WorldWideScience

Sample records for extremely fast cmes

  1. Can SOHO SWAN Detect CMEs?

    Science.gov (United States)

    St. Cyr, O. C.; Malayeri, M. L.; Yashiro, S.; Quemerais, E.; Bertaux, J.; Howard, R.

    2003-12-01

    We have investigated the possibility that the Solar Wind Anisotropies (SWAN) remote sensing instrument on SOHO may be able to detect coronal mass ejections (CMEs) in neutral Hydrogen Lyman-α emission. We have identified CMEs near the Sun in observations by the SOHO LASCO white-light coronagraphs and in extreme ultraviolet emissions using SOHO EIT. There are very few methods of tracking CMEs after they leave the coronagraph's field-of-view, so this is an important topic to study. The primary science goal of the SWAN investigation is the measurement of large-scale structures in the solar wind, and these are obtained by detecting intensity fluctuations in Lyman-α . SWAN consists of a pair of sensors on opposite panels of SOHO. The instantaneous field-of-view of each sensor unit is a 5° x 5° square, divided into 1° pixels. A gimbaled periscope system allows each sensor to map the intensity distribution of Lyman-α , and the entire sky can be scanned in less than one day. This is the typical mode of operation for this instrument (Bertaux et al., Solar Physics, 162, 403-439, 1995). Beginning in May 2002 the sky-scan mode of the SWAN detectors was interrupted, and they were held stationary for one-or-more 15-hour campaigns each week. During those campaigns the SWAN sensors were positioned above the East or West equator of the Sun at locations chosen to be as close to the Sun as possible (typically 50 solar radii from Sun-center). Based on the LASCO and EIT data, we have identified CMEs whose extrapolated height-time measurements indicated that the events would cross the SWAN field during the campaign period. During 12 months' observation, there were ˜10 CMEs that met two criteria: (1) an event low in the corona near the solar limb could be unambiguously identified in EIT; and (2) the CME could be tracked beyond 20 R⊙ in LASCO C3. We consider these CMEs to be particularly well-observed since the speed measured in LASCO could be reliably extrapolated to the SWAN

  2. Importance of CME Radial Expansion on the Ability of Slow CMEs to Drive Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Lugaz, Noé; Farrugia, Charles J.; Winslow, Reka M. [Space Science Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH (United States); Small, Colin R.; Manion, Thomas [Department of Physics, University of New Hampshire, Durham, NH (United States); Savani, Neel P. [NASA/GSFC and University of Maryland Baltimore County, Greenbelt, MD (United States)

    2017-10-20

    Coronal mass ejections (CMEs) may disturb the solar wind by overtaking it or expanding into it, or both. CMEs whose front moves faster in the solar wind frame than the fast magnetosonic speed drive shocks. Such shocks are important contributors to space weather, by triggering substorms, compressing the magnetosphere, and accelerating particles. In general, near 1 au, CMEs with speed greater than about 500 km s{sup −1} drive shocks, whereas slower CMEs do not. However, CMEs as slow as 350 km s{sup −1} may sometimes, although rarely, drive shocks. Here we study these slow CMEs with shocks and investigate the importance of CME expansion in contributing to their ability to drive shocks and in enhancing shock strength. Our focus is on CMEs with average speeds under 375 km s{sup −1}. From Wind measurements from 1996 to 2016, we find 22 cases of such shock-driving slow CMEs, and for about half of them (11 out of the 22), the existence of the shock appears to be strongly related to CME expansion. We also investigate the proportion of all CMEs with speeds under 500 km s{sup −1} with and without shocks in solar cycles 23 and 24, depending on their speed. We find no systematic difference, as might have been expected on the basis of the lower solar wind and Alfvén speeds reported for solar cycle 24 versus 23. The slower expansion speed of CMEs in solar cycle 24 might be an explanation for this lack of increased frequency of shocks, but further studies are required.

  3. The Causes of Quasi-homologous CMEs

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lijuan; Wang, Yuming; Liu, Rui; Zhou, Zhenjun; Liu, Jiajia; Liu, Kai; Shen, Chenglong; Zhang, Quanhao [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, Anhui, 230026 (China); Temmer, M.; Thalmann, J. K.; Veronig, A. M., E-mail: ymwang@ustc.edu.cn, E-mail: ljliu@mail.ustc.edu.cn [Institute of Physics/IGAM, University of Graz, Universitätsplatz 5/II, A-8010 Graz (Austria)

    2017-08-01

    In this paper, we identified the magnetic source locations of 142 quasi-homologous (QH) coronal mass ejections (CMEs), of which 121 are from solar cycle (SC) 23 and 21 from SC 24. Among those CMEs, 63% originated from the same source location as their predecessor (defined as S-type), while 37% originated from a different location within the same active region as their predecessor (defined as D-type). Their distinctly different waiting time distributions, peaking around 7.5 and 1.5 hr for S- and D-type CMEs, suggest that they might involve different physical mechanisms with different characteristic timescales. Through detailed analysis based on nonlinear force-free coronal magnetic field modeling of two exemplary cases, we propose that the S-type QH CMES might involve a recurring energy release process from the same source location (by magnetic free energy replenishment), whereas the D-type QH CMEs can happen when a flux tube system is disturbed by a nearby CME.

  4. Interacting CMEs and their associated flare and SEP activities

    Science.gov (United States)

    Shanmugaraju, A.; Prasanna Subramanian, S.

    2014-08-01

    We have analyzed a set of 25 interacting events which are associated with the DH type II bursts. These events are selected from the Coronal Mass Ejections (CMEs) observed during the period 1997-2010 in SOHO/LASCO and DH type IIs observed in Wind/WAVES. Their pre and primary CMEs from nearby active regions are identified using SOHO/LASCO and EIT images and their height-time diagrams. Their interacting time and height are obtained, and their associated activities, such as, flares and Solar Energetic Particles (>10 pfu) are also investigated. Results from the analysis are: primary CMEs are much faster than the pre-CMEs, their X-ray flares are also stronger (X- and M-class) compared to the flares (C- and M-class) of pre-CMEs. Most of the events (22/25) occurred during the period 2000-2006. From the observed width and speed of pre and primary CMEs, it is found that the pre-CMEs are found to be less energetic than the primary CMEs. While the primary CMEs are tracked up to the end of LASCO field of view (30 Rs), most of the pre-CMEs can be tracked up to <26 Rs. The SEP intensity is found to be related with the integrated flux of X-ray flares associated with the primary CMEs for nine events originating from the western region.

  5. The nature of micro CMEs within coronal holes

    Science.gov (United States)

    Bothmer, Volker; Nistico, Giuseppe; Zimbardo, Gaetano; Patsourakos, Spiros; Bosman, Eckhard

    Whilst investigating the origin and characteristics of coronal jets and large-scale CMEs identi-fied in data from the SECCHI (Sun Earth Connection Coronal and Heliospheric Investigation) instrument suites on board the two STEREO satellites, we discovered transient events that originated in the low corona with a morphology resembling that of typical three-part struc-tured coronal mass ejections (CMEs). However, the CMEs occurred on considerably smaller spatial scales. In this presentation we show evidence for the existence of small-scale CMEs from inside coronal holes and present quantitative estimates of their speeds and masses. We interprete the origin and evolution of micro CMEs as a natural consequence of the emergence of small-scale magnetic bipoles related to the Sun's ever changing photospheric magnetic flux on various scales and their interactions with the ambient plasma and magnetic field. The analysis of CMEs is performed within the framework of the EU Erasmus and FP7 SOTERIA projects.

  6. Radial distributions of magnetic field strength in the solar corona as derived from data on fast halo CMEs

    Science.gov (United States)

    Fainshtein, Victor; Egorov, Yaroslav

    2018-03-01

    In recent years, information about the distance between the body of rapid coronal mass ejection (CME) and the associated shock wave has been used to measure the magnetic field in the solar corona. In all cases, this technique allows us to find coronal magnetic field radial profiles B(R) applied to the directions almost perpendicular to the line of sight. We have determined radial distributions of magnetic field strength along the directions close to the Sun-Earth axis. For this purpose, using the "ice-cream cone" model and SOHO/LASCO data, we found 3D characteristics for fast halo coronal mass ejections (HCMEs) and for HCME-related shocks. With these data, we managed to obtain the B(R) distributions as far as ≈43 solar radii from the Sun's center, which is approximately twice as far as those in other studies based on LASCO data. We have concluded that to improve the accuracy of this method for finding the coronal magnetic field we should develop a technique for detecting CME sites moving in the slow and fast solar wind. We propose a technique for selecting CMEs whose central (paraxial) part actually moves in the slow wind.

  7. Forecasting Propagation and Evolution of CMEs in an Operational Setting: What Has Been Learned

    Science.gov (United States)

    Zheng, Yihua; Macneice, Peter; Odstrcil, Dusan; Mays, M. L.; Rastaetter, Lutz; Pulkkinen, Antti; Taktakishvili, Aleksandre; Hesse, Michael; Kuznetsova, M. Masha; Lee, Hyesook; hide

    2013-01-01

    One of the major types of solar eruption, coronal mass ejections (CMEs) not only impact space weather, but also can have significant societal consequences. CMEs cause intense geomagnetic storms and drive fast mode shocks that accelerate charged particles, potentially resulting in enhanced radiation levels both in ions and electrons. Human and technological assets in space can be endangered as a result. CMEs are also the major contributor to generating large amplitude Geomagnetically Induced Currents (GICs), which are a source of concern for power grid safety. Due to their space weather significance, forecasting the evolution and impacts of CMEs has become a much desired capability for space weather operations worldwide. Based on our operational experience at Space Weather Research Center at NASA Goddard Space Flight Center (http://swrc.gsfc.nasa.gov), we present here some of the insights gained about accurately predicting CME impacts, particularly in relation to space weather operations. These include: 1. The need to maximize information to get an accurate handle of three-dimensional (3-D) CME kinetic parameters and therefore improve CME forecast; 2. The potential use of CME simulation results for qualitative prediction of regions of space where solar energetic particles (SEPs) may be found; 3. The need to include all CMEs occurring within a 24 h period for a better representation of the CME interactions; 4. Various other important parameters in forecasting CME evolution in interplanetary space, with special emphasis on the CME propagation direction. It is noted that a future direction for our CME forecasting is to employ the ensemble modeling approach.

  8. Radial distributions of magnetic field strength in the solar corona as derived from data on fast halo CMEs

    Directory of Open Access Journals (Sweden)

    Fainshtein V.G.

    2018-03-01

    Full Text Available In recent years, information about the distance between the body of rapid coronal mass ejection (CME and the associated shock wave has been used to measure the magnetic field in the solar corona. In all cases, this technique allows us to find coronal magnetic field radial profiles B(R applied to the directions almost perpendicular to the line of sight. We have determined radial distributions of magnetic field strength along the directions close to the Sun–Earth axis. For this purpose, using the “ice-cream cone” model and SOHO/LASCO data, we found 3D characteristics for fast halo coronal mass ejections (HCMEs and for HCME-related shocks. With these data we managed to obtain the B(R distributions as far as ≈43 solar radii from the Sun's center, which is approximately twice as far as those in other studies based on LASCO data. We have concluded that to improve the accuracy of this method for finding the coronal magnetic field we should develop a technique for detecting CME parts moving in the slow and fast solar wind. We propose a technique for selecting CMEs whose central (paraxial part actually moves in the slow wind.

  9. Prediction of CMEs and Type II Bursts from Sun to Earth

    Science.gov (United States)

    Cairns, I. H.; Schmidt, J. M.; Gopalswamy, N.; van der Holst, B.

    2017-12-01

    Most major space weather events are due to fast CMEs and their shocks interacting with Earth's magnetosphere. SImilarly, type II solar radio bursts are well-known signatures of CMEs and their shocks moving through the corona and solar wind. The properties of the space weather events and the type II radio bursts depend sensitively on the CME velocity, shape, and evolution as functions of position and time, as well as on the magnetic field vector in the coronal and solar wind plasma, downstream of the CME shock, and inside the CME. We report simulations of CMEs and type II bursts from the Sun to Earth with the Space Weather Modelling Framework (2015 and 2016 versions), set up carefully using relevant data, and a kinetic radio emission theory. Excellent agreement between observations, simulations, and theory are found for the coronal (metric) type II burst of 7 September 2014 and associated CME, including the lack of radio emission in the solar wind beyond about 10 solar radii. Similarly, simulation of a CME and type II burst from the Sun to 1 AU over the period 29 November - 1 December 2013 yield excellent agreement for the radio burst from 10 MHz to 30 kHz for STEREO A and B and Wind, arrival of the CME at STEREO A within 1 hour reported time, deceleration of the CME in agreement with the Gopalswamy et al. [2011] observational analyses, and Bz rotations at STEREO A from upstream of the CME shock to within the CME. These results provide strong support for the type II theory and also that the Space WeatherModeling Framework can accurately predict the properties and evolution of CMEs and the interplanetary magnetic field and plasma from the Sun to 1 AU when sufficiently carefully initialized.

  10. Shocks inside CMEs: A survey of properties from 1997 to 2006

    Science.gov (United States)

    Lugaz, N.; Farrugia, C. J.; Smith, C. W.; Paulson, K.

    2015-04-01

    We report on 49 fast-mode forward shocks propagating inside coronal mass ejections (CMEs) as measured by Wind and ACE at 1 AU from 1997 to 2006. Compared to typical CME-driven shocks, these shocks propagate in different upstream conditions, where the median upstream Alfvén speed is 85 km s-1, the proton β = 0.08 and the magnetic field strength is 8 nT. These shocks are fast with a median speed of 590 km s-1 but weak with a median Alfvénic Mach number of 1.9. They typically compress the magnetic field and density by a factor of 2-3. The most extreme upstream conditions found were a fast magnetosonic speed of 230 km s-1, a plasma β of 0.02, upstream solar wind speed of 740 km s-1 and density of 0.5 cm-3. Nineteen of these complex events were associated with an intense geomagnetic storm (peak Dst under -100 nT) within 12 h of the shock detection at Wind, and 15 were associated with a drop of the storm time Dst index of more than 50 nT between 3 and 9 h after shock detection. We also compare them to a sample of 45 shocks propagating in more typical upstream conditions. We show the average property of these shocks through a superposed epoch analysis, and we present some analytical considerations regarding the compression ratios of shocks in low β regimes. As most of these shocks are measured in the back half of a CME, we conclude that about half the shocks may not remain fast-mode shocks as they propagate through an entire CME due to the large upstream and magnetosonic speeds.

  11. Ulysses Observations of the Magnetic Connectivity between CMEs and the Sun

    Science.gov (United States)

    Riley, Pete; Gosling, J. T.; Crooker, N. U.

    2004-01-01

    We have investigated the magnetic connectivity of coronal mass ejections (CMEs) to the Sun using Ulysses observations of suprathermal electrons at various distances between 1 AU and 5.2 AU. Drawing on ideas concerning the eruption and evolution of CMEs, we had anticipated that there might be a tendency for CMEs to contain progressively more open field lines, as reconnection back at the Sun either opened or completely disconnected previously closed field lines threading the CMEs. Our results, however, did not yield any discernible trend. By combining the potential contribution of CMEs to the heliospheric flux with the observed build-up of flux during the course of the solar cycle we also derive a lower limit for the reconnection rate of CMEs that is sufficient to avoid the "flux catastrophe" paradox. This rate is well below our threshold of detectability.

  12. A Study of the Interplanetary Signatures of Earth-Arriving CMEs

    Science.gov (United States)

    Akiyama, S.; Yashiro, S.; Gopalswamy, N.; Xie, H.; Makela, P. A.; Kay, C.

    2017-12-01

    We studied interplanetary (IP) signatures associated with coronal mass ejections (CMEs) that are likely to reach Earth. In order to find Earth- arriving CMEs, we started with disk-center CMEs originating within 30 degrees from the central meridian and the equator. Using the side-view images from the STEREO mission, we excluded CMEs that faded out before reaching the Earth orbit, or were captured by other CMEs, or erupted away from the ecliptic plane. We found 61 Earth- arriving CMEs during 2009/10/01 - 2012/07/31 (inclusive). Though all events were observed to reach Earth in the STEREO/HI2 field of view, only 34 out of 61 events (56%) were associated with magnetic cloud (MC) or ejecta (EJ) observed by ACE or Wind. We compared the CME characteristics associated with 9 MCs, 25 EJs, and 27 no- clear- signature (NCS) events to find out what might cause the difference in the IP signatures. To avoid projection effects, we used coronagraph images obtained by the STEREO mission. The average speed (width) of CMEs associated with MCs, EJs, and NCSs are 484 km/s (104°), 663 km/s (135°), and 595 km/s (144°), respectively. CMEs associated with MCs tend to be less energetic than other types in our dataset. We also checked the coronal holes (CHs) near the CME source to examine the effect of the CME deflection. In the case of MCs and EJs, only 22% (2/9) and 28% (7/25) events have CHs near the source, while 48% (13/27) NCS events have nearby CHs. We discuss what factors near the Sun cause the observed differences at Earth.

  13. Predicting the Magnetic Field of Earth-Impacting CMEs

    Science.gov (United States)

    Kay, C.; Gopalswamy, N.; Reinard, A.; Opher, M.

    2017-01-01

    Predicting the impact of coronal mass ejections (CMEs) and the southward component of their magnetic field is one of the key goals of space weather forecasting. We present a new model, the ForeCAT In situ Data Observer (FIDO), for predicting the in situ magnetic field of CMEs. We first simulate a CME using ForeCAT, a model for CME deflection and rotation resulting from the background solar magnetic forces. Using the CME position and orientation from ForeCAT, we then determine the passage of the CME over a simulated spacecraft. We model the CME's magnetic field using a force-free flux rope and we determine the in situ magnetic profile at the synthetic spacecraft. We show that FIDO can reproduce the general behavior of four observed CMEs. FIDO results are very sensitive to the CME's position and orientation, and we show that the uncertainty in a CME's position and orientation from coronagraph images corresponds to a wide range of in situ magnitudes and even polarities. This small range of positions and orientations also includes CMEs that entirely miss the satellite. We show that two derived parameters (the normalized angular distance between the CME nose and satellite position and the angular difference between the CME tilt and the position angle of the satellite with respect to the CME nose) can be used to reliably determine whether an impact or miss occurs. We find that the same criteria separate the impacts and misses for cases representing all four observed CMEs.

  14. Predicting the Magnetic Field of Earth-impacting CMEs

    Energy Technology Data Exchange (ETDEWEB)

    Kay, C.; Gopalswamy, N. [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Reinard, A. [University of Colorado/Cooperative Institute for Research in Environmental Sciences and National Oceanic and Atmospheric Administration/Space Weather Prediction Center, Boulder, CO 80505 (United States); Opher, M., E-mail: christina.d.kay@nasa.gov [Astronomy Department, Boston University, Boston, MA 02215 (United States)

    2017-02-01

    Predicting the impact of coronal mass ejections (CMEs) and the southward component of their magnetic field is one of the key goals of space weather forecasting. We present a new model, the ForeCAT In situ Data Observer (FIDO), for predicting the in situ magnetic field of CMEs. We first simulate a CME using ForeCAT, a model for CME deflection and rotation resulting from the background solar magnetic forces. Using the CME position and orientation from ForeCAT, we then determine the passage of the CME over a simulated spacecraft. We model the CME’s magnetic field using a force-free flux rope and we determine the in situ magnetic profile at the synthetic spacecraft. We show that FIDO can reproduce the general behavior of four observed CMEs. FIDO results are very sensitive to the CME’s position and orientation, and we show that the uncertainty in a CME’s position and orientation from coronagraph images corresponds to a wide range of in situ magnitudes and even polarities. This small range of positions and orientations also includes CMEs that entirely miss the satellite. We show that two derived parameters (the normalized angular distance between the CME nose and satellite position and the angular difference between the CME tilt and the position angle of the satellite with respect to the CME nose) can be used to reliably determine whether an impact or miss occurs. We find that the same criteria separate the impacts and misses for cases representing all four observed CMEs.

  15. CMEs in the Heliosphere: I. A Statistical Analysis of the Observational Properties of CMEs Detected in the Heliosphere from 2007 to 2017 by STEREO/HI-1

    Science.gov (United States)

    Harrison, R. A.; Davies, J. A.; Barnes, D.; Byrne, J. P.; Perry, C. H.; Bothmer, V.; Eastwood, J. P.; Gallagher, P. T.; Kilpua, E. K. J.; Möstl, C.; Rodriguez, L.; Rouillard, A. P.; Odstrčil, D.

    2018-05-01

    We present a statistical analysis of coronal mass ejections (CMEs) imaged by the Heliospheric Imager (HI) instruments on board NASA's twin-spacecraft STEREO mission between April 2007 and August 2017 for STEREO-A and between April 2007 and September 2014 for STEREO-B. The analysis exploits a catalogue that was generated within the FP7 HELCATS project. Here, we focus on the observational characteristics of CMEs imaged in the heliosphere by the inner (HI-1) cameras, while following papers will present analyses of CME propagation through the entire HI fields of view. More specifically, in this paper we present distributions of the basic observational parameters - namely occurrence frequency, central position angle (PA) and PA span - derived from nearly 2000 detections of CMEs in the heliosphere by HI-1 on STEREO-A or STEREO-B from the minimum between Solar Cycles 23 and 24 to the maximum of Cycle 24; STEREO-A analysis includes a further 158 CME detections from the descending phase of Cycle 24, by which time communication with STEREO-B had been lost. We compare heliospheric CME characteristics with properties of CMEs observed at coronal altitudes, and with sunspot number. As expected, heliospheric CME rates correlate with sunspot number, and are not inconsistent with coronal rates once instrumental factors/differences in cataloguing philosophy are considered. As well as being more abundant, heliospheric CMEs, like their coronal counterparts, tend to be wider during solar maximum. Our results confirm previous coronagraph analyses suggesting that CME launch sites do not simply migrate to higher latitudes with increasing solar activity. At solar minimum, CMEs tend to be launched from equatorial latitudes, while at maximum, CMEs appear to be launched over a much wider latitude range; this has implications for understanding the CME/solar source association. Our analysis provides some supporting evidence for the systematic dragging of CMEs to lower latitude as they propagate

  16. Thermal Implications for Extreme Fast Charge

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-14

    Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.

  17. Radio bursts associated with the pre-evolution of CMES

    International Nuclear Information System (INIS)

    Salas Matamoros, Carolina

    2012-01-01

    Five periods of development of events have been studied of coronal mass ejections (CMEs) (with 22 CMEs events in total): December 13 and 14, 2006, August 1, 2010, October 16, 2010, November 3, 2010 and November 12, 2010 . CMEs studied are those with a width greater than 10 degrees Celsius. The helmet streamers are considered unnecessary for the study. The material observed is based on images and reports for a period of two weeks; one before and one after each event. The activities that have occurred within 15 hours before each CME have been considered as a possible origin. The periods have been described in the forward and reverse method. The observational material used has been based on images in multiple wavelengths. Terrestrial observatories have provided images of the chromosphere and solar corona. Additional observational data were obtained from different satellite observatories around the world. CMEs have been classified into Halo and non-Halo and analyzed the associated source. Additional Symbols (solar radio bursts (RBs) type IV, III, coronal near holes and X-ray flares Class C and B) have been considered important to complement the typical signatures [es

  18. Observation of shocks associated with CMEs in 2007

    Science.gov (United States)

    Aryan, H.; Balikhin, M. A.; Taktakishvili, A.; Zhang, T. L.

    2014-03-01

    The interaction of CMEs with the solar wind can lead to the formation of interplanetary shocks. Ions accelerated at these shocks contribute to the solar energetic protons observed in the vicinity of the Earth. Recently a joint analysis of Venus Express (VEX) and STEREO data by Russell et al. (2009) have shown that the formation of strong shocks associated with Co-rotating Interaction Regions (CIRs) takes place between the orbits of Venus and the Earth as a result of coalescence of weaker shocks formed earlier. The present study uses VEX and Advanced Composition Explorer (ACE) data in order to analyse shocks associated with CMEs that erupted on 29 and 30 July 2007 during the solar wind conjunction period between Venus and the Earth. For these particular cases it is shown that the above scenario of shock formation proposed for CIRs also takes place for CMEs. Contradiction with shock formation resulting from MHD modelling is explained by inability of classical MHD to account for the role of wave dispersion in the formation of the shock.

  19. Observation of shocks associated with CMEs in 2007

    Directory of Open Access Journals (Sweden)

    H. Aryan

    2014-03-01

    Full Text Available The interaction of CMEs with the solar wind can lead to the formation of interplanetary shocks. Ions accelerated at these shocks contribute to the solar energetic protons observed in the vicinity of the Earth. Recently a joint analysis of Venus Express (VEX and STEREO data by Russell et al. (2009 have shown that the formation of strong shocks associated with Co-rotating Interaction Regions (CIRs takes place between the orbits of Venus and the Earth as a result of coalescence of weaker shocks formed earlier. The present study uses VEX and Advanced Composition Explorer (ACE data in order to analyse shocks associated with CMEs that erupted on 29 and 30 July 2007 during the solar wind conjunction period between Venus and the Earth. For these particular cases it is shown that the above scenario of shock formation proposed for CIRs also takes place for CMEs. Contradiction with shock formation resulting from MHD modelling is explained by inability of classical MHD to account for the role of wave dispersion in the formation of the shock.

  20. Interplanetary type II radio bursts and their association with CMEs and flares

    Science.gov (United States)

    Shanmugaraju, A.; Suresh, K.; Vasanth, V.; Selvarani, G.; Umapathy, S.

    2018-06-01

    We study the characteristics of the CMEs and their association with the end-frequency of interplanetary (IP)-type-II bursts by analyzing a set of 138 events (IP-type-II bursts-flares-CMEs) observed during the period 1997-2012. The present analysis consider only the type II bursts having starting frequency < 14 MHz to avoid the extension of coronal type IIs. The selected events are classified into three groups depending on the end-frequency of type IIs as follows, (A) Higher, (B) Intermediate and (C) Lower end-frequency. We compare characteristics of CMEs, flares and type II burst for the three selected groups of events and report some of the important differences. The observed height of CMEs is compared with the height of IP type IIs estimated using the electron density models. By applying a density multiplier (m) to this model, the density has been constrained both in the upper corona and in the interplanetary medium, respectively as m= 1 to 10 and m = 1 to 3. This study indicates that there is a correlation between the observed CME height and estimated type II height for groups B and C events whereas this correlation is absent in group A. In all the groups (A, B & C), the different heights of CMEs and type II reveal that the type IIs are not only observed at the nose but also at the flank of the CMEs.

  1. Analysis of Ion Charge States in Solar Wind and CMEs Arati ...

    Indian Academy of Sciences (India)

    states of various elements observed in situ in the solar wind and CMEs. The competing processes of ionization and recombination lead to depar- tures from collision ionization equilibrium. The use of this as a diagnostic of acceleration and heating processes of the solar wind and CMEs is sensi- tive to the accuracy of the ...

  2. Influence of coronal holes on CMEs in causing SEP events

    International Nuclear Information System (INIS)

    Shen Chenglong; Yao Jia; Wang Yuming; Ye Pinzhong; Wang Shui; Zhao Xuepu

    2010-01-01

    The issue of the influence of coronal holes (CHs) on coronal mass ejections (CMEs) in causing solar energetic particle (SEP) events is revisited. It is a continuation and extension of our previous work, in which no evident effects of CHs on CMEs in generating SEPs were found by statistically investigating 56 CME events. This result is consistent with the conclusion obtained by Kahler in 2004. We extrapolate the coronal magnetic field, define CHs as the regions consisting of only open magnetic field lines and perform a similar analysis on this issue for 76 events in total by extending the study interval to the end of 2008. Three key parameters, CH proximity, CH area and CH relative position, are involved in the analysis. The new result confirms the previous conclusion that CHs did not show any evident effect on CMEs in causing SEP events. (research papers)

  3. The radial speed-expansion speed relation for Earth-directed CMEs

    Science.gov (United States)

    Mäkelä, P.; Gopalswamy, N.; Yashiro, S.

    2016-05-01

    Earth-directed coronal mass ejections (CMEs) are the main drivers of major geomagnetic storms. Therefore, a good estimate of the disturbance arrival time at Earth is required for space weather predictions. The STEREO and SOHO spacecraft were viewing the Sun in near quadrature during January 2010 to September 2012, providing a unique opportunity to study the radial speed (Vrad)-expansion speed (Vexp) relationship of Earth-directed CMEs. This relationship is useful in estimating the Vrad of Earth-directed CMEs, when they are observed from Earth view only. We selected 19 Earth-directed CMEs observed by the Large Angle and Spectrometric Coronagraph (LASCO)/C3 coronagraph on SOHO and the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI)/COR2 coronagraph on STEREO during January 2010 to September 2012. We found that of the three tested geometric CME models the full ice-cream cone model of the CME describes best the Vrad-Vexp relationship, as suggested by earlier investigations. We also tested the prediction accuracy of the empirical shock arrival (ESA) model proposed by Gopalswamy et al. (2005a), while estimating the CME propagation speeds from the CME expansion speeds. If we use STEREO observations to estimate the CME width required to calculate the Vrad from the Vexp measurements, the mean absolute error (MAE) of the shock arrival times of the ESA model is 8.4 h. If the LASCO measurements are used to estimate the CME width, the MAE still remains below 17 h. Therefore, by using the simple Vrad-Vexp relationship to estimate the Vrad of the Earth-directed CMEs, the ESA model is able to predict the shock arrival times with accuracy comparable to most other more complex models.

  4. Issues in Forecasting CMEs

    Science.gov (United States)

    Pizzo, V. J.

    2017-12-01

    I will present my view of the current status of space weather forecasting abilities related to CMEs. This talk will address the large-scale aspects, but specifically not energetic particle phenomena. A key point is that all models, whether sophisticated numerical contraptions or quasi-empirical ones, are only as good as the data you feed them. Hence the emphasis will be on observations and analysis methods. First I will review where we stand with regard to the near-Sun quantitative data needed to drive any model, no matter how complex or simple-minded, and I will discuss technological roadblocks that suggest it may be some time before we see any meaningful improvements beyond what we have today. Then I cover issues related to characterizing CME propagation out through the corona and into interplanetary space, as well as to observational limitations in the vicinity of 1 AU. Since none of these observational constraints are likely to be resolved anytime soon, the real challenge is to make more informed use of what is available. Thus, this talk will focus on how we may identify and pursue the most profitable approaches, for both forecast and research applications. The discussion will highlight a number of promising leads, including those related to inclusion of solar backside information, joint magnetograph observations from L5 and Earth, how to use (not just run) ensembles, more rational use of HI observations, and suggestions for using cube-sats for deep space observations of CMEs and MCs.

  5. Initiation of CMEs by Magnetic Flux Emergence

    Indian Academy of Sciences (India)

    The initiation of solar Coronal Mass Ejections (CMEs) is studied in the framework of numerical magnetohydrodynamics (MHD). The initial CME model includes a magnetic flux rope in spherical, axisymmetric geometry. The initial configuration consists of a magnetic flux rope embedded in a gravitationally stratified solar ...

  6. The CDF II eXtremely fast tracker upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Abulencia, A.; Azzurri, P.; Cochran, E.; Dittmann, J.; Donati, S.; Efron, J.; Erbacher, R.; Errede, D.; Fedorko, I.; Flanagan, G.; Forrest, R.; /Illinois U., Urbana

    2006-09-01

    The CDF II Extremely Fast Tracker is the trigger track processor which reconstructs charged particle tracks in the transverse plane of the CDF II central outer tracking chamber. The system is now being upgraded to perform a three dimensional track reconstruction. A review of the upgrade is presented here.

  7. Correlation between Angular Widths of CMEs and Characteristics of Their Source Regions

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X. H.; Feng, X. S. [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Feng, H. Q. [Institute of Space Physics, Luoyang Normal University, Luoyang, Henan 471934 (China); Li, Z. [Institute of Space Weather, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044 (China)

    2017-11-10

    The angular width of a coronal mass ejection (CME) is an important factor in determining whether the corresponding interplanetary CME (ICME) and its preceding shock will reach Earth. However, there have been very few studies of the decisive factors of the CME’s angular width. In this study, we use the three-dimensional (3D) angular width of CMEs obtained from the Graduated Cylindrical Shell model based on observations of Solar Terrestrial Relations Observatory ( STEREO ) to study the relations between the CME’s 3D width and characteristics of the CME’s source region. We find that for the CMEs produced by active regions (ARs), the CME width has some correlations with the AR’s area and flux, but these correlations are not strong. The magnetic flux contained in the CME seems to come from only part of the AR’s total flux. For the CMEs produced by flare regions, the correlations between the CME angular width and the flare region’s area and flux are strong. The magnetic flux within those CMEs seems to come from the whole flare region or even from a larger region than the flare. Our findings show that the CME’s 3D angular width can be generally estimated based on observations of Solar Dynamics Observatory for the CME’s source region instead of the observations from coronagraphs on board the Solar and Heliospheric Observatory and STEREO if the two foot points of the CME stay in the same places with no expansion of the CME in the transverse direction until reaching Earth.

  8. X-ray Emission Characteristics of Flares Associated with CMEs ...

    Indian Academy of Sciences (India)

    tics of solar flares and their relationship with the dynamics of CMEs have ... lation between X-ray peak intensity of the flares with linear speed as well ... shear angle (θ1, measured at the flare onset), the final shear angle (θ2, measured at the.

  9. A Series of Jets that Drove Streamer-Puff CMEs from Giant Active Region of 2014

    Science.gov (United States)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-01-01

    We investigate characteristics of solar coronal jets that originated from active region NOAA 12192 and produced coronal mass ejections (CMEs). This active region produced many non­-jet major flare eruptions (X and M class) that made no CME. A multitude of jets occurred from the southeast edge of the active region, and in contrast to the major-­flare eruptions in the core, six of these jets resulted in CMEs. Our jet observations are from SDO/AIA EUV channels and from Hinode/XRT, and CME observations are from the SOHO/LASCO C2 coronograph. Each jet-­driven CME was relatively slow-­moving (approx. 200 - 300 km/s) compared to most CMEs; had angular width (20deg - 50deg) comparable to that of the streamer base; and was of the "streamer­-puff" variety, whereby a pre-existing streamer was transiently inflated but not removed (blown out) by the passage of the CME. Much of the chromospheric-­temperature plasma of the jets producing the CMEs escaped from the Sun, whereas relatively more of the chromospheric plasma in the non-CME-producing jets fell back to the solar surface. We also found that the CME-producing jets tended to be faster in speed and longer in duration than the non-CME-­producing jets. We expect that the jets result from eruptions of mini-filaments. We further propose that the CMEs are driven by magnetic twist injected into streamer-­base coronal loops when erupting twisted mini-filament field reconnects with the ambient field at the foot of those loops.

  10. On the Reflection in the Solar Radio Emission of Processes in the Chromosphere and the lower Corona preceded CMEs Registration

    Science.gov (United States)

    Durasova, M. S.; Tikhomirov, Yu. V.; Fridman, V. M.; Sheiner, O. A.

    The phenomena preceding the Coronal Mass Ejections (CMEs) and observed in the radio-frequency band represent a lot of sporadic components of the emission, that cover the wide frequency range. The study of these phenomena composes the new, prevailing for the last ten years direction. This is caused by the fact that solar radioastronomy possesses the developed network of observant tools, by the sensitive methods of observations. It makes possible in a number of cases to obtain information from the layers of solar atmosphere, inaccessible for the studies by other methods of observations. The purpose of this work is analysis of information about the CMEs preceding radio-events and their dynamics in the centimeter and decimeter radio emission in 1998. We use the data of the worldwide network of solar observatories in the radio-frequency band, the data about the CMEs phenomena and the characteristics are taken from Internet: http://sdaw.gsfc.nasa.gov./CME_list}. From great number of the CMEs we select only such, before which there were no more recorded events in the time interval of 8 hours, and before which sporadic radio emission was observed on 2-hours interval. The selection of this interval was caused by available study about the mean lifetime of precursors before CMEs and powerful flares, as a rule, accompanying CMEs, in the optical, X-ray and radio emissions. It constitutes, on the average, about 30 min. The total volume of data composed 68 analyzed events of CMEs in 1998. The analysis of the spectral- temporary characteristics of sporadic radio emission in the dependence on the CMEs parameters is carried out. The nature of processes at the stage of formation and initial propagation of CMEs, such as floating up of new magnetic fluxes, the development of instabilities, the characteristic scales of phenomena, that have an effect upon the observed radio emission is analyzed. The work is carried out with the support of Russian Fund of Basic Research (grant 03

  11. SOLAR ENERGETIC PARTICLE EVENT ASSOCIATED WITH THE 2012 JULY 23 EXTREME SOLAR STORM

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Bei; Liu, Ying D.; Hu, Huidong; Wang, Rui; Yang, Zhongwei [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Luhmann, Janet G., E-mail: liuxying@spaceweather.ac.cn [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States)

    2016-08-20

    We study the solar energetic particle (SEP) event associated with the 2012 July 23 extreme solar storm, for which Solar Terrestrial Relations Observatory (STEREO) and the spacecraft at L1 provide multi-point remote sensing and in situ observations. The extreme solar storm, with a superfast shock and extremely enhanced ejecta magnetic fields observed near 1 au at STEREO A , was caused by the combination of successive coronal mass ejections (CMEs). Meanwhile, energetic particles were observed by STEREO and near-Earth spacecraft such as the Advanced Composition Explorer and SOlar and Heliospheric Observatory , suggesting a wide longitudinal spread of the particles at 1 au. Combining the SEP observations with in situ plasma and magnetic field measurements, we investigate the longitudinal distribution of the SEP event in connection with the associated shock and CMEs. Our results underscore the complex magnetic configuration of the inner heliosphere formed by solar eruptions. Examination of particle intensities, proton anisotropy distributions, element abundance ratios, magnetic connectivity, and spectra also gives important clues for particle acceleration, transport, and distribution.

  12. The uniqueness of the solution of cone-like inversion models for halo CMEs

    Science.gov (United States)

    Zhao, X. P.

    2006-12-01

    Most of elliptic halo CMEs are believed to be formed by the Thompson scattering of the photospheric light by the 3-D cone-like shell of the CME plasma. To obtain the real propagation direction and angular width of the halo CMEs, such cone-like inversion models as the circular cone, the elliptic cone and the ice-cream cone models have been suggested recently. Because the number of given parameters that are used to characterize 2-D elliptic halo CMEs observed by one spacecraft are less than the number of unknown parameters that are used to characterize the 3-D elliptic cone model, the solution of the elliptic cone model is not unique. Since it is difficult to determine whether or not an observed halo CME is formed by an circular cone or elliptic cone shell, the solution of circular cone model may often be not unique too. To fix the problem of the uniqueness of the solution of various 3-D cone-like inversion models, this work tries to develop the algorithm for using the data from multi-spacecraft, such as the STEREO A and B, and the Solar Sentinels.

  13. USING ForeCAT DEFLECTIONS AND ROTATIONS TO CONSTRAIN THE EARLY EVOLUTION OF CMEs

    International Nuclear Information System (INIS)

    Kay, C.; Opher, M.; Colaninno, R. C.; Vourlidas, A.

    2016-01-01

    To accurately predict the space weather effects of the impacts of coronal mass ejection (CME) at Earth one must know if and when a CME will impact Earth and the CME parameters upon impact. In 2015 Kay et al. presented Forecasting a CME’s Altered Trajectory (ForeCAT), a model for CME deflections based on the magnetic forces from the background solar magnetic field. Knowing the deflection and rotation of a CME enables prediction of Earth impacts and the orientation of the CME upon impact. We first reconstruct the positions of the 2010 April 8 and the 2012 July 12 CMEs from the observations. The first of these CMEs exhibits significant deflection and rotation (34° deflection and 58° rotation), while the second shows almost no deflection or rotation (<3° each). Using ForeCAT, we explore a range of initial parameters, such as the CME’s location and size, and find parameters that can successfully reproduce the behavior for each CME. Additionally, since the deflection depends strongly on the behavior of a CME in the low corona, we are able to constrain the expansion and propagation of these CMEs in the low corona.

  14. Estimating the geoeffectiveness of halo CMEs from associated solar and IP parameters using neural networks

    Directory of Open Access Journals (Sweden)

    J. Uwamahoro

    2012-06-01

    Full Text Available Estimating the geoeffectiveness of solar events is of significant importance for space weather modelling and prediction. This paper describes the development of a neural network-based model for estimating the probability occurrence of geomagnetic storms following halo coronal mass ejection (CME and related interplanetary (IP events. This model incorporates both solar and IP variable inputs that characterize geoeffective halo CMEs. Solar inputs include numeric values of the halo CME angular width (AW, the CME speed (Vcme, and the comprehensive flare index (cfi, which represents the flaring activity associated with halo CMEs. IP parameters used as inputs are the numeric peak values of the solar wind speed (Vsw and the southward Z-component of the interplanetary magnetic field (IMF or Bs. IP inputs were considered within a 5-day time window after a halo CME eruption. The neural network (NN model training and testing data sets were constructed based on 1202 halo CMEs (both full and partial halo and their properties observed between 1997 and 2006. The performance of the developed NN model was tested using a validation data set (not part of the training data set covering the years 2000 and 2005. Under the condition of halo CME occurrence, this model could capture 100% of the subsequent intense geomagnetic storms (Dst ≤ −100 nT. For moderate storms (−100 < Dst ≤ −50, the model is successful up to 75%. This model's estimate of the storm occurrence rate from halo CMEs is estimated at a probability of 86%.

  15. UV Diagnostics for the Energy Budget of Flares and CMEs J. C. ...

    Indian Academy of Sciences (India)

    2003-11-04

    Nov 4, 2003 ... The energy budget of solar flares and coronal mass ejections ... Vourlidas (2007) measured the kinetic energies for several CMEs and estimated the .... along the UVCS slit from the pre-CME intensities of the O VI lines, the ...

  16. Automatic near-real-time detection of CMEs in Mauna Loa K-Cor coronagraph images

    Science.gov (United States)

    Thompson, W. T.; St Cyr, O. C.; Burkepile, J.; Posner, A.

    2017-12-01

    A simple algorithm has been developed to detect the onset of coronal massejections (CMEs), together with an estimate of their speed, in near-real-timeusing images of the linearly polarized white-light solar corona taken by theK-Cor telescope at the Mauna Loa Solar Observatory (MLSO). The algorithm usedis a variation on the Solar Eruptive Event Detection System (SEEDS) developedat George Mason University. The algorithm was tested against K-Cor data takenbetween 29 April 2014 and 20 February 2017, on days which the MLSO websitemarked as containing CMEs. This resulted in testing of 139 days worth of datacontaining 171 CMEs. The detection rate varied from close to 80% in 2014-2015when solar activity was high, down to as low as 20-30% in 2017 when activitywas low. The difference in effectiveness with solar cycle is attributed to thedifference in relative prevalance of strong CMEs between active and quietperiods. There were also twelve false detections during this time period,leading to an average false detection rate of 8.6% on any given day. However,half of the false detections were clustered into two short periods of a fewdays each when special conditions prevailed to increase the false detectionrate. The K-Cor data were also compared with major Solar Energetic Particle(SEP) storms during this time period. There were three SEP events detectedeither at Earth or at one of the two STEREO spacecraft where K-Cor wasobserving during the relevant time period. The K-Cor CME detection algorithmsuccessfully generated alerts for two of these events, with lead times of 1-3hours before the SEP onset at 1 AU. The third event was not detected by theautomatic algorithm because of the unusually broad width of the CME in positionangle.

  17. Self-Organization by Stochastic Reconnection: The Mechanism Underlying CMEs/Flares

    Science.gov (United States)

    Antiochos, S. K.; Knizhnik, K. J.; DeVore, C. R.

    2017-12-01

    The largest explosions in the solar system are the giant CMEs/flares that produce the most dangerous space weather at Earth, yet may also have been essential for the origin of life. The root cause of CMEs/flares is that the lowest-lying magnetic field lines in the Sun's corona undergo the continual buildup of stress and free energy that can be released only through explosive ejection. We perform the first MHD simulations of a coronal-photospheric magnetic system that is driven by random photospheric convective flows and has a realistic geometry for the coronal field. Furthermore, our simulations accurately preserve the key constraint of magnetic helicity. We find that even though small-scale stress is injected randomly throughout the corona, the net result of "stochastic" coronal reconnection is a coherent stretching of the lowest-lying field lines. This highly counter-intuitive demonstration of self-organization - magnetic stress builds up locally rather than spreading out to a minimum energy state - is the fundamental mechanism responsible for the Sun's magnetic explosions and is likely to be a mechanism that is ubiquitous throughout space and laboratory plasmas. This work was supported in part by the NASA LWS and SR Programs.

  18. 3D Modeling of CMEs observed with STEREO

    Science.gov (United States)

    Bosman, E.; Bothmer, V.

    2012-04-01

    From January 2007 until end of 2010, 565 typical large-scale coronal mass ejections (CMEs) have been identified in the SECCHI/COR2 synoptic movies of the STEREO Mission. A subset comprising 114 CME events, selected based on the CME's brightness appearance in the SECCHI/COR2 images, has been modeled through the Graduated Cylindrical Shell (GCS) Model developed by Thernisien et al. (2006). This study presents an overview of the GCS forward-modeling results and an interpretation of the CME characteristics in relationship to their solar source region properties and solar cycle appearances.

  19. ACCELERATION PHASES OF A SOLAR FILAMENT DURING ITS ERUPTION

    International Nuclear Information System (INIS)

    Song, H. Q.; Chen, Y.; Fu, H.; Zhang, J.; Cheng, X.; LI, G.

    2015-01-01

    Filament eruptions often lead to coronal mass ejections (CMEs), which can affect critical technological systems in space and on the ground when they interact with the geo-magnetosphere at high speeds. Therefore, it is important to investigate the acceleration mechanisms of CMEs in solar/space physics. Based on observations and simulations, the resistive magnetic reconnection and the ideal instability of magnetic flux ropes have been proposed to accelerate CMEs. However, it remains uncertain whether both of them play a comparable role during a particular eruption. It has been extremely difficult to separate their contributions as they often work in a close time sequence during one fast acceleration phase. Here we report an intriguing filament eruption event, which shows two apparently separated fast acceleration phases and provides us an excellent opportunity to address the issue. Through analyzing the correlations between velocity (acceleration) and soft (hard) X-ray profiles, we suggest that the instability and magnetic reconnection make a major contribution during the first and second fast acceleration phases, respectively. Further, we find that both processes have a comparable contribution to the filament acceleration in this event

  20. A comparison of coronal mass ejections identified by manual and automatic methods

    Directory of Open Access Journals (Sweden)

    S. Yashiro

    2008-10-01

    Full Text Available Coronal mass ejections (CMEs are related to many phenomena (e.g. flares, solar energetic particles, geomagnetic storms, thus compiling of event catalogs is important for a global understanding these phenomena. CMEs have been identified manually for a long time, but in the SOHO era, automatic identification methods are being developed. In order to clarify the advantage and disadvantage of the manual and automatic CME catalogs, we examined the distributions of CME properties listed in the CDAW (manual and CACTus (automatic catalogs. Both catalogs have a good agreement on the wide CMEs (width>120° in their properties, while there is a significant discrepancy on the narrow CMEs (width≤30°: CACTus has a larger number of narrow CMEs than CDAW. We carried out an event-by-event examination of a sample of events and found that the CDAW catalog have missed many narrow CMEs during the solar maximum. Another significant discrepancy was found on the fast CMEs (speed>1000 km/s: the majority of the fast CDAW CMEs are wide and originate from low latitudes, while the fast CACTus CMEs are narrow and originate from all latitudes. Event-by-event examination of a sample of events suggests that CACTus has a problem on the detection of the fast CMEs.

  1. A Challenging Solar Eruptive Event of 18 November 2003 and the Causes of the 20 November Geomagnetic Superstorm. II. CMEs, Shock Waves, and Drifting Radio Bursts

    Science.gov (United States)

    Grechnev, V. V.; Uralov, A. M.; Chertok, I. M.; Slemzin, V. A.; Filippov, B. P.; Egorov, Y. I.; Fainshtein, V. G.; Afanasyev, A. N.; Prestage, N. P.; Temmer, M.

    2014-04-01

    We continue our study (Grechnev et al., 2013, doi:10.1007/s11207-013-0316-6; Paper I) on the 18 November 2003 geoffective event. To understand possible impact on geospace of coronal transients observed on that day, we investigated their properties from solar near-surface manifestations in extreme ultraviolet, LASCO white-light images, and dynamic radio spectra. We reconcile near-surface activity with the expansion of coronal mass ejections (CMEs) and determine their orientation relative to the earthward direction. The kinematic measurements, dynamic radio spectra, and microwave and X-ray light curves all contribute to the overall picture of the complex event and confirm an additional eruption at 08:07 - 08:20 UT close to the solar disk center presumed in Paper I. Unusual characteristics of the ejection appear to match those expected for a source of the 20 November superstorm but make its detection in LASCO images hopeless. On the other hand, none of the CMEs observed by LASCO seem to be a promising candidate for a source of the superstorm being able to produce, at most, a glancing blow on the Earth's magnetosphere. Our analysis confirms free propagation of shock waves revealed in the event and reconciles their kinematics with "EUV waves" and dynamic radio spectra up to decameters.

  2. Investigating the Wave Nature of the Outer Envelope of Halo Coronal Mass Ejections

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Ryun-Young [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Vourlidas, Angelos, E-mail: rkwon@gmu.edu [The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2017-02-20

    We investigate the nature of the outer envelope of halo coronal mass ejections (H-CMEs) using multi-viewpoint observations from the Solar Terrestrial Relations Observatory-A , -B , and SOlar and Heliospheric Observatory coronagraphs. The 3D structure and kinematics of the halo envelopes and the driving CMEs are derived separately using a forward modeling method. We analyze three H-CMEs with peak speeds from 1355 to 2157 km s{sup −1}; sufficiently fast to drive shocks in the corona. We find that the angular widths of the halos range from 192° to 252°, while those of the flux ropes range between only 58° and 91°, indicating that the halos are waves propagating away from the CMEs. The halo widths are in agreement with widths of Extreme Ultraviolet (EUV) waves in the low corona further demonstrating the common origin of these structures. To further investigate the wave nature of the halos, we model their 3D kinematic properties with a linear fast magnetosonic wave model. The model is able to reproduce the position of the halo flanks with realistic coronal medium assumptions but fails closer to the CME nose. The CME halo envelope seems to arise from a driven wave (or shock) close to the CME nose, but it is gradually becoming a freely propagating fast magnetosonic wave at the flanks. This interpretation provides a simple unifying picture for CME halos, EUV waves, and the large longitudinal spread of solar energetic particles.

  3. The CDF II eXtremely Fast Tracker Upgrade

    CERN Document Server

    Fedorko, I; Errede, D; Gerberich, H; Junk, T; Kasten, M; Levine, S; Mokos, R; Pitts, K; Rogers, E; Veramendi, G; Azzurri, P; Donati, S; Staveris-Polykalas, A; Cochran, E; Efron, J; Gartner, J; Hughes, R; Johnson, M; Kilminster, B; Lannon, K; McKim, J; Olivito, D; Parks, B; Slaunwhite, J; Winer, B; Dittmann, J; Hewamanage, S; Krumnack, N; Wilson, J S; Erbacher, R; Forrest, R; Ivanov, A; Soha, A; Flanagan, G; Jones, T; Holm, S; Klein, R; Schmidt, E E; Scott, L; Shaw, T; Wilson, P J

    2008-01-01

    The CDF II eXtremely Fast Tracker (XFT) is the trigger processor which reconstructs charged particle tracks in the transverse plane of the central tracking chamber. The XFT tracks are also extrapolated to the electromagnetic calorimeter and muon chambers to generate trigger electron and muon candidates. The XFT is crucial for the entire CDF II physics program: it detects high pT leptons from W/Z and heavy flavor decays and, in conjunction with the Level 2 processors, it identifies secondary vertices from beauty decays. The XFT has thus been crucial for the recent measurement of the oscilation and Σb discovery. The increase of the Tevatron instantaneous luminosity demanded an upgrade of the system to cope with the higher occupancy of the chamber. In the upgraded XFT, three dimensional tracking reduces the level of fake tracks and measures the longitudinal track parameters, which strongly reinforce the trigger selections. This allows to mantain the trigger perfectly efficient at the record luminosities 2–3·...

  4. Search for an onset mechanism that operates for both CMEs and substorms

    Directory of Open Access Journals (Sweden)

    G. L. Siscoe

    2009-08-01

    Full Text Available Substorms and coronal mass ejections have been cited as the most accessible examples of the explosive energy conversion phenomenon that seems to characterize one of the behavior modes of cosmic plasmas. This paper addresses the question of whether these two examples – substorms and CMEs – support or otherwise the idea that explosive energy conversion is the result of a single process operating in different places and under different conditions. As a candidate mechanism that might be common to both substorms and CMEs we use the Forbes catastrophe model for CMEs because before testing it appears to have the potential, suitably modified, to operate also for substorms. The essence of the FCM is a sudden onset of an imbalance of the forces acting on an incipient CME. The imbalance of forces causes the CME to start to rise. Beneath the rising CME conditions develop that favor the onset of magnetic reconnection which then releases the CME and assists its expulsion. Thus the signature of the FCM is a temporally ordered sequence in which there is first the appearance of force imbalance which leads to upward (or outward motion of the CME which leads to magnetic reconnection under it which expedites rapid expulsion. We look for the FCM signature in the output of two global magnetospheric MHD simulations that produce substorm-like events. We find the ordered sequence of events as stated but with a significant difference: there is no plasmoid prior to the onset of rapid reconnection, that is, there is no counterpart to the incipient CME on which an imbalance of forces acts to initiate the action in the FCM. If this result – that rapid tailward motion precedes the rapid reconnection of substorm expansion – is ultimately verified by other studies, it suggests that a description of the cause of substorm expansion should identify the cause of the preceding rapid tailward motion, since this leads necessarily to rapid reconnection, whatever the

  5. Development of extreme rainfall PRA methodology for sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Nishino, Hiroyuki; Kurisaka, Kenichi; Yamano, Hidemasa

    2016-01-01

    The objective of this study is to develop a probabilistic risk assessment (PRA) methodology for extreme rainfall with focusing on decay heat removal system of a sodium-cooled fast reactor. For the extreme rainfall, annual excess probability depending on the hazard intensity was statistically estimated based on meteorological data. To identify core damage sequence, event trees were developed by assuming scenarios that structures, systems and components (SSCs) important to safety are flooded with rainwater coming into the buildings through gaps in the doors and the SSCs fail when the level of rainwater on the ground or on the roof of the building becomes higher than thresholds of doors on first floor or on the roof during the rainfall. To estimate the failure probability of the SSCs, the level of water rise was estimated by comparing the difference between precipitation and drainage capacity. By combining annual excess probability and the failure probability of SSCs, the event trees led to quantification of core damage frequency, and therefore the PRA methodology for rainfall was developed. (author)

  6. Stellar CME candidates: towards a stellar CME-flare relation

    Science.gov (United States)

    Paraskevi Moschou, Sofia; Drake, Jeremy J.; Cohen, Ofer; Alvarado-Gomez, Julian D.; Garraffo, Cecilia

    2018-06-01

    For decades the Sun has been the only star that allowed for direct CME observations. Recently, with the discovery of multiple extrasolar systems, it has become imperative that the role of stellar CMEs be assessed in the context of exoplanetary habitability. Solar CMEs and flares show a higher association with increasing flaring energy, with strong flares corresponding to large and fast CMEs. As argued in earlier studies, extrasolar environments around active stars are potentially dominated by CMEs, as a result of their extreme flaring activity. This has strong implications for the energy budget of the system and the atmospheric erosion of orbiting planets.Nevertheless, with current instrumentation we are unable to directly observe CMEs in even the closest stars, and thus we have to look for indirect techniques and observational evidence and signatures for the eruption of stellar CMEs. There are three major observational techniques for tracing CME signatures in other stellar systems, namely measuring Type II radio bursts, Doppler shifts in UV/optical lines or transient absorption in the X-ray spectrum. We present observations of the most probable stellar CME candidates captured so far and examine the different observational techniques used together with their levels of uncertainty. Assuming that they were CMEs, we try to asses their kinematic and energetic characteristics and place them in an extension of the well-established solar CME-flare energy scaling law. We finish by discussing future observations for direct measurements.

  7. RADIOEMISSÕES SOLARES TIPO II ASSOCIADAS A FLARES E CMES

    Directory of Open Access Journals (Sweden)

    Rafael Douglas Cunha-Silva

    2013-12-01

    Full Text Available Atribuídas a ondas de choque e a ejeções de plasmoide, as emissões solares tipo II são ondaseletromagnéticas geradas a partir de oscilações do plasma coronal. A origem dos choques associados a essasemissões é ainda uma questão em aberto da física solar. Enquanto alguns trabalhos sugerem os flares solarescomo seus acionadores, outros fornecem indícios de serem as ejeções de massa coronal (CMEs sua origemmais provável. Este trabalho apresenta os resultados da análise de duas emissões tipo II, registradas por doisespectrômetros da rede e-CALLISTO (extended-Compound Astronomical Low-cost Low-frequency Instrument forSpectroscopy and Transportable Observatory, os quais operam na faixa de frequências de 45-870 MHz. Oprimeiro evento, observado em 13 de junho de 2010, às 05:38 UT, apresentou uma taxa de deriva em frequênciade -0,2 MHz s-1, correspondente a uma velocidade de choque de 528 km s-1, estando, temporalmente, associadoa uma CME lenta (~320 km s-1 e a um flare solar em raios-X, classe M1.0. O segundo evento, observado em 09de Agosto de 2011, às 08:02 UT, apresentou uma taxa de deriva em frequência de -1,4 MHz s-1, correspondentea uma velocidade de choque de 1375 km s-1, estando, temporalmente, associado a uma CME tipo halo (~1610km s-1 e a um flare solar em raios-X, classe X6.9. Os resultados obtidos, para os parâmetros observacionais dasemissões tipo II e para os parâmetros físicos de suas fontes, são discutidos no contexto de sua relação com seuflares e CMEs associados.

  8. Three-Dimensional Evolution of Flux-Rope CMEs and Its Relation to the Local Orientation of the Heliospheric Current Sheet

    Science.gov (United States)

    Isavnin, A.; Vourlidas, A.; Kilpua, E. K. J.

    2014-06-01

    Flux ropes ejected from the Sun may change their geometrical orientation during their evolution, which directly affects their geoeffectiveness. Therefore, it is crucial to understand how solar flux ropes evolve in the heliosphere to improve our space-weather forecasting tools. We present a follow-up study of the concepts described by Isavnin, Vourlidas, and Kilpua ( Solar Phys. 284, 203, 2013). We analyze 14 coronal mass ejections (CMEs), with clear flux-rope signatures, observed during the decay of Solar Cycle 23 and rise of Solar Cycle 24. First, we estimate initial orientations of the flux ropes at the origin using extreme-ultraviolet observations of post-eruption arcades and/or eruptive prominences. Then we reconstruct multi-viewpoint coronagraph observations of the CMEs from ≈ 2 to 30 R⊙ with a three-dimensional geometric representation of a flux rope to determine their geometrical parameters. Finally, we propagate the flux ropes from ≈ 30 R⊙ to 1 AU through MHD-simulated background solar wind while using in-situ measurements at 1 AU of the associated magnetic cloud as a constraint for the propagation technique. This methodology allows us to estimate the flux-rope orientation all the way from the Sun to 1 AU. We find that while the flux-ropes' deflection occurs predominantly below 30 R⊙, a significant amount of deflection and rotation happens between 30 R⊙ and 1 AU. We compare the flux-rope orientation to the local orientation of the heliospheric current sheet (HCS). We find that slow flux ropes tend to align with the streams of slow solar wind in the inner heliosphere. During the solar-cycle minimum the slow solar-wind channel as well as the HCS usually occupy the area in the vicinity of the solar equatorial plane, which in the past led researchers to the hypothesis that flux ropes align with the HCS. Our results show that exceptions from this rule are explained by interaction with the Parker-spiraled background magnetic field, which dominates

  9. Simulating multi-spacecraft Heliospheric Imager observations for tomographic reconstruction of interplanetary CMEs

    Science.gov (United States)

    Barnes, D.

    2017-12-01

    The multiple, spatially separated vantage points afforded by the STEREO and SOHO missions provide physicists with a means to infer the three-dimensional structure of the solar corona via tomographic imaging. The reconstruction process combines these multiple projections of the optically thin plasma to constrain its three-dimensional density structure and has been successfully applied to the low corona using the STEREO and SOHO coronagraphs. However, the technique is also possible at larger, inter-planetary distances using wide-angle imagers, such as the STEREO Heliospheric Imagers (HIs), to observe faint solar wind plasma and Coronal Mass Ejections (CMEs). Limited small-scale structure may be inferred from only three, or fewer, viewpoints and the work presented here is done so with the aim of establishing techniques for observing CMEs with upcoming and future HI-like technology. We use simulated solar wind densities to compute realistic white-light HI observations, with which we explore the requirements of such instruments for determining solar wind plasma density structure via tomography. We exploit this information to investigate the optimal orbital characteristics, such as spacecraft number, separation, inclination and eccentricity, necessary to perform the technique with HIs. Further to this we argue that tomography may be greatly enhanced by means of improved instrumentation; specifically, the use of wide-angle imagers capable of measuring polarised light. This work has obvious space weather applications, serving as a demonstration for potential future missions (such as at L1 and L5) and will prove timely in fully exploiting the science return from the upcoming Solar Orbiter and Parker Solar Probe missions.

  10. FastChem: An ultra-fast equilibrium chemistry

    Science.gov (United States)

    Kitzmann, Daniel; Stock, Joachim

    2018-04-01

    FastChem is an equilibrium chemistry code that calculates the chemical composition of the gas phase for given temperatures and pressures. Written in C++, it is based on a semi-analytic approach, and is optimized for extremely fast and accurate calculations.

  11. The effects of three-week fasting diet on blood pressure, lipid profile and glucoregulation in extremely obese patients

    Directory of Open Access Journals (Sweden)

    Beleslin Biljana

    2007-01-01

    Full Text Available Introduction Obesity is often accompanied by a number of complications including diabetes mellitus and cardiovascular diseases. Elevated blood pressure and lipids, as well as deterioration of glucoregulation are attributed, as the most significant factors, to development of diabetes mellitus and cardiovascular complications in obese patients. Objective The aim of our study was to evaluate the effects of a fasting diet on blood pressure, lipid profile and glucoregulatory parameters. Method We included 110 patients (33 male and 77 female; mean age 35±1 years, body weight 131.7±2.6 kg, body mass index 45.4±0.8 kg/m2 who were hospitalized for three weeks for the treatment of extreme obesity with the fasting diet. At the beginning, during, and at the end of this period, we evaluated changes in blood pressure, lipid profile, as well as parameters of glucoregulation including glycaemia, insulinaemia, and insulin sensitivity by HOMA. Oral glucose tolerance test (OGTT was performed in all patients at the beginning and at the end of the fasting diet. Results During the fasting diet, the body weight decreased from 131.7±2.6 kg to 117.7±2.4 kg (p<0.001, the body mass index decreased from 45.4±0.8 kg/m2 to 40.8±0.8 kg/m2 (p<0.001, and both systolic and diastolic blood pressure significantly declined (143±2 vs. 132±2 mm Hg, p<0.001; 92±2 vs. 85±2 mm Hg, p<0.001. In addition, the fasting diet produced a significant decrease in total cholesterol, LDL cholesterol, triglycerides, as well as basal glycaemia and insulinaemia (p<0.001 Before the fasting diet, OGTT was normal in 76% of patients, whereas 21% of patients showed glucose intolerance, and 4% of patients diabetes mellitus. After the fasting diet, OGTT was normal in 88% of patients, whereas 12% of patients still had signs of glucose intolerance (p<0.05. In addition, insulin resistance significantly (p<0.05 increased from 54±6% to 89±13% after the fasting diet. Conclusion The three-week fasting

  12. Solar flares, CMEs and solar energetic particle events during solar cycle 24

    Science.gov (United States)

    Pande, Bimal; Pande, Seema; Chandra, Ramesh; Chandra Mathpal, Mahesh

    2018-01-01

    We present here a study of Solar Energetic Particle Events (SEPs) associated with solar flares during 2010-2014 in solar cycle 24. We have selected the flare events (≥GOES M-class), which produced SEPs. The SEPs are classified into three categories i.e. weak (proton intensity ≤ 1 pfu), minor (1 pfu pfu) and major (proton intensity ≥ 10 pfu). We used the GOES data for the SEP events which have intensity greater than one pfu and SOHO/ERNE data for the SEP event less than one pfu intensity. In addition to the flare and SEP properties, we have also discussed different properties of associated CMEs.

  13. DEFLECTIONS OF FAST CORONAL MASS EJECTIONS AND THE PROPERTIES OF ASSOCIATED SOLAR ENERGETIC PARTICLE EVENTS

    International Nuclear Information System (INIS)

    Kahler, S. W.; Akiyama, S.; Gopalswamy, N.

    2012-01-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E ∼ 20 MeV SEP events with CME source regions within 20° of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events.

  14. DEFLECTIONS OF FAST CORONAL MASS EJECTIONS AND THE PROPERTIES OF ASSOCIATED SOLAR ENERGETIC PARTICLE EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Kahler, S. W. [Air Force Research Laboratory, Space Vehicles Directorate, 3550 Aberdeen Avenue, Kirtland AFB, NM 87117 (United States); Akiyama, S. [Institute for Astrophyics and Computational Sciences, Catholic University of America, Washington, DC 20064 (United States); Gopalswamy, N., E-mail: AFRL.RVB.PA@kirtland.af.mil [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-08-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E {approx} 20 MeV SEP events with CME source regions within 20 Degree-Sign of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events.

  15. Deflections of Fast Coronal Mass Ejections and the Properties of Associated Solar Energetic Particle Events

    Science.gov (United States)

    Kahler, S. W.; Akiyama, S.; Gopalswamy, N.

    2012-01-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E approx 20 MeV SEP events with CME source regions within 20 deg. of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events

  16. Assessing the Habitability of TRAPPIST-1e: MHD Simulations of Atmospheric Loss Due to CMEs and Stellar Wind

    Science.gov (United States)

    Harbach, Laura Marshall; Drake, Jeremy J.; Garraffo, Cecilia; Alvarado-Gomez, Julian D.; Moschou, Sofia P.; Cohen, Ofer

    2018-01-01

    Recently, three rocky planets were discovered in the habitable zone of the nearby planetary system TRAPPIST-1. The increasing number of exoplanet detections has led to further research into the planetary requirements for sustaining life. Habitable zone occupants have, in principle, the capacity to retain liquid water, whereas actual habitability might depend on atmospheric retention. However, stellar winds and photon radiation interactions with the planet can lead to severe atmospheric depletion and have a catastrophic impact on a planet’s habitability. While the implications of photoevaporation on atmospheric erosion have been researched to some degree, the influence of stellar winds and Coronal Mass Ejections (CMEs) has yet to be analyzed in detail. Here, we model the effect of the stellar wind and CMEs on the atmospheric envelope of a planet situated in the orbit of TRAPPIST-1e using 3D magnetohydrodynamic (MHD) simulations. In particular, we discuss the atmospheric loss due to the effect of a CME, and the relevance of the stellar and planetary magnetic fields on the sustainability of M-dwarf exoplanetary atmospheres.

  17. A Fast SVD-Hidden-nodes based Extreme Learning Machine for Large-Scale Data Analytics.

    Science.gov (United States)

    Deng, Wan-Yu; Bai, Zuo; Huang, Guang-Bin; Zheng, Qing-Hua

    2016-05-01

    Big dimensional data is a growing trend that is emerging in many real world contexts, extending from web mining, gene expression analysis, protein-protein interaction to high-frequency financial data. Nowadays, there is a growing consensus that the increasing dimensionality poses impeding effects on the performances of classifiers, which is termed as the "peaking phenomenon" in the field of machine intelligence. To address the issue, dimensionality reduction is commonly employed as a preprocessing step on the Big dimensional data before building the classifiers. In this paper, we propose an Extreme Learning Machine (ELM) approach for large-scale data analytic. In contrast to existing approaches, we embed hidden nodes that are designed using singular value decomposition (SVD) into the classical ELM. These SVD nodes in the hidden layer are shown to capture the underlying characteristics of the Big dimensional data well, exhibiting excellent generalization performances. The drawback of using SVD on the entire dataset, however, is the high computational complexity involved. To address this, a fast divide and conquer approximation scheme is introduced to maintain computational tractability on high volume data. The resultant algorithm proposed is labeled here as Fast Singular Value Decomposition-Hidden-nodes based Extreme Learning Machine or FSVD-H-ELM in short. In FSVD-H-ELM, instead of identifying the SVD hidden nodes directly from the entire dataset, SVD hidden nodes are derived from multiple random subsets of data sampled from the original dataset. Comprehensive experiments and comparisons are conducted to assess the FSVD-H-ELM against other state-of-the-art algorithms. The results obtained demonstrated the superior generalization performance and efficiency of the FSVD-H-ELM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. What Do High-Resolution EIT Waves Tell Us About CMEs?

    Science.gov (United States)

    Thompson, Barbara

    2010-01-01

    Although many studies have demonstrated that some coronal waves are not generated by corona) mass ejections, we have learned a great deal about the ability of corona) mass ejections to drive large-scale corona) waves, also called "EIT waves." We present new results based on EIT wave amplitude, timing, speed, and direction of propagation, with respect to their correlation with CME-related dimmings, speeds, locations and widths. Furthermore, we demonstrate the ability to correlate different aspects of EIT waves with some of the observed structure of CMEs observed in coronagraph data. Finally, we expand on the discussion of the types of wave modes that can be generated by a corona) mass ejection, and how these observations can serve as a diagnostic of the type of impulse a CME can deliver to the surrounding corona. These diagnostics are obtained by examining the motion of individual field lines, requiring high-resolution observations like those provided by TRACE and SDO/AIA.

  19. Older women with dementia can perform fast alternating forearm movements and performance is correlated with tests of lower extremity function

    Directory of Open Access Journals (Sweden)

    Bramell-Risberg E

    2013-02-01

    Full Text Available Eva Bramell-Risberg,1 Gun-Britt Jarnlo,2 Sölve Elmståhl11Division of Geriatric Medicine, 2Division of Physiotherapy, Department of Health Sciences, Lund University, Lund, SwedenBackground: The purpose of this work was to study the performance and reliability of a test of fast alternating forearm movements and its relationship with measures of lower extremity function in older women with dementia.Methods: Fast alternating movements was studied in 26 female patients (mean age 81.7 ± 5.9 years with dementia and 34 controls (mean age 87.5 ± 4.7 years. Subgroup analyses for those aged 80–89 years were performed due to significant differences in the mean ages of the study groups. Test–retest reliability for alternating forearm movements was studied in 11 patients (mean age 80.3 ± 6.7 years and 10 controls (mean age 87.4 ± 1.6 years. Pulses generated were transformed to an analog signal shown on a modified electrocardiogram. Numbers of cycles at 10 and 15 seconds were calculated for the right and left hand. Walking 2 × 15 m and the Get-Up-and Go (GUG test were performed at self-selected and maximal speed. Associations between tests of upper and lower extremity function were sought in eight patients (mean age 85 ± 2.7 years and 16 controls (mean age 85.1 ± 2.8 years and also according to types of dementia in nine patients with probable Alzheimer's disease and 10 patients with other types of dementia.Results: Patients with dementia could perform the test and had significantly fewer cycles (P = 0.02–0.006 at both 10 and 15 seconds compared with controls after age adjustment. A higher number of cycles was associated with higher self-selected walking speeds in patients (r = -0.79. Test–retest reliability for alternating forearm movements was high for both patients (intraclass correlation 0.88–0.94 and controls (intraclass correlation 0.74–0.94.Conclusion: Alternating forearm movements at fast speed can be used as a reliable test in both

  20. Relationship between the start times of flares and CMEs to the time of potential radiation hazards

    Science.gov (United States)

    Kang, G.; Zheng, Y.; Kuznetsova, M. M.

    2013-12-01

    Solar flares, short-term outbursts of energy of the Sun, and coronal mass ejections (CME), massive bursts of solar matter, are two solar phenomena that are known to increase solar energetic particles in space. Increased solar energetic particles cause immense radiation that poses a serious threat to astronauts in space, radio communication signals, and passengers on high-latitude flights on the Earth. The relationship between the start times of flares and CMEs to the time of potential radiation hazards was investigated to determine how much warning time is available. Additionally, this project compared the difference between these relationships for four energy levels of solar energetic particles: proton flux exceeding 10 MeV, 30 MeV, 50 MeV and 100 MeV. This project gathered data of 22 recent SEP events between 2010 and 2012 and the parameters of associated CMEs and flares. Through the use of IDL (Interactive Data Language) programming, thorough analysis was conducted, including 2-sample t-tests and Kruskal-Wallis tests for 2 or more samples. The average lead time to warn humans of possible radiation hazard from the detection of a flare and a CME occurrence was found to be around 12 to 20 hours. The lead time was the greatest for the lowest energy level, though the differences in energy levels and that between the lead times for CME and flares were found to be statistically insignificant with p-values exceeding the alpha value of 0.20.

  1. Cause and Properties of the Extreme Space Weather Event of 2012 July 23

    Science.gov (United States)

    Liu, Y. D.; Luhmann, J. G.; Kajdic, P.; Kilpua, E.; Lugaz, N.; Nitta, N.; Lavraud, B.; Bale, S. D.; Farrugia, C. J.; Galvin, A. B.

    2013-12-01

    Extreme space weather refers to extreme conditions in space driven by solar eruptions and subsequent disturbances in interplanetary space, or otherwise called solar superstorms. Understanding extreme space weather events is becoming ever more vital, as the vulnerability of our society and its technological infrastructure to space weather has increased dramatically. Instances of extreme space weather, however, are very rare by definition and therefore are difficult to study. Here we report and investigate an extreme event, which occurred on 2012 July 23 with a maximum speed of about 3050 km/s near the Sun. This event, with complete modern remote sensing and in situ observations from multiple vantage points, provides an unprecedented opportunity to study the cause and consequences of extreme space weather. It produced a superfast shock with a peak solar wind speed of 2246 km/s and a superstrong magnetic cloud with a peak magnetic field of 109 nT observed near 1 AU at STEREO A. The record solar wind speed and magnetic field would produce a record geomagnetic storm since the space era with a minimum Dst of -1200 - -600 nT, if this event hit the Earth. We demonstrate how successive coronal mass ejections (CMEs) can be enhanced into a solar superstorm as they interact en route from the Sun to 1 AU. These results not only provide a benchmark for studies of extreme space weather, but also present a new view of how an extreme space weather event can be generated from usual solar eruptions.

  2. Fast plunges into Kerr black holes

    Energy Technology Data Exchange (ETDEWEB)

    Hadar, Shahar [Racah Institute of Physics, Hebrew University,Jerusalem 91904 (Israel); Porfyriadis, Achilleas P.; Strominger, Andrew [Center for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States)

    2015-07-15

    Most extreme-mass-ratio-inspirals of small compact objects into supermassive black holes end with a fast plunge from an eccentric last stable orbit. For rapidly rotating black holes such fast plunges may be studied in the context of the Kerr/CFT correspondence because they occur in the near-horizon region where dynamics are governed by the infinite dimensional conformal symmetry. In this paper we use conformal transformations to analytically solve for the radiation emitted from fast plunges into near-extreme Kerr black holes. We find perfect agreement between the gravity and CFT computations.

  3. THE 'TWIN-CME' SCENARIO AND LARGE SOLAR ENERGETIC PARTICLE EVENTS IN SOLAR CYCLE 23

    International Nuclear Information System (INIS)

    Ding, Liuguan; Jiang, Yong; Zhao, Lulu; Li, Gang

    2013-01-01

    Energetic particles in large solar energetic particle (SEP) events are a major concern for space weather. Recently, Li et al. proposed a 'twin-CME' scenario for ground-level events. Here we extend that study to large SEP events in solar cycle 23. Depending on whether preceding coronal mass ejections (CMEs) within 9 hr exist and whether ions >10 MeV nucleon –1 exceed 10 pfu, we categorize fast CMEs with speed >900 km s –1 and width >60° from the western hemisphere source regions into four groups: groups I and II are 'twin' and single CMEs that lead to large SEPs; groups III and IV are 'twin' and single CMEs that do not lead to large SEPs. The major findings of this paper are: first, large SEP events tend to be 'twin-CME' events. Of 59 western large SEP events in solar cycle 23, 43 are 'twin-CME' (group I) events and 16 are single-CME (group II) events. Second, not all 'twin CMEs' produced large SEPs: 28 twin CMEs did not produce large SEPs (group III events). Some of them produced excesses of particles up to a few MeV nucleon –1 . Third, there were 39 single fast CMEs that did not produce SEPs (group IV events). Some of these also showed an excess of particles up to a few MeV nucleon –1 . For all four groups of events, we perform statistical analyses on properties such as the angular width, the speed, the existence of accompanying metric type II radio bursts, and the associated flare class for the main CMEs and the preceding CMEs.

  4. Fast Access Data Acquisition System (FADAS)

    International Nuclear Information System (INIS)

    Katsman, Vladimir

    1998-01-01

    Our goal in this program is to develop Fast Access Data Acquisition System (FADAS) by combining the flexibility of Multilink's GaAs and InP electronics and electro-optics with an extremely high data rate for the efficient handling and transfer of collider experimental data. This novel solution is based on Multilink's and Los Alamos National Laboratory's (LANL) unique components and technologies for extremely fast data transfer, storage, and processing

  5. Problems in the forecasting of solar particle events for manned missions

    International Nuclear Information System (INIS)

    Feynman, J.; Ruzmaikin, A.

    1999-01-01

    Manned spacecraft will require a much improved ability to forecast solar particle events. The lead time required will depend on the use to which the forecast is put. Here we discuss problems of forecasting with the lead times of hours to weeks. Such forecasts are needed for scheduling and carrying out activities. Our present capabilities with these lead times is extremely limited. To improve our capability we must develop an ability to predict fast coronal mass ejections (CMEs). It is not sufficient to observe that a CME has already taken place since by that time it is already too late to make predictions with these lead times. Both to learn how to predict CMEs and to carry out forecasts on time scales of several days to weeks, observations of the other side of the Sun are required. We describe a low-cost space mission of this type that would further the development of an hours-to-weeks forecast capability

  6. Stevens Institute SYS-625 Final Paper: Busy Parents Need Extremely Fast, Quality Home-Cooked Dinners That Their Kids Will Eat

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, Carol A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-30

    This study provides a modern take on an age-old need: busy parents need extremely fast, high quality home-cooked dinners that their kids will eat. In the past decade, the number of choices that parents have for filling this need have proliferated, largely due to technological advances. Our study proposes to leverage this technology in building a system geared toward decreasing whining in kids and increasing the sanity of their parents.

  7. Coronal mass ejections, type II radio bursts, and solar energetic particle events in the SOHO era

    Directory of Open Access Journals (Sweden)

    N. Gopalswamy

    2008-10-01

    Full Text Available Using the extensive and uniform data on coronal mass ejections (CMEs, solar energetic particle (SEP events, and type II radio bursts during the SOHO era, we discuss how the CME properties such as speed, width and solar-source longitude decide whether CMEs are associated with type II radio bursts and SEP events. We discuss why some radio-quiet CMEs are associated with small SEP events while some radio-loud CMEs are not associated with SEP events. We conclude that either some fast and wide CMEs do not drive shocks or they drive weak shocks that do not produce significant levels of particle acceleration. We also infer that the Alfvén speed in the corona and near-Sun interplanetary medium ranges from <200 km/s to ~1600 km/s. Radio-quiet fast and wide CMEs are also poor SEP producers and the association rate of type II bursts and SEP events steadily increases with CME speed and width (i.e. energy. If we consider western hemispheric CMEs, the SEP association rate increases linearly from ~30% for 800 km/s CMEs to 100% for ≥1800 km/s. Essentially all type II bursts in the decametre-hectometric (DH wavelength range are associated with SEP events once the source location on the Sun is taken into account. This is a significant result for space weather applications, because if a CME originating from the western hemisphere is accompanied by a DH type II burst, there is a high probability that it will produce an SEP event.

  8. THE 'TWIN-CME' SCENARIO AND LARGE SOLAR ENERGETIC PARTICLE EVENTS IN SOLAR CYCLE 23

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Liuguan; Jiang, Yong [College of Math and Physics, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044 (China); Zhao, Lulu; Li, Gang, E-mail: gang.li@uah.edu [Department of Physics and CSPAR, University of Alabama in Huntsville, AL 35899 (United States)

    2013-01-20

    Energetic particles in large solar energetic particle (SEP) events are a major concern for space weather. Recently, Li et al. proposed a 'twin-CME' scenario for ground-level events. Here we extend that study to large SEP events in solar cycle 23. Depending on whether preceding coronal mass ejections (CMEs) within 9 hr exist and whether ions >10 MeV nucleon{sup -1} exceed 10 pfu, we categorize fast CMEs with speed >900 km s{sup -1} and width >60 Degree-Sign from the western hemisphere source regions into four groups: groups I and II are 'twin' and single CMEs that lead to large SEPs; groups III and IV are 'twin' and single CMEs that do not lead to large SEPs. The major findings of this paper are: first, large SEP events tend to be 'twin-CME' events. Of 59 western large SEP events in solar cycle 23, 43 are 'twin-CME' (group I) events and 16 are single-CME (group II) events. Second, not all 'twin CMEs' produced large SEPs: 28 twin CMEs did not produce large SEPs (group III events). Some of them produced excesses of particles up to a few MeV nucleon{sup -1}. Third, there were 39 single fast CMEs that did not produce SEPs (group IV events). Some of these also showed an excess of particles up to a few MeV nucleon{sup -1}. For all four groups of events, we perform statistical analyses on properties such as the angular width, the speed, the existence of accompanying metric type II radio bursts, and the associated flare class for the main CMEs and the preceding CMEs.

  9. An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102

    Science.gov (United States)

    Michilli, D.; Seymour, A.; Hessels, J. W. T.; Spitler, L. G.; Gajjar, V.; Archibald, A. M.; Bower, G. C.; Chatterjee, S.; Cordes, J. M.; Gourdji, K.; Heald, G. H.; Kaspi, V. M.; Law, C. J.; Sobey, C.; Adams, E. A. K.; Bassa, C. G.; Bogdanov, S.; Brinkman, C.; Demorest, P.; Fernandez, F.; Hellbourg, G.; Lazio, T. J. W.; Lynch, R. S.; Maddox, N.; Marcote, B.; McLaughlin, M. A.; Paragi, Z.; Ransom, S. M.; Scholz, P.; Siemion, A. P. V.; Tendulkar, S. P.; van Rooy, P.; Wharton, R. S.; Whitlow, D.

    2018-01-01

    Fast radio bursts are millisecond-duration, extragalactic radio flashes of unknown physical origin. The only known repeating fast radio burst source—FRB 121102—has been localized to a star-forming region in a dwarf galaxy at redshift 0.193 and is spatially coincident with a compact, persistent radio source. The origin of the bursts, the nature of the persistent source and the properties of the local environment are still unclear. Here we report observations of FRB 121102 that show almost 100 per cent linearly polarized emission at a very high and variable Faraday rotation measure in the source frame (varying from +1.46 × 105 radians per square metre to +1.33 × 105 radians per square metre at epochs separated by seven months) and narrow (below 30 microseconds) temporal structure. The large and variable rotation measure demonstrates that FRB 121102 is in an extreme and dynamic magneto-ionic environment, and the short durations of the bursts suggest a neutron star origin. Such large rotation measures have hitherto been observed only in the vicinities of massive black holes (larger than about 10,000 solar masses). Indeed, the properties of the persistent radio source are compatible with those of a low-luminosity, accreting massive black hole. The bursts may therefore come from a neutron star in such an environment or could be explained by other models, such as a highly magnetized wind nebula or supernova remnant surrounding a young neutron star.

  10. THE 2012 JULY 23 BACKSIDE ERUPTION: AN EXTREME ENERGETIC PARTICLE EVENT?

    Energy Technology Data Exchange (ETDEWEB)

    Gopalswamy, N. [Code 671, Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Yashiro, S.; Thakur, N.; Mäkelä, P.; Xie, H.; Akiyama, S., E-mail: nat.gopalswamy@nasa.gov [Department of Physics, The Catholic University of America, Washington, DC 20064 (United States)

    2016-12-20

    The backside coronal mass ejection (CME) of 2012 July 23 had a short Sun-to-Earth shock transit time (18.5 hr). The associated solar energetic particle (SEP) event had a >10 MeV proton flux peaking at ∼5000 pfu, and the energetic storm particle event was an order of magnitude larger, making it the most intense event in the space era at these energies. By a detailed analysis of the CME, shock, and SEP characteristics, we find that the July 23 event is consistent with a high-energy SEP event (accelerating particles to gigaelectronvolt energies). The times of maximum and fluence spectra in the range 10–100 MeV were very hard, similar to those of ground-level enhancement (GLE) events. We found a hierarchical relationship between the CME initial speeds and the fluence spectral indices: CMEs with low initial speeds had SEP events with the softest spectra, while those with the highest initial speeds had SEP events with the hardest spectra. CMEs attaining intermediate speeds result in moderately hard spectra. The July 23 event was in the group of hard-spectrum events. During the July 23 event, the shock speed (>2000 km s{sup −1}), the initial acceleration (∼1.70 km s{sup −2}), and the shock-formation height (∼1.5 solar radii) were all typical of GLE events. The associated type II burst had emission components from meter to kilometer wavelengths, suggesting a strong shock. These observations confirm that the 2012 July 23 event is likely to be an extreme event in terms of the energetic particles it accelerated.

  11. Fast evolution and waveform generator for extreme-mass-ratio inspirals in equatorial-circular orbits

    International Nuclear Information System (INIS)

    Han, Wen-Biao

    2016-01-01

    In this paper we discuss the development of a fast and accurate waveform model for the quasi-circular orbital evolution of extreme-mass-ratio inspirals (EMRIs). This model simply employs the data of a few numerical Teukoulsky-based energy fluxes and waveforms to fit out a set of polynomials for the entire fluxes and waveforms. These obtained polynomials are accurate enough in the entire evolution domain, and much more accurate than the resummation post-Newtonian (PN) energy fluxes and waveforms, especially when the spin of a black hole becomes large. The dynamical equation we adopted for orbital revolution is the effective-one-body (EOB) formalism. Because of the simplified expressions, the efficiency of calculating the orbital evolution with our polynomials is also better than the traditional method which uses the resummed PN analytical fluxes. Our model should be useful in calculations of waveform templates of EMRIs for gravitational wave (GW) detectors such as the evolved Laser Interferometer Space Antenna (eLISA). (paper)

  12. Enabling fast charging - Battery thermal considerations

    Science.gov (United States)

    Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; Santhanagopalan, Shriram; Smith, Kandler; Wood, Eric; Ahmed, Shabbir; Bloom, Ira; Dufek, Eric; Shirk, Matthew; Meintz, Andrew; Kreuzer, Cory; Michelbacher, Christopher; Burnham, Andrew; Stephens, Thomas; Francfort, James; Carlson, Barney; Zhang, Jiucai; Vijayagopal, Ram; Hardy, Keith; Dias, Fernando; Mohanpurkar, Manish; Scoffield, Don; Jansen, Andrew N.; Tanim, Tanvir; Markel, Anthony

    2017-11-01

    Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.

  13. Physiological response to extreme fasting in subantarctic fur seal (Arctocephalus tropicalis) pups: metabolic rates, energy reserve utilization, and water fluxes.

    Science.gov (United States)

    Verrier, Delphine; Groscolas, René; Guinet, Christophe; Arnould, John P Y

    2009-11-01

    Surviving prolonged fasting requires various metabolic adaptations, such as energy and protein sparing, notably when animals are simultaneously engaged in energy-demanding processes such as growth. Due to the intermittent pattern of maternal attendance, subantarctic fur seal pups have to repeatedly endure exceptionally long fasting episodes throughout the 10-mo rearing period while preparing for nutritional independence. Their metabolic responses to natural prolonged fasting (33.4 +/- 3.3 days) were investigated at 7 mo of age. Within 4-6 fasting days, pups shifted into a stage of metabolic economy characterized by a minimal rate of body mass loss (0.7%/day) and decreased resting metabolic rate (5.9 +/- 0.1 ml O(2)xkg(-1)xday(-1)) that was only 10% above the level predicted for adult terrestrial mammals. Field metabolic rate (289 +/- 10 kJxkg(-1)xday(-1)) and water influx (7.9 +/- 0.9 mlxkg(-1)xday(-1)) were also among the lowest reported for any young otariid, suggesting minimized energy allocation to behavioral activity and thermoregulation. Furthermore, lean tissue degradation was dramatically reduced. High initial adiposity (>48%) and predominant reliance on lipid catabolism likely contributed to the exceptional degree of protein sparing attained. Blood chemistry supported these findings and suggested utilization of alternative fuels, such as beta-hydroxybutyrate and de novo synthesized glucose from fat-released glycerol. Regardless of sex and body condition, pups tended to adopt a convergent strategy of extreme energy and lean body mass conservation that appears highly adaptive for it allows some tissue growth during the repeated episodes of prolonged fasting they experience throughout their development.

  14. CME Dynamics Using STEREO and LASCO Observations: The Relative Importance of Lorentz Forces and Solar Wind Drag

    Science.gov (United States)

    Sachdeva, Nishtha; Subramanian, Prasad; Vourlidas, Angelos; Bothmer, Volker

    2017-09-01

    We seek to quantify the relative contributions of Lorentz forces and aerodynamic drag on the propagation of solar coronal mass ejections (CMEs). We use Graduated Cylindrical Shell (GCS) model fits to a representative set of 38 CMEs observed with the Solar and Heliospheric Observatory (SOHO) and the Solar and Terrestrial Relations Observatory (STEREO) spacecraft. We find that the Lorentz forces generally peak between 1.65 and 2.45 R⊙ for all CMEs. For fast CMEs, Lorentz forces become negligible in comparison to aerodynamic drag as early as 3.5 - 4 R⊙. For slow CMEs, however, they become negligible only by 12 - 50 R⊙. For these slow events, our results suggest that some of the magnetic flux might be expended in CME expansion or heating. In other words, not all of it contributes to the propagation. Our results are expected to be important in building a physical model for understanding the Sun-Earth dynamics of CMEs.

  15. Enabling fast charging – Battery thermal considerations

    International Nuclear Information System (INIS)

    Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; Santhanagopalan, Shriram; Smith, Kandler

    2017-01-01

    Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today’s market. Here, thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.

  16. The role of MEXART in the National Space Weather Laboratory of Mexico: Detection of solar wind, CMEs, ionosphere, active regions and flares.

    Science.gov (United States)

    Mejia-Ambriz, J.; Gonzalez-Esparza, A.; De la Luz, V.; Villanueva-Hernandez, P.; Andrade, E.; Aguilar-Rodriguez, E.; Chang, O.; Romero Hernandez, E.; Sergeeva, M. A.; Perez Alanis, C. A.; Reyes-Marin, P. A.

    2017-12-01

    The National Space Weather Laboratory - Laboratorio Nacional de Clima Espacial (LANCE) - of Mexico has different ground based instruments to study and monitor the space weather. One of these instruments is the Mexican Array Radio Telescope (MEXART) which is principally dedicated to remote sensing the solar wind and coronal mass ejections (CMEs) at 140 MHz, the instrument can detect solar wind densities and speeds from about 0.4 to 1 AU by modeling observations of interplanetary scintillation (IPS). MEXART is also able to detect ionospheric disturbances associated with transient space weather events by the analysis of ionospheric scintillation (IONS) . Additionally, MEXART has followed the Sun since the beginning of the current Solar Cycle 24 with records of 8 minutes per day, and occasionally, has partially detected the process of strong solar flares. Here we show the contributions of MEXART to the LANCE by reporting recent detections of CMEs by IPS, the arrive of transient events at Earth by IONS, the influence of active regions in the flux of the Sun at 140 MHz and the detection of a M6.5 class flare. Furthermore we report the status of a near real time analysis of IPS data for forecast purposes and the potential contribution to the Worldwide IPS Stations network (WIPSS), which is an effort to achieve a better coverage of the solar wind observations in the inner heliosphere.

  17. Do interacting coronal mass ejections play a role in solar energetic particle events?

    International Nuclear Information System (INIS)

    Kahler, S. W.; Vourlidas, A.

    2014-01-01

    Gradual solar energetic (E > 10 MeV) particle (SEP) events are produced in shocks driven by fast and wide coronal mass ejections (CMEs). With a set of western hemisphere 20 MeV SEP events, we test the possibility that SEP peak intensities, Ip, are enhanced by interactions of their associated CMEs with preceding CMEs (preCMEs) launched during the previous 12 hr. Among SEP events with no, 1, or 2 or more (2+) preCMEs, we find enhanced Ip for the groups with preCMEs, but no differences in TO+TR, the time from CME launch to SEP onset and the time from onset to SEP half-peak Ip. Neither the timings of the preCMEs relative to their associated CMEs nor the preCME widths W pre , speeds V pre , or numbers correlate with the SEP Ip values. The 20 MeV Ip of all the preCME groups correlate with the 2 MeV proton background intensities, consistent with a general correlation with possible seed particle populations. Furthermore, the fraction of CMEs with preCMEs also increases with the 2 MeV proton background intensities. This implies that the higher SEP Ip values with preCMEs may not be due primarily to CME interactions, such as the 'twin-CME' scenario, but are explained by a general increase of both background seed particles and more frequent CMEs during times of higher solar activity. This explanation is not supported by our analysis of 2 MeV proton backgrounds in two earlier preCME studies of SEP events, so the relevance of CME interactions for larger SEP event intensities remains unclear.

  18. A silicon diode for fast neutron dosimetry

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The effect of fast neutrons on both animate and inanimate objects, including human beings, can be extremely serious and cumulative. There is thus a need for a small, simple and cheap component which will provide a permanent or semi-permanent record of the accumulated fast neutron dose

  19. Direct evidence of an eruptive, filament-hosting magnetic flux rope leading to a fast solar coronal mass ejection

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin; Gary, D. E. [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Bastian, T. S., E-mail: bin.chen@cfa.harvard.edu [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States)

    2014-10-20

    Magnetic flux ropes (MFRs) are believed to be at the heart of solar coronal mass ejections (CMEs). A well-known example is the prominence cavity in the low corona that sometimes makes up a three-part white-light (WL) CME upon its eruption. Such a system, which is usually observed in quiet-Sun regions, has long been suggested to be the manifestation of an MFR with relatively cool filament material collecting near its bottom. However, observational evidence of eruptive, filament-hosting MFR systems has been elusive for those originating in active regions. By utilizing multi-passband extreme-ultraviolet (EUV) observations from Solar Dynamics Observatory/Atmospheric Imaging Assembly, we present direct evidence of an eruptive MFR in the low corona that exhibits a hot envelope and a cooler core; the latter is likely the upper part of a filament that undergoes a partial eruption, which is later observed in the upper corona as the coiled kernel of a fast, WL CME. This MFR-like structure exists more than 1 hr prior to its eruption, and displays successive stages of dynamical evolution, in which both ideal and non-ideal physical processes may be involved. The timing of the MFR kinematics is found to be well correlated with the energy release of the associated long-duration C1.9 flare. We suggest that the long-duration flare is the result of prolonged energy release associated with the vertical current sheet induced by the erupting MFR.

  20. Direct Evidence of an Eruptive, Filament-hosting Magnetic Flux Rope Leading to a Fast Solar Coronal Mass Ejection

    Science.gov (United States)

    Chen, Bin; Bastian, T. S.; Gary, D. E.

    2014-10-01

    Magnetic flux ropes (MFRs) are believed to be at the heart of solar coronal mass ejections (CMEs). A well-known example is the prominence cavity in the low corona that sometimes makes up a three-part white-light (WL) CME upon its eruption. Such a system, which is usually observed in quiet-Sun regions, has long been suggested to be the manifestation of an MFR with relatively cool filament material collecting near its bottom. However, observational evidence of eruptive, filament-hosting MFR systems has been elusive for those originating in active regions. By utilizing multi-passband extreme-ultraviolet (EUV) observations from Solar Dynamics Observatory/Atmospheric Imaging Assembly, we present direct evidence of an eruptive MFR in the low corona that exhibits a hot envelope and a cooler core; the latter is likely the upper part of a filament that undergoes a partial eruption, which is later observed in the upper corona as the coiled kernel of a fast, WL CME. This MFR-like structure exists more than 1 hr prior to its eruption, and displays successive stages of dynamical evolution, in which both ideal and non-ideal physical processes may be involved. The timing of the MFR kinematics is found to be well correlated with the energy release of the associated long-duration C1.9 flare. We suggest that the long-duration flare is the result of prolonged energy release associated with the vertical current sheet induced by the erupting MFR.

  1. Direct evidence of an eruptive, filament-hosting magnetic flux rope leading to a fast solar coronal mass ejection

    International Nuclear Information System (INIS)

    Chen, Bin; Gary, D. E.; Bastian, T. S.

    2014-01-01

    Magnetic flux ropes (MFRs) are believed to be at the heart of solar coronal mass ejections (CMEs). A well-known example is the prominence cavity in the low corona that sometimes makes up a three-part white-light (WL) CME upon its eruption. Such a system, which is usually observed in quiet-Sun regions, has long been suggested to be the manifestation of an MFR with relatively cool filament material collecting near its bottom. However, observational evidence of eruptive, filament-hosting MFR systems has been elusive for those originating in active regions. By utilizing multi-passband extreme-ultraviolet (EUV) observations from Solar Dynamics Observatory/Atmospheric Imaging Assembly, we present direct evidence of an eruptive MFR in the low corona that exhibits a hot envelope and a cooler core; the latter is likely the upper part of a filament that undergoes a partial eruption, which is later observed in the upper corona as the coiled kernel of a fast, WL CME. This MFR-like structure exists more than 1 hr prior to its eruption, and displays successive stages of dynamical evolution, in which both ideal and non-ideal physical processes may be involved. The timing of the MFR kinematics is found to be well correlated with the energy release of the associated long-duration C1.9 flare. We suggest that the long-duration flare is the result of prolonged energy release associated with the vertical current sheet induced by the erupting MFR.

  2. Suction is kid's play: extremely fast suction in newborn seahorses

    Science.gov (United States)

    Van Wassenbergh, Sam; Roos, Gert; Genbrugge, Annelies; Leysen, Heleen; Aerts, Peter; Adriaens, Dominique; Herrel, Anthony

    2009-01-01

    Ongoing anatomical development typically results in a gradual maturation of the feeding movements from larval to adult fishes. Adult seahorses are known to capture prey by rotating their long-snouted head extremely quickly towards prey, followed by powerful suction. This type of suction is powered by elastic recoil and requires very precise coordination of the movements of the associated feeding structures, making it an all-or-none phenomenon. Here, we show that newborn Hippocampus reidi are able to successfully feed using an extremely rapid and powerful snout rotation combined with a high-volume suction, surpassing that observed in adult seahorses. An inverse dynamic analysis shows that an elastic recoil mechanism is also used to power head rotation in newborn H. reidi. This illustrates how extreme levels of performance in highly complex musculoskeletal systems can be present at birth given a delayed birth and rapid development of functionally important structures. The fact that the head skeleton of newborn seahorses is still largely cartilaginous may not be problematic because the hydrodynamic stress on the rotating snout appeared considerably lower than in adult syngnathids. PMID:19324657

  3. Dependence of large SEP events with different energies on the associated flares and CMEs

    Science.gov (United States)

    Le, Gui-Ming; Zhang, Xue-Feng

    2017-12-01

    To investigate the dependence of large gradual solar energetic particle (SEP) events on the associated flares and coronal mass ejections (CMEs), the correlation coefficients (CCs) between peak intensities of E> 10 {MeV} (I 10), E> 30 {MeV} (I 30) and E> 50 {MeV} (I 50) protons and soft X-ray (SXR) emission of associated flares and the speeds of associated CMEs in the three longitudinal areas W0-W39, W40-W70 (hereafter the well connected region) and W71-W90 have been calculated. Classical correlation analysis shows that CCs between SXR emission and peak intensities of SEP events always reach their largest value in the well connected region and then decline dramatically in the longitudinal area outside the well connected region, suggesting that they may contribute to the production of SEPs in large SEP events. Both classical and partial correlation analyses show that SXR fluence is a better parameter describing the relationship between flares and SEP events. For large SEP events with source location in the well connected region, the CCs between SXR fluence and I 10, I 30 and I 50 are 0.58±0.12, 0.80±0.06 and 0.83±0.06 respectively, while the CCs between CME speed and I 10, I 30 and I 50 are 0.56±0.12, 0.52±0.13 and 0.48±0.13 respectively. The partial correlation analyses show that in the well connected region, both CME shock and SXR fluence can significantly affect I 10, but SXR peak flux makes no additional contribution. For E> 30 {MeV} protons with source location in the well connected region, only SXR fluence can significantly affect I 30, and the CME shock makes a small contribution to I 30, but SXR peak flux makes no additional contribution. For E> 50 {MeV} protons with source location in the well connected region, only SXR fluence can significantly affect I 50, but both CME shock and SXR peak flux make no additional contribution. We conclude that these findings provide statistical evidence that for SEP events with source locations in the well connected

  4. Numerical Study of Erosion, Heating, and Acceleration of the Magnetic Cloud as Impacted by Fast Shock

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Shoudi; He, Jiansen; Yang, Liping; Wang, Linghua [School of Earth and Space Sciences, Peking University No. 5 Yiheyuan Road, Haidian District Beijing, 100871 (China); Zhang, Lei, E-mail: jshept@gmail.com [SIGMA Weather Group, State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences No.1 Nanertiao, Zhongguancun, Haidian district Beijing, 100190 (China)

    2017-06-20

    The impact of an overtaking fast shock on a magnetic cloud (MC) is a pivotal process in CME–CME (CME: coronal mass ejection) interactions and CME–SIR (SIR: stream interaction region) interactions. MC with a strong and rotating magnetic field is usually deemed a crucial part of CMEs. To study the impact of a fast shock on an MC, we perform a 2.5 dimensional numerical magnetohydrodynamic simulation. Two cases are run in this study: without and with impact by fast shock. In the former case, the MC expands gradually from its initial state and drives a relatively slow magnetic reconnection with the ambient magnetic field. Analyses of forces near the core of the MC as a whole body indicates that the solar gravity is quite small compared to the Lorentz force and the pressure gradient force. In the second run, a fast shock propagates, relative to the background plasma, at a speed twice that of the perpendicular fast magnetosonic speed, catches up with and takes over the MC. Due to the penetration of the fast shock, the MC is highly compressed and heated, with the temperature growth rate enhanced by a factor of about 10 and the velocity increased to about half of the shock speed. The magnetic reconnection with ambient magnetic field is also sped up by a factor of two to four in reconnection rate as a result of the enhanced density of the current sheet, which is squeezed by the forward motion of the shocked MC.

  5. Numerical Study of Erosion, Heating, and Acceleration of the Magnetic Cloud as Impacted by Fast Shock

    International Nuclear Information System (INIS)

    Mao, Shoudi; He, Jiansen; Yang, Liping; Wang, Linghua; Zhang, Lei

    2017-01-01

    The impact of an overtaking fast shock on a magnetic cloud (MC) is a pivotal process in CME–CME (CME: coronal mass ejection) interactions and CME–SIR (SIR: stream interaction region) interactions. MC with a strong and rotating magnetic field is usually deemed a crucial part of CMEs. To study the impact of a fast shock on an MC, we perform a 2.5 dimensional numerical magnetohydrodynamic simulation. Two cases are run in this study: without and with impact by fast shock. In the former case, the MC expands gradually from its initial state and drives a relatively slow magnetic reconnection with the ambient magnetic field. Analyses of forces near the core of the MC as a whole body indicates that the solar gravity is quite small compared to the Lorentz force and the pressure gradient force. In the second run, a fast shock propagates, relative to the background plasma, at a speed twice that of the perpendicular fast magnetosonic speed, catches up with and takes over the MC. Due to the penetration of the fast shock, the MC is highly compressed and heated, with the temperature growth rate enhanced by a factor of about 10 and the velocity increased to about half of the shock speed. The magnetic reconnection with ambient magnetic field is also sped up by a factor of two to four in reconnection rate as a result of the enhanced density of the current sheet, which is squeezed by the forward motion of the shocked MC.

  6. The energetic relationship among geoeffective solar flares, associated CMEs and SEPs

    International Nuclear Information System (INIS)

    Bhatt Nipa J; Jain Rajmal; Awasthi Arun Kumar

    2013-01-01

    Major solar eruptions (flares, coronal mass ejections (CMEs) and solar energetic particles (SEPs)) strongly influence geospace and space weather. Currently, the mechanism of their influence on space weather is not well understood and requires a detailed study of the energetic relationship among these eruptive phenomena. From this perspective, we investigate 30 flares (observed by RHESSI), followed by weak to strong geomagnetic storms. Spectral analysis of these flares suggests a new power-law relationship (r ∼ 0.79) between the hard X-ray (HXR) spectral index (before flare-peak) and linear speed of the associated CME observed by LASCO/SOHO. For 12 flares which were followed by SEP enhancement near Earth, HXR and SEP spectral analysis reveals a new scaling law (r ∼ 0.9) between the hardest X-ray flare spectrum and the hardest SEP spectrum. Furthermore, a strong correlation is obtained between the linear speed of the CME and the hardest spectrum of the corresponding SEP event (r ∼ 0.96). We propose that the potentially geoeffective flare and associated CME and SEP are well-connected through a possible feedback mechanism, and should be regarded within the framework of a solar eruption. Owing to their space weather effects, these new results will help improve our current understanding of the Sun-Earth relationship, which is a major goal of research programs in heliophysics

  7. THE NATURE OF CME-FLARE-ASSOCIATED CORONAL DIMMING

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J. X. [Key Laboratory of Planetary Sciences, Shanghai Astronomical Observatory, Shanghai 200030 (China); Qiu, J., E-mail: chengjx@shao.ac.cn [Department of Physics, Montana State University, Bozeman MT 59717-3840 (United States)

    2016-07-01

    Coronal mass ejections (CMEs) are often accompanied by coronal dimming that is evident in extreme ultraviolet (EUV) and soft X-ray observations. The locations of dimming are sometimes considered to map footpoints of the erupting flux rope. As the emitting material expands in the corona, the decreased plasma density leads to reduced emission observed in spectral and irradiance measurements. Therefore, signatures of dimming may reflect the properties of CMEs in the early phase of their eruption. In this study, we analyze the event of flare, CME, and coronal dimming on 2011 December 26. We use the data from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory for disk observations of the dimming, and analyze images taken by EUVI, COR1, and COR2 on board the Solar Terrestrial Relations Observatory to obtain the height and velocity of the associated CMEs observed at the limb. We also measure the magnetic reconnection rate from flare observations. Dimming occurs in a few locations next to the flare ribbons, and it is observed in multiple EUV passbands. Rapid dimming starts after the onset of fast reconnection and CME acceleration, and its evolution tracks the CME height and flare reconnection. The spatial distribution of dimming exhibits cores of deep dimming with a rapid growth, and their light curves are approximately linearly scaled with the CME height profile. From the dimming analysis we infer the process of the CME expansion, and estimate properties of the CME.

  8. THE NATURE OF CME-FLARE-ASSOCIATED CORONAL DIMMING

    International Nuclear Information System (INIS)

    Cheng, J. X.; Qiu, J.

    2016-01-01

    Coronal mass ejections (CMEs) are often accompanied by coronal dimming that is evident in extreme ultraviolet (EUV) and soft X-ray observations. The locations of dimming are sometimes considered to map footpoints of the erupting flux rope. As the emitting material expands in the corona, the decreased plasma density leads to reduced emission observed in spectral and irradiance measurements. Therefore, signatures of dimming may reflect the properties of CMEs in the early phase of their eruption. In this study, we analyze the event of flare, CME, and coronal dimming on 2011 December 26. We use the data from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory for disk observations of the dimming, and analyze images taken by EUVI, COR1, and COR2 on board the Solar Terrestrial Relations Observatory to obtain the height and velocity of the associated CMEs observed at the limb. We also measure the magnetic reconnection rate from flare observations. Dimming occurs in a few locations next to the flare ribbons, and it is observed in multiple EUV passbands. Rapid dimming starts after the onset of fast reconnection and CME acceleration, and its evolution tracks the CME height and flare reconnection. The spatial distribution of dimming exhibits cores of deep dimming with a rapid growth, and their light curves are approximately linearly scaled with the CME height profile. From the dimming analysis we infer the process of the CME expansion, and estimate properties of the CME.

  9. Extreme Sparse Multinomial Logistic Regression: A Fast and Robust Framework for Hyperspectral Image Classification

    Science.gov (United States)

    Cao, Faxian; Yang, Zhijing; Ren, Jinchang; Ling, Wing-Kuen; Zhao, Huimin; Marshall, Stephen

    2017-12-01

    Although the sparse multinomial logistic regression (SMLR) has provided a useful tool for sparse classification, it suffers from inefficacy in dealing with high dimensional features and manually set initial regressor values. This has significantly constrained its applications for hyperspectral image (HSI) classification. In order to tackle these two drawbacks, an extreme sparse multinomial logistic regression (ESMLR) is proposed for effective classification of HSI. First, the HSI dataset is projected to a new feature space with randomly generated weight and bias. Second, an optimization model is established by the Lagrange multiplier method and the dual principle to automatically determine a good initial regressor for SMLR via minimizing the training error and the regressor value. Furthermore, the extended multi-attribute profiles (EMAPs) are utilized for extracting both the spectral and spatial features. A combinational linear multiple features learning (MFL) method is proposed to further enhance the features extracted by ESMLR and EMAPs. Finally, the logistic regression via the variable splitting and the augmented Lagrangian (LORSAL) is adopted in the proposed framework for reducing the computational time. Experiments are conducted on two well-known HSI datasets, namely the Indian Pines dataset and the Pavia University dataset, which have shown the fast and robust performance of the proposed ESMLR framework.

  10. The Fast Simulation Chain for ATLAS

    CERN Document Server

    Basalaev, Artem; The ATLAS collaboration

    2016-01-01

    In order to generate the huge number of Monte Carlo events that will be required by the ATLAS experiment over the next several runs, a very fast simulation is critical. Fast detector simulation alone, however, is insufficient: with very high numbers of simultaneous proton-proton collisions expected in Run 3 and beyond, the digitization (detector response emulation) and event reconstruction time quickly become comparable to the time required for detector simulation. The ATLAS Fast Chain simulation has been developed to solve this problem. Modules are implemented for fast simulation, fast digitization, and fast track reconstruction. The application is sufficiently fast -- several orders of magnitude faster than the standard simulation -- that the simultaneous proton-proton collisions can be generated during the simulation job, so Pythia8 also runs concurrently with the rest of the algorithms. The Fast Chain has been built to be extremely modular and flexible, so that each sample can be custom-tailored to match ...

  11. Lower Extremity Muscle Activity During a Women's Overhand Lacrosse Shot

    Directory of Open Access Journals (Sweden)

    Millard Brianna M.

    2014-07-01

    Full Text Available The purpose of this study was to describe lower extremity muscle activity during the lacrosse shot. Participants (n=5 females, age 22±2 years, body height 162.6±15.2 cm, body mass 63.7±23.6 kg were free from injury and had at least one year of lacrosse experience. The lead leg was instrumented with electromyography (EMG leads to measure muscle activity of the rectus femoris (RF, biceps femoris (BF, tibialis anterior (TA, and medial gastrocnemius (GA. Participants completed five trials of a warm-up speed shot (Slow and a game speed shot (Fast. Video analysis was used to identify the discrete events defining specific movement phases. Full-wave rectified data were averaged per muscle per phase (Crank Back Minor, Crank Back Major, Stick Acceleration, Stick Deceleration. Average EMG per muscle was analyzed using a 4 (Phase x 2 (Speed ANOVA. BF was greater during Fast vs. Slow for all phases (p0.05. RF and GA were each influenced by the interaction of Phase and Speed (p<0.05 with GA being greater during Fast vs. Slow shots during all phases and RF greater during Crank Back Minor and Major as well as Stick Deceleration (p<0.05 but only tended to be greater during Stick Acceleration (p=0.076 for Fast vs. Slow. The greater muscle activity (BF, RF, GA during Fast vs. Slow shots may have been related to a faster approach speed and/or need to create a stiff lower extremity to allow for faster upper extremity movements.

  12. SIMULATION OF HOMOLOGOUS AND CANNIBALISTIC CORONAL MASS EJECTIONS PRODUCED BY THE EMERGENCE OF A TWISTED FLUX ROPE INTO THE SOLAR CORONA

    International Nuclear Information System (INIS)

    Chatterjee, Piyali; Fan, Yuhong

    2013-01-01

    We report the first results of a magnetohydrodynamic simulation of the development of a homologous sequence of three coronal mass ejections (CMEs) and demonstrate their so-called cannibalistic behavior. These CMEs originate from the repeated formations and partial eruptions of kink unstable flux ropes as a result of continued emergence of a twisted flux rope across the lower boundary into a pre-existing coronal potential arcade field. The simulation shows that a CME erupting into the open magnetic field created by a preceding CME has a higher speed. The second of the three successive CMEs is cannibalistic, catching up and merging with the first into a single fast CME before exiting the domain. All the CMEs including the leading merged CME, attained speeds of about 1000 km s –1 as they exit the domain. The reformation of a twisted flux rope after each CME eruption during the sustained flux emergence can naturally explain the X-ray observations of repeated reformations of sigmoids and ''sigmoid-under-cusp'' configurations at a low-coronal source of homologous CMEs

  13. Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere – application to CME-CME interaction

    Directory of Open Access Journals (Sweden)

    I. I. Roussev

    2009-09-01

    Full Text Available We present general considerations regarding the derivation of the radial distances of coronal mass ejections (CMEs from elongation angle measurements such as those provided by SECCHI and SMEI, focusing on measurements in the Heliospheric Imager 2 (HI-2 field of view (i.e. past 0.3 AU. This study is based on a three-dimensional (3-D magneto-hydrodynamics (MHD simulation of two CMEs observed by SECCHI on 24–27 January 2007. Having a 3-D simulation with synthetic HI images, we are able to compare the two basic methods used to derive CME positions from elongation angles, the so-called "Point-P" and "Fixed-φ" approximations. We confirm, following similar works, that both methods, while valid in the most inner heliosphere, yield increasingly large errors in HI-2 field of view for fast and wide CMEs. Using a simple model of a CME as an expanding self-similar sphere, we derive an analytical relationship between elongation angles and radial distances for wide CMEs. This relationship is simply the harmonic mean of the "Point-P" and "Fixed-φ" approximations and it is aimed at complementing 3-D fitting of CMEs by cone models or flux rope shapes. It proves better at getting the kinematics of the simulated CME right when we compare the results of our line-of-sights to the MHD simulation. Based on this approximation, we re-analyze the J-maps (time-elongation maps in 26–27 January 2007 and present the first observational evidence that the merging of CMEs is associated with a momentum exchange from the faster ejection to the slower one due to the propagation of the shock wave associated with the fast eruption through the slow eruption.

  14. The Fast Simulation Chain for ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00399337; The ATLAS collaboration; Marshall, Zach

    2017-01-01

    In order to generate the huge number of Monte Carlo events that will be required by the ATLAS experiment over the next several runs, a very fast simulation is critical. Fast detector simulation alone, however, is insufficient: with very high numbers of simultaneous proton-proton collisions expected in Run 3 and beyond, the digitization (detector response emulation) and event reconstruction time quickly become comparable to the time required for detector simulation. The ATLAS Fast Chain simulation has been developed to solve this problem. Modules are implemented for fast simulation, fast digitization, and fast track reconstruction. The application is sufficiently fast—several orders of magnitude faster than the standard simulation—that the simultaneous proton-proton collisions can be generated during the simulation job, so Pythia8 also runs concurrently with the rest of the algorithms. The Fast Chain has been built to be extremely modular and flexible, so that each sample can be custom-tailored to match th...

  15. Coronal mass ejection and stream interaction region characteristics and their potential geomagnetic effectiveness

    International Nuclear Information System (INIS)

    Lindsay, G.M.; Russell, C.T.; Luhmann, J.G.

    1995-01-01

    Previous studies have indicated that the largest geomagnetic storms are caused by extraordinary increases in the solar wind velocity and/or southward interplanetary magnetic field (IMF) produced by coronal mass ejections (CMEs) and their associated interplanetary shocks. However, much more frequent small to moderate increases in solar wind velocity and compressions in the IMF can be caused by either coronal mass ejections or fast/slow stream interactions. This study examines the relative statistics of the magnitudes of disturbances associated with the passage of both interplanetary coronal mass ejections and stream interaction regions, using an exceptionally continuous interplanetary database from the Pioneer Venus Orbiter at 0.7 AU throughout most of solar cycle 21. It is found that both stream interaction and CMEs produce magnetic fields significantly larger than the nominal IMF. Increases in field magnitude that are up to 2 and 3 times higher than the ambient field are observed for stream interaction regions and CMEs, respectively. Both stream interactions and CMEs produce large positive and negative Β z components at 0.7 AU, but only CMEs produce Β z magnitudes greater than 35 nT. CMEs are often associated with sustained periods of positive or negative Β z whereas stream interaction regions are more often associated with fluctuating Β z . CMEs tend to produce larger solar wind electric fields than stream interactions. Yet stream interactions tend to produce larger dynamic pressures than CMEs. Dst predictions based on solar wind duskward electric field and dynamic pressure indicate that CMEs produce the largest geomagnetic disturbances while the low-speed portion of stream interaction regions are least geomagnetically effective. Both stream interaction regions and CMEs contribute to low and moderate levels of activity with relative importance determined by their solar-cycle-dependent occurrence rates

  16. Differential staining of bacteria: acid fast stain.

    Science.gov (United States)

    Reynolds, Jackie; Moyes, Rita B; Breakwell, Donald P

    2009-11-01

    Acid-fastness is an uncommon characteristic shared by the genera Mycobacterium (Section 10A) and Nocardia. Because of this feature, this stain is extremely helpful in identification of these bacteria. Although Gram positive, acid-fast bacteria do not take the crystal violet into the wall well, appearing very light purple rather than the deep purple of normal Gram-positive bacteria. (c) 2009 by John Wiley & Sons, Inc.

  17. COMBINED MULTIPOINT REMOTE AND IN SITU OBSERVATIONS OF THE ASYMMETRIC EVOLUTION OF A FAST SOLAR CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Rollett, T.; Möstl, C.; Temmer, M.; Veronig, A. M.; Amerstorfer, U. V. [IGAM-Kanzelhöhe Observatory, Institute of Physics, University of Graz, A-8010 Graz (Austria); Frahm, R. A. [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States); Davies, J. A. [RAL Space, Rutherford Appleton Laboratory, Harwell Oxford, OX11 0QX (United Kingdom); Vršnak, B.; Žic, T. [Hvar Observatory, Faculty of Geodesy, University of Zagreb, 1000 Zagreb (Croatia); Farrugia, C. J. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States); Zhang, T. L., E-mail: tanja.rollett@gmx.at [Space Research Institute, Austrian Academy of Sciences, A-8042 Graz (Austria)

    2014-07-20

    We present an analysis of the fast coronal mass ejection (CME) of 2012  March 7, which was imaged by both STEREO spacecraft and observed in situ by MESSENGER, Venus Express, Wind, and Mars Express. Based on detected arrivals at four different positions in interplanetary space, it was possible to strongly constrain the kinematics and the shape of the ejection. Using the white-light heliospheric imagery from STEREO-A and B, we derived two different kinematical profiles for the CME by applying the novel constrained self-similar expansion method. In addition, we used a drag-based model to investigate the influence of the ambient solar wind on the CME's propagation. We found that two preceding CMEs heading in different directions disturbed the overall shape of the CME and influenced its propagation behavior. While the Venus-directed segment underwent a gradual deceleration (from ∼2700 km s{sup –1} at 15 R {sub ☉} to ∼1500 km s{sup –1} at 154 R {sub ☉}), the Earth-directed part showed an abrupt retardation below 35 R {sub ☉} (from ∼1700 to ∼900 km s{sup –1}). After that, it was propagating with a quasi-constant speed in the wake of a preceding event. Our results highlight the importance of studies concerning the unequal evolution of CMEs. Forecasting can only be improved if conditions in the solar wind are properly taken into account and if attention is also paid to large events preceding the one being studied.

  18. Determination of Geometric and Kinematical Parameters of Coronal Mass Ejections Using STEREO Data

    Science.gov (United States)

    Fainshtein, V. G.; Tsivileva, D. M.; Kashapova, L. K.

    2010-03-01

    We present a new, relatively simple and fast method to determine true geometric and kinematical CME parameters from simultaneous STEREO A, B observations of CMEs. These parameters are the three-dimensional direction of CME propagation, velocity and acceleration of CME front, CME angular sizes and front position depending on time. The method is based on the assumption that CME shape may be described by a modification of so-called ice-cream cone models. The method has been tested for several CMEs.

  19. Determination of Geometric and Kinematical Parameters of Coronal Mass Ejections Using STEREO Data

    International Nuclear Information System (INIS)

    Fainshtein, V. G.; Tsivileva, D. M.; Kashapova, L. K.

    2010-01-01

    We present a new, relatively simple and fast method to determine true geometric and kinematical CME parameters from simultaneous STEREO A, B observations of CMEs. These parameters are the three-dimensional direction of CME propagation, velocity and acceleration of CME front, CME angular sizes and front position depending on time. The method is based on the assumption that CME shape may be described by a modification of so-called ice-cream cone models. The method has been tested for several CMEs.

  20. Extreme learning machines 2013 algorithms and applications

    CERN Document Server

    Toh, Kar-Ann; Romay, Manuel; Mao, Kezhi

    2014-01-01

    In recent years, ELM has emerged as a revolutionary technique of computational intelligence, and has attracted considerable attentions. An extreme learning machine (ELM) is a single layer feed-forward neural network alike learning system, whose connections from the input layer to the hidden layer are randomly generated, while the connections from the hidden layer to the output layer are learned through linear learning methods. The outstanding merits of extreme learning machine (ELM) are its fast learning speed, trivial human intervene and high scalability.   This book contains some selected papers from the International Conference on Extreme Learning Machine 2013, which was held in Beijing China, October 15-17, 2013. This conference aims to bring together the researchers and practitioners of extreme learning machine from a variety of fields including artificial intelligence, biomedical engineering and bioinformatics, system modelling and control, and signal and image processing, to promote research and discu...

  1. Variations in morphological and life-history traits under extreme ...

    Indian Academy of Sciences (India)

    Madhsudhan

    Using half-sib analysis, we analysed the consequences of extreme rearing temperatures on ..... regression analysis and includes, in addition to an additive ..... suggestions during the course of this study. Financial assistance in the form of Fast ...

  2. Wafer-scaled monolayer WO{sub 3} windows ultra-sensitive, extremely-fast and stable UV-A photodetection

    Energy Technology Data Exchange (ETDEWEB)

    Hai, Zhenyin; Akbari, Mohammad Karbalaei [Ghent University Global Campus, Department of Applied Analytical & Physical Chemistry, Faculty of Bioscience Engineering, 119 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985 (Korea, Republic of); Xue, Chenyang [Key Laboratory of Instrumentation Science and Dynamic Measurement of Ministry of Education, North University of China, Taiyuan, Shanxi 030051 (China); Xu, Hongyan [School of Materials Science and Engineering, North University of China, Taiyuan, Shanxi 030051 (China); Hyde, Lachlan [Melbourne Centre for Nanofabrication, Clayton, Victoria 3168 (Australia); Zhuiykov, Serge, E-mail: serge.zhuiykov@ugent.be [Ghent University Global Campus, Department of Applied Analytical & Physical Chemistry, Faculty of Bioscience Engineering, 119 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985 (Korea, Republic of)

    2017-05-31

    Highlights: • Monolayer WO{sub 3}-based photodetectors were fabricated for the first time. • The device has ultrafast response time of ∼40 μs and responsivity of ∼0.329 A W{sup −1}. • The response time is 400-fold improvement over any other WO{sub 3} UV photodetectors. • The device has better characteristics than many 2D materials-based photodetectors. • This proposed strategy has great potential for commercialization of photodetectors. - Abstract: The monolayer WO{sub 3}-based UV-A photodetectors, fabricated by atomic layer deposition (ALD) technique at the large area of SiO{sub 2}/Si wafer, have demonstrated vastly improved functional capabilities: extremely fast response time of less than 40 μs and photoresponsivity reaching of ∼0.329 A W{sup −1}. Their ultrafast photoresponse time is at least 400-fold improvement over the previous reports for any other WO{sub 3}-based UV photodetectors that have ever been fabricated, and significantly faster than most of other photodetectors based on two-dimensional (2D) nanomaterials reported-to-date. Moreover, their measured long-term stability exceeds more than 200 cycles without any visible degradation. The ALD-deposited WO{sub 3} monolayer has also exhibited wider bandgap of 3.53 eV and the UV-A photodetector based on it is environmentally friendly, highly reliable, with excellent reproducibility and long-term stability. Thus, the shift to mono-layered semiconductors, which possess completely new quantum-confined effects, has the greatest potential in creating a new class of nano-materials, which in return windows new functional opportunities for various opto-electronic instruments built on semiconductor monolayer and, more importantly, can result in new strategy for fabrication highly-flexible, inexpensive and extremely-sensitive devices. This strategy also opens up the great opportunities for industrialization and commercialization of the photodetectors and other optoelectronic devices based on

  3. A New Tool for CME Arrival Time Prediction using Machine Learning Algorithms: CAT-PUMA

    Science.gov (United States)

    Liu, Jiajia; Ye, Yudong; Shen, Chenglong; Wang, Yuming; Erdélyi, Robert

    2018-03-01

    Coronal mass ejections (CMEs) are arguably the most violent eruptions in the solar system. CMEs can cause severe disturbances in interplanetary space and can even affect human activities in many aspects, causing damage to infrastructure and loss of revenue. Fast and accurate prediction of CME arrival time is vital to minimize the disruption that CMEs may cause when interacting with geospace. In this paper, we propose a new approach for partial-/full halo CME Arrival Time Prediction Using Machine learning Algorithms (CAT-PUMA). Via detailed analysis of the CME features and solar-wind parameters, we build a prediction engine taking advantage of 182 previously observed geo-effective partial-/full halo CMEs and using algorithms of the Support Vector Machine. We demonstrate that CAT-PUMA is accurate and fast. In particular, predictions made after applying CAT-PUMA to a test set unknown to the engine show a mean absolute prediction error of ∼5.9 hr within the CME arrival time, with 54% of the predictions having absolute errors less than 5.9 hr. Comparisons with other models reveal that CAT-PUMA has a more accurate prediction for 77% of the events investigated that can be carried out very quickly, i.e., within minutes of providing the necessary input parameters of a CME. A practical guide containing the CAT-PUMA engine and the source code of two examples are available in the Appendix, allowing the community to perform their own applications for prediction using CAT-PUMA.

  4. A numerical study of two interacting coronal mass ejections

    Directory of Open Access Journals (Sweden)

    J. M. Schmidt

    2004-06-01

    Full Text Available The interaction in the solar wind between two coronal mass ejections (CMEs is investigated using numerical simulations. We show that the nature of the interaction depends on whether the CME magnetic structures interact, but in all cases the result is an equilisation of the speed of the two CMEs. In the absence of magnetic interaction, the forward shock of the faster trailing CME interacts with the slow leading CME, and accelerates it. When the two CMEs have magnetic fields with the same sense of rotation, magnetic reconnection occurs between the two CMEs, leading to the formation of a single magnetic structure: in the most extreme cases, one CME "eats" the other. When the senses of rotation are opposite, reconnection does not occur, but the CMEs collide in a highly non-elastic manner, again forming a single structure. The possibility of enhanced particle acceleration in such processes is assessed. The presence of strong magnetic reconnection provides excellent opportunities for the acceleration of thermal particles, which then form a seed population for further acceleration at the CME shocks. The presence of a large population of seed particles will thus lead to an overall increase in energetic particle fluxes, as suggested by some observations.

  5. Identification of Low Coronal Sources of “Stealth” Coronal Mass Ejections Using New Image Processing Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Alzate, Nathalia; Morgan, Huw, E-mail: naa19@aber.ac.uk [Institute of Mathematics, Physics and Computer Science Prifysgol Aberystwyth Ceredigion, Cymru SY23 3BZ (United Kingdom)

    2017-05-10

    Coronal mass ejections (CMEs) are generally associated with low coronal signatures (LCSs), such as flares, filament eruptions, extreme ultraviolet (EUV) waves, or jets. A number of recent studies have reported the existence of stealth CMEs as events without LCSs, possibly due to observational limitations. Our study focuses on a set of 40 stealth CMEs identified from a study by D’Huys et al. New image processing techniques are applied to high-cadence, multi-instrument sets of images spanning the onset and propagation time of each of these CMEs to search for possible LCSs. Twenty-three of these events are identified as small, low-mass, unstructured blobs or puffs, often occurring in the aftermath of a large CME, but associated with LCSs such as small flares, jets, or filament eruptions. Of the larger CMEs, seven are associated with jets and eight with filament eruptions. Several of these filament eruptions are different from the standard model of an erupting filament/flux tube in that they are eruptions of large, faint flux tubes that seem to exist at large heights for a long time prior to their slow eruption. For two of these events, we see an eruption in Large Angle Spectrometric Coronagraph C2 images and the consequent changes at the bottom edge of the eruption in EUV images. All 40 events in our study are associated with some form of LCS. We conclude that stealth CMEs arise from observational and processing limitations.

  6. Coronal Mass Ejections: a Summary of Recent Results

    Science.gov (United States)

    Gopalswamy, Nat; Davila, J. M.

    2010-01-01

    Coronal mass ejections (CMEs) have been recognized as the most energetic phenomenon in the heliosphere, deriving their energy from the stressed magnetic fields on the Sun. This paper highlights some of the recent results on CMEs obtained from the Solar and Heliospheric Observatory (SOHO) and the Solar Terrestrial Relations Observatory (STEREO) missions. The summary of the talk follows. SOHO observations revealed that the CME rate is almost a factor of two larger than previously thought and varied with the solar activity cycle in a complex way (e.g., high-latitude CMEs occurred in great abundance during the solar maximum years). CMEs were found to interact with other CMEs as well as with other large-scale structures (coronal holes), resulting in deflections and additional particle acceleration. STEREO observations have confirmed the three-dimensional nature of CMEs and the shocks surrounding them. The EUV signatures (flare arcades, corona) dimming, filament eruption, and EUV waves) associated with CMEs have become vital in the identification of solar sources from which CMEs erupt. CMEs with speeds exceeding the characteristic speeds of the corona and the interplanetary medium drive shocks, which produce type II radio bursts. The wavelength range of type II bursts depends on the CME kinetic energy: type II bursts with emission components at all wavelengths (metric to kilometric) are due to CMEs of the highest kinetic energy. Some CMEs, as fast as 1600 km/s do not produce type II bursts, while slow CMEs (400 km/s) occasionally produce type II bursts. These observations can be explained as the variation in the ambient flow speed (solar wind) and the Alfven speed. Not all CME-driven shocks produce type II bursts because either they are subcritical or do not have the appropriate geometry. The same shocks that produce type II bursts also produce solar energetic particles (SEPs), whose release near the Sun seems to be delayed with respect to the onset of type II bursts

  7. Comparison between extreme learning machine and wavelet neural networks in data classification

    Science.gov (United States)

    Yahia, Siwar; Said, Salwa; Jemai, Olfa; Zaied, Mourad; Ben Amar, Chokri

    2017-03-01

    Extreme learning Machine is a well known learning algorithm in the field of machine learning. It's about a feed forward neural network with a single-hidden layer. It is an extremely fast learning algorithm with good generalization performance. In this paper, we aim to compare the Extreme learning Machine with wavelet neural networks, which is a very used algorithm. We have used six benchmark data sets to evaluate each technique. These datasets Including Wisconsin Breast Cancer, Glass Identification, Ionosphere, Pima Indians Diabetes, Wine Recognition and Iris Plant. Experimental results have shown that both extreme learning machine and wavelet neural networks have reached good results.

  8. Improved Extreme Learning Machine and Its Application in Image Quality Assessment

    OpenAIRE

    Mao, Li; Zhang, Lidong; Liu, Xingyang; Li, Chaofeng; Yang, Hong

    2014-01-01

    Extreme learning machine (ELM) is a new class of single-hidden layer feedforward neural network (SLFN), which is simple in theory and fast in implementation. Zong et al. propose a weighted extreme learning machine for learning data with imbalanced class distribution, which maintains the advantages from original ELM. However, the current reported ELM and its improved version are only based on the empirical risk minimization principle, which may suffer from overfitting. To solve the overfitting...

  9. Wide and Narrow CMEs and Their Source Explosions Observed at the Spring 2003 SOHO-Sun-Ulysses Quadrature

    Science.gov (United States)

    Suess, Steven; Corti, G.; Poletto, G.; Sterling, A.; Moore, R.

    2006-01-01

    magnetic explosions produce wide-angle CMEs whereas compact magnetic explosions produce narrow CMEs. The results show that quadrature observations need some luck to be successfull: that is, events must be in the plane of the sky to allow SOHO/UVCS and Ulysses to sample the same plasma. This will most easily occur in winter 2007 and winter 2008, when the quadrature geometry will allow for prolonged observations.

  10. Improved Extreme Learning Machine and Its Application in Image Quality Assessment

    Directory of Open Access Journals (Sweden)

    Li Mao

    2014-01-01

    Full Text Available Extreme learning machine (ELM is a new class of single-hidden layer feedforward neural network (SLFN, which is simple in theory and fast in implementation. Zong et al. propose a weighted extreme learning machine for learning data with imbalanced class distribution, which maintains the advantages from original ELM. However, the current reported ELM and its improved version are only based on the empirical risk minimization principle, which may suffer from overfitting. To solve the overfitting troubles, in this paper, we incorporate the structural risk minimization principle into the (weighted ELM, and propose a modified (weighted extreme learning machine (M-ELM and M-WELM. Experimental results show that our proposed M-WELM outperforms the current reported extreme learning machine algorithm in image quality assessment.

  11. [Preoperative fasting. An update].

    Science.gov (United States)

    Spies, C D; Breuer, J P; Gust, R; Wichmann, M; Adolph, M; Senkal, M; Kampa, U; Weissauer, W; Schleppers, A; Soreide, E; Martin, E; Kaisers, U; Falke, K J; Haas, N; Kox, W J

    2003-11-01

    In Germany the predominant standard of preoperative care for elective surgery is fasting after midnight, with the aim of reducing the risk of pulmonary aspiration. However, for the past several years the scientific evidence supporting such a practice has been challenged. Experimental and clinical studies prove a reliable gastric emptying within 2 h suggesting that, particularly for limited intake of clear fluids up to 2 h preoperatively, there would be no increased risk for the patient. In addition, the general incidence of pulmonary aspiration during general anaesthesia (before induction, during surgery and during recovery) is extremely low, has a good prognosis and is more a consequence of insufficient airway protection and/or inadequate anaesthetic depth rather than due to the patient's fasting state. Therefore, primarily to decrease perioperative discomfort for patients, several national anaesthesia societies have changed their guidelines for preoperative fasting. They recommend a more liberal policy regarding per os intake of both liquid and solid food, with consideration of certain conditions and contraindications. The following article reviews the literature and gives an overview of the scientific background on which the national guidelines are based. The intention of this review is to propose recommendations for preoperative fasting regarding clear fluids for Germany as well.

  12. Multistatic Array Sampling Scheme for Fast Near-Field Image Reconstruction

    Science.gov (United States)

    2016-01-01

    human-sized scene in 0.048sec− 0.101sec. Index Terms—Microwave imaging, multistatic radar, Fast Fourier Transform (FFT). I. INTRODUCTION Near-field...configuration, but its computational demands are extreme. Fast Fourier Transform (FFT) imaging has long been used to efficiently construct images sampled...with the block diagram depicted in Fig. 4. It is noted that the multistatic to monostatic correction is valid over a finite imaging domain. However, as

  13. Effects of fasting and feeding on the fast-start swimming performance of southern catfish Silurus meridionalis.

    Science.gov (United States)

    Yan, G J; He, X K; Cao, Z D; Fu, S J

    2015-01-21

    This study investigated the effects of fasting and feeding on the fast-start escape swimming performance of juvenile southern catfish Silurus meridionalis, a sit-and-wait forager that encounters extreme fasting and famine frequently during its lifespan. Ten to 30 days of fasting resulted in no significant change in most of the variables measured in the fast-start response except a 20-30% decrease in the escape distance during the first 120 ms (D 120ms ) relative to the control group (48 h after feeding). The ratio of the single-bend (SB) response (lower energetic expenditure) to the double-bend (DB) response increased significantly from 0% in the control group to 75 and 82·5% in the 20 and 30 day fasting groups, respectively. Satiated feeding (25% of body mass) resulted in a significantly lower (36·6%) maximum linear velocity (V max ) and a significantly lower (43·3%) D 120ms than in non-fed fish (control group, 48 h after feeding). Half-satiated feeding (12·5% of body mass), however, showed no significant effects on any of the measured variables of the fast-start response relative to control fish. It is suggested that the increase in the ratio of SB:DB responses with fasting in S. meridionalis may reflect a trade-off between energy conservation and maintaining high V max , while variables of fast-start performance were more sensitive to feeding than fasting might be an adaptive strategy to their foraging mode and food availability in their habitat. © 2015 The Fisheries Society of the British Isles.

  14. Extreme ultra-violet movie camera for imaging microsecond time scale magnetic reconnection

    International Nuclear Information System (INIS)

    Chai, Kil-Byoung; Bellan, Paul M.

    2013-01-01

    An ultra-fast extreme ultra-violet (EUV) movie camera has been developed for imaging magnetic reconnection in the Caltech spheromak/astrophysical jet experiment. The camera consists of a broadband Mo:Si multilayer mirror, a fast decaying YAG:Ce scintillator, a visible light block, and a high-speed visible light CCD camera. The camera can capture EUV images as fast as 3.3 × 10 6 frames per second with 0.5 cm spatial resolution. The spectral range is from 20 eV to 60 eV. EUV images reveal strong, transient, highly localized bursts of EUV radiation when magnetic reconnection occurs

  15. Extreme ultra-violet movie camera for imaging microsecond time scale magnetic reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Kil-Byoung; Bellan, Paul M. [Applied Physics, Caltech, 1200 E. California Boulevard, Pasadena, California 91125 (United States)

    2013-12-15

    An ultra-fast extreme ultra-violet (EUV) movie camera has been developed for imaging magnetic reconnection in the Caltech spheromak/astrophysical jet experiment. The camera consists of a broadband Mo:Si multilayer mirror, a fast decaying YAG:Ce scintillator, a visible light block, and a high-speed visible light CCD camera. The camera can capture EUV images as fast as 3.3 × 10{sup 6} frames per second with 0.5 cm spatial resolution. The spectral range is from 20 eV to 60 eV. EUV images reveal strong, transient, highly localized bursts of EUV radiation when magnetic reconnection occurs.

  16. McBits: fast constant-time code-based cryptography

    NARCIS (Netherlands)

    Bernstein, D.J.; Chou, T.; Schwabe, P.

    2015-01-01

    This paper presents extremely fast algorithms for code-based public-key cryptography, including full protection against timing attacks. For example, at a 2^128 security level, this paper achieves a reciprocal decryption throughput of just 60493 cycles (plus cipher cost etc.) on a single Ivy Bridge

  17. Formation of Magnetic Flux Ropes during a Confined Flaring Well before the Onset of a Pair of Major Coronal Mass Ejections

    Science.gov (United States)

    Chintzoglou, Georgios; Patsourakos, Spiros; Vourlidas, Angelos

    2015-08-01

    NOAA active region (AR) 11429 was the source of twin super-fast coronal mass ejections (CMEs). The CMEs took place within an hour from each other, with the onset of the first taking place in the beginning of 2012 March 7. This AR fulfills all the requirements for a “super active region” namely, Hale's law incompatibility and a δ-spot magnetic configuration. One of the biggest storms of Solar Cycle 24 to date ({D}{st}=-143 nT) was associated with one of these events. Magnetic flux ropes (MFRs) are twisted magnetic structures in the corona, best seen in ˜10 MK hot plasma emission and are often considered the core of erupting structures. However, their “dormant” existence in the solar atmosphere (i.e., prior to eruptions), is an open question. Aided by multi-wavelength observations by the Solar Dynamics Observatory (SDO) and by the Solar Terrestrial Relations Observatory (STEREO) and a nonlinear force-free model for the coronal magnetic field, our work uncovers two separate, weakly twisted magnetic flux systems which suggest the existence of pre-eruption MFRs that eventually became the seeds of the two CMEs. The MFRs could have been formed during confined (i.e., not leading to major CMEs) flaring and sub-flaring events which took place the day before the two CMEs in the host AR 11429.

  18. Fast-acting valve actuator

    Science.gov (United States)

    Cho, Nakwon

    1980-01-01

    A fast-acting valve actuator utilizes a spring driven pneumatically loaded piston to drive a valve gate. Rapid exhaust of pressurized gas from the pneumatically loaded side of the piston facilitates an extremely rapid piston stroke. A flexible selector diaphragm opens and closes an exhaust port in response to pressure differentials created by energizing and de-energizing a solenoid which controls the pneumatic input to the actuator as well as selectively providing a venting action to one side of the selector diaphragm.

  19. Evaluation of a fast PLC module in prospect of the LHC beam interlock system

    CERN Document Server

    Zaera-Sanz, Manuel

    2005-01-01

    The LHC Beam Interlock system requires a controller performing a simple matrix function to collect the different beam dump requests. To satisfy the expected safety level of the Interlock, the system should be robust and reliable. The PLC is a promising candidate to fulfil both aspects but too slow to meet the expected response time which is of the order of mseconds. Siemens has introduced a “so called” fast module (FM352-5 Boolean Processor) that provides independent and extremely fast control of a process within a larger control system using an onboard processor, a Field Programmable Gate Array (FPGA), to execute code in parallel which results in extremely fast scan times. It is interesting to investigate its features and to evaluate it as a possible candidate for the beam interlock system. This note publishes the results of this study. As well, this note could be useful for other applications requiring fast processing using a PLC.

  20. Validation of nonlinear FEA models of a thin-walled elbow under extreme loading conditions for Sodium-cooled Fast Reactors

    International Nuclear Information System (INIS)

    Watakabe, Tomoyoshi; Wakai, Takashi; Jin, Chuanrong; Usui, Yoshiya; Sakai, Shinkichi; Ooshika, Junji; Tsukimori, Kazuyuki

    2015-01-01

    For the purpose of confirming failure modes and safety margin, some studies on the ultimate strength of thin-walled piping components for Sodium-cooled Fast Reactors (SFRs) under extreme loading conditions such as large earthquakes have been reported these several years. Nonlinear finite element analysis has been applied in these studies to simulate buckling and yielding with large deformation, whose accuracy is dependent on the element type, the mesh size, the elasto-plastic model and so on. It is important to check the validation of a finite element model for nonlinear analysis especially under extreme loading conditions. This paper presents static and dynamic analyses of a thin-walled elbow with large deformation under large seismic loading, and discusses the validation of the FEA models comparing with experimental results. The finite element analysis models in this study are generated by shell elements for a stainless steel pipe elbow of diameter-to-thickness ratio 59:1 similar to the main pipe of SFRs, which is used for shaking table tests. At first, a static analysis is carried out for an in-plane monotonic bending test, in order to confirm that the shell element is appropriate to the large deformation analysis and the material parameters are proper for the strain level in the experiments. And then, a dynamic in-plane bending test with the maximum acceleration of 11.7G is simulated by the nonlinear FEA with stiffness-proportional damping. The influence of mesh sizes on results is investigated, to determine proper mesh sizes and reduce the computational cost. Finally, comparing the results of the FEM analyses with those of experiments, it is concluded that the appropriately generated FEA models are effective and give accurate results for nonlinear analyses of the thin-walled elbow under large seismic loading. (author)

  1. Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections

    International Nuclear Information System (INIS)

    Gosling, J.T.; McComas, D.J.; Phillips, J.L.; Bame, S.J.

    1991-01-01

    Previous work indicates that virtually all transient shock wave disturbances in the solar wind are driven by fast coronal mass ejection events (CMEs). Using a recently appreciated capability for distinguishing CMEs in solar wind data in the form of counterstreaming solar wind electron events, this paper explores the overall effectiveness of shock wave disturbances and CMEs in general in stimulating geomagnetic activity. The study is confined to the interval from mid-August 1978 through mid-October 1982, spanning the last solar activity maximum, when ISEE 3 was in orbit about the L1 Lagrange point 220 R e upstream from Earth. The authors find that all but one of the 37 largest geomagnetic storms in that era were associated with Earth passage of CMEs and/or shock disturbances, with the large majority of these storms being associated with interplanetary events where Earth encountered both a shock and the CME driving the shock (shock/CME events). Although CMEs and/or shock disturbances were increasingly the cause of geomagnetic activity as the level of geomagnetic activity increased, many smaller geomagnetic disturbances were unrelated to these events. Further, approximately half of all CMEs and half of all shock disturbances encountered by Earth did not produce any substantial geomagnetic activity as measured by the planetary geomagnetic index Kp. The geomagnetic effectiveness of Earth directed CMEs and shock wave disturbances was directly related to the flow speed, the magnetic field magnitude, and the strength of the southward (GSM) field component associated with the events. The initial speed of a CME close to the Sun appears to be the most crucial factor in determining if an earthward directed event will be effective in exciting a large geomagnetic disturbance

  2. Partial fast-to-slow conversion of regenerating rat fast-twitch muscle by chronic low-frequency stimulation.

    Science.gov (United States)

    Pette, Dirk; Sketelj, Janez; Skorjanc, Dejan; Leisner, Elmi; Traub, Irmtrud; Bajrović, Fajko

    2002-01-01

    Chronic low-frequency stimulation (CLFS) of rat fast-twitch muscles induces sequential transitions in myosin heavy chain (MHC) expression from MHCIIb --> MHCIId/x --> MHCIIa. However, the 'final' step of the fast-to-slow transition, i.e., the upregulation of MHCI, has been observed only after extremely long stimulation periods. Assuming that fibre degeneration/regeneration might be involved in the upregulation of slow myosin, we investigated the effects of CLFS on extensor digitorum longus (EDL) muscles regenerating after bupivacaine-induced fibre necrosis. Normal, non-regenerating muscles responded to both 30- and 60-day CLFS with fast MHC isoform transitions (MHCIIb --> MHCIId --> MHCIIa) and only slight increases in MHCI. CLFS of regenerating EDL muscles caused similar transitions among the fast isoforms but, in addition, caused significant increases in MHCI (to approximately 30% relative concentration). Stimulation periods of 30 and 60 days induced similar changes in the regenerating bupivacaine-treated muscles, indicating that the upregulation of slow myosin was restricted to regenerating fibres, but only during an early stage of regeneration. These results suggest that satellite cells and/or regenerating fast rat muscle fibres are capable of switching directly to a slow program under the influence of CLFS and, therefore, appear to be more malleable than adult fibres.

  3. Using the Coronal Evolution to Successfully Forward Model CMEs' In Situ Magnetic Profiles

    Science.gov (United States)

    Kay, C.; Gopalswamy, N.

    2017-12-01

    Predicting the effects of a coronal mass ejection (CME) impact requires knowing if impact will occur, which part of the CME impacts, and its magnetic properties. We explore the relation between CME deflections and rotations, which change the position and orientation of a CME, and the resulting magnetic profiles at 1 AU. For 45 STEREO-era, Earth-impacting CMEs, we determine the solar source of each CME, reconstruct its coronal position and orientation, and perform a ForeCAT (Forecasting a CME's Altered Trajectory) simulation of the coronal deflection and rotation. From the reconstructed and modeled CME deflections and rotations, we determine the solar cycle variation and correlations with CME properties. We assume no evolution between the outer corona and 1 AU and use the ForeCAT results to drive the ForeCAT In situ Data Observer (FIDO) in situ magnetic field model, allowing for comparisons with ACE and Wind observations. We do not attempt to reproduce the arrival time. On average FIDO reproduces the in situ magnetic field for each vector component with an error equivalent to 35% of the average total magnetic field strength when the total modeled magnetic field is scaled to match the average observed value. Random walk best fits distinguish between ForeCAT's ability to determine FIDO's input parameters and the limitations of the simple flux rope model. These best fits reduce the average error to 30%. The FIDO results are sensitive to changes of order a degree in the CME latitude, longitude, and tilt, suggesting that accurate space weather predictions require accurate measurements of a CME's position and orientation.

  4. Evolution of coronal mass ejections and their heliospheric imprints

    International Nuclear Information System (INIS)

    Rollett, T.

    2014-01-01

    Coronal mass ejections (CMEs) are the most powerful eruptions on the Sun and can reach speeds up to more than 3000 km/s. CMEs are the most important drivers of space weather and can cause geomagnetic storms when interacting with the Earth magnetosphere.The evolution and propagation of CMEs in interplanetary space is still not well understood. Interactions with the solar wind as well as other CMEs make accurate forecasting of arrival times difficult. The Constrained Harmonic Mean (CHM) method combines remote sensing white light data of STEREO/HI with in situ data and offers the possibility to derive kinematical profiles for any segment along the CME front to study its evolution in interplanetary space. We studied the influence of the ambient solar wind flow on the propagation behavior for three CME events. The kinematics revealed by the CHM method were compared to the simulated background solar wind. We found that CMEs are highly dependent on speed variations of the ambient medium. The CHM method was tested by analyzing a simulated CME as observed by STEREO/HI. After applying the CHM method, the resulting CME kinematics were compared to the real kinematics of the simulated CME. We found that the CHM method works best for small separation angles between the spacecraft. A case study of a fast CME that has been remotely observed by both STEREO/HI and in situ measured by four spacecraft at different heliocentric distances is also presented. Using this high number of in situ detections and the two side views we derived different speed profiles for the two different segments of the same CME causing a deformation of the overall structure of the CME. The studies presented show the effects of different influences of the ambient solar wind on the CME evolution. Interaction of CMEs with the solar wind or other CMEs lead to disturbances of the speed as well as the shape of CMEs, affecting their arrival time and their geoeffectivity. (author) [de

  5. Correlation between Space and Atmospheric March 2012 Extreme Events

    Science.gov (United States)

    Anagnostopoulos, Georgios C.

    2015-04-01

    Previous studies have provided statistical evidence of a solar cycle correlation between space weather and meteorological phenomena. In this study we present a case study, the March 2012 events, with a strong evidence of such a correlation between space and atmospheric extreme events. March 2012 phenomena, beside a great CME (March 7) and a following superstorm, has been most known in the scientific community as well as in the public from the historic heat wave in USA. This event was not anticipated by solely atmospheric models (called a "black swan event":http://www.esrl.noaa.gov/psd/csi/events/2012/marchheatwave/anticipation.html). Furthermore, various extreme phenomena as high temperatures, intense rainfalls and ice extent at middle and high latitudes followed the March 7, 2012 CME all over the globe (USA, Europe, Australia, Antartic), while unusual measurements of various atmospheric and ionospheric quantities were observed by a series of satellites (TIMED, MODIS, NOAA etc.) In this study we concentrate to (a) the unusual high maximum of temperature in north-east USA (highest values since 1910) and (b) intense winds, rainfalls and fluctuating (>1500 V/m) geolectric fields in South East Europe (Greece). These events were observed almost simultaneously with geomagnetic storms and unusual radiation belt electron precipitation (RBEP) events on days 6-9, 10-12 and 26-28.3.2012 (two CMEs and one CIR). The most striking result is the time coincidence of variations of several space and meteorological measurements, which, for instance, most probably suggests a direct influence of the RBEP on the intense rainfalls observed in Greece. It is also possible that the RBEP at polar latitudes was responsible for the positive North Atlantic Oscillation effect evaluated at those times, which contributed to the global middle and high latitude weather variations. Our study provides an example of possible space weather utility to the atmospheric models, and, therefore, to the

  6. The fast tracker processor for hadronic collider triggers

    CERN Document Server

    Annovi, A; Bardi, A; Carosi, R; Dell'Orso, Mauro; D'Onofrio, M; Giannetti, P; Iannaccone, G; Morsani, F; Pietri, M; Varotto, G

    2000-01-01

    Perspective for precise and fast track reconstruction in future hadronic collider experiments are addressed. We discuss the feasibility of a pipelined highly parallelized processor dedicated to the implementation of a very fast algorithm. The algorithm is based on the use of a large bank of pre-stored combinations of trajectory points (patterns) for extremely complex tracking systems. The CMS experiment at LHC is used as a benchmark. Tracking data from the events selected by the level-1 trigger are sorted and filtered by the Fast Tracker processor at a rate of 100 kHz. This data organization allows the level-2 trigger logic to reconstruct full resolution traces with transverse momentum above few GeV and search secondary vertexes within typical level-2 times. 15 Refs.

  7. Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms

    International Nuclear Information System (INIS)

    Liu, Hui; Tian, Hong-qi; Li, Yan-fei

    2015-01-01

    Highlights: • A hybrid architecture is proposed for the wind speed forecasting. • Four algorithms are used for the wind speed multi-scale decomposition. • The extreme learning machines are employed for the wind speed forecasting. • All the proposed hybrid models can generate the accurate results. - Abstract: Realization of accurate wind speed forecasting is important to guarantee the safety of wind power utilization. In this paper, a new hybrid forecasting architecture is proposed to realize the wind speed accurate forecasting. In this architecture, four different hybrid models are presented by combining four signal decomposing algorithms (e.g., Wavelet Decomposition/Wavelet Packet Decomposition/Empirical Mode Decomposition/Fast Ensemble Empirical Mode Decomposition) and Extreme Learning Machines. The originality of the study is to investigate the promoted percentages of the Extreme Learning Machines by those mainstream signal decomposing algorithms in the multiple step wind speed forecasting. The results of two forecasting experiments indicate that: (1) the method of Extreme Learning Machines is suitable for the wind speed forecasting; (2) by utilizing the decomposing algorithms, all the proposed hybrid algorithms have better performance than the single Extreme Learning Machines; (3) in the comparisons of the decomposing algorithms in the proposed hybrid architecture, the Fast Ensemble Empirical Mode Decomposition has the best performance in the three-step forecasting results while the Wavelet Packet Decomposition has the best performance in the one and two step forecasting results. At the same time, the Wavelet Packet Decomposition and the Fast Ensemble Empirical Mode Decomposition are better than the Wavelet Decomposition and the Empirical Mode Decomposition in all the step predictions, respectively; and (4) the proposed algorithms are effective in the wind speed accurate predictions

  8. Extremely fast vertical displacement event induced by a plasma βp collapse in high βp tokamak disruptions

    International Nuclear Information System (INIS)

    Nakamura, Yukiharu; Yoshino, Ryuji; Pomphrey, N.; Jardin, S.C.

    1996-05-01

    In a vertically elongated (κ ∼ 1.5), high β p (β p ∼ 1.7) tokamak with a resistive shell, extremely fast vertical displacement events (VDE's) induced by a model of strong β p collapse were found through computer simulations using the Tokamak Simulation Code. Although the plasma current quench, which had been shown to be the prime cause of VDE's in a relatively low β p tokamak (β p ∼ 0.2), was not observed during the VDE evolution, the observed growth rate of VDE's was almost five times (γ ∼ 655 sec -1 ) faster than the growth rate of the usual positional instability (γ ∼ 149 sec -1 ). The essential mechanism of the β p collapse-induced VDE was clarified to be the significant destabilization of positional instability due to a large and sudden degradation of the decay n-index in addition to a reduction of the stability index n s . It is pointed out that the shell-geometry characterizes the VDE dynamics, and that the VDE rate depends strongly both on the magnitude of the β p collapse and the n-index of the equilibria just before the β p collapse occurs. A new guide line for designing the fusion reactor is proposed with considering the impact of disruptions. (author)

  9. Radiation From Solar Activity | Radiation Protection | US EPA

    Science.gov (United States)

    2017-08-07

    Solar flares, coronal mass ejections (CMEs) and geomagnetic storms from the sun can send extreme bursts of ionizing radiation and magnetic energy toward Earth. Some of this energy is in the form ionizing radiation and some of the energy is magnetic energy.

  10. Fasting - the ultimate diet?

    Science.gov (United States)

    Johnstone, A M

    2007-05-01

    Adult humans often undertake acute fasts for cosmetic, religious or medical reasons. For example, an estimated 14% of US adults have reported using fasting as a means to control body weight and this approach has long been advocated as an intermittent treatment for gross refractory obesity. There are unique historical data sets on extreme forms of food restriction that give insight into the consequences of starvation or semi-starvation in previously healthy, but usually non-obese subjects. These include documented medical reports on victims of hunger strike, famine and prisoners of war. Such data provide a detailed account on how the body adapts to prolonged starvation. It has previously been shown that fasting for the biblical period of 40 days and 40 nights is well within the overall physiological capabilities of a healthy adult. However, the specific effects on the human body and mind are less clearly documented, either in the short term (hours) or in the longer term (days). This review asks the following three questions, pertinent to any weight-loss therapy, (i) how effective is the regime in achieving weight loss, (ii) what impact does it have on psychology? and finally, (iii) does it work long-term?

  11. Evaluation and application of a fast module in a PLC based interlock and control system

    International Nuclear Information System (INIS)

    Zaera-Sanz, M

    2009-01-01

    The LHC Beam Interlock system requires a controller performing a simple matrix function to collect the different beam dump requests. To satisfy the expected safety level of the Interlock, the system should be robust and reliable. The PLC is a promising candidate to fulfil both aspects but too slow to meet the expected response time which is of the order of μseconds. Siemens has introduced a 'so called' fast module (FM352-5 Boolean Processor). It provides independent and extremely fast control of a process within a larger control system using an onboard processor, a Field Programmable Gate Array (FPGA), to execute code in parallel which results in extremely fast scan times. It is interesting to investigate its features and to evaluate it as a possible candidate for the beam interlock system. This paper publishes the results of this study. As well, this paper could be useful for other applications requiring fast processing using a PLC.

  12. PROBABILITY OF CME IMPACT ON EXOPLANETS ORBITING M DWARFS AND SOLAR-LIKE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Kay, C. [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Opher, M.; Kornbleuth, M., E-mail: ckay@bu.edu [Astronomy Department, Boston University, Boston, MA 02215 (United States)

    2016-08-01

    Solar coronal mass ejections (CMEs) produce adverse space weather effects at Earth. Planets in the close habitable zone of magnetically active M dwarfs may experience more extreme space weather than at Earth, including frequent CME impacts leading to atmospheric erosion and leaving the surface exposed to extreme flare activity. Similar erosion may occur for hot Jupiters with close orbits around solar-like stars. We have developed a model, Forecasting a CME's Altered Trajectory (ForeCAT), which predicts a CME's deflection. We adapt ForeCAT to simulate CME deflections for the mid-type M dwarf V374 Peg and hot Jupiters with solar-type hosts. V374 Peg's strong magnetic fields can trap CMEs at the M dwarfs's Astrospheric Current Sheet, that is, the location of the minimum in the background magnetic field. Solar-type CMEs behave similarly, but have much smaller deflections and do not become trapped at the Astrospheric Current Sheet. The probability of planetary impact decreases with increasing inclination of the planetary orbit with respect to the Astrospheric Current Sheet: 0.5–5 CME impacts per day for M dwarf exoplanets, 0.05–0.5 CME impacts per day for solar-type hot Jupiters. We determine the minimum planetary magnetic field necessary to shield a planet's atmosphere from CME impacts. M dwarf exoplanets require values between tens and hundreds of Gauss. Hot Jupiters around a solar-type star, however, require a more reasonable <30 G. These values exceed the magnitude required to shield a planet from the stellar wind, suggesting that CMEs may be the key driver of atmospheric losses.

  13. PROBABILITY OF CME IMPACT ON EXOPLANETS ORBITING M DWARFS AND SOLAR-LIKE STARS

    International Nuclear Information System (INIS)

    Kay, C.; Opher, M.; Kornbleuth, M.

    2016-01-01

    Solar coronal mass ejections (CMEs) produce adverse space weather effects at Earth. Planets in the close habitable zone of magnetically active M dwarfs may experience more extreme space weather than at Earth, including frequent CME impacts leading to atmospheric erosion and leaving the surface exposed to extreme flare activity. Similar erosion may occur for hot Jupiters with close orbits around solar-like stars. We have developed a model, Forecasting a CME's Altered Trajectory (ForeCAT), which predicts a CME's deflection. We adapt ForeCAT to simulate CME deflections for the mid-type M dwarf V374 Peg and hot Jupiters with solar-type hosts. V374 Peg's strong magnetic fields can trap CMEs at the M dwarfs's Astrospheric Current Sheet, that is, the location of the minimum in the background magnetic field. Solar-type CMEs behave similarly, but have much smaller deflections and do not become trapped at the Astrospheric Current Sheet. The probability of planetary impact decreases with increasing inclination of the planetary orbit with respect to the Astrospheric Current Sheet: 0.5–5 CME impacts per day for M dwarf exoplanets, 0.05–0.5 CME impacts per day for solar-type hot Jupiters. We determine the minimum planetary magnetic field necessary to shield a planet's atmosphere from CME impacts. M dwarf exoplanets require values between tens and hundreds of Gauss. Hot Jupiters around a solar-type star, however, require a more reasonable <30 G. These values exceed the magnitude required to shield a planet from the stellar wind, suggesting that CMEs may be the key driver of atmospheric losses.

  14. The Drag-based Ensemble Model (DBEM) for Coronal Mass Ejection Propagation

    Science.gov (United States)

    Dumbović, Mateja; Čalogović, Jaša; Vršnak, Bojan; Temmer, Manuela; Mays, M. Leila; Veronig, Astrid; Piantschitsch, Isabell

    2018-02-01

    The drag-based model for heliospheric propagation of coronal mass ejections (CMEs) is a widely used analytical model that can predict CME arrival time and speed at a given heliospheric location. It is based on the assumption that the propagation of CMEs in interplanetary space is solely under the influence of magnetohydrodynamical drag, where CME propagation is determined based on CME initial properties as well as the properties of the ambient solar wind. We present an upgraded version, the drag-based ensemble model (DBEM), that covers ensemble modeling to produce a distribution of possible ICME arrival times and speeds. Multiple runs using uncertainty ranges for the input values can be performed in almost real-time, within a few minutes. This allows us to define the most likely ICME arrival times and speeds, quantify prediction uncertainties, and determine forecast confidence. The performance of the DBEM is evaluated and compared to that of ensemble WSA-ENLIL+Cone model (ENLIL) using the same sample of events. It is found that the mean error is ME = ‑9.7 hr, mean absolute error MAE = 14.3 hr, and root mean square error RMSE = 16.7 hr, which is somewhat higher than, but comparable to ENLIL errors (ME = ‑6.1 hr, MAE = 12.8 hr and RMSE = 14.4 hr). Overall, DBEM and ENLIL show a similar performance. Furthermore, we find that in both models fast CMEs are predicted to arrive earlier than observed, most likely owing to the physical limitations of models, but possibly also related to an overestimation of the CME initial speed for fast CMEs.

  15. Manipulation of Samples at Extreme Temperatures for Fast in-situ Synchrotron Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Richard [Materials Development, Inc., Arlington Heights, IL (United States)

    2016-04-22

    An aerodynamic sample levitation system with laser beam heating was integrated with the APS beamlines 6 ID-D, 11 ID-C and 20 BM-B. The new capability enables in-situ measurements of structure and XANES at extreme temperatures (300-3500 °C) and in conditions that completely avoid contact with container surfaces. In addition to maintaining a high degree of sample purity, the use of aerodynamic levitation enables deep supercooling and greatly enhanced glass formation from a wide variety of melts and liquids. Development and integration of controlled extreme sample environments and new measurement techniques is an important aspect of beamline operations and user support. Processing and solidifying liquids is a critical value-adding step in manufacturing semiconductors, optical materials, metals and in the operation of many energy conversion devices. Understanding structural evolution is of fundamental importance in condensed materials, geology, and biology. The new capability provides unique possibilities for materials research and helps to develop and maintain a competitive materials manufacturing and energy utilization industry. Test samples were used to demonstrate key features of the capability including experiments on hot crystalline materials, liquids at temperatures from about 500 to 3500 °C. The use of controlled atmospheres using redox gas mixtures enabled in-situ changes in the oxidation states of cations in melts. Significant innovations in this work were: (i) Use of redox gas mixtures to adjust the oxidation state of cations in-situ (ii) Operation with a fully enclosed system suitable for work with nuclear fuel materials (iii) Making high quality high energy in-situ x-ray diffraction measurements (iv) Making high quality in-situ XANES measurements (v) Publishing high impact results (vi) Developing independent funding for the research on nuclear materials This SBIR project work led to a commercial instrument product for the niche market of processing and

  16. The New HARSHAW Extremity Dosimeters for Gamma and Beta Ray Monitoring

    International Nuclear Information System (INIS)

    Fellinger, J.; Majewski, M.; Rotunda, J.; Tawi, R.

    1997-01-01

    Large personnel dosimetry services providing extremity monitoring with finger rings based on thermoluminescent detectors have long been looking for a practical method for automated reading including automated identification of the detectors.All existing methods are at least not very suitable for medical applications, particularly for surgery, due to the fact that cold sterilization is usually impossible.Bicron radiation Measurement Products developed in co-operation with the Austrian Research Centre Seibersdorf a new finger ring dosimeter DXT-RAD as a fast and economic solution for fully automated evaluation of extremity dosemeters. (authors)

  17. Shock-related radio emission during coronal mass ejection lift-off?

    OpenAIRE

    Pohjolainen, S.

    2008-01-01

    Aims: We identify the source of fast-drifting decimetric-metric radio emission that is sometimes observed prior to the so-called flare continuum emission. Fast-drift structures and continuum bursts are also observed in association with coronal mass ejections (CMEs), not only flares. Methods: We analyse radio spectral features and images acquired at radio, H-alpha, EUV, and soft X-ray wavelengths, during an event close to the solar limb on 2 June 2003. Results: The fast-drifting decimetric-met...

  18. Enabling fast charging – A battery technology gap assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.; Tanim, Tanvir; Dufek, Eric J.; Pesaran, Ahmad; Burnham, Andrew; Carlson, Richard B.; Dias, Fernando; Hardy, Keith; Keyser, Matthew; Kreuzer, Cory; Markel, Anthony; Meintz, Andrew; Michelbacher, Christopher; Mohanpurkar, Manish; Nelson, Paul A.; Robertson, David C.; Scoffield, Don; Shirk, Matthew; Stephens, Thomas; Vijayagopal, Ram; Zhang, Jiucai

    2017-11-01

    The battery technology literature is reviewed, with an emphasis on key elements that limit extreme fast charging. Key gaps in existing elements of the technology are presented as well as developmental needs. Among these needs are advanced models and methods to detect and prevent lithium plating; new positive-electrode materials which are less prone to stress-induced failure; better electrode designs to accommodate very rapid diffusion in and out of the electrode; measure temperature distributions during fast charge to enable / validate models; and develop thermal management and pack designs to accommodate the higher operating voltage.

  19. Which Bow Shock Theory, Gasdynamic or Magnetohydrodynamic, Better Explains CME Stand-off Distance Ratios from LASCO-C2 Observations ?

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Ok; Moon, Y.-J. [School of Space Research Kyung Hee University Yongin 17104 (Korea, Republic of); Lee, Jin-Yi [Department of Astronomy and Space Science Kyung Hee University Yongin 17104 (Korea, Republic of); Kim, R.-S.; Cho, K.-S. [Korea Astronomy and Space Science Institute Daejeon 34055 (Korea, Republic of)

    2017-03-20

    It is generally believed that fast coronal mass ejections (CMEs) can generate their associated shocks, which are characterized by faint structures ahead of CMEs in white-light coronagraph images. In this study, we examine whether the observational stand-off distance ratio, defined as the CME stand-off distance divided by its radius, can be explained by bow shock theories. Of 535 SOHO /LASCO CMEs (from 1996 to 2015) with speeds greater than 1000 km s{sup −1} and angular widths wider than 60°, we select 18 limb CMEs with the following conditions: (1) their Alfvénic Mach numbers are greater than one under Mann’s magnetic field and Saito’s density distributions; and (2) the shock structures ahead of the CMEs are well identified. We determine observational CME stand-off distance ratios by using brightness profiles from LASCO-C2 observations. We compare our estimates with theoretical stand-off distance ratios from gasdynamic (GD) and magnetohydrodynamic (MHD) theories. The main results are as follows. Under the GD theory, 39% (7/18) of the CMEs are explained in the acceptable ranges of adiabatic gamma ( γ ) and CME geometry. Under the MHD theory, all the events are well explained when we consider quasi-parallel MHD shocks with γ = 5/3. When we use polarized brightness (pB) measurements for coronal density distributions, we also find similar results: 8% (1/12) under GD theory and 100% (12/12) under MHD theory. Our results demonstrate that the bow shock relationships based on MHD theory are more suitable than those based on GD theory for analyzing CME-driven shock signatures.

  20. Analysis of EIT/LASCO Observations Using Available MHD Models: Investigation of CME Initiation Propagation and Geoeffectiveness

    Science.gov (United States)

    Wu, S. T.

    2001-01-01

    The Sun's activity drives the variability of geospace (i.e., near-earth environment). Observations show that the ejection of plasma from the sun, called coronal mass ejections (CMEs), are the major cause of geomagnetic storms. This global-scale solar dynamical feature of coronal mass ejection was discovered almost three decades ago by the use of space-borne coronagraphs (OSO-7, Skylab/ATM and P78-1). Significant progress has been made in understanding the physical nature of the CMEs. Observations show that these global-scale CMEs have size in the order of a solar radius (approximately 6.7 x 10(exp 5) km) near the sun, and each event involves a mass of about 10(exp 15) g and an energy comparable to that of a large flare on the order of 10(exp 32) ergs. The radial propagation speeds of CMEs have a wide range from tens to thousands of kilometers per second. Thus, the transit time to near earth's environment [i.e., 1 AU (astronomical unit)] can be as fast as 40 hours to 100 hours. The typical transit time for geoeffective events is approximately 60-80 h. This paper consists of two parts: 1) A summary of the observed CMEs from Skylab to the present SOHO will be presented. Special attention will be made to SOHO/ LASCO/ EIT observations and their characteristics leading to a geoeffectiv a CME 2) The chronological development of theory and models to interpret the physical nature of this fascinating phenomenon will be reviewed. Finally, an example will be presented to illustrate the geoeffectiveness of the CMEs by using both observation and model.

  1. The fast tracker processor for hadron collider triggers

    CERN Document Server

    Annovi, A; Bardi, A; Carosi, R; Dell'Orso, Mauro; D'Onofrio, M; Giannetti, P; Iannaccone, G; Morsani, E; Pietri, M; Varotto, G

    2001-01-01

    Perspectives for precise and fast track reconstruction in future hadron collider experiments are addressed. We discuss the feasibility of a pipelined highly parallel processor dedicated to the implementation of a very fast tracking algorithm. The algorithm is based on the use of a large bank of pre-stored combinations of trajectory points, called patterns, for extremely complex tracking systems. The CMS experiment at LHC is used as a benchmark. Tracking data from the events selected by the level-1 trigger are sorted and filtered by the Fast Tracker processor at an input rate of 100 kHz. This data organization allows the level-2 trigger logic to reconstruct full resolution tracks with transverse momentum above a few GeV and search for secondary vertices within typical level-2 times. (15 refs).

  2. Fast learning method for convolutional neural networks using extreme learning machine and its application to lane detection.

    Science.gov (United States)

    Kim, Jihun; Kim, Jonghong; Jang, Gil-Jin; Lee, Minho

    2017-03-01

    Deep learning has received significant attention recently as a promising solution to many problems in the area of artificial intelligence. Among several deep learning architectures, convolutional neural networks (CNNs) demonstrate superior performance when compared to other machine learning methods in the applications of object detection and recognition. We use a CNN for image enhancement and the detection of driving lanes on motorways. In general, the process of lane detection consists of edge extraction and line detection. A CNN can be used to enhance the input images before lane detection by excluding noise and obstacles that are irrelevant to the edge detection result. However, training conventional CNNs requires considerable computation and a big dataset. Therefore, we suggest a new learning algorithm for CNNs using an extreme learning machine (ELM). The ELM is a fast learning method used to calculate network weights between output and hidden layers in a single iteration and thus, can dramatically reduce learning time while producing accurate results with minimal training data. A conventional ELM can be applied to networks with a single hidden layer; as such, we propose a stacked ELM architecture in the CNN framework. Further, we modify the backpropagation algorithm to find the targets of hidden layers and effectively learn network weights while maintaining performance. Experimental results confirm that the proposed method is effective in reducing learning time and improving performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. New Software for the Fast Estimation of Population Recombination Rates (FastEPRR in the Genomic Era

    Directory of Open Access Journals (Sweden)

    Feng Gao

    2016-06-01

    Full Text Available Genetic recombination is a very important evolutionary mechanism that mixes parental haplotypes and produces new raw material for organismal evolution. As a result, information on recombination rates is critical for biological research. In this paper, we introduce a new extremely fast open-source software package (FastEPRR that uses machine learning to estimate recombination rate ρ (=4Ner from intraspecific DNA polymorphism data. When ρ>10 and the number of sampled diploid individuals is large enough (≥50, the variance of ρFastEPRR remains slightly smaller than that of ρLDhat. The new estimate ρcomb (calculated by averaging ρFastEPRR and ρLDhat has the smallest variance of all cases. When estimating ρFastEPRR, the finite-site model was employed to analyze cases with a high rate of recurrent mutations, and an additional method is proposed to consider the effect of variable recombination rates within windows. Simulations encompassing a wide range of parameters demonstrate that different evolutionary factors, such as demography and selection, may not increase the false positive rate of recombination hotspots. Overall, accuracy of FastEPRR is similar to the well-known method, LDhat, but requires far less computation time. Genetic maps for each human population (YRI, CEU, and CHB extracted from the 1000 Genomes OMNI data set were obtained in less than 3 d using just a single CPU core. The Pearson Pairwise correlation coefficient between the ρFastEPRR and ρLDhat maps is very high, ranging between 0.929 and 0.987 at a 5-Mb scale. Considering that sample sizes for these kinds of data are increasing dramatically with advances in next-generation sequencing technologies, FastEPRR (freely available at http://www.picb.ac.cn/evolgen/ is expected to become a widely used tool for establishing genetic maps and studying recombination hotspots in the population genomic era.

  4. Solar Radio Bursts and Space Weather

    Science.gov (United States)

    Gopalswamy, Natchimuthuk,

    2012-01-01

    Radio bursts from the Sun are produced by electron accelerated to relativistic energies by physical processes on the Sun such as solar flares and coronal mass ejections (CMEs). The radio bursts are thus good indicators of solar eruptions. Three types of nonthermal radio bursts are generally associated with CMEs. Type III bursts due to accelerated electrons propagating along open magnetic field lines. The electrons are thought to be accelerated at the reconnection region beneath the erupting CME, although there is another view that the electrons may be accelerated at the CME-driven shock. Type II bursts are due to electrons accelerated at the shock front. Type II bursts are also excellent indicators of solar energetic particle (SEP) events because the same shock is supposed accelerate electrons and ions. There is a hierarchical relationship between the wavelength range of type /I bursts and the CME kinetic energy. Finally, Type IV bursts are due to electrons trapped in moving or stationary structures. The low frequency stationary type IV bursts are observed occasionally in association with very fast CMEs. These bursts originate from flare loops behind the erupting CME and hence indicate tall loops. This paper presents a summary of radio bursts and their relation to CMEs and how they can be useful for space weather predictions.

  5. Connecting speeds, directions and arrival times of 22 coronal mass ejections from the sun to 1 AU

    Energy Technology Data Exchange (ETDEWEB)

    Möstl, C.; Veronig, A. M.; Rollett, T.; Temmer, M.; Peinhart, V. [Kanzelhöhe Observatory-IGAM, Institute of Physics, University of Graz (Austria); Amla, K.; Hall, J. R.; Liewer, P. C.; De Jong, E. M. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (United States); Colaninno, R. C. [Space Sciences Division, Naval Research Laboratory, Washington, DC (United States); Davies, J. A.; Harrison, R. A. [RAL Space, Harwell Oxford, Didcot (United Kingdom); Lugaz, N.; Farrugia, C. J.; Galvin, A. B. [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH (United States); Liu, Y. D. [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China); Luhmann, J. G. [Space Science Laboratory, University of California, Berkeley, CA (United States); Vršnak, B., E-mail: christian.moestl@uni-graz.at [Hvar Observatory, Faculty of Geodesy, University of Zagreb, Kačićeva 26, HR-10000, Zagreb (Croatia)

    2014-06-01

    Forecasting the in situ properties of coronal mass ejections (CMEs) from remote images is expected to strongly enhance predictions of space weather and is of general interest for studying the interaction of CMEs with planetary environments. We study the feasibility of using a single heliospheric imager (HI) instrument, imaging the solar wind density from the Sun to 1 AU, for connecting remote images to in situ observations of CMEs. We compare the predictions of speed and arrival time for 22 CMEs (in 2008-2012) to the corresponding interplanetary coronal mass ejection (ICME) parameters at in situ observatories (STEREO PLASTIC/IMPACT, Wind SWE/MFI). The list consists of front- and backsided, slow and fast CMEs (up to 2700 km s{sup –1}). We track the CMEs to 34.9 ± 7.1 deg elongation from the Sun with J maps constructed using the SATPLOT tool, resulting in prediction lead times of –26.4 ± 15.3 hr. The geometrical models we use assume different CME front shapes (fixed-Φ, harmonic mean, self-similar expansion) and constant CME speed and direction. We find no significant superiority in the predictive capability of any of the three methods. The absolute difference between predicted and observed ICME arrival times is 8.1 ± 6.3 hr (rms value of 10.9 hr). Speeds are consistent to within 284 ± 288 km s{sup –1}. Empirical corrections to the predictions enhance their performance for the arrival times to 6.1 ± 5.0 hr (rms value of 7.9 hr), and for the speeds to 53 ± 50 km s{sup –1}. These results are important for Solar Orbiter and a space weather mission positioned away from the Sun-Earth line.

  6. A modified estimation distribution algorithm based on extreme elitism.

    Science.gov (United States)

    Gao, Shujun; de Silva, Clarence W

    2016-12-01

    An existing estimation distribution algorithm (EDA) with univariate marginal Gaussian model was improved by designing and incorporating an extreme elitism selection method. This selection method highlighted the effect of a few top best solutions in the evolution and advanced EDA to form a primary evolution direction and obtain a fast convergence rate. Simultaneously, this selection can also keep the population diversity to make EDA avoid premature convergence. Then the modified EDA was tested by means of benchmark low-dimensional and high-dimensional optimization problems to illustrate the gains in using this extreme elitism selection. Besides, no-free-lunch theorem was implemented in the analysis of the effect of this new selection on EDAs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. New insights into microbial adaptation to extreme saline environments

    Directory of Open Access Journals (Sweden)

    Vauclare P.

    2014-02-01

    Full Text Available Extreme halophiles are microorganisms adapted to low water activity living at the upper salt concentration that life can tolerate. We review here recent data that specify the main factors, which determine their peculiar salt-dependent biochemistry. The data suggested that evolution proceeds by stage to modify the molecular dynamics properties of the entire proteome. Extreme halophiles therefore represent tractable models to understand how fast and to what extent microorganisms adapt to environmental changes. Halophiles are also robust organisms, capable to resist multiple stressors. Preliminary studies indicated that they have developed a cellular response specifically aimed to survive when the salt condition fluctuates. Because of these properties halophilic organisms deserve special attention in the search for traces of life on other planets.

  8. Analysis and comparison of very large metagenomes with fast clustering and functional annotation

    Directory of Open Access Journals (Sweden)

    Li Weizhong

    2009-10-01

    Full Text Available Abstract Background The remarkable advance of metagenomics presents significant new challenges in data analysis. Metagenomic datasets (metagenomes are large collections of sequencing reads from anonymous species within particular environments. Computational analyses for very large metagenomes are extremely time-consuming, and there are often many novel sequences in these metagenomes that are not fully utilized. The number of available metagenomes is rapidly increasing, so fast and efficient metagenome comparison methods are in great demand. Results The new metagenomic data analysis method Rapid Analysis of Multiple Metagenomes with a Clustering and Annotation Pipeline (RAMMCAP was developed using an ultra-fast sequence clustering algorithm, fast protein family annotation tools, and a novel statistical metagenome comparison method that employs a unique graphic interface. RAMMCAP processes extremely large datasets with only moderate computational effort. It identifies raw read clusters and protein clusters that may include novel gene families, and compares metagenomes using clusters or functional annotations calculated by RAMMCAP. In this study, RAMMCAP was applied to the two largest available metagenomic collections, the "Global Ocean Sampling" and the "Metagenomic Profiling of Nine Biomes". Conclusion RAMMCAP is a very fast method that can cluster and annotate one million metagenomic reads in only hundreds of CPU hours. It is available from http://tools.camera.calit2.net/camera/rammcap/.

  9. Radio Remote Sensing of Coronal Mass Ejections: Implications for Parker Solar Probe and Solar Orbiter

    Science.gov (United States)

    Kooi, J. E.; Thomas, N. C.; Guy, M. B., III; Spangler, S. R.

    2017-12-01

    Coronal mass ejections (CMEs) are fast-moving magnetic field structures of enhanced plasma density that play an important role in space weather. The Solar Orbiter and Parker Solar Probe will usher in a new era of in situ measurements, probing CMEs within distances of 60 and 10 solar radii, respectively. At the present, only remote-sensing techniques such as Faraday rotation can probe the plasma structure of CMEs at these distances. Faraday rotation is the change in polarization position angle of linearly polarized radiation as it propagates through a magnetized plasma (e.g. a CME) and is proportional to the path integral of the electron density and line-of-sight magnetic field. In conjunction with white-light coronagraph measurements, Faraday rotation observations have been used in recent years to determine the magnetic field strength of CMEs. We report recent results from simultaneous white-light and radio observations made of a CME in July 2015. We made radio observations using the Karl G. Jansky Very Large Array (VLA) at 1 - 2 GHz frequencies of a set of radio sources through the solar corona at heliocentric distances that ranged between 8 - 23 solar radii. These Faraday rotation observations provide a priori estimates for comparison with future in situ measurements made by the Solar Orbiter and Parker Solar Probe. Similar Faraday rotation observations made simultaneously with observations by the Solar Orbiter and Parker Solar Probe in the future could provide information about the global structure of CMEs sampled by these probes and, therefore, aid in understanding the in situ measurements.

  10. The UFFO (Ultra Fast Flash Observatory) Pathfinder: Science and Mission

    DEFF Research Database (Denmark)

    Chen, P.; Ahmad, S.; Ahn, K.

    in a more rigorous test of current internal shock models, probe the extremes of bulk Lorentz factors, provide the first early and detailed measurements of fast-rise GRB optical light curves, and help verify the prospect of GRB as a new standard candle. We will describe the science and the mission...

  11. Whole transcriptome analysis of the fasting and fed Burmese python heart: insights into extreme physiological cardiac adaptation.

    Science.gov (United States)

    Wall, Christopher E; Cozza, Steven; Riquelme, Cecilia A; McCombie, W Richard; Heimiller, Joseph K; Marr, Thomas G; Leinwand, Leslie A

    2011-01-01

    The infrequently feeding Burmese python (Python molurus) experiences significant and rapid postprandial cardiac hypertrophy followed by regression as digestion is completed. To begin to explore the molecular mechanisms of this response, we have sequenced and assembled the fasted and postfed Burmese python heart transcriptomes with Illumina technology using the chicken (Gallus gallus) genome as a reference. In addition, we have used RNA-seq analysis to identify differences in the expression of biological processes and signaling pathways between fasted, 1 day postfed (DPF), and 3 DPF hearts. Out of a combined transcriptome of ∼2,800 mRNAs, 464 genes were differentially expressed. Genes showing differential expression at 1 DPF compared with fasted were enriched for biological processes involved in metabolism and energetics, while genes showing differential expression at 3 DPF compared with fasted were enriched for processes involved in biogenesis, structural remodeling, and organization. Moreover, we present evidence for the activation of physiological and not pathological signaling pathways in this rapid, novel model of cardiac growth in pythons. Together, our data provide the first comprehensive gene expression profile for a reptile heart.

  12. The CME Flare Arcade and the Width of the CME in the Outer Corona

    Science.gov (United States)

    Moore, Ron; Falconer, David; Sterling, Alphonse

    2008-01-01

    Moore, Sterling, & Suess (2007, ApJ, 668, 1221) present evidence that (1) a CME is typically a magnetic bubble, a low-beta gplasmoid with legs h having roughly the 3D shape of a light bulb, and (2) in the outer corona the CME plasmoid is in lateral pressure equilibrium with the ambient magnetic field. They present three CMEs observed by SOHO/LASCO, each from a very different source located near the limb. One of these CMEs came from a compact ejective eruption from a small part of a sunspot active region, another came from a large quiet-region filament eruption, and the third CME, an extremely large and fast one, was produced in tandem with an X20 flare arcade that was centered on a huge delta sunspot. Each of these CMEs had more or less the classic lightbulb silhouette and attained a constant heliocentric angular width in the outer corona. This indicates that the CME plasmoid attained lateral magnetic pressure balance with the ambient radial magnetic field in the outer corona. This lateral pressure balance, together with the standard scenario for CME production by the eruption of a sheared-core magnetic arcade, yields the following simple estimate of the strength B(sub Flare) of the magnetic field in the flare arcade produced together with the CME: B(sub Flare) 1.4(theta CME/theta Flare)sup 2 G, where theta (sub CME) is the heliocentric angular width of the CME plasmoid in the outer corona and theta (sub Flare) is the heliocentric angular width of the full-grown flare arcade. Conversely, theta (sub CME) approximately equal to (R(sub Sun)sup -1(phi(sub Flare)/1.4)sup 1/2 radians, where Flare is the magnetic flux covered by the full-grown flare arcade. In addition to presenting the three CMEs of Moore, Sterling, & Suess (2007) and their agreement with this relation between CME and Flare, we present a further empirical test of this relation. For CMEs that erupt from active regions, the co-produced flare arcade seldom if ever covers the entire active region: if AR is

  13. Rapid adaptation of microalgae to bodies of water with extreme pollution from uranium mining: An explanation of how mesophilic organisms can rapidly colonise extremely toxic environments

    Energy Technology Data Exchange (ETDEWEB)

    García-Balboa, C.; Baselga-Cervera, B. [Genetica, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid (Spain); García-Sanchez, A.; Igual, J.M. [Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), PO Box 257, 37071 Salamanca (Spain); Lopez-Rodas, V. [Genetica, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid (Spain); Costas, E., E-mail: ecostas@vet.ucm.es [Genetica, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2013-11-15

    Highlights: •Some microalgae species survive to extreme environments in ponds of residual waters from uranium mining. •Adaptation of microalgae to U arose very fast. •Spontaneous mutations that confer large adaptive value were able to produce the adaptation to residual waters of U mining. •Adaptation to more extreme waters of U mining is only possible after the recombination subsequent to sexual mating. •Resistant microalgae bio-adsorbs uranium to the cell wall and internalises uranium inside the cytoplasm. -- Abstract: Extreme environments may support communities of microalgae living at the limits of their tolerance. It is usually assumed that these extreme environments are inhabited by extremophile species. However, global anthropogenic environmental changes are generating new extreme environments, such as mining-effluent pools of residual waters from uranium mining with high U levels, acidity and radioactivity in Salamanca (Spain). Certain microalgal species have rapidly adapted to these extreme waters (uranium mining in this area began in 1960). Experiments have demonstrated that physiological acclimatisation would be unable to achieve adaptation. In contrast, rapid genetic adaptation was observed in waters ostensibly lethal to microalgae by means of rare spontaneous mutations that occurred prior to the exposure to effluent waters from uranium mining. However, adaptation to the most extreme conditions was only possible after recombination through sexual mating because adaptation requires more than one mutation. Microalgae living in extreme environments could be the descendants of pre-selective mutants that confer significant adaptive value to extreme contamination. These “lucky mutants” could allow for the evolutionary rescue of populations faced with rapid environmental change.

  14. Rapid adaptation of microalgae to bodies of water with extreme pollution from uranium mining: An explanation of how mesophilic organisms can rapidly colonise extremely toxic environments

    International Nuclear Information System (INIS)

    García-Balboa, C.; Baselga-Cervera, B.; García-Sanchez, A.; Igual, J.M.; Lopez-Rodas, V.; Costas, E.

    2013-01-01

    Highlights: •Some microalgae species survive to extreme environments in ponds of residual waters from uranium mining. •Adaptation of microalgae to U arose very fast. •Spontaneous mutations that confer large adaptive value were able to produce the adaptation to residual waters of U mining. •Adaptation to more extreme waters of U mining is only possible after the recombination subsequent to sexual mating. •Resistant microalgae bio-adsorbs uranium to the cell wall and internalises uranium inside the cytoplasm. -- Abstract: Extreme environments may support communities of microalgae living at the limits of their tolerance. It is usually assumed that these extreme environments are inhabited by extremophile species. However, global anthropogenic environmental changes are generating new extreme environments, such as mining-effluent pools of residual waters from uranium mining with high U levels, acidity and radioactivity in Salamanca (Spain). Certain microalgal species have rapidly adapted to these extreme waters (uranium mining in this area began in 1960). Experiments have demonstrated that physiological acclimatisation would be unable to achieve adaptation. In contrast, rapid genetic adaptation was observed in waters ostensibly lethal to microalgae by means of rare spontaneous mutations that occurred prior to the exposure to effluent waters from uranium mining. However, adaptation to the most extreme conditions was only possible after recombination through sexual mating because adaptation requires more than one mutation. Microalgae living in extreme environments could be the descendants of pre-selective mutants that confer significant adaptive value to extreme contamination. These “lucky mutants” could allow for the evolutionary rescue of populations faced with rapid environmental change

  15. Feasibility of the Precise Energy Calibration for Fast Neutron Spectrometers

    Science.gov (United States)

    Gaganov, V. V.; Usenko, P. L.; Kryzhanovskaja, M. A.

    2017-12-01

    Computational studies aimed at improving the accuracy of measurements performed using neutron generators with a tritium target were performed. A measurement design yielding an extremely narrow peak in the energy spectrum of DT neutrons was found. The presence of such a peak establishes the conditions for precise energy calibration of fast-neutron spectrometers.

  16. Solar flare impulsivity and its relationship with white-light flares and with CMEs

    Science.gov (United States)

    Watanabe, K.; Masuda, S.

    2017-12-01

    There are many types of classification in solar flares. One of them is a classification by flare duration in soft X-rays; so-called impulsive flare and long duration event (LDE). Typically, the duration of an impulsive flare is shorter than 1 hour, and that of an LDE is longer than 1 hour. These two types of flare show different characteristics. In soft X-rays, impulsive flares usually have a compact loop structure. On the other hand, LDEs show a large-scale loop, sometimes a large arcade structure. In hard X-rays (HXRs), the difference appears clear, too. The former shows a strong and short-time (10 minutes) emissions and show a large coronal source. These facts suggest that HXR observation becomes one of a good indicator to classify solar flares, especially for the study on the particle acceleration and the related phenomena. However, HXR data do not always exist due to the satellite orbit and the small sensitivity of HXR instruments. So, in this study, based on the concept of the Neupert effect (Neupert, 1968), we use soft X-ray derivative data as the proxy of HXR. From this data, we define impulsivity (IP) for each flare. Then we investigate solar flares using this new index. First we apply IP index to white-light flare (WLF) research. We investigate how WL enhancement depends on IP, then it is found that WLF tend to have large IP values. So the flare impulsivity (IP) is one of the important factors if WL enhancement appears or not in a solar flare. Next we investigate how CME itself and/or its physical parameters depend on IP index. It has been believed that most of CMEs are associated with LDEs, but we found that there is only a weak correlation between the existence of CME and IP index. Finally, we also search for the relationship between WLF and CME as a function of IP and discuss the physical condition of WLF.

  17. Telescience - Concepts and contributions to the Extreme Ultraviolet Explorer mission

    Science.gov (United States)

    Marchant, Will; Dobson, Carl; Chakrabarti, Supriya; Malina, Roger F.

    1987-01-01

    It is shown how the contradictory goals of low-cost and fast data turnaround characterizing the Extreme Ultraviolet Explorer (EUVE) mission can be achieved via the early use of telescience style transparent tools and simulations. The use of transparent tools reduces the parallel development of capability while ensuring that valuable prelaunch experience is not lost in the operations phase. Efforts made to upgrade the 'EUVE electronics' simulator are described.

  18. Frequency and Attitudes to Fast Food Consumption in Yasuj, Southwestern Iran

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Amin Rezaei

    2017-06-01

    Full Text Available Background: Nowadays, fast food consumption has increased dramatically in different societies leading to many diseases such as heart disease, diabetes, hypertension and other chronic diseases. This study aimed to investigate the frequency and attitude toward consumption of fast foods. Methods: Totally, 540 subjects aged 18-45 years old from Yasuj, southwestern Iran who referred to health centers were randomly enrolled. A questionnaire was used to collect demographic information and the attitude toward fast food consumption. Results: Totally, 304 (56.3% male and 236 (43.7% female were included. The consumption of fast food was 3 times per week among 23.5% of participants, 1-2 times per week in 45.6% of people, less than once a week in 28.4% of subjects and 2.2% never had fast food experience. 79.7% of consumers cited good taste as the main reason for consumption, 59.6% and 14.4% of them reported fast preparation and advertisement, respectively. Students and singles ate fast food more than others, 84.7% of fast food consumers used carbonated beverages with their fast food and 63.7% of them had fast foods as dinner. Conclusion: Fast food consumption has been extremely high and particularly more among students and youths in Yasuj that can be an alarm for health providers,. Therefore, providing the necessary education and training can promote awareness for the side effects of fast food consumption in the society.

  19. Structural extremes in a cretaceous dinosaur.

    Directory of Open Access Journals (Sweden)

    Paul C Sereno

    Full Text Available Fossils of the Early Cretaceous dinosaur, Nigersaurus taqueti, document for the first time the cranial anatomy of a rebbachisaurid sauropod. Its extreme adaptations for herbivory at ground-level challenge current hypotheses regarding feeding function and feeding strategy among diplodocoids, the larger clade of sauropods that includes Nigersaurus. We used high resolution computed tomography, stereolithography, and standard molding and casting techniques to reassemble the extremely fragile skull. Computed tomography also allowed us to render the first endocast for a sauropod preserving portions of the olfactory bulbs, cerebrum and inner ear, the latter permitting us to establish habitual head posture. To elucidate evidence of tooth wear and tooth replacement rate, we used photographic-casting techniques and crown thin sections, respectively. To reconstruct its 9-meter postcranial skeleton, we combined and size-adjusted multiple partial skeletons. Finally, we used maximum parsimony algorithms on character data to obtain the best estimate of phylogenetic relationships among diplodocoid sauropods. Nigersaurus taqueti shows extreme adaptations for a dinosaurian herbivore including a skull of extremely light construction, tooth batteries located at the distal end of the jaws, tooth replacement as fast as one per month, an expanded muzzle that faces directly toward the ground, and hollow presacral vertebral centra with more air sac space than bone by volume. A cranial endocast provides the first reasonably complete view of a sauropod brain including its small olfactory bulbs and cerebrum. Skeletal and dental evidence suggests that Nigersaurus was a ground-level herbivore that gathered and sliced relatively soft vegetation, the culmination of a low-browsing feeding strategy first established among diplodocoids during the Jurassic.

  20. Extreme Ultraviolet Imaging of Electron Heated Targets in Petawatt Laser Experiments

    International Nuclear Information System (INIS)

    Ma, T.; MacPhee, A.; Key, M.; Akli, K.; Mackinnon, A.; Chen, C.; Barbee, T.; Freeman, R.; King, J.; Link, A.; Offermann, D.; Ovchinnikov, V.; Patel, P.; Stephens, R.; VanWoerkom, L.; Zhang, B.; Beg, F.

    2007-01-01

    The study of the transport of electrons, and the flow of energy into a solid target or dense plasma, is instrumental in the development of fast ignition inertial confinement fusion. An extreme ultraviolet (XUV) imaging diagnostic at 256 eV and 68 eV provides information about heating and energy deposition within petawatt laser-irradiated targets. XUV images of several irradiated solid targets are presented

  1. fastBMA: scalable network inference and transitive reduction.

    Science.gov (United States)

    Hung, Ling-Hong; Shi, Kaiyuan; Wu, Migao; Young, William Chad; Raftery, Adrian E; Yeung, Ka Yee

    2017-10-01

    Inferring genetic networks from genome-wide expression data is extremely demanding computationally. We have developed fastBMA, a distributed, parallel, and scalable implementation of Bayesian model averaging (BMA) for this purpose. fastBMA also includes a computationally efficient module for eliminating redundant indirect edges in the network by mapping the transitive reduction to an easily solved shortest-path problem. We evaluated the performance of fastBMA on synthetic data and experimental genome-wide time series yeast and human datasets. When using a single CPU core, fastBMA is up to 100 times faster than the next fastest method, LASSO, with increased accuracy. It is a memory-efficient, parallel, and distributed application that scales to human genome-wide expression data. A 10 000-gene regulation network can be obtained in a matter of hours using a 32-core cloud cluster (2 nodes of 16 cores). fastBMA is a significant improvement over its predecessor ScanBMA. It is more accurate and orders of magnitude faster than other fast network inference methods such as the 1 based on LASSO. The improved scalability allows it to calculate networks from genome scale data in a reasonable time frame. The transitive reduction method can improve accuracy in denser networks. fastBMA is available as code (M.I.T. license) from GitHub (https://github.com/lhhunghimself/fastBMA), as part of the updated networkBMA Bioconductor package (https://www.bioconductor.org/packages/release/bioc/html/networkBMA.html) and as ready-to-deploy Docker images (https://hub.docker.com/r/biodepot/fastbma/). © The Authors 2017. Published by Oxford University Press.

  2. Microwave tomography for functional imaging of extremity soft tissues: feasibility assessment

    International Nuclear Information System (INIS)

    Semenov, Serguei; Kellam, James; Althausen, Peter; Williams, Thomas; Abubakar, Aria; Bulyshev, Alexander; Sizov, Yuri

    2007-01-01

    It is important to assess the viability of extremity soft tissues, as this component is often the determinant of the final outcome of fracture treatment. Microwave tomography (MWT) and sensing might be able to provide a fast and mobile assessment of such properties. MWT imaging of extremities possesses a complicated, nonlinear, high dielectric contrast inverse problem of diffraction tomography. There is a high dielectric contrast between bone and soft tissue in the extremities. A contrast between soft tissue abnormalities is less pronounced when compared with the high bone-soft tissue contrast. The goal of this study was to assess the feasibility of MWT for functional imaging of extremity soft tissues, i.e. to detect a relatively small contrast within soft tissues in closer proximity to high contrast boney areas. Both experimental studies and computer simulation were performed. Experiments were conducted using live pigs with compromised blood flow and compartment syndrome within an extremity. A whole 2D tomographic imaging cycle at 1 GHz was computer simulated and images were reconstructed using the Newton, MR-CSI and modified Born methods. Results of experimental studies demonstrate that microwave technology is sensitive to changes in the soft tissue blood content and elevated compartment pressure. It was demonstrated that MWT is feasible for functional imaging of extremity soft tissues, circulatory-related changes, blood flow and elevated compartment pressure

  3. Evaluation of a morphing based method to estimate muscle attachment sites of the lower extremity

    NARCIS (Netherlands)

    Pellikaan, P.; van der Krogt, Marjolein; Carbone, Vincenzo; Fluit, René; Vigneron, L.M.; van Deun, J.; Verdonschot, Nicolaas Jacobus Joseph; Koopman, Hubertus F.J.M.

    2014-01-01

    To generate subject-specific musculoskeletal models for clinical use, the location of muscle attachment sites needs to be estimated with accurate, fast and preferably automated tools. For this purpose, an automatic method was used to estimate the muscle attachment sites of the lower extremity, based

  4. High-Energy Solar Particle Events in Cycle 24

    Science.gov (United States)

    Gopalswamy, N.; Makela, P.; Yashiro, S.; Xie, H.; Akiyama, S.; Thakur, N.

    2015-01-01

    The Sun is already in the declining phase of cycle 24, but the paucity of high-energy solar energetic particle (SEP) events continues with only two ground level enhancement (GLE) events as of March 31, 2015. In an attempt to understand this, we considered all the large SEP events of cycle 24 that occurred until the end of 2014. We compared the properties of the associated CMEs with those in cycle 23. We found that the CME speeds in the sky plane were similar, but almost all those cycle-24 CMEs were halos. A significant fraction of (16%) of the frontside SEP events were associated with eruptive prominence events. CMEs associated with filament eruption events accelerate slowly and attain peak speeds beyond the typical GLE release heights. When we considered only western hemispheric events that had good connectivity to the CME nose, there were only 8 events that could be considered as GLE candidates. One turned out to be the first GLE event of cycle 24 (2012 May 17). In two events, the CMEs were very fast (>2000 km/s) but they were launched into a tenuous medium (high Alfven speed). In the remaining five events, the speeds were well below the typical GLE CME speed (2000 km/s). Furthermore, the CMEs attained their peak speeds beyond the typical heights where GLE particles are released. We conclude that several factors contribute to the low rate of high-energy SEP events in cycle 24: (i) reduced efficiency of shock acceleration (weak heliospheric magnetic field), (ii) poor latitudinal and longitudinal connectivity), and (iii) variation in local ambient conditions (e.g., high Alfven speed).

  5. FAST-PT: a novel algorithm to calculate convolution integrals in cosmological perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    McEwen, Joseph E.; Fang, Xiao; Hirata, Christopher M.; Blazek, Jonathan A., E-mail: mcewen.24@osu.edu, E-mail: fang.307@osu.edu, E-mail: hirata.10@osu.edu, E-mail: blazek@berkeley.edu [Center for Cosmology and AstroParticle Physics, Department of Physics, The Ohio State University, 191 W Woodruff Ave, Columbus OH 43210 (United States)

    2016-09-01

    We present a novel algorithm, FAST-PT, for performing convolution or mode-coupling integrals that appear in nonlinear cosmological perturbation theory. The algorithm uses several properties of gravitational structure formation—the locality of the dark matter equations and the scale invariance of the problem—as well as Fast Fourier Transforms to describe the input power spectrum as a superposition of power laws. This yields extremely fast performance, enabling mode-coupling integral computations fast enough to embed in Monte Carlo Markov Chain parameter estimation. We describe the algorithm and demonstrate its application to calculating nonlinear corrections to the matter power spectrum, including one-loop standard perturbation theory and the renormalization group approach. We also describe our public code (in Python) to implement this algorithm. The code, along with a user manual and example implementations, is available at https://github.com/JoeMcEwen/FAST-PT.

  6. ESTABLISHING A STEREOSCOPIC TECHNIQUE FOR DETERMINING THE KINEMATIC PROPERTIES OF SOLAR WIND TRANSIENTS BASED ON A GENERALIZED SELF-SIMILARLY EXPANDING CIRCULAR GEOMETRY

    International Nuclear Information System (INIS)

    Davies, J. A.; Perry, C. H.; Harrison, R. A.; Trines, R. M. G. M.; Lugaz, N.; Möstl, C.; Liu, Y. D.; Steed, K.

    2013-01-01

    The twin-spacecraft STEREO mission has enabled simultaneous white-light imaging of the solar corona and inner heliosphere from multiple vantage points. This has led to the development of numerous stereoscopic techniques to investigate the three-dimensional structure and kinematics of solar wind transients such as coronal mass ejections (CMEs). Two such methods—triangulation and the tangent to a sphere—can be used to determine time profiles of the propagation direction and radial distance (and thereby radial speed) of a solar wind transient as it travels through the inner heliosphere, based on its time-elongation profile viewed by two observers. These techniques are founded on the assumption that the transient can be characterized as a point source (fixed φ, FP, approximation) or a circle attached to Sun-center (harmonic mean, HM, approximation), respectively. These geometries constitute extreme descriptions of solar wind transients, in terms of their cross-sectional extent. Here, we present the stereoscopic expressions necessary to derive propagation direction and radial distance/speed profiles of such transients based on the more generalized self-similar expansion (SSE) geometry, for which the FP and HM geometries form the limiting cases; our implementation of these equations is termed the stereoscopic SSE method. We apply the technique to two Earth-directed CMEs from different phases of the STEREO mission, the well-studied event of 2008 December and a more recent event from 2012 March. The latter CME was fast, with an initial speed exceeding 2000 km s –1 , and highly geoeffective, in stark contrast to the slow and ineffectual 2008 December CME

  7. Perception, Action, and Cognition of Football Referees in Extreme Temperatures: Impact on Decision Performance

    Science.gov (United States)

    Gaoua, Nadia; de Oliveira, Rita F.; Hunter, Steve

    2017-01-01

    Different professional domains require high levels of physical performance alongside fast and accurate decision-making. Construction workers, police officers, firefighters, elite sports men and women, the military and emergency medical professionals are often exposed to hostile environments with limited options for behavioral coping strategies. In this (mini) review we use football refereeing as an example to discuss the combined effect of intense physical activity and extreme temperatures on decision-making and suggest an explicative model. In professional football competitions can be played in temperatures ranging from -5°C in Norway to 30°C in Spain for example. Despite these conditions, the referee’s responsibility is to consistently apply the laws fairly and uniformly, and to ensure the rules are followed without waning or adversely influencing the competitiveness of the play. However, strenuous exercise in extreme environments imposes increased physiological and psychological stress that can affect decision-making. Therefore, the physical exertion required to follow the game and the thermal strain from the extreme temperatures may hinder the ability of referees to make fast and accurate decisions. Here, we review literature on the physical and cognitive requirements of football refereeing and how extreme temperatures may affect referees’ decisions. Research suggests that both hot and cold environments have a negative impact on decision-making but data specific to decision-making is still lacking. A theoretical model of decision-making under the constraint of intense physical activity and thermal stress is suggested. Future naturalistic studies are needed to validate this model and provide clear recommendations for mitigating strategies. PMID:28912742

  8. Perception, Action, and Cognition of Football Referees in Extreme Temperatures: Impact on Decision Performance

    Directory of Open Access Journals (Sweden)

    Nadia Gaoua

    2017-08-01

    Full Text Available Different professional domains require high levels of physical performance alongside fast and accurate decision-making. Construction workers, police officers, firefighters, elite sports men and women, the military and emergency medical professionals are often exposed to hostile environments with limited options for behavioral coping strategies. In this (mini review we use football refereeing as an example to discuss the combined effect of intense physical activity and extreme temperatures on decision-making and suggest an explicative model. In professional football competitions can be played in temperatures ranging from -5°C in Norway to 30°C in Spain for example. Despite these conditions, the referee’s responsibility is to consistently apply the laws fairly and uniformly, and to ensure the rules are followed without waning or adversely influencing the competitiveness of the play. However, strenuous exercise in extreme environments imposes increased physiological and psychological stress that can affect decision-making. Therefore, the physical exertion required to follow the game and the thermal strain from the extreme temperatures may hinder the ability of referees to make fast and accurate decisions. Here, we review literature on the physical and cognitive requirements of football refereeing and how extreme temperatures may affect referees’ decisions. Research suggests that both hot and cold environments have a negative impact on decision-making but data specific to decision-making is still lacking. A theoretical model of decision-making under the constraint of intense physical activity and thermal stress is suggested. Future naturalistic studies are needed to validate this model and provide clear recommendations for mitigating strategies.

  9. Perception, Action, and Cognition of Football Referees in Extreme Temperatures: Impact on Decision Performance.

    Science.gov (United States)

    Gaoua, Nadia; de Oliveira, Rita F; Hunter, Steve

    2017-01-01

    Different professional domains require high levels of physical performance alongside fast and accurate decision-making. Construction workers, police officers, firefighters, elite sports men and women, the military and emergency medical professionals are often exposed to hostile environments with limited options for behavioral coping strategies. In this (mini) review we use football refereeing as an example to discuss the combined effect of intense physical activity and extreme temperatures on decision-making and suggest an explicative model. In professional football competitions can be played in temperatures ranging from -5°C in Norway to 30°C in Spain for example. Despite these conditions, the referee's responsibility is to consistently apply the laws fairly and uniformly, and to ensure the rules are followed without waning or adversely influencing the competitiveness of the play. However, strenuous exercise in extreme environments imposes increased physiological and psychological stress that can affect decision-making. Therefore, the physical exertion required to follow the game and the thermal strain from the extreme temperatures may hinder the ability of referees to make fast and accurate decisions. Here, we review literature on the physical and cognitive requirements of football refereeing and how extreme temperatures may affect referees' decisions. Research suggests that both hot and cold environments have a negative impact on decision-making but data specific to decision-making is still lacking. A theoretical model of decision-making under the constraint of intense physical activity and thermal stress is suggested. Future naturalistic studies are needed to validate this model and provide clear recommendations for mitigating strategies.

  10. ARE DECAYING MAGNETIC FIELDS ABOVE ACTIVE REGIONS RELATED TO CORONAL MASS EJECTION ONSET?

    International Nuclear Information System (INIS)

    Suzuki, J.; Welsch, B. T.; Li, Y.

    2012-01-01

    Coronal mass ejections (CMEs) are powered by magnetic energy stored in non-potential (current-carrying) coronal magnetic fields, with the pre-CME field in balance between outward magnetic pressure of the proto-ejecta and inward magnetic tension from overlying fields that confine the proto-ejecta. In studies of global potential (current-free) models of coronal magnetic fields—Potential Field Source Surface (PFSS) models—it has been reported that model field strengths above flare sites tend to be weaker when CMEs occur than when eruptions fail to occur. This suggests that potential field models might be useful to quantify magnetic confinement. One straightforward implication of this idea is that a decrease in model field strength overlying a possible eruption site should correspond to diminished confinement, implying an eruption is more likely. We have searched for such an effect by post facto investigation of the time evolution of model field strengths above a sample of 10 eruption sites. To check if the strengths of overlying fields were relevant only in relatively slow CMEs, we included both slow and fast CMEs in our sample. In most events we study, we find no statistically significant evolution in either (1) the rate of magnetic field decay with height, (2) the strength of overlying magnetic fields near 50 Mm, or (3) the ratio of fluxes at low and high altitudes (below 1.1 R ☉ , and between 1.1 and 1.5 R ☉ , respectively). We did observe a tendency for overlying field strengths and overlying flux to increase slightly, and their rates of decay with height to become slightly more gradual, consistent with increased confinement. The fact that CMEs occur regardless of whether the parameters we use to quantify confinement are increasing or decreasing suggests that either (1) the parameters that we derive from PFSS models do not accurately characterize the actual large-scale field in CME source regions, (2) systematic evolution in the large-scale magnetic

  11. Detection-Guided Fast Affine Projection Channel Estimator for Speech Applications

    Directory of Open Access Journals (Sweden)

    Yan Wu Jennifer

    2007-04-01

    Full Text Available In various adaptive estimation applications, such as acoustic echo cancellation within teleconferencing systems, the input signal is a highly correlated speech. This, in general, leads to extremely slow convergence of the NLMS adaptive FIR estimator. As a result, for such applications, the affine projection algorithm (APA or the low-complexity version, the fast affine projection (FAP algorithm, is commonly employed instead of the NLMS algorithm. In such applications, the signal propagation channel may have a relatively low-dimensional impulse response structure, that is, the number m of active or significant taps within the (discrete-time modelled channel impulse response is much less than the overall tap length n of the channel impulse response. For such cases, we investigate the inclusion of an active-parameter detection-guided concept within the fast affine projection FIR channel estimator. Simulation results indicate that the proposed detection-guided fast affine projection channel estimator has improved convergence speed and has lead to better steady-state performance than the standard fast affine projection channel estimator, especially in the important case of highly correlated speech input signals.

  12. LARGE SOLAR ENERGETIC PARTICLE EVENTS ASSOCIATED WITH FILAMENT ERUPTIONS OUTSIDE ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Gopalswamy, N.; Mäkelä, P.; Akiyama, S.; Yashiro, S.; Xie, H.; Thakur, N. [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kahler, S. W., E-mail: nat.gopalswamy@nasa.gov [Air Force Research Laboratory, Albuquerque, NM 87117 (United States)

    2015-06-10

    We report on four large filament eruptions (FEs) from solar cycles 23 and 24 that were associated with large solar energetic particle (SEP) events and interplanetary type II radio bursts. The post-eruption arcades corresponded mostly to C-class soft X-ray enhancements, but an M1.0 flare was associated with one event. However, the associated coronal mass ejections (CMEs) were fast (speeds ∼ 1000 km s{sup −1}) and appeared as halo CMEs in the coronagraph field of view. The interplanetary type II radio bursts occurred over a wide wavelength range, indicating the existence of strong shocks throughout the inner heliosphere. No metric type II bursts were present in three events, indicating that the shocks formed beyond 2–3 Rs. In one case, there was a metric type II burst with low starting frequency, indicating a shock formation height of ∼2 Rs. The FE-associated SEP events did have softer spectra (spectral index >4) in the 10–100 MeV range, but there were other low-intensity SEP events with spectral indices ≥4. Some of these events are likely FE-SEP events, but were not classified as such in the literature because they occurred close to active regions. Some were definitely associated with large active region flares, but the shock formation height was large. We definitely find a diminished role for flares and complex type III burst durations in these large SEP events. Fast CMEs and shock formation at larger distances from the Sun seem to be the primary characteristics of the FE-associated SEP events.

  13. A fast, preconditioned conjugate gradient Toeplitz solver

    Science.gov (United States)

    Pan, Victor; Schrieber, Robert

    1989-01-01

    A simple factorization is given of an arbitrary hermitian, positive definite matrix in which the factors are well-conditioned, hermitian, and positive definite. In fact, given knowledge of the extreme eigenvalues of the original matrix A, an optimal improvement can be achieved, making the condition numbers of each of the two factors equal to the square root of the condition number of A. This technique is to applied to the solution of hermitian, positive definite Toeplitz systems. Large linear systems with hermitian, positive definite Toeplitz matrices arise in some signal processing applications. A stable fast algorithm is given for solving these systems that is based on the preconditioned conjugate gradient method. The algorithm exploits Toeplitz structure to reduce the cost of an iteration to O(n log n) by applying the fast Fourier Transform to compute matrix-vector products. Matrix factorization is used as a preconditioner.

  14. FAST: FAST Analysis of Sequences Toolbox

    Directory of Open Access Journals (Sweden)

    Travis J. Lawrence

    2015-05-01

    Full Text Available FAST (FAST Analysis of Sequences Toolbox provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU’s Not Unix Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics makes FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format. Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought.

  15. CME Simulations with Boundary Conditions Derived from Multiple Viewpoints of STEREO

    Science.gov (United States)

    Singh, T.; Yalim, M. S.; Pogorelov, N. V.

    2017-12-01

    Coronal Mass Ejections (CMEs) are major drivers of extreme space weather conditions, which is a matter of huge concern for our modern technologically dependent society. Development of numerical approaches that would reproduce CME propagation through the interplanetary space is an important step towards our capability to predict CME arrival time at Earth and their geo-effectiveness. It is also important that CMEs are propagating through a realistic, data-driven background solar wind (SW). In this study, we use a version of the flux-rope-driven Gibson-Low (GL) model to simulate CMEs. We derive inner boundary conditions for the GL flux rope model using the Graduate Cylindrical Shell (GCS) method. This method uses viewpoints from STEREO A and B, and SOHO/LASCO coronagraphs to determine the size and orientation of a CME flux rope as it starts to erupt from Sun. A flux rope created this way is inserted into an SDO/HMI vector magnetogram driven SW background obtained with the Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS). Numerical results are compared with STEREO, SDO/AIA and SOHO/LASCO observations in particular in terms of the CME speed, acceleration and magnetic field structure.

  16. Extreme-ultraviolet wavelength and lifetime measurements in highly ionized krypton

    CERN Document Server

    Kukla, K W; Vogt, C M V; Berry, H G; Dunford, R W; Curtis, L J; Cheng, S

    2005-01-01

    We have studied the spectrum of highly ionized krypton in the extreme-ultraviolet wavelength region (50-300 Aa), using beam-foil excitation of fast krypton ions at the Argonne ATLAS accelerator facility. We report measurements of transition wavelengths and excited-state lifetimes for n=2 states in the lithiumlike, berylliumlike, and boronlike ions, Kr/sup 31+,32+,33+/. Excited state lifetimes ranging from 10 ps to 3 ns were measured by acquiring time- of-flight-delayed spectra with a position-sensitive multichannel detector.

  17. Coronal mass ejections and solar radio bursts

    International Nuclear Information System (INIS)

    Kundu, M.R.

    1990-01-01

    The properties of coronal mass ejection (CME) events and their radio signatures are discussed. These signatures are mostly in the form of type II and type IV burst emissions. Although type II bursts are temporally associated with CMEs, it is shown that there is no spatial relationship between them. Type II's associated with CMEs have in most cases a different origin, and they are not piston-driven by CMEs. Moving type IV and type II bursts can be associated with slow CMEs with speeds as low as 200 km/s, contrary to the earlier belief that only CMEs with speeds >400 km/s are associated with radio bursts. A specific event has been discussed in which the CME and type IV burst has nearly the same speed and direction, but the type II burst location was behind the CME and its motion was transverse. The speed and motion of the type II burst strongly suggest that the type II shock was decoupled from the CME and was probably due to a flare behind the limb. Therefore only the type IV source could be directly associated with the slow CME. The electrons responsble for the type IV emission could be produced in the flare or in the type II and then become trapped in a plasmoid associated with the CME. The reconnected loop could then move outwards as in the usual palsmoid model. Alternatively, the type IV emission could be interpreted as due to electrons produced by acceleration in wave turbulence driven by currents in the shock front driven by the CME. The lower-hybrid model Lampe and Papadopoulos (1982), which operates at both fast and slow mode shocks, could be applied to this situation. (author). 31 refs., 12 figs

  18. Fast algorithms for transport models. Final report, June 1, 1993--May 31, 1994

    International Nuclear Information System (INIS)

    Manteuffel, T.

    1994-12-01

    The focus of this project is the study of multigrid and multilevel algorithms for the numerical solution of Boltzmann models of the transport of neutral and charged particles. In previous work a fast multigrid algorithm was developed for the numerical solution of the Boltzmann model of neutral particle transport in slab geometry assuming isotropic scattering. The new algorithm is extremely fast in the thick diffusion limit; the multigrid v-cycle convergence factor approaches zero as the mean-free-path between collisions approaches zero, independent of the mesh. Also, a fast multilevel method was developed for the numerical solution of the Boltzmann model of charged particle transport in the thick Fokker-Plank limit for slab geometry. Parallel implementations were developed for both algorithms

  19. Fully-reversible optical sensor for hydrogen peroxide with fast response.

    Science.gov (United States)

    Ding, Longjiang; Chen, Siyu; Zhang, Wei; Zhang, Yinglu; Wang, Xu-Dong

    2018-05-09

    A fully reversible optical sensor for hydrogen peroxide with fast response is presented. The sensor was fabricated by in-situ growing ultra-small platinum nanoparticles (PtNPs) inside the pores of fibrous silica particles (KCC-1). The nanocomposite was then embedded into a hydrogel matrix and form a sensor layer, the immobilized PtNPs can catalytically convert hydrogen peroxide into molecular oxygen, which is measured via luminescent quenching based oxygen sensor underneath. Owing to the high porosity and permeability of KCC-1 and high local concentration of PtNPs, the sensor exhibits fast response (less than 1 min) and full reversibility. The measurement range of the sensor covers 1.0 μM to 10.0 mM, and very small amount of sample is required during measurement (200 μL). Because of its high stability, excellent reversibility and selectivity, and extremely fast response, the sensor could fulfill all industry requirements for real-time measurement, and fill market vacancy.

  20. Use of fast reactors for actinide transmutation

    International Nuclear Information System (INIS)

    1993-03-01

    The management of radioactive waste is one of the key issues in today's discussions on nuclear energy, especially the long term disposal of high level radioactive wastes. The recycling of plutonium in liquid metal fast breeder reactors (LMFBRs) would allow 'burning' of the associated extremely long life transuranic waste, particularly actinides, thus reducing the required isolation time for high level waste from tens of thousands of years to hundreds of years for fission products only. The International Working Group on Fast Reactors (IWGFR) decided to include the topic of actinide transmutation in liquid metal fast breeder reactors in its programme. The IAEA organized the Specialists Meeting on Use of Fast Breeder Reactors for Actinide Transmutation in Obninsk, Russian Federation, from 22 to 24 September 1992. The specialists agree that future progress in solving transmutation problems could be achieved by improvements in: Radiochemical partitioning and extraction of the actinides from the spent fuel (at least 98% for Np and Cm and 99.9% for Pu and Am isotopes); technological research and development on the design, fabrication and irradiation of the minor actinides (MAs) containing fuels; nuclear constants measurement and evaluation (selective cross-sections, fission fragments yields, delayed neutron parameters) especially for MA burners; demonstration of the feasibility of the safe and economic MA burner cores; knowledge of the impact of maximum tolerable amount of rare earths in americium containing fuels. Refs, figs and tabs

  1. Upper Extremity Freezing and Dyscoordination in Parkinson’s Disease: Effects of Amplitude and Cadence Manipulations

    Directory of Open Access Journals (Sweden)

    April J. Williams

    2013-01-01

    Full Text Available Purpose. Motor freezing, the inability to produce effective movement, is associated with decreasing amplitude, hastening of movement, and poor coordination. We investigated how manipulations of movement amplitude and cadence affect upper extremity (UE coordination as measured by the phase coordination index (PCI—only previously measured in gait—and freezing of the upper extremity (FO-UE in people with Parkinson's disease (PD who experience freezing of gait (PD + FOG, do not experience FOG (PD-FOG, and healthy controls. Methods. Twenty-seven participants with PD and 18 healthy older adults made alternating bimanual movements between targets under four conditions: Baseline; Fast; Small; SmallFast. Kinematic data were recorded and analyzed for PCI and FO-UE events. PCI and FO-UE were compared across groups and conditions. Correlations between UE PCI, gait PCI, FO-UE, and Freezing of Gait Questionnaire (FOG-Q were determined. Results. PD + FOG had poorer coordination than healthy old during SmallFast. UE coordination correlated with number of FO-UE episodes in two conditions and FOG-Q score in one. No differences existed between PD−/+FOG in coordination or number of FO-UE episodes. Conclusions. Dyscoordination and FO-UE can be elicited by manipulating cadence and amplitude of an alternating bimanual task. It remains unclear whether FO-UE and FOG share common mechanisms.

  2. Fast Fourier transformation results from gamma-ray burst profiles

    Science.gov (United States)

    Kouveliotou, Chryssa; Norris, Jay P.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Paciesas, W. S.

    1992-01-01

    Several gamma-ray bursts in the BATSE data have sufficiently long durations and complex temporal structures with pulses that appear to be spaced quasi-periodically. In order to test and quantify these periods we have applied fast Fourier transformations (FFT) to all these events. We have also performed cross spectral analyses of the FFT of the two extreme (high-low) energy bands in each case to determine the lead/lag of the pulses in different energies.

  3. Forecasting of flowrate under rolling motion flow instability condition based on on-line sequential extreme learning machine

    International Nuclear Information System (INIS)

    Chen Hanying; Gao Puzhen; Tan Sichao; Tang Jiguo; Hou Xiaofan; Xu Huiqiang; Wu Xiangcheng

    2015-01-01

    The coupling of multiple thermal-hydraulic parameters can result in complex flow instability in natural circulation system under rolling motion. A real-time thermal-hydraulic condition prediction is helpful to the operation of systems in such condition. A single hidden layer feedforward neural networks algorithm named extreme learning machine (ELM) is considered as suitable method for this application because of its extremely fast training time, good accuracy and simplicity. However, traditional ELM assumes that all the training data are ready before the training process, while the training data is received sequentially in practical forecasting of flowrate. Therefore, this paper proposes a forecasting method for flowrate under rolling motion based on on-line sequential ELM (OS-ELM), which can learn the data one by one or chunk-by-chunk. The experiment results show that the OS-ELM method can achieve a better forecasting performance than basic ELM method and still keep the advantage of fast training and simplicity. (author)

  4. Very fast optical flaring from a possible new Galactic magnetar.

    Science.gov (United States)

    Stefanescu, A; Kanbach, G; Słowikowska, A; Greiner, J; McBreen, S; Sala, G

    2008-09-25

    Highly luminous rapid flares are characteristic of processes around compact objects like white dwarfs, neutron stars and black holes. In the high-energy regime of X-rays and gamma-rays, outbursts with variabilities on timescales of seconds or less are routinely observed, for example in gamma-ray bursts or soft gamma-ray repeaters. At optical wavelengths, flaring activity on such timescales has not been observed, other than from the prompt phase of one exceptional gamma-ray burst. This is mostly due to the fact that outbursts with strong, fast flaring are usually discovered in the high-energy regime; most optical follow-up observations of such transients use instruments with integration times exceeding tens of seconds, which are therefore unable to resolve fast variability. Here we show the observation of extremely bright and rapid optical flaring in the Galactic transient SWIFT J195509.6+261406. Our optical light curves are phenomenologically similar to high-energy light curves of soft gamma-ray repeaters and anomalous X-ray pulsars, which are thought to be neutron stars with extremely high magnetic fields (magnetars). This suggests that similar processes are in operation, but with strong emission in the optical, unlike in the case of other known magnetars.

  5. SIZE DISTRIBUTIONS OF SOLAR FLARES AND SOLAR ENERGETIC PARTICLE EVENTS

    International Nuclear Information System (INIS)

    Cliver, E. W.; Ling, A. G.; Belov, A.; Yashiro, S.

    2012-01-01

    We suggest that the flatter size distribution of solar energetic proton (SEP) events relative to that of flare soft X-ray (SXR) events is primarily due to the fact that SEP flares are an energetic subset of all flares. Flares associated with gradual SEP events are characteristically accompanied by fast (≥1000 km s –1 ) coronal mass ejections (CMEs) that drive coronal/interplanetary shock waves. For the 1996-2005 interval, the slopes (α values) of power-law size distributions of the peak 1-8 Å fluxes of SXR flares associated with (a) >10 MeV SEP events (with peak fluxes ≥1 pr cm –2 s –1 sr –1 ) and (b) fast CMEs were ∼1.3-1.4 compared to ∼1.2 for the peak proton fluxes of >10 MeV SEP events and ∼2 for the peak 1-8 Å fluxes of all SXR flares. The difference of ∼0.15 between the slopes of the distributions of SEP events and SEP SXR flares is consistent with the observed variation of SEP event peak flux with SXR peak flux.

  6. Investigating NARCCAP Precipitation Extremes via Bivariate Extreme Value Theory (Invited)

    Science.gov (United States)

    Weller, G. B.; Cooley, D. S.; Sain, S. R.; Bukovsky, M. S.; Mearns, L. O.

    2013-12-01

    We introduce methodology from statistical extreme value theory to examine the ability of reanalysis-drive regional climate models to simulate past daily precipitation extremes. Going beyond a comparison of summary statistics such as 20-year return values, we study whether the most extreme precipitation events produced by climate model simulations exhibit correspondence to the most extreme events seen in observational records. The extent of this correspondence is formulated via the statistical concept of tail dependence. We examine several case studies of extreme precipitation events simulated by the six models of the North American Regional Climate Change Assessment Program (NARCCAP) driven by NCEP reanalysis. It is found that the NARCCAP models generally reproduce daily winter precipitation extremes along the Pacific coast quite well; in contrast, simulation of past daily summer precipitation extremes in a central US region is poor. Some differences in the strength of extremal correspondence are seen in the central region between models which employ spectral nudging and those which do not. We demonstrate how these techniques may be used to draw a link between extreme precipitation events and large-scale atmospheric drivers, as well as to downscale extreme precipitation simulated by a future run of a regional climate model. Specifically, we examine potential future changes in the nature of extreme precipitation along the Pacific coast produced by the pineapple express (PE) phenomenon. A link between extreme precipitation events and a "PE Index" derived from North Pacific sea-surface pressure fields is found. This link is used to study PE-influenced extreme precipitation produced by a future-scenario climate model run.

  7. Fast Coding Unit Encoding Mechanism for Low Complexity Video Coding

    OpenAIRE

    Gao, Yuan; Liu, Pengyu; Wu, Yueying; Jia, Kebin; Gao, Guandong

    2016-01-01

    In high efficiency video coding (HEVC), coding tree contributes to excellent compression performance. However, coding tree brings extremely high computational complexity. Innovative works for improving coding tree to further reduce encoding time are stated in this paper. A novel low complexity coding tree mechanism is proposed for HEVC fast coding unit (CU) encoding. Firstly, this paper makes an in-depth study of the relationship among CU distribution, quantization parameter (QP) and content ...

  8. Technical Meeting on Impact of Fukushima Event on Current and Future Fast Reactor Designs. Presentations

    International Nuclear Information System (INIS)

    2012-01-01

    The overall purpose of the Technical Meeting was to recognize and analyse the implications of the accident occurred at the Fukushima Dai-ichi Nuclear Power Station on current and future fast neutron systems design and operation. The aim was to provide a global forum for discussing the principal lessons learned from this event, and thus to review safety principles and characteristics of existing and future fast neutron concepts, especially in relation with extreme natural events which potentially may lead to severe accident scenarios. The participants also presented and discussed innovative technical solutions, design features and countermeasures for design extension conditions - including earthquakes, tsunami and other extreme natural hazards - which can enhance the safety level of existing and future fast neutron systems. Furthermore, the meeting gave the opportunity to present advanced methods for the evaluation of the robustness of plants against design extension conditions. Another important goal of this TM was to discuss how to harmonize safety approaches and goals for next generation’s fast reactors. Finally, the meeting was intended to identify areas where further research and development in nuclear safety, technology and engineering in the light of the Fukushima accident are needed. In the frame of the implementation of its Nuclear Safety Action Plan endorsed by all Member States, the IAEA will consider these areas as potential technical topics for new Coordinated Research Projects, to be launched in the near future

  9. Asynchronous Execution of the Fast Multipole Method Using Charm++

    OpenAIRE

    AbdulJabbar, Mustafa; Yokota, Rio; Keyes, David

    2014-01-01

    Fast multipole methods (FMM) on distributed mem- ory have traditionally used a bulk-synchronous model of com- municating the local essential tree (LET) and overlapping it with computation of the local data. This could be perceived as an extreme case of data aggregation, where the whole LET is communicated at once. Charm++ allows a much finer control over the granularity of communication, and has a asynchronous execution model that fits well with the structure of our FMM code. Unlike previous ...

  10. Wave-induced Hydroelastic response of fast monohull ships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    1996-01-01

    High-speed ships are weight sensitive structures and high strength steel, aluminium or composites are preferred building materials. it is characteristic for these materials that they result in larger hull flexibility than more conventional materials. Therefore, for large fast ships the lowest...... of a quadratic strip theory formulated in the frequency domain. The springing response is thereby excited partly be resonance and partly by non-linear excitation. Special emphasis is given to the influence of springing on fatigue damage as the extreme responses even for very flexible ships are quite insensitive...

  11. High energy (42-66 MeV reactions) fast neutron dose optimization studies in the head and neck, thorax, upper abdomen, pelvis and extremities

    International Nuclear Information System (INIS)

    Griffin, T.W.; Laramore, G.E.; Maor, M.H.; Hendrickson, F.R.; Parker, R.G.; Davis, L.W.

    1990-01-01

    550 Patients were entered into a set of dose-searching studies designed to determine normal tissue tolerances to high energy (42-66 MeV reactions) fast neutrons delivered in 12 equal fractions over 4 weeks. Patients were stratified by treatment facility and then randomized to receive 16, 18 or 20 Gy for tumors located in the upper abdomen or pelvis, and 18, 20 or 22 Gy for tumors located in the head and neck, thorax or extremities. Following completion of the randomized protocols, additional patients were studied at the 20.4 Gy level in the head and neck, thorax and pelvis. Normal tissue effect scoring was accomplished using the RTOG-EORTC acute and late normal tissue effect scales. Acute Grade 3+ toxicity rates in the head and neck were 19 per cent for 20/20.4 Gy and 20 per cent for 22 Gy. Time adjusted late toxicity rates in the head and neck at 12 months were 15 per cent for 20/20.4 Gy and 0 per cent for 22 Gy. The 18 Gy treatment arm of the head and neck protocol was dropped early in the study after only two patients were accrued. For cases treated in the thorax, acute Grade 3+ toxicity rates were 6 per cent for 18 Gy, 15 per cent for 20/20.4 Gy and 7 per cent for 22 Gy. Late toxicity rates at 12 months were 0 per cent for 18 Gy, 11 per cent for 20/20.4 Gy and 18 per cent for 22 Gy. Acute Grade 3+ toxicity rates in the upper abdomen were 0 per cent for 16 Gy, 18 per cent for 18 Gy and 12 per cent for 20 Gy. There were no Grade 3+ late toxicities in the upper abdomen. In the pelvis acute Grade 3+ toxicity rates were 0 per cent for 16 Gy, 3 per cent for 18 Gy and 3 per cent for 20/20.4 Gy. Late Grade 3+ toxicities at 24 months were 20 per cent for 16 Gy, 5 per cent for 18 Gy and 24 per cent for 20/20.4 Gy. In the extremities, acute Grade 3+ toxicity rates were 7 per cent for 20 Gy and 21 per cent for 22 Gy, while at 12 months, late Grade 3+ toxicity rates were 14 and 35 per cent respectively. The 18 Gy treatment arm of the extremities protocol was dropped early

  12. BAL QSOs and Extreme UFOs: The Eddington Connection

    Science.gov (United States)

    Zubovas, Kastytis; King, Andrew

    2013-05-01

    We suggest a common physical origin connecting the fast, highly ionized winds (UFOs) seen in nearby active galactic nuclei (AGNs), and the slower and less ionized winds of broad absorption line (BAL) QSOs. The primary difference is the mass-loss rate in the wind, which is ultimately determined by the rate at which mass is fed toward the central supermassive black hole (SMBH) on large scales. This is below the Eddington accretion rate in most UFOs, and slightly super-Eddington in extreme UFOs such as PG1211+143, but ranges up to ~10-50 times this in BAL QSOs. For UFOs this implies black hole accretion rates and wind mass-loss rates which are at most comparable to Eddington, giving fast, highly ionized winds. In contrast, BAL QSO black holes have mildly super-Eddington accretion rates, and drive winds whose mass-loss rates are significantly super-Eddington, and so are slower and less ionized. This picture correctly predicts the velocities and ionization states of the observed winds, including the recently discovered one in SDSS J1106+1939. We suggest that luminous AGNs may evolve through a sequence from BAL QSO through LoBAL to UFO-producing Seyfert or quasar as their Eddington factors drop during the decay of a bright accretion event. LoBALs correspond to a short-lived stage in which the AGN radiation pressure largely evacuates the ionization cone, but before the large-scale accretion rate has dropped to the Eddington value. We show that sub-Eddington wind rates would produce an M-σ relation lying above that observed. We conclude that significant SMBH mass growth must occur in super-Eddington phases, either as BAL QSOs, extreme UFOs, or obscured from direct observation.

  13. BAL QSOs AND EXTREME UFOs: THE EDDINGTON CONNECTION

    International Nuclear Information System (INIS)

    Zubovas, Kastytis; King, Andrew

    2013-01-01

    We suggest a common physical origin connecting the fast, highly ionized winds (UFOs) seen in nearby active galactic nuclei (AGNs), and the slower and less ionized winds of broad absorption line (BAL) QSOs. The primary difference is the mass-loss rate in the wind, which is ultimately determined by the rate at which mass is fed toward the central supermassive black hole (SMBH) on large scales. This is below the Eddington accretion rate in most UFOs, and slightly super-Eddington in extreme UFOs such as PG1211+143, but ranges up to ∼10-50 times this in BAL QSOs. For UFOs this implies black hole accretion rates and wind mass-loss rates which are at most comparable to Eddington, giving fast, highly ionized winds. In contrast, BAL QSO black holes have mildly super-Eddington accretion rates, and drive winds whose mass-loss rates are significantly super-Eddington, and so are slower and less ionized. This picture correctly predicts the velocities and ionization states of the observed winds, including the recently discovered one in SDSS J1106+1939. We suggest that luminous AGNs may evolve through a sequence from BAL QSO through LoBAL to UFO-producing Seyfert or quasar as their Eddington factors drop during the decay of a bright accretion event. LoBALs correspond to a short-lived stage in which the AGN radiation pressure largely evacuates the ionization cone, but before the large-scale accretion rate has dropped to the Eddington value. We show that sub-Eddington wind rates would produce an M-σ relation lying above that observed. We conclude that significant SMBH mass growth must occur in super-Eddington phases, either as BAL QSOs, extreme UFOs, or obscured from direct observation.

  14. BAL QSOs AND EXTREME UFOs: THE EDDINGTON CONNECTION

    Energy Technology Data Exchange (ETDEWEB)

    Zubovas, Kastytis; King, Andrew, E-mail: kastytis.zubovas@ftmc.lt [Theoretical Astrophysics Group, University of Leicester, Leicester LE1 7RH (United Kingdom)

    2013-05-20

    We suggest a common physical origin connecting the fast, highly ionized winds (UFOs) seen in nearby active galactic nuclei (AGNs), and the slower and less ionized winds of broad absorption line (BAL) QSOs. The primary difference is the mass-loss rate in the wind, which is ultimately determined by the rate at which mass is fed toward the central supermassive black hole (SMBH) on large scales. This is below the Eddington accretion rate in most UFOs, and slightly super-Eddington in extreme UFOs such as PG1211+143, but ranges up to {approx}10-50 times this in BAL QSOs. For UFOs this implies black hole accretion rates and wind mass-loss rates which are at most comparable to Eddington, giving fast, highly ionized winds. In contrast, BAL QSO black holes have mildly super-Eddington accretion rates, and drive winds whose mass-loss rates are significantly super-Eddington, and so are slower and less ionized. This picture correctly predicts the velocities and ionization states of the observed winds, including the recently discovered one in SDSS J1106+1939. We suggest that luminous AGNs may evolve through a sequence from BAL QSO through LoBAL to UFO-producing Seyfert or quasar as their Eddington factors drop during the decay of a bright accretion event. LoBALs correspond to a short-lived stage in which the AGN radiation pressure largely evacuates the ionization cone, but before the large-scale accretion rate has dropped to the Eddington value. We show that sub-Eddington wind rates would produce an M-{sigma} relation lying above that observed. We conclude that significant SMBH mass growth must occur in super-Eddington phases, either as BAL QSOs, extreme UFOs, or obscured from direct observation.

  15. Fast and Epsilon-Optimal Discretized Pursuit Learning Automata.

    Science.gov (United States)

    Zhang, JunQi; Wang, Cheng; Zhou, MengChu

    2015-10-01

    Learning automata (LA) are powerful tools for reinforcement learning. A discretized pursuit LA is the most popular one among them. During an iteration its operation consists of three basic phases: 1) selecting the next action; 2) finding the optimal estimated action; and 3) updating the state probability. However, when the number of actions is large, the learning becomes extremely slow because there are too many updates to be made at each iteration. The increased updates are mostly from phases 1 and 3. A new fast discretized pursuit LA with assured ε -optimality is proposed to perform both phases 1 and 3 with the computational complexity independent of the number of actions. Apart from its low computational complexity, it achieves faster convergence speed than the classical one when operating in stationary environments. This paper can promote the applications of LA toward the large-scale-action oriented area that requires efficient reinforcement learning tools with assured ε -optimality, fast convergence speed, and low computational complexity for each iteration.

  16. Exploration of shallow subsurface resistivity structure using a portable TEM system: TEM-FAST prosystem; Kan`igata TEM ho sochi TEM-FAST prosystem ni yoru senbu hiteiko chosa

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Y; Kumekawa, Y; Takasugi, S [GERD Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan)

    1997-05-27

    Discussions were given on effectiveness of the TEM-FAST ProSystem which is a portable TEM system developed recently for use in exploration of shallow subsurface resistivity. The system consists of a loop type antenna, the TEM-FAST as the main equipment, and a host computer, the host computer controlling the entire system. The system acquires transient response data in secondary induced magnetic fields lasting 4 {mu} sec to 1 m sec. The number of data is 5490 stacks in one measurement, and the data acquisition time is about three minutes. Measurements were carried out by using the TEM-FAST in the vicinity of a well, whose results were compared with those of electric logging, and discussions were given on them. Although the electric logging results had no data available for depths shallower than 35 m, the measurement results from the TEM-FAST were found highly harmonious with those of the electric logging. In addition, there were transmission and telephone lines in locations about 10 m away from the well during the measurement, but extremely high data quality was discovered. 6 refs., 7 figs., 1 tab.

  17. The Influence of Coronal Mass Ejections on the Mass-loss Rates of Hot-Jupiters

    Energy Technology Data Exchange (ETDEWEB)

    Cherenkov, A.; Bisikalo, D. [Institute of Astronomy of the Russian Academy of Sciences, 48 Pyatnitskaya St. 119017, Moscow (Russian Federation); Fossati, L.; Möstl, C., E-mail: bisikalo@inasan.ru [Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz (Austria)

    2017-09-01

    Hot-Jupiters are subject to extreme radiation and plasma flows coming from their host stars. Past ultraviolet Hubble Space Telescope observations, supported by hydrodynamic models, confirmed that these factors lead to the formation of an extended envelope, part of which lies beyond the Roche lobe. We use gas-dynamic simulations to study the impact of time variations in the parameters of the stellar wind, namely that of coronal mass ejections (CMEs), on the envelope of the typical hot-Jupiter HD 209458b. We consider three CMEs characterized by different velocities and densities, taking their parameters from typical CMEs observed for the Sun. The perturbations in the ram-pressure of the stellar wind during the passage of each CME tear off most of the envelope that is located beyond the Roche lobe. This leads to a substantial increase of the mass-loss rates during the interaction with the CME. We find that the mass lost by the planet during the whole crossing of a CME is of ≈10{sup 15} g, regardless of the CME taken into consideration. We also find that over the course of 1 Gyr, the mass lost by the planet because of CME impacts is comparable to that lost because of high-energy stellar irradiation.

  18. The Solar Connection of Enhanced Heavy Ion Charge States in the Interplanetary Medium: Implications for the Flux-Rope Structure of CMEs

    Science.gov (United States)

    Gopalswamy, N.; Makela, P.; Akiyama, S.; Xie, H.; Yashiro, S.; Reinard, A. A.

    2013-01-01

    We investigated a set of 54 interplanetary coronal mass ejection (ICME) events whose solar sources are very close to the disk center (within +/- 15deg from the central meridian). The ICMEs consisted of 23 magnetic-cloud (MC) events and 31 non-MC events. Our analyses suggest that the MC and non-MC ICMEs have more or less the same eruption characteristics at the Sun in terms of soft X-ray flares and CMEs. Both types have significant enhancements in ion charge states, although the non-MC structures have slightly lower levels of enhancement. The overall duration of charge-state enhancement is also considerably smaller than that in MCs as derived from solar wind plasma and magnetic signatures. We find very good correlation between the Fe and O charge-state measurements and the flare properties such as soft X-ray flare intensity and flare temperature for both MCs and non-MCs. These observations suggest that both MC and non-MC ICMEs are likely to have a flux-rope structure and the unfavorable observational geometry may be responsible for the appearance of non-MC structures at 1 AU. We do not find any evidence for an active region expansion resulting in ICMEs lacking a flux-rope structure because the mechanism of producing high charge states and the flux-rope structure at the Sun is the same for MC and non-MC events.

  19. Resetting in time of recordings in ultra-fast cinematography

    International Nuclear Information System (INIS)

    Leduc, Michel

    In ultra-fast cinematography and photography the treatment and interpretation of the data contained in the recordings demand extremely precise readjustments in time. In the case of whole-image recordings by electro-optical cameras or flash sources the problem is resolved by the use of a chronometric unit taking into account the different events. For naving slit or spectrographic recordings the problem must be detail with differently and marking devices will be used to print resetting pulses on the recording themselves. Different marking devices are described [fr

  20. Technical Meeting on Impact of Fukushima Event on Current and Future Fast Reactor Designs. Working Material

    International Nuclear Information System (INIS)

    2012-01-01

    The overall purpose of the Technical Meeting was to recognize and analyse the implications of the accident occurred at the Fukushima Dai-ichi Nuclear Power Station on current and future fast neutron systems design and operation. The aim was to provide a global forum for discussing the principal lessons learned from this event, and thus to review safety principles and characteristics of existing and future fast neutron concepts, especially in relation with extreme natural events which potentially may lead to severe accident scenarios. The participants also presented and discussed innovative technical solutions, design features and countermeasures for design extension conditions - including earthquakes, tsunami and other extreme natural hazards - which can enhance the safety level of existing and future fast neutron systems. Furthermore, the meeting gave the opportunity to present advanced methods for the evaluation of the robustness of plants against design extension conditions. Another important goal of this TM was to discuss how to harmonize safety approaches and goals for next generation’s fast reactors. Finally, the meeting was intended to identify areas where further research and development in nuclear safety, technology and engineering in the light of the Fukushima accident are needed. In the frame of the implementation of its Nuclear Safety Action Plan endorsed by all Member States, the IAEA will consider these areas as potential technical topics for new Coordinated Research Projects, to be launched in the near future

  1. Fast electron current density profile and diffusion studies during LHCD in PBX-M

    International Nuclear Information System (INIS)

    Jones, S.E.; Kesner, J.; Luckhardt, S.; Paoletti, F.

    1993-08-01

    Successful current profile control experiments using lower hybrid current drive (LCHD) clearly require knowledge of (1) the location of the driven fast electrons and (2) the ability to maintain that location from spreading due to radial diffusion. These issues can be addressed by examining the data from the hard x-ray camera on PBX-M, a unique diagnostic producing two-dimensional, time resolved tangential images of fast electron bremsstrahlung. Using modeling, these line-of-sight images are inverted to extract a radial fast electron current density profile. We note that ''hollow'' profiles have been observed, indicative of off-axis current drive. These profiles can then be used to calculate an upper bound for an effective fast electron diffusion constant: assuming an extremely radially narrow lower hybrid absorption profile and a transport model based on Rax and Moreau, a model fast electron current density profile is calculated and compared to the experimentally derived profile. The model diffusion constant is adjusted until a good match is found. Applied to steady-state quiescent modes on PBX-M, we obtain an upper limit for an effective diffusion constant of about D*=1.1 m 2 /sec

  2. An Efficient Pipeline Wavefront Phase Recovery for the CAFADIS Camera for Extremely Large Telescopes

    Directory of Open Access Journals (Sweden)

    Eduardo Magdaleno

    2009-12-01

    Full Text Available In this paper we show a fast, specialized hardware implementation of the wavefront phase recovery algorithm using the CAFADIS camera. The CAFADIS camera is a new plenoptic sensor patented by the Universidad de La Laguna (Canary Islands, Spain: international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975. It can simultaneously measure the wavefront phase and the distance to the light source in a real-time process. The pipeline algorithm is implemented using Field Programmable Gate Arrays (FPGA. These devices present architecture capable of handling the sensor output stream using a massively parallel approach and they are efficient enough to resolve several Adaptive Optics (AO problems in Extremely Large Telescopes (ELTs in terms of processing time requirements. The FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera is based on the very fast computation of two dimensional fast Fourier Transforms (FFTs. Thus we have carried out a comparison between our very novel FPGA 2D-FFTa and other implementations.

  3. Mandelbrot's Extremism

    NARCIS (Netherlands)

    Beirlant, J.; Schoutens, W.; Segers, J.J.J.

    2004-01-01

    In the sixties Mandelbrot already showed that extreme price swings are more likely than some of us think or incorporate in our models.A modern toolbox for analyzing such rare events can be found in the field of extreme value theory.At the core of extreme value theory lies the modelling of maxima

  4. Evaluation of a morphing based method to estimate muscle attachment sites of the lower extremity.

    Science.gov (United States)

    Pellikaan, P; van der Krogt, M M; Carbone, V; Fluit, R; Vigneron, L M; Van Deun, J; Verdonschot, N; Koopman, H F J M

    2014-03-21

    To generate subject-specific musculoskeletal models for clinical use, the location of muscle attachment sites needs to be estimated with accurate, fast and preferably automated tools. For this purpose, an automatic method was used to estimate the muscle attachment sites of the lower extremity, based on the assumption of a relation between the bone geometry and the location of muscle attachment sites. The aim of this study was to evaluate the accuracy of this morphing based method. Two cadaver dissections were performed to measure the contours of 72 muscle attachment sites on the pelvis, femur, tibia and calcaneus. The geometry of the bones including the muscle attachment sites was morphed from one cadaver to the other and vice versa. For 69% of the muscle attachment sites, the mean distance between the measured and morphed muscle attachment sites was smaller than 15 mm. Furthermore, the muscle attachment sites that had relatively large distances had shown low sensitivity to these deviations. Therefore, this morphing based method is a promising tool for estimating subject-specific muscle attachment sites in the lower extremity in a fast and automated manner. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Perception, action and cognition of football referees in extreme temperatures: Impact on decision performance

    OpenAIRE

    Gaoua, N; de Oliveira, RF; Hunter, S

    2017-01-01

    Different professional domains require high levels of physical performance alongside fast and accurate decision-making. Construction workers, police officers, firefighters, elite sports men and women, the military and emergency medical professionals are often exposed to hostile environments with limited options for behavioral coping strategies. In this (mini) review we use football refereeing as an example to discuss the combined effect of intense physical activity and extreme temperatures on...

  6. Quasilinear Extreme Learning Machine Model Based Internal Model Control for Nonlinear Process

    Directory of Open Access Journals (Sweden)

    Dazi Li

    2015-01-01

    Full Text Available A new strategy for internal model control (IMC is proposed using a regression algorithm of quasilinear model with extreme learning machine (QL-ELM. Aimed at the chemical process with nonlinearity, the learning process of the internal model and inverse model is derived. The proposed QL-ELM is constructed as a linear ARX model with a complicated nonlinear coefficient. It shows some good approximation ability and fast convergence. The complicated coefficients are separated into two parts. The linear part is determined by recursive least square (RLS, while the nonlinear part is identified through extreme learning machine. The parameters of linear part and the output weights of ELM are estimated iteratively. The proposed internal model control is applied to CSTR process. The effectiveness and accuracy of the proposed method are extensively verified through numerical results.

  7. FAST DIFFERENTIAL EMISSION MEASURE INVERSION OF SOLAR CORONAL DATA

    Energy Technology Data Exchange (ETDEWEB)

    Plowman, Joseph; Kankelborg, Charles; Martens, Petrus [Montana State University, Bozeman, MT 59717 (United States)

    2013-07-01

    We present a fast method for reconstructing differential emission measures (DEMs) using solar coronal data. The method consists of a fast, simple regularized inversion in conjunction with an iteration scheme for removal of residual negative emission measure. On average, it computes over 1000 DEMs s{sup -1} for a sample active region observed by the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory, and achieves reduced chi-squared of order unity with no negative emission in all but a few test cases. The high performance of this method is especially relevant in the context of AIA, which images of order one million solar pixels per second. This paper describes the method, analyzes its fidelity, compares its performance and results with other DEM methods, and applies it to an active region and loop observed by AIA and by the Extreme-ultraviolet Imaging Spectrometer on Hinode.

  8. Neighborhood fast food availability and fast food consumption.

    Science.gov (United States)

    Oexle, Nathalie; Barnes, Timothy L; Blake, Christine E; Bell, Bethany A; Liese, Angela D

    2015-09-01

    Recent nutritional and public health research has focused on how the availability of various types of food in a person's immediate area or neighborhood influences his or her food choices and eating habits. It has been theorized that people living in areas with a wealth of unhealthy fast-food options may show higher levels of fast-food consumption, a factor that often coincides with being overweight or obese. However, measuring food availability in a particular area is difficult to achieve consistently: there may be differences in the strict physical locations of food options as compared to how individuals perceive their personal food availability, and various studies may use either one or both of these measures. The aim of this study was to evaluate the association between weekly fast-food consumption and both a person's perceived availability of fast-food and an objective measure of fast-food presence - Geographic Information Systems (GIS) - within that person's neighborhood. A randomly selected population-based sample of eight counties in South Carolina was used to conduct a cross-sectional telephone survey assessing self-report fast-food consumption and perceived availability of fast food. GIS was used to determine the actual number of fast-food outlets within each participant's neighborhood. Using multinomial logistic regression analyses, we found that neither perceived availability nor GIS-based presence of fast-food was significantly associated with weekly fast-food consumption. Our findings indicate that availability might not be the dominant factor influencing fast-food consumption. We recommend using subjective availability measures and considering individual characteristics that could influence both perceived availability of fast food and its impact on fast-food consumption. If replicated, our findings suggest that interventions aimed at reducing fast-food consumption by limiting neighborhood fast-food availability might not be completely effective

  9. Fast filtering algorithm based on vibration systems and neural information exchange and its application to micro motion robot

    International Nuclear Information System (INIS)

    Gao Wa; Zha Fu-Sheng; Li Man-Tian; Song Bao-Yu

    2014-01-01

    This paper develops a fast filtering algorithm based on vibration systems theory and neural information exchange approach. The characters, including the derivation process and parameter analysis, are discussed and the feasibility and the effectiveness are testified by the filtering performance compared with various filtering methods, such as the fast wavelet transform algorithm, the particle filtering method and our previously developed single degree of freedom vibration system filtering algorithm, according to simulation and practical approaches. Meanwhile, the comparisons indicate that a significant advantage of the proposed fast filtering algorithm is its extremely fast filtering speed with good filtering performance. Further, the developed fast filtering algorithm is applied to the navigation and positioning system of the micro motion robot, which is a high real-time requirement for the signals preprocessing. Then, the preprocessing data is used to estimate the heading angle error and the attitude angle error of the micro motion robot. The estimation experiments illustrate the high practicality of the proposed fast filtering algorithm. (general)

  10. Serum Lipid Profile: Fasting or Non-fasting?

    OpenAIRE

    Nigam, P. K.

    2010-01-01

    Serum lipid profile has now become almost a routine test. It is usually done in fasting state due to certain limitations in non-fasting serum sample. In the recent past efforts have been made to simplify blood sampling by replacing fasting lipid profile with non-fasting lipid profile. However, fasting specimen is preferred if cardiovascular risk assessment is based on total cholesterol, LDL cholesterol or non-HDL cholesterol. A lot has yet to be done in this area. Till then we have to believe...

  11. Activation-Strain Analysis Reveals Unexpected Origin of Fast Reactivity in Heteroaromatic Azadiene Inverse-Electron-Demand Diels-Alder Cycloadditions

    NARCIS (Netherlands)

    Talbot, Austin; Devarajan, Deepa; Gustafson, Samantha J.; Fernandez, Israel; Bickelhaupt, F. Matthias; Ess, Daniel H.

    2014-01-01

    Heteroaromatic azadienes, especially 1,2,4,5-tetrazines, are extremely reactive partners with alkenes in inverse-electron-demand Diels–Alder reactions. Azadiene cycloaddition reactions are used to construct heterocycles in synthesis and are popular as bioorthogonal reactions. The origin of fast

  12. Simulation of the 23 July 2012 Extreme Space Weather Event: What if This Extremely Rare CME Was Earth Directed?

    Science.gov (United States)

    Ngwira, Chigomezyo M.; Pulkkinen, Antti; Mays, M. Leila; Kuznetsova, Maria M.; Galvin, A. B.; Simunac, Kristin; Baker, Daniel N.; Li, Xinlin; Zheng, Yihua; Glocer, Alex

    2013-01-01

    Extreme space weather events are known to cause adverse impacts on critical modern day technological infrastructure such as high-voltage electric power transmission grids. On 23 July 2012, NASA's Solar Terrestrial Relations Observatory-Ahead (STEREO-A) spacecraft observed in situ an extremely fast coronal mass ejection (CME) that traveled 0.96 astronomical units (approx. 1 AU) in about 19 h. Here we use the SpaceWeather Modeling Framework (SWMF) to perform a simulation of this rare CME.We consider STEREO-A in situ observations to represent the upstream L1 solar wind boundary conditions. The goal of this study is to examine what would have happened if this Rare-type CME was Earth-bound. Global SWMF-generated ground geomagnetic field perturbations are used to compute the simulated induced geoelectric field at specific ground-based active INTERMAGNET magnetometer sites. Simulation results show that while modeled global SYM-H index, a high-resolution equivalent of the Dst index, was comparable to previously observed severe geomagnetic storms such as the Halloween 2003 storm, the 23 July CME would have produced some of the largest geomagnetically induced electric fields, making it very geoeffective. These results have important practical applications for risk management of electrical power grids.

  13. How extreme is extreme hourly precipitation?

    Science.gov (United States)

    Papalexiou, Simon Michael; Dialynas, Yannis G.; Pappas, Christoforos

    2016-04-01

    The importance of accurate representation of precipitation at fine time scales (e.g., hourly), directly associated with flash flood events, is crucial in hydrological design and prediction. The upper part of a probability distribution, known as the distribution tail, determines the behavior of extreme events. In general, and loosely speaking, tails can be categorized in two families: the subexponential and the hyperexponential family, with the first generating more intense and more frequent extremes compared to the latter. In past studies, the focus has been mainly on daily precipitation, with the Gamma distribution being the most popular model. Here, we investigate the behaviour of tails of hourly precipitation by comparing the upper part of empirical distributions of thousands of records with three general types of tails corresponding to the Pareto, Lognormal, and Weibull distributions. Specifically, we use thousands of hourly rainfall records from all over the USA. The analysis indicates that heavier-tailed distributions describe better the observed hourly rainfall extremes in comparison to lighter tails. Traditional representations of the marginal distribution of hourly rainfall may significantly deviate from observed behaviours of extremes, with direct implications on hydroclimatic variables modelling and engineering design.

  14. Coordinated Hard Sphere Mixture (CHaSM): A fast approximate model for oxide and silicate melts at extreme conditions

    Science.gov (United States)

    Wolf, A. S.; Asimow, P. D.; Stevenson, D. J.

    2015-12-01

    Recent first-principles calculations (e.g. Stixrude, 2009; de Koker, 2013), shock-wave experiments (Mosenfelder, 2009), and diamond-anvil cell investigations (Sanloup, 2013) indicate that silicate melts undergo complex structural evolution at high pressure. The observed increase in cation-coordination (e.g. Karki, 2006; 2007) induces higher compressibilities and lower adiabatic thermal gradients in melts as compared with their solid counterparts. These properties are crucial for understanding the evolution of impact-generated magma oceans, which are dominated by the poorly understood behavior of silicates at mantle pressures and temperatures (e.g. Stixrude et al. 2009). Probing these conditions is difficult for both theory and experiment, especially given the large compositional space (MgO-SiO2-FeO-Al2O3-etc). We develop a new model to understand and predict the behavior of oxide and silicate melts at extreme P-T conditions (Wolf et al., 2015). The Coordinated Hard Sphere Mixture (CHaSM) extends the Hard Sphere mixture model, accounting for the range of coordination states for each cation in the liquid. Using approximate analytic expressions for the hard sphere model, this fast statistical method compliments classical and first-principles methods, providing accurate thermodynamic and structural property predictions for melts. This framework is applied to the MgO system, where model parameters are trained on a collection of crystal polymorphs, producing realistic predictions of coordination evolution and the equation of state of MgO melt over a wide P-T range. Typical Mg-coordination numbers are predicted to evolve continuously from 5.25 (0 GPa) to 8.5 (250 GPa), comparing favorably with first-principles Molecular Dynamics (MD) simulations. We begin extending the model to a simplified mantle chemistry using empirical potentials (generally accurate over moderate pressure ranges, consuming classical MD calculations. This approach also sheds light on the universality

  15. Clinical application of lower extremity CTA and lower extremity perfusion CT as a method of diagnostic for lower extremity atherosclerotic obliterans

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Il Bong; Dong, Kyung Rae [Dept. Radiological Technology, Gwangju Health University, Gwangju (Korea, Republic of); Goo, Eun Hoe [Dept. Radiological Science, Cheongju University, Cheongju (Korea, Republic of)

    2016-11-15

    The purpose of this study was to assess clinical application of lower extremity CTA and lower extremity perfusion CT as a method of diagnostic for lower extremity atherosclerotic obliterans. From January to July 2016, 30 patients (mean age, 68) were studied with lower extremity CTA and lower extremity perfusion CT. 128 channel multi-detector row CT scans were acquired with a CT scanner (SOMATOM Definition Flash, Siemens medical solution, Germany) of lower extremity perfusion CT and lower extremity CTA. Acquired images were reconstructed with 3D workstation (Leonardo, Siemens, Germany). Site of lower extremity arterial occlusive and stenosis lesions were detected superficial femoral artery 36.6%, popliteal artery 23.4%, external iliac artery 16.7%, common femoral artery 13.3%, peroneal artery 10%. The mean total DLP comparison of lower extremity perfusion CT and lower extremity CTA, 650 mGy-cm and 675 mGy-cm, respectively. Lower extremity perfusion CT and lower extremity CTA were realized that were never be two examination that were exactly the same legions. Future through the development of lower extremity perfusion CT soft ware programs suggest possible clinical applications.

  16. Thermodynamics of extremal rotating thin shells in an extremal BTZ spacetime and the extremal black hole entropy

    Science.gov (United States)

    Lemos, José P. S.; Minamitsuji, Masato; Zaslavskii, Oleg B.

    2017-02-01

    In a (2 +1 )-dimensional spacetime with a negative cosmological constant, the thermodynamics and the entropy of an extremal rotating thin shell, i.e., an extremal rotating ring, are investigated. The outer and inner regions with respect to the shell are taken to be the Bañados-Teitelbom-Zanelli (BTZ) spacetime and the vacuum ground state anti-de Sitter spacetime, respectively. By applying the first law of thermodynamics to the extremal thin shell, one shows that the entropy of the shell is an arbitrary well-behaved function of the gravitational area A+ alone, S =S (A+). When the thin shell approaches its own gravitational radius r+ and turns into an extremal rotating BTZ black hole, it is found that the entropy of the spacetime remains such a function of A+, both when the local temperature of the shell at the gravitational radius is zero and nonzero. It is thus vindicated by this analysis that extremal black holes, here extremal BTZ black holes, have different properties from the corresponding nonextremal black holes, which have a definite entropy, the Bekenstein-Hawking entropy S (A+)=A/+4G , where G is the gravitational constant. It is argued that for extremal black holes, in particular for extremal BTZ black holes, one should set 0 ≤S (A+)≤A/+4G;i.e., the extremal black hole entropy has values in between zero and the maximum Bekenstein-Hawking entropy A/+4 G . Thus, rather than having just two entropies for extremal black holes, as previous results have debated, namely, 0 and A/+4 G , it is shown here that extremal black holes, in particular extremal BTZ black holes, may have a continuous range of entropies, limited by precisely those two entropies. Surely, the entropy that a particular extremal black hole picks must depend on past processes, notably on how it was formed. A remarkable relation between the third law of thermodynamics and the impossibility for a massive body to reach the velocity of light is also found. In addition, in the procedure, it

  17. Fast detection of the fuzzy communities based on leader-driven algorithm

    Science.gov (United States)

    Fang, Changjian; Mu, Dejun; Deng, Zhenghong; Hu, Jun; Yi, Chen-He

    2018-03-01

    In this paper, we present the leader-driven algorithm (LDA) for learning community structure in networks. The algorithm allows one to find overlapping clusters in a network, an important aspect of real networks, especially social networks. The algorithm requires no input parameters and learns the number of clusters naturally from the network. It accomplishes this using leadership centrality in a clever manner. It identifies local minima of leadership centrality as followers which belong only to one cluster, and the remaining nodes are leaders which connect clusters. In this way, the number of clusters can be learned using only the network structure. The LDA is also an extremely fast algorithm, having runtime linear in the network size. Thus, this algorithm can be used to efficiently cluster extremely large networks.

  18. Extreme value distributions

    CERN Document Server

    Ahsanullah, Mohammad

    2016-01-01

    The aim of the book is to give a through account of the basic theory of extreme value distributions. The book cover a wide range of materials available to date. The central ideas and results of extreme value distributions are presented. The book rwill be useful o applied statisticians as well statisticians interrested to work in the area of extreme value distributions.vmonograph presents the central ideas and results of extreme value distributions.The monograph gives self-contained of theory and applications of extreme value distributions.

  19. Resonance spectrum of near-extremal Kerr black holes in the eikonal limit

    International Nuclear Information System (INIS)

    Hod, Shahar

    2012-01-01

    The fundamental resonances of rapidly rotating Kerr black holes in the eikonal limit are derived analytically. We show that there exists a critical value, μ c =√((15-√(193))/2 ), for the dimensionless ratio μ≡m/l between the azimuthal harmonic index m and the spheroidal harmonic index l of the perturbation mode, above which the perturbations become long lived. In particular, it is proved that above μ c the imaginary parts of the quasinormal frequencies scale like the black-hole temperature: ω I (n;μ>μ c )=2πT BH (n+1/2 ). This implies that for perturbations modes in the interval μ c I of the black hole becomes extremely long as the extremal limit T BH →0 is approached. A generalization of the results to the case of scalar quasinormal resonances of near-extremal Kerr-Newman black holes is also provided. In particular, we prove that only black holes that rotate fast enough (with MΩ≥2/5 , where M and Ω are the black-hole mass and angular velocity, respectively) possess this family of remarkably long-lived perturbation modes.

  20. Mode Conversion of a Solar Extreme-ultraviolet Wave over a Coronal Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Weiguo [Key Laboratory of Space Weather, National Center for Space Weather, China Meteorological Administration, Beijing 100081 (China); Dai, Yu, E-mail: ydai@nju.edu.cn [Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210023 (China)

    2017-01-10

    We report on observations of an extreme-ultraviolet (EUV) wave event in the Sun on 2011 January 13 by Solar Terrestrial Relations Observatory and Solar Dynamics Observatory in quadrature. Both the trailing edge and the leading edge of the EUV wave front in the north direction are reliably traced, revealing generally compatible propagation velocities in both perspectives and a velocity ratio of about 1/3. When the wave front encounters a coronal cavity near the northern polar coronal hole, the trailing edge of the front stops while its leading edge just shows a small gap and extends over the cavity, meanwhile getting significantly decelerated but intensified. We propose that the trailing edge and the leading edge of the northward propagating wave front correspond to a non-wave coronal mass ejection component and a fast-mode magnetohydrodynamic wave component, respectively. The interaction of the fast-mode wave and the coronal cavity may involve a mode conversion process, through which part of the fast-mode wave is converted to a slow-mode wave that is trapped along the magnetic field lines. This scenario can reasonably account for the unusual behavior of the wave front over the coronal cavity.

  1. Theoretical and Experimental Analysis of Fast Neutron Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Van Dam, H.; Kleijn, H. R. [Reactor Instituut, Delft (Netherlands)

    1968-04-15

    The reactor physics division of the Inter-Academic Reactor Institute at Delft is concentrating its efforts in the field of fast reactor physics on problems of a more fundamental nature. The object of the programme is to determine experimentally a number of microscopic reactor physics parameters such as conversion potentials, fission ratios and Doppler coefficients for simple geometries and material compositions. Because of the extreme importance of knowledge of the neutron spectrum for the interpretation of the results, attention has initially been concentrated on both the measurement and the calculation of fast neutron spectra. The transport of neutrons in absorbing and non-absorbing heavy atom materials is studied by solving the Boltzmann equation. Both isotropic and anisotropic scattering are considered. Anisotropic scattering is treated by the P{sub n}-approximation, while flux-anisotropy is handled with the S{sub N}-method. In the code FAST-DELFT, scattering is treated up to the P{sub 4} component, a further extension of which is useless because of the lack of available cross-section data. By using this method, the effect of scattering anisotropy on the spectrum formation has been studied. In addition the influence of group cross-section inaccuracies was determined. The experimental work has been concentrated on methods to determine in-core spectra. Using home-made proportional counters with gamma-ray discrimination provisions fast neutron spectra have been measured in simple geometries. These experiments were complemented by foil measurements in the lower energy region. The results of this work are presented in this paper. (author)

  2. Long-lasting injection of solar energetic electrons into the heliosphere

    Science.gov (United States)

    Dresing, N.; Gómez-Herrero, R.; Heber, B.; Klassen, A.; Temmer, M.; Veronig, A.

    2018-05-01

    Context. The main sources of solar energetic particle (SEP) events are solar flares and shocks driven by coronal mass ejections (CMEs). While it is generally accepted that energetic protons can be accelerated by shocks, whether or not these shocks can also efficiently accelerate solar energetic electrons is still debated. In this study we present observations of the extremely widespread SEP event of 26 Dec 2013 To the knowledge of the authors, this is the widest longitudinal SEP distribution ever observed together with unusually long-lasting energetic electron anisotropies at all observer positions. Further striking features of the event are long-lasting SEP intensity increases, two distinct SEP components with the second component mainly consisting of high-energy particles, a complex associated coronal activity including a pronounced signature of a shock in radio type-II observations, and the interaction of two CMEs early in the event. Aims: The observations require a prolonged injection scenario not only for protons but also for electrons. We therefore analyze the data comprehensively to characterize the possible role of the shock for the electron event. Methods: Remote-sensing observations of the complex solar activity are combined with in situ measurements of the particle event. We also apply a graduated cylindrical shell (GCS) model to the coronagraph observations of the two associated CMEs to analyze their interaction. Results: We find that the shock alone is likely not responsible for this extremely wide SEP event. Therefore we propose a scenario of trapped energetic particles inside the CME-CME interaction region which undergo further acceleration due to the shock propagating through this region, stochastic acceleration, or ongoing reconnection processes inside the interaction region. The origin of the second component of the SEP event is likely caused by a sudden opening of the particle trap.

  3. Helio-Geomagnetic Activity and the Time Distribution of Myocardial Infractions during the Solar Cycle 23 (1997-2007). A Preliminary Study based on a Greek Hospital Data

    Science.gov (United States)

    Moussas, X.; Preka-Papadema, P.; Apostolou, Th.; Katsavrias, Ch.; Theodoropoulou, A.; Papadima, Th.

    2010-01-01

    We present the time distribution of a large number (7798) of Myocardial Infractions (MI) recorded at the General Hospital `St. Panteleimon' of the city of Nikea (in Piraeus, Greece), during time interval 1997-2007. This data set consisted of 5160 NON-STEACS (non-ST) and 2638 STEACS (ST) infractions are examined along with the monthly numbers of solar flares and Coronal Mass Ejections (CMEs), solar wind parameters and the geomagnetic activity (Dst geomagnetic index and other). The mean monthly value of ST and non-ST events is 20 and 40 respectively. The maximum monthly value of non-ST events (72 and 73) are recorded in October 2002 and January 2003, as well as the one of ST events (32), while solar maximum, recorded in November 2002. This time interval is characterized by magnetic storms from August 2002 peaked in October 2002 and ended in February 2003. It is noticeable that August 2002 corresponds to the solar maximum of CMEs and strong solar flares monthly values. The maximum monthly value of ST events (40) is recorded in November 2005 almost simultaneously with a sudden absence of solar flares (October 2005). Increased values have been recorded during a period of extreme solar events of October-November 2003 and January-March 2005. It seems from this extensive statistical study that there is an association between the monthly values of MI and of CMEs; the non-ST MI shows a better association with CMEs. Moreover, the MI yearly distribution is in accordance with the time distribution of magnetic storms (number and duration). The non-ST distribution is also affected by intense magnetic storms.

  4. High-resolution stochastic generation of extreme rainfall intensity for urban drainage modelling applications

    Science.gov (United States)

    Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo

    2016-04-01

    Urban drainage response is highly dependent on the spatial and temporal structure of rainfall. Therefore, measuring and simulating rainfall at a high spatial and temporal resolution is a fundamental step to fully assess urban drainage system reliability and related uncertainties. This is even more relevant when considering extreme rainfall events. However, the current space-time rainfall models have limitations in capturing extreme rainfall intensity statistics for short durations. Here, we use the STREAP (Space-Time Realizations of Areal Precipitation) model, which is a novel stochastic rainfall generator for simulating high-resolution rainfall fields that preserve the spatio-temporal structure of rainfall and its statistical characteristics. The model enables a generation of rain fields at 102 m and minute scales in a fast and computer-efficient way matching the requirements for hydrological analysis of urban drainage systems. The STREAP model was applied successfully in the past to generate high-resolution extreme rainfall intensities over a small domain. A sub-catchment in the city of Luzern (Switzerland) was chosen as a case study to: (i) evaluate the ability of STREAP to disaggregate extreme rainfall intensities for urban drainage applications; (ii) assessing the role of stochastic climate variability of rainfall in flow response and (iii) evaluate the degree of non-linearity between extreme rainfall intensity and system response (i.e. flow) for a small urban catchment. The channel flow at the catchment outlet is simulated by means of a calibrated hydrodynamic sewer model.

  5. The First Prototype for the FastTracker Processing Unit

    CERN Document Server

    Andreani, A; The ATLAS collaboration; Beretta, M; Bogdan, M; Citterio, M; Alberti, F; Giannetti, P; Lanza, A; Magalotti, D; Piendibene, M; Shochet, M; Stabile, A; Tang, J; Tompkins, L

    2012-01-01

    Modern experiments search for extremely rare processes hidden in much larger background levels. As the experiment complexity and the accelerator backgrounds and luminosity increase we need increasingly complex and exclusive selections. We present the first prototype of a new Processing Unit, the core of the FastTracker processor for Atlas, whose computing power is such that a couple of hundreds of them will be able to reconstruct all the tracks with transverse momentum above 1 GeV in the ATLAS events up to Phase II instantaneous luminosities (5×1034 cm-2 s-1) with an event input rate of 100 kHz and a latency below hundreds of microseconds. We plan extremely powerful, very compact and low consumption units for the far future, essential to increase efficiency and purity of the Level 2 selected samples through the intensive use of tracking. This strategy requires massive computing power to minimize the online execution time of complex tracking algorithms. The time consuming pattern recognition problem, generall...

  6. The Fast-Casual Conundrum: Fast-Casual Restaurant Entrées Are Higher in Calories than Fast Food.

    Science.gov (United States)

    Schoffman, Danielle E; Davidson, Charis R; Hales, Sarah B; Crimarco, Anthony E; Dahl, Alicia A; Turner-McGrievy, Gabrielle M

    2016-10-01

    Frequently eating fast food has been associated with consuming a diet high in calories, and there is a public perception that fast-casual restaurants (eg, Chipotle) are healthier than traditional fast food (eg, McDonald's). However, research has not examined whether fast-food entrées and fast-casual entrées differ in calorie content. The purpose of this study was to determine whether the caloric content of entrées at fast-food restaurants differed from that found at fast-casual restaurants. This study was a cross-sectional analysis of secondary data. Calorie information from 2014 for lunch and dinner entrées for fast-food and fast-casual restaurants was downloaded from the MenuStat database. Mean calories per entrée between fast-food restaurants and fast-casual restaurants and the proportion of restaurant entrées that fell into different calorie ranges were assessed. A t test was conducted to test the hypothesis that there was no difference between the average calories per entrée at fast-food and fast-casual restaurants. To examine the difference in distribution of entrées in different calorie ranges between fast-food and fast-casual restaurants, χ(2) tests were used. There were 34 fast-food and 28 fast-casual restaurants included in the analysis (n=3,193 entrées). Fast-casual entrées had significantly more calories per entrée (760±301 kcal) than fast-food entrées (561±268; Prestaurants to determine whether the energy content or nutrient density of full meals (ie, entrées with sides and drinks) differs between fast-casual restaurants and fast-food restaurants. Calorie-conscious consumers should consider the calorie content of entrée items before purchase, regardless of restaurant type. Copyright © 2016 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  7. A Fast Monte Carlo Simulation for the International Linear Collider Detector

    International Nuclear Information System (INIS)

    Furse, D.

    2005-01-01

    The following paper contains details concerning the motivation for, implementation and performance of a Java-based fast Monte Carlo simulation for a detector designed to be used in the International Linear Collider. This simulation, presently included in the SLAC ILC group's org.lcsim package, reads in standard model or SUSY events in STDHEP file format, stochastically simulates the blurring in physics measurements caused by intrinsic detector error, and writes out an LCIO format file containing a set of final particles statistically similar to those that would have found by a full Monte Carlo simulation. In addition to the reconstructed particles themselves, descriptions of the calorimeter hit clusters and tracks that these particles would have produced are also included in the LCIO output. These output files can then be put through various analysis codes in order to characterize the effectiveness of a hypothetical detector at extracting relevant physical information about an event. Such a tool is extremely useful in preliminary detector research and development, as full simulations are extremely cumbersome and taxing on processor resources; a fast, efficient Monte Carlo can facilitate and even make possible detector physics studies that would be very impractical with the full simulation by sacrificing what is in many cases inappropriate attention to detail for valuable gains in time required for results

  8. Extremely Preterm Birth

    Science.gov (United States)

    ... Events Advocacy For Patients About ACOG Extremely Preterm Birth Home For Patients Search FAQs Extremely Preterm Birth ... Spanish FAQ173, June 2016 PDF Format Extremely Preterm Birth Pregnancy When is a baby considered “preterm” or “ ...

  9. Role of preoperative pain, muscle function, and activity level in discharge readiness after fast-track hip and knee arthroplasty

    DEFF Research Database (Denmark)

    Holm, Bente; Bandholm, Thomas; Lunn, Troels Haxholdt

    2014-01-01

    therefore investigated the role of preoperative pain and functional characteristics in discharge readiness and actual LOS in fast-track THA and TKA. METHODS: Before surgery, hip pain (THA) or knee pain (TKA), lower-extremity muscle power, functional performance, and physical activity were assessed...

  10. Interfacial effects in fast reactors

    International Nuclear Information System (INIS)

    Saidi, M.S.; Driscoll, M.J.

    1979-05-01

    The problem of increased resonance capture rates near zone interfaces in fast reactor media has been examined both theoretically and experimentally. An interface traversing assembly was designed, constructed and employed to measure U-238 capture rates near th blanket--reflector interface in the MIT Blanket Test Facility. Prior MIT experiments on a thorium--uranium interface in a blanket assembly were also reanalyzed. Extremely localized fertile capture rate increases of on the order of 50% were measured immediately at the interfaces relative to extrapolation of asymptotic interior traverses, and relative to state-of-the-art (LIB-IV, SPHINX, ANISN/2DB) calculations which employ infinite-medium self-shielding throughout a given zone. A method was developed to compute a spatially varying background scattering cross section per absorber nucleus which takes into account both homogeneous and heterogeneous effects on the interface flux transient

  11. Mass Loss Rates of Fasting Polar Bears.

    Science.gov (United States)

    Pilfold, Nicholas W; Hedman, Daryll; Stirling, Ian; Derocher, Andrew E; Lunn, Nicholas J; Richardson, Evan

    2016-01-01

    Polar bears (Ursus maritimus) have adapted to an annual cyclic regime of feeding and fasting, which is extreme in seasonal sea ice regions of the Arctic. As a consequence of climate change, sea ice breakup has become earlier and the duration of the open-water period through which polar bears must rely on fat reserves has increased. To date, there is limited empirical data with which to evaluate the potential energetic capacity of polar bears to withstand longer fasts. We measured the incoming and outgoing mass of inactive polar bears (n = 142) that were temporarily detained by Manitoba Conservation and Water Stewardship during the open-water period near the town of Churchill, Manitoba, Canada, in 2009-2014. Polar bears were given access to water but not food and held for a median length of 17 d. Median mass loss rates were 1.0 kg/d, while median mass-specific loss rates were 0.5%/d, similar to other species with high adiposity and prolonged fasting capacities. Mass loss by unfed captive adult males was identical to that lost by free-ranging individuals, suggesting that terrestrial feeding contributes little to offset mass loss. The inferred metabolic rate was comparable to a basal mammalian rate, suggesting that while on land, polar bears can maintain a depressed metabolic rate to conserve energy. Finally, we estimated time to starvation for subadults and adult males for the on-land period. Results suggest that at 180 d of fasting, 56%-63% of subadults and 18%-24% of adult males in this study would die of starvation. Results corroborate previous assessments on the limits of polar bear capacity to withstand lengthening ice-free seasons and emphasize the greater sensitivity of subadults to changes in sea ice phenology.

  12. Extreme environment electronics

    CERN Document Server

    Cressler, John D

    2012-01-01

    Unfriendly to conventional electronic devices, circuits, and systems, extreme environments represent a serious challenge to designers and mission architects. The first truly comprehensive guide to this specialized field, Extreme Environment Electronics explains the essential aspects of designing and using devices, circuits, and electronic systems intended to operate in extreme environments, including across wide temperature ranges and in radiation-intense scenarios such as space. The Definitive Guide to Extreme Environment Electronics Featuring contributions by some of the world's foremost exp

  13. Dimensional changes in FFTF [Fast Flux Test Facility] austenitic cladding and ducts

    International Nuclear Information System (INIS)

    Makenas, B.J.; Chastain, S.A.; Gneiting, B.C.

    1990-11-01

    As the standard cladding and duct material for the Fast Flux Test Facility driver fuel, 20% cold-worked 316 stainless steel has provided good service up to a fast fluence of 16 x 10 22 n/cm 2 in extreme cases. The titanium-stabilized variant of 316 SS, called D9, has extended the useful life of the austenitic alloys by increasing the incubation fluence necessary for the onset of volumetric swelling. Duct flat-to-flat, length and bow, pin bundle distortion, fuel pin diameter and length, as well as cladding volumetric swelling have been examined for high fluence components representing both alloys. These data emphasize the importance of the swelling process, the superiority of D9, and the interrelation between deformations in the duct, bundle, and individual pins. 8 refs., 10 figs

  14. Electron Generation and Transport in Intense Relativistic Laser-Plasma Interactions Relevant to Fast Ignition ICF

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Tammy Yee Wing [Univ. of California, San Diego, CA (United States)

    2010-01-01

    The reentrant cone approach to Fast Ignition, an advanced Inertial Confinement Fusion scheme, remains one of the most attractive because of the potential to efficiently collect and guide the laser light into the cone tip and direct energetic electrons into the high density core of the fuel. However, in the presence of a preformed plasma, the laser energy is largely absorbed before it can reach the cone tip. Full scale fast ignition laser systems are envisioned to have prepulses ranging between 100 mJ to 1 J. A few of the imperative issues facing fast ignition, then, are the conversion efficiency with which the laser light is converted to hot electrons, the subsequent transport characteristics of those electrons, and requirements for maximum allowable prepulse this may put on the laser system. This dissertation examines the laser-to-fast electron conversion efficiency scaling with prepulse for cone-guided fast ignition. Work in developing an extreme ultraviolet imager diagnostic for the temperature measurements of electron-heated targets, as well as the validation of the use of a thin wire for simultaneous determination of electron number density and electron temperature will be discussed.

  15. SUN-TO-EARTH CHARACTERISTICS OF TWO CORONAL MASS EJECTIONS INTERACTING NEAR 1 AU: FORMATION OF A COMPLEX EJECTA AND GENERATION OF A TWO-STEP GEOMAGNETIC STORM

    International Nuclear Information System (INIS)

    Liu, Ying D.; Yang, Zhongwei; Wang, Rui; Luhmann, Janet G.; Richardson, John D.; Lugaz, Noé

    2014-01-01

    On 2012 September 30-October 1 the Earth underwent a two-step geomagnetic storm. We examine the Sun-to-Earth characteristics of the coronal mass ejections (CMEs) responsible for the geomagnetic storm with combined heliospheric imaging and in situ observations. The first CME, which occurred on 2012 September 25, is a slow event and shows an acceleration followed by a nearly invariant speed in the whole Sun-Earth space. The second event, launched from the Sun on 2012 September 27, exhibits a quick acceleration, then a rapid deceleration, and finally a nearly constant speed, a typical Sun-to-Earth propagation profile for fast CMEs. These two CMEs interacted near 1 AU as predicted by the heliospheric imaging observations and formed a complex ejecta observed at Wind, with a shock inside that enhanced the pre-existing southward magnetic field. Reconstruction of the complex ejecta with the in situ data indicates an overall left-handed flux-rope-like configuration with an embedded concave-outward shock front, a maximum magnetic field strength deviating from the flux rope axis, and convex-outward field lines ahead of the shock. While the reconstruction results are consistent with the picture of CME-CME interactions, a magnetic cloud-like structure without clear signs of CME interactions is anticipated when the merging process is finished

  16. SUN-TO-EARTH CHARACTERISTICS OF TWO CORONAL MASS EJECTIONS INTERACTING NEAR 1 AU: FORMATION OF A COMPLEX EJECTA AND GENERATION OF A TWO-STEP GEOMAGNETIC STORM

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying D.; Yang, Zhongwei; Wang, Rui [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Luhmann, Janet G. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Richardson, John D. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Lugaz, Noé, E-mail: liuxying@spaceweather.ac.cn [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States)

    2014-10-01

    On 2012 September 30-October 1 the Earth underwent a two-step geomagnetic storm. We examine the Sun-to-Earth characteristics of the coronal mass ejections (CMEs) responsible for the geomagnetic storm with combined heliospheric imaging and in situ observations. The first CME, which occurred on 2012 September 25, is a slow event and shows an acceleration followed by a nearly invariant speed in the whole Sun-Earth space. The second event, launched from the Sun on 2012 September 27, exhibits a quick acceleration, then a rapid deceleration, and finally a nearly constant speed, a typical Sun-to-Earth propagation profile for fast CMEs. These two CMEs interacted near 1 AU as predicted by the heliospheric imaging observations and formed a complex ejecta observed at Wind, with a shock inside that enhanced the pre-existing southward magnetic field. Reconstruction of the complex ejecta with the in situ data indicates an overall left-handed flux-rope-like configuration with an embedded concave-outward shock front, a maximum magnetic field strength deviating from the flux rope axis, and convex-outward field lines ahead of the shock. While the reconstruction results are consistent with the picture of CME-CME interactions, a magnetic cloud-like structure without clear signs of CME interactions is anticipated when the merging process is finished.

  17. Formation of Radio Type II Bursts During a Multiple Coronal Mass Ejection Event

    Science.gov (United States)

    Al-Hamadani, Firas; Pohjolainen, Silja; Valtonen, Eino

    2017-12-01

    We study the solar event on 27 September 2001 that consisted of three consecutive coronal mass ejections (CMEs) originating from the same active region, which were associated with several periods of radio type II burst emission at decameter-hectometer (DH) wavelengths. Our analysis shows that the first radio burst originated from a low-density environment, formed in the wake of the first, slow CME. The frequency-drift of the burst suggests a low-speed burst driver, or that the shock was not propagating along the large density gradient. There is also evidence of band-splitting within this emission lane. The origin of the first shock remains unclear, as several alternative scenarios exist. The second shock showed separate periods of enhanced radio emission. This shock could have originated from a CME bow shock, caused by the fast and accelerating second or third CME. However, a shock at CME flanks is also possible, as the density depletion caused by the three CMEs would have affected the emission frequencies and hence the radio source heights could have been lower than usual. The last type II burst period showed enhanced emission in a wider bandwidth, which was most probably due to the CME-CME interaction. Only one shock that could reliably be associated with the investigated CMEs was observed to arrive near Earth.

  18. Fast Convolution Module (Fast Convolution Module)

    National Research Council Canada - National Science Library

    Bierens, L

    1997-01-01

    This report describes the design and realisation of a real-time range azimuth compression module, the so-called 'Fast Convolution Module', based on the fast convolution algorithm developed at TNO-FEL...

  19. A fast-time-response extreme ultraviolet spectrometer for measurement of impurity line emissions in the Experimental Advanced Superconducting Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ling; Xu, Zong; Wu, Zhenwei; Zhang, Pengfei; Wu, Chengrui; Gao, Wei; Shen, Junsong; Chen, Yingjie; Liu, Xiang; Wang, Yumin; Gong, Xianzu; Hu, Liqun; Chen, Junlin; Zhang, Xiaodong; Wan, Baonian; Li, Jiangang [Institute of Plasma Physics Chinese Academy of Sciences, Hefei 230026, Anhui (China); Morita, Shigeru; Ohishi, Tetsutarou; Goto, Motoshi [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); Dong, Chunfeng [Southwestern Institute of Physics, Chengdu 610041, Sichuan (China); and others

    2015-12-15

    A flat-field extreme ultraviolet (EUV) spectrometer working in the 20-500 Å wavelength range with fast time response has been newly developed to measure line emissions from highly ionized tungsten in the Experimental Advanced Superconducting Tokamak (EAST) with a tungsten divertor, while the monitoring of light and medium impurities is also an aim in the present development. A flat-field focal plane for spectral image detection is made by a laminar-type varied-line-spacing concave holographic grating with an angle of incidence of 87°. A back-illuminated charge-coupled device (CCD) with a total size of 26.6 × 6.6 mm{sup 2} and pixel numbers of 1024 × 255 (26 × 26 μm{sup 2}/pixel) is used for recording the focal image of spectral lines. An excellent spectral resolution of Δλ{sub 0} = 3-4 pixels, where Δλ{sub 0} is defined as full width at the foot position of a spectral line, is obtained at the 80-400 Å wavelength range after careful adjustment of the grating and CCD positions. The high signal readout rate of the CCD can improve the temporal resolution of time-resolved spectra when the CCD is operated in the full vertical binning mode. It is usually operated at 5 ms per frame. If the vertical size of the CCD is reduced with a narrow slit, the time response becomes faster. The high-time response in the spectral measurement therefore makes possible a variety of spectroscopic studies, e.g., impurity behavior in long pulse discharges with edge-localized mode bursts. An absolute intensity calibration of the EUV spectrometer is also carried out with a technique using the EUV bremsstrahlung continuum at 20-150 Å for quantitative data analysis. Thus, the high-time resolution tungsten spectra have been successfully observed with good spectral resolution using the present EUV spectrometer system. Typical tungsten spectra in the EUV wavelength range observed from EAST discharges are presented with absolute intensity and spectral identification.

  20. The fast food and obesity link: consumption patterns and severity of obesity.

    Science.gov (United States)

    Garcia, Ginny; Sunil, Thankam S; Hinojosa, Pedro

    2012-05-01

    Rates of extreme forms of obesity are rapidly rising, as is the use of bariatric surgery for its treatment. The aim of the present study was to examine selected behavioral factors associated with severity of obesity among preoperative bariatric surgery patients in the San Antonio area, focusing specifically on the effects of fast food consumption. We used ordered logistic regression to model behavioral and attitudinal effects on obesity outcomes among 270 patients. These outcomes were based on the severity of obesity and were measured on the basis of body mass index. Our results indicated that, among the behavioral factors, fast food consumption exerted the largest influence on higher levels of obesity. These remained after controlling for several social and demographic characteristics. Our findings suggest that higher rates of fast food consumption are connected to the increasing rates of severe obesity. Given that morbid and super morbid obesity rates are growing at a more advanced pace than moderate obesity, it is necessary to explore the behavioral characteristics associated with these trends.

  1. Detection of Coronal Mass Ejections Using Multiple Features and Space-Time Continuity

    Science.gov (United States)

    Zhang, Ling; Yin, Jian-qin; Lin, Jia-ben; Feng, Zhi-quan; Zhou, Jin

    2017-07-01

    Coronal Mass Ejections (CMEs) release tremendous amounts of energy in the solar system, which has an impact on satellites, power facilities and wireless transmission. To effectively detect a CME in Large Angle Spectrometric Coronagraph (LASCO) C2 images, we propose a novel algorithm to locate the suspected CME regions, using the Extreme Learning Machine (ELM) method and taking into account the features of the grayscale and the texture. Furthermore, space-time continuity is used in the detection algorithm to exclude the false CME regions. The algorithm includes three steps: i) define the feature vector which contains textural and grayscale features of a running difference image; ii) design the detection algorithm based on the ELM method according to the feature vector; iii) improve the detection accuracy rate by using the decision rule of the space-time continuum. Experimental results show the efficiency and the superiority of the proposed algorithm in the detection of CMEs compared with other traditional methods. In addition, our algorithm is insensitive to most noise.

  2. Fast and powerful hashing using tabulation

    DEFF Research Database (Denmark)

    Thorup, Mikkel

    2017-01-01

    Randomized algorithms are often enjoyed for their simplicity, but the hash functions employed to yield the desired probabilistic guarantees are often too complicated to be practical. Here, we survey recent results on how simple hashing schemes based on tabulation provide unexpectedly strong......, linear probing and Cuckoo hashing. Next, we consider twisted tabulation where one input character is "twisted" in a simple way. The resulting hash function has powerful distributional properties: Chernoffstyle tail bounds and a very small bias for minwise hashing. This is also yields an extremely fast...... pseudorandom number generator that is provably good for many classic randomized algorithms and data-structures. Finally, we consider double tabulation where we compose two simple tabulation functions, applying one to the output of the other, and show that this yields very high independence in the classic...

  3. Fast instrumentation for loss of coolant accident (LOCA) experimental studies pertaining to nuclear reactors

    International Nuclear Information System (INIS)

    Venkat Raj, V.; Sreenivas Rao, G.; Belokar, D.G.; Dolas, P.K.

    1989-01-01

    The loss of coolant accident (LOCA) which involves a breach in the pressure boundary of the primary coolant system (PCS) is one of the postulated accident conditions against which the safety of the reactor system is to be ensured. Mathematical models have been developed to analyse this kind of transients. However, because of the extremely complicated nature of the phenomena involved, it is necessary to validate the analytical models with appropriate experimental data. Many parameters are to be measured during the experiments, out of which temperature, pressure, void fraction and two-phase mass flow rate are the most important parameters. Since the phenomenon is very fast, special fast response instruments are required. This paper deals with the considerations that govern the selection of appropriate instruments and the development of suitable instruments for transient two-phase flow and void fraction measurements. The requirements of the associated fast data acquisition system are also discussed. (author). 4 figs

  4. Extreme Scale Computing for First-Principles Plasma Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Choogn-Seock [Princeton University

    2011-10-12

    World superpowers are in the middle of the “Computnik” race. US Department of Energy (and National Nuclear Security Administration) wishes to launch exascale computer systems into the scientific (and national security) world by 2018. The objective is to solve important scientific problems and to predict the outcomes using the most fundamental scientific laws, which would not be possible otherwise. Being chosen into the next “frontier” group can be of great benefit to a scientific discipline. An extreme scale computer system requires different types of algorithms and programming philosophy from those we have been accustomed to. Only a handful of scientific codes are blessed to be capable of scalable usage of today’s largest computers in operation at petascale (using more than 100,000 cores concurrently). Fortunately, a few magnetic fusion codes are competing well in this race using the “first principles” gyrokinetic equations.These codes are beginning to study the fusion plasma dynamics in full-scale realistic diverted device geometry in natural nonlinear multiscale, including the large scale neoclassical and small scale turbulence physics, but excluding some ultra fast dynamics. In this talk, most of the above mentioned topics will be introduced at executive level. Representative properties of the extreme scale computers, modern programming exercises to take advantage of them, and different philosophies in the data flows and analyses will be presented. Examples of the multi-scale multi-physics scientific discoveries made possible by solving the gyrokinetic equations on extreme scale computers will be described. Future directions into “virtual tokamak experiments” will also be discussed.

  5. Extreme cosmos

    CERN Document Server

    Gaensler, Bryan

    2011-01-01

    The universe is all about extremes. Space has a temperature 270°C below freezing. Stars die in catastrophic supernova explosions a billion times brighter than the Sun. A black hole can generate 10 million trillion volts of electricity. And hypergiants are stars 2 billion kilometres across, larger than the orbit of Jupiter. Extreme Cosmos provides a stunning new view of the way the Universe works, seen through the lens of extremes: the fastest, hottest, heaviest, brightest, oldest, densest and even the loudest. This is an astronomy book that not only offers amazing facts and figures but also re

  6. Holography for fast reactor inspection

    International Nuclear Information System (INIS)

    Tozer, B.A.

    1980-01-01

    Holography, an optical process whereby an image of the original subject can be reconstructed in three dimensions, is being developed for use as an optical inspection tool. With a potential information storage density of 10 16 bits/m 2 , the ability to reconstruct in 3 dimensions, a depth of field of up to 8 metres, extremely wide angle of view, and potentially diffraction limited resolution, holography should be invaluable for the optical recording of fast reactors during construction, and the inspection of optically accessible regions during operation, or maintenance down-times. The photographic emulsions used for high resolution holography are fine-grained and fog only very slowly when subjected to γ-radiation, so that inspection of highly radio-active regions and components can be effected satisfactorily. Some of the practical limitations affecting holography are described and ways of overcoming them discussed. Some preliminary results are presented. (author)

  7. Magnetogram Forecast: An All-Clear Space Weather Forecasting System

    Science.gov (United States)

    Barghouty, Nasser; Falconer, David

    2015-01-01

    Solar flares and coronal mass ejections (CMEs) are the drivers of severe space weather. Forecasting the probability of their occurrence is critical in improving space weather forecasts. The National Oceanic and Atmospheric Administration (NOAA) currently uses the McIntosh active region category system, in which each active region on the disk is assigned to one of 60 categories, and uses the historical flare rates of that category to make an initial forecast that can then be adjusted by the NOAA forecaster. Flares and CMEs are caused by the sudden release of energy from the coronal magnetic field by magnetic reconnection. It is believed that the rate of flare and CME occurrence in an active region is correlated with the free energy of an active region. While the free energy cannot be measured directly with present observations, proxies of the free energy can instead be used to characterize the relative free energy of an active region. The Magnetogram Forecast (MAG4) (output is available at the Community Coordinated Modeling Center) was conceived and designed to be a databased, all-clear forecasting system to support the operational goals of NASA's Space Radiation Analysis Group. The MAG4 system automatically downloads nearreal- time line-of-sight Helioseismic and Magnetic Imager (HMI) magnetograms on the Solar Dynamics Observatory (SDO) satellite, identifies active regions on the solar disk, measures a free-energy proxy, and then applies forecasting curves to convert the free-energy proxy into predicted event rates for X-class flares, M- and X-class flares, CMEs, fast CMEs, and solar energetic particle events (SPEs). The forecast curves themselves are derived from a sample of 40,000 magnetograms from 1,300 active region samples, observed by the Solar and Heliospheric Observatory Michelson Doppler Imager. Figure 1 is an example of MAG4 visual output

  8. Fast Mechanically Driven Daughter Cell Separation Is Widespread in Actinobacteria

    Directory of Open Access Journals (Sweden)

    Xiaoxue Zhou

    2016-08-01

    Full Text Available Dividing cells of the coccoid Gram-positive bacterium Staphylococcus aureus undergo extremely rapid (millisecond daughter cell separation (DCS driven by mechanical crack propagation, a strategy that is very distinct from the gradual, enzymatically driven cell wall remodeling process that has been well described in several rod-shaped model bacteria. To determine if other bacteria, especially those in the same phylum (Firmicutes or with similar coccoid shapes as S. aureus, might use a similar mechanically driven strategy for DCS, we used high-resolution video microscopy to examine cytokinesis in a phylogenetically wide range of species with various cell shapes and sizes. We found that fast mechanically driven DCS is rather rare in the Firmicutes (low G+C Gram positives, observed only in Staphylococcus and its closest coccoid relatives in the Macrococcus genus, and we did not observe this division strategy among the Gram-negative Proteobacteria. In contrast, several members of the high-G+C Gram-positive phylum Actinobacteria (Micrococcus luteus, Brachybacterium faecium, Corynebacterium glutamicum, and Mycobacterium smegmatis with diverse shapes ranging from coccoid to rod all undergo fast mechanical DCS during cell division. Most intriguingly, similar fast mechanical DCS was also observed during the sporulation of the actinobacterium Streptomyces venezuelae.

  9. The O+ contribution and role on the ring current pressure development for CMEs and CIRs using Van Allen Probes observations

    Science.gov (United States)

    Mouikis, C.; Bingham, S.; Kistler, L. M.; Farrugia, C. J.; Spence, H. E.; Gkioulidou, M.

    2016-12-01

    The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), co-rotating interaction regions (CIR's), high-speed streamers and other structures. The resulting changes in the ring current particle pressure change the global magnetic field, which affects the transport of the radiation belts. In order to determine the field changes during a storm, it is necessary to understand the transport, sources and losses of the particles that contribute to the ring current. The source population of the storm time ring current is the night side plasma sheet. We use Van Allen Probes observations to determine the ring current pressure contribution of the convecting plasma sheet H+ and O+ particles in the storm time development of the ring current. We compare storms that are related to different interplanetary drivers, CMEs and CIRs, as observed at different local times. We find that during the storm main phase most of the ring current pressure in the pre-midnight inner magnetosphere is contributed by particles on open drift paths that cause the development of a strong partial ring current that causes most of the main phase Dst drop. These particles can reach as deep as L 2 and their pressure compares to the local magnetic field pressure as deep as L 3. During the recovery phase, if these particles are not lost at the magnetopause, will become trapped and will contribute to the symmetric ring current. However, the largest difference between the CME and CIR ring current responses during the storm main and early recovery phases is caused by how the 15 - 60 keV O+ responds to these drivers.

  10. Status of SACRD: a data base for fast reactor safety computer codes

    International Nuclear Information System (INIS)

    Greene, N.M.; Flanagan, G.F.; Alter, H.

    1982-01-01

    In 1975 work was initiated to provide a central computerized data collection of evaluated data for use in fast reactor safety computer codes. This data base is called SACRD and is intended to encompass handbook and other nonproblem-dependent data related to LMFBR's, especially at extreme conditions where little or no experimental data are available. Version 1 of the data base was released in the latter part of 1978 and remained the standard version until Version 81, which was released in October 1981

  11. UBVRc Ic ANALYSIS OF THE RECENTLY DISCOVERED TOTALLY ECLIPSING EXTREME MASS RATIO BINARY V1853 ORIONIS, AND A STATISTICAL LOOK AT 25 OTHER EXTREME MASS RATIO SOLAR-TYPE CONTACT BINARIES

    International Nuclear Information System (INIS)

    Samec, R. G.; Labadorf, C. M.; Hawkins, N. C.; Faulkner, D. R.; Van Hamme, W.

    2011-01-01

    We present precision CCD light curves, a period study, photometrically derived standard magnitudes, and a five-color simultaneous Wilson code solution of the totally eclipsing, yet shallow amplitude (A v ∼ 0.4 mag) eclipsing, binary V1853 Orionis. It is determined to be an extreme mass ratio, q = 0.20, W-type W UMa overcontact binary. From our standard star observations, we find that the variable is a late-type F spectral-type dwarf, with a secondary component of about 0.24 solar masses (stellar type M5V). Its long eclipse duration (41 minutes) as compared to its period, 0.383 days, attests to the small relative size of the secondary. Furthermore, it has reached a Roche lobe fill-out of ∼50% of its outer critical lobe as it approaches its final stages of binary star evolution, that of a fast spinning single star. Finally, a summary of about 25 extreme mass ratio solar-type binaries is given.

  12. Study of Solar Energetics (SEPs) Using Largely Separated Spacecraft

    Science.gov (United States)

    2016-10-29

    increasing flux, we doubled the time over which the data were averaged until an enhancement time emerged. If the data was very nois and there were no...three consecutive times with increasing flux, we doubled the time over which the data was averaged until an enhancement time emerged. The number of...by the piston -driven shock formation of fast CMEs and magnetic field 23 connectivity from the source site to the Earth. It is also shown that when

  13. Further outlooks: extremely uncomfortable; Die weiteren Aussichten: extrem ungemuetlich

    Energy Technology Data Exchange (ETDEWEB)

    Resenhoeft, T.

    2006-07-01

    Climate is changing extremely in the last decades. Scientists dealing with extreme weather, should not only stare at computer simulations. They have also to turn towards psyche, seriously personal experiences, knowing statistics, relativise supposed sensational reports and last not least collecting more data. (GL)

  14. Working with extreme urban density: Hong Kong. A prototype of mixed-use building in Hong Kong

    OpenAIRE

    Cheung, Wing-Chung; Varela, Joana

    2008-01-01

    Urban sprawl, a solution to house fast-growing metropolitan populations, dilutes the substance of cities and generates extensive uniformly built fabrics lacking structural poles of attraction. Hong Kong is one of the seldom exceptions of this general tendency. Constrained by its geographic conditions and its historical background, the city has remained compact and reached elevated levels of density. This extreme concentration of population and its impact upon urban form constitute an excellen...

  15. ULYSSES OBSERVATIONS OF THE MAGNETIC CONNECTIVITY BETWEEN CORONAL, MASS EJECTIONS AND THE SUN

    Science.gov (United States)

    Riley, Pete; Goslin, J. T.; Crooker, . U.

    2004-01-01

    We have investigated the magnetic connectivity of coronal mass ejections (CMEs) to the Sun using Ulysses observations of suprathermal electrons at various distances between 1 and 5.2 AU. Drawing on ideas concerning the eruption and evolution of CMEs, we had anticipated that there might be a tendency for CMEs to contain progressively more open field lines, as reconnection back at the Sun either opened or completely disconnected previously closed field lines threading the CMEs. Our results, however, did not yield any discernible trend. By combining the potential contribution of CMEs to the heliospheric flux with the observed buildup of flux during the course of the solar cycle, we also derive a lower limit for the reconnection rate of CMEs that is sufficient to avoid the "flux catastrophe" paradox. This rate is well below our threshold of detectability. Subject headings: solar wind - Sun: activity - Sun: corona - Sun: coronal mass ejections (CMEs) - On-line material: color figure Sun: magnetic fields

  16. FastChem: A computer program for efficient complex chemical equilibrium calculations in the neutral/ionized gas phase with applications to stellar and planetary atmospheres

    Science.gov (United States)

    Stock, Joachim W.; Kitzmann, Daniel; Patzer, A. Beate C.; Sedlmayr, Erwin

    2018-06-01

    For the calculation of complex neutral/ionized gas phase chemical equilibria, we present a semi-analytical versatile and efficient computer program, called FastChem. The applied method is based on the solution of a system of coupled nonlinear (and linear) algebraic equations, namely the law of mass action and the element conservation equations including charge balance, in many variables. Specifically, the system of equations is decomposed into a set of coupled nonlinear equations in one variable each, which are solved analytically whenever feasible to reduce computation time. Notably, the electron density is determined by using the method of Nelder and Mead at low temperatures. The program is written in object-oriented C++ which makes it easy to couple the code with other programs, although a stand-alone version is provided. FastChem can be used in parallel or sequentially and is available under the GNU General Public License version 3 at https://github.com/exoclime/FastChem together with several sample applications. The code has been successfully validated against previous studies and its convergence behavior has been tested even for extreme physical parameter ranges down to 100 K and up to 1000 bar. FastChem converges stable and robust in even most demanding chemical situations, which posed sometimes extreme challenges for previous algorithms.

  17. History and Development of Coronal Mass Ejections as a Key Player in Solar Terrestrial Relationship

    Science.gov (United States)

    Gopalswamy, N.

    2016-01-01

    Coronal mass ejections (CMEs) are relatively a recently discovered phenomenon in 1971, some 15 years into the Space Era. It took another two decades to realize that CMEs are the most important players in solar terrestrial relationship as the root cause of severe weather in Earths space environment. CMEs are now counted among the major natural hazards because they cause large solar energetic particle (SEP) events and major geomagnetic storms, both of which pose danger to humans and their technology in space and ground. Geomagnetic storms discovered in the 1700s, solar flares discovered in the 1800s, and SEP events discovered in the 1900s are all now found to be closely related to CMEs via various physical processes occurring at various locations in and around CMEs, when they interact with the ambient medium. This article identifies a number of key developments that preceded the discovery of white-light CMEs suggesting that CMEs were waiting to be discovered. The last two decades witnessed an explosion of CME research following the launch of the Solar and Heliospheric Observatory mission in 1995, resulting in the establishment of a full picture of CMEs.

  18. Legacies from extreme drought increase ecosystem sensitivity to future extremes

    Science.gov (United States)

    Smith, M. D.; Knapp, A.; Hoover, D. L.; Avolio, M. L.; Felton, A. J.; Wilcox, K. R.

    2016-12-01

    Climate extremes, such as drought, are increasing in frequency and intensity, and the ecological consequences of these extreme events can be substantial and widespread. Although there is still much to be learned about how ecosystems will respond to an intensification of drought, even less is known about the factors that determine post-drought recovery of ecosystem function. Such knowledge is particularly important because post-drought recovery periods can be protracted depending on the extent to which key plant populations, community structure and biogeochemical processes are affected. These drought legacies may alter ecosystem function for many years post-drought and may impact future sensitivity to climate extremes. We experimentally imposed two extreme growing season droughts in a central US grassland to assess the impacts of repeated droughts on ecosystem resistance (response) and resilience (recovery). We found that this grassland was not resistant to the first extreme drought due to reduced productivity and differential sensitivity of the co-dominant C4 grass (Andropogon gerardii) and C3 forb (Solidago canadensis) species. This differential sensitivity led to a reordering of species abundances within the plant community. Yet, despite this large shift in plant community composition, which persisted post-drought, the grassland was highly resilient post-drought, due to increased abundance of the dominant C4 grass. Because of this shift to increased C4 grass dominance, we expected that previously-droughted grassland would be more resistant to a second extreme drought. However, contrary to these expectations, previously droughted grassland was more sensitive to drought than grassland that had not experienced drought. Thus, our result suggest that legacies of drought (shift in community composition) may increase ecosystem sensitivity to future extreme events.

  19. Statistical Study of False Alarms of Geomagnetic Storms

    DEFF Research Database (Denmark)

    Leer, Kristoffer; Vennerstrøm, Susanne; Veronig, A.

    . A subset of these halo CMEs did not cause a geomagnetic storm the following four days and have therefore been considered as false alarms. The properties of these events are investigated and discussed here. Their statistics are compared to the geo-effective CMEs. The ability to identify potential false......Coronal Mass Ejections (CMEs) are known to cause geomagnetic storms on Earth. However, not all CMEs will trigger geomagnetic storms, even if they are heading towards the Earth. In this study, front side halo CMEs with speed larger than 500 km/s have been identified from the SOHO LASCO catalogue...

  20. Prior Flaring as a Complement to Free Magnetic Energy for Forecasting Solar Eruptions

    Science.gov (United States)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2012-01-01

    From a large database of (1) 40,000 SOHO/MDI line-of-sight magnetograms covering the passage of 1,300 sunspot active regions across the 30 deg radius central disk of the Sun, (2) a proxy of each active region's free magnetic energy measured from each of the active region's central-disk-passage magnetograms, and (3) each active region's full-disk-passage history of production of major flares and fast coronal mass ejections (CMEs), we find new statistical evidence that (1) there are aspects of an active region's magnetic field other than the free energy that are strong determinants of the active region's productivity of major flares and fast CMEs in the coming few days, (2) an active region's recent productivity of major flares, in addition to reflecting the amount of free energy in the active region, also reflects these other determinants of coming productivity of major eruptions, and (3) consequently, the knowledge of whether an active region has recently had a major flare, used in combination with the active region's free-energy proxy measured from a magnetogram, can greatly alter the forecast chance that the active region will have a major eruption in the next few days after the time of the magnetogram. The active-region magnetic conditions that, in addition to the free energy, are reflected by recent major flaring are presumably the complexity and evolution of the field.

  1. PRIOR FLARING AS A COMPLEMENT TO FREE MAGNETIC ENERGY FOR FORECASTING SOLAR ERUPTIONS

    International Nuclear Information System (INIS)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2012-01-01

    From a large database of (1) 40,000 SOHO/MDI line-of-sight magnetograms covering the passage of 1300 sunspot active regions across the 30° radius central disk of the Sun, (2) a proxy of each active region's free magnetic energy measured from each of the active region's central-disk-passage magnetograms, and (3) each active region's full-disk-passage history of production of major flares and fast coronal mass ejections (CMEs), we find new statistical evidence that (1) there are aspects of an active region's magnetic field other than the free energy that are strong determinants of the active region's productivity of major flares and fast CMEs in the coming few days; (2) an active region's recent productivity of major flares, in addition to reflecting the amount of free energy in the active region, also reflects these other determinants of coming productivity of major eruptions; and (3) consequently, the knowledge of whether an active region has recently had a major flare, used in combination with the active region's free-energy proxy measured from a magnetogram, can greatly alter the forecast chance that the active region will have a major eruption in the next few days after the time of the magnetogram. The active-region magnetic conditions that, in addition to the free energy, are reflected by recent major flaring are presumably the complexity and evolution of the field.

  2. Solar Flares, Type III Radio Bursts, Coronal Mass Ejections, and Energetic Particles

    Science.gov (United States)

    Cane, Hilary V.; Erickson, W. C.; Prestage, N. P.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    In this correlative study between greater than 20 MeV solar proton events, coronal mass ejections (CMEs), flares, and radio bursts it is found that essentially all of the proton events are preceded by groups of type III bursts and all are preceded by CMEs. These type III bursts (that are a flare phenomenon) usually are long-lasting, intense bursts seen in the low-frequency observations made from space. They are caused by streams of electrons traveling from close to the solar surface out to 1 AU. In most events the type III emissions extend into, or originate at, the time when type II and type IV bursts are reported (some 5 to 10 minutes after the start of the associated soft X-ray flare) and have starting frequencies in the 500 to approximately 100 MHz range that often get lower as a function of time. These later type III emissions are often not reported by ground-based observers, probably because of undue attention to type II bursts. It is suggested to call them type III-1. Type III-1 bursts have previously been called shock accelerated (SA) events, but an examination of radio dynamic spectra over an extended frequency range shows that the type III-1 bursts usually start at frequencies above any type II burst that may be present. The bursts sometimes continue beyond the time when type II emission is seen and, furthermore, sometimes occur in the absence of any type II emission. Thus the causative electrons are unlikely to be shock accelerated and probably originate in the reconnection regions below fast CMEs. A search did not find any type III-1 bursts that were not associated with CMEs. The existence of low-frequency type III bursts proves that open field lines extend from within 0.5 radius of the Sun into the interplanetary medium (the bursts start above 100 MHz, and such emission originates within 0.5 solar radius of the solar surface). Thus it is not valid to assume that only closed field lines exist in the flaring regions associated with CMEs and some

  3. Neighborhood fast food restaurants and fast food consumption: a national study.

    Science.gov (United States)

    Richardson, Andrea S; Boone-Heinonen, Janne; Popkin, Barry M; Gordon-Larsen, Penny

    2011-07-08

    Recent studies suggest that neighborhood fast food restaurant availability is related to greater obesity, yet few studies have investigated whether neighborhood fast food restaurant availability promotes fast food consumption. Our aim was to estimate the effect of neighborhood fast food availability on frequency of fast food consumption in a national sample of young adults, a population at high risk for obesity. We used national data from U.S. young adults enrolled in wave III (2001-02; ages 18-28) of the National Longitudinal Study of Adolescent Health (n = 13,150). Urbanicity-stratified multivariate negative binomial regression models were used to examine cross-sectional associations between neighborhood fast food availability and individual-level self-reported fast food consumption frequency, controlling for individual and neighborhood characteristics. In adjusted analysis, fast food availability was not associated with weekly frequency of fast food consumption in non-urban or low- or high-density urban areas. Policies aiming to reduce neighborhood availability as a means to reduce fast food consumption among young adults may be unsuccessful. Consideration of fast food outlets near school or workplace locations, factors specific to more or less urban settings, and the role of individual lifestyle attitudes and preferences are needed in future research.

  4. Neighborhood fast food restaurants and fast food consumption: A national study

    Directory of Open Access Journals (Sweden)

    Gordon-Larsen Penny

    2011-07-01

    Full Text Available Abstract Background Recent studies suggest that neighborhood fast food restaurant availability is related to greater obesity, yet few studies have investigated whether neighborhood fast food restaurant availability promotes fast food consumption. Our aim was to estimate the effect of neighborhood fast food availability on frequency of fast food consumption in a national sample of young adults, a population at high risk for obesity. Methods We used national data from U.S. young adults enrolled in wave III (2001-02; ages 18-28 of the National Longitudinal Study of Adolescent Health (n = 13,150. Urbanicity-stratified multivariate negative binomial regression models were used to examine cross-sectional associations between neighborhood fast food availability and individual-level self-reported fast food consumption frequency, controlling for individual and neighborhood characteristics. Results In adjusted analysis, fast food availability was not associated with weekly frequency of fast food consumption in non-urban or low- or high-density urban areas. Conclusions Policies aiming to reduce neighborhood availability as a means to reduce fast food consumption among young adults may be unsuccessful. Consideration of fast food outlets near school or workplace locations, factors specific to more or less urban settings, and the role of individual lifestyle attitudes and preferences are needed in future research.

  5. Performance of the AMBFTK board for the FastTracker processor for the ATLAS detector upgrade

    International Nuclear Information System (INIS)

    Alberti, F; Citterio, M; Liberali, V; Meroni, C; Andreani, A; Stabile, A; Annovi, A; Beretta, M; Crescioli, F; Dell'Orso, M; Piendibene, M; Volpi, G; Giannetti, P; Lanza, A; Magalotti, D; Sacco, I

    2013-01-01

    Modern experiments at hadron colliders search for extremely rare processes hidden in a very large background. As the experiment complexity and the accelerator backgrounds and luminosity increase we need increasingly complex and exclusive selections. The FastTracker (FTK) processor for the ATLAS experiment offers extremely powerful, very compact and low power consumption processing units for the future, which is essential for increased efficiency and purity in the Level 2 trigger selection through the intensive use of tracking. Pattern recognition is performed with Associative Memories (AM). The AMBFTK board and the AMchip04 integrated circuit have been designed specifically for this purpose. We report on the preliminary test results of the first prototypes of the AMBFTK board and of the AMchip04.

  6. Fetus, fasting, and festival: the persistent effects of in utero social shocks.

    Science.gov (United States)

    Chen, Xi

    2014-09-01

    The Fetal Origins Hypothesis (FOH), put forward in the epidemiological literature and later flourished in the economics literature, suggests that the time in utero is a critical period for human development. However, much attention has been paid to the consequences of fetal exposures to more extreme natural shocks, while less is known about fetal exposures to milder but more commonly experienced social shocks. Using two examples of under-nutrition due to mild social shocks, i.e. Ramadan fasting and festival overspending, this paper summarizes our current knowledge, especially the contribution from economics, and key challenges in exploring fetal exposures to milder social shocks. I also discuss the salient added value of identifying milder versus more extreme fetal shocks. Finally, implications are drawn on individual decisions and public policy to improve children's well-being before they are born or even before their mothers realize that they are pregnant.

  7. Fetus, Fasting, and Festival: The Persistent Effects of In Utero Social Shocks

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2014-09-01

    Full Text Available The Fetal Origins Hypothesis (FOH, put forward in the epidemiological literature and later flourished in the economics literature, suggests that the time in utero is a critical period for human development. However, much attention has been paid to the consequences of fetal exposures to more extreme natural shocks, while less is known about fetal exposures to milder but more commonly experienced social shocks. Using two examples of under-nutrition due to mild social shocks, i.e. Ramadan fasting and festival overspending, this paper summarizes our current knowledge, especially the contribution from economics, and key challenges in exploring fetal exposures to milder social shocks. I also discuss the salient added value of identifying milder versus more extreme fetal shocks. Finally, implications are drawn on individual decisions and public policy to improve children’s well-being before they are born or even before their mothers realize that they are pregnant.

  8. PROMINENCE ACTIVATION BY CORONAL FAST MODE SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takuya [Department of Astronomy, Kyoto University, Sakyo, Kyoto, 606-8502 (Japan); Asai, Ayumi [Unit of Synergetic Studies for Space, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Shibata, Kazunari, E-mail: takahashi@kwasan.kyoto-u.ac.jp [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan)

    2015-03-01

    An X5.4 class flare occurred in active region NOAA11429 on 2012 March 7. The flare was associated with a very fast coronal mass ejection (CME) with a velocity of over 2500 km s{sup −1}. In the images taken with the Solar Terrestrial Relations Observatory-B/COR1, a dome-like disturbance was seen to detach from an expanding CME bubble and propagated further. A Type-II radio burst was also observed at the same time. On the other hand, in extreme ultraviolet images obtained by the Solar Dynamic Observatory/Atmospheric Imaging Assembly (AIA), the expanding dome-like structure and its footprint propagating to the north were observed. The footprint propagated with an average speed of about 670 km s{sup −1} and hit a prominence located at the north pole and activated it. During the activation, the prominence was strongly brightened. On the basis of some observational evidence, we concluded that the footprint in AIA images and the ones in COR1 images are the same, that is, the MHD fast mode shock front. With the help of a linear theory, the fast mode Mach number of the coronal shock is estimated to be between 1.11 and 1.29 using the initial velocity of the activated prominence. Also, the plasma compression ratio of the shock is enhanced to be between 1.18 and 2.11 in the prominence material, which we consider to be the reason for the strong brightening of the activated prominence. The applicability of linear theory to the shock problem is tested with a nonlinear MHD simulation.

  9. Robust Matching Pursuit Extreme Learning Machines

    Directory of Open Access Journals (Sweden)

    Zejian Yuan

    2018-01-01

    Full Text Available Extreme learning machine (ELM is a popular learning algorithm for single hidden layer feedforward networks (SLFNs. It was originally proposed with the inspiration from biological learning and has attracted massive attentions due to its adaptability to various tasks with a fast learning ability and efficient computation cost. As an effective sparse representation method, orthogonal matching pursuit (OMP method can be embedded into ELM to overcome the singularity problem and improve the stability. Usually OMP recovers a sparse vector by minimizing a least squares (LS loss, which is efficient for Gaussian distributed data, but may suffer performance deterioration in presence of non-Gaussian data. To address this problem, a robust matching pursuit method based on a novel kernel risk-sensitive loss (in short KRSLMP is first proposed in this paper. The KRSLMP is then applied to ELM to solve the sparse output weight vector, and the new method named the KRSLMP-ELM is developed for SLFN learning. Experimental results on synthetic and real-world data sets confirm the effectiveness and superiority of the proposed method.

  10. Global patterns of NDVI-indicated vegetation extremes and their sensitivity to climate extremes

    International Nuclear Information System (INIS)

    Liu Guo; Liu Hongyan; Yin Yi

    2013-01-01

    Extremes in climate have significant impacts on ecosystems and are expected to increase under future climate change. Extremes in vegetation could capture such impacts and indicate the vulnerability of ecosystems, but currently have not received a global long-term assessment. In this study, a robust method has been developed to detect significant extremes (low values) in biweekly time series of global normalized difference vegetation index (NDVI) from 1982 to 2006 and thus to acquire a global pattern of vegetation extreme frequency. This pattern coincides with vegetation vulnerability patterns suggested by earlier studies using different methods over different time spans, indicating a consistent mechanism of regulation. Vegetation extremes were found to aggregate in Amazonia and in the semi-arid and semi-humid regions in low and middle latitudes, while they seldom occurred in high latitudes. Among the environmental variables studied, extreme low precipitation has the highest slope against extreme vegetation. For the eight biomes analyzed, these slopes are highest in temperate broadleaf forest and temperate grassland, suggesting a higher sensitivity in these environments. The results presented here contradict the hypothesis that vegetation in water-limited semi-arid and semi-humid regions might be adapted to drought and suggest that vegetation in these regions (especially temperate broadleaf forest and temperate grassland) is highly prone to vegetation extreme events under more severe precipitation extremes. It is also suggested here that more attention be paid to precipitation-induced vegetation changes than to temperature-induced events. (letter)

  11. Early warnings of extreme winds using the ECMWF Extreme Forecast Index

    OpenAIRE

    Petroliagis, Thomas I.; Pinson, Pierre

    2014-01-01

    The European FP7 SafeWind Project aims at developing research towards a European vision of wind power forecasting, which requires advanced meteorological support concerning extreme wind events. This study is focused mainly on early warnings of extreme winds in the early medium-range. Three synoptic stations (airports) of North Germany (Bremen, Hamburg and Hannover) were considered for the construction of time series of daily maximum wind speeds. All daily wind extremes were found to be linked...

  12. Inexpensive and fast pathogenic bacteria screening using field-effect transistors.

    Science.gov (United States)

    Formisano, Nello; Bhalla, Nikhil; Heeran, Mel; Reyes Martinez, Juana; Sarkar, Amrita; Laabei, Maisem; Jolly, Pawan; Bowen, Chris R; Taylor, John T; Flitsch, Sabine; Estrela, Pedro

    2016-11-15

    While pathogenic bacteria contribute to a large number of globally important diseases and infections, current clinical diagnosis is based on processes that often involve culturing which can be time-consuming. Therefore, innovative, simple, rapid and low-cost solutions to effectively reduce the burden of bacterial infections are urgently needed. Here we demonstrate a label-free sensor for fast bacterial detection based on metal-oxide-semiconductor field-effect transistors (MOSFETs). The electric charge of bacteria binding to the glycosylated gates of a MOSFET enables quantification in a straightforward manner. We show that the limit of quantitation is 1.9×10(5) CFU/mL with this simple device, which is more than 10,000-times lower than is achieved with electrochemical impedance spectroscopy (EIS) and matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-ToF) on the same modified surfaces. Moreover, the measurements are extremely fast and the sensor can be mass produced at trivial cost as a tool for initial screening of pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A fast algorithm for identifying friends-of-friends halos

    Science.gov (United States)

    Feng, Y.; Modi, C.

    2017-07-01

    We describe a simple and fast algorithm for identifying friends-of-friends features and prove its correctness. The algorithm avoids unnecessary expensive neighbor queries, uses minimal memory overhead, and rejects slowdown in high over-density regions. We define our algorithm formally based on pair enumeration, a problem that has been heavily studied in fast 2-point correlation codes and our reference implementation employs a dual KD-tree correlation function code. We construct features in a hierarchical tree structure, and use a splay operation to reduce the average cost of identifying the root of a feature from O [ log L ] to O [ 1 ] (L is the size of a feature) without additional memory costs. This reduces the overall time complexity of merging trees from O [ L log L ] to O [ L ] , reducing the number of operations per splay by orders of magnitude. We next introduce a pruning operation that skips merge operations between two fully self-connected KD-tree nodes. This improves the robustness of the algorithm, reducing the number of merge operations in high density peaks from O [δ2 ] to O [ δ ] . We show that for cosmological data set the algorithm eliminates more than half of merge operations for typically used linking lengths b ∼ 0 . 2 (relative to mean separation). Furthermore, our algorithm is extremely simple and easy to implement on top of an existing pair enumeration code, reusing the optimization effort that has been invested in fast correlation function codes.

  14. Neighborhood fast food restaurants and fast food consumption: A national study

    OpenAIRE

    Richardson, Andrea S; Boone-Heinonen, Janne; Popkin, Barry M; Gordon-Larsen, Penny

    2011-01-01

    Abstract Background Recent studies suggest that neighborhood fast food restaurant availability is related to greater obesity, yet few studies have investigated whether neighborhood fast food restaurant availability promotes fast food consumption. Our aim was to estimate the effect of neighborhood fast food availability on frequency of fast food consumption in a national sample of young adults, a population at high risk for obesity. Methods We used national data from U.S. young adults enrolled...

  15. Fast pitch softball injuries.

    Science.gov (United States)

    Meyers, M C; Brown, B R; Bloom, J A

    2001-01-01

    The popularity of fast pitch softball in the US and throughout the world is well documented. Along with this popularity, there has been a concomitant increase in the number of injuries. Nearly 52% of cases qualify as major disabling injuries requiring 3 weeks or more of treatment and 2% require surgery. Interestingly, 75% of injuries occur during away games and approximately 31% of traumas occur during nonpositional and conditioning drills. Injuries range from contusions and tendinitis to ligamentous disorders and fractures. Although head and neck traumas account for 4 to 12% of cases, upper extremity traumas account for 23 to 47% of all injuries and up to 19% of cases involve the knee. Approximately 34 to 42% of injuries occur when the athlete collides with another individual or object. Other factors involved include the quality of playing surface, athlete's age and experience level, and the excessive physical demands associated with the sport. Nearly 24% of injuries involve base running and are due to poor judgement, sliding technique, current stationary base design, unorthodox joint and extremity position during ground impact and catching of cleats. The increasing prevalence of overtraining syndrome among athletes has been attributed to an unclear definition of an optimal training zone, poor communication between player and coach, and the limited ability of bone and connective tissue to quickly respond to match the demands of the sport. This has led routinely to arm, shoulder and lumbar instability, chronic nonsteroidal anti-inflammatory drug (NSAID) use and time loss injuries in 45% of pitching staff during a single season. Specific attention to a safer playing environment, coaching and player education, and sport-specific training and conditioning would reduce the risk, rate and severity of fast pitch traumas. Padding of walls, backstops, rails and dugout areas, as well as minimising use of indoor facilities, is suggested to decrease the number of collision

  16. Fusing Simulation Results From Multifidelity Aero-servo-elastic Simulators - Application To Extreme Loads On Wind Turbine

    DEFF Research Database (Denmark)

    Abdallah, Imad; Sudret, Bruno; Lataniotis, Christos

    2015-01-01

    Fusing predictions from multiple simulators in the early stages of the conceptual design of a wind turbine results in reduction in model uncertainty and risk mitigation. Aero-servo-elastic is a term that refers to the coupling of wind inflow, aerodynamics, structural dynamics and controls. Fusing...... the response data from multiple aero-servo-elastic simulators could provide better predictive ability than using any single simulator. The co-Kriging approach to fuse information from multifidelity aero-servo-elastic simulators is presented. We illustrate the co-Kriging approach to fuse the extreme flapwise...... bending moment at the blade root of a large wind turbine as a function of wind speed, turbulence and shear exponent in the presence of model uncertainty and non-stationary noise in the output. The extreme responses are obtained by two widely accepted numerical aero-servo-elastic simulators, FAST...

  17. Comparison of Fast-Food and Non-Fast-Food Children's Menu Items

    Science.gov (United States)

    Serrano, Elena L.; Jedda, Virginia B.

    2009-01-01

    Objective: Compare the macronutrient content of children's meals sold by fast-food restaurants (FFR) and non-fast-food restaurants (NFF). Design: All restaurants within the designated city limits were surveyed. Non-fast-food children's meals were purchased, weighed, and analyzed using nutrition software. All fast-food children's meals were…

  18. Extreme meteorological conditions

    International Nuclear Information System (INIS)

    Altinger de Schwarzkopf, M.L.

    1983-01-01

    Different meteorological variables which may reach significant extreme values, such as the windspeed and, in particular, its occurrence through tornadoes and hurricanes that necesarily incide and wich must be taken into account at the time of nuclear power plants' installation, are analyzed. For this kind of study, it is necessary to determine the basic phenomenum of design. Two criteria are applied to define the basic values of design for extreme meteorological variables. The first one determines the expected extreme value: it is obtained from analyzing the recurence of the phenomenum in a convened period of time, wich may be generally of 50 years. The second one determines the extreme value of low probability, taking into account the nuclear power plant's operating life -f.ex. 25 years- and considering, during said lapse, the occurrence probabilities of extreme meteorological phenomena. The values may be determined either by the deterministic method, which is based on the acknowledgement of the fundamental physical characteristics of the phenomena or by the probabilistic method, that aims to the analysis of historical statistical data. Brief comments are made on the subject in relation to the Argentine Republic area. (R.J.S.) [es

  19. Fast Food Jobs. National Study of Fast Food Employment.

    Science.gov (United States)

    Charner, Ivan; Fraser, Bryna Shore

    A study examined employment in the fast-food industry. The national survey collected data from employees at 279 fast-food restaurants from seven companies. Female employees outnumbered males by two to one. The ages of those fast-food employees in the survey sample ranged from 14 to 71, with fully 70 percent being in the 16- to 20-year-old age…

  20. Early warnings of extreme winds using the ECMWF Extreme Forecast Index

    DEFF Research Database (Denmark)

    Petroliagis, Thomas I.; Pinson, Pierre

    2014-01-01

    The European FP7 SafeWind Project aims at developing research towards a European vision of wind power forecasting, which requires advanced meteorological support concerning extreme wind events. This study is focused mainly on early warnings of extreme winds in the early medium-range. Three synoptic...... regimes. Overall, it becomes clear that the first indications of an extreme wind event might come from the ECMWF deterministic and/or probabilistic components capturing very intense weather systems (possible windstorms) in the medium term. For early warnings, all available EPS Extreme Forecast Index (EFI......) formulations were used, by linking daily maximum wind speeds to EFI values for different forecast horizons. From all possible EFI schemes deployed for issuing early warnings, the highest skill was found for the Gust Factor formulation (EFI-10FGI). Using EFI-10FGI, the corresponding 99% threshold could provide...

  1. The AMchip04 and the Processing Unit Prototype for the FastTracker

    CERN Document Server

    Andreani, A; The ATLAS collaboration; Beretta, M; Bogdan, M; Citterio, M; Alberti, F; Giannetti, P; Lanza, A; Magalotti, D; Piendibene, M; Shochet, M; Stabile, A; Tang, J; Tompkins, L; Volpi, G

    2012-01-01

    Modern experiments search for extremely rare processes hidden in much larger background levels. As the experiment complexity and the accelerator backgrounds and luminosity increase we need increasingly complex and exclusive selections. We present the first prototype of a new Processing Unit, the core of the FastTracker processor for Atlas, whose computing power is such that a couple of hundreds of them will be able to reconstruct all the tracks with transverse momentum above 1 GeV in the ATLAS events up to Phase II instantaneous luminosities (5×1034 cm-2 s-1) with an event input rate of 100 kHz and a latency below hundreds of microseconds. We plan extremely powerful, very compact and low consumption units for the far future, essential to increase efficiency and purity of the Level 2 selected samples through the intensive use of tracking. This strategy requires massive computing power to minimize the online execution time of complex tracking algorithms. The time consuming pattern recognition problem, generall...

  2. To Mars and beyond, fast! how plasma propulsion will revolutionize space exploration

    CERN Document Server

    Chang Díaz, Franklin

    2017-01-01

    As advanced space propulsion moves slowly from science fiction to achievable reality, the Variable Specific Impulse Magnetoplasma Rocket, or VASIMR, is a leading contender for making 'Mars in a month' a possibility. Developed by Ad Astra Rockets, which was founded by astronaut Franklin Chang-Diaz and backed by NASA, its first commercial tests are imminent. VASIMR heats plasma to extreme temperatures using radio waves. Strong magnetic fields then funnel this plasma out the back of the engine, creating thrust. The continuous propulsion may place long, fast interplanetary journeys within reach in the near future. While scientists dream of the possibilities of using fusion or well-controlled matter-antimatter interactions to propel spacecraft fast and far, that goal is still some way over the horizon. VASIMR provides a more attainable propulsion technology that is based on the matter-antimatter concept. The book describes a landmark technology grounded in plasma physics and offering a practical technological solu...

  3. Open and disconnected magnetic field lines within coronal mass ejections in the solar wind: Evidence for 3-dimensional reconnection

    Science.gov (United States)

    Gosling, J. T.; Birn, J.; McComas, D. J.; Phillips, J. L.; Hesse, M.

    1995-01-01

    Measurements of suprathermal electron fluxes in the solar wind at energies greater than approximatley 80 eV indicate that magnetic field lines within coronal mass ejections. CMEs, near and beyond 1 AU are normally connected to the Sun at both ends. However, a preliminary reexamination of events previously identified as CMEs in the ISEE 3 data reveals that about 1/4 of all such events contain limited regions where field lines appear to be either connected to the Sun at only one end or connected to the outer heliosphere at both ends. Similar intervals of open and disconnected field lines within CMEs have been identified in the Ulysses observations. We believe that these anomalous field topologies within CMEs are most naturally interpreted in terms of 3-dimensional reconnection behind CMEs close to the Sun. Such reconnection also provides a natural explanation both for the flux rope topology of many CMEs as well as the coronal loops formed during long-duration solar soft X ray events. Although detailed numerical simulations of 3-dimensional reconnection behind CMEs are not yet available, such simulations have been done for the qualitatively similar geometry that prevails within the geomagnetic tail. Those simulations of plasmoid formation in the geomagnetic tail do produce the mixture of field topologies within plasmoids discussed here for CMEs.

  4. Development of a full ice-cream cone model for halo CME structures

    Science.gov (United States)

    Na, Hyeonock; Moon, Yong-Jae

    2015-04-01

    The determination of three dimensional parameters (e.g., radial speed, angular width, source location) of Coronal Mass Ejections (CMEs) is very important for space weather forecast. To estimate these parameters, several cone models based on a flat cone or a shallow ice-cream cone with spherical front have been suggested. In this study, we investigate which cone model is proper for halo CME morphology using 33 CMEs which are identified as halo CMEs by one spacecraft (SOHO or STEREO-A or B) and as limb CMEs by the other ones. From geometrical parameters of these CMEs such as their front curvature, we find that near full ice-cream cone CMEs (28 events) are dominant over shallow ice-cream cone CMEs (5 events). So we develop a new full ice-cream cone model by assuming that a full ice-cream cone consists of many flat cones with different heights and angular widths. This model is carried out by the following steps: (1) construct a cone for given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, (4) minimize the difference between the estimated projection points with the observed ones. We apply this model to several halo CMEs and compare the results with those from other methods such as a Graduated Cylindrical Shell model and a geometrical triangulation method.

  5. When fast is better: protein folding fundamentals and mechanisms from ultrafast approaches.

    Science.gov (United States)

    Muñoz, Victor; Cerminara, Michele

    2016-09-01

    Protein folding research stalled for decades because conventional experiments indicated that proteins fold slowly and in single strokes, whereas theory predicted a complex interplay between dynamics and energetics resulting in myriad microscopic pathways. Ultrafast kinetic methods turned the field upside down by providing the means to probe fundamental aspects of folding, test theoretical predictions and benchmark simulations. Accordingly, experimentalists could measure the timescales for all relevant folding motions, determine the folding speed limit and confirm that folding barriers are entropic bottlenecks. Moreover, a catalogue of proteins that fold extremely fast (microseconds) could be identified. Such fast-folding proteins cross shallow free energy barriers or fold downhill, and thus unfold with minimal co-operativity (gradually). A new generation of thermodynamic methods has exploited this property to map folding landscapes, interaction networks and mechanisms at nearly atomic resolution. In parallel, modern molecular dynamics simulations have finally reached the timescales required to watch fast-folding proteins fold and unfold in silico All of these findings have buttressed the fundamentals of protein folding predicted by theory, and are now offering the first glimpses at the underlying mechanisms. Fast folding appears to also have functional implications as recent results connect downhill folding with intrinsically disordered proteins, their complex binding modes and ability to moonlight. These connections suggest that the coupling between downhill (un)folding and binding enables such protein domains to operate analogically as conformational rheostats. © 2016 The Author(s).

  6. Effects of age, adipose percent, and reproduction on PCB concentrations and profiles in an extreme fasting North Pacific marine mammal.

    Directory of Open Access Journals (Sweden)

    Sarah H Peterson

    Full Text Available Persistent organic pollutants, including polychlorinated biphenyls (PCBs, are widely distributed and detectable far from anthropogenic sources. Northern elephant seals (Mirounga angustirostris biannually travel thousands of kilometers to forage in coastal and open-ocean regions of the northeast Pacific Ocean and then return to land where they fast while breeding and molting. Our study examined potential effects of age, adipose percent, and the difference between the breeding and molting fasts on PCB concentrations and congener profiles in blubber and serum of northern elephant seal females. Between 2005 and 2007, we sampled blubber and blood from 58 seals before and after a foraging trip, which were then analyzed for PCBs. Age did not significantly affect total PCB concentrations; however, the proportion of PCB congeners with different numbers of chlorine atoms was significantly affected by age, especially in the outer blubber. Younger adult females had a significantly greater proportion of low-chlorinated PCBs (tri-, tetra-, and penta-CBs than older females, with the opposite trend observed for hepta-CBs, indicating that an age-associated process such as parity (birth may significantly affect congener profiles. The percent of adipose tissue had a significant relationship with inner blubber PCB concentrations, with the highest mean concentrations observed at the end of the molting fast. These results highlight the importance of sampling across the entire blubber layer when assessing contaminant levels in phocid seals and taking into account the adipose stores and reproductive status of an animal when conducting contaminant research.

  7. INLA goes extreme: Bayesian tail regression for the estimation of high spatio-temporal quantiles

    KAUST Repository

    Opitz, Thomas

    2018-05-25

    This work is motivated by the challenge organized for the 10th International Conference on Extreme-Value Analysis (EVA2017) to predict daily precipitation quantiles at the 99.8% level for each month at observed and unobserved locations. Our approach is based on a Bayesian generalized additive modeling framework that is designed to estimate complex trends in marginal extremes over space and time. First, we estimate a high non-stationary threshold using a gamma distribution for precipitation intensities that incorporates spatial and temporal random effects. Then, we use the Bernoulli and generalized Pareto (GP) distributions to model the rate and size of threshold exceedances, respectively, which we also assume to vary in space and time. The latent random effects are modeled additively using Gaussian process priors, which provide high flexibility and interpretability. We develop a penalized complexity (PC) prior specification for the tail index that shrinks the GP model towards the exponential distribution, thus preventing unrealistically heavy tails. Fast and accurate estimation of the posterior distributions is performed thanks to the integrated nested Laplace approximation (INLA). We illustrate this methodology by modeling the daily precipitation data provided by the EVA2017 challenge, which consist of observations from 40 stations in the Netherlands recorded during the period 1972–2016. Capitalizing on INLA’s fast computational capacity and powerful distributed computing resources, we conduct an extensive cross-validation study to select the model parameters that govern the smoothness of trends. Our results clearly outperform simple benchmarks and are comparable to the best-scoring approaches of the other teams.

  8. How severe space weather can disrupt global supply chains

    Science.gov (United States)

    Schulte in den Bäumen, H.; Moran, D.; Lenzen, M.; Cairns, I.; Steenge, A.

    2014-10-01

    Coronal mass ejections (CMEs) strong enough to create electromagnetic effects at latitudes below the auroral oval are frequent events that could soon have substantial impacts on electrical grids. Modern society's heavy reliance on these domestic and international networks increases our susceptibility to such a severe space-weather event. Using a new high-resolution model of the global economy, we simulate the economic impact of strong CMEs for three different planetary orientations. We account for the economic impacts within the countries directly affected, as well as the post-disaster economic shock in partner economies linked by international trade. For a 1989 Quebec-like event, the global economic impacts would range from USD 2.4 to 3.4 trillion over a year. Of this total economic shock, about 50% would be felt in countries outside the zone of direct impact, leading to a loss in global Gross Domestic Product (GDP) of 3.9 to 5.6%. The global economic damage is of the same order as wars, extreme financial crisis and estimated for future climate change.

  9. Optimization with Extremal Dynamics

    International Nuclear Information System (INIS)

    Boettcher, Stefan; Percus, Allon G.

    2001-01-01

    We explore a new general-purpose heuristic for finding high-quality solutions to hard discrete optimization problems. The method, called extremal optimization, is inspired by self-organized criticality, a concept introduced to describe emergent complexity in physical systems. Extremal optimization successively updates extremely undesirable variables of a single suboptimal solution, assigning them new, random values. Large fluctuations ensue, efficiently exploring many local optima. We use extremal optimization to elucidate the phase transition in the 3-coloring problem, and we provide independent confirmation of previously reported extrapolations for the ground-state energy of ±J spin glasses in d=3 and 4

  10. GLOBAL SIMULATION OF AN EXTREME ULTRAVIOLET IMAGING TELESCOPE WAVE

    International Nuclear Information System (INIS)

    Schmidt, J. M.; Ofman, L.

    2010-01-01

    We use the observation of an Extreme Ultraviolet Imaging Telescope (EIT) wave in the lower solar corona, seen with the two Solar Terrestrial Relations Observatory (STEREO) spacecraft in extreme ultraviolet light on 2007 May 19, to model the same event with a three-dimensional (3D) time-depending magnetohydrodynamic (MHD) code that includes solar coronal magnetic fields derived with Wilcox Solar Observatory magnetogram data, and a solar wind outflow accelerated with empirical heating functions. The model includes a coronal mass ejection (CME) of Gibson and Low flux rope type above the reconstructed active region with parameters adapted from observations to excite the EIT wave. We trace the EIT wave running as circular velocity enhancement around the launching site of the CME in the direction tangential to the sphere produced by the wave front, and compute the phase velocities of the wave front. We find that the phase velocities are in good agreement with theoretical values for a fast magnetosonic wave, derived with the physical parameters of the model, and with observed phase speeds of an incident EIT wave reflected by a coronal hole and running at about the same location. We also produce in our 3D MHD model the observed reflection of the EIT wave at the coronal hole boundary, triggered by the magnetic pressure difference between the wave front hitting the hole and the boundary magnetic fields of the coronal hole, and the response of the coronal hole, which leads to the generation of secondary reflected EIT waves radiating away in different directions than the incident EIT wave. This is the first 3D MHD model of an EIT wave triggered by a CME that includes realistic solar magnetic field, with results comparing favorably to STEREO Extreme Ultraviolet Imager observations.

  11. Status of national programmes on fast reactors 1995-1996. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    At present nuclear power accounts for approximately 17% of total electricity generation worldwide. Given continuing population growth and the needs of the third world and developing countries to improve their economic performance and standard of living, energy demand is expected to continue to grow through the 21st century. The proportion of energy supplied as electricity is also expected to continue to increase. Although fossil-fuelled electricity generation is the option preferred by several countries for the short term, there are rising concerns over climatic consequences caused by extended burning of fossil fuels as a result of the demands of a fast expanding world population. In this situation nuclear electricity will become more and more important and the known reserves of uranium would be consumed quite quickly by thermal reactors. It would be possible to sustain a large nuclear programme only by introducing fast reactors. One can conclude that there are strategic reasons for pursuing the development of fast breeder reactors. It will become desirably essential to have this technology available for introduction. The recycling of plutonium into LMFRs would allow 'burning' of the associated extremely long-life transuranic waste, particularly actinides, thus reducing the required isolation time for high level waste from tens of thousands of years to hundreds of years for fission products only. This additional important mission for the LMFR is gaining worldwide interest. In the framework of disarmament of nuclear weapons and the utilization of the nuclear material or peaceful purposes a role for fast reactors can be also considered. Over the past 29 years, the IAEA has actively encouraged and advocated international co-operation in Fast Breeder Reactor Technology. The present publication contains information on the status of fast reactor development and on worldwide activities in this advanced nuclear power technology during 1995, as reported at the 29th Annual

  12. Status of national programmes on fast reactors 1995-1996. Working material

    International Nuclear Information System (INIS)

    1996-01-01

    At present nuclear power accounts for approximately 17% of total electricity generation worldwide. Given continuing population growth and the needs of the third world and developing countries to improve their economic performance and standard of living, energy demand is expected to continue to grow through the 21st century. The proportion of energy supplied as electricity is also expected to continue to increase. Although fossil-fuelled electricity generation is the option preferred by several countries for the short term, there are rising concerns over climatic consequences caused by extended burning of fossil fuels as a result of the demands of a fast expanding world population. In this situation nuclear electricity will become more and more important and the known reserves of uranium would be consumed quite quickly by thermal reactors. It would be possible to sustain a large nuclear programme only by introducing fast reactors. One can conclude that there are strategic reasons for pursuing the development of fast breeder reactors. It will become desirably essential to have this technology available for introduction. The recycling of plutonium into LMFRs would allow 'burning' of the associated extremely long-life transuranic waste, particularly actinides, thus reducing the required isolation time for high level waste from tens of thousands of years to hundreds of years for fission products only. This additional important mission for the LMFR is gaining worldwide interest. In the framework of disarmament of nuclear weapons and the utilization of the nuclear material or peaceful purposes a role for fast reactors can be also considered. Over the past 29 years, the IAEA has actively encouraged and advocated international co-operation in Fast Breeder Reactor Technology. The present publication contains information on the status of fast reactor development and on worldwide activities in this advanced nuclear power technology during 1995, as reported at the 29th Annual

  13. Status of national programmes on fast breeder reactors. Twenty-fifth annual meeting of the International Working Group on Fast Reactors. Summary report. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-07-01

    'burning' of the associated extremely long-life transuranic waste, particularly actinides, thus reducing the required isolation time for high level waste from tens of thousands of years to hundreds of years for fission products only. This additional important mission for the LMFBR is gaining worldwide interest. In the framework of disarmament of nuclear weapons and the utilization of the nuclear material for peaceful purposes a role for fast reactors can be also considered. Over the past 25 years, the IAEA has actively encouraged and advocated international cooperation in Fast Breeder Reactor Technology. At the present time the Working Group on Fast Reactors is the oldest and one of the most active groups in the Division of Nuclear Power. The present document contains information on the status of fast breeder reactor development and on worldwide activities in this advanced nuclear power technology during 1991, as reported at the 25th jubilee Annual Meeting of the IWGFR in Vienna, 27-30 April 1992. The publication is intended to provide information regarding the current status of LMFBR development in IAEA Member States and CEC.

  14. Status of national programmes on fast breeder reactors. Twenty-fifth annual meeting of the International Working Group on Fast Reactors. Summary report. Working material

    International Nuclear Information System (INIS)

    1992-01-01

    'burning' of the associated extremely long-life transuranic waste, particularly actinides, thus reducing the required isolation time for high level waste from tens of thousands of years to hundreds of years for fission products only. This additional important mission for the LMFBR is gaining worldwide interest. In the framework of disarmament of nuclear weapons and the utilization of the nuclear material for peaceful purposes a role for fast reactors can be also considered. Over the past 25 years, the IAEA has actively encouraged and advocated international cooperation in Fast Breeder Reactor Technology. At the present time the Working Group on Fast Reactors is the oldest and one of the most active groups in the Division of Nuclear Power. The present document contains information on the status of fast breeder reactor development and on worldwide activities in this advanced nuclear power technology during 1991, as reported at the 25th jubilee Annual Meeting of the IWGFR in Vienna, 27-30 April 1992. The publication is intended to provide information regarding the current status of LMFBR development in IAEA Member States and CEC

  15. Prediction of Air Pollutants Concentration Based on an Extreme Learning Machine: The Case of Hong Kong.

    Science.gov (United States)

    Zhang, Jiangshe; Ding, Weifu

    2017-01-24

    With the development of the economy and society all over the world, most metropolitan cities are experiencing elevated concentrations of ground-level air pollutants. It is urgent to predict and evaluate the concentration of air pollutants for some local environmental or health agencies. Feed-forward artificial neural networks have been widely used in the prediction of air pollutants concentration. However, there are some drawbacks, such as the low convergence rate and the local minimum. The extreme learning machine for single hidden layer feed-forward neural networks tends to provide good generalization performance at an extremely fast learning speed. The major sources of air pollutants in Hong Kong are mobile, stationary, and from trans-boundary sources. We propose predicting the concentration of air pollutants by the use of trained extreme learning machines based on the data obtained from eight air quality parameters in two monitoring stations, including Sham Shui Po and Tap Mun in Hong Kong for six years. The experimental results show that our proposed algorithm performs better on the Hong Kong data both quantitatively and qualitatively. Particularly, our algorithm shows better predictive ability, with R 2 increased and root mean square error values decreased respectively.

  16. Prediction of Air Pollutants Concentration Based on an Extreme Learning Machine: The Case of Hong Kong

    Directory of Open Access Journals (Sweden)

    Jiangshe Zhang

    2017-01-01

    Full Text Available With the development of the economy and society all over the world, most metropolitan cities are experiencing elevated concentrations of ground-level air pollutants. It is urgent to predict and evaluate the concentration of air pollutants for some local environmental or health agencies. Feed-forward artificial neural networks have been widely used in the prediction of air pollutants concentration. However, there are some drawbacks, such as the low convergence rate and the local minimum. The extreme learning machine for single hidden layer feed-forward neural networks tends to provide good generalization performance at an extremely fast learning speed. The major sources of air pollutants in Hong Kong are mobile, stationary, and from trans-boundary sources. We propose predicting the concentration of air pollutants by the use of trained extreme learning machines based on the data obtained from eight air quality parameters in two monitoring stations, including Sham Shui Po and Tap Mun in Hong Kong for six years. The experimental results show that our proposed algorithm performs better on the Hong Kong data both quantitatively and qualitatively. Particularly, our algorithm shows better predictive ability, with R 2 increased and root mean square error values decreased respectively.

  17. Spectroscopic Measurements of the Ion Velocity Distribution at the Base of the Fast Solar Wind

    Science.gov (United States)

    Jeffrey, Natasha L. S.; Hahn, Michael; Savin, Daniel W.; Fletcher, Lyndsay

    2018-03-01

    In situ measurements of the fast solar wind reveal non-thermal distributions of electrons, protons, and minor ions extending from 0.3 au to the heliopause. The physical mechanisms responsible for these non-thermal properties and the location where these properties originate remain open questions. Here, we present spectroscopic evidence, from extreme ultraviolet spectroscopy, that the velocity distribution functions (VDFs) of minor ions are already non-Gaussian at the base of the fast solar wind in a coronal hole, at altitudes of thermal equilibrium, (b) fluid motions such as non-Gaussian turbulent fluctuations or non-uniform wave motions, or (c) some combination of both. These observations provide important empirical constraints for the source region of the fast solar wind and for the theoretical models of the different acceleration, heating, and energy deposition processes therein. To the best of our knowledge, this is the first time that the ion VDF in the fast solar wind has been probed so close to its source region. The findings are also a timely precursor to the upcoming 2018 launch of the Parker Solar Probe, which will provide the closest in situ measurements of the solar wind at approximately 0.04 au (8.5 solar radii).

  18. Fast and accurate modeling of nonlinear pulse propagation in graded-index multimode fibers.

    Science.gov (United States)

    Conforti, Matteo; Mas Arabi, Carlos; Mussot, Arnaud; Kudlinski, Alexandre

    2017-10-01

    We develop a model for the description of nonlinear pulse propagation in multimode optical fibers with a parabolic refractive index profile. It consists of a 1+1D generalized nonlinear Schrödinger equation with a periodic nonlinear coefficient, which can be solved in an extremely fast and efficient way. The model is able to quantitatively reproduce recently observed phenomena like geometric parametric instability and broadband dispersive wave emission. We envisage that our equation will represent a valuable tool for the study of spatiotemporal nonlinear dynamics in the growing field of multimode fiber optics.

  19. A telescope for observation from space of extreme lightnings in the upper atmosphere

    International Nuclear Information System (INIS)

    Nam, S.; Artikova, S.; Chung, T.; Garipov, G.; Jeon, J.A.; Jeong, S.; Jin, J.Y.; Khrenov, B.A.; Kim, J.E.; Kim, M.; Kim, Y.K.; Klimov, P.; Lee, J.; Lee, H.Y.; Na, G.W.; Oh, S.J.; Panasyuk, M.; Park, I.H.; Park, J.H.; Park, Y.-S.

    2008-01-01

    A new type of telescope with a wide field-of-view and functions of fast zoom-in has been introduced. Two kinds of MEMS (Micro-Electro-Mechanical Systems) micromirrors, digital and analog, are used for reflectors of the telescope, placed at different focal lengths. We apply this technology to the observation from space of TLE (Transient Luminous Events), extremely large transient sparks occurring at the upper atmosphere. TLE are one type of important backgrounds to be understood for future space observation of UHECR (Ultra-High Energy Cosmic Rays). The launch of the payload carried by a Russian microsatellite is foreseen in the middle of 2008

  20. Exploring the temporally resolved electron density evolution in extreme ultra-violet induced plasmas

    International Nuclear Information System (INIS)

    Van der Horst, R M; Beckers, J; Nijdam, S; Kroesen, G M W

    2014-01-01

    We measured the electron density in an extreme ultra-violet (EUV) induced plasma. This is achieved in a low-pressure argon plasma by using a method called microwave cavity resonance spectroscopy. The measured electron density just after the EUV pulse is 2.6 × 10 16  m −3 . This is in good agreement with a theoretical prediction from photo-ionization, which yields a density of 4.5 × 10 16  m −3 . After the EUV pulse the density slightly increases due to electron impact ionization. The plasma (i.e. electron density) decays in tens of microseconds. (fast track communication)

  1. XVIS: Visualization for the Extreme-Scale Scientific-Computation Ecosystem Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Geveci, Berk [Kitware, Inc., Clifton Park, NY (United States); Maynard, Robert [Kitware, Inc., Clifton Park, NY (United States)

    2017-10-27

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. The XVis project brought together collaborators from predominant DOE projects for visualization on accelerators and combining their respective features into a new visualization toolkit called VTK-m.

  2. Ideologies and Discourses: Extreme Narratives in Extreme Metal Music

    Directory of Open Access Journals (Sweden)

    Bojana Radovanović

    2016-10-01

    Full Text Available Historically speaking, metal music has always been about provoking a strong reaction. Depending on the characteristics of different sub-genres, one can focus on the sound, technique, visual appearance, and furthermore, the ideologies and ideas that are the foundation for each of the sub-genres. Although the majority of the metal community rejects accusations of being racially intolerant, some ideologies of extreme sub-genres (such as black metal are in fact formed around the ideas of self-conscious elitism expressed through interest in pagan mythology, racism, Nazism and fascism. There has been much interest in the Nazi era within the extreme metal scene thus influencing other sub-genres and artists. The aim of this paper is to examine various appearances of extreme narratives such as Nazism and racism in  different sub-genres of metal, bearing in mind variations dependent on geographical, political, and other factors.

  3. Plans for the extreme ultraviolet explorer data base

    Science.gov (United States)

    Marshall, Herman L.; Dobson, Carl A.; Malina, Roger F.; Bowyer, Stuart

    1988-01-01

    The paper presents an approach for storage and fast access to data that will be obtained by the Extreme Ultraviolet Explorer (EUVE), a satellite payload scheduled for launch in 1991. The EUVE telescopes will be operated remotely from the EUVE Science Operation Center (SOC) located at the University of California, Berkeley. The EUVE science payload consists of three scanning telescope carrying out an all-sky survey in the 80-800 A spectral region and a Deep Survey/Spectrometer telescope performing a deep survey in the 80-250 A spectral region. Guest Observers will remotely access the EUVE spectrometer database at the SOC. The EUVE database will consist of about 2 X 10 to the 10th bytes of information in a very compact form, very similar to the raw telemetry data. A history file will be built concurrently giving telescope parameters, command history, attitude summaries, engineering summaries, anomalous events, and ephemeris summaries.

  4. An ice-cream cone model for coronal mass ejections

    Science.gov (United States)

    Xue, X. H.; Wang, C. B.; Dou, X. K.

    2005-08-01

    In this study, we use an ice-cream cone model to analyze the geometrical and kinematical properties of the coronal mass ejections (CMEs). Assuming that in the early phase CMEs propagate with near-constant speed and angular width, some useful properties of CMEs, namely the radial speed (v), the angular width (α), and the location at the heliosphere, can be obtained considering the geometrical shapes of a CME as an ice-cream cone. This model is improved by (1) using an ice-cream cone to show the near real configuration of a CME, (2) determining the radial speed via fitting the projected speeds calculated from the height-time relation in different azimuthal angles, (3) not only applying to halo CMEs but also applying to nonhalo CMEs.

  5. Extremal surface barriers

    International Nuclear Information System (INIS)

    Engelhardt, Netta; Wall, Aron C.

    2014-01-01

    We present a generic condition for Lorentzian manifolds to have a barrier that limits the reach of boundary-anchored extremal surfaces of arbitrary dimension. We show that any surface with nonpositive extrinsic curvature is a barrier, in the sense that extremal surfaces cannot be continuously deformed past it. Furthermore, the outermost barrier surface has nonnegative extrinsic curvature. Under certain conditions, we show that the existence of trapped surfaces implies a barrier, and conversely. In the context of AdS/CFT, these barriers imply that it is impossible to reconstruct the entire bulk using extremal surfaces. We comment on the implications for the firewall controversy

  6. Development of a Full Ice-cream Cone Model for Halo Coronal Mass Ejections

    Energy Technology Data Exchange (ETDEWEB)

    Na, Hyeonock; Moon, Y.-J.; Lee, Harim, E-mail: nho0512@khu.ac.kr, E-mail: moonyj@khu.ac.kr [School of Space Research, Kyung Hee University, Yongin (Korea, Republic of)

    2017-04-20

    It is essential to determine three-dimensional parameters (e.g., radial speed, angular width, and source location) of coronal mass ejections (CMEs) for the space weather forecast. In this study, we investigate which cone type represents a halo CME morphology using 29 CMEs (12 Solar and Heliospheric Observatory (SOHO) /Large Angle and Spectrometric Coronagraph (LASCO) halo CMEs and 17 Solar Terrestrial Relations Observatory ( STEREO )/Sun–Earth Connection Coronal and Heliospheric Investigation COR2 halo CMEs) from 2010 December to 2011 June. These CMEs are identified as halo CMEs by one spacecraft ( SOHO or one of STEREO A and B ) and limb ones by the other spacecraft (One of STEREO A and B or SOHO ). From cone shape parameters of these CMEs, such as their front curvature, we find that the CME observational structures are much closer to a full ice-cream cone type than a shallow ice-cream cone type. Thus, we develop a full ice-cream cone model based on a new methodology that the full ice-cream cone consists of many flat cones with different heights and angular widths to estimate the three-dimensional parameters of the halo CMEs. This model is constructed by carrying out the following steps: (1) construct a cone for a given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, and (4) minimize the difference between the estimated projection speeds with the observed ones. By applying this model to 12 SOHO /LASCO halo CMEs, we find that 3D parameters from our method are similar to those from other stereoscopic methods (i.e., a triangulation method and a Graduated Cylindrical Shell model).

  7. Development of a Full Ice-cream Cone Model for Halo Coronal Mass Ejections

    International Nuclear Information System (INIS)

    Na, Hyeonock; Moon, Y.-J.; Lee, Harim

    2017-01-01

    It is essential to determine three-dimensional parameters (e.g., radial speed, angular width, and source location) of coronal mass ejections (CMEs) for the space weather forecast. In this study, we investigate which cone type represents a halo CME morphology using 29 CMEs (12 Solar and Heliospheric Observatory (SOHO) /Large Angle and Spectrometric Coronagraph (LASCO) halo CMEs and 17 Solar Terrestrial Relations Observatory ( STEREO )/Sun–Earth Connection Coronal and Heliospheric Investigation COR2 halo CMEs) from 2010 December to 2011 June. These CMEs are identified as halo CMEs by one spacecraft ( SOHO or one of STEREO A and B ) and limb ones by the other spacecraft (One of STEREO A and B or SOHO ). From cone shape parameters of these CMEs, such as their front curvature, we find that the CME observational structures are much closer to a full ice-cream cone type than a shallow ice-cream cone type. Thus, we develop a full ice-cream cone model based on a new methodology that the full ice-cream cone consists of many flat cones with different heights and angular widths to estimate the three-dimensional parameters of the halo CMEs. This model is constructed by carrying out the following steps: (1) construct a cone for a given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, and (4) minimize the difference between the estimated projection speeds with the observed ones. By applying this model to 12 SOHO /LASCO halo CMEs, we find that 3D parameters from our method are similar to those from other stereoscopic methods (i.e., a triangulation method and a Graduated Cylindrical Shell model).

  8. Development of a Full Ice-cream Cone Model for Halo Coronal Mass Ejections

    Science.gov (United States)

    Na, Hyeonock; Moon, Y.-J.; Lee, Harim

    2017-04-01

    It is essential to determine three-dimensional parameters (e.g., radial speed, angular width, and source location) of coronal mass ejections (CMEs) for the space weather forecast. In this study, we investigate which cone type represents a halo CME morphology using 29 CMEs (12 Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) halo CMEs and 17 Solar Terrestrial Relations Observatory (STEREO)/Sun-Earth Connection Coronal and Heliospheric Investigation COR2 halo CMEs) from 2010 December to 2011 June. These CMEs are identified as halo CMEs by one spacecraft (SOHO or one of STEREO A and B) and limb ones by the other spacecraft (One of STEREO A and B or SOHO). From cone shape parameters of these CMEs, such as their front curvature, we find that the CME observational structures are much closer to a full ice-cream cone type than a shallow ice-cream cone type. Thus, we develop a full ice-cream cone model based on a new methodology that the full ice-cream cone consists of many flat cones with different heights and angular widths to estimate the three-dimensional parameters of the halo CMEs. This model is constructed by carrying out the following steps: (1) construct a cone for a given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, and (4) minimize the difference between the estimated projection speeds with the observed ones. By applying this model to 12 SOHO/LASCO halo CMEs, we find that 3D parameters from our method are similar to those from other stereoscopic methods (I.e., a triangulation method and a Graduated Cylindrical Shell model).

  9. WebMGA: a customizable web server for fast metagenomic sequence analysis.

    Science.gov (United States)

    Wu, Sitao; Zhu, Zhengwei; Fu, Liming; Niu, Beifang; Li, Weizhong

    2011-09-07

    The new field of metagenomics studies microorganism communities by culture-independent sequencing. With the advances in next-generation sequencing techniques, researchers are facing tremendous challenges in metagenomic data analysis due to huge quantity and high complexity of sequence data. Analyzing large datasets is extremely time-consuming; also metagenomic annotation involves a wide range of computational tools, which are difficult to be installed and maintained by common users. The tools provided by the few available web servers are also limited and have various constraints such as login requirement, long waiting time, inability to configure pipelines etc. We developed WebMGA, a customizable web server for fast metagenomic analysis. WebMGA includes over 20 commonly used tools such as ORF calling, sequence clustering, quality control of raw reads, removal of sequencing artifacts and contaminations, taxonomic analysis, functional annotation etc. WebMGA provides users with rapid metagenomic data analysis using fast and effective tools, which have been implemented to run in parallel on our local computer cluster. Users can access WebMGA through web browsers or programming scripts to perform individual analysis or to configure and run customized pipelines. WebMGA is freely available at http://weizhongli-lab.org/metagenomic-analysis. WebMGA offers to researchers many fast and unique tools and great flexibility for complex metagenomic data analysis.

  10. WebMGA: a customizable web server for fast metagenomic sequence analysis

    Directory of Open Access Journals (Sweden)

    Niu Beifang

    2011-09-01

    Full Text Available Abstract Background The new field of metagenomics studies microorganism communities by culture-independent sequencing. With the advances in next-generation sequencing techniques, researchers are facing tremendous challenges in metagenomic data analysis due to huge quantity and high complexity of sequence data. Analyzing large datasets is extremely time-consuming; also metagenomic annotation involves a wide range of computational tools, which are difficult to be installed and maintained by common users. The tools provided by the few available web servers are also limited and have various constraints such as login requirement, long waiting time, inability to configure pipelines etc. Results We developed WebMGA, a customizable web server for fast metagenomic analysis. WebMGA includes over 20 commonly used tools such as ORF calling, sequence clustering, quality control of raw reads, removal of sequencing artifacts and contaminations, taxonomic analysis, functional annotation etc. WebMGA provides users with rapid metagenomic data analysis using fast and effective tools, which have been implemented to run in parallel on our local computer cluster. Users can access WebMGA through web browsers or programming scripts to perform individual analysis or to configure and run customized pipelines. WebMGA is freely available at http://weizhongli-lab.org/metagenomic-analysis. Conclusions WebMGA offers to researchers many fast and unique tools and great flexibility for complex metagenomic data analysis.

  11. Fast Beam-Based BPM Calibration

    International Nuclear Information System (INIS)

    Bertsche, Kirk

    2012-01-01

    The Alignment Diagnostic System (ADS) of the LCLS undulator system indicates that the 33 undulator quadrupoles have extremely high position stability over many weeks. However, beam trajectory straightness and lasing efficiency degrade more quickly than this. A lengthy Beam Based Alignment (BBA) procedure must be executed every two to four weeks to re-optimize the X-ray beam parameters. The undulator system includes RF cavity Beam Position Monitors (RFBPMs), several of which are utilized by an automatic feedback system to align the incoming electron-beam trajectory to the undulator axis. The beam trajectory straightness degradation has been traced to electronic drifts of the gain and offset of the BPMs used in the beam feedback system. To quickly recover the trajectory straightness, we have developed a fast beam-based procedure to recalibrate the BPMs. This procedure takes advantage of the high-precision monitoring capability of the ADS, which allows highly repeatable positioning of undulator quadrupoles. This report describes the ADS, the position stability of the LCLS undulator quadrupoles, and some results of the new recovery procedure.

  12. The fast reactor

    International Nuclear Information System (INIS)

    1980-02-01

    The subject is discussed as follows: brief description of fast reactors; advantage in conserving uranium resources; experience, in UK and elsewhere, in fast reactor design, construction and operation; safety; production of plutonium, security aspects; consideration of future UK fast reactor programme. (U.K.)

  13. Inorganic component of saliva during fasting and after fast break

    OpenAIRE

    Samad, Rasmidar

    2016-01-01

    Oral health is closely related to salivary components. Saliva consists of water, inorganic and organic materials. Fasting changes one???s meal and drinking time that in turn can affect the environment in oral cavity, including inorganic componenet of saliva. The purpose of this study is to determine the inorganic component of saliva during fasting and after fast break.

  14. The Associative Memory Serial Link Processor for the Fast TracKer (FTK) at ATLAS

    International Nuclear Information System (INIS)

    Andreani, A; Citterio, M; Liberali, V; Annovi, A; Beretta, M; Beccherle, R; Crescioli, F; Biesuz, N; Billereau, W; Combe, J M; Cipriani, R; Citraro, S; Donati, S; Giannetti, P; Luciano, P; Colombo, A; Dimas, D; Gentsos, C; Kordas, K; Lanza, A

    2014-01-01

    The Fast TracKer (FTK) is an extremely powerful and very compact processing unit, essential for efficient Level 2 trigger selection in future high-energy physics experiments at the LHC. FTK employs Associative Memories (AM) to perform pattern recognition; input and output data are transmitted over serial links at 2 Gbit/s to reduce routing congestion at the board level. Prototypes of the AM chip and of the AM board have been manufactured and tested, in preparation of the imminent design of the final version

  15. Proximity to Fast-Food Outlets and Supermarkets as Predictors of Fast-Food Dining Frequency.

    Science.gov (United States)

    Athens, Jessica K; Duncan, Dustin T; Elbel, Brian

    2016-08-01

    This study used cross-sectional data to test the independent relationship of proximity to chain fast-food outlets and proximity to full-service supermarkets on the frequency of mealtime dining at fast-food outlets in two major urban areas, using three approaches to define access. Interactions between presence of a supermarket and presence of fast-food outlets as predictors of fast-food dining were also tested. Residential intersections for respondents in point-of-purchase and random-digit-dial telephone surveys of adults in Philadelphia, PA, and Baltimore, MD, were geocoded. The count of fast-food outlets and supermarkets within quarter-mile, half-mile, and 1-mile street network buffers around each respondent's intersection was calculated, as well as distance to the nearest fast-food outlet and supermarket. These variables were regressed on weekly fast-food dining frequency to determine whether proximity to fast food and supermarkets had independent and joint effects on fast-food dining. The effect of access to supermarkets and chain fast-food outlets varied by study population. Among telephone survey respondents, supermarket access was the only significant predictor of fast-food dining frequency. Point-of-purchase respondents were generally unaffected by proximity to either supermarkets or fast-food outlets. However, ≥1 fast-food outlet within a 1-mile buffer was an independent predictor of consuming more fast-food meals among point-of-purchase respondents. At the quarter-mile distance, ≥1 supermarket was predictive of fewer fast-food meals. Supermarket access was associated with less fast-food dining among telephone respondents, whereas access to fast-food outlets were associated with more fast-food visits among survey respondents identified at point-of-purchase. This study adds to the existing literature on geographic determinants of fast-food dining behavior among urban adults in the general population and those who regularly consume fast food. Copyright

  16. Classification of large-sized hyperspectral imagery using fast machine learning algorithms

    Science.gov (United States)

    Xia, Junshi; Yokoya, Naoto; Iwasaki, Akira

    2017-07-01

    We present a framework of fast machine learning algorithms in the context of large-sized hyperspectral images classification from the theoretical to a practical viewpoint. In particular, we assess the performance of random forest (RF), rotation forest (RoF), and extreme learning machine (ELM) and the ensembles of RF and ELM. These classifiers are applied to two large-sized hyperspectral images and compared to the support vector machines. To give the quantitative analysis, we pay attention to comparing these methods when working with high input dimensions and a limited/sufficient training set. Moreover, other important issues such as the computational cost and robustness against the noise are also discussed.

  17. Fast-ion Dα measurements of the fast-ion distribution (invited)

    International Nuclear Information System (INIS)

    Heidbrink, W. W.

    2010-01-01

    The fast-ion Dα (FIDA) diagnostic is an application of charge-exchange recombination spectroscopy. Fast ions that neutralize in an injected neutral beam emit Balmer-α light with a large Doppler shift. The spectral shift is exploited to distinguish the FIDA emission from other bright sources of Dα light. Background subtraction is the main technical challenge. A spectroscopic diagnostic typically achieves temporal, energy, and transverse spatial resolution of ∼1 ms, ∼10 keV, and ∼2 cm, respectively. Installations that use narrow-band filters achieve high spatial and temporal resolution at the expense of spectral information. For high temporal resolution, the bandpass-filtered light goes directly to a photomultiplier, allowing detection of ∼50 kHz oscillations in FIDA signal. For two-dimensional spatial profiles, the bandpass-filtered light goes to a charge-coupled device camera; detailed images of fast-ion redistribution at instabilities are obtained. Qualitative and quantitative models relate the measured FIDA signals to the fast-ion distribution function. The first quantitative comparisons between theory and experiment found excellent agreement in beam-heated magnetohydrodynamics (MHD)-quiescent plasmas. FIDA diagnostics are now in operation at magnetic-fusion facilities worldwide. They are used to study fast-ion acceleration by ion cyclotron heating, to detect fast-ion transport by MHD modes and microturbulence, and to study fast-ion driven instabilities.

  18. Proposed design for a fast (parallel) preprocessor for the spin spectrometer and other eventful albatrosses

    International Nuclear Information System (INIS)

    Hensley, D.C.

    1981-01-01

    Because devices like the Spin Spectrometer described in a previous paper to this conference can produce an extremely fast but fairly simple-to-process data stream, it seems reasonable to consider front-end preprocessors having special characteristics. In general, the kinds of transformations being considered do not require floating point calculations or extensive calculations. In order to be somewhat specific, the particular data acquisition/processing problems posed by the Spin Spectrometer at the Holifield Heavy Ion Facility will be discussed

  19. Fasts, feasts and festivals in diabetes-1: Glycemic management during Hindu fasts

    Directory of Open Access Journals (Sweden)

    Sanjay Kalra

    2015-01-01

    Full Text Available This communication is the first of a series on South Asian fasts, festivals, and diabetes, designed to spread awareness and stimulate research on this aspect of diabetes and metabolic care. It describes the various fasts observed as part of Hindu religion and offers a classification scheme for them, labeling them as infrequent and frequent. The infrequent fasts are further sub-classified as brief and prolonged, to facilitate a scientific approach to glycemic management during these fasts. Pre-fast counseling, non-pharmacological therapy, pharmacological modification, and post-fast debriefing are discussed in detail. All available drug classes and molecules are covered in this article, which provides guidance about necessary changes in dosage and timing of administration. While in no way exhaustive, the brief review offers a basic framework which diabetes care professionals can use to counsel and manage persons in their care who wish to observe various Hindu fasts.

  20. Fast, high-fidelity, all-optical and dynamically-controlled polarization gate using room-temperature atomic vapor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Runbing [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071 (China); Zhu, Chengjie [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Deng, L.; Hagley, E. W. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2014-10-20

    We demonstrate a fast, all-optical polarization gate in a room-temperature atomic medium. Using a Polarization-Selective-Kerr-Phase-Shift (PSKPS) technique, we selectively write a π phase shift to one circularly-polarized component of a linearly-polarized input signal field. The output signal field maintains its original strength but acquires a 90° linear polarization rotation, demonstrating fast, high-fidelity, dynamically-controlled polarization gate operation. The intensity of the polarization-switching field used in this PKSPK-based polarization gate operation is only 2 mW/cm{sup 2}, which would be equivalent to 0.5 nW of light power (λ = 800 nm) confined in a typical commercial photonic hollow-core fiber. This development opens a realm of possibilities for potential future extremely low light level telecommunication and information processing systems.

  1. Solar Type II Radio Bursts and IP Type II Events

    Science.gov (United States)

    Cane, H. V.; Erickson, W. C.

    2005-01-01

    We have examined radio data from the WAVES experiment on the Wind spacecraft in conjunction with ground-based data in order to investigate the relationship between the shocks responsible for metric type II radio bursts and the shocks in front of coronal mass ejections (CMEs). The bow shocks of fast, large CMEs are strong interplanetary (IP) shocks, and the associated radio emissions often consist of single broad bands starting below approx. 4 MHz; such emissions were previously called IP type II events. In contrast, metric type II bursts are usually narrowbanded and display two harmonically related bands. In addition to displaying complete dynamic spectra for a number of events, we also analyze the 135 WAVES 1 - 14 MHz slow-drift time periods in 2001-2003. We find that most of the periods contain multiple phenomena, which we divide into three groups: metric type II extensions, IP type II events, and blobs and bands. About half of the WAVES listings include probable extensions of metric type II radio bursts, but in more than half of these events, there were also other slow-drift features. In the 3 yr study period, there were 31 IP type II events; these were associated with the very fastest CMEs. The most common form of activity in the WAVES events, blobs and bands in the frequency range between 1 and 8 MHz, fall below an envelope consistent with the early signatures of an IP type II event. However, most of this activity lasts only a few tens of minutes, whereas IP type II events last for many hours. In this study we find many examples in the radio data of two shock-like phenomena with different characteristics that occur simultaneously in the metric and decametric/hectometric bands, and no clear example of a metric type II burst that extends continuously down in frequency to become an IP type II event. The simplest interpretation is that metric type II bursts, unlike IP type II events, are not caused by shocks driven in front of CMEs.

  2. Preoperative fasting times: Prescribed and actual fasting times at ...

    African Journals Online (AJOL)

    The current international guidelines for preoperative fasting for elective surgery are 6 ... to determine whether this policy was being followed and patients were being starved ..... recommended fasting time, so that autonomous patients take care.

  3. [Risk factors for lower extremity amputation in patients with diabetic foot].

    Science.gov (United States)

    Xu, B; Yang, C Z; Wu, S B; Zhang, D; Wang, L N; Xiao, L; Chen, Y; Wang, C R; Tong, A; Zhou, X F; Li, X H; Guan, X H

    2017-01-01

    Objective: To explore the risk factors for lower extremity amputation in patients with diabetic foot. Methods: The clinical data of 1 771 patients with diabetic foot at the Air Force General Hospital of PLA from November 2001 to April 2015 were retrospectively analyzed. The patients were divided into the non-amputation and amputation groups. Within the amputation group, subjects were further divided into the minor and major amputation subgroups. Binary logistic regression analyses were used to assess the association between risk factors and lower extremity amputation. Results: Among 1 771 patients with diabetic foot, 323 of them (18.24%) were in the amputation group (major amputation: 41; minor amputation: 282) and 1 448 (81.76%) in the non-amputation group. Compared with non-amputation patients, those in the amputation group had a longer hospital stay and higher estimated glomerular filtration rate(eGFR)levels. Fasting plasma glucose (FPG), glycosylated hemoglobin (HbA1c), C-reaction protein (CRP), ESR, ferritin, fibrinogen and WBC levels of the amputation group were higher, while hemoglobin albumin, transferrin, TC, TG, HDL-C and LDL-C were lower than those of the non-amputation group (all P diabetic foot. Conclusion: Wagner's grade, ischemia of lower limbs and infection are closely associated with amputation of diabetic foot patients.

  4. A STUDY OF THE HELIOCENTRIC DEPENDENCE OF SHOCK STANDOFF DISTANCE AND GEOMETRY USING 2.5D MAGNETOHYDRODYNAMIC SIMULATIONS OF CORONAL MASS EJECTION DRIVEN SHOCKS

    International Nuclear Information System (INIS)

    Savani, N. P.; Shiota, D.; Kusano, K.; Vourlidas, A.; Lugaz, N.

    2012-01-01

    We perform four numerical magnetohydrodynamic simulations in 2.5 dimensions (2.5D) of fast coronal mass ejections (CMEs) and their associated shock fronts between 10 Rs and 300 Rs. We investigate the relative change in the shock standoff distance, Δ, as a fraction of the CME radial half-width, D OB (i.e., Δ/D OB ). Previous hydrodynamic studies have related the shock standoff distance for Earth's magnetosphere to the density compression ratio (DR; ρ u /ρ d ) measured across the bow shock. The DR coefficient, k dr , which is the proportionality constant between the relative standoff distance (Δ/D OB ) and the compression ratio, was semi-empirically estimated as 1.1. For CMEs, we show that this value varies linearly as a function of heliocentric distance and changes significantly for different radii of curvature of the CME's leading edge. We find that a value of 0.8 ± 0.1 is more appropriate for small heliocentric distances ( dr value increases linearly with heliocentric distance, such that k dr = 1.1 is most appropriate at a heliocentric distance of about 80 Rs. For terrestrial distances (215 Rs) we estimate k dr = 1.8 ± 0.3, which also indicates that the CME cross-sectional structure is generally more oblate than that of Earth's magnetosphere. These alterations to the proportionality coefficients may serve to improve investigations into the estimates of the magnetic field in the corona upstream of a CME as well as the aspect ratio of CMEs as measured in situ.

  5. STEREO OBSERVATIONS OF FAST MAGNETOSONIC WAVES IN THE EXTENDED SOLAR CORONA ASSOCIATED WITH EIT/EUV WAVES

    International Nuclear Information System (INIS)

    Kwon, Ryun-Young; Ofman, Leon; Kramar, Maxim; Olmedo, Oscar; Davila, Joseph M.; Thompson, Barbara J.; Cho, Kyung-Suk

    2013-01-01

    We report white-light observations of a fast magnetosonic wave associated with a coronal mass ejection observed by STEREO/SECCHI/COR1 inner coronagraphs on 2011 August 4. The wave front is observed in the form of density compression passing through various coronal regions such as quiet/active corona, coronal holes, and streamers. Together with measured electron densities determined with STEREO COR1 and Extreme UltraViolet Imager (EUVI) data, we use our kinematic measurements of the wave front to calculate coronal magnetic fields and find that the measured speeds are consistent with characteristic fast magnetosonic speeds in the corona. In addition, the wave front turns out to be the upper coronal counterpart of the EIT wave observed by STEREO EUVI traveling against the solar coronal disk; moreover, stationary fronts of the EIT wave are found to be located at the footpoints of deflected streamers and boundaries of coronal holes, after the wave front in the upper solar corona passes through open magnetic field lines in the streamers. Our findings suggest that the observed EIT wave should be in fact a fast magnetosonic shock/wave traveling in the inhomogeneous solar corona, as part of the fast magnetosonic wave propagating in the extended solar corona.

  6. Explicit integration of extremely stiff reaction networks: partial equilibrium methods

    International Nuclear Information System (INIS)

    Guidry, M W; Hix, W R; Billings, J J

    2013-01-01

    In two preceding papers (Guidry et al 2013 Comput. Sci. Disc. 6 015001 and Guidry and Harris 2013 Comput. Sci. Disc. 6 015002), we have shown that when reaction networks are well removed from equilibrium, explicit asymptotic and quasi-steady-state approximations can give algebraically stabilized integration schemes that rival standard implicit methods in accuracy and speed for extremely stiff systems. However, we also showed that these explicit methods remain accurate but are no longer competitive in speed as the network approaches equilibrium. In this paper, we analyze this failure and show that it is associated with the presence of fast equilibration timescales that neither asymptotic nor quasi-steady-state approximations are able to remove efficiently from the numerical integration. Based on this understanding, we develop a partial equilibrium method to deal effectively with the approach to equilibrium and show that explicit asymptotic methods, combined with the new partial equilibrium methods, give an integration scheme that can plausibly deal with the stiffest networks, even in the approach to equilibrium, with accuracy and speed competitive with that of implicit methods. Thus we demonstrate that such explicit methods may offer alternatives to implicit integration of even extremely stiff systems and that these methods may permit integration of much larger networks than have been possible before in a number of fields. (paper)

  7. SHIELD: The Star Formation Law in Extremely Low-mass Galaxies

    Science.gov (United States)

    Teich, Yaron; McNichols, Andrew; Cannon, John M.; SHIELD Team

    2016-01-01

    The "Survey of HI in Extremely Low-mass Dwarfs" (SHIELD) is a multiwavelength, legacy-class observational study of 12 low-mass dwarf galaxies discovered in Arecibo Legacy Fast ALFA (ALFALFA) survey data products. Here we analyze the relationships between HI and star formation in these systems using multi-configuration, high spatial (~300 pc) and spectral (0.82 - 2.46 km s-1 ch-1) resolution HI observations from the Karl G. Jansky Very Large Array, Hα imaging from the WIYN 3.5m telescope, and archival GALEX far-ultraviolet imaging. We compare the locations and intensities of star formation with the properties of the neutral ISM. We quantify the degree of local co-spatiality between star forming regions and regions of high HI column densities using the Kennicutt-Schmidt (K-S) relation. The values of the K-S index N vary considerably from system to system; because no single galaxy is representative of the sample, we instead focus on the narratives of the individual galaxies and their complex distribution of gaseous and stellar components. At the extremely faint end of the HI mass function, these systems are dominated by stochastic fluctuations in their interstellar media, which governs whether or not they show signs of recent star formation.Support for this work was provided by NSF grant AST-1211683 to JMC at Macalester College.

  8. Association between proximity to and coverage of traditional fast-food restaurants and non-traditional fast-food outlets and fast-food consumption among rural adults

    Directory of Open Access Journals (Sweden)

    Horel Scott A

    2011-05-01

    Full Text Available Abstract Objective The objective of this study is to examine the relationship between residential exposure to fast-food entrées, using two measures of potential spatial access: proximity (distance to the nearest location and coverage (number of different locations, and weekly consumption of fast-food meals. Methods Traditional fast-food restaurants and non-traditional fast-food outlets, such as convenience stores, supermarkets, and grocery stores, from the 2006 Brazos Valley Food Environment Project were linked with individual participants (n = 1409 who completed the nutrition module in the 2006 Brazos Valley Community Health Assessment. Results Increased age, poverty, increased distance to the nearest fast food, and increased number of different traditional fast-food restaurants, non-traditional fast-food outlets, or fast-food opportunities were associated with less frequent weekly consumption of fast-food meals. The interaction of gender and proximity (distance or coverage (number indicated that the association of proximity to or coverage of fast-food locations on fast-food consumption was greater among women and opposite of independent effects. Conclusions Results provide impetus for identifying and understanding the complex relationship between access to all fast-food opportunities, rather than to traditional fast-food restaurants alone, and fast-food consumption. The results indicate the importance of further examining the complex interaction of gender and distance in rural areas and particularly in fast-food consumption. Furthermore, this study emphasizes the need for health promotion and policy efforts to consider all sources of fast-food as part of promoting healthful food choices.

  9. Association between proximity to and coverage of traditional fast-food restaurants and non-traditional fast-food outlets and fast-food consumption among rural adults

    Science.gov (United States)

    2011-01-01

    Objective The objective of this study is to examine the relationship between residential exposure to fast-food entrées, using two measures of potential spatial access: proximity (distance to the nearest location) and coverage (number of different locations), and weekly consumption of fast-food meals. Methods Traditional fast-food restaurants and non-traditional fast-food outlets, such as convenience stores, supermarkets, and grocery stores, from the 2006 Brazos Valley Food Environment Project were linked with individual participants (n = 1409) who completed the nutrition module in the 2006 Brazos Valley Community Health Assessment. Results Increased age, poverty, increased distance to the nearest fast food, and increased number of different traditional fast-food restaurants, non-traditional fast-food outlets, or fast-food opportunities were associated with less frequent weekly consumption of fast-food meals. The interaction of gender and proximity (distance) or coverage (number) indicated that the association of proximity to or coverage of fast-food locations on fast-food consumption was greater among women and opposite of independent effects. Conclusions Results provide impetus for identifying and understanding the complex relationship between access to all fast-food opportunities, rather than to traditional fast-food restaurants alone, and fast-food consumption. The results indicate the importance of further examining the complex interaction of gender and distance in rural areas and particularly in fast-food consumption. Furthermore, this study emphasizes the need for health promotion and policy efforts to consider all sources of fast-food as part of promoting healthful food choices. PMID:21599955

  10. Fast ejendom III

    DEFF Research Database (Denmark)

    Munk-Hansen, Carsten

    Bogen er det tredje bind af tre planlagte bind om fast ejendom: I Overdragelsen, II Bolighandlen og III Ejerbeføjelsen. Fremstillingens giver et grundigt overblik over centrale områder af en omfattende regulering af fast ejendom, med angivelse af litteratur, hvor læseren kan søge yderligere...... oplysning. En ejer af fast ejendom er på særdeles mange områder begrænset i sin råden sammenlignet med ejeren af et formuegode i almindelighed. Fremstillingen tager udgangspunkt i ejerens perspektiv (fremfor samfundets eller myndighedernes). Både den privatretlige og offentligretlige regulering behandles......, eksempelvis ejendomsdannelsen, servitutter, naboretten, hævd, zoneinddelingen, den fysiske planlægning, beskyttelse af natur, beskyttelse af kultur, forurening fra fast ejendom, erstatning for forurening, jordforurening, ekspropriation, byggeri og adgang til fast ejendom....

  11. Fast Doppler as a novel bedside measure of cerebral perfusion in preterm infants.

    Science.gov (United States)

    Peeples, Eric S; Mehic, Edin; Mourad, Pierre D; Juul, Sandra E

    2016-02-01

    Altered cerebral perfusion from impaired autoregulation may contribute to the morbidity and mortality associated with premature birth. We hypothesized that fast Doppler imaging could provide a reproducible bedside estimation of cerebral perfusion and autoregulation in preterm infants. This is a prospective pilot study using fast Doppler ultrasound to assess blood flow velocity in the basal ganglia of 19 subjects born at 26-32 wk gestation. Intraclass correlation provided a measure of test-retest reliability, and linear regression of cerebral blood flow velocity and heart rate or blood pressure allowed for estimations of autoregulatory ability. The intraclass correlation when imaging in the first 48 h of life was 0.634. We found significant and independent correlations between the systolic blood flow velocity and both systolic blood pressure and heart rate (P = 0.015 and 0.012 respectively) only in the 26-28 wk gestational age infants in the first 48 h of life. Our results suggest that fast Doppler provides reliable bedside measurements of cerebral blood flow velocity at the tissue level in premature infants, acting as a proxy for cerebral tissue perfusion. Additionally, autoregulation appears to be impaired in the extremely preterm infants, even within a normal range of blood pressures.

  12. Statistics of Extremes

    KAUST Repository

    Davison, Anthony C.

    2015-04-10

    Statistics of extremes concerns inference for rare events. Often the events have never yet been observed, and their probabilities must therefore be estimated by extrapolation of tail models fitted to available data. Because data concerning the event of interest may be very limited, efficient methods of inference play an important role. This article reviews this domain, emphasizing current research topics. We first sketch the classical theory of extremes for maxima and threshold exceedances of stationary series. We then review multivariate theory, distinguishing asymptotic independence and dependence models, followed by a description of models for spatial and spatiotemporal extreme events. Finally, we discuss inference and describe two applications. Animations illustrate some of the main ideas. © 2015 by Annual Reviews. All rights reserved.

  13. Fasting and rheumatic diseases

    OpenAIRE

    Mohammad Hassan Jokar

    2015-01-01

    Fasting is one of the important religious practices of Muslims, in which the individuals abstain from eating and drinking from dawn to sunset. Fasting is not obligatory or even not allowed, in case it causes health problems to the fasting individual. Rheumatic diseases are a major group of chronic diseases which can bring about numerous problems while fasting. The aim of this article is to review the impact of Islamic fasting on rheumatic patients, based on the scientific evidences.

  14. Moving in extreme environments: what's extreme and who decides?

    Science.gov (United States)

    Cotter, James David; Tipton, Michael J

    2014-01-01

    Humans work, rest and play in immensely varied extreme environments. The term 'extreme' typically refers to insufficiency or excess of one or more stressors, such as thermal energy or gravity. Individuals' behavioural and physiological capacity to endure and enjoy such environments varies immensely. Adverse effects of acute exposure to these environments are readily identifiable (e.g. heat stroke or bone fracture), whereas adverse effects of chronic exposure (e.g. stress fractures or osteoporosis) may be as important but much less discernable. Modern societies have increasingly sought to protect people from such stressors and, in that way, minimise their adverse effects. Regulations are thus established, and advice is provided on what is 'acceptable' exposure. Examples include work/rest cycles in the heat, hydration regimes, rates of ascent to and duration of stay at altitude and diving depth. While usually valuable and well intentioned, it is important to realise the breadth and importance of limitations associated with such guidelines. Regulations and advisories leave less room for self-determination, learning and perhaps adaptation. Regulations based on stress (e.g. work/rest cycles relative to WBGT) are more practical but less direct than those based on strain (e.g. core temperature), but even the latter can be substantively limited (e.g. by lack of criterion validation and allowance for behavioural regulation in the research on which they are based). Extreme Physiology & Medicine is publishing a series of reviews aimed at critically examining the issues involved with self- versus regulation-controlled human movement acutely and chronically in extreme environments. These papers, arising from a research symposium in 2013, are about the impact of people engaging in such environments and the effect of rules and guidelines on their safety, enjoyment, autonomy and productivity. The reviews will cover occupational heat stress, sporting heat stress, hydration, diving

  15. The storm time ring current dynamics and response to CMEs and CIRs using Van Allen Probes observations and CIMI simulations

    Science.gov (United States)

    Mouikis, Christopher; Bingham, Samuel; Kistler, Lynn; Spence, Harlan; Gkioulidou, Matina

    2017-04-01

    The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), and co-rotating interaction regions (CIR's). Using Van Allen Probes observations, we develop an empirical ring current model of the ring current pressure, the pressure anisotropy and the current density development during the storm phases for both types of storm drivers and for all MLTs inside L 6. Delineating the differences in the ring current development between these two drivers will aid our understanding of the ring current dynamics. We find that during the storm main phase most of the ring current pressure in the pre-midnight inner magnetosphere is contributed by particles on open drift paths that cause the development of a strong partial ring current that causes most of the main phase Dst drop. These particles can reach as deep as L 2 and their pressure compares to the local magnetic field pressure as deep as L 3. During the recovery phase, if these particles are not lost at the magnetopause, will become trapped and will contribute to the symmetric ring current. However, the largest difference between the CME and CIR ring current responses during the storm main and early recovery phases is caused by how the 15 - 60 keV O+ responds to these drivers. This empirical model is compared to the results of CIMI simulations of a CMEs and a CIRs where the model input is comprised of the superposed epoch solar wind conditions of the storms that comprise the empirical model. Different inner magnetosphere boundary conditions are tested in order to match the empirical model results. Comparing the model and simulation results improves our understanding of the ring current dynamics as part of the highly coupled inner magnetosphere system. In addition, within the framework of this empirical model, the prediction of the EMIC wave generation linear theory is tested using the observed plasma parameters and comparing with the observations of

  16. Determination of HCME 3-D parameters using a full ice-cream cone model

    Science.gov (United States)

    Na, Hyeonock; Moon, Yong-Jae; Lee, Harim

    2016-05-01

    It is very essential to determine three dimensional parameters (e.g., radial speed, angular width, source location) of Coronal Mass Ejections (CMEs) for space weather forecast. Several cone models (e.g., an elliptical cone model, an ice-cream cone model, an asymmetric cone model) have been examined to estimate these parameters. In this study, we investigate which cone type is close to a halo CME morphology using 26 CMEs: halo CMEs by one spacecraft (SOHO or STEREO-A or B) and as limb CMEs by the other ones. From cone shape parameters of these CMEs such as their front curvature, we find that near full ice-cream cone type CMEs are much closer to observations than shallow ice-cream cone type CMEs. Thus we develop a new cone model in which a full ice-cream cone consists of many flat cones with different heights and angular widths. This model is carried out by the following steps: (1) construct a cone for given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, and (4) minimize the difference between the estimated projection speeds with the observed ones. By applying this model to 12 SOHO/LASCO halo CMEs, we find that 3-D parameters from our method are similar to those from other stereoscopic methods (a geometrical triangulation method and a Graduated Cylindrical Shell model) based on multi-spacecraft data. We are developing a general ice-cream cone model whose front shape is a free parameter determined by observations.

  17. Laser-produced plasma-extreme ultraviolet light source for next generation lithography

    International Nuclear Information System (INIS)

    Nishihara, Katsunobu; Nishimura, Hiroaki; Gamada, Kouhei; Murakami, Masakatsu; Mochizuki, Takayasu; Sasaki, Akira; Sunahara, Atsushi

    2005-01-01

    Extreme ultraviolet (EUV) lithography is the most promising candidate for the next generation lithography for the 45 nm technology node and below. EUV light sources under consideration use 13.5 nm radiations from multicharged xenon, tin and lithium ions, because Mo/Si multiplayer mirrors have high reflectivity at this wavelength. A review of laser-produced plasma (LPP) EUV light sources is presented with a focus on theoretical and experimental studies under the auspices of the Leading Project promoted by MEXT. We discuss three theoretical topics: atomic processes in the LPP-EUV light source, conversion efficiency from laser light to EUV light at 13.5 nm wave-length with 2% bound width, and fast ion spectra. The properties of EUV emission from tin and xenon plasmas are also shown based on experimental results. (author)

  18. Properties of Ground Level Enhancement Events and the Associated Solar Eruptions During Solar Cycle 23

    Science.gov (United States)

    Gopalswamy, N.; Xie, H.; Yashiro, S.; Akiyama, S.; Makela, P.; Usokin, I. G.

    2012-01-01

    Solar cycle 23 witnessed the most complete set of observations of coronal mass ejections (CMEs) associated with the Ground Level Enhancement (GLE) events. We present an overview of the observed properties of the GLEs and those of the two associated phenomena, viz., flares and CMEs, both being potential sources of particle acceleration. Although we do not find a striking correlation between the GLE intensity and the parameters of flares and CMEs, the solar eruptions are very intense involving X-class flares and extreme CME speeds (average approx. 2000 km/s). An M7.1 flare and a 1200 km/s CME are the weakest events in the list of 16 GLE events. Most (80 %) of the CMEs are full halos with the three non-halos having widths in the range 167 to 212 degrees. The active regions in which the GLE events originate are generally large: 1290 msh (median 1010 msh) compared to 934 msh (median: 790 msh) for SEP-producing active regions. For accurate estimation of the CME height at the time of metric type II onset and GLE particle release, we estimated the initial acceleration of the CMEs using flare and CME observations. The initial acceleration of GLE-associated CMEs is much larger (by a factor of 2) than that of ordinary CMEs (2.3 km/sq s vs. 1 km/sq s). We confirmed the initial acceleration for two events for which CME measurements are available in the inner corona. The GLE particle release is delayed with respect to the onset of all electromagnetic signatures of the eruptions: type II bursts, low frequency type III bursts, soft X-ray flares and CMEs. The presence of metric type II radio bursts some 17 min (median: 16 min; range: 3 to 48 min) before the GLE onset indicates shock formation well before the particle release. The release of GLE particles occurs when the CMEs reach an average height of approx 3.09 R(sub s) (median: 3.18 R (sub s) ; range: 1.71 to 4.01 R (sub s) ) for well-connected events (source longitude in the range W20–W90). For poorly connected events, the

  19. Pump-beam-instability limits to Raman-gain-doublet ''fast-light'' pulse propagation

    International Nuclear Information System (INIS)

    Stenner, Michael D.; Gauthier, Daniel J.

    2003-01-01

    We investigate the behavior of a system for generating ''fast-light'' pulses in which a bichromatic Raman pumping beam is used to generate optical gain at two frequencies and a region of anomalous dispersion between them. It is expected that increasing the gain will increase the pulse advancement. However, as the gain increases, the pumping field becomes increasingly distorted, effectively limiting the pulse advancement. We observe as much as 12% of the input pump power converted to orthogonal polarization, broadening of the initially bichromatic pump field (25 MHz initial frequency separation) to more than 2.5 GHz, and a temporal collapse of the pump beam into an erratic train of sub-500-ps pulses. The instability is attributed to the combined effects of the cross modulation instability and stimulated Raman scattering. Extreme distortion of an injected pulse that should (absent the instability) experience an advancement of 21% of its width is observed. We conclude that the fast-light pulse advancement is limited to just a few percent of the pulse width using this pulse advancement technique. The limitation imposed by the instability is important because careful study of the information velocity in fast-light pulses requires that pulse advancement be large enough to distinguish the velocities of different pulse features. Possible methods for achieving pulse advancement by avoiding the distortion caused by the instability are discussed

  20. Evolution caused by extreme events.

    Science.gov (United States)

    Grant, Peter R; Grant, B Rosemary; Huey, Raymond B; Johnson, Marc T J; Knoll, Andrew H; Schmitt, Johanna

    2017-06-19

    Extreme events can be a major driver of evolutionary change over geological and contemporary timescales. Outstanding examples are evolutionary diversification following mass extinctions caused by extreme volcanism or asteroid impact. The evolution of organisms in contemporary time is typically viewed as a gradual and incremental process that results from genetic change, environmental perturbation or both. However, contemporary environments occasionally experience strong perturbations such as heat waves, floods, hurricanes, droughts and pest outbreaks. These extreme events set up strong selection pressures on organisms, and are small-scale analogues of the dramatic changes documented in the fossil record. Because extreme events are rare, almost by definition, they are difficult to study. So far most attention has been given to their ecological rather than to their evolutionary consequences. We review several case studies of contemporary evolution in response to two types of extreme environmental perturbations, episodic (pulse) or prolonged (press). Evolution is most likely to occur when extreme events alter community composition. We encourage investigators to be prepared for evolutionary change in response to rare events during long-term field studies.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  1. Early Progressive Strength Training to Enhance Recovery After Fast-Track Total Knee Arthroplasty

    DEFF Research Database (Denmark)

    Jakobsen, Thomas Linding; Kehlet, Henrik; Husted, Henrik

    2014-01-01

    different interventions: 7 weeks of supervised physical rehabilitation with PST (PST group) and without PST (CON group) commenced early after fast-track TKA. The primary outcome was the maximal distance walked in 6 minutes (6-minute walk test). Secondary outcomes were lower extremity strength and power......, knee joint effusion and range of motion, knee pain, and self-reported disability and quality of life. All outcome measures were assessed before TKA (baseline) and 4, 8, and 26 weeks after TKA. RESULTS: There was no statistically significant difference between the PST and CON groups in the change score...

  2. Propagation Characteristics of Two Coronal Mass Ejections from the Sun Far into Interplanetary Space

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaowei; Liu, Ying D.; Hu, Huidong; Wang, Rui, E-mail: liuxying@spaceweather.ac.cn [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-03-01

    Propagation of coronal mass ejections (CMEs) from the Sun far into interplanetary space is not well understood, due to limited observations. In this study we examine the propagation characteristics of two geo-effective CMEs, which occurred on 2005 May 6 and 13, respectively. Significant heliospheric consequences associated with the two CMEs are observed, including interplanetary CMEs (ICMEs) at the Earth and Ulysses , interplanetary shocks, a long-duration type II radio burst, and intense geomagnetic storms. We use coronagraph observations from SOHO /LASCO, frequency drift of the long-duration type II burst, in situ measurements at the Earth and Ulysses , and magnetohydrodynamic propagation of the observed solar wind disturbances at 1 au to track the CMEs from the Sun far into interplanetary space. We find that both of the CMEs underwent a major deceleration within 1 au and thereafter a gradual deceleration when they propagated from the Earth to deep interplanetary space, due to interactions with the ambient solar wind. The results also reveal that the two CMEs interacted with each other in the distant interplanetary space even though their launch times on the Sun were well separated. The intense geomagnetic storm for each case was caused by the southward magnetic fields ahead of the CME, stressing the critical role of the sheath region in geomagnetic storm generation, although for the first case there is a corotating interaction region involved.

  3. Extremely fast increase in the organic loading rate during the co-digestion of rapeseed oil and sewage sludge in a CSTR--characterization of granules formed due to CaO addition to maintain process stability.

    Science.gov (United States)

    Kasina, M; Kleyböcker, A; Michalik, M; Würdemann, H

    2015-01-01

    In a co-digestion system running with rapeseed oil and sewage sludge, an extremely fast increase in the organic loading rate was studied to develop a procedure to allow for flexible and demand-driven energy production. The over-acidification of the digestate was successfully prevented by calcium oxide dosage, which resulted in granule formation. Mineralogical analyses revealed that the granules were composed of insoluble salts of long chain fatty acids and calcium and had a porous structure. Long chain fatty acids and calcium formed the outer cover of granules and offered interfaces on the inside thereby enhancing the growth of biofilms. With granule size and age, the pore size increased and indicated degradation of granular interfaces. A stable biogas production up to the organic loading rate of 10.4 kg volatile solids m(-3) d(-1) was achieved although the hydrogen concentration was not favorable for propionic acid degradation. However, at higher organic loading rates, unbalanced granule formation and degradation were observed. Obviously, the adaption time for biofilm growth was too short to maintain the balance, thereby resulting in a low methane yield.

  4. Fast Spectrum Reactors

    CERN Document Server

    Todd, Donald; Tsvetkov, Pavel

    2012-01-01

    Fast Spectrum Reactors presents a detailed overview of world-wide technology contributing to the development of fast spectrum reactors. With a unique focus on the capabilities of fast spectrum reactors to address nuclear waste transmutation issues, in addition to the well-known capabilities of breeding new fuel, this volume describes how fast spectrum reactors contribute to the wide application of nuclear power systems to serve the global nuclear renaissance while minimizing nuclear proliferation concerns. Readers will find an introduction to the sustainable development of nuclear energy and the role of fast reactors, in addition to an economic analysis of nuclear reactors. A section devoted to neutronics offers the current trends in nuclear design, such as performance parameters and the optimization of advanced power systems. The latest findings on fuel management, partitioning and transmutation include the physics, efficiency and strategies of transmutation, homogeneous and heterogeneous recycling, in addit...

  5. Developing a Framework for Seamless Prediction of Sub-Seasonal to Seasonal Extreme Precipitation Events in the United States.

    Science.gov (United States)

    Rosendahl, D. H.; Ćwik, P.; Martin, E. R.; Basara, J. B.; Brooks, H. E.; Furtado, J. C.; Homeyer, C. R.; Lazrus, H.; Mcpherson, R. A.; Mullens, E.; Richman, M. B.; Robinson-Cook, A.

    2017-12-01

    Extreme precipitation events cause significant damage to homes, businesses, infrastructure, and agriculture, as well as many injures and fatalities as a result of fast-moving water or waterborne diseases. In the USA, these natural hazard events claimed the lives of more than 300 people during 2015 - 2016 alone, with total damage reaching $24.4 billion. Prior studies of extreme precipitation events have focused on the sub-daily to sub-weekly timeframes. However, many decisions for planning, preparing and resilience-building require sub-seasonal to seasonal timeframes (S2S; 14 to 90 days), but adequate forecasting tools for prediction do not exist. Therefore, the goal of this newly funded project is an enhancement in understanding of the large-scale forcing and dynamics of S2S extreme precipitation events in the United States, and improved capability for modeling and predicting such events. Here, we describe the project goals, objectives, and research activities that will take place over the next 5 years. In this project, a unique team of scientists and stakeholders will identify and understand weather and climate processes connected with the prediction of S2S extreme precipitation events by answering these research questions: 1) What are the synoptic patterns associated with, and characteristic of, S2S extreme precipitation evens in the contiguous U.S.? 2) What role, if any, do large-scale modes of climate variability play in modulating these events? 3) How predictable are S2S extreme precipitation events across temporal scales? 4) How do we create an informative prediction of S2S extreme precipitation events for policymaking and planing? This project will use observational data, high-resolution radar composites, dynamical climate models and workshops that engage stakeholders (water resource managers, emergency managers and tribal environmental professionals) in co-production of knowledge. The overarching result of this project will be predictive models to reduce of

  6. Autonomous celestial navigation based on Earth ultraviolet radiance and fast gradient statistic feature extraction

    Science.gov (United States)

    Lu, Shan; Zhang, Hanmo

    2016-01-01

    To meet the requirement of autonomous orbit determination, this paper proposes a fast curve fitting method based on earth ultraviolet features to obtain accurate earth vector direction, in order to achieve the high precision autonomous navigation. Firstly, combining the stable characters of earth ultraviolet radiance and the use of transmission model software of atmospheric radiation, the paper simulates earth ultraviolet radiation model on different time and chooses the proper observation band. Then the fast improved edge extracting method combined Sobel operator and local binary pattern (LBP) is utilized, which can both eliminate noises efficiently and extract earth ultraviolet limb features accurately. And earth's centroid locations on simulated images are estimated via the least square fitting method using part of the limb edges. Taken advantage of the estimated earth vector direction and earth distance, Extended Kalman Filter (EKF) is applied to realize the autonomous navigation finally. Experiment results indicate the proposed method can achieve a sub-pixel earth centroid location estimation and extremely enhance autonomous celestial navigation precision.

  7. Likelihood estimators for multivariate extremes

    KAUST Repository

    Huser, Raphaë l; Davison, Anthony C.; Genton, Marc G.

    2015-01-01

    The main approach to inference for multivariate extremes consists in approximating the joint upper tail of the observations by a parametric family arising in the limit for extreme events. The latter may be expressed in terms of componentwise maxima, high threshold exceedances or point processes, yielding different but related asymptotic characterizations and estimators. The present paper clarifies the connections between the main likelihood estimators, and assesses their practical performance. We investigate their ability to estimate the extremal dependence structure and to predict future extremes, using exact calculations and simulation, in the case of the logistic model.

  8. Likelihood estimators for multivariate extremes

    KAUST Repository

    Huser, Raphaël

    2015-11-17

    The main approach to inference for multivariate extremes consists in approximating the joint upper tail of the observations by a parametric family arising in the limit for extreme events. The latter may be expressed in terms of componentwise maxima, high threshold exceedances or point processes, yielding different but related asymptotic characterizations and estimators. The present paper clarifies the connections between the main likelihood estimators, and assesses their practical performance. We investigate their ability to estimate the extremal dependence structure and to predict future extremes, using exact calculations and simulation, in the case of the logistic model.

  9. Classifying Returns as Extreme

    DEFF Research Database (Denmark)

    Christiansen, Charlotte

    2014-01-01

    I consider extreme returns for the stock and bond markets of 14 EU countries using two classification schemes: One, the univariate classification scheme from the previous literature that classifies extreme returns for each market separately, and two, a novel multivariate classification scheme tha...

  10. Comb to Pipeline: Fast Software Encryption Revisited

    DEFF Research Database (Denmark)

    Bogdanov, Andrey; Lauridsen, Martin Mehl; Tischhauser, Elmar Wolfgang

    2015-01-01

    AES-NI, or Advanced Encryption Standard New Instructions, is an extension of the x86 architecture proposed by Intel in 2008. With a pipelined implementation utilizing AES-NI, parallelizable modes such as AES-CTR become extremely efficient. However, out of the four non-trivial NIST......-recommended encryption modes, three are inherently sequential: CBC, CFB, and OFB. This inhibits the advantage of using AES-NI significantly. Similar observations apply to CMAC, CCM and a great deal of other modes. We address this issue by proposing the comb scheduler – a fast scheduling algorithm based on an efficient....... We observe a drastic speed-up of factor 5 for NIST’s CBC, CFB, OFB and CMAC performing around 0.88 cpb. Surprisingly, contrary to the entire body of previous performance analysis, the throughput of the authenticated encryption (AE) mode CCM gets very close to that of GCM and OCB3, with about 1.64 cpb...

  11. Metabolic changes associated with the long winter fast dominate the liver proteome in 13-lined ground squirrels

    Science.gov (United States)

    Hindle, Allyson G.; Grabek, Katharine R.; Epperson, L. Elaine; Karimpour-Fard, Anis

    2014-01-01

    Small-bodied hibernators partition the year between active homeothermy and hibernating heterothermy accompanied by fasting. To define molecular events underlying hibernation that are both dependent and independent of fasting, we analyzed the liver proteome among two active and four hibernation states in 13-lined ground squirrels. We also examined fall animals transitioning between fed homeothermy and fasting heterothermy. Significantly enriched pathways differing between activity and hibernation were biased toward metabolic enzymes, concordant with the fuel shifts accompanying fasting physiology. Although metabolic reprogramming to support fasting dominated these data, arousing (rewarming) animals had the most distinct proteome among the hibernation states. Instead of a dominant metabolic enzyme signature, torpor-arousal cycles featured differences in plasma proteins and intracellular membrane traffic and its regulation. Phosphorylated NSFL1C, a membrane regulator, exhibited this torpor-arousal cycle pattern; its role in autophagosome formation may promote utilization of local substrates upon metabolic reactivation in arousal. Fall animals transitioning to hibernation lagged in their proteomic adjustment, indicating that the liver is more responsive than preparatory to the metabolic reprogramming of hibernation. Specifically, torpor use had little impact on the fall liver proteome, consistent with a dominant role of nutritional status. In contrast to our prediction of reprogramming the transition between activity and hibernation by gene expression and then within-hibernation transitions by posttranslational modification (PTM), we found extremely limited evidence of reversible PTMs within torpor-arousal cycles. Rather, acetylation contributed to seasonal differences, being highest in winter (specifically in torpor), consistent with fasting physiology and decreased abundance of the mitochondrial deacetylase, SIRT3. PMID:24642758

  12. A hybrid fuzzy logic and extreme learning machine for improving efficiency of circulating water systems in power generation plant

    Science.gov (United States)

    Aziz, Nur Liyana Afiqah Abdul; Siah Yap, Keem; Afif Bunyamin, Muhammad

    2013-06-01

    This paper presents a new approach of the fault detection for improving efficiency of circulating water system (CWS) in a power generation plant using a hybrid Fuzzy Logic System (FLS) and Extreme Learning Machine (ELM) neural network. The FLS is a mathematical tool for calculating the uncertainties where precision and significance are applied in the real world. It is based on natural language which has the ability of "computing the word". The ELM is an extremely fast learning algorithm for neural network that can completed the training cycle in a very short time. By combining the FLS and ELM, new hybrid model, i.e., FLS-ELM is developed. The applicability of this proposed hybrid model is validated in fault detection in CWS which may help to improve overall efficiency of power generation plant, hence, consuming less natural recourses and producing less pollutions.

  13. A hybrid fuzzy logic and extreme learning machine for improving efficiency of circulating water systems in power generation plant

    International Nuclear Information System (INIS)

    Aziz, Nur Liyana Afiqah Abdul; Yap, Keem Siah; Bunyamin, Muhammad Afif

    2013-01-01

    This paper presents a new approach of the fault detection for improving efficiency of circulating water system (CWS) in a power generation plant using a hybrid Fuzzy Logic System (FLS) and Extreme Learning Machine (ELM) neural network. The FLS is a mathematical tool for calculating the uncertainties where precision and significance are applied in the real world. It is based on natural language which has the ability of c omputing the word . The ELM is an extremely fast learning algorithm for neural network that can completed the training cycle in a very short time. By combining the FLS and ELM, new hybrid model, i.e., FLS-ELM is developed. The applicability of this proposed hybrid model is validated in fault detection in CWS which may help to improve overall efficiency of power generation plant, hence, consuming less natural recourses and producing less pollutions.

  14. Ramadan, fasting and pregnancy

    DEFF Research Database (Denmark)

    Ahmed, Urfan Zahoor; Lykke, Jacob Alexander

    2014-01-01

    In Islam, the month of Ramadan is a period of fasting lasting 29 or 30 days. Epidemiological studies among Muslims in Denmark have not been conducted, but studies show, that fasting among pregnant Muslim women is common. Fasting does not increase the risk of growth restriction or preterm delivery......, but there are reports of decreased foetal movements. Furthermore, the fasting may have long-term health consequences for the offspring, especially when they reach their middle age. According to Islam and the interpretation, pregnant and breast-feeding women are allowed to postpone the fasting of the month of Ramadan...

  15. Ramadan, faste og graviditet

    DEFF Research Database (Denmark)

    Ahmed, Urfan Zahoor; Lykke, Jacob Alexander

    2014-01-01

    In Islam, the month of Ramadan is a period of fasting lasting 29 or 30 days. Epidemiological studies among Muslims in Denmark have not been conducted, but studies show, that fasting among pregnant Muslim women is common. Fasting does not increase the risk of growth restriction or preterm delivery......, but there are reports of decreased foetal movements. Furthermore, the fasting may have long-term health consequences for the offspring, especially when they reach their middle age. According to Islam and the interpretation, pregnant and breast-feeding women are allowed to postpone the fasting of the month of Ramadan...

  16. INTERSESSION RELIABILITY OF UPPER EXTREMITY ISOKINETIC PUSH-PULL TESTING.

    Science.gov (United States)

    Riemann, Bryan L; Davis, Sarah E; Huet, Kevin; Davies, George J

    2016-02-01

    Based on the frequency pushing and pulling patterns are used in functional activities, there is a need to establish an objective method of quantifying the muscle performance characteristics associated with these motions, particularly during the later stages of rehabilitation as criteria for discharge. While isokinetic assessment offers an approach to quantifying muscle performance, little is known about closed kinetic chain (CKC) isokinetic testing of the upper extremity (UE). To determine the intersession reliability of isokinetic upper extremity measurement of pushing and pulling peak force and average power at slow (0.24 m/s), medium (0.43 m/s) and fast (0.61 m/s) velocities in healthy young adults. The secondary purpose was to compare pushing and pulling peak force (PF) and average power (AP) between the upper extremity limbs (dominant, non-dominant) across the three velocities. Twenty-four physically active men and women completed a test-retest (>96 hours) protocol in order to establish isokinetic UE CKC reliability of PF and AP during five maximal push and pull repetitions at three velocities. Both limb and speed orders were randomized between subjects. High test-retest relative reliability using intraclass correlation coefficients (ICC2, 1) were revealed for PF (.91-.97) and AP (.85-.95) across velocities, limbs and directions. PF typical error (% coefficient of variation) ranged from 6.1% to 11.3% while AP ranged from 9.9% to 26.7%. PF decreased significantly (p pushing were significantly greater than pulling at all velocities, however the push-pull differences in PF became less as velocity increased. There were no significant differences identified between the dominant and nondominant limbs. Isokinetically derived UE CKC push-pull PF and AP are reliable measures. The lack of limb differences in healthy normal participants suggests that clinicians can consider bilateral comparisons when interpreting test performance. The increase in pushing PF and

  17. Fast fission phenomena

    International Nuclear Information System (INIS)

    Gregoire, Christian.

    1982-03-01

    Experimental studies of fast fission phenomena are presented. The paper is divided into three parts. In the first part, problems associated with fast fission processes are examined in terms of interaction potentials and a dynamic model is presented in which highly elastic collisions, the formation of compound nuclei and fast fission appear naturally. In the second part, a description is given of the experimental methods employed, the observations made and the preliminary interpretation of measurements suggesting the occurence of fast fission processes. In the third part, our dynamic model is incorporated in a general theory of the dissipative processes studied. This theory enables fluctuations associated with collective variables to be calculated. It is applied to highly inelastic collisions, to fast fission and to the fission dynamics of compound nuclei (for which a schematic representation is given). It is with these calculations that the main results of the second part can be interpreted [fr

  18. Probabilistic analysis of extreme wind events

    Energy Technology Data Exchange (ETDEWEB)

    Chaviaropoulos, P.K. [Center for Renewable Energy Sources (CRES), Pikermi Attikis (Greece)

    1997-12-31

    A vital task in wind engineering and meterology is to understand, measure, analyse and forecast extreme wind conditions, due to their significant effects on human activities and installations like buildings, bridges or wind turbines. The latest version of the IEC standard (1996) pays particular attention to the extreme wind events that have to be taken into account when designing or certifying a wind generator. Actually, the extreme wind events within a 50 year period are those which determine the ``static`` design of most of the wind turbine components. The extremes which are important for the safety of wind generators are those associated with the so-called ``survival wind speed``, the extreme operating gusts and the extreme wind direction changes. A probabilistic approach for the analysis of these events is proposed in this paper. Emphasis is put on establishing the relation between extreme values and physically meaningful ``site calibration`` parameters, like probability distribution of the annual wind speed, turbulence intensity and power spectra properties. (Author)

  19. Completed Ulnar Shaft Stress Fracture in a Fast-Pitch Softball Pitcher.

    Science.gov (United States)

    Wiltfong, Roger E; Carruthers, Katherine H; Popp, James E

    2017-03-01

    Stress fractures of the upper extremity have been previously described in the literature, yet reports of isolated injury to the ulna diaphysis or olecranon are rare. The authors describe a case involving an 18-year-old fast-pitch softball pitcher. She presented with a long history of elbow and forearm pain, which was exacerbated during a long weekend of pitching. Her initial physician diagnosed her as having forearm tendinitis. She was treated with nonsurgical means including rest, anti-inflammatory medications, therapy, and kinesiology taping. She resumed pitching when allowed and subsequently had an acute event immediately ceasing pitching. She presented to an urgent care clinic that evening and was diagnosed as having a complete ulnar shaft fracture subsequently needing surgical management. This case illustrates the need for a high degree of suspicion for ulnar stress fractures in fast-pitch soft-ball pitchers with an insidious onset of unilateral forearm pain. Through early identification and intervention, physicians may be able to reduce the risk of injury progression and possibly eliminate the need for surgical management. [Orthopedics. 2017; 40(2):e360-e362.]. Copyright 2016, SLACK Incorporated.

  20. Marketing fast food: impact of fast food restaurants in children's hospitals.

    Science.gov (United States)

    Sahud, Hannah B; Binns, Helen J; Meadow, William L; Tanz, Robert R

    2006-12-01

    The objectives of this study were (1) to determine fast food restaurant prevalence in hospitals with pediatric residencies and (2) to evaluate how hospital environment affects purchase and perception of fast food. We first surveyed pediatric residency programs regarding fast food restaurants in their hospitals to determine the prevalence of fast food restaurants in these hospitals. We then surveyed adults with children after pediatric outpatient visits at 3 hospitals: hospital M with an on-site McDonald's restaurant, hospital R without McDonald's on site but with McDonald's branding, and hospital X with neither on-site McDonald's nor branding. We sought to determine attitudes toward, consumption of, and influences on purchase of fast food and McDonald's food. Fifty-nine of 200 hospitals with pediatric residencies had fast food restaurants. A total of 386 outpatient surveys were analyzed. Fast food consumption on the survey day was most common among hospital M respondents (56%; hospital R: 29%; hospital X: 33%), as was the purchase of McDonald's food (hospital M: 53%; hospital R: 14%; hospital X: 22%). McDonald's accounted for 95% of fast food consumed by hospital M respondents, and 83% of them bought their food at the on-site McDonald's. Using logistic regression analysis, hospital M respondents were 4 times more likely than respondents at the other hospitals to have purchased McDonald's food on the survey day. Visitors to hospitals M and R were more likely than those at hospital X to believe that McDonald's supported the hospital financially. Respondents at hospital M rated McDonald's food healthier than did respondents at the other hospitals. Fast food restaurants are fairly common in hospitals that sponsor pediatric residency programs. A McDonald's restaurant in a children's hospital was associated with significantly increased purchase of McDonald's food by outpatients, belief that the McDonald's Corporation supported the hospital financially, and higher rating

  1. Stationary and non-stationary extreme value modeling of extreme temperature in Malaysia

    Science.gov (United States)

    Hasan, Husna; Salleh, Nur Hanim Mohd; Kassim, Suraiya

    2014-09-01

    Extreme annual temperature of eighteen stations in Malaysia is fitted to the Generalized Extreme Value distribution. Stationary and non-stationary models with trend are considered for each station and the Likelihood Ratio test is used to determine the best-fitting model. Results show that three out of eighteen stations i.e. Bayan Lepas, Labuan and Subang favor a model which is linear in the location parameter. A hierarchical cluster analysis is employed to investigate the existence of similar behavior among the stations. Three distinct clusters are found in which one of them consists of the stations that favor the non-stationary model. T-year estimated return levels of the extreme temperature are provided based on the chosen models.

  2. Automated framework for intraretinal cystoid macular edema segmentation in three-dimensional optical coherence tomography images with macular hole

    Science.gov (United States)

    Zhu, Weifang; Zhang, Li; Shi, Fei; Xiang, Dehui; Wang, Lirong; Guo, Jingyun; Yang, Xiaoling; Chen, Haoyu; Chen, Xinjian

    2017-07-01

    Cystoid macular edema (CME) and macular hole (MH) are the leading causes for visual loss in retinal diseases. The volume of the CMEs can be an accurate predictor for visual prognosis. This paper presents an automatic method to segment the CMEs from the abnormal retina with coexistence of MH in three-dimensional-optical coherence tomography images. The proposed framework consists of preprocessing and CMEs segmentation. The preprocessing part includes denoising, intraretinal layers segmentation and flattening, and MH and vessel silhouettes exclusion. In the CMEs segmentation, a three-step strategy is applied. First, an AdaBoost classifier trained with 57 features is employed to generate the initialization results. Second, an automated shape-constrained graph cut algorithm is applied to obtain the refined results. Finally, cyst area information is used to remove false positives (FPs). The method was evaluated on 19 eyes with coexistence of CMEs and MH from 18 subjects. The true positive volume fraction, FP volume fraction, dice similarity coefficient, and accuracy rate for CMEs segmentation were 81.0%±7.8%, 0.80%±0.63%, 80.9%±5.7%, and 99.7%±0.1%, respectively.

  3. Extreme Quantum Memory Advantage for Rare-Event Sampling

    Science.gov (United States)

    Aghamohammadi, Cina; Loomis, Samuel P.; Mahoney, John R.; Crutchfield, James P.

    2018-02-01

    We introduce a quantum algorithm for memory-efficient biased sampling of rare events generated by classical memoryful stochastic processes. Two efficiency metrics are used to compare quantum and classical resources for rare-event sampling. For a fixed stochastic process, the first is the classical-to-quantum ratio of required memory. We show for two example processes that there exists an infinite number of rare-event classes for which the memory ratio for sampling is larger than r , for any large real number r . Then, for a sequence of processes each labeled by an integer size N , we compare how the classical and quantum required memories scale with N . In this setting, since both memories can diverge as N →∞ , the efficiency metric tracks how fast they diverge. An extreme quantum memory advantage exists when the classical memory diverges in the limit N →∞ , but the quantum memory has a finite bound. We then show that finite-state Markov processes and spin chains exhibit memory advantage for sampling of almost all of their rare-event classes.

  4. Extreme Quantum Memory Advantage for Rare-Event Sampling

    Directory of Open Access Journals (Sweden)

    Cina Aghamohammadi

    2018-02-01

    Full Text Available We introduce a quantum algorithm for memory-efficient biased sampling of rare events generated by classical memoryful stochastic processes. Two efficiency metrics are used to compare quantum and classical resources for rare-event sampling. For a fixed stochastic process, the first is the classical-to-quantum ratio of required memory. We show for two example processes that there exists an infinite number of rare-event classes for which the memory ratio for sampling is larger than r, for any large real number r. Then, for a sequence of processes each labeled by an integer size N, we compare how the classical and quantum required memories scale with N. In this setting, since both memories can diverge as N→∞, the efficiency metric tracks how fast they diverge. An extreme quantum memory advantage exists when the classical memory diverges in the limit N→∞, but the quantum memory has a finite bound. We then show that finite-state Markov processes and spin chains exhibit memory advantage for sampling of almost all of their rare-event classes.

  5. A note on extreme sets

    Directory of Open Access Journals (Sweden)

    Radosław Cymer

    2017-10-01

    Full Text Available In decomposition theory, extreme sets have been studied extensively due to its connection to perfect matchings in a graph. In this paper, we first define extreme sets with respect to degree-matchings and next investigate some of their properties. In particular, we prove the generalized Decomposition Theorem and give a characterization for the set of all extreme vertices in a graph.

  6. Extreme Programming: Maestro Style

    Science.gov (United States)

    Norris, Jeffrey; Fox, Jason; Rabe, Kenneth; Shu, I-Hsiang; Powell, Mark

    2009-01-01

    "Extreme Programming: Maestro Style" is the name of a computer programming methodology that has evolved as a custom version of a methodology, called extreme programming that has been practiced in the software industry since the late 1990s. The name of this version reflects its origin in the work of the Maestro team at NASA's Jet Propulsion Laboratory that develops software for Mars exploration missions. Extreme programming is oriented toward agile development of software resting on values of simplicity, communication, testing, and aggressiveness. Extreme programming involves use of methods of rapidly building and disseminating institutional knowledge among members of a computer-programming team to give all the members a shared view that matches the view of the customers for whom the software system is to be developed. Extreme programming includes frequent planning by programmers in collaboration with customers, continually examining and rewriting code in striving for the simplest workable software designs, a system metaphor (basically, an abstraction of the system that provides easy-to-remember software-naming conventions and insight into the architecture of the system), programmers working in pairs, adherence to a set of coding standards, collaboration of customers and programmers, frequent verbal communication, frequent releases of software in small increments of development, repeated testing of the developmental software by both programmers and customers, and continuous interaction between the team and the customers. The environment in which the Maestro team works requires the team to quickly adapt to changing needs of its customers. In addition, the team cannot afford to accept unnecessary development risk. Extreme programming enables the Maestro team to remain agile and provide high-quality software and service to its customers. However, several factors in the Maestro environment have made it necessary to modify some of the conventional extreme

  7. A comparison of the ground magnetic responses during the 2013 and 2015 St. Patrick's Day geomagnetic storms

    DEFF Research Database (Denmark)

    Xu, Z.; Hartinger, M. D.; Clauer, Robert C.

    2017-01-01

    The magnetosphere-ionosphere system response to extreme solar wind driving conditions depends on both the driving conditions and ionospheric conductivity. Since extreme driving conditions are rare, there are few opportunities to control for one parameter or another. The 17 March 2013 and 17 March...... 2015 geomagnetic storms driven by coronal mass ejections (CME) provide one such opportunity. The two events occur during the same solar illumination conditions; in particular, both occur near equinox on the same day of the year leading to similar ionospheric conductivity profiles. Moreover, both CMEs...... systems. There are dramatic differences between the intensity, onset time and occurrence, duration, and spatial structure of the current systems in each case. For example, differing solar wind driving conditions lead to interhemispheric asymmetries in the high-latitude ground magnetic response during...

  8. Physiology of Ramadan fasting

    OpenAIRE

    Shokoufeh Bonakdaran

    2016-01-01

    Considering the emphasis of Islam on the importance of fasting, Muslims attempt to fast from dawn until sunset during the holy month of Ramadan. Fasting is associated with several benefits for normal and healthy individuals. However, it could pose high risks to the health of diabetic patients due to certain physiological changes. This study aimed to compare the physiological changes associated with fasting in healthy individuals and diabetic patients during Ramadan. Furthermore, we reviewed t...

  9. SU-E-J-191: Motion Prediction Using Extreme Learning Machine in Image Guided Radiotherapy

    International Nuclear Information System (INIS)

    Jia, J; Cao, R; Pei, X; Wang, H; Hu, L

    2015-01-01

    Purpose: Real-time motion tracking is a critical issue in image guided radiotherapy due to the time latency caused by image processing and system response. It is of great necessity to fast and accurately predict the future position of the respiratory motion and the tumor location. Methods: The prediction of respiratory position was done based on the positioning and tracking module in ARTS-IGRT system which was developed by FDS Team (www.fds.org.cn). An approach involving with the extreme learning machine (ELM) was adopted to predict the future respiratory position as well as the tumor’s location by training the past trajectories. For the training process, a feed-forward neural network with one single hidden layer was used for the learning. First, the number of hidden nodes was figured out for the single layered feed forward network (SLFN). Then the input weights and hidden layer biases of the SLFN were randomly assigned to calculate the hidden neuron output matrix. Finally, the predicted movement were obtained by applying the output weights and compared with the actual movement. Breathing movement acquired from the external infrared markers was used to test the prediction accuracy. And the implanted marker movement for the prostate cancer was used to test the implementation of the tumor motion prediction. Results: The accuracy of the predicted motion and the actual motion was tested. Five volunteers with different breathing patterns were tested. The average prediction time was 0.281s. And the standard deviation of prediction accuracy was 0.002 for the respiratory motion and 0.001 for the tumor motion. Conclusion: The extreme learning machine method can provide an accurate and fast prediction of the respiratory motion and the tumor location and therefore can meet the requirements of real-time tumor-tracking in image guided radiotherapy

  10. SU-E-J-191: Motion Prediction Using Extreme Learning Machine in Image Guided Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Jia, J; Cao, R; Pei, X; Wang, H; Hu, L [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Engineering Technology Research Center of Accurate Radiotherapy of Anhui Province, Hefei 230031 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, SuZhou (China)

    2015-06-15

    Purpose: Real-time motion tracking is a critical issue in image guided radiotherapy due to the time latency caused by image processing and system response. It is of great necessity to fast and accurately predict the future position of the respiratory motion and the tumor location. Methods: The prediction of respiratory position was done based on the positioning and tracking module in ARTS-IGRT system which was developed by FDS Team (www.fds.org.cn). An approach involving with the extreme learning machine (ELM) was adopted to predict the future respiratory position as well as the tumor’s location by training the past trajectories. For the training process, a feed-forward neural network with one single hidden layer was used for the learning. First, the number of hidden nodes was figured out for the single layered feed forward network (SLFN). Then the input weights and hidden layer biases of the SLFN were randomly assigned to calculate the hidden neuron output matrix. Finally, the predicted movement were obtained by applying the output weights and compared with the actual movement. Breathing movement acquired from the external infrared markers was used to test the prediction accuracy. And the implanted marker movement for the prostate cancer was used to test the implementation of the tumor motion prediction. Results: The accuracy of the predicted motion and the actual motion was tested. Five volunteers with different breathing patterns were tested. The average prediction time was 0.281s. And the standard deviation of prediction accuracy was 0.002 for the respiratory motion and 0.001 for the tumor motion. Conclusion: The extreme learning machine method can provide an accurate and fast prediction of the respiratory motion and the tumor location and therefore can meet the requirements of real-time tumor-tracking in image guided radiotherapy.

  11. Spatial dependence of extreme rainfall

    Science.gov (United States)

    Radi, Noor Fadhilah Ahmad; Zakaria, Roslinazairimah; Satari, Siti Zanariah; Azman, Muhammad Az-zuhri

    2017-05-01

    This study aims to model the spatial extreme daily rainfall process using the max-stable model. The max-stable model is used to capture the dependence structure of spatial properties of extreme rainfall. Three models from max-stable are considered namely Smith, Schlather and Brown-Resnick models. The methods are applied on 12 selected rainfall stations in Kelantan, Malaysia. Most of the extreme rainfall data occur during wet season from October to December of 1971 to 2012. This period is chosen to assure the available data is enough to satisfy the assumption of stationarity. The dependence parameters including the range and smoothness, are estimated using composite likelihood approach. Then, the bootstrap approach is applied to generate synthetic extreme rainfall data for all models using the estimated dependence parameters. The goodness of fit between the observed extreme rainfall and the synthetic data is assessed using the composite likelihood information criterion (CLIC). Results show that Schlather model is the best followed by Brown-Resnick and Smith models based on the smallest CLIC's value. Thus, the max-stable model is suitable to be used to model extreme rainfall in Kelantan. The study on spatial dependence in extreme rainfall modelling is important to reduce the uncertainties of the point estimates for the tail index. If the spatial dependency is estimated individually, the uncertainties will be large. Furthermore, in the case of joint return level is of interest, taking into accounts the spatial dependence properties will improve the estimation process.

  12. Extremely deformable structures

    CERN Document Server

    2015-01-01

    Recently, a new research stimulus has derived from the observation that soft structures, such as biological systems, but also rubber and gel, may work in a post critical regime, where elastic elements are subject to extreme deformations, though still exhibiting excellent mechanical performances. This is the realm of ‘extreme mechanics’, to which this book is addressed. The possibility of exploiting highly deformable structures opens new and unexpected technological possibilities. In particular, the challenge is the design of deformable and bi-stable mechanisms which can reach superior mechanical performances and can have a strong impact on several high-tech applications, including stretchable electronics, nanotube serpentines, deployable structures for aerospace engineering, cable deployment in the ocean, but also sensors and flexible actuators and vibration absorbers. Readers are introduced to a variety of interrelated topics involving the mechanics of extremely deformable structures, with emphasis on ...

  13. A New Spin to Exoplanet Habitability Criteria

    Science.gov (United States)

    Georgoulis, M. K.; Patsourakos, S.

    2017-12-01

    We describe a physically- and statistically-based method to infer the near-Sun magnetic field of coronal mass ejections (CMEs) and then extrapolate it to the inner heliosphere and beyond. Besides a ballpark agreement with in-situ observations of interplanetary CMEs (ICMEs) at L1, we use our estimates to show that Earth does not seem to be at risk of an extinction-level atmospheric erosion or stripping by the magnetic pressure of extreme solar eruptions, even way above a Carrington-type event. This does not seem to be the case with exoplanets, however, at least those orbiting in the classically defined habitability zones of magnetically active dwarf stars at orbital radii of a small fraction of 1 AU. We show that the combination of stellar ICMEs and the tidally locking zone of mother stars, that quite likely does not allow these exoplanets to attain Earth-like magnetic fields to shield themselves, probably render the existence of a proper atmosphere in them untenable. We propose, therefore, a critical revision of habitability criteria in these cases that would limit the number of target exoplanets considered as potential biosphere hosts.

  14. Fast ignition studies at Osaka University

    International Nuclear Information System (INIS)

    Tanaka, K. A.

    2007-01-01

    After the invention of the chirped pulse amplification technique [1], the extreme conditions of matters have become available in laboratory spaces and can be studied with the use of ultra intense laser pulse (UILP) with a high energy. One such example is the fast ignition [2] where UILP is used to heat a highly compressed fusion fuel core within 1-10 pico-seconds before the core disassembles. It is predicted possible with use of 50-100 kJ lasers for both imploding the fuel and heating [2] to attain a large fusion gain. Fast ignition was shown to be a promising new scheme for laser fusion [3] with a PW (= 10 1 5 W) UILP and GEKKO XII laser systems at Osaka. Many new physics have been found with use of UILP in a relativistic parameter regime during the process of the fast ignition studies. UILP can penetrate into over-dense plasma for a couple hundred microns distance with a self-focusing and relativistic transparency effects. Hot electrons of 1-100 MeV can be easily created and are under studies for its spectral and emission angle controls. Strong magnetic fields of 10's of MGauss are created to guide these hot electrons along the target surface [4]. Based on these results, a new and largest UILP laser machine of 10 kJ energy at PW UILP peak power is under construction to test if we can achieve the sub-ignition fusion condition at Osaka University. The machine requires challenging optical technologies such as large size (0.9 m) gratings, tiling these gratings for UILP compression; segmenting four large UILP beams to obtain diffraction limited focal spot. We would like to over-view all of these activities. References [1]D. STRICKLAND and G. MOUROU, Opt. Commun., 56, 219 (1985) [2] S. ATZENI et al., Phys Plasmas, 6, 3316 (1999) [3] R. KODAMA, K.A. TANAKA et al., Nature, 418, 933 (2002) [4] A.L. LEI, K.A. TANAKA et al., Phys. Rev. Lett., 96, 255006(2006) ; H. HABARA, K.A. TANAKA et al., Phys. Rev. Lett., 97, 095004 (2006)

  15. Assessing Climate Variability using Extreme Rainfall and ...

    African Journals Online (AJOL)

    user1

    extreme frequency); the average intensity of rainfall from extreme events ... frequency and extreme intensity indices, suggesting that extreme events are more frequent and intense during years with high rainfall. The proportion of total rainfall from ...

  16. Fast breeder reactors

    International Nuclear Information System (INIS)

    Heinzel, V.

    1975-01-01

    The author gives a survey of 'fast breeder reactors'. In detail the process of breeding, the reasons for the development of fast breeders, the possible breeder reactors, the design criteria, fuels, cladding, coolant, and safety aspects are reported on. Design data of some experimental reactors already in operation are summarized in stabular form. 300 MWe Prototype-Reactors SNR-300 and PFR are explained in detail and data of KWU helium-cooled fast breeder reactors are given. (HR) [de

  17. Fast reactors worldwide

    International Nuclear Information System (INIS)

    Hall, R.S.; Vignon, D.

    1985-01-01

    The paper concerns the evolution of fast reactors over the past 30 years, and their present status. Fast reactor development in different countries is described, and the present position, with emphasis on cost reduction and collaboration, is examined. The French development of the fast breeder type reactor is reviewed, and includes: the acquisition of technical skills, the search for competitive costs and the spx2 project, and more advanced designs. Future prospects are also discussed. (U.K.)

  18. Infection in the ischemic lower extremity.

    Science.gov (United States)

    Fry, D E; Marek, J M; Langsfeld, M

    1998-06-01

    Infections in the lower extremity of the patient with ischemia can cover a broad spectrum of different diseases. An understanding of the particular pathophysiologic circumstances in the ischemic extremity can be of great value in understanding the natural history of the disease and the potential complications that may occur. Optimizing blood flow to the extremity by using revascularization techniques is important for any patient with an ischemic lower extremity complicated by infection or ulceration. Infections in the ischemic lower extremity require local débridement and systemic antibiotics. For severe infections, such as necrotizing fasciitis or the fetid foot, more extensive local débridement and even amputation may be required. Fundamentals of managing prosthetic graft infection require removing the infected prosthesis, local wound débridement, and systemic antibiotics while attempting to preserve viability of the lower extremity using autogenous graft reconstruction.

  19. Fast food (image)

    Science.gov (United States)

    Fast foods are quick, reasonably priced, and readily available alternatives to home cooking. While convenient and economical for a busy lifestyle, fast foods are typically high in calories, fat, saturated fat, ...

  20. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Year-end report FY17.

    Energy Technology Data Exchange (ETDEWEB)

    Moreland, Kenneth D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pugmire, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rogers, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Childs, Hank [Univ. of Oregon, Eugene, OR (United States); Ma, Kwan-Liu [Univ. of California, Davis, CA (United States); Geveci, Berk [Kitware, Inc., Clifton Park, NY (United States)

    2017-10-01

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressing four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.

  1. Interstitial MR lymphangiography in patients with lower extremity lymphedema: a preliminary report

    International Nuclear Information System (INIS)

    Lu Qing; Xu Jianrong; Liu Ningfei

    2009-01-01

    Objective: To assess the feasibility of interstitial MR lymphangiography (MRL) with subcutaneous injection of a commercially available, non-ionic, extracellular paramagnetic contrast agent, to visualize lymphatic vessels in patients with primary lymphedema. Methods: Forty lower extremities in 31 patients with clinically advanced stages of primary lymphedema were examined with magnetic resonance lymphangiography. A 1 ml mixed liquor of gadobenate dimeglumine and mepivacainhydrochloride were injected subcutaneously into the dorsal aspect of both feet. For MRL, a 3D fast spoiled gradient-recalled echo T 1 -weighted images with a fat saturation technique (T 1 high resolution isotropic volume excitation, THRIVE) were performed after subcutaneous application of the contrast material. To outline lymphatic vessels, source images were used to reconstruct images of MIP. The SNR and CNR of enhanced lymphatic vessels and veins were measured and calculated respectively. The significance of the differences of the data comparisons was assessed using an unpaired student t test. Results: Of the 40 lower extremities, the beaded appearance of dilated lymphatic vessels was detected in 36 lower legs (90.0%) and 17 upper legs (42.5%). The numbers of the dilated lymphatic vessels displayed in all segments of lower extremities added up to 365 and its mean diameter was (3.4±0.1) mm on MRL MIP image. The average SNR and CNR were 257±130, 207±113 in the dilated lymphatic vessels and 218±129, 152±113 in the vein respectively, which was statistically significant (SNR t=-2.649, CNR t=-3.404, P<0.01). Contrast enhancement was observed in 30/40 inguinal lymph node groups (75.0%). In 26 lower extremities (65.0%) collateral vessels with dermal back-flow areas between lymphatic vessels were seen. Conclusions: As a novel tool to image the pathologically modified lymphatic vessels in patients with clinically advanced stage of primary lymphedema, magnetic resonance lymphangiography is a safe

  2. Islamic Fasting and Diabetes

    Directory of Open Access Journals (Sweden)

    Fereidoun Azizi

    2013-07-01

    Full Text Available The aim of this article is to review health-related aspects of Ramadan fasting in normal individuals and diabetics. During fasting days of Ramadan, glucose homeostasis is maintained by meal taken bepore dawn and by liver glycogen stores. Changes in serum lipids are variable and defend on the quality and quantity of food consumption and changes in weight. Compliant, well controlled type 2 diabetics may observe Ramadan fasting; but fasting is not recommended for type 1, non complaint, poorly controlled and pregnant diabetics. Although Ramadan fasting is safe for all healthy individuals and well controlled diabetics, those with uncontrolled diabetics and diabetics with complications should consult physicians and follow scientific recommendations.

  3. Fast reactor programme

    International Nuclear Information System (INIS)

    Plakman, J.C.

    1982-01-01

    This progress report summarizes the fast reactor research carried out by ECN during the period covering the year 1980. This research is mainly concerned with the cores of sodium-cooled breeders, in particular the SNR-300, and its related safety aspects. It comprises six items: A programme to determine relevant nuclear data of fission- and corrosion-products; A fuel performance programme comprising in-pile cladding failure experiments and a study of the consequences of loss-of-cooling and overpower; Basic research on fuel; Investigation of the changes in the mechanical properties of austenitic stainless steel DIN 1.4948 due to fast neutron doses, this material has been used in the manufacture of the reactor vessel and its internal components; Study of aerosols which could be formed at the time of a fast reactor accident and their progressive behaviour on leaking through cracks in the concrete containment; Studies on heat transfer in a sodium-cooled fast reactor core. As fast breeders operate at high power densities, an accurate knowledge of the heat transfer phenomena under single-phase and two-phase conditions is sought. (Auth.)

  4. HCUP Fast Stats

    Data.gov (United States)

    U.S. Department of Health & Human Services — HCUP Fast Stats provides easy access to the latest HCUP-based statistics for health information topics. HCUP Fast Stats uses visual statistical displays in...

  5. Slowly evolving connectivity in recurrent neural networks: I. The extreme dilution regime

    International Nuclear Information System (INIS)

    Wemmenhove, B; Skantzos, N S; Coolen, A C C

    2004-01-01

    We study extremely diluted spin models of neural networks in which the connectivity evolves in time, although adiabatically slowly compared to the neurons, according to stochastic equations which on average aim to reduce frustration. The (fast) neurons and (slow) connectivity variables equilibrate separately, but at different temperatures. Our model is exactly solvable in equilibrium. We obtain phase diagrams upon making the condensed ansatz (i.e. recall of one pattern). These show that, as the connectivity temperature is lowered, the volume of the retrieval phase diverges and the fraction of mis-aligned spins is reduced. Still one always retains a region in the retrieval phase where recall states other than the one corresponding to the 'condensed' pattern are locally stable, so the associative memory character of our model is preserved

  6. The Mesoscale Science of the Matter-Radiation Interactions in Extremes (MaRIE) project

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Montoya, Donald Raymond [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-17

    The National Nuclear Security Administration (NNSA) requires the ability to understand and test how material structures, defects, and interfaces determine performance in extreme environments such as in nuclear weapons. To do this, MaRIE will be an x-ray source that is laser-like and brilliant with very fl exible and fast pulses to see at weapons-relevant time scales, and with high enough energy to study critical materials. The Department of Energy (DOE) has determined there is a mission need for MaRIE to deliver this capability. MaRIE can use some of the existing infrastructure of the Los Alamos Neutron Science Center (LANSCE) and its accelerator capability. MaRIE will be built as a strategic partnership of DOE national laboratories and university collaborators.

  7. Fast-prototyping of VLSI

    International Nuclear Information System (INIS)

    Saucier, G.; Read, E.

    1987-01-01

    Fast-prototyping will be a reality in the very near future if both straightforward design methods and fast manufacturing facilities are available. This book focuses, first, on the motivation for fast-prototyping. Economic aspects and market considerations are analysed by European and Japanese companies. In the second chapter, new design methods are identified, mainly for full custom circuits. Of course, silicon compilers play a key role and the introduction of artificial intelligence techniques sheds a new light on the subject. At present, fast-prototyping on gate arrays or on standard cells is the most conventional technique and the third chapter updates the state-of-the art in this area. The fourth chapter concentrates specifically on the e-beam direct-writing for submicron IC technologies. In the fifth chapter, a strategic point in fast-prototyping, namely the test problem is addressed. The design for testability and the interface to the test equipment are mandatory to fulfill the test requirement for fast-prototyping. Finally, the last chapter deals with the subject of education when many people complain about the lack of use of fast-prototyping in higher education for VLSI

  8. A prospective audit of preprocedural fasting practices on a transplant ward: when fasting becomes starving.

    Science.gov (United States)

    Vidot, Helen; Teevan, Kate; Carey, Sharon; Strasser, Simone; Shackel, Nicholas

    2016-03-01

    To investigate the prevalence and duration of preprocedural medically ordered fasting during a period of hospitalisation in an Australian population of patients with hepatic cirrhosis or following liver transplantation and to identify potential solutions to reduce fasting times. Protein-energy malnutrition is a common finding in patients with hepatic cirrhosis and can impact significantly on survival and quality of life. Protein and energy requirements in patients with cirrhosis are higher than those of healthy individuals. A significant feature of cirrhosis is the induction of starvation metabolism following seven to eight hours of food deprivation. Many investigative and interventional procedures for patients with cirrhosis necessitate a period of fasting to comply with anaesthesia guidelines. An observational study of the fasting episodes for 34 hospitalised patients with hepatic cirrhosis or following liver transplantation. Nutritional status was estimated using subjective global assessment and handgrip strength. The prevalence and duration of fasting practices for diagnostic or investigational procedures were estimated using electronic records and patient notes. Thirty-three patients (97%) were malnourished. Twenty-two patients (65%) were fasted during the observation period. There were 43 occasions of fasting with a median fasting time of 13·5 hours. On 40 occasions fasting times exceeded the maximum six-hour guideline recommended prior to the administration of anaesthesia by the majority of Anaesthesiology Societies. The majority of procedures (77%) requiring fasting occurred after midday. Eating breakfast on the day of the procedure reduced fasting time by 45%. Medically ordered preprocedural fasting times almost always exceed existing guidelines in this nutritionally compromised group. Adherence to fasting guidelines and eating breakfast before the procedure can reduce fasting times significantly and avoid the potential induction of starvation metabolism

  9. Extreme events in total ozone over Arosa – Part 1: Application of extreme value theory

    Directory of Open Access Journals (Sweden)

    H. E. Rieder

    2010-10-01

    Full Text Available In this study ideas from extreme value theory are for the first time applied in the field of stratospheric ozone research, because statistical analysis showed that previously used concepts assuming a Gaussian distribution (e.g. fixed deviations from mean values of total ozone data do not adequately address the structure of the extremes. We show that statistical extreme value methods are appropriate to identify ozone extremes and to describe the tails of the Arosa (Switzerland total ozone time series. In order to accommodate the seasonal cycle in total ozone, a daily moving threshold was determined and used, with tools from extreme value theory, to analyse the frequency of days with extreme low (termed ELOs and high (termed EHOs total ozone at Arosa. The analysis shows that the Generalized Pareto Distribution (GPD provides an appropriate model for the frequency distribution of total ozone above or below a mathematically well-defined threshold, thus providing a statistical description of ELOs and EHOs. The results show an increase in ELOs and a decrease in EHOs during the last decades. The fitted model represents the tails of the total ozone data set with high accuracy over the entire range (including absolute monthly minima and maxima, and enables a precise computation of the frequency distribution of ozone mini-holes (using constant thresholds. Analyzing the tails instead of a small fraction of days below constant thresholds provides deeper insight into the time series properties. Fingerprints of dynamical (e.g. ENSO, NAO and chemical features (e.g. strong polar vortex ozone loss, and major volcanic eruptions, can be identified in the observed frequency of extreme events throughout the time series. Overall the new approach to analysis of extremes provides more information on time series properties and variability than previous approaches that use only monthly averages and/or mini-holes and mini-highs.

  10. The fast breeder reactor

    International Nuclear Information System (INIS)

    Collier, J.

    1990-01-01

    The arguments for and against the fast breeder reactor are debated. The case for the fast reactor is that the world energy demand will increase due to increasing population over the next forty years and that the damage to the global environment from burning fossil fuels which contribute to the greenhouse effect. Nuclear fission is the only large scale energy source which can achieve a cut in the use of carbon based fuels although energy conservation and renewable sources will also be important. Fast reactors produce more energy from uranium than other types of (thermal) reactors such as AGRs and PWRs. Fast reactors would be important from about 2020 onwards especially as by then many thermal reactors will need to be replaced. Fast reactors are also safer than normal reactors. The arguments against fast reactors are largely economic. The cost, especially the capital cost is very high. The viability of the technology is also questioned. (UK)

  11. The fast breeder reactor

    International Nuclear Information System (INIS)

    Davis, D.A.; Baker, M.A.W.; Hall, R.S.

    1990-01-01

    Following submission of written evidence, the Energy Committee members asked questions of three witnesses from the Central Electricity Generating Board and Nuclear Electric (which will be the government owned company running nuclear power stations after privatisation). Both questions and answers are reported verbatim. The points raised include where the responsibility for the future fast reactor programme should lie, with government only or with private enterprise or both and the viability of fast breeder reactors in the future. The case for the fast reactor was stated as essentially strategic not economic. This raised the issue of nuclear cost which has both a construction and a decommissioning element. There was considerable discussion as to the cost of building a European Fast reactor and the cost of the electricity it would generate compared with PWR type reactors. The likely demand for fast reactors will not arrive for 20-30 years and the need to build a fast reactor now is questioned. (UK)

  12. Study of suprathermal electron transport in solid or compressed matter for the fast-ignitor scheme

    International Nuclear Information System (INIS)

    Perez, F.

    2010-01-01

    The inertial confinement fusion (ICF) concept is widely studied nowadays. It consists in quickly compressing and heating a small spherical capsule filled with fuel, using extremely energetic lasers. Since approximately 15 years, the fast-ignition (FI) technique has been proposed to facilitate the fuel heating by adding a particle beam - electrons generated by an ultra-intense laser - at the exact moment when the capsule compression is at its maximum. This thesis constitutes an experimental study of these electron beams generated by picosecond-scale lasers. We present new results on the characteristics of these electrons after they are accelerated by the laser (energy, divergence, etc.) as well as their interaction with the matter they pass through. The experimental results are explained and reveal different aspects of these laser-accelerated fast electrons. Their analysis allowed for significant progress in understanding several mechanisms: how they are injected into solid matter, how to measure their divergence, and how they can be automatically collimated inside compressed matter. (author) [fr

  13. Extreme Weather and Climate: Workshop Report

    Science.gov (United States)

    Sobel, Adam; Camargo, Suzana; Debucquoy, Wim; Deodatis, George; Gerrard, Michael; Hall, Timothy; Hallman, Robert; Keenan, Jesse; Lall, Upmanu; Levy, Marc; hide

    2016-01-01

    Extreme events are the aspects of climate to which human society is most sensitive. Due to both their severity and their rarity, extreme events can challenge the capacity of physical, social, economic and political infrastructures, turning natural events into human disasters. Yet, because they are low frequency events, the science of extreme events is very challenging. Among the challenges is the difficulty of connecting extreme events to longer-term, large-scale variability and trends in the climate system, including anthropogenic climate change. How can we best quantify the risks posed by extreme weather events, both in the current climate and in the warmer and different climates to come? How can we better predict them? What can we do to reduce the harm done by such events? In response to these questions, the Initiative on Extreme Weather and Climate has been created at Columbia University in New York City (extreme weather.columbia.edu). This Initiative is a University-wide activity focused on understanding the risks to human life, property, infrastructure, communities, institutions, ecosystems, and landscapes from extreme weather events, both in the present and future climates, and on developing solutions to mitigate those risks. In May 2015,the Initiative held its first science workshop, entitled Extreme Weather and Climate: Hazards, Impacts, Actions. The purpose of the workshop was to define the scope of the Initiative and tremendously broad intellectual footprint of the topic indicated by the titles of the presentations (see Table 1). The intent of the workshop was to stimulate thought across disciplinary lines by juxtaposing talks whose subjects differed dramatically. Each session concluded with question and answer panel sessions. Approximately, 150 people were in attendance throughout the day. Below is a brief synopsis of each presentation. The synopses collectively reflect the variety and richness of the emerging extreme event research agenda.

  14. The Adverse Effects and Treatment Results of Smoking Cessation Pharmacotherapy During Fasting/Non-Fasting State.

    Science.gov (United States)

    Iliaz, Sinem; Tural Onur, Seda; Uysal, Mehmet Atilla; Chousein, Efsun Gonca Uğur; Tanriverdi, Elif; Bagci, Belma Akbaba; Bahadir, Ayse; Hattatoglu, Didem Gorgun; Ortakoylu, Mediha Gonenc; Yurt, Sibel

    2017-07-03

    Cigarette smoking is one of the most common addictions worldwide. Muslim smokers reduce the number of cigarettes they smoke during Ramadan due to the long fasting hours. We aimed to share our experience in a smoking cessation clinic during Ramadan by analyzing the efficacy and adverse effects of once-daily dosing of bupropion or varenicline in a fasting group compared with conventional dosing in a non-fasting group. We analyzed 57 patients who attended our smoking cessation clinic during Ramadan of 2014 and 2015, and at least one follow-up visit. For the fasting patients, we prescribed bupropion or varenicline after dinner (once daily) as the maintenance therapy. We recorded demographic characteristics of the patients, fasting state, drugs taken for smoking cessation, and the dosage of the medication. At the first follow-up visit, adverse effects seen with the treatment were recorded. We conducted telephone interviews 6 months after the first visits of the patients to learn the current smoking status of the groups. Of the total 57 patients, 20 (35.1%) were fasting and 37 (64.9%) were not fasting. Fasting and non-fasting patients were similar for sex, age, smoking pack-years, marital status, educational status, and mean Fagerström scores (p >.05). Adverse effects and quit rates after 6 months of follow-up were similar between the fasting and non-fasting groups (p >.05). Although our sample size was small, we found no difference in the rates of adverse effects or smoking cessation using a single daily oral dose of bupropion or varenicline between a fasting group and a non-fasting group that received conventional dosing.

  15. Ramadan, fasting and pregnancy

    DEFF Research Database (Denmark)

    Ahmed, Urfan Zahoor; Lykke, Jacob Alexander

    2014-01-01

    In Islam, the month of Ramadan is a period of fasting lasting 29 or 30 days. Epidemiological studies among Muslims in Denmark have not been conducted, but studies show, that fasting among pregnant Muslim women is common. Fasting does not increase the risk of growth restriction or preterm delivery...

  16. Fast reactors

    International Nuclear Information System (INIS)

    Vasile, A.

    2001-01-01

    Fast reactors have capacities to spare uranium natural resources by their breeding property and to propose solutions to the management of radioactive wastes by limiting the inventory of heavy nuclei. This article highlights the role that fast reactors could play for reducing the radiotoxicity of wastes. The conversion of 238 U into 239 Pu by neutron capture is more efficient in fast reactors than in light water reactors. In fast reactors multi-recycling of U + Pu leads to fissioning up to 95% of the initial fuel ( 238 U + 235 U). 2 strategies have been studied to burn actinides: - the multi-recycling of heavy nuclei is made inside the fuel element (homogeneous option); - the unique recycling is made in special irradiation targets placed inside the core or at its surroundings (heterogeneous option). Simulations have shown that, for the same amount of energy produced (400 TWhe), the mass of transuranium elements (Pu + Np + Am + Cm) sent to waste disposal is 60,9 Kg in the homogeneous option and 204.4 Kg in the heterogeneous option. Experimental programs are carried out in Phenix and BOR60 reactors in order to study the feasibility of such strategies. (A.C.)

  17. Fast wave current drive

    International Nuclear Information System (INIS)

    Goree, J.; Ono, M.; Colestock, P.; Horton, R.; McNeill, D.; Park, H.

    1985-07-01

    Fast wave current drive is demonstrated in the Princeton ACT-I toroidal device. The fast Alfven wave, in the range of high ion-cyclotron harmonics, produced 40 A of current from 1 kW of rf power coupled into the plasma by fast wave loop antenna. This wave excites a steady current by damping on the energetic tail of the electron distribution function in the same way as lower-hybrid current drive, except that fast wave current drive is appropriate for higher plasma densities

  18. MULTI-WAVELENGTH OBSERVATIONS OF THE SPATIO-TEMPORAL EVOLUTION OF SOLAR FLARES WITH AIA/SDO. I. UNIVERSAL SCALING LAWS OF SPACE AND TIME PARAMETERS

    International Nuclear Information System (INIS)

    Aschwanden, Markus J.; Zhang, Jie; Liu, Kai

    2013-01-01

    We extend a previous statistical solar flare study of 155 GOES M- and X-class flares observed with AIA/SDO to all seven coronal wavelengths (94, 131, 171, 193, 211, 304, and 335 Å) to test the wavelength dependence of scaling laws and statistical distributions. Except for the 171 and 193 Å wavelengths, which are affected by EUV dimming caused by coronal mass ejections (CMEs), we find near-identical size distributions of geometric (lengths L, flare areas A, volumes V, and fractal dimension D 2 ), temporal (flare durations T), and spatio-temporal parameters (diffusion coefficient κ, spreading exponent β, and maximum expansion velocities v max ) in different wavelengths, which are consistent with the universal predictions of the fractal-diffusive avalanche model of a slowly driven, self-organized criticality (FD-SOC) system, i.e., N(L)∝L –3 , N(A)∝A –2 , N(V)∝V –5/3 , N(T)∝T –2 , and D 2 = 3/2, for a Euclidean dimension d = 3. Empirically, we find also a new strong correlation κ∝L 0.94±0.01 and the three-parameter scaling law L∝κ T 0.1 , which is more consistent with the logistic-growth model than with classical diffusion. The findings suggest long-range correlation lengths in the FD-SOC system that operate in the vicinity of a critical state, which could be used for predictions of individual extreme events. We find also that eruptive flares (with accompanying CMEs) have larger volumes V, longer flare durations T, higher EUV and soft X-ray fluxes, and somewhat larger diffusion coefficients κ than confined flares (without CMEs)

  19. Metabolic Effects of Intermittent Fasting.

    Science.gov (United States)

    Patterson, Ruth E; Sears, Dorothy D

    2017-08-21

    The objective of this review is to provide an overview of intermittent fasting regimens, summarize the evidence on the health benefits of intermittent fasting, and discuss physiological mechanisms by which intermittent fasting might lead to improved health outcomes. A MEDLINE search was performed using PubMed and the terms "intermittent fasting," "fasting," "time-restricted feeding," and "food timing." Modified fasting regimens appear to promote weight loss and may improve metabolic health. Several lines of evidence also support the hypothesis that eating patterns that reduce or eliminate nighttime eating and prolong nightly fasting intervals may result in sustained improvements in human health. Intermittent fasting regimens are hypothesized to influence metabolic regulation via effects on (a) circadian biology, (b) the gut microbiome, and (c) modifiable lifestyle behaviors, such as sleep. If proven to be efficacious, these eating regimens offer promising nonpharmacological approaches to improving health at the population level, with multiple public health benefits.

  20. Fast Mechanically Driven Daughter Cell Separation Is Widespread in Actinobacteria.

    Science.gov (United States)

    Zhou, Xiaoxue; Halladin, David K; Theriot, Julie A

    2016-08-30

    Dividing cells of the coccoid Gram-positive bacterium Staphylococcus aureus undergo extremely rapid (millisecond) daughter cell separation (DCS) driven by mechanical crack propagation, a strategy that is very distinct from the gradual, enzymatically driven cell wall remodeling process that has been well described in several rod-shaped model bacteria. To determine if other bacteria, especially those in the same phylum (Firmicutes) or with similar coccoid shapes as S. aureus, might use a similar mechanically driven strategy for DCS, we used high-resolution video microscopy to examine cytokinesis in a phylogenetically wide range of species with various cell shapes and sizes. We found that fast mechanically driven DCS is rather rare in the Firmicutes (low G+C Gram positives), observed only in Staphylococcus and its closest coccoid relatives in the Macrococcus genus, and we did not observe this division strategy among the Gram-negative Proteobacteria In contrast, several members of the high-G+C Gram-positive phylum Actinobacteria (Micrococcus luteus, Brachybacterium faecium, Corynebacterium glutamicum, and Mycobacterium smegmatis) with diverse shapes ranging from coccoid to rod all undergo fast mechanical DCS during cell division. Most intriguingly, similar fast mechanical DCS was also observed during the sporulation of the actinobacterium Streptomyces venezuelae Much of our knowledge on bacterial cytokinesis comes from studying rod-shaped model organisms such as Escherichia coli and Bacillus subtilis Less is known about variations in this process among different bacterial species. While cell division in many bacteria has been characterized to some extent genetically or biochemically, few species have been examined using video microscopy to uncover the kinetics of cytokinesis and daughter cell separation (DCS). In this work, we found that fast (millisecond) DCS is exhibited by species in two independent clades of Gram-positive bacteria and is particularly prevalent

  1. Metabolic changes associated with the long winter fast dominate the liver proteome in 13-lined ground squirrels.

    Science.gov (United States)

    Hindle, Allyson G; Grabek, Katharine R; Epperson, L Elaine; Karimpour-Fard, Anis; Martin, Sandra L

    2014-05-15

    Small-bodied hibernators partition the year between active homeothermy and hibernating heterothermy accompanied by fasting. To define molecular events underlying hibernation that are both dependent and independent of fasting, we analyzed the liver proteome among two active and four hibernation states in 13-lined ground squirrels. We also examined fall animals transitioning between fed homeothermy and fasting heterothermy. Significantly enriched pathways differing between activity and hibernation were biased toward metabolic enzymes, concordant with the fuel shifts accompanying fasting physiology. Although metabolic reprogramming to support fasting dominated these data, arousing (rewarming) animals had the most distinct proteome among the hibernation states. Instead of a dominant metabolic enzyme signature, torpor-arousal cycles featured differences in plasma proteins and intracellular membrane traffic and its regulation. Phosphorylated NSFL1C, a membrane regulator, exhibited this torpor-arousal cycle pattern; its role in autophagosome formation may promote utilization of local substrates upon metabolic reactivation in arousal. Fall animals transitioning to hibernation lagged in their proteomic adjustment, indicating that the liver is more responsive than preparatory to the metabolic reprogramming of hibernation. Specifically, torpor use had little impact on the fall liver proteome, consistent with a dominant role of nutritional status. In contrast to our prediction of reprogramming the transition between activity and hibernation by gene expression and then within-hibernation transitions by posttranslational modification (PTM), we found extremely limited evidence of reversible PTMs within torpor-arousal cycles. Rather, acetylation contributed to seasonal differences, being highest in winter (specifically in torpor), consistent with fasting physiology and decreased abundance of the mitochondrial deacetylase, SIRT3. Copyright © 2014 the American Physiological Society.

  2. Fast track-hoftealloplastik

    DEFF Research Database (Denmark)

    Hansen, Torben Bæk; Gromov, Kirill; Kristensen, Billy B

    2017-01-01

    Fast-track surgery implies a coordinated perioperative approach aimed at reducing surgical stress and facilitating post-operative recovery. The fast-track programme has reduced post-operative length of stay and has led to shorter convalescence with more rapid functional recovery and decreased...... morbidity and mortality in total hip arthroplasty. It should now be a standard total hip arthroplasty patient pathway, but fine tuning of the multiple factors in the fast-track pathway is still needed in patients with special needs or high comorbidity burden....

  3. Fast Flux Watch: A mechanism for online detection of fast flux networks

    Directory of Open Access Journals (Sweden)

    Basheer N. Al-Duwairi

    2014-07-01

    Full Text Available Fast flux networks represent a special type of botnets that are used to provide highly available web services to a backend server, which usually hosts malicious content. Detection of fast flux networks continues to be a challenging issue because of the similar behavior between these networks and other legitimate infrastructures, such as CDNs and server farms. This paper proposes Fast Flux Watch (FF-Watch, a mechanism for online detection of fast flux agents. FF-Watch is envisioned to exist as a software agent at leaf routers that connect stub networks to the Internet. The core mechanism of FF-Watch is based on the inherent feature of fast flux networks: flux agents within stub networks take the role of relaying client requests to point-of-sale websites of spam campaigns. The main idea of FF-Watch is to correlate incoming TCP connection requests to flux agents within a stub network with outgoing TCP connection requests from the same agents to the point-of-sale website. Theoretical and traffic trace driven analysis shows that the proposed mechanism can be utilized to efficiently detect fast flux agents within a stub network.

  4. Fast ultrasonic visualisation under sodium. Application to the fast neutron reactors

    International Nuclear Information System (INIS)

    Imbert, Ch.

    1997-01-01

    The fast ultrasonic visualization under sodium is in the programme of research and development on the inspection inside the fast neutron reactors. This work is about the development of a such system of fast ultrasonic imaging under sodium, in order to improve the existing visualization systems. This system is based on the principle of orthogonal imaging, it uses two linear antennas with an important dephasing having 128 piezo-composite elements of central frequency equal to 1.6 MHz. (N.C.)

  5. Application of MCNP code in shielding calculation of minitype fast reactor

    International Nuclear Information System (INIS)

    He Keyu; Han Weishi

    2008-01-01

    An accurate shielding calculation model has been set up for the minitype sodium-cooled fast reactor (MFR) based on MCNP code and particular calculation of its primary shielding parameters has been carried out. The results indicate that the photon and neutron flux density of MFR has rapidly fallen to a low-level. The material for the shielding layer outside of main container is primarily of carbon steel, which can be design as a shielding structure satisfying the safety code. The sodium activation in primary circuit is extremely limited and it is simple to shield from. Both the output of helium in reflector and burn up of boron-10 in control rod are very small. These materials can be used for several cycle lives. (authors)

  6. Global predictability of temperature extremes

    Science.gov (United States)

    Coughlan de Perez, Erin; van Aalst, Maarten; Bischiniotis, Konstantinos; Mason, Simon; Nissan, Hannah; Pappenberger, Florian; Stephens, Elisabeth; Zsoter, Ervin; van den Hurk, Bart

    2018-05-01

    Extreme temperatures are one of the leading causes of death and disease in both developed and developing countries, and heat extremes are projected to rise in many regions. To reduce risk, heatwave plans and cold weather plans have been effectively implemented around the world. However, much of the world’s population is not yet protected by such systems, including many data-scarce but also highly vulnerable regions. In this study, we assess at a global level where such systems have the potential to be effective at reducing risk from temperature extremes, characterizing (1) long-term average occurrence of heatwaves and coldwaves, (2) seasonality of these extremes, and (3) short-term predictability of these extreme events three to ten days in advance. Using both the NOAA and ECMWF weather forecast models, we develop global maps indicating a first approximation of the locations that are likely to benefit from the development of seasonal preparedness plans and/or short-term early warning systems for extreme temperature. The extratropics generally show both short-term skill as well as strong seasonality; in the tropics, most locations do also demonstrate one or both. In fact, almost 5 billion people live in regions that have seasonality and predictability of heatwaves and/or coldwaves. Climate adaptation investments in these regions can take advantage of seasonality and predictability to reduce risks to vulnerable populations.

  7. Study of the fast inversion recovery pulse sequence. With reference to fast fluid attenuated inversion recovery and fast short TI inversion recovery pulse sequence

    International Nuclear Information System (INIS)

    Tsuchihashi, Toshio; Maki, Toshio; Suzuki, Takeshi

    1997-01-01

    The fast inversion recovery (fast IR) pulse sequence was evaluated. We compared the fast fluid attenuated inversion recovery (fast FLAIR) pulse sequence in which inversion time (TI) was established as equal to the water null point for the purpose of the water-suppressed T 2 -weighted image, with the fast short TI inversion recovery (fast STIR) pulse sequence in which TI was established as equal to the fat null point for purpose of fat suppression. In the fast FLAIR pulse sequence, the water null point was increased by making TR longer. In the FLAIR pulse sequence, the longitudinal magnetization contrast is determined by TI. If TI is increased, T 2 -weighted contrast improves in the same way as increasing TR for the SE pulse sequence. Therefore, images should be taken with long TR and long TI, which are longer than TR and longer than the water null point. On the other hand, the fat null point is not affected by TR in the fast STIR pulse sequence. However, effective TE was affected by variation of the null point. This increased in proportion to the increase in effective TE. Our evaluation indicated that the fast STIR pulse sequence can control the extensive signals from fat in a short time. (author)

  8. Fast breeder reactors

    International Nuclear Information System (INIS)

    Waltar, A.E.; Reynolds, A.B.

    1981-01-01

    This book describes the major design features of fast breeder reactors and the methods used for their design and analysis. The foremost objective of this book is to fulfill the need for a textbook on Fast Breeder Reactor (FBR) technology at the graduate level or the advanced undergraduate level. It is assumed that the reader has an introductory understanding of reactor theory, heat transfer, and fluid mechanics. The book is expected to be used most widely for a one-semester general course on fast breeder reactors, with the extent of material covered to vary according to the interest of the instructor. The book could also be used effectively for a two-quarter or a two-semester course. In addition, the book could serve as a text for a course on fast reactor safety since many topics other than those appearing in the safety chapters relate to FBR safety. Methodology in fast reactor design and analysis, together with physical descriptions of systems, is emphasized in this text more than numerical results. Analytical and design results continue to change with the ongoing evolution of FBR design whereas many design methods have remained fundamentally unchanged for a considerable time

  9. Fast neutrons dosimetry

    International Nuclear Information System (INIS)

    Rzyski, B.M.

    1977-01-01

    A proton recoil technique has been developed for inducing thermoluminescence with incident fast neutrons. CaF 2 was used as the TL phosphor, and cane sugar and polyethylene were used as proton radiators. The phosphor and the hydrogeneous material powders were well mixed, encapsulated in glass tubes and exposed to Am-Be sources, resulting in recoils from incident fast neutrons of energy between 0,25 and 11,25 MeV. The intrinsic response of pure CaF 2 to fast neutrons without a hydrogeneous radiator was checked by using LiF (TLD-700). Glow curves were recorded from room temperature up to 350 0 C after different doses of neutrons and gamma rays of 60 Co. First collision dose due to fast neutrons in tissue like materials such as cane sugar and polyethylene was also calculated [pt

  10. Extremal graph theory

    CERN Document Server

    Bollobas, Bela

    2004-01-01

    The ever-expanding field of extremal graph theory encompasses a diverse array of problem-solving methods, including applications to economics, computer science, and optimization theory. This volume, based on a series of lectures delivered to graduate students at the University of Cambridge, presents a concise yet comprehensive treatment of extremal graph theory.Unlike most graph theory treatises, this text features complete proofs for almost all of its results. Further insights into theory are provided by the numerous exercises of varying degrees of difficulty that accompany each chapter. A

  11. Solar origins of coronal mass ejections

    Science.gov (United States)

    Kahler, Stephen

    1987-01-01

    The large scale properties of coronal mass ejections (CMEs), such as morphology, leading edge speed, and angular width and position, have been cataloged for many events observed with coronagraphs on the Skylab, P-78, and SMM spacecraft. While considerable study has been devoted to the characteristics of the SMEs, their solar origins are still only poorly understood. Recent observational work has involved statistical associations of CMEs with flares and filament eruptions, and some evidence exists that the flare and eruptive-filament associated CMEs define two classes of events, with the former being generally more energetic. Nevertheless, it is found that eruptive-filament CMEs can at times be very energetic, giving rise to interplanetary shocks and energetic particle events. The size of the impulsive phase in a flare-associated CME seems to play no significant role in the size or speed of the CME, but the angular sizes of CMEs may correlate with the scale sizes of the 1-8 angstrom x-ray flares. At the present time, He 10830 angstrom observations should be useful in studying the late development of double-ribbon flares and transient coronal holes to yield insights into the CME aftermath. The recently available white-light synoptic maps may also prove fruitful in defining the coronal conditions giving rise to CMEs.

  12. Towards denoising XMCD movies of fast magnetization dynamics using extended Kalman filter.

    Science.gov (United States)

    Kopp, M; Harmeling, S; Schütz, G; Schölkopf, B; Fähnle, M

    2015-01-01

    The Kalman filter is a well-established approach to get information on the time-dependent state of a system from noisy observations. It was developed in the context of the Apollo project to see the deviation of the true trajectory of a rocket from the desired trajectory. Afterwards it was applied to many different systems with small numbers of components of the respective state vector (typically about 10). In all cases the equation of motion for the state vector was known exactly. The fast dissipative magnetization dynamics is often investigated by x-ray magnetic circular dichroism movies (XMCD movies), which are often very noisy. In this situation the number of components of the state vector is extremely large (about 10(5)), and the equation of motion for the dissipative magnetization dynamics (especially the values of the material parameters of this equation) is not well known. In the present paper it is shown by theoretical considerations that - nevertheless - there is no principle problem for the use of the Kalman filter to denoise XMCD movies of fast dissipative magnetization dynamics. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2004-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continously increase the knowledge on wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describe the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of high-sampled full-scale time series measurements...... are consistent, given the inevitabel uncertainties associated with model as well as with the extreme value data analysis. Keywords: Statistical model, extreme wind conditions, statistical analysis, turbulence, wind loading, statistical analysis, turbulence, wind loading, wind shear, wind turbines....

  14. Fasting and Urinary Stones

    Directory of Open Access Journals (Sweden)

    Ali Shamsa

    2013-11-01

    Full Text Available Introduction: Fasting is considered as one of the most important practices of Islam, and according to Prophet Mohammad, fasting is obligatory upon Muslims. The aim of this study is to evaluate the effects of fasting on urinary stones. Materials and Methods: Very few studies have been carried out on urinary stones and the effect of Ramadan fasting. The sources of the present study are Medline and articles presented by local and Muslim researchers. Meanwhile, since we are acquainted with three well-known researchers in the field of urology, we contacted them via email and asked for their professional opinions. Results: The results of studies about the relationship of urinary stones and their incidence in Ramadan are not alike, and are even sometimes contradictory. Some believe that increased incidence of urinary stones in Ramadan is related not to fasting, but to the rise of weather temperature in hot months, and an increase in humidity. Conclusion: Numerous biological and behavioral changes occur in people who fast in Ramadan and some researchers believe that urinary stone increases during this month.

  15. MANAJEMEN RISIKO PADA PROYEK KONSTRUKSI DENGAN METODE FAST TRACK STUDI KASUS PROYEK QUNCI VILLAS DAN PUTRI NAGA KOMODO

    Directory of Open Access Journals (Sweden)

    I Gusti Ketut Wirawan

    2015-07-01

    Full Text Available The rapid economic development such as now day, it need a construction method that may provide a facility faster and less cost. Therefore, fast track method has been widely applied in project management as happened in Qunci Villas Project at Lombok and Putri Naga Komodo Project at Loh Liang of Komodo Island. Fast track construction method has potential risks that can interfere the success of the project. This study aims to identify the risks, especially the mayor risk, to formulate the mitigation action, and to determine the risk ownership. This study was conducted using qualitative descriptive method by identifying the risks arising during the implementation of the fast track method on Qunci Villas and Putri Naga Komodo Projects through the study of literature, brainstorming, interview using questionnaires to those who knew or were involved in the project. So the frequency and magnitude of the consequences of each risk can be known. Then the risk assessment can be conducted to determine the mayor risk and the minor risk. Then determining mitigation action for the mayor risk to reduce the negative impact that may arise. Then allocating the risk ownership in other to the mitigation action can be handled properly. The risk identified totaled 25 risks consisting of : 1 risk (4% which was medium risk rating,  6 risks (24% which were high risk rating, and 18 risks (72% which were extreme risk rating. The mayor risk amounted to 24 risks (96%. The mayor risk which were high risk rating consisting of : 1 planning risk, 3 technical risks, 1 project risk and 1 criminal risk. While mayor risk which were extreme risk rating consisting of : 5 technical risks, 10 project risks, 2 financial risks, and 1 human risk. Mitigation action were handled by reducing likelihood and consequence. The most risks ownership were allocated to the contractor.

  16. Fast reactors in nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Kazachkovskii, O

    1981-02-01

    The possible applications are discussed of fast reactor nuclear power plants. Basic differences are explained in fast and thermal reactors, mainly with a view to nuclear fuel utilization. Discussed in more detail are the problems of nuclear fuel reproduction and the nost important technical problems of fast reactors. Flow charts are shown of heat transfer for fast reactors BN-350 (loop design) and BN-600 (integral coolant circuit design). Main specifications are given for demonstration and power fast reactors in operation, under construction and in project-stage.

  17. Dispersive Evolution of Nonlinear Fast Magnetoacoustic Wave Trains

    Energy Technology Data Exchange (ETDEWEB)

    Pascoe, D. J.; Goddard, C. R.; Nakariakov, V. M., E-mail: D.J.Pascoe@warwick.ac.uk [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2017-10-01

    Quasi-periodic rapidly propagating wave trains are frequently observed in extreme ultraviolet observations of the solar corona, or are inferred by the quasi-periodic modulation of radio emission. The dispersive nature of fast magnetohydrodynamic waves in coronal structures provides a robust mechanism to explain the detected quasi-periodic patterns. We perform 2D numerical simulations of impulsively generated wave trains in coronal plasma slabs and investigate how the behavior of the trapped and leaky components depend on the properties of the initial perturbation. For large amplitude compressive perturbations, the geometrical dispersion associated with the waveguide suppresses the nonlinear steepening for the trapped wave train. The wave train formed by the leaky components does not experience dispersion once it leaves the waveguide and so can steepen and form shocks. The mechanism we consider can lead to the formation of multiple shock fronts by a single, large amplitude, impulsive event and so can account for quasi-periodic features observed in radio spectra.

  18. Development of UO2/PuO2 dispersed in uranium matrix CERMET fuel system for fast reactors

    International Nuclear Information System (INIS)

    Sinha, V.P.; Hegde, P.V.; Prasad, G.J.; Pal, S.; Mishra, G.P.

    2012-01-01

    CERMET fuel with either PuO 2 or enriched UO 2 dispersed in uranium metal matrix has a strong potential of becoming a fuel for the liquid metal cooled fast breeder reactors (LMR’s). In fact it may act as a bridge between the advantages and disadvantages associated with the two extremes of fuel systems (i.e. ceramic fuel and metallic fuel) for fast reactors. At Bhabha Atomic Research Centre (BARC), R and D efforts are on to develop this CERMET fuel by powder metallurgy route. This paper describes the development of flow sheet for preparation of UO 2 dispersed in uranium metal matrix pellets for three different compositions i.e. U–20 wt%UO 2 , U–25 wt%UO 2 and U–30 wt%UO 2 . It was found that the sintered pellets were having excellent integrity and their linear mass was higher than that of carbide fuel pellets used in Fast Breeder Test Reactor programme (FBTR) in India. The pellets were characterized by X-ray diffraction (XRD) technique for phase analysis and lattice parameter determination. The optical microstructures were developed and reported for all the three different U–UO 2 compositions.

  19. Development of UO2/PuO2 dispersed in uranium matrix CERMET fuel system for fast reactors

    Science.gov (United States)

    Sinha, V. P.; Hegde, P. V.; Prasad, G. J.; Pal, S.; Mishra, G. P.

    2012-08-01

    CERMET fuel with either PuO2 or enriched UO2 dispersed in uranium metal matrix has a strong potential of becoming a fuel for the liquid metal cooled fast breeder reactors (LMR's). In fact it may act as a bridge between the advantages and disadvantages associated with the two extremes of fuel systems (i.e. ceramic fuel and metallic fuel) for fast reactors. At Bhabha Atomic Research Centre (BARC), R & D efforts are on to develop this CERMET fuel by powder metallurgy route. This paper describes the development of flow sheet for preparation of UO2 dispersed in uranium metal matrix pellets for three different compositions i.e. U-20 wt%UO2, U-25 wt%UO2 and U-30 wt%UO2. It was found that the sintered pellets were having excellent integrity and their linear mass was higher than that of carbide fuel pellets used in Fast Breeder Test Reactor programme (FBTR) in India. The pellets were characterized by X-ray diffraction (XRD) technique for phase analysis and lattice parameter determination. The optical microstructures were developed and reported for all the three different U-UO2 compositions.

  20. FastMag: Fast micromagnetic simulator for complex magnetic structures (invited)

    Science.gov (United States)

    Chang, R.; Li, S.; Lubarda, M. V.; Livshitz, B.; Lomakin, V.

    2011-04-01

    A fast micromagnetic simulator (FastMag) for general problems is presented. FastMag solves the Landau-Lifshitz-Gilbert equation and can handle multiscale problems with a high computational efficiency. The simulator derives its high performance from efficient methods for evaluating the effective field and from implementations on massively parallel graphics processing unit (GPU) architectures. FastMag discretizes the computational domain into tetrahedral elements and therefore is highly flexible for general problems. The magnetostatic field is computed via the superposition principle for both volume and surface parts of the computational domain. This is accomplished by implementing efficient quadrature rules and analytical integration for overlapping elements in which the integral kernel is singular. Thus, discretized superposition integrals are computed using a nonuniform grid interpolation method, which evaluates the field from N sources at N collocated observers in O(N) operations. This approach allows handling objects of arbitrary shape, allows easily calculating of the field outside the magnetized domains, does not require solving a linear system of equations, and requires little memory. FastMag is implemented on GPUs with ?> GPU-central processing unit speed-ups of 2 orders of magnitude. Simulations are shown of a large array of magnetic dots and a recording head fully discretized down to the exchange length, with over a hundred million tetrahedral elements on an inexpensive desktop computer.

  1. Neurodevelopmental problems and extremes in BMI

    Directory of Open Access Journals (Sweden)

    Nóra Kerekes

    2015-07-01

    Full Text Available Background. Over the last few decades, an increasing number of studies have suggested a connection between neurodevelopmental problems (NDPs and body mass index (BMI. Attention deficit/hyperactivity disorder (ADHD and autism spectrum disorders (ASD both seem to carry an increased risk for developing extreme BMI. However, the results are inconsistent, and there have been only a few studies of the general population of children.Aims. We had three aims with the present study: (1 to define the prevalence of extreme (low or high BMI in the group of children with ADHD and/or ASDs compared to the group of children without these NDPs; (2 to analyze whether extreme BMI is associated with the subdomains within the diagnostic categories of ADHD or ASD; and (3 to investigate the contribution of genetic and environmental factors to BMI in boys and girls at ages 9 and 12.Method. Parents of 9- or 12-year-old twins (n = 12,496 were interviewed using the Autism—Tics, ADHD and other Comorbidities (A-TAC inventory as part of the Child and Adolescent Twin Study in Sweden (CATSS. Univariate and multivariate generalized estimated equation models were used to analyze associations between extremes in BMI and NDPs.Results. ADHD screen-positive cases followed BMI distributions similar to those of children without ADHD or ASD. Significant association was found between ADHD and BMI only among 12-year-old girls, where the inattention subdomain of ADHD was significantly associated with the high extreme BMI. ASD scores were associated with both the low and the high extremes of BMI. Compared to children without ADHD or ASD, the prevalence of ASD screen-positive cases was three times greater in the high extreme BMI group and double as much in the low extreme BMI group. Stereotyped and repetitive behaviors were significantly associated with high extreme BMIs.Conclusion. Children with ASD, with or without coexisting ADHD, are more prone to have low or high extreme BMIs than

  2. Sistem Gesture Accelerometer dengan Metode Fast Dynamic Time Warping (FastDTW

    Directory of Open Access Journals (Sweden)

    Sam Farisa Chaerul Haviana

    2016-01-01

    Full Text Available In the modern environment, the interaction between humans and computers require a more natural form of interaction. Therefore, it is important to be able to build a system that can meet these demands, such as by building a hand gesture recognition system or gesture to create a more natural form of interaction. This study aims to design a smartphone’s accelerometer gesture system as human computer interaction interfaces using FastDTW (Fast Dynamic Time Warping.The result of this study is form of gesture interaction which implemented in a system that can make the process of recognition of the human hand movements based on a smartphone accelerometer which generates a command to run the media player application functions as a case study. FastDTW as the development of Dynamic Time Warping method (DTW is able to compute faster than DTW and have an accuracy approaching DTW. From the test results, FastDTW show a fairly high degree of accuracy reached 86% and showed a better computing speed compared to DTW   Keywords: Human and Computer Interaction, Accelerometer-based gesture, FastDTW, Media player application function

  3. Fast spine echo and fast fluid attenuated inversion recovery sequences in multiple sclerosis

    International Nuclear Information System (INIS)

    Paolillo, Andrea; Giugni, Elisabetta; Bozzao, Alessandro; Bastianello, Stefano

    1997-01-01

    Fast spin echo (FSE) and fast fluid attenuated inversion recovery (fast-FLAIR) sequences, were compared with conventional spin echo (CSE) in quantitating multiple sclerosis (MS) lesion burden. For each sequence, the total number and volume of MS lesions were calculated in 38 remitting multiple sclerosis patients using a semiautomated lesion detection program. Conventional spin echo, fast spin echo, and fast fluid attenuated inversion recovery image were reported on randomly and at different times by two expert observers. Interobserver differences, the time needed to quantitative multiple sclerosis lesions and lesion signal intensity (contrast-to-noise ratio and overall contrast) were considered. The lesions were classified by site into infratentorial, white matter and cortical/subcortical. A total of 2970 lesions with a volume of 961.7 cm 3 was calculated on conventional spin echo images. Fast spin echo images depicted fewer (16.6%; p < .005) and smaller (24.9%; p < .0001) lesions and the differences were statistically significant. Despite an overall nonsignificant reduction for fast-FLAIR images (-5% and 4.8% for lesion number and volume, respectively), significantly lower values (lesion number: p < 0.1; volume: p < .04)were observed for infratentorial lesions, while significantly higher values were seen for cortical/subcortical lesions (lesion number: p < .01; volume: p < .02). A higher lesion/white matter contrast (p < .002), a significant time saving for lesion burden quantitation (p < .05) and very low interobserver variability were found in favor of fast-FLAIR. Our data suggest that, despite the limitations regarding infratentorial lesions, fast-FLAIR sequences are indicated in R studies because of their good identification of cortical/subcortical lesions, almost complete interobserver agreement, higher contrast-to-noise ratio and limited time needed for semiautomated quantitation

  4. Glucose delays the insulin-induced increase in thyroid hormone-mediated signaling in adipose of prolong-fasted elephant seal pups

    Science.gov (United States)

    Soñanez-Organis, José G.; Viscarra, Jose A.; Jaques, John T.; MacKenzie, Duncan S.; Crocker, Daniel E.; Ortiz, Rudy M.

    2016-01-01

    Prolonged food deprivation in mammals typically reduces glucose, insulin, and thyroid hormone (TH) concentrations, as well as tissue deiodinase (DI) content and activity, which, collectively, suppress metabolism. However, in elephant seal pups, prolonged fasting does not suppress TH levels; it is associated with upregulation of adipose TH-mediated cellular mechanisms and adipose-specific insulin resistance. The functional relevance of this apparent paradox and the effects of glucose and insulin on TH-mediated signaling in an insulin-resistant tissue are not well defined. To address our hypothesis that insulin increases adipose TH signaling in pups during extended fasting, we assessed the changes in TH-associated genes in response to an insulin infusion in early- and late-fasted pups. In late fasting, insulin increased DI1, DI2, and THrβ-1 mRNA expression by 566%, 44%, and 267% at 60 min postinfusion, respectively, with levels decreasing by 120 min. Additionally, we performed a glucose challenge in late-fasted pups to differentiate between insulin- and glucose-mediated effects on TH signaling. In contrast to the insulin-induced effects, glucose infusion did not increase the expressions of DI1, DI2, and THrβ-1 until 120 min, suggesting that glucose delays the onset of the insulin-induced effects. The data also suggest that fasting duration increases the sensitivity of adipose TH-mediated mechanisms to insulin, some of which may be mediated by increased glucose. These responses appear to be unique among mammals and to have evolved in elephant seals to facilitate their adaptation to tolerate an extreme physiological condition. PMID:26739649

  5. Fast food purchasing and access to fast food restaurants: a multilevel analysis of VicLANES

    Science.gov (United States)

    Thornton, Lukar E; Bentley, Rebecca J; Kavanagh, Anne M

    2009-01-01

    Background While previous research on fast food access and purchasing has not found evidence of an association, these studies have had methodological problems including aggregation error, lack of specificity between the exposures and outcomes, and lack of adjustment for potential confounding. In this paper we attempt to address these methodological problems using data from the Victorian Lifestyle and Neighbourhood Environments Study (VicLANES) – a cross-sectional multilevel study conducted within metropolitan Melbourne, Australia in 2003. Methods The VicLANES data used in this analysis included 2547 participants from 49 census collector districts in metropolitan Melbourne, Australia. The outcome of interest was the total frequency of fast food purchased for consumption at home within the previous month (never, monthly and weekly) from five major fast food chains (Red Rooster, McDonalds, Kentucky Fried Chicken, Hungry Jacks and Pizza Hut). Three measures of fast food access were created: density and variety, defined as the number of fast food restaurants and the number of different fast food chains within 3 kilometres of road network distance respectively, and proximity defined as the road network distance to the closest fast food restaurant. Multilevel multinomial models were used to estimate the associations between fast food restaurant access and purchasing with never purchased as the reference category. Models were adjusted for confounders including determinants of demand (attitudes and tastes that influence food purchasing decisions) as well as individual and area socio-economic characteristics. Results Purchasing fast food on a monthly basis was related to the variety of fast food restaurants (odds ratio 1.13; 95% confidence interval 1.02 – 1.25) after adjusting for individual and area characteristics. Density and proximity were not found to be significant predictors of fast food purchasing after adjustment for individual socio-economic predictors

  6. Fast food purchasing and access to fast food restaurants: a multilevel analysis of VicLANES.

    Science.gov (United States)

    Thornton, Lukar E; Bentley, Rebecca J; Kavanagh, Anne M

    2009-05-27

    While previous research on fast food access and purchasing has not found evidence of an association, these studies have had methodological problems including aggregation error, lack of specificity between the exposures and outcomes, and lack of adjustment for potential confounding. In this paper we attempt to address these methodological problems using data from the Victorian Lifestyle and Neighbourhood Environments Study (VicLANES) - a cross-sectional multilevel study conducted within metropolitan Melbourne, Australia in 2003. The VicLANES data used in this analysis included 2547 participants from 49 census collector districts in metropolitan Melbourne, Australia. The outcome of interest was the total frequency of fast food purchased for consumption at home within the previous month (never, monthly and weekly) from five major fast food chains (Red Rooster, McDonalds, Kentucky Fried Chicken, Hungry Jacks and Pizza Hut). Three measures of fast food access were created: density and variety, defined as the number of fast food restaurants and the number of different fast food chains within 3 kilometres of road network distance respectively, and proximity defined as the road network distance to the closest fast food restaurant.Multilevel multinomial models were used to estimate the associations between fast food restaurant access and purchasing with never purchased as the reference category. Models were adjusted for confounders including determinants of demand (attitudes and tastes that influence food purchasing decisions) as well as individual and area socio-economic characteristics. Purchasing fast food on a monthly basis was related to the variety of fast food restaurants (odds ratio 1.13; 95% confidence interval 1.02 - 1.25) after adjusting for individual and area characteristics. Density and proximity were not found to be significant predictors of fast food purchasing after adjustment for individual socio-economic predictors. Although we found an independent

  7. Fast food purchasing and access to fast food restaurants: a multilevel analysis of VicLANES

    Directory of Open Access Journals (Sweden)

    Kavanagh Anne M

    2009-05-01

    Full Text Available Abstract Background While previous research on fast food access and purchasing has not found evidence of an association, these studies have had methodological problems including aggregation error, lack of specificity between the exposures and outcomes, and lack of adjustment for potential confounding. In this paper we attempt to address these methodological problems using data from the Victorian Lifestyle and Neighbourhood Environments Study (VicLANES – a cross-sectional multilevel study conducted within metropolitan Melbourne, Australia in 2003. Methods The VicLANES data used in this analysis included 2547 participants from 49 census collector districts in metropolitan Melbourne, Australia. The outcome of interest was the total frequency of fast food purchased for consumption at home within the previous month (never, monthly and weekly from five major fast food chains (Red Rooster, McDonalds, Kentucky Fried Chicken, Hungry Jacks and Pizza Hut. Three measures of fast food access were created: density and variety, defined as the number of fast food restaurants and the number of different fast food chains within 3 kilometres of road network distance respectively, and proximity defined as the road network distance to the closest fast food restaurant. Multilevel multinomial models were used to estimate the associations between fast food restaurant access and purchasing with never purchased as the reference category. Models were adjusted for confounders including determinants of demand (attitudes and tastes that influence food purchasing decisions as well as individual and area socio-economic characteristics. Results Purchasing fast food on a monthly basis was related to the variety of fast food restaurants (odds ratio 1.13; 95% confidence interval 1.02 – 1.25 after adjusting for individual and area characteristics. Density and proximity were not found to be significant predictors of fast food purchasing after adjustment for individual socio

  8. The prototype fast reactor

    International Nuclear Information System (INIS)

    Broomfield, A.M.

    1985-01-01

    The paper concerns the Prototype Fast Reactor (PFR), which is a liquid metal cooled fast reactor power station, situated at Dounreay, Scotland. The principal design features of a Fast Reactor and the PFR are given, along with key points of operating history, and health and safety features. The role of the PFR in the development programme for commercial reactors is discussed. (U.K.)

  9. Radar HRRP Target Recognition Based on Stacked Autoencoder and Extreme Learning Machine.

    Science.gov (United States)

    Zhao, Feixiang; Liu, Yongxiang; Huo, Kai; Zhang, Shuanghui; Zhang, Zhongshuai

    2018-01-10

    A novel radar high-resolution range profile (HRRP) target recognition method based on a stacked autoencoder (SAE) and extreme learning machine (ELM) is presented in this paper. As a key component of deep structure, the SAE does not only learn features by making use of data, it also obtains feature expressions at different levels of data. However, with the deep structure, it is hard to achieve good generalization performance with a fast learning speed. ELM, as a new learning algorithm for single hidden layer feedforward neural networks (SLFNs), has attracted great interest from various fields for its fast learning speed and good generalization performance. However, ELM needs more hidden nodes than conventional tuning-based learning algorithms due to the random set of input weights and hidden biases. In addition, the existing ELM methods cannot utilize the class information of targets well. To solve this problem, a regularized ELM method based on the class information of the target is proposed. In this paper, SAE and the regularized ELM are combined to make full use of their advantages and make up for each of their shortcomings. The effectiveness of the proposed method is demonstrated by experiments with measured radar HRRP data. The experimental results show that the proposed method can achieve good performance in the two aspects of real-time and accuracy, especially when only a few training samples are available.

  10. Application of a fast skyline computation algorithm for serendipitous searching problems

    Science.gov (United States)

    Koizumi, Kenichi; Hiraki, Kei; Inaba, Mary

    2018-02-01

    Skyline computation is a method of extracting interesting entries from a large population with multiple attributes. These entries, called skyline or Pareto optimal entries, are known to have extreme characteristics that cannot be found by outlier detection methods. Skyline computation is an important task for characterizing large amounts of data and selecting interesting entries with extreme features. When the population changes dynamically, the task of calculating a sequence of skyline sets is called continuous skyline computation. This task is known to be difficult to perform for the following reasons: (1) information of non-skyline entries must be stored since they may join the skyline in the future; (2) the appearance or disappearance of even a single entry can change the skyline drastically; (3) it is difficult to adopt a geometric acceleration algorithm for skyline computation tasks with high-dimensional datasets. Our new algorithm called jointed rooted-tree (JR-tree) manages entries using a rooted tree structure. JR-tree delays extend the tree to deep levels to accelerate tree construction and traversal. In this study, we presented the difficulties in extracting entries tagged with a rare label in high-dimensional space and the potential of fast skyline computation in low-latency cell identification technology.

  11. An Extreme-ultraviolet Wave Generating Upward Secondary Waves in a Streamer-like Solar Structure

    Science.gov (United States)

    Zheng, Ruisheng; Chen, Yao; Feng, Shiwei; Wang, Bing; Song, Hongqiang

    2018-05-01

    Extreme-ultraviolet (EUV) waves, spectacular horizontally propagating disturbances in the low solar corona, always trigger horizontal secondary waves (SWs) when they encounter the ambient coronal structure. We present the first example of upward SWs in a streamer-like structure after the passing of an EUV wave. This event occurred on 2017 June 1. The EUV wave happened during a typical solar eruption including a filament eruption, a coronal mass ejection (CME), and a C6.6 flare. The EUV wave was associated with quasi-periodic fast propagating (QFP) wave trains and a type II radio burst that represented the existence of a coronal shock. The EUV wave had a fast initial velocity of ∼1000 km s‑1, comparable to high speeds of the shock and the QFP wave trains. Intriguingly, upward SWs rose slowly (∼80 km s‑1) in the streamer-like structure after the sweeping of the EUV wave. The upward SWs seemed to originate from limb brightenings that were caused by the EUV wave. All of the results show that the EUV wave is a fast-mode magnetohydrodynamic (MHD) shock wave, likely triggered by the flare impulses. We suggest that part of the EUV wave was probably trapped in the closed magnetic fields of the streamer-like structure, and upward SWs possibly resulted from the release of slow-mode trapped waves. It is believed that the interplay of the strong compression of the coronal shock and the configuration of the streamer-like structure is crucial for the formation of upward SWs.

  12. Genetically elevated non-fasting triglycerides and calculated remnant cholesterol as causal risk factors for myocardial infarction

    DEFF Research Database (Denmark)

    Jørgensen, Anders Berg; Frikke-Schmidt, Ruth; West, Anders Sode

    2012-01-01

    AimsElevated non-fasting triglycerides mark elevated levels of remnant cholesterol. Using a Mendelian randomization approach, we tested whether genetically increased remnant cholesterol in hypertriglyceridaemia due to genetic variation in the apolipoprotein A5 gene (APOA5) associates with an incr......AimsElevated non-fasting triglycerides mark elevated levels of remnant cholesterol. Using a Mendelian randomization approach, we tested whether genetically increased remnant cholesterol in hypertriglyceridaemia due to genetic variation in the apolipoprotein A5 gene (APOA5) associates...... with an increased risk of myocardial infarction (MI).Methods and resultsWe resequenced the core promoter and coding regions of APOA5 in individuals with the lowest 1% (n = 95) and highest 2% (n = 190) triglyceride levels in the Copenhagen City Heart Study (CCHS, n = 10 391). Genetic variants which differed...... in frequency between the two extreme triglyceride groups (c.-1131T > C, S19W, and c.*31C > T; P-value: 0.06 to...

  13. FAST: An advanced code system for fast reactor transient analysis

    International Nuclear Information System (INIS)

    Mikityuk, Konstantin; Pelloni, Sandro; Coddington, Paul; Bubelis, Evaldas; Chawla, Rakesh

    2005-01-01

    One of the main goals of the FAST project at PSI is to establish a unique analytical code capability for the core and safety analysis of advanced critical (and sub-critical) fast-spectrum systems for a wide range of different coolants. Both static and transient core physics, as well as the behaviour and safety of the power plant as a whole, are studied. The paper discusses the structure of the code system, including the organisation of the interfaces and data exchange. Examples of validation and application of the individual programs, as well as of the complete code system, are provided using studies carried out within the context of designs for experimental accelerator-driven, fast-spectrum systems

  14. Higgs Discovery: Impact on Composite Dynamics Technicolor & eXtreme Compositeness Thinking Fast and Slow

    Science.gov (United States)

    Sannino, Francesco

    I discuss the impact of the discovery of a Higgs-like state on composite dynamics starting by critically examining the reasons in favour of either an elementary or composite nature of this state. Accepting the standard model interpretation I re-address the standard model vacuum stability within a Weyl-consistent computation. I will carefully examine the fundamental reasons why what has been discovered might not be the standard model Higgs. Dynamical electroweak breaking naturally addresses a number of the fundamental issues unsolved by the standard model interpretation. However this paradigm has been challenged by the discovery of a not-so-heavy Higgs-like state. I will therefore review the recent discovery1 that the standard model top-induced radiative corrections naturally reduce the intrinsic non-perturbative mass of the composite Higgs state towards the desired experimental value. Not only we have a natural and testable working framework but we have also suggested specic gauge theories that can realise, at the fundamental level, these minimal models of dynamical electroweak symmetry breaking. These strongly coupled gauge theories are now being heavily investigated via first principle lattice simulations with encouraging results. The new findings show that the recent naive claims made about new strong dynamics at the electroweak scale being disfavoured by the discovery of a not-so-heavy composite Higgs are unwarranted. I will then introduce the more speculative idea of extreme compositeness according to which not only the Higgs sector of the standard model is composite but also quarks and leptons, and provide a toy example in the form of gauge-gauge duality.

  15. Development of probabilistic risk assessment methodology against extreme snow for sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yamano, Hidemasa, E-mail: yamano.hidemasa@jaea.go.jp; Nishino, Hiroyuki; Kurisaka, Kenichi

    2016-11-15

    Highlights: • Snow PRA methodology was developed. • Snow hazard category was defined as the combination of daily snowfall depth (speed) and snowfall duration. • Failure probability models of snow removal action, manual operation of the air cooler dampers and the access route were developed. • Snow PRA showed less than 10{sup −6}/reactor-year of core damage frequency. - Abstract: This paper describes snow probabilistic risk assessment (PRA) methodology development through external hazard and event sequence evaluations mainly in terms of decay heat removal (DHR) function of a sodium-cooled fast reactor (SFR). Using recent 50-year weather data at a typical Japanese SFR site, snow hazard categories were set for the combination of daily snowfall depth (snowfall speed) and snowfall duration which can be calculated by dividing the snow depth by the snowfall speed. For each snow hazard category, the event sequence was evaluated by event trees which consist of several headings representing the loss of DHR. Snow removal action and manual operation of the air cooler dampers were introduced into the event trees as accident managements. Access route failure probability model was also developed for the quantification of the event tree. In this paper, the snow PRA showed less than 10{sup −6}/reactor-year of core damage frequency. The dominant snow hazard category was the combination of 1–2 m/day of snowfall speed and 0.5–0.75 day of snowfall duration. Importance and sensitivity analyses indicated a high risk contribution of the securing of the access routes.

  16. Development of probabilistic risk assessment methodology against extreme snow for sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Yamano, Hidemasa; Nishino, Hiroyuki; Kurisaka, Kenichi

    2016-01-01

    Highlights: • Snow PRA methodology was developed. • Snow hazard category was defined as the combination of daily snowfall depth (speed) and snowfall duration. • Failure probability models of snow removal action, manual operation of the air cooler dampers and the access route were developed. • Snow PRA showed less than 10"−"6/reactor-year of core damage frequency. - Abstract: This paper describes snow probabilistic risk assessment (PRA) methodology development through external hazard and event sequence evaluations mainly in terms of decay heat removal (DHR) function of a sodium-cooled fast reactor (SFR). Using recent 50-year weather data at a typical Japanese SFR site, snow hazard categories were set for the combination of daily snowfall depth (snowfall speed) and snowfall duration which can be calculated by dividing the snow depth by the snowfall speed. For each snow hazard category, the event sequence was evaluated by event trees which consist of several headings representing the loss of DHR. Snow removal action and manual operation of the air cooler dampers were introduced into the event trees as accident managements. Access route failure probability model was also developed for the quantification of the event tree. In this paper, the snow PRA showed less than 10"−"6/reactor-year of core damage frequency. The dominant snow hazard category was the combination of 1–2 m/day of snowfall speed and 0.5–0.75 day of snowfall duration. Importance and sensitivity analyses indicated a high risk contribution of the securing of the access routes.

  17. Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential

    International Nuclear Information System (INIS)

    Fyodorov, Yan V; Bouchaud, Jean-Philippe

    2008-01-01

    We investigate some implications of the freezing scenario proposed by Carpentier and Le Doussal (CLD) for a random energy model (REM) with logarithmically correlated random potential. We introduce a particular (circular) variant of the model, and show that the integer moments of the partition function in the high-temperature phase are given by the well-known Dyson Coulomb gas integrals. The CLD freezing scenario allows one to use those moments for extracting the distribution of the free energy in both high- and low-temperature phases. In particular, it yields the full distribution of the minimal value in the potential sequence. This provides an explicit new class of extreme-value statistics for strongly correlated variables, manifestly different from the standard Gumbel class. (fast track communication)

  18. Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential

    Energy Technology Data Exchange (ETDEWEB)

    Fyodorov, Yan V [School of Mathematical Sciences, University of Nottingham, Nottingham NG72RD (United Kingdom); Bouchaud, Jean-Philippe [Science and Finance, Capital Fund Management 6-8 Bd Haussmann, 75009 Paris (France)

    2008-09-19

    We investigate some implications of the freezing scenario proposed by Carpentier and Le Doussal (CLD) for a random energy model (REM) with logarithmically correlated random potential. We introduce a particular (circular) variant of the model, and show that the integer moments of the partition function in the high-temperature phase are given by the well-known Dyson Coulomb gas integrals. The CLD freezing scenario allows one to use those moments for extracting the distribution of the free energy in both high- and low-temperature phases. In particular, it yields the full distribution of the minimal value in the potential sequence. This provides an explicit new class of extreme-value statistics for strongly correlated variables, manifestly different from the standard Gumbel class. (fast track communication)

  19. Extreme climate, not extreme weather: the summer of 1816 in Geneva, Switzerland

    Directory of Open Access Journals (Sweden)

    R. Auchmann

    2012-02-01

    Full Text Available We analyze weather and climate during the "Year without Summer" 1816 using sub-daily data from Geneva, Switzerland, representing one of the climatically most severely affected regions. The record includes twice daily measurements and observations of air temperature, pressure, cloud cover, wind speed, and wind direction as well as daily measurements of precipitation. Comparing 1816 to a contemporary reference period (1799–1821 reveals that the coldness of the summer of 1816 was most prominent in the afternoon, with a shift of the entire distribution function of temperature anomalies by 3–4 °C. Early morning temperature anomalies show a smaller change for the mean, a significant decrease in the variability, and no changes in negative extremes. Analyzing cloudy and cloud-free conditions separately suggests that an increase in the number of cloudy days was to a significant extent responsible for these features. A daily weather type classification based on pressure, pressure tendency, and wind direction shows extremely anomalous frequencies in summer 1816, with only one day (compared to 20 in an average summer classified as high-pressure situation but a tripling of low-pressure situations. The afternoon temperature anomalies expected from only a change in weather types was much stronger negative in summer 1816 than in any other year. For precipitation, our analysis shows that the 80% increase in summer precipitation compared to the reference period can be explained by 80% increase in the frequency of precipitation, while no change could be found neither in the average intensity of precipitation nor in the frequency distribution of extreme precipitation. In all, the analysis shows that the regional circulation and local cloud cover played a dominant role. It also shows that the summer of 1816 was an example of extreme climate, not extreme weather.

  20. High prevalence of abnormal motor repertoire at 3 months corrected age in extremely preterm infants.

    Science.gov (United States)

    Fjørtoft, Toril; Evensen, Kari Anne I; Øberg, Gunn Kristin; Songstad, Nils Thomas; Labori, Cathrine; Silberg, Inger Elisabeth; Loennecken, Marianne; Møinichen, Unn Inger; Vågen, Randi; Støen, Ragnhild; Adde, Lars

    2016-03-01

    To compare early motor repertoire between extremely preterm and term-born infants. An association between the motor repertoire and gestational age and birth weight was explored in extremely preterm infants without severe ultrasound abnormalities. In a multicentre study, the early motor repertoire of 82 infants born extremely preterm (ELGAN:<28 weeks) and/or with extremely low birth weight (ELBW:<1000 g) and 87 term-born infants were assessed by the "Assessment of Motor Repertoire - 2 to 5 Months" (AMR) which is part of Prechtl's "General Movement Assessment", at 12 weeks post-term age. Fidgety movements were classified as normal if present and abnormal if absent, sporadic or exaggerated. Concurrent motor repertoire was classified as normal if smooth and fluent and abnormal if monotonous, stiff, jerky and/or predominantly fast or slow. Eight-teen ELBW/ELGAN infants had abnormal fidgety movements (8 absent, 7 sporadic and 3 exaggerated fidgety movements) compared with 2 control infants (OR:12.0; 95%CI:2.7-53.4) and 46 ELBW/ELGAN infants had abnormal concurrent motor repertoire compared with 17 control infants (OR:5.3; 95%CI:2.6-10.5). Almost all detailed aspects of the AMR differed between the groups. Results were the same when three infants with severe ultrasound abnormalities were excluded. In the remaining ELBW/ELGAN infants, there was no association between motor repertoire and gestational age or birth weight. ELBW/ELGAN infants had poorer quality of early motor repertoire than term-born infants.The findings were not explained by severe abnormalities on neonatal ultrasound scans and were not correlated to the degree of prematurity. The consequences of these abnormal movement patterns remain to be seen in future follow-up studies. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  1. Islamic fasting and multiple sclerosis

    Science.gov (United States)

    2014-01-01

    Background Month-long daytime Ramadan fasting pose s major challenges to multiple sclerosis (MS) patients in Muslim countries. Physicians should have practical knowledge on the implications of fasting on MS. We present a summary of database searches (Cochrane Database of Systematic Reviews, PubMed) and a mini-symposium on Ramadan fasting and MS. In this symposium, we aimed to review the effect of fasting on MS and suggest practical guidelines on management. Discussion In general, fasting is possible for most stable patients. Appropriate amendment of drug regimens, careful monitoring of symptoms, as well as providing patients with available evidence on fasting and MS are important parts of management. Evidence from experimental studies suggests that calorie restriction before disease induction reduces inflammation and subsequent demyelination and attenuates disease severity. Fasting does not appear to have unfavorable effects on disease course in patients with mild disability (Expanded Disability Status Scale (EDSS) score ≤3). Most experts believed that during fasting (especially in summer), some MS symptoms (fatigue, fatigue perception, dizziness, spasticity, cognitive problems, weakness, vision, balance, gait) might worsen but return to normal levels during feasting. There was a general consensus that fasting is not safe for patients: on high doses of anti-convulsants, anti-spastics, and corticosteroids; with coagulopathy or active disease; during attacks; with EDSS score ≥7. Summary These data suggest that MS patients should have tailored care. Fasting in MS patients is a challenge that is directly associated with the spiritual belief of the patient. PMID:24655543

  2. How Interplanetary Scintillation Data Can Improve Modeling of Coronal Mass Ejection Propagation

    Science.gov (United States)

    Taktakishvili, A.; Mays, M. L.; Manoharan, P. K.; Rastaetter, L.; Kuznetsova, M. M.

    2017-12-01

    Coronal mass ejections (CMEs) can have a significant impact on the Earth's magnetosphere-ionosphere system and cause widespread anomalies for satellites from geosynchronous to low-Earth orbit and produce effects such as geomagnetically induced currents. At the NASA/GSFC Community Coordinated Modeling Center we have been using ensemble modeling of CMEs since 2012. In this presnetation we demonstrate that using of interplanetary scintillation (IPS) observations from the Ooty Radio Telescope facility in India can help to track CME propagaion and improve ensemble forecasting of CMEs. The observations of the solar wind density and velocity using IPS from hundreds of distant sources in ensemble modeling of CMEs can be a game-changing improvement of the current state of the art in CME forecasting.

  3. Dounreay fast reactor

    International Nuclear Information System (INIS)

    Maclennan, R.; Eggar, T.; Skeet, T.

    1992-01-01

    The short debate which followed a private notice question asking for a statement on Government policy on the future of the European fast breeder nuclear research programme is reported verbatim. In response to the question, the Minister for Energy said that the Government had decided in 1988 that the Dounreay prototype fast reactor would close in 1994. That decision had been confirmed. Funding of fast breeder research and development beyond 1993 is not a priority as commercialization is not expected until well into the next century. Dounreay will be supported financially until 1994 and then for its subsequent decommissioning and reprocessing of spent fuel. The debate raised issues such as Britain losing its lead in fast breeder research, loss of jobs and the Government's nuclear policy in general. However, the Government's position was that the research had reached a stage where it could be left and returned to in the future. (UK)

  4. Simulating AIA observations of a flux rope ejection

    Science.gov (United States)

    Pagano, P.; Mackay, D. H.; Poedts, S.

    2014-08-01

    Context. Coronal mass ejections (CMEs) are the most violent phenomena observed on the Sun. Currently, extreme ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) are providing new insights into the early phase of CME evolution. In particular, observations now show the ejection of magnetic flux ropes from the solar corona and how they evolve into CMEs. While this is the case, these observations are difficult to interpret in terms of basic physical mechanisms and quantities. To fully understand CMEs we need to compare equivalent quantities derived from both observations and theoretical models. This will aid in bridging the gap between observations and models. Aims: To this end, we aim to produce synthesised AIA observations from simulations of a flux rope ejection. To carry this out we include the role of thermal conduction and radiative losses, both of which are important for determining the temperature distribution of the solar corona during a CME. Methods: We perform a simulation where a flux rope is ejected from the solar corona. From the density and temperature of the plasma in the simulation we synthesise AIA observations. The emission is then integrated along the line of sight using the instrumental response function of AIA. Results: We sythesise observations of AIA in the channels at 304 Å, 171 Å, 335 Å, and 94 Å. The synthesised observations show a number of features similar to actual observations and in particular reproduce the general development of CMEs in the low corona as observed by AIA. In particular we reproduce an erupting and expanding arcade in the 304 Å and 171 Å channels with a high density core. Conclusions: The ejection of a flux rope reproduces many of the features found in the AIA observations. This work is therefore a step forward in bridging the gap between observations and models, and can lead to more direct interpretations of EUV observations in terms of flux rope

  5. Knowledge management in fast reactors

    International Nuclear Information System (INIS)

    Kuriakose, K.K.; Satya Murty, S.A.V.; Swaminathan, P.; Raj, Baldev

    2010-01-01

    This paper highlights the work that is being carried out in Knowledge Management of Fast Reactors at Indira Gandhi Centre for Atomic Research (IGCAR) including a few examples of how the knowledge acquired because of various incidents in the initial years has been utilized for the successful operation of Fast Breeder Test Reactor. It also briefly refers to the features of the IAEA initiative on the preservation of Knowledge in the area of Fast Reactors in the form of 'Fast Reactor Knowledge Organization System' (FR-KOS), which is based on a taxonomy for storage and mining of Fast Reactor Knowledge. (author)

  6. ON SUN-TO-EARTH PROPAGATION OF CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Liu, Ying D.; Luhmann, Janet G.; Möstl, Christian; Bale, Stuart D.; Lin, Robert P.; Lugaz, Noé; Davies, Jackie A.

    2013-01-01

    We investigate how coronal mass ejections (CMEs) propagate through, and interact with, the inner heliosphere between the Sun and Earth, a key question in CME research and space weather forecasting. CME Sun-to-Earth kinematics are constrained by combining wide-angle heliospheric imaging observations, interplanetary radio type II bursts, and in situ measurements from multiple vantage points. We select three events for this study, the 2012 January 19, 23, and March 7 CMEs. Different from previous event studies, this work attempts to create a general picture for CME Sun-to-Earth propagation and compare different techniques for determining CME interplanetary kinematics. Key results are obtained concerning CME Sun-to-Earth propagation: (1) the Sun-to-Earth propagation of fast CMEs can be approximately formulated into three phases: an impulsive acceleration, then a rapid deceleration, and finally a nearly constant speed propagation (or gradual deceleration); (2) the CMEs studied here are still accelerating even after the flare maximum, so energy must be continuously fed into the CME even after the time of the maximum heating and radiation has elapsed in the corona; (3) the rapid deceleration, presumably due to interactions with the ambient medium, mainly occurs over a relatively short timescale following the acceleration phase; and (4) CME-CME interactions seem a common phenomenon close to solar maximum. Our comparison between different techniques (and data sets) has important implications for CME observations and their interpretations: (1) for the current cases, triangulation assuming a compact CME geometry is more reliable than triangulation assuming a spherical front attached to the Sun for distances below 50-70 solar radii from the Sun, but beyond about 100 solar radii we would trust the latter more; (2) a proper treatment of CME geometry must be performed in determining CME Sun-to-Earth kinematics, especially when the CME propagation direction is far away from the

  7. The greenhouse effect and extreme weather

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern; Kvamstoe, Nils Gunnar

    2002-01-01

    The article asserts that an anthropogenic global warming is occurring. This greenhouse effect is expected to cause more occurrences of extreme weather. It is extremely difficult, however, to relate specific weather catastrophes to global warming with certainty, since such extreme weather conditions are rare historically. The subject is controversial. The article also discusses the public debate and the risk of floods

  8. Association between proximity to and coverage of traditional fast-food restaurants and non-traditional fast-food outlets and fast-food consumption among rural adults

    OpenAIRE

    Sharkey, Joseph R; Johnson, Cassandra M; Dean, Wesley R; Horel, Scott A

    2011-01-01

    Abstract Objective The objective of this study is to examine the relationship between residential exposure to fast-food entrées, using two measures of potential spatial access: proximity (distance to the nearest location) and coverage (number of different locations), and weekly consumption of fast-food meals. Methods Traditional fast-food restaurants and non-traditional fast-food outlets, such as convenience stores, supermarkets, and grocery stores, from the 2006 Brazos Valley Food Environmen...

  9. Defining Extreme Events: A Cross-Disciplinary Review

    Science.gov (United States)

    McPhillips, Lauren E.; Chang, Heejun; Chester, Mikhail V.; Depietri, Yaella; Friedman, Erin; Grimm, Nancy B.; Kominoski, John S.; McPhearson, Timon; Méndez-Lázaro, Pablo; Rosi, Emma J.; Shafiei Shiva, Javad

    2018-03-01

    Extreme events are of interest worldwide given their potential for substantial impacts on social, ecological, and technical systems. Many climate-related extreme events are increasing in frequency and/or magnitude due to anthropogenic climate change, and there is increased potential for impacts due to the location of urbanization and the expansion of urban centers and infrastructures. Many disciplines are engaged in research and management of these events. However, a lack of coherence exists in what constitutes and defines an extreme event across these fields, which impedes our ability to holistically understand and manage these events. Here, we review 10 years of academic literature and use text analysis to elucidate how six major disciplines—climatology, earth sciences, ecology, engineering, hydrology, and social sciences—define and communicate extreme events. Our results highlight critical disciplinary differences in the language used to communicate extreme events. Additionally, we found a wide range in definitions and thresholds, with more than half of examined papers not providing an explicit definition, and disagreement over whether impacts are included in the definition. We urge distinction between extreme events and their impacts, so that we can better assess when responses to extreme events have actually enhanced resilience. Additionally, we suggest that all researchers and managers of extreme events be more explicit in their definition of such events as well as be more cognizant of how they are communicating extreme events. We believe clearer and more consistent definitions and communication can support transdisciplinary understanding and management of extreme events.

  10. Management of the mangled extremity

    NARCIS (Netherlands)

    Prasarn, Mark L.; Helfet, David L.; Kloen, Peter

    2012-01-01

    The management of a mangled extremity continues to be a matter of debate. With modern advances in trauma resuscitation, microvascular tissue transfer, and fracture fixation, severe traumatic extremity injuries that would historically have been amputated are often salvaged. Even if preserving a

  11. FastScatTM: An Object-Oriented Program for Fast Scattering Computation

    Directory of Open Access Journals (Sweden)

    Lisa Hamilton

    1993-01-01

    Full Text Available FastScat is a state-of-the-art program for computing electromagnetic scattering and radiation. Its purpose is to support the study of recent algorithmic advancements, such as the fast multipole method, that promise speed-ups of several orders of magnitude over conventional algorithms. The complexity of these algorithms and their associated data structures led us to adopt an object-oriented methodology for FastScat. We discuss the program's design and several lessons learned from its C++ implementation including the appropriate level for object-orientedness in numeric software, maintainability benefits, interfacing to Fortran libraries such as LAPACK, and performance issues.

  12. FAST and SAFE Passive Safety Devices for Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hartanto, Donny; Kim, Chihyung; Kim, In-Hyung; Kim, Yonghee [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The major factor is the impact of the neutron spectral hardening. The second factor that affects the CVR is reduced capture by the coolant when the coolant voiding occurs. To improve the CVR, many ideas and concepts have been proposed, which include introduction of an internal blanket, spectrum softening, or increasing the neutron leakage. These ideas may reduce the CVR, but they deteriorate the neutron economy. Another potential solution is to adopt a passive safety injection device such as the ARC (autonomous reactivity control) system, which is still under development. In this paper, two new concepts of passive safety devices are proposed. The devices are called FAST (Floating Absorber for Safety at Transient) and SAFE (Static Absorber Feedback Equipment). Their purpose is to enhance the negative reactivity feedback originating from the coolant in fast reactors. SAFE is derived to balance the positive reactivity feedback due to sodium coolant temperature increases. It has been demonstrated that SAFE allows a low-leakage SFR to achieve a self-shutdown and self-controllability even though the generic coolant temperature coefficient is quite positive and the coolant void reactivity can be largely managed by the new FAST device. It is concluded that both FAST and SAFE devices will improve substantially the fast reactor safety and they deserve more detailed investigations.

  13. Fault-tolerant capacity-1 protocol for very fast local networks

    Science.gov (United States)

    Dobosiewicz, Wlodek; Gburzynski, Pawel

    1991-08-01

    A substantial amount of attention has been paid recently to DQDB--a proposed bus architecture and MAC-level protocol for fast local and metropolitan area networks. The main advantage of this solution over previous concepts is in the fact that the performance of DQDB does not degrade with the increasing value of a--the ratio of the packet length to the propagation length of the bus expressed in bits. The big value of a characterizes networks that are either long geographically or very fast, or both. Thus, at the threshold of the forthcoming era of very high transmission rates and increasing demands for wide-area networks with the functionality of LANs, DQDB has been enthusiastically received by the networking community. DQDB's disadvantages can be stresses in the following two points: (1) The flexibility of the network is limited: each station must know the relative location on the bus of every other station. (2) The network is susceptible for faults: the failure of one of the extreme stations or disconnection of one bus segment makes it totally inoperable. In this paper, a capacity-1 network inspired by the DQDB concept which attempts to eliminate the above disadvantages of original DQDB is proposed. The solution is based on the UU-BUS topology, i.e., a network consisting of two separate, folded, unidirectional busses.

  14. Imprints of fast-rotating massive stars in the Galactic Bulge.

    Science.gov (United States)

    Chiappini, Cristina; Frischknecht, Urs; Meynet, Georges; Hirschi, Raphael; Barbuy, Beatriz; Pignatari, Marco; Decressin, Thibaut; Maeder, André

    2011-04-28

    The first stars that formed after the Big Bang were probably massive, and they provided the Universe with the first elements heavier than helium ('metals'), which were incorporated into low-mass stars that have survived to the present. Eight stars in the oldest globular cluster in the Galaxy, NGC 6522, were found to have surface abundances consistent with the gas from which they formed being enriched by massive stars (that is, with higher α-element/Fe and Eu/Fe ratios than those of the Sun). However, the same stars have anomalously high abundances of Ba and La with respect to Fe, which usually arises through nucleosynthesis in low-mass stars (via the slow-neutron-capture process, or s-process). Recent theory suggests that metal-poor fast-rotating massive stars are able to boost the s-process yields by up to four orders of magnitude, which might provide a solution to this contradiction. Here we report a reanalysis of the earlier spectra, which reveals that Y and Sr are also overabundant with respect to Fe, showing a large scatter similar to that observed in extremely metal-poor stars, whereas C abundances are not enhanced. This pattern is best explained as originating in metal-poor fast-rotating massive stars, which might point to a common property of the first stellar generations and even of the 'first stars'.

  15. Association of solar flares with coronal mass ejections accompanied by Deca-Hectometric type II radio burst for two solar cycles 23 and 24

    Science.gov (United States)

    Kharayat, Hema; Prasad, Lalan; Pant, Sumit

    2018-05-01

    The aim of present study is to find the association of solar flares with coronal mass ejections (CMEs) accompanied by Deca-Hectometric (DH) type II radio burst for the period 1997-2014 (solar cycle 23 and ascending phase of solar cycle 24). We have used a statistical analysis and found that 10-20∘ latitudinal belt of northern region and 80-90∘ longitudinal belts of western region of the sun are more effective for flare-CME accompanied by DH type II radio burst events. M-class flares (52%) are in good association with the CMEs accompanied by DH type II radio burst. Further, we have calculated the flare position and found that most frequent flare site is at the center of the CME span. However, the occurrence probability of all flares is maximum outside the CME span. X-class flare associated CMEs have maximum speed than that of M, C, and B-class flare associated CMEs. We have also found a good correlation between flare position and central position angle of CMEs accompanied by DH type II radio burst.

  16. A decade of weather extremes

    NARCIS (Netherlands)

    Coumou, Dim; Rahmstorf, Stefan

    The ostensibly large number of recent extreme weather events has triggered intensive discussions, both in- and outside the scientific community, on whether they are related to global warming. Here, we review the evidence and argue that for some types of extreme - notably heatwaves, but also

  17. Attitude extremity, consensus and diagnosticity

    NARCIS (Netherlands)

    van der Pligt, J.; Ester, P.; van der Linden, J.

    1983-01-01

    Studied the effects of attitude extremity on perceived consensus and willingness to ascribe trait terms to others with either pro- or antinuclear attitudes. 611 Ss rated their attitudes toward nuclear energy on a 5-point scale. Results show that attitude extremity affected consensus estimates. Trait

  18. Extreme Events in Nature and Society

    CERN Document Server

    Albeverio, Sergio; Kantz, Holger

    2006-01-01

    Significant, and usually unwelcome, surprises, such as floods, financial crisis, epileptic seizures, or material rupture, are the topics of Extreme Events in Nature and Society. The book, authored by foremost experts in these fields, reveals unifying and distinguishing features of extreme events, including problems of understanding and modelling their origin, spatial and temporal extension, and potential impact. The chapters converge towards the difficult problem of anticipation: forecasting the event and proposing measures to moderate or prevent it. Extreme Events in Nature and Society will interest not only specialists, but also the general reader eager to learn how the multifaceted field of extreme events can be viewed as a coherent whole.

  19. Controlling extreme events on complex networks

    Science.gov (United States)

    Chen, Yu-Zhong; Huang, Zi-Gang; Lai, Ying-Cheng

    2014-08-01

    Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network ``mobile'' can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed.

  20. Tracing Fast Electron Beams Emanating from the Magnetic Reconnection Site in a Solar Jet

    Science.gov (United States)

    Chen, B.; Yu, S.; Battaglia, M.; Krucker, S.

    2017-12-01

    Fast electron beams propagating in the solar corona can emit radio waves commonly known as type III radio bursts. At decimetric wavelengths, these bursts are emitted from the low corona where flare energy release is thought to take place. As such, decimetric type III radio bursts can serve as an excellent tool to directly trace fast electron beams in the vicinity of the flare energy release site. Here we report observations of decimetric type III bursts during a jet event using the Jansky Very Large Array (VLA) in 1-2 GHz. Taking advantage of VLA's highly sensitive spectral imaging capability with an ultra-high cadence of 50 ms, we derive detailed trajectories of fast electron beams (with a bulk speed of at least 0.3-0.5c, or several tens of keV) and place them in the context of extreme ultraviolet and X-ray images obtained by SDO/AIA and RHESSI. Our results show that the electron beams originated in a region just below the jet and above the lower-lying small-scale flare loops, presumably where the magnetic energy release took place. We show that the electron beams appear in groups, each with a duration of only a few seconds. Each group, consisting of beams propagating along magnetic field lines at different angles, is seen to emanate from a single site trailing the jet, interpreted as the magnetic reconnection null point. Our results suggest, at least for the present case, that the fast electron beams were energized directly at the magnetic reconnection site which was highly inhomogeneous and fragmentary possibly down to kilometer scales.

  1. A single pH fluorescent probe for biosensing and imaging of extreme acidity and extreme alkalinity.

    Science.gov (United States)

    Chao, Jian-Bin; Wang, Hui-Juan; Zhang, Yong-Bin; Li, Zhi-Qing; Liu, Yu-Hong; Huo, Fang-Jun; Yin, Cai-Xia; Shi, Ya-Wei; Wang, Juan-Juan

    2017-07-04

    A simple tailor-made pH fluorescent probe 2-benzothiazole (N-ethylcarbazole-3-yl) hydrazone (Probe) is facilely synthesized by the condensation reaction of 2-hydrazinobenzothiazole with N-ethylcarbazole-3-formaldehyde, which is a useful fluorescent probe for monitoring extremely acidic and alkaline pH, quantitatively. The pH titrations indicate that Probe displays a remarkable emission enhancement with a pK a of 2.73 and responds linearly to minor pH fluctuations within the extremely acidic range of 2.21-3.30. Interestingly, Probe also exhibits strong pH-dependent characteristics with pK a 11.28 and linear response to extreme-alkalinity range of 10.41-12.43. In addition, Probe shows a large Stokes shift of 84 nm under extremely acidic and alkaline conditions, high selectivity, excellent sensitivity, good water-solubility and fine stability, all of which are favorable for intracellular pH imaging. The probe is further successfully applied to image extremely acidic and alkaline pH values fluctuations in E. coli cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Near-extreme system condition and near-extreme remaining useful time for a group of products

    International Nuclear Information System (INIS)

    Wang, Hai-Kun; Li, Yan-Feng; Huang, Hong-Zhong; Jin, Tongdan

    2017-01-01

    When a group of identical products is operating in field, the aggregation of failures is a catastrophe to engineers and customers who strive to develop reliable and safe products. In order to avoid a swarm of failures in a short time, it is essential to measure the degree of dispersion from different failure times in a group of products to the first failure time. This phenomenon is relevant to the crowding of system conditions near the worst one among a group of products. The group size in this paper represents a finite number of products, instead of infinite number or a single product. We evaluate the reliability of the product fleet from two aspects. First, we define near-extreme system condition and near-extreme failure time for offline solutions, which means no online observations. Second, we apply them to a continuous degradation system that breaks down when it reaches a soft failure threshold. By using particle filtering in the framework of prognostics and health management for a group of products, we aim to estimate near-extreme system condition and further predict the remaining useful life (RUL) using online solutions. Numerical examples are provided to demonstrate the effectiveness of the proposed method. - Highlights: • The aggregation of failures is measured for a group of identical products. • The crowding of failures is quantitated by the near-extreme evaluations. • Near-extreme system condition are given for offline solutions. • Near-extreme remaining useful time are provided for online solutions.

  3. Book review: Extreme ocean waves

    Science.gov (United States)

    Geist, Eric L.

    2011-01-01

    ‘‘Extreme Ocean Waves’’ is a collection of ten papers edited by Efim Pelinovsky and Christian Kharif that followed the April 2007 meeting of the General Assembly of the European Geosciences Union. A note on terminology: extreme waves in this volume broadly encompass different types of waves, includ- ing deep-water and shallow-water rogue waves (alternatively termed freak waves), storm surges from cyclones, and internal waves. Other types of waves such as tsunamis or rissaga (meteotsunamis) are not discussed in this volume. It is generally implied that ‘‘extreme’’ has a statistical connotation relative to the average or significant wave height specific to each type of wave. Throughout the book, in fact, the reader will find a combination of theoretical and statistical/ empirical treatment necessary for the complete examination of this subject. In the introduction, the editors underscore the importance of studying extreme waves, documenting several dramatic instances of damaging extreme waves that occurred in 2007. 

  4. Causes And Effects Of Fast Food

    OpenAIRE

    Eman Al-Saad

    2015-01-01

    Fast food affects our life in many aspects. In fact There are many reasons that have been shown why people continuing eating fast food while they knew about its negative effects on their health and family because of eating fast food. The commercial advertisements play a major role in consuming fast food. In this research I will focus on causes and effects of eating fast food.

  5. Observation of quasi-periodic solar radio bursts associated with propagating fast-mode waves

    Science.gov (United States)

    Goddard, C. R.; Nisticò, G.; Nakariakov, V. M.; Zimovets, I. V.; White, S. M.

    2016-10-01

    Aims: Radio emission observations from the Learmonth and Bruny Island radio spectrographs are analysed to determine the nature of a train of discrete, periodic radio "sparks" (finite-bandwidth, short-duration isolated radio features) which precede a type II burst. We analyse extreme ultraviolet (EUV) imaging from SDO/AIA at multiple wavelengths and identify a series of quasi-periodic rapidly-propagating enhancements, which we interpret as a fast wave train, and link these to the detected radio features. Methods: The speeds and positions of the periodic rapidly propagating fast waves and the coronal mass ejection (CME) were recorded using running-difference images and time-distance analysis. From the frequency of the radio sparks the local electron density at the emission location was estimated for each. Using an empirical model for the scaling of density in the corona, the calculated electron density was used to obtain the height above the surface at which the emission occurs, and the propagation velocity of the emission location. Results: The period of the radio sparks, δtr = 1.78 ± 0.04 min, matches the period of the fast wave train observed at 171 Å, δtEUV = 1.7 ± 0.2 min. The inferred speed of the emission location of the radio sparks, 630 km s-1, is comparable to the measured speed of the CME leading edge, 500 km s-1, and the speeds derived from the drifting of the type II lanes. The calculated height of the radio emission (obtained from the density) matches the observed location of the CME leading edge. From the above evidence we propose that the radio sparks are caused by the quasi-periodic fast waves, and the emission is generated as they catch up and interact with the leading edge of the CME. The movie associated to Fig. 2 is available at http://www.aanda.org

  6. Mortality impact of extreme winter temperatures

    Science.gov (United States)

    Díaz, Julio; García, Ricardo; López, César; Linares, Cristina; Tobías, Aurelio; Prieto, Luis

    2005-01-01

    During the last few years great attention has been paid to the evaluation of the impact of extreme temperatures on human health. This paper examines the effect of extreme winter temperature on mortality in Madrid for people older than 65, using ARIMA and GAM models. Data correspond to 1,815 winter days over the period 1986 1997, during which time a total of 133,000 deaths occurred. The daily maximum temperature (Tmax) was shown to be the best thermal indicator of the impact of climate on mortality. When total mortality was considered, the maximum impact occured 7 8 days after a temperature extreme; for circulatory diseases the lag was between 7 and 14 days. When respiratory causes were considered, two mortality peaks were evident at 4 5 and 11 days. When the impact of winter extreme temperatures was compared with that associated with summer extremes, it was found to occur over a longer term, and appeared to be more indirect.

  7. The personal dispositions of violent extremism

    Directory of Open Access Journals (Sweden)

    Davydov D.G.

    2017-04-01

    Full Text Available The paper presents the differences in the nature of extremism and radicalism, and the necessity of introducing the concept of "violent extremism." It is shown that the ideology is the explanation of extremist behavior, rather than its cause. The ideology of extremism often eclectic, contradictory and can easily be transformed by changing the object of hostility, depending on the situation. For the description of the psychological causes of extremism it is proposed to use the concept of personal disposition. Disposition is the preferred way to subjective interpretation of reality and reflects both the specific needs of a person as well the typical social situations where it realized and personal experience. Considered the following dispositions of violent extremism: the Cult of force and aggression, Intolerance, Out-group hostility Conventional coercion, Social pessimism and destructiveness, Mystical, Fighting and overcoming, Nihilism to law, Anti-subjectivism. It is proposed to use these dispositions as diagnostic criteria and for preventing and correcting.

  8. Variability in the reported energy, total fat and saturated fat contents in fast-food products across ten countries.

    Science.gov (United States)

    Ziauddeen, Nida; Fitt, Emily; Edney, Louise; Dunford, Elizabeth; Neal, Bruce; Jebb, Susan A

    2015-11-01

    Fast foods are often energy dense and offered in large serving sizes. Observational data have linked the consumption of fast foods to an increased risk of obesity and related diseases. We surveyed the reported energy, total fat and saturated fat contents, and serving sizes, of fast-food items from five major chains across ten countries, comparing product categories as well as specific food items available in most countries. MRC Human Nutrition Research, Cambridge, UK. Data for 2961 food and drink products were collected, with most from Canada (n 550) and fewest from the United Arab Emirates (n 106). There was considerable variability in energy and fat contents of fast foods across countries, reflecting both the portfolio of products and serving size variability. Differences in total energy between countries were particularly noted for chicken dishes (649-1197 kJ/100 g) and sandwiches (552-1050 kJ/100g). When comparing the same product between countries variations were consistently observed in total energy and fat contents (g/100 g); for example, extreme variation in McDonald's Chicken McNuggets with 12 g total fat/100 g in Germany compared with 21·1 g/100 g in New Zealand. These cross-country variations highlight the possibility for further product reformulation in many countries to reduce nutrients of concern and improve the nutritional profiles of fast-food products around the world. Standardisation of serving sizes towards the lower end of the range would also help to reduce the risk of overconsumption.

  9. Variability in the reported energy, total fat and saturated fat content in fast food products across ten countries

    Science.gov (United States)

    Ziauddeen, Nida; Fitt, Emily; Edney, Louise; Dunford, Elizabeth; Neal, Bruce; Jebb, Susan A.

    2016-01-01

    Objective Fast foods are often energy dense and offered in large serving sizes. Observational data has linked the consumption of fast food to an increased risk of obesity and related diseases. Design We surveyed the reported energy, total fat and saturated fat contents, and serving sizes, of fast food items from five major chains across 10 countries, comparing product categories as well as specific food items available in most countries. Setting MRC Human Nutrition Research (HNR), Cambridge Subjects Data for 2961 food and drink products were collected, with most from Canada (n=550) and fewest from United Arab Emirates (n=106). Results There was considerable variability in energy and fat content of fast food across countries, reflecting both the portfolio of products, and serving size variability. Differences in total energy between countries were particularly noted for chicken dishes (649-1197kJ/100g) and sandwiches (552-1050kJ/100g). When comparing the same product between countries variations were consistently observed in total energy and fat content (g/100g) with extreme variation in McDonald’s Chicken McNuggets with 12g total fat (g/100g) in Germany compared to 21.1g in New Zealand. Conclusions These cross-country variations highlight the possibility for further product reformulation in many countries to reduce nutrients of concern and improve the nutritional profiles of fast food products around the world. Standardisation of serving sizes towards the lower end of the range would also help to reduce the risk of overconsumption. PMID:25702788

  10. Fast breeder reactor research

    International Nuclear Information System (INIS)

    1975-01-01

    Full text: The meeting was attended by 15 participants from seven countries and two international organizations. The Eighth Annual Meeting of the International Working Group on Fast Reactors (IWGFR) was attended by representatives from France, Fed. Rep. Germany, Italy, Japan, United Kingdom, Union of Soviet Socialist Republics and the United States of America - countries that have made significant progress in developing the technology and physics of sodium cooled fast reactors and have extensive national programmes in this field - as well as by representatives of the Commission of the European Communities and the IAEA. The design of fast-reactor power plants is a more difficult task than developing facilities with thermal reactors. Different reactor kinetics and dynamics, a hard neutron spectrum, larger integral doses of fuel and structural material irradiation, higher core temperatures, the use of an essentially novel coolant, and, as a result of all these factors, the additional reliability and safety requirements that are imposed on the planning and operation of sodium cooled fast reactors - all these factors pose problems that can be solved comprehensively only by countries with a high level of scientific and technical development. The exchange of experience between these countries and their combined efforts in solving the fundamental problems that arise in planning, constructing and operating fast reactors are promoting technical progress and reducing the relative expenditure required for various studies on developing and introducing commercial fast reactors. For this reason, the meeting concentrated on reviewing and discussing national fast reactor programmes. The situation with regard to planning, constructing and operating fast experimental and demonstration reactors in the countries concerned, the experience accumulated in operating them, the difficulties arising during operation and ways of over-coming them, the search for optimal designs for the power

  11. Fast reactors: potential for power

    International Nuclear Information System (INIS)

    1983-02-01

    The subject is discussed as follows: basic facts about conventional and fast reactors; uranium economy; plutonium and fast reactors; cooling systems; sodium coolant; safety engineering; handling and recycling plutonium; safeguards; development of fast reactors in Britain and abroad; future progress. (U.K.)

  12. Statistical properties of solar flares and coronal mass ejections through the solar cycle

    International Nuclear Information System (INIS)

    Telloni, Daniele; Antonucci, Ester; Carbone, Vincenzo; Lepreti, Fabio

    2016-01-01

    Waiting Time Distributions (WTDs) of solar flares are investigated all through the solar cycle. The same approach applied to Coronal Mass Ejections (CMEs) in a previous work is considered here for flare occurrence. Our analysis reveals that flares and CMEs share some common statistical properties, which result dependent on the level of solar activity. Both flares and CMEs seem to independently occur during minimum solar activity phases, whilst their WTDs significantly deviate from a Poisson function at solar maximum, thus suggesting that these events are correlated. The characteristics of WTDs are constrained by the physical processes generating those eruptions associated with flares and CMEs. A scenario may be drawn in which different mechanisms are actively at work during different phases of the solar cycle. Stochastic processes, most likely related to random magnetic reconnections of the field lines, seem to play a key role during solar minimum periods. On the other hand, persistent processes, like sympathetic eruptions associated to the variability of the photospheric magnetism, are suggested to dominate during periods of high solar activity. Moreover, despite the similar statistical properties shown by flares and CMEs, as it was mentioned above, their WTDs appear different in some aspects. During solar minimum periods, the flare occurrence randomness seems to be more evident than for CMEs. Those persistent mechanisms generating interdependent events during maximum periods of solar activity can be suggested to play a more important role for CMEs than for flares, thus mitigating the competitive action of the random processes, which seem instead strong enough to weaken the correlations among flare event occurrence during solar minimum periods. However, it cannot be excluded that the physical processes at the basis of the origin of the temporal correlation between solar events are different for flares and CMEs, or that, more likely, more sophisticated effects are

  13. Statistics of extremes theory and applications

    CERN Document Server

    Beirlant, Jan; Segers, Johan; Teugels, Jozef; De Waal, Daniel; Ferro, Chris

    2006-01-01

    Research in the statistical analysis of extreme values has flourished over the past decade: new probability models, inference and data analysis techniques have been introduced; and new application areas have been explored. Statistics of Extremes comprehensively covers a wide range of models and application areas, including risk and insurance: a major area of interest and relevance to extreme value theory. Case studies are introduced providing a good balance of theory and application of each model discussed, incorporating many illustrated examples and plots of data. The last part of the book covers some interesting advanced topics, including  time series, regression, multivariate and Bayesian modelling of extremes, the use of which has huge potential.  

  14. Causes And Effects Of Fast Food

    Directory of Open Access Journals (Sweden)

    Eman Al-Saad

    2015-08-01

    Full Text Available Fast food affects our life in many aspects. In fact There are many reasons that have been shown why people continuing eating fast food while they knew about its negative effects on their health and family because of eating fast food. The commercial advertisements play a major role in consuming fast food. In this research I will focus on causes and effects of eating fast food.

  15. Experimental and numerical studies of the fast ions confined in TFR 600 during fast neutrals injection

    International Nuclear Information System (INIS)

    Gagey, B.

    1980-08-01

    We present a comparison between experimental fast neutrals spectrum measured with a very simple electrostatic analyzer which has been absolutely calibrated, spectrum obtained during fast neutrals injection in TFR 600, and numerical fast neutrals spectrum obtained from a modified Monte-Carlo calculation code. This comparison allows us to draw important conclusions on the fast ions behavior in the plasma

  16. Modulation of extreme temperatures in Europe under extreme values of the North Atlantic Oscillation Index.

    Science.gov (United States)

    Beniston, Martin

    2018-03-10

    This paper reports on the influence that extreme values in the tails of the North Atlantic Oscillation (NAO) Index probability density function (PDF) can exert on temperatures in Europe. When the NAO Index enters into its lowest (10% quantile or less) and highest (90% quantile or higher) modes, European temperatures often exhibit large negative or positive departures from their mean values, respectively. Analyses of the joint quantiles of the Index and temperatures (i.e., the simultaneous exceedance of particular quantile thresholds by the two variables) show that temperatures enter into the upper or lower tails of their PDF when the NAO Index also enters into its extreme tails, more often that could be expected from random statistics. Studies of this nature help further our understanding of the manner by which mechanisms of decadal-scale climate variability can influence extremes of temperature-and thus perhaps improve the forecasting of extreme temperatures in weather and climate models. © 2018 New York Academy of Sciences.

  17. Forecasting Financial Extremes: A Network Degree Measure of Super-Exponential Growth.

    Directory of Open Access Journals (Sweden)

    Wanfeng Yan

    Full Text Available Investors in stock market are usually greedy during bull markets and scared during bear markets. The greed or fear spreads across investors quickly. This is known as the herding effect, and often leads to a fast movement of stock prices. During such market regimes, stock prices change at a super-exponential rate and are normally followed by a trend reversal that corrects the previous overreaction. In this paper, we construct an indicator to measure the magnitude of the super-exponential growth of stock prices, by measuring the degree of the price network, generated from the price time series. Twelve major international stock indices have been investigated. Error diagram tests show that this new indicator has strong predictive power for financial extremes, both peaks and troughs. By varying the parameters used to construct the error diagram, we show the predictive power is very robust. The new indicator has a better performance than the LPPL pattern recognition indicator.

  18. Forecasting Financial Extremes: A Network Degree Measure of Super-Exponential Growth.

    Science.gov (United States)

    Yan, Wanfeng; van Tuyll van Serooskerken, Edgar

    2015-01-01

    Investors in stock market are usually greedy during bull markets and scared during bear markets. The greed or fear spreads across investors quickly. This is known as the herding effect, and often leads to a fast movement of stock prices. During such market regimes, stock prices change at a super-exponential rate and are normally followed by a trend reversal that corrects the previous overreaction. In this paper, we construct an indicator to measure the magnitude of the super-exponential growth of stock prices, by measuring the degree of the price network, generated from the price time series. Twelve major international stock indices have been investigated. Error diagram tests show that this new indicator has strong predictive power for financial extremes, both peaks and troughs. By varying the parameters used to construct the error diagram, we show the predictive power is very robust. The new indicator has a better performance than the LPPL pattern recognition indicator.

  19. Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years.

    Science.gov (United States)

    Whiteside, Jessica H; Lindström, Sofie; Irmis, Randall B; Glasspool, Ian J; Schaller, Morgan F; Dunlavey, Maria; Nesbitt, Sterling J; Smith, Nathan D; Turner, Alan H

    2015-06-30

    A major unresolved aspect of the rise of dinosaurs is why early dinosaurs and their relatives were rare and species-poor at low paleolatitudes throughout the Late Triassic Period, a pattern persisting 30 million years after their origin and 10-15 million years after they became abundant and speciose at higher latitudes. New palynological, wildfire, organic carbon isotope, and atmospheric pCO2 data from early dinosaur-bearing strata of low paleolatitudes in western North America show that large, high-frequency, tightly correlated variations in δ(13)Corg and palynomorph ecotypes occurred within a context of elevated and increasing pCO2 and pervasive wildfires. Whereas pseudosuchian archosaur-dominated communities were able to persist in these same regions under rapidly fluctuating extreme climatic conditions until the end-Triassic, large-bodied, fast-growing tachymetabolic dinosaurian herbivores requiring greater resources were unable to adapt to unstable high CO2 environmental conditions of the Late Triassic.

  20. Intermediate and fast neutron absorbed doses in fast neutron field at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.

    1987-10-01

    The experimental fuel channel EFC is created as one of the fast neutron fields at the RB reactor. The intermediate and fast neutron spectra in EFC are measured by activation technique. The intermediate and fast neutron absorbed doses are computed on the basis of these experimental results. At the end the obtained doses are compared. (author)

  1. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Year-end report FY15 Q4.

    Energy Technology Data Exchange (ETDEWEB)

    Moreland, Kenneth D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sewell, Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Childs, Hank [Univ. of Oregon, Eugene, OR (United States); Ma, Kwan-Liu [Univ. of California, Davis, CA (United States); Geveci, Berk [Kitware, Inc., Clifton Park, NY (United States); Meredith, Jeremy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressing four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.

  2. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Mid-year report FY17 Q2

    Energy Technology Data Exchange (ETDEWEB)

    Moreland, Kenneth D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pugmire, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rogers, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Childs, Hank [Univ. of Oregon, Eugene, OR (United States); Ma, Kwan-Liu [Univ. of California, Davis, CA (United States); Geveci, Berk [Kitware Inc., Clifton Park, NY (United States)

    2017-05-01

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressing four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.

  3. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem. Mid-year report FY16 Q2

    Energy Technology Data Exchange (ETDEWEB)

    Moreland, Kenneth D.; Sewell, Christopher (LANL); Childs, Hank (U of Oregon); Ma, Kwan-Liu (UC Davis); Geveci, Berk (Kitware); Meredith, Jeremy (ORNL)

    2016-05-01

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressing four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.

  4. A fast-slow logic system

    International Nuclear Information System (INIS)

    Kawashima, Hideo.

    1977-01-01

    A fast-slow logic system has been made for use in multi-detector experiments in nuclear physics such as particle-gamma and particle-particle coincidence experiments. The system consists of a fast logic system and a slow logic system. The fast logic system has a function of fast coincidences and provides timing signals for the slow logic system. The slow logic system has a function of slow coincidences and a routing control of input analog signals to the ADCs. (auth.)

  5. Climate change, climatic variation and extreme biological responses.

    Science.gov (United States)

    Palmer, Georgina; Platts, Philip J; Brereton, Tom; Chapman, Jason W; Dytham, Calvin; Fox, Richard; Pearce-Higgins, James W; Roy, David B; Hill, Jane K; Thomas, Chris D

    2017-06-19

    Extreme climatic events could be major drivers of biodiversity change, but it is unclear whether extreme biological changes are (i) individualistic (species- or group-specific), (ii) commonly associated with unusual climatic events and/or (iii) important determinants of long-term population trends. Using population time series for 238 widespread species (207 Lepidoptera and 31 birds) in England since 1968, we found that population 'crashes' (outliers in terms of species' year-to-year population changes) were 46% more frequent than population 'explosions'. (i) Every year, at least three species experienced extreme changes in population size, and in 41 of the 44 years considered, some species experienced population crashes while others simultaneously experienced population explosions. This suggests that, even within the same broad taxonomic groups, species are exhibiting individualistic dynamics, most probably driven by their responses to different, short-term events associated with climatic variability. (ii) Six out of 44 years showed a significant excess of species experiencing extreme population changes (5 years for Lepidoptera, 1 for birds). These 'consensus years' were associated with climatically extreme years, consistent with a link between extreme population responses and climatic variability, although not all climatically extreme years generated excess numbers of extreme population responses. (iii) Links between extreme population changes and long-term population trends were absent in Lepidoptera and modest (but significant) in birds. We conclude that extreme biological responses are individualistic, in the sense that the extreme population changes of most species are taking place in different years, and that long-term trends of widespread species have not, to date, been dominated by these extreme changes.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Authors.

  6. Left–right coordination from simple to extreme conditions during split‐belt locomotion in the chronic spinal adult cat

    Science.gov (United States)

    Desrochers, Étienne; Thibaudier, Yann; Hurteau, Marie‐France; Dambreville, Charline

    2016-01-01

    Key points Coordination between the left and right sides is essential for dynamic stability during locomotion.The immature or neonatal mammalian spinal cord can adjust to differences in speed between the left and right sides during split‐belt locomotion by taking more steps on the fast side.We show that the adult mammalian spinal cord can also adjust its output so that the fast side can take more steps.During split‐belt locomotion, only certain parts of the cycle are modified to adjust left–right coordination, primarily those associated with swing onset.When the fast limb takes more steps than the slow limb, strong left–right interactions persist.Therefore, the adult mammalian spinal cord has a remarkable adaptive capacity for left–right coordination, from simple to extreme conditions. Abstract Although left–right coordination is essential for locomotion, its control is poorly understood, particularly in adult mammals. To investigate the spinal control of left–right coordination, a spinal transection was performed in six adult cats that were then trained to recover hindlimb locomotion. Spinal cats performed tied‐belt locomotion from 0.1 to 1.0 m s−1 and split‐belt locomotion with low to high (1:1.25–10) slow/fast speed ratios. With the left hindlimb stepping at 0.1 m s−1 and the right hindlimb stepping from 0.2 to 1.0 m s−1, 1:1, 1:2, 1:3, 1:4 and 1:5 left–right step relationships could appear. The appearance of 1:2+ relationships was not linearly dependent on the difference in speed between the slow and fast belts. The last step taken by the fast hindlimb displayed longer cycle, stance and swing durations and increased extensor activity, as the slow limb transitioned to swing. During split‐belt locomotion with 1:1, 1:2 and 1:3 relationships, the timing of stance onset of the fast limb relative to the slow limb and placement of both limbs at contact were invariant with increasing slow/fast speed ratios. In contrast, the timing of

  7. Predictors of Ramadan fasting during pregnancy

    Directory of Open Access Journals (Sweden)

    Lily A. van Bilsen

    2016-12-01

    Full Text Available Although the health effects of Ramadan fasting during pregnancy are still unclear, it is important to identify the predictors and motivational factors involved in women’s decision to observe the fast. We investigated these factors in a cross sectional study of 187 pregnant Muslim women who attended antenatal care visits in the Budi Kemuliaan Hospital, Jakarta, Indonesia. The odds of adherence to fasting were reduced by 4% for every week increase in gestational age during Ramadan [odds ratio (OR 0.96; 95% confidence interval (CI 0.92, 1.00; p = 0.06] and increased by 10% for every one unit increase of women’s prepregnancy body mass index (BMI (OR 1.10; 95% CI 0.99, 1.23; p = 0.08. Nonparticipation was associated with opposition from husbands (OR 0.34; 95% CI 0.14, 0.82; p = 0.02 and with women’s fear of possible adverse effects of fasting on their own or the baby’s health (OR 0.47; 95% CI 0.22, 1.01; p = 0.05 and OR 0.43; 95% CI 0.21, 0.89; p = 0.02, respectively, although they were attenuated in multivariable analysis. Neither age, income, education, employment, parity, experience of morning sickness, nor fasting during pregnancy outside of Ramadan determined fasting during pregnancy. Linear regression analysis within women who fasted showed that the number of days fasted were inversely associated with women’s gestational age, fear of possible adverse effects of fasting on their own or the fetal health, and with opposition from husbands. In conclusion, earlier gestational age during Ramadan, husband’s opinion and possibly higher prepregnancy BMI, influence women’s adherence to Ramadan fasting during pregnancy. Fear of adverse health effects of Ramadan fasting is common in both fasting and non-fasting pregnant women.

  8. On the Extreme Wave Height Analysis

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Liu, Zhou

    1994-01-01

    The determination of the design wave height is usually based on the statistical analysis of long-term extreme wave height measurements. After an introduction to the procedure of the extreme wave height analysis, the paper presents new development concerning various aspects of the extreme wave...... height analysis. Finally, the paper gives a practical example based on a data set of the hindcasted wave heights for a deep water location in the Mediterranean Sea....

  9. Upgrading ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Heath, Matthew Peter; The ATLAS collaboration

    2017-01-01

    Producing the very large samples of simulated events required by many physics and performance studies with the ATLAS detector using the full GEANT4 detector simulation is highly CPU intensive. Fast simulation tools are a useful way of reducing CPU requirements when detailed detector simulations are not needed. During the LHC Run-1, a fast calorimeter simulation (FastCaloSim) was successfully used in ATLAS. FastCaloSim provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitization and reconstruction software, and it can be tuned to data more easily than Geant4. Now an improved version of FastCaloSim is in development, incorporating the experience with the version used during Run-1. The new FastCaloSim aims to overcome some limitations of the first version by improving the description of s...

  10. Performance testing of extremity dosimeters, Study 2

    International Nuclear Information System (INIS)

    Harty, R.; Reece, W.D.; Hooker, C.D.

    1990-04-01

    The Health Physics Society Standards Committee (HPSSC) Working Group on Performance Testing of Extremity Dosimeters has issued a draft of a proposed standard for extremity dosimeters. The draft standard proposes methods to be used for testing dosimetry systems that determine occupational radiation dose to the extremities and the performance criterion used to determine compliance with the standard. Pacific Northwest Laboratory (PNL) has conducted two separate evaluations of the performance of extremity dosimeter processors to determine the appropriateness of the draft standard, as well as to obtain information regarding the performance of extremity dosimeters. Based on the information obtained during the facility visits and the results obtained from the performance testing, it was recommended that changes be made to ensure that the draft standard is appropriate for extremity dosimeters. The changes include: subdividing the mixture category and the beta particle category; eliminating the neutron category until appropriate flux-to-dose equivalent conversion factors are derived; and changing the tolerance level for the performance criterion to provide consistency with the performance criterion for whole body dosimeters, and to avoid making the draft standard overly difficult for processors of extremity dosimeters to pass. 20 refs., 10 figs., 6 tabs

  11. Excessive fasting times: still an underaddressed challenge for African pediatrics and anesthesia?

    Directory of Open Access Journals (Sweden)

    Pollach G

    2014-04-01

    Full Text Available Gregor Pollach,1,2 Rose Kapenda,2 Beauty Anusa,2 Ethel Waluza,2 Felix Namboya1,21Department of Anaesthesia and Intensive Care, College of Medicine, University of Malawi, 2Queen Elizabeth Central Hospital, Blantyre, Malawi, Central AfricaBackground: Children are starved before surgery following international preoperative guidelines. Extreme fasting is still reported, but data for Africa are scarce. Starving in hot climates leads to challenges arising from dehydration, hypotension, metabolic disturbances, and complications during induction of anesthesia. The purpose of this study was to evaluate the scope of the problem, identify possible reasons for this, and propose realistic solutions.Methods: We performed eleven prospective audits between 2008 and 2013 in Malawi to improve our preoperative fasting times. In total, 631 children (aged 3 days to 13 years were monitored. Training was provided, and the results were measured using a visual analog scale.Results: In 2008, the baseline audit showed a mean fasting time (MFT of 13.48 hours (31 patients. Training reduced the MFT to 8.77 hours (73 patients and 3.2 hours (35 patients in 2009. Without training, the MFT increased to 4.6 hours (35 patients in 2010 and to 10.2 hours (50 patients in 2011. A low level of training decreased the MFT to 8.13 hours (139 patients, in spring 2012. Educational activity brought the MFT down further to 7.86 hours (36 patients, in summer 2012. Lack of training in autumn 2012 increased MFT to 9.32 hours (151 patients, which then improved to 8.04 hours (27 patients as a result of renewed educational activity. In 2013, MFT increased to 9.8 hours (37 patients despite training. In June 2013, more education achieved a reduction in MFT to 6.52 hours (17 patients. The MFT across all audits (2008–2013 was 8.48 hours. Education reduces MFT, but only in the short term. Factors responsible for changes in MFT were identified.Conclusion: Excessive preoperative fasting is an

  12. Successive Homologous Coronal Mass Ejections Driven by Shearing and Converging Motions in Solar Active Region NOAA 12371

    International Nuclear Information System (INIS)

    Vemareddy, P.

    2017-01-01

    We study the magnetic field evolution in AR 12371, related to its successive eruptive nature. During the disk transit of seven days, the active region (AR) launched four sequential fast coronal mass ejections (CMEs), which are associated with long duration M-class flares. Morphological study delineates a pre-eruptive coronal sigmoid structure above the polarity inversion line (PIL) similar to Moore et al.’s study. The velocity field derived from tracked magnetograms indicates persistent shear and converging motions of polarity regions about the PIL. While these shear motions continue, the crossed arms of two sigmoid elbows are being brought to interaction by converging motions at the middle of the PIL, initiating the tether-cutting reconnection of field lines and the onset of the CME explosion. The successive CMEs are explained by a cyclic process of magnetic energy storage and release referred to as “sigmoid-to-arcade-to-sigmoid” transformation driven by photospheric flux motions. Furthermore, the continued shear motions inject helicity flux with a dominant negative sign, which contributes to core field twist and its energy by building a twisted flux rope (FR). After a limiting value, the excess coronal helicity is expelled by bodily ejection of the FR, which is initiated by some instability as realized by intermittent CMEs. This AR is in contrast with the confined AR 12192 with a predominant negative sign and larger helicity flux, but much weaker (−0.02 turns) normalized coronal helicity content. While predominant signed helicity flux is a requirement for CME eruption, our study suggests that the magnetic flux normalized helicity flux is a necessary condition accommodating the role of background flux and appeals to a further study of a large sample of ARs.

  13. Successive Homologous Coronal Mass Ejections Driven by Shearing and Converging Motions in Solar Active Region NOAA 12371

    Energy Technology Data Exchange (ETDEWEB)

    Vemareddy, P., E-mail: vemareddy@iiap.res.in [Indian Institute of Astrophysics, II Block, Koramangala, Bengalure-560034 (India)

    2017-08-10

    We study the magnetic field evolution in AR 12371, related to its successive eruptive nature. During the disk transit of seven days, the active region (AR) launched four sequential fast coronal mass ejections (CMEs), which are associated with long duration M-class flares. Morphological study delineates a pre-eruptive coronal sigmoid structure above the polarity inversion line (PIL) similar to Moore et al.’s study. The velocity field derived from tracked magnetograms indicates persistent shear and converging motions of polarity regions about the PIL. While these shear motions continue, the crossed arms of two sigmoid elbows are being brought to interaction by converging motions at the middle of the PIL, initiating the tether-cutting reconnection of field lines and the onset of the CME explosion. The successive CMEs are explained by a cyclic process of magnetic energy storage and release referred to as “sigmoid-to-arcade-to-sigmoid” transformation driven by photospheric flux motions. Furthermore, the continued shear motions inject helicity flux with a dominant negative sign, which contributes to core field twist and its energy by building a twisted flux rope (FR). After a limiting value, the excess coronal helicity is expelled by bodily ejection of the FR, which is initiated by some instability as realized by intermittent CMEs. This AR is in contrast with the confined AR 12192 with a predominant negative sign and larger helicity flux, but much weaker (−0.02 turns) normalized coronal helicity content. While predominant signed helicity flux is a requirement for CME eruption, our study suggests that the magnetic flux normalized helicity flux is a necessary condition accommodating the role of background flux and appeals to a further study of a large sample of ARs.

  14. Fast-track totalknæalloplastik

    DEFF Research Database (Denmark)

    Gromov, Kirill; Kristensen, Billy B; Jørgensen, Christoffer Calov

    2017-01-01

    patients are eligible for fast-track TKA, and hence the fast-track concept should be standard at all joint replacement facilities. Future challenges of fast-track TKA include safe introduction of outpatient protocols, acute and chronic pain after surgery and optimal utilization of post......Fast-track total knee arthroplasty (TKA) is a well-established concept including optimized logistics and evidence-based treatment, focusing on minimizing surgical stress and improved post-operative recovery, thus leading to lower mortality and morbidity as well as high patient satisfaction. All...

  15. Gas-Cooled Fast Reactor (GFR) FY04 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    K. D. Weaver; T. C. Totemeier; D. E. Clark; E. E. Feldman; E. A. Hoffman; R. B. Vilim; T. Y. C. Wei; J. Gan; M. K. Meyer; W. F. Gale; M. J. Driscoll; M. Golay; G. Apostolakis; K. Czerwinski

    2004-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radio toxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. Nevertheless, the GFR was chosen as one of only six Generation IV systems to be pursued based on its ability to meet the Generation IV goals in sustainability, economics, safety and reliability, proliferation resistance and physical protection.

  16. DIRECTIONS OF EXTREME TOURISM IN UKRAINE

    Directory of Open Access Journals (Sweden)

    L. V. Martseniuk

    2016-02-01

    Full Text Available Purpose. In the world market of tourist services the extreme tourism is very popular, as it does not require the significant financial costs and enables year on year to increase the offers of holiday packages, associated with active travel. Ukraine has significant potential for the development of extreme kinds of rest, but it is not developed enough. Forms of extreme tourism are unknown for domestic tourists, and therefore, they formed a negative attitude. The aim of the article is the analysis of extreme resort potential of Ukraine and promotion of the development of extreme tourism destinations in the travel market. Theoretical and methodological basis of research is the system analysis of the problems of ensuring the competitiveness of the tourism industry, theoretical principles of economic science in the field of the effectiveness of extreme tourism and management of tourist flows. Methodology. The author offers the directions of tourist flows control, which differ from the current expansion of services to tourists in Ukraine. The development of extreme tourism with the help of co-operation of railways and sport federations was proposed. Findings. During the research the author proved that the implementation of the tasks will be promote: 1 increase in budget revenues at all levels of the inner extreme tourism; 2 raise the image of Ukraine and Ukrainian Railways; 3 increase the share of tourism and resorts in the gross domestic product to the level of developed countries; 4 bringing the number of employees in tourism and resorts to the level of developed countries; 5 the creation of an effective system of monitoring the quality of tourist services; 6 the creation of an attractive investment climate for attracting the investment in the broad development of tourism, engineering and transport and municipal infrastructure; 7 improvement the safety of tourists, ensure the effective protection of their rights and legitimate interests and

  17. Overview of tritium fast-fission yields

    International Nuclear Information System (INIS)

    Tanner, J.E.

    1981-03-01

    Tritium production rates are very important to the development of fast reactors because tritium may be produced at a greater rate in fast reactors than in light water reactors. This report focuses on tritium production and does not evaluate the transport and eventual release of the tritium in a fast reactor system. However, if an order-of-magnitude increase in fast fission yields for tritium is confirmed, fission will become the dominant production source of tritium in fast reactors

  18. Fast Breeder Reactor studies

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts

  19. Fast Breeder Reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  20. Effect of intermittent fasting with or without caloric restriction on prostate cancer growth and survival in SCID mice.

    Science.gov (United States)

    Buschemeyer, W Cooper; Klink, Joseph C; Mavropoulos, John C; Poulton, Susan H; Demark-Wahnefried, Wendy; Hursting, Stephen D; Cohen, Pinchas; Hwang, David; Johnson, Tracy L; Freedland, Stephen J

    2010-07-01

    Caloric restriction (CR) delays cancer growth in animals, though translation to humans is difficult. We hypothesized intermittent fasting (i.e., intermittent extreme CR), may be better tolerated and prolong survival of prostate cancer (CaP) bearing mice. We conducted a pilot study by injecting 105 male individually-housed SCID mice with LAPC-4 cells. When tumors reached 200 mm(3), 15 mice/group were randomized to one of seven diets and sacrificed when tumors reached 1,500 mm(3): Group 1: ad libitum 7 days/week; Group 2: fasted 1 day/week and ad libitum 6 days/week; Group 3: fasted 1 day/week and fed 6 days/week via paired feeding to maintain isocaloric conditions to Group 1; Group 4: 14% CR 7 days/week; Group 5: fasted 2 days/week and ad libitum 5 days/week; Group 6: fasted 2 day/week and fed 5 days/week via paired feeding to maintain isocaloric conditions to Group 1; Group 7: 28% CR 7 days/week. Sera from mice at sacrifice were analyzed for IGF-axis hormones. There were no significant differences in survival among any groups. However, relative to Group 1, there were non-significant trends for improved survival for Groups 3 (HR 0.65, P = 0.26), 5 (0.60, P = 0.18), 6 (HR 0.59, P = 0.16), and 7 (P = 0.59, P = 0.17). Relative to Group 1, body weights and IGF-1 levels were significantly lower in Groups 6 and 7. This exploratory study found non-significant trends toward improved survival with some intermittent fasting regimens, in the absence of weight loss. Larger appropriately powered studies to detect modest, but clinically important differences are necessary to confirm these findings.