WorldWideScience

Sample records for extremely high pressure

  1. Inelastic X-ray scattering experiments at extreme conditions: high temperatures and high pressures

    Directory of Open Access Journals (Sweden)

    S.Hosokawa

    2008-03-01

    Full Text Available In this article, we review the present status of experimental techniques under extreme conditions of high temperature and high pressure used for inelastic X-ray scattering (IXS experiments of liquid metals, semiconductors, molten salts, molecular liquids, and supercritical water and methanol. For high temperature experiments, some types of single-crystal sapphire cells were designed depending on the temperature of interest and the sample thickness for the X-ray transmission. Single-crystal diamond X-ray windows attached to the externally heated high-pressure vessel were used for the IXS experiment of supercritical water and methanol. Some typical experimental results are also given, and the perspective of IXS technique under extreme conditions is discussed.

  2. Solid Nitrogen at Extreme Conditions of High Pressure and Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Goncharov, A; Gregoryanz, E

    2004-04-05

    We review the phase diagram of nitrogen in a wide pressure and temperature range. Recent optical and x-ray diffraction studies at pressures up to 300 GPa and temperatures in excess of 1000 K have provided a wealth of information on the transformation of molecular nitrogen to a nonmolecular (polymeric) semiconducting and two new molecular phases. These newly found phases have very large stability (metastability) range. Moreover, two new molecular phases have considerably different orientational order from the previously known phases. In the iota phase (unlike most of other known molecular phases), N{sub 2} molecules are orientationally equivalent. The nitrogen molecules in the theta phase might be associated into larger aggregates, which is in line with theoretical predictions on polyatomic nitrogen.

  3. High Energy Ion Acceleration by Extreme Laser Radiation Pressure

    Science.gov (United States)

    2017-03-14

    was used instead. This code makes the assumption that the background ion and electron behaviour can be approximated with a fluid model whilst...electron behaviour occurring from this aperture was also published in High Power Laser Science and Engineering [4]. A significant breakthrough was also...acceleration to transparency. This was published in Physics of Plasmas [12]. Through one- dimensional modelling of the interaction, it was also

  4. Laboratory measurements of materials in extreme conditions; The use of high energy radiation sources for high pressure studies

    Energy Technology Data Exchange (ETDEWEB)

    Cauble, R.; Remington, B.A.

    1998-06-01

    High energy lasers can be used to study material conditions that are appropriate fort inertial confinement fusion: that is, materials at high densities, temperatures, and pressures. Pulsed power devices can offer similar opportunities. The National Ignition Facility (NIF) will be a high energy multi-beam laser designed to achieve the thermonuclear ignition of a mm-scale DT-filled target in the laboratory. At the same time, NE will provide the physics community with a unique tool for the study of high energy density matter at states unreachable by any other laboratory technique. Here we describe how these lasers and pulsed power tools can contribute to investigations of high energy density matter in the areas of material properties and equations of state, extend present laboratory shock techniques such as high-speed jets to new regimes, and allow study of extreme conditions found in astrophysical phenomena.

  5. A new extension of the polarizable continuum model: Toward a quantum chemical description of chemical reactions at extreme high pressure.

    Science.gov (United States)

    Cammi, Roberto

    2015-11-15

    A quantum chemical method for studying potential energy surfaces of reactive molecular systems at extreme high pressures is presented. The method is an extension of the standard Polarizable Continuum Model that is usually used for Quantum Chemical study of chemical reactions at a standard condition of pressure. The physical basis of the method and the corresponding computational protocol are described in necessary detail, and an application of the method to the dimerization of cyclopentadiene (up to 20 GPa) is reported.

  6. Novel High-Temperature Pressure Sensors for Extreme Service Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I research will result in a prototype high temperature pressure sensing cell based on the piezoresistive properties of platinum:tungsten alloys. The...

  7. Synchrotron Radiation and High Pressure: New Light on Materials Under Extreme Conditions

    Science.gov (United States)

    Hemley, Russell

    2005-03-01

    Current technological advances now make it possible to perform experiments on materials subjected to static or sustained conditions up to multimegabar pressures (>300 GPa) and from cryogenic temperatures to several thousand degrees (˜0.5 eV range). With these techniques, densities of condensed matter can be increased over an order of magnitude, causing numerous transformations and new physical and chemical phenomena to occur. Growth in this area largely been made possible by accelerating developments in diamond-anvil cell methods coupled with new synchrotron radiation techniques. Significant advances have occurred in x-ray diffraction, spectroscopy, inelastic scattering, radiography, and infrared spectroscopy. With recent developments, structure refinements based on polycrystalline data up to multimegabar pressures have been possible. Single-crystal methods have been extended to megabar pressure, with the prospect of full crystallographic refinements. `Three- dimensional' diffraction data can be collected for determining strength, deformation, and elastic tensors at high P-T conditions. Studies carried out during the past three years provide numerous breakthroughs in high-pressure x-ray spectroscopy and a broad range of inelastic scattering methods. Other experiments have exploited the use of x-ray radiography over a range of pressures. Finally, synchrotron infrared measurements have revealed a wealth of high-pressure phenomena, particularly for molecular systems. Examples to be discussed include investigations of dense hydrogen; transformations in molecular materials; novel ceramics; new types of superconductors, electronic, and magnetic materials; and liquids and amorphous materials.

  8. State-of-the-Art of Extreme Pressure Lubrication Realized with the High Thermal Diffusivity of Liquid Metal.

    Science.gov (United States)

    Li, Haijiang; Tian, Pengyi; Lu, Hongyu; Jia, Wenpeng; Du, Haodong; Zhang, Xiangjun; Li, Qunyang; Tian, Yu

    2017-02-15

    Sliding between two objects under very high load generally involves direct solid-solid contact at molecular/atomic level, the mechanism of which is far from clearly disclosed yet. Those microscopic solid-solid contacts could easily lead to local melting of rough surfaces. At extreme conditions, this local melting could propagate to the seizure and welding of the entire interface. Traditionally, the microscopic solid-solid contact is alleviated by various lubricants and additives based on their improved mechanical properties. In this work, we realized the state-of-the-art of extreme pressure lubrication by utilizing the high thermal diffusivity of liquid metal, 2 orders of magnitude higher than general organic lubricants. The extreme pressure lubrication property of gallium based liquid metal (GBLM) was compared with gear oil and poly-α-olefin in a four-ball test. The liquid metal lubricates very well at an extremely high load (10 kN, the maximum capability of a four-ball tester) at a rotation speed of 1800 rpm for a duration of several minutes, much better than traditional organic lubricants which typically break down within seconds at a load of a few kN. Our comparative experiments and analysis showed that this superextreme pressure lubrication capability of GBLM was attributed to the synergetic effect of the ultrafast heat dissipation of GBLM and the low friction coefficient of FeGa3 tribo-film. The present work demonstrated a novel way of improving lubrication capability by enhancing the lubricant thermal properties, which might lead to mechanical systems with much higher reliability.

  9. Special structures and properties of hydrogen nanowire confined in a single walled carbon nanotube at extreme high pressure

    Directory of Open Access Journals (Sweden)

    Yueyuan Xia

    2012-06-01

    Full Text Available Extensive ab initio molecular dynamics simulations indicate that hydrogen can be confined in single walled carbon nanotubes to form high density and high pressure H2 molecular lattice, which has peculiar shell and axial structures depending on the density or pressure. The band gap of the confined H2 lattice is sensitive to the pressure. Heating the system at 2000K, the H2 lattice is firstly melted to form H2 molecular liquid, and then some of the H2 molecules dissociate accompanied by drastic molecular and atomic reactions, which have essential effect on the electronic structure of the hydrogen system. The liquid hydrogen system at 2000K is found to be a particular mixed liquid, which consists of H2 molecules, H atoms, and H-H-H trimers. The dissociated H atoms and the trimers in the liquid contribute resonance electron states at the Fermi energy to change the material properties substantially. Rapidly cooling the system from 2000K to 0.01 K, the mixed liquid is frozen to form a mixed solid melt with a clear trend of band gap closure. It indicates that this solid melt may become a superconducting nanowire when it is further compressed.

  10. Hypertension (High Blood Pressure)

    Science.gov (United States)

    ... Surgery? A Week of Healthy Breakfasts Shyness Hypertension (High Blood Pressure) KidsHealth > For Teens > Hypertension (High Blood Pressure) Print ... rest temperature diet emotions posture medicines Why Is High Blood Pressure Bad? High blood pressure means a person's heart ...

  11. Prebiotic cell membranes that survive extreme environmental pressure conditions.

    Science.gov (United States)

    Kapoor, Shobhna; Berghaus, Melanie; Suladze, Saba; Prumbaum, Daniel; Grobelny, Sebastian; Degen, Patrick; Raunser, Stefan; Winter, Roland

    2014-08-04

    Attractive candidates for compartmentalizing prebiotic cells are membranes comprised of single-chain fatty acids. It is generally believed that life may have originated in the depth of the protoocean, that is, under high hydrostatic pressure conditions, but the structure and physical-chemical properties of prebiotic membranes under such conditions have not yet been explored. We report the temperature- and pressure-dependent properties of membranes composed of prebiotically highly-plausible lipids and demonstrate that prebiotic membranes could not only withstand extreme temperatures, but also serve as robust models of protocells operating in extreme pressure environments. We show that pressure not only increases the stability of vesicular systems but also limits their flexibility and permeability to solutes, while still keeping the membrane in an overall fluid-like and thus functional state. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Raman Spectroscopy at High Pressures

    Directory of Open Access Journals (Sweden)

    Alexander F. Goncharov

    2012-01-01

    Full Text Available Raman spectroscopy is one of the most informative probes for studies of material properties under extreme conditions of high pressure. The Raman techniques have become more versatile over the last decades as a new generation of optical filters and multichannel detectors become available. Here, recent progress in the Raman techniques for high-pressure research and its applications in numerous scientific disciplines including physics and chemistry of materials under extremes, earth and planetary science, new materials synthesis, and high-pressure metrology will be discussed.

  13. Metallization of (TTM-TTP)I3 with a Highly One-Dimensional Half-Filled Band under Extremely High Pressure

    Science.gov (United States)

    Yasuzuka, Syuma; Murata, Keizo; Fujimoto, Tsutomu; Shimotori, Masahiro; Kawamoto, Tadashi; Mori, Takehiko; Hedo, Masato; Uwatoko, Yoshiya

    2006-05-01

    The title compound (TTM-TTP)I3 with a highly one-dimensional (1D) half-filled energy band is almost metallized by the application of pressure beyond 7 GPa. It is theoretically predicted that the ground state of the 1D half-filled system is the Mott insulator at any positive on-site interaction U. Nevertheless, (TTM-TTP)I3 shows that the metal-insulator (M-I) transition temperature TMI decreases linearly with increasing pressure and is directing towards 0 K near 10 GPa. Above 5.7 GPa, the metallic temperature variation appears in the high-temperature region for 70 model.

  14. Synthesis and microdiffraction at extreme pressures and temperatures.

    Science.gov (United States)

    Lavina, Barbara; Dera, Przemyslaw; Meng, Yue

    2013-10-07

    High pressure compounds and polymorphs are investigated for a broad range of purposes such as determine structures and processes of deep planetary interiors, design materials with novel properties, understand the mechanical behavior of materials exposed to very high stresses as in explosions or impacts. Synthesis and structural analysis of materials at extreme conditions of pressure and temperature entails remarkable technical challenges. In the laser heated diamond anvil cell (LH-DAC), very high pressure is generated between the tips of two opposing diamond anvils forced against each other; focused infrared laser beams, shined through the diamonds, allow to reach very high temperatures on samples absorbing the laser radiation. When the LH-DAC is installed in a synchrotron beamline that provides extremely brilliant x-ray radiation, the structure of materials under extreme conditions can be probed in situ. LH-DAC samples, although very small, can show highly variable grain size, phase and chemical composition. In order to obtain the high resolution structural analysis and the most comprehensive characterization of a sample, we collect diffraction data in 2D grids and combine powder, single crystal and multigrain diffraction techniques. Representative results obtained in the synthesis of a new iron oxide, Fe4O5 (1) will be shown.

  15. High Blood Pressure

    Science.gov (United States)

    ... normal blood pressure 140/90 or higher is high blood pressure Between 120 and 139 for the top number, ... prehypertension. Prehypertension means you may end up with high blood pressure, unless you take steps to prevent it. High ...

  16. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... Print Page Text Size: A A A Listen High Blood Pressure (Hypertension) Nearly 1 in 3 American adults has ... weight. How Will I Know if I Have High Blood Pressure? High blood pressure is a silent problem — you ...

  17. The Extreme Universe Space Observatory Super Pressure Balloon Mission

    Science.gov (United States)

    Wiencke, Lawrence; Olinto, Angela; Adams, Jim; JEM-EUSO Collaboration

    2017-01-01

    The Extreme Universe Space Observatory on a super pressure balloon (EUSO-SPB) mission will make the first fluorescence observations of high energy cosmic ray extensive air showers by looking down on the atmosphere from near space. A long duration flight of at least 50 nights launched from Wanaka NZ is planned for 2017. We describe completed instrument, and the planned mission. We acknowledge the support of NASA through grants NNX13AH53G and NNX13AH55G.

  18. Tribological behaviour of plasma nitrided cast iron D6510 and cast steel S0050A under the inclined-impact sliding condition with extremely high contact pressure

    Science.gov (United States)

    Zhao, C.; Zhang, J.; Nie, X.

    2017-05-01

    Plasma nitriding as a surface modification was applied on two substrate materials: cast iron D6510 and cast steel S0050A. After measurement of the friction coefficients of the treated samples using a pin-on-disc tribotester, an inclined impact-sliding wear tester was utilized to investigate their tribological behaviour under tilting contact with extremely high contact pressure. While numerous surface fatigue cracks, severe chipping, and peeling of the compound layer were observed for the treated cast steel sample, the treated cast iron sample had far fewer surface fatigue cracks without chipping or peeling of the compound at the same test condition. The governing mechanisms of the treated cast iron sample’s superior resistance to surface fatigue failure were revealed by studying the cross-sectional hardness and nitrogen concentration profile. Energy-dispersive X-ray spectroscopy (EDS) analysis indicated that the treated cast iron sample had a smaller nitrogen concentration gradient, which led to a smaller hardness gradient as measured. The results suggest that a smaller hardness gradient between the compound layer and the diffusion zone and a thicker hardened case was able to improve the wear resistance and surface fatigue cracking resistance against high contact loads. Moreover, the smaller friction coefficient of the treated cast iron sample could also be beneficial for improving the wear resistance.

  19. Hypertension (High Blood Pressure)

    Science.gov (United States)

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Hypertension (High Blood Pressure) KidsHealth > For Teens > Hypertension (High Blood Pressure) A ... rest temperature diet emotions posture medicines Why Is High Blood Pressure Bad? High blood pressure means a person's heart ...

  20. High pressure technology 1994

    Energy Technology Data Exchange (ETDEWEB)

    Kapp, J.A.; Picqueuer, L.M. (eds.)

    1994-01-01

    This volume is divided into four sessions: fracture mechanics applications to high pressure vessels; high pressure code issues; high pressure design, analysis, and safety concerns; and military and other high pressure applications. Separate abstracts were prepared for eleven papers of this conference.

  1. Foot deformities, function in the lower extremities, and plantar pressure in patients with diabetes at high risk to develop foot ulcers

    Directory of Open Access Journals (Sweden)

    Ulla Hellstrand Tang

    2015-06-01

    Full Text Available Objective: Foot deformities, neuropathy, and dysfunction in the lower extremities are known risk factors that increase plantar peak pressure (PP and, as a result, the risk of developing foot ulcers in patients with diabetes. However, knowledge about the prevalence of these factors is still limited. The aim of the present study was to describe the prevalence of risk factors observed in patients with diabetes without foot ulcers and to explore possible connections between the risk factors and high plantar pressure. Patients and methods: Patients diagnosed with type 1 (n=27 or type 2 (n=47 diabetes (mean age 60.0±15.0 years were included in this cross-sectional study. Assessments included the registration of foot deformities; test of gross function at the hip, knee, and ankle joints; a stratification of the risk of developing foot ulcers according to the Swedish National Diabetes Register; a walking test; and self-reported questionnaires including the SF-36 health survey. In-shoe PP was measured in seven regions of interests on the sole of the foot using F-Scan®. An exploratory analysis of the association of risk factors with PP was performed. Results: Neuropathy was present in 28 (38%, and 39 (53% had callosities in the heel region. Low forefoot arch was present in 57 (77%. Gait-related parameters, such as the ability to walk on the forefoot or heel, were normal in all patients. Eighty percent had normal function at the hip and ankle joints. Gait velocity was 1.2±0.2 m/s. All patients were stratified to risk group 3. Hallux valgus and hallux rigidus were associated with an increase in the PP in the medial forefoot. A higher body mass index (BMI was found to increase the PP at metatarsal heads 4 and 5. Pes planus was associated with a decrease in PP at metatarsal head 1. Neuropathy did not have a high association with PP. Conclusions: This study identified several potential risk factors for the onset of diabetic foot ulcers (DFU. Hallux valgus

  2. High blood pressure medications

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007484.htm High blood pressure medicines To use the sharing features on this page, please enable JavaScript. Treating high blood pressure will help prevent problems such as heart disease, ...

  3. Treating High Blood Pressure

    Science.gov (United States)

    About High Blood Pressure Many people in the United States die from high blood pressure. This condition usually does not cause symptoms. Most ... until it is too late. A person has high blood pressure when the blood pushes against Visit your doctor ...

  4. High blood pressure - children

    Science.gov (United States)

    ... number is the diastolic pressure. This measures the pressure in the arteries when the heart is at rest. Blood pressure ... Medical Professional Call your child's provider if home monitoring shows that your child's blood pressure is still high. Prevention Your child's provider will ...

  5. High-pressure apparatus

    NARCIS (Netherlands)

    Schepdael, van L.J.M.; Bartels, P.V.; Berg, van den R.W.

    1999-01-01

    The invention relates to a high-pressure device (1) having a cylindrical high-pressure vessel (3) and prestressing means in order to exert an axial pressure on the vessel. The vessel (3) can have been formed from a number of layers of composite material, such as glass, carbon or aramide fibers which

  6. Barotrauma with extreme pressures in sport: from scuba to skydiving.

    Science.gov (United States)

    Lynch, James H; Deaton, Travis G

    2014-01-01

    The human body is well adapted to dealing with small variations in atmospheric pressure. However when our pursuit of sport and recreation takes us to extreme altitudes or ocean depths, the change in surrounding pressure has the potential to cause significant morbidity. Sports with more extreme changes in atmospheric pressure such as skydiving and scuba diving commonly place the athlete at risk for barotrauma injuries, especially in the middle ear and sinuses. Middle ear barotrauma occurs when a pressure differential develops between the middle ear and the pressure outside of the tympanic membrane. Early symptoms include ear pain, dizziness, and muffled hearing. When extreme pressure gradients are not relieved, middle ear effusions and rupture of the tympanic membrane can occur. A similar mechanism and injury pattern occurs in the sinuses as well. With proper training and prevention strategies, athletes in these sports can protect themselves from most barotrauma injuries.

  7. Material dynamics under extreme conditions of pressure and strain rate

    Energy Technology Data Exchange (ETDEWEB)

    Remington, B A; Allen, P; Bringa, E; Hawreliak, J; Ho, D; Lorenz, K T; Lorenzana, H; Meyers, M A; Pollaine, S W; Rosolankova, K; Sadik, B; Schneider, M S; Swift, D; Wark, J; Yaakobi, B

    2005-09-06

    Solid state experiments at extreme pressures (10-100 GPa) and strain rates ({approx}10{sup 6}-10{sup 8}s{sup -1}) are being developed on high-energy laser facilities, and offer the possibility for exploring new regimes of materials science. These extreme solid-state conditions can be accessed with either shock loading or with a quasi-isentropic ramped pressure drive. Velocity interferometer measurements establish the high pressure conditions. Constitutive models for solid-state strength under these conditions are tested by comparing 2D continuum simulations with experiments measuring perturbation growth due to the Rayleigh-Taylor instability in solid-state samples. Lattice compression, phase, and temperature are deduced from extended x-ray absorption fine structure (EXAFS) measurements, from which the shock-induced {alpha}-{omega} phase transition in Ti and the {alpha}-{var_epsilon} phase transition in Fe are inferred to occur on sub-nanosec time scales. Time resolved lattice response and phase can also be measured with dynamic x-ray diffraction measurements, where the elastic-plastic (1D-3D) lattice relaxation in shocked Cu is shown to occur promptly (< 1 ns). Subsequent large-scale molecular dynamics (MD) simulations elucidate the microscopic dynamics that underlie the 3D lattice relaxation. Deformation mechanisms are identified by examining the residual microstructure in recovered samples. The slip-twinning threshold in single-crystal Cu shocked along the [001] direction is shown to occur at shock strengths of {approx}20 GPa, whereas the corresponding transition for Cu shocked along the [134] direction occurs at higher shock strengths. This slip-twinning threshold also depends on the stacking fault energy (SFE), being lower for low SFE materials. Designs have been developed for achieving much higher pressures, P > 1000 GPa, in the solid state on the National Ignition Facility (NIF) laser.

  8. High Blood Pressure Facts

    Science.gov (United States)

    ... More black women than men have high blood pressure. 2 Race of Ethnic Group Men (%) Women (%) African Americans 43.0 45.7 Mexican Americans 27.8 28.9 Whites 33.9 31.3 All 34.1 32.7 Top of Page Why Blood Pressure Matters View this graphic snapshot of blood pressure ...

  9. Extreme Environment High Temperature Communication Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop and demonstrate a communications system capable of operation at extreme temperatures and pressures in hostile and corrosive...

  10. High blood pressure - infants

    Science.gov (United States)

    ... Certain tumors Inherited conditions (problems that run in families) Thyroid problems Blood pressure rises as the baby grows. The average blood ... vomiting constantly Prevention Some causes of high blood pressure run in families. Talk to your provider before you get pregnant ...

  11. Preventing High Blood Pressure

    Science.gov (United States)

    ... Web Sites Division for Heart Disease and Stroke Prevention Stroke Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN Preventing High Blood Pressure: Healthy Living Habits Recommend on Facebook Tweet Share Compartir By living a healthy lifestyle, you can help keep your blood pressure in ...

  12. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... already been diagnosed with high blood pressure. Try yoga and meditation. Yoga and meditation not only can strengthen your body ... Accessed Sept. 21, 2015. Hu B, et al. Effects of psychological stress on hypertension in middle-aged ...

  13. Extreme ultraviolet spectroscopy of low pressure helium microwave driven discharges

    Science.gov (United States)

    Espinho, Susana; Felizardo, Edgar; Tatarova, Elena; Alves, Luis Lemos

    2016-09-01

    Surface wave driven discharges are reliable plasma sources that can produce high levels of vacuum and extreme ultraviolet radiation (VUV and EUV). The richness of the emission spectrum makes this type of discharge a possible alternative source in EUV/VUV radiation assisted applications. However, due to challenging experimental requirements, publications concerning EUV radiation emitted by microwave plasmas are scarce and a deeper understanding of the main mechanisms governing the emission of radiation in this spectral range is required. To this end, the EUV radiation emitted by helium microwave driven plasmas operating at 2.45 GHz has been studied for low pressure conditions. Spectral lines from excited helium atoms and ions were detected via emission spectroscopy in the EUV/VUV regions. Novel data concerning the spectral lines observed in the 23 - 33 nm wavelength range and their intensity behaviour with variation of the discharge operational conditions are presented. The intensity of all the spectral emissions strongly increases with the microwave power delivered to the plasma up to 400 W. Furthermore, the intensity of all the ion spectral emissions in the EUV range decreases by nearly one order of magnitude as the pressure was raised from 0.2 to 0.5 mbar. Work funded by FCT - Fundacao para a Ciencia e a Tecnologia, under Project UID/FIS/50010/2013 and grant SFRH/BD/52412/2013 (PD-F APPLAuSE).

  14. Prevention of High Blood Pressure

    Science.gov (United States)

    ... page from the NHLBI on Twitter. Prevention of High Blood Pressure Healthy lifestyle habits, proper use of medicines, and ... prevent high blood pressure or its complications. Preventing High Blood Pressure Onset Healthy lifestyle habits can help prevent high ...

  15. High Blood Pressure Fact Sheet

    Science.gov (United States)

    ... High Blood Pressure Salt Cholesterol Million Hearts® WISEWOMAN High Blood Pressure Fact Sheet Language: English Español (Spanish) Recommend on ... time. High blood pressure is also called hypertension. High Blood Pressure in the United States Having high blood pressure ...

  16. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... the NHLBI on Twitter. Diagnosis of High Blood Pressure For most patients, health care providers diagnose high ... 140/90 mmHg or above. Confirming High Blood Pressure A blood pressure test is easy and painless ...

  17. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  18. Extreme states of matter high energy density physics

    CERN Document Server

    Fortov, Vladimir E

    2016-01-01

    With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams,electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets, and in many other situations characterized by extremely high pressures and temperatures.Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics, and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview. This second edition is thoroughly revised and expanded, in particular with new material on high energy-density physics, nuclear explosions and other nuclear transformation processes.

  19. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Blood Pressure » Diagnosis of High Blood Pressure Explore High Blood Pressure What Is... Other Names Causes Who Is at Risk Signs & Symptoms Diagnosis Treatments Prevention Living With Clinical ...

  20. Living with High Blood Pressure

    Science.gov (United States)

    ... page from the NHLBI on Twitter. Living With High Blood Pressure If you have high blood pressure, the best thing to do is to talk ... help you track your blood pressure. Pregnancy Planning High blood pressure can cause problems for mother and baby. High ...

  1. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... High Blood Pressure Explore High Blood Pressure What Is... Other Names Causes Who Is at Risk Signs & Symptoms Diagnosis Treatments Prevention Living ... Confirming High Blood Pressure A blood pressure test is easy and painless and can be done in ...

  2. High Temperature and Pressure Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank

    and oxygen with a new type of alkaline electrolysis cell at high temperatures and pressures. To perform measurements under high pressure and at elevated temperatures it was necessary to build a measurement system around an autoclave which could stand high temperatures up to 250 °C and pressures up to 200 bar...... as well as extremely caustic environments. Based on a literature study to identify resistant materials for these conditions, Inconel 600 was selected among the metals which are available for autoclave construction. An initial single atmosphere high temperature and pressure measurement setup was build...... comprising this autoclave. A second high temperature and pressure measurement setup was build based on experiences from the first setup in order to perform automatized measurements. The conductivity of aqueous KOH at elevated temperatures and high concentrations was investigated using the van der Pauw method...

  3. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... providers diagnose high blood pressure when blood pressure readings are consistently 140/90 mmHg or above. Confirming ... minutes before the test. To track blood pressure readings over a period of time, the health care ...

  4. Pressure Dome for High-Pressure Electrolyzer

    Science.gov (United States)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  5. Instrumentation development for magnetic and structural studies under extremes of pressure and temperature

    OpenAIRE

    Giriat, Gaetan

    2012-01-01

    The study of the magnetic and structural properties of matter under extreme conditions is a fast developing field. With the emergence of new techniques and innovative instruments for measuring physical properties, the need for compatible pressure generating devices is constantly growing. The work described in this thesis is focused on development, construction and testing of several high pressure (HP) cells of novel design. One of the cells is intended for single crystal X-r...

  6. Instrumentation development for magnetic and structural studies under extremes of pressure and temperature

    OpenAIRE

    Giriat, Gaetan

    2012-01-01

    The study of the magnetic and structural properties of matter under extreme conditions is a fast developing field. With the emergence of new techniques and innovative instruments for measuring physical properties, the need for compatible pressure generating devices is constantly growing. The work described in this thesis is focused on development, construction and testing of several high pressure (HP) cells of novel design. One of the cells is intended for single crystal X-r...

  7. Chromium at High Pressure

    Science.gov (United States)

    Jaramillo, Rafael

    2012-02-01

    Chromium has long served as the archetype of spin density wave magnetism. Recently, Jaramillo and collaborators have shown that Cr also serves as an archetype of magnetic quantum criticality. Using a combination of x-ray diffraction and electrical transport measurements at high pressures and cryogenic temperatures in a diamond anvil cell, they have demonstrated that the N'eel transition (TN) can be continuously suppressed to zero, with no sign of a concurrent structural transition. The order parameter undergoes a broad regime of exponential suppression, consistent with the weak coupling paradigm, before deviating from a BCS-like ground state within a narrow but accessible quantum critical regime. The quantum criticality is characterized by mean field scaling of TN and non mean field scaling of the transport coefficients, which points to a fluctuation-induced reconstruction of the critical Fermi surface. A comparison between pressure and chemical doping as means to suppress TN sheds light on different routes to the quantum critical point and the relevance of Fermi surface nesting and disorder at this quantum phase transition. The work by Jaramillo et al. is broadly relevant to the study of magnetic quantum criticality in a physically pure and theoretically tractable system that balances elements of weak and strong coupling. [4pt] [1] R. Jaramillo, Y. Feng, J. Wang & T. F. Rosenbaum. Signatures of quantum criticality in pure Cr at high pressure. Proc. Natl. Acad. Sci. USA 107, 13631 (2010). [0pt] [2] R. Jaramillo, Y. Feng, J. C. Lang, Z. Islam, G. Srajer, P. B. Littlewood, D. B. McWhan & T. F. Rosenbaum. Breakdown of the Bardeen-Cooper-Schrieffer ground state at a quantum phase transition. Nature 459, 405 (2009).

  8. High Blood Pressure

    Science.gov (United States)

    ... mmHg People read "118 over 76" millimeters of mercury. Normal Blood Pressure Normal blood pressure for adults ... health. Share your story with other women on Facebook . The Heart Truth campaign offers a variety of ...

  9. High Blood Pressure Increasing Worldwide

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_162977.html High Blood Pressure Increasing Worldwide And health risks may appear even ... of people around the world with elevated or high blood pressure increases, so do the number of deaths linked ...

  10. Medications for High Blood Pressure

    Science.gov (United States)

    ... Consumers Home For Consumers Consumer Updates Medications for High Blood Pressure Share Tweet Linkedin Pin it More sharing options ... age and you cannot tell if you have high blood pressure by the way you feel, so have your ...

  11. What Causes High Blood Pressure?

    Science.gov (United States)

    ... page from the NHLBI on Twitter. Causes of High Blood Pressure Changes, either from genes or the environment, in ... and blood vessel structure and function. Biology and High Blood Pressure Researchers continue to study how various changes in ...

  12. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... page from the NHLBI on Twitter. Diagnosis of High Blood Pressure For most patients, health care providers diagnose high ... are consistently 140/90 mmHg or above. Confirming High Blood Pressure A blood pressure test is easy and painless ...

  13. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... page from the NHLBI on Twitter. Diagnosis of High Blood Pressure For most patients, health care providers diagnose high ... are consistently 140/90 mmHg or above. Confirming High Blood Pressure A blood pressure test is easy and painless ...

  14. Controlling your high blood pressure

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000101.htm Controlling your high blood pressure To use the sharing features on this page, ... JavaScript. Hypertension is another term used to describe high blood pressure. High blood pressure can lead to: Stroke Heart ...

  15. Diagnosis of High Blood Pressure

    Science.gov (United States)

    ... page from the NHLBI on Twitter. Diagnosis of High Blood Pressure For most patients, health care providers diagnose high ... are consistently 140/90 mmHg or above. Confirming High Blood Pressure A blood pressure test is easy and painless ...

  16. [High Pressure Gas Tanks

    Science.gov (United States)

    Quintana, Rolando

    2002-01-01

    Four high-pressure gas tanks, the basis of this study, were especially made by a private contractor and tested before being delivered to NASA Kennedy Space Center. In order to insure 100% reliability of each individual tank the staff at KSC decided to again submit the four tanks under more rigorous tests. These tests were conducted during a period from April 10 through May 8 at KSC. This application further validates the predictive safety model for accident prevention and system failure in the testing of four high-pressure gas tanks at Kennedy Space Center, called Continuous Hazard Tracking and Failure Prediction Methodology (CHTFPM). It is apparent from the variety of barriers available for a hazard control that some barriers will be more successful than others in providing protection. In order to complete the Barrier Analysis of the system, a Task Analysis and a Biomechanical Study were performed to establish the relationship between the degree of biomechanical non-conformities and the anomalies found within the system on particular joints of the body. This relationship was possible to obtain by conducting a Regression Analysis to the previously generated data. From the information derived the body segment with the lowest percentage of non-conformities was the neck flexion with 46.7%. Intense analysis of the system was conducted including Preliminary Hazard Analysis (PHA), Failure Mode and Effect Analysis (FMEA), and Barrier Analysis. These analyses resulted in the identification of occurrences of conditions, which may be becoming hazardous in the given system. These conditions, known as dendritics, may become hazards and could result in an accident, system malfunction, or unacceptable risk conditions. A total of 56 possible dendritics were identified. Work sampling was performed to observe the occurrence each dendritic. The out of control points generated from a Weighted c control chart along with a Pareto analysis indicate that the dendritics "Personnel not

  17. Operating mode of high pressure straws with high spatial resolution

    CERN Document Server

    Davkov, K I; Peshekhonov, V D; Cholakov, V D

    2013-01-01

    The article presents results of studying the operating mode of thin-walled drift tubes (straws) at flushing it with a high-pressure gas mixture, which allowed obtaining extremely high spatial resolution for straw detectors. The results of studying the radiation ageing of straws operating in this mode are also described.

  18. High-pressure neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hongwu [Los Alamos National Laboratory

    2011-01-10

    This lecture will cover progress and prospect of applications of high-pressure neutron diffraction techniques to Earth and materials sciences. I will first introduce general high-pressure research topics and available in-situ high-pressure techniques. Then I'll talk about high-pressure neutron diffraction techniques using two types of pressure cells: fluid-driven and anvil-type cells. Lastly, I will give several case studies using these techniques, particularly, those on hydrogen-bearing materials and magnetic transitions.

  19. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... and Obesity Smoking and Your Heart Stroke Send a link to NHLBI to someone by E-MAIL | ... 90 mmHg or above. Confirming High Blood Pressure A blood pressure test is easy and painless and ...

  20. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... of Intramural Research Research Resources Research Meeting Summaries Technology Transfer Clinical Trials What Are Clinical Trials? Children & ... blood pressure is due to other conditions or medicines or if you have primary high blood pressure. ...

  1. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... to keep a written log of all your results. Whenever you have an appointment with the health ... appointments to diagnose high blood pressure. Using the results of your blood pressure test, your health care ...

  2. High Blood Pressure in Pregnancy

    Science.gov (United States)

    ... of the baby. Controlling your blood pressure during pregnancy and getting regular prenatal care are important for ... your baby. Treatments for high blood pressure in pregnancy may include close monitoring of the baby, lifestyle ...

  3. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... ask for your readings. Blood Pressure Severity and Type Your health care provider usually takes 2–3 ... any other location. Health care providers diagnose this type of high blood pressure by reviewing readings in ...

  4. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... ask for your readings. Blood Pressure Severity and Type Your health care provider usually takes 2–3 ... any other location. Health care providers diagnose this type of high blood pressure by reviewing readings in ...

  5. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... above. Confirming High Blood Pressure A blood pressure test is easy and painless and can be done ... provider’s office or clinic. To prepare for the test: Don’t drink coffee or smoke cigarettes for ...

  6. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... readings. Blood Pressure Severity and Type Your health care provider usually takes 2–3 readings at several medical appointments to diagnose high blood pressure. Using the ...

  7. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... and Obesity Smoking and Your Heart Stroke Send a link to NHLBI to someone by E-MAIL | ... 90 mmHg or above. Confirming High Blood Pressure A blood pressure test is easy and painless and ...

  8. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... above. Confirming High Blood Pressure A blood pressure test is easy and painless and can be done ... provider’s office or clinic. To prepare for the test: Don’t drink coffee or smoke cigarettes for ...

  9. External Cooling Coupled to Reduced Extremity Pressure Device

    Science.gov (United States)

    Kuznetz, Lawrence H.

    2011-01-01

    Although suited astronauts are currently cooled with a Liquid Cooled Ventilation Garment (LCVG), which can remove up to 85 percent of body heat, their effectiveness is limited because cooling must penetrate layers of skin, muscle, fat, bone, and tissue to reach the bloodstream, where its effect is prominent. Vasoconstriction further reduces the effectiveness by limiting arterial flow when exposed to cold (the frostbite response), resulting in a time constant on the order of 20 minutes from application to maximum effect. This delay can be crucial in severe exposure to hypo- or hyper-thermic conditions, compromising homeostasis. The purpose of this innovation is to provide a lightweight, effective means of delivering heat or cold from an external source directly to the bloodstream. The effectiveness of this ECCREP (External Cooling Coupled to Reduced Extremity Pressure) device is based on not having to penetrate layers of skin, muscle, fat, and tissue, thereby avoiding the thermal lag associated with their mass and heat capacity. This is accomplished by means of an outer boot operating at a slightly reduced pressure than the rest of the body, combined with an inner boot cooled or heated by an external source via water or chemicals. Heat transfer from the external source to the foot takes place by means of circulating water or flexible heat pipes.

  10. High Blood Pressure

    Science.gov (United States)

    ... giving Gift and estate planning Circle of Champions Corporate sponsorship Join us at an event The Hope ... blood pressure is the #2 cause of kidney failure. It accounts for about one-fourth of all ...

  11. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... possible. Practice healthy coping techniques, such as muscle relaxation, deep breathing or meditation. Getting regular physical activity ... you monitor your blood pressure at home. Practice relaxation or slow, deep breathing. Practice taking deep, slow ...

  12. High Blood Pressure and Women

    Science.gov (United States)

    ... blood pressure during a previous pregnancy, have a family history of high blood pressure or mild kidney disease. The combination of birth ... Print (PDF) | Online How to Measure Your Blood Pressure (PDF) Questions To Ask ... FREE digital-only, quarterly magazine for patients, families, and caregivers, which focuses on the prevention and ...

  13. What Is High Blood Pressure?

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More What is High Blood Pressure? Updated:Oct 31,2016 First, let’s define high ... resources . This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  14. High pressure studies of potassium perchlorate

    Science.gov (United States)

    Pravica, Michael; Wang, Yonggang; Sneed, Daniel; Reiser, Sharissa; White, Melanie

    2016-09-01

    Two experiments are reported on KClO4 at extreme conditions. A static high pressure Raman study was first conducted to 18.9 GPa. Evidence for at least two new phases was observed: one between 2.4 and 7.7 GPa (possibly sluggish), and the second near 11.7 GPa. Then, the X-ray induced decomposition rate of potassium perchlorate (KClO4 → hν KCl + 2O2) was studied up to 15.2 GPa. The time-dependent growth of KCl and O2 was monitored. The decomposition rate slowed at higher pressures. We present the first direct evidence for O2 crystallization at higher pressures, demonstrating that O2 molecules aggregate at high pressure.

  15. Extreme Environment Silicon Carbide Hybrid Temperature & Pressure Optical Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Nabeel Riza

    2010-09-01

    This final report contains the main results from a 3-year program to further investigate the merits of SiC-based hybrid sensor designs for extreme environment measurements in gas turbines. The study is divided in three parts. Part 1 studies the material properties of SiC such as temporal response, refractive index change with temperature, and material thermal response reversibility. Sensor data from a combustion rig-test using this SiC sensor technology is analyzed and a robust distributed sensor network design is proposed. Part 2 of the study focuses on introducing redundancy in the sensor signal processing to provide improved temperature measurement robustness. In this regard, two distinct measurement methods emerge. A first method uses laser wavelength sensitivity of the SiC refractive index behavior and a second method that engages the Black-Body (BB) radiation of the SiC package. Part 3 of the program investigates a new way to measure pressure via a distance measurement technique that applies to hot objects including corrosive fluids.

  16. Probing the local, electronic and magnetic structure of matter under extreme conditions of temperature and pressure

    DEFF Research Database (Denmark)

    Torchio, R.; Boccato, S.; Cerantola, V.;

    2016-01-01

    In this paper we present recent achievements in the field of investigation of the local, electronic and magnetic structure of the matter under extreme conditions of pressure and temperature. These results were obtained thanks to the coupling of a compact laser heating system to the energy......-dispersive XAS technique available on the ID24 beamline at the ESRF synchrotron. The examples chosen concern the melting and the liquid structure of 3d metals and alloys under high pressures (HPs) and the observation of temperature-induced spin crossover in FeCO3 at HP....

  17. Relativistic QED Plasma at Extremely High Temperature

    CERN Document Server

    Masood, Samina S

    2016-01-01

    Renormalization scheme of QED (Quantum Electrodynamics) at high temperatures is used to calculate the effective parameters of relativistic plasma in the early universe. Renormalization constants of QED play role of effective parameters of the theory and can be used to determine the collective behavior of the medium. We explicitly show that the dielectric constant, magnetic reluctivity, Debye length and the plasma frequency depend on temperature in the early universe. Propagation speed, refractive index, plasma frequency and Debye shielding length of a QED plasma are computed at extremely high temperatures in the early universe. We also found the favorable conditions for the relativistic plasma from this calculations.

  18. Common High Blood Pressure Myths

    Science.gov (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Common High Blood Pressure Myths Updated:Dec 9,2016 Knowing the facts ... health. This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  19. Extreme Transients in the High Energy Universe

    Science.gov (United States)

    Kouveliotou, Chryssa

    2013-01-01

    The High Energy Universe is rich in diverse populations of objects spanning the entire cosmological (time)scale, from our own present-day Milky Way to the re-ionization epoch. Several of these are associated with extreme conditions irreproducible in laboratories on Earth. Their study thus sheds light on the behavior of matter under extreme conditions, such as super-strong magnetic fields (in excess of 10^14 G), high gravitational potentials (e.g., Super Massive Black Holes), very energetic collimated explosions resulting in relativistic jet flows (e.g., Gamma Ray Bursts, exceeding 10^53 ergs). In the last thirty years, my work has been mostly focused on two apparently different but potentially linked populations of such transients: magnetars (highly magnetized neutron stars) and Gamma Ray Bursts (strongly beamed emission from relativistic jets), two populations that constitute unique astrophysical laboratories, while also giving us the tools to probe matter conditions in the Universe to redshifts beyond z=10, when the first stars and galaxies were assembled. I did not make this journey alone I have either led or participated in several international collaborations studying these phenomena in multi-wavelength observations; solitary perfection is not sufficient anymore in the world of High Energy Astrophysics. I will describe this journey, present crucial observational breakthroughs, discuss key results and muse on the future of this field.

  20. Extremely high frequency RF effects on electronics.

    Energy Technology Data Exchange (ETDEWEB)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  1. Stroke and High Blood Pressure

    Science.gov (United States)

    ... More How High Blood Pressure Can Lead to Stroke Updated:Dec 2,2016 Stroke and high blood ... Changes That Matter • Find Tools & Resources Show Your Stroke Support! Show your stroke support with our new ...

  2. Nanomaterials under high-pressure.

    Science.gov (United States)

    San-Miguel, Alfonso

    2006-10-01

    The use of high-pressure for the study and elaboration of homogeneous nanostructures is critically reviewed. Size effects, the interaction between nanostructures and guest species or the interaction of the nanosystem with the pressure transmitting medium are emphasized. Phase diagrams and the possibilities opened by the combination of pressure and temperature for the elaboration of new nanomaterials is underlined through the examination of three different systems: nanocrystals, nano-cage materials which include fullerites and group-14 clathrates, and single wall nanotubes. This tutorial review is addressed to scientist seeking an introduction or a panoramic view of the study of nanomaterials under high-pressure.

  3. Enhanced horizontal extreme-echo speed occurrence leading to polar mesospheric summer echoes (PMSE) increase at solar-wind pressure enhancement during high-speed solar wind stream events

    Science.gov (United States)

    Lee, Y.; Kirkwood, S.; Kwak, Y.; Kim, K.; Shepherd, G. G.

    2013-12-01

    We report on horizontal extreme echo speeds (HEES, ≥ 300 ms^{-1}) observed in long-periodic polar mesospheric summer echoes (PMSE) correlated with solar-wind speed in high speed solar wind streams (HSS) events. The observations were made from VHF 52 MHz radar measurements at Esrange (67.8°N, 20.4°E) between June 1-August 8 in 2006 and 2008. The periodicities of PMSE counts and the volume reflectivity primarily occur at 7, 9 and 13.5 days possibly by the effects of HSS, while the periodicities at 4-6 days are competitively coherent between planetary waves appearing in temperature and solar-wind speed during HSS events. The peaks of both HEES occurrence rate relative to PMSE and turbulence dominantly occur at solar-wind pressure enhancement with minor peaks continued under the passage of HSS over the magnetopause, followed by PMSE peaks in 1-3 days later. This study gives the results that the precipitating high-energetic particles (> 30 keV) during HSS likely induce D-region ionization involved with the consecutive processes of HEES, turbulence and PMSE. The turbulence evolved from the HEES can be explained with the Kelvin-Helmholtz instability, which was observed in PMSE by Röttger et al. [11th International Workshop on technical and scientific aspects of MST Radar, 2006] and firstly simulated for PMSE generation by Hill et al. [Earth Planets Space, 1999]. The HEES is understood as the speed of fast moving ions, accelerated by strong electric field as Lee & Shepherd [JGR, 2010] suggested with the supersonic velocities persisting in polar mesospheric clouds (PMC) region observed at enhanced O(^1S) emission rate ( 10 kR) by WINDII/UARS satellite.

  4. Extremely compliant and highly stretchable patterned graphene

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Shuze; Huang, Yinjun; Li, Teng, E-mail: LiT@umd.edu [Department of Mechanical Engineering and Maryland NanoCenter, University of Maryland, College Park, Maryland 20742 (United States)

    2014-04-28

    Graphene is intrinsically ultra-stiff in its plane. Its huge mechanical mismatch when interfacing with ultra-compliant biological tissues and elastomers (7–9 orders of magnitude difference in stiffness) poses significant challenge in its application to functional devices such as epidermal electronics and sensing prosthesis. We offer a feasible and promising solution to this significant challenge by suitably patterning graphene into a nanomesh. Through systematic coarse-grained simulations, we show that graphene nanomesh can be made extremely compliant with nearly zero stiffness up to about 20% elongation and then remain highly compliant up to about 50% elongation.

  5. Equation of state density models for hydrocarbons in ultradeep reservoirs at extreme temperature and pressure conditions

    Science.gov (United States)

    Wu, Yue; Bamgbade, Babatunde A.; Burgess, Ward A.; Tapriyal, Deepak; Baled, Hseen O.; Enick, Robert M.; McHugh, Mark A.

    2013-10-01

    The necessity of exploring ultradeep reservoirs requires the accurate prediction of hydrocarbon density data at extreme temperatures and pressures. In this study, three equations of state (EoS) models, Peng-Robinson (PR), high-temperature high-pressure volume-translated PR (HTHP VT-PR), and perturbed-chain statistical associating fluid theory (PC-SAFT) EoS are used to predict the density data for hydrocarbons in ultradeep reservoirs at temperatures to 523 K and pressures to 275 MPa. The calculated values are compared with experimental data. The results show that the HTHP VT-PR EoS and PC-SAFT EoS always perform better than the regular PR EoS for all the investigated hydrocarbons.

  6. High-Pressure Vibrational Spectroscopy.

    Science.gov (United States)

    Pogson, Mark

    1987-09-01

    Available from UMI in association with The British Library. Requires signed TDF. The study of solids at high pressure and variable temperature enables development of accurate interatomic potential functions over wide ranges of interatomic distances. A review of the main models used in the determination of these potentials is given in Chapter one. A discussion of phonon frequency as a variable physical parameter reflecting the interatomic potential is given. A high pressure Raman study of inorganic salts of the types MSCN, (M = K,Rb,Cs & NH_4^+ ) and MNO_2, (M = K,Na) has been completed. The studies have revealed two new phases in KNO_2 and one new phase in NaNO _2 at high pressure. The accurate phonon shift data have enabled the determination of the pure and biphasic stability regions of the phases of KNO _2. A discussion of the B1, B2 relationship of univalent nitrites is also given. In the series of thiocyanates studied new phases have been found in all four materials. In both the potassium and rubidium salts two new phases have been detected, and in the ceasium salt one new phase has been detected, all at high pressure, from accurate phonon shift data. These transitions are discussed in terms of second-order mechanisms with space groups suggested for all phases, based on Landau's theory of second-order phase transitions. In the ammonium salt one new phase has been detected. This new phase transition has been interpreted as a second-order transition. The series of molecular crystals CH_3 HgX, (X = Cl,Br & I) has been studied at high pressure and at variable temperature. In Chapter five, their phase behaviour at high pressure is detailed along with the pressure dependencies of their phonon frequencies. In the chloride and the bromide two new phases have been detected. In the bromide one has been detected at high temperature and one at high pressure, and latter being interpreted as the stopping of the methyl rotation. In the chloride one phase has been found at

  7. Steam Oxidation at High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [NETL; Carney, Casey [URS

    2013-07-19

    A first high pressure test was completed: 293 hr at 267 bar and 670{degrees}C; A parallel 1 bar test was done for comparison; Mass gains were higher for all alloys at 267 bar than at 1 bar; Longer term exposures, over a range of temperatures and pressures, are planned to provide information as to the commercial implications of pressure effects; The planned tests are at a higher combination of temperatures and pressures than in the existing literature. A comparison was made with longer-term literature data: The short term exposures are largely consistent with the longer-term corrosion literature; Ferritic steels--no consistent pressure effect; Austenitic steels--fine grain alloys less able to maintain protective chromia scale as pressure increases; Ni-base alloys--more mass gains above 105 bar than below. Not based on many data points.

  8. High Blood Pressure Prevention

    Science.gov (United States)

    ... or "no added salt." Look for the sodium content in milligrams and the Percent Daily Value. Aim for foods that are less than 5 percent of the Daily Value of sodium. Foods with 20 percent or more Daily Value of sodium are considered high. To learn more about reading nutrition labels, see ...

  9. Hypertension (High Blood Pressure)

    Science.gov (United States)

    ... over the years led to verification of the important role of high blood pressure—especially in concert with ... is specific for that person will be an important key to improving prevention, ... an international team of investigators, funded in part by the NIH, ...

  10. Extreme Precipitation and High-Impact Landslides

    Science.gov (United States)

    Kirschbaum, Dalia; Adler, Robert; Huffman, George; Peters-Lidard, Christa

    2012-01-01

    It is well known that extreme or prolonged rainfall is the dominant trigger of landslides; however, there remain large uncertainties in characterizing the distribution of these hazards and meteorological triggers at the global scale. Researchers have evaluated the spatiotemporal distribution of extreme rainfall and landslides at local and regional scale primarily using in situ data, yet few studies have mapped rainfall-triggered landslide distribution globally due to the dearth of landslide data and consistent precipitation information. This research uses a newly developed Global Landslide Catalog (GLC) and a 13-year satellite-based precipitation record from Tropical Rainfall Measuring Mission (TRMM) data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurence of precipitation and rainfall-triggered landslides globally. The GLC, available from 2007 to the present, contains information on reported rainfall-triggered landslide events around the world using online media reports, disaster databases, etc. When evaluating this database, we observed that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan Arc, and central-eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This research also considers the sources for this extreme rainfall, citing

  11. High pressure ceramic joint

    Science.gov (United States)

    Ward, Michael E.; Harkins, Bruce D.

    1993-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  12. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Planning, & Legislative Advisory Committees Jobs Contact Us FAQs Home » Health Information for the Public » Health Topics » High ... also may ask you to check readings at home or at other locations that have blood pressure ...

  13. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Explore High Blood Pressure What Is... Other Names Causes Who Is at Risk Signs & Symptoms Diagnosis Treatments Prevention Living With Clinical Trials Links Related Topics Atherosclerosis DASH Eating Plan Overweight and Obesity Smoking and Your Heart ...

  14. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Health care providers diagnose this type of high blood pressure by reviewing readings in the office and readings taken anywhere else. ... The Heart Truth ® —a national heart disease awareness campaign for ...

  15. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... to check readings at home or at other locations that have blood pressure equipment and to keep ... office compared with readings taken in any other location. Health care providers diagnose this type of high ...

  16. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... provider usually takes 2–3 readings at several medical appointments to diagnose high blood pressure. Using the ... Researchers believe stress, which can occur during the medical appointment, causes white coat hypertension. Rate This Content: ...

  17. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Events Spokespeople Email Alerts E-Newsletters About NHLBI Organization NHLBI Director Budget, Planning, & Legislative Advisory Committees Jobs Contact Us FAQs Home » Health Information for the Public » Health Topics » High Blood Pressure » ...

  18. High pressure rinsing parameters measurements

    Energy Technology Data Exchange (ETDEWEB)

    Cavaliere, E. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Fusetti, M. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Michelato, P. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Pagani, C. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy)]. E-mail: carlo.pagani@mi.infn.it; Pierini, P. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Paulon, R. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy); Sertore, D. [INFN Milano - LASA, Via F.lli Cervi 201, I-20090 Segrate (MI) (Italy)

    2006-07-15

    High pressure rinsing with ultra pure water jet is an essential step in the high field superconducting cavity production process. In this paper, we illustrate the experimental characterization of a HPR system, in terms of specific power and energy deposition on the cavity surfaces and on the damage threshold for niobium. These measurements are used to tentatively derive general rules for the optimization of the free process parameters (nozzle geometry, speeds and water pressure)

  19. Extreme pressure properties investigation of palm olein using four ball tribotester

    Science.gov (United States)

    Khairuldean, A. K.; Ing, T. Chiong; Che Kob, Mohd Salman; Budianto, Aries; Bambang, S.; Baharin, T. Kamarul; Ariyono, S.; Syahrullail, S.

    2012-06-01

    This experiment conducted using Four Ball Tribotester as a tool to obtained data for extreme pressure properties of Refined, Bleached, and Deodorized (RBD) Palm Olein. In this paper, test method ASTM D2783 - 03 (Reapproved 2009) been adapted to monitor the pressure effect in wear and frictional torque of RBD Palm Olein. This test method provides reliable information because it resemble to the eventual mechanisms for lubricating stress of the fluids under pressure similar in gear transmission operation. Wherein, pressure applied between surface to surface contacts and sliding between surface in gear and wet clutch mechanism. From this research, the results provide an understanding of RBD Palm Olein performance against extreme pressure condition. It was found that RBD Palm Olein oil has good mild extreme pressure properties, but film breakdown occurs at higher pressure load. The frictional torque results also indicated with pressure increment, the friction force occurs between moving bodies also increase.

  20. High-pressure creep tests

    Science.gov (United States)

    Bhattacharyya, S.; Lamoureux, J.; Hales, C.

    1986-01-01

    The automotive Stirling engine, presently being developed by the U.S. Department of Energy and NASA, uses high-pressure hydrogen as a working fluid; its long-term effects on the properties of alloys are relatively unknown. Hence, creep-rupture testing of wrought and cast high-temperature alloys in high-pressure hydrogen is an essential part of the research supporting the development of the Stirling cycle engine. Attention is given to the design, development, and operation of a 20 MPa hydrogen high-temperature multispecimen creep-rupture possessing high sensitivity. This pressure vessel allows for the simultaneous yet independent testing of six specimens. The results from one alloy, XF-818, are presented to illustrate how reported results are derived from the raw test data.

  1. Introduction to High-Pressure Science

    Science.gov (United States)

    Dera, Przemyslaw

    To a common person pressure is just one of the parameters that describe a thermodynamic state. We all hear about it in everyday weather forecasts, and most of us do not associate it with anything particularly unique. Probably the most intuitive idea of the effect of high-pressure comes from movies, where submarine sinking to the bottom of the ocean is gradually crushed by the surrounding water, until its hull implodes. Why, then hundreds of scientists throughout the world spent their lifelong careers studying high-pressure phenomena? Despite all the developments in experimental technologies and instrumentation, modern scientist has very few tools that allow him or her to "grab" two atoms and bring them, in a very controllable way, closer together. Being able to achieve this task means the ability to directly probe interatomic interaction potentials and can cause transformations as dramatic as turning of a common gas into solid metal. Before the reader delves into more advanced topics described later in this book, this introductory chapter aims to explain several elementary, but extremely important concepts in high-pressure science. We will start with a brief discussion of laboratory devices used to produce pressure, address the issue of hydrostaticity, elastic and plastic compression, and will conclude with a short discussion of unique effects of anisotropic stress.

  2. High pressure neon arc lamp

    Science.gov (United States)

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  3. Intermolecular Interactions at high pressure

    DEFF Research Database (Denmark)

    Eikeland, Espen Zink

    2016-01-01

    In this project high-pressure single crystal X-ray diffraction has been combined with quantitative energy calculations to probe the energy landscape of three hydroquinone clathrates enclosing different guest molecules. The simplicity of the hydroquinone clathrate structures together with their st......In this project high-pressure single crystal X-ray diffraction has been combined with quantitative energy calculations to probe the energy landscape of three hydroquinone clathrates enclosing different guest molecules. The simplicity of the hydroquinone clathrate structures together...... with their structural chemistry, controlled largely by subtle interactions between the host and the enclosed guest molecules, makes them attractive to study as model systems. Quantifying the numerous superimposed interactions in these clathrates will advance our understanding of more complex supramolecular aggregates....... High-pressure crystallography is the perfect method for studying intermolecular interactions, by forcing the molecules closer together. In all three studied hydroquinone clathrates, new pressure induced phase transitions have been discovered using a mixture of pentane and isopentane as the pressure...

  4. High Blood Pressure and Kidney Disease

    Science.gov (United States)

    ... Disease Mineral & Bone Disorder View All Content High Blood Pressure & Kidney Disease What is high blood pressure? Blood pressure is the force of blood ... million filtering units called nephrons. How does high blood pressure affect the kidneys? High blood pressure can ...

  5. Anxiety: A Cause of High Blood Pressure?

    Science.gov (United States)

    ... Conditions High blood pressure (hypertension) Can anxiety cause high blood pressure? Answers from Sheldon G. Sheps, M.D. Anxiety doesn't cause long-term high blood pressure (hypertension). But episodes of anxiety can cause dramatic, ...

  6. High Blood Pressure Often Undiagnosed, Untreated

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_162996.html High Blood Pressure Often Undiagnosed, Untreated Half of mobile clinic patients ... that's often referred to as a "silent killer" -- high blood pressure, a new Canadian study reveals. High blood pressure, ...

  7. High Pressure Atmospheric Sampling Inlet System for Venus or the Gas Giants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized high pressure atmospheric sampling inlet system for sample acquisition in extreme planetary environments,...

  8. Vital Signs - High Blood Pressure

    Centers for Disease Control (CDC) Podcasts

    2012-10-02

    In the U.S., nearly one third of the adult population have high blood pressure, the leading risk factor for heart disease and stroke - two of the nation's leading causes of death.  Created: 10/2/2012 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 10/17/2012.

  9. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... any other location. Health care providers diagnose this type of high blood pressure by reviewing readings in the office and readings taken anywhere else. Researchers believe stress, which can occur during the medical appointment, causes white coat hypertension. Rate This Content: NEXT >> Updated: ...

  10. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Explore High Blood Pressure What Is... Other Names Causes Who Is at Risk Signs & Symptoms Diagnosis Treatments Prevention Living With Clinical Trials Links Related Topics Atherosclerosis DASH Eating Plan Overweight and Obesity Smoking and Your Heart Stroke Send a link ...

  11. High Pressure Treatment in Foods.

    Science.gov (United States)

    Bello, Edwin Fabian Torres; Martínez, Gerardo González; Ceberio, Bernadette F Klotz; Rodrigo, Dolores; López, Antonio Martínez

    2014-08-19

    High hydrostatic pressure (HHP), a non-thermal technology, which typically uses water as a pressure transfer medium, is characterized by a minimal impact on food characteristics (sensory, nutritional, and functional). Today, this technology, present in many food companies, can effectively inactivate bacterial cells and many enzymes. All this makes HHP very attractive, with very good acceptance by consumers, who value the organoleptic characteristics of products processed by this non-thermal food preservation technology because they associate these products with fresh-like. On the other hand, this technology reduces the need for non-natural synthetic additives of low consumer acceptance.

  12. High Pressure Treatment in Foods

    Directory of Open Access Journals (Sweden)

    Edwin Fabian Torres Bello

    2014-08-01

    Full Text Available High hydrostatic pressure (HHP, a non-thermal technology, which typically uses water as a pressure transfer medium, is characterized by a minimal impact on food characteristics (sensory, nutritional, and functional. Today, this technology, present in many food companies, can effectively inactivate bacterial cells and many enzymes. All this makes HHP very attractive, with very good acceptance by consumers, who value the organoleptic characteristics of products processed by this non-thermal food preservation technology because they associate these products with fresh-like. On the other hand, this technology reduces the need for non-natural synthetic additives of low consumer acceptance.

  13. High pressure rinsing system comparison

    Energy Technology Data Exchange (ETDEWEB)

    D. Sertore; M. Fusetti; P. Michelato; Carlo Pagani; Toshiyasu Higo; Jin-Seok Hong; K. Saito; G. Ciovati; T. Rothgeb

    2007-06-01

    High pressure rinsing (HPR) is a key process for the surface preparation of high field superconducting cavities. A portable apparatus for the water jet characterization, based on the transferred momentum between the water jet and a load cell, has been used in different laboratories. This apparatus allows to collected quantitative parameters that characterize the HPR water jet. In this paper, we present a quantitative comparison of the different water jet produced by various nozzles routinely used in different laboratories for the HPR process

  14. High Blood Pressure: Unique to Older Adults

    Science.gov (United States)

    ... our e-newsletter! Aging & Health A to Z High Blood Pressure Hypertension Unique to Older Adults This section provides ... Pressure Targets are Different for Very Old Adults High blood pressure (also called hypertension) increases your chance of having ...

  15. High pressure processing of meat

    DEFF Research Database (Denmark)

    Grossi, Alberto; Christensen, Mette; Ertbjerg, Per

    in the myofibrillar protein pattern and HP-induced change in activity of cathepsin B and L were investigated. Results: In this study we showed that HP treatment of pork meat emulsion, ranging from 0.1 to 800 MPa, induced protein gel formation as shown by the increased Young’s modulus (Fig.1). Analysis of SDS...... the rheological properties of pork meat batters by inducing formation of protein gels. HP induced protein gels are suggested to be formed by high molecular weight myofibrillar protein aggregates and by peptides formed by lysosomal enzyme-induced cleavage of myofibrillar proteins. Perspectives: The data presented......Abstract Background: The research of high pressure (HP) processing of meat based foods needs to address how pressure affects protein interactions, aggregation and/or gelation. The understanding of the gel forming properties of myofibrillar components is fundamental for the development of muscle...

  16. High pressure effects on fruits and vegetables

    NARCIS (Netherlands)

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure t

  17. High pressure effects on fruits and vegetables

    NARCIS (Netherlands)

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure

  18. Questions and Answers about High Blood Pressure

    Science.gov (United States)

    ... checked out by a doctor. Am I at risk for high blood pressure? Anyone can develop high blood pressure. But there are several factors that increase your risk: Being overweight or obese Not ... if I have high blood pressure? High blood pressure is often called "the silent ...

  19. High Blood Pressure (Hypertension) (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old High Blood Pressure (Hypertension) KidsHealth > For Parents > High Blood Pressure (Hypertension) A ... posture, and medications. continue Long-Term Effects of High Blood Pressure When someone has high blood pressure, the heart ...

  20. High Blood Pressure (Hypertension) (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old High Blood Pressure (Hypertension) KidsHealth > For Parents > High Blood Pressure (Hypertension) ... posture, and medications. continue Long-Term Effects of High Blood Pressure When someone has high blood pressure, the heart ...

  1. Strong environmental tolerance of Artemia under very high pressure

    Science.gov (United States)

    Minami, K.; Ono, F.; Mori, Y.; Takarabe, K.; Saigusa, M.; Matsushima, Y.; Saini, N. L.; Yamashita, M.

    2010-03-01

    It was shown by the present authors group that a tardigrade in its tun-state can survive after exposed to 7.5 GPa for 13 hours. We have extended this experiment to other tiny animals searching for lives under extreme conditions of high hydrostatic pressure. Artemia, a kind of planktons, in its dried egg-state have strong environmental tolerance. Dozens of Artemia eggs were sealed in a small Teflon capsule together with a liquid pressure medium, and exposed to the high hydrostatic pressure of 7.5 GPa. After the pressure was released, they were soaked in seawater to observe hatching rate. It was proved that 80-90% of the Artemia eggs were alive and hatched into Nauplii after exposed to the maximum pressure of 7.5 GPa for up to 48 hours. Comparing with Tardigrades, Artemia are four-times stronger against high pressure.

  2. Sudden pore pressure rise and rapid landslide initiation induced under extreme rainfall conditions - a case study

    Science.gov (United States)

    Fukuoka, Hiroshi; Wang, Fawu; Wang, Gonghui

    2010-05-01

    Since July 19 to 26, 2009, western Japan had a severe rainstorms and caused floods and landslides. Most of the landslides are debris slide - debris flows. Most devastated case took place in Hofu city, Japan. On July 21, extremely intense rainstorm caused numerous debris flows and mud flows in the hillslopes Some of the debris flows destroyed residential houses and home for elderly people, and finally killed 14 residents. Debris flow distribution map was prepared soon based on airphoto interpretation. Japanese Meteorological Agency runs nation-wide ground-based rain gauge network as well as radar rain gauges, which provide hourly to 10 minutes precipitation distribution real-time with spatial resolution of about 5 km. Distribution of daily (cumulative) precipitation of July 21 shows (1) The cumulative precipitation from 6 am -- 12 am of the day was evaluated that their return period could be 200 - 600 years statistically. In 2009, another extraordinary rainfall, of which intensity was evaluated as less than 100 years more more, caused floods in another city claiming many residents lives on the way to evacuation area. Those frequent extraordinary extreme rainfall is not concluded as the consequence of global warming nor climate change, however, those frequency of extreme rainfall events affecting societies are obviously increasing in Japan, too. As for the Hofu city case, it was proved that debris flows took place in the high precipitation area and covered by covered by weathered granite sands and silts which is called "masa". This sands has been proved susceptible against landslides under extreme rainfall conditions. However, the transition from slide - debris flow process is not well revealed, except authors past experiment on the similar masa samples in June 1999 Hiroshima debris flow case. Authors have embedded pore pressure control system for the undrained ring shear apparatus. Strongly weathered sandy soils were sampled just on the smooth and flat granitic

  3. Pressure Drop in Cyclone Separator at High Pressure

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    For the design of pressurized circulating fluidized beds, experiments were conducted in a small cyclone with 120 mm in diameter and 300 mm in height at high pressures and at atmospheric temperatures. Influence of air leakage from the stand pipe into the cyclone was specially focused. A semi-empirical model was developed for the predic tion of the pressure drop of the cyclone separator at different operate pressures with the effect of air leakage and inlet solid loading. The operate pressure, air leakage and inlet solid loading act as significant roles in cyclone pressure drop. The pressure drop increases with the increasing of pressure and decreases with the increasing of the flow rate of air leakage from the standpipe and with the increasing of the inlet solid loading.

  4. Major vascular injury from high-pressure water jet.

    Science.gov (United States)

    Harvey, R L; Ashley, D A; Yates, L; Dalton, M L; Solis, M M

    1996-01-01

    High-pressure water jets are used in industry as a cleaning and cutting tool. Penetrating injuries by these devices can produce minimal external evidence of extensive internal damage. We report a literature review and the case of a limb-threatening injury to the lower extremity caused by such a device.

  5. High-pressure microhydraulic actuator

    Science.gov (United States)

    Mosier, Bruce P [San Francisco, CA; Crocker, Robert W [Fremont, CA; Patel, Kamlesh D [Dublin, CA

    2008-06-10

    Electrokinetic ("EK") pumps convert electric to mechanical work when an electric field exerts a body force on ions in the Debye layer of a fluid in a packed bed, which then viscously drags the fluid. Porous silica and polymer monoliths (2.5-mm O.D., and 6-mm to 10-mm length) having a narrow pore size distribution have been developed that are capable of large pressure gradients (250-500 psi/mm) when large electric fields (1000-1500 V/cm) are applied. Flowrates up to 200 .mu.L/min and delivery pressures up to 1200 psi have been demonstrated. Forces up to 5 lb-force at 0.5 mm/s (12 mW) have been demonstrated with a battery-powered DC-DC converter. Hydraulic power of 17 mW (900 psi@ 180 uL/min) has been demonstrated with wall-powered high voltage supplies. The force and stroke delivered by an actuator utilizing an EK pump are shown to exceed the output of solenoids, stepper motors, and DC motors of similar size, despite the low thermodynamic efficiency.

  6. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... blood pressure test is easy and painless and can be done in a health care provider’s office ... severity of your blood pressure, he or she can order additional tests to determine if your blood ...

  7. Managing Stress to Control High Blood Pressure

    Science.gov (United States)

    ... Aneurysm More Managing Stress to Control High Blood Pressure Updated:Jan 10,2017 The importance of stress ... content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  8. Avoid the Consequences of High Blood Pressure

    Science.gov (United States)

    ... Thromboembolism Aortic Aneurysm More Avoid the Consequences of High Blood Pressure Infographic Updated:Oct 31,2016 View a downloadable version of this infographic High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  9. High Blood Pressure: Keep the Beat Recipes

    Science.gov (United States)

    ... of this page please turn Javascript on. Feature: High Blood Pressure Keep the Beat Recipes Past Issues / Fall 2011 ... 65 million American adults—one in three—with high blood pressure, you have probably heard the advice, "watch your ...

  10. High blood pressure and eye disease

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000999.htm High blood pressure and eye disease To use the sharing features on this page, please enable JavaScript. High blood pressure can damage blood vessels in the retina . The ...

  11. Comparison of Extreme Pressure Additive Treat Rates in Soybean and Mineral Oils Under Boundary Lubrication Conditions

    Science.gov (United States)

    Traditionally, it is considered that, under boundary lubrication conditions, the reduction in friction and wear is mostly dependent on Extreme Pressure (EP) additives, rather than the basestock. However, several studies indicate that vegetable oils also contribute to the lubricity under this regime...

  12. Risk Factors for High Blood Pressure

    Science.gov (United States)

    ... Share this page from the NHLBI on Twitter. Risk Factors for High Blood Pressure Anyone can develop high blood pressure; however, age, ... Lifestyle Habits Unhealthy lifestyle habits can raise your risk for high blood pressure, and they include: Eating too much sodium or ...

  13. In situ rheological measurements at extreme pressure and temperature using synchrotron X-ray diffraction and radiography.

    Science.gov (United States)

    Raterron, Paul; Merkel, Sébastien

    2009-11-01

    Dramatic technical progress seen over the past decade now allows the plastic properties of materials to be investigated under extreme pressure and temperature conditions. Coupling of high-pressure apparatuses with synchrotron radiation significantly improves the quantification of differential stress and specimen textures from X-ray diffraction data, as well as specimen strains and strain rates by radiography. This contribution briefly reviews the recent developments in the field and describes state-of-the-art extreme-pressure deformation devices and analytical techniques available today. The focus here is on apparatuses promoting deformation at pressures largely in excess of 3 GPa, namely the diamond anvil cell, the deformation-DIA apparatus and the rotational Drickamer apparatus, as well as on the methods used to carry out controlled deformation experiments while quantifying X-ray data in terms of materials rheological parameters. It is shown that these new techniques open the new field of in situ investigation of materials rheology at extreme conditions, which already finds multiple fundamental applications in the understanding of the dynamics of Earth-like planet interior.

  14. Trephination and subatmospheric pressure therapy in the management of extremity exposed bone.

    Science.gov (United States)

    Chen, Wei F; Poulakidas, Stathis J; Kowal-Vern, Areta; Villare, Robert C

    2010-12-01

    Distal lower and upper extremity wounds with bone and tendon exposure present unique challenges to reconstructive surgeons. The limitations of the local anatomy usually make simpler reconstructive modalities such as primary closure and skin grafting difficult. As a result, wounds in this area, especially ones with bone or tendon exposures, are classically treated with free tissue transfer. Limb preservation using the combination of bone trephination and subatmospheric pressure therapy is described. Six cases with preserved extremities are presented. Three cases illustrate extremity wound with bone and tendon exposure healing through pregrafting wound optimization (bone trephination) with the use of subatmospheric pressure therapy. This treatment may offer an alternative method of limb salvage, in cases where flaps or free tissue transfer are not possible or optimal.

  15. Common lower extremity injuries in female high school soccer ...

    African Journals Online (AJOL)

    Common lower extremity injuries in female high school soccer players in ... and fitness and not wearing shin guards are risk factors for injury in female soccer ... do not differ from the studies done in male adolescent and adult soccer players.

  16. Jellyfish: the origin and distribution of extreme ram-pressure stripping events in massive galaxy clusters

    Science.gov (United States)

    McPartland, Conor; Ebeling, Harald; Roediger, Elke; Blumenthal, Kelly

    2016-01-01

    We investigate the observational signatures and physical origin of ram-pressure stripping (RPS) in 63 massive galaxy clusters at z = 0.3-0.7, based on images obtained with the Hubble Space Telescope. Using a training set of a dozen `jellyfish' galaxies identified earlier in the same imaging data, we define morphological criteria to select 211 additional, less obvious cases of RPS. Spectroscopic follow-up observations of 124 candidates so far confirmed 53 as cluster members. For the brightest and most favourably aligned systems, we visually derive estimates of the projected direction of motion based on the orientation of apparent compression shocks and debris trails. Our findings suggest that the onset of these events occurs primarily at large distances from the cluster core (>400 kpc), and that the trajectories of the affected galaxies feature high-impact parameters. Simple models show that such trajectories are highly improbable for galaxy infall along filaments but common for infall at high velocities, even after observational biases are accounted for, provided the duration of the resulting RPS events is ≲500 Myr. We thus tentatively conclude that extreme RPS events are preferentially triggered by cluster mergers, an interpretation that is supported by the disturbed dynamical state of many of the host clusters. This hypothesis implies that extreme RPS might occur also near the cores of merging poor clusters or even merging groups of galaxies. Finally, we present nine additional `jellyfish" galaxies at z > 0.3 discovered by us, thereby doubling the number of such systems known at intermediate redshift.

  17. Advanced Extremely High Frequency Satellite (AEHF)

    Science.gov (United States)

    2015-12-01

    High Frequency Satellite (AEHF) is a joint service satellite communications system that provides global , survivable, secure, protected, and jam...three satellites fully integrated into the Milstar constellation. October 2014: On October 16, 2014, the program received PEO certification for the...Combined Orbital Operation, Logistics Sustainment ( COOLS ) contract, it will be completed and coordinated in CY 2016. The AEHF system being sustained

  18. Extremely high Q-factor toroidal metamaterials

    CERN Document Server

    Basharin, Alexey A; Volsky, Nikita; Kafesaki, Maria; Economou, Eleftherios N; Ustinov, Alexey V

    2016-01-01

    We demonstrate that, owing to the unique topology of the toroidal dipolar mode, its electric/magnetic field can be spatially confined within subwavelength, externally accessible regions of the metamolecules, which makes the toroidal planar metamaterials a viable platform for high Q-factor resonators due to interfering toroidal and other dipolar modes in metamolecules.

  19. Workshop on extremely high energy density plasmas and their diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Shozo (ed.)

    2001-09-01

    Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)

  20. High-Pressure Lightweight Thrusters

    Science.gov (United States)

    Holmes, Richard; McKechnie, Timothy; Shchetkovskiy, Anatoliy; Smirnov, Alexander

    2013-01-01

    Returning samples of Martian soil and rock to Earth is of great interest to scientists. There were numerous studies to evaluate Mars Sample Return (MSR) mission architectures, technology needs, development plans, and requirements. The largest propulsion risk element of the MSR mission is the Mars Ascent Vehicle (MAV). Along with the baseline solid-propellant vehicle, liquid propellants have been considered. Similar requirements apply to other lander ascent engines and reaction control systems. The performance of current state-ofthe- art liquid propellant engines can be significantly improved by increasing both combustion temperature and pressure. Pump-fed propulsion is suggested for a single-stage bipropellant MAV. Achieving a 90-percent stage propellant fraction is thought to be possible on a 100-kg scale, including sufficient thrust for lifting off Mars. To increase the performance of storable bipropellant rocket engines, a high-pressure, lightweight combustion chamber was designed. Iridium liner electrodeposition was investigated on complex-shaped thrust chamber mandrels. Dense, uniform iridium liners were produced on chamber and cylindrical mandrels. Carbon/carbon composite (C/C) structures were braided over iridium-lined mandrels and densified by chemical vapor infiltration. Niobium deposition was evaluated for forming a metallic attachment flange on the carbon/ carbon structure. The new thrust chamber was designed to exceed state-of-the-art performance, and was manufactured with an 83-percent weight savings. High-performance C/Cs possess a unique set of properties that make them desirable materials for high-temperature structures used in rocket propulsion components, hypersonic vehicles, and aircraft brakes. In particular, more attention is focused on 3D braided C/Cs due to their mesh-work structure. Research on the properties of C/Cs has shown that the strength of composites is strongly affected by the fiber-matrix interfacial bonding, and that weakening

  1. High-Pressure Design of Advanced BN-Based Materials.

    Science.gov (United States)

    Kurakevych, Oleksandr O; Solozhenko, Vladimir L

    2016-10-20

    The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN) with hardness comparable to diamond, and superhard boron subnitride B13N₂. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc.) are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure-temperature conditions are considered.

  2. High resolution spectroscopy of six new extreme helium stars

    Science.gov (United States)

    Heber, U.; Jones, G.; Drilling, J. S.

    1986-01-01

    High resolution spectra of six newly discovered extreme helium stars are presented. LSS 5121 is shown to be a spectroscopical twin of the hot extreme helium star HD 160641. A preliminary LTE analysis of LSS 3184 yielded an effective temperature of 22,000 K and a surface gravity of log g = 3.2. Four stars form a new subgroup, classified by sharp-lined He I spectra and pronounced O II spectra, and it is conjectured that these lie close to the Eddington limit. The whole group of extreme helium stars apparently is inhomogeneous with respect to luminosity to mass ratio and chemical composition.

  3. How Is High Blood Pressure Treated?

    Science.gov (United States)

    ... or focusing on something calm or peaceful Performing yoga or tai chi Meditating Medicines Blood pressure medicines work in different ways to stop or slow some of the body’s functions that cause high blood pressure. Medicines to lower ...

  4. Selected studies of magnetism at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hearne, G.R. [University of the Witwatersrand, Johannesburg (South Africa). Dept. of Physics; Pasternak, M.P. [Tel-Aviv Univ. (Israel). School of Physics and Astronomy; Taylor, R.D. [Los Alamos National Lab., NM (United States)

    1995-09-01

    Most previous studies of magnetism in various compounds under extreme conditions have been conducted over a wide pressure range at room temperature or over a wide range of cryogenic temperatures at pressures below 20 GPa (200 kbar). We present some of the most recent studies of magnetism over an extended range of temperatures and pressures far beyond 20 GPa, i.e., in regions of pressure-temperature (P-T) where magnetism has been largely unexplored. Recent techniques have permitted investigations of magnetism in selected 3d transition metal compounds in regions of P-T where physical properties may be drastically modified; related effects have often been seen in selected doping studies at ambient pressures.

  5. High blood pressure in women.

    Science.gov (United States)

    Calhoun, D A; Oparil, S

    1997-01-01

    There is a sexual dimorphism in blood pressure of humans and experimental animals: males tend to have higher blood pressure than females with functional ovaries, while ovariectomy or menopause tends to abolish the sexual dimorphism and cause females to develop a "male" pattern of blood pressure. Hypertensive male laboratory animals tend to have NaCl-sensitive blood pressure, while females are NaCl resistant unless their ovaries are removed, in which case NaCl sensitivity appears. The hormonal basis of NaCl sensitivity of blood pressure and of the sexual dimorphism of hypertension remains to be defined. Synthetic estrogens and progestins, as found in oral contraceptives, tend to elevate blood pressure, while naturally occurring estrogens lower it, or have no effect. Hypertension increases cardiovascular risk in women, as well as men, although the benefits of antihypertensive treatment have been more difficult to demonstrate in women. In the population of the United States, women are more aware of their hypertension, more likely to be treated medically, and more likely to have their blood pressure controlled.

  6. High Pressure Equation of State Studies Using Ethanol-Methanol And Argon As Pressure Medium

    Science.gov (United States)

    Godwal, B. K.; Speziale, S.; Clark, S.; Yan, J.; Jeanloz, R.

    2008-12-01

    Experimental high pressure studies are extremely important to planetary science, material science and to the development of condensed matter theory. With experimental difficulties in creating the extreme pressure temperature conditions appropriate to planetary interiors, the approach used is to obtain the thermodynamic data on materials of interest by extrapolating the condensed matter theory which has been benchmarked with the outcome of high pressure experiments to the available high pressures. However the high pressure data used to match the theory heavily depends on the use of pressure media; like ethanol-methanol, silicon oil, argon and helium. Unfortunately still there exist controversy in the literature even with the use of helium as pressure medium as illustrated by the unsettled debate on Zn and Os among different groups. We have measured the equation of state of intermetallic compound AuIn2 and Cd0.8Hg0.2 alloy using ethanol-methanol and argon to the pressure of 20 GPa to confirm the appearance of anomalies in the data due to occurrence of subtle electronic phase transitions. However these anomalies can also be attributed to oriented lattice strains and local non-hydrostatic conditions. We have tried to remove these at room temperature by stabilizing the sample in argon medium in the diamond anvil cell with proper annealing as indicated by the uniformity of the pressure across the sample by ruby fluorescence measurements. We will present the data revealing the electronic transition in AuIn2 at 2.7 GPa and in Cd0.8Hg0.2 near 9 and 18 GPa.

  7. HIGH BLOOD PRESSURE: DOES THIS CONCERN ME?

    CERN Multimedia

    2007-01-01

    To find out, the Medical Service's nurses are organising A HIGH BLOOD PRESSURE SCREENING AND PREVENTION CAMPAIGN from Monday, 26th to Thursday, 29th March 2007 at the Infirmary - Building 57 - ground floor A blood pressure test, advice, information and, if necessary, referral for specialist medical treatment will be offered to any person working on the CERN site. High blood pressure is a stealth threat to health. So come and get your blood pressure checked.

  8. HIGH BLOOD PRESSURE: DOES THIS CONCERN ME?

    CERN Multimedia

    2007-01-01

    To find out, the Medical Service's nurses are organising A HIGH BLOOD PRESSURE SCREENING AND PREVENTION CAMPAIGN from Monday, 26th to Thursday, 29th March 2007 at the Infirmary - Building 57 - ground floor A blood pressure test, advice, information and, if necessary, referral for specialist medical treatment will be offered to any person working on the CERN site. High blood pressure is a silent threat to health. So come and get your blood pressure checked.

  9. Jellyfish: Observational Properties of Extreme Ram-Pressure Stripping Events in Massive Galaxy Clusters

    Science.gov (United States)

    Conor, McPartland; Ebeling, Harald; Roediger, Elke

    2015-08-01

    We investigate the physical origin and observational signatures of extreme ram-pressure stripping (RPS) in 63 massive galaxy clusters at z=0.3-0.7, based on data in the F606W passband obtained with the Advanced Camera for Surveys aboard the Hubble Space Telescope. Using a training set of a dozen ``jellyfish" galaxies identified earlier in the same imaging data, we define quantitative morphological criteria to select candidate galaxies which are similar to known cases of RPS. Considering a sample of 16 ``jellyfish" galaxies (10 of which we present for the first time), we visually derive estimates of the projected direction of motion based on dynamical features such as apparent compression shocks and debris trails. Our findings suggest that the observed events occur primarily at large distances from the cluster core and involve infall trajectories featuring high impact parameters. Simple models of cluster growth show that such trajectories are consistent with two scenarios: 1) galaxy infall along filaments; and 2) infall at high velocities (≥1000 km/s) characteristic of cluster mergers. The observed distribution of events is best described by timescales of ˜few Myr in agreement with recent numerical simulations of RPS. The broader areal coverage of the Hubble Frontier Fields should provide an even larger sample of RPS events to determine the relative contributions of infall and cluster mergers. Prompted by the discovery of several jellyfish galaxies whose brightness in the F606W passband rivals or exceeds that of the respective brightest cluster galaxy, we attempt to constrain the luminosity function of galaxies undergoing RPS. The observed significant excess at the bright end compared to the luminosity functions of blue cluster members strongly suggests enhanced star formation, thus challenging theoretical and numerical studies according to which RPS merely displaces existing star-forming regions. In-depth studies of individual objects will help test our

  10. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Events Spokespeople Email Alerts E-Newsletters About NHLBI Organization NHLBI Director Budget, Planning, & Legislative Advisory Committees Jobs ... track blood pressure readings over a period of time, the health care provider may ask you to ...

  11. Application of High Pressure in Food Processing

    OpenAIRE

    Herceg, Z; Režek Jambrak, A; Lelas, V.; Krešić, G.

    2011-01-01

    In high pressure processing, foods are subjected to pressures generally in the range of 100 – 800 (1200) MPa. The processing temperature during pressure treatments can be adjusted from below 0 °C to above 100 °C, with exposure times ranging from a few seconds to 20 minutes and even longer, depending on process conditions. The effects of high pressure are system volume reduction and acceleration of reactions that lead to volume reduction. The main areas of interest regarding high-pressure proc...

  12. Pressure-stability of phospholipid bicelles: Measurement of residual dipolar couplings under extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, E.; Arnold, M.R.; Kremer, W.; Kalbitzer, H.R. [University of Regensburg, Institute of Biophysics and Physical Biochemistry (Germany)

    2001-10-15

    High-pressure NMR of proteins in solutions currently gains increasing interest. 3D structure determination of proteins under high pressure is, however, so far impossible due to the lack of NOE information. Residual dipolar couplings induced by the addition of magnetically orienting media are known to be capable of replacing NOE information to a very high extent. In the present contribution we study the pressure-wstability of dimyristoylphosphatidylcholine (DMPC)/ dihexanoylphosphatidylcholine (DHPC) bicelles and demonstrate the feasibility of measuring residual dipolar couplings in proteins under high pressure.

  13. Extremely robust and conformable capacitive pressure sensors based on flexible polyurethane foams and stretchable metallization

    Science.gov (United States)

    Vandeparre, H.; Watson, D.; Lacour, S. P.

    2013-11-01

    Microfabricated capacitive sensors prepared with elastomeric foam dielectric films and stretchable metallic electrodes display robustness to extreme conditions including stretching and tissue-like folding and autoclaving. The open cellular structure of the elastomeric foam leads to significant increase of the capacitance upon compression of the dielectric membrane. The sensor sensitivity can be adjusted locally with the foam density to detect normal pressure in the 1 kPa to 100 kPa range. Such pressure transducers will find applications in interfaces between the body and support surfaces such as mattresses, joysticks or prosthetic sockets, in artificial skins and wearable robotics.

  14. Metallicity of boron carbides at high pressure

    Science.gov (United States)

    Dekura, Haruhiko; Shirai, Koun; Yanase, Akira

    2010-03-01

    Electronic structure of semiconducting boron carbide at high pressure has been theoretically investigated, because of interests in the positive pressure dependence of resistivity, in the gap closure, and in the phase transition. The most simplest form B12(CCC) is assumed. Under assumptions of hydrostatic pressure and neglecting finite-temperature effects, boron carbide is quite stable at high pressure. The crystal of boron carbide is stable at least until a pressure higher than previous experiments showed. The gap closure occurs only after p=600 GPa on the assumption of the original crystal symmetry. In the low pressure regime, the pressure dependence of the energy gap almost diminishes, which is an exceptional case for semiconductors, which could be one of reasons for the positive pressure dependence of resistivity. A monotonous increase in the apex angle of rhombohedron suggests that the covalent bond continues to increase. The C chain inserted in the main diagonal of rhombohedral structure is the chief reason of this stability.

  15. Microorganisms under high pressure--adaptation, growth and biotechnological potential.

    Science.gov (United States)

    Mota, Maria J; Lopes, Rita P; Delgadillo, Ivonne; Saraiva, Jorge A

    2013-12-01

    Hydrostatic pressure is a well-known physical parameter which is now considered an important variable of life, since organisms have the ability to adapt to pressure changes, by the development of resistance against this variable. In the past decades a huge interest in high hydrostatic pressure (HHP) technology is increasingly emerging among food and biosciences researchers. Microbial specific stress responses to HHP are currently being investigated, through the evaluation of pressure effects on biomolecules, cell structure, metabolic behavior, growth and viability. The knowledge development in this field allows a better comprehension of pressure resistance mechanisms acquired at sub-lethal pressures. In addition, new applications of HHP could arise from these studies, particularly in what concerns to biotechnology. For instance, the modulation of microbial metabolic pathways, as a response to different pressure conditions, may lead to the production of novel compounds with potential biotechnological and industrial applications. Considering pressure as an extreme life condition, this review intends to present the main findings so far reported in the scientific literature, focusing on microorganisms with the ability to withstand and to grow in high pressure conditions, whether they have innated or acquired resistance, and show the potential of the application of HHP technology for microbial biotechnology. © 2013.

  16. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Technology Transfer Clinical Trials What Are Clinical Trials? Children & Clinical Studies NHLBI Trials Clinical Trial Websites News & ... are consistently higher than 120/80 mmHg. Your child’s blood pressure numbers are outside average numbers for ...

  17. Diagnosis of High Blood Pressure

    Medline Plus

    Full Text Available ... Related Topics Atherosclerosis DASH Eating Plan Overweight and Obesity Smoking and Your Heart Stroke Send a link ... are consistently higher than 120/80 mmHg. Your child’s blood pressure numbers are outside average numbers for ...

  18. Extremely High Q-factor metamaterials due to Anapole Excitation

    CERN Document Server

    Basharin, Alexey A; Volsky, Nikita; Kafesaki, Maria; Economou, Eleftherios N

    2016-01-01

    We demonstrate that ideal anapole metamaterials have infinite Q-factor. We have designed and fabricated a metamaterial consisting of planar metamolecules which exhibit anapole behavior in the sense that the electric dipole radiation is almost cancelled by the toroidal dipole one, producing thus an extremely high Q-factor at the resonance frequency. The size of the system, at the mm range, and the parasitic magnetic quadrupole radiation are the factors limiting the size of the Q-factor. In spite of the very low radiation losses the local fields at the metamolecules are extremely high, of the order of higher than the external incoming field.

  19. High pressure processing for food safety.

    Science.gov (United States)

    Fonberg-Broczek, Monika; Windyga, B; Szczawiński, J; Szczawińska, M; Pietrzak, D; Prestamo, G

    2005-01-01

    Food preservation using high pressure is a promising technique in food industry as it offers numerous opportunities for developing new foods with extended shelf-life, high nutritional value and excellent organoleptic characteristics. High pressure is an alternative to thermal processing. The resistance of microorganisms to pressure varies considerably depending on the pressure range applied, temperature and treatment duration, and type of microorganism. Generally, Gram-positive bacteria are more resistant to pressure than Gram-negative bacteria, moulds and yeasts; the most resistant are bacterial spores. The nature of the food is also important, as it may contain substances which protect the microorganism from high pressure. This article presents results of our studies involving the effect of high pressure on survival of some pathogenic bacteria -- Listeria monocytogenes, Aeromonas hydrophila and Enterococcus hirae -- in artificially contaminated cooked ham, ripening hard cheese and fruit juices. The results indicate that in samples of investigated foods the number of these microorganisms decreased proportionally to the pressure used and the duration of treatment, and the effect of these two factors was statistically significant (level of probability, P high pressure treatment than L. monocytogenes and A. hydrophila. Mathematical methods were applied, for accurate prediction of the effects of high pressure on microorganisms. The usefulness of high pressure treatment for inactivation of microorganisms and shelf-life extention of meat products was also evaluated. The results obtained show that high pressure treatment extends the shelf-life of cooked pork ham and raw smoked pork loin up to 8 weeks, ensuring good micro-biological and sensory quality of the products.

  20. High-Pressure Design of Advanced BN-Based Materials

    Directory of Open Access Journals (Sweden)

    Oleksandr O. Kurakevych

    2016-10-01

    Full Text Available The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN with hardness comparable to diamond, and superhard boron subnitride B13N2. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc. are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure–temperature conditions are considered.

  1. CHRONOBIOLOGY OF HIGH BLOOD PRESSURE

    Science.gov (United States)

    Cornélissen, G.; Halberg, F.; Bakken, E. E.; Wang, Z.; Tarquini, R.; Perfetto, F.; Laffi, G.; Maggioni, C.; Kumagai, Y.; Homolka, P.; Havelková, A.; Dušek, J.; Svačinová, H.; Siegelová, J.; Fišer, B.

    2008-01-01

    BIOCOS, the project aimed at studying BIOlogical systems in their COSmos, has obtained a great deal of expertise in the fields of blood pressure (BP) and heart rate (HR) monitoring and of marker rhythmometry for the purposes of screening, diagnosis, treatment, and prognosis. Prolonging the monitoring reduces the uncertainty in the estimation of circadian parameters; the current recommendation of BIOCOS requires monitoring for at least 7 days. The BIOCOS approach consists of a parametric and a non-parametric analysis of the data, in which the results from the individual subject are being compared with gender- and age-specified reference values in health. Chronobiological designs can offer important new information regarding the optimization of treatment by timing its administration as a function of circadian and other rhythms. New technological developments are needed to close the loop between the monitoring of blood pressure and the administration of antihypertensive drugs. PMID:19122770

  2. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures

    Science.gov (United States)

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M.

    2016-04-01

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures - while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  3. Ignition and combustion of pyrotechnics at low pressures and at temperature extremes

    Directory of Open Access Journals (Sweden)

    Clive Woodley

    2017-06-01

    Full Text Available Rapid and effective ignition of pyrotechnic countermeasure decoy flares is vitally important to the safety of expensive military platforms such as aircraft. QinetiQ is conducting experimental and theoretical research into pyrotechnic countermeasure decoy flares. A key part of this work is the development and application of improved models to increase the understanding of the ignition processes occurring for these flares. These models have been implemented in a two-dimensional computational model and details are described in this paper. Previous work has conducted experiments and validated the computational model at ambient temperature and pressure. More recently the computational model has been validated at pressures down to that equivalent to 40,000 feet but at ambient temperature (∼290 K. This paper describes further experimental work in which the ignition delays of the priming material in inert countermeasure decoy flares were determined for pressures down to 40,000 feet and at temperature extremes of −40 °C and 100 °C. Also included in this paper is a comparison of the measured and predicted ignition delays at low pressures and temperature extremes. The agreement between the predicted and measured ignition delays is acceptable.

  4. Is Extremely High Life Satisfaction during Adolescence Advantageous?

    Science.gov (United States)

    Suldo, Shannon M.; Huebner, E. Scott

    2006-01-01

    This study examined whether extremely high life satisfaction was associated with adaptive functioning or maladaptive functioning. Six hundred ninety-eight secondary level students completed the Students' Life Satisfaction Scale [Huebner, 1991a, School Psychology International, 12, pp. 231-240], Youth Self-Report of the Child Behavior Checklist…

  5. common lower extremity injuries in female high school soccer ...

    African Journals Online (AJOL)

    studies on soccer concentrate on male soccer players.5-7 Although participation ... the prevalence and injury profile of lower extremity injuries in female high school ... An extended duration of skills (p=0.0001) and fitness (p=0.02) training in this .... The results (Table V) show that shin guards were associated with a reduced ...

  6. Application of High Pressure in Food Processing

    Directory of Open Access Journals (Sweden)

    Herceg, Z.

    2011-01-01

    Full Text Available In high pressure processing, foods are subjected to pressures generally in the range of 100 – 800 (1200 MPa. The processing temperature during pressure treatments can be adjusted from below 0 °C to above 100 °C, with exposure times ranging from a few seconds to 20 minutes and even longer, depending on process conditions. The effects of high pressure are system volume reduction and acceleration of reactions that lead to volume reduction. The main areas of interest regarding high-pressure processing of food include: inactivation of microorganisms, modification of biopolymers, quality retention (especially in terms of flavour and colour, and changes in product functionality. Food components responsible for the nutritive value and sensory properties of food remain unaffected by high pressure. Based on the theoretical background of high-pressure processing and taking into account its advantages and limitations, this paper aims to show its possible application in food processing. The paper gives an outline of the special equipment used in highpressure processing. Typical high pressure equipment in which pressure can be generated either by direct or indirect compression are presented together with three major types of high pressure food processing: the conventional (batch system, semicontinuous and continuous systems. In addition to looking at this technology’s ability to inactivate microorganisms at room temperature, which makes it the ultimate alternative to thermal treatments, this paper also explores its application in dairy, meat, fruit and vegetable processing. Here presented are the effects of high-pressure treatment in milk and dairy processing on the inactivation of microorganisms and the modification of milk protein, which has a major impact on rennet coagulation and curd formation properties of treated milk. The possible application of this treatment in controlling cheese manufacture, ripening and safety is discussed. The opportunities

  7. Laser techniques in high-pressure geophysics

    Science.gov (United States)

    Hemley, R. J.; Bell, P. M.; Mao, H. K.

    1987-01-01

    Laser techniques in conjunction with the diamond-anvil cell can be used to study high-pressure properties of materials important to a wide range of problems in earth and planetary science. Spontaneous Raman scattering of crystalline and amorphous solids at high pressure demonstrates that dramatic changes in structure and bonding occur on compression. High-pressure Brillouin scattering is sensitive to the pressure variations of single-crystal elastic moduli and acoustic velocities. Laser heating techniques with the diamond-anvil cell can be used to study phase transitions, including melting, under deep-earth conditions. Finally, laser-induced ruby fluorescence has been essential for the development of techniques for generating the maximum pressures now possible with the diamond-anvil cell, and currently provides a calibrated in situ measure of pressure well above 100 gigapascals.

  8. Laser techniques in high-pressure geophysics

    Science.gov (United States)

    Hemley, R. J.; Bell, P. M.; Mao, H. K.

    1987-01-01

    Laser techniques in conjunction with the diamond-anvil cell can be used to study high-pressure properties of materials important to a wide range of problems in earth and planetary science. Spontaneous Raman scattering of crystalline and amorphous solids at high pressure demonstrates that dramatic changes in structure and bonding occur on compression. High-pressure Brillouin scattering is sensitive to the pressure variations of single-crystal elastic moduli and acoustic velocities. Laser heating techniques with the diamond-anvil cell can be used to study phase transitions, including melting, under deep-earth conditions. Finally, laser-induced ruby fluorescence has been essential for the development of techniques for generating the maximum pressures now possible with the diamond-anvil cell, and currently provides a calibrated in situ measure of pressure well above 100 gigapascals.

  9. Design optimization of high pressure and high temperature piezoresistive pressure sensor for high sensitivity

    Science.gov (United States)

    Niu, Zhe; Zhao, Yulong; Tian, Bian

    2014-01-01

    This paper describes a design method for optimizing sensitivity of piezoresistive pressure sensor in high-pressure and high-temperature environment. In order to prove the method, a piezoresistive pressure sensor (HPTSS) is designed. With the purpose of increasing sensitivity and to improve the measurement range, the piezoresistive sensor adopts rectangular membrane and thick film structure. The configuration of piezoresistors is arranged according to the characteristic of the rectangular membrane. The structure and configuration of the sensor chip are analyzed theoretically and simulated by the finite element method. This design enables the sensor chip to operate in high pressure condition (such as 150 MPa) with a high sensitivity and accuracy. The silicon on insulator wafer is selected to guarantee the thermo stability of the sensor chip. In order to optimize the fabrication and improve the yield of production, an electric conduction step is devised. Series of experiments demonstrates a favorable linearity of 0.13% and a high accuracy of 0.48%. And the sensitivity of HTPSS is about six times as high as a conventional square-membrane sensor chip in the experiment. Compared with the square-membrane pressure sensor and current production, the strength of HPTTS lies in sensitivity and measurement. The performance of the HPTSS indicates that it could be an ideal candidate for high-pressure and high-temperature sensing in real application.

  10. Design optimization of high pressure and high temperature piezoresistive pressure sensor for high sensitivity.

    Science.gov (United States)

    Niu, Zhe; Zhao, Yulong; Tian, Bian

    2014-01-01

    This paper describes a design method for optimizing sensitivity of piezoresistive pressure sensor in high-pressure and high-temperature environment. In order to prove the method, a piezoresistive pressure sensor (HPTSS) is designed. With the purpose of increasing sensitivity and to improve the measurement range, the piezoresistive sensor adopts rectangular membrane and thick film structure. The configuration of piezoresistors is arranged according to the characteristic of the rectangular membrane. The structure and configuration of the sensor chip are analyzed theoretically and simulated by the finite element method. This design enables the sensor chip to operate in high pressure condition (such as 150 MPa) with a high sensitivity and accuracy. The silicon on insulator wafer is selected to guarantee the thermo stability of the sensor chip. In order to optimize the fabrication and improve the yield of production, an electric conduction step is devised. Series of experiments demonstrates a favorable linearity of 0.13% and a high accuracy of 0.48%. And the sensitivity of HTPSS is about six times as high as a conventional square-membrane sensor chip in the experiment. Compared with the square-membrane pressure sensor and current production, the strength of HPTTS lies in sensitivity and measurement. The performance of the HPTSS indicates that it could be an ideal candidate for high-pressure and high-temperature sensing in real application.

  11. Extreme high-head portables provide more pumping options

    Energy Technology Data Exchange (ETDEWEB)

    Fiscor, S.

    2006-10-15

    Three years ago, Godwin Pumps, one of the largest manufacturers of portable pumps, introduced its Extreme Duty High Lift (HL) series of pumps and more mines are finding unique applications for these pumps. The Extreme HL series is a range single-stage Dri-Prime pumps with heads up to 600 feet and flows up to 5,000 gallons per minute. The American Coal Co.'s Galatia mine, an underground longwall mine in southern Illinois, used an HL 160 to replace a multiple-staged centrifugal pump. It provided Galatia with 1,500 gpm at 465 ft. 3 photos.

  12. Effects of high pressure on unsaturated fatty acids

    Science.gov (United States)

    Povedano, Isabel; Guignon, Bérengère; Montoro, Óscar R.; Sanz, Pedro D.; Taravillo, Mercedes; Baonza, Valentín G.

    2014-10-01

    The objective of this study is to investigate the effects of high pressure processing on the molecular structure of some unsaturated fatty acids. Samples of elaidic acid, linoleic acid, ZE and EE conjugated linoleic acid are treated at 293 or 333 K at pressures up to 700 MPa. It is observed that the adiabatic heat generated from compression is able to bring the sample temperature above 373 K after 700 MPa. These relatively extreme conditions are of great interest for food sterilization, but they may induce undesirable change in fatty acid quality characteristics. To check for structural changes, Raman spectra of the samples are analysed after treatments. The comparison with Raman spectra of samples kept at atmospheric pressure shows that pressure induces some conformational changes at the hydrocarbon skeleton in solid samples, while the liquid ones remain unchanged. No cis/trans isomerization occurs, but gauche conformers are likely to be present.

  13. Techniques in high pressure neutron scattering

    CERN Document Server

    Klotz, Stefan

    2013-01-01

    Drawing on the author's practical work from the last 20 years, Techniques in High Pressure Neutron Scattering is one of the first books to gather recent methods that allow neutron scattering well beyond 10 GPa. The author shows how neutron scattering has to be adapted to the pressure range and type of measurement.Suitable for both newcomers and experienced high pressure scientists and engineers, the book describes various solutions spanning two to three orders of magnitude in pressure that have emerged in the past three decades. Many engineering concepts are illustrated through examples of rea

  14. High-pressure minerals in shocked meteorites

    Science.gov (United States)

    Tomioka, Naotaka; Miyahara, Masaaki

    2017-09-01

    Heavily shocked meteorites contain various types of high-pressure polymorphs of major minerals (olivine, pyroxene, feldspar, and quartz) and accessory minerals (chromite and Ca phosphate). These high-pressure minerals are micron to submicron sized and occur within and in the vicinity of shock-induced melt veins and melt pockets in chondrites and lunar, howardite-eucrite-diogenite (HED), and Martian meteorites. Their occurrence suggests two types of formation mechanisms (1) solid-state high-pressure transformation of the host-rock minerals into monomineralic polycrystalline aggregates, and (2) crystallization of chondritic or monomineralic melts under high pressure. Based on experimentally determined phase relations, their formation pressures are limited to the pressure range up to 25 GPa. Textural, crystallographic, and chemical characteristics of high-pressure minerals provide clues about the impact events of meteorite parent bodies, including their size and mutual collision velocities and about the mineralogy of deep planetary interiors. The aim of this article is to review and summarize the findings on natural high-pressure minerals in shocked meteorites that have been reported over the past 50 years.

  15. Portable high precision pressure transducer system

    Science.gov (United States)

    Piper, T. C.; Morgan, J. P.; Marchant, N. J.; Bolton, S. M.

    A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank is presented. Since the response of the pressure transducer is temperature sensitive, it is continually housed in a battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on-board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display.

  16. High Accuracy, Miniature Pressure Sensor for Very High Temperatures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SiWave proposes to develop a compact, low-cost MEMS-based pressure sensor for very high temperatures and low pressures in hypersonic wind tunnels. Most currently...

  17. High resolution modelling of extreme precipitation events in urban areas

    Science.gov (United States)

    Siemerink, Martijn; Volp, Nicolette; Schuurmans, Wytze; Deckers, Dave

    2015-04-01

    The present day society needs to adjust to the effects of climate change. More extreme weather conditions are expected, which can lead to longer periods of drought, but also to more extreme precipitation events. Urban water systems are not designed for such extreme events. Most sewer systems are not able to drain the excessive storm water, causing urban flooding. This leads to high economic damage. In order to take appropriate measures against extreme urban storms, detailed knowledge about the behaviour of the urban water system above and below the streets is required. To investigate the behaviour of urban water systems during extreme precipitation events new assessment tools are necessary. These tools should provide a detailed and integral description of the flow in the full domain of overland runoff, sewer flow, surface water flow and groundwater flow. We developed a new assessment tool, called 3Di, which provides detailed insight in the urban water system. This tool is based on a new numerical methodology that can accurately deal with the interaction between overland runoff, sewer flow and surface water flow. A one-dimensional model for the sewer system and open channel flow is fully coupled to a two-dimensional depth-averaged model that simulates the overland flow. The tool uses a subgrid-based approach in order to take high resolution information of the sewer system and of the terrain into account [1, 2]. The combination of using the high resolution information and the subgrid based approach results in an accurate and efficient modelling tool. It is now possible to simulate entire urban water systems using extreme high resolution (0.5m x 0.5m) terrain data in combination with a detailed sewer and surface water network representation. The new tool has been tested in several Dutch cities, such as Rotterdam, Amsterdam and The Hague. We will present the results of an extreme precipitation event in the city of Schiedam (The Netherlands). This city deals with

  18. Probing Hydrogen Diffusion under High Pressure

    Science.gov (United States)

    Bove, L. E.; Klotz, S.; Strassle, T.; Saitta, M.

    2012-12-01

    The study of the microscopic mechanism governing hydrogen and hydrogen-based liquids (as water, ammonia and methane) diffusion is crucial for a variety of scientific issues spanning most of natural sciences. As an example, characterizing hydrogen diffusion in a confined medium, like in porous systems or zeolites, is fundamental in problems relating to environment, hydrogen storage and industrial applications [1]. The presence of water diffusion in the minerals of the Earth's mantle have strong incidence on the processes governing volcanic eruptions and intermediate-depth seismicity. As last example, knowing in details the microscopic dynamics of hydrogen-based simple liquids under extreme conditions is essential in order to interpret observations and develop models of planet interiors [2]. On the other hand, water and other simple hydrogen-based liquids have always been key systems in the development of modern condensed-matter physics, because of their simple electronic structure and the peculiar properties deriving from the hydrogen-bond network. Their high compressibility and chemical reactivity have made these systems very challenging to study experimentally under static high P-T conditions. In the last few years, a large effort has been undertaken by several groups around the world [2] to extend the static and dynamic techniques to high temperatures and pressures, a program in which our group has been actively involved [3-6]. However, while the structure of water and other hydrogenated liquids of geological interest, is now known up to almost 20 GPa, the study of their transport properties greatly lags behind. We have recently developed a new large-volume gasket-anvil ensemble for the Paris-Edinburgh press based on a novel toroidal design [7], which allows to perform quasi elastic neutron scattering measurements on hydrogen based liquids up to one order of magnitude higher pressures (5 GPa) respect to what was achievable with standard methods [8]. The large

  19. Extremely high Q -factor metamaterials due to anapole excitation

    Science.gov (United States)

    Basharin, Alexey A.; Chuguevsky, Vitaly; Volsky, Nikita; Kafesaki, Maria; Economou, Eleftherios N.

    2017-01-01

    We have designed and fabricated a metamaterial consisting of planar metamolecules which exhibit unusual, almost perfect anapole behavior in the sense that the electric dipole radiation is almost canceled by the toroidal dipole one, producing thus an extremely high Q -factor at the resonance frequency. Thus we have demonstrated theoretically and experimentally that metamaterials approaching ideal anapole behavior have very high Q -factor. The size of the system, at the millimeter range, and the parasitic magnetic quadrupole radiation are the factors limiting the size of the Q -factor. In spite of the very low radiation losses the estimated local fields at the metamolecules are extremely high, of the order of 104 higher than the external incoming field.

  20. Rheological Properties of Extreme Pressure Greases Measured Using a Process Control Rheometer

    DEFF Research Database (Denmark)

    Glasscock, Julie; Smith, Robin S.

    2012-01-01

    A new process control rheometer (PCR) designed for use in industrial process flows has been used to measure the rheological properties of three extreme-pressure greases. The rheometer is a robust yet sensitive instrument designed to operate in an industrial processing environment in either in......-line or on-line configurations. The PCR was able to measure the rheological properties including the elastic modulus, viscous modulus, and complex viscosity of the greases which in an industrial flow application could be used as variables in a feedback system to control the process and the quality...

  1. Magnetic and Superconducting Materials at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  2. Structural stability of high entropy alloys under pressure and temperature

    DEFF Research Database (Denmark)

    Ahmad, Azkar S.; Su, Y.; Liu, S. Y.

    2017-01-01

    The stability of high-entropy alloys (HEAs) is a key issue before their selection for industrial applications. In this study, in-situ high-pressure and high-temperature synchrotron radiation X-ray diffraction experiments have been performed on three typical HEAs Ni20Co20Fe20Mn20Cr20, Hf25Nb25Zr25Ti......25, and Re25Ru25Co25Fe25 (at. %), having face-centered cubic (fcc), body-centered cubic (bcc), and hexagonal close-packed (hcp) crystal structures, respectively, up to the pressure of ∼80 GPa and temperature of ∼1262 K. Under the extreme conditions of the pressure and temperature, all three studied...... HEAs remain stable up to the maximum pressure and temperatures achieved. For these three types of studied HEAs, the pressure-dependence of the volume can be well described with the third order Birch-Murnaghan equation of state. The bulk modulus and its pressure derivative are found to be 88.3 GPa and 4...

  3. Fracture evolution and pressure relief gas drainage from distant protected coal seams under an extremely thick key stratum

    Institute of Scientific and Technical Information of China (English)

    WANG Liang; CHENG Yuan-ping; LI Feng-rong; WANG Hai-feng; LIU Hai-bo

    2008-01-01

    When an extremely thick rock bed exists above a protected coal seam in the bending zone given the condition of a mining protective seam, this extremely thick rock bed controls the movement of the entire overlying stratum. This extremely thick rock bed, called a "main key stratum", will not subside nor break for a long time, causing lower fractures and bed separations not to close and gas can migrate to the bed separation areas along the fractures. These bed separations become gas enrichment areas. By analyzing the rule of fracture evolution and gas migration under the main key stratum after the deep protective coal seam has been mined, we propose a new gas drainage method which uses bore holes, drilled through rock and coal seams at great depths for draining pressure relief gas. In this method, the bores are located at a high level suction roadway (we can also drill them in the drilling field located high in an air gateway). Given the practice in the Halzi mine, the gas drainage rate can reach 73% in the middie coal group, with a gas drainage radius over 100 m.

  4. High Pressure Materials Research: Novel Extended Phases of Molecular Triatomics

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, C

    2004-05-26

    Application of high pressure significantly alters the interatomic distance and thus the nature of intermolecular interaction, chemical bonding, molecular configuration, crystal structure, and stability of solid [1]. With modern advances in high-pressure technologies [2], it is feasible to achieve a large (often up to a several-fold) compression of lattice, at which condition material can be easily forced into a new physical and chemical configuration [3]. The high-pressure thus offers enhanced opportunities to discover new phases, both stable and metastable ones, and to tune exotic properties in a wide-range of atomistic length scale, substantially greater than (often being several orders of) those achieved by other thermal (varying temperatures) and chemical (varying composition or making alloys) means. Simple molecular solids like H{sub 2}, C, CO{sub 2}, N{sub 2}, O{sub 2}, H{sub 2}O, CO, NH{sub 3}, and CH{sub 4} are bounded by strong covalent intramolecular bonds, yet relatively weak intermolecular bonds of van der Waals and/or hydrogen bonds. The weak intermolecular bonds make these solids highly compressible (i.e., low bulk moduli typically less than 10 GPa), while the strong covalent bonds make them chemically inert at least initially at low pressures. Carbon-carbon single bonds, carbon-oxygen double bonds and nitrogen-nitrogen triple bonds, for example, are among the strongest. These molecular forms are, thus, often considered to remain stable in an extended region of high pressures and high temperatures. High stabilities of these covalent molecules are also the basis of which their mixtures are often presumed to be the major detonation products of energetic materials as well as the major constituents of giant planets. However, their physical/chemical stabilities are not truly understood at those extreme pressure-temperature conditions. In fact, an increasing amount of experimental evidences contradict the assumed stability of these materials at high

  5. Embedded optical probes for simultaneous pressure and temperature measurement of materials in extreme conditions

    Science.gov (United States)

    Sandberg, R. L.; Rodriguez, G.; Gibson, L. L.; Dattelbaum, D. M.; Stevens, G. D.; Grover, M.; Lalone, B. M.; Udd, E.

    2014-05-01

    We present recent efforts at Los Alamos National Laboratory (LANL) to develop sensors for simultaneous, in situ pressure and temperature measurements under dynamic conditions by using an all-optical fiber-based approach. While similar tests have been done previously in deflagration-to-detonation tests (DDT), where pressure and temperature were measured to 82 kbar and 400°C simultaneously, here we demonstrate the use of embedded fiber grating sensors to obtain high temporal resolution, in situ pressure measurements in inert materials. We present two experimental demonstrations of pressure measurements: (1) under precise shock loading from a gas-gun driven plate impact and (2) under high explosive driven shock in a water filled vessel. The system capitalizes on existing telecom components and fast transient digitizing recording technology. It operates as a relatively inexpensive embedded probe (single-mode 1550 nm fiber-based Bragg grating) that provides a continuous fast pressure record during shock and/or detonation. By applying well-controlled shock wave pressure profiles to these inert materials, we study the dynamic pressure response of embedded fiber Bragg gratings to extract pressure amplitude of the shock wave and compare our results with particle velocity wave profiles measured simultaneously.

  6. High pressure semiconductor physics I

    CERN Document Server

    Willardson, R K; Paul, William; Suski, Tadeusz

    1998-01-01

    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise indeed that this tra...

  7. High Blood Pressure: Medicines to Help You

    Science.gov (United States)

    ... names are given for the drugs in each group.Find your drug. Then read some basic information about your kind of drug. Types of High Blood Pressure Medicines ACE Inhibitors Beta Blockers Calcium Channel Blockers ...

  8. High Blood Pressure May Hike Dementia Risk

    Science.gov (United States)

    ... fullstory_161398.html High Blood Pressure May Hike Dementia Risk New statement from American Heart Association warns ... in middle age, might open the door to dementia, the American Heart Association warns in a new ...

  9. Blood Pressure in 6-Year-Old Children Born Extremely Preterm.

    Science.gov (United States)

    Edstedt Bonamy, Anna-Karin; Mohlkert, Lilly-Ann; Hallberg, Jenny; Liuba, Petru; Fellman, Vineta; Domellöf, Magnus; Norman, Mikael

    2017-08-01

    Advances in perinatal medicine have increased infant survival after very preterm birth. Although this progress is welcome, there is increasing concern that preterm birth is an emerging risk factor for hypertension at young age, with implications for the lifetime risk of cardiovascular disease. We measured casual blood pressures (BPs) in a population-based cohort of 6-year-old survivors of extremely preterm birth (preterm than in controls. Among children born extremely preterm, shorter gestation, higher body mass index, and higher heart rate at follow-up were all independently associated with higher BP at 6 years of age, whereas preeclampsia, smoking in pregnancy, neonatal morbidity, and perinatal corticosteroid therapy were not. In multivariate regression analyses, systolic BP decreased by 0.10 SD (P=0.08) and diastolic BP by 0.09 SD (P=0.02) for each week-longer gestation. Six-year-old children born extremely preterm have normal but slightly higher BP than their peers born at term. Although this finding is reassuring for children born preterm and their families, follow-up at older age is warranted. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  10. Extremely High Current, High-Brightness Energy Recovery Linac

    CERN Document Server

    Ben-Zvi, Ilan; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Burger, Al; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Favale, Anthony; Gassner, David M; Grimes, Jacob T; Hahn, Harald; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Lambiase, Robert; Litvinenko, Vladimir N; McIntyre, Gary; Meng, Wuzheng; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Segalov, Zvi; Smith, Kevin T; Todd, Alan M M; Warren-Funk, L; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Yip, Kin; Zaltsman, Alex; Zhao, Yongxiang

    2005-01-01

    Next generation ERL light-sources, high-energy electron coolers, high-power Free-Electron Lasers, powerful Compton X-ray sources and many other accelerators were made possible by the emerging technology of high-power, high-brightness electron beams. In order to get the anticipated performance level of ampere-class currents, many technological barriers are yet to be broken. BNL's Collider-Accelerator Department is pursuing some of these technologies for its electron cooling of RHIC application, as well as a possible future electron-hadron collider. We will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun and an accelerator cavity capable of producing low emittance (about 1 micron rms normalized) one nano-Coulomb bunches at currents of the order of one ampere average.

  11. High-pressure oxidation of ethane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; G. Jacobsen, Jon; Rasmussen, Christian T.

    2017-01-01

    Ethane oxidation at intermediate temperatures and high pressures has been investigated in both a laminar flow reactor and a rapid compression machine (RCM). The flow-reactor measurements at 600–900 K and 20–100 bar showed an onset temperature for oxidation of ethane between 700 and 825 K, depending...... as well as results at elevated pressure from literature. The experimental results and the modeling predictions do not support occurrence of NTC behavior in ethane oxidation. Even at the high-pressure conditions of the present work where the C2H5 + O2 reaction yields ethylperoxyl rather than C2H4 + HO2...

  12. High pressure ceramic heat exchanger

    Science.gov (United States)

    Harkins, Bruce D.; Ward, Michael E.

    1998-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a strengthening reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the strengthening reinforcing member. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  13. Elasticity of orthoenstatite at high-pressure

    Science.gov (United States)

    Zhang, D.; Jackson, J. M.; Chen, B.; Zhao, J.; Yan, J.

    2011-12-01

    Orthoenstatite is an abundant yet complex mineral in Earth's upper mantle. Despite its abundance, the properties of orthopyroxene at high pressure remain ambiguous (e.g., Zhang et al. 2011; Jahn 2008; Kung et al. 2004). We explored select properties of a synthetic powdered orthoenstatite (Mg0.8757Fe0.13)2Si2O6 sample by X-ray diffraction (XRD) and nuclear resonance inelastic X-ray scattering (NRIXS) as a function of pressure in a neon pressure medium at 300 K. The XRD measurements were carried out at beamline 12.2.2 of the Advanced Light Source (Berkeley, CA), and the sample was studied up to 34 GPa. NRIXS measurements were carried out at sector 3ID-B of the Advanced Photon Source (Chicago, IL) in the pressure range of 3 to 17 GPa. From the raw NRIXS data, the partial phonon density of states (DOS) was derived (e.g., Sturhahn 2004). The volume (or pressure) dependence of several properties, such as the Lamb-Mössbauer factor, mean force constant, specific heat, vibrational entropy, and vibrational kinetic energy were determined from the DOS. We will discuss our results from these combined studies and the implications for Earth's upper mantle. References Zhang, D., J.M. Jackson, W. Sturhahn, and Y. Xiao (2011): Local structure variations observed in orthoenstatite at high-pressures. American Mineralogist, in press. Jahn, S. (2008) High-pressure phase transitions in MgSiO3 orthoenstatite studied by atomistic computer simulation. American Mineralogist, 93(4), 528-532. Kung, J., Li, B., Uchida, T., Wang, Y., Neuville, D., and Liebermann, R. (2004) In situ measurements of sound velocities and densities across the orthopyroxene high-pressure clinopyroxene transition in MgSiO3 at high pressure. Physics of the Earth and Planetary Interiors, 147(1), 27-44. Sturhahn, W. (2004): Nuclear Resonant Spectroscopy. J. Phys. Condens. Matter, 16, S497-S530.

  14. High pressure optical combustion probe

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, S.D.; Richards, G.A.

    1995-06-01

    The Department of Energy`s Morgantown Energy Technology Center has developed a combustion probe for monitoring flame presence and heat release. The technology involved is a compact optical detector of the OH radical`s UV fluorescence. The OH Monitor/Probe is designed to determine the flame presence and provide a qualitative signal proportional to the flame intensity. The probe can be adjusted to monitor a specific volume in the combustion zone to track spatial fluctuations in the flame. The probe is capable of nanosecond time response and is usually slowed electronically to fit the flame characteristics. The probe is a sapphire rod in a stainless steel tube which may be inserted into the combustion chamber and pointed at the flame zone. The end of the sapphire rod is retracted into the SS tube to define a narrow optical collection cone. The collection cone may be adjusted to fit the experiment. The fluorescence signal is collected by the sapphire rod and transmitted through a UV transmitting, fused silica, fiber optic to the detector assembly. The detector is a side window photomultiplier (PMT) with a 310 run line filter. A Hamamatsu photomultiplier base combined with a integral high voltage power supply permits this to be a low voltage device. Electronic connections include: a power lead from a modular DC power supply for 15 VDC; a control lead for 0-1 volts to control the high voltage level (and therefore gain); and a lead out for the actual signal. All low voltage connections make this a safe and easy to use device while still delivering the sensitivity required.

  15. Horizontal high-pressure air injection well construction and operation

    Energy Technology Data Exchange (ETDEWEB)

    Hume, J. [Continental Resources Inc., ND (United States)

    2005-07-01

    This paper discussed the design and operational challenges of a horizontal high-pressure air injection well currently in use at the Cedar Hill Red River B field in North Dakota. The field was developed in 1994, using horizontal wells oriented from the northeast to the southwest corners of each section on 640 acre spacing. In March of 2001, the field was unitized resulting in a horizontal waterflood project and a 320 acre horizontal high pressure air injection project. Extreme temperatures and pressures occurring in the reservoir from the combustion processes associated with high pressure air injection have resulted in several challenges. Reservoir and fluid properties of the field were presented, as well as a type log. Details of the Buffalo and Cedar Hills field were also provided, with a comparison of horizontal and vertical patterns. A light oil displacement process was reviewed, with details of tubing leak corrosion, packer seal and detonation failures. Burn front exposure to casing was discussed, and a wellbore diagram was provided. Various horizontal conversions were discussed. A description of the Cedar Hills Compressor Station and compression trains was provided. It was concluded that knowledge gained from 25 years of vertical high pressure air injection experience has been successfully incorporated to create a safe and durable design. 1 tab., 16 figs.

  16. Review on the effects of hydrogen at extreme pressures and temperatures on the mechanical behavior of polymers.

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, Ethan S.

    2013-03-01

    The effects of hydrogen on the mechanics (e.g. strength, ductility, and fatigue resistance) of polymer materials are outlined in this report. There are a small number of studies reported in the literature on this topic, and even fewer at the extreme temperatures to which hydrogen service materials will be exposed. Several studies found little evidence that hydrogen affects the static tensile properties, long term creep, or ductile fracture of high density polyethylene or polyamide. However, there has been a report that a recoverable drop in the modulus of high density polyethylene is observable under high hydrogen pressure. A research need exists on the mechanical effects of hydrogen on the wide range of polymers used or considered for use in the hydrogen economy, due to the lack of data in the literature.

  17. High-pressure oxidation of methane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly...... diluted in nitrogen. It was found that under the investigated conditions, the onset temperature for methane oxidation ranged from 723 K under reducing conditions to 750 K under stoichiometric and oxidizing conditions. The RCM experiments were carried out at pressures of 15–80 bar and temperatures of 800......–1250 K under stoichiometric and fuel-lean (Φ=0.5) conditions. Ignition delays, in the range of 1–100 ms, decreased monotonically with increasing pressure and temperature. A chemical kinetic model for high-pressure methane oxidation was established, with particular emphasis on the peroxide chemistry...

  18. Structures of Liquid Aluminium under High Pressure

    Institute of Scientific and Technical Information of China (English)

    LI Hui; WANG Guang-Hou; BIAN Xiu-Fang; ZHANG Lin

    2001-01-01

    Molecular dynamics simulation has been carried out for melt A1 under constant temperature and constant pressure. The interaction between atoms is described by tight-binding many-body potentials based on the second moment approximation to the electronic density of states. The pair correlation function and the pair analysis technique are used to reveal the structural features of liquid Al under normal and high pressure. High pressure is favourable to the existence of bcc clusters 1661 and 1441, but has no effect on the fcc cluster 1421. The bond pair 1551 and 1541 with fivefold symmetry exists at high pressure. The microstructure of liquid is more similar to the non-crystalline structure than to the crystalline structure. The simulation results are supported by thex-ray experimental results.

  19. High pressure Raman scattering of silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Khachadorian, Sevak; Scheel, Harald; Thomsen, Christian [Institut fuer Festkoerperphysik, Technische Universitaet Berlin, 10623 Berlin (Germany); Papagelis, Konstantinos [Materials Science Department, University of Patras, 26504 Patras (Greece); Colli, Alan [Nokia Research Centre, 21 J J Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Ferrari, Andrea C, E-mail: khachadorian@physik.tu-berlin.de [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom)

    2011-05-13

    We study the high pressure response, up to 8 GPa, of silicon nanowires (SiNWs) with {approx} 15 nm diameter, by Raman spectroscopy. The first order Raman peak shows a superlinear trend, more pronounced compared to bulk Si. Combining transmission electron microscopy and Raman measurements we estimate the SiNWs' bulk modulus and the Grueneisen parameters. We detect an increase of Raman linewidth at {approx} 4 GPa, and assign it to pressure induced activation of a decay process into LO and TA phonons. This pressure is smaller compared to the {approx} 7 GPa reported for bulk Si. We do not observe evidence of phase transitions, such as discontinuities or change in the pressure slopes, in the investigated pressure range.

  20. Characteristics of extreme ultraviolet emission from high-Z plasmas

    Science.gov (United States)

    Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.

    2016-03-01

    We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics.

  1. Extreme Elevations in Blood Pressure and All-Cause Mortality in a Referred CKD Population: Results from the CRISIS Study.

    Science.gov (United States)

    Ritchie, James; Rainone, Francesco; Green, Darren; Alderson, Helen; Chiu, Diana; Middleton, Rachel; O'Donoghue, Donal; Kalra, Philip A

    2013-01-01

    Hypertension frequently complicates chronic kidney disease (CKD), with studies showing clinical benefit from blood pressure lowering. Subgroups of patients with severe hypertension exist. We aimed to identify patients with the greatest mortality risk from uncontrolled hypertension to define the prevalence and phenotype of patients who might benefit from adjunctive therapies. 1691 all-cause CKD patients from the CRISIS study were grouped by baseline blood pressure-target (extreme (>190 and/or 100 mmHg). Groups were well matched for age, eGFR, and comorbidities. 77 patients had extreme hypertension at recruitment but no increased mortality risk (HR 0.9, P = 0.9) over a median follow-up period of 4.5 years. The 1.2% of patients with extreme hypertension at recruitment and at 12-months had a significantly increased mortality risk (HR 4.3, P = 0.01). This association was not seen in patients with baseline extreme hypertension and improved 12-month blood pressures (HR 0.86, P = 0.5). Most CKD patients with extreme hypertension respond to pharmacological blood pressure control, reducing their risk for death. Patients with extreme hypertension in whom blood pressure control cannot be achieved have an approximate prevalence of 1%. These patients have an increased mortality risk and may be an appropriate group to consider for further therapies, including renal nerve ablation.

  2. Structure and extreme ultraviolet performance of Si/C multilayers deposited under different working pressures.

    Science.gov (United States)

    Yi, Qiang; Huang, Qiushi; Wang, Xiangmei; Yang, Yang; Yang, Xiaowei; Zhang, Zhong; Wang, Zhanshan; Xu, Rongkun; Peng, Taiping; Zhou, Hongjun; Huo, Tonglin

    2017-02-01

    Narrow bandwidth Si/C multilayer mirrors are fabricated and characterized for the Z-pinch plasma diagnostic at a wavelength of 16.5 nm. To reduce the large stress of the multilayer and maintain a practical reflectivity, different working pressures, from 0.13 Pa to 0.52 Pa, are optimized during the deposition. The grazing incidence x-ray reflectometry (GIXR) measurement and the fitting results indicate that an interlayer was formed at the interfaces, while both the interlayer thickness and interface widths increase with larger working pressure. The surface roughness of the multilayers also increases from 0.13 nm at 0.13 Pa to 0.29 nm at 0.52 Pa, as revealed by the atomic force microscope (AFM) measurements. The multilayer stress decreases from -682 MPa to -384  MPa as the working pressure increases from 0.13 Pa to 0.52 Pa, respectively. The experimental extreme ultraviolet (EUV) reflectivity of the samples with 20 bilayers gradually decreased from 26.3% to 18.9% with increased working pressure. The bandwidth of the reflection peak remains similar for the different samples with a full width half-maximum (FWHM) value of around 0.87 nm. A maximum EUV reflectivity of 33.2% and a bandwidth of 0.64 nm were achieved by the sample with 50 bilayers fabricated under a working pressure of 0.13 Pa.

  3. Solidification at the High and Low Rate Extreme

    Energy Technology Data Exchange (ETDEWEB)

    Meco, Halim [Iowa State Univ., Ames, IA (United States)

    2004-12-19

    The microstructures formed upon solidification are strongly influenced by the imposed growth rates on an alloy system. Depending on the characteristics of the solidification process, a wide range of growth rates is accessible. The prevailing solidification mechanisms, and thus the final microstructure of the alloy, are governed by these imposed growth rates. At the high rate extreme, for instance, one can have access to novel microstructures that are unattainable at low growth rates. While the low growth rates can be utilized for the study of the intrinsic growth behavior of a certain phase growing from the melt. Although the length scales associated with certain processes, such as capillarity, and the diffusion of heat and solute, are different at low and high rate extremes, the phenomena that govern the selection of a certain microstructural length scale or a growth mode are the same. Consequently, one can analyze the solidification phenomena at both high and low rates by using the same governing principles. In this study, we examined the microstructural control at both low and high extremes. For the high rate extreme, the formation of crystalline products and factors that control the microstructure during rapid solidification by free-jet melt spinning are examined in Fe-Si-B system. Particular attention was given to the behavior of the melt pool at different quench-wheel speeds. Since the solidification process takes place within the melt-pool that forms on the rotating quench-wheel, we examined the influence of melt-pool dynamics on nucleation and growth of crystalline solidification products and glass formation. High-speed imaging of the melt-pool, analysis of ribbon microstructure, and measurement of ribbon geometry and surface character all indicate upper and lower limits for melt-spinning rates for which nucleation can be avoided, and fully amorphous ribbons can be achieved. Comparison of the relevant time scales reveals that surface-controlled melt

  4. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    Science.gov (United States)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  5. Extreme Air Pollution Conditions Adversely Affect Blood Pressure and Insulin Resistance: The Air Pollution and Cardiometabolic Disease Study.

    Science.gov (United States)

    Brook, Robert D; Sun, Zhichao; Brook, Jeffrey R; Zhao, Xiaoyi; Ruan, Yanping; Yan, Jianhua; Mukherjee, Bhramar; Rao, Xiaoquan; Duan, Fengkui; Sun, Lixian; Liang, Ruijuan; Lian, Hui; Zhang, Shuyang; Fang, Quan; Gu, Dongfeng; Sun, Qinghua; Fan, Zhongjie; Rajagopalan, Sanjay

    2016-01-01

    Mounting evidence supports that fine particulate matter adversely affects cardiometabolic diseases particularly in susceptible individuals; however, health effects induced by the extreme concentrations within megacities in Asia are not well described. We enrolled 65 nonsmoking adults with metabolic syndrome and insulin resistance in the Beijing metropolitan area into a panel study of 4 repeated visits across 4 seasons since 2012. Daily ambient fine particulate matter and personal black carbon levels ranged from 9.0 to 552.5 µg/m(3) and 0.2 to 24.5 µg/m(3), respectively, with extreme levels observed during January 2013. Cumulative fine particulate matter exposure windows across the prior 1 to 7 days were significantly associated with systolic blood pressure elevations ranging from 2.0 (95% confidence interval, 0.3-3.7) to 2.7 (0.6-4.8) mm Hg per SD increase (67.2 µg/m(3)), whereas cumulative black carbon exposure during the previous 2 to 5 days were significantly associated with ranges in elevations in diastolic blood pressure from 1.3 (0.0-2.5) to 1.7 (0.3-3.2) mm Hg per SD increase (3.6 µg/m(3)). Both black carbon and fine particulate matter were significantly associated with worsening insulin resistance (0.18 [0.01-0.36] and 0.22 [0.04-0.39] unit increase per SD increase of personal-level black carbon and 0.18 [0.02-0.34] and 0.22 [0.08-0.36] unit increase per SD increase of ambient fine particulate matter on lag days 4 and 5). These results provide important global public health warnings that air pollution may pose a risk to cardiometabolic health even at the extremely high concentrations faced by billions of people in the developing world today.

  6. High temperature and pressure alkaline electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2013-01-01

    the operational temperature and pressure to produce pressurized hydrogen at high rate (m3 H2·h-1·m-2 cell area) and high electrical efficiency. This work describes an exploratory technical study of the possibility to produce hydrogen and oxygen with a new type of alkaline electrolysis cell at high temperatures...... for immobilization of aqueous KOH solutions. Electrolysis cells with this electrolyte and metal foam based gas diffusion electrodes were successfully demonstrated at temperatures up to 250 °C at 40 bar. Different electro-catalysts were tested in order to reduce the oxygen and hydrogen overpotentials. Current...

  7. Crystal structures at high pressures and temperatures

    Science.gov (United States)

    Caldwell, Wendel Alexander

    2000-10-01

    The diamond anvil cell (DAC) is a unique instrument that can generate pressures equivalent to those inside planetary interiors (pressures on the order of 1 million atmospheres) under sustained conditions. When combined with a bright source of collimated x-rays, the DAC can be used to probe the structure of materials in-situ at ultra-high pressures. An understanding of the high-pressure structure of materials is important in determining what types of processes may take place in the Earth at great depths. Motivated by previous studies showing that xenon becomes metallic at pressures above ˜1 megabar (100 GPa), we examined the stable structures and reactivity of xenon at pressures approaching that of the core-mantle boundary in the Earth. Our findings indicate the transformation of xenon from face-centered cubic (fcc) to hexagonal close-packed (hcp) structures is kinetically hindered at room temperature, with the equilibrium fcc--hcp phase boundary at 21 (+/-3) gigapascals, a pressure lower than was previously thought. Additionally, we find no tendency on the part of xenon to form a metal alloy with iron or platinum to at least 100 to 150 gigapascals, making it unlikely that the Earth's core serves as a reservoir for primordial xenon. Measurements of the compressibility of natural (Mg.75,Fe .25)2SiO4 gamma-spinel at pressures of the Earth's transition zone yield a pressure derivative of the bulk modulus K0 ' = 6.3 (+/-0.3). As gamma-spinel is considered to be a dominant mineral phase of the transition-zone of the Earth's mantle (400--670 km depth), the relatively high value of K0' for gamma-spinel may help explain the rapid increase with depth of seismic velocities through the transition zone. The thermodynamics, mechanisms and kinetics of pressure-induced amorphization are not well understood. We report here new studies indicating little or no entropy difference between the crystalline and glassy states of Ca(OH) 2 (portlandite). Additional work on the pressure

  8. High pressure, high current, low inductance, high reliability sealed terminals

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN; McKeever, John W [Oak Ridge, TN

    2010-03-23

    The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.

  9. Forecasting extreme wave events in moderate and high sea states

    Science.gov (United States)

    Magnusson, Anne Karin; Reistad, Magnar; Bitner-Gregersen, Elzbieta Maria

    2013-04-01

    Empirical studies on measurements have not yet come to conclusive relations between occurrence of rogue waves and - parameters which could be forecasted . Theoretical and tank experiments have demonstrated that high spectral peakedness and low spectral width combined (high Benjamin-Feir instability index, Onorato et al., 2006) give higher probability of rogue wave occurrence. Directional spread seems to reduce the probability of occurrence of rogue waves in these studies. Many years of experience with forecasting and discussions with people working in ocean environment indicate that rogue waves may as well occur in crossing seas. This was also indicated in a study in the Maxwave project (Toffoli et al., 2003) and the EXTREME SEAS project (Toffoli et al., 2011). We have here experimented with some indexes describing both high BFI and crossing seas and run the WAM model for some North Sea storm cases. Wave distributions measured at Ekofisk are analysed in the different cases. References • Onorato, M., Osborne, A., Serio, M., Cavaleri, L., Brandini, C., and Stansberg, C.: Extreme waves, modulational instability and second order theory: wave flume experiments on irregular waves,Europ. J. Mech. B/Fluids, 25, 586-601, 2006. • Toffoli, A., Lefevre, J.M., Monbaliu, J., Savina, H., and Bitner-Gregersen, E., "Freak Waves:Clues for Prediction in Ship Accidents?", Proc. ISOPE'2003 Conf. Hawai, USA, 2003. • Toffoli A., Bitner-Gregersen E. M., Osborne A. R., Serio M. Monbaliu J., Onorato M. (2011) Extreme Waves in Random Crossing Seas: Laboratory Experiments and Numerical Simulations. Geophys. Res. Lett., Vol. 38, L06605, 5 pp. doi: 10.1029/2011.

  10. DESIGN OF NOVEL HIGH PRESSURE- RESISTANT HYDROTHERMAL FLUID SAMPLE VALVE

    Institute of Scientific and Technical Information of China (English)

    LIU Wei; YANG Canjun; WU Shijun; XIE Yingjun; CHEN Ying

    2008-01-01

    Sampling study is an effective exploration method, but the most extreme environments of hydrothermal vents pose considerable engineering challenges for sampling hydrothermal fluids. Moreover, traditional sampler systems with sample valves have difficulty in maintaining samples in situ pressure. However, decompression changes have effect on microorganisms sensitive to such stresses. To address the technical difficulty of collecting samples from hydrothermal vents, a new bidirectional high pressure-resistant sample valve with balanced poppet was designed. The sample valve utilizes a soft high performance plastic "PEEK" as poppet. The poppet with inapposite dimension is prone to occur to plastic deformation or rupture for high working pressure in experiments. To address this issue, based on the finite element model, simulated results on stress distribution of the poppet with different structure parameters and preload spring force were obtained. The static axial deformations on top of the poppet were experimented. The simulated results agree with the experimental results. The new sample valve seals well and it can withstand high working pressure.

  11. Low-pressure systems and extreme precipitation in central India: sensitivity to temperature changes

    Science.gov (United States)

    Sørland, Silje Lund; Sorteberg, Asgeir

    2016-07-01

    Extreme rainfall events in the central Indian region are often related to the passage of synoptic scale monsoon low-pressure systems (LPS). This study uses the surrogate climate change method on ten monsoon LPS cases connected to observed extreme rainfall events, to investigate how sensitive the precipitation and runoff are to an idealized warmer and moister atmosphere. The ten cases are simulated with three different initial and lateral boundary conditions: the unperturbed control run, and two sets of perturbed runs where the atmospheric temperature is increased uniformly throughout the atmosphere, the specific humidity increased according to Clausius Clapeyron's relation, but the large-scale flow is unchanged. The difference between the control and perturbed simulations are mainly due to the imposed warming and feedback influencing the synoptic flow. The mean precipitation change with warming in the central Indian region is 18-20 %/K, with largest changes at the end of the LPS tracks. The LPS in the warmer runs are bringing more moisture further inland that is released as precipitation. In the perturbed runs the precipitation rate is increasing at all percentiles, and there is more frequent rainfall with very heavy intensities. This leads to a shift in which category that contributes most to the total precipitation: more of the precipitation is coming from the category with very heavy intensities. The runoff changes are similar to the precipitation changes, except the response in intensity of very heavy runoff, which is around twice the change in intensity of very heavy precipitation.

  12. Curved and conformal high-pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Paul F.; Kuczek, Andrzej E.; Zhao, Wenping

    2016-10-25

    A high-pressure vessel is provided. The high-pressure vessel may comprise a first chamber defined at least partially by a first wall, and a second chamber defined at least partially by the first wall. The first chamber and the second chamber may form a curved contour of the high-pressure vessel. A modular tank assembly is also provided, and may comprise a first mid tube having a convex geometry. The first mid tube may be defined by a first inner wall, a curved wall extending from the first inner wall, and a second inner wall extending from the curved wall. The first inner wall may be disposed at an angle relative to the second inner wall. The first mid tube may further be defined by a short curved wall opposite the curved wall and extending from the second inner wall to the first inner wall.

  13. Superconductivity from insulating elements under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Katsuya

    2015-07-15

    Highlights: • Even insulating molecule can become metal and superconductor by pressure with relatively high T{sub c}. • The highest T{sub c} is observed in sulfur with 17 K at 160 GPa. • Hydrogen is the best candidate of the highest T{sub c} element. - Abstract: The insulating and superconducting states would seem to have very different characteristics. Can any insulator become a superconductor? One proven method, doping an insulating material with carriers, can create itinerant states inside the gap between the conduction and valence bands. Another method is to squeeze the structure by applying pressure. Pressure can expand the bandwidth and also narrow the energy band gap. So the first step to turn an insulator into a superconductor is to make it metallic. Here we review our experimental research and results on superconductivity induced by applying pressure to insulating molecular systems such as elemental molecules.

  14. Links between traumatic brain injury and ballistic pressure waves originating in the thoracic cavity and extremities

    CERN Document Server

    Courtney, Amy

    2007-01-01

    Identifying patients at risk of traumatic brain injury (TBI) is important because research suggests prophylactic treatments to reduce risk of long-term sequelae. Blast pressure waves can cause TBI without penetrating wounds or blunt force trauma. Similarly, bullet impacts distant from the brain can produce pressure waves sufficient to cause mild to moderate TBI. The fluid percussion model of TBI shows that pressure impulses of 15-30 psi cause mild to moderate TBI in laboratory animals. In pigs and dogs, bullet impacts to the thigh produce pressure waves in the brain of 18-45 psi and measurable injury to neurons and neuroglia. Analyses of research in goats and epidemiological data from shooting events involving humans show high correlations (r > 0.9) between rapid incapacitation and pressure wave magnitude in the thoracic cavity. A case study has documented epilepsy resulting from a pressure wave without the bullet directly hitting the brain. Taken together, these results support the hypothesis that bullet imp...

  15. High pressure water jet cutting and stripping

    Science.gov (United States)

    Hoppe, David T.; Babai, Majid K.

    1991-01-01

    High pressure water cutting techniques have a wide range of applications to the American space effort. Hydroblasting techniques are commonly used during the refurbishment of the reusable solid rocket motors. The process can be controlled to strip a thermal protective ablator without incurring any damage to the painted surface underneath by using a variation of possible parameters. Hydroblasting is a technique which is easily automated. Automation removes personnel from the hostile environment of the high pressure water. Computer controlled robots can perform the same task in a fraction of the time that would be required by manual operation.

  16. High temperature and pressure alkaline electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2013-01-01

    and pressures. Two measurement systems were built to perform measurements under high pressures and at elevated temperatures of up to 95 bar and 250 °C, respectively. The conductivity of aqueous KOH and aqueous KOH immobilized in a porous SrTiO3 structure were investigated at elevated temperatures and high...... the operational temperature and pressure to produce pressurized hydrogen at high rate (m3 H2·h-1·m-2 cell area) and high electrical efficiency. This work describes an exploratory technical study of the possibility to produce hydrogen and oxygen with a new type of alkaline electrolysis cell at high temperatures...... concentrations of the electrolyte using the van der Pauw method in combination with electrochemical impedance spectroscopy (EIS). Conductivity values as high as 2.9 S cm-1 for 45 wt% KOH aqueous KOH and 0.84 S cm-1 for the immobilized KOH of the same concentration were measured at 200 °C. Porous SrTiO3 was used...

  17. High pressure effects on allergen food proteins.

    Science.gov (United States)

    Somkuti, Judit; Smeller, László

    2013-12-15

    There are several proteins, which can cause allergic reaction if they are inhaled or ingested. Our everyday food can also contain such proteins. Food allergy is an IgE-mediated immune disorder, a growing health problem of great public concern. High pressure is known to affect the structure of proteins; typically few hundred MPa pressure can lead to denaturation. That is why several trials have been performed to alter the structure of the allergen proteins by high pressure, in order to reduce its allergenicity. Studies have been performed both on simple protein solutions and on complex food systems. Here we review those allergens which have been investigated under or after high pressure treatment by methods capable of detecting changes in the secondary and tertiary structure of the proteins. We focus on those allergenic proteins, whose structural changes were investigated by spectroscopic methods under pressure in correlation with the observed allergenicity (IgE binding) changes. According to this criterion we selected the following allergen proteins: Mal d 1 and Mal d 3 (apple), Bos d 5 (milk), Dau c 1 (carrot), Gal d 2 (egg), Ara h 2 and Ara h 6 (peanut), and Gad m 1 (cod).

  18. High pressure effects in anaesthesia and narcosis.

    Science.gov (United States)

    Wlodarczyk, Agnieszka; McMillan, Paul F; Greenfield, Susan A

    2006-10-01

    There is growing interest in determining the effects of high pressure on biological functions. Studies of brain processes under hyperbaric conditions can give a unique insight into phenomena such as nitrogen narcosis, inert gas anaesthesia, and pressure reversal of the effects of anaesthetic and narcotic agents. Such research may shed light on the action of anaesthetics, which remains poorly understood, and on the nature of consciousness itself. Various studies have established the behavioural response of organisms to hyperbaric conditions, in the presence or absence of anaesthetic agents. At the molecular level, X-ray crystallography has been used to investigate the incorporation of species like Xe in hydrophobic pockets within model ion channels that may account for pressure effects on neuronal transmission. New magnetic resonance imaging techniques are providing tomographic three-dimensional images that detail brain structure and function, and that can be correlated with behavioural studies and psychological test results. Such whole organ techniques are linked to the molecular scale via voltage-sensitive dye (VSD) imaging studies on brain slices that provide time-resolved images of the dynamic formation and interconnection of inter-neuronal complexes. The VSD experiments are readily adapted to in situ studies under high pressure conditions. In this tutorial review we review the current state of knowledge of hyperbaric effects on brain processes: anaesthesia and narcosis, recent studies at the molecular level via protein crystallography at high pressure in a Xe atmosphere, and we also present some preliminary results of VSD imaging of brain slices under hyperbaric conditions.

  19. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Stefano Orsino

    2005-03-30

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical

  20. Jellyfish: Evidence of extreme ram-pressure stripping in massive galaxy clusters

    CERN Document Server

    Ebeling, Harald; Edge, Alastair C

    2013-01-01

    Ram-pressure stripping by the gaseous intra-cluster medium has been proposed as the dominant physical mechanism driving the rapid evolution of galaxies in dense environments. Detailed studies of this process have, however, largely been limited to relatively modest examples affecting only the outermost gas layers of galaxies in nearby and/or low-mass galaxy clusters. We here present results from our search for extreme cases of gas-galaxy interactions in much more massive, X-ray selected clusters at $z>0.3$. Using Hubble Space Telescope (HST) snapshots in the F606W and F814W passbands, we have discovered dramatic evidence of ram-pressure stripping in which copious amounts of gas are first shock compressed and then removed from galaxies falling into the cluster. Vigorous starbursts triggered by this process across the galaxy-gas interface and in the debris trail cause these galaxies to temporarily become some of the brightest cluster members in the F606W passband, capable of outshining even the Brightest Cluster...

  1. Photophysics of organic molecules at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Dean James

    1978-01-01

    The pressure dependence of emission intensities, energies, and lifetimes of several classes of organic compounds in plastic media were investigated over the range 0-140 kilobars. The fluorescence intensity of 9-anthraldehyde, 9-acetylanthracene, and 9-benzoylanthracene increases remarkably with increasing pressure, accompanied by a large red shift in the emission spectrum. For azulene and several derivatives, the efficiency of fluorescence from both the second and first excited singlet states was pressure dependent as was the relative energy of these states. The rate of internal conversion depended strongly on the energy separating the relevant states. The energy and quantum efficiency of fluorescence for fluorenone in crystalline form and in several polymeric matrices was measured as a function of pressure. The quantum yield, ranged from 0.001 at low pressure to a maximum of about 0.1 at high pressure in paraffinic plastics. Fluorescence quantum yields and phosphorescence quantum yields and lifetimes were measured for pyrazine (P) 2,6-dimethylpyrazine and tetramethylpyrazine (TMP) in PMMA over the pessure range 20-120 kbar. An additional emission, which is attributed to excimer fluorescence, was also observed for these samples and for crystalline pyrazine. The phosphorescence radiative lifetime for P and TMP was about 18 ms.

  2. High temperature and pressure electrochemical test station

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg

    2013-01-01

    An electrochemical test station capable of operating at pressures up to 100 bars and temperatures up to 400 ◦C has been established. It enables control of the partial pressures and mass flow of O2, N2, H2, CO2, and H2O in a single or dual environment arrangement, measurements with highly corrosive...... media, as well as localized sampling of gas evolved at the electrodes for gas analysis. A number of safety and engineering design challenges have been addressed. Furthermore, we present a series of electrochemical cell holders that have been constructed in order to accommodate different types of cells......, to the electrochemical characterization of high temperature and pressure alkaline electrolysis cells and the use of pseudo-reference electrodes for the separation of each electrode contribution. A future perspective of various electrochemical processes and devices that can be developed with the use of the established...

  3. Blue emitting organic semiconductors under high pressure

    DEFF Research Database (Denmark)

    Knaapila, Matti; Guha, Suchismita

    2016-01-01

    This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure...... and intermolecular self-organization that typically determine transport and optical emission in π-conjugated oligomers and polymers. In this context, hydrostatic pressure through diamond anvil cells has proven to be an elegant tool to control structure and interactions without chemical intervention. This has been...... and intermolecular interactions on optical excitations, electron–phonon interaction, and changes in backbone conformations. This picture is connected to the optical high pressure studies of other π-conjugated systems and emerging x-ray scattering experiments from polyfluorenes which provides a structure-property map...

  4. High pressure photophysics of organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Brey, L. A.

    1979-01-01

    High pressure spectroscopic studies on several classes of organic compounds were made both in fluid solution (to 10 kbar) and in polymeric media (to 40 kbar). The first three studies were conducted in fluid solution and concern the effect of solvent viscosity on the nonradiative deactivation rates from electronically excited states. Pressure was utilized to attain high viscosities in organic solvents at room temperature. The primary experimental technique used was fluorescence emission spectroscopy. In the fourth and last study observations were made both in fluid solution and in plastic films. The focus of this study was the effect of pressure on the solvent-chromophore dispersion interaction in several polyenes and the concomitant changes in both the radiative and non-radiative rates from the excited states. Extensive use was made of fluorescence lifetime measurements and excitation spectra. 105 references.

  5. Too Many Americans Have High Blood Pressure, Doctors Warn

    Science.gov (United States)

    ... news/fullstory_163468.html Too Many Americans Have High Blood Pressure, Doctors Warn With February designated National Heart Month, ... physicians warns that too many Americans struggle with high blood pressure. High blood pressure is a major risk factor ...

  6. Advanced Diagnostics for High Pressure Spray Combustion.

    Energy Technology Data Exchange (ETDEWEB)

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  7. Aqueous Geochemistry at High Pressures and High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bass, Jay D. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2015-05-21

    This project is aimed at experimental characterization of the sound velocities, equations of state (EOS), and derived physical and chemical properties of aqueous solutions and carbon dioxide at extreme pressure and temperature conditions relevant to processes occurring in the interior of the Earth. Chemical transport, phase changes (including melting), fluid-solid reactions, and formation of magmatic liquids at convergent plat boundaries are a key motivation for this project. Research in this area has long been limited by the extreme experimental challenges and lack of data under the appropriate pressure-temperature (P-T) conditions. The vast majority of studies of aqueous geochemistry relevant to terrestrial problems of fluid-rock interactions have been conducted at 0.3 GPa or less, and the widely used Helgeson-Kirkham-Flowers equation of state for aqueous species is applicable only at ~ < 0.5 GPa. These limits are unfortunate because fluid flow and reactions plays a central role in many deeper environments. Recent efforts including our own, have resulted in new experimental techniques that now make it possible to investigate properties of homogeneous and heterogeneous equilibria involving aqueous species and minerals over a much broader range of pressure and temperature appropriate for deep crustal and upper mantle processes involving water-rich fluids. We carried out 1) Brillouin scattering measurements of the equations of state and molar volume of water and carbon dioxide to over 10 GPa and 870K using precise resistance heating of samples under pressure in the diamond anvil cell, and 2) the phase diagrams of the water and CO2, and 3) Exploring new experimental approaches, including CO2 laser heating of samples in a diamond cell, to measurements of sound velocities, EOS, and phase relations by Brillouin scattering to far greater pressures and temperatures.

  8. Cobalt ferrite nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V. [Instituto de Tecnologías y Ciencias de la Ingeniería, “Ing. H. Fernández Long,” Av. Paseo Colón 850 (1063), Buenos Aires (Argentina); Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Fisica Aplicada, Institut Universitari de Ciència dels Materials, Universitat de Valencia, c/ Doctor Moliner 50, E-46100 Burjassot, Valencia (Spain); Agouram, S. [Departamento de Física Aplicada y Electromagnetismo, Universitat de València, 46100 Burjassot, Valencia (Spain)

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  9. Nanoshells as a high-pressure gauge

    Science.gov (United States)

    Tempere, Jacques; van den Broeck, Nick; Putteneers, Katrijn; Silvera, Isaac

    2012-02-01

    Nanoshells, consisting of multiple spherical layers, have an extensive list of applications, usually performing the function of a probe. We add a new application to this list in the form of a high-pressure gauge in a Diamond Anvil Cell (DAC). In a DAC, where high pressures are reached by pressing two diamonds together, existing gauges fail at higher pressures because of calibration difficulties and obscuring effects in the diamonds. The nanoshell gauge does not face this issue since its optical spectrum can be engineered by altering the thickness of its layers. Furthermore their properties are measured by broad band optical transmission spectroscopy leading to a very large signal-to-noise ratio even in the multi-megabar pressure regime where ruby measurements become challenging. Theoretical calculations based on the Maxwell equations in a spherical geometry combined with the Vinet equation of state show that a three-layer geometry (SiO2-Au-SiO2) indeed has a measurable pressure-dependent optical response desirable for gauges.

  10. Diagnostics of a High Pressure Helium Microplasma

    Science.gov (United States)

    Wang, Qiang; Koleva, Ivanka; Economou, Demetre; Donnelly, Vincent

    2004-09-01

    Gas and plasma diagnostics were performed in a slot-type DC microplasma (200 microns gap) discharge at high pressures. The gas temperature in a helium discharge was estimated by adding small quantities of nitrogen (excimer. At 250 Torr pressure and 200 mA/cm2 current density, the gas temperature was Tg = 350 +/- 25 K. The measured gas temperature was almost independent (to within experimental uncertainty) of pressure (in the range of 150 Torr - 600 Torr), and current density (in the range of 100 mA/cm2 - 400 mA/cm2). These measurements were consistent with a simple heat transfer model. Spatially resolved measurements of electron temperature were also performed using trace rare gas optical emission actinometry (TRG-OES). These measurements are greatly complicated by collisional quenching at the high operating pressures. Electron density and electron temperature profiles was deduced by comparing emission intensities from the Paschen 2px (x = 1-10) manifold of Ne, Ar, Kr and Xe trace gases. Results suggested that the electron temperature peaks in the cathode sheath region, while the plasma density peaks away from the cathode sheath. A self-consistent fluid model of a DC helium microdischarge was in agreement with the experimental data. The model was used to study the dependence of discharge characteristics on operating conditions (pressure, gap spacing, current density, etc.).

  11. Teaming Up Against High Blood Pressure

    Centers for Disease Control (CDC) Podcasts

    2012-09-04

    This podcast is based on the September 2012 CDC Vital Signs report. A team-based approach by patients, health care systems, and health care providers is one of the best ways to treat uncontrolled high blood pressure.  Created: 9/4/2012 by Centers for Disease Control and Prevention (CDC).   Date Released: 9/4/2012.

  12. High Pressure Inactivation of HAV within Mussels

    Science.gov (United States)

    The potential of hepatitis A virus (HAV) to be inactivated within Mediterranean mussels (Mytilus galloprovincialis) and blue mussels (Mytilus edulis) by high pressure processing was evaluated. HAV was bioaccumulated within mussels to approximately 6-log10 PFU by exposure of mussels to HAV-contamina...

  13. High pressure and synchrotron radiation satellite workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A

    2006-07-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations.

  14. Supporting facilities for synchrotron high-pressure high/low temperature research at HPCAT, APS

    Science.gov (United States)

    Sinogeikin, S. V.; Rod, E.; Kenney-Benson, C.; Shen, G.

    2012-12-01

    High Pressure Collaborative Access Team (HPCAT) is dedicated to advancing cutting-edge, multidisciplinary, high-pressure science and technology using synchrotron radiation at Sector 16 of the Advanced Photon Source (APS) of Argonne National Laboratory. At HPCAT an array of novel x-ray diffraction and spectroscopic techniques has been integrated with high pressure and extreme temperature instrumentation. Over the last several years a number of supporting facilities have been developed and implemented to expand the available P-T range of the experimental conditions, increase efficiency and productivity of the beamlines, improve the quality of experimental data, and integrate additional methods of sample characterization with synchrotron investigations. A considerable effort was put into developing instrumentation which allows remote and automatic pressure control in diamond anvil cells (DACs) during synchrotron experiments. We have developed a number mechanical devices (gearboxes) for controlling pressure in DACs at a variety pressure and temperature conditions. Such devices can be used for automated data collection along predefined P-T paths. We also designed and implemented a double-diaphragm (membrane) pressure control system is capable of adopting many types of DAC and allows accurate sample pressure control at a variety of PT conditions - from cryogenic to laser heating experiments. These remote pressure control instrumentation can be easily integrated into cryostats and devices for high-temperature measurements at high pressure. In addition to existing cryogenic facilities, we have designed and implemented a variety of compact cryostats for different synchrotron techniques (powder and single crystal diffraction, inelastic scattering, etc.) The cryostats can accommodate a variety of standard and novel DACs, can be easily integrated with remote pressure control devices, and allow for high-pressure measurements at temperatures down to 2-4 K. We have designed a

  15. Consistent first-principles pressure scales for diffraction experiments under extreme conditions

    Science.gov (United States)

    Otero-de-La-Roza, Alberto; Cabal, Victor Lua Na

    2012-02-01

    Diamond anvil cell (DAC) diffraction experiments are fundamental in geophysics and materials science to explore the behavior of solids under very high pressures and temperatures. A factor limiting the accuracy of DAC experiments is the lack of an accurate pressure scale for the calibration materials that extends to the ever-increasing pressure and temperature limits of the technique. In this communication, we address this problem by applying a newly developed technique that allows the calculation of accurate thermodynamic properties from first-principles calculations [Phys. Rev. B 84 (2011) 024109, 84 (2011) 184103]. Three elements are key in this method: i) the quasiharmonic approximation (QHA) and the static energies and phonon frequencies obtained from an electronic structure calculation ii) the appropriate representation of the equation of state by using averages of strain polynomials and iii) the correction of the systematic errors caused by the exchange-correlation functional approximation. As a result, we propose accurate equations of scale for typical pressure calibrants that can be used in the whole experimental range of pressures and temperatures. The internal consistency and the agreement with the ruby scale based on experimental data is examined.

  16. Treatment algorithms for high-energy traumas of lower extremities

    Directory of Open Access Journals (Sweden)

    Jovanović Mladen

    2002-01-01

    Full Text Available Introduction High-energy traumas are open or closed injuries caused by force (missile, traffic injuries, crush or blust injuries, falling from heights, affecting the body surface and transferring high amount of kinetic energy inducing great damage to the tissue. Management of such lower extremity injuries has evolved over past several decades, but still remains a difficult task for every surgical team. Specific anatomic and functional characteristics combined with extensive injuries demands specific treatment protocols. Multiple injuries In a multiple injured patient the first priority is management of life-threatening trauma. Despite other injuries, surgical treatment of limb-threatening injuries must start as soon as life-threatening condition has been managed. Treatment algorithms Algorithms are especially beneficial in management of severely injured, but salvageable extremities and in making decision on amputation. Insight into mechanisms of injury, as well as systematic examination of the affected limb, should help us understand the extensiveness of trauma and make an adequate management plan. Prevention of infection and surgical approach Prevention of wound infection and surgical approach to high- energy limb trauma, which includes wound extension, wound excision, skeletal stabilization and if necessary muscle compartment release, should be done in the first 6 hours after injury. Methods of soft tissue reconstruction Commonly used methods for soft tissue defects must provide wound coverage in less than five days following injury. Rehabilitation Early passive and active mobilization and verticalization of patients is very important for successful treatment. Conclusion Good and timely evaluation of the injured and collaboration between plastic and orthopedic surgeons from the beginning of treatment, are crucial for final outcome.

  17. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... microscope above maximum foaming temperature gives a suitable foaming temperature for the remaining samples. We show that the foaming kinetics depend on the type of gas and the pressure. A critical pressure of around 20 MPa is found to give the largest expansion for all gasses. Samples are obtained with 100...

  18. (Ultra high pressure homogenization for continuous high pressure sterilization of pumpable foods - a review

    Directory of Open Access Journals (Sweden)

    Erika eGeorget

    2014-08-01

    Full Text Available Bacterial spores have a strong resistance to both chemical and physical hurdles and create a risk for food industry which has been tackled by applying high thermal intensity treatments to sterilize food. These strong thermal treatments lead to reduction of the organoleptic and nutritional properties of food and alternative are actively searched for. Innovative hurdles offer an alternative to inactivate bacterial spores. In particular, recent technological developments have enabled a new generation of high pressure homogenizer working at pressures up to 400 MPa and thus opening new opportunities for high pressure sterilization of foods. In this short review, we summarize the work conducted on (ultra-high pressure homogenization (UHPH to inactivate endospores in model and food systems. Specific attention is given to process parameters (pressure, inlet and valve temperatures. This review gathers the current state of the art and underlines the potential of UHPH sterilization of pumpable foods while highlighting the needs for future work.

  19. Zeeman Effect in Ruby at High Pressures

    Science.gov (United States)

    Dan, Ioana

    2012-02-01

    We have developed a versatile fiber-coupled system for magneto-optical spectroscopy measurements at high pressure. The system is based on a miniature Cu-alloy Diamond Anvil Cell (from D'Anvils, Ltd) fitted with a custom-designed He gas-actuated membrane for in-situ pressure control, and coupled with a He transfer cryostat incorporating a superconducting magnet (from Quantum Designs). This system allows optical measurements (Raman, photoluminescence, reflectivity) within wide ranges of pressures (up to 100GPa), temperatures (4.2-300K) and magnetic fields (0-9T). We employ this system to examine the effect of pressure and non-hydrostatic stress on the Zeeman split d-d transitions of Cr^3+ in ruby (Al2O3: Cr^3+). We determine the effect of pressure and non-hydrostaticity on the trigonal crystal field in this material, and discuss the use of the Zeman-split ruby fluorescence as a possible probe for deviatoric stresses in diamond anvil cell experiments.

  20. High Pressure Behavior of FeOOH

    Science.gov (United States)

    Reagan, M. M.; Gleason, A. E.; Mao, W. L.

    2013-12-01

    Understanding the stability and properties of simple hydroxides at high pressures and temperatures offers an important first step toward quantifying more complex hydrogen-bearing compounds relevant to the Earth's interior. We focus on iron-oxy-hydroxides because they may be an important Fe and water bearing component in the deep Earth. Goethite (α-FeOOH) transforms to a high-pressure phase, ɛ-FeOOH, which is isostructural with δ-AlOOH, a material which may transport hydrogen to the core-mantle boundary. Here we present XES spectroscopy data of powder samples of synthesized alpha-FeOOH, beta-FeOOH and gamma-FeOOH monitoring their electronic spin transition. The samples was loaded into a Beryllium gasket, where a 50 micron hole served as the sample chamber with 300 micron culet diamond paired with a beveled 150 micron diamond in a diamond-anvil cell (DAC) without a pressure transmitting medium. Pressure was determined using ruby fluorescence (Mao et al. 1978). Using the incident X-ray energy centered at 11.3 KeV from the Advanced Photon Source, beam line HPCAT 16-ID-D, we measured Fe K-β 13 emission to pressures greater than 73 GPa. For alpha-FeOOH, we saw a clear shift in the main peak to lower energy, and an increasingly diminishing K beta prime peak intensity, indicating the sample was undergoing an electronic spin transition. The K beta prime peak completely disappeared at a pressure greater than 73 GPa. Beta-FeOOH showed no evidence of the beginnings of a spin transition, while gamma- FeOOH underwent an incomplete transition.

  1. Ptychographic hyperspectral spectromicroscopy with an extreme ultraviolet high harmonic comb

    CERN Document Server

    Zhang, Bosheng; Seaberg, Matthew H; Shanblatt, Elisabeth R; Porter, Christina L; Karl,, Robert; Mancuso, Christopher A; Kapteyn, Henry C; Murnane, Margaret M; Adams, Daniel E

    2016-01-01

    We demonstrate a new scheme of spectromicroscopy in the extreme ultraviolet (EUV) spectral range, where the spectral response of the sample at different wavelengths is imaged simultaneously. It is enabled by applying ptychographical information multiplexing (PIM) to a tabletop EUV source based on high harmonic generation, where four spectrally narrow harmonics near 30 nm form a spectral comb structure. Extending PIM from previously demonstrated visible wavelengths to the EUV/X-ray wavelengths promises much higher spatial resolution and more powerful spectral contrast mechanism, making PIM an attractive spectromicroscopy method in both the microscopy and the spectroscopy aspects. Besides the sample, the multicolor EUV beam is also imaged in situ, making our method a powerful beam characterization technique. No hardware is used to separate or narrow down the wavelengths, leading to efficient use of the EUV radiation.

  2. Yoga Called Good Medicine for High Blood Pressure

    Science.gov (United States)

    ... fullstory_162446.html Yoga Called Good Medicine for High Blood Pressure People who added this practice to a healthy ... elevated blood pressure] are likely to develop hypertension [high blood pressure] unless they improve their lifestyle," said study author ...

  3. Is sodium a superconductor under high pressure?

    Science.gov (United States)

    Tutchton, Roxanne; Chen, Xiaojia; Wu, Zhigang

    2017-01-07

    Superconductivity has been predicted or measured for most alkali metals under high pressure, but the computed critical temperature (Tc) of sodium (Na) at the face-centered cubic (fcc) phase is vanishingly low. Here we report a thorough, first-principles investigation of superconductivity in Na under pressures up to 260 GPa, where the metal-to-insulator transition occurs. Linear-response calculations and density functional perturbation theory were employed to evaluate phonon distributions and the electron-phonon coupling for bcc, fcc, cI16, and tI19 Na. Our results indicate that the maximum electron-phonon coupling parameter, λ, is 0.5 for the cI16 phase, corresponding to a theoretical peak in the critical temperature at Tc≈1.2 K. When pressure decreases or increases from 130 GPa, Tc drops quickly. This is mainly due to the lack of p-d hybridization in Na even at 260 GPa. Since current methods based on the Eliashberg and McMillian formalisms tend to overestimate the Tc (especially the peak values) of alkali metals, we conclude that under high pressure-before the metal-to-insulator transition at 260 GPa-superconductivity in Na is very weak, if it is measurable at all.

  4. Picosecond High Pressure Gas Switch experiment

    Energy Technology Data Exchange (ETDEWEB)

    Cravey, W.R.; Freytag, E.K.; Goerz, D.A.; Poulsen, P.; Pincosy, P.A.

    1993-08-01

    A high Pressure Gas Switch has been developed and tested at LLNL. Risetimes on the order of 200 picoseconds have been observed at 1 kHz prf and 1 atmosphere pressures. Calculations show that switching closure times on the order of tens of picoseconds can be achieved at higher pressures and electric fields. A voltage hold-off of 1 MV/cm has been measured at 10 atmospheres and several MV/cm appears possible with the HPGS. With such high electric field levels, energy storage of tens of Joules in a reasonably sized package is achievable. Initial HPGS performance has been characterized using the WASP pulse generator at LLNL. A detailed description of the switch used for initial testing is given. Switch recovery times of 1-ms have been measured at 1 atmosphere. Data on the switching uniformity, voltage hold-off recovery, and pulse repeatability, is presented. In addition, a physics switch model is described and results are compared with experimental data. Modifications made to the WASP HV pulser in order to drive the HPGS will also be discussed. Recovery times of less than 1 ms were recorded without gas flow in the switch chambers. Low pressure synthetic air was used as the switch dielectric. Longer recovery times were required when it was necessary to over-voltage the switch.

  5. Strain engineered pyrochlore at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye; Fuentes, Antonio F.; Park, Changyong; Ewing, Rodney C.; Mao, Wendy L.

    2017-05-22

    Strain engineering is a promising method for next-generation materials processing techniques. Here, we use mechanical milling and annealing followed by compression in diamond anvil cell to tailor the intrinsic and extrinsic strain in pyrochlore, Dy2Ti2O7 and Dy2Zr2O7. Raman spectroscopy, X-ray pair distribution function analysis, and X-ray diffraction were used to characterize atomic order over short-, medium-, and long-range spatial scales, respectively, under ambient conditions. Raman spectroscopy and X-ray diffraction were further employed to interrogate the material in situ at high pressure. High-pressure behavior is found to depend on the species and concentration of defects in the sample at ambient conditions. Overall, we show that defects can be engineered to lower the phase transformation onset pressure by ~50% in the ordered pyrochlore Dy2Zr2O7, and lower the phase transformation completion pressure by ~20% in the disordered pyrochlore Dy2Zr2O7. These improvements are achieved without significantly sacrificing mechanical integrity, as characterized by bulk modulus.

  6. JELLYFISH: EVIDENCE OF EXTREME RAM-PRESSURE STRIPPING IN MASSIVE GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Ebeling, H.; Stephenson, L. N. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Edge, A. C. [Institute for Computational Cosmology, Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom)

    2014-02-01

    Ram-pressure stripping by the gaseous intracluster medium has been proposed as the dominant physical mechanism driving the rapid evolution of galaxies in dense environments. Detailed studies of this process have, however, largely been limited to relatively modest examples affecting only the outermost gas layers of galaxies in nearby and/or low-mass galaxy clusters. We here present results from our search for extreme cases of gas-galaxy interactions in much more massive, X-ray selected clusters at z > 0.3. Using Hubble Space Telescope snapshots in the F606W and F814W passbands, we have discovered dramatic evidence of ram-pressure stripping in which copious amounts of gas are first shock compressed and then removed from galaxies falling into the cluster. Vigorous starbursts triggered by this process across the galaxy-gas interface and in the debris trail cause these galaxies to temporarily become some of the brightest cluster members in the F606W passband, capable of outshining even the Brightest Cluster Galaxy. Based on the spatial distribution and orientation of systems viewed nearly edge-on in our survey, we speculate that infall at large impact parameter gives rise to particularly long-lasting stripping events. Our sample of six spectacular examples identified in clusters from the Massive Cluster Survey, all featuring M {sub F606W} < –21 mag, doubles the number of such systems presently known at z > 0.2 and facilitates detailed quantitative studies of the most violent galaxy evolution in clusters.

  7. Jellyfish: Evidence of Extreme Ram-pressure Stripping in Massive Galaxy Clusters

    Science.gov (United States)

    Ebeling, H.; Stephenson, L. N.; Edge, A. C.

    2014-02-01

    Ram-pressure stripping by the gaseous intracluster medium has been proposed as the dominant physical mechanism driving the rapid evolution of galaxies in dense environments. Detailed studies of this process have, however, largely been limited to relatively modest examples affecting only the outermost gas layers of galaxies in nearby and/or low-mass galaxy clusters. We here present results from our search for extreme cases of gas-galaxy interactions in much more massive, X-ray selected clusters at z > 0.3. Using Hubble Space Telescope snapshots in the F606W and F814W passbands, we have discovered dramatic evidence of ram-pressure stripping in which copious amounts of gas are first shock compressed and then removed from galaxies falling into the cluster. Vigorous starbursts triggered by this process across the galaxy-gas interface and in the debris trail cause these galaxies to temporarily become some of the brightest cluster members in the F606W passband, capable of outshining even the Brightest Cluster Galaxy. Based on the spatial distribution and orientation of systems viewed nearly edge-on in our survey, we speculate that infall at large impact parameter gives rise to particularly long-lasting stripping events. Our sample of six spectacular examples identified in clusters from the Massive Cluster Survey, all featuring M F606W 0.2 and facilitates detailed quantitative studies of the most violent galaxy evolution in clusters. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs GO-10491, -10875, -12166, and -12884.

  8. Determination of Abutment Pressure in Coal Mines with Extremely Thick Alluvium Stratum: A Typical Kind of Rockburst Mines in China

    Science.gov (United States)

    Zhu, Sitao; Feng, Yu; Jiang, Fuxing

    2016-05-01

    This paper investigates the abutment pressure distribution in coal mines with extremely thick alluvium stratum (ETAS), which is a typical kind of mines encountering frequent intense rockbursts in China. This occurs due to poor understanding to abutment pressure distribution pattern and the consequent inappropriate mine design. In this study, a theoretical computational model of abutment pressure for ETAS longwall panels is proposed based on the analysis of load transfer mechanisms of key stratum (KS) and ETAS. The model was applied to determine the abutment pressure distribution of LW2302S in Xinjulong Coal Mine; the results of stress and microseismic monitoring verified the rationality of this model. The calculated abutment pressure of LW2302S was also used in the terminal mining line design of LW2301N for rockburst prevention, successfully protecting the main roadway from the adverse influence of the abutment pressure.

  9. Ultrathin MoS2 Nanosheets with Superior Extreme Pressure Property as Boundary Lubricants

    Science.gov (United States)

    Chen, Zhe; Liu, Xiangwen; Liu, Yuhong; Gunsel, Selda; Luo, Jianbin

    2015-08-01

    In this paper, a new kind of oil-soluble ultrathin MoS2 nanosheets is prepared through a one-pot process. A superior extreme pressure property, which has not been attained with other nano-additives, is discovered when the nanosheets are used as lubricant additives. The as-synthesized MoS2 nanosheet is only a few atomic layers thick and tens of nanometers wide, and it is surface-modified with oleylamine so it can be well dispersed in oil or lubricant without adscititious dispersants or surfactants. By adding 1 wt% ultrathin MoS2 nanosheets, at the temperature of 120 °C, the highest load liquid paraffin can bear is tremendously improved from less than 50 N to more than 2000 N. Based on the tribological tests and analysis of the wear scar, a lubrication mechanism is proposed. It is believed that the good dispersion and the ultrathin shape of the nanosheets ensure that they can enter the contact area of the opposite sliding surfaces and act like a protective film to prevent direct contact and seizure between them. This work enriches the investigation of ultrathin MoS2 and has potential application in the mechanical industry.

  10. Inspection technology for high pressure pipes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae H.; Lee, Jae C.; Eum, Heung S.; Choi, Yu R.; Moon, Soon S.; Jang, Jong H

    2000-02-01

    Various kinds of defects are likely to be occurred in the welds of high pressure pipes in nuclear power plants. Considering the recent accident of Zuruga nuclear power plant in Japan, reasonable policy is strongly requested for the high pressure pipe integrity. In this study, we developed the technologies to inspect pipe welds automatically. After development of scanning robot prototype in the first research year, we developed and implemented the algorithm of automatic tracking of the scanning robot along the weld line of the pipes. We use laser slit beam on weld area and capture the image using digital camera. Through processing of the captures image, we finally determine the weld line automatically. In addition, we investigated a new technology on micro systems for developing micro scanning robotic inspection of the pipe welds. The technology developed in this study is being transferred to the industry. (author)

  11. Characterizing the Chemical Stability of High Temperature Materials for Application in Extreme Environments

    Science.gov (United States)

    Opila, Elizabeth

    2005-01-01

    The chemical stability of high temperature materials must be known for use in the extreme environments of combustion applications. The characterization techniques available at NASA Glenn Research Center vary from fundamental thermodynamic property determination to material durability testing in actual engine environments. In this paper some of the unique techniques and facilities available at NASA Glenn will be reviewed. Multiple cell Knudsen effusion mass spectrometry is used to determine thermodynamic data by sampling gas species formed by reaction or equilibration in a Knudsen cell held in a vacuum. The transpiration technique can also be used to determine thermodynamic data of volatile species but at atmospheric pressures. Thermodynamic data in the Si-O-H(g) system were determined with this technique. Free Jet Sampling Mass Spectrometry can be used to study gas-solid interactions at a pressure of one atmosphere. Volatile Si(OH)4(g) was identified by this mass spectrometry technique. A High Pressure Burner Rig is used to expose high temperature materials in hydrocarbon-fueled combustion environments. Silicon carbide (SiC) volatility rates were measured in the burner rig as a function of total pressure, gas velocity and temperature. Finally, the Research Combustion Lab Rocket Test Cell is used to expose high temperature materials in hydrogen/oxygen rocket engine environments to assess material durability. SiC recession due to rocket engine exposures was measured as a function of oxidant/fuel ratio, temperature, and total pressure. The emphasis of the discussion for all techniques will be placed on experimental factors that must be controlled for accurate acquisition of results and reliable prediction of high temperature material chemical stability.

  12. High-pressure investigations of Earth's interior

    Science.gov (United States)

    Jackson, Jennifer

    2007-03-01

    In the first half of the talk, the electronic structure of iron in ferromagnesium silicate perovskite will be discussed. Knowledge of iron valences and spin states in silicate perovskite is relevant to our understanding of the physical and chemical properties of Earth's lower mantle such as transport properties, mechanical behavior, and element partitioning. In this study, we have measured the electronic structure of the iron component of an aluminous Fe-bearing silicate perovskite sample, (Mg0.88Fe0.09)(Si0.94Al0.10)O3, close to a pyrolite composition, using synchrotron M"ossbauer spectroscopy (SMS) and laser heated diamond anvil cells at high-pressure and temperatures at beamline 3-ID of the Advanced Photon Source. Evaluation of the spectra provided the isomer shift and the quadrupole splitting of the iron component in silicate perovskite, which gives information on valence and spin states under lower mantle conditions. In the second half of the talk, experiments on the melting curve of iron at high-pressures will be presented. Seismological observations indicate that Earth's iron-dominated core consists of a solid inner region surrounded by a liquid outer core. Previously, melting studies of iron metal at high-pressures and temperatures were performed by shock-compression, resistive- and laser-heating in diamond anvil cells using visual observations or synchrotron x-ray diffraction and theoretical methods. However, the melting curve of iron is still controversial. Here, we will present a new method of detecting the solid-liquid phase boundary of iron at high-pressure using ^57Fe SMS. The characteristic SMS time signature is observed by fast detectors and vanishes suddenly when melting occurs. This process is described by the Lamb-M"ossbauer factor f = exp(-k^2), where k is the wave number of the resonant x-rays and is the mean-square displacement of the iron atoms.

  13. Modeling High Pressure Micro Hollow Cathode Discharges

    Science.gov (United States)

    2007-11-02

    cathode discharge excimer lamps , Phys. Plasmas 7, 286 (2000). [3] RH Stark and KH Schoenbach, Direct high pressure glow discharges, J. Appl. Phys...temperature profiles in argon glow discharges, J. Appl. Phys. 88, 2234 (2000) [8] M. Moselhy, W. Shi, R. Stark, A flat glow discharge excimer radiation...MHCD acts as a plasma cathode for a third electrode (anode). Some experimental results in this geometry are available for argon and for air from the

  14. High Pressure Multicomponent Adsorption in Porous Media

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1999-01-01

    We analyse adsorption of a multicomponent mixture at high pressure on the basis of the potential theory of adsorption. The adsorbate is considered as a segregated mixture in the external field produced by a solid adsorbent. we derive an analytical equation for the thickness of a multicomponent film...... close to a dew point. This equation (asymptotic adsorption equation, AAE) is a first order approximation with regard to the distance from a phase envelope....

  15. Structures of xenon oxides at high pressures

    Science.gov (United States)

    Worth, Nicholas; Pickard, Chris; Needs, Richard; Dewaele, Agnes; Loubeyre, Paul; Mezouar, Mohamed

    2014-03-01

    For many years, it was believed that noble gases such as xenon were entirely inert. It was only in 1962 that Bartlett first synthesized a compound of xenon. Since then, a number of other xenon compounds, including oxides, have been synthesized. Xenon oxides are unstable under ambient conditions but have been predicted to stabilize under high pressure. Here we present the results of a combined theoretical and experimental study of xenon oxides at pressures of 80-100 GPa. We have synthesized new xenon oxides at these pressures and they have been characterized with X-ray diffraction and Raman spectroscopy. Calculations were performed with a density-functional theory framework. We have used the ab-initio random structure searching (AIRSS) method together with a data-mining technique to determine the stable compounds in the xenon-oxygen system in this pressure range. We have calculated structural and optical properties of these phases, and a good match between theoretical and experimental results has been obtained. Funding for computational research provided by the engineering and physical sciences research council (EPSRC; UK). Computing resources provided by Cambridge HPC and HECToR. X-ray diffraction experiments performed at ESRF.

  16. 7 CFR 58.219 - High pressure pumps and lines.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of such construction that dead ends, valves and the high pressure pumps can be disassembled for hand cleaning. The...

  17. Prediction of Production Power for High-pressure Hydrogen by High-pressure Water Electrolysis

    Science.gov (United States)

    Kyakuno, Takahiro; Hattori, Kikuo; Ito, Kohei; Onda, Kazuo

    Recently the high attention for fuel cell electric vehicle (FCEV) is pushing to construct the hydrogen supplying station for FCEV in the world. The hydrogen pressure supplied at the current test station is intended to be high for increasing the FCEV’s driving distance. The water electrolysis can produce cleanly the hydrogen by utilizing the electricity from renewable energy without emitting CO2 to atmosphere, when it is compared to be the popular reforming process of fossil fuel in the industry. The power required for the high-pressure water electrolysis, where water is pumped up to high-pressure, may be smaller than the power for the atmospheric water electrolysis, where the produced atmospheric hydrogen is pumped up by compressor, since the compression power for water is much smaller than that for hydrogen gas. In this study the ideal water electrolysis voltage up to 70MPa and 523K is estimated referring to both the results by LeRoy et al up to 10MPa and 523K, and to the latest steam table. By using this high-pressure water electrolysis voltage, the power required for high-pressure hydrogen produced by the high-pressure water electrolysis method is estimated to be about 5% smaller than that by the atmospheric water electrolysis method, by assuming the compressor and pump efficiency of 50%.

  18. Study on Temperature and Synthetic Compensation of Piezo-Resistive Differential Pressure Sensors by Coupled Simulated Annealing and Simplex Optimized Kernel Extreme Learning Machine.

    Science.gov (United States)

    Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir

    2017-04-19

    As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems.

  19. High Pressure Burn Rate Measurements on an Ammonium Perchlorate Propellant

    Energy Technology Data Exchange (ETDEWEB)

    Glascoe, E A; Tan, N

    2010-04-21

    High pressure deflagration rate measurements of a unique ammonium perchlorate (AP) based propellant are required to design the base burn motor for a Raytheon weapon system. The results of these deflagration rate measurements will be key in assessing safety and performance of the system. In particular, the system may experience transient pressures on the order of 100's of MPa (10's kPSI). Previous studies on similar AP based materials demonstrate that low pressure (e.g. P < 10 MPa or 1500 PSI) burn rates can be quite different than the elevated pressure deflagration rate measurements (see References and HPP results discussed herein), hence elevated pressure measurements are necessary in order understand the deflagration behavior under relevant conditions. Previous work on explosives have shown that at 100's of MPa some explosives will transition from a laminar burn mechanism to a convective burn mechanism in a process termed deconsolidative burning. The resulting burn rates that are orders-of-magnitude faster than the laminar burn rates. Materials that transition to the deconsolidative-convective burn mechanism at elevated pressures have been shown to be considerably more violent in confined heating experiments (i.e. cook-off scenarios). The mechanisms of propellant and explosive deflagration are extremely complex and include both chemical, and mechanical processes, hence predicting the behavior and rate of a novel material or formulation is difficult if not impossible. In this work, the AP/HTPB based material, TAL-1503 (B-2049), was burned in a constant volume apparatus in argon up to 300 MPa (ca. 44 kPSI). The burn rate and pressure were measured in-situ and used to calculate a pressure dependent burn rate. In general, the material appears to burn in a laminar fashion at these elevated pressures. The experiment was reproduced multiple times and the burn rate law using the best data is B = (0.6 {+-} 0.1) x P{sup (1.05{+-}0.02)} where B is the burn

  20. High photon flux table-top coherent extreme ultraviolet source

    CERN Document Server

    Hädrich, Steffen; Rothhardt, Jan; Krebs, Manuel; Hoffmann, Armin; Pronin, Oleg; Pervak, Vladimir; Limpert, Jens; Tünnermann, Andreas

    2014-01-01

    High harmonic generation (HHG) enables extreme ultraviolet radiation with table-top setups. Its exceptional properties, such as coherence and (sub)-femtosecond pulse durations, have led to a diversity of applications. Some of these require a high photon flux and megahertz repetition rates, e.g. to avoid space charge effects in photoelectron spectroscopy. To date this has only been achieved with enhancement cavities. Here, we establish a novel route towards powerful HHG sources. By achieving phase-matched HHG of a megahertz fibre laser we generate a broad plateau (25 eV - 40 eV) of strong harmonics, each containing more than $10^{12}$ photons/s, which constitutes an increase by more than one order of magnitude in that wavelength range. The strongest harmonic (H25, 30 eV) has an average power of 143 $\\mu$W ($3\\cdot10^{13}$ photons/s). This concept will greatly advance and facilitate applications in photoelectron or coincidence spectroscopy, coherent diffractive imaging or (multidimensional) surface science.

  1. Small-scale characteristics of extremely high latitude aurora

    Directory of Open Access Journals (Sweden)

    J. A. Cumnock

    2009-09-01

    Full Text Available We examine 14 cases of an interesting type of extremely high latitude aurora as identified in the precipitating particles measured by the DMSP F13 satellite. In particular we investigate structures within large-scale arcs for which the particle signatures are made up of a group of multiple distinct thin arcs. These cases are chosen without regard to IMF orientation and are part of a group of 87 events where DMSP F13 SSJ/4 measures emissions which occur near the noon-midnight meridian and are spatially separated from both the dawnside and duskside auroral ovals by wide regions with precipitating particles typical of the polar cap. For 73 of these events the high-latitude aurora consists of a continuous region of precipitating particles. We focus on the remaining 14 of these events where the particle signatures show multiple distinct thin arcs. These events occur during northward or weakly southward IMF conditions and follow a change in IMF By. Correlations are seen between the field-aligned currents and plasma flows associated with the arcs, implying local closure of the FACs. Strong correlations are seen only in the sunlit hemisphere. The convection associated with the multiple thin arcs is localized and has little influence on the large-scale convection. This also implies that the sunward flow along the arcs is unrelated to the overall ionospheric convection.

  2. Extremely high-frequency micro-Doppler measurements of humans

    Science.gov (United States)

    Hedden, Abigail S.; Silvious, Jerry L.; Dietlein, Charles R.; Green, Jeremy A.; Wikner, David A.

    2014-05-01

    The development of sensors that are capable of penetrating smoke, dust, fog, clouds, and rain is critical for maintaining situational awareness in degraded visual environments and for providing support to the Warfighter. Atmospheric penetration properties, the ability to form high-resolution imagery with modest apertures, and available source power make the extremely high-frequency (EHF) portion of the spectrum promising for the development of radio frequency (RF) sensors capable of penetrating visual obscurants. Comprehensive phenomenology studies including polarization and backscatter properties of relevant targets are lacking at these frequencies. The Army Research Laboratory (ARL) is developing a fully-polarimetric frequency-modulated continuous-wave (FMCW) instrumentation radar to explore polarization and backscatter properties of in-situ rain, scattering from natural and man-made surfaces, and the radar cross section and micro-Doppler signatures of humans at EHF frequencies, specifically, around the 220 GHz atmospheric window. This work presents an overview of the design and construction of the radar system, hardware performance, data acquisition software, and initial results including an analysis of human micro-Doppler signatures.

  3. Modeling Study of High Pressure and High Temperature Reservoir Fluids

    DEFF Research Database (Denmark)

    Varzandeh, Farhad

    to 250 °C and 2400 bar, in the deep petroleum reservoirs. Furthermore, many of these deep reservoirs are found offshore, including the North Sea and the Gulf of Mexico, making the development even more risky. On the other hand, development of these high pressure high temperature (HPHT) fields can...

  4. Pulse Radiolysis at High Temperatures and High Pressures

    DEFF Research Database (Denmark)

    Christensen, H.; Sehested, Knud

    1981-01-01

    A set-up enabling pulse radiolysis measurements at high temperatures (up to 320°C) and high pressures (up to 140 bar) has been constructed in collaboration between Risö National Laboratory and Studsvik Energiteknik. The cell has been used for experiments with aqueous solutions with the purpose...

  5. Tuning the electronic and the crystalline structure of LaBi by pressure: From extreme magnetoresistance to superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Tafti, F. F.; Torikachvili, M. S.; Stillwell, R. L.; Baer, B.; Stavrou, E.; Weir, S. T.; Vohra, Y. K.; Yang, H. -Y.; McDonnell, E. F.; Kushwaha, S. K.; Gibson, Q. D.; Cava, R. J.; Jeffries, J. R.

    2017-01-01

    Extreme magnetoresistance (XMR) in topological semimetals is a recent discovery which attracts attention due to its robust appearance in a growing number of materials. To search for a relation between XMR and superconductivity, we study the effect of pressure on LaBi. By increasing pressure, we observe the disappearance of XMR followed by the appearance of superconductivity at P ≈ 3.5 GPa. We find a region of coexistence between superconductivity and XMR in LaBi in contrast to other superconducting XMR materials. The suppression of XMR is correlated with increasing zero-field resistance instead of decreasing in-field resistance. At higher pressures, P ≈ 11 GPa, we find a structural transition from the face-centered cubic lattice to a primitive tetragonal lattice, in agreement with theoretical predictions. The relationship between extreme magnetoresistance, superconductivity, and structural transition in LaBi is discussed.

  6. Dietary spermidine for lowering high blood pressure

    Science.gov (United States)

    Zimmermann, Andreas; Schroeder, Sabrina; Pendl, Tobias; Harger, Alexandra; Stekovic, Slaven; Schipke, Julia; Magnes, Christoph; Schmidt, Albrecht; Ruckenstuhl, Christoph; Dammbrueck, Christopher; Gross, Angelina S; Herbst, Viktoria; Carmona-Gutierrez, Didac; Pietrocola, Federico; Pieber, Thomas R; Sigrist, Stephan J; Linke, Wolfgang A; Mühlfeld, Christian; Sadoshima, Junichi; Dengjel, Joern; Kiechl, Stefan; Kroemer, Guido; Sedej, Simon; Madeo, Frank

    2017-01-01

    Loss of cardiac macroautophagy/autophagy impairs heart function, and evidence accumulates that an increased autophagic flux may protect against cardiovascular disease. We therefore tested the protective capacity of the natural autophagy inducer spermidine in animal models of aging and hypertension, which both represent major risk factors for the development of cardiovascular disease. Dietary spermidine elicits cardioprotective effects in aged mice through enhancing cardiac autophagy and mitophagy. In salt-sensitive rats, spermidine supplementation also delays the development of hypertensive heart disease, coinciding with reduced arterial blood pressure. The high blood pressure-lowering effect likely results from improved global arginine bioavailability and protection from hypertension-associated renal damage. The polyamine spermidine is naturally present in human diets, though to a varying amount depending on food type and preparation. In humans, high dietary spermidine intake correlates with reduced blood pressure and decreased risk of cardiovascular disease and related death. Altogether, spermidine represents a cardio- and vascular-protective autophagy inducer that can be readily integrated in common diets. PMID:28118075

  7. High-Pressure Synthesis of a Pentazolate Salt

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Brad A.; Stavrou, Elissaios; Crowhurst, Jonathan C.; Zaug, Joseph M.; Prakapenka, Vitali B.; Oleynik, Ivan I.

    2017-01-24

    The pentazolates, the last all-nitrogen members of the azole series, have been notoriously elusive for the last hundred years despite enormous efforts to make these compounds in either gas or condensed phases. Here, we report a successful synthesis of a solid state compound consisting of isolated pentazolate anions N5–, which is achieved by compressing and laser heating cesium azide (CsN3) mixed with N2 cryogenic liquid in a diamond anvil cell. The experiment was guided by theory, which predicted the transformation of the mixture at high pressures to a new compound, cesium pentazolate salt (CsN5). Electron transfer from Cs atoms to N5 rings enables both aromaticity in the pentazolates as well as ionic bonding in the CsN5 crystal. This work provides critical insight into the role of extreme conditions in exploring unusual bonding routes that ultimately lead to the formation of novel high nitrogen content species.

  8. High stored energy of metallic glasses induced by high pressure

    Science.gov (United States)

    Wang, C.; Yang, Z. Z.; Ma, T.; Sun, Y. T.; Yin, Y. Y.; Gong, Y.; Gu, L.; Wen, P.; Zhu, P. W.; Long, Y. W.; Yu, X. H.; Jin, C. Q.; Wang, W. H.; Bai, H. Y.

    2017-03-01

    Modulating energy states of metallic glasses (MGs) is significant in understanding the nature of glasses and controlling their properties. In this study, we show that high stored energy can be achieved and preserved in bulk MGs by high pressure (HP) annealing, which is a controllable method to continuously alter the energy states of MGs. Contrary to the decrease in enthalpy by conventional annealing at ambient pressure, high stored energy can occur and be enhanced by increasing both annealing temperature and pressure. By using double aberration corrected scanning transmission electron microscopy, it is revealed that the preserved high energy, which is attributed to the coupling effect of high pressure and high temperature, originates from the microstructural change that involves "negative flow units" with a higher atomic packing density compared to that of the elastic matrix of MGs. The results demonstrate that HP-annealing is an effective way to activate MGs into higher energy states, and it may assist in understanding the microstructural origin of high energy states in MGs.

  9. Evolutive characteristics of aromatics under high pressure and temperature of deep lithosphere

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Pyrolysis of lignite in closed systems was conducted at temperatures from 400 to 700℃ and pressure from 1 to 3 GPa in order to investigate the evolutive characteristics of aromatics and the effects of pressure and temperature on the maturation of organic matter under the extreme conditions. The total yield of liquid hydrocarbons decreased with increasing pressure and the aromatics shows more mature with increasing temperature at a given pressure. The data indicate that high pressure significantly suppresses the thermal evolution of geological organic matter especially at lower temperature, but favors the cyclization, polymerization and aromatization of pyrolysate. The pressure effect on maturation of organic matter is nonlinear. Therefore, it can be inferred that sediment organic-matters in the subducted slab could be retained in the deep lithosphere, and the results are also significant for understanding the accumulation and preservation of petroleum in deep reservoirs.key wordshigh pressure and high temperature, lignite, aromatic hydrocarbon, maturation, isomerzation, petroleum in deep reservoirs

  10. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  11. CO2-Philic polymer membrane with extremely high separation performance

    KAUST Repository

    Yave, Wilfredo

    2010-01-12

    Polymeric membranes are attractive for CO2 separation and concentration from different gas streams because of their versatility and energy efficiency; they can compete with, and they may even replace, traditional absorption processes. Here we describe a simple and powerful method for developing nanostructured and CO2-philic polymer membranes for CO2 separation. A poly(ethylene oxide)-poly(butylene terephthalate) multiblock copolymer is used as membrane material. Smart additives such as polyethylene glycol dibutyl ether are incorporated as spacers or fillers for producing nanostructured materials. The addition of these specific additives produces CO2-philic membranes and increases the CO2 permeability (750 barrer) up to five-fold without the loss of selectivity. The membranes present outstanding performance for CO2 separation, and the measured CO2 flux is extremely high ( > 2 m3 m -2 h-1 bar-1) with selectivity over H2 and N2 of 10 and 40, respectively, making them attractive for CO 2 capture. © 2009 American Chemical Society.

  12. Synoptic conditions leading to extremely high temperatures in Madrid

    Directory of Open Access Journals (Sweden)

    R. García

    Full Text Available Extremely hot days (EHD in Madrid have been analysed to determine the synoptic patterns that produce EHDs during the period of 1955–1998. An EHD is defined as a day with maximum temperature higher than 36.5°C, a value which is the threshold for the intense effects on mortatility and it coincides with the 95 percentile of the series. Two different situations have been detected as being responsible for an EHD occurrence, one more dynamical, produced by southern fluxes, and another associated with a stagnation situation over Iberia of a longer duration. Both account for 92% of the total number of days, thus providing an efficient classification framework. A circulation index has been derived to characterise and forecast an EHD occurrence. This paper shows that EHD occur in Madrid during short duration events, and no long heat waves, like those recorded in other cities, are present. Additionally, no clear pattern can be detected in the EHD frequency; the occurrence is tied to changes in the summer location of the Azores high.

    Key words. Meteorology and atmospheric dynamics (Climatology; synoptic-scale meteorology; general or miscellaneous

  13. Extremely high-intensity laser interactions with fundamental quantum systems

    CERN Document Server

    Di Piazza, A; Hatsagortsyan, K Z; Keitel, C H

    2011-01-01

    The field of laser-matter interaction traditionally deals with the response of atoms, molecules and plasmas to an external light wave. However, the recent sustained technological progress is opening the possibility of employing intense laser radiation to prompt or substantially influence physical processes beyond atomic-physics energy scales. Available optical laser intensities exceeding $10^{22}\\;\\text{W/cm$^2$}$ can push the fundamental light-electron interaction to the extreme limit where radiation-reaction effects dominate the electron dynamics, can shed light on the structure of the quantum vacuum and can prime the creation of particles like electrons, muons and pions and the corresponding antiparticles. Also, novel sources of intense coherent high-energy photons and laser-based particle colliders can pave the way to nuclear quantum optics and can even allow for potential discovery of new particles beyond the Standard Model. These are the main topics of the present article, which is devoted to a review o...

  14. Synoptic conditions leading to extremely high temperatures in Madrid

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, R.; Prieto, L.; Hernandez, E.; Teso, T. del [Dept. Fisica de la Tierra II, Fac. CC. Fisicas, Univ. Camplutense de Madrid (Spain); Diaz, J. [Centro Universitario de Salud Publica, Univ. Autonoma de Madrid (Spain)

    2002-02-01

    Extremely hot days (EHD) in Madrid have been analysed to determine the synoptic patterns that produce EHDs during the period of 1955-1998. An EHD is defined as a day with maximum temperature higher than 36.5 C, a value which is the threshold for the intense effects on mortatility and it coincides with the 95 percentile of the series. Two different situations have been detected as being responsible for an EHD occurrence, one more dynamical, produced by southern fluxes, and another associated with a stagnation situation over Iberia of a longer duration. Both account for 92% of the total number of days, thus providing an efficient classification framework. A circulation index has been derived to characterise and forecast an EHD occurrence. This paper shows that EHD occur in Madrid during short duration events, and no long heat waves, like those recorded in other cities, are present. Additionally, no clear pattern can be detected in the EHD frequency; the occurrence is tied to changes in the summer location of the Azores high. (orig.)

  15. Jellyfish: The origin and distribution of extreme ram-pressure stripping events in massive galaxy clusters

    CERN Document Server

    McPartland, Conor; Roediger, Elke; Blumenthal, Kelly

    2015-01-01

    We investigate the observational signatures and physical origin of ram-pressure stripping (RPS) in 63 massive galaxy clusters at $z=0.3-0.7$, based on images obtained with the Hubble Space Telescope. Using a training set of a dozen "jellyfish" galaxies identified earlier in the same imaging data, we define morphological criteria to select 211 additional, less obvious cases of RPS. Spectroscopic follow-up observations of 124 candidates so far confirmed 53 as cluster members. For the brightest and most favourably aligned systems we visually derive estimates of the projected direction of motion based on the orientation of apparent compression shocks and debris trails. Our findings suggest that the onset of these events occurs primarily at large distances from the cluster core ($>400$ kpc), and that the trajectories of the affected galaxies feature high impact parameters. Simple models show that such trajectories are highly improbable for galaxy infall along filaments but common for infall at high velocities, eve...

  16. Menopause and High Blood Pressure: What's the Connection?

    Science.gov (United States)

    ... blood pressure (hypertension) Is there a connection between menopause and high blood pressure? Answers from Shannon K. ... Tommaso, M.D. Blood pressure generally increases after menopause. Some doctors think this increase suggests that hormonal ...

  17. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  18. LHDAC setup for high temperature and high pressure studies

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Nishant N., E-mail: nnpatel@barc.gov.in; Meenakshi, S., E-mail: nnpatel@barc.gov.in; Sharma, Surinder M., E-mail: nnpatel@barc.gov.in [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2014-04-24

    A ytterbium fibre laser (λ = 1.07 μm) based laser heated diamond anvil cell (LHDAC) facility has been recently set up at HP and SRPD, BARC for simultaneous high temperature and high pressure investigation of material properties. Synthesis of GaN was carried out at pressure of ∼9 GPa and temperature of ∼1925 K in a Mao-Bell type diamond anvil cell (DAC) using the LHDAC facility. The retrieved sample has been characterized using our laboratory based micro Raman setup.

  19. 49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.

    Science.gov (United States)

    2010-10-01

    ... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage,...

  20. High-pressure structural properties of tetramethylsilane

    Science.gov (United States)

    Zhen-Xing, Qin; Xiao-Jia, Chen

    2016-02-01

    High-pressure structural properties of tetramethylsilane are investigated by synchrotron powder x-ray diffraction at pressures up to 31.1 GPa and room temperature. A phase with the space group of Pnma is found to appear at 4.2 GPa. Upon compression, the compound transforms to two following phases: the phase with space groups of P21/c at 9.9 GPa and the phase with P2/m at 18.2 GPa successively via a transitional phase. The unique structural character of P21/c supports the phase stability of tetramethylsilane without possible decomposition upon heavy compression. The appearance of the P2/m phase suggests the possible realization of metallization for this material at higher pressure. Project supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project from Ministry of Education of China (Grant No. 708070), the Fundamental Research Funds for the Central Universities, South China University of Technology (Grant No. 2014ZZ0069), the National Natural Science Foundation of China (Grant No. 51502189), and the Doctoral Project of Taiyuan University of Science and Technology, China (Grant No. 20132010).

  1. High-pressure Raman study of Terephthalonitrile

    Science.gov (United States)

    Li, DongFei; Zhang, KeWei; Song, MingXing; Zhai, NaiCui; Sun, ChengLin; Li, HaiBo

    2017-02-01

    The in situ high-pressure Raman spectra of Terephthalonitrile (TPN) have been investigated from ambient to 12.6 GPa at room temperature. All the fundamental vibrational modes of TPN at ambient were assigned based on the first-principle calculations. A detailed Raman spectroscopy analysis revealed that TPN underwent a phase transition at 5.3 GPa. The frequencies of the TPN Raman peaks increase with increasing the pressure which can be attributed to the reduction in the interatomic distances and the escalation of effective force constants. The intensity of the C-C-C ring-out-plane deformation mode increases gradually as the frequency remains almost constant during the compression which can be explained by the existence of π-π interactions in TPN molecules. Additionally, the pressure-induced structural changes of TPN on the Fermi resonance between the C ≡ N out-of-plane vibration mode and the C - CN out-of-plane vibration mode have been analyzed.

  2. Recent progress in high-pressure studies on organic conductors

    Directory of Open Access Journals (Sweden)

    Syuma Yasuzuka and Keizo Murata

    2009-01-01

    Full Text Available Recent high-pressure studies of organic conductors and superconductors are reviewed. The discovery of the highest Tc superconductivity among organics under high pressure has triggered the further progress of the high-pressure research. Owing to this finding, various organic conductors with the strong electron correlation were investigated under high pressures. This review includes the pressure techniques using the cubic anvil apparatus, as well as high-pressure studies of the organic conductors up to 10 GPa showing extraordinary temperature and pressure dependent transport phenomena.

  3. High blood pressure in children and adolescents.

    Science.gov (United States)

    Riley, Margaret; Bluhm, Brian

    2012-04-01

    High blood pressure in children and adolescents is a growing health problem that is often overlooked by physicians. Normal blood pressure values for children and adolescents are based on age, sex, and height, and are available in standardized tables. Prehypertension is defined as a blood pressure in at least the 90th percentile, but less than the 95th percentile, for age, sex, and height, or a measurement of 120/80 mm Hg or greater. Hypertension is defined as blood pressure in the 95th percentile or greater. A secondary etiology of hypertension is much more likely in children than in adults, with renal parenchymal disease and renovascular disease being the most common. Overweight and obesity are strongly correlated with primary hypertension in children. A history and physical examination are needed for all children with newly diagnosed hypertension to help rule out underlying medical disorders. Children with hypertension should also be screened for other risk factors for cardiovascular disease, including diabetes mellitus and hyperlipidemia, and should be evaluated for target organ damage with a retinal examination and echocardiography. Hypertension in children is treated with lifestyle changes, including weight loss for those who are overweight or obese; a healthy, low-sodium diet; regular physical activity; and avoidance of tobacco and alcohol. Children with symptomatic hypertension, secondary hypertension, target organ damage, diabetes, or persistent hypertension despite nonpharmacologic measures should be treated with antihypertensive medications. Thiazide diuretics, angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, beta blockers, and calcium channel blockers are safe, effective, and well tolerated in children.

  4. Conformable pressure vessel for high pressure gas storage

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Kevin L.; Johnson, Kenneth I.; Lavender, Curt A.; Newhouse, Norman L.; Yeggy, Brian C.

    2016-01-12

    A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.

  5. Theory of high pressure hydrogen, made simple

    CERN Document Server

    Magdau, Ioan B; Ackland, Graeme J

    2015-01-01

    Phase I of hydrogen has several peculiarities. Despite having a close-packed crystal structure, it is less dense than either the low temperature Phase II or the liquid phase. At high pressure, it transforms into either phase III or IV, depending on the temperature. Moreover, spectroscopy suggests that the quantum rotor behaviour disappears with pressurisation, without any apparent phase transition. Here we present a simple thermodynamic model for this behaviour based on packing atoms and molecules and discuss the thermodynamics of the phase boundaries. We also report first principles molecular dynamics calculations for a more detailed look at the same phase transitions.

  6. CDC Vital Signs: High Blood Pressure and Cholesterol

    Science.gov (United States)

    ... the MMWR Science Clips High Blood Pressure and Cholesterol Out of Control Recommend on Facebook Tweet Share ... cdc.gov/GISCVH2/ High Blood Pressure and High Cholesterol Among US Adults SOURCES: National Health and Nutrition ...

  7. High Blood Pressure and Children: What Parents Need to Know

    Science.gov (United States)

    ... Lung, and Blood Institute Alternate Language URL Español High Blood Pressure and Children: What Parents Need to Know Page Content Children can have high blood pressure. Did you know that children could have high ...

  8. The physiology of extremes: Ancel Keys and the International High Altitude Expedition of 1935.

    Science.gov (United States)

    Tracy, Sarah W

    2012-01-01

    This article examines the International High Altitude Expedition of 1935 and its significance in the life and science of Ancel Keys. Both the expedition and Keys's story afford excellent opportunities to explore the growing reach of interwar physiology into extreme climates-whether built or natural. As IHAE scientists assessed human performance and adaptation to hypoxia, low barometric pressure, and cold, they not only illuminated the physiological and psychological processes of high altitude acclimatization, but they also drew borderlines between the normal and the pathological, paved the way for the neocolonial exploitation of natural and human resources in Latin America, and pioneered field methods in physiology that were adapted and adopted by the Allied Forces during the Second World War. This case study in the physiology of place reveals the power and persistence of environmental determinism within biomedicine well into the twentieth century.

  9. Using an extreme bony prominence anatomical model to examine the influence of bed sheet materials and bed making methods on the distribution of pressure on the support surface.

    Science.gov (United States)

    Iuchi, Terumi; Nakajima, Yukari; Fukuda, Moriyoshi; Matsuo, Junko; Okamoto, Hiroyuki; Sanada, Hiromi; Sugama, Junko

    2014-05-01

    Bed sheets generate high surface tension across the support surface and increase pressure to the body through a process known as the hammock effect. Using an anatomical model and a loading device characterized by extreme bony prominences, the present study compared pressure distributions on support surfaces across different bed making methods and bed sheet materials to determine the factors that influence pressure distribution. The model was placed on a pressure mapping system (CONFORMat; NITTA Corp., Osaka, Japan), and interface pressure was measured. Bed sheet elasticity and friction between the support surface and the bed sheets were also measured. For maximum interface pressure, the relative values of the following methods were higher than those of the control method, which did not use any bed sheets: cotton sheets with hospital corners (1.28, p = 0.02), polyester with no corners (1.29, p = 0.01), cotton with no corners (1.31, p = 0.003), and fitted polyester sheets (1.35, p = 0.002). Stepwise multiple regression analysis indicated that maximum interface pressure was negatively correlated with bed sheet elasticity (R(2) = 0.74). A statistically significant negative correlation was observed between maximum interface pressure and immersion depth, which was measured using the loading device (r = -0.40 and p = 0.04). We found that several combinations of bed making methods and bed sheet materials induced maximum interface pressures greater than those observed for the control method. Bed sheet materials influenced maximum interface pressure, and bed sheet elasticity was particularly important in reducing maximum interface pressure.

  10. Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. II. Temperature and pressure effects.

    Science.gov (United States)

    Åsberg, Dennis; Samuelsson, Jörgen; Leśko, Marek; Cavazzini, Alberto; Kaczmarski, Krzysztof; Fornstedt, Torgny

    2015-07-03

    The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 °C and a difference of 2 °C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (τs) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in τs which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study.

  11. High blood pressure and visual sensitivity

    Science.gov (United States)

    Eisner, Alvin; Samples, John R.

    2003-09-01

    The study had two main purposes: (1) to determine whether the foveal visual sensitivities of people treated for high blood pressure (vascular hypertension) differ from the sensitivities of people who have not been diagnosed with high blood pressure and (2) to understand how visual adaptation is related to standard measures of systemic cardiovascular function. Two groups of middle-aged subjects-hypertensive and normotensive-were examined with a series of test/background stimulus combinations. All subjects met rigorous inclusion criteria for excellent ocular health. Although the visual sensitivities of the two subject groups overlapped extensively, the age-related rate of sensitivity loss was, for some measures, greater for the hypertensive subjects, possibly because of adaptation differences between the two groups. Overall, the degree of steady-state sensitivity loss resulting from an increase of background illuminance (for 580-nm backgrounds) was slightly less for the hypertensive subjects. Among normotensive subjects, the ability of a bright (3.8-log-td), long-wavelength (640-nm) adapting background to selectively suppress the flicker response of long-wavelength-sensitive (LWS) cones was related inversely to the ratio of mean arterial blood pressure to heart rate. The degree of selective suppression was also related to heart rate alone, and there was evidence that short-term changes of cardiovascular response were important. The results suggest that (1) vascular hypertension, or possibly its treatment, subtly affects visual function even in the absence of eye disease and (2) changes in blood flow affect retinal light-adaptation processes involved in the selective suppression of the flicker response from LWS cones caused by bright, long-wavelength backgrounds.

  12. High-pressure coal fuel processor development

    Energy Technology Data Exchange (ETDEWEB)

    Greenhalgh, M.L.

    1992-11-01

    The objective of Subtask 1.1 Engine Feasibility was to conduct research needed to establish the technical feasibility of ignition and stable combustion of directly injected, 3,000 psi, low-Btu gas with glow plug ignition assist at diesel engine compression ratios. This objective was accomplished by designing, fabricating, testing and analyzing the combustion performance of synthesized low-Btu coal gas in a single-cylinder test engine combustion rig located at the Caterpillar Technical Center engine lab in Mossville, Illinois. The objective of Subtask 1.2 Fuel Processor Feasibility was to conduct research needed to establish the technical feasibility of air-blown, fixed-bed, high-pressure coal fuel processing at up to 3,000 psi operating pressure, incorporating in-bed sulfur and particulate capture. This objective was accomplished by designing, fabricating, testing and analyzing the performance of bench-scale processors located at Coal Technology Corporation (subcontractor) facilities in Bristol, Virginia. These two subtasks were carried out at widely separated locations and will be discussed in separate sections of this report. They were, however, independent in that the composition of the synthetic coal gas used to fuel the combustion rig was adjusted to reflect the range of exit gas compositions being produced on the fuel processor rig. Two major conclusions resulted from this task. First, direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize these low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risks associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept.

  13. High-resolution Sonographic Measurements of Lower Extremity Bursae in Chinese Healthy Young Men

    Directory of Open Access Journals (Sweden)

    Yong-Yan Gao

    2016-01-01

    Conclusions: Using HR-US imaging, we were able to analyze lower extremity bursae with high detection rates in healthy young men. The normal ranges of lower extremity bursa dimensions in healthy young men measured by HR-US in this study could be used as reference values for evaluation of bursa abnormalities in the lower extremity.

  14. High resolution simulations of extreme weather event in south Sardinia

    Science.gov (United States)

    Dessy, C.

    2010-05-01

    In the last decade, like most region of Mediterranean Europe, Sardinia has experienced severe precipitation events generating flash floods resulting in loss of lives and large economic damage. A numerical meteorological operational set-up is applied in the local weather service with the aim to improve the operational short range weather forecast of the Service with particular attention to intense, mostly rare and potentially severe, events. On the early hours of 22 October 2008 an intense and almost stationary mesoscale convective system interested particularly the south of Sardinia, heavy precipitation caused a flash flood with fatalities and numerous property damages. The event was particularly intense: about 400 mm of rain in 12 hours (a peak of 150 mm in an hour) were misured by the regional network of weather stations and these values appear extremely meaningfulls since those are about seven times the climatological monthly rainfall for that area and nearly the climatological annual rainfall. With the aim to improve significantly quantitative precipitation forecasting, it was evaluated a different set-up of a high resolution convection resolving model (MM5) initialised with different initial and boundary conditions (ECMWF and NCAR). In this paper it is discussed the meteorological system related to the mentioned event by using different numerical weather models (GCM and LAM) combined with conventional data, radar Doppler and Meteosat images. Preliminary results say that a different set-up of a non hydrostatic model can forecast severe convection events in advance of about one day and produce more realistic rainfall than that current operational and also improve the weather forecasts to respect the ECMWF-GCM. So it could drive an operational alert system in order to limit the risks associated with heavy precipitation events.

  15. High Pressure Hydrogen from First Principles

    Science.gov (United States)

    Morales, M. A.

    2014-12-01

    Typical approximations employed in first-principles simulations of high-pressure hydrogen involve the neglect of nuclear quantum effects (NQE) and the approximate treatment of electronic exchange and correlation, typically through a density functional theory (DFT) formulation. In this talk I'll present a detailed analysis of the influence of these approximations on the phase diagram of high-pressure hydrogen, with the goal of identifying the predictive capabilities of current methods and, at the same time, making accurate predictions in this important regime. We use a path integral formulation combined with density functional theory, which allows us to incorporate NQEs in a direct and controllable way. In addition, we use state-of-the-art quantum Monte Carlo calculations to benchmark the accuracy of more approximate mean-field electronic structure calculations based on DFT, and we use GW and hybrid DFT to calculate the optical properties of the solid and liquid phases near metallization. We present accurate predictions of the metal-insulator transition on the solid, including structural and optical properties of the molecular phase. This work was supported by the U.S. Department of Energy at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and by LDRD Grant No. 13-LW-004.

  16. High pressure-resistant nonincendive emulsion explosive

    Science.gov (United States)

    Ruhe, Thomas C.; Rao, Pilaka P.

    1994-01-01

    An improved emulsion explosive composition including hollow microspheres/bulking agents having high density and high strength. The hollow microspheres/bulking agents have true particle densities of about 0.2 grams per cubic centimeter or greater and include glass, siliceous, ceramic and synthetic resin microspheres, expanded minerals, and mixtures thereof. The preferred weight percentage of hollow microspheres/bulking agents in the composition ranges from 3.0 to 10.0 A chlorinated paraffin oil, also present in the improved emulsion explosive composition, imparts a higher film strength to the oil phase in the emulsion. The emulsion is rendered nonincendive by the production of sodium chloride in situ via the decomposition of sodium nitrate, a chlorinated paraffin oil, and sodium perchlorate. The air-gap sensitivity is improved by the in situ formation of monomethylamine perchlorate from dissolved monomethylamine nitrate and sodium perchlorate. The emulsion explosive composition can withstand static pressures to 139 bars and dynamic pressure loads on the order of 567 bars.

  17. Stable magnesium peroxide at high pressure.

    Science.gov (United States)

    Lobanov, Sergey S; Zhu, Qiang; Holtgrewe, Nicholas; Prescher, Clemens; Prakapenka, Vitali B; Oganov, Artem R; Goncharov, Alexander F

    2015-09-01

    Rocky planets are thought to comprise compounds of Mg and O as these are among the most abundant elements, but knowledge of their stable phases may be incomplete. MgO is known to be remarkably stable to very high pressure and chemically inert under reduced condition of the Earth's lower mantle. However, in exoplanets oxygen may be a more abundant constituent. Here, using synchrotron x-ray diffraction in laser-heated diamond anvil cells, we show that MgO and oxygen react at pressures above 96 GPa and T = 2150 K with the formation of I4/mcm MgO2. Raman spectroscopy detects the presence of a peroxide ion (O2(2-)) in the synthesized material as well as in the recovered specimen. Likewise, energy-dispersive x-ray spectroscopy confirms that the recovered sample has higher oxygen content than pure MgO. Our finding suggests that MgO2 may be present together or instead of MgO in rocky mantles and rocky planetary cores under highly oxidized conditions.

  18. Stable magnesium peroxide at high pressure

    Science.gov (United States)

    Lobanov, Sergey S.; Zhu, Qiang; Holtgrewe, Nicholas; Prescher, Clemens; Prakapenka, Vitali B.; Oganov, Artem R.; Goncharov, Alexander F.

    2015-09-01

    Rocky planets are thought to comprise compounds of Mg and O as these are among the most abundant elements, but knowledge of their stable phases may be incomplete. MgO is known to be remarkably stable to very high pressure and chemically inert under reduced condition of the Earth’s lower mantle. However, in exoplanets oxygen may be a more abundant constituent. Here, using synchrotron x-ray diffraction in laser-heated diamond anvil cells, we show that MgO and oxygen react at pressures above 96 GPa and T = 2150 K with the formation of I4/mcm MgO2. Raman spectroscopy detects the presence of a peroxide ion (O22-) in the synthesized material as well as in the recovered specimen. Likewise, energy-dispersive x-ray spectroscopy confirms that the recovered sample has higher oxygen content than pure MgO. Our finding suggests that MgO2 may be present together or instead of MgO in rocky mantles and rocky planetary cores under highly oxidized conditions.

  19. High-pressure structures of yttrium hydrides

    Science.gov (United States)

    Liu, Lu-Lu; Sun, Hui-Juan; Wang, C. Z.; Lu, Wen-Cai

    2017-08-01

    In this work, the crystal structures of YH3 and YH4 at high pressure (100-250 GPa) have been explored using a genetic algorithm combined with first-principles calculations. New structures of YH3 with space group symmetries of P21/m and I4/mmm were predicted. The electronic structures and the phonon dispersion properties of various YH3 and YH4 structures at different temperatures and pressures were investigated. Among YH3 phases, the P21/m structure of YH3 was found to have a relatively high superconducting transformation temperature T c of 19 K at 120 GPa, which is reduced to 9 K at 200 GPa. Other YH3 structures have much lower T cs. Compared with YH3, the T c of the YH4 compound is much higher, i.e. 94 K at 120 GPa and 55 K at 200 GPa.

  20. High Speed Switching Micoplasma in High Pressure Gases

    Science.gov (United States)

    Wakim, Dani; Staack, David

    2012-10-01

    Micro-plasma discharges with switching times approaching 1 ns are studied at pressures from 1 to 16 atm. Applications of these devices are robust high speed switching transistors able to withstand electric interference, high temperatures and harsh environments. Measured discharge conditions at 250 psia in Nitrogen are: gas temperature 2900 K, discharge diameter ˜7 μm and electron density ˜10^17 cm-3. High speed switching is achieved by taking advantage of rapid dynamics of instabilities at high pressure and high electron density. The capacitance and inductance of the circuit also significantly affect transients. Tradeoffs are observed in switching times. By reducing capacitances from 10 pF to ˜1pF attainment of steady state conditions can be reduced from 1 us to ˜ 20 ns. However current rise times increase from 1 ns at high capacitance to 20 ns at low capacitance. A decrease in switching time with increased pressure is also observed. Also investigated are configurations with a third electrode acting as a gate or trigger and various high temperature (>2000K) materials such as platinum rhodium alloys and ceria stabilized zirconia ceramics for device fabrication.

  1. Bacterial Motility Measured by a Miniature Chamber for High-Pressure Microscopy

    Directory of Open Access Journals (Sweden)

    Seiji Kojima

    2012-07-01

    Full Text Available Hydrostatic pressure is one of the physical stimuli that characterize the environment of living matter. Many microorganisms thrive under high pressure and may even physically or geochemically require this extreme environmental condition. In contrast, application of pressure is detrimental to most life on Earth; especially to living organisms under ambient pressure conditions. To study the mechanism of how living things adapt to high-pressure conditions, it is necessary to monitor directly the organism of interest under various pressure conditions. Here, we report a miniature chamber for high-pressure microscopy. The chamber was equipped with a built-in separator, in which water pressure was properly transduced to that of the sample solution. The apparatus developed could apply pressure up to 150 MPa, and enabled us to acquire bright-field and epifluorescence images at various pressures and temperatures. We demonstrated that the application of pressure acted directly and reversibly on the swimming motility of Escherichia coli cells. The present technique should be applicable to a wide range of dynamic biological processes that depend on applied pressures.

  2. Synthesis of sodium polyhydrides at high pressures.

    Science.gov (United States)

    Struzhkin, Viktor V; Kim, Duck Young; Stavrou, Elissaios; Muramatsu, Takaki; Mao, Ho-Kwang; Pickard, Chris J; Needs, Richard J; Prakapenka, Vitali B; Goncharov, Alexander F

    2016-01-01

    The only known compound of sodium and hydrogen is archetypal ionic NaH. Application of high pressure is known to promote states with higher atomic coordination, but extensive searches for polyhydrides with unusual stoichiometry have had only limited success in spite of several theoretical predictions. Here we report the first observation of the formation of polyhydrides of Na (NaH3 and NaH7) above 40 GPa and 2,000 K. We combine synchrotron X-ray diffraction and Raman spectroscopy in a laser-heated diamond anvil cell and theoretical random structure searching, which both agree on the stable structures and compositions. Our results support the formation of multicenter bonding in a material with unusual stoichiometry. These results are applicable to the design of new energetic solids and high-temperature superconductors based on hydrogen-rich materials.

  3. Synthesis of sodium polyhydrides at high pressures

    Science.gov (United States)

    Struzhkin, Viktor V.; Kim, Duck Young; Stavrou, Elissaios; Muramatsu, Takaki; Mao, Ho-Kwang; Pickard, Chris J.; Needs, Richard J.; Prakapenka, Vitali B.; Goncharov, Alexander F.

    2016-07-01

    The only known compound of sodium and hydrogen is archetypal ionic NaH. Application of high pressure is known to promote states with higher atomic coordination, but extensive searches for polyhydrides with unusual stoichiometry have had only limited success in spite of several theoretical predictions. Here we report the first observation of the formation of polyhydrides of Na (NaH3 and NaH7) above 40 GPa and 2,000 K. We combine synchrotron X-ray diffraction and Raman spectroscopy in a laser-heated diamond anvil cell and theoretical random structure searching, which both agree on the stable structures and compositions. Our results support the formation of multicenter bonding in a material with unusual stoichiometry. These results are applicable to the design of new energetic solids and high-temperature superconductors based on hydrogen-rich materials.

  4. Food processing by high hydrostatic pressure.

    Science.gov (United States)

    Yamamoto, Kazutaka

    2017-04-01

    High hydrostatic pressure (HHP) process, as a nonthermal process, can be used to inactivate microbes while minimizing chemical reactions in food. In this regard, a HHP level of 100 MPa (986.9 atm/1019.7 kgf/cm(2)) and more is applied to food. Conventional thermal process damages food components relating color, flavor, and nutrition via enhanced chemical reactions. However, HHP process minimizes the damages and inactivates microbes toward processing high quality safe foods. The first commercial HHP-processed foods were launched in 1990 as fruit products such as jams, and then some other products have been commercialized: retort rice products (enhanced water impregnation), cooked hams and sausages (shelf life extension), soy sauce with minimized salt (short-time fermentation owing to enhanced enzymatic reactions), and beverages (shelf life extension). The characteristics of HHP food processing are reviewed from viewpoints of nonthermal process, history, research and development, physical and biochemical changes, and processing equipment.

  5. High speed digital phonoscopy of selected extreme vocalization (Conference Presentation)

    Science.gov (United States)

    Izdebski, Krzysztof; Blanco, Matthew; Di Lorenzo, Enrico; Yan, Yuling

    2017-02-01

    We used HSDP (KayPENTAX Model 9710, NJ, USA) to capture the kinematics of vocal folds in the production of extreme vocalization used by heavy metal performers. The vibrations of the VF were captured at 4000 f/s using transoral rigid scope. Growl, scream and inhalatory phonations were recoded. Results showed that these extreme sounds are produced predominantly by supraglottic tissues rather than by the true vocal folds, which explains while these sounds do not injure the mucosa of the true vocal folds. In addition, the HSDI were processed using custom software (Vocalizer®) that clearly demonstrated the contribution of each vocal fold to the generation of the sound.

  6. Pressure Prediction of Coal Slurry Transportation Pipeline Based on Particle Swarm Optimization Kernel Function Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Xue-cun Yang

    2015-01-01

    Full Text Available For coal slurry pipeline blockage prediction problem, through the analysis of actual scene, it is determined that the pressure prediction from each measuring point is the premise of pipeline blockage prediction. Kernel function of support vector machine is introduced into extreme learning machine, the parameters are optimized by particle swarm algorithm, and blockage prediction method based on particle swarm optimization kernel function extreme learning machine (PSOKELM is put forward. The actual test data from HuangLing coal gangue power plant are used for simulation experiments and compared with support vector machine prediction model optimized by particle swarm algorithm (PSOSVM and kernel function extreme learning machine prediction model (KELM. The results prove that mean square error (MSE for the prediction model based on PSOKELM is 0.0038 and the correlation coefficient is 0.9955, which is superior to prediction model based on PSOSVM in speed and accuracy and superior to KELM prediction model in accuracy.

  7. Rheological assessment of nanofluids at high pressure high temperature

    Science.gov (United States)

    Kanjirakat, Anoop; Sadr, Reza

    2013-11-01

    High pressure high temperature (HPHT) fluids are commonly encountered in industry, for example in cooling and/or lubrications applications. Nanofluids, engineered suspensions of nano-sized particles dispersed in a base fluid, have shown prospective as industrial cooling fluids due to their enhanced rheological and heat transfer properties. Nanofluids can be potentially utilized in oil industry for drilling fluids and for high pressure water jet cooling/lubrication in machining. In present work rheological characteristics of oil based nanofluids are investigated at HPHT condition. Nanofluids used in this study are prepared by dispersing commercially available SiO2 nanoparticles (~20 nm) in a mineral oil. The basefluid and nanofluids with two concentrations, namely 1%, and 2%, by volume, are considered in this investigation. The rheological characteristics of base fluid and the nanofluids are measured using an industrial HPHT viscometer. Viscosity values of the nanofluids are measured at pressures of 100 kPa to 42 MPa and temperatures ranging from 25°C to 140°C. The viscosity values of both nanofluids as well as basefluid are observed to have increased with the increase in pressure. Funded by Qatar National Research Fund (NPRP 08-574-2-239).

  8. Effect of ultra-high pressure on small animals, tardigrades and Artemia

    Directory of Open Access Journals (Sweden)

    Fumihisa Ono

    2016-12-01

    Full Text Available This research shows that small animals, tardigrades (Milnesium tardigradum in tun (dehydrated state and Artemia salina cists (dried eggs can tolerate the very high hydrostatic pressure of 7.5 GPa. It was really surprising that living organisms can survive after exposure to such a high pressure. We extended these studies to the extremely high pressure of 20 GPa by using a Kawai-type octahedral anvil press. After exposure to this pressure for 30 min, the tardigrades were soaked in pure water and investigated under a microscope. Their bodies regained metabolic state and no serious injury could be seen. But they were not alive. A few of Artemia eggs went part of the way to hatching after soaked in sea water, but they never grew any further. Comparing with the case of blue-green alga, these animals are weaker under ultra-high pressure.

  9. An experimental apparatur for EDXD of high pressure specimens using synchrotron radiation at BSRF

    Institute of Scientific and Technical Information of China (English)

    Y.H.Jing; Y.Yang; X.Ju; JingLiu; R.Z.Che; J.Zhao

    2001-01-01

    A high pressure energy dispersive X-ray diffraction apparatus on 3W1A bearmline,at BSRF,is described.A ten-Poles permanent magnetic wiggler provided white X-ray beam.The extreme high pressure up to 115GPa has been obtained by a modified Mao-Bell diamond anvil cell.A motorized loading system with strain sensor can finely control the pressure change.The in situ experimental procedures are described.Some applications are also presented.2001 Elsevier Science B.V.All rights reserved.

  10. The high-pressure behavior of bloedite

    DEFF Research Database (Denmark)

    Comodi, Paola; Nazzareni, Sabrina; Balic Zunic, Tonci

    2014-01-01

    High-pressure single-crystal synchrotron X‑ray diffraction was carried out on a single crystal of bloedite [Na2Mg(SO4)24H2O] compressed in a diamond-anvil cell. The volume-pressure data, collected up to 11.2 GPa, were fitted by a second- and a third-order Birch-Murnaghan equation of state (EOS......), yielding V0 = 495.6(7) Å3 with K0 = 39.9(6) GPa, and V0 = 496.9(7) Å3, with K0 = 36(1) GPa and K′ = 5.1 (4) GPa-1, respectively. The axial moduli were calculated using a Birch-Murnaghan EOS truncated at the second order, fixing K′ equal to 4, for a and b axes and a third-order Birch-Murnaghan EOS for c...... axis. The results were a0 = 11.08(1) and K0 = 56(3) GPa, b0 = 8.20(2) and K0 = 43(3) GPa, and c0 = 5.528(5), K0 = 40(2) GPa, K′ = 1.7(3) GPa-1. The values of the compressibility for a, b, and c axes are ba = 0.0060(3) GPa-1, bb = 0.0078(5) GPa-1, bc = 0.0083(4) GPa-1 with an anisotropic ratio of ba...

  11. [High blood pressure and physical exercise].

    Science.gov (United States)

    Sosner, P; Gremeaux, V; Bosquet, L; Herpin, D

    2014-06-01

    High blood pressure is a frequent pathology with many cardiovascular complications. As highlighted in guidelines, the therapeutic management of hypertension relies on non-pharmacological measures, which are diet and regular physical activity, but both patients and physicians are reluctant to physical activity prescription. To acquire the conviction that physical activity is beneficial, necessary and possible, we can take into account some fundamental and clinical studies, as well as the feedback of our clinical practice. Physical inactivity is a major risk factor for cardiovascular morbidity and mortality, and hypertension contributes to increase this risk. Conversely, regular practice of physical activity decreases very significantly the risk by up to 60%. The acute blood pressure changes during exercise and post-exercise hypotension differs according to the dynamic component (endurance or aerobic and/or strength exercises), but the repetition of the sessions leads to the chronic hypotensive benefit of physical activity. Moreover, physical activity prescription must take into account the assessment of global cardiovascular risk, the control of the hypertension, and the opportunities and desires of the patient in order to promote good adherence and beneficial lifestyle change. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. Engineering Model of High Pressure Moist Air

    Directory of Open Access Journals (Sweden)

    Hyhlík Tomáš

    2017-01-01

    Full Text Available The article deals with the moist air equation of state. There are equations of state discussed in the article, i.e. the model of an ideal mixture of ideal gases, the model of an ideal mixture of real gases and the model based on the virial equation of state. The evaluation of sound speed based on the ideal mixture concept is mentioned. The sound speed calculated by the model of an ideal mixture of ideal gases is compared with the sound speed calculated by using the model based on the concept of an ideal mixture of real gases. The comparison of enthalpy end entropy based on the model of an ideal mixture of ideal gases and the model of an ideal mixture of real gases is performed. It is shown that the model of an ideal mixture of real gases deviates from the model of an ideal mixture of ideal gases only in the case of high pressure. An impossibility of the definition of partial pressure in the mixture of real gases is discussed, where the virial equation of state is used.

  13. High pressure behavior of 3d transition metal carbonates

    Science.gov (United States)

    Farfan, G. A.; Wang, S.; Boulard, E.; Mao, W. L.

    2012-12-01

    Understanding the behavior of carbon-rich phases in Earth's lower mantle is critical for modeling the global carbon cycle since the lower mantle may be the major repository for carbon in our planet. We were interested in the behavior of carbonates containing 3d transition metals, which can exhibit unusual properties at extreme conditions. Thus, we studied siderite (FeCO3) and rhodochrosite (MnCO3) at high pressure using a diamond anvil cell coupled with Raman spectroscopy, X-ray diffraction (XRD) and X-ray emission spectroscopy. In siderite we observed a high to low spin transition and associated volume collapse at approximately 46 GPa which is consistent with previous reports. Our Raman data show that the C-O bonds soften when the Fe2+ volume collapses (Farfan et al, 2012). In contrast, our XES results indicate that the Mn2+ in rhodochrosite does not undergo a spin transition like siderite up to 50 GPa. We observed a new Raman peak emerging above 48 GPa, which is a similar pressure at which a new structure was found in a previous XRD study.

  14. High pressure fiber optic sensor system

    Science.gov (United States)

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  15. Design, performance, and early results from extremely high Doppler precision instruments in a global network

    Science.gov (United States)

    Ge, Jian; Zhao, Bo; Groot, John; Chang, Liang; Varosi, Frank; Wan, Xiaoke; Powell, Scott; Jiang, Peng; Hanna, Kevin; Wang, Ji; Pais, Rohan; Liu, Jian; Dou, Liming; Schofield, Sidney; McDowell, Shaun; Costello, Erin; Delgado-Navarro, Adriana; Fleming, Scott; Lee, Brian; Bollampally, Sandeep R.; Bosman, Troy; Jakeman, Hali; Fletcher, Adam; Marquez, Gabriel

    2010-07-01

    We report design, performance and early results from two of the Extremely High Precision Extrasolar Planet Tracker Instruments (EXPERT) as part of a global network for hunting for low mass planets in the next decade. EXPERT is a combination of a thermally compensated monolithic Michelson interferometer and a cross-dispersed echelle spectrograph for extremely high precision Doppler measurements for nearby bright stars (e.g., 1m/s for a V=8 solar type star in 15 min exposure). It has R=18,000 with a 72 micron slit and a simultaneous coverage of 390-694 nm. The commissioning results show that the instrument has already produced a Doppler precision of about 1 m/s for a solar type star with S/N~100 per pixel. The instrument has reached ~4 mK (P-V) temperature stability, ~1 mpsi pressure stability over a week and a total instrument throughput of ~30% at 550 nm from the fiber input to the detector. EXPERT also has a direct cross-dispersed echelle spectroscopy mode fed with 50 micron fibers. It has spectral resolution of R=27,000 and a simultaneous wavelength coverage of 390-1000 nm.

  16. Molecular dynamics of water at high temperatures and pressures

    Science.gov (United States)

    Brodholt, John; Wood, Bernard

    1990-09-01

    There are currently no precise P-V-T data for water at pressures above 8.9 kbars and temperatures above 900°C. Many petrological processes in the lower crust and upper mantle take place under more extreme conditions, however and petrologists commonly rely on empirical equations of state such as the modified Redlich-Kwong equation (MRK) to extrapolate the low pressure data. In this study we have taken an alternative approach and attempted to simulate the P-V-T properties of water using molecular dynamics. The TIP4P intermolecular potential for H 2O ( JORGENSEN et al., 1983) has had considerable success predicting the properties of water at low temperatures and pressures up to 10 kbar ( MADURA et al., 1988). We have extended its application by making molecular dynamics (MD) simulations at a density of 1.0 g/cc from 300 to 2300 K and 0.5 to 40 kbars. The results agree with the P-V-T data of BURNHAM et al. (1969) (up to 10 kbars) with an average error of under 2%. This is a much better concordance than is obtained with any of the currently used versions of MRK. At 300 kbars and 2000 K the MD simulations predict densities within 8% of those obtained in the shock wave experiments of KORMER (1968). This is a very good agreement given the fact that water ionizes to some extent at high pressures ( MITCHELL and NELLIS, 1982) and we have made no provisions for this effect. We conclude that molecular dynamics simulations provide the possibility of estimating P-V-T properties in the upper mantle P-T regime with very good accuracy.

  17. Sleep Deprivation: A Cause of High Blood Pressure?

    Science.gov (United States)

    ... High blood pressure (hypertension) Is it true that sleep deprivation can cause high blood pressure? Answers from Sheldon ... Cirelli C, et al. Definition and consequences of sleep deprivation. http://www.uptodate.com/home. Accessed March 24, ...

  18. High Blood Pressure, Afib and Your Risk of Stroke

    Science.gov (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More High Blood Pressure, Afib and Your Risk of Stroke Updated:Sep ... have a stroke for the first time have high blood pressure . And an irregular atrial heart rhythm — a condition ...

  19. High blood pressure - what to ask your doctor

    Science.gov (United States)

    What to ask your doctor about high blood pressure; Hypertension - what to ask your doctor ... problems? What medicines am I taking to treat high blood pressure? Do they have any side effects? What should ...

  20. A Nutritional Strategy for the Treatment of High Blood Pressure.

    Science.gov (United States)

    Podell, Richard N.

    1984-01-01

    Some physicians wonder if high blood pressure can be controlled without the use of drugs and their potential side effects. Current findings concerning nutrition and high blood pressure are presented. (RM)

  1. High Blood Pressure Rates Have Doubled Worldwide Since 1975

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_162069.html High Blood Pressure Rates Have Doubled Worldwide Since 1975 Most of ... News) -- The number of people worldwide with high blood pressure has nearly doubled over the past 40 years, ...

  2. Novel High Pressure Pump-on-a-Chip Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — HJ Science & Technology, Inc. proposes to develop a novel high pressure "pump-on-a-chip" (HPPOC) technology capable of generating high pressure and flow rate on...

  3. DNS of High Pressure Supercritical Combustion

    Science.gov (United States)

    Chong, Shao Teng; Raman, Venkatramanan

    2016-11-01

    Supercritical flows have always been important to rocket motors, and more recently to aircraft engines and stationary gas turbines. The purpose of the present study is to understand effects of differential diffusion on reacting scalars using supercritical isotropic turbulence. Focus is on fuel and oxidant reacting in the transcritical region where density, heat capacity and transport properties are highly sensitive to variations in temperature and pressure. Reynolds and Damkohler number vary as a result and although it is common to neglect differential diffusion effects if Re is sufficiently large, this large variation in temperature with heat release can accentuate molecular transport differences. Direct numerical simulations (DNS) for one step chemistry reaction between fuel and oxidizer are used to examine the differential diffusion effects. A key issue investigated in this paper is if the flamelet progress variable approach, where the Lewis number is usually assumed to be unity and constant for all species, can be accurately applied to simulate supercritical combustion.

  4. High-pressure structures of methane hydrate

    CERN Document Server

    Hirai, H; Fujihisa, H; Sakashita, M; Katoh, E; Aoki, K; Yamamoto, Y; Nagashima, K; Yagi, T

    2002-01-01

    Three high-pressure structures of methane hydrate, a hexagonal structure (str. A) and two orthorhombic structures (str. B and str. C), were found by in situ x-ray diffractometry and Raman spectroscopy. The well-known structure I (str. I) decomposed into str. A and fluid at 0.8 GPa. Str. A transformed into str. B at 1.6 GPa, and str. B further transformed into str. C at 2.1 GPa which survived above 7.8 GPa. The fluid solidified as ice VI at 1.4 GPa, and the ice VI transformed to ice VII at 2.1 GPa. The bulk moduli, K sub 0 , for str. I, str. A, and str. C were calculated to be 7.4, 9.8, and 25.0 GPa, respectively.

  5. Urea and deuterium mixtures at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, M., E-mail: m.donnelly-2@sms.ed.ac.uk; Husband, R. J.; Frantzana, A. D.; Loveday, J. S. [Centre for Science at Extreme Conditions and School of Physics and Astronomy, The University of Edinburgh, Erskine Williamson Building, Peter Guthrie Tait Road, The King’s Buildings, Edinburgh EH9 3FD (United Kingdom); Bull, C. L. [ISIS, Rutherford Appleton Laboratory, Oxford Harwell, Didcot OX11 0QX (United Kingdom); Klotz, S. [IMPMC, CNRS UMR 7590, Université P and M Curie, 4 Place Jussieu, 75252 Paris (France)

    2015-03-28

    Urea, like many network forming compounds, has long been known to form inclusion (guest-host) compounds. Unlike other network formers like water, urea is not known to form such inclusion compounds with simple molecules like hydrogen. Such compounds if they existed would be of interest both for the fundamental insight they provide into molecular bonding and as potential gas storage systems. Urea has been proposed as a potential hydrogen storage material [T. A. Strobel et al., Chem. Phys. Lett. 478, 97 (2009)]. Here, we report the results of high-pressure neutron diffraction studies of urea and D{sub 2} mixtures that indicate no inclusion compound forms up to 3.7 GPa.

  6. Simulating a high pressure die casting

    Energy Technology Data Exchange (ETDEWEB)

    Goldak, J.; Zhou, J.; Downey, D.; Aldea, V.; Li, G.; Mocanita, M. [Carleton Univ., Ottawa, Ontario (Canada)

    2000-07-01

    High pressure die casting is simulated for parts with complex geometry such as a large automotive transmission case. The closed die is filled in approximately 40 ms, the casting cools in the closed die for approximately 40s, to open the die, eject the casting and spray the die cavity surface requires another 40s. This 3D cyclic process is simulated using the following coupled composite solvers: the energy equation in the die and in the casting with solidification; filling of the casting by a droplet or a Navier-Stokes solver, and thermal stress analysis of the casting machine, casting and die during the cycle. This thermal analysis can be done for both starting and stopping transients and for the cyclic steady state. The software enables this analysis to be done almost automatically by designers. (author)

  7. Nano-materials for adhesive-free adsorbers for bakable extreme high vacuum cryopump surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stutzman, Marcy; Jordan, Kevin; Whitney, Roy R.

    2016-10-11

    A cryosorber panel having nanomaterials used for the cryosorption material, with nanomaterial either grown directly on the cryopanel or freestanding nanomaterials attached to the cryopanel mechanically without the use of adhesives. Such nanomaterial cryosorber materials can be used in place of conventional charcoals that are attached to cryosorber panels with special low outgassing, low temperature capable adhesives. Carbon nanotubes and other nanomaterials could serve the same purpose as conventional charcoal cryosorbers, providing a large surface area for cryosorption without the need for adhesive since the nanomaterials can be grown directly on a metallic substrate or mechanically attached. The nanomaterials would be capable of being fully baked by heating above 100.degree. C., thereby eliminating water vapor from the system, eliminating adhesives from the system, and allowing a full bake of the system to reduce hydrogen outgassing, with the goal of obtaining extreme high vacuum where the pump can produce pressures below 1.times.10.sup.-12 Torr.

  8. Effect of high pressure on mesophilic lactic fermentation streptococci

    Science.gov (United States)

    Reps, A.; Kuźmicka, M.; Wiśniewska, K.

    2008-07-01

    The research concerned the effect of high pressure on mesophilic lactic fermentation streptococci, present in two cheese-making commercial inocula produced by Christian-Hansen. Water solutions of inocula were pressurized at 50-800 MPa, at room temperature, for 30-120 min. Pressurization at 50-100 MPa slightly increased or reduced the number of lactic streptococci, depending on the inoculum and pressurization time. Pressurization at 200 MPa caused a reduction in the number of streptococci by over 99.9%, whereas the pressure of 400 MPa and above almost completely inactivated streptococci. Pressurization also reduced the dynamics of microorganism growth and acidification, to the degree depending on the pressure.

  9. Imaging in 3D under pressure: a decade of high-pressure X-ray microtomography development at GSECARS

    Science.gov (United States)

    Yu, Tony; Wang, Yanbin; Rivers, Mark L.

    2016-12-01

    The high-pressure X-ray microtomography (HPXMT) apparatus has been operating at the GeoSoilEnviroCARS (GSECARS) bending magnet beamline at the Advanced Photon Source since 2005. By combining the powerful synchrotron X-ray source and fast switching between white (for X-ray diffraction) and monochromatic (for absorption imaging) modes, this technique provides the high-pressure community with a unique opportunity to image the three-dimensional volume, texture, and microstructure of materials under high pressure and temperature. The ability to shear the sample with unlimited strain by twisting the two opposed anvils in the apparatus allows shear deformation studies under extreme pressure and temperature to be performed. HPXMT is a powerful tool for studying the physical properties of both crystalline and non-crystalline materials under high pressure and high temperature. Over the past 10 years, continuous effort has been put into technical development, modifications to improve the overall performance, and additional probing techniques to meet users' needs. Here, we present an up-to-date report on the HPXMT system, a brief review of some of its many exciting scientific applications, and a discussion of future developments.

  10. What about African Americans and High Blood Pressure?

    Science.gov (United States)

    ... whites. • Heredity —A tendency to have high blood pressure runs in families. • Age — In general, the older you get, the greater your chance of developing high blood pressure. • Sex — Men tend to develop high blood pressure ...

  11. Let's Talk about High Blood Pressure and Stroke

    Science.gov (United States)

    ... stroke. How does high blood pressure increase stroke risk? High blood pressure is the single most important risk factor for ... vessel ruptures over time. Who is at higher risk for HBP? People with a family history of high blood pressure African-Americans People age 35 or older People ...

  12. Metabolic Activity of Bacteria at High Pressure

    Science.gov (United States)

    Picard, A.; Daniel, I.; Oger, P.

    2008-12-01

    Over the last 20 years, there has been increasing evidence for the presence of a large number of microbes in the oceanic subsurface. Such a habitat has a very low energy input because it is deprived of light. A few meters below the sediment surface, conditions are already anoxic in most cases, sulfate reduction and/or methanogenesis becoming thus the primary respiratory reactions of organic matter. Neither the fate of methanogenesis, nor the fate of Dissimilatory Metal-Reduction (DMR) has been investigated so far as a function of pressure. For this reason, we measured experimentally the pressure limits of microbial anaerobic energetic metabolism. In practice, we measured in situ the kinetics of selenite respiration by the bacterial model Shewanella oneidensis MR-1 under high hydrostatic pressure (HHP) between 0 and 150 MPa at 30°C. MR-1 stationary-phase cells were used in Luria-Bertani (LB) medium amended with lactate as an additional electron donor and sodium selenite as an electron acceptor. In situ measurements were performed by X- ray Absorption Near-Edge Structure (XANES) spectroscopy in both a diamond-anvil cell and an autoclave. A red precipitate of amorphous Se(0) was virtually observed at any pressure to 150 MPa. A progressive reduction of selenite Se(IV) into selenium Se(0) was also observed in the evolution of XANES spectra with time. All kinetics between 0.1 and 150 MPa can be adjusted to a first order kinetic law. MR-1 respires all available selenite up to 60 MPa. Above 60 MPa, the respiration yield decreases linearly as a function of pressure and reaches 0 at 155 ±5 MPa. This indicates that selenite respiration by Shewanella oneidensis MR-1 stops at about 155 MPa, whereas its growth is arrested at 50 MPa. Hence, the present results show that the respiration of selenium by the strain MR-1 occurs efficiently up to 60 MPa and 30°C, i.e. from the surface of a continental sediment to an equivalent depth of about 2 km, or beneath a 5-km water column and

  13. The effect of backpack load on muscle activities of the trunk and lower extremities and plantar foot pressure in flatfoot.

    Science.gov (United States)

    Son, Hohee

    2013-11-01

    [Purpose] The purpose of this study was to investigate the changes in muscle activation of the trunk and lower extremities and plantar foot pressure due to backpack loads of 0, 10, 15, and 20% of body weight during level walking in individuals with flatfoot. [Methods] Fourteen young flatfoot subjects and 12 normal foot subjects participated in this study. In each session, the subjects were assigned to carry a backpack load, and there were four level walking modes: (1) unloaded walking (0%), (2) 10% body weight (BW) load, (3) 15% BW load, and (4) 20% BW load. Trunk and lower extremity muscle activities were recorded by surface EMG, and contact area and plantar foot pressure were determined using a RS scan system. [Results] The erector spinae, vastus medialis, tibialis anterior and gastrocnemius muscle activities, but not the rectus femoris and rectus abdominis muscle activities of flatfoot subjects significantly and progressively increased as load increased in flatfoot subjects. Contact area and pressure of the lateral and medial heel zones were significantly increased too. [Conclusion] Based on this data, the weight of a backpack could influence muscle activation and plantar foot pressure in flatfoot.

  14. Sialyte(TM)-Based Composite Pressure Vessels for Extreme Environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — While traveling to Venus, electronics and instruments go through enormous pressure, temperature, and atmospheric environment changes. In the past, this has caused...

  15. Earth Pressure at rest of Søvind Marl – a highly overconsolidated Eocene clay

    DEFF Research Database (Denmark)

    Grønbech, Gitte Lyng; Ibsen, Lars Bo; Nielsen, Benjaminn Nordahl

    2016-01-01

    The present study evaluated earth pressure at rest, K0, in highly overconsolidated Eocene clay called Søvind Marl, which exhibits extremely high plasticity indices of up to 300%, a highly fissured structure, and preconsolidation stresses up to 6,800 kPa. Continuous Loading Oedometer (CLO) tests...... in situ stresses to various stress levels to estimate continuous K0 development in this highly overconsolidated clay. The normally consolidated earth pressure at rest was found for two different sample ages of Søvind Marl to be between 0.42 and 0.68. Results indicated the overconsolidated K0 reached...

  16. Ground pressure law of fully mechanized large cutting height face in extremely-soft thick seam and stability control in tip-to-face area

    Institute of Scientific and Technical Information of China (English)

    LIU Chang-you; CHANG Xing-min; HUANG Bing-xiang; WEI Min-tao; WANG Jun; WANG Jian-shu

    2007-01-01

    When stepped coal getting technology was applied to high seam mining working face, with field observations the following aspects of working face were analyzed based on the inherent conditions of extremely soft thick seam mined by Liangbei Mine, such as the brokenness and activity law of rock seam in the working face, the law of load-bearing of its supports, and the instability character of coal or rock in tip-to-face area.The following are the major laws. Pressure intensity of roof in high seam mining with extremely soft thick seam is stronger than one in slicing and sublevel-caving as a whole. But the greater crushing deformation of coal side makes pressure intensity of roof in the middle of working face be equivalent to one in sublevel-caving. In the middle of working face the roof brokenness has less dynamic load effect than roof brokenness in the two ends of working face. The brokenness instability of distinct pace of roof brings several load-bearings to supports. In condition of extremely soft thick seam, the ratio of resistance increment of supports in two ends of working face is obviously greater than that of supports in the middle. Most sloughing in coal side is triangular slop sloughing caused by shear slipping in high seam mining with extremely soft thick seam. Ultrahigh mining is the major reason for roof fall. Instability of coal or rock in tip-to-face area can be controlled effectively with the methods such as improving setting load of supports, mining along roof by reinforcing floor and protecting the immediate roof in time, and so on.

  17. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    Science.gov (United States)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non

  18. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    Science.gov (United States)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non

  19. Evanescent high pressure during hypersonic cluster-surface impact characterized by the virial theorem.

    Science.gov (United States)

    Gross, A; Levine, R D

    2005-11-15

    Matter under extreme conditions can be generated by a collision of a hypersonic cluster with a surface. The ultra-high-pressure interlude lasts only briefly from the impact until the cluster shatters. We discuss the theoretical characterization of the pressure using the virial theorem and develop a constrained molecular-dynamics procedure to compute it. The simulations show that for rare-gas clusters the pressures reach the megabar range. The contribution to the pressure from momentum transfer is comparable in magnitude and is of the same sign as that ("the internal pressure") due to repulsive interatomic forces. The scaling of the pressure with the reduced mechanical variables is derived and validated with reference to the simulations.

  20. High-pressure superconducting state in hydrogen

    Science.gov (United States)

    Duda, A. M.; Szczȩśniak, R.; Sowińska, M. A.; Kosiacka, A. H.

    2016-10-01

    The paper determines the thermodynamic parameters of the superconducting state in the metallic atomic hydrogen under the pressure at 1 TPa, 1.5 TPa, and 2.5 TPa. The calculations were conducted in the framework of the Eliashberg formalism. It has been shown that the critical temperature is very high (in the range from 301.2 K to 437.3 K), as well as high are the values of the electron effective mass (from 3.43me to 6.88me), where me denotes the electron band mass. The ratio of the low-temperature energy gap to the critical temperature explicitly violates the predictions of the BCS theory: 2 Δ (0) /kB TC ∈ . Additionally, the free energy difference between the superconducting and normal state, the thermodynamic critical field, and the specific heat of the superconducting state have been determined. Due to the significant strong-coupling and retardation effects those quantities cannot be correctly described in the framework of the BCS theory.

  1. High-pressure Raman spectroscopy of carbon onions and nanocapsules

    Science.gov (United States)

    Guo, J. J.; Liu, G. H.; Wang, X. M.; Fujita, T.; Xu, B. S.; Chen, M. W.

    2009-08-01

    We report high-pressure Raman spectra of carbon onions and nanocapsules investigated by diamond anvil cell experiments. The pressure coefficient and elastic behavior of carbon onions and nanocapsules are found to be very similar to those of multiwall carbon nanotubes. Additionally, detectable structure changes, particularly the collapse of the concentric graphite structure, cannot been seen at pressures as high as ˜20 GPa, demonstrating that carbon onions and nanocapsules have significant hardness and can sustain very high pressures.

  2. High Chamber Pressure, Light Weight Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The performance liquid propellant engines can be significantly improved by increasing both combustion temperature and pressure and reducing engine weight. State of...

  3. Numerical simulation of high pressure water jet impacting concrete

    Science.gov (United States)

    Liu, Jialiang; Wang, Mengjin; Zhang, Di

    2017-08-01

    High pressure water jet technology is an unconventional concrete crushing technology. In order to reveal the mechanism of high pressure water jet impacting concrete, it built a three-dimensional numerical model of high pressure water jet impacting concrete based on fluid mechanics and damage mechanics. And the numerical model was verified by theoretical analysis and experiments. Based on this model, it studied the stress characteristics in concrete under high pressure water jet impacting at different time, and quantified the damage evolution rules in concrete along the water jet radial direction. The results can provide theoretical basis and guidance for the high pressure water jet crushing concrete technology.

  4. AIREBO-M: A reactive model for hydrocarbons at extreme pressures

    Energy Technology Data Exchange (ETDEWEB)

    O’Connor, Thomas C., E-mail: toconnor@jhu.edu; Robbins, Mark O., E-mail: Mark.O.Robbins@jhu.edu [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Andzelm, Jan, E-mail: jan.w.andzelm.civ@mail.mil [Macromolecular Science and Technology Branch, U.S. Army Research Laboratory, Aberdeen, Maryland 21005 (United States)

    2015-01-14

    The Adaptive Intermolecular Reactive Empirical Bond Order potential (AIREBO) for hydrocarbons has been widely used to study dynamic bonding processes under ambient conditions. However, its intermolecular interactions are modeled by a Lennard-Jones (LJ) potential whose unphysically divergent power-law repulsion causes AIREBO to fail when applied to systems at high pressure. We present a modified potential, AIREBO-M, where we have replaced the singular Lennard-Jones potential with a Morse potential. We optimize the new functional form to improve intermolecular steric repulsions, while preserving the ambient thermodynamics of the original potentials as much as possible. The potential is fit to experimental measurements of the layer spacing of graphite up to 14 GPa and first principles calculations of steric interactions between small alkanes. To validate AIREBO-M’s accuracy and transferability, we apply it to a graphite bilayer and orthorhombic polyethylene. AIREBO-M gives bilayer compression consistent with quantum calculations, and it accurately reproduces the quasistatic and shock compression of orthorhombic polyethlyene up to at least 40 GPa.

  5. High-pressure spectroscopic studies of ferrocene, nickelocene, and ruthenocene

    Energy Technology Data Exchange (ETDEWEB)

    Roginski, R.T.; Shapley, J.R.; Drickamer, H.G.

    1988-07-28

    The solid-state infrared spectra (700-1300 cm/sup -1/) of ferrocene, nickelocene, and ruthenocene exhibit significant changes with hydrostatic pressure (0-120 kbar). A number of bands show a continuous increase in intensity with increasing pressure; also, several new bands appear in this spectral region at elevated pressures. These changes are discussed in terms of intermolecular interactions between molecules within unit cell, whereby the motions of the molecules are coupled to such an extreme as to impact intensity to vibrational modes that were previously dipole forbidden.

  6. High pressure gas vessels for neutron scattering experiments

    CERN Document Server

    Done, R; Evans, B E; Bowden, Z A

    2010-01-01

    The combination of high pressure techniques with neutron scattering proves to be a powerful tool for studying the phase transitions and physical properties of solids in terms of inter-atomic distances. In our report we are going to review a high pressure technique based on a gas medium compression. This technique covers the pressure range up to ~0.7GPa (in special cases 1.4GPa) and typically uses compressed helium gas as the pressure medium. We are going to look briefly at scientific areas where high pressure gas vessels are intensively used in neutron scattering experiments. After that we are going to describe the current situation in high pressure gas technology; specifically looking at materials of construction, designs of seals and pressure vessels and the equipment used for generating high pressure gas.

  7. Automated high pressure cell for pressure jump x-ray diffraction

    Science.gov (United States)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Terrill, Nick J.; Rogers, Sarah E.; Templer, Richard H.; Ces, Oscar; Seddon, John M.

    2010-06-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  8. Automated high pressure cell for pressure jump x-ray diffraction.

    Science.gov (United States)

    Brooks, Nicholas J; Gauthe, Beatrice L L E; Terrill, Nick J; Rogers, Sarah E; Templer, Richard H; Ces, Oscar; Seddon, John M

    2010-06-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  9. Equation of state of unreacted high explosives at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, C-S

    1998-08-14

    Isotherms of unreacted high explosives (HMX, RDX, and PETN) have been determined to quasi-hydrostatic high pressures below 45 GPa, by using a diamond-anvil cell angle-resolved synchrotron x-ray diffraction method. The equation-of-state parameters (bulk modulus Bo, and its derivatives B' ) are presented for the 3rd-order Birch-Murnaghan formula based on the measured isotherms. The results are also used to retrieve unreacted Hugoniots in these high explosives and to develop the equations of state and kinetic models for composite high explolsivcs such as XTX-8003 and LX-04. The evidence of shear-induced chemistry of HMX in non-hydrostatic conditions is also presented.

  10. High Pressure Laminates with Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    Sandra Magina

    2016-02-01

    Full Text Available High-pressure laminates (HPLs are durable, resistant to environmental effects and good cost-benefit decorative surface composite materials with special properties tailored to meet market demand. In the present work, polyhexamethylene biguanide (PHMB was incorporated for the first time into melamine-formaldehyde resin (MF matrix on the outer layer of HPLs to provide them antimicrobial properties. Chemical binding of PHMB to resin matrix was detected on the surface of produced HPLs by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR. Antimicrobial evaluation tests were carried out on the ensuing HPLs doped with PHMB against gram-positive Listeria innocua and gram-negative Escherichia coli bacteria. The results revealed that laminates prepared with 1.0 wt % PHMB in MF resin were bacteriostatic (i.e., inhibited the growth of microorganisms, whereas those prepared with 2.4 wt % PHMB in MF resin exhibited bactericidal activity (i.e., inactivated the inoculated microorganisms. The results herein reported disclose a promising strategy for the production of HPLs with antimicrobial activity without affecting basic intrinsic quality parameters of composite material.

  11. Spectroscopy of high pressure cesium discharge

    Science.gov (United States)

    Pichler, Goran; Pichler, Marin

    2008-05-01

    Near UV, visible and NIR spectrum of Cs lamp has been studied in many experimental situations. We concentrate on the spectral region around resonance lines where numerous satellite bands appear. We followed the appearance of these satellite bands after the ignition. They first appear in emission, and then in absorption, due to the steady increase of cesium atom density. The origin of the satellite bands have been described ootnotetextD. Veza, R. Beuc, S. Milosevi' c and G. Pichler, Eur. Phys. J. D, 2, 45 (1998)^,ootnotetextR. Beuc, H. Skenderovi' c, T. Ban, D. Veza, G. Pichler, W. Meyer, Eur. Phys. J.D 15, 209 (2001). We observed the satellite band intensity behavior in several different burners filled with cesium and xenon. In one burner made out of crystalline sapphire we observed interesting spatial distribution of entire visible spectrum, during evolution in time after the ignition. The intensity behavior of satellite bands in the near-infrared spectral region will be used in further development of the white light source with pulsed cesium high-pressure discharge.

  12. Functional Sub-states by High-pressure Macromolecular Crystallography.

    Science.gov (United States)

    Dhaussy, Anne-Claire; Girard, Eric

    2015-01-01

    At the molecular level, high-pressure perturbation is of particular interest for biological studies as it allows trapping conformational substates. Moreover, within the context of high-pressure adaptation of deep-sea organisms, it allows to decipher the molecular determinants of piezophily. To provide an accurate description of structural changes produced by pressure in a macromolecular system, developments have been made to adapt macromolecular crystallography to high-pressure studies. The present chapter is an overview of results obtained so far using high-pressure macromolecular techniques, from nucleic acids to virus capsid through monomeric as well as multimeric proteins.

  13. Enhanced MgB2 Superconductivity Under High Pressure

    Institute of Scientific and Technical Information of China (English)

    刘振兴; 靳常青; 游江洋; 李绍春; 朱嘉林; 禹日成; 李风英; 苏少奎

    2002-01-01

    We report on in situ high-pressure studies up to 1.0 GPa on the MgB2 superconductor which was high-pressure synthesized. The as-prepared sample is of high quality in terms of sharp superconducting transition (Tc) at 39K from the magnetic measurements. The in situ high-pressure measurements were carried out using a Be-Cu piston-cylinder-type instrument with mixed oil as the pressure transmitting medium which warrants a quasihydrostatic pressure environment at low temperature. The superconducting transitions were measured using the electrical conductance method. It is found that Tc increases by more than 1 K with pressure in the low-pressure range, before the Tc value decreases with the further increase of the pressure.

  14. Imaging in (high pressure) Micromegas TPC detectors

    Science.gov (United States)

    Luzón, G.; Cebrián, S.; Castel, J.; Dafni, Th.; Galán, J.; Garza, J. G.; Irastorza, I. G.; Iguaz, F. J.; Mirallas, H.; Ruíz-Choliz, E.

    2016-11-01

    The T-REX project of the group of the University of Zaragoza includes a number of R&D and prototyping activities to explore the applicability of gaseous Time Projection Chambers (TPCs) with Micromesh Gas Structures (Micromegas) in rare event searches where the pattern recognition of the signal is crucial for background discrimination. In the CAST experiment (CERN Axion Solar Telescope) a background level as low as 0.8 × 10-6 counts keV-1 cm-2 s-1 was achieved. Prototyping and simulations promise a 105 better signal-to-noise ratio than CAST for the future IAXO (International Axion Observatory) using x-ray telescopes. A new strategy is also explored in the search of WIMPS based on high gas pressure: the TREX-DM experiment, a low energy threshold detector. In both cases, axion and WIMP searches, the image of the expected signal is quite simple: a one cluster deposition coming from the magnet bore in the case of axions and, if possible, with a tadpole form in the case of WIMPs. It is the case of double beta decay (DBD) where imaging and pattern recognition play a major role. Results obtained in Xe + trimethylamine (TMA) mixture point to a reduction in electron diffusion which improves the quality of the topological pattern, with a positive impact on the discrimination capability, as shown in TREX-ββ prototype. Microbulk Micromegas are able to image the DBD ionization signature with high quality while, at the same time, measuring its energy deposition with a resolution of at least a ~ 3% FWHM at the transition energy Qββ and even better (up to ~ 1% FWHM) as extrapolated from low energy events. That makes Micromegas-based HPXe TPC a very competitive technique for the next generation DBD experiments (as PANDAX-III). Here, it will be shown the last results of the TREX project detectors and software concerning Axions, Dark matter and double beta decay.

  15. Pulse volume discharges in high pressure gases

    Science.gov (United States)

    Yamshchikov, V. A.

    2015-11-01

    New approach for suppression of plasma inhomogeneities and instabilities in the volume self-sustained discharge is offered. The physical model is offered and conditions of obtaining extremely homogeneous self-sustained discharge are defined (with full suppression of plasma inhomogeneity and instability). Results of calculations agree with experiments.

  16. Ionized sputter deposition using an extremely high plasma density pulsed magnetron discharge

    Energy Technology Data Exchange (ETDEWEB)

    Macak, Karol [Department of Physics, Linkoeping University, SE-581 83 Linkoeping, (Sweden); Kouznetsov, Vladimir [Department of Physics, Linkoeping University, SE-581 83 Linkoeping, (Sweden); Schneider, Jochen [Department of Physics, Linkoeping University, SE-581 83 Linkoeping, (Sweden); Helmersson, Ulf [Department of Physics, Linkoeping University, SE-581 83 Linkoeping, (Sweden); Petrov, Ivan [Materials Science Department and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States)

    2000-07-01

    Time resolved plasma probe measurements of a novel high power density pulsed plasma discharge are presented. Extreme peak power densities in the pulse (on the order of several kW cm{sup -2}) result in a very dense plasma with substrate ionic flux densities of up to 1 A cm{sup -2} at source-to-substrate distances of several cm and at a pressure of 0.13 Pa (1 mTorr). The pulse duration was {approx}100 {mu}s with a pulse repetition frequency of 50 Hz. The plasma consists of metallic and inert gas ions, as determined from time resolved Langmuir probe measurements and in situ optical emission spectroscopy data. It was found that the plasma composition at the beginning of the pulse was dominated by Ar ions. As time elapsed metal ions were detected and finally dominated the ion composition. The effect of the process parameters on the temporal development of the ionic fluxes is discussed. The ionized portion of the sputtered metal flux was found to have an average velocity of 2500 m s{sup -1} at 6 cm distance from the source, which conforms to the collisional cascade sputtering theory. The degree of ionization of the sputtered metal flux at a pressure of 0.13 Pa was found to be 40%{+-}20% by comparing the total flux of deposited atoms with the charge measured for the metal ions in the pulse. (c) 2000 American Vacuum Society.

  17. Creep strength of iridium at extremely high temperatures; Zeitstandfestigkeit von Iridium bei extrem hohen Temperaturen

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, B. [Fachhochschule Jena (Germany). Fachbereich Werkstofftechnik; Lupton, D. [Heraeus (W.C.) GmbH, Hanau (Germany). Produktbereich Materialtechnik; Braun, F. [Heraeus (W.C.) GmbH, Hanau (Germany). Produktbereich Materialtechnik; Merker, J. [Jena Univ. (Germany). Technisches Inst.; Helmich, R. [Jena Univ. (Germany). Technisches Inst.

    1994-12-31

    On iridium in the initial state and after carrying out creep tests, apart from metallographic and fractographic work, investigations on the distribution of trace impurities were done by means of secondary ion mass spectroscopy and investigations of the crystal structure were carried out with the aid of Kossel technique, a special field of X-ray bending. Although iridium of high purity was used for the investigations, enrichment of hydrogen, carbon, sodium, potassium, calcium, magnesium, silicon, iron, nickel and chromium was proved by means of secondary ion mass spectroscopy at the grain boundaries, where the average contents in iridium were only about 1 {mu}g/g. In the creep test, creep fracture lines were found in the range of 1800 to 2300 C and about 0.5 to 12 hours on iridium samples with a square cross section of 1 mm. It follows from the results that this noble metal has a considerable resistance to heat at these temperatures, which makes its use up to 2300 C possible. (orig./RHM) [Deutsch] Es erfolgten am Iridium im Ausgangszustand und nach Durchfuehrung der Zeitstandversuche neben metallographischen und fraktographischen Arbeiten Untersuchungen zur Verteilung der Spurenverunreinigungen mittels Sekundaerionen-Massenspektroskopie sowie Untersuchungen der Kristallstruktur mit Hilfe der Kossel-Technik, einem Spezialgebiet der Roentgenbeugung. Obwohl fuer die Untersuchungen hochreines Iridium verwendet wurde, konnten mittels Sekundaerionen-Massenspektroskopie in den Korngrenzen Anreicherungen von Wasserstoff, Kohlenstoff, Natrium, Kalium, Calcium, Magnesium, Silizium, Eisen, Nickel und Chrom nachgewiesen werden, wobei die durchschnittlichen Gehalte in Iridium nur um 1 {mu}g/g lagen. Im Zeitstandversuch wurden an Iridiumproben mit 1 mm Vierkantquerschnitt Zeitbruchlinien im Bereich von 1800 bis 2300 C und etwa 0,5 bis 12 Stunden aufgenommen. Aus den Ergebnissen folgt, dass das Edelmetall bei diesen Temperaturen noch eine beachtliche Warmfestigkeit besitzt, die

  18. Extremely short duration high intensity interval training substantially improves insulin action in young healthy males

    DEFF Research Database (Denmark)

    Babraj, John A; Vollaard, Niels B J; Keast, Cameron

    2009-01-01

    BACKGROUND: Traditional high volume aerobic exercise training reduces cardiovascular and metabolic disease risk but involves a substantial time commitment. Extremely low volume high-intensity interval training (HIT) has recently been demonstrated to produce improvements to aerobic function, but i...

  19. Hydraulic High Pressure Valve Controller Using the In-Situ Pressure Difference

    Science.gov (United States)

    Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Hall, Jeffery L. (Inventor)

    2016-01-01

    A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.

  20. High Toughness Light Weight Pressure Vessel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposed is a pressure vessel with 25% better Fracture Strength over equal strength designed Fiberglass to help reduce 10 to 25% weight for aerospace use. Phase I is...

  1. Propagation Limits of High Pressure Cool Flames

    Science.gov (United States)

    Ju, Yiguang

    2016-11-01

    The flame speeds and propagation limits of premixed cool flames at elevated pressures with radiative heat loss are numerically modelled using dimethyl ether mixtures. The primary focus is paid on the effects of pressure, mixture dilution, flame size, and heat loss on cool flame propagation. The results showed that cool flames exist on both fuel lean and fuel rich sides and thus dramatically extend the lean and rich flammability limits. There exist three different flame regimes, hot flame, cool flame, and double flame. A new flame flammability diagram including both cool flames and hot flames is obtained at elevated pressure. The results show that pressure significantly changes cool flame propagation. It is found that the increases of pressure affects the propagation speeds of lean and rich cool flames differently due to the negative temperature coefficient effect. On the lean side, the increase of pressure accelerates the cool flame chemistry and shifts the transition limit of cool flame to hot flame to lower equivalence ratio. At lower pressure, there is an extinction transition from hot flame to cool flame. However, there exists a critical pressure above which the cool flame to hot flame transition limit merges with the lean flammability limit of the hot flame, resulting in a direct transition from hot flame to cool flame. On the other hand, the increase of dilution reduces the heat release of hot flame and promotes cool flame formation. Moreover, it is shown that a smaller flame size and a higher heat loss also extend the cool flame transition limit and promote cool flame formation.

  2. Evidence of Tetragonal Nanodomains in the high pressure polymorph

    Energy Technology Data Exchange (ETDEWEB)

    Ehm, L.; Borkowski, L.A.; Parise J.B.; Ghose, S.; Chen, Z.

    2010-12-17

    The pressure induced P4mm {yields} Pm{bar 3}m phase transition in BaTiO{sub 3} perovskite was investigated by x-ray total scattering. The evolution of the structure was analyzed by fitting pair distribution functions over a pressure range from ambient pressure up to 6.85(7) GPa. Evidence for the existence of tetragonal ferroelectric nanodomains at high pressure was found. The average size of the nanodomains in the high-pressure phase decreases with increasing pressure. Extrapolation of the domain size to pressures higher than studied experimentally suggests a disappearance of the ferroelectric domains at about 9.3(5) GPa and a cubic symmetry of BaTiO{sub 3} high-pressure phase.

  3. What Are the Signs, Symptoms, and Complications of High Blood Pressure?

    Science.gov (United States)

    ... What Are the Signs, Symptoms, and Complications of High Blood Pressure? Because diagnosis is based on blood pressure readings, ... damaged from chronic high blood pressure. Complications of High Blood Pressure When blood pressure stays high over time, it ...

  4. Modeling, Parameters Identification, and Control of High Pressure Fuel Cell Back-Pressure Valve

    Directory of Open Access Journals (Sweden)

    Fengxiang Chen

    2014-01-01

    Full Text Available The reactant pressure is crucial to the efficiency and lifespan of a high pressure PEMFC engine. This paper analyses a regulated back-pressure valve (BPV for the cathode outlet flow in a high pressure PEMFC engine, which can achieve precisely pressure control. The modeling, parameters identification, and nonlinear controller design of a BPV system are considered. The identified parameters are used in designing active disturbance rejection controller (ADRC. Simulations and extensive experiments are conducted with the xPC Target and show that the proposed controller can not only achieve good dynamic and static performance but also have strong robustness against parameters’ disturbance and external disturbance.

  5. Clinical study of XIR (extreme infrared) cold and warm air mattress used for pre-vention and control ofⅠandⅡperiods of pressure ulcers in ICU patients with high risk of pressure ulcers%远红外线冷暖气流床垫在 ICU压疮高危患者Ⅰ、Ⅱ期压疮防治中的应用效果

    Institute of Scientific and Technical Information of China (English)

    张允; 朱滨; 陈建芬; 庄细琴; 王亚芳

    2015-01-01

    Objective To explore the effect of XIR cold and warm air mattress used for prevention and control ofⅠandⅡperiods of pressure ulcers in ICU high risk patients of pressure ulcers and provide care references to reduce the incidence of pressure ulcers of the ICU patients with high risk of pressure ulcers and improve pressure ulcer cure rate.Methods 356 cases with high risk of pressure ulcers who were admitted to ICU during January 2010 to December 2011 were selected and randomly divided into observation ( n=186 ) and control ( n=170) groups.XIR cold and warm air mattress was used in observation group and patients in observation group were changed body posi-tion every four hours.The results were compared.Results The pressure ulcer rate of observation group was 13.4%, lower than that of con-trol group (21.8%), the difference was statistically significant.Conclusion XIR cold and warm air mattress could effectively prevent and control pressure ulcers for the ICU patients with high risk of pressure ulcers, it is an effective way to prevent and control pressure ulcers.%目的:探讨远红外线冷暖气流床垫预防和治疗ICU压疮高危患者Ⅰ、Ⅱ期压疮的效果。方法将我院ICU 2010年1月至2011年12月收治的356例压疮患者,随机分为观察组186例和对照组170例,给予观察组患者使用远红外线冷暖气流床垫,4 h翻身1次。比较两组防治效果。结果观察组患者压疮发生率为13.4%,低于对照组21.8%,差异有统计学意义( P<0.05);观察组患者Ⅰ、Ⅱ期压疮愈合率为95.8%,高于对照组70.6%,差异有统计学意义(P<0.05)。结论远红外线冷暖气流床垫防治压疮效果显著,为ICU压疮高危患者有效防治压疮的方法,降低了ICU压疮高危患者的压疮发生率,提高了压疮治愈率。

  6. High Pressure Sensing and Dynamics Using High Speed Fiber Bragg Grating Interrogation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, G. [LANL; Sandberg, R. L. [LANL; Lalone, B. M. [NSTec; Marshall, B. R. [NSTec; Grover, M. [NSTec; Stevens, G. D. [NSTec; Udd, E. [Columbia Gorge Research

    2014-06-01

    Fiber Bragg gratings (FBGs) are developing into useful sensing tools for measuring high pressure dynamics in extreme environments under shock loading conditions. Approaches using traditional diode array coupled FBG interrogation systems are often limited to readout speeds in the sub-MHz range. For shock wave physics, required detection speeds approaching 100 MHz are desired. We explore the use of two types of FBG sensing systems that are aimed at applying this technology as embedded high pressure probes for transient shock events. Both approaches measure time resolved spectral shifts in the return light from short (few mm long) uniform FBGs at 1550 nm. In the first approach, we use a fiber coupled spectrometer to demultiplex spectral channels into an array (up to 12) of single element InGaAs photoreceivers. By monitoring the detectors during a shock impact event with high speed recording, we are able to track the pressure induced spectral shifting in FBG down to a time resolution of 20 ns. In the second approach, developed at the Special Technologies Lab, a coherent mode-locked fiber laser is used to illuminate the FBG sensor. After the sensor, wavelength-to-time mapping is accomplished with a chromatic dispersive element, and entire spectra are sampled using a single detector at the modelocked laser repetition rate of 50 MHz. By sampling with a 12 GHz InGaAs detector, direct wavelength mapping in time is recorded, and the pressure induced FBG spectral shift is sampled at 50 MHz. Here, the sensing systems are used to monitor the spectral shifts of FBGs that are immersed into liquid water and shock compressed using explosives. In this configuration, the gratings survive to pressures approaching 50 kbar. We describe both approaches and present the measured spectral shifts from the shock experiments.

  7. High Pressure, High Gradient RF Cavities for Muon Beam Cooling

    CERN Document Server

    Johnson, R P

    2004-01-01

    High intensity, low emittance muon beams are needed for new applications such as muon colliders and neutrino factories based on muon storage rings. Ionization cooling, where muon energy is lost in a low-Z absorber and only the longitudinal component is regenerated using RF cavities, is presently the only known cooling technique that is fast enough to be effective in the short muon lifetime. RF cavities filled with high-pressure hydrogen gas bring two advantages to the ionization technique: the energy absorption and energy regeneration happen simultaneously rather than sequentially, and higher RF gradients and better cavity breakdown behavior are possible than in vacuum due to the Paschen effect. These advantages and some disadvantages and risks will be discussed along with a description of the present and desired RF R&D efforts needed to make accelerators and colliders based on muon beams less futuristic.

  8. Molecular Retrofitting Adapts a Metal–Organic Framework to Extreme Pressure

    Science.gov (United States)

    2017-01-01

    Despite numerous studies on chemical and thermal stability of metal–organic frameworks (MOFs), mechanical stability remains largely undeveloped. To date, no strategy exists to control the mechanical deformation of MOFs under ultrahigh pressure. Here, we show that the mechanically unstable MOF-520 can be retrofitted by precise placement of a rigid 4,4′-biphenyldicarboxylate (BPDC) linker as a “girder” to afford a mechanically robust framework: MOF-520-BPDC. This retrofitting alters how the structure deforms under ultrahigh pressure and thus leads to a drastic enhancement of its mechanical robustness. While in the parent MOF-520 the pressure transmitting medium molecules diffuse into the pore and expand the structure from the inside upon compression, the girder in the new retrofitted MOF-520-BPDC prevents the framework from expansion by linking two adjacent secondary building units together. As a result, the modified MOF is stable under hydrostatic compression in a diamond-anvil cell up to 5.5 gigapascal. The increased mechanical stability of MOF-520-BPDC prohibits the typical amorphization observed for MOFs in this pressure range. Direct correlation between the orientation of these girders within the framework and its linear strain was estimated, providing new insights for the design of MOFs with optimized mechanical properties. PMID:28691079

  9. High pressure/high temperature thermogravimetric apparatus. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Calo, J.M.; Suuberg, E.M.

    1999-12-01

    The purpose of this instrumentation grant was to acquire a state-of-the-art, high pressure, high temperature thermogravimetric apparatus (HP/HT TGA) system for the study of the interactions between gases and carbonaceous solids for the purpose of solving problems related to coal utilization and applications of carbon materials. The instrument that we identified for this purpose was manufactured by DMT (Deutsche Montan Technologies)--Institute of Cokemaking and Coal Chemistry of Essen, Germany. Particular features of note include: Two reactors: a standard TGA reactor, capable of 1100 C at 100 bar; and a high temperature (HT) reactor, capable of operation at 1600 C and 100 bar; A steam generator capable of generating steam to 100 bar; Flow controllers and gas mixing system for up to three reaction gases, plus a separate circuit for steam, and another for purge gas; and An automated software system for data acquisition and control. The HP/TP DMT-TGA apparatus was purchased in 1996 and installed and commissioned during the summer of 1996. The apparatus was located in Room 128 of the Prince Engineering Building at Brown University. A hydrogen alarm and vent system were added for safety considerations. The system has been interfaced to an Ametek quadruple mass spectrometer (MA 100), pumped by a Varian V250 turbomolecular pump, as provided for in the original proposed. With this capability, a number of gas phase species of interest can be monitored in a near-simultaneous fashion. The MS can be used in a few different modes. During high pressure, steady-state gasification experiments, it is used to sample, measure, and monitor the reactant/product gases. It can also be used to monitor gas phase species during nonisothermal temperature programmed reaction (TPR) or temperature programmed desorption (TPD) experiments.

  10. The paradox of extreme high-altitude migration in bar-headed geese Anser indicus

    Science.gov (United States)

    Hawkes, L.A.; Balachandran, S.; Batbayar, N.; Butler, P.J.; Chua, B.; Douglas, D.C.; Frappell, P.B.; Hou, Y.; Milsom, W.K.; Newman, S.H.; Prosser, D.J.; Sathiyaselvam, P.; Scott, G.R.; Takekawa, John Y.; Natsagdorj, T.; Wikelski, M.; Witt, M.J.; Yan, B.; Bishop, C.M.

    2012-01-01

    Bar-headed geese are renowned for migratory flights at extremely high altitudes over the world's tallest mountains, the Himalayas, where partial pressure of oxygen is dramatically reduced while flight costs, in terms of rate of oxygen consumption, are greatly increased. Such a mismatch is paradoxical, and it is not clear why geese might fly higher than is absolutely necessary. In addition, direct empirical measurements of high-altitude flight are lacking. We test whether migrating bar-headed geese actually minimize flight altitude and make use of favourable winds to reduce flight costs. By tracking 91 geese, we show that these birds typically travel through the valleys of the Himalayas and not over the summits. We report maximum flight altitudes of 7290 m and 6540 m for southbound and northbound geese, respectively, but with 95 per cent of locations received from less than 5489 m. Geese travelled along a route that was 112 km longer than the great circle (shortest distance) route, with transit ground speeds suggesting that they rarely profited from tailwinds. Bar-headed geese from these eastern populations generally travel only as high as the terrain beneath them dictates and rarely in profitable winds. Nevertheless, their migration represents an enormous challenge in conditions where humans and other mammals are only able to operate at levels well below their sea-level maxima.

  11. High pressure and anesthesia: pressure stimulates or inhibits bacterial bioluminescence depending upon temperature.

    Science.gov (United States)

    Nosaka, S; Kamaya, H; Ueda, I

    1988-10-01

    Although high pressure is often viewed as a nonspecific stimulus counteracting anesthesia, pressure can either excite or inhibit biological activity depending on the temperature at application. Temperature and pressure are two independent variables that determine equilibrium quantity, e.g., the state of organisms in terms of activity and anesthesia depth. We used the light intensity of luminous bacteria (Vibrio fischeri) as an activity parameter, and studied the effects of pressure and anesthetics on the bacteria's light intensity at various temperatures. The light intensity was greatest at about 30 degrees C at ambient pressure. When the system was pressurized up to 204 atm, the temperature for maximum light intensity was shifted to higher temperatures. Above the optimal temperature for the maximal light intensity, high pressure increased the light intensity. Below the optimal temperature, pressure decreased light intensity. Pressure only shifts the reaction equilibrium to the lower volume state (Le Chatelier's principle). When the volume of the excited state is larger than the resting state, high pressure inhibits excitation, and vice versa. Halothane 0.008 atm and isoflurane 0.021 atm inhibited the light intensity both above and below the optimal temperature. When pressurized, the light intensity increased in the high temperature range but decreased in the low temperature range, as in the control. Thus, high pressure seemingly potentiated the anesthetic action at low temperatures. When the ratio of the light intensity in bacteria exposed to anesthesia and those not exposed to anesthesia was plotted against the pressure, however, the value approached unity in proportion to the pressure increase.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Elastic properties of solids at high pressure

    Science.gov (United States)

    Vekilov, Yu Kh; Krasilnikov, O. M.; Lugovskoy, A. V.

    2015-11-01

    This review examines the elastic response of solids under load. The definitions of isothermal and adiabatic elastic constants of ( n≥2) for a loaded crystal are given. For the case of hydrostatic pressure, two techniques are proposed for calculating the second-, third-, and fourth-order elastic constants from the energy-strain and stress-strain relations. As an example, using the proposed approach within the framework of the density functional theory, the second- to fourth-order elastic constants of bcc tungsten are calculated for the pressure range of 0-600 GPa.

  13. Study on Manganin High Pressure Array Sensor

    Institute of Scientific and Technical Information of China (English)

    DUAN Jianhua; DU Xiaosong; YANG Bangchao; ZHOU Hongre

    2003-01-01

    A new kind of thin film manganin aray gauge is fabricated by adopting a new sensor fabrication technique. The sensitive materials (manganin thin films) are first deposited by magnetron sputtering on fused silica substrates, and then covered by a layer of SiO2 thin films by electron beam evaporation. Based on impedance match method of "back configuration", the highest pressure measured in Al target is 51.68 Gpa, the highest pressure in SiO2 package is 35.396 Gpa and the piezoresistance coefficient k is 0.026 Gpa-1. The upper limit and measure precision of sensor is improved.

  14. Announcement: National High Blood Pressure Education Month - May 2016.

    Science.gov (United States)

    2016-05-27

    May is National High Blood Pressure Education Month. High blood pressure (hypertension) is a major contributor to heart disease and stroke, two leading causes of death in the United States.* High blood pressure affects one third of U.S. adults, or approximately 75 million persons, yet approximately 11 million of these persons are not aware they have hypertension, and approximately 18 million are not being treated (unpublished data) (1,2).

  15. Growth and high pressure studies of zirconium sulphoselenide single crystals

    Indian Academy of Sciences (India)

    K R Patel; R D Vaidya; M S Dave; S G Patel

    2009-11-01

    Transition metal trichalcogenides are well suited for extreme pressure lubrication. These materials being semiconducting and of layered structure may undergo structural and electronic transition under pressure. In this paper authors reported the details about synthesis and characterization of zirconium sulphoselenide single crystals. The chemical vapour transport technique was used for the growth of zirconium sulphoselenide single crystals. The energy dispersive analysis by X-ray (EDAX) gave the confirmation about the stoichiometry of the as-grown crystals and other structural characterizations were accomplished by X-ray diffraction (XRD) study. The variation of electrical resistance was monitored in a Bridgman opposed anvil set-up up to 8 GPa pressure to identify the occurrence of any structural transition. These crystals do not possess any structural transitions upto the pressure limit examined.

  16. High Pressure/Temperature Metal Silicate Partitioning of Tungsten

    Science.gov (United States)

    Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.

    2010-01-01

    The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. <10 GPa, and in two cases at or near 20 GPa. According to those data, the stronger influences on the distribution coefficient of W are temperature, composition, and oxygen fugacity with a relatively slight influence in pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.

  17. High-pressure magic angle spinning nuclear magnetic resonance

    Science.gov (United States)

    Hoyt, David W.; Turcu, Romulus V. F.; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Felmy, Andrew R.; Hu, Jian Zhi

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. As an application example, in situ13C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg 2SiO 4) reacted with supercritical CO 2 and H 2O at 150 bar and 50 °C are reported, with relevance to geological sequestration of carbon dioxide.

  18. High-pressure magic angle spinning nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, David W.; Turcu, Romulus V. F.; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Felmy, Andrew R.; Hu, Jian Zhi

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. Finally, as an application example, in situ13C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg2SiO4) reacted with supercritical CO2 and H2O at 150 bar and 50 °C are reported, with relevance to geological sequestration of carbon dioxide.

  19. Vibrational spectroscopy at high external pressures the diamond anvil cell

    CERN Document Server

    Ferraro, John R

    1984-01-01

    Vibrational Spectroscopy at High External Pressures: The Diamond Anvil Cell presents the effects of high pressure on the vibrational properties of materials as accomplished in a diamond anvil cell (DAC). The DAC serves the dual purpose of generating the pressures and being transparent to infrared radiation, allowing the observation of changes caused by pressure. The optical probes highlighted will deal principally with infrared and Raman scattering, although some observations in the visible region will also be presented. The book begins with a discussion of the effects of pressure and pres

  20. High temperature superconductivity in sulfur and selenium hydrides at high pressure

    Science.gov (United States)

    Flores-Livas, José A.; Sanna, Antonio; Gross, E. K. U.

    2016-03-01

    Due to its low atomic mass, hydrogen is the most promising element to search for high-temperature phononic superconductors. However, metallic phases of hydrogen are only expected at extreme pressures (400 GPa or higher). The measurement of the record superconducting critical temperature of 203 K in a hydrogen-sulfur compound at 160 GPa of pressure [A.P. Drozdov, M.I. Eremets, I.A. Troyan, arXiv:1412.0460; [cond-mat.supr-con] (2014); A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S.I. Shylin, Nature 525, 73 (2015)], shows that metallization of hydrogen can be reached at significantly lower pressure by inserting it in the matrix of other elements. In this work we investigate the phase diagram and the superconducting properties of the H-S systems by means of minima hopping method for structure prediction and density functional theory for superconductors. We also show that Se-H has a similar phase diagram as its sulfur counterpart as well as high superconducting critical temperature. We predict H3Se to exceed 120 K superconductivity at 100 GPa. We show that both H3Se and H3S, due to the critical temperature and peculiar electronic structure, present rather unusual superconducting properties. Supplementary material in the form of one pdf file available from the Journal web page at: http://dx.doi.org/10.1140/epjb/e2016-70020-0

  1. Ultrasonic Propagation in Liquids Under High Pressures

    Science.gov (United States)

    1948-12-01

    34 Proc. Am, Acad. Arts Sci. 19, 143 (1923). 28. Bridgman P. W., "The Viscosity of Liquids under Pressure," Proc. Nat. Acad. Sci. 119 603 (1925). TM3...1932). 42. Ewell, R. H., and Eyring, H., "Theory of the Viscosity of Liquids as a Function of Temperature and Pressureg" J. Chem. Phys. 1, 726 (1937

  2. Nanocomposite Thermolectric Materials by High Pressure Powder Consolidation Manufacturing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to NASA's need to develop advanced nanostructured thermolectric materials, UTRON is proposing an innovative high pressure powder consolidation...

  3. Nanocomposite Thermolectric Materials by High Pressure Powder Consolidation Manufacturing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to NASA's need to develop advanced nanostructured thermolectric materials, UTRON is proposing an innovative high pressure powder consolidation...

  4. A system for incubations at high gas partial pressure

    DEFF Research Database (Denmark)

    Sauer, Patrick; Glombitza, Clemens; Kallmeyer, Jens

    2012-01-01

    High-pressure is a key feature of deep subsurface environments. High partial pressure of dissolved gasses plays an important role in microbial metabolism, because thermodynamic feasibility of many reactions depends on the concentration of reactants. For gases, this is controlled by their partial...... pressure, which can exceed 1 MPa at in situ conditions. Therefore, high hydrostatic pressure alone is not sufficient to recreate true deep subsurface in situ conditions, but the partial pressure of dissolved gasses has to be controlled as well. We developed an incubation system that allows for incubations...... and inert PVDF (polyvinylidene fluoride) incubator sleeve, which is almost impermeable for gases, holds the sample and separates it from the pressure fluid. The flexibility of the incubator sleeve allows for sub-sampling of the medium without loss of pressure. Experiments can be run in both static and flow...

  5. Preliminary Blood Pressure Screening in a Representative Sample of Extremely Obese Kuwaiti Adolescents

    Directory of Open Access Journals (Sweden)

    Rima Abdul Razzak

    2013-01-01

    Full Text Available A relationship between blood pressure (BP and obesity has been found in young adults, but no data are available for adolescents in Kuwait. 257 adolescent (11–19 years participants were categorized into two groups according to their BMI; 48 nonobese (21 males: 43.7% and 27 females: 56.3% with mean age of years and 209 obese (128 males: 61.25% and 81 females: 38.75% with mean age of years. The mean BMI was  kg/m2 for the nonobese group and  kg/m3 for the obese group. Most BP measures based on a single screening were significantly higher in the obese group. The prevalence of elevated BP was significantly higher in the obese subjects (nonobese: 13%; obese: 63%; . In the obese group, there was a significant positive correlation between total sample BMI and all BP measures except the pulse pressure. There was a similar rate of elevated blood pressure between males and females (64% versus 60%; . For both isolated systolic elevated BP and isolated diastolic elevated BP, the prevalences were comparable between the males (systolic: 42%; diastolic: 5% and females (systolic: 34%; diastolic: 14%. Only systolic BP was positively correlated with BMI in obese adolescent males (Spearman ; , with a significant correlation between BMI with diastolic (Spearman ; and mean BP (Spearman ; in females.

  6. Water-permeability measurement of high performance concrete using a high-pressure triaxial cell

    Energy Technology Data Exchange (ETDEWEB)

    El-Dieb, A.S. [Ain Shams Univ., Cairo (Egypt). Dept. of Civil Engineering; Hooton, R.D. [Univ. of Toronto, Ontario (Canada). Dept. of Civil Engineering

    1995-08-01

    Water permeability of concrete is used to indicate its durability. Accurate and reproducible measurement of water permeability is difficult and becomes more difficult as the quality of concrete increases. When high-performance concrete (HPC) is tested, these concerns become more pronounced. HPC is used widely to improve the durability and performance of structures but there are few test procedures able to evaluate its permeability-related properties. In this study the water permeabilities of concretes including HPC were measured using a high-pressure triaxial cell with a sensitive and automated measurement capability. Special analysis procedures were developed to obtain useful data from the extremely low volume of water being measured. This method was able to measure a wide range of permeability values from 10{sup {minus}12} m/s to 10{sup {minus}16} m/s, with reproducible measurements on replicates.

  7. Evolutionary crystal structure prediction and novel high-pressure phases

    OpenAIRE

    Oganov, A. R.; Ma, Y.; Lyakhov, A. O.; Valle, M.; C. Gatti

    2010-01-01

    Prediction of stable crystal structures at given pressure-temperature conditions, based only on the knowledge of the chemical composition, is a central problem of condensed matter physics. This extremely challenging problem is often termed "crystal structure prediction problem", and recently developed evolutionary algorithm USPEX (Universal Structure Predictor: Evolutionary Xtallography) made an important progress in solving it, enabling efficient and reliable prediction of structures with up...

  8. Extremely High Suction Performance Inducers for Space Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced pump inducer design technology that uses high inlet diffusion blades, operates at a very low flow coefficient, and employs a cavitation control and...

  9. Blood pressure in childhood : epidemiological probes into the aetiology of high blood pressure

    NARCIS (Netherlands)

    A. Hofman (Albert)

    1983-01-01

    textabstractHigh arterial blood pressure takes a heavy toll in western populations (1 ). Its causes are still largely unknown, but its sequelae, a variety of cardiovascular and renal diseases, have been referred to as "a modern scourge" (2). High blood pressure of unknown cause, or essential hyperte

  10. Blood pressure in childhood : epidemiological probes into the aetiology of high blood pressure

    NARCIS (Netherlands)

    A. Hofman (Albert)

    1983-01-01

    textabstractHigh arterial blood pressure takes a heavy toll in western populations (1 ). Its causes are still largely unknown, but its sequelae, a variety of cardiovascular and renal diseases, have been referred to as "a modern scourge" (2). High blood pressure of unknown cause, or

  11. [Genesis study of omphacite at high pressure and high temperature].

    Science.gov (United States)

    Xiao, Ben-Fu; Yi, Li; Wang, Duo-Jun; Xie, Chao; Tang, Xue-Wu; Liu, Lei; Cui, Yue-Ju

    2013-11-01

    The melting and recrystallizing experiments of alkali basalt powder and mixture of pure oxides mixed as stoichiometry were performed at 3 GPa and 1 200 degrees C. Electronic microprobe analysis and Raman spectra showed that the recrystallized products were omphacites, the FWHM (full width at half maximum) of the Raman peak was narrow and its shape was sharp, which is attributed to the stable Si-O tetrahedral structure and the high degree of order in omphacite. Based on the results of previous studies, the influencing factors of omphacite genesis and its primary magma were discussed. The results showed that the formation of omphacite could be affected by many factors, such as the composition of parent rocks, the concentration of fluid in the system and the conditions of pressure and temperature. This result could support some experimental evidences on the genesis studies of omphacite and eclogite.

  12. Calculation and analysis of the harmonic vibrational frequencies in molecules at extreme pressure: methodology and diborane as a test case.

    Science.gov (United States)

    Cammi, R; Cappelli, C; Mennucci, B; Tomasi, J

    2012-10-21

    We present a new quantum chemical method for the calculation of the equilibrium geometry and the harmonic vibrational frequencies of molecular systems in dense medium at high pressures (of the order of GPa). The new computational method, named PCM-XP, is based on the polarizable continuum model (PCM), amply used for the study of the solvent effects at standard condition of pressure, and it is accompanied by a new method of analysis for the interpretation of the mechanisms underpinning the effects of pressure on the molecular geometries and the harmonic vibrational frequencies. The PCM-XP has been applied at the density functional theory level to diborane as a molecular system under high pressure. The computed harmonic vibrational frequencies as a function of the pressure have shown a satisfactory agreement with the corresponding experimental results, and the parallel application of the method of analysis has reveled that the effects of the pressure on the equilibrium geometry can be interpreted in terms of direct effects on the electronic charge distribution of the molecular solutes, and that the effects on the harmonic vibrational frequencies can be described in terms of two physically distinct effects of the pressure (curvature and relaxation) on the potential energy for the motion of the nuclei.

  13. High Pressure Cryocooling of Protein Crystals: The Enigma of Water

    Science.gov (United States)

    Gruner, Sol M.

    2010-03-01

    A novel high-pressure cryocooling technique for preparation biological samples for x-ray analysis is described. The method, high-pressure cryocooling, involves cooling samples to cryogenic temperatures (e.g., 100 K) in high-pressure Helium gas (up to 200 MPa). It bears both similarities and differences to high-pressure cooling methods that have been used to prepare samples for electron microscopy, and has been especially useful for cryocooling of macromolecular crystals for x-ray diffraction. Examples will be given where the method has been effective in providing high quality crystallographic data for difficult samples, such as cases where ligands needed to be stabilized in binding sites to be visualized, or where very high resolution data were required. The talk concludes with a discussion of data obtained by high-pressure cryocooling that pertains to two of the most important problems in modern science: the enigma of water and how water affects the activity of proteins.

  14. Dirty Air, High Blood Pressure Linked

    Institute of Scientific and Technical Information of China (English)

    应树道

    2001-01-01

    贵刊去年第6期曾刊登一短文,题目是:盐,迫升血压之元凶。读了该文,我开始严格控制每日的食盐摄入量,再附以药物治疗,血压果然趋于平稳。近日上网,遇一奇文,意思是人的血压与空气污染状况有涉!根据对2600个成年人的调查,得出了这样的结论:Pollution may cause changes in the part of the nervous system that controls blood pressure.文章又同时说明:Exactly how pollution might cause blood pressure to climb remains unclear.人体之奥妙由此可见一斑。

  15. Effect of low-intensity extremely high frequency radiation on reproductive function in wistar rats.

    Science.gov (United States)

    Subbotina, T I; Tereshkina, O V; Khadartsev, A A; Yashin, A A

    2006-08-01

    The exposure to low-intensity extremely high frequency electromagnetic radiation during spermatogenesis was accompanied by pathological changes, which resulted in degeneration and polymorphism of spermatozoa. The number of newborn rats increased in the progeny of irradiated animals.

  16. Extreme Environment Circuit Blocks for Spacecraft Power & Propulsion System & Other High Reliability Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Chronos Technology (DIv of FMI, Inc.) proposes to design, fabricate, and deliver a performance proven, and commercially available set of extreme high operating...

  17. Low Pressure Evidence of High Pressure Shock: Thermal Histories and Annealing in Shocked Meteorites

    Science.gov (United States)

    Sharp, T. G.; Hu, J.

    2016-08-01

    In this study we look at the mineralogy associated with shock veins in several highly shocked L chondrites to better understand shock conditions and the importance of thermal history in creating and destroying high-pressure minerals.

  18. Recent progress in high pressure metrology in Europe

    Directory of Open Access Journals (Sweden)

    Sabuga Wladimir

    2014-01-01

    Full Text Available Five European national metrology institutes in collaboration with a university, a research institute and five industrial companies are working on a joint research project within a framework of the European Metrology Research Programme aimed at development of 1.6 GPa primary and 1.5 GPa transfer pressure standards. Two primary pressure standards were realised as pressure-measuring multipliers, each consisting of a low pressure and a high pressure (HP piston-cylinder assembly (PCA. A special design of the HP PCAs was developed in which a tungsten carbide cylinder is supported by two thermally shrunk steel sleeves and, additionally, by jacket pressure applied to the outside of the outer sleeve. Stress-strain finite element analysis (FEA was performed to predict behaviour of the multipliers and a pressure generation system. With FEA, the pressure distortion coefficient was determined, taking into account irregularities of the piston-cylinder gap. Transfer pressure standards up to 1.5 GPa are developed on the basis of modern 1.5 GPa pressure transducers. This project shall solve a discrepancy between the growing needs of the industry demanding precise traceable calibrations of the high pressure transducers and the absence of adequate primary standards for pressures higher than 1 GPa in the European Union today.

  19. The electrical resistance of PuSb under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Link, P. (European Commission, Joint Research Centre, Institute for Transuranium Elements, Postfach 2340, D76125 Karlsruhe (Germany)); Benedict, U. (European Commission, Joint Research Centre, Institute for Transuranium Elements, Postfach 2340, D76125 Karlsruhe (Germany)); Wittig, J. (Institut fuer Festkoerperforschung, Forschungszentrum Juelich, D52425 Juelich (Germany)); Wuehl, H. (Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe, D76128 Karlsruhe (Germany)); Rebizant, J. (European Commission, Joint Research Centre, Institute for Transuranium Elements, Postfach 2340, D76125 Karlsruhe (Germany)); Spirlet, J.C. (European Commission, Joint Research Centre, Institute for Transuranium Elements, Postfach 2340, D76125 Karlsruhe (Germany))

    1994-10-01

    A new experimental set-up with a Bridgman-type high pressure cell in a closed containment allows resistance measurements on highly radioactive materials. We present results of high pressure, low temperature studies on PuSb single crystals in the pressure range to 25 GPa and at temperatures between 1.3 K and 300 K. As pressure on PuSb is increased, its Neel temperature and the transition temperature to the ferromagnetic ground state are increased. In the pressure range from 10 to 15 GPa, we observed a strong decrease in the resistance associated with the crystallographic phase transition from the B1 (NaCl) to the B2 (CsCl) structure. The high pressure phase appears to be non-magnetic. ((orig.))

  20. High-pressure behavior of superconducting boron-doped diamond

    Science.gov (United States)

    Abdel-Hafiez, Mahmoud; Kumar, Dinesh; Thiyagarajan, R.; Zhang, Q.; Howie, R. T.; Sethupathi, K.; Volkova, O.; Vasiliev, A.; Yang, W.; Mao, H. K.; Rao, M. S. Ramachandra

    2017-05-01

    This work investigates the high-pressure structure of freestanding superconducting (Tc=4.3 K) boron-doped diamond (BDD) and how it affects the electronic and vibrational properties using Raman spectroscopy and x-ray diffraction in the 0-30 GPa range. High-pressure Raman scattering experiments revealed an abrupt change in the linear pressure coefficients, and the grain boundary components undergo an irreversible phase change at 14 GPa. We show that the blueshift in the pressure-dependent vibrational modes correlates with the negative pressure coefficient of Tc in BDD. The analysis of x-ray diffraction data determines the equation of state of the BDD film, revealing a high bulk modulus of B0=510 ±28 GPa. The comparative analysis of high-pressure data clarified that the s p2 carbons in the grain boundaries transform into hexagonal diamond.

  1. High-pressure hollow cathode discharges

    Science.gov (United States)

    Schoenbach, Karl H.; El-Habachi, Ahmed; Shi, Wenhui; Ciocca, Marco

    1997-11-01

    Reducing the diameter of the cathode hole in a plane anode - hollow cathode geometry to 0963-0252/6/4/003/img1m has allowed us to generate direct current discharges in argon at atmospheric pressure. Up to pressure times cathode hole diameter (pD) values of approximately 5 Torr cm, and at sub-mA currents, glow discharges (predischarges) are observed with a shape which is determined by the vacuum electric field. In the same pD range, but at higher currents of up to approximately 4 mA, the discharges are of the hollow cathode discharge type. At pD values exceeding 5 Torr cm the predischarges turn into surface discharges along the mica spacer between the electrodes. At currents > 4 mA filamentary, pulsed discharges are observed. Qualitative information on the electron energy distribution in the microdischarges has been obtained by studying the VUV emission from ionized argon atoms and the argon excimer radiation at 130 nm. The results of the spectral measurements indicate the presence of a relatively large concentration of electrons with energies > 15 eV over the entire pressure range. The fact that the current - voltage characteristic of the microdischarges has a positive slope over much of the current range where excimer radiation is emitted indicates the possibility of forming arrays of these discharges and using them in flat panel excimer lamps.

  2. Extremely high-power tongue projection in plethodontid salamanders

    NARCIS (Netherlands)

    Deban, S.M.; O'Reilly, J.C.; Dicke, U.; Leeuwen, van J.L.

    2007-01-01

    Many plethodontid salamanders project their tongues ballistically at high speed and for relatively great distances. Capturing evasive prey relies on the tongue reaching the target in minimum time, therefore it is expected that power production, or the rate of energy release, is maximized during tong

  3. A harsh environment wireless pressure sensing solution utilizing high temperature electronics.

    Science.gov (United States)

    Yang, Jie

    2013-02-27

    Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines.

  4. A Harsh Environment Wireless Pressure Sensing Solution Utilizing High Temperature Electronics

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2013-02-01

    Full Text Available Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines.

  5. Raman spectroscopy on carbon nanotubes at high pressure

    OpenAIRE

    Loa, I.

    2003-01-01

    Raman spectroscopy has been the most extensively employed method to study carbon nanotubes at high pressures. This review covers reversible pressure-induced changes of the lattice dynamics and structure of single- and multi-wall carbon nanotubes as well as irreversible transformations induced by high pressures. The interplay of covalent and van-der-Waals bonding in single-wall nanotube bundles and a structural distortion near 2 GPa are discussed in detail. Attempts of transforming carbon nano...

  6. Dynamic High-Pressure Behavior of Hierarchical Heterogeneous Geological Materials

    Science.gov (United States)

    2016-04-01

    pressure -density Hugoniot plots for simulations using the ‘mix 5’ option, as will be presented later. The volume weighted option for mixed cells (refered...AFRL-AFOSR-VA-TR-2016-0150 Dynamic High- Pressure Behavior of Geological Materials Naresh Thadhani GEORGIA TECH RESEARCH CORPORATION Final Report 04...31-12-2015 4.  TITLE AND SUBTITLE Dynamic High- Pressure Behavior of Hierarchical Heterogeneous Geological Materials 5a.  CONTRACT NUMBER 5b.  GRANT

  7. Structural behaviour of niobium oxynitride under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Bharat Bhooshan, E-mail: bbs86phy@gmail.com; Poswal, H. K., E-mail: bbs86phy@gmail.com; Pandey, K. K., E-mail: bbs86phy@gmail.com; Sharma, Surinder M., E-mail: bbs86phy@gmail.com [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Center, Mumbai-400085 (India); Yakhmi, J. V. [Homi Bhabha National Institute, Mumbai - 400094 (India); Ohashi, Y.; Kikkawa, S. [Faculty of Engineering, Hokkaido University, N13W8, Sapporo 080-8628 (Japan)

    2014-04-24

    High pressure investigation of niobium oxynitrides (NbN{sub 0.98}O{sub 0.02}) employing synchrotron based angle dispersive x-ray diffraction experiments was carried out in very fine pressure steps using membrane driven diamond anvil cell. Ambient cubic phase was found to be stable up to ∼18 GPa. At further high pressure cubic phase showed rhombohedral distortion.

  8. The extremely high stability of carbofuran pesticide in acidic media

    Directory of Open Access Journals (Sweden)

    Tomašević Anđelka V.

    2007-01-01

    Full Text Available Environment friendly iron catalysts were applied in the decomposition reactions of some toxic compounds like phenol, methomyl and corbofuran pesticide. The applied catalytic processes belong to photo-Fenton reactions. Heterogeneous iron catalysts showed significant activity in phenol and methomyl conversion, however, these catalysts were completely inactive in destruction of carbofuran molecule, even in the catalytic reaction promoted with UV light at high temperature.

  9. High-pressure effects on intramolecular electron transfer compounds

    CERN Document Server

    He Li Ming; Li Hong; Zhang Bao Wen; Li Yi; Yang Guo Qiang

    2002-01-01

    We explore the effect of pressure on the fluorescence spectra of the intramolecular electron transfer compound N-(1-pyrenylmethyl), N-methyl-4-methoxyaniline (Py-Am) and its model version, with poly(methyl methacrylate) blended in, at high pressure up to 7 GPa. The emission properties of Py-Am and pyrene show distinct difference with the increase of pressure. This difference indicates the strength of the charge transfer interaction resulting from the adjusting of the conformation of Py-Am with increase of pressure. The relationship between the electronic state of the molecule and pressure is discussed.

  10. Adaptation potential of naturally ventilated barns to high temperature extremes: The OptiBarn project

    Science.gov (United States)

    Menz, Christoph

    2016-04-01

    Climate change interferes with various aspects of the socio-economic system. One important aspect is its influence on animal husbandry, especially dairy faming. Dairy cows are usually kept in naturally ventilated barns (NVBs) which are particular vulnerable to extreme events due to their low adaptation capabilities. An effective adaptation to high outdoor temperatures for example, is only possible under certain wind and humidity conditions. High temperature extremes are expected to increase in number and strength under climate change. To assess the impact of this change on NVBs and dairy cows also the changes in wind and humidity needs to be considered. Hence we need to consider the multivariate structure of future temperature extremes. The OptiBarn project aims to develop sustainable adaptation strategies for dairy housings under climate change for Europe, by considering the multivariate structure of high temperature extremes. In a first step we identify various multivariate high temperature extremes for three core regions in Europe. With respect to dairy cows in NVBs we will focus on the wind and humidity field during high temperature events. In a second step we will use the CORDEX-EUR-11 ensemble to evaluate the capability of the RCMs to model such events and assess their future change potential. By transferring the outdoor conditions to indoor climate and animal wellbeing the results of this assessment can be used to develop technical, architectural and animal specific adaptation strategies for high temperature extremes.

  11. Highly Sensitive and Patchable Pressure Sensors Mimicking Ion-Channel-Engaged Sensory Organs.

    Science.gov (United States)

    Chun, Kyoung-Yong; Son, Young Jun; Han, Chang-Soo

    2016-04-26

    Biological ion channels have led to much inspiration because of their unique and exquisite operational functions in living cells. Specifically, their extreme and dynamic sensing abilities can be realized by the combination of receptors and nanopores coupled together to construct an ion channel system. In the current study, we demonstrated that artificial ion channel pressure sensors inspired by nature for detecting pressure are highly sensitive and patchable. Our ion channel pressure sensors basically consisted of receptors and nanopore membranes, enabling dynamic current responses to external forces for multiple applications. The ion channel pressure sensors had a sensitivity of ∼5.6 kPa(-1) and a response time of ∼12 ms at a frequency of 1 Hz. The power consumption was recorded as less than a few μW. Moreover, a reliability test showed stability over 10 000 loading-unloading cycles. Additionally, linear regression was performed in terms of temperature, which showed no significant variations, and there were no significant current variations with humidity. The patchable ion channel pressure sensors were then used to detect blood pressure/pulse in humans, and different signals were clearly observed for each person. Additionally, modified ion channel pressure sensors detected complex motions including pressing and folding in a high-pressure range (10-20 kPa).

  12. Cells under pressure - treatment of eukaryotic cells with high hydrostatic pressure, from physiologic aspects to pressure induced cell death.

    Science.gov (United States)

    Frey, Benjamin; Janko, Christina; Ebel, Nina; Meister, Silke; Schlücker, Eberhard; Meyer-Pittroff, Roland; Fietkau, Rainer; Herrmann, Martin; Gaipl, Udo S

    2008-01-01

    The research on high hydrostatic pressure in medicine and life sciences is multifaceted. According to the used pressure head the research has to be divided into two different parts. To study physiological aspects of pressure on eukaryotic cells physiological pressure (pHHP; highly reversible alterations and normally does not affect cellular viability. The treatment of eukaryotic cells with non-physiological pressure (HHP; > or = 100 MPa) reveals different outcomes. Treatment with HHP or = 200 MPa. Moreover, HHP treatment with > 300 MPa leads to necrosis. Therefore, HHP plays a role for the sterilisation of human transplants, of food stuff, and pharmaceuticals. Human tumour cells subjected to HHP > 300 MPa display a necrotic phenotype along with a gelificated cytoplasm, preserve their shape, and retain their immunogenicity. These observations favour the use of HHP to produce whole cell based tumour vaccines. Further experiments revealed that the increment of pressure as well as the pressure holding time influences the cell death of tumour cells. We conclude that high hydrostatic pressure offers both, an economic, easy to apply, clean, and fast technique for the generation of vaccines, and a promising tool to study physiological aspects.

  13. High Blood Pressure, Afib and Your Risk of Stroke

    Science.gov (United States)

    ... atrial fibrillation has more than five times the risk of stroke.” “Because high blood pressure is so frequent, affecting tens of millions of ... is a more potent risk factor.” The two risk factors are also related to each other: High blood pressure is a risk factor for atrial fibrillation. Middle- ...

  14. Simple high-pressure cell for neutron scattering

    Science.gov (United States)

    Bao, Wei; Broholm, C.; Trevino, S. F.

    1995-02-01

    A high-pressure cell, capable of 8 kbar, is developed for neutron scattering. It can be used with ILL type orange cryostats to obtain a temperature as low as 1.5 K. The simple seal design described here can easily be adopted to other high-pressure applications.

  15. High-pressure processing for preservation of blood products

    NARCIS (Netherlands)

    Matser, A.M.; Ven, van der C.; Gouwerok, C.W.N.; Korte, de D.

    2005-01-01

    The possibilities of high pressure as a preservation method for human blood products were evaluated by examining the functional properties of blood fractions, after high-pressure processing at conditions which potentially inactivate micro-organisms and viruses. Blood platelets, red blood cells and

  16. 76 FR 38697 - High Pressure Steel Cylinders From China

    Science.gov (United States)

    2011-07-01

    ..., 2011 (76 FR 28807). The conference was held in Washington, DC, on June 1, 2011, and all persons who... COMMISSION High Pressure Steel Cylinders From China Determinations On the basis of the record \\1\\ developed... injured by reason of imports from China of high pressure steel cylinders, provided for in subheading...

  17. 77 FR 37712 - High Pressure Steel Cylinders From China

    Science.gov (United States)

    2012-06-22

    ... Commission, Washington, DC, and by publishing the notice in the Federal Register on January 23, 2012 (77 FR... COMMISSION High Pressure Steel Cylinders From China Determinations On the basis of the record \\1\\ developed... imports of high pressure steel cylinders from China, provided for in subheading 7311.00.00 of...

  18. What You Should Know About High Blood Pressure and Medications

    Science.gov (United States)

    ... Aortic Aneurysm More What You Should Know About High Blood Pressure and Medications Updated:Jan 18,2017 Is medication ... resources . This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  19. Heart and Artery Damage and High Blood Pressure

    Science.gov (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More How High Blood Pressure Can Lead to a Heart Attack Updated:Dec ... sheet This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  20. Americans with High Blood Pressure Still Eating Too Much Salt

    Science.gov (United States)

    ... medlineplus.gov/news/fullstory_163977.html Americans With High Blood Pressure Still Eating Too Much Salt Average sodium intake ... March 8, 2017 (HealthDay News) -- For Americans with high blood pressure, cutting back on salt is an important way ...

  1. Changes You Can Make to Manage High Blood Pressure

    Science.gov (United States)

    ... Aneurysm More Changes You Can Make to Manage High Blood Pressure Updated:Mar 10,2017 Fighting back against the “ ... Follow us on Twitter Follow us on Facebook High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  2. Introduction to high-pressure bioscience and biotechnology.

    Science.gov (United States)

    Bartlett, Douglas H

    2010-02-01

    The manipulation of biological materials using elevated pressure is providing an ever-growing number of opportunities in both the applied and basic sciences. Manipulation of pressure is a useful parameter for enhancing food quality and shelf life; inactivating microbes, viruses, prions, and deleterious enzymes; affecting recombinant protein production; controlling DNA hybridization; and improving vaccine preparation. In biophysics and biochemistry, pressure is used as a tool to study intermediates in protein folding, enzyme kinetics, macromolecular interactions, amyloid fibrous protein aggregation, lipid structural changes, and to discern the role of solvation and void volumes in these processes. Biologists, including many microbiologists, examine the utility and basis of pressure inactivation of cells and cellular processes, and conversely seek to discover how deep-sea life has evolved a preference for high-pressure environments. This introduction and the papers that follow provide information on the nature and promise of the highly interdisciplinary field of high-pressure bioscience and biotechnology (HPBB).

  3. Pressurized metallurgy for high performance special steels and alloys

    Science.gov (United States)

    Jiang, Z. H.; Zhu, H. C.; Li, H. B.; Li, Y.; Liu, F. B.

    2016-07-01

    The pressure is one of the basic parameters which greatly influences the metallurgical reaction process and solidification of steels and alloys. In this paper the history and present situation of research and application of pressurized metallurgy, especially pressurized metallurgy for special steels and alloys have been briefly reviewed. In the following part the physical chemistry of pressurized metallurgy is summarized. It is shown that pressurizing may change the conditions of chemical reaction in thermodynamics and kinetics due to the pressure effect on gas volume, solubility of gas and volatile element in metal melt, activity or activity coefficient of components, and change the physical and chemical properties of metal melt, heat transfer coefficient between mould and ingot, thus greatly influencing phase transformation during the solidification process and the solidification structure, such as increasing the solidification nucleation rate, reducing the critical nucleation radius, accelerating the solidification speed and significant macro/micro-structure refinement, and eliminating shrinkage, porosity and segregation and other casting defects. In the third part the research works of pressured metallurgy performed by the Northeastern University including establishment of pressurized induction melting (PIM) and pressurized electroslag remelting (PESR) equipments and development of high nitrogen steels under pressure are described in detail. Finally, it is considered in the paper that application of pressurized metallurgy in manufacture of high performance special steels and alloys is a relatively new research area, and its application prospects will be very broad and bright.

  4. High Performance Multivariate Visual Data Exploration for Extremely Large Data

    Energy Technology Data Exchange (ETDEWEB)

    Rubel, Oliver; Wu, Kesheng; Childs, Hank; Meredith, Jeremy; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Ahern, Sean; Weber, Gunther H.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes; Prabhat,

    2008-08-22

    One of the central challenges in modern science is the need to quickly derive knowledge and understanding from large, complex collections of data. We present a new approach that deals with this challenge by combining and extending techniques from high performance visual data analysis and scientific data management. This approach is demonstrated within the context of gaining insight from complex, time-varying datasets produced by a laser wakefield accelerator simulation. Our approach leverages histogram-based parallel coordinates for both visual information display as well as a vehicle for guiding a data mining operation. Data extraction and subsetting are implemented with state-of-the-art index/query technology. This approach, while applied here to accelerator science, is generally applicable to a broad set of science applications, and is implemented in a production-quality visual data analysis infrastructure. We conduct a detailed performance analysis and demonstrate good scalability on a distributed memory Cray XT4 system.

  5. High-Pressure Oxygen Generation for Outpost EVA Study

    Science.gov (United States)

    Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.

    2009-01-01

    The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.

  6. Impurity trapped excitons under high hydrostatic pressure

    Science.gov (United States)

    Grinberg, Marek

    2013-09-01

    Paper summarizes the results on pressure effect on energies of the 4fn → 4fn and 4fn-15d1 → 4fn transitions as well as influence of pressure on anomalous luminescence in Lnα+ doped oxides and fluorides. A model of impurity trapped exciton (ITE) was developed. Two types of ITE were considered. The first where a hole is localized at the Lnα+ ion (creation of Ln(α+1)+) and an electron is attracted by Coulomb potential at Rydberg-like states and the second where an electron captured at the Lnα+ ion (creation of Ln(α-1)+) and a hole is attracted by Coulomb potential at Rydberg-like states. Paper presents detailed analysis of nonlinear changes of energy of anomalous luminescence of BaxSr1-xF2:Eu2+ (x > 0.3) and LiBaF3:Eu2+, and relate them to ITE-4f65d1 states mixing.

  7. Deflagration of HMX-Based Explosives at High Temperatures and Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Maienschein, J L; Wardell, J F; DeHaven, M R; Black, C K

    2004-05-12

    We measure the deflagration behavior of energetic materials at extreme conditions (up to 520K and 1 GPa) in the LLNL High Pressure Strand Burner, thereby obtaining reaction rate data for prediction of violence of thermal explosions. The apparatus provides both temporal pressure history and flame time-of-arrival information during deflagration, allowing direct calculation of deflagration rate as a function of pressure. Samples may be heated before testing. Here we report the deflagration behavior of several HMX-based explosives at pressures of 10-600 MPa and temperatures of 300-460 K. We find that formulation details are very important to overall deflagration behavior. Formulations with high binder content (>15 wt%) deflagrate smoothly over the entire pressure range regardless of particle size, with a larger particle size distribution leading to a slower reaction. The deflagration follows a power law function with the pressure exponent being unity. Formulations with lower binder content ({le} 10% or less by weight) show physical deconsolidation at pressures over 100-200 MPA, with transition to a rapid erratic deflagration 10-100 times faster. High temperatures have a relatively minor effect on the deflagration rate until the HMX {beta} {yields} {delta} phase transition occurs, after which the deflagration rate increases by more than a factor of 10.

  8. Deflagration of HMX-Based Explosives at High Temperatures and Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Maienschein, J L; Wardell, J F; DeHaven, M R; Black, C K

    2004-05-12

    We measure the deflagration behavior of energetic materials at extreme conditions (up to 520K and 1 GPa) in the LLNL High Pressure Strand Burner, thereby obtaining reaction rate data for prediction of violence of thermal explosions. The apparatus provides both temporal pressure history and flame time-of-arrival information during deflagration, allowing direct calculation of deflagration rate as a function of pressure. Samples may be heated before testing. Here we report the deflagration behavior of several HMX-based explosives at pressures of 10-600 MPa and temperatures of 300-460 K. We find that formulation details are very important to overall deflagration behavior. Formulations with high binder content (>15 wt%) deflagrate smoothly over the entire pressure range regardless of particle size, with a larger particle size distribution leading to a slower reaction. The deflagration follows a power law function with the pressure exponent being unity. Formulations with lower binder content ({le} 10% or less by weight) show physical deconsolidation at pressures over 100-200 MPA, with transition to a rapid erratic deflagration 10-100 times faster. High temperatures have a relatively minor effect on the deflagration rate until the HMX {beta} {yields} {delta} phase transition occurs, after which the deflagration rate increases by more than a factor of 10.

  9. Protection against high intravascular pressure in giraffe legs

    DEFF Research Database (Denmark)

    Petersen, Karin K; Hørlyck, Arne; Østergaard, Kristine Hovkjær

    2013-01-01

    The high blood pressure in giraffe leg arteries renders giraffes vulnerable to edema. We investigated in 11 giraffes whether large and small arteries in the legs and the tight fascia protect leg capillaries. Ultrasound imaging of foreleg arteries in anesthetized giraffes and ex vivo examination....... All three findings can contribute to protection of the capillaries in giraffe legs from a high arterial pressure....... revealed abrupt thickening of the arterial wall and a reduction of its internal diameter just below the elbow. At and distal to this narrowing, the artery constricted spontaneously and in response to norepinephrine and intravascular pressure recordings revealed a dynamic, viscous pressure drop along...

  10. On some hydrogen bond correlations at high pressures

    Science.gov (United States)

    Sikka, S. K.

    2007-09-01

    In situ high pressure neutron diffraction measured lengths of O H and H O pairs in hydrogen bonds in substances are shown to follow the correlation between them established from 0.1 MPa data on different chemical compounds. In particular, the conclusion by Nelmes et al that their high pressure data on ice VIII differ from it is not supported. For compounds in which the O H stretching frequencies red shift under pressure, it is shown that wherever structural data is available, they follow the stretching frequency versus H O (or O O) distance correlation. For compounds displaying blue shifts with pressure an analogy appears to exist with improper hydrogen bonds.

  11. An extremely high altitude plume seen at Mars morning terminator

    Science.gov (United States)

    Sanchez-Lavega, Agustin; Garcia-Muñoz, Antonio; Garcia-Melendo, Enrique; Perez-Hoyos, Santiago; Gomez-Forrellad, Josep M.; Pellier, Christophe; Delcroix, Marc; Lopez-Valverde, Miguel Angel; Gonzalez-Galindo, Francisco; Jaeschke, Wayne; Parker, Donald C.; Phillips, James H.; Peach, Damian

    2014-11-01

    We report the occurrence in March and April 2012 of two bright very high altitude plumes at the Martian terminator at 250 km or more above the surface, thus well into the ionosphere and bordering on the exosphere. They were located at about 195 deg West longitude and -45 deg latitude (at Terra Cimmeria) and lasted for about 10 days. The features showed day-to-day variability, and were seen at the morning terminator but not at the evening limb, which indicates rapid evolution in less than 10 hours and a cyclic behavior. Photometric measurements are used to explore two possible scenarios to explain their nature. If the phenomenon is due to suspended particles (dust, CO2 or H2O ice clouds) reflecting solar radiation, the mean size is about 0.1 microns with a nadir optical depth > 0.06. Alternatively, the plume could be auroral emission above a region with a strong magnetic anomaly and where aurora has previously been detected. Importantly, both explanations defy our current understanding of the Mars upper atmosphere.AcknowledgementsThis work was supported by the Spanish MINECO projects AYA2012-36666 with FEDER support, CONSOLIDER program ASTROMOL CSD2009-00038 and AYA2011-30613-CO2-1. Grupos Gobierno Vasco IT765-13 and UPV/EHU UFI11/55.

  12. The Mechanical and Electrical Effects of MEMS Capacitive Pressure Sensor Based 3C-SiC for Extreme Temperature

    Directory of Open Access Journals (Sweden)

    N. Marsi

    2014-01-01

    Full Text Available This paper discusses the mechanical and electrical effects on 3C-SiC and Si thin film as a diaphragm for MEMS capacitive pressure sensor operating for extreme temperature which is 1000 K. This work compares the design of a diaphragm based MEMS capacitive pressure sensor employing 3C-SiC and Si thin films. A 3C-SiC diaphragm was bonded with a thickness of 380 μm Si substrate, and a cavity gap of 2.2 μm is formed between the wafers. The MEMS capacitive pressure sensor designs were simulated using COMSOL ver 4.3 software to compare the diaphragm deflection, capacitive performance analysis, von Mises stress, and total electrical energy performance. Both materials are designed with the same layout dimensional with different thicknesses of the diaphragm which are 1.0 μm, 1.6 μm, and 2.2 μm. It is observed that the 3C-SiC thin film is far superior materials to Si thin film mechanically in withstanding higher applied pressures and temperatures. For 3C-SiC and Si, the maximum von Mises stress achieved is 148.32 MPa and 125.48 MPa corresponding to capacitance value which is 1.93 pF and 1.22 pF, respectively. In terms of electrical performance, the maximum output capacitance of 1.93 pF is obtained with less total energy of 5.87 × 10−13 J, thus having a 50% saving as compared to Si.

  13. High-pressure applications in medicine and pharmacology

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jerson L; Foguel, Debora; Suarez, Marisa; Gomes, Andre M O; Oliveira, Andrea C [Centro Nacional de Ressonancia Magnetica Nuclear, Departamento de Bioquimica Medica, Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590 (Brazil)

    2004-04-14

    High pressure has emerged as an important tool to tackle several problems in medicine and biotechnology. Misfolded proteins, aggregates and amyloids have been studied, which point toward the understanding of the protein misfolding diseases. High hydrostatic pressure (HHP) has also been used to dissociate non-amyloid aggregates and inclusion bodies. The diverse range of diseases that result from protein misfolding has made this theme an important research focus for pharmaceutical and biotech companies. The use of high pressure promises to contribute to identifying the mechanisms behind these defects and creating therapies against these diseases. High pressure has also been used to study viruses and other infectious agents for the purpose of sterilization and in the development of vaccines. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. The ability of pressure to inactivate viruses, prions and bacteria has been evaluated with a view toward the applications of vaccine development and virus sterilization. Recent studies demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There is increasing evidence that a high-pressure cycle traps a virus in the 'fusion intermediate state', not infectious but highly immunogenic.

  14. High-pressure applications in medicine and pharmacology

    Science.gov (United States)

    Silva, Jerson L.; Foguel, Debora; Suarez, Marisa; Gomes, Andre M. O.; Oliveira, Andréa C.

    2004-04-01

    High pressure has emerged as an important tool to tackle several problems in medicine and biotechnology. Misfolded proteins, aggregates and amyloids have been studied, which point toward the understanding of the protein misfolding diseases. High hydrostatic pressure (HHP) has also been used to dissociate non-amyloid aggregates and inclusion bodies. The diverse range of diseases that result from protein misfolding has made this theme an important research focus for pharmaceutical and biotech companies. The use of high pressure promises to contribute to identifying the mechanisms behind these defects and creating therapies against these diseases. High pressure has also been used to study viruses and other infectious agents for the purpose of sterilization and in the development of vaccines. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. The ability of pressure to inactivate viruses, prions and bacteria has been evaluated with a view toward the applications of vaccine development and virus sterilization. Recent studies demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There is increasing evidence that a high-pressure cycle traps a virus in the 'fusion intermediate state', not infectious but highly immunogenic.

  15. Temperature control for high pressure processes up to 1400 MPa

    Science.gov (United States)

    Reineke, K.; Mathys, A.; Heinz, V.; Knorr, D.

    2008-07-01

    Pressure- assisted sterilisation is an emerging technology. Hydrostatic high pressure can reduce the thermal load of the product and this allows quality retention in food products. To guarantee the safety of the sterilisation process it is necessary to investigate inactivation kinetics especially of bacterial spores. A significant roll during the inactivation of microorganisms under high pressure has the thermodynamic effect of the adiabatic heating. To analyse the individual effect of pressure and temperature on microorganism inactivation an exact temperature control of the sample to reach ideal adiabatic conditions and isothermal dwell times is necessary. Hence a heating/cooling block for a high pressure unit (Stansted Mini-Food-lab; high pressure capillary with 300 μL sample volume) was constructed. Without temperature control the sample would be cooled down during pressure built up, because of the non-adiabatic heating of the steel made vessel. The heating/cooling block allows an ideal adiabatic heat up and cooling of the pressure vessel during compression and decompression. The high pressure unit has a pressure build-up rate up to 250 MPa s-1 and a maximum pressure of 1400 MPa. Sebacate acid was chosen as pressure transmitting medium because it had no phase shift over the investigate pressure and temperature range. To eliminate the temperature difference between sample and vessel during compression and decompression phase, the mathematical model of the adiabatic heating/cooling of water and sebacate acid was implemented into a computational routine, written in Test Point. The calculated temperature is the setpoint of the PID controller for the heating/cooling block. This software allows an online measurement of the pressure and temperature in the vessel and the temperature at the outer wall of the vessel. The accurate temperature control, including the model of the adiabatic heating opens up the possibility to realise an ideal adiabatic heating and cooling as

  16. Temperature control for high pressure processes up to 1400 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Reineke, K; Mathys, A; Knorr, D [Berlin University of Technology, Department of Food Biotechnology and Food Process Engineering, Koenigin-Luise-Str. 22, D-14195 Berlin (Germany); Heinz, V [German Institute of Food Technology, p. o. box: 1165, D-49601, Quackenbrueck (Germany)], E-mail: alexander.mathys@tu-berlin.de

    2008-07-15

    Pressure- assisted sterilisation is an emerging technology. Hydrostatic high pressure can reduce the thermal load of the product and this allows quality retention in food products. To guarantee the safety of the sterilisation process it is necessary to investigate inactivation kinetics especially of bacterial spores. A significant roll during the inactivation of microorganisms under high pressure has the thermodynamic effect of the adiabatic heating. To analyse the individual effect of pressure and temperature on microorganism inactivation an exact temperature control of the sample to reach ideal adiabatic conditions and isothermal dwell times is necessary. Hence a heating/cooling block for a high pressure unit (Stansted Mini-Food-lab; high pressure capillary with 300 {mu}L sample volume) was constructed. Without temperature control the sample would be cooled down during pressure built up, because of the non-adiabatic heating of the steel made vessel. The heating/cooling block allows an ideal adiabatic heat up and cooling of the pressure vessel during compression and decompression. The high pressure unit has a pressure build-up rate up to 250 MPa s{sup -1} and a maximum pressure of 1400 MPa. Sebacate acid was chosen as pressure transmitting medium because it had no phase shift over the investigate pressure and temperature range. To eliminate the temperature difference between sample and vessel during compression and decompression phase, the mathematical model of the adiabatic heating/cooling of water and sebacate acid was implemented into a computational routine, written in Test Point. The calculated temperature is the setpoint of the PID controller for the heating/cooling block. This software allows an online measurement of the pressure and temperature in the vessel and the temperature at the outer wall of the vessel. The accurate temperature control, including the model of the adiabatic heating opens up the possibility to realise an ideal adiabatic heating and

  17. High pressure Moessbauer spectroscopy of perovskite iron oxide

    CERN Document Server

    Nasu, S; Morimoto, S; Kawakami, T; Kuzushita, K; Takano, M

    2003-01-01

    High-pressure sup 5 sup 7 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO sub 3 , CaFeO sub 3 and La sub 1 sub / sub 3 Sr sub 2 sub / sub 3 O sub 3. The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO sub 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  18. Genome-wide association study of blood pressure extremes identifies variant near UMOD associated with hypertension.

    Directory of Open Access Journals (Sweden)

    Sandosh Padmanabhan

    2010-10-01

    Full Text Available Hypertension is a heritable and major contributor to the global burden of disease. The sum of rare and common genetic variants robustly identified so far explain only 1%-2% of the population variation in BP and hypertension. This suggests the existence of more undiscovered common variants. We conducted a genome-wide association study in 1,621 hypertensive cases and 1,699 controls and follow-up validation analyses in 19,845 cases and 16,541 controls using an extreme case-control design. We identified a locus on chromosome 16 in the 5' region of Uromodulin (UMOD; rs13333226, combined P value of 3.6 × 10⁻¹¹. The minor G allele is associated with a lower risk of hypertension (OR [95%CI]: 0.87 [0.84-0.91], reduced urinary uromodulin excretion, better renal function; and each copy of the G allele is associated with a 7.7% reduction in risk of CVD events after adjusting for age, sex, BMI, and smoking status (H.R. = 0.923, 95% CI 0.860-0.991; p = 0.027. In a subset of 13,446 individuals with estimated glomerular filtration rate (eGFR measurements, we show that rs13333226 is independently associated with hypertension (unadjusted for eGFR: 0.89 [0.83-0.96], p = 0.004; after eGFR adjustment: 0.89 [0.83-0.96], p = 0.003. In clinical functional studies, we also consistently show the minor G allele is associated with lower urinary uromodulin excretion. The exclusive expression of uromodulin in the thick portion of the ascending limb of Henle suggests a putative role of this variant in hypertension through an effect on sodium homeostasis. The newly discovered UMOD locus for hypertension has the potential to give new insights into the role of uromodulin in BP regulation and to identify novel drugable targets for reducing cardiovascular risk.

  19. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    Vinayak N. Kabadi

    2000-05-01

    The flow VLE apparatus designed and built for a previous project was upgraded and recalibrated for data measurements for this project. The modifications include better and more accurate sampling technique, addition of a digital recorder to monitor temperature and pressure inside the VLE cell, and a new technique for remote sensing of the liquid level in the cell. VLE data measurements for three binary systems, tetralin-quinoline, benzene--ethylbenzene and ethylbenzene--quinoline, have been completed. The temperature ranges of data measurements were 325 C to 370 C for the first system, 180 C to 300 C for the second system, and 225 C to 380 C for the third system. The smoothed data were found to be fairly well behaved when subjected to thermodynamic consistency tests. SETARAM C-80 calorimeter was used for incremental enthalpy and heat capacity measurements for benzene--ethylbenzene binary liquid mixtures. Data were measured from 30 C to 285 C for liquid mixtures covering the entire composition range. An apparatus has been designed for simultaneous measurement of excess volume and incremental enthalpy of liquid mixtures at temperatures from 30 C to 300 C. The apparatus has been tested and is ready for data measurements. A flow apparatus for measurement of heat of mixing of liquid mixtures at high temperatures has also been designed, and is currently being tested and calibrated.

  20. High pressure, high strain rate material strength studies

    Science.gov (United States)

    Remington, B. A.; Arsenlis, A.; Barton, N.; Belof, J.; Cavallo, R.; Maddox, B.; Park, H.-S.; Prisbrey, S.; Rudd, R.; Comley, A.; Meyers, M.; Wark, J.

    2011-10-01

    Constitutive models for material strength are currently being tested at high pressures by comparing 2D simulations with experiments measuring the Rayleigh-Taylor (RT) instability evolution in solid-state samples of vanadium (V), tantalum (Ta), and iron (Fe). The multiscale strength models being tested combine molecular dynamics, dislocation dynamics, and continuum simulations. Our analysis for the V experiments suggests that the material deformation at these conditions falls into the phonon drag regime, whereas for Ta, the deformation resides mainly in the thermal activation regime. Recent Fe-RT experiments suggest perturbation growth about the alpha-epsilon (bcc-hcp) phase transition threshold has been observed. Using the LLNL multiscale models, we decompose the strength as a function of strain rate into its dominant components of thermal activation, phonon drag, and work hardening. We have also developed a dynamic diffraction diagnostic technique to measure strength directly from shock compressed single crystal samples. Finally, recovery experiments allow a comparison of residual dislocation density with predictions from the multiscale model. This work performed under the auspices of the U.S. DoE by LLNL Security, LLC under Contract DE-AC52-07NA27344.

  1. Evolution of Titan's High-Pressure Ice layer

    Science.gov (United States)

    Sotin, C.; Kalousova, K.

    2016-12-01

    Constraints on the present interior structure of Titan come from the gravity science experiment onboard the Cassini spacecraft and from the interpretation of the Extremely Low Frequency (ELF) wave observed by the Huygens probe [1, 2]. From the surface to the center, Titan would be composed of 4 layers: an icy crust, a global salty ocean, a layer of high-pressure ice (HP ice) and a core made of hydrated silicates [2, 3, 4]. The presence of a large amount of 40Ar in Titan's atmosphere argues for a geologically recent exchange process between the silicate core, where 40Ar is produced by the decay of 40K, and the atmosphere. Argon must then be able to be transported from the silicate core to the surface. This study investigates how volatiles can be transported through the HP ice layer.Recent numerical simulations [5] have demonstrated that the dynamics of the HP ice layer is controlled by convection processes in a two-phase material (water and high-pressure ice). The silicate / HP ice interface is maintained at the melting temperature, which might allow for the incorporation of volatiles such as 40Ar into the convecting HP ice. Above the hot thermal boundary layer, the temperature of the convecting HP ice is below the melting temperature, except for the upwelling plumes when they approach the cold thermal boundary layer. The upper part of the HP ice layer is at the melting point and permeable for water transport, providing a path for the transfer of volatiles trapped in the ice towards the ocean.Scaling laws are inferred from the numerical simulations [5]. They are then used to model the evolution of the HP ice layer. Specifically, we look at the effect of (i) ice viscosity, (ii) heat flux at the silicate/HP ice interface, and (iii) presence of anti-freeze compounds in the ocean, on the thickness of the HP ice layer. In addition, our results provide insights on possible resurfacing processes that could explain the geologically young age of Titan's surface. This work

  2. Synthetic chemistry with periodic mesostructures at high pressure.

    Science.gov (United States)

    Mandal, Manik; Landskron, Kai

    2013-11-19

    Over the last two decades, researchers have studied extensively the synthesis of mesostructured materials, which could be useful for drug delivery, catalytic cracking of petroleum, or reinforced plastics, among other applications. However, until very recently researchers used only temperature as a thermodynamic variable for synthesis, completely neglecting pressure. In this Account, we show how pressure can affect the synthetic chemistry of periodic mesoporous structures with desirable effects. In its simplest application, pressure can crystallize the pore walls of periodic mesoporous silicas, which are difficult to crystallize otherwise. The motivation for the synthesis of periodic mesoporous silica materials (with pore sizes from 2 to 50 nm) 20 years ago was to replace the microporous zeolites (which have pore sizes of machining, drilling, and polishing. Overall, the results show that periodic mesoporous materials are suitable starting materials for the synthesis of nanoporous high-pressure phases and nanocrystals of high pressure phases. The substantially enhanced hydrothermal stability seen in periodic mesoporous silicas synthesized at high pressure demonstrates that high pressure can be a useful tool to produce porous materials with improved properties. We expect that synthesis using mesostructures at high pressure can be extended to many other materials beyond silicas and carbons. Presumably, this chemistry can also be extended from mesoporous to microporous and macroporous materials.

  3. High pressure optical studies of crystalline anils and related compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hockert, E.N.; Drickamer, H.G.

    1977-12-01

    High pressure optical studies have been made on a series of crystalline therochromic and photochromic anils and model compounds. Measurements include absorption and emission peak locations and the integrated intensities of various absorption peaks including the uv peak and visible peaks introduced thermally or by irradiation at various temperatures and pressures. Emission yields were also obtained. For the thermochromic compounds there was a large increase in the equilibrium yield of the thermally induced peak with pressure (piezochromism), corresponding to a volume decrease of approx.1.2 cc/mole for 5-bromosalicylidene aniline (5BrSA). The emission peak shifts to lower energy and decreases in intensity primarily because of increased rate of the radiationless conversion. For salicylidene aniline and related photochromic crystals the rate of photochromic conversion varied with both pressure and temperature in a manner which depends on the size of the energy barriers to the forward and reverse processes. The emission yield increases with pressure at low pressure, goes through a maximum, and decreases at high pressure. At low pressure the dominant feature is increase in occupation of the emitting state while at high pressure the increased rate of the radiationless process governs. For 2- (O-hydroxyphenyl) benzoxazole (OHBO) (see Fig. 1), where a keto--enol rearrangement is most probable, the changes in absorption and emission intensity can be related to the same diagram used for the anils. This diagram also describes the behavior of benzilidene aniline (BA), where only a cis--trans isomerization is possible.

  4. Viscosity of mafic magmas at high pressures

    Science.gov (United States)

    Cochain, B.; Sanloup, C.; Leroy, C.; Kono, Y.

    2017-01-01

    While it is accepted that silica-rich melts behave anomalously with a decrease of their viscosity at increased pressures (P), the viscosity of silica-poor melts is much less constrained. However, modeling of mantle melts dynamics throughout Earth's history, including the magma ocean era, requires precise knowledge of the viscous properties of silica-poor magmas. We extend here our previous measurements on fayalite melt to natural end-members pyroxenite melts (MgSiO3 and CaSiO3) using in situ X-ray radiography up to 8 GPa. For all compositions, viscosity decreases with P, rapidly below 5 GPa and slowly above. The magnitude of the viscosity decrease is larger for pyroxene melts than for fayalite melt and larger for the Ca end-member within pyroxene melts. The anomalous viscosity decrease appears to be a universal behavior for magmas up to 13 GPa, while the P dependence of viscosity beyond this remains to be measured. These results imply that mantle melts are very pervasive at depth.

  5. Application of exercise transcutaneous oxygen pressure measurements for detection of proximal lower extremity arterial disease: a case report.

    Science.gov (United States)

    Mahe, Guillaume; Kalra, Manju; Abraham, Pierre; Liedl, David A; Wennberg, Paul W

    2015-06-01

    Proximal claudication is secondary to ischemia caused by peripheral artery disease (PAD), whereas proximal pseudo-claudication is secondary to other disease processes such as hip arthritis, spinal stenosis, neuropathy, and so forth. The differentiation between the two can be challenging. Exercise transcutaneous oxygen pressure measurement (exercise-TcPO2) allows noninvasive detection of flow-reducing lesions in the proximal arteries and tributaries of the lower extremity arterial tree. We present the first case report in the United States using an exercise-TcPO2 algorithm. A 71-year-old diabetic patient with proximal left-sided and right-calf claudication with indeterminate ankle-brachial indices underwent an exercise-TcPO2 study before and after endovascular intervention. Four TcPO2 probes were placed: one at chest level (reference probe), one on each buttock, and one on the symptomatic calf. The Delta from Resting Oxygen Pressure (DROP) index was calculated at each probe site using a previously validated protocol. Proximal left- and right-calf ischemia were confirmed by the initial exercise-TcPO2, and, after endovascular treatment of the left iliac artery lesion, improvements in proximal exercise-TcPO2 values were found. These data suggest that exercise-TcPO2 can be useful in PAD evaluation in patients with non-compressible arteries and/or proximal claudication.

  6. Studies of Alkali Sorption Kinetics for Pressurized Fluidized Bed Combustion by High Pressure Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, K.J.; Willenborg, W.; Fricke, C.; Prikhodovsky, A.; Hilpert, K.; Singheiser, L.

    2002-09-20

    This work describes the first approach to use High Pressure Mass Spectrometry (HPMS) for the quantification and analysis of alkali species in a gas stream downstream a sorbent bed of different tested alumosilicates.

  7. Underground storage systems for high-pressure air and gases

    Science.gov (United States)

    Beam, B. H.; Giovannetti, A.

    1975-01-01

    This paper is a discussion of the safety and cost of underground high-pressure air and gas storage systems based on recent experience with a high-pressure air system installed at Moffett Field, California. The system described used threaded and coupled oil well casings installed vertically to a depth of 1200 ft. Maximum pressure was 3000 psi and capacity was 500,000 lb of air. A failure mode analysis is presented, and it is shown that underground storage offers advantages in avoiding catastrophic consequences from pressure vessel failure. Certain problems such as corrosion, fatigue, and electrolysis are discussed in terms of the economic life of such vessels. A cost analysis shows that where favorable drilling conditions exist, the cost of underground high-pressure storage is approximately one-quarter that of equivalent aboveground storage.

  8. Pressure ratio effects on self-similar scalar mixing of high-pressure turbulent jets in a pressurized volume

    Science.gov (United States)

    Ruggles, Adam; Pickett, Lyle; Frank, Jonathan

    2014-11-01

    Many real world combustion devices model fuel scalar mixing by assuming the self-similar argument established in atmospheric free jets. This allows simple prediction of the mean and rms fuel scalar fields to describe the mixing. This approach has been adopted in super critical liquid injections found in diesel engines where the liquid behaves as a dense fluid. The effect of pressure ratio (injection to ambient) when the ambient is greater than atmospheric pressure, upon the self-similar collapse has not been well characterized, particularly the effect upon mixing constants, jet spreading rates, and virtual origins. Changes in these self-similar parameters control the reproduction of the scalar mixing statistics. This experiment investigates the steady state mixing of high pressure ethylene jets in a pressurized pure nitrogen environment for various pressure ratios and jet orifice diameters. Quantitative laser Rayleigh scattering imaging was performed utilizing a calibration procedure to account for the pressure effects upon scattering interference within the high-pressure vessel.

  9. In situ Raman cell for high pressure and temperature studies of metal and complex hydrides.

    Science.gov (United States)

    Domènech-Ferrer, Roger; Ziegs, Frank; Klod, Sabrina; Lindemann, Inge; Voigtländer, Ralf; Dunsch, Lothar; Gutfleisch, Oliver

    2011-04-15

    A novel cell for in situ Raman studies at hydrogen pressures up to 200 bar and at temperatures as high as 400 °C is presented. This device permits in situ monitoring of the formation and decomposition of chemical structures under high pressure via Raman scattering. The performance of the cell under extreme conditions is stable as the design of this device compensates much of the thermal expansion during heating which avoids defocusing of the laser beam. Several complex and metal hydrides were analyzed to demonstrate the advantageous use of this in situ cell. Temperature calibration was performed by monitoring the structural phase transformation and melting point of LiBH(4). The feasibility of the cell in hydrogen atmosphere was confirmed by in situ studies of the decomposition of NaAlH(4) with added TiCl(3) at different hydrogen pressures and the decomposition and rehydrogenation of MgH(2) and LiNH(2).

  10. Prospects of hydroacoustic detection of ultra-high and extremely high energy cosmic neutrinos

    Science.gov (United States)

    Dedenko, L. G.; Karlik, Ya. S.; Learned, J. G.; Svet, V. D.; Zheleznykh, I. M.

    2001-07-01

    The prospects of construction of deep underwater neutrino telescopes in the world's oceans for the goals of ultra-high and super-high energy neutrino astrophysics (astronomy) using acoustic technologies are reviewed. The effective detection volume of the acoustic neutrino telescopes can be far greater than a cubic kilometer for extreme energies. In recent years, it was proposed that an existing hydroacoustic array of 2400 hydrophones in the Pacific Ocean near Kamchatka Peninsula could be used as a test base for an acoustic neutrino telescope SADCO (Sea-based Acoustic Detector of Cosmic Objects) which should be capable of detecting acoustic signals produced in water by the cosmic neutrinos with energies 1019-21 eV (e.g., topological defect neutrinos). We report on simulations of super-high energy electron-hadron and electron-photon cascades with the Landau-Pomeranchuk-Migdal effect taken into account. Acoustic signals emitted by neutrino-induced cascades with energies 1020-21 eV were calculated. The possibilities of using a converted hydroacoustic station MG-10 (MG-10M) of 132 hydrophones as a basic module for a deep water acoustic neutrino detector with the threshold detection energy 1015 eV in the Mediterranean Sea are analyzed (with the aim of searching for neutrinos with energies 1015-16 eV from Active Galactic Nuclei). .

  11. DASH diet to lower high blood pressure

    Science.gov (United States)

    ... that are naturally low in salt, cholesterol, and saturated fats. You will also include foods that are high ... AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of ...

  12. A Study on Development of Variable High Pressurizer Pressure Trip Function to Mitigate System Peak Pressure during Transients for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ung Soo; Park, Min Soo; Huh, Jae Young; Lee, Gyu Cheon [KEPCO Engineering and Construction, Daejeon (Korea, Republic of)

    2016-10-15

    According to intensified regulation environment such as separate safety analysis for the reactor coolant system (RCS) and the main steam system peak pressure, strict consideration of a control system malfunction as a single failure for the safety analysis and so on, the safety margin with respect to system pressure of pressurized water reactors (PWRs) has been decreased. Also, the possibility for that the main steam system pressure may violate the acceptance criteria during the LOCV event has been raised and relevant design modifications for the main steam safety valve (MSSV) have ever been performed as a solution. In order to overcome this problem, in this work, the variable high pressurizer pressure trip (VHPPT) function has been developed and a feasibility study on the application of this trip function has been performed. The VHPPT function has been devised to trip the reactor beforehand when a sharply pressurizing transient such as the LOCV occurs and to cutoff system pressure increase, resulting in reducing the system peak pressure. In this work, the VHPPT function has been suggested and developed to trip the reactor beforehand and to cutoff system pressure increase mitigating the system peak pressure of PWRs when a sharply pressurizing transient like the LOCV occurs. The VHPPT function uses the rate-limited variable setpoint and includes the existing HPPT function.

  13. High-pressure ignition plasma torch for aerospace testing facilities

    Science.gov (United States)

    Yusupov, D. I.; Kulikov, Yu M.; Gadzhiev, M. Kh; Tyuftyaev, A. S.; Son, E. E.

    2016-11-01

    The present paper discusses the issues of implementation of high-pressure ignition plasma torch in terms of discharge phenomena in compressed gases, dense nitrogen plasma properties and stable arcing power requirements. Contact ignition has been tested in a pressure range p = 1-25 bar and has proved to be a reliable solution for pilot arc burning.

  14. Investigation of Methacrylic Acid at High Pressure Using Neutron Diffraction

    DEFF Research Database (Denmark)

    Marshall, William G.; Urquhart, Andrew; Oswald, Iain D. H.

    2015-01-01

    This article shows that pressure can be a low-intensity route to the synthesis of polymethacrylic acid. The exploration of perdeuterated methacrylic acid at high pressure using neutron diffraction reveals that methacrylic acid exhibits two polymorphic phase transformations at relatively low press...

  15. High-pressure saline washing of allografts reduces bacterial contamination.

    Science.gov (United States)

    Hirn, M Y; Salmela, P M; Vuento, R E

    2001-02-01

    60 fresh-frozen bone allografts were contaminated on the operating room floor. No bacterial growth was detected in 5 of them after contamination. The remaining 55 grafts had positive bacterial cultures and were processed with three methods: soaking in saline, soaking in antibiotic solution or washing by high-pressure saline. After high-pressure lavage, the cultures were negative in three fourths of the contaminated allografts. The corresponding figures after soaking grafts in saline and antibiotic solution were one tenth and two tenths, respectively. High-pressure saline cleansing of allografts can be recommended because it improves safety by reducing the superficial bacterial bioburden.

  16. Teaming Up Against High Blood Pressure PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    2012-09-04

    Nearly one-third of American adults have high blood pressure, and more than half of them don’t have it under control. Simply seeing a doctor and taking medications isn’t enough for many people who have high blood pressure. A team-based approach by patients, health care systems, and health care providers is one of the best ways to treat uncontrolled high blood pressure.  Created: 9/4/2012 by Centers for Disease Control and Prevention (CDC).   Date Released: 9/4/2012.

  17. Recent Results on High-Pressure Axial Blowers

    Science.gov (United States)

    Eckert, B.

    1947-01-01

    Considerable progress has, in recent times, been attained in the development of the high-pressure axial blower by well-planned research. The efforts are directed toward improving the efficiencies, which are already high for the axial blower, and in particular the delivery pressure heads. For high pressures multistage arrangements are used. Of fundamental importance is the careful design of all structural parts of the blower that are subject to the effects of the flow. In the present report, several recent results and experiences are reported, which are based on results of German engine research.

  18. Safety analysis of high pressure gasous fuel container punctures

    Energy Technology Data Exchange (ETDEWEB)

    Swain, M.R. [Univ. of Miami, Coral Gables, FL (United States)

    1995-09-01

    The following report is divided into two sections. The first section describes the results of ignitability tests of high pressure hydrogen and natural gas leaks. The volume of ignitable gases formed by leaking hydrogen or natural gas were measured. Leaking high pressure hydrogen produced a cone of ignitable gases with 28{degrees} included angle. Leaking high pressure methane produced a cone of ignitable gases with 20{degrees} included angle. Ignition of hydrogen produced larger overpressures than did natural gas. The largest overpressures produced by hydrogen were the same as overpressures produced by inflating a 11 inch child`s balloon until it burst.

  19. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Jae Im Jeong

    2015-10-01

    Full Text Available Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the vapor pressure of crystalline Al near its melting temperature, 873 K. Our results strongly suggest the possibility of fabricating nanocrystallites or thin films by evaporation at low temperatures.

  20. Pasteurization of food by hydrostatic high pressure: chemical aspects.

    Science.gov (United States)

    Tauscher, B

    1995-01-01

    Food pasteurized by hydrostatic high pressure have already been marketed in Japan. There is great interest in this method also in Europe and USA. Temperature and pressure are the essential parameters influencing the state of substances including foods. While the influence of temperature on food has been extensively investigated, effects of pressure, also in combination with temperature, are attracting increasing scientific attention now. Processes and reactions in food governed by Le Chatelier's principle are of special interest; they include chemical reactions of both low- and macromolecular compounds. Theoretical fundamentals and examples of pressure affected reactions are presented.

  1. Isostructural Transition of MgB2 Under High Pressure

    Institute of Scientific and Technical Information of China (English)

    SUN Li-Ling; WU Qi; ZHAN Zai-Ji; WANG Wen-Kui; WANG Wen-Kui; T.Kikegawa

    2001-01-01

    The high-pressure behaviour of the superconductor MgB2 with a hexagonal structure has been investigated by the in situ synchrotron radiation x-ray diffraction method under pressures up to 42.2 GPa in a diamond anvil cell. An abrupt decrease of about 7% in the unit cell volume of this material occurs in the pressure range of 26.3-30.2 GPa. A split of the Raman spectrum was also observed. The jump of the compression curve and Raman spectrum are ascribed to an isostructural transition in MgB2 at a pressure of 30.2 GPa.

  2. Highly compressible fluorescent particles for pressure sensing in liquids

    Science.gov (United States)

    Cellini, F.; Peterson, S. D.; Porfiri, M.

    2017-05-01

    Pressure sensing in liquids is important for engineering applications ranging from industrial processing to naval architecture. Here, we propose a pressure sensor based on highly compressible polydimethylsiloxane foam particles embedding fluorescent Nile Red molecules. The particles display pressure sensitivities as low as 0.0018 kPa-1, which are on the same order of magnitude of sensitivities reported in commercial pressure-sensitive paints for air flows. We envision the application of the proposed sensor in particle image velocimetry toward an improved understanding of flow kinetics in liquids.

  3. Effect of High Pressure and Heat on Bacterial Toxins

    Directory of Open Access Journals (Sweden)

    Dirk Margosch

    2005-01-01

    Full Text Available Even though the inactivation of microorganisms by high pressure treatment is a subject of intense investigations, the effect of high pressure on bacterial toxins has not been studied so far. In this study, the influence of combined pressure/temperature treatment (0.1 to 800 MPa and 5 to 121 °C on bacterial enterotoxins was determined. Therefore, heat-stable enterotoxin (STa of cholera toxin (CT from Vibrio cholerae, staphylococcal enterotoxins A-E, haemolysin BL (HBL from Bacillus cereus, and Escherichia coli (STa were subjected to different treatment schemes. Structural alterations were monitored in enzyme immunoassays (EIAs. Cytotoxicity of the pressure treated supernatant of toxigenic B. cereus DSM 4384 was investigated with Vero cells. High pressure of 200 to 800 MPa at 5 °C leads to a slight increase of the reactivity of the STa of E. coli. However, reactivity decreased at 800 MPa and 80 °C to (66±21 % after 30 min and to (44±0.3 % after 128 min. At ambient pressure no decrease in EIA reactivity could be observed after 128 min. Pressurization (0.1 to 800 MPa of heat stable monomeric staphylococcal toxins at 5 and 20 °C showed no effect. A combined heat (80 °C and pressure (0.1 to 800 MPa treatment lead to a decrease in the immuno-reactivity to 20 % of its maximum. For cholera toxin a significant loss in latex agglutination was observable only at 80 °C and 800 MPa for holding times higher than 20 min. Interestingly, the immuno-reactivity of B. cereus HBL toxin increased with the increase of pressure (182 % at 800 MPa, 30 °C, and high pressure showed only minor effects on cytotoxicity to Vero cells. Our results indicate that pressurization can increase inactivation observed by heat treatment, and combined treatments may be effective at lower temperatures and/or shorter incubation time.

  4. Acoustic wave propagation in high-pressure system.

    Science.gov (United States)

    Foldyna, Josef; Sitek, Libor; Habán, Vladimír

    2006-12-22

    Recently, substantial attention is paid to the development of methods of generation of pulsations in high-pressure systems to produce pulsating high-speed water jets. The reason is that the introduction of pulsations into the water jets enables to increase their cutting efficiency due to the fact that the impact pressure (so-called water-hammer pressure) generated by an impact of slug of water on the target material is considerably higher than the stagnation pressure generated by corresponding continuous jet. Special method of pulsating jet generation was developed and tested extensively under the laboratory conditions at the Institute of Geonics in Ostrava. The method is based on the action of acoustic transducer on the pressure liquid and transmission of generated acoustic waves via pressure system to the nozzle. The purpose of the paper is to present results obtained during the research oriented at the determination of acoustic wave propagation in high-pressure system. The final objective of the research is to solve the problem of transmission of acoustic waves through high-pressure water to generate pulsating jet effectively even at larger distances from the acoustic source. In order to be able to simulate numerically acoustic wave propagation in the system, it is necessary among others to determine dependence of the sound speed and second kinematical viscosity on operating pressure. Method of determination of the second kinematical viscosity and speed of sound in liquid using modal analysis of response of the tube filled with liquid to the impact was developed. The response was measured by pressure sensors placed at both ends of the tube. Results obtained and presented in the paper indicate good agreement between experimental data and values of speed of sound calculated from so-called "UNESCO equation". They also show that the value of the second kinematical viscosity of water depends on the pressure.

  5. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Mark Leavitt

    2010-03-31

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  6. In situ studies of microbial inactivation during high pressure processing

    Science.gov (United States)

    Maldonado, Jose Antonio; Schaffner, Donald W.; Cuitiño, Alberto M.; Karwe, Mukund V.

    2016-01-01

    High pressure processing (HPP) has been shown to reduce microbial concentration in foods. The mechanisms of microbial inactivation by HPP have been associated with damage to cell membranes. The real-time response of bacteria to HPP was measured to elucidate the mechanisms of inactivation, which can aid in designing more effective processes. Different pressure cycling conditions were used to expose Enterobacter aerogenes cells to HPP. Propidium iodide (PI) was used as a probe, which fluoresces after penetrating cells with damaged membranes and binding with nucleic acids. A HPP vessel with sapphire windows was used for measuring fluorescence in situ. Membrane damage was detected during pressurization and hold time, but not during depressurization. The drop in fluorescence was larger than expected after pressure cycles at higher pressure and longer times. This indicated possible reversible disassociation of ribosomes resulting in additional binding of PI to exposed RNA under pressure and its release after depressurization.

  7. Characterization of coaxial rocket injector sprays under high pressure environments

    Science.gov (United States)

    Sankar, S. V.; Wang, G.; Brena De La Rosa, A.; Rudoff, R. C.; Isakovic, A.; Bachalo, W. D.

    1992-01-01

    The effect of elevated environment pressures on the atomization characteristics of a single element, scaled-down, shear-coaxial rocket injector has been investigated. In this study, the shear coaxial injector was operated with water and air as simulants for conventionally used liquid oxygen and hydrogen gas, respectively. The experiments were conducted in a specially designed high pressure rig. A two-component PDPA/DSA system was used to study the spray characteristics at different chamber pressures ranging from atmospheric to 100 psig. The study showed an overall increase in the droplet sizes at higher chamber pressures. This phenomenon is attributed to a decrease in the secondary atomization effects at higher chamber pressures which, in turn, is directly related to a decrease in the shear experienced by the droplets as they move axially through the pressure chamber.

  8. Strong environmental tolerance of moss Venturiella under very high pressure

    Science.gov (United States)

    Ono, F.; Mori, Y.; Takarabe, K.; Nishihira, N.; Shindo, A.; Saigusa, M.; Matsushima, Y.; Saini, N. L.; Yamashita, M.

    2010-03-01

    It was shown by the present authors group that tardigrade can survive under high pressure of 7.5 GPa. In the case of land plants, however, no result of such experiment has been reported. We have extended our experiments to moss searching for lives under very high pressure. Spore placentas of moss Venturiella were sealed in a small Teflon capsule together with a liquid pressure medium. The capsule was put in the center of a pyrophillite cube, and the maximum pressure of 7.5 GPa was applied using a two-stage cubic anvil press. The pressure was kept constant at the maximum pressure for12, 24, 72 and 144 hours. After the pressure was released, the spores were seeded on a ager medium, and incubated for one week and more longer at 25°C with white light of 2000 lux. It was proved that 70-90% of the spores were alive and germinated after exposed to the maximum pressure of 7.5 GPa for up to 72 hours. However, after exposed to 7.5 GPa for 6 days, only 4 individuals in a hundred were germinated. The pressure tolerance of moss Venturiella is found to be stronger than a small animal, tardigrade.

  9. Strong environmental tolerance of moss Venturiella under very high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ono, F; Mori, Y; Takarabe, K [Department of Applied Science, Okayama University of Science, 1-1 Ridaicho, Okayama 700-0005 (Japan); Nishihira, N; Shindo, A [Okayama Ichinomiya High School, Okayama 700-0005 (Japan); Saigusa, M [Department of Biology, Okayama University, 3-1-1 Tsushima-Naka, Okayama 700-8530 (Japan); Matsushima, Y [Department of Physics, Okayama University, 3-1-1 Tsushima-Naka, Okayama 700-8530 (Japan); Saini, N L [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185 Rome (Italy); Yamashita, M, E-mail: fumihisa@das.ous.ac.j [Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan)

    2010-03-01

    It was shown by the present authors group that tardigrade can survive under high pressure of 7.5 GPa. In the case of land plants, however, no result of such experiment has been reported. We have extended our experiments to moss searching for lives under very high pressure. Spore placentas of moss Venturiella were sealed in a small Teflon capsule together with a liquid pressure medium. The capsule was put in the center of a pyrophillite cube, and the maximum pressure of 7.5 GPa was applied using a two-stage cubic anvil press. The pressure was kept constant at the maximum pressure for12, 24, 72 and 144 hours. After the pressure was released, the spores were seeded on a ager medium, and incubated for one week and more longer at 25{sup 0}C with white light of 2000 lux. It was proved that 70-90% of the spores were alive and germinated after exposed to the maximum pressure of 7.5 GPa for up to 72 hours. However, after exposed to 7.5 GPa for 6 days, only 4 individuals in a hundred were germinated. The pressure tolerance of moss Venturiella is found to be stronger than a small animal, tardigrade.

  10. Exploring nuclear magnetic resonance at the highest pressure. Closing the pseudogap under pressure in a high temperature superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Meissner, Thomas

    2013-05-13

    that a two component spin susceptibility in the copper-oxide plane is a common feature of cuprates. Finally, an almost linear increase of the {sup 63}Cu quadrupole frequency of planar copper in YBa{sub 2}Cu{sub 4}O{sub 8} up to 42 kbar is observed. It is attributable either to a pressure induced hole transfer from the planar oxygen 2p orbitals to the planar copper 3d{sub x{sup 2}-y{sup 2}} orbitals or to a pressure induced hole transfer into the copper-oxide plane. The latter may be more likely since earlier transport measurements up to 16 kbar identified a pressure induced hole transfer from the copper-oxide chains to the copper-oxide plane in this material [137, 138]. However, such a hole transfer into the copper-oxide plane is found to be insufficient to explain the rapid increase of T{sub c} in YBa{sub 2}Cu{sub 4}O{sub 8} under pressure as was suggested earlier [134]. Further experiments are required to determine the hole distribution in the copper-oxide plane and to clarify the role of the hole transfer in the closing of the pseudogap in YBa{sub 2}Cu{sub 4}O{sub 8} at high pressure. In conclusion it can be said that research at very high pressure gives a unique insight into the physics of materials that is also pivotal for their understanding at ambient pressure. However, up until now many physical properties were inaccessible under such extreme conditions due to a lack of suitable experimental probes. In this regard, NMR at very high pressure offers new information and will therefore prove to be an important tool in the future.

  11. Liquid methane at extreme temperature and pressure: Implications for models of Uranus and Neptune

    CERN Document Server

    Richters, Dorothee

    2012-01-01

    We present large scale electronic structure based molecular dynamics simulations of liquid methane at planetary conditions. In particular, we address the controversy of whether or not the interior of Uranus and Neptune consists of diamond. In our simulations we find no evidence for the formation of diamond, but rather sp2-bonded polymeric carbon. Furthermore, we predict that at high tem- perature hydrogen may exist in its monoatomic and metallic state. The implications of our finding for the planetary models of Uranus and Neptune are in detail discussed.

  12. High frequency pressure oscillator for microcryocoolers

    NARCIS (Netherlands)

    Vanapalli, Srinivas; ter Brake, Hermanus J.M.; Jansen, Henricus V.; Zhao, Yiping; Holland, Herman J.; Burger, Johannes Faas; Elwenspoek, Michael Curt

    2008-01-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency

  13. High frequency pressure oscillator for microcryocoolers

    NARCIS (Netherlands)

    Vanapalli, Srinivas; ter Brake, Hermanus J.M.; Jansen, Henricus V.; Zhao, Yiping; Holland, Herman J.; Burger, Johannes Faas; Elwenspoek, Michael Curt

    2008-01-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pre

  14. High frequency pressure oscillator for microcryocoolers

    NARCIS (Netherlands)

    Vanapalli, S.; Brake, ter H.J.M.; Jansen, H.V.; Zhao, Y.; Holland, H.J.; Burger, J.F.; Elwenspoek, M.C.

    2008-01-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pre

  15. Experiments on aerosol removal by high-pressure water spray

    Energy Technology Data Exchange (ETDEWEB)

    Corno, Ada del, E-mail: delcorno@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Morandi, Sonia, E-mail: morandi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Parozzi, Flavio, E-mail: parozzi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Araneo, Lucio, E-mail: lucio.araneo@polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy); CNR-IENI, via Cozzi 53, I-20125 Milano (Italy); Casella, Francesco, E-mail: francesco2.casella@mail.polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy)

    2017-01-15

    Highlights: • Experimental research to measure the efficiency of high-pressure sprays in capturing aerosols if applied to a filtered containment venting system in case of severe accident. • Cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration in the range 2–90 mg/m{sup 3}. • Carried out in a chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls equipped with a high pressure water spray with single nozzle. • Respect to low-pressure sprays, removal efficiency turned out significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure sprays system. - Abstract: An experimental research was managed in the framework of the PASSAM European Project to measure the efficiency of high-pressure sprays in capturing aerosols when applied to a filtered containment venting system in case of severe accident. The campaign was carried out in a purposely built facility composed by a scrubbing chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls to permit the complete view of the aerosol removal process, where the aerosol was injected to form a cloud of specific particle concentration. The chamber was equipped with a high pressure water spray system with a single nozzle placed on its top. The test matrix consisted in the combination of water pressure injections, in the range 50–130 bar, on a cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration ranging between 2 and 99 mg/m{sup 3}. The spray was kept running for 2 min and the efficiency of the removal was evaluated, along the test time, using an optical particle sizer. With respect to low-pressure sprays, the removal efficiency turned out much more significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure spray system. The highest removal rate was

  16. Semicircular Canal Pressure Changes During High-intensity Acoustic Stimulation.

    Science.gov (United States)

    Maxwell, Anne K; Banakis Hartl, Renee M; Greene, Nathaniel T; Benichoux, Victor; Mattingly, Jameson K; Cass, Stephen P; Tollin, Daniel J

    2017-08-01

    Acoustic stimulation generates measurable sound pressure levels in the semicircular canals. High-intensity acoustic stimuli can cause hearing loss and balance disruptions. To examine the propagation of acoustic stimuli to the vestibular end-organs, we simultaneously measured fluid pressure in the cochlea and semicircular canals during both air- and bone-conducted sound presentation. Five full-cephalic human cadaveric heads were prepared bilaterally with a mastoidectomy and extended facial recess. Vestibular pressures were measured within the superior, lateral, and posterior semicircular canals, and referenced to intracochlear pressure within the scala vestibuli with fiber-optic pressure probes. Pressures were measured concurrently with laser Doppler vibrometry measurements of stapes velocity during stimulation with both air- and bone-conduction. Stimuli were pure tones between 100 Hz and 14 kHz presented with custom closed-field loudspeakers for air-conducted sounds and via commercially available bone-anchored device for bone-conducted sounds. Pressures recorded in the superior, lateral, and posterior semicircular canals in response to sound stimulation were equal to or greater in magnitude than those recorded in the scala vestibuli (up to 20 dB higher). The pressure magnitudes varied across canals in a frequency-dependent manner. High sound pressure levels were recorded in the semicircular canals with sound stimulation, suggesting that similar acoustical energy is transmitted to the semicircular canals and the cochlea. Since these intralabyrinthine pressures exceed intracochlear pressure levels, our results suggest that the vestibular end-organs may also be at risk for injury during exposure to high-intensity acoustic stimuli known to cause trauma in the auditory system.

  17. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    Science.gov (United States)

    Shibata, M.; Torigoe, M.; Matsumoto, Y.; Yamamoto, M.; Takizawa, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Ono, F.

    2014-05-01

    Our studies on the tolerance of plants and animals against very high pressure of several GPa have been extended to a smaller sized fungus, the budding yeast Saccharomyces cerevisiae. Several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate, and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar. It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for longer than 12 h were found dead. The high pressure tolerance of budding yeast is a little weaker than that of tardigrades.

  18. The high-pressure compressibility of B12P2

    Science.gov (United States)

    Gao, Yang; Zhou, Mi; Wang, Haiyan; Ji, Cheng; Whiteley, C. E.; Edgar, J. H.; Liu, Haozhe; Ma, Yanzhang

    2017-03-01

    In situ high pressure synchrotron X-ray diffraction measurements were performed on icosahedral boron phosphide (B12P2) to 43.2 GPa. No structural phase transition occurs over this pressure range. The bulk modulus of B12P2 is KOT = 207 ± 7 GPa with pressure derivative of K'OT = 6.6 ± 0.8 . The structure is most compressible along the chain formed by phosphorus and boron atoms in the crystal structure. It is believed that the compressibility of boron-rich compounds at close to ambient pressure is determined by the boron icosahedral structure, while the inclusive atoms (both boron and non-boron) between the icosahedra determine the high-pressure compressibility and structure stability.

  19. A scanning fluorescence spectroscopy of decorin under high pressure

    Science.gov (United States)

    Komoda, Takahito; Kim, Yun-Jung; Suzuki, Atsushi; Nishiumi, Tadayuki

    2013-06-01

    High pressure processing is able to tenderize not only meat but also intramuscular connective tissue, which is mainly composed of collagen. Decorin, one of the proteoglycans, binds to and stabilizes collagen fibrils. It has been suggested that structural weakening of intramuscular connective tissue may result from the disappearance of the decorin-collagen interaction. In this study, the fluorescence spectra and the surface hydrophobicity of decorin molecules were measured under high pressure in order to examine the resulting change in the tertiary structure. The fluorescence intensity and the surface hydrophobicity of decorin molecules both decreased with increasing applied pressure and with applied time at the constant applied pressure, respectively. The observations indicate that the native structure of decorin is maintained during 200 MPa pressurization for less than 30 min.

  20. High pressure in semiconductor physics II

    CERN Document Server

    Willardson, R K; Suski, Tadeusz; Paul, William

    1998-01-01

    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise indeed that this tra...

  1. CARS Diagnostics of High Pressure Combustion.

    Science.gov (United States)

    1982-11-01

    single pulse spontaneous Raman scattering. Furthermore. in this ture increases, the band broadens as the rotational population distri- sooting flame , laser... sooting flame with height above the burner. S cm- the fine structure shown in Fig. 2 is lost, but the spectra Recently, the feasibility of CARS for...under adverse conditions, measurements in a highly important in such devices as gas turbines, internal sooting flame will be described (Ref. 3). BOXCARS

  2. High pressure differential conductance measurements of (Pb,Sn)Se

    Science.gov (United States)

    Paul, Tiffany; Vangennep, Derrick; Jackson, Daniel; Biswas, Amlan; Hamlin, James

    Topological transitions have been recognized as a new type of quantum phase transition. Recently, a number of papers have reported scanning tunneling microscope (STM) measurements of the Landau level spectra of topologically non-trivial materials. Such measurements can offer substantial insight into the nature of the transition between topologically distinct phases. Although applied pressure represents an attractive means to drive a topological quantum phase transition, STM measurements can not be performed under high pressure conditions. In this talk, I will discuss our recent attempts to observe Landau level spectra in compressed (Pb,Sn)Se using differential conductance measurements. Acknowledgements: TAP supported by REU NSF DMR-1461019. Pressure cell development and measurements at high magnetic fields supported by the National High Magnetic Field Laboratory User Collaboration Grants Program. Synthesis, characterization, and high pressure measurements supported by NSF DMR-1453752.

  3. The high pressure gas Cerenkov counter at the Omega Facility.

    CERN Multimedia

    1975-01-01

    The high-pressure gas Cerenkov was used to measure reactions as pion (or kaon)- hydrogen --> forward proton - X. It was built by the Ecole Polytechnique (Palaiseu). Here Peter Sonderegger and Patrick Fleury,

  4. Beam steering effects in turbulent high pressure flames

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B.; Kaeppeli, B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The propagation of a laser beam through a flame is influenced by variations of the optical density. Especially in turbulent high pressure flames this may seriously limit the use of laser diagnostic methods. (author) 1 fig., 2 refs.

  5. The principles of ultra high pressure technology and its application ...

    African Journals Online (AJOL)

    The principles of ultra high pressure technology and its application in food processing/preservation: A review of ... African Journal of Biotechnology ... along the entire food chain, food preservation remains as necessary today as in the past.

  6. Novel High Pressure Pump-on-a-Chip Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — HJ Science & Technology, Inc proposes to develop a novel high pressure "pump-on-a-chip" and "valve-on-a-chip" microfluidic technology for NASA planetary science...

  7. The Combustion of HMX. [burning rate at high pressures

    Science.gov (United States)

    Boggs, T. L.; Price, C. F.; Atwood, A. I.; Zurn, D. E.; Eisel, J. L.

    1980-01-01

    The burn rate of HMX was measured at high pressures (p more than 1000 psi). The self deflagration rate of HMX was determined from 1 atmosphere to 50,000 psi. The burning rate shows no significant slope breaks.

  8. Scheelite CaWO{sub 4} at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Grzechnik, Andrzej [Laboratory of Crystallography, University of Bayreuth, D-95440 Bayreuth (Germany); Crichton, Wilson A [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble cedex (France); Hanfland, Michael [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble cedex (France); Smaalen, Sander van [Laboratory of Crystallography, University of Bayreuth, D-95440 Bayreuth (Germany)

    2003-11-05

    The high-pressure room-temperature behaviour of scheelite CaWO{sub 4} (I4{sub 1}/a,Z = 4) is studied using high-resolution synchrotron angle-dispersive x-ray powder diffraction in diamond anvil cells loaded with helium or a mixture of methanol and ethanol as the pressure-transmitting media. At about 10 GPa, there occurs a phase transition to the fergusonite type (I 2/a,Z = 4) without any discontinuity in the pressure dependence of the unit cell volumes. These observations are discussed in relation to the high-pressure-high-temperature systematics of the AMX{sub 4} and AX{sub 2} type compounds.

  9. Deformation Twinning of a Silver Nanocrystal under High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaojing; Yang, Wenge; Harder, Ross; Sun, Yugang; Liu, Ming; Chu, Yong S.; Robinson, Ian K.; Mao, Ho-kwang

    2015-11-01

    Within a high-pressure environment, crystal deformation is controlled by complex processes such as dislocation motion, twinning, and phase transitions, which change materials' microscopic morphology and alter their properties. Understanding a crystal's response to external stress provides a unique opportunity for rational tailoring of its functionalities. It is very challenging to track the strain evolution and physical deformation from a single nanoscale crystal under high-pressure stress. Here, we report an in situ three-dimensional mapping of morphology and strain evolutions in a single-crystal silver nanocube within a high-pressure environment using the Bragg Coherent Diffractive Imaging (CDI) method. We observed a continuous lattice distortion, followed by a deformation twining process at a constant pressure. The ability to visualize stress-introduced deformation of nanocrystals with high spatial resolution and prominent strain sensitivity provides an important route for interpreting and engineering novel properties of nanomaterials.

  10. How Potassium Can Help Control High Blood Pressure

    Science.gov (United States)

    ... natural sources of potassium. For example, a medium banana has about 420 mg of potassium and half ... high blood pressure. Learn more Get a fact sheet on following a heart-healthy diet: English | Spanish ...

  11. Energy Storage and Generation for Extreme Temperature and Pressure and Directional Measurement While Drilling Applications

    Energy Technology Data Exchange (ETDEWEB)

    Signorelli, Riccardo [FastCAP Systems Corporation, Boston, MA (United States); Cooley, John [FastCAP Systems Corporation, Boston, MA (United States)

    2015-10-14

    FastCAP Systems Corporation has successfully completed all milestones defined by the award DE-EE0005503. Under this program, FastCAP developed three critical subassemblies to TRL3 demonstrating proof of concept of a geothermal MWD power source. This power source includes an energy harvester, electronics and a novel high temperature ultracapacitor (“ultracap”) rechargeable energy storage device suitable for geothermal exploration applications. FastCAP’s ruggedized ultracapacitor (ultracap) technology has been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. Characteristics of this technology are that it is rechargeable and relatively high power. This technology was the basis for the advancements in rechargeable energy storage under this project. The ultracap performs reliably at 250°C and beyond and operates over a wide operating temperature range: -5°C to 250°C. The ultracap has significantly higher power density than lithium thionyl chloride batteries, a non-rechargeable incumbent used in oil and gas drilling today. Several hermetically sealed, prototype devices were tested in our laboratories at constant temperatures of 250°C showing no significant degradation over 2000 hours of operation. Other prototypes were tested at Sandia National Lab in the month of April, 2015 for a third party performance validation. These devices showed outstanding performance over 1000 hours of operation at three rated temperatures, 200°C, 225°C and 250°C, with negligible capacitance degradation and minimal equivalent series resistance (ESR) increase. Similarly, FastCAP’s ruggedized electronics have been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. This technology was the basis for the advancements in downhole electronics under this project. Principal contributions here focused on design for manufacture innovations that have reduced the prototype build cycle time by a factor

  12. A Generalized Equation of State for High-Pressure Liquids

    Institute of Scientific and Technical Information of China (English)

    LIANG Yan-bo; TONG Jing-shan

    2005-01-01

    An equation of state (EOS) for high-pressure liquids, I.e., Tait EOS, is deduced according to isothermal compressibility KT=-1/V·((а)V/(а)p)T·.Based on the equation, a generalized EOS for high pressure-liquids is established by using the reduced state principle and introducing a characteristic parameter-configuration factorξ.Reasonably satisfactory P-V-T data for many organic compounds, including some polar components, were calculated by using the equation.

  13. Synthesis of an orthorhombic high pressure boron phase

    Science.gov (United States)

    Zarechnaya, Evgeniya Yu; Dubrovinsky, Leonid; Dubrovinskaia, Natalia; Miyajima, Nobuyoshi; Filinchuk, Yaroslav; Chernyshov, Dmitry; Dmitriev, Vladimir

    2008-12-01

    The densest boron phase (2.52 g cm-3) was produced as a result of the synthesis under pressures above 9 GPa and temperatures up to ~1800 °C. The x-ray powder diffraction pattern and the Raman spectra of the new material do not correspond to those of any known boron phases. A new high-pressure high-temperature boron phase was defined to have an orthorhombic symmetry (Pnnm (No. 58)) and 28 atoms per unit cell.

  14. Effect of high pressure on physicochemical properties of meat.

    Science.gov (United States)

    Buckow, Roman; Sikes, Anita; Tume, Ron

    2013-01-01

    The application of high pressure offers some interesting opportunities in the processing of muscle-based food products. It is well known that high-pressure processing can prolong the shelf life of meat products in addition to chilling but the pressure-labile nature of protein systems limits the commercial range of applications. High pressure can affect the texture and gel-forming properties of myofibrillar proteins and, hence, has been suggested as a physical and additive-free alternative to tenderize and soften or restructure meat and fish products. However, the rate and magnitude at which pressure and temperature effects take place in muscles are variable and depend on a number of circumstances and conditions that are still not precisely known. This review provides an overview of the current knowledge of the effects of high pressure on muscle tissue over a range of temperatures as it relates to meat texture, microstructure, color, enzymes, lipid oxidation, and pressure-induced gelation of myofibrillar proteins.

  15. High-pressure-low-temperature x-ray power diffractometer.

    Science.gov (United States)

    Syassen, K; Holzapfel, W B

    1978-08-01

    A high-pressure technique for x-ray diffraction studies at low temperatures is described. The system consists of a Bridgman anvil type high-pressure device with either tungsten carbide or boron carbide anvils, a liquid He cryostat, and x-ray diffractometer operating in Debye-Scherrer geometry. The newly developed boron carbide anvil cell is capable of containing a liquid pressure transmitting medium. The precision of the lattice parameter determination is discussed and the effect of nonisostatic stress components on the diffraction pattern is examined.

  16. High pressure and multiferroics materials: a happy marriage

    Science.gov (United States)

    Gilioli, Edmondo; Ehm, Lars

    2014-01-01

    The community of material scientists is strongly committed to the research area of multiferroic materials, both for the understanding of the complex mechanisms supporting the multiferroism and for the fabrication of new compounds, potentially suitable for technological applications. The use of high pressure is a powerful tool in synthesizing new multiferroic, in particular magneto-electric phases, where the pressure stabilization of otherwise unstable perovskite-based structural distortions may lead to promising novel metastable compounds. The in situ investigation of the high-pressure behavior of multiferroic materials has provided insight into the complex interplay between magnetic and electronic properties and the coupling to structural instabilities. PMID:25485138

  17. Very high pressure Moessbauer spectroscopy using diamond anvil cells

    Energy Technology Data Exchange (ETDEWEB)

    Pasternak, M.P.; Taylor, R.D.

    1988-01-01

    The technique of generating very high pressure by means of Diamond Anvil Cells (DAC) for Mossbauer Effect applications is outlined. A comprehensive description is presented of the principles of DAC, modification for the use in M/umlt o/ssbauer Spectroscopy (MS), the Merrill--Bassett and Bassett cells, of pressure measurements, of gasketing and collimation, and of hydrostatic media. Examples of /sup 151/Eu, /sup 119/Sn and /sup 129/I are given showing the feasibility of DAC applications in MS. Other isotopes with potential use for high pressure MS using DAC are suggested. 27 refs., 9 figs.

  18. High pressure and multiferroics materials: a happy marriage.

    Science.gov (United States)

    Gilioli, Edmondo; Ehm, Lars

    2014-11-01

    The community of material scientists is strongly committed to the research area of multiferroic materials, both for the understanding of the complex mechanisms supporting the multiferroism and for the fabrication of new compounds, potentially suitable for technological applications. The use of high pressure is a powerful tool in synthesizing new multiferroic, in particular magneto-electric phases, where the pressure stabilization of otherwise unstable perovskite-based structural distortions may lead to promising novel metastable compounds. The in situ investigation of the high-pressure behavior of multiferroic materials has provided insight into the complex interplay between magnetic and electronic properties and the coupling to structural instabilities.

  19. High pressure and multiferroics materials: a happy marriage

    Directory of Open Access Journals (Sweden)

    Edmondo Gilioli

    2014-11-01

    Full Text Available The community of material scientists is strongly committed to the research area of multiferroic materials, both for the understanding of the complex mechanisms supporting the multiferroism and for the fabrication of new compounds, potentially suitable for technological applications. The use of high pressure is a powerful tool in synthesizing new multiferroic, in particular magneto-electric phases, where the pressure stabilization of otherwise unstable perovskite-based structural distortions may lead to promising novel metastable compounds. The in situ investigation of the high-pressure behavior of multiferroic materials has provided insight into the complex interplay between magnetic and electronic properties and the coupling to structural instabilities.

  20. Energy Storage and Generation for Extreme Temperature and Pressure and Directional Measurement While Drilling Applications

    Energy Technology Data Exchange (ETDEWEB)

    Signorelli, Riccardo [FastCAP Systems Corporation, Boston, MA (United States); Cooley, John [FastCAP Systems Corporation, Boston, MA (United States)

    2015-10-14

    FastCAP Systems Corporation has successfully completed all milestones defined by the award DE-EE0005503. Under this program, FastCAP developed three critical subassemblies to TRL3 demonstrating proof of concept of a geothermal MWD power source. This power source includes an energy harvester, electronics and a novel high temperature ultracapacitor (“ultracap”) rechargeable energy storage device suitable for geothermal exploration applications. FastCAP’s ruggedized ultracapacitor (ultracap) technology has been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. Characteristics of this technology are that it is rechargeable and relatively high power. This technology was the basis for the advancements in rechargeable energy storage under this project. The ultracap performs reliably at 250°C and beyond and operates over a wide operating temperature range: -5°C to 250°C. The ultracap has significantly higher power density than lithium thionyl chloride batteries, a non-rechargeable incumbent used in oil and gas drilling today. Several hermetically sealed, prototype devices were tested in our laboratories at constant temperatures of 250°C showing no significant degradation over 2000 hours of operation. Other prototypes were tested at Sandia National Lab in the month of April, 2015 for a third party performance validation. These devices showed outstanding performance over 1000 hours of operation at three rated temperatures, 200°C, 225°C and 250°C, with negligible capacitance degradation and minimal equivalent series resistance (ESR) increase. Similarly, FastCAP’s ruggedized electronics have been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. This technology was the basis for the advancements in downhole electronics under this project. Principal contributions here focused on design for manufacture innovations that have reduced the prototype build cycle time by a factor