity lymphedema: A comparative study of high-resolution interstitial MR lymphangiography and heavily T2-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lu Qing [Department of Radiology, Shanghai Renji Hospital, Shanghai Jiao Tong University School of Medicine, 1630 Dong Fang Rd, Shanghai 200127 (China)], E-mail: luqingshan@sjtu.edu.cn; Xu Jianrong [Department of Radiology, Shanghai Renji Hospital, Shanghai Jiao Tong University School of Medicine, 1630 Dong Fang Rd, Shanghai 200127 (China)], E-mail: jiangrongx@hotmail.com; Liu Ningfei [Department of Plastic and Reconstructive Surgery, Shanghai 9th People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Second Medical University, 639 Zhi Zao Ju Rd, Shanghai 200011 (China)], E-mail: luqing_1973@163.com

    2010-02-15

    Purpose: To assess the role of heavily T2-weighted image and interstitial MR lymphangiography (MRL) for the visualization of lymphatic vessels in patients with disorders of the lymphatic circulation. Methods: Forty lower extremities in 31 patients (9 bilateral and 22 unilateral) with primary lymphedema were examined by heavily T2-weighted image and indirect MRL. Maximum-intensity projection (MIP) was used to reconstruct the images of the lymphatic system. Two experienced radiologists analyzed the images with regard to the differences in image quality, number of lymphatic vessels, its maximum diameter and two other findings: accumulated lymph fluid in the tissue and honeycombing pattern. Results: The beaded appearance of the affected vessels in 73 leg segments of 40 lower extremities were present on both modalities 3D MIP. Larger amount of the dilated lymphatic vessels were visualized on heavily T2-weighted image than that on MRL (p = 0.003) and the maximum diameter of it was 4.28 {+-} 1.53 mm on heavily T2-weighted image, whereas 3.41 {+-} 1.05 mm on MRL (p < 0.01). The dilated lymphatic vessels on MRL showed better image quality and greater SNR and CNR than that on heavily T2-weighted image (p < 0.01). The regions of accumulated lymph fluid and the honeycombing pattern extent were identified on heavily T2-weighted image scored statistically higher than that on MRL (p < 0.01). Conclusion: The heavily T2-weighted imaging has greater sensitivity and the MRL image has higher legibility for detecting the pathologically modified lymphatic vessels and accompanying complications non-invasively. Combining these two MR techniques can accurately access the pathological changes in the lower extremity with lymphedema.

  18. High Precision Astrometry with MICADO at the European Extremely Large Telescope

    CERN Document Server

    Trippe, S; Eisenhauer, F; Förster-Schreiber, N M; Fritz, T K; Genzel, R

    2009-01-01

    In this article we identify and discuss various statistical and systematic effects influencing the astrometric accuracy achievable with MICADO, the near-infrared imaging camera proposed for the 42-metre European Extremely Large Telescope (E-ELT). These effects are instrumental (e.g. geometric distortion), atmospheric (e.g. chromatic differential refraction), and astronomical (reference source selection). We find that there are several phenomena having impact on ~100 micro-arcsec scales, meaning they can be substantially larger than the theoretical statistical astrometric accuracy of an optical/NIR 42m-telescope. Depending on type, these effects need to be controlled via dedicated instrumental design properties or via dedicated calibration procedures. We conclude that if this is done properly, astrometric accuracies of 40 micro-arcsec or better - with 40 micro-arcsec/year in proper motions corresponding to ~20 km/s at 100 kpc distance - can be achieved in one epoch of actual observations

  19. GTC optical imaging of extremely red 5C radio galaxies at high redshift

    CERN Document Server

    Humphrey, A; Lagos, P

    2015-01-01

    We investigate the nature of seven unusual radio galaxies from the 5C catalogue that were previously known to have extremely red R-K colours, and for which emission lines were previously found to be weak or absent in their optical spectra. We present and discuss u, g, or r images of these radio galaxies, obtained using the Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) at the Gran Telescopio Canarias (GTC). We have detected all seven targets in our g-band imaging. Their optical emission is extended, and we tentatively detect a radio-optical alignment effect in this sample. A subset of our sample (three sources) shows broad-band spectral energy distributions that flatten out near the wavelength range of the g-band, implying a dominant contribution there due to young stars and/or scattered or reprocessed radiation from the active nucleus.

  20. High sensitivity of Giardia duodenalis to tetrahydrolipstatin (orlistat in vitro.

    Directory of Open Access Journals (Sweden)

    Juliane Hahn

    Full Text Available Giardiasis, a gastrointestinal disease caused by Giardia duodenalis, is currently treated mainly with nitroimidazoles, primarily metronidazole (MTZ. Treatment failure rates of up to 20 percent reflect the compelling need for alternative treatment options. Here, we investigated whether orlistat, a drug approved to treat obesity, represents a potential therapeutic agent against giardiasis. We compared the growth inhibitory effects of orlistat and MTZ on a long-term in vitro culture adapted G. duodenalis strain, WB-C6, and on a new isolate, 14-03/F7, from a patient refractory to MTZ treatment using a resazurin assay. The giardiacidal concentration of the drugs and their combined in vitro efficacy was determined by median-effect analysis. Morphological changes after treatment were analysed by light and electron microscopy. Orlistat inhibited the in vitro growth of G. duodenalis at low micromolar concentrations, with isolate 14-03/F7 (IC50(24h = 2.8 µM being more sensitive than WB-C6 (IC50(24h = 6.2 µM. The effect was significantly more potent compared to MTZ (IC50(24h = 4.3 µM and 11.0 µM, respectively and led to specific undulated morphological alterations on the parasite surface. The giardiacidal concentration of orlistat was >14 µM for 14-03/F7 and >43 µM for WB-C6, respectively. Importantly, the combination of both drugs revealed no interaction on their inhibitory effects. We demonstrate that orlistat is a potent inhibitor of G. duodenalis growth in vitro and kills parasites at concentrations achievable in the gut by approved treatment regimens for obesity. We therefore propose to investigate orlistat in controlled clinical studies as a new drug in giardiasis.

  1. High sensitivity of Giardia duodenalis to tetrahydrolipstatin (orlistat) in vitro.

    Science.gov (United States)

    Hahn, Juliane; Seeber, Frank; Kolodziej, Herbert; Ignatius, Ralf; Laue, Michael; Aebischer, Toni; Klotz, Christian

    2013-01-01

    Giardiasis, a gastrointestinal disease caused by Giardia duodenalis, is currently treated mainly with nitroimidazoles, primarily metronidazole (MTZ). Treatment failure rates of up to 20 percent reflect the compelling need for alternative treatment options. Here, we investigated whether orlistat, a drug approved to treat obesity, represents a potential therapeutic agent against giardiasis. We compared the growth inhibitory effects of orlistat and MTZ on a long-term in vitro culture adapted G. duodenalis strain, WB-C6, and on a new isolate, 14-03/F7, from a patient refractory to MTZ treatment using a resazurin assay. The giardiacidal concentration of the drugs and their combined in vitro efficacy was determined by median-effect analysis. Morphological changes after treatment were analysed by light and electron microscopy. Orlistat inhibited the in vitro growth of G. duodenalis at low micromolar concentrations, with isolate 14-03/F7 (IC50(24h) = 2.8 µM) being more sensitive than WB-C6 (IC50(24h) = 6.2 µM). The effect was significantly more potent compared to MTZ (IC50(24h) = 4.3 µM and 11.0 µM, respectively) and led to specific undulated morphological alterations on the parasite surface. The giardiacidal concentration of orlistat was >14 µM for 14-03/F7 and >43 µM for WB-C6, respectively. Importantly, the combination of both drugs revealed no interaction on their inhibitory effects. We demonstrate that orlistat is a potent inhibitor of G. duodenalis growth in vitro and kills parasites at concentrations achievable in the gut by approved treatment regimens for obesity. We therefore propose to investigate orlistat in controlled clinical studies as a new drug in giardiasis.

  2. HIGH SENSITIVE C-REACTIVE PROTEIN IN CEREBROVASCULAR ISCHEMIA

    Directory of Open Access Journals (Sweden)

    Padmalatha

    2016-02-01

    Full Text Available BACKGROUND Cerebrovascular ischemia is recognized as a major health problem, which causes significant morbidity and mortality. The main pathophysiology of ischemic stroke is atherosclerosis of cerebral vessels. Hs-CRP is a sensitive marker of inflammation tissue injury in the arterial wall, which contributes to atherosclerosis. In this study, we aim to investigate the association of hs-CRP in patients with ischemic stroke and to correlate hs-CRP levels with possible risk factors of ischemic stroke and to assess the prognostic value of hs-CRP in ischemic stroke. METHODS In the present case control study after meeting inclusion and exclusion criteria, 50 patients with acute ischemic stroke admitted in the medical ward, King George Hospital, during the period between April 2014 and October 2014 and 40 asymptomatic age and sex matched control subjects were included. RESULTS The mean hs-CRP value in cases is 3.78+5.28mg/dl and in controls is 0.425+0.305mg/dl. Mean hs-CRP value is higher (3.78mg/dl in cases when compared to controls (0.425mg/dl, which is statistically significant. P admitted with severe degree of weakness (0-1/5 power with mean hs-CRP value of 4.28+4.07 without significant improvement in the power at the time of discharge; 8(16%> with mean hs-CRP value of 10.43+7.74 were expired. CONCLUSION Acute ischemic patients had higher mean hs-CRP values when compared to healthy asymptomatic control subjects P0.05. Higher mean hs-CRP values were associated with poor outcome after acute ischemic stroke. P<0.001.

  3. High-fidelity numerical modeling of the Upper Mississippi River under extreme flood condition

    Science.gov (United States)

    Khosronejad, Ali; Le, Trung; DeWall, Petra; Bartelt, Nicole; Woldeamlak, Solomon; Yang, Xiaolei; Sotiropoulos, Fotis

    2016-12-01

    We present data-driven numerical simulations of extreme flooding in a large-scale river coupling coherent-structure resolving hydrodynamics with bed morphodynamics under live-bed conditions. The study area is a ∼ 3.2 km long and ∼ 300 m wide reach of the Upper Mississippi River, near Minneapolis MN, which contains several natural islands and man-made hydraulic structures. We employ the large-eddy simulation (LES) and bed-morphodynamic modules of the Virtual Flow Simulator (VFS-Rivers) model, a recently developed in-house code, to investigate the flow and bed evolution of the river during a 100-year flood event. The coupling of the two modules is carried out via a fluid-structure interaction approach using a nested domain approach to enhance the resolution of bridge scour predictions. We integrate data from airborne Light Detection and Ranging (LiDAR), sub-aqueous sonar apparatus on-board a boat and in-situ laser scanners to construct a digital elevation model of the river bathymetry and surrounding flood plain, including islands and bridge piers. A field campaign under base-flow condition is also carried out to collect mean flow measurements via Acoustic Doppler Current Profiler (ADCP) to validate the hydrodynamic module of the VFS-Rivers model. Our simulation results for the bed evolution of the river under the 100-year flood reveal complex sediment transport dynamics near the bridge piers consisting of both scour and refilling events due to the continuous passage of sand dunes. We find that the scour depth near the bridge piers can reach to a maximum of ∼ 9 m. The data-driven simulation strategy we present in this work exemplifies a practical simulation-based-engineering-approach to investigate the resilience of infrastructures to extreme flood events in intricate field-scale riverine systems.

  4. High Sensitivity Indium Phosphide Based Avalanche Photodiode Focal Plane Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — nLight has demonstrated highly-uniform APD arrays based on the highly sensitive InGaAs/InP material system. These results provide great promise for achieving the...

  5. Polycarbonates: a long-term highly sensitive radon monitor

    CERN Document Server

    Pressyanov, D; Poffijn, A; Meesen, G; Deynse, A V

    2000-01-01

    An approach for long-term (either retrospective or prospective) sup 2 sup 2 sup 2 Rn measurements is proposed that is based on the combination of the high radon absorption ability of some polycarbonates with their alpha track-etch properties. The detection limit is projected to be <10 Bq m sup - sup 3 for an exposure time of 20 yr.

  6. Microstructure-Sensitive Modeling of High Cycle Fatigue (Preprint)

    Science.gov (United States)

    2009-03-01

    history ( carburization and shot peening) and resulting residual stresses are considered in the case of subsurface crack formation at primary inclusions...experimental responses for known microstructures. Effects of process history ( carburization and shot peening) and resulting residual stresses are considered...nonmetallic inclusions. 3. HCF Crack Formation in Carburized and Shot Peened Martensitic Gear Steel High strength low carbon martensitic gear steel is a

  7. A highly selective and sensitive fluorescent chemosensor for Zn2+

    Institute of Scientific and Technical Information of China (English)

    Xiu Ying Zhang; Zuo Hui Wang; Lin Yang

    2008-01-01

    A new selective Zn2+ fluorescent chemosensor,o-vanillin-4-ethoxybenzoylhydrazone(1),was designed and prepared.Free 1 mainly displayed very weak fluorescence at 480 nm upone xcitation at 403 nln.It displayed high selectivity for Zn2+ and had a 518-fold fluorescent enhancement upon binding of Zn2+.while the other cation ions had only little influence on the fluorescence of 1.Mechanism of enhancement of 1's fluorescence by Zn2+ was briefly discussed.

  8. Highly sensitive bolometers for rare alpha decay studies

    Directory of Open Access Journals (Sweden)

    Gironi L.

    2014-03-01

    Full Text Available High resolution detectors able to identify background events are very appealing in the study of rare nuclear processes. Scintillating bolometers featuring simultaneous read-out of heat and scintillation signals, can effectively address this problem thanks to the possibility to discriminate different ionizing particles and achieve background free experiments. With this technique it has already been possible to measure rare alpha decays never observed before or improve by orders of magnitude the existing limits.

  9. Clinical Implications of Diffuse Excessive High Signal Intensity (DEHSI on Neonatal MRI in School Age Children Born Extremely Preterm.

    Directory of Open Access Journals (Sweden)

    Lina Broström

    Full Text Available Magnetic resonance imaging (MRI of the brain carried out during the neonatal period shows that 55-80% of extremely preterm infants display white matter diffuse excessive high signal intensity (DEHSI. Our aim was to study differences in developmental outcome at the age of 6.5 years in children born extremely preterm with and without DEHSI.This was a prospective cohort study of 83 children who were born in Stockholm, Sweden, between 2004 and 2007, born at gestational age of < 27 weeks + 0 days and who underwent an MRI scan of their brain at term equivalent age. The outcome measures at 6.5 years included testing 66 children with the modified Touwen neurology examination, the Movement Assessment Battery for Children 2, the Wechsler Intelligence Scale for Children-Fourth Edition, Beery Visual-motor Integration test-Sixth Edition, and the Strengths and Difficulties Questionnaire. Group-wise comparisons were done between children with and without DEHSI using Student t-test, Mann Whitney U test, Chi square test and regression analysis.DEHSI was detected in 39 (59% of the 66 children who were assessed at 6.5 years. The presence of DEHSI was not associated with mild neurological dysfunction, scores on M-ABC assessment, cognition, visual-motor integration, or behavior at 6.5 years.The presence of qualitatively defined DEHSI on neonatal MRI did not prove to be a useful predictor of long-term impairment in children born extremely preterm.

  10. Local impact analysis of climate change on precipitation extremes: are high-resolution climate models needed for realistic simulations?

    Science.gov (United States)

    Tabari, Hossein; De Troch, Rozemien; Giot, Olivier; Hamdi, Rafiq; Termonia, Piet; Saeed, Sajjad; Brisson, Erwan; Van Lipzig, Nicole; Willems, Patrick

    2016-09-01

    This study explores whether climate models with higher spatial resolutions provide higher accuracy for precipitation simulations and/or different climate change signals. The outputs from two convection-permitting climate models (ALARO and CCLM) with a spatial resolution of 3-4 km are compared with those from the coarse-scale driving models or reanalysis data for simulating/projecting daily and sub-daily precipitation quantiles. Validation of historical design precipitation statistics derived from intensity-duration-frequency (IDF) curves shows a better match of the convection-permitting model results with the observations-based IDF statistics compared to the driving GCMs and reanalysis data. This is the case for simulation of local sub-daily precipitation extremes during the summer season, while the convection-permitting models do not appear to bring added value to simulation of daily precipitation extremes. Results moreover indicate that one has to be careful in assuming spatial-scale independency of climate change signals for the delta change downscaling method, as high-resolution models may show larger changes in extreme precipitation. These larger changes appear to be dependent on the timescale, since such intensification is not observed for daily timescales for both the ALARO and CCLM models.

  11. Evaluation of a High-Throughput Peptide Reactivity Format Assay for Assessment of the Skin Sensitization Potential of Chemicals

    Science.gov (United States)

    Wong, Chin Lin; Lam, Ai-Leen; Smith, Maree T.; Ghassabian, Sussan

    2016-01-01

    The direct peptide reactivity assay (DPRA) is a validated method for in vitro assessment of the skin sensitization potential of chemicals. In the present work, we describe a peptide reactivity assay using 96-well plate format and systematically identified the optimal assay conditions for accurate and reproducible classification of chemicals with known sensitizing capacity. The aim of the research is to ensure that the analytical component of the peptide reactivity assay is robust, accurate, and reproducible in accordance with criteria that are used for the validation of bioanalytical methods. Analytical performance was evaluated using quality control samples (QCs; heptapeptides at low, medium, and high concentrations) and incubation of control chemicals (chemicals with known sensitization capacity, weak, moderate, strong, extreme, and non-sensitizers) with each of three synthetic heptapeptides, viz Cor1-C420 (Ac-NKKCDLF), cysteine- (Ac-RFAACAA), and lysine- (Ac-RFAAKAA) containing heptapeptides. The optimal incubation temperature for all three heptapeptides was 25°C. Apparent heptapeptide depletion was affected by vial material composition. Incubation of test chemicals with Cor1-C420, showed that peptide depletion was unchanged in polypropylene vials over 3-days storage in an autosampler but this was not the case for borosilicate glass vials. For cysteine-containing heptapeptide, the concentration was not stable by day 3 post-incubation in borosilicate glass vials. Although the lysine-containing heptapeptide concentration was unchanged in both polypropylene and borosilicate glass vials, the apparent extent of lysine-containing heptapeptide depletion by ethyl acrylate, differed between polypropylene (24.7%) and glass (47.3%) vials. Additionally, the peptide-chemical complexes for Cor1-C420-cinnamaldehyde and cysteine-containing heptapeptide-2, 4-dinitrochlorobenzene were partially reversible during 3-days of autosampler storage. These observations further highlight

  12. The Imprint of Extreme Climate Events in Century-Long Time Series of Wood Anatomical Traits in High-Elevation Conifers.

    Science.gov (United States)

    Carrer, Marco; Brunetti, Michele; Castagneri, Daniele

    2016-01-01

    Extreme climate events are of key importance for forest ecosystems. However, both the inherent infrequency, stochasticity and multiplicity of extreme climate events, and the array of biological responses, challenges investigations. To cope with the long life cycle of trees and the paucity of the extreme events themselves, our inferences should be based on long-term observations. In this context, tree rings and the related xylem anatomical traits represent promising sources of information, due to the wide time perspective and quality of the information they can provide. Here we test, on two high-elevation conifers (Larix decidua and Picea abies sampled at 2100 m a.s.l. in the Eastern Alps), the associations among temperature extremes during the growing season and xylem anatomical traits, specifically the number of cells per ring (CN), cell wall thickness (CWT), and cell diameter (CD). To better track the effect of extreme events over the growing season, tree rings were partitioned in 10 sectors. Climate variability has been reconstructed, for 1800-2011 at monthly resolution and for 1926-2011 at daily resolution, by exploiting the excellent availability of very long and high quality instrumental records available for the surrounding area, and taking into account the relationship between meteorological variables and site topographical settings. Summer temperature influenced anatomical traits of both species, and tree-ring anatomical profiles resulted as being associated to temperature extremes. Most of the extreme values in anatomical traits occurred with warm (positive extremes) or cold (negative) conditions. However, 0-34% of occurrences did not match a temperature extreme event. Specifically, CWT and CN extremes were more clearly associated to climate than CD, which presented a bias to track cold extremes. Dendroanatomical analysis, coupled to high-quality daily-resolved climate records, seems a promising approach to study the effects of extreme events on trees

  13. Aptamer-Functionalized Fluorescent Silica Nanoparticles for Highly Sensitive Detection of Leukemia Cells

    Science.gov (United States)

    Tan, Juntao; Yang, Nuo; Hu, Zixi; Su, Jing; Zhong, Jianhong; Yang, Yang; Yu, Yating; Zhu, Jianmeng; Xue, Dabin; Huang, Yingying; Lai, Zongqiang; Huang, Yong; Lu, Xiaoling; Zhao, Yongxiang

    2016-06-01

    A simple, highly sensitive method to detect leukemia cells has been developed based on aptamer-modified fluorescent silica nanoparticles (FSNPs). In this strategy, the amine-labeled Sgc8 aptamer was conjugated to carboxyl-modified FSNPs via amide coupling between amino and carboxyl groups. Sensitivity and specificity of Sgc8-FSNPs were assessed using flow cytometry and fluorescence microscopy. These results showed that Sgc8-FSNPs detected leukemia cells with high sensitivity and specificity. Aptamer-modified FSNPs hold promise for sensitive and specific detection of leukemia cells. Changing the aptamer may allow the FSNPs to detect other types of cancer cells.

  14. High sensitivity detection and characterization of the chemical state of trace element contamination on silicon wafers

    CERN Document Server

    Pianetta, Piero A; Baur, K; Brennan, S; Homma, T; Kubo, N

    2003-01-01

    Increasing the speed and complexity of semiconductor integrated circuits requires advanced processes that put extreme constraints on the level of metal contamination allowed on the surfaces of silicon wafers. Such contamination degrades the performance of the ultrathin SiO sub 2 gate dielectrics that form the heart of the individual transistors. Ultimately, reliability and yield are reduced to levels that must be improved before new processes can be put into production. It should be noted that much of this metal contamination occurs during the wet chemical etching and rinsing steps required for the manufacture of integrated circuits and industry is actively developing new processes that have already brought the metal contamination to levels beyond the measurement capabilities of conventional analytical techniques. The measurement of these extremely low contamination levels has required the use of synchrotron radiation total reflection X-ray fluorescence (SR-TXRF) where sensitivities 100 times better than conv...

  15. Highly sensitive passive radio frequency identification based sensor systems.

    Science.gov (United States)

    Wissenwasser, J; Vellekoop, M; Heer, R

    2010-02-01

    A novel platform for sensor applications based on radio frequency (rf) identification technology, where passive tags are powered by the rf-field of a reader, is presented. The sophisticated energy harvesting system of the tag enables a blanking of the rf-field for a defined period, while supplying the tag electronics with a highly stable voltage and a power of 25 mW for 100 ms. During this time, span measurements can be performed without interferences of the rf-field. The presented tags work without batteries and are designed for impedance measurements on microbiological cell cultures under physiological relevant conditions as well as in harsh environments.

  16. Highly sensitive passive radio frequency identification based sensor systems

    Science.gov (United States)

    Wissenwasser, J.; Vellekoop, M.; Heer, R.

    2010-02-01

    A novel platform for sensor applications based on radio frequency (rf) identification technology, where passive tags are powered by the rf-field of a reader, is presented. The sophisticated energy harvesting system of the tag enables a blanking of the rf-field for a defined period, while supplying the tag electronics with a highly stable voltage and a power of 25 mW for 100 ms. During this time, span measurements can be performed without interferences of the rf-field. The presented tags work without batteries and are designed for impedance measurements on microbiological cell cultures under physiological relevant conditions as well as in harsh environments.

  17. Purification of ethanol for highly sensitive self-assembly experiments

    Directory of Open Access Journals (Sweden)

    Kathrin Barbe

    2014-08-01

    Full Text Available Ethanol is the preferred solvent for the formation of self-assembled monolayers (SAMs of thiolates on gold. By applying a thin film sensor system, we could demonstrate that even the best commercial qualities of ethanol contain surface-active contaminants, which can compete with the desired thiolates for surface sites. Here we present that gold nanoparticles deposited onto zeolite X can be used to remove these contaminants by chemisorption. This nanoparticle-impregnated zeolite does not only show high capacities for surface-active contaminants, such as thiols, but can be fully regenerated via a simple pyrolysis protocol.

  18. Dynamics and sensitivity analysis of high-frequency conduction block

    Science.gov (United States)

    Ackermann, D. Michael; Bhadra, Niloy; Gerges, Meana; Thomas, Peter J.

    2011-10-01

    The local delivery of extracellular high-frequency stimulation (HFS) has been shown to be a fast acting and quickly reversible method of blocking neural conduction and is currently being pursued for several clinical indications. However, the mechanism for this type of nerve block remains unclear. In this study, we investigate two hypotheses: (1) depolarizing currents promote conduction block via inactivation of sodium channels and (2) the gating dynamics of the fast sodium channel are the primary determinate of minimal blocking frequency. Hypothesis 1 was investigated using a combined modeling and experimental study to investigate the effect of depolarizing and hyperpolarizing currents on high-frequency block. The results of the modeling study show that both depolarizing and hyperpolarizing currents play an important role in conduction block and that the conductance to each of three ionic currents increases relative to resting values during HFS. However, depolarizing currents were found to promote the blocking effect, and hyperpolarizing currents were found to diminish the blocking effect. Inward sodium currents were larger than the sum of the outward currents, resulting in a net depolarization of the nodal membrane. Our experimental results support these findings and closely match results from the equivalent modeling scenario: intra-peritoneal administration of the persistent sodium channel blocker ranolazine resulted in an increase in the amplitude of HFS required to produce conduction block in rats, confirming that depolarizing currents promote the conduction block phenomenon. Hypothesis 2 was investigated using a spectral analysis of the channel gating variables in a single-fiber axon model. The results of this study suggested a relationship between the dynamical properties of specific ion channel gating elements and the contributions of corresponding conductances to block onset. Specifically, we show that the dynamics of the fast sodium inactivation gate are

  19. A compact high-sensitivity heterodyne interferometer for industrial metrology

    Science.gov (United States)

    Schuldt, Thilo; Gohlke, Martin; Weise, Dennis; Peters, Achim; Johann, Ulrich; Braxmaier, Claus

    2008-04-01

    For translation and tilt metrology, we developed a compact fiber-coupled polarizing heterodyne interferometer which is based on a highly symmetric design where both, measurement and reference beam have similar optical pathlengths and the same frequency and polarization. The method of differential wavefront sensing is implemented for tilt measurement. With this setup we reached noise levels below 5 pm/square root of Hz; Hz in translation and below 10 nrad/square root of Hz; in tilt measurement, both for frequencies above 10-2 Hz. While this setup is developed with respect to the requirements of the LISA (Laser Interferometer Space Antenna) space mission, we here present the current status of its adoption to industrial applications. We currently design a very compact and quasi-monolithic setup of the interferometer sensor head based on ultra-low expansion glass material. The resulting compact and robust sensor head can be used for nano-positioning control. We also plan to implement a scan of the measurement beam over the surface under investigation enabling high resolution 3D profilometry and surface property measurements (i. e. roughness, evenness and roundness). The dedicated low-noise (piezo-electric actuator in the measurement beam of the interferometer will be realized using integrated micro-system technology and can either be implemented in one or two dimensions.

  20. Highly sensitive thermoluminescent carbon doped nanoporous aluminium oxide detectors.

    Science.gov (United States)

    de Azevedo, W M; de Oliveira, G B; da Silva, E F; Khoury, H J; Oliveira de Jesus, E F

    2006-01-01

    In this work we present the synthesis, characterisation and the thermoluminescence (TL) response of nanoporous carbon doped aluminium oxide Al2O3:C produced by anodic oxidation of aluminium in organic and inorganic solvents. The X-ray and scanning electron microscopy (SEM) measurements reveal that the synthesised samples are amorphous and present highly ordered structures with uniform pore distribution with diameter of the order 50 nm. The photoluminescence and spectroscopic analysis in the visible and infrared regions show that the luminescence properties presented by the samples prepared in organic acid are due to carboxylate species, incorporated in anodic alumina films during the synthesis process. After an annealing treatment, part of the incorporated species decomposes and is incorporated into the structure of the aluminium oxide yielding a highly thermoluminescent detector (TL) . The results for X-ray irradiation in the range from 21 to 80 keV indicate a linear TL response with the dose in the range from 5 mGy to 1 Gy, suggesting that nanoporous aluminium oxide produced in the present route of synthesis is a suitable detector for radiation measurements.

  1. Porous tungsten oxide nanoflakes for highly alcohol sensitive performance.

    Science.gov (United States)

    Xiao, J; Liu, P; Liang, Y; Li, H B; Yang, G W

    2012-11-21

    Porous tungsten oxide (WO(3)) nanoflakes have been synthesized by a simple and green approach in an ambient environment. As a precursor solution a polycrystalline hydrated tungstite (H(2)WO(4)·H(2)O) nanoparticles colloid was first prepared by pulsed-laser ablation of a tungsten target in water. The H(2)WO(4)·H(2)O nanoflakes were produced by 72 h aging treatment at room temperature. Finally, porous WO(3) nanoflakes were synthesized by annealing at 800 °C for 4 h. Considering the large surface-to-volume ratio of porous nanoflakes, a porous WO(3) nanoflake gas sensor was fabricated, which exhibits an excellent sensor response performance to alcohol concentrations in the range of 20 to 600 ppm under low working temperature. This high response was attributed to the highly crystalline and porous flake-like morphology, which leads to effective adsorption and desorption, and provides more active sites for the gas molecules' reaction. These findings showed that the porous tungsten oxide nanoflake has great potential in gas-sensing performance.

  2. High-sensitivity green resist material with organic solvent-free spin-coating and tetramethylammonium hydroxide-free water-developable processes for EB and EUV lithography

    Science.gov (United States)

    Takei, Satoshi; Hanabata, Makoto; Oshima, Akihiro; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi

    2015-03-01

    We investigated the eco-friendly electron beam (EB) and extreme-ultraviolet (EUV) lithography using a high-sensitive negative type of green resist material derived from biomass to take advantage of organic solvent-free water spin-coating and tetramethylammonium hydroxide(TMAH)-free water-developable techniques. A water developable, non-chemically amplified, high sensitive, and negative tone resist material in EB lithography was developed for environmental affair, safety, easiness of handling, and health of the working people, instead of the common developable process of TMAH. The material design concept to use the water-soluble resist material with acceptable properties such as pillar patterns with less than 100 nm in high EB sensitivity of 10 μC/cm2 and etch selectivity with a silicon-based middle layer in CF4 plasma treatment was demonstrated for EB and EUV lithography.

  3. Highly sensitive temperature sensor based on an isopropanol-filled photonic crystal fiber long period grating

    Science.gov (United States)

    Du, Chao; Wang, Qi; Zhao, Yong; Li, Jin

    2017-03-01

    A high sensitivity measurement method for temperature has been proposed and investigated based on an isopropanol-filled photonic crystal fiber long period grating (PCF-LPG). Due to the high thermo-optic coefficient (TOC) of isopropanol, the sensitivity of the proposed temperature sensor could be effectively improved by filling isopropanol in the air waveguides of PCF. It can be found that the resonant dip will be split in two dips after filling isopropanol and the two dips have different sensitivities to surrounding temperature. Because of PCF-LPG is sensitive to the refractive index (RI) of internal filled liquid, the isopropanol-filled PCF-LPG temperature sensor has a high sensitivities of 1.356 nm/°C in the range of 20-50 °C. The simplicity and the excellent performance of our proposed device make it potential for the applications of high-precision temperature measurement is required.

  4. Silver dendrites decorated filter membrane as highly sensitive and reproducible three dimensional surface enhanced Raman scattering substrates

    Science.gov (United States)

    Zhao, Bin; Lu, Ya; Zhang, Congyun; Fu, Yizheng; Moeendarbari, Sina; Shelke, Sandesh R.; Liu, Yaqing; Hao, Yaowu

    2016-11-01

    We report a novel and flexible surface enhanced Raman scattering (SERS) substrate based on filter membranes decorated with silver dendritic nanostructures. The SERS-active substrate was fabricated via electrodeposition, where hierarchical silver dendrites were uniformly and firmly deposited within and on the top of the porous filter membranes. The morphological evolution of silver dendrites was investigated at different deposition times, and the effect of the components of electrolyte was also studied. Finite difference time domain (FDTD) simulations were performed to reveal the distribution of electric filed when Ag dendrites were illuminated with 785 nm light. Such 3D SERS-active substrate exhibits extremely high sensitivity and excellent reproducibility. Raman signal sensitivity for rhodamine 6G was tested as high as 1 × 10-11 M with 12% average intensity variations at the major Raman peak. Additionally, the as-synthesized robust substrate displays high stability under an ambient condition for several months. This 3D eco-friendly filter membrane-based substrate provides not only high density of SERS hot spots, but also a very large area for capturing target analytes. It has potential applications for the detection of trace organic contaminants in the environment.

  5. A novel high resolution, high sensitivity SPECT detector for molecular imaging of cardiovascular diseases

    Science.gov (United States)

    Cusanno, F.; Argentieri, A.; Baiocchi, M.; Colilli, S.; Cisbani, E.; De Vincentis, G.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Magliozzi, M. L.; Majewski, S.; Marano, G.; Musico, P.; Musumeci, M.; Santavenere, F.; Torrioli, S.; Tsui, B. M. W.; Vitelli, L.; Wang, Y.

    2010-05-01

    Cardiovascular diseases are the most common cause of death in western countries. Understanding the rupture of vulnerable atherosclerotic plaques and monitoring the effect of innovative therapies of heart failure is of fundamental importance. A flexible, high resolution, high sensitivity detector system for molecular imaging with radionuclides on small animal models has been designed for this aim. A prototype has been built using tungsten pinhole and LaBr3(Ce) scintillator coupled to Hamamatsu Flat Panel PMTs. Compact individual-channel readout has been designed, built and tested. Measurements with phantoms as well as pilot studies on mice have been performed, the results show that the myocardial perfusion in mice can be determined with sufficient precision. The detector will be improved replacing the Hamamatsu Flat Panel with Silicon Photomultipliers (SiPMs) to allow integration of the system with MRI scanners. Application of LaBr3(Ce) scintillator coupled to photosensor with high photon detection efficiency and excellent energy resolution will allow dual-label imaging to monitor simultaneously the cardiac perfusion and the molecular targets under investigation during the heart therapy.

  6. Solar panels as air Cherenkov detectors for extremely high energy cosmic rays

    CERN Document Server

    Cecchini, S; Esposti, L D; Giacomelli, G; Guerra, M; Lax, I; Mandrioli, G; Parretta, A; Sarno, A; Schioppo, R; Sorel, M; Spurio, M

    2000-01-01

    Increasing interest towards the observation of the highest energy cosmic rayshas motivated the development of new detection techniques. The properties ofthe Cherenkov photon pulse emitted in the atmosphere by these very rareparticles indicate low-cost semiconductor detectors as good candidates fortheir optical read-out. The aim of this paper is to evaluate the viability of solar panels for thispurpose. The experimental framework resulting from measurements performed withsuitably-designed solar cells and large conventional photovoltaic areas ispresented. A discussion on the obtained and achievable sensitivities follows.

  7. Color Sensitivity Multiple Exposure Fusion using High Dynamic Range Image

    Directory of Open Access Journals (Sweden)

    Varsha Borole

    2014-02-01

    Full Text Available In this paper, we present a high dynamic range imaging (HDRI method using a capturing camera image using normally exposure, over exposure and under exposure. We make three different images from a multiple input image using local histogram stretching. Because the proposed method generated three histogram-stretched images from a multiple input image, ghost artifacts that are the result of the relative motion between the camera and objects during exposure time, are inherently removed. Therefore, the proposed method can be applied to a consumer compact camera to provide the ghost artifacts free HDRI. Experiments with several sets of test images with different exposures show that the proposed method gives a better performance than existing methods in terms of visual results and computation time.

  8. High sensitivity, wide coverage, and high-resolution NIR non-cryogenic spectrograph, WINERED

    Science.gov (United States)

    Ikeda, Yuji; Kobayashi, Naoto; Kondo, Sohei; Otsubo, Shogo; Hamano, Satoshi; Sameshima, Hiroaki; Yoshikawa, Tomoshiro; Fukue, Kei; Nakanishi, Kenshi; Kawanishi, Takafumi; Nakaoka, Tetsuya; Kinoshita, Masaomi; Kitano, Ayaka; Asano, Akira; Takenaka, Keiichi; Watase, Ayaka; Mito, Hiroyuki; Yasui, Chikako; Minami, Atsushi; Izumu, Natsuko; Yamamoto, Ryo; Mizumoto, Misaki; Arasaki, Takayuki; Arai, Akira; Matsunaga, Noriyuki; Kawakita, Hideyo

    2016-08-01

    Near-infrared (NIR) high-resolution spectroscopy is a fundamental observational method in astronomy. It provides significant information on the kinematics, the magnetic fields, and the chemical abundances, of astronomical objects embedded in or behind the highly extinctive clouds or at the cosmological distances. Scientific requirements have accelerated the development of the technology required for NIR high resolution spectrographs using 10 m telescopes. WINERED is a near-infrared (NIR) high-resolution spectrograph that is currently mounted on the 1.3 m Araki telescope of the Koyama Astronomical Observatory in Kyoto-Sangyo University, Japan, and has been successfully operated for three years. It covers a wide wavelength range from 0.90 to 1.35 μm (the z-, Y-, and J-bands) with a spectral resolution of R = 28,000 (Wide-mode) and R = 80,000 (Hires-Y and Hires-J modes). WINERED has three distinctive features: (i) optics with no cold stop, (ii) wide spectral coverage, and (iii) high sensitivity. The first feature, originating from the Joyce proposal, was first achieved by WINERED, with a short cutoff infrared array, cold baffles, and custom-made thermal blocking filters, and resulted in reducing the time for development, alignment, and maintenance, as well as the total cost. The second feature is realized with the spectral coverage of Δλ/λ 1/6 in a single exposure. This wide coverage is realized by a combination of a decent optical design with a cross-dispersed echelle and a large format array (2k x 2k HAWAII- 2RG). The Third feature, high sensitivity, is achieved via the high-throughput optics (>60 %) and the very low noise of the system. The major factors affecting the high throughput are the echelle grating and the VPH cross-disperser with high diffraction efficiencies of 83 % and 86 %, respectively, and the high QE of HAWAII-2RG (83 % at 1.23 μm). The readout noise of the electronics and the ambient thermal background radiation at longer wavelengths could be

  9. Brain Tumour Segmentation based on Extremely Randomized Forest with high-level features.

    Science.gov (United States)

    Pinto, Adriano; Pereira, Sergio; Correia, Higino; Oliveira, J; Rasteiro, Deolinda M L D; Silva, Carlos A

    2015-08-01

    Gliomas are among the most common and aggressive brain tumours. Segmentation of these tumours is important for surgery and treatment planning, but also for follow-up evaluations. However, it is a difficult task, given that its size and locations are variable, and the delineation of all tumour tissue is not trivial, even with all the different modalities of the Magnetic Resonance Imaging (MRI). We propose a discriminative and fully automatic method for the segmentation of gliomas, using appearance- and context-based features to feed an Extremely Randomized Forest (Extra-Trees). Some of these features are computed over a non-linear transformation of the image. The proposed method was evaluated using the publicly available Challenge database from BraTS 2013, having obtained a Dice score of 0.83, 0.78 and 0.73 for the complete tumour, and the core and the enhanced regions, respectively. Our results are competitive, when compared against other results reported using the same database.

  10. Effects of intrinsic magnetostriction on tube-topology magnetoelectric sensors with high magnetic field sensitivity

    Science.gov (United States)

    Gillette, Scott M.; Fitchorov, Trifon; Obi, Ogheneyunume; Jiang, Liping; Hao, Hongbo; Wu, Shuangxia; Chen, Yajie; Harris, Vincent G.

    2014-05-01

    Three quasi-one-dimensional magnetoelectric (ME) magnetic field sensors, each with a different magnetostrictive wire material, were investigated in terms of sensitivity and noise floor. Magnetostrictive Galfenol, iron-cobalt-vanadium, and iron-nickel wires were examined. Sensitivity profiles, hysteresis effects, and noise floor measurements for both optimally biased and zero-biased conditions are presented. The FeNi wire (FN) exhibits high sensitivity (5.36 mV/Oe) at bias fields below 22 Oe and an optimal bias of 10 Oe, whereas FeGa wire (FG) exhibits higher sensitivity (6.89 mW/Oe) at bias fields >22 Oe. The sensor of FeCoV wire (FC) presents relatively low sensitivity (2.12 mV/Oe), due to low magnetostrictive coefficient. Each ME tube-topology sensor demonstrates relatively high sensitivity at zero bias field, which results from a magnetic shape anisotropy and internal strain of the thin magnetostrictive wire.

  11. Sensitivity of The High-resolution Wam Model With Respect To Time Step

    Science.gov (United States)

    Kasemets, K.; Soomere, T.

    The northern part of the Baltic Proper and its subbasins (Bothnian Sea, the Gulf of Finland, Moonsund) serve as a challenge for wave modellers. In difference from the southern and the eastern parts of the Baltic Sea, their coasts are highly irregular and contain many peculiarities with the characteristic horizontal scale of the order of a few kilometres. For example, the northern coast of the Gulf of Finland is extremely ragged and contains a huge number of small islands. Its southern coast is more or less regular but has up to 50m high cliff that is frequently covered by high forests. The area also contains numerous banks that have water depth a couple of meters and that may essentially modify wave properties near the banks owing to topographical effects. This feature suggests that a high-resolution wave model should be applied for the region in question, with a horizontal resolution of an order of 1 km or even less. According to the Courant-Friedrich-Lewy criterion, the integration time step for such models must be of the order of a few tens of seconds. A high-resolution WAM model turns out to be fairly sensitive with respect to the particular choice of the time step. In our experiments, a medium-resolution model for the whole Baltic Sea was used, with the horizontal resolution 3 miles (3' along latitudes and 6' along longitudes) and the angular resolution 12 directions. The model was run with steady wind blowing 20 m/s from different directions and with two time steps (1 and 3 minutes). For most of the wind directions, the rms. difference of significant wave heights calculated with differ- ent time steps did not exceed 10 cm and typically was of the order of a few per cents. The difference arose within a few tens of minutes and generally did not increase in further computations. However, in the case of the north wind, the difference increased nearly monotonously and reached 25-35 cm (10-15%) within three hours of integra- tion whereas mean of significant wave

  12. Nanowire-templated microelectrodes for high-sensitivity pH detection

    DEFF Research Database (Denmark)

    Antohe, V.A.; Radu, Adrian; Mátéfi-Tempfli, Mária

    2009-01-01

    A highly sensitive pH capacitive sensor has been designed by confined growth of vertically aligned nanowire arrays on interdigited microelectrodes. The active surface of the device has been functionalized with an electrochemical pH transducer (polyaniline). We easily tune the device features...... by combining lithographic techniques with electrochemical synthesis. The reported electrical LC resonance measurements show considerable sensitivity enhancement compared to conventional capacitive pH sensors realized with microfabricated interdigited electrodes. The sensitivity can be easily improved...

  13. SUSY constraints from relic density: High sensitivity to pre-BBN expansion rate

    Energy Technology Data Exchange (ETDEWEB)

    Arbey, A. [Universite de Lyon, Lyon F-69000 (France); Universite Lyon 1, Villeurbanne F-69622 (France); Centre de Recherche Astrophysique de Lyon, Observatoire de Lyon, 9 avenue Charles Andre, Saint-Genis Laval cedex F-69561 (France); CNRS, UMR 5574, Ecole Normale Superieure de Lyon, Lyon (France)], E-mail: arbey@obs.univ-lyon1.fr; Mahmoudi, F. [High Energy Physics, Uppsala University, Box 535, 75121 Uppsala (Sweden)

    2008-10-30

    The sensitivity of the lightest supersymmetric particle relic density calculation to the variation of the cosmological expansion rate before nucleosynthesis is discussed. Such a modification of the expansion rate, even extremely modest and with no consequence on the cosmological observations, can greatly enhance the calculated relic density, and therefore change the constraints on the SUSY parameter space drastically. We illustrate this variation in two examples of SUSY models, and show that it is unsafe to use the lower bound of the WMAP limits in order to constrain supersymmetry. We therefore suggest to use only the upper value {omega}{sub DM}h{sup 2}<0.135.

  14. Hypoxia-sensitive reporter system for high-throughput screening.

    Science.gov (United States)

    Tsujita, Tadayuki; Kawaguchi, Shin-ichi; Dan, Takashi; Baird, Liam; Miyata, Toshio; Yamamoto, Masayuki

    2015-01-01

    The induction of anti-hypoxic stress enzymes and proteins has the potential to be a potent therapeutic strategy to prevent the progression of ischemic heart, kidney or brain diseases. To realize this idea, small chemical compounds, which mimic hypoxic conditions by activating the PHD-HIF-α system, have been developed. However, to date, none of these compounds were identified by monitoring the transcriptional activation of hypoxia-inducible factors (HIFs). Thus, to facilitate the discovery of potent inducers of HIF-α, we have developed an effective high-throughput screening (HTS) system to directly monitor the output of HIF-α transcription. We generated a HIF-α-dependent reporter system that responds to hypoxic stimuli in a concentration- and time-dependent manner. This system was developed through multiple optimization steps, resulting in the generation of a construct that consists of the secretion-type luciferase gene (Metridia luciferase, MLuc) under the transcriptional regulation of an enhancer containing 7 copies of 40-bp hypoxia responsive element (HRE) upstream of a mini-TATA promoter. This construct was stably integrated into the human neuroblastoma cell line, SK-N-BE(2)c, to generate a reporter system, named SKN:HRE-MLuc. To improve this system and to increase its suitability for the HTS platform, we incorporated the next generation luciferase, Nano luciferase (NLuc), whose longer half-life provides us with flexibility for the use of this reporter. We thus generated a stably transformed clone with NLuc, named SKN:HRE-NLuc, and found that it showed significantly improved reporter activity compared to SKN:HRE-MLuc. In this study, we have successfully developed the SKN:HRE-NLuc screening system as an efficient platform for future HTS.

  15. CHANGES IN FREQUENCY, PERSISTENCE AND INTENSITY OF EXTREME HIGH-TEMPERATURE EVENTS IN THE ROMANIAN PLAIN

    Directory of Open Access Journals (Sweden)

    DRAGOTĂ CARMEN-SOFIA

    2015-03-01

    Full Text Available Recent summer heat waves (2003, 2010 had a strong socio-economic impact in different parts of the continent by means of crop shortfalls and forest fires. Sustained hot days became more frequent in the recent decades in many European regions, affecting human health and leading to additional deaths. This signal has been outlined in many studies conducted in Romania, suggesting that the southern region of Romania is particularly subject to large temperature increase. This work investigates the changing annual and seasonal heat waves at regional scale of the Romanian Plain, over period 1961-2014. Daily maximum temperature recorded at six weather stations available from the ECA&D project (European Climate Assessment and Datasets were analyzed. The changes in the seasonal frequency, duration and intensity of heat waves were studied using the Mann-Kendall nonparametric trend test, as recommended by the scientific expert team on climate change detection. The likelyhood of higher maximum temperatures rise, particularly after the mid 1980s, and the changes in the upper tail of the probability density functions of these temperatures, within the extreme domain (beyond the 95% percentile level, explain the persistence and intensity of heat waves. The upward trends are dominant most of the year, and many of the calculated decadal slopes were found statistically significant (relative to the 5% level, proving an ongoing and strong warming all over the region. Our findings are in good agreement with several recent studies carried out at European and national scale and pledge for further scientific analyses i.e. heat stress impact on public health and agriculture.

  16. Fixed-site high-frequency transcutaneous electrical nerve stimulation for treatment of chronic low back and lower extremity pain

    Science.gov (United States)

    Gozani, Shai N

    2016-01-01

    Objective The objective of this study was to determine if fixed-site high-frequency transcutaneous electrical nerve stimulation (FS-TENS) is effective in treating chronic low back and lower extremity pain. Background Transcutaneous electrical nerve stimulation is widely used for treatment of chronic pain. General-purpose transcutaneous electrical nerve stimulation devices are designed for stimulation anywhere on the body and often cannot be used while the user is active or sleeping. FS-TENS devices are designed for placement at a pre-determined location, which enables development of a wearable device for use over extended time periods. Methods Study participants with chronic low back and/or lower extremity pain self-administered an FS-TENS device for 60 days. Baseline, 30-, and 60-day follow-up data were obtained through an online questionnaire. The primary outcome measure was the patient global impression of change. Pain intensity and interference were assessed using the Brief Pain Inventory. Changes in use of concomitant pain medications were evaluated with a single-item global self-rating. Results One hundred and thirty participants were enrolled, with 88 completing the 60-day follow-up questionnaire. Most participants (73.9%) were 50 years of age or older. At baseline, low back pain was identified by 85.3%, lower extremity pain by 71.6%, and upper extremity pain by 62.5%. Participants reported widespread pain, at baseline, with a mean of 3.4 (standard deviation 1.1) pain sites. At the 60-day follow-up, 80.7% of participants reported that their chronic pain had improved and they were classified as responders. Baseline characteristics did not differentiate non-responders from responders. There were numerical trends toward reduced pain interference with walking ability and sleep, and greater pain relief in responders. There was a large difference in use of concomitant pain medications, with 80.3% of responders reporting a reduction compared to 11.8% of non

  17. Sensory Processing Sensitivity: Factors of the Highly Sensitive Person Scale and Their relationships to Personality and Subjective Health Complaints.

    Science.gov (United States)

    Listou Grimen, Hanne; Diseth, Åge

    2016-12-01

    The aim of the present study was to examine the factor structure of a Norwegian version of the Highly Sensitive Person Scale (HSPS) and to investigate how sensory processing sensitivity (SPS) is related to personality traits of neuroticism, extraversion, and openness and to subjective health complaints (SHC) in a sample of 167 undergraduate psychology students. The results showed that the variance in a shortened version of the HSPS was best described by three separate factors: ease of excitation (EOE), aesthetic sensitivity (AES), and low sensory threshold (LST). Furthermore, the result showed than an overall SPS factor (EOE, LST, and AES combined) was predicted positively by neuroticism and openness and negatively by extraversion. With respect to SHC, the results showed that EOE and LST were positively associated with psychological health complaints. However, the personality trait of neuroticism contributed more than the SPS factors as predictor of SHC. In conclusion, the present study supported a shortened version of the HSPS and its relation to personality factors and SHC.

  18. Enhanced laboratory sensitivity to variation of the fine-structure constant using highly charged ions.

    Science.gov (United States)

    Berengut, J C; Dzuba, V A; Flambaum, V V

    2010-09-17

    We study atomic systems that are in the frequency range of optical atomic clocks and have enhanced sensitivity to potential time variation of the fine-structure constant α. The high sensitivity is due to coherent contributions from three factors: high nuclear charge Z, high ionization degree, and significant differences in the configuration composition of the states involved. Configuration crossing keeps the frequencies in the optical range despite the large ionization energies. We discuss a few promising examples that have the largest α sensitivities seen in atomic systems.

  19. High Sensitivity 1-D and 2-D Microwave Spectroscopy via Cryogenic Buffer Gas Cooling

    Science.gov (United States)

    Patterson, David; Eibenberger, Sandra

    2017-06-01

    All rotationally resolved spectroscopic methods rely on sources of cold molecules. For the last three decades, the workhorse technique for producing highly supersaturated samples of cold molecules has been the pulsed supersonic jet. We present here progress on our alternative method, cryogenic buffer gas cooling. Our high density, continuous source, and low noise temperature allow us to record microwave spectra at unprecedented sensitivity, with a dynamic range in excess of 10^6 achievable in a few minutes of integration time. This high sensitivity enables new protocols in both 1-D and 2-D microwave spectroscopy, including sensitive chiral analysis via nonlinear three wave mixing and applications as an analytical chemistry tool

  20. Extreme Heat

    Science.gov (United States)

    ... Landslides & Debris Flow Nuclear Blast Nuclear Power Plants Power Outages Pandemic Radiological Dispersion Device Severe Weather Snowstorms & Extreme ... Landslides & Debris Flow Nuclear Blast Nuclear Power Plants Power Outages Pandemic Radiological Dispersion Device Severe Weather Snowstorms & Extreme ...