WorldWideScience

Sample records for extremely deep wide-field

  1. Extreme multiplex spectroscopy at wide-field 4-m telescopes

    Science.gov (United States)

    Content, Robert; Shanks, Tom

    2008-07-01

    We describe the design and science case for a spectrograph for the prime focus of classical 4-m wide-field telescopes that can deliver at least 4000 MOS slits over a 1° field. This extreme multiplex capability means that 25000 galaxy redshifts can be measured in a single night, opening up the possibilities for large galaxy redshift surveys out to z~0.7 and beyond for the purpose of measuring the Baryon Acoustic Oscillation (BAO) scale and for many other science goals. The design features four cloned spectrographs and exploits the exclusive possibility of tiling the focal plane of wide-field 4-m telescopes with CCDs for multi-object spectroscopic purposes. In ~200 night projects, such spectrographs have the potential to make galaxy redshift surveys of ~6×106 galaxies over a wide redshift range and thus may provide a low-cost alternative to other survey routes such as WFMOS and SKA. Two of these extreme multiplex spectrographs are currently being designed for the AAT (NG1dF) and Calar Alto (XMS) 4-m class telescopes. NG2dF, a larger version for the AAT 2° field, would have 12 clones and at least 12000 slits. The clones use a transparent design including a grism in which all optics are smaller than the clone square subfield so that the clones can be tightly packed with little gaps between the contiguous fields. Only low cost glasses are used; the variations in chromatic aberrations between bands are compensated by changing one or two of the lenses adjacent to the grism. The total weight and length is smaller with a few clones than a unique spectrograph which makes it feasible to place the spectrograph at the prime focus.

  2. Wide-Field, Deep UV Raman Hyperspectral Imager Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ChemImage Sensor Systems (CISS), teaming with the University of South Carolina, proposes a revolutionary wide-field Raman hyperspectral imaging system capable of...

  3. Deep wide-field near-infrared survey of the Carina Nebula

    Science.gov (United States)

    Preibisch, T.; Ratzka, T.; Kuderna, B.; Ohlendorf, H.; King, R. R.; Hodgkin, S.; Irwin, M.; Lewis, J. R.; McCaughrean, M. J.; Zinnecker, H.

    2011-06-01

    Context. The Great Nebula in Carina is a giant H ii region and a superb location in which to study the physics of violent massive star formation, but the population of the young low-mass stars remained very poorly studied until recently. Aims: Our aim was to produce a near-infrared survey that is deep enough to detect the full low-mass stellar population (i.e. down to ≈0.1 M⊙ and for extinctions up to AV ≈ 15 mag) and wide enough to cover all important parts of the Carina Nebula complex (CNC), including the clusters Tr 14, 15, and 16 as well as the South Pillars region. Methods: We used HAWK-I at the ESO VLT to survey the central ≈0.36 deg2 area of the Carina Nebula. These data reveal more than 600 000 individual infrared sources down to magnitudes as faint as J ≈ 23, H ≈ 22, and Ks ≈ 21. The results of a recent deep X-ray survey (which is complete down to stellar masses of ~0.5-1 M⊙) are used to distinguish between young stars in Carina and background contaminants. We analyze color - magnitude diagrams (CMDs) to derive information about the ages and masses of the low-mass stars. Results: The ages of the low-mass stars agree with previous age estimates for the massive stars. The CMD suggests that ≈3200 of the X-ray selected stars have masses of M∗ ≥ 1 M⊙; this number is in good agreement with extrapolations of the field IMF based on the number of high-mass (M∗ ≥ 20 M⊙) stars and shows that there is no deficit of low-mass stars in the CNC. The HAWK-I images confirm that about 50% of all young stars in Carina are in a widely distributed, non-clustered spatial configuration. Narrow-band images reveal six molecular hydrogen emission objects (MHOs) that trace jets from embedded protostars. However, none of the optical HH objects shows molecular hydrogen emission, suggesting that the jet-driving protostars are located very close to the edges of the globules in which they are embedded. Conclusions: The near-infrared excess fractions for the

  4. Deep wide-field imaging down to the oldest main sequence turn-offs in the Sculptor dwarf spheroidal galaxy

    Science.gov (United States)

    de Boer, T. J. L.; Tolstoy, E.; Saha, A.; Olsen, K.; Irwin, M. J.; Battaglia, G.; Hill, V.; Shetrone, M. D.; Fiorentino, G.; Cole, A.

    2011-04-01

    We present wide-field photometry of resolved stars in the nearby Sculptor dwarf spheroidal galaxy using CTIO/MOSAIC, going down to the oldest main sequence turn-off. The accurately flux calibrated wide field colour-magnitude diagrams can be used to constrain the ages of different stellar populations, and also their spatial distribution. The Sculptor dSph contains a predominantly ancient stellar population (>10 Gyr old) which can be easily resolved into individual stars. A galaxy dominated by an old population provides a clear view of ancient processes of galaxy formation unimpeded by overlying younger populations. By using spectroscopic metallicities of RGB stars in combination with our deep main sequence turn-off photometry we can constrain the ages of different stellar populations with particular accuracy. We find that the known metallicity gradient in Sculptor is well matched to an age gradient. This is the first time that this link with age has been directly quantified. This gradient has been previously observed as a variation in horizontal branch properties and is now confirmed to exist for main sequence turn-offs as well. It is likely the Sculptor dSph first formed an extended metal-poor population at the oldest times, and subsequent more metal-rich, younger stars were formed more towards the centre until the gas was depleted or lost roughly 7 Gyr ago. The fact that these clear radial gradients have been preserved up to the present day is consistent with the apparent lack of signs of recent tidal interactions. Appendices are only available in electronic form at http://www.aanda.org

  5. A deep, wide-field study of Holmberg II with Suprime-Cam: evidence for ram pressure stripping

    Science.gov (United States)

    Bernard, Edouard J.; Ferguson, Annette M. N.; Barker, Michael K.; Irwin, Michael J.; Jablonka, Pascale; Arimoto, Nobuo

    2012-11-01

    We present a deep, wide-field optical study of the M81 group dwarf galaxy Holmberg II (HoII) based on Subaru/Suprime-Cam imaging. Individual stars are resolved down to I ˜ 25.2, that is, about 1.5 mag below the tip of the red giant branch (RGB). We use resolved star counts in the outskirts of the galaxy to measure the radial surface brightness profile down to μV ˜ 32 mag arcsec-2, from which we determine a projected exponential scalelength of 0.70 ± 0.01 arcmin (i.e. 0.69 ± 0.01 kpc). The composite profile, ranging from the cored centre out to R = 7 arcmin, is best fitted by an Elson-Fall-Freeman profile which gives a half-light radius of 1.41 ± 0.04 arcmin (i.e. 1.39 ± 0.04 kpc), and an absolute magnitude MV = -16.3. The low surface brightness stellar component of HoII is regular and symmetric and has an extent much smaller than the vast H I cloud in which it is embedded. We compare the spatial distribution of the young, intermediate-age and old stellar populations, and find that the old RGB stars are significantly more centrally concentrated than the young stellar populations, contrary to what is observed in most dwarf galaxies of the local Universe. We discuss these properties in the context of the comet-like distribution of H I gas around HoII, and argue for the presence of a hot intragroup medium in the vicinity of HoII to explain the contrasting morphologies of gas and stars. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  6. A Wide Field Search for Extreme Trans-Neptunian Objects and a Super Earth in the Solar System

    Science.gov (United States)

    Trujillo, Chadwick A.; Sheppard, Scott S.; Tholen, David J.

    2017-10-01

    We are currently conducting the deepest and widest field survey to date sensitive to Extreme Trans-Neptunian Objects (ETNOs), bodies that have semimajor axes greater than 150 au and perihelia higher than 35 au. Our survey is also sensitive to distant super-Earth mass planets such as that recently hypothesized to explain the orbital characteristics of ETNOs.Our survey instruments are Subaru Telescope Hyper Suprime-Cam (HSC) and the Cerro Tololo Interamerican Observatory Dark Energy Camera (DECam). HSC has a field of view of 1.75 square degrees on an 8 meter diameter telescope and DECam has a field of view of about 3 square degrees on a 4 meter diameter telescope. HSC and DECam are two of the largest light grasp survey tools in the world capable of detecting the hypothesized planet. We have surveyed a few thousand square degrees with DECam (magnitude 24) and HSC (magnitude 25).We probe both specific locations in the sky which are likely to contain the hypothesized planet as well as nearly uniform longitude range in both hemispheres of the sky to minimize the impact of observational bias. We will discuss current survey progress, which to date has found several distant objects beyond 50 au with interesting orbital properties.

  7. The FLARE mission: deep and wide-field 1-5um imaging and spectroscopy for the early universe: a proposal for M5 cosmic vision call

    Science.gov (United States)

    Burgarella, D.; Levacher, P.; Vives, S.; Dohlen, K.; Pascal, S.

    2016-07-01

    FLARE (First Light And Reionization Explorer) is a space mission that will be submitted to ESA (M5 call). Its primary goal (~80% of lifetime) is to identify and study the universe before the end of the reionization at z > 6. A secondary objective (~20% of lifetime) is to survey star formation in the Milky Way. FLARE's strategy optimizes the science return: imaging and spectroscopic integral-field observations will be carried out simultaneously on two parallel focal planes and over very wide instantaneous fields of view. FLARE will help addressing two of ESA's Cosmic Vision themes: a) universe originate and what is it made of? » and b) « What are the conditions for planet formation and the emergence of life? >> and more specifically, >. FLARE will provide to the ESA community a leading position to statistically study the early universe after JWST's deep but pin-hole surveys. Moreover, the instrumental development of wide-field imaging and wide-field integral-field spectroscopy in space will be a major breakthrough after making them available on ground-based telescopes.

  8. Wide-Field Imaging Using Nitrogen Vacancies

    Science.gov (United States)

    Englund, Dirk Robert (Inventor); Trusheim, Matthew Edwin (Inventor)

    2017-01-01

    Nitrogen vacancies in bulk diamonds and nanodiamonds can be used to sense temperature, pressure, electromagnetic fields, and pH. Unfortunately, conventional sensing techniques use gated detection and confocal imaging, limiting the measurement sensitivity and precluding wide-field imaging. Conversely, the present sensing techniques do not require gated detection or confocal imaging and can therefore be used to image temperature, pressure, electromagnetic fields, and pH over wide fields of view. In some cases, wide-field imaging supports spatial localization of the NVs to precisions at or below the diffraction limit. Moreover, the measurement range can extend over extremely wide dynamic range at very high sensitivity.

  9. Deep Extreme Learning Machine and Its Application in EEG Classification

    OpenAIRE

    Shifei Ding; Nan Zhang; Xinzheng Xu; Lili Guo; Jian Zhang

    2015-01-01

    Recently, deep learning has aroused wide interest in machine learning fields. Deep learning is a multilayer perceptron artificial neural network algorithm. Deep learning has the advantage of approximating the complicated function and alleviating the optimization difficulty associated with deep models. Multilayer extreme learning machine (MLELM) is a learning algorithm of an artificial neural network which takes advantages of deep learning and extreme learning machine. Not only does MLELM appr...

  10. Deep Extreme Learning Machine and Its Application in EEG Classification

    Directory of Open Access Journals (Sweden)

    Shifei Ding

    2015-01-01

    Full Text Available Recently, deep learning has aroused wide interest in machine learning fields. Deep learning is a multilayer perceptron artificial neural network algorithm. Deep learning has the advantage of approximating the complicated function and alleviating the optimization difficulty associated with deep models. Multilayer extreme learning machine (MLELM is a learning algorithm of an artificial neural network which takes advantages of deep learning and extreme learning machine. Not only does MLELM approximate the complicated function but it also does not need to iterate during the training process. We combining with MLELM and extreme learning machine with kernel (KELM put forward deep extreme learning machine (DELM and apply it to EEG classification in this paper. This paper focuses on the application of DELM in the classification of the visual feedback experiment, using MATLAB and the second brain-computer interface (BCI competition datasets. By simulating and analyzing the results of the experiments, effectiveness of the application of DELM in EEG classification is confirmed.

  11. Thrombolysis for acute upper extremity deep vein thrombosis

    DEFF Research Database (Denmark)

    Feinberg, Joshua; Nielsen, Emil Eik; Jakobsen, Janus C

    2017-01-01

    BACKGROUND: About 5% to 10% of all deep vein thromboses occur in the upper extremities. Serious complications of upper extremity deep vein thrombosis, such as post-thrombotic syndrome and pulmonary embolism, may in theory be avoided using thrombolysis. No systematic review has assessed the effects...... of thrombolysis for the treatment of individuals with acute upper extremity deep vein thrombosis. OBJECTIVES: To assess the beneficial and harmful effects of thrombolysis for the treatment of individuals with acute upper extremity deep vein thrombosis. SEARCH METHODS: The Cochrane Vascular Information Specialist...... of thrombolytics added to anticoagulation, thrombolysis versus anticoagulation, or thrombolysis versus any other type of medical intervention for the treatment of acute upper extremity deep vein thrombosis. DATA COLLECTION AND ANALYSIS: Two review authors independently screened all records to identify those...

  12. Wide-Field Plate Database

    Science.gov (United States)

    Tsvetkov, M. K.; Stavrev, K. Y.; Tsvetkova, K. P.; Semkov, E. H.; Mutatov, A. S.

    The Wide-Field Plate Database (WFPDB) and the possibilities for its application as a research tool in observational astronomy are presented. Currently the WFPDB comprises the descriptive data for 400 000 archival wide field photographic plates obtained with 77 instruments, from a total of 1 850 000 photographs stored in 269 astronomical archives all over the world since the end of last century. The WFPDB is already accessible for the astronomical community, now only in batch mode through user requests sent by e-mail. We are working on on-line interactive access to the data via INTERNET from Sofia and parallel from the Centre de Donnees Astronomiques de Strasbourg. (Initial information can be found on World Wide Web homepage URL http://www.wfpa.acad.bg.) The WFPDB may be useful in studies of a variety of astronomical objects and phenomena, andespecially for long-term investigations of variable objects and for multi-wavelength research. We have analysed the data in the WFPDB in order to derive the overall characteristics of the totality of wide-field observations, such as the sky coverage, the distributions by observation time and date, by spectral band, and by object type. We have also examined the totality of wide-field observations from point of view of their quality, availability and digitisation. The usefulness of the WFPDB is demonstrated by the results of identification and investigation of the photometrical behaviour of optical analogues of gamma-ray bursts.

  13. The Ooty Wide Field Array

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 38; Issue 1. The Ooty Wide Field Array. C. R. Subrahmanya P. K. Manoharan Jayaram N. Chengalur. Review Article Volume 38 Issue 1 March 2017 Article ID ... Keywords. Cosmology: large scale structure of Universe; intergalactic medium; diffuse radiation.

  14. The LOFT wide field monitor

    DEFF Research Database (Denmark)

    Brandt, Søren; Hernanz, M.; Alvarez, L.

    2012-01-01

    be able to address fundamental questions about strong gravity in the vicinity of black holes and the equation of state of nuclear matter in neutron stars. The prime goal of the WFM will be to detect transient sources to be observed by the LAD. However, with its wide field of view and good energy...... to the community of ~100 gamma ray burst positions per year with a ~1 arcmin location accuracy within 30 s of the burst. This paper provides an overview of the design, configuration, and capabilities of the LOFT WFM instrument....

  15. Wide Field Imager for Athena

    Science.gov (United States)

    Meidinger, Norbert; Nandra, Kirpal; Rau, Arne; Plattner, Markus; WFI proto-Consortium

    2015-09-01

    The Wide Field Imager focal plane instrument on ATHENA will combine unprecedented survey power through its large field of view of 40 arcmin with a high count-rate capability (> 1 Crab). The energy resolution of the silicon sensor is state-of-the-art in the energy band of interest from 0.1 keV to 15 keV. At energy of 6 keV for example, the full width at half maximum of the line shall be not worse than 150 eV until the end of the mission. The performance is accomplished by a set of DEPFET active pixel sensor matrices with a pixel size well suited to the angular resolution of 5 arc sec (on-axis) of the mirror system.Each DEPFET pixel is a combined detector-amplifier structure with a MOSFET integrated onto a fully depleted 450 micron thick silicon bulk. Two different types of DEPFET sensors are planned for the WFI instrument: A set of large-area sensors to cover the physical size of 14 cm x 14 cm in the focal plane and a single gateable DEPFET sensor matrix optimized for the high count rate capability of the instrument. An overview will be given about the presently developed instrument concept and design, the status of the technology development, and the expected performance. An outline of the project organization, the model philosophy as well as the schedule will complete the presentation about the Wide Field Imager for Athena.

  16. Robotic Developments for Extreme Environments - Deep Sea and Earth's Moon

    OpenAIRE

    Schäfer, Bernd; Albiez, Jan; Hellerer, Matthias; Knapmeyer, Martin; Meinecke, Gerrit; Pfannkuche, Olaf; Thomsen, Laurenz; WILDE Martina; Wimböck, Thomas; Zoest, Tim van

    2004-01-01

    Robotic Exploration of Extreme Environments (ROBEX) is a nationally funded Helmholtz alliance pro-ject. It brings together space and deep-sea research insti-tutions. The project partners are jointly developing tech-nologies for the exploration of highly inaccessible terrain, such as the deep sea and polar regions, as well as the Moon and other planets. In order to increase the science return from robotic systems used for exploration, more sophisticated designs are needed which go beyond the p...

  17. Classification and Localization of Extreme Weather Patterns with Deep Learning

    Science.gov (United States)

    Prabhat, M.; Liu, Y.; Racah, E.; Kunkel, K.; Lavers, D. A.; Wehner, M. F.; Collins, W. D.

    2016-12-01

    Extreme weather events pose great potential risk on ecosystem, infrastructure and human health. Analyzing extreme weather in the observed record (satellite, reanalysis products) and characterizing changes in extremes in simulations of future climate regimes is an important task. Thus far, extreme weather events have been typically specified by the community through hand-coded, multi-variate threshold conditions. Such criteria are usually subjective, and often there is no agreement in the community on the specific algorithm that should be used. We propose a completely different approach: machine learning to solve this problem. If human experts can provide spatio-temporal patches of a climate dataset, and associated labels, we can turn to a machine learning system to learn the underlying feature representation. The `trained' ML system can then be applied to novel datasets, thereby automating the pattern detection step. Summary statistics, such as location, intensity and frequency of such events can be easily computed as a post-process. This talk will touch upon Deep Learning: the most powerful machine learning method at this point in time. We will report compelling results from the successful application of Deep Learning to classify tropical cyclones, atmospheric rivers and weather front events. For all of these events, we observe 90-99% classification accuracy by the Deep Learning system. We will also report on progress in localizing such events: namely drawing a bounding box (of the correct size and scale) around the weather pattern of interest. Both tasks currently utilize multi-layer convolutional networks in conjunction with hyper-parameter optimization. We utilize HPC systems at NERSC to perform the optimization across multiple nodes, and utilize highly-tuned libraries to utilize multiple cores on a single node. We will conclude with thoughts on the frontier of Deep Learning: can we train networks in a semi-supervised, or completely unsupervised manner?

  18. Unsuspected lower extremity deep venous thrombosis simulating musculoskeletal pathology

    Energy Technology Data Exchange (ETDEWEB)

    Parellada, Antoni J.; Reiter, Sean B.; Glickman, Peter L.; Kloss, Linda A. [Frankford Hospitals, DII - Diagnostic Imaging, Inc., Department of Radiology, Philadelphia, PA (United States); Morrison, William B. [Thomas Jefferson University, Philadelphia, PA (United States); Carrino, John A. [Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Patel, Pinecca [Frankford Hospitals, Jefferson Health System, Philadelphia, PA (United States)

    2006-09-15

    The purpose of this study was to highlight the critical role that MRI may play in diagnosing unsuspected lower extremity deep venous thrombosis and to stress the importance of scrutinizing MRI studies of the lower extremity showing apparently non-specific muscle edema for any evidence of intramuscular venous thrombosis. The imaging studies of four patients in whom deep venous thrombosis was unsuspected on clinical grounds, and first diagnosed on the basis of MRI findings, were reviewed by two musculoskeletal radiologists in consensus. In all four patients the initial clinical suspicion was within the scope of musculoskeletal injuries (gastrocnemius strain, n=3; ruptured Baker cyst, n=1), explaining the choice of MRI over ultrasound as the first diagnostic modality. All patients showed marked reactive edema in the surrounding soft tissues or muscles. Three patients showed MR evidence of branching rim-enhancing structures within intramuscular plexuses characteristic of venous thrombosis (gastrocnemius, n=1; sural, n=2); one patient showed a distended popliteal vein. Ultrasound was able to duplicate the MRI findings in three patients: one patient showed above-the-knee extension on ultrasound; neither of the two patients with intramuscular thrombosis demonstrated on ultrasound showed extension to the deep venous trunks. Intramuscular venous thrombosis can present as marked edema-like muscle changes on MRI, simulating primary musculoskeletal conditions. In the absence of clinical suspicion for deep venous thrombosis, only the identification of rim-enhancing branching intramuscular tubular structures will allow the correct diagnosis to be made. (orig.)

  19. Building Energy Consumption Prediction: An Extreme Deep Learning Approach

    Directory of Open Access Journals (Sweden)

    Chengdong Li

    2017-10-01

    Full Text Available Building energy consumption prediction plays an important role in improving the energy utilization rate through helping building managers to make better decisions. However, as a result of randomness and noisy disturbance, it is not an easy task to realize accurate prediction of the building energy consumption. In order to obtain better building energy consumption prediction accuracy, an extreme deep learning approach is presented in this paper. The proposed approach combines stacked autoencoders (SAEs with the extreme learning machine (ELM to take advantage of their respective characteristics. In this proposed approach, the SAE is used to extract the building energy consumption features, while the ELM is utilized as a predictor to obtain accurate prediction results. To determine the input variables of the extreme deep learning model, the partial autocorrelation analysis method is adopted. Additionally, in order to examine the performances of the proposed approach, it is compared with some popular machine learning methods, such as the backward propagation neural network (BPNN, support vector regression (SVR, the generalized radial basis function neural network (GRBFNN and multiple linear regression (MLR. Experimental results demonstrate that the proposed method has the best prediction performance in different cases of the building energy consumption.

  20. Michelson wide-field stellar interferometry

    NARCIS (Netherlands)

    Montilla, I.

    2004-01-01

    The main goal of this thesis is to develop a system to permit wide field operation of Michelson Interferometers. A wide field of view is very important in applications such as the observation of extended or multiple objects, the fringe acquisition and/ or tracking on a nearby unresolved object, and

  1. [Upper extremity deep vein thrombosis following ovarian stimulation].

    Science.gov (United States)

    Bar-On, Shikma; Cohen, Aviad; Levin, Ishai; Avni, Amiran; Lessing, Joseph B; Atmog, Benny

    2011-11-01

    Upper extremity deep venous thrombosis (UEDVT) is uncommon as a spontaneous event in the general population and is associated with well-defined risk factors. Thromboembotic events are serious, but fortunately rare, complications following ovarian stimulation for IVF. A review of the Literature indicates that thromboembolic events after ovarian stimulation are usually associated with ovarian hyperstimulation syndrome (OHSS). The incidence of UEDVT is higher in women undergoing assisted reproductive technology (ART) compared to the general population. The incidence of this condition is estimated to be 0.08%-0.11% of treatment cycles. While lower extremity DVT may be considered a natural consequence of OHSS, given the diminished venous return secondary to enlarged ovaries and ascites, it is unclear why there appears to be a predilection for thrombi in the upper extremities in women undergoing ART. Early diagnosis and treatment is crucial for both maternal and fetal well-being. Since infertility treatment is becoming commonplace in today's society, women undergoing treatment and their clinicians should be better informed of the presentation and clinical course of UEDVT to enable early diagnosis and start treatment. Consideration must be given to screening patients at risk for OHSS for thrombophilias, as well as administrating prophylactic anticoagulation therapy to patients who develop OHSS.

  2. IOT Overview: Wide-Field Imaging

    Science.gov (United States)

    Selman, F. J.

    The Wide Field Imager (WFI) instrument at La Silla has been the workhorse of wide-field imaging instruments at ESO for several years. In this contribution I will summarize the issues relating to its productivity for the community both in terms of the quality and quantity of data that has come out of it. Although only surveys of limited scope have been completed using WFI, it is ESO's stepping-stone to the new generation of survey telescopes.

  3. Novel locomotor muscle design in extreme deep-diving whales.

    Science.gov (United States)

    Velten, B P; Dillaman, R M; Kinsey, S T; McLellan, W A; Pabst, D A

    2013-05-15

    Most marine mammals are hypothesized to routinely dive within their aerobic dive limit (ADL). Mammals that regularly perform deep, long-duration dives have locomotor muscles with elevated myoglobin concentrations that are composed of predominantly large, slow-twitch (Type I) fibers with low mitochondrial volume densities (V(mt)). These features contribute to extending ADL by increasing oxygen stores and decreasing metabolic rate. Recent tagging studies, however, have challenged the view that two groups of extreme deep-diving cetaceans dive within their ADLs. Beaked whales (including Ziphius cavirostris and Mesoplodon densirostris) routinely perform the deepest and longest average dives of any air-breathing vertebrate, and short-finned pilot whales (Globicephala macrorhynchus) perform high-speed sprints at depth. We investigated the locomotor muscle morphology and estimated total body oxygen stores of several species within these two groups of cetaceans to determine whether they (1) shared muscle design features with other deep divers and (2) performed dives within their calculated ADLs. Muscle of both cetaceans displayed high myoglobin concentrations and large fibers, as predicted, but novel fiber profiles for diving mammals. Beaked whales possessed a sprinter's fiber-type profile, composed of ~80% fast-twitch (Type II) fibers with low V(mt). Approximately one-third of the muscle fibers of short-finned pilot whales were slow-twitch, oxidative, glycolytic fibers, a rare fiber type for any mammal. The muscle morphology of beaked whales likely decreases the energetic cost of diving, while that of short-finned pilot whales supports high activity events. Calculated ADLs indicate that, at low metabolic rates, both beaked and short-finned pilot whales carry sufficient onboard oxygen to aerobically support their dives.

  4. The LOFT wide field monitor simulator

    DEFF Research Database (Denmark)

    Donnarumma, I.; Evangelista, Y.; Campana, R.

    2012-01-01

    We present the simulator we developed for the Wide Field Monitor (WFM) aboard the Large Observatory For Xray Timing (LOFT) mission, one of the four ESA M3 candidate missions considered for launch in the 2022–2024 timeframe. The WFM is designed to cover a large FoV in the same bandpass as the Larg...

  5. Extreme Longevity in Proteinaceous Deep-Sea Corals

    Energy Technology Data Exchange (ETDEWEB)

    Roark, E B; Guilderson, T P; Dunbar, R B; Fallon, S J; Mucciarone, D A

    2009-02-09

    Deep-sea corals are found on hard substrates on seamounts and continental margins world-wide at depths of 300 to {approx}3000 meters. Deep-sea coral communities are hotspots of deep ocean biomass and biodiversity, providing critical habitat for fish and invertebrates. Newly applied radiocarbon age date from the deep water proteinaceous corals Gerardia sp. and Leiopathes glaberrima show that radial growth rates are as low as 4 to 35 {micro}m yr{sup -1} and that individual colony longevities are on the order of thousands of years. The management and conservation of deep sea coral communities is challenged by their commercial harvest for the jewelry trade and damage caused by deep water fishing practices. In light of their unusual longevity, a better understanding of deep sea coral ecology and their interrelationships with associated benthic communities is needed to inform coherent international conservation strategies for these important deep-sea ecosystems.

  6. Wide field imaging problems in radio astronomy

    Science.gov (United States)

    Cornwell, T. J.; Golap, K.; Bhatnagar, S.

    2005-03-01

    The new generation of synthesis radio telescopes now being proposed, designed, and constructed face substantial problems in making images over wide fields of view. Such observations are required either to achieve the full sensitivity limit in crowded fields or for surveys. The Square Kilometre Array (SKA Consortium, Tech. Rep., 2004), now being developed by an international consortium of 15 countries, will require advances well beyond the current state of the art. We review the theory of synthesis radio telescopes for large fields of view. We describe a new algorithm, W projection, for correcting the non-coplanar baselines aberration. This algorithm has improved performance over those previously used (typically an order of magnitude in speed). Despite the advent of W projection, the computing hardware required for SKA wide field imaging is estimated to cost up to $500M (2015 dollars). This is about half the target cost of the SKA. Reconfigurable computing is one way in which the costs can be decreased dramatically.

  7. The Wide Field Imager for Athena

    Science.gov (United States)

    Rau, A.; Nandra, K.; Meidinger, N.; Plattner, M.

    2017-10-01

    The Wide Field Imager (WFI) is one of the two scientific instruments of Athena, ESA's next large X-ray Observatory with launch in 2028. The instrument will provide two defining capabilities to the mission sensitive wide-field imaging spectroscopy and excellent high-count rate performance. It will do so with the use of two separate detectors systems, the Large Detector Array (LDA) optimized for its field of view (40'×40') with a 100 fold survey speed increase compared to existing X-ray missions, and the Fast Detector (FD) tweaked for high throughput and low pile-up for point sources as bright as the Crab. In my talk I will present the key performance parameters of the instrument and their links to the scientific goals of Athena and summarize the status of the ongoing development activities.

  8. Upper extremity deep venous thrombosis after port insertion: What are the risk factors?

    Science.gov (United States)

    Tabatabaie, Omidreza; Kasumova, Gyulnara G; Kent, Tara S; Eskander, Mariam F; Fadayomi, Ayotunde B; Ng, Sing Chau; Critchlow, Jonathan F; Tawa, Nicholas E; Tseng, Jennifer F

    2017-08-01

    Totally implantable venous access devices (ports) are widely used, especially for cancer chemotherapy. Although their use has been associated with upper extremity deep venous thrombosis, the risk factors of upper extremity deep venous thrombosis in patients with a port are not studied adequately. The Healthcare Cost and Utilization Project's Florida State Ambulatory Surgery and Services Database was queried between 2007 and 2011 for patients who underwent outpatient port insertion, identified by Current Procedural Terminology code. Patients were followed in the State Ambulatory Surgery and Services Database, State Inpatient Database, and State Emergency Department Database for upper extremity deep venous thrombosis occurrence. The cohort was divided into a test cohort and a validation cohort based on the year of port placement. A multivariable logistic regression model was developed to identify risk factors for upper extremity deep venous thrombosis in patients with a port. The model then was tested on the validation cohort. Of the 51,049 patients in the derivation cohort, 926 (1.81%) developed an upper extremity deep venous thrombosis. On multivariate analysis, independently significant predictors of upper extremity deep venous thrombosis included age deep venous thrombosis (odds ratio = 1.77), all-cause 30-day revisit (odds ratio = 2.36), African American race (versus white; odds ratio = 1.86), and other nonwhite races (odds ratio = 1.35). Additionally, compared with genitourinary malignancies, patients with gastrointestinal (odds ratio = 1.55), metastatic (odds ratio = 1.76), and lung cancers (odds ratio = 1.68) had greater risks of developing an upper extremity deep venous thrombosis. This study identified major risk factors of upper extremity deep venous thrombosis. Further studies are needed to evaluate the appropriateness of thromboprophylaxis in patients at greater risk of upper extremity deep venous thrombosis. Copyright © 2017 Elsevier Inc

  9. The Wide Field Imager Instrument for Athena

    OpenAIRE

    Meidinger, Norbert; Eder, Josef; Eraerds, Tanja; Nandra, Kirpal; Pietschner, Daniel; Plattner, Markus; Rau, Arne; Strecker, Rafael

    2017-01-01

    The WFI (Wide Field Imager) instrument is planned to be one of two complementary focal plane cameras on ESA's next X-ray observatory Athena. It combines unprecedented survey power through its large field of view of 40 amin x 40 amin together with excellent count rate capability (larger than 1 Crab). The energy resolution of the silicon sensor is state-of-the-art in the energy band of interest from 0.2 keV to 15 keV, e.g. the full width at half maximum of a line at 7 keV will be better than 17...

  10. [Upper-extremity deep vein thrombosis: current concepts in diagnosis and treatment].

    Science.gov (United States)

    Mitu, F; Leon, Maria Magdalena; Mitu, Magda

    2011-01-01

    Upper-extremity deep vein thrombosis is a rare manifestation of venous thromboembolic disease. In the past few decades, the clinical importance of upper-extremity deep vein thrombosis has increased because of the wider use of central venous catheters and the development of ultrasonography as a simple and accurate objective diagnostic method. Primary upper-extremity deep vein thrombosis is a rare disorder (2 per 100,000 persons per year), which comprises (1) Paget-Schroetter Syndrome, also known as effort thrombosis, and (2) idiopathic upper-extremity deep vein thrombosis. Secundary upper-extremity deep vein thrombosis develops in patients with upper extremity central venous catheters, pacemakers or cancer and accounts for most cases of upper-extremity deep vein thrombosis. The imaging modes used for diagnosis are: duplex ultrasound, magnetic resonance. Contrast venogram is the standard diagnostic test for characterization of the anatomy. A staged, multimodal approach to Paget-Schroetter Syndrome can effectively restore venous patency, reduce the risk of rethrombosis, and return the patient to normal function. Primary care physicians should be aware of this condition and its atypical presentations, because delayed recognition in a high-functioning persons can be potentially disabling.

  11. WFIRST: Simulating the Wide-Field Sky

    Science.gov (United States)

    Peeples, Molly; WFIRST Wide Field Imager Simulations Working Group

    2018-01-01

    As astronomy’s first high-resolution wide-field multi-mode instrument, simulated data will play a vital role in the planning for and analysis of data from WFIRST’s WFI (Wide Field Imager) instrument. Part of the key to WFIRST’s scientific success lies in our ability to push the systematics limit, but in order to do so, the WFI pipeline will need to be able to measure and take out said systematics. The efficacy of this pipeline can only be verified with large suites of synthetic data; these data must include both the range of astrophysical sky scenes (from crowded starfields to high-latitude grism data observations) and the systematics from the detector and telescope optics the WFI pipeline aims to mitigate. We summarize here(1) the status of current and planned astrophysical simulations in support of the WFI,(2) the status of current WFI instrument simulators and requirements on future generations thereof, and(3) plans, methods, and requirements on interfacing astrophysical simulations and WFI instrument simulators.

  12. Athena Wide Field Imager key science drivers

    Science.gov (United States)

    Rau, Arne; Nandra, Kirpal; Aird, James; Comastri, Andrea; Dauser, Thomas; Merloni, Andrea; Pratt, Gabriel W.; Reiprich, Thomas H.; Fabian, Andy C.; Georgakakis, Antonis; Güdel, Manuel; RóŻańska, Agata; Sanders, Jeremy S.; Sasaki, Manami; Vaughan, Simon; Wilms, Jörn; Meidinger, Norbert

    2016-07-01

    The Wide Field Imager (WFI) is one of two instruments for the Advanced Telescope for High-ENergy Astrophysics (Athena). In this paper we summarise three of the many key science objectives for the WFI { the formation and growth of supermassive black holes, non-gravitational heating in clusters of galaxies, and spin measurements of stellar mass black holes { and describe their translation into the science requirements and ultimately instrument requirements. The WFI will be designed to provide excellent point source sensitivity and grasp for performing wide area surveys, surface brightness sensitivity, survey power, and absolute temperature and density calibration for in-depth studies of the outskirts of nearby clusters of galaxies and very good high-count rate capability, throughput, and low pile-up, paired with very good spectral resolution, for detailed explorations of bright Galactic compact objects.

  13. A wide field of view plasma spectrometer

    Science.gov (United States)

    Skoug, R. M.; Funsten, H. O.; Möbius, E.; Harper, R. W.; Kihara, K. H.; Bower, J. S.

    2016-07-01

    We present a fundamentally new type of space plasma spectrometer, the wide field of view plasma spectrometer, whose field of view is > 1.25π ster using fewer resources than traditional methods. The enabling component is analogous to a pinhole camera with an electrostatic energy-angle filter at the image plane. Particle energy-per-charge is selected with a tunable bias voltage applied to the filter plate relative to the pinhole aperture plate. For a given bias voltage, charged particles from different directions are focused by different angles to different locations. Particles with appropriate locations and angles can transit the filter plate and are measured using a microchannel plate detector with a position-sensitive anode. Full energy and angle coverage are obtained using a single high-voltage power supply, resulting in considerable resource savings and allowing measurements at fast timescales. We present laboratory prototype measurements and simulations demonstrating the instrument concept and discuss optimizations of the instrument design for application to space measurements.

  14. The Wide Field Imager instrument for Athena

    Science.gov (United States)

    Meidinger, Norbert; Barbera, Marco; Emberger, Valentin; Fürmetz, Maria; Manhart, Markus; Müller-Seidlitz, Johannes; Nandra, Kirpal; Plattner, Markus; Rau, Arne; Treberspurg, Wolfgang

    2017-08-01

    ESA's next large X-ray mission ATHENA is designed to address the Cosmic Vision science theme 'The Hot and Energetic Universe'. It will provide answers to the two key astrophysical questions how does ordinary matter assemble into the large-scale structures we see today and how do black holes grow and shape the Universe. The ATHENA spacecraft will be equipped with two focal plane cameras, a Wide Field Imager (WFI) and an X-ray Integral Field Unit (X-IFU). The WFI instrument is optimized for state-of-the-art resolution spectroscopy over a large field of view of 40 amin x 40 amin and high count rates up to and beyond 1 Crab source intensity. The cryogenic X-IFU camera is designed for high-spectral resolution imaging. Both cameras share alternately a mirror system based on silicon pore optics with a focal length of 12 m and large effective area of about 2 m2 at an energy of 1 keV. Although the mission is still in phase A, i.e. studying the feasibility and developing the necessary technology, the definition and development of the instrumentation made already significant progress. The herein described WFI focal plane camera covers the energy band from 0.2 keV to 15 keV with 450 μm thick fully depleted back-illuminated silicon active pixel sensors of DEPFET type. The spatial resolution will be provided by one million pixels, each with a size of 130 μm x 130 μm. The time resolution requirement for the WFI large detector array is 5 ms and for the WFI fast detector 80 μs. The large effective area of the mirror system will be completed by a high quantum efficiency above 90% for medium and higher energies. The status of the various WFI subsystems to achieve this performance will be described and recent changes will be explained here.

  15. The wide field imager instrument for Athena

    Science.gov (United States)

    Meidinger, Norbert; Nandra, Kirpal; Plattner, Markus; Porro, Matteo; Rau, Arne; Santangelo, Andrea E.; Tenzer, Chris; Wilms, Jörn

    2014-07-01

    The "Hot and Energetic Universe" has been selected as the science theme for ESA's L2 mission, scheduled for launch in 2028. The proposed Athena X-ray observatory provides the necessary capabilities to achieve the ambitious goals of the science theme. The X-ray mirrors are based on silicon pore optics technology and will have a 12 m focal length. Two complementary camera systems are foreseen which can be moved in and out of the focal plane by an interchange mechanism. These instruments are the actively shielded micro-calorimeter spectrometer X-IFU and the Wide Field Imager (WFI). The WFI will combine an unprecedented survey power through its large field of view of 40 arcmin with a high countrate capability (approx. 1 Crab). It permits a state-of-the-art energy resolution in the energy band of 0.1 keV to 15 keV during the entire mission lifetime (e.g. FWHM serial analog output. The architecture of sensor and readout ASIC allows readout in full frame mode and window mode as well by addressing selectively arbitrary sub-areas of the sensor allowing time resolution in the order of 10 μs. The further detector electronics has mainly the following tasks: digitization, pre-processing and telemetry of event data as well as supply and control of the detector system. Although the sensor will already be equipped with an on-chip light blocking filter, a filter wheel is necessary to provide an additional external filter, an on-board calibration source, an open position for outgassing, and a closed position for protection of the sensor. The sensor concept provides high quantum efficiency over the entire energy band and we intend to keep the instrumental background as low as possible by designing a graded Z-shield around the sensor. All these properties make the WFI a very powerful survey instrument, significantly surpassing currently existing observatories and in addition allow high-time resolution of the brightest X-ray sources with low pile-up and high efficiency. This

  16. Endovascular Interventions for Acute and Chronic Lower Extremity Deep Venous Disease: State of the Art.

    Science.gov (United States)

    Sista, Akhilesh K; Vedantham, Suresh; Kaufman, John A; Madoff, David C

    2015-07-01

    The societal and individual burden caused by acute and chronic lower extremity venous disease is considerable. In the past several decades, minimally invasive endovascular interventions have been developed to reduce thrombus burden in the setting of acute deep venous thrombosis to prevent both short- and long-term morbidity and to recanalize chronically occluded or stenosed postthrombotic or nonthrombotic veins in symptomatic patients. This state-of-the-art review provides an overview of the techniques and challenges, rationale, patient selection criteria, complications, postinterventional care, and outcomes data for endovascular intervention in the setting of acute and chronic lower extremity deep venous disease. Online supplemental material is available for this article.

  17. The wide field imager instrument for Athena

    Science.gov (United States)

    Meidinger, Norbert; Eder, Josef; Eraerds, Tanja; Nandra, Kirpal; Pietschner, Daniel; Plattner, Markus; Rau, Arne; Strecker, Rafael

    2016-07-01

    The WFI (Wide Field Imager) instrument is planned to be one of two complementary focal plane cameras on ESA's next X-ray observatory Athena. It combines unprecedented survey power through its large field of view of 40 amin x 40 amin together with excellent count rate capability (>= 1 Crab). The energy resolution of the silicon sensor is state-of-the-art in the energy band of interest from 0.2 keV to 15 keV, e.g. the full width at half maximum of a line at 7 keV will be MOSFET integrated onto a fully depleted 450 μm thick silicon bulk. Two detectors are planned for the WFI instrument: A large-area detector comprising four sensors with a total of 1024 x 1024 pixels and a fast detector optimized for high count rate observations. This high count rate capable detector permits for bright point sources with an intensity of 1 Crab a throughput of more than 80% and a pile-up of less than 1%. The fast readout of the DEPFET pixel matrices is facilitated by an ASIC development, called VERITAS-2. Together with the Switcher-A, a control ASIC that allows for operation of the DEPFET in rolling shutter mode, these elements form the key components of the WFI detectors. The detectors are surrounded by a graded-Z shield, which has in particular the purpose to avoid fluorescence lines that would contribute to the instrument background. Together with ultra-thin coating of the sensor and particle identification by the detector itself, the particle induced background shall be minimized in order to achieve the scientific requirement of a total instrumental background value smaller than 5 x 10-3 cts/cm2/s/keV. Each detector has its dedicated detector electronics (DE) for supply and data acquisition. Due to the high frame rate in combination with the large pixel array, signal correction and event filtering have to be done on-board and in real-time as the raw data rate would by far exceed the feasible telemetry rate. The data streams are merged and compressed in the Instrument Control and

  18. Diagnosis and management of deep vein thrombosis of the upper extremity: a review

    Energy Technology Data Exchange (ETDEWEB)

    Baarslag, Henk J.; Reekers, Jim A. [Department of Radiology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam (Netherlands); Koopman, Maria M.W. [Department of Vascular Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam (Netherlands); Beek, Edwin J.R. van [Unit of Academic Radiology, Floor C, Royal Hallamshire Hospital, Glossop Road, S10 2JF, Sheffield (United Kingdom)

    2004-07-01

    Deep vein thrombosis of the upper extremity is an increasing clinical problem due to the use of long-term indwelling catheters for chemotherapy or long-term feeding. The clinical diagnosis is difficult to make, and various imaging modalities have been used for this purpose. The use of (interventional) radiological procedures has been advancing in recent years. This review describes the clinical background, the imaging modalities that may be employed, treatment options and outcome of patients with upper extremity thrombosis. (orig.)

  19. Wide-Field Ultraviolet Spectrometer for Planetary Exospheres and Thermospheres

    Science.gov (United States)

    Fillingim, M. O.; Wishnow, E. H.; Miller, T.; Edelstein, J.; Lillis, R. J.; Korpela, E.; England, S.; Shourt, W. V.; Siegmund, O.; McPhate, J.; Courtade, S.; Curtis, D. W.; Deighan, J.; Chaffin, M.; Harmoul, A.; Almatroushi, H. R.

    2016-12-01

    Understanding the composition, structure, and variability of a planet's upper atmosphere - the exosphere and thermosphere - is essential for understanding how the upper atmosphere is coupled to the lower atmosphere, magnetosphere and near-space environment, and the Sun. Ultraviolet spectroscopy can directly observe emissions from constituents in the exosphere and thermosphere. From such observations, the structure, composition, and variability can be determined.We will present the preliminary design for a wide field ultraviolet imaging spectrometer for remote sensing of planetary atmospheres. The imaging spectrometer achieves an extremely large instantaneous 110 degree field of view with no moving scanning mirror. The imaging resolution is very appropriate for extended atmospheric emission studies, with a resolution of better than 0.3 degrees at the center to 0.4 degrees at the edges of the field. The spectral range covers 120 - 170 nm, encompassing emissions from H, O, C, N, CO, and N2, with an average spectral resolution of 1.5 nm. The instrument is composed of a 2-element wide-field telescope, a 3-element Offner spectrometer, and a sealed MCP detector system contained within a compact volume of about 40 x 25 x 20 cm. We will present the optical and mechanical design as well as the predicted optical performance.The wide instantaneous FOV simplifies instrument and spacecraft operations by removing the need for multiple scans (either from a scan mirror or spacecraft slews) to cover the regions of interest. This instrumentation can allow for two-dimensional spectral information to be built up with simple spacecraft operation or just using spacecraft motion. Applications to the terrestrial geocorona and thermosphere will be addressed as well as applications to the upper atmospheres of other planetary objects.

  20. Michelson wide-field stellar interferometry : Principles and experimental verification

    NARCIS (Netherlands)

    Montilla, I.; Pereira, S.F.; Braat, J.J.M.

    2005-01-01

    A new interferometric technique for Michelson wide-field interferometry is presented that consists of a Michelson pupil-plane combination scheme in which a wide field of view can be achieved in one shot. This technique uses a stair-shaped mirror in the intermediate image plane of each telescope in

  1. Upper-extremity Deep Vein Thrombosis Complicating Apheresis in a Healthy Donor.

    Science.gov (United States)

    Haba, Yuichiro; Oshima, Hiroko; Naito, Toshio; Takasu, Kiyoshi; Ishimaru, Fumihiko

    2017-01-01

    Venous thrombus was recognized in the upper extremity of a 53-year-old man after blood donation. The patient presented with a 15-day history of swelling in the left upper-extremity that started 6 hours after apheresis. Contrast-enhanced computed tomography revealed clots in the deep veins of the left arm and the peripheral pulmonary artery. Blood donation had proceeded smoothly, and the patient had no thrombotic predisposition, except for a smoking habit. The thrombus resolved following anticoagulant therapy, and the patient' s clinical course was uncomplicated. Despite a thorough investigation, the cause of this thrombus remains unknown.

  2. The diagnostic management of upper extremity deep vein thrombosis: A review of the literature.

    Science.gov (United States)

    Kraaijpoel, Noémie; van Es, Nick; Porreca, Ettore; Büller, Harry R; Di Nisio, Marcello

    2017-08-01

    Upper extremity deep vein thrombosis (UEDVT) accounts for 4% to 10% of all cases of deep vein thrombosis. UEDVT may present with localized pain, erythema, and swelling of the arm, but may also be detected incidentally by diagnostic imaging tests performed for other reasons. Prompt and accurate diagnosis is crucial to prevent pulmonary embolism and long-term complications as the post-thrombotic syndrome of the arm. Unlike the diagnostic management of deep vein thrombosis (DVT) of the lower extremities, which is well established, the work-up of patients with clinically suspected UEDVT remains uncertain with limited evidence from studies of small size and poor methodological quality. Currently, only one prospective study evaluated the use of an algorithm, similar to the one used for DVT of the lower extremities, for the diagnostic workup of clinically suspected UEDVT. The algorithm combined clinical probability assessment, D-dimer testing and ultrasonography and appeared to safely and effectively exclude UEDVT. However, before recommending its use in routine clinical practice, external validation of this strategy and improvements of the efficiency are needed, especially in high-risk subgroups in whom the performance of the algorithm appeared to be suboptimal, such as hospitalized or cancer patients. In this review, we critically assess the accuracy and efficacy of current diagnostic tools and provide clinical guidance for the diagnostic management of clinically suspected UEDVT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Selected aspects of wide-field stellar interferometry

    Science.gov (United States)

    D'Arcio, Luigi Arsenio

    1999-11-01

    In Michelson stellar interferometry, the high-resolution information about the source structure is detected by performing observations with widely separated telescopes, interconnected to form an interferometer. At optical wavelengths, this method provides a technically viable approach for achieving angular resolutions in the milliarcsecond range, comparable to those of a 100 m diameter telescope, whose realization is beyond the immediate engineering capabilities. Considerable efforts are currently devoted to the definition of dedicated interferometric instruments, which will allow to address ambitious astronomical tasks such as high-resolution imaging, astrometry at microarcsecond level, and the direct detection of exoplanets. Astrometry and related techniques employ the so-called wide field-of-view interferometric mode, where phase measurements are performed simultaneously at two (or more) sources; often, the actual observable is the instantaneous phase difference of the two object signals. The future success of wide-field interferometry critically depends on the development of techniques for the accurate control of field-dependent (anisoplanatic) phase errors. In this thesis, we address two aspects of this problem in detail. The first one is theoretical in nature. For ground-based measurements, atmospheric turbulence is the largest source of random phase fluctuations between the on- and the off-axis fringes. We developed a model of the temporal power spectrum of this disturbance, whose validity is not limited to low frequencies only, as it is the case with earlier models. This extension opens the possibility of the analysis of dynamic issues, such as the determination of the allowable coherent integration time T for the off-axis fringes. The spectrum turns out to be well approximated by a sequences of four power-law branches. In first instance, its overall form is determined by the values of the baseline length, telescope diameter, and average beam separation in

  4. Wide-Field Infrared Survey Telescope (WFIRST) Integrated Modeling

    Science.gov (United States)

    Liu, Kuo-Chia; Blaurock, Carl

    2017-01-01

    Contents: introduction to WFIRST (Wide-Field Infrared Survey Telescope) and integrated modeling; WFIRST stability requirement summary; instability mitigation strategies; dynamic jitter results; STOP (structural-thermal-optical performance) (thermal distortion) results; STOP and jitter capability limitations; model validation philosophy.

  5. Clinical features and risk factor analysis for lower extremity deep venous thrombosis in Chinese neurosurgical patients

    Directory of Open Access Journals (Sweden)

    Fuyou Guo

    2015-01-01

    Full Text Available Background: Deep venous thrombosis (DVT contributes significantly to the morbidity and mortality of neurosurgical patients; however, no data regarding lower extremity DVT in postoperative Chinese neurosurgical patients have been reported. Materials and Methods: From January 2012 to December 2013, 196 patients without preoperative DVT who underwent neurosurgical operations were evaluated by color Doppler ultrasonography and D-dimer level measurements on the 3rd, 7th, and 14th days after surgery. Follow-up clinical data were recorded to determine the incidence of lower extremity DVT in postoperative neurosurgical patients and to analyze related clinical features. First, a single factor analysis, Chi-square test, was used to select statistically significant factors. Then, a multivariate analysis, binary logistic regression analysis, was used to determine risk factors for lower extremity DVT in postoperative neurosurgical patients. Results: Lower extremity DVT occurred in 61 patients, and the incidence of DVT was 31.1% in the enrolled Chinese neurosurgical patients. The common symptoms of DVT were limb swelling and lower extremity pain as well as increased soft tissue tension. The common sites of venous involvement were the calf muscle and peroneal and posterior tibial veins. The single factor analysis showed statistically significant differences in DVT risk factors, including age, hypertension, smoking status, operation time, a bedridden or paralyzed state, the presence of a tumor, postoperative dehydration, and glucocorticoid treatment, between the two groups (P < 0.05. The binary logistic regression analysis showed that an age greater than 50 years, hypertension, a bedridden or paralyzed state, the presence of a tumor, and postoperative dehydration were risk factors for lower extremity DVT in postoperative neurosurgical patients. Conclusions: Lower extremity DVT was a common complication following craniotomy in the enrolled Chinese neurosurgical

  6. Deep Convolutional Extreme Learning Machine and Its Application in Handwritten Digit Classification

    Directory of Open Access Journals (Sweden)

    Shan Pang

    2016-01-01

    Full Text Available In recent years, some deep learning methods have been developed and applied to image classification applications, such as convolutional neuron network (CNN and deep belief network (DBN. However they are suffering from some problems like local minima, slow convergence rate, and intensive human intervention. In this paper, we propose a rapid learning method, namely, deep convolutional extreme learning machine (DC-ELM, which combines the power of CNN and fast training of ELM. It uses multiple alternate convolution layers and pooling layers to effectively abstract high level features from input images. Then the abstracted features are fed to an ELM classifier, which leads to better generalization performance with faster learning speed. DC-ELM also introduces stochastic pooling in the last hidden layer to reduce dimensionality of features greatly, thus saving much training time and computation resources. We systematically evaluated the performance of DC-ELM on two handwritten digit data sets: MNIST and USPS. Experimental results show that our method achieved better testing accuracy with significantly shorter training time in comparison with deep learning methods and other ELM methods.

  7. Deep Convolutional Extreme Learning Machine and Its Application in Handwritten Digit Classification.

    Science.gov (United States)

    Pang, Shan; Yang, Xinyi

    2016-01-01

    In recent years, some deep learning methods have been developed and applied to image classification applications, such as convolutional neuron network (CNN) and deep belief network (DBN). However they are suffering from some problems like local minima, slow convergence rate, and intensive human intervention. In this paper, we propose a rapid learning method, namely, deep convolutional extreme learning machine (DC-ELM), which combines the power of CNN and fast training of ELM. It uses multiple alternate convolution layers and pooling layers to effectively abstract high level features from input images. Then the abstracted features are fed to an ELM classifier, which leads to better generalization performance with faster learning speed. DC-ELM also introduces stochastic pooling in the last hidden layer to reduce dimensionality of features greatly, thus saving much training time and computation resources. We systematically evaluated the performance of DC-ELM on two handwritten digit data sets: MNIST and USPS. Experimental results show that our method achieved better testing accuracy with significantly shorter training time in comparison with deep learning methods and other ELM methods.

  8. Deep GMOS spectroscopy of extremely red galaxies in GOODS-South : ellipticals, mergers and red spirals at 1

    NARCIS (Netherlands)

    Roche, Nathan D.; Dunlop, James; Caputi, Karina I.; McLure, Ross; Willott, Chris J.; Crampton, David

    2006-01-01

    We have performed a deep (35.5-h exposure) spectroscopic survey of extremely red (I -K > 4) galaxies (ERGs) on the Great Observatories Origins Deep Survey (GOODS)-South Field, using the Gemini multi-object spectrograph on the 8-m Gemini South Telescope. We present here spectra and redshifts for 16

  9. Active Ankle Movements Prevent Formation of Lower-Extremity Deep Venous Thrombosis After Orthopedic Surgery.

    Science.gov (United States)

    Li, Ye; Guan, Xiang-Hong; Wang, Rui; Li, Bin; Ning, Bo; Su, Wei; Sun, Tao; Li, Hong-Yan

    2016-09-07

    BACKGROUND The aim of this study was to assess the preventive value of active ankle movements in the formation of lower-extremity deep venous thrombosis (DVT), attempting to develop a new method for rehabilitation nursing after orthopedic surgery. MATERIAL AND METHODS We randomly assigned 193 patients undergoing orthopedic surgery in the lower limbs into a case group (n=96) and a control group (n=97). The control group received routine nursing while the case group performed active ankle movements in addition to receiving routine nursing. Maximum venous outflow (MVO), maximum venous capacity (MVC), and blood rheology were measured and the incidence of DVT was recorded. RESULTS On the 11th and 14th days of the experiment, the case group had significantly higher MVO and MVC than the control group (all PMVC and reducing blood rheology, active ankle movements may prevent the formation of lower-extremity DVT after orthopedic surgery.

  10. Ultra-wide-field imaging in diabetic retinopathy.

    Science.gov (United States)

    Ghasemi Falavarjani, Khalil; Tsui, Irena; Sadda, Srinivas R

    2017-10-01

    Since 1991, 7-field images captured with 30-50 degree cameras in the Early Treatment Diabetic Retinopathy Study were the gold standard for fundus imaging to study diabetic retinopathy. Ultra-wide-field images cover significantly more area (up to 82%) of the fundus and with ocular steering can in many cases image 100% of the fundus ("panretinal"). Recent advances in image analysis of ultra-wide-field imaging allow for precise measurements of the peripheral retinal lesions. There is a growing consensus in the literature that ultra-wide-field imaging improves detection of peripheral lesions in diabetic retinopathy and leads to more accurate classification of the disease. There is discordance among studies, however, on the correlation between peripheral diabetic lesions and diabetic macular edema and optimal management strategies to treat diabetic retinopathy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. PRE-ACTIVITY MODULATION OF LOWER EXTREMITY MUSCLES WITHIN DIFFERENT TYPES AND HEIGHTS OF DEEP JUMP

    Directory of Open Access Journals (Sweden)

    Vladimir Mrdakovic

    2008-06-01

    Full Text Available The purpose of this study was to determine modulation of pre- activity related to different types and heights of deep jump. Sixteen male soccer players without experience in deep jumps training (the national competition; 15.0 ± 0.5yrs; weight 61.9 ± 6.1kg; height 1.77 ± 0.07m, who participated in the study, performed three types of deep jump (bounce landing, counter landing, and bounce drop jump from three different heights (40cm, 60cm, and 80cm. Surface EMG device (1000Hz was used to estimate muscle activity (maximal amplitude of EMG - AmaxEMG; integral EMG signal - iEMG of five muscles (mm.gastrocnemii, m.soleus, m.tibialis anterior, m.vastus lateralis within 150ms before touchdown. All the muscles, except m. gastrocnemius medialis, showed systematic increase in pre-activity when platform height was raised. For most of the lower extremity muscles, the most significant differences were between values of pre-activity obtained for 40 cm and 80 cm platforms. While the amount of muscle pre-activity in deep jumps from the heights above and beneath the optimal one did not differ significantly from that generated in deep jumps from the optimal drop height of 60 cm, the patterns of muscle pre-activity obtained for the heights above the optimal one did differ from those obtained for the optimal drop height. That suggests that deep jumps from the heights above the optimal one do not seem to be an adequate exercise for adjusting muscle activity for the impact. Muscle pre-activity in bounce drop jumps differed significantly from that in counter landing and bounce landing respectively, which should indicate that a higher amount of pre-activity generated during bounce drop jumps was used for performing take-offs. As this study included the subjects who were not familiar with deep jumps training, the prospective studies should reveal the results of athletes with previous experience

  12. [Deep-sea research ground for the study of living matter properties in extreme conditions].

    Science.gov (United States)

    Polikarpov, G G

    2011-01-01

    The Black Sea hollow bottom is a promising research ground in the field of deep-sea radiochemoecology and exobiology. It has turned out to be at the intersection of the earth and cosmic scientific interests such as deep-sea marine radiochemoecology from the perspective of the study of extreme biogeocenological properties of the Earth biosphere and exobiology from the standpoint of the study of life phenomena (living matter) outside the Earth biosphere, i.e. on other planets and during hypothetical transfer of spores in the outer space. The potential of this ground is substantiated with the data published by the author and co-workers on accumulation of 90Sr, 137Cs and Pu isotopes with silts of bathyal pelo-contour, on the quality of deep-sea hydrogen sulphide waters (after their contact with air) for vital functions of planktonic and benthic aerobes, as well as the species composition of marine, freshwater and terrestrial plants grown from the spores collected from the bottom sediments of the Black Sea bathyal. Discussion was based on V.I. Vernadsky's ideas about the living matter and biosphere, which allowed conclusions about the biospheric and outer space role of the described phenomena.

  13. The non-compressibility ratio for accurate diagnosis of lower extremity deep vein thrombosis

    Directory of Open Access Journals (Sweden)

    Caecilia Marliana

    2014-08-01

    Full Text Available Background Accurate identification of patients with deep vein thrombosis (DVT is critical, as untreated cases can be fatal. It is well established that the specificity of the clinical signs and symptoms of DVT is low. Therefore, clinicians rely on additional tests to make this diagnosis. There are three modalities for DVT diagnosis; clinical scoring, laboratory investigations, and radiology. The objective of this study was to determine the correlation of plasma D-dimer concentration with the ultrasonographic non-compressibility ratio in patients with DVT in the lower extremities. Methods This research was a cross-sectional observational study. The sample comprised 25 subjects over 30 years of age with clinically diagnosed DVT in the lower extremities. In all subjects, D-dimer determination using latex enhanced turbidimetric test was performed, as well as ultrasonographic non-compressibility ratio assessment of the lower extremities. Data were analyzed using Pearson’s correlation at significance level of 0.05. Results Mean plasma D-dimer concentration was 2953.00 ± 2054.44 mg/L. The highest mean non-compressibility ratio (59.96 ± 35.98% was found in the superficial femoral vein and the lowest mean non-compressibility ratio (42.68 ± 33.71% in the common femoral vein. There was a moderately significant correlation between plasma D-dimer level and non-compressibility ratio in the popliteal vein (r=0.582; p=0.037. In the other veins of the lower extremities, no significant correlation was found. Conclusion The sonographic non-compressibility ratio is an objective test for quick and accurate diagnosis of lower extremity DVT and for evaluation of DVT severity.

  14. Endovascular Management of Deep venous Thrombosis of Lower Extremity in Patients with Malignant Disease

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Su Jin; Kim, Jae Kyu; Jang, Nam Kyu; Han, Seung Min; Kang, Heoung Keun; Choi, Soo Jin Nah [Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2009-07-15

    To evaluate the efficacy of endovascular management of lower extremity deep vein thrombosis (DVT) in patients with malignant disease. Between January 2002 and January 2008, six consecutive patients (5 male and 1 female, mean age-65 years) with lower extremity DVT and malignant disease underwent endovascular management. The duration of symptoms lasted 4-120 days (mean-31 days; 20 days or less in four patients and more than 20 days in two). A catheter-directed thrombolysis was performed via the ipsilateral popliteal vein or common femoral vein, used alone or combined with a percutaneous mechanical thrombectomy. Angioplasty or stent placement was performed in residual stenosis or occlusion of the vein. The follow-up period lasted 1-14 months (mean 7.6 months) and was performed via a color Doppler ultrasonography or computed tomographic venography. Technical success and relief from symptoms was achieved within two days was achieved in five patients. Minor hemorrhagic complications occurred in two cases: hematuria and a hematoma at the puncture site. Upon follow-up, a recurrent DVT occurred in three patients as well as a patent venous flow in two. One patient died within 1 month due to a metastatic mediastinal lymphadenopathy. Endovascular management of the lower extremity DVT is effective for quickly eliminating a thrombus, relieving symptoms, and decreasing hemorrhagic complications in patients with malignant disease.

  15. Representation learning with deep extreme learning machines for efficient image set classification

    KAUST Repository

    Uzair, Muhammad

    2016-12-09

    Efficient and accurate representation of a collection of images, that belong to the same class, is a major research challenge for practical image set classification. Existing methods either make prior assumptions about the data structure, or perform heavy computations to learn structure from the data itself. In this paper, we propose an efficient image set representation that does not make any prior assumptions about the structure of the underlying data. We learn the nonlinear structure of image sets with deep extreme learning machines that are very efficient and generalize well even on a limited number of training samples. Extensive experiments on a broad range of public datasets for image set classification show that the proposed algorithm consistently outperforms state-of-the-art image set classification methods both in terms of speed and accuracy.

  16. Endovascular management of deep venous thrombotic diseases of the lower extremity

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Byung Suk [School of Medicine, Wonkwang Univ., Iksan (Korea, Republic of)

    2004-07-01

    Pulmonary embolism and venous ischemia are acute complications of deep vein thrombosis (DVT) of the lower extremities. Delayed complications include a spectrum of debilitating symptoms referred to as postthrombotic syndrome (PST). Because the early symptoms and patient signs are nonspecific for DVT, careful history taking and radiological evaluation of the extent and migration of thrombus should be used to establish an objective diagnosis and the need for treatment. Anticoagulation therapy is recognized as the mainstay treatment in acute DVT. However, there are few data to suggest any major beneficial effect of the early clearing of massive DVT and PTS. Endovascular, catheter-directed, thrombolysis techniques, used alone or in combination with mechanical thrombectomy devices, have been proven to be highly effective in clearing acute DVT, which may allow the preservation of venous valve function and the prevention of subsequent venous occlusive disease. Definitive management of the underlying anatomic occlusive abnormalities should also be undertaken.

  17. Novel Zero-Heat-Flux Deep Body Temperature Measurement in Lower Extremity Vascular and Cardiac Surgery.

    Science.gov (United States)

    Mäkinen, Marja-Tellervo; Pesonen, Anne; Jousela, Irma; Päivärinta, Janne; Poikajärvi, Satu; Albäck, Anders; Salminen, Ulla-Stina; Pesonen, Eero

    2016-08-01

    The aim of this study was to compare deep body temperature obtained using a novel noninvasive continuous zero-heat-flux temperature measurement system with core temperatures obtained using conventional methods. A prospective, observational study. Operating room of a university hospital. The study comprised 15 patients undergoing vascular surgery of the lower extremities and 15 patients undergoing cardiac surgery with cardiopulmonary bypass. Zero-heat-flux thermometry on the forehead and standard core temperature measurements. Body temperature was measured using a new thermometry system (SpotOn; 3M, St. Paul, MN) on the forehead and with conventional methods in the esophagus during vascular surgery (n = 15), and in the nasopharynx and pulmonary artery during cardiac surgery (n = 15). The agreement between SpotOn and the conventional methods was assessed using the Bland-Altman random-effects approach for repeated measures. The mean difference between SpotOn and the esophageal temperature during vascular surgery was+0.08°C (95% limit of agreement -0.25 to+0.40°C). During cardiac surgery, during off CPB, the mean difference between SpotOn and the pulmonary arterial temperature was -0.05°C (95% limits of agreement -0.56 to+0.47°C). Throughout cardiac surgery (on and off CPB), the mean difference between SpotOn and the nasopharyngeal temperature was -0.12°C (95% limits of agreement -0.94 to+0.71°C). Poor agreement between the SpotOn and nasopharyngeal temperatures was detected in hypothermia below approximately 32°C. According to this preliminary study, the deep body temperature measured using the zero-heat-flux system was in good agreement with standard core temperatures during lower extremity vascular and cardiac surgery. However, agreement was questionable during hypothermia below 32°C. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Advanced MOKE magnetometry in wide-field Kerr-microscopy

    Science.gov (United States)

    Soldatov, I. V.; Schäfer, R.

    2017-10-01

    The measurement of MOKE (Magneto-Optical Kerr Effect) magnetization loops in a wide-field Kerr microscope offers the advantage that the relevant domain images along the loop can be readily recorded. As the microscope's objective lens is exposed to the magnetic field, the loops are usually strongly distorted by non-linear Faraday rotations of the polarized light that occur in the objective lens and that are superimposed to the MOKE signal. In this paper, an experimental method, based on a motorized analyzer, is introduced which allows to compensate the Faraday contributions, thus leading to pure MOKE loops. A wide field Kerr microscope, equipped with this technology, works well as a laser-based MOKE magnetometer, additionally offering domain images and thus providing the basis for loop interpretation.

  19. DCC Case Study: Wide Field Astronomy Unit (WFAU)

    OpenAIRE

    Donnelly, Martin

    2005-01-01

    Case study on the Wide Field Astronomy Unit (WFAU), Edinburgh. Outlines data curation issues with which WFAU is involved, with an emphasis on interoperability. Particular regard is given to the transfer and reuse of data collected from disparate sources. The case study also covers other factors influencing data curation, including methodological development, standards and legal issues, evaluation, and human factors. A technical appendix outlines the technologies used i...

  20. Functional screening of hydrolytic activities reveals an extremely thermostable cellulase from a deep-sea archaeon

    Directory of Open Access Journals (Sweden)

    Benedikt eLeis

    2015-07-01

    Full Text Available Extreme habitats serve as a source of enzymes which are active under extreme conditions and are candidates for industrial applications. In this work, six large-insert mixed genomic libraries were screened for hydrolase activities in a broad temperature range (8 to 70 °C. Among a variety of hydrolytic activities, one fosmid clone, derived from a library of pooled isolates of hyperthermophilic archaea from deep sea vents, displayed hydrolytic activity on carboxymethyl cellulose substrate plates at 70 °C but not at lower temperatures. Sequence analysis of the fosmid insert revealed a gene encoding a novel glycoside hydrolase family 12 (GHF12 endo-1,4-β-glucanase, termed Cel12E. The enzyme shares 45 % sequence identity with a protein from the archaeon Thermococcus sp. AM4 and displays a unique multidomain architecture. Biochemical characterization of Cel12E revealed a remarkably thermostable protein, which appears to be of archaeal origin. The enzyme displayed maximum activity at 92 °C and was active on a variety of linear 1,4-β-glucans like carboxymethyl cellulose, β-glucan, lichenan, and phosphoric acid swollen cellulose. The protein is able to bind to various insoluble β-glucans. Product pattern analysis indicated that Cel12E is an endo-cleaving β-glucanase. Cel12E expands the toolbox of hyperthermostable archaeal cellulases with biotechnological potential.

  1. Catheter-directed thrombolysis of below-knee deep venous thrombosis of the lower extremities

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Byung Suk; Sohn, Young Jun; Heo, Eun A; Cho, Hyun Sun; Park, Seong Hoon; Lee, Young Hwan [Wonkwang University Hospital, Iksan (Korea, Republic of)

    2008-02-15

    To evaluate the technical feasibility and clinical efficacy of the use of local thrombolysis for below-knee deep vein thrombosis (DVT). From a population of 41 patients with a lower extremity DVT, the prospective clinical trial included 11 patients (7 female, 4 male, average age 61.4 years) treated with catheter-directed thrombolysis with urokinase for below-knee DVT. After removal of the proximal ilofemoral DVT, additional interventional procedures to remove the residual thrombosis and restore the venous flow from the below-knee vein were performed in cases of continuous occlusion of venous flow from the popliteal and tibial veins. Under ultrasound (US) guidance, catheter-directed thrombolysis with urokinase was performed through the ipsilateral popliteal vein. After administration of oral anticoagulation therapy, CT and venography were performed to identify patency and the presence of a recurrent thrombosis. Successful removal of the thrombus and restoration of venous flow were achieved in all of the patients (100%). Restoration of flow with a residual thrombus occurred in one case. Focal venous stenosis was discovered in four cases. The duration of urokinase infusion was 1-4 days (average 2.36 days), which was considered long. For 15.2 months, the venous lumen of all cases was preserved without a recurrent thrombosis. Catheter-directed thrombolysis is an effective procedure for recanalization of below-knee DVT in patients with a lower extremity DVT.

  2. Extremely deep recreational dives: the risk for carbon dioxide (CO(2)) retention and high pressure neurological syndrome (HPNS).

    Science.gov (United States)

    Kot, Jacek

    2012-01-01

    Clear differences between professional and recreational deep diving are disappearing, at least when taking into account the types of breathing mixtures (oxygen, nitrox, heliox, and trimix) and range of dive parameters (depth and time). Training of recreational deep divers is conducted at depths of 120-150 metres and some divers dive to 180-200 metres using the same diving techniques. Extremely deep recreational divers go to depths of more than 200 metres, at which depths the physical and chemical properties of breathing gases create some physiological restrictions already known from professional deep diving. One risk is carbon dioxide retention due to limitation of lung ventilation caused by the high density of breathing gas mixture at great depths. This effect can be amplified by the introduction of the additional work of breathing if there is significant external resistance caused by a breathing device. The other risk for deep divers is High Pressure Neurological Syndrome (HPNS) caused by a direct compression effect, presumably on the lipid component of cell membranes of the central nervous system. In deep professional diving, divers use a mixture of helium and oxygen to decrease gas density, and nitrogen is used only in some cases for decreasing the signs and symptoms of HPNS. The same approach with decreasing the nitrogen content in the breathing mixture can also be observed nowadays in deep recreational diving. Moreover, in extremely deep professional diving, hydrogen has been used successfully both for decreasing the density of the breathing gas mixture and amelioration of HPNS signs and symptoms. It is fair to assume that the use of hydrogen will be soon "re-invented" by extremely deep recreational divers. So the scope of modern diving medicine for recreational divers should be expanded also to cover these problems, which previously were assigned exclusively to professional and military divers.

  3. The UKIRT wide-field camera (WFCAM): commissioning and performance on the telescope

    Science.gov (United States)

    Hirst, Paul; Casali, Mark; Adamson, Andy; Ives, Derek; Kerr, Tom

    2006-06-01

    The UKIRT Wide-Field Camera (WFCAM) was commissioned in two phases between October and December 2004, and March and April 2005. It has been carrying out full-scale sky survey operations since May 2005. This paper describes the commissioning process and compares actual performance on the telescope with specifications in four key areas: optical image quality including delivered FWHM and ghosting etc., noise and sensitivity in the infrared and on the visible autoguider, array artifacts such as crosstalk and persistent images, and observing efficiency. A comprehensive program of science verification was carried out before commencing the UKIRT Infrared Deep Sky Survey (UKIDSS).

  4. Percutaneous aspiration thrombectomy for the treatment of acute lower extremity deep vein thrombosis: is thrombolysis needed?

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S.H. [Department of Radiology, Kyung Hee University Medical Center, Seoul (Korea, Republic of); Oh, J.H. [Department of Radiology, Kyung Hee University Medical Center, Seoul (Korea, Republic of)], E-mail: radkwon@dreamwiz.com; Seo, T.-S. [Department of Radiology, Korea University Guro Hospital, Seoul (Korea, Republic of); Ahn, H.J.; Park, H.C. [Department of Surgery, Kyung Hee University Medical Center, Seoul (Korea, Republic of)

    2009-05-15

    Aim: To assess the technical feasibility and initial success of aspiration thrombectomy as a potential alternative to lytic therapy in initial endovascular management of acute lower extremity deep vein thrombosis (DVT). Materials and Methods: From July 2004 to October 2007, a retrospective analysis of 27 patients (male:female 5:22; mean age 59 years) with acute iliofemoral or femoropopliteal DVT of less than 2 weeks was performed. All patients underwent sonography of the lower extremities, and 13 patients underwent computed tomography (CT) venography. All patients received an inferior vena cava (IVC) filter and were initially treated with aspiration thrombectomy using the pullback technique with or without basket thrombus fragmentation. If persistent stenotic portions (>50% luminal narrowing) were noted, balloon angioplasty or stent placement was performed. Successful recanalization was defined as successful restoration of antegrade flow in the treated vein with elimination of any underlying obstructive lesion. Results: The mean procedure time was 65 min (range 40-100 min). Successful initial recanalization was achieved in 24 patients (88.9%) without complications. Urokinase was required for three patients (11.1%) due to a hard thrombus remaining in the iliac vein. Of the 27 patients, 23 had residual venous stenosis in the common iliac vein or external iliac vein. Therefore, balloon angioplasty (n = 23) and stent placement (n = 22) was performed. The remaining four patients were treated using only aspiration thrombectomy without angioplasty or stent placement. Conclusion: Aspiration thrombectomy without catheter-directed thrombolysis is a safe and effective treatment for acute DVT of the lower extremities, and minimizes the risk of haemorrhagic complications.

  5. [Application of free chimeric perforator flap with deep epigastric inferior artery for the soft tissue defect on the lower extremity with deep dead space].

    Science.gov (United States)

    Juyu, Tang; Liming, Qing; Panfeng, Wu; Zhengbing, Zhou; Jieyu, Liang; Fang, Yu; Jinfei, Fu

    2015-11-01

    To explore the feasibility and the effect of free chimeric perforator flap with deep inferior epigastric artery for the soft tissue defect on the lower extremity with deep dead space. From Mar. 2010 to Aug. 2011, 8 patients with soft tissue defects on the lower extremities combined with dead space, bone or joint exposure were reconstructed with free hinged perforator flaps with deep inferior epigastric artery. The muscle flap was inserted into the deep dead space, with perforator flap for superficial defect. The defects on the donor sites were closed directly. All the flaps survived with primary healing. Good color and texture was achieved. The patients were followed up for 12-24 months, with an average of 16 months. 2 over-thick flaps were treated by flap-thinning surgery. Only linear scar was left on the donor site on abdomen with no malfunction. The free chimeric perforator flap with deep inferior epigastric artery can simultaneously construct the dead space and superficial defect with only anastomosis of one set of vascular pedicle. It is an ideal method with good results on recipientsites and less morbidity on donor sites.

  6. Wide-field Imaging of the Environments of LITTLE THINGS Dwarf Irregular Galaxies

    Science.gov (United States)

    Hunter, Deidre A.; Melton, Casey; Leshin, Stephen; Wong, Alson; Clark, Maurice; Kamienski, Jerald; Moriya, Netzer; Packwood, Burley; Birket, Bob; Edwards, William; Millward, Mervyn; Wheelband, Ian

    2018-01-01

    We have obtained wide-field images of 36 of the 41 LITTLE THINGS (Local Irregulars That Trace Luminosity Extremes, The H I Nearby Galaxy Survey) nearby (limiting magnitudes of the images range from 19.7 to 28.3 mag arcsec‑2, with a median value of 25.9 mag arcsec‑2. We did not find any unknown companions. Two of the LITTLE THINGS galaxies, NGC 4163 and NGC 4214, and the fainter dwarf, UGCA 276, lie potentially within 100 kpc of each other, but our imaging does not reveal any stellar bridge between the galaxies. This project was part of the Lowell Amateur Research Initiative.

  7. The High-Speed and Wide-Field TORTORA Camera: description & results .

    Science.gov (United States)

    Greco, G.; Beskin, G.; Karpov, S.; Guarnieri, A.; Bartolini, C.; Bondar, S.; Piccioni, A.; Molinari, E.

    We present the description and the most significant results of the wide-field and ultra-fast TORTORA camera devoted to the investigation of rapid changes in light intensity in a phenomenon occurring within an extremely short period of time and randomly distributed over the sky. In particular, the ground-based TORTORA observations synchronized with the gamma -ray BAT telescope on board of the Swift satellite has permitted to trace the optical burst time-structure of the Naked-Eye GRB 080319B with an unprecedented level of accuracy.

  8. Magnetic resonance venography in consecutive patients with suspected deep vein thrombosis of the upper extremity: Initial experience

    NARCIS (Netherlands)

    Baarslag, H. J.; van Beek, E. J. R.; Reekers, J. A.

    2004-01-01

    Purpose: To assess the feasibility and accuracy of two magnetic resonance (MR) venography methods in a consecutive series of patients with suspected deep vein thrombosis of the upper extremity (DVTUE). Material and Methods: Consecutive in- and outpatients who were referred for imaging of suspected

  9. Wide field focal plane arrays for UKIRT and VISTA

    Science.gov (United States)

    Ives, D.; Laidlaw, K.; Bezawada, N. N.

    This paper briefly describes the focal plane arrays of the UKIRT Wide Field Camera and the IR camera for the Visible and Infrared Survey Telescope for Astronomy (VISTA). Laboratory test results on the HAWAII-2 engineering grade detector are summarised. The interference problems resulting from the on-axis wavefront/autoguider sensors and their controllers (autoguider, wavefront sensor, etc.) are anticipated and possible options to eliminate or attenuate these effects are presented. Laboratory tests on the Electromagnetic Interference (EMI) issues are also reported.

  10. Vestibular rehabilitation using a wide field of view virtual environment.

    Science.gov (United States)

    Sparto, P J; Furman, J M; Whitney, S L; Hodges, L F; Redfern, M S

    2004-01-01

    This paper presents a theoretical justification for using a wide field of view (FOV) virtual reality display system for use in vestibular rehabilitation. A wide FOV environment offers some unique features that may be beneficial to vestibular rehabilitation. Primarily, optic flow information extracted from the periphery may be critical for recalibrating the sensory processes used by people with vestibular disorders. If this hypothesis is correct, then wide FOV systems will have an advantage over narrow field of view input devices such as head mounted or desktop displays. Devices that we have incorporated into our system that are critical for monitoring improvement in this clinical population will also be described.

  11. WFIRST: Astrometry with the Wide-Field Imager

    Science.gov (United States)

    Bellini, Andrea; WFIRST Astrometry Working Group

    2018-01-01

    The wide field of view and stable, sharp images delivered by WFIRST's Wide-Field Imager make it an excellent instrument for astrometry, one of five major discovery areas identified in the 2010 Decadal Survey. Compared to the Hubble Space Telescope, WFIRST's wider field of view with similar image quality will provide hundreds more astrometric targets per image as well as background galaxies and stars with precise positions in the Gaia catalog. In addition, WFIRST will operate in the infrared, a wavelength regime where the most precise astrometry has so far been achieved with adaptive optics images from large ground-based telescopes. WFIRST will provide at least a factor of three improvement in astrometry over the current state of the art in this wavelength range, while spanning a field of view thousands of times larger. WFIRST is thus poised to make major contributions to multiple science topics in which astrometry plays an important role, without major alterations to the planned mission or instrument. We summarize a few of the most compelling science cases where WFIRST astrometry could prove transformational.

  12. PERSPECTIVE: Toward a wide-field retinal prosthesis

    Science.gov (United States)

    Ameri, Hossein; Ratanapakorn, Tanapat; Ufer, Stefan; Eckhardt, Helmut; Humayun, Mark S.; Weiland, James D.

    2009-06-01

    The purpose of this paper is to present a wide field electrode array that may increase the field of vision in patients implanted with a retinal prosthesis. Mobility is often impaired in patients with low vision, particularly in those with peripheral visual loss. Studies on low vision patients as well as simulation studies on normally sighted individuals have indicated a strong correlation between the visual field and mobility. In addition, it has been shown that an increased visual field is associated with a significant improvement in visual acuity and object discrimination. Current electrode arrays implanted in animals or human vary in size; however, the retinal area covered by the electrodes has a maximum projected visual field of about 10°. We have designed wide field electrode arrays that could potentially provide a visual field of 34°, which may significantly improve the mobility. Tests performed on a mechanical eye model showed that it was possible to fix 10 mm wide flexible polyimide dummy electrode arrays onto the retina using a single retinal tack. They also showed that the arrays could conform to the inner curvature of the eye. Surgeries on an enucleated porcine eye model demonstrated feasibility of implantation of 10 mm wide arrays through a 5 mm eye wall incision.

  13. Qualification of Bonding Process of Temperature Sensors to Extreme Temperature Deep Space Missions

    Science.gov (United States)

    Ramesham, Rajeshuni; Kitiyakara, Amarit; Redick, Richard; Sunada, Eric T.

    2011-01-01

    A process has been explored based on the state-of-the-art technology to bond the platinum resistance thermometer (PRT) on to potential aerospace material such as a flat aluminum surface and a flexible copper tube to simulate coaxial cable for the flight applications. Primarily, PRTs were inserted into a metal plated copper braid to avoid stresses on the sensor while attaching the sensor with braid to the base material for long duration deep space missions. Appropriate pretreatment has been implemented in this study to enhance the adhesion of the PRTs to the base material. NuSil product has been chosen in this research to attach PRT to the base materials. The resistance (approx.1.1 k(Omega)) of PRTs has been electrically monitored continuously during the qualification thermal cycling testing from -150 C to +120 C and -100 C to -35 C. The test hardware has been thermal cycled three times the mission life per JPL design principles for JUNO project. No PRT failures were observed during and after the PRT thermal cycling qualification test for extreme temperature environments. However, there were some failures associated with staking of the PRT pig tails as a result of thermal cycling qualification test.

  14. Deep vein thrombosis of the upper extremity: intra- and interobserver study of digital subtraction venography

    Energy Technology Data Exchange (ETDEWEB)

    Baarslag, Henk J.; Delden, Otto M. van; Bakker, Ad J.; Reekers, Jim A. [Department of Radiology, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands); Beek, Edwin J.R. van [Department of Radiology, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands); Section of Academic Radiology, Floor C, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF (United Kingdom); Tijssen, Jan G.P. [Department of Cardiology, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands)

    2003-02-01

    Our objective was to assess the inter-observer and intra-observer agreement in the interpretation of digital subtraction venography (DSV) in patients with suspected deep vein thrombosis of the upper extremity (DVTUE). Prospectively, 62 consecutive DSV studies in 54 patients with clinically suspected DVTUE were included. Hard copies were presented without demographic data or original report. All venograms were read twice, at 3-month intervals, by an interventional vascular radiologist (observer 1) and an experienced general radiologist (observer 2). Consensus reading took place in the presence of a third experienced interventional radiologist. Inter-observer and intra-observer agreement were assessed using kappa statistics. Initial reading in 62 venograms showed an inter-observer agreement of 71% (kappa 0.48). The inter-observer agreement of the second reading was 83% (kappa 0.71). The agreement with the consensus report ranged from 76 to 94%. The intra-observer agreement for the first and second observer was 94% (kappa 0.89) and 76% (kappa 0.56), respectively (p<0.01). Digital subtraction venography has moderate to excellent intra- and inter-observer agreement, suggesting that digital subtraction venography is reliable for the diagnosis of DVTUE. (orig.)

  15. Extracting features from protein sequences to improve deep extreme learning machine for protein fold recognition.

    Science.gov (United States)

    Ibrahim, Wisam; Abadeh, Mohammad Saniee

    2017-05-21

    Protein fold recognition is an important problem in bioinformatics to predict three-dimensional structure of a protein. One of the most challenging tasks in protein fold recognition problem is the extraction of efficient features from the amino-acid sequences to obtain better classifiers. In this paper, we have proposed six descriptors to extract features from protein sequences. These descriptors are applied in the first stage of a three-stage framework PCA-DELM-LDA to extract feature vectors from the amino-acid sequences. Principal Component Analysis PCA has been implemented to reduce the number of extracted features. The extracted feature vectors have been used with original features to improve the performance of the Deep Extreme Learning Machine DELM in the second stage. Four new features have been extracted from the second stage and used in the third stage by Linear Discriminant Analysis LDA to classify the instances into 27 folds. The proposed framework is implemented on the independent and combined feature sets in SCOP datasets. The experimental results show that extracted feature vectors in the first stage could improve the performance of DELM in extracting new useful features in second stage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Visibility retrieval in Michelson wide-field stellar interferometry

    Science.gov (United States)

    Montilla, I.; Sellos, J.; Pereira, S. F.; Braat, J. J. M.

    2006-04-01

    Wide-field interferometry has become a subject of increasing interest in recent years. New methods have been suggested in order to avoid the drawbacks of the standard wide-field method (homothetic mapping), which is not applicable when the aperture is highly diluted; for this reason, imaging with non-homothetic arrays is being extensively studied (E. Pedretti, et al., Astron. Astrophys. Suppl. Ser. 147 285 (2000); S. Gillet, et al., Astron. Astrophys. 400 393 (2003)). The field of view of a pupil-plane interferometer or a densified array consists of only a few resolution elements; in order to improve these systems, we have developed a new method consisting of a Michelson pupil-plane combination scheme where a wide field of view can be achieved in one shot. This technique, called the ‘staircase mirror’ approach, has been described in a previous paper (I. Montilla, S.F. Pereira and J.J.M. Braat, Appl. Optics 44 328 (2005)) and uses a stair-shaped mirror in the intermediate image plane of each telescope in the array, allowing for simultaneous correction of the differential delay for both the on- and off-axis image positions. Experimental results have been obtained showing the simultaneous recovery of the fringes of off-axis stars with an appreciable angular separation, and with a contrast similar to that of the on-axis reference star. With this example we demonstrate an increase of the field of view by a factor of 5, with no need for extra observation time. In this article, we present a further analysis of the method. We investigate how to retrieve the visibility when a star is focused on the edge of a step of the stair-shaped mirror. Even though the optical pathlength difference correction is discontinuous, we show both numerically and analytically that the visibility can be completely recovered, so that no information is lost. Our experimental results demonstrate that the visibility can be retrieved to within a 1% error.

  17. Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching.

    Science.gov (United States)

    Schwentker, Miriam A; Bock, Hannes; Hofmann, Michael; Jakobs, Stefan; Bewersdorf, Jörg; Eggeling, Christian; Hell, Stefan W

    2007-03-01

    Subdiffraction fluorescence imaging is presented in a parallelized wide-field arrangement exploiting the principle of reversible saturable/switchable optical transitions (RESOLFT). The diffraction barrier is overcome by photoswitching ensembles of the label protein asFP595 between a nonfluorescent off- and a fluorescent on-state. Relying on ultralow continuous-wave intensities, reversible protein switching facilitates parallelized fast image acquisition. The RESOLFT principle is implemented by illuminating with intensity distributions featuring zero intensity lines that are further apart than the conventional Abbe resolution limit. The subdiffraction resolution is verified by recording live Escherichia coli bacteria labeled with asFP595. The obtained resolution of 50 nm ( approximately lambda/12) is limited only by the spectroscopic properties of the proteins and the imperfections of the optical implementation, but not on principle grounds. (c) 2007 Wiley-Liss, Inc.

  18. Thermal design of the Wide Field/Planetary Camera

    Science.gov (United States)

    Garcia, R. D.; Jones, J. A.; Stultz, J. W.

    1989-01-01

    The Wide Field/Planetary Camera is an imaging system developed by the Jet Propulsion Laboratory for the NASA Hubble Space Telescope currently scheduled to be launched in December 1989 aboard the space shuttle. The temperature control design of the instrument utilizes multilayered insulation, electric resistance heaters, aluminum/ammonia heat pipes, thermoelectric coolers, temperature control coatings, and space radiators. A feedback control system maintains stable sensor temperatures. Thermal capacitance maintains stable optics and electronics temperatures during transient conditions. Schedule slips and launch delays have allowed extensive thermal testing of the instrument. Six instrument thermal vacuum tests and a spacecraft thermal vacuum test were performed. Several modifications have been made to the instrument to correct icing and contamination problems that have been discovered during thermal vacuum testing. This paper describes the thermal design, last instrument thermal vacuum test, results, and thermal model correlation.

  19. The design of the wide field monitor for LOFT

    DEFF Research Database (Denmark)

    Brandt, Søren; Hernanz, M.; Alvarez, L.

    2014-01-01

    is designed to carry on-board two instruments with sensitivity in the 2-50 keV range: a 10 m 2 class Large Area Detector (LAD) with a ... will be to detect transient sources to be observed by the LAD. However, thanks to its unique combination of a wide field of view (FoV) and energy resolution (better than 500 eV), the WFM will be also an excellent monitoring instrument to study the long term variability of many classes of X-ray sources. The WFM...... consists of 10 independent and identical coded mask cameras arranged in 5 pairs to provide the desired sky coverage. We provide here an overview of the instrument design, configuration, and capabilities of the LOFT WFM. The compact and modular design of the WFM could easily make the instrument concept...

  20. DMD-based programmable wide field spectrograph for Earth observation

    Science.gov (United States)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean

    2015-03-01

    In Earth Observation, Universe Observation and Planet Exploration, scientific return could be optimized in future missions using MOEMS devices. In Earth Observation, we propose an innovative reconfigurable instrument, a programmable wide-field spectrograph where both the FOV and the spectrum could be tailored thanks to a 2D micromirror array (MMA). For a linear 1D field of view (FOV), the principle is to use a MMA to select the wavelengths by acting on intensity. This component is placed in the focal plane of a first grating. On the MMA surface, the spatial dimension is along one side of the device and for each spatial point, its spectrum is displayed along the perpendicular direction: each spatial and spectral feature of the 1D FOV is then fully adjustable dynamically and/or programmable. A second stage with an identical grating recomposes the beam after wavelengths selection, leading to an output tailored 1D image. A mock-up has been designed, fabricated and tested. The micromirror array is the largest DMD in 2048 x 1080 mirrors format, with a pitch of 13.68μm. A synthetic linear FOV is generated and typical images have been recorded o at the output focal plane of the instrument. By tailoring the DMD, we could modify successfully each pixel of the input image: for example, it is possible to remove bright objects or, for each spatial pixel, modify the spectral signature. The very promising results obtained on the mock-up of the programmable wide-field spectrograph reveal the efficiency of this new instrument concept for Earth Observation.

  1. Calibration and testing of wide-field UV instruments

    Science.gov (United States)

    Frey, H. U.; Mende, S. B.; Loicq, J.; Habraken, S.

    2017-06-01

    As with all optical systems the calibration of wide-field ultraviolet (UV) systems includes three main areas: sensitivity, imaging quality, and imaging capability. The one thing that makes UV calibrations difficult is the need for working in vacuum substantially extending the required time and effort compared to visible systems. In theory a ray tracing and characterization of each individual component of the optical system (mirrors, windows, and grating) should provide the transmission efficiency of the combined system. However, potentially unknown effects (contamination, misalignment, and measurement errors) can make the final error too large and unacceptable for most applications. Therefore, it is desirable to test and measure the optical properties of the whole system in vacuum and compare the overall response to the response of a calibrated photon detector. A proper comparison then allows the quantification of individual sources of uncertainty and ensures that the whole instrument performance is within acceptable tolerances or pinpoints which parts fail to meet requirements. Based on the experience with the IMAGE Spectrographic Imager, the Wide-band Imaging Camera, and the ICON Far Ultraviolet instruments, we discuss the steps and procedures for the proper radiometric sensitivity and passband calibration, spot size, imaging distortions, flatfield, and field of view determination.Plain Language SummaryAs with all optical systems the calibration of wide-field ultraviolet (UV) systems includes three main areas: sensitivity, imaging quality, and imaging capability. The one thing that makes UV calibrations difficult is the need for working in vacuum substantially extending the required time and effort compared to visible systems. Based on the experience with the IMAGE Spectrographic Imager, the Wide-band Imaging Camera (WIC), and the ICON Far Ultraviolet instruments, we discuss the steps and procedures for the proper radiometric sensitivity and pass-band calibration

  2. GaAs JFETs for Extremely Low-Noise, Deep Cryogenic Sensor Readout Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ultrasensitive sensors used in NASAs scientific missions (for example infrared sensors) typically require operation at deep cryogenic temperatures for optimum...

  3. Wide Field-of-View Fluorescence Imaging of Coral Reefs

    Science.gov (United States)

    Treibitz, Tali; Neal, Benjamin P.; Kline, David I.; Beijbom, Oscar; Roberts, Paul L. D.; Mitchell, B. Greg; Kriegman, David

    2015-01-01

    Coral reefs globally are declining rapidly because of both local and global stressors. Improved monitoring tools are urgently needed to understand the changes that are occurring at appropriate temporal and spatial scales. Coral fluorescence imaging tools have the potential to improve both ecological and physiological assessments. Although fluorescence imaging is regularly used for laboratory studies of corals, it has not yet been used for large-scale in situ assessments. Current obstacles to effective underwater fluorescence surveying include limited field-of-view due to low camera sensitivity, the need for nighttime deployment because of ambient light contamination, and the need for custom multispectral narrow band imaging systems to separate the signal into meaningful fluorescence bands. Here we describe the Fluorescence Imaging System (FluorIS), based on a consumer camera modified for greatly increased sensitivity to chlorophyll-a fluorescence, and we show high spectral correlation between acquired images and in situ spectrometer measurements. This system greatly facilitates underwater wide field-of-view fluorophore surveying during both night and day, and potentially enables improvements in semi-automated segmentation of live corals in coral reef photographs and juvenile coral surveys. PMID:25582836

  4. New Subarray Readout Patterns for the ACS Wide Field Channel

    Science.gov (United States)

    Golimowski, D.; Anderson, J.; Arslanian, S.; Chiaberge, M.; Grogin, N.; Lim, Pey Lian; Lupie, O.; McMaster, M.; Reinhart, M.; Schiffer, F.; Serrano, B.; Van Marshall, M.; Welty, A.

    2017-04-01

    At the start of Cycle 24, the original CCD-readout timing patterns used to generate ACS Wide Field Channel (WFC) subarray images were replaced with new patterns adapted from the four-quadrant readout pattern used to generate full-frame WFC images. The primary motivation for this replacement was a substantial reduction of observatory and staff resources needed to support WFC subarray bias calibration, which became a new and challenging obligation after the installation of the ACS CCD Electronics Box Replacement during Servicing Mission 4. The new readout patterns also improve the overall efficiency of observing with WFC subarrays and enable the processing of subarray images through stages of the ACS data calibration pipeline (calacs) that were previously restricted to full-frame WFC images. The new readout patterns replace the original 512×512, 1024×1024, and 2048×2046-pixel subarrays with subarrays having 2048 columns and 512, 1024, and 2048 rows, respectively. Whereas the original square subarrays were limited to certain WFC quadrants, the new rectangular subarrays are available in all four quadrants. The underlying bias structure of the new subarrays now conforms with those of the corresponding regions of the full-frame image, which allows raw frames in all image formats to be calibrated using one contemporaneous full-frame "superbias" reference image. The original subarrays remain available for scientific use, but calibration of these image formats is no longer supported by STScI.

  5. Wide-Field Slitless Spectroscopy with JWST/NIRISS

    Science.gov (United States)

    Dixon, William V.

    2013-01-01

    The Near Infrared Imager and Slitless Spectrograph (NIRISS) is one of four scientific instruments that will fly aboard the James Webb Space Telescope (JWST) later in this decade. Among its capabilities, NIRISS offers wide-field slitless spectroscopy (WFSS) with a resolving power R = 150 over the wavelength range 1.0 to 2.25 microns using a pair of grisms that disperse light in orthogonal directions. Employing the software packages aXe and Source Extractor, we have developed the configuration files needed to model WFSS observations with NIRISS and to extract and calibrate the resulting spectra. These files, together with a cookbook detailing their use, are available on the JWST/NIRISS web site at STScI. Using these tools, we construct synthetic images of the near-IR sky, identify and extract the spectra of individual sources, and demonstrate that NIRISS can observe galaxies with redshifts up to z = 17. NIRISS is provided to the JWST project by the Canadian Space Agency under the leadership of René Doyon of the Université de Montréal. The prime contractor is COM DEV Canada.

  6. Development of the wide field imager for Athena

    Science.gov (United States)

    Meidinger, Norbert; Eder, Josef; Fürmetz, Maria; Nandra, Kirpal; Pietschner, Daniel; Plattner, Markus; Rau, Arne; Reiffers, Jonas; Strecker, Rafael; Barbera, Marco; Brand, Thorsten; Wilms, Jörn

    2015-08-01

    The WFI (Wide Field Imager) instrument is planned to be one of two complementary focal plane cameras on ESA's next X-ray observatory Athena. It combines unprecedented survey power through its large field of view of 40 arcmin x 40 arcmin together with excellent count-rate capability (>= 1 Crab). The energy resolution of the silicon sensor is state-of-the-art in the energy band of interest from 0.2 keV to 15 keV, e.g. the full width at half maximum of a line at 6 keV will be MOSFET integrated onto a fully depleted 450 μm thick silicon bulk. Two different types of DEPFET sensors are planned for the WFI instrument: A set of four large-area sensors to cover the physical size of 14 cm x 14 cm in the focal plane and a single smaller gateable DEPFET sensor matrix optimized for high count-rate observations. Here we present the conceptual design of the instrument with focus on the critical subsystems and describe the instrument performance expectations. An outline of the model philosophy and the project organization completes the presentation.

  7. Anatomic variation of the deep venous system and its relationship with deep vein thrombosis found on the lower extremity venograms that were obtained after artificial joint replacements

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Sun; Lee, Jee Eun; Hwang, Ji Young; Shim, Sung Shine; Yoo, Jeong Hyun; Suh, Jeong Soo; Park, Jae Young [College of Medicine, Ewha Womans University, Seoul (Korea, Republic of)

    2006-11-15

    We wanted to evaluate the anatomic variations, the number of valves and the presence of deep vein thrombosis (DVT) on the lower extremity venograms obtained after artificial joint replacements, and we also wanted to determine the correlation of the incidence of DVT with the above-mentioned factors and the operation sites. From January to June 2004, conventional ascending contrast venographies of the lower extremities were performed in 119 patients at 7-10 days after artificial joint replacement, and all the patients were asymptomatic. Total knee replacement was done for 152 cases and total hip replacement was done for 34 cases. On all the venographic images of 186 limbs, the anatomic variations were classified and the presence of DVT was evaluated; the number of valves in the superficial femoral vein (SFV) and calf veins was counted. The sites of DVT were classified as calf, thigh and pelvis. Statistically, chi square tests and Fischer's exact tests were performed to determine the correlation of the incidence of DVT with the anatomic variations, the numbers of valves and the operation sites. Theoretically, there are 9 types of anatomical variation in the deep vein system of the lower extremity that can be classified, but only 7 types were observed in this study. The most frequent type was the normal single SFV type and this was noted in 117 cases (63%), and the others were all variations (69 cases, 37%). There was a 22.2% incidence of DVT (69 cases) in the normal single SFV type and 26.4% (17 cases) in the other variations. No significant difference was noted in the incidences of DVT between the two groups. In addition, no significant statistical differences were noted for the incidences of DVT between the single or variant multiple veins in the SFV and the popliteal vein (PV) respectively, between the different groups with small or large numbers of valves in the thigh and calf, respectively, and also between the different operation sites of the hip or knee

  8. Utility of balanced steady-state free precession MR venography in the diagnosis of lower extremity deep venous thrombosis.

    Science.gov (United States)

    Lindquist, Chris M; Karlicki, Fern; Lawrence, Patrick; Strzelczyk, Jacek; Pawlyshyn, Neal; Kirkpatrick, Iain D C

    2010-05-01

    The purpose of this study was to determine the sensitivity and specificity of balanced steady-state free precession MR venography in the diagnosis of lower extremity deep venous thrombosis. After undergoing lower extremity ultrasound because of suspicion of deep venous thrombosis, 64 patients were prospectively recruited to undergo balanced steady-state free precession MR venography with ultrasound as the reference standard. Ultrasound images were independently interpreted by two blinded ultrasound radiologists, and MR venograms were independently interpreted by two blinded MRI radiologists. The sensitivity, specificity, positive predictive value, and negative predictive value of MR venography were calculated for the diagnoses of all deep venous thrombosis, acute thrombi, and thrombosis of the popliteal, femoral, and common femoral veins individually. Proximal extent, thrombus age, ancillary findings, and interobserver agreement calculated with the Cohen kappa test were evaluated for ultrasound and MRI. The McNemar test was used to evaluate for statistical differences in diagnostic accuracy. MR venography had a sensitivity of 94.7%, specificity of 100%, positive predictive value of 100%, and negative predictive value of 97.7% for the diagnosis of all thrombi. For acute thrombi, the MR venography and ultrasound results were completely concordant. MR venography depicted greater proximal extent in five of 18 cases in which thrombosis was found. The MR venographic findings agreed completely with the ultrasound findings in determination of thrombus age. For both ultrasound and MR venography, interobserver agreement was 100% on a per-patient basis. No statistical difference was identified in the diagnostic performance of the two techniques. Balanced steady-state free precession MR venography is highly accurate in the diagnosis of lower extremity deep venous thrombosis.

  9. Pixel History for Advanced Camera for Surveys Wide Field Channel

    Science.gov (United States)

    Borncamp, D.; Grogin, N.; Bourque, M.; Ogaz, S.

    2017-06-01

    Excess thermal energy present in a Charged Coupled Device (CCD) can result in additional electrical current. This excess charge is trapped within the silicon lattice structure of the CCD electronics. It can persist through multiple exposures and have an adverse effect on science performance of the detectors unless properly flagged and corrected for. The traditional way to correct for this extra charge is to take occasional long-exposure images with the camera shutter closed. These images, generally referred to as "dark" images, allow for the measurement of the thermal-electron contamination present in each pixel of the CCD lattice. This so-called "dark current" can then be subtracted from the science images by re-scaling the dark to the corresponding exposure times. Pixels that have signal above a certain threshold are traditionally marked as "hot" and flagged in the data quality array. Many users will discard these because of the extra current. However, these pixels may not be unusable because of an unreliable dark subtraction; if we find these pixels to be stable over an anneal period, we can properly subtract the charge and the extra Poisson noise from this dark current will be propagated into the error arrays. Here we present the results of a pixel history study that analyzes every individual pixel of the Hubble Space Telescope's (HST) Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) CCDs over time and allows pixels that were previously flagged as unusable to be brought back into the science image as a reliable pixel.

  10. Intra-Arterial Thrombolysis for Deep Vein Thrombosis of the Lower Extremity: Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moo Sang; Roh, Byung Suk [Dept. of Radiology, Wonkwang University School of Medicine, Iksan (Korea, Republic of)

    2011-09-15

    If the appropriate catheterization of the affected vein was not possible because of a narrowed or thrombus-filled venous lumen, successful treatment gets into trouble during catheter directed regional thrombolysis for treatment of deep vein thrombosis. In this situation, intra-arterial thrombolysis can be considered as an alternative treatment, but to the best of our knowledge, only two reports have been described. We present here cases of successful intra-arterial thrombolysis in patients with deep vein thrombosis.

  11. Wide-Field Optic for Autonomous Acquisition of Laser Link

    Science.gov (United States)

    Page, Norman A.; Charles, Jeffrey R.; Biswas, Abhijit

    2011-01-01

    An innovation reported in Two-Camera Acquisition and Tracking of a Flying Target, NASA Tech Briefs, Vol. 32, No. 8 (August 2008), p. 20, used a commercial fish-eye lens and an electronic imaging camera for initially locating objects with subsequent handover to an actuated narrow-field camera. But this operated against a dark-sky background. An improved solution involves an optical design based on custom optical components for the wide-field optical system that directly addresses the key limitations in acquiring a laser signal from a moving source such as an aircraft or a spacecraft. The first challenge was to increase the light collection entrance aperture diameter, which was approximately 1 mm in the first prototype. The new design presented here increases this entrance aperture diameter to 4.2 mm, which is equivalent to a more than 16 times larger collection area. One of the trades made in realizing this improvement was to restrict the field-of-view to +80 deg. elevation and 360 azimuth. This trade stems from practical considerations where laser beam propagation over the excessively high air mass, which is in the line of sight (LOS) at low elevation angles, results in vulnerability to severe atmospheric turbulence and attenuation. An additional benefit of the new design is that the large entrance aperture is maintained even at large off-axis angles when the optic is pointed at zenith. The second critical limitation for implementing spectral filtering in the design was tackled by collimating the light prior to focusing it onto the focal plane. This allows the placement of the narrow spectral filter in the collimated portion of the beam. For the narrow band spectral filter to function properly, it is necessary to adequately control the range of incident angles at which received light intercepts the filter. When this angle is restricted via collimation, narrower spectral filtering can be implemented. The collimated beam (and the filter) must be relatively large to

  12. Diagnosis prevention and treatment for PICC-related upper extremity deep vein thrombosis in breast cancer patients.

    Science.gov (United States)

    Xing, Lei; Adhikari, Vishnu Prasad; Liu, Hong; Kong, Ling Quan; Liu, Sheng Chun; Li, Hong Yuan; Ren, Guo Sheng; Luo, Feng; Wu, Kai Nan

    2012-09-01

    To study the incidence, diagnosis, prevention and treatment of peripherally inserted central catheter (PICC)-related upper extremity deep vein thrombosis (DVT) in breast cancer patients using a PICC catheter for chemotherapy. The data of the incidence, diagnosis and treatment of PICC-related upper extremity DVT in 187 breast cancer patients using a PICC catheter for chemotherapy, from August 2009 to July 2011 were retrospectively analyzed. In total 188 PICC were inserted between August 2009 and July 2011 and followed up for a total of 14 399 catheter-days (median placement, 76.6 days; range, 1 to 170 days). Four (2.1%) of 188 PICC were removed as a result of PICC-related upper extremity DVT in 14 to 112 catheter-days, at a rate of 0.28/1000 catheter-days. The use of PICCs in breast cancer patients for chemotherapy is safe and effective. However, some patients may develop catheter-related upper extremity DVT. In order to minimize complications, we should pay attention to its early symptoms and signs, as well as the timely removal of the catheter and appropriate anti-coagulant treatment. © 2012 Wiley Publishing Asia Pty Ltd.

  13. Role of aquaporin activity in regulating deep and shallow root hydraulic conductance during extreme drought

    Science.gov (United States)

    Daniel M. Johnson; Mark E. Sherrard; Jean-Christophe Domec; Robert B. Jackson

    2014-01-01

    Key message Deep root hydraulic conductance is upregulated during severe drought and is associated with upregulation in aquaporin activity. Abstract In 2011, Texas experienced the worst single-year drought in its recorded history and, based on tree-ring data, likely itsworst in the pastmillennium. In the Edwards Plateau of Texas, rainfall was 58 % lower and the mean...

  14. Duplex scanning in the diagnosis of acute deep vein thrombosis of the lower extremity

    NARCIS (Netherlands)

    van Ramshorst, B.; Legemate, D. A.; Verzijlbergen, J. F.; Hoeneveld, H.; Eikelboom, B. C.; de Valois, J. C.; Meuwissen, O. J.

    1991-01-01

    In a prospective study the value of duplex scanning in the diagnosis of acute femoro-popliteal thrombosis was compared to conventional contrast venography (CV) as a gold standard. A total of 126 legs in 117 patients suspected of having deep vein thrombosis (DVT) or pulmonary embolism (PE) were

  15. Case Upp heal e report, v er extrem lthy man volume 3, mity deep ...

    African Journals Online (AJOL)

    Raoul

    lthy man m Girma1,& frica Leprosy, responding m Girma, All A pia. Email: fits tract ase of upper e hrombosis with was to report bosis treated c es used were p t had no appa he affected left words: Deep ... He had a history of pleural tuberculosis which was successfully cured after anti- tuberculosis treatment. He denied any ...

  16. Local recurrence and assessment of sentinel lymph node biopsy in deep soft tissue leiomyosarcoma of the extremities

    Directory of Open Access Journals (Sweden)

    Lamyman Michael J

    2011-08-01

    Full Text Available Abstract Background Leiomyosarcoma of deep soft tissues of the extremities is a rare malignant tumour treated primarily by surgery. The incidence of local recurrence and lymph node metastasis is uncertain and it is not known whether a sentinel lymph node biopsy is indicated in these tumours. Methods A retrospective review of patients treated for extremity deep soft tissue leiomyosarcoma at our institution over a 10-year period was conducted. Patients developing local recurrence or lymph node metastasis were identified. The presence or absence of lymphatics in the primary tumours was assessed by immunohistochemical expression of LYVE-1 and podoplanin. Results 27 patients (mean age 62 years were included in the study. 15 were female and 12 male. Lymph node metastasis was seen in only two cases (7%; intratumoural lymphatics were identified in the primary tumours of both these cases. Local recurrence occurred in 25.9% of cases despite complete excision and post-operative radiotherapy; the mean time to recurrence was 10.1 months. Conclusion On the basis of this study, we do not advocate sentinel lymph node biopsy in this group of patients except in those cases in which intratumoural lymphatics can be demonstrated. Close follow up is important especially for high grade leiomyosarcomas, particularly in the first year, as these tumours have a high incidence of local recurrence.

  17. Diagnosis of deep vein thrombosis in the lower extremities. Phlebography versus Doppler sonography

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, H.J.

    1986-02-01

    In this retrospective study, the results of Doppler sonography and phlebography are compared. In about 30% cases the diagnosis of thrombosis made by Doppler sonography could not be confirmed. Agreement was better in patients with acute thrombosis or following pulmonary emboli than in those with a longer history of swelling of the lower extremities. These results agree with the findings of other authors using impedance plethysmography; this also shows lack of agreement in about 30% of the cases.

  18. Extreme diving behaviour in devil rays links surface waters and the deep ocean

    KAUST Repository

    Thorrold, Simon R.

    2014-07-01

    Ecological connections between surface waters and the deep ocean remain poorly studied despite the high biomass of fishes and squids residing at depths beyond the euphotic zone. These animals likely support pelagic food webs containing a suite of predators that include commercially important fishes and marine mammals. Here we deploy pop-up satellite archival transmitting tags on 15 Chilean devil rays (Mobula tarapacana) in the central North Atlantic Ocean, which provide movement patterns of individuals for up to 9 months. Devil rays were considered surface dwellers but our data reveal individuals descending at speeds up to 6.0 ms-1 to depths of almost 2,000 m and water temperatures <4 C. The shape of the dive profiles suggests that the rays are foraging at these depths in deep scattering layers. Our results provide evidence of an important link between predators in the surface ocean and forage species occupying pelagic habitats below the euphotic zone in ocean ecosystems. 2014 Macmillan Publishers Limited. All rights reserved.

  19. Extreme diving behaviour in devil rays links surface waters and the deep ocean.

    Science.gov (United States)

    Thorrold, Simon R; Afonso, Pedro; Fontes, Jorge; Braun, Camrin D; Santos, Ricardo S; Skomal, Gregory B; Berumen, Michael L

    2014-07-01

    Ecological connections between surface waters and the deep ocean remain poorly studied despite the high biomass of fishes and squids residing at depths beyond the euphotic zone. These animals likely support pelagic food webs containing a suite of predators that include commercially important fishes and marine mammals. Here we deploy pop-up satellite archival transmitting tags on 15 Chilean devil rays (Mobula tarapacana) in the central North Atlantic Ocean, which provide movement patterns of individuals for up to 9 months. Devil rays were considered surface dwellers but our data reveal individuals descending at speeds up to 6.0 m s(-1) to depths of almost 2,000 m and water temperatures <4 °C. The shape of the dive profiles suggests that the rays are foraging at these depths in deep scattering layers. Our results provide evidence of an important link between predators in the surface ocean and forage species occupying pelagic habitats below the euphotic zone in ocean ecosystems.

  20. Acute deep venous thrombosis of the upper extremity as demonstrated by scintigraphy with {sup 99m}Tc-apcitide

    Energy Technology Data Exchange (ETDEWEB)

    Dunzinger, A.; Piswanger-Soelkner, J.; Lipp, R. [Medical Univ. Graz (Austria). Div. of Nuclear Medicine; Hafner, F.; Brodmann, M. [Medical Univ. Graz (Austria). Div. of Angiology

    2008-07-01

    With an incidence of 0.7% inhabitants per year, acute deep venous thrombosis (DVT) is a common occurrence (20). Its incidence in the upper extremities, however, is not as precisely known; the literature reports that 1% to 10% of all DVT cases involve the upper limbs. Acute DVT of upper limb is mainly iatro-genic following interventions like implantation of pacemakers or central venous catheters, and is more likely to occur in obese patients or those with malignant diseases. Life-threatening pulmonary embolism (PE) may occur if acute DVT remains undetected. The presented case report demonstrates the feasibility of {sup 9}9mTc-apcitide scintigraphy for diagnosis of acute DVT of the upper limb and exclusion of PE in a single examination.

  1. Is thrombophilia a major risk factor for deep vein thrombosis of the lower extremities among Lebanese patients?

    Directory of Open Access Journals (Sweden)

    R Kreidy

    2009-07-01

    Full Text Available R Kreidy1, N Irani-Hakime21Department of Vascular Surgery, 2Department of Laboratory Medicine, Saint George Hospital, University Medical Center, University of Balamand, Beirut, LebanonAim: Factor V Leiden (R506Q mutation is the most commonly observed inherited genetic abnormality related to vein thrombosis. Lebanon has one of the highest frequencies of this mutation in the world with a prevalence of 14.4% in the general population. The aim of this study is to define risk factors including inherited genetic abnormalities among Lebanese patients with lower extremity deep vein thrombosis. We report the clinical outcome of patients with thrombophilia.Methods: From January 1998 to January 2008, 162 patients (61 males and 101 females were diagnosed with lower extremity deep vein thrombosis. Mean age was 61 years (range: 21 to 95 years.Results: The most frequent risk factors for vein thrombosis were surgery, advanced age, obesity, and cancer. Twenty-five patients had thrombophilia, 16 patients had factor V Leiden (R506Q mutation, and seven patients had MTHFR C677T mutation. Ninety-two percent of patients screened for thrombophilia were positive. Screening was requested in young patients (16, patients with recurrent (11, spontaneous (8, and extensive (5 venous thrombosis, familial history (5, pregnancy (4, estroprogestative treatment (3, and air travel (1. Nine patients had one, 11 patients had two, and five had three of these conditions. Follow-up (6 to 120 months of these 25 patients treated with antivitamin K did not reveal recurrences or complications related to venous thromboembolism.Conclusion: Factor V Leiden mutation followed by MTHFR mutation are the most commonly observed genetic abnormalities in these series. Defining risk factors and screening for thrombophilia when indicated reduce recurrence rate and complications. Recommendations for thrombophilia screening will be proposed.Keywords: venous thrombosis, risk factors, genetics, factor V

  2. Coagulation disorders in the patients with deep vein thrombosis of lower extremity

    Directory of Open Access Journals (Sweden)

    Milić Dragan J.

    2003-01-01

    Full Text Available PURPOSE Venous thromboembolism is a relevant social and health care problem for its high incidence, pulmonary embolism-related mortality and long-term sequelae which may be disabling (post-thrombotic syndrome and ulceration. PROCEDURES The aim of our work was to establish the presence of coagulation disorders (hypercoagulable states in the patients with deep vein thrombosis (DVT of the leg. Prospectively we have analyzed a group of 30 patients with echosono-graphicaly verified DVT of the leg who were admitted to the department of vascular surgery from August 1st 2000 to July 31st 2001.The following parameters were monitored: prothrombin time (PT partial thromboplastin time (PTT, fibrinogen (Fib, alpha 2 antiplasmin (A-2 AP, D-dimer (DD, antithrombin III (AT III and factor VII. FINDINGS Activation of the coagulation process was registered. The values of monitored coagulation parameters are shown in table 1. Plasma levels of monitored parameters in the patients with DVT of the leg were significantly higher than in the control subjects. CONCLUSION In patients with a DVT a hypercoagulable state is common finding. Some parameters of coagulation activity such as D-dimer might be of great interest in the diagnostic strategy of DVT.

  3. Human brain activity patterns beyond the isoelectric line of extreme deep coma.

    Directory of Open Access Journals (Sweden)

    Daniel Kroeger

    Full Text Available The electroencephalogram (EEG reflects brain electrical activity. A flat (isoelectric EEG, which is usually recorded during very deep coma, is considered to be a turning point between a living brain and a deceased brain. Therefore the isoelectric EEG constitutes, together with evidence of irreversible structural brain damage, one of the criteria for the assessment of brain death. In this study we use EEG recordings for humans on the one hand, and on the other hand double simultaneous intracellular recordings in the cortex and hippocampus, combined with EEG, in cats. They serve to demonstrate that a novel brain phenomenon is observable in both humans and animals during coma that is deeper than the one reflected by the isoelectric EEG, and that this state is characterized by brain activity generated within the hippocampal formation. This new state was induced either by medication applied to postanoxic coma (in human or by application of high doses of anesthesia (isoflurane in animals leading to an EEG activity of quasi-rhythmic sharp waves which henceforth we propose to call ν-complexes (Nu-complexes. Using simultaneous intracellular recordings in vivo in the cortex and hippocampus (especially in the CA3 region we demonstrate that ν-complexes arise in the hippocampus and are subsequently transmitted to the cortex. The genesis of a hippocampal ν-complex depends upon another hippocampal activity, known as ripple activity, which is not overtly detectable at the cortical level. Based on our observations, we propose a scenario of how self-oscillations in hippocampal neurons can lead to a whole brain phenomenon during coma.

  4. Structured illumination for wide-field Raman imaging of cell membranes

    Science.gov (United States)

    Chen, Houkai; Wang, Siqi; Zhang, Yuquan; Yang, Yong; Fang, Hui; Zhu, Siwei; Yuan, Xiaocong

    2017-11-01

    Although the diffraction limit still restricts their lateral resolution, conventional wide-field Raman imaging techniques offer fast imaging speeds compared with scanning schemes. To extend the lateral resolution of wide-field Raman microscopy using filters, standing-wave illumination technique is used, and an improvement of lateral resolution by a factor of more than two is achieved. Specifically, functionalized surface enhanced Raman scattering nanoparticles are employed to strengthen the desired scattering signals to label cell membranes. This wide-field Raman imaging technique affords various significant opportunities in the biological applications.

  5. Extremely deep blue and highly efficient non-doped organic light emitting diodes using an asymmetric anthracene derivative with a xylene unit.

    Science.gov (United States)

    Kim, Ran; Lee, Sunghun; Kim, Kwon-Hyeon; Lee, Yun-Ji; Kwon, Soon-Ki; Kim, Jang-Joo; Kim, Yun-Hi

    2013-05-21

    A new highly twisted asymmetric anthracene derivative with naphthalene and triphenylamine substituted xylene was synthesized as an extremely deep blue emitting material. A non-doped device using the new asymmetric blue emitter displays a maximum EQE of 4.62% with CIE color coordinates of (0.154, 0.049).

  6. Structure-simplified and highly efficient deep blue organic light-emitting diodes with reduced efficiency roll-off at extremely high luminance.

    Science.gov (United States)

    Li, Xiang-Long; Liu, Ming; Li, Yunchuan; Cai, Xinyi; Chen, Dongcheng; Liu, Kunkun; Cao, Yong; Su, Shi-Jian

    2016-12-13

    Based on a series of new fluorescent emitters, deep blue non-doped multilayer OLEDs with EQEs exceeding 5.10% and single layer devices excluding any charge carrier transporting materials with an EQE of 4.22% were obtained at an extremely high luminance of 10 000 cd m(-2).

  7. Central venous catheters and upper extremity deep vein thrombosis in medical inpatients: the Medical Inpatients and Thrombosis (MITH) Study.

    Science.gov (United States)

    Winters, J P; Callas, P W; Cushman, M; Repp, A B; Zakai, N A

    2015-12-01

    Upper extremity deep vein thrombosis (UEDVT) is an increasingly recognized complication in medical inpatients, with few data available regarding the incidence, risk factors and association with central venous catheter (CVC) use. Between 2002 and 2009 all cases of hospital-acquired venous thromboembolism (VTE) at a university hospital were frequency matched 1 : 2 to non-cases without VTE by admission year and medical service. Records were abstracted to identify, characterize and assess risk factors for UEDVT. Weighted logistic regression was used to calculate odds ratios (ORs) for UEDVT associated with use of a CVC, adjusting for known VTE risk factors. Two hundred and ninety-nine cases of VTE complicated 64 034 admissions to medical services (4.6 per 1000 admissions). UEDVT constituted 51% (91/180) of all deep vein thrombosis (DVT), for an incidence of 1.4 per 1000 admissions (95% confidence interval [CI], 0.8-1.7). There were 247 CVCs placed per 1000 admissions (95% CI, 203-292). The use of a CVC was associated with a 14.0-fold increased risk of UEDVT (95% CI, 5.9-33.2), but was not associated with a significantly increased risk of PE (OR, 1.3; 95% CI, 0.8-2.1). Peripherally inserted central catheters had a higher OR for UEDVT (OR, 13.0; 95% CI, 6.1-27.6) than centrally inserted central venous catheters (CICC) (OR, 3.4; 95% CI, 1.7-6.8). UEDVT is a relevant complication affecting medical inpatients, accounting for half of hospital-acquired DVTs. Use of CVCs was strongly associated with risk of UEDVT. © 2015 International Society on Thrombosis and Haemostasis.

  8. Wide Field-of-View (FOV) Soft X-Ray Imager Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Wide Field-of-View (FOV) Soft X-Ray Imager proposes to be a state-of-art instrument with applications for numerous heliospheric and planetary...

  9. Optical Design of the WFIRST Phase-A Wide Field Instrument

    Science.gov (United States)

    Pasquale, Bert A.; Marx, Catherine T.; Gao, Guangjun; Armani, Nerses; Casey, Thomas

    2017-01-01

    The WFIRST Wide-Field Infrared Survey Telescope TMA optical design provides 0.28-sq degrees FOV at 0.11” pixel scale to the Wide Field Instrument, operating between 0.48-2.0 micrometers, including a spectrograph mode (1.0-2.0 micrometers). An Integral Field Channel provides 2-D discrete spectroscopy at 0.15” & 0.3” sampling.

  10. Incidence of ipsilateral postoperative deep venous thrombosis in the amputated lower extremity of patients with peripheral obstructive arterial disease.

    Science.gov (United States)

    Matielo, Marcelo Fernando; Presti, Calógero; Casella, Ivan Benaduce; Netto, Baptista Muraco; Puech-Leão, Pedro

    2008-12-01

    Patients undergoing amputation of the lower limb due to peripheral arterial disease (PAD) are at risk of developing deep venous thrombosis (DVT). Few studies in the research literature report the incidence of DVT during the early postoperative period or the risk factors for the development of DVT in the amputation stump. This prospective study evaluated the incidence of DVT during the first 35 postoperative days in patients who had undergone amputation of the lower extremity due to PAD and its relation to comorbidities and death. Between September 2004 and March 2006, 56 patients (29 men), with a mean age of 67.25 years, underwent 62 amputations, comprising 36 below knee amputations (BKA) and 26 above knee amputations (AKA). Echo-Doppler scanning was performed preoperatively and on postoperative days 7 and 31 (approximately). All patients received acetylsalicylic acid (100 mg daily) preoperatively and postoperatively, but none received prophylactic anticoagulation. DVT occurred in 25.8% of extremities with amputations (10 AKA and 6 BKA). The cumulative incidence in the 35-day postoperative period was 28% (Kaplan-Meier). There was a significant difference (P = .04) in the incidence of DVT between AKA (37.5%) and BKA (21.2%). Age >or=70 years (48.9% vs 16.8%, P = .021) was also a risk factor for DVT in the univariate analysis. Of the 16 cases, 14 (87.5%) were diagnosed during outpatient care. The time to discharge after amputation was averaged 6.11 days in-hospital stay (range, 1-56 days). One symptomatic nonfatal pulmonary embolism occurred in a patient already diagnosed with DVT. There was no relation between other comorbidities and DVT. The multivariate analysis showed no association between risk factors and the occurrence of DVT in the amputated extremity. DVT ipsilateral to the amputation did not influence the mortality rate (9.7%). The incidence of DVT in the early postoperative period (or=70 years and for AKA. Patients with PAD who have recently undergone

  11. Extreme longevity in a deep-sea vestimentiferan tubeworm and its implications for the evolution of life history strategies.

    Science.gov (United States)

    Durkin, Alanna; Fisher, Charles R; Cordes, Erik E

    2017-08-01

    The deep sea is home to many species that have longer life spans than their shallow-water counterparts. This trend is primarily related to the decline in metabolic rates with temperature as depth increases. However, at bathyal depths, the cold-seep vestimentiferan tubeworm species Lamellibrachia luymesi and Seepiophila jonesi reach extremely old ages beyond what is predicted by the simple scaling of life span with body size and temperature. Here, we use individual-based models based on in situ growth rates to show that another species of cold-seep tubeworm found in the Gulf of Mexico, Escarpia laminata, also has an extraordinarily long life span, regularly achieving ages of 100-200 years with some individuals older than 300 years. The distribution of results from individual simulations as well as whole population simulations involving mortality and recruitment rates support these age estimates. The low 0.67% mortality rate measurements from collected populations of E. laminata are similar to mortality rates in L. luymesi and S. jonesi and play a role in evolution of the long life span of cold-seep tubeworms. These results support longevity theory, which states that in the absence of extrinsic mortality threats, natural selection will select for individuals that senesce slower and reproduce continually into their old age.

  12. Inferior vena cava atresia predisposing to acute lower extremity deep vein thrombosis in children: A descriptive dual-center study.

    Science.gov (United States)

    Tarango, Cristina; Kumar, Riten; Patel, Manish; Blackmore, Anne; Warren, Patrick; Palumbo, Joseph S

    2018-02-01

    Thrombosis in the healthy pediatric population is a rare occurrence. Little is known about the optimal treatment or outcomes of children with unprovoked acute lower extremity (LE) deep vein thrombosis (DVT) associated with atresia of the inferior vena cava (IVC). We retrospectively analyzed the records of patients with acute LE DVT subsequently found to have IVC atresia who presented to two tertiary pediatric institutions between 2008 and 2016. Data were reviewed for thrombophilia risk factors, treatment, and outcomes. Eighteen patients, aged 13-18 years (median: 16 years), presenting with acute LE DVT were found to have IVC atresia. Three patients also presented with pulmonary embolism. Fourteen patients underwent site-directed thrombolysis in addition to anticoagulation. Five patients (28%) had confirmed or suspected recurrent thrombosis. Thirteen patients (72%) had no identified provocation for DVT. Ten patients (56%) had post-thrombotic syndrome, and 17 of 18 patients remain on indefinite anticoagulation. This study suggests that IVC atresia is a risk factor for LE DVT and pulmonary embolism in otherwise healthy children and highlights the importance of dedicated imaging of the IVC in young patients with unprovoked LE DVT. Indefinite anticoagulation may be considered in pediatric patients presenting with unprovoked thrombosis secondary to an atretic IVC. © 2017 Wiley Periodicals, Inc.

  13. Magnetic resonance venography in consecutive patients with suspected deep vein thrombosis of the upper extremity: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Baarslag, H.J.; Reekers, J.A. [Academic Medical Centre, Amsterdam (Netherlands). Dept. of Radiology; Beek, E.J. van [Royal Hallamshire Hospital, Sheffield (United Kingdom). Unit of Academic Radiology

    2004-02-01

    To assess the feasibility and accuracy of two magnetic resonance (MR) venography methods in a consecutive series of patients with suspected deep vein thrombosis of the upper extremity (DVTUE). Consecutive in- and outpatients who were referred for imaging of suspected DVTUE in a large teaching hospital during the period April 2001 to October 2002 were eligible for inclusion. All patients were scheduled to undergo contrast venography with the intention to perform additional MR venography. Both time-of-flight and gadolinium-enhanced 3D MR venography were scheduled. All MR imaging were interpreted independently by consensus of two experienced radiologists, who were blinded for contrast venography outcome. Patients were managed based on contrast venography only. A total of 44 patients were eligible for inclusion. Thirteen patients were excluded (5 refused consent, 2 inability to gain venous access, 2 renal failure, 4 logistic reasons). Contrast venography was performed in 31 patients, and demonstrated DVTUE in 11 patients. MR imaging was not feasible in 10 patients (4 unable to lie flat, 3 claustrophobia, 1 too large for MR scanner, 1 osteosynthesis of shoulder, 1 pacemaker). The sensitivity and specificity of TOF MRV versus Gadolinium 3D MRV was 71% and 89% versus 50% and 80%, respectively. A high number of patients were unable to undergo MR venography in this setting. Contrast-enhanced MRV did not improve diagnostic accuracy. The clinical utility of MR venography in the setting of suspected DVTUE seems disappointing.

  14. Extreme longevity in a deep-sea vestimentiferan tubeworm and its implications for the evolution of life history strategies

    Science.gov (United States)

    Durkin, Alanna; Fisher, Charles R.; Cordes, Erik E.

    2017-08-01

    The deep sea is home to many species that have longer life spans than their shallow-water counterparts. This trend is primarily related to the decline in metabolic rates with temperature as depth increases. However, at bathyal depths, the cold-seep vestimentiferan tubeworm species Lamellibrachia luymesi and Seepiophila jonesi reach extremely old ages beyond what is predicted by the simple scaling of life span with body size and temperature. Here, we use individual-based models based on in situ growth rates to show that another species of cold-seep tubeworm found in the Gulf of Mexico, Escarpia laminata, also has an extraordinarily long life span, regularly achieving ages of 100-200 years with some individuals older than 300 years. The distribution of results from individual simulations as well as whole population simulations involving mortality and recruitment rates support these age estimates. The low 0.67% mortality rate measurements from collected populations of E. laminata are similar to mortality rates in L. luymesi and S. jonesi and play a role in evolution of the long life span of cold-seep tubeworms. These results support longevity theory, which states that in the absence of extrinsic mortality threats, natural selection will select for individuals that senesce slower and reproduce continually into their old age.

  15. Firearm Projectile in the Maxillary Tuberosity Located by Adjunctive Examination of Wide-Field Optical Fluorescence.

    Science.gov (United States)

    Andrade, Sérgio Araújo; Varotti, Fernando de Pilla; Bagnato, Vanderlei Salvador; Pratavieira, Sebastião

    2017-10-10

    Demonstrate the use of wide-field optical fluorescence as an adjunctive examination in a clinical routine to oral diagnosis. Use of wide-field optical fluorescence in the oral cavity has been restricted to topics related to the detection and diagnosis of oral cancer. In a regular medical appointment, a 58-year-old female patient, without any complaint or oral symptom, underwent the complementary examination by wide-field optical fluorescence. A device with high-power light-emitting diode emitting light centered at a wavelength of (400 ± 10) nm and maximum irradiance of (0.040 ± 0.008) W/cm(2) was used for fluorescence visualization. We report the location of a firearm projectile, intraosseous, in the maxillary tuberosity using wide-field optical fluorescence. It is evidenced that wide-field optical fluorescence, within a clinical routine, can provide relevant images and data, with an immediate result, without the use of ionizing radiation, enabling an efficient oral diagnosis.

  16. Comprehensive photometric study of an extremely low mass ratio deep contact binary in the globular cluster M 4

    Science.gov (United States)

    Li, Kai; Hu, Shaoming; Chen, Xu; Guo, Difu

    2017-10-01

    A comprehensive photometric study and an investigation of the orbital period variation of V53 in the globular cluster M 4 are presented. The photometric study reveals that the mass ratio and the contact degree of V53 are q ˜ 0.078 and f ˜ 69%, respectively. The observed variation in the light curve can be explained by adjusting the spot parameters. V53 belongs to extreme mass ratio (q ≤ 0.25), deep contact (f ≥ 50%) binaries, and its mass ratio is close to the minimum mass ratio predicted by theoretical studies, making it a potential object for studying the evolution of binaries and the formation of blue stragglers and FK Com-type stars. The orbital period of V53 shows a long-term decrease at a rate of dp/dt = 5.89(±0.02) × 10-8 d yr-1. This secular period decrease may be caused by the combination of mass transfer from the more massive component to the less massive component and an angular momentum loss via magnetic braking. As this mass transfer and angular momentum loss continues, V53 will ultimately evolve into a single fast-rotation star. By studying the statistics of all the contact binaries in globular clusters that have been analyzed, we found a possible correlation between the contact degree and whether or not a contact binary is a blue straggler. A contact binary is likely to become a blue straggler when its fill-out factor is more than 46.25(±2.05)%. More samples should be introduced to confirm this preliminary result in the future.

  17. Aspiration Thrombectomy Using a Guiding Catheter in Acute Lower Extremity Deep Vein Thrombosis: Usefulness of the Calf-Squeeze Technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae A; Kwak, Hyo Sung; Han, Young Min; Yu, Hee Chul [Chonbuk National University Medical School, Jeonju (Korea, Republic of)

    2011-05-15

    The effectiveness of the calf-squeeze technique during aspiration thrombectomy using guiding catheter in the treatment of an acute lower extremity deep vein thrombosis (DVT) was evaluated by the use of imaging and the clinical follow-up of patients. A prospective analysis of ten patients (seven women, three men; median age, 56.9 years) with common iliac vein (CIV) obstruction and ipsilateral DVT was performed for this study. All patients presented with leg edema or pain and were treated with catheter-directed thrombolysis via an ipsilateral popliteal vein approach after insertion of a temporary inferior vena cava (IVC) filter. Subsequently, the patients were treated with by aspiration thrombectomy using a guiding catheter to remove the residual thrombus. The calf-squeeze technique during aspiration thrombectomy can be used to induce the proximal migration of thrombi in the popliteal, tibial, and muscular veins were used to increase venous flow. The calf-squeeze technique was employed at mean of 1.3 times (range, 1-3 times). All patients showed proximal migration of a popliteal and muscular vein thrombus during the execution of the calf-squeeze technique. Successful recanalization was achieved in all patients (100%) without any complications. On duplex ultrasonography, which was performed immediately after the aspiration thrombectomy, four patients had a residual thrombus in the soleal muscular veins. However, none of the patients had a thrombus in the popliteal and tibial veins; and, during follow-up, no DVT recurred in any patient. The use of the calf-squeeze technique during aspiration thrombectomy after catheter-directed thrombolysis can induce the proximal migration of thrombi in the popliotibial and muscular veins and is an effective method that can remove a thrombus in calf veins.

  18. Wide-field single photon counting imaging with an ultrafast camera and an image intensifier

    Energy Technology Data Exchange (ETDEWEB)

    Zanda, Gianmarco, E-mail: gianmarco.zanda@kcl.ac.uk [King' s College London, Department of Physics, Strand, London WC2R 2LS (United Kingdom); Sergent, Nicolas; Green, Mark; Levitt, James A. [King' s College London, Department of Physics, Strand, London WC2R 2LS (United Kingdom); Petrasek, Zdenek [Biotechnologisches Zentrum, Technische Universitaet Dresden, Tatzberg 47/49, 01307 Dresden (Germany); Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk [King' s College London, Department of Physics, Strand, London WC2R 2LS (United Kingdom)

    2012-12-11

    We are reporting a method for wide-field photon counting imaging using a CMOS camera with a 40 kHz frame rate coupled with a three-stage image intensifier mounted on a standard fluorescence microscope. This system combines high frame rates with single photon sensitivity. The output of the phosphor screen, consisting of single-photon events, is collected by a CMOS camera allowing to create a wide-field image with parallel positional and timing information of each photon. Using a pulsed excitation source and a luminescent sample, the arrival time of hundreds of photons can be determined simultaneously in many pixels with microsecond resolution.

  19. Wide-field single photon counting imaging with an ultrafast camera and an image intensifier

    Science.gov (United States)

    Zanda, Gianmarco; Sergent, Nicolas; Green, Mark; Levitt, James A.; Petrášek, Zdeněk; Suhling, Klaus

    2012-12-01

    We are reporting a method for wide-field photon counting imaging using a CMOS camera with a 40 kHz frame rate coupled with a three-stage image intensifier mounted on a standard fluorescence microscope. This system combines high frame rates with single photon sensitivity. The output of the phosphor screen, consisting of single-photon events, is collected by a CMOS camera allowing to create a wide-field image with parallel positional and timing information of each photon. Using a pulsed excitation source and a luminescent sample, the arrival time of hundreds of photons can be determined simultaneously in many pixels with microsecond resolution.

  20. Lessons from Suiyo Seamount studies, for understanding extreme (ancient?) microbial ecosystems in the deep-sea hydrothermal fields

    Science.gov (United States)

    Maruyama, A.; Higashi, Y.; Sunamura, M.; Urabe, T.

    2004-12-01

    Deep-sea hydrothermal ecosystems are driven with various geo-thermally modified, mainly reduced, compounds delivered from extremely hot subsurface environments. To date, several unique microbes including thermophilic archaeons have been isolated from/around vent chimneys. However, there is little information about microbes in over-vent and sub-vent fields. Here, we report several new findings on microbial diversity and ecology of the Suiyo Seamount that locates on the Izu-Bonin Arc in the northwest Pacific Ocean, as a result of the Japanese Archaean Park project, with special concern to the sub-vent biosphere. At first, we succeeded to reveal a very unique microbial ecosystem in hydrothermal plume reserved within the outer rim of the seamount crater, that is, it consisted of almost all metabolically active microbes belonged to only two Bacteria phylotypes, probably of sulfur oxidizers. In the center of the caldera seafloor (ca. 1,388-m deep) consisted mainly of whitish sands and pumices, we found many small chimneys (ca. 5-10 cm) and bivalve colonies distributed looking like gray to black patches. These geo/ecological features of the seafloor were supposed to be from a complex mixing of hydrothermal venting and strong water current near the seafloor. Through quantitative FISH analysis for various environmental samples, one of the two representative groups in the plume was assessed to be from some of the bivalve colonies. Using the Benthic Multi-coring System (BMS), total 10 points were drilled and 6 boreholes were maintained with stainless or titanium casing pipes. In the following submersible surveys, newly developed catheter- and column-type in situ growth chambers were deployed in and on the boreholes, respectively, for collecting indigenous sub-vent microbes. Finally, we succeeded to detect several new phylotypes of microbes in these chamber samples, e.g., within epsilon-Proteobacteria, a photosynthetic group of alpha-Proteobacteria, and hyperthermophile

  1. SixPak: a wide-field IFU for the William Herschel Telescope

    NARCIS (Netherlands)

    Venema, Lars B.; Schoenmaker, Ton; Verheijen, Marc; Trager, Scott; Rutten, René; Bershady, Matthew; Larsen, Søren; Peletier, Reynier; Spaans, Marco

    2008-01-01

    We intend to construct SixPak, a wide-field fibre-based IFU for the 4.2-meter William Herschel Telescope on La Palma. The fibre bundle will consist of 238 fibres, each 3.0 arcsec in diameter, piping light from the Nasmyth focal plane of the WHT to the existing WYFFOS bench spectrograph. A total of

  2. Scalable wide-field optical coherence tomography-based angiography for in vivo imaging applications.

    Science.gov (United States)

    Xu, Jingjiang; Wei, Wei; Song, Shaozhen; Qi, Xiaoli; Wang, Ruikang K

    2016-05-01

    Recent advances in optical coherence tomography (OCT)-based angiography have demonstrated a variety of biomedical applications in the diagnosis and therapeutic monitoring of diseases with vascular involvement. While promising, its imaging field of view (FOV) is however still limited (typically less than 9 mm(2)), which somehow slows down its clinical acceptance. In this paper, we report a high-speed spectral-domain OCT operating at 1310 nm to enable wide FOV up to 750 mm(2). Using optical microangiography (OMAG) algorithm, we are able to map vascular networks within living biological tissues. Thanks to 2,048 pixel-array line scan InGaAs camera operating at 147 kHz scan rate, the system delivers a ranging depth of ~7.5 mm and provides wide-field OCT-based angiography at a single data acquisition. We implement two imaging modes (i.e., wide-field mode and high-resolution mode) in the OCT system, which gives highly scalable FOV with flexible lateral resolution. We demonstrate scalable wide-field vascular imaging for multiple finger nail beds in human and whole brain in mice with skull left intact at a single 3D scan, promising new opportunities for wide-field OCT-based angiography for many clinical applications.

  3. Astro-WISE Processing of Wide-field Images and Other Data

    NARCIS (Netherlands)

    Buddelmeijer, H.; Williams, O.R.; McFarland, J. P.; Belikov, A.; Ballester, P.; Egret, D.; Lorente, N.P.F.

    Astro-WISE (Vriend et al. 2012) is the Astronomical Wide-field Imaging System for Europe (Valentijn et al. 2007). It is a scientific information system which consists of hardware and software federated over about a dozen institutes throughout Europe. It has been developed to exploit the ever

  4. Wide-field interferometric phase microscopy with molecular specificity using plasmonic nanoparticles.

    Science.gov (United States)

    Turko, Nir A; Peled, Anna; Shaked, Natan T

    2013-11-01

    We present a method for adding molecular specificity to wide-field interferometric phase microscopy (IPM) by recording the phase signatures of gold nanoparticles (AuNPs) labeling targets of interest in biological cells. The AuNPs are excited by time-modulated light at a wavelength corresponding to their absorption spectral peak, evoking a photothermal (PT) effect due to their plasmonic resonance. This effect induces a local temperature rise, resulting in local refractive index and phase changes that can be detected optically. Using a wide-field interferometric phase microscope, we acquired an image sequence of the AuNP sample phase profile without requiring lateral scanning, and analyzed the time-dependent profile of the entire field of view using a Fourier analysis, creating a map of the locations of AuNPs in the sample. The system can image a wide-field PT phase signal from a cluster containing down to 16 isolated AuNPs. AuNPs are then conjugated to epidermal growth factor receptor (EGFR) antibodies and inserted to an EGFR-overexpressing cancer cell culture, which is imaged using IPM and verified by confocal microscopy. To the best of our knowledge, this is the first time wide-field interferometric PT imaging is performed at the subcellular level without the need for total internal reflection effects or scanning.

  5. Infrared Testing of the Wide-field Infrared Survey Telescope Grism Using Computer Generated Holograms

    Science.gov (United States)

    Dominguez, Margaret Z.; Content, David A.; Gong, Qian; Griesmann, Ulf; Hagopian, John G.; Marx, Catherine T; Whipple, Arthur L.

    2017-01-01

    Infrared Computer Generated Holograms (CGHs) were designed, manufactured and used to measure the performance of the grism (grating prism) prototype which includes testing Diffractive Optical Elements (DOE). The grism in the Wide Field Infrared Survey Telescope (WFIRST) will allow the surveying of a large section of the sky to find bright galaxies.

  6. Concerning the Development of the Wide-Field Optics for WFXT Including Methods of Optimizing X-Ray Optical Prescriptions for Wide-Field Applications

    Science.gov (United States)

    Weisskopf, M. C.; Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.

    2010-01-01

    We present a progress report on the various endeavors we are undertaking at MSFC in support of the Wide Field X-Ray Telescope development. In particular we discuss assembly and alignment techniques, in-situ polishing corrections, and the results of our efforts to optimize mirror prescriptions including polynomial coefficients, relative shell displacements, detector placements and tilts. This optimization does not require a blind search through the multi-dimensional parameter space. Under the assumption that the parameters are small enough so that second order expansions are valid, we show that the performance at the detector can be expressed as a quadratic function with numerical coefficients derived from a ray trace through the underlying Wolter I optic. The optimal values for the parameters are found by solving the linear system of equations creating by setting derivatives of this function with respect to each parameter to zero.

  7. Seasonal switchgrass ecotype contributions to soil organic carbon, deep soil microbial community composition and rhizodeposit uptake during an extreme drought

    Science.gov (United States)

    The importance of rhizodeposit C and associated microbial communities in deep soil C stabilization is relatively unknown. Phenotypic variability in plant root biomass could impact C cycling through belowground plant allocation, rooting architecture, and microbial community abundance and composition...

  8. Wide field monitoring of the X-ray sky using Rotation Modulation Collimators

    DEFF Research Database (Denmark)

    Lund, Niels; Brandt, Søren

    1995-01-01

    Wide field monitoring is of particular interest in X-ray astronomy due to the strong time-variability of most X-ray sources. Not only does the time-profiles of the persistent sources contain characteristic signatures of the underlying physical systems, but, additionally, some of the most intriguing...... sources have long periods of quiesense in which they are almost undetectable as X-ray sources, interspersed with relatively brief periods of intense outbursts, where we have unique opportunities of studying dynamical effects, in, for instance, the evolution of accretion discs. Another question for which...... wide field monitors may provide key information, is the origin and nature of the cosmic gamma ray bursts.Rotation Modulation Collimators (RMC's) were originally introduced in X-ray astronomy to provide accurate source localizations over extended fields. This role has since been taken over...

  9. The biocytin wide-field bipolar cell in the rabbit retina selectively contacts blue cones

    Science.gov (United States)

    MacNeil, Margaret A.; Gaul, Paulette A.

    2010-01-01

    The biocytin wide-field bipolar cell in rabbit retina is a sparsely populated ON cone bipolar cell with a broad dendritic arbor that does not contact all cones in its dendritic field. The purpose of our study was to identify the cone types that this cell contacts. We identified the bipolar cells by selective uptake of biocytin, labeled the cones with peanut agglutinin and then used antibodies against blue cone opsin and red-green cone opsin to identify the individual cone types. The biocytin-labeled cells selectively contacted cones whose outer segments stained for blue cone opsin and avoided cones that did not. We conclude that the biocytin wide-field bipolar cell is an ON blue cone bipolar cell in the rabbit retina and is homologous to the blue cone bipolar cells that have been previously described in primate, mouse, and ground squirrel retinas. PMID:17990268

  10. Biocytin wide-field bipolar cells in rabbit retina selectively contact blue cones.

    Science.gov (United States)

    MacNeil, Margaret A; Gaul, Paulette A

    2008-01-01

    The biocytin wide-field bipolar cell in rabbit retina has a broad axonal arbor in layer 5 of the inner plexiform layer and a wide dendritic arbor that does not contact all cones in its dendritic field. The purpose of our study was to identify the types of cones that this cell contacts. We identified the bipolar cells by selective uptake of biocytin, labeled the cones with peanut agglutinin, and then used antibodies against blue cone opsin and red-green cone opsin to identify the individual cone types. The biocytin-labeled cells selectively contacted cones whose outer segments stained for blue cone opsin and avoided cones that did not. We conclude that the biocytin wide-field bipolar cell is an ON blue cone bipolar cell in the rabbit retina and is homologous to the blue cone bipolar cells that have been previously described in primate, mouse, and ground squirrel retinas. Copyright 2007 Wiley-Liss, Inc.

  11. Ground-based complex for detection and investigation of fast optical transients in wide field

    Science.gov (United States)

    Molinari, Emilio; Beskin, Grigory; Bondar, Sergey; Karpov, Sergey; Plokhotnichenko, Vladimir; de-Bur, Vjacheslav; Greco, Guiseppe; Bartolini, Corrado; Guarnieri, Adriano; Piccioni, Adalberto

    2008-07-01

    To study short stochastic optical flares of different objects (GRBs, SNs, etc) of unknown localizations as well as NEOs it is necessary to monitor large regions of sky with high time resolution. We developed a system which consists of wide-field camera (FOW is 400-600 sq.deg.) using TV-CCD with time resolution of 0.13 s to record and classify optical transients, and a fast robotic telescope aimed to perform their spectroscopic and photometric investigation just after detection. Such two telescope complex TORTOREM combining wide-field camera TORTORA and robotic telescope REM operated from May 2006 at La Silla ESO observatory. Some results of its operation, including first fast time resolution study of optical transient accompanying GRB and discovery of its fine time structure, are presented. Prospects for improving the complex efficiency are given.

  12. Prime focus wide-field corrector designs with lossless atmospheric dispersion correction

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, Will [Australian Astron. Observ.; Gillingham, Peter [Australian Astron. Observ.; Smith, Greg [Australian Astron. Observ.; Kent, Steve [Fermilab; Doel, Peter [University Coll. London

    2014-07-18

    Wide-Field Corrector designs are presented for the Blanco and Mayall telescopes, the CFHT and the AAT. The designs are Terezibh-style, with 5 or 6 lenses, and modest negative optical power. They have 2.2-3 degree fields of view, with curved and telecentric focal surfaces suitable for fiber spectroscopy. Some variants also allow wide-field imaging, by changing the last WFC element. Apart from the adaptation of the Terebizh design for spectroscopy, the key feature is a new concept for a 'Compensating Lateral Atmospheric Dispersion Corrector', with two of the lenses being movable laterally by small amounts. This provides excellent atmospheric dispersion correction, without any additional surfaces or absorption. A novel and simple mechanism for providing the required lens motions is proposed, which requires just 3 linear actuators for each of the two moving lenses.

  13. Wide-field mid-infrared hyperspectral imaging of adhesives using a bolometer camera

    OpenAIRE

    Sugawara, Shigeru; Nakayama, Yoshihiko; Taniguchi, Hideya; Ishimaru, Ichiro

    2017-01-01

    By combining a bolometer detector with an imaging-type interferometer, an inexpensive, easy-to-handle wide-field mid-infrared hyperspectral imaging apparatus was produced. We measured the distributions of four types of thin adhesive layers on an aluminium plate and analysed the results using correlation coefficients to visualise the distribution of various adhesives that cannot be discerned by the naked eye or conventional methods such as visible/near-infrared spectroscopic/fluorescent photog...

  14. Wide-field surface-enhanced CARS microscopy of cells (Conference Presentation)

    Science.gov (United States)

    Fast, Alexander; Kenison, John T.; Potma, Eric O.

    2017-02-01

    We have previously demonstrated a total internal reflection, wide-field CARS microscope, where the signal is enhanced with the aid of a thin gold layer that supports surface plasmon polariton resonances. This surface-enhanced CARS microscope is capable of generating images of lipid structures in close proximity (visualizing lipids in aqueous media, including imaging of cells, with a unique surface-sensitive contrast that cannot be obtained with conventional CARS microscopy.

  15. Laser light-field fusion for wide-field lensfree on-chip phase contrast nanoscopy

    OpenAIRE

    Kazemzadeh, Farnoud; Wong, Alexander

    2016-01-01

    Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast nanoscopy, where interferometric laser light-field encodings acquired using an on-chip setup with laser pulsations at different wav...

  16. Wide-field monitoring strategy for the study of fast optical transients

    Science.gov (United States)

    Beskin, Grigory; Bondar, Sergey; Karpov, Sergey; Guarnieri, Adriano; Bartolini, Corrado; Greco, Giuseppe; Piccioni, Adalberto

    2010-10-01

    We discuss the strategy of search for fast optical transients accompanying gamma-ray bursts by means of continuous monitoring of wide sky fields with high temporal resolution. We describe the design, performance and results of our cameras, FAVOR and TORTORA. Also we discuss the perspectives of this strategy and possible design of next-generation equipment for wide-field monitoring which will be able to detect optical transients and to study their color and polarization properties with high time resolution.

  17. Reproduction in rare bathyal octopods Pteroctopus tetracirrhus and Scaeurgus unicirrhus (Cephalopoda: Octopoda) in the east Mediterranean as an apparent response to extremely oligotrophic deep seas

    Science.gov (United States)

    Laptikhovsky, Vladimir; Salman, Alp; Önsoy, Bahadir; Akalin, Meryem; Ceylan, Beytullah

    2014-10-01

    Reproductive patterns of two benthic bathyal octopods, Pteroctopus tetracirrhus and Scaeurgus unicirrhus have been studied in extremely nutrient-poor environment of the deep-sea Eastern Mediterranean. Both species were found to exhibit a reproductive tactics of producing eggs much larger than in the western part of the sea which likely results in larger hatchlings with higher viability. P. tetracirrhus exhibited a typical “deep-sea” spawning strategy of simultaneous maturation of a single batch of large eggs with atresia of excessive oocytes, whereas reproductive strategy of S. unicirrhus is particular for shelf octopodids: asynchronous maturation of numerous batches of small eggs with no obvious regulatory atresia. Existence of these two types of ovary development and utilisation of fecundity are closely related to two types of evolutionary stable reproductive strategies based on existence of either very large or very small eggs with a few species occupying the “intermediate” position.

  18. Wide-Field Fundus Autofluorescence for Retinitis Pigmentosa and Cone/Cone-Rod Dystrophy.

    Science.gov (United States)

    Oishi, Akio; Oishi, Maho; Ogino, Ken; Morooka, Satoshi; Yoshimura, Nagahisa

    2016-01-01

    Retinitis pigmentosa and cone/cone-rod dystrophy are inherited retinal diseases characterized by the progressive loss of rod and/or cone photoreceptors. To evaluate the status of rod/cone photoreceptors and visual function, visual acuity and visual field tests, electroretinogram, and optical coherence tomography are typically used. In addition to these examinations, fundus autofluorescence (FAF) has recently garnered attention. FAF visualizes the intrinsic fluorescent material in the retina, which is mainly lipofuscin contained within the retinal pigment epithelium. While conventional devices offer limited viewing angles in FAF, the recently developed Optos machine enables recording of wide-field FAF. With wide-field analysis, an association between abnormal FAF areas and visual function was demonstrated in retinitis pigmentosa and cone-rod dystrophy. In addition, the presence of "patchy" hypoautofluorescent areas was found to be correlated with symptom duration. Although physicians should be cautious when interpreting wide-field FAF results because the peripheral parts of the image are magnified significantly, this examination method provides previously unavailable information.

  19. Monitoring with high temporal resolution to search for optical transients in the wide field

    Science.gov (United States)

    Beskin, Grigory; Bondar, Sergey; Ivanov, Evgeny; Karpov, Sergey; Katkova, Elena; Pozanenko, Alexei; Guarnieri, Adriano; Bartolini, Corrado; Piccioni, Adalberto; Greco, Giuseppe; Molinari, Emilio; Covino, Stefano

    2008-02-01

    In order to detect and investigate short stochastic optical flares from a number of variable astrophysical objects (GRBs, SNs, flare stars, CVs, X-Ray binaries) of unknown localizations as well as near-earth objects (NEOs), both natural and artificial, it is necessary to perform the systematic monitoring of large regions of the sky with high temporal resolution. Here we describe the design of a system able to perform such a task, which consists of a wide-field camera with high time resolution able to detect and classify the transient events on a subsecond time scale, and a fast robotic telescope aimed to perform their detailed investigation. In a last few years we've created the prototype FAVOR wide-field camera, placed at North Caucasus near Russian 6-m telescope, and a complete two-telescope complex TORTOREM, combining TORTORA wide-field camera with REM robotic telescope and placed at La Silla ESO observatory. Its technical parameters and first results of operation are described.

  20. Modeling The Atmosphere In The Era Of Big Data From Extremely Wide Field-Of-View Telescopes

    Science.gov (United States)

    Gonzalez Quiles, Junellie; Nordin, Jakob

    2018-01-01

    Surveys like the Sloan Digital Sky Survey (SDSS), Pan-STARRS and the Palomar Transient Factory Survey (PTF) receive large amounts of data, which need to be processed and calibrated in order to correct for various factors. One of the limiting factors in obtaining high quality data is the atmosphere, and it is therefore essential to find the appropriate calibration for the atmospheric extinction. It is to be expected that a physical atmospheric model, compared to a photometric calibration used currently by PTF, is more effective in calibrating for the atmospheric extinction due to its ability to account for rapid atmospheric fluctuation and objects of different colors. We focused on creating tools to model the atmospheric extinction for the upcoming Zwicky Transient Factory Survey (ZTF). In order to model the atmosphere, we created a program that combines input data and catalogue values, and efficiently handles them. Then, using PTF data and the SDSS catalogue, we created several models to fit the data, and tested the quality of the fits by chi-square minimization. This will allow us to optimize atmospheric extinction for the upcoming ZTF in the near future.

  1. Catheter-Directed Thrombolysis with a Continuous Infusion of Low-Dose Urokinase for Non-Acute Deep Venous Thrombosis of the Lower Extremity

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Binbin; Zhang, Jingyong; Wu, Xuejun; Han, Zonglin; Zhou, Hua; Dong, Dianning; Jin, Xing [Shandong Provincial Hospital, Shandong University, Ji' nan (China)

    2011-02-15

    We wanted to evaluate the feasibility of catheter-directed thrombolysis with a continuous infusion of low-dose urokinase for treating non-acute (less than 14 days) deep venous thrombosis of the lower extremity. The clinical data of 110 patients who were treated by catheter-directed thrombolysis with a continuous infusion of low-dose urokinase for lower extremity deep venous thrombosis was analysed. Adjunctive angioplasty or/and stenting was performed for the residual stenosis. Venous recanalization was graded by pre- and posttreatment venography. Follow-up was performed by clinical evaluation and Doppler ultrasound. A total of 112 limbs with deep venous thrombosis with a mean symptom duration of 22.7 days (range: 15-38 days) were treated with a urokinase infusion (mean: 3.5 million IU) for a mean of 196 hours. After thrombolysis, stent placement was performed in 25 iliac vein lesions and percutaneous angioplasty (PTA) alone was done in fi ve iliac veins. Clinically significant recanalization was achieved in 81% (90 of 112) of the treated limbs: complete recanalization was achieved in 28% (31 of 112) and partial recanalization was achieved in 53% (59 of 112). Minor bleeding occurred in 14 (13%) patients, but none of the patients suffered from major bleeding or symptomatic pulmonary embolism. During followup (mean: 15.2 months, range: 3-24 months), the veins were patent in 74 (67%) limbs. Thirty seven limbs (32%) showed progression of the stenosis with luminal narrowing more than 50%, including three with rethrombosis, while one revealed an asymptomatic iliac vein occlusion: 25 limbs (22%) developed mild post-thrombotic syndrome, and none had severe post-thrombotic syndrome. Valvular reflux occurred in 24 (21%) limbs. Catheter-directed thrombolysis with a continuous infusion of low-dose urokinase combined with adjunctive iliac vein stenting is safe and effective for removal of the clot burden and for restoration of the venous flow in patients with non-acute lower

  2. A Wide Field Auroral Imager (WFAI for low Earth orbit missions

    Directory of Open Access Journals (Sweden)

    N. P. Bannister

    2007-03-01

    Full Text Available A comprehensive understanding of the solar wind interaction with Earth's coupled magnetosphere-ionosphere system requires an ability to observe the charged particle environment and auroral activity from the same platform, generating particle and photon image data which are matched in time and location. While unambiguous identification of the particles giving rise to the aurora requires a Low Earth Orbit satellite, obtaining adequate spatial coverage of aurorae with the relatively limited field of view of current space bourne auroral imaging systems requires much higher orbits. A goal for future satellite missions, therefore, is the development of compact, wide field-of-view optics permitting high spatial and temporal resolution ultraviolet imaging of the aurora from small spacecraft in low polar orbit. Microchannel plate optics offer a method of achieving the required performance. We describe a new, compact instrument design which can observe a wide field-of-view with the required spatial resolution. We report the focusing of 121.6 nm radiation using a spherically-slumped, square-pore microchannel plate with a focal length of 32 mm and an F number of 0.7. Measurements are compared with detailed ray-trace simulations of imaging performance. The angular resolution is 2.7±0.2° for the prototype, corresponding to a footprint ~33 km in diameter for an aurora altitude of 110 km and a spacecraft altitude of 800 km. In preliminary analysis, a more recent optic has demonstrated a full width at half maximum of 5.0±0.3 arcminutes, corresponding to a footprint of ~1 km from the same spacecraft altitude. We further report the imaging properties of a convex microchannel plate detector with planar resistive anode readout; this detector, whose active surface has a radius of curvature of only 100 mm, is shown to meet the spatial resolution and sensitivity requirements of the new wide field auroral imager (WFAI.

  3. Outcomes of inferior vena cava filter insertion in patients with lower extremity deep vein thrombosis for prevention of pulmonary thromboembolism: A single center retrospective analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Jin; Kim, Jae Kyu; Yim, Nam Yeol; Kim, Hyoung Ook [Dept. of Radiology, Chonnam National University Hospital, Gwangju (Korea, Republic of); Kang, Yang Jun [Dept. of Radiology, Chonnam National University Hwasun Hospital, Hwasun (Korea, Republic of)

    2017-07-15

    To evaluate the mid- and long-term outcomes of inferior vena cava (IVC) filter insertion in patients with underlying deep vein thrombosis for prevention of pulmonary thromboembolism, based on a single center experience. A total of 166 IVC filter insertion procedures in 160 patients, between February 2004 and December 2014, were retrospectively reviewed. Severity of deep vein thrombosis, indwelling time of the IVC filter, retrieval rate, and complication rate depending on the type of IVC filter were analyzed based on the patients' radiologic findings and medical records. IVC filter insertion procedures were successfully performed in all patients. Among the 99 attempts at filter retrieval, 91 trials succeeded (91.9%, 91/99) and 8 trials failed. Indwelling time of the IVC filter showed a positive correlation with failure of filter retrieval (p = 0.01). There was no procedure-related complication after all IVC filter insertion procedures. Eight delayed complications (5.0%, 8/160 patients with IVC filter insertion) were observed [caval thrombosis below the IVC filter (n = 7) and IVC penetration (n = 1)]. Günther Tulip filter was associated with a significant incidence of complication (p = 0.036). IVC filter insertion in patients with lower extremity deep vein thrombosis for prevention of pulmonary thromboembolism can be regarded as a safe treatment modality with an acceptable complication rate.

  4. Wide-Field Plates Observations of Stars from Earth Orientation Catalogs (EOC)

    Science.gov (United States)

    Chapanov, Y.; Tsvetkova, K.; Tsvetkov, M.; Vondrak, J.; Ron, C.; Stefka, V.

    2012-01-01

    The Earth Orientation Catalogues (EOCs) are primarily meant to provide stable celestial reference frame in optical wavelengths for deriving Earth Orientation Parameters (EOP) from astrometric observations. The EOCs combine catalogues ARIHIP and TYCHO-2 with the rich observation material (variations of Latitude/Universal Time), obtained during the 20th century in programs of monitoring Earth orientation. Other possible source of information for improving the EOCs is the WFPDB (Wide-Field Plate Database). The number of plates, containing EOCs stars and their distribution in time are determined by means of the search engine of the WFPDB.

  5. Sherlock: An Automated Follow-Up Telescope for Wide-Field Transit Searches

    Science.gov (United States)

    Kotredes, Lewis; Charbonneau, David; Looper, Dagny L.; O'Donovan, Francis T.

    2004-06-01

    The most significant challenge currently facing photometric surveys for transiting gas-giant planets is that of confusion with eclipsing binary systems that mimic the photometric signature. A simple way to reject most forms of these false positives is high-precision, rapid-cadence monitoring of the suspected transit at higher angular resolution and in several filters. We are currently building a system that will perform higher-angular-resolution, multi-color follow-up observations of candidate systems identified by Sleuth (our wide-field transit survey instrument at Palomar), and its two twin system instruments in Tenerife and northern Arizona.

  6. Wide-field TCSPC-based fluorescence lifetime imaging (FLIM) microscopy

    Science.gov (United States)

    Suhling, Klaus; Hirvonen, Liisa M.; Becker, Wolfgang; Smietana, Stefan; Netz, Holger; Milnes, James; Conneely, Thomas; Le Marois, Alix; Jagutzki, Ottmar

    2016-05-01

    Time-correlated single photon counting (TCSPC) is a widely used, sensitive, precise, robust and mature technique to measure photon arrival times in applications such as fluorescence spectroscopy and microscopy, light detection and ranging (lidar) and optical tomography. Wide-field TCSPC detection techniques, where the position and the arrival time of the photons are recorded simultaneously, have seen several advances in the last few years, from the microsecond to the picosecond time scale. Here, we summarise some of our recent work in this field with emphasis on microsecond resolution phosphorescence lifetime imaging (PLIM) and nanosecond fluorescence lifetime imaging (FLIM) microscopy.

  7. Developments of wide field submillimeter optics and lens antenna-coupled MKID cameras

    Science.gov (United States)

    Sekimoto, Y.; Nitta, T.; Karatsu, K.; Sekine, M.; Sekiguchi, S.; Okada, T.; Shu, S.; Noguchi, T.; Naruse, M.; Mitsui, K.; Okada, N.; Tsuzuki, T.; Dominjon, A.; Matsuo, H.

    2014-07-01

    Wide field cryogenic optics and millimeter-wave Microwave Kinetic Inductance Detector (MKID) cameras with Si lens array have been developed. MKID is a Cooper-pair breaking photon detector and consists of supercon- ducting resonators which enable microwave (~GHz) frequency multiplexing. Antenna-coupled Aluminum CPW resonators are put in a line on a Si substrate to be read by a pair of coaxial cables. A 220 GHz - 600 pixels MKID camera with anti-reflection (AR) coated Si lens has been demonstrated in an 0.1 K cryostat. A compact cryogenic system with high refractive index materials has been developed for the MKID camera.

  8. The biocytin wide-field bipolar cell in the rabbit retina selectively contacts blue cones

    OpenAIRE

    MacNeil, Margaret A.; Gaul, Paulette A.

    2008-01-01

    The biocytin wide-field bipolar cell in rabbit retina is a sparsely populated ON cone bipolar cell with a broad dendritic arbor that does not contact all cones in its dendritic field. The purpose of our study was to identify the cone types that this cell contacts. We identified the bipolar cells by selective uptake of biocytin, labeled the cones with peanut agglutinin and then used antibodies against blue cone opsin and red-green cone opsin to identify the individual cone types. The biocytin-...

  9. Micrometeoroid Impacts on the Hubble Space Telescope Wide Field and Planetary Camera 2: Larger Particles

    Science.gov (United States)

    Kearsley, A. T.; Grime, G. W.; Webb, R. P.; Jeynes, C.; Palitsin, V.; Colaux, J. L.; Ross, D. K.; Anz-Meador, P.; Liou, J. C.; Opiela, J.; hide

    2014-01-01

    The Wide Field and Planetary Camera 2 (WFPC2) was returned from the Hubble Space Telescope (HST) by shuttle mission STS-125 in 2009. In space for 16 years, the surface accumulated hundreds of impact features on the zinc orthotitanate paint, some penetrating through into underlying metal. Larger impacts were seen in photographs taken from within the shuttle orbiter during service missions, with spallation of paint in areas reaching 1.6 cm across, exposing alloy beneath. Here we describe larger impact shapes, the analysis of impactor composition, and the micrometeoroid (MM) types responsible.

  10. Efficacy and safety of rotating pigtail catheter: lower extremity deep vein thrombosis of may-thurner syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon Kyung; Kang, Byung Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of); Gang, Sung Gown [College of Medicine, Ewha Womans Univ., Seoul (Korea, Republic of)

    2004-07-01

    The purpose of this study was to evaluate the efficacy and safety of mechanical fragmentation of iliofemoral deep vein thromboses (DVTs) with a rotating pigtail catheter followed by aspiration thrombectomy. Ten patients (eight females, two males, 56.8 +/- 21.37 years) with iliofemoral DVT underwent treatment for a total of ten affected limbs. Approximately 5-10 min after infusing 400,000-700,000 IU urokinase (UK) into the thrombosed deep veins, the thromboses were fragmented by the mechanical action of the rotating pigtail catheter tip. Following their fragmentation, the fragmented thromboses were aspirated. After completion of the above procedure, a stent was inserted if iliac vein stenosis was demonstrated. We evaluated the total procedure time, volume of thrombolytic agent (urokinase), valvular injury, symptom-free time interval and success rate (primary patency rate). In all 10 patients, the iliofemoral deep vein thrombosis was successfully fragmented and aspirated using the combination method of a rotating pigtail catheter and aspiration thrombectomy (clinical and technical success rate, 100%). The thromboses were declotted by means of a rotating pigtail catheter with an average treatment time of 5.7 minutes. The average duration of the total intervention was 108 min. The mean primary patency was approximately 4 months with no recurrence. The total UK dose was 890,000 IU on average. There were no major complications, such as pulmonary embolism or cerebral hemorrhage, while performing the thrombus-fragmentation procedure using the rotating pigtail catheter. The combination method of a rotating pigtail catheter and aspiration thrombectomy for the treatment of iliofemoral deep vein thrombosis was found to be rapid, safe and effective for accomplishing recanalization in all cases without complication. Therefore, this procedure constitutes a potential treatment option in patients presenting with iliofemoral vein thrombosis.

  11. Lower extremity deep venous thrombosis with fatal pulmonary thromboembolism caused by benign pelvic space-occupying lesions--an overview.

    Science.gov (United States)

    Rosenfeld, Hannah; Byard, Roger W

    2012-05-01

    Venous stasis predisposes to thrombosis. One hundred and sixty cases of fatal pulmonary thromboembolism were reviewed to determine how many cases had deep venous thromboses associated with venous blood flow reduction caused by external pressure from benign pelvic masses. Three cases were identified, representing 2% of cases overall (3/160): a 44-year-old woman with a large uterine leiomyoma (1048 g); a 74-year-old man with prostatomegaly and bladder distension (containing 1 L of urine); and a 70-year-old man with prostatomegaly and bladder distension (containing 3 L of urine). Although a rare cause of fatal deep venous thrombosis and pulmonary thromboembolism, space-occupying pelvic lesions can lead to extrinsic pressure on adjacent veins reducing blood flow and causing stasis and thrombosis. Individuals with large pelvic masses may, therefore, be at increased risk of pulmonary thromboembolism from deep venous thrombosis, particularly in the presence of concurrent risk factors such as immobility, thrombophilias, malignancy, and significant cardiopulmonary disease. © 2012 American Academy of Forensic Sciences.

  12. Non-invasive neurosensory testing used to diagnose and confirm successful surgical management of lower extremity deep distal posterior compartment syndrome

    Directory of Open Access Journals (Sweden)

    Guyton Gregory P

    2009-05-01

    Full Text Available Abstract Background Chronic exertional compartment syndrome (CECS is characterized by elevated pressures within a closed space of an extremity muscular compartment, causing pain and/or disability by impairing the neuromuscular function of the involved compartment. The diagnosis of CECS is primarily made on careful history and physical exam. The gold standard test to confirm the diagnosis of CECS is invasive intra-compartmental pressure measurements. Sensory nerve function is often diminished during symptomatic periods of CECS. Sensory nerve function can be documented with the use of non-painful, non-invasive neurosensory testing. Methods Non-painful neurosensory testing of the myelinated large sensory nerve fibers of the lower extremity were obtained with the Pressure Specified Sensory Device™ in a 25 year old male with history and invasive compartment pressures consistent with CECS both before and after running on a tread mill. After the patient's first operation to release the deep distal posterior compartment, the patient failed to improve. Repeat sensory testing revealed continued change in his function with exercise. He was returned to the operating room where a repeat procedure revealed that the deep posterior compartment was not completely released due to an unusual anatomic variant, and therefore complete release was accomplished. Results The patient's symptoms numbness in the plantar foot and pain in the distal calf improved after this procedure and his repeat sensory testing performed before and after running on the treadmill documented this improvement. Conclusion This case report illustrates the principal that non-invasive neurosensory testing can detect reversible changes in sensory nerve function after a provocative test and may be a helpful non-invasive technique to managing difficult cases of persistent lower extremity symptoms after failed decompressive fasciotomies for CECS. It can easily be performed before and after

  13. Effectiveness and Safety of the Tempofilter II to Prevent the Occurrence of Pulmonary Thromboembolism in Patients with Lower Extremity Deep Vein Thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Byung Hyun; Jung, Min Young; Oh, Hyun Jun; Kim, Jae Kyu; Lee, Ho Kyun [Chonnam National University College of Medicine, Gwangju (Korea, Republic of); Jang, Nam Kyu [Chonnam National University Hospital, Hwasun (Korea, Republic of)

    2010-04-15

    To evaluate the efficacy and safety of the Tempofilter II for the prevention of a pulmonary thromboembolism (PTE) in patients with lower extremity deep vein thrombosis (DVT). Between January 2007 and December 2008, thirteen patients with lower extremity DVT whom were implanted with the Tempofilter II to prevent PTE were analyzed. A chest CT was compared before and after filter placement, to evaluate effectiveness of preventing PTE. Clinical symptoms of PTE were checked. Fluoroscopy and a plain radiograph were examined to evaluate filter status. The tempofilter II was successfully inserted in 13 patients. Nine patients underwent endovascular treatment after filter insertion. Trapping of thrombus was evaluated by following CT, venography, and filter retrieval. Trapped thrombus was detected in four patients by CT or retrieved filter. Two patients showed a decrease in thrombus in a follow-up chest CT. Not all patients showed symptoms of PTE. One filter was surgically removed due to the detachment of the anchoring device. The placement and retrieval of the Tempofilter II is feasible and effective for the prophylaxis of PTE in patients with lower extremity DVT; especially for patients that underwent subsequent endovascular treatment

  14. Design status of WFCAM: a wide field camera for the UK infrared telescope

    Science.gov (United States)

    Henry, David M.; Casali, Mark M.; Montgomery, David; Burch, Keith; Laidlaw, Ken; Ives, Derek J.; Vick, Andrew J. A.; Bridger, Alan; Lunney, David; Adamson, Andrew J.; Rees, Nicholas P.; Chylek, Tomas; Chuter, Timothy C.

    2003-03-01

    An update on the design status of the UKIRT Wide Field Camera (WFCAM) is presented. WFCAM is a wide field infrared camera for the UK Infrared Telescope, designed to produce large scale infrared surveys. The complete system consists of a new IR camera with integral autoguider and a new tip/tilt secondary mirror unit. WFCAM is being designed and built by a team at the UK Astronomy Technology Centre in Edinburgh, supported by the Joint Astronomy Centre in Hawaii. The camera uses a novel quasi-Schmidt camera type design, with the camera mounted above the UKIRT primary mirror. The optical system operates over 0.7 - 2.4 μm and has a large corrected field of view of 0.9° diameter. The focal plane is sparsely populated with 4 2K x 2K Rockwell HAWAII-2 MCT array detectors, giving a pixel scale of 0.4 arcsec/pixel. A separate autoguider CCD is integrated into the focal plane unit. Parallel detector controllers are used, one for each of the four IR arrays and a fifth for the autoguider CCD.

  15. Blind deconvolution with principal components analysis for wide-field and small-aperture telescopes

    Science.gov (United States)

    Jia, Peng; Sun, Rongyu; Wang, Weinan; Cai, Dongmei; Liu, Huigen

    2017-09-01

    Telescopes with a wide field of view (greater than 1°) and small apertures (less than 2 m) are workhorses for observations such as sky surveys and fast-moving object detection, and play an important role in time-domain astronomy. However, images captured by these telescopes are contaminated by optical system aberrations, atmospheric turbulence, tracking errors and wind shear. To increase the quality of images and maximize their scientific output, we propose a new blind deconvolution algorithm based on statistical properties of the point spread functions (PSFs) of these telescopes. In this new algorithm, we first construct the PSF feature space through principal component analysis, and then classify PSFs from a different position and time using a self-organizing map. According to the classification results, we divide images of the same PSF types and select these PSFs to construct a prior PSF. The prior PSF is then used to restore these images. To investigate the improvement that this algorithm provides for data reduction, we process images of space debris captured by our small-aperture wide-field telescopes. Comparing the reduced results of the original images and the images processed with the standard Richardson-Lucy method, our method shows a promising improvement in astrometry accuracy.

  16. Wide-field and high-resolution optical imaging for early detection of oral neoplasia

    Science.gov (United States)

    Pierce, Mark C.; Schwarz, Richard A.; Rosbach, Kelsey; Roblyer, Darren; Muldoon, Tim; Williams, Michelle D.; El-Naggar, Adel K.; Gillenwater, Ann M.; Richards-Kortum, Rebecca

    2010-02-01

    Current procedures for oral cancer screening typically involve visual inspection of the entire tissue surface at risk under white light illumination. However, pre-cancerous lesions can be difficult to distinguish from many benign conditions when viewed under these conditions. We have developed wide-field (macroscopic) imaging system which additionally images in cross-polarized white light, narrowband reflectance, and fluorescence imaging modes to reduce specular glare, enhance vascular contrast, and detect disease-related alterations in tissue autofluorescence. We have also developed a portable system to enable high-resolution (microscopic) evaluation of cellular features within the oral mucosa in situ. This system is a wide-field epi-fluorescence microscope coupled to a 1 mm diameter, flexible fiber-optic imaging bundle. Proflavine solution was used to specifically label cell nuclei, enabling the characteristic differences in N/C ratio and nuclear distribution between normal, dysplastic, and cancerous oral mucosa to be quantified. This paper discusses the technical design and performance characteristics of these complementary imaging systems. We will also present data from ongoing clinical studies aimed at evaluating diagnostic performance of these systems for detection of oral neoplasia.

  17. A wide-field suprachoroidal retinal prosthesis is stable and well tolerated following chronic implantation.

    Science.gov (United States)

    Villalobos, Joel; Nayagam, David A X; Allen, Penelope J; McKelvie, Penelope; Luu, Chi D; Ayton, Lauren N; Freemantle, Alexia L; McPhedran, Michelle; Basa, Meri; McGowan, Ceara C; Shepherd, Robert K; Williams, Chris E

    2013-05-01

    The safety of chronic implantation of a retinal prosthesis in the suprachoroidal space has not been established. This study aimed to determine the safety of a wide-field suprachoroidal electrode array following chronic implantation using histopathologic techniques and electroretinography. A platinum electrode array in a wide silicone substrate was implanted unilaterally in the suprachoroidal space in adult cats (n = 7). The lead and connector were tunneled out of the orbit and positioned subcutaneously. Postsurgical recovery was assessed using fundus photography and electroretinography (ERG). Following 3 months of passive implantation, the animals were terminated and the eyes assessed for the pathologic response to implantation. The implant was mechanically stable in the suprachoroidal space during the course of the study. The implanted eye showed a transient increase in ERG response amplitude at 2 weeks, which returned to normal by 3 months. Pigmentary changes were observed at the distal end of the implant, near the optic disc. Histopathologic assessment revealed a largely intact retina and a thin fibrous capsule around the suprachoroidal implant cavity. The foreign body response was minimal, with sporadic presence of macrophages and no active inflammation. All implanted eyes were negative for bacterial or fungal infections. A midgrade granuloma and thick fibrous buildup surrounded the extraocular cable. Scleral closure was maintained in six of seven eyes. There were no staphylomas or choroidal incarceration. A wide-field retinal prosthesis was stable and well tolerated during long-term suprachoroidal implantation in a cat model. The surgical approach was reproducible and overall safe.

  18. Stray-field-induced Faraday contributions in wide-field Kerr microscopy and -magnetometry

    Energy Technology Data Exchange (ETDEWEB)

    Markó, D.; Soldatov, I. [Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Institute for Metallic Materials, PO 270116, D-01171 Dresden (Germany); Dresden University of Technology, Institute for Materials Science, D-01062 Dresden (Germany); Tekielak, M. [Institute of Experimental Physics, University of Bialystok, Lipowa 41, Bialystok 15-424 Poland (Poland); Schäfer, R., E-mail: r.schaefer@ifw-dresden.de [Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Institute for Metallic Materials, PO 270116, D-01171 Dresden (Germany); Dresden University of Technology, Institute for Materials Science, D-01062 Dresden (Germany)

    2015-12-15

    The magnetic domain contrast in wide-field Kerr microscopy on bulk specimens can be substantially distorted by non-linear, field-dependent Faraday rotations in the objective lens that are caused by stray-field components emerging from the specimen. These Faraday contributions, which were detected by Kerr-magnetometry on grain-oriented iron–silicon steel samples, are thoroughly elaborated and characterized. They express themselves as a field-dependent gray-scale offset to the domain contrast and in highly distorted surface magnetization curves if optically measured in a wide field Kerr microscope. An experimental method to avoid such distortions is suggested. In the course of these studies, a low-permeability part in the surface magnetization loop of slightly misoriented (110)-surfaces in iron–silicon sheets was discovered that is attributed to demagnetization effects in direction perpendicular to the sheet surface. - Highlights: • Magnetizing a finite sample in a Kerr microscope leads to sample-generated stray-fields. • They cause non-linear, field- and position-dependent Faraday rotations in the objective. • This leads to a modulation of the Kerr contrast and to distorted MOKE loops. • A method to compensate these Faraday rotations is presented.

  19. Wide-Field Imaging Telescope-0 (WIT0) with automatic observing system

    Science.gov (United States)

    Ji, Tae-Geun; Byeon, Seoyeon; Lee, Hye-In; Park, Woojin; Lee, Sang-Yun; Hwang, Sungyong; Choi, Changsu; Gibson, Coyne Andrew; Kuehne, John W.; Prochaska, Travis; Marshall, Jennifer L.; Im, Myungshin; Pak, Soojong

    2018-01-01

    We introduce Wide-Field Imaging Telescope-0 (WIT0), with an automatic observing system. It is developed for monitoring the variabilities of many sources at a time, e.g. young stellar objects and active galactic nuclei. It can also find the locations of transient sources such as a supernova or gamma-ray bursts. In 2017 February, we installed the wide-field 10-inch telescope (Takahashi CCA-250) as a piggyback system on the 30-inch telescope at the McDonald Observatory in Texas, US. The 10-inch telescope has a 2.35 × 2.35 deg field-of-view with a 4k × 4k CCD Camera (FLI ML16803). To improve the observational efficiency of the system, we developed a new automatic observing software, KAOS30 (KHU Automatic Observing Software for McDonald 30-inch telescope), which was developed by Visual C++ on the basis of a windows operating system. The software consists of four control packages: the Telescope Control Package (TCP), the Data Acquisition Package (DAP), the Auto Focus Package (AFP), and the Script Mode Package (SMP). Since it also supports the instruments that are using the ASCOM driver, the additional hardware installations become quite simplified. We commissioned KAOS30 in 2017 August and are in the process of testing. Based on the WIT0 experiences, we will extend KAOS30 to control multiple telescopes in future projects.

  20. Microlensing Surveys of M31 in the Wide Field Imaging ERA

    Energy Technology Data Exchange (ETDEWEB)

    Baltz, E.

    2004-10-27

    The Andromeda Galaxy (M31) is the closest large galaxy to the Milky Way, thus it is an important laboratory for studying massive dark objects in galactic halos (MACHOs) by gravitational microlensing. Such studies strongly complement the studies of the Milky Way halo using the Large and Small Magellanic Clouds. We consider the possibilities for microlensing surveys of M31 using the next generation of wide field imaging telescopes with fields of view in the square degree range. We consider proposals for such imagers both on the ground and in space. For concreteness, we specialize to the SNAP proposal for a space telescope and the LSST proposal for a ground based telescope. We find that a modest space-based survey of 50 visits of one hour each is considerably better than current ground based surveys covering 5 years. Crucially, systematic effects can be considerably better controlled with a space telescope because of both the infrared sensitivity and the angular resolution. To be competitive, 8 meter class wide-field ground based imagers must take exposures of several hundred seconds with several day cadence.

  1. Spatially Resolved Two-Dimensional Infrared Spectroscopy via Wide-Field Microscopy.

    Science.gov (United States)

    Ostrander, Joshua S; Serrano, Arnaldo L; Ghosh, Ayanjeet; Zanni, Martin T

    2016-07-20

    We report the first wide-field microscope for measuring two-dimensional infrared (2D IR) spectroscopic images. We concurrently collect more than 16 000 2D IR spectra, made possible by a new focal plane array detector and mid-IR pulse shaping, to generate hyperspectral images with multiple frequency dimensions and diffraction-limited spatial resolution. Both frequency axes of the spectra are collected in the time domain by scanning two pairs of femtosecond pulses using a dual acousto-optic modulator pulse shaper. The technique is demonstrated by imaging a mixture of metal carbonyl absorbed polystyrene beads. The differences in image formation between FTIR and 2D IR microscopy are also explored by imaging a patterned USAF test target. We find that our 2D IR microscope has diffraction-limited spatial resolution and enhanced contrast compared to FTIR microscopy because of the nonlinear scaling of the 2D IR signal to the absorptivity coefficient for the vibrational modes. Images generated using off-diagonal peaks, created from vibrational anharmonicities, improve the molecular discrimination and eliminate noise. Two-dimensional wide-field IR microscopy provides information on vibrational lifetimes, molecular couplings, transition dipole orientations, and many other quantities that can be used for creating image contrast to help disentangle and interpret complex and heterogeneous samples. Such experiments made possible could include the study of amyloid proteins in tissues, protein folding in heterogeneous environments, and structural dynamics in devices employing mid-IR materials.

  2. HUBBLE SPACE TELESCOPE SPECTROSCOPY OF BROWN DWARFS DISCOVERED WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Adam C.; Cushing, Michael C. [Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606 (United States); Kirkpatrick, J. Davy; Gelino, Christopher R. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Mace, Gregory N.; Wright, Edward L. [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); Eisenhardt, Peter R. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Skrutskie, M. F. [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Griffith, Roger L. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Marsh, Kenneth A., E-mail: Adam.Schneider@Utoledo.edu [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom)

    2015-05-10

    We present a sample of brown dwarfs identified with the Wide-field Infrared Survey Explorer (WISE) for which we have obtained Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) near-infrared grism spectroscopy. The sample (22 in total) was observed with the G141 grism covering 1.10–1.70 μm, while 15 were also observed with the G102 grism, which covers 0.90–1.10 μm. The additional wavelength coverage provided by the G102 grism allows us to (1) search for spectroscopic features predicted to emerge at low effective temperatures (e.g.,ammonia bands) and (2) construct a smooth spectral sequence across the T/Y boundary. We find no evidence of absorption due to ammonia in the G102 spectra. Six of these brown dwarfs are new discoveries, three of which are found to have spectral types of T8 or T9. The remaining three, WISE J082507.35+280548.5 (Y0.5), WISE J120604.38+840110.6 (Y0), and WISE J235402.77+024015.0 (Y1), are the 19th, 20th, and 21st spectroscopically confirmed Y dwarfs to date. We also present HST grism spectroscopy and reevaluate the spectral types of five brown dwarfs for which spectral types have been determined previously using other instruments.

  3. Wide-Field InfraRed Survey Telescope (WFIRST) Slitless Spectrometer: Design, Prototype, and Results

    Science.gov (United States)

    Gong, Qian; Content, David; Dominguez, Margaret; Emmett, Thomas; Griesmann, Ulf; Hagopian, John; Kruk, Jeffrey; Marx, Catherine; Pasquale, Bert; Wallace, Thomas; hide

    2016-01-01

    The slitless spectrometer plays an important role in the Wide-Field InfraRed Survey Telescope (WFIRST) mission for the survey of emission-line galaxies. This will be an unprecedented very wide field, HST quality 3D survey of emission line galaxies. The concept of the compound grism as a slitless spectrometer has been presented previously. The presentation briefly discusses the challenges and solutions of the optical design, and recent specification updates, as well as a brief comparison between the prototype and the latest design. However, the emphasis of this paper is the progress of the grism prototype: the fabrication and test of the complicated diffractive optical elements and powered prism, as well as grism assembly alignment and testing. Especially how to use different tools and methods, such as IR phase shift and wavelength shift interferometry, to complete the element and assembly tests. The paper also presents very encouraging results from recent element tests to assembly tests. Finally we briefly touch the path forward plan to test the spectral characteristic, such as spectral resolution and response.

  4. Optically sectioned wide-field fluorescence lifetime imaging endoscopy enabled by structured illumination (Conference Presentation)

    Science.gov (United States)

    Hinsdale, Taylor; Malik, Bilal H.; Rico-Jimenez, Jose J.; Jo, Javier A.; Maitland, Kristen C.

    2016-03-01

    We present a wide-field fluorescence lifetime imaging (FLIM) system with optical sectioning by structured illumination microscopy (SIM). FLIM measurements were made using a time gated ICCD camera in conjunction with a pulsed nitrogen dye laser operating at 450 nm. Intensity images were acquired at multiple time delays from a trigger initiated by a laser pulse to create a wide-field FLIM image, which was then combined with three phase SIM to provide optical sectioning. Such a mechanism has the potential to increase the reliability and accuracy of the FLIM measurements by rejecting background intensity. SIM also provides the opportunity to create volumetric FLIM images with the incorporation of scanning mechanisms for the sample plane. We present multiple embodiments of such a system: one as a free space endoscope and the other as a fiber microendoscope enabled by the introduction of a fiber bundle. Finally, we demonstrate the efficacy of such an imaging system by imaging dyes embedded in a tissue phantom.

  5. Simple concept for a wide-field lensless digital holographic microscope using a laser diode

    Directory of Open Access Journals (Sweden)

    Adinda-Ougba A.

    2015-09-01

    Full Text Available Wide-field, lensless digital holographic microscopy is a new microscopic imaging technique for telemedicine and for resource limited setting [1]. In this contribution we propose a very simple wide-field lensless digital holographic microscope using a laser diode. It is based on in-line digital holography which is capable to provide amplitude and phase images of a sample resulting from numerical reconstruction. The numerical reconstruction consists of the angular spectrum propagation method together with a phase retrieval algorithm. Amplitude and phase images of the sample with a resolution of ∽2 µm and with ∽24 mm2 field of view are obtained. We evaluate our setup by imaging first the 1951 USAF resolution test chart to verify the resolution. Second, we record holograms of blood smear and diatoms. The individual specimen can be easily identified after the numerical reconstruction. Our system is a very simple, compact and low-cost possibility of realizing a microscope capable of imaging biological samples. The availability of the phase provide topographic information of the sample extending the application of this system to be not only for biological sample but also for transparent microstructure. It is suitable for fault detection, shape and roughness measurements of these structures.

  6. SHOK—The First Russian Wide-Field Optical Camera in Space

    Science.gov (United States)

    Lipunov, V. M.; Gorbovskoy, E. S.; Kornilov, V. G.; Panasyuk, M. I.; Amelushkin, A. M.; Petrov, V. L.; Yashin, I. V.; Svertilov, S. I.; Vedenkin, N. N.

    2018-02-01

    Onboard the spacecraft Lomonosov is established two fast, fixed, very wide-field cameras SHOK. The main goal of this experiment is the observation of GRB optical emission before, synchronously, and after the gamma-ray emission. The field of view of each of the cameras is placed in the gamma-ray burst detection area of other devices located onboard the "Lomonosov" spacecraft. SHOK provides measurements of optical emissions with a magnitude limit of ˜ 9-10m on a single frame with an exposure of 0.2 seconds. The device is designed for continuous sky monitoring at optical wavelengths in the very wide field of view (1000 square degrees each camera), detection and localization of fast time-varying (transient) optical sources on the celestial sphere, including provisional and synchronous time recording of optical emissions from the gamma-ray burst error boxes, detected by the BDRG device and implemented by a control signal (alert trigger) from the BDRG. The Lomonosov spacecraft has two identical devices, SHOK1 and SHOK2. The core of each SHOK device is a fast-speed 11-Megapixel CCD. Each of the SHOK devices represents a monoblock, consisting of a node observations of optical emission, the electronics node, elements of the mechanical construction, and the body.

  7. Lower extremity compartment syndrome in the setting of iliofemoral deep vein thrombosis, phlegmasia cerulea dolens and factor VII deficiency.

    Science.gov (United States)

    Abdul, Wahid; Hickey, Ben; Wilson, Chris

    2016-04-25

    Acute compartment syndrome requires urgent fasciotomies to prevent irreversible muscle damage. We present a case of massive iliofemoral deep vein thrombosis (DVT) presenting as acute compartment syndrome. A healthy 21-year-old man presented with a 2-day history of worsening left leg pain with swelling and bluish discolouration. Clinical diagnosis of compartment syndrome secondary to phlegmasia cerulea dolens (PCD) was made and he underwent emergency fasciotomies. Postoperative venous duplex confirmed a massive iliofemoral DVT and intravenous heparin was started. Following skin grafting, the patient made a good recovery. Massive iliofemoral DVT is an uncommon cause of compartment syndrome and has been reported in lower limbs, secondary to PCD. Failure to treat early carries a high degree of morbidity, with amputation rates up to 50% and mortality rates between 25% and 40%. It is important to recognise compartment syndrome as an acute presentation of PCD. Urgent fasciotomies can prevent limb amputation and mortality. 2016 BMJ Publishing Group Ltd.

  8. Radiometric calibration of wide-field camera system with an application in astronomy

    Science.gov (United States)

    Vítek, Stanislav; Nasyrova, Maria; Stehlíková, Veronika

    2017-09-01

    Camera response function (CRF) is widely used for the description of the relationship between scene radiance and image brightness. Most common application of CRF is High Dynamic Range (HDR) reconstruction of the radiance maps of imaged scenes from a set of frames with different exposures. The main goal of this work is to provide an overview of CRF estimation algorithms and compare their outputs with results obtained under laboratory conditions. These algorithms, typically designed for multimedia content, are unfortunately quite useless with astronomical image data, mostly due to their nature (blur, noise, and long exposures). Therefore, we propose an optimization of selected methods to use in an astronomical imaging application. Results are experimentally verified on the wide-field camera system using Digital Single Lens Reflex (DSLR) camera.

  9. Plastic optical fiber for wide field-of-view optical wireless receiver

    Science.gov (United States)

    Fallah, Hoorieh; Sterckx, Karel; Saengudomlert, Poompat; Mohammed, Waleed S.

    2016-10-01

    This paper demonstrates a working indoor optical wireless link for smart environment applications. The system utilizes a wide field-of-view (FOV) optical wireless receiver through cleaving the tip of large core plastic optical fibers (POFs) attached to the detector. The quality of the optical link is quantified through bit error rate (BER) measurements. The experimental results show a wide FOV with the uncoded BER in the order of 10-3 for transmission distances up to 35 cm when using two POFs for signal collection. The distance can be improved further by increasing the number of fibers. The transmitted signal format and how the BER measurement is achieved are discussed at length. In addition, details are provided for the design of the electronics to establish the optical wireless link.

  10. Programmable LED-based integrating sphere light source for wide-field fluorescence microscopy.

    Science.gov (United States)

    Rehman, Aziz Ul; Anwer, Ayad G; Goldys, Ewa M

    2017-12-01

    Wide-field fluorescence microscopy commonly uses a mercury lamp, which has limited spectral capabilities. We designed and built a programmable integrating sphere light (PISL) source which consists of nine LEDs, light-collecting optics, a commercially available integrating sphere and a baffle. The PISL source is tuneable in the range 365-490nm with a uniform spatial profile and a sufficient power at the objective to carry out spectral imaging. We retrofitted a standard fluorescence inverted microscope DM IRB (Leica) with a PISL source by mounting it together with a highly sensitive low- noise CMOS camera. The capabilities of the setup have been demonstrated by carrying out multispectral autofluorescence imaging of live BV2 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Deconvolution of wide field-of-view radiometer measurements of earth-emitted radiation. I - Theory

    Science.gov (United States)

    Smith, G. L.; Green, R. N.

    1981-01-01

    The theory of deconvolution of wide field-of-view (WFOV) radiometer measurements of earth-emitted radiation provides a technique by which the resolution of such measurements can be enhanced to provide radiant exitance at the top of the atmosphere with a finer resolution than the field of view. An analytical solution for the earth-emitted radiant exitance in terms of WFOV radiometer measurements is derived for the nonaxisymmetric (or regional) case, in which the measurements and radiant exitance are considered to be functions of both latitude and longitude. This solution makes it possible to deconvolve a set of WFOV radiometer measurements of earth-emitted radiation and obtain information with a finer resolution than the instantaneous field of view of the instrument. It is shown that there are tradeoffs involved in the selection between WFOV and scanning radiometers.

  12. Miniaturized high-resolution wide-field contact lens for panretinal photocoagulation

    Directory of Open Access Journals (Sweden)

    Koushan K

    2014-04-01

    Full Text Available Keyvan Koushan, KV Chalam Department of Ophthalmology, University of Florida College of Medicine, Jacksonville, FL, USA Background and objective: We describe a miniaturized lightweight high-refractive-index panretinal contact lens for diagnostic and therapeutic visualization of the peripheral retina. Instrument design: The miniaturized high-resolution wide-field contact lens includes three optical elements in a light (15 g and miniaturized (16 mm footplate, 24 mm external aperture, and 21 mm vertical height casing contributing to a total dioptric power of +171 diopters. This lens provides up to 165° visualization of the retina for diagnostic and therapeutic applications while allowing easier placement due to its miniaturization. Conclusion: This new lens (50% lighter and 89% smaller improves upon earlier contact lenses for visualization of the peripheral retina. Keywords: contact lens, panretinal photocoagulation, retinal examination, peripheral retina, high resolution view, wide-angle lens, lens

  13. Readout electronics for the Wide Field of view Cherenkov/Fluorescence Telescope Array

    Science.gov (United States)

    Zhang, J.; Zhang, S.; Zhang, Y.; Zhou, R.; Bai, L.; Zhang, J.; Huang, J.; Yang, C.; Cao, Z.

    2015-08-01

    The aim of the Large High Altitude Air Shower Observatory (LHAASO), supported by IHEP of the Chinese Academy of Sciences, is a multipurpose project with a complex detectors array for high energy gamma ray and cosmic ray detection. The Wide Field of view Cherenkov Telescope Array (WFCTA), as one of the components of the LHAASO project, aim to tag each primary particle that causes an air shower. The WFCTA is a portable telescope array used to detect cosmic ray spectra. The design of the readout electronics of the WFCTA is described in this paper Sixteen photomultiplier tubes (PMTs), together with their readout electronics are integrated into a single sub-cluster. To maintain good resolution and linearity over a wide dynamic range, a dual-gain amplification configuration on an analog board is used The digital board contains two 16channel 14-bit, 50 Msps analog-to-digital converters (ADC) and its power consumption, noise level, and relative deviation are all tested.

  14. Micrometeoroid Impacts on the Hubble Space Telescope Wide Field and Planetary Camera 2: Smaller Particle Impacts

    Science.gov (United States)

    Ross, D. K.; Anz-Meador, P.; Liou, J.C.; Opiela, J.; Kearsley, A. T.; Grime, G.; Webb, R.; Jeynes, C.; Palitsin, V.; Colaux, J.; hide

    2014-01-01

    The radiator shield on the Wide Field and Planetary Camera 2 (WFPC2) was subject to optical inspection following return from the Hubble Space Telescope (HST) in 2009. The survey revealed over 600 impact features of > 300 micrometers diameter, from exposure in space for 16 years. Subsequently, an international collaborative programme of analysis was organized to determine the origin of hypervelocity particles responsible for the damage. Here we describe examples of the numerous smaller micrometeoroid (MM) impact features (< 700 micrometers diameter) which excavated zinc orthotitanate (ZOT) paint from the radiator surface, but did not incorporate material from underlying Al alloy; larger impacts are described by [3]. We discuss recognition and interpretation of impactor remains, and MM compositions found on WFPC2.

  15. Wide-field mid-infrared hyperspectral imaging of adhesives using a bolometer camera.

    Science.gov (United States)

    Sugawara, Shigeru; Nakayama, Yoshihiko; Taniguchi, Hideya; Ishimaru, Ichiro

    2017-09-29

    By combining a bolometer detector with an imaging-type interferometer, an inexpensive, easy-to-handle wide-field mid-infrared hyperspectral imaging apparatus was produced. We measured the distributions of four types of thin adhesive layers on an aluminium plate and analysed the results using correlation coefficients to visualise the distribution of various adhesives that cannot be discerned by the naked eye or conventional methods such as visible/near-infrared spectroscopic/fluorescent photography. The measurement wavelength range, obtained spectrum's wavenumber resolution, and measurement time was 8-14 μm, about 9 cm-1, and about 30 s, respectively. Using conventional methods, adhesives could not be distinguished from the others. By using this method, we found that adhesives could be precisely distinguished by setting an appropriate threshold value for the correlation coefficient. Thus, our approach can accurately measure the spatial distribution of different types of adhesive that cannot be discriminated by conventional methods.

  16. San Pedro meeting on Wide Field Variability Surveys: Some concluding comments

    Directory of Open Access Journals (Sweden)

    Feast Michael W.

    2017-01-01

    Full Text Available This is a written version of the closing talk at the 22nd Los Alamos Stellar pulsation conference on wide field variability surveys. It comments on some of the issues which arise from the meeting. These include the need for attention to photometric standardization (especially in the infrared and the somewhat controversial problem of statistical bias in the use of parallaxes (and other methods of distance determination. Some major advances in the use of pulsating variables to study Galactic structure are mentioned. The paper includes a clarification of apparently conflicting results from classical Cepheids and RR Lyrae stars in the inner Galaxy and bulge. The importance of understanding non-periodic phenomena in variable stars, particularly asymptotic giant branch variables and R Coronae Borealis stars, is stressed, especially for its relevance to mass-loss in which pulsation may only play a minor role.

  17. Wide-field microscopic FRET imaging using simultaneous spectral unmixing of excitation and emission spectra.

    Science.gov (United States)

    Du, Mengyan; Zhang, Lili; Xie, Shusen; Chen, Tongsheng

    2016-07-11

    Simultaneous spectral unmixing of excitation and emission spectra (ExEm unmixing) has the inherent ability to resolve donor emission, fluorescence resonance energy transfer (FRET)-sensitized acceptor emission and directly excited acceptor emission. We here develop an ExEm unmixing-based quantitative FRET measurement method (EES-FRET) independent of excitation intensity and detector parameter setting. The ratio factor (rK), predetermined using a donor-acceptor tandem construct, of total acceptor absorption to total donor absorption in excitation wavelengths used is introduced for determining the concentration ratio of acceptor to donor. We implemented EES-FRET method on a wide-field microscope to image living cells expressing tandem FRET constructs with different donor-acceptor stoichiometry.

  18. Meteor observations with Mini-Mega-TORTORA wide-field monitoring system

    Science.gov (United States)

    Karpov, S.; Orekhova, N.; Beskin, G.; Biryukov, A.; Bondar, S.; Ivanov, E.; Katkova, E.; Perkov, A.; Sasyuk, V.

    2016-12-01

    Here we report on the results of meteor observations with 9-channel Mini-Mega-TORTORA (MMT-9) optical monitoring system with the wide field and high temporal resolution. During the first 1.5 years of operation more than 90 thousands of meteors have been detected, at a rate of 300-350 per night, with durations from 0.1 to 2.5 seconds and angular velocities up to 38 degrees per second. The faintest detected meteors have peak brightnesses about 10 mag, while the majority have them ranging from 4 to 8 mag. Some of the meteors have been observed in BVR filters simultaneously. Color variations along the trail for them have been determined. The parameters of the detected meteors have been published online. The database also includes data from 10 thousands of meteors detected by our previous FAVOR camera during 2006-2009.

  19. Speckle correlation resolution enhancement of wide-field fluorescence imaging (Conference Presentation)

    Science.gov (United States)

    Yilmaz, Hasan

    2016-03-01

    Structured illumination enables high-resolution fluorescence imaging of nanostructures [1]. We demonstrate a new high-resolution fluorescence imaging method that uses a scattering layer with a high-index substrate as a solid immersion lens [2]. Random scattering of coherent light enables a speckle pattern with a very fine structure that illuminates the fluorescent nanospheres on the back surface of the high-index substrate. The speckle pattern is raster-scanned over the fluorescent nanospheres using a speckle correlation effect known as the optical memory effect. A series of standard-resolution fluorescence images per each speckle pattern displacement are recorded by an electron-multiplying CCD camera using a commercial microscope objective. We have developed a new phase-retrieval algorithm to reconstruct a high-resolution, wide-field image from several standard-resolution wide-field images. We have introduced phase information of Fourier components of standard-resolution images as a new constraint in our algorithm which discards ambiguities therefore ensures convergence to a unique solution. We demonstrate two-dimensional fluorescence images of a collection of nanospheres with a deconvolved Abbe resolution of 116 nm and a field of view of 10 µm × 10 µm. Our method is robust against optical aberrations and stage drifts, therefore excellent for imaging nanostructures under ambient conditions. [1] M. G. L. Gustafsson, J. Microsc. 198, 82-87 (2000). [2] H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, Optica 2, 424-429 (2015).

  20. Precision Pointing for the Wide-Field Infrared Survey Telescope(WFIRST)

    Science.gov (United States)

    Stoneking, Eric T.; Hsu, Oscar C.; Welter, Gary

    2017-01-01

    The Wide-Field Infrared Survey Telescope (WFIRST) mission, scheduled for a mid-2020's launch, is currently in its definition phase. The mission is designed to investigate essential questions in the areas of dark energy, exoplanets, and infrared astrophysics. WFIRST will use a 2.4-meter primary telescope (same size as the Hubble Space Telescope's primary mirror) and two instruments: the Wide Field Instrument (WFI) and the Coronagraph Instrument (CGI). In order to address the critical science requirements, the WFIRST mission will conduct large-scale surveys of the infrared sky, requiring both agility and precision pointing (11.6 milli-arcsec stability, 14 milli-arcsec jitter). This paper describes some of the challenges this mission profile presents to the Guidance, Navigation, and Control (GNC) subsystem, and some of the design elements chosen to accommodate those challenges. The high-galactic-latitude survey is characterized by 3-minute observations separated by slews ranging from 0.025 deg to 0.8 deg. The need for observation efficiency drives the slew and settle process to be as rapid as possible. A description of the shaped slew profile chosen to minimize excitation of structural oscillation, and the handoff from star tracker-gyro control to fine guidance sensor control is detailed. Also presented is the fine guidance sensor (FGS), which is integral with the primary instrument (WFI). The FGS is capable of tracking up to 18 guide stars, enabling robust FGS acquisition and precision pointing. To avoid excitation of observatory structural jitter, reaction wheel speeds are operationally maintained within set limits. In addition, the wheel balance law is designed to maintain 1-Hz separation between the wheel speeds to avoid reinforcing jitter excitation at any particular frequency. The wheel balance law and operational implications are described. Finally, the candidate GNC hardware suite needed to meet the requirements of the mission is presented.

  1. Short-Term Catheter-Directed Thrombolysis with Low-Dose Urokinase Followed by Aspiration Thrombectomy for Treatment of Symptomatic Lower Extremity Deep Venous Thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Se Hee; Lim, Nam Yeul; Song, Jang Hyeon [Dept. of Radiology, Chonnam National University Hospital, Gwangju (Korea, Republic of); Kim, Jae Kyu; Lim, Jae Hoon [Dept. of Radiology, Hospital, Ulsan University School of Medicine, Gweangju (Korea, Republic of); Chang, Nam Kyu [Dept. of Radiology, Chonnam National University Hwasun Hospital, Hwasun (Korea, Republic of); Choi, Soo Jin Na; Chung, Sang Young [Dept. of Radiology, Chonnam National University Hospital, Chonnam National University School of Medicine, Gwangju (Korea, Republic of)

    2011-10-15

    To evaluate the venous patency in patients treated by catheter-directed thrombolysis with low-dose urokinase (UK) for symptomatic lower extremity deep venous thrombosis (DVT). Eighty-nine consecutive patients (46 women and 43 men; mean age, 58.1 years), treated by catheter-directed thrombolysis with low-dose UK were included in this study. Immediate venous patency was evaluated in terms of technical success (successful restoration of antegrade in-line flow in the treated vein with residual stenosis rate of less than 30%) and clinical success (significant reduction of clinical symptoms before hospital discharge). Late venous patency was evaluated in terms of primary patency rate and clinical success. Immediate technical success was achieved in all patients and immediate clinical success in 80 (90%) patients. There was no major systemic bleeding complication. The primary patency rate at 6 months and 12 months was 84% and 79%, respectively. Fifty-six (63%) patients were asymptomatic after a median clinical follow-up of 18 months, eleven (12%) patients improved moderately, seven (8%) patients remained unchanged, and fifteen (17%) patients had no clinical follow-up. Short-term catheter-directed thrombolysis with low-dose UK can be an effective, safe method to manage DVT of the lower extremities.

  2. Active optics and modified-Rumsey wide-field telescopes: MINITRUST demonstrators with vase- and tulip-form mirrors

    Science.gov (United States)

    Lemaître, Gérard R.; Montiel, Pierre; Joulié, Patrice; Dohlen, Kjetil; Lanzoni, Patrick

    2005-12-01

    Wide-field astronomy requires the development of larger aperture telescopes. The optical properties of a three-mirror modified-Rumsey design provide significant advantages when compared to other telescope designs: (i) at any wavelength, the design has a flat field and is anastigmatic; (ii) the system is extremely compact, i.e., it is almost four times shorter than a Schmidt. Compared to the equally compact flat-field Ritchey-Chrétien with a doublet-lens corrector, as developed for the Sloan digital sky survey - and which requires the polishing of six optical surfaces - the proposed modified-Rumsey design requires only a two-surface polishing and provides a better imaging quality. All the mirrors are spheroids of the hyperboloid type. Starting from the classical Rumsey design, it is shown that the use of all eight available free parameters allows the simultaneous aspherization of the primary and tertiary mirrors by active optics methods from a single deformable substrate. The continuity conditions between the primary and the tertiary hyperbolizations are achieved by an intermediate narrow ring of constant thickness that is not optically used. After the polishing of a double vase form in a spherical shape, the primary-tertiary hyperbolizations are achieved by in situ stressing. The tulip-form secondary is hyperbolized by stress polishing. Other active optics alternatives are possible for a space telescope. The modified-Rumsey design is of interest for developing large space- and ground-based survey telescopes in UV, visible, or IR ranges, such as currently demonstrated with the construction of identical telescopes MINITRUST-1 and -2, f/5 - 2° field of view. Double-pass optical tests show diffraction-limited images.

  3. Percutaneous mechanical thrombectomy combined with catheter-directed thrombolysis in the treatment of symptomatic lower extremity deep venous thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Sh, Hongjian [Department of Radiology, Affiliated Wujin Hospital of Jiangsu University, 2 North Yongning Road, Changzhou 213002 (China)], E-mail: shihongjian@sina.com; Huang Youhua; Shen Tao; Xu Qiang [Department of Radiology, Affiliated Wujin Hospital of Jiangsu University, 2 North Yongning Road, Changzhou 213002 (China)

    2009-08-15

    Purpose: To evaluate the efficacy of percutaneous mechanical thrombectomy (PMT) combined with catheter-directed thrombolysis (CDT) in the treatment of massive symptomatic lower limb deep venous thrombosis (DVT). Materials and methods: One hundred and three clinically confirmed DVT patients were discharged from our institution. Sixteen patients with massive lower limb DVT were included in this retrospective study. After prophylactic placement of inferior vena cava filters (IVCFs), percutaneous mechanical thrombectomy (ATD, n = 10; Straub, n = 6) and catheter-directed thrombolysis were performed in all patients. Complementary therapy included percutaneous transluminal venous angioplasty (PTA, n = 3) and stent placement (n = 1). The doses of thrombolytic agents, length of hospital stay, peri-procedure complications and discharge status were reviewed. Oral anticoagulation was continued for at least 6 months during follow-up. Results: The average hospital stay was 7 days. The technical success rate (complete and partial lysis of clot) was 89%, the other 11% patients only achieved less than 50% clot lysis. The mean dose of urokinase was 3.3 million IU. There were no significant differences of clinical outcome between the ATD and Straub catheter group. The only major complication was an elderly male who experienced a fatal intracranial hemorrhage while still in the hospital (0.97%, 1/103). Minor complications consisted of three instances of subcutaneous bleeding. No transfusions were required. Vascular patency was achieved in 12 limbs during follow-up. No pulmonary emboli occurred. There is one recurrent DVT 4.5 months after the treatment. Conclusions: Percutaneous mechanical thrombectomy combined with catheter-directed thrombolysis is an effective and safe method for the treatment of symptomatic DVT. A randomized prospective study is warranted.

  4. Cost-effective and compact wide-field fluorescent imaging on a cell-phone.

    Science.gov (United States)

    Zhu, Hongying; Yaglidere, Oguzhan; Su, Ting-Wei; Tseng, Derek; Ozcan, Aydogan

    2011-01-21

    We demonstrate wide-field fluorescent and darkfield imaging on a cell-phone with compact, light-weight and cost-effective optical components that are mechanically attached to the existing camera unit of the cell-phone. For this purpose, we used battery powered light-emitting diodes (LEDs) to pump the sample of interest from the side using butt-coupling, where the pump light was guided within the sample cuvette to uniformly excite the specimen. The fluorescent emission from the sample was then imaged using an additional lens that was positioned right in front of the existing lens of the cell-phone camera. Because the excitation occurs through guided waves that propagate perpendicular to our detection path, an inexpensive plastic colour filter was sufficient to create the dark-field background required for fluorescent imaging, without the need for a thin-film interference filter. We validate the performance of this platform by imaging various fluorescent micro-objects in 2 colours (i.e., red and green) over a large field-of-view (FOV) of ∼81 mm(2) with a raw spatial resolution of ∼20 μm. With additional digital processing of the captured cell-phone images, through the use of compressive sampling theory, we demonstrate ∼2 fold improvement in our resolving power, achieving ∼10 μm resolution without a trade-off in our FOV. Further, we also demonstrate darkfield imaging of non-fluorescent specimen using the same interface, where this time the scattered light from the objects is detected without the use of any filters. The capability of imaging a wide FOV would be exceedingly important to probe large sample volumes (e.g., >0.1 mL) of e.g., blood, urine, sputum or water, and for this end we also demonstrate fluorescent imaging of labeled white-blood cells from whole blood samples, as well as water-borne pathogenic protozoan parasites such as Giardia Lamblia cysts. Weighing only ∼28 g (∼1 ounce), this compact and cost-effective fluorescent imaging platform

  5. Wide-field imaging through scattering media by scattered light fluorescence microscopy

    Science.gov (United States)

    Zhou, Yulan; Li, Xun

    2017-08-01

    To obtain images through scattering media, scattered light fluorescence (SLF) microscopy that utilizes the optical memory effect has been developed. However, the small field of view (FOV) of SLF microscopy limits its application. In this paper, we have introduced a re-modulation method to achieve wide-field imaging through scattering media by SLF microscopy. In the re-modulation method, to raster scan the focus across the object plane, the incident wavefront is re-modulated via a spatial light modulator (SLM) in the updated phase compensation calculated using the optimized iterative algorithm. Compared with the conventional optical memory effect method, the re-modulation method can greatly increase the FOV of a SLF microscope. With the phase compensation theoretically calculated, the process of updating the phase compensation of a high speed SLM is fast. The re-modulation method does not increase the imaging time. The re-modulation method is, therefore, expected to make SLF microscopy have much wider applications in biology, medicine and physiology.

  6. Development of a Data Reduction algorithm for Optical Wide Field Patrol

    Directory of Open Access Journals (Sweden)

    Sun-youp Park

    2013-09-01

    Full Text Available The detector subsystem of the Optical Wide-field Patrol (OWL network efficiently acquires the position and time information of moving objects such as artificial satellites through its chopper system, which consists of 4 blades in front of the CCD camera. Using this system, it is possible to get more position data with the same exposure time by changing the streaks of the moving objects into many pieces with the fast rotating blades during sidereal tracking. At the same time, the time data from the rotating chopper can be acquired by the time tagger connected to the photo diode. To analyze the orbits of the targets detected in the image data of such a system, a sequential procedure of determining the positions of separated streak lines was developed that involved calculating the World Coordinate System (WCS solution to transform the positions into equatorial coordinate systems, and finally combining the time log records from the time tagger with the transformed position data. We introduce this procedure and the preliminary results of the application of this procedure to the test observation images.

  7. Automated segmentation of oral mucosa from wide-field OCT images (Conference Presentation)

    Science.gov (United States)

    Goldan, Ryan N.; Lee, Anthony M. D.; Cahill, Lucas; Liu, Kelly; MacAulay, Calum; Poh, Catherine F.; Lane, Pierre

    2016-03-01

    Optical Coherence Tomography (OCT) can discriminate morphological tissue features important for oral cancer detection such as the presence or absence of basement membrane and epithelial thickness. We previously reported an OCT system employing a rotary-pullback catheter capable of in vivo, rapid, wide-field (up to 90 x 2.5mm2) imaging in the oral cavity. Due to the size and complexity of these OCT data sets, rapid automated image processing software that immediately displays important tissue features is required to facilitate prompt bed-side clinical decisions. We present an automated segmentation algorithm capable of detecting the epithelial surface and basement membrane in 3D OCT images of the oral cavity. The algorithm was trained using volumetric OCT data acquired in vivo from a variety of tissue types and histology-confirmed pathologies spanning normal through cancer (8 sites, 21 patients). The algorithm was validated using a second dataset of similar size and tissue diversity. We demonstrate application of the algorithm to an entire OCT volume to map epithelial thickness, and detection of the basement membrane, over the tissue surface. These maps may be clinically useful for delineating pre-surgical tumor margins, or for biopsy site guidance.

  8. WIDE-FIELD INFRARED SURVEY EXPLORER OBSERVATIONS OF THE EVOLUTION OF MASSIVE STAR-FORMING REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Padgett, D. L. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Rebull, L. M. [Spitzer Science Center (SSC), California Institute of Technology, M/S 220-6, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Assef, R. J. [Jet Propulsion Laboratory, MS 169-530, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2012-01-10

    We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the 'fireworks hypothesis' since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  9. Wide field imaging spectrometer for ESA's future X-ray mission: XEUS

    CERN Document Server

    Strüder, L

    1999-01-01

    An active pixel sensor (APS) based on the DEpleted P-channel junction Field Effect Transistor (DEPFET) concept will be described as a potential wide field imager for ESA's high resolution, high throughput mission: 'X-ray Evolving Universe Spectroscopy' (XEUS). It comprises a parallel multichannel readout, low noise at high speed readout, backside illumination and a fill factor of 100% over the whole field of view. The depleted thickness will be 500 microns. These design parameters match the scientific requirements of the mission. The fabrication techniques of the DEPFET arrays are related to the high resistivity process of the X-ray pn-CCDs. Potential extensions of the already realized DEPFET structures are a non-destructive repetitive readout of the signal charges. This concept will be presented. As an alternative solution, frame store pn-CCDs are considered having the same format and pixel sizes as the proposed DEPFET arrays. Their development is a low risk, straightforward continuation of the XMM devices. ...

  10. Application of a wide-field electromagnetic method to shale gas exploration in South China

    Science.gov (United States)

    Yang, Xue-Li; Li, Bo; Peng, Chuan-Sheng; Yang, Yang

    2017-09-01

    In an effort to reduce the shale gas exploration risks and costs, we applied the wide-field electromagnetic method (WFEM), because of its strong anti-interference capability, high resolution, ability to conduct exploration at large depths, and high efficiency, to the Bayan Syncline in the South Huayuan block, Hunan Province. We collected rock samples and analyzed their resistivity and induced polarization (IP) and built A series of two-dimensional models for geological conditions to investigate the applicability of WFEM to different geological structures. We also analyzed the correlation between TOC of shale and the resistivity and IP ratio to determine the threshold for identifying target formations. We used WFEM to identify the underground structures and determine the distribution, depth, and thickness of the target strata. Resistivity, IP, and total organic carbon were used to evaluate the shale gas prospects and select favorable areas (sweet spots) for exploration and development. Subsequently, drilling in these areas proved the applicability of WFEM in shale gas exploration.

  11. Water-Immersible MEMS scanning mirror designed for wide-field fast-scanning photoacoustic microscopy

    Science.gov (United States)

    Yao, Junjie; Huang, Chih-Hsien; Martel, Catherine; Maslov, Konstantin I.; Wang, Lidai; Yang, Joon-Mo; Gao, Liang; Randolph, Gwendalyn; Zou, Jun; Wang, Lihong V.

    2013-03-01

    By offering images with high spatial resolution and unique optical absorption contrast, optical-resolution photoacoustic microscopy (OR-PAM) has gained increasing attention in biomedical research. Recent developments in OR-PAM have improved its imaging speed, but have sacrificed either the detection sensitivity or field of view or both. We have developed a wide-field fast-scanning OR-PAM by using a water-immersible MEMS scanning mirror (MEMS-ORPAM). Made of silicon with a gold coating, the MEMS mirror plate can reflect both optical and acoustic beams. Because it uses an electromagnetic driving force, the whole MEMS scanning system can be submerged in water. In MEMS-ORPAM, the optical and acoustic beams are confocally configured and simultaneously steered, which ensures uniform detection sensitivity. A B-scan imaging speed as high as 400 Hz can be achieved over a 3 mm scanning range. A diffraction-limited lateral resolution of 2.4 μm in water and a maximum imaging depth of 1.1 mm in soft tissue have been experimentally determined. Using the system, we imaged the flow dynamics of both red blood cells and carbon particles in a mouse ear in vivo. By using Evans blue dye as the contrast agent, we also imaged the flow dynamics of lymphatic vessels in a mouse tail in vivo. The results show that MEMS-OR-PAM could be a powerful tool for studying highly dynamic and time-sensitive biological phenomena.

  12. Wide-field OCT imaging of oral lesions in vivo: quantification and classification (Conference Presentation)

    Science.gov (United States)

    Raizada, Rashika; Lee, Anthony M. D.; Liu, Kelly Y.; MacAulay, Calum E.; Ng, Samson; Poh, Catherine F.; Lane, Pierre M.

    2017-02-01

    Worldwide, there are over 450,000 new cases of oral cancer reported each year. Late-stage diagnosis remains a significant factor responsible for its high mortality rate (>50%). In-vivo non-invasive rapid imaging techniques, that can visualise clinically significant changes in the oral mucosa, may improve the management of oral cancer. We present an analysis of features extracted from oral images obtained using our hand- held wide-field Optical Coherence Tomography (OCT) instrument. The images were analyzed for epithelial scattering, overall tissue scattering, and 3D basement membrane topology. The associations between these three features and disease state (benign, pre-cancer, or cancer), as measured by clinical assessment or pathology, were determined. While scattering coefficient has previously been shown to be sensitive to cancer and dysplasia, likely due to changes in nuclear and cellular density, the addition of basement membrane topology may increase diagnostic ability- as it is known that the presence of bulbous rete pegs in the basement membrane are characteristic of dysplasia. The resolution and field-of-view of our oral OCT system allowed analysis of these features over large areas of up to 2.5mm x 90mm, in a timely fashion, which allow for application in clinical settings.

  13. Wide-Field Infrared Survey Explorer Observations of the Evolution of Massive Star-Forming Regions

    Science.gov (United States)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Asslef, R. J.

    2012-01-01

    We present the results of a mid-infrared survey of II outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  14. Studies of prototype DEPFET sensors for the Wide Field Imager of Athena

    Science.gov (United States)

    Treberspurg, Wolfgang; Andritschke, Robert; Bähr, Alexander; Behrens, Annika; Hauser, Günter; Lechner, Peter; Meidinger, Norbert; Müller-Seidlitz, Johannes; Treis, Johannes

    2017-08-01

    The Wide Field Imager (WFI) of ESA's next X-ray observatory Athena will combine a high count rate capability with a large field of view, both with state-of-the-art spectroscopic performance. To meet these demands, specific DEPFET active pixel detectors have been developed and operated. Due to the intrinsic amplification of detected signals they are best suited to achieve a high speed and low noise performance. Different fabrication technologies and transistor geometries have been implemented on a dedicated prototype production in the course of the development of the DEPFET sensors. The main modifications between the sensors concern the shape of the transistor gate - regarding the layout - and the thickness of the gate oxide - regarding the technology. To facilitate the fabrication and testing of the resulting variety of sensors the presented studies were carried out with 64×64 pixel detectors. The detector comprises a control ASIC (Switcher-A), a readout ASIC (VERITAS- 2) and the sensor. In this paper we give an overview on the evaluation of different prototype sensors. The most important results, which have been decisive for the identification of the optimal fabrication technology and transistor layout for subsequent sensor productions are summarized. It will be shown that the developments result in an excellent performance of spectroscopic X-ray DEPFETs with typical noise values below 2.5 ENC at 2.5 μs/row.

  15. WIDE-FIELD WIDE-BAND INTERFEROMETRIC IMAGING: THE WB A-PROJECTION AND HYBRID ALGORITHMS

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, S.; Rau, U.; Golap, K., E-mail: sbhatnag@nrao.edu, E-mail: rurvashi@nrao.edu, E-mail: kgolap@nrao.edu [National Radio Astronomy Observatory, Socorro, NM 87801 (United States)

    2013-06-20

    Variations of the antenna primary beam (PB) pattern as a function of time, frequency, and polarization form one of the dominant direction-dependent effects at most radio frequency bands. These gains may also vary from antenna to antenna. The A-Projection algorithm, published earlier, accounts for the effects of the narrow-band antenna PB in full polarization. In this paper, we present the wide-band A-Projection algorithm (WB A-Projection) to include the effects of wide bandwidth in the A-term itself and show that the resulting algorithm simultaneously corrects for the time, frequency, and polarization dependence of the PB. We discuss the combination of the WB A-Projection and the multi-term multi-frequency synthesis (MT-MFS) algorithm for simultaneous mapping of the sky brightness distribution and the spectral index distribution across a wide field of view. We also discuss the use of the narrow-band A-Projection algorithm in hybrid imaging schemes that account for the frequency dependence of the PB in the image domain.

  16. FAINT TIDAL FEATURES IN GALAXIES WITHIN THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY WIDE FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, Adam M.; Abraham, Roberto G. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Ferguson, Annette M. N. [Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom)

    2013-03-01

    We present an analysis of the detectability of faint tidal features in galaxies from the wide-field component of the Canada-France-Hawaii Telescope Legacy Survey. Our sample consists of 1781 luminous (M{sub r{sup '}}<-19.3 mag) galaxies in the magnitude range 15.5 mag < r' < 17 mag and in the redshift range 0.04 < z < 0.2. Although we have classified tidal features according to their morphology (e.g., streams, shells, and tails), we do not attempt to interpret them in terms of their physical origin (e.g., major versus minor merger debris). Instead, we provide a catalog that is intended to provide raw material for future investigations which will probe the nature of low surface brightness substructure around galaxies. We find that around 12% of the galaxies in our sample show clear tidal features at the highest confidence level. This fraction rises to about 18% if we include systems with convincing, albeit weaker tidal features, and to 26% if we include systems with more marginal features that may or may not be tidal in origin. These proportions are a strong function of rest-frame color and of stellar mass. Linear features, shells, and fans are much more likely to occur in massive galaxies with stellar masses >10{sup 10.5} M {sub Sun }, and red galaxies are twice as likely to show tidal features than are blue galaxies.

  17. Calibration of BVRI Photometry for the Wide Field Channel of the HST Advanced Camera for Surveys

    Science.gov (United States)

    Saha, Abhijit; Shaw, Richard A.; Claver, Jennifer A.; Dolphin, Andrew E.

    2011-04-01

    We present new observations of two Galactic globular clusters, PAL4 and PAL14, using the Wide Field Channel of the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST) and reanalyze archival data from a third, NGC2419. We matched our photometry of hundreds of stars in these fields from the ACS images to existing ground-based photometry of faint sequences that were calibrated on the standard BVRI system of Landolt. These stars are significantly fainter than those generally used for HST calibration purposes and therefore are much better matched to supporting precision photometry of ACS science targets. We were able to derive more accurate photometric transformation coefficients for the commonly used ACS broadband filters, compared with those published by Sirianni et al., due to the use of a factor of several more calibration stars that span a greater range of color. We find that the inferred transformations from each cluster individually do not vary significantly from the average, except for a small offset of the photometric zero point in the F850LP filter. Our results suggest that the published prescriptions for the time-dependent correction of CCD charge transfer efficiency appear to work very well over the ˜3.5 yr interval that spans our observations of PAL4 and PAL14 and the archived images of NGC2419.

  18. Advances on Hubble Wide Field Camera 3 Grism Calibration and Slitless Spectroscopy Analysis

    Science.gov (United States)

    Fowler, Julia; Brammer, Gabriel; Ryan, Russell; Deustua, Susana; Pirzkal, Nor

    2018-01-01

    Grisms are spectral elements combining a grating and prism to conduct slitless spectroscopy; presently they make up approximately 13% of all Wide Field Camera 3 (WFC3) observations on the Hubble Space Telescope (HST). WFC3 contains three grisms, two for the infrared (IR) channel and one for the ultraviolet-visible (UVIS). Here we summarize recent results from an ongoing effort to improve the analysis tools, characterization, and calibration of WFC3 slitless spectroscopic observations. This includes (1) calibrating the IR wavelength solutions with respect to compact zeroth order images, (2) improved IR throughput curves from modelling grism flux by extending the pixel range of effective point spread functions, (3) IR linear-reconstruction solving methods that solve for optimal, non-parametric spectra, (4) calibrating the UVIS +1 and -1 order over the entire field of view of both chips (allowing for spectral extraction from the entire UVIS detector.) With these efforts we continue to improve and advance the science possible with WFC3 grism observations.

  19. The ARGO-YBJ legacy to next generation wide field-of-view experiments

    Directory of Open Access Journals (Sweden)

    Di Sciascio Giuseppe

    2017-01-01

    Full Text Available The ARGO-YBJ experiment has been in stable data taking for more than 5 years at the YangBaJing Cosmic Ray Observatory (Tibet, P.R. China, 4300 m a.s.l., 606 g/cm2. With a duty-cycle greater than 86% the detector collected about 5×1011 events in a wide energy range, from few hundreds GeV up to about 10 PeV. High altitude location and detector features make ARGO-YBJ capable of investigating a wide range of important issues in Cosmic Ray and Astroparticle Physics by imaging the front of atmospheric showers with unprecedented resolution and detail. In this contribution some of the latest physics results obtained by ARGO-YBJ in gamma-ray astronomy and in cosmic ray physics are summarized. The prospects of TeV gamma-ray observations with new ground-based wide field-of-view detectors are presented.

  20. Mapping absolute tissue endogenous fluorophore concentrations with chemometric wide-field fluorescence microscopy

    Science.gov (United States)

    Xu, Zhang; Reilley, Michael; Li, Run; Xu, Min

    2017-06-01

    We report chemometric wide-field fluorescence microscopy for imaging the spatial distribution and concentration of endogenous fluorophores in thin tissue sections. Nonnegative factorization aided by spatial diversity is used to learn both the spectral signature and the spatial distribution of endogenous fluorophores from microscopic fluorescence color images obtained under broadband excitation and detection. The absolute concentration map of individual fluorophores is derived by comparing the fluorescence from "pure" fluorophores under the identical imaging condition following the identification of the fluorescence species by its spectral signature. This method is then demonstrated by characterizing the concentration map of endogenous fluorophores (including tryptophan, elastin, nicotinamide adenine dinucleotide, and flavin adenine dinucleotide) for lung tissue specimens. The absolute concentrations of these fluorophores are all found to decrease significantly from normal, perilesional, to cancerous (squamous cell carcinoma) tissue. Discriminating tissue types using the absolute fluorophore concentration is found to be significantly more accurate than that achievable with the relative fluorescence strength. Quantification of fluorophores in terms of the absolute concentration map is also advantageous in eliminating the uncertainties due to system responses or measurement details, yielding more biologically relevant data, and simplifying the assessment of competing imaging approaches.

  1. Active optics and the axisymmetric case: MINITRUST wide-field three-reflection telescopes with mirrors aspherized from tulip and vase forms

    Science.gov (United States)

    Lemaitre, Gerard R.; Montiel, Pierre; Joulie, Patrice; Dohlen, Kjetil; Lanzoni, Patrick

    2004-09-01

    Wide-field astronomy requires larger size telescopes. Compared to the catadioptric Schmidt, the optical properties of a three mirror telescope provides significant advantages. (1) The flat field design is anastigmatic at any wavelength, (2) the system is extremely compact -- four times shorter than a Schmidt -- and, (3) compared to a Schmidt with refractive corrector -- requiring the polishing of three optical surfaces --, the presently proposed Modified-Rumsey design uses all of eight available free parameters of a flat fielded anastigmatic three mirror telescope for mirrors generated by active optics methods. Compared to a Rumsey design, these parameters include the additional slope continuity condition at the primary-tertiary link for in-situ stressing and aspherization from a common sphere. Then, active optics allows the polishing of only two spherical surfaces: the combined primary-tertiary mirror and the secondary mirror. All mirrors are spheroids of the hyperboloid type. This compact system is of interest for space and ground-based astronomy and allows to built larger wide-field telescopes such as demonstrated by the design and construction of identical telescopes MINITRUST-1 and -2, f/5 - 2° FOV, consisting of an in-situ stressed double vase form primary-tertiary and of a stress polished tulip form secondary. Optical tests of these telescopes, showing diffraction limited images, are presented.

  2. Effect of cause of iliac vein stenosis and extent of thrombus in the lower extremity on patency of iliac venous stent placed after catheter-directed thrombolysis of acute deep venous thrombosis in the lower extremity

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sung Il; Choi, Young Ho; Yoon, Chang Jin; Lee, Min Woo; Chung, Jin Wook; Park, Jae Hyung [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2003-10-01

    To assess the CT findings of acute deep venous thrombosis (DVT) in a lower extremity prior to catheter-directed thrombolysis, and to evaluate their relevance to the patency of an iliac venous stent placed with the help of CT after catheter-directed thrombolysis of DVT. Fourteen patients [M:F=3:11; age, 33-68 (mean, 50.1) years] with acute symptomatic DVD of a lower extremity underwent CT before and after catheter-directed thrombolysis using an iliac venous stent. The mean duration of clinical symptoms was 5.0 (range, 1-14 days. The CT findings prior to thrombolysis were evaluated in terms of their anatomic cause and the extent of the thrombus, and in all patients, the patency of the iliac venous stent was assessed at CT performed during a follow-up period lasting 6-31 (mean, 18.9) months. All patients were assigned to the patent stent group (n=9) or the occluded stent group (n=5). In the former, the anatomic cause of patency included typical iliac vein compression (May-Thurner syndrome) (n=9), and a relatively short segmental thrombus occurring between the common iliac and the popliteal vein (n=8). Thrombi occurred in the iliac vein (n=3), between the common iliac and the femoral vein (n=3), and between the common iliac and the popliteal vein (n=2). In one case, a relatively long segmental thrombus occurred between the common iliac vein and the calf vein. In the occluded stent group, anatomic causes included atypical iliac vein compression (n=3) and a relatively long segmental thrombus between the common iliac and the calf vein (n=4). Typical iliac vein compression (May-Thurner syndrome) occurred in two cases, and a relatively short segmental thrombus between the external iliac and the common femoral vein in one. Factors which can affect the patency of an iliac venous stent positioned after catheter-directed thrombolysis are the anatomic cause of the stenosis, and the extent of a thrombus revealed at CT of acute DVT and occurring in a lower extremity prior to

  3. SAAO's new robotic telescope and WiNCam (Wide-field Nasmyth Camera)

    Science.gov (United States)

    Worters, Hannah L.; O'Connor, James E.; Carter, David B.; Loubser, Egan; Fourie, Pieter A.; Sickafoose, Amanda; Swanevelder, Pieter

    2016-08-01

    The South African Astronomical Observatory (SAAO) is designing and manufacturing a wide-field camera for use on two of its telescopes. The initial concept was of a Prime focus camera for the 74" telescope, an equatorial design made by Grubb Parsons, where it would employ a 61mmx61mm detector to cover a 23 arcmin diameter field of view. However, while in the design phase, SAAO embarked on the process of acquiring a bespoke 1-metre robotic alt-az telescope with a 43 arcmin field of view, which needs a homegrown instrument suite. The Prime focus camera design was thus adapted for use on either telescope, increasing the detector size to 92mmx92mm. Since the camera will be mounted on the Nasmyth port of the new telescope, it was dubbed WiNCam (Wide-field Nasmyth Camera). This paper describes both WiNCam and the new telescope. Producing an instrument that can be swapped between two very different telescopes poses some unique challenges. At the Nasmyth port of the alt-az telescope there is ample circumferential space, while on the 74 inch the available envelope is constrained by the optical footprint of the secondary, if further obscuration is to be avoided. This forces the design into a cylindrical volume of 600mm diameter x 250mm height. The back focal distance is tightly constrained on the new telescope, shoehorning the shutter, filter unit, guider mechanism, a 10mm thick window and a tip/tilt mechanism for the detector into 100mm depth. The iris shutter and filter wheel planned for prime focus could no longer be accommodated. Instead, a compact shutter with a thickness of less than 20mm has been designed in-house, using a sliding curtain mechanism to cover an aperture of 125mmx125mm, while the filter wheel has been replaced with 2 peripheral filter cartridges (6 filters each) and a gripper to move a filter into the beam. We intend using through-vacuum wall PCB technology across the cryostat vacuum interface, instead of traditional hermetic connector-based wiring. This

  4. A small animal time-resolved optical tomography platform using wide-field excitation

    Science.gov (United States)

    Venugopal, Vivek

    Small animal imaging plays a critical role in present day biomedical research by filling an important gap in the translation of research from the bench to the bedside. Optical techniques constitute an emerging imaging modality which have tremendous potential in preclinical applications. Optical imaging methods are capable of non-invasive assessment of the functional and molecular characteristics of biological tissue. The three-dimensional optical imaging technique, referred to as diffuse optical tomography, provides an approach for the whole-body imaging of small animal models and can provide volumetric maps of tissue functional parameters (e.g. blood volume, oxygen saturation etc.) and/or provide 3D localization and quantification of fluorescence-based molecular markers in vivo. However, the complex mathematical reconstruction problem associated with optical tomography and the cumbersome instrumental designs limits its adoption as a high-throughput quantitative whole-body imaging modality in current biomedical research. The development of new optical imaging paradigms is thus necessary for a wide-acceptance of this new technology. In this thesis, the design, development, characterization and optimization of a small animal optical tomography system is discussed. Specifically, the platform combines a highly sensitive time-resolved imaging paradigm with multi-spectral excitation capability and CCD-based detection to provide a system capable of generating spatially, spectrally and temporally dense measurement datasets. The acquisition of such data sets however can take long and translate to often unrealistic acquisition times when using the classical point source based excitation scheme. The novel approach in the design of this platform is the adoption of a wide-field excitation scheme which employs extended excitation sources and in the process allows an estimated ten-fold reduction in the acquisition time. The work described herein details the design of the imaging

  5. Wide-field fluorescent microscopy and fluorescent imaging flow cytometry on a cell-phone.

    Science.gov (United States)

    Zhu, Hongying; Ozcan, Aydogan

    2013-04-11

    Fluorescent microscopy and flow cytometry are widely used tools in biomedical research and clinical diagnosis. However these devices are in general relatively bulky and costly, making them less effective in the resource limited settings. To potentially address these limitations, we have recently demonstrated the integration of wide-field fluorescent microscopy and imaging flow cytometry tools on cell-phones using compact, light-weight, and cost-effective opto-fluidic attachments. In our flow cytometry design, fluorescently labeled cells are flushed through a microfluidic channel that is positioned above the existing cell-phone camera unit. Battery powered light-emitting diodes (LEDs) are butt-coupled to the side of this microfluidic chip, which effectively acts as a multi-mode slab waveguide, where the excitation light is guided to uniformly excite the fluorescent targets. The cell-phone camera records a time lapse movie of the fluorescent cells flowing through the microfluidic channel, where the digital frames of this movie are processed to count the number of the labeled cells within the target solution of interest. Using a similar opto-fluidic design, we can also image these fluorescently labeled cells in static mode by e.g. sandwiching the fluorescent particles between two glass slides and capturing their fluorescent images using the cell-phone camera, which can achieve a spatial resolution of e.g. - 10 μm over a very large field-of-view of - 81 mm(2). This cell-phone based fluorescent imaging flow cytometry and microscopy platform might be useful especially in resource limited settings, for e.g. counting of CD4+ T cells toward monitoring of HIV+ patients or for detection of water-borne parasites in drinking water.

  6. WIDE-FIELD PRECISION KINEMATICS OF THE M87 GLOBULAR CLUSTER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Strader, Jay [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Romanowsky, Aaron J.; Brodie, Jean P.; Beasley, Michael A.; Arnold, Jacob A. [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Spitler, Lee R. [Center for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Tamura, Naoyuki [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Sharples, Ray M. [Department of Physics, University of Durham, South Road, Durham (United Kingdom); Arimoto, Nobuo, E-mail: jstrader@cfa.harvard.edu [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan)

    2011-12-01

    We present the most extensive combined photometric and spectroscopic study to date of the enormous globular cluster (GC) system around M87, the central giant elliptical galaxy in the nearby Virgo Cluster. Using observations from DEIMOS and the Low Resolution Imaging Spectrometer at Keck, and Hectospec on the Multiple Mirror Telescope, we derive new, precise radial velocities for 451 GCs around M87, with projected radii from {approx}5 to 185 kpc. We combine these measurements with literature data for a total sample of 737 objects, which we use for a re-examination of the kinematics of the GC system of M87. The velocities are analyzed in the context of archival wide-field photometry and a novel Hubble Space Telescope catalog of half-light radii, which includes sizes for 344 spectroscopically confirmed clusters. We use this unique catalog to identify 18 new candidate ultracompact dwarfs and to help clarify the relationship between these objects and true GCs. We find much lower values for the outer velocity dispersion and rotation of the GC system than in earlier papers and also differ from previous work in seeing no evidence for a transition in the inner halo to a potential dominated by the Virgo Cluster, nor for a truncation of the stellar halo. We find little kinematical evidence for an intergalactic GC population. Aided by the precision of the new velocity measurements, we see significant evidence for kinematical substructure over a wide range of radii, indicating that M87 is in active assembly. A simple, scale-free analysis finds less dark matter within {approx}85 kpc than in other recent work, reducing the tension between X-ray and optical results. In general, out to a projected radius of {approx}150 kpc, our data are consistent with the notion that M87 is not dynamically coupled to the Virgo Cluster; the core of Virgo may be in the earliest stages of assembly.

  7. Performance Improvement of Near Earth Space Survey (NESS Wide-Field Telescope (NESS-2 Optics

    Directory of Open Access Journals (Sweden)

    Sung-Yeol Yu

    2010-06-01

    Full Text Available We modified the optical system of 500 mm wide-field telescope of which point spread function showed an irregularity. The telescope has been operated for Near Earth Space Survey (NESS located at Siding Spring Observatory (SSO in Australia, and the optical system was brought back to Korea in January 2008. After performing a numerical simulation with the tested value of surface figure error of the primary mirror using optical design program, we found that the surface figure error of the mirror should be fabricated less than root mean square (RMS λ/10 in order to obtain a stellar full width at half maximum (FWHM below 28 μm. However, we started to figure the mirror for the target value of RMS λ/20, because system surface figure error would be increased by the error induced by the optical axis adjustment, mirror cell installation, and others. The radius of curvature of the primary mirror was 1,946 mm after the correction. Its measured surface figure error was less than RMS λ/20 on the table of polishing machine, and RMS λ/15 after installation in the primary mirror cell. A test observation performed at Daeduk Observatory at Korea Astronomy and Space Science Institute by utilizing the exiting mount, and resulted in 39.8 μm of stellar FWHM. It was larger than the value from numerical simulation, and showed wing-shaped stellar image. It turned out that the measured-curvature of the secondary mirror, 1,820 mm, was not the same as the designed one, 1,795.977 mm. We fabricated the secondary mirror to the designed value, and finally obtained a stellar FWHM of 27 μm after re-installation of the optical system into SSO NESS Observatory in Australia.

  8. Anisoplanatic error evaluation and wide-field adaptive optics performance at Dome C, Antarctica

    Science.gov (United States)

    Carbillet, M.; Aristidi, É.; Giordano, C.; Vernin, J.

    2017-11-01

    The aim of this paper is twofold: (i) to deduce the most representative C_N^2 profile(s) for Dome C (DC), Antarctica, from the latest measurements, and (ii) to evaluate the performance of a wide-field adaptive optics (AO) system equipping a 2-3 m telescope. Two models of the C_N^2 profile, corresponding to the bimodal distribution of seeing (a poor seeing mode and a good seeing mode), are composed from both Single Star Scidar data and balloon radio soundings. The anisoplanatic error is first evaluated for a standard AO system from Monte Carlo simulations. DC is shown to outperform Mauna Kea for both seeing modes. A simple ground-layer AO (GLAO) system is then considered. This provides an anisoplanatic error of less than 150 nm over a field of 30 arcmin for the good seeing mode, corresponding to a basic performance Strehl ratio (considering also the fitting and the servo-lag errors) of more than ˜80 per cent in K and ˜50 per cent in J. The poor seeing model shows performance comparable to the Mauna Kea model. We also studied the influence of telescope elevation, showing that a telescope at 40 m would perform, in the poor seeing mode, like a telescope observing 8 m above the ground in the good seeing mode. Finally, we show that while tip-tilt-only correction permits high levels of correction in the good seeing mode at 40 m, it is not as efficient as the GLAO system, even at an altitude of 8 m, and it is not sufficient for high levels of correction for poor seeing, even at a height of 40 m.

  9. Evaluation of illumination system uniformity for wide-field biomedical hyperspectral imaging

    Science.gov (United States)

    Sawyer, Travis W.; Siri Luthman, A.; E Bohndiek, Sarah

    2017-04-01

    Hyperspectral imaging (HSI) systems collect both spatial (morphological) and spectral (chemical) information from a sample. HSI can provide sensitive analysis for biological and medical applications, for example, simultaneously measuring reflectance and fluorescence properties of a tissue, which together with structural information could improve early cancer detection and tumour characterisation. Illumination uniformity is a critical pre-condition for quantitative data extraction from an HSI system. Non-uniformity can cause glare, specular reflection and unwanted shading, which negatively impact statistical analysis procedures used to extract abundance of different chemical species. Here, we model and evaluate several illumination systems frequently used in wide-field biomedical imaging to test their potential for HSI. We use the software LightTools and FRED. The analysed systems include: a fibre ring light; a light emitting diode (LED) ring; and a diffuse scattering dome. Each system is characterised for spectral, spatial, and angular uniformity, as well as transfer efficiency. Furthermore, an approach to measure uniformity using the Kullback-Leibler divergence (KLD) is introduced. The KLD is generalisable to arbitrary illumination shapes, making it an attractive approach for characterising illumination distributions. Although the systems are quite comparable in their spatial and spectral uniformity, the most uniform angular distribution is achieved using a diffuse scattering dome, yielding a contrast of 0.503 and average deviation of 0.303 over a ±60° field of view with a 3.9% model error in the angular domain. Our results suggest that conventional illumination sources can be applied in HSI, but in the case of low light levels, bespoke illumination sources may offer improved performance.

  10. Automatic detection of diabetic retinopathy features in ultra-wide field retinal images

    Science.gov (United States)

    Levenkova, Anastasia; Sowmya, Arcot; Kalloniatis, Michael; Ly, Angelica; Ho, Arthur

    2017-03-01

    Diabetic retinopathy (DR) is a major cause of irreversible vision loss. DR screening relies on retinal clinical signs (features). Opportunities for computer-aided DR feature detection have emerged with the development of Ultra-WideField (UWF) digital scanning laser technology. UWF imaging covers 82% greater retinal area (200°), against 45° in conventional cameras3 , allowing more clinically relevant retinopathy to be detected4 . UWF images also provide a high resolution of 3078 x 2702 pixels. Currently DR screening uses 7 overlapping conventional fundus images, and the UWF images provide similar results1,4. However, in 40% of cases, more retinopathy was found outside the 7-field ETDRS) fields by UWF and in 10% of cases, retinopathy was reclassified as more severe4 . This is because UWF imaging allows examination of both the central retina and more peripheral regions, with the latter implicated in DR6 . We have developed an algorithm for automatic recognition of DR features, including bright (cotton wool spots and exudates) and dark lesions (microaneurysms and blot, dot and flame haemorrhages) in UWF images. The algorithm extracts features from grayscale (green "red-free" laser light) and colour-composite UWF images, including intensity, Histogram-of-Gradient and Local binary patterns. Pixel-based classification is performed with three different classifiers. The main contribution is the automatic detection of DR features in the peripheral retina. The method is evaluated by leave-one-out cross-validation on 25 UWF retinal images with 167 bright lesions, and 61 other images with 1089 dark lesions. The SVM classifier performs best with AUC of 94.4% / 95.31% for bright / dark lesions.

  11. Wide field imager instrument for the Advanced Telescope for High Energy Astrophysics

    Science.gov (United States)

    Meidinger, Norbert; Nandra, Kirpal; Plattner, Markus; Porro, Matteo; Rau, Arne; Santangelo, Andrea; Tenzer, Chris; Wilms, Jörn

    2015-01-01

    The Advanced Telescope for High Energy Astrophysics (Athena) has been selected for ESA's L2 mission, scheduled for launch in 2028. It will provide the necessary capabilities to achieve the ambitious goals of the science theme "The Hot and Energetic Universe." Athena's x-ray mirrors will be based on silicon pore optics technology with a 12-m focal length. Two complementary focal plane camera systems are foreseen, which can be moved interchangeably to the focus of the mirror system: the actively shielded micro-calorimeter spectrometer X-IFU and the wide field imager (WFI). The WFI camera will provide an unprecedented survey power through its large field of view of 40 arc min with a high count-rate capability (˜1 Crab). It permits a state-of-the-art energy resolution in the energy band of 0.1 to 15 keV during the entire mission lifetime (e.g., full width at half maximum ≤150 eV at 6 keV). This performance is accomplished by a set of depleted P-channel field effect transistor (DEPFET) active pixel sensor matrices with a pixel size well suited to the angular resolution of 5 arc sec (on-axis) of the mirror system. Each DEPFET pixel is a combined detector-amplifier structure with a MOSFET integrated onto a fully depleted 450-μm-thick silicon bulk. This manuscript will summarize the current instrument concept and design, the status of the technology development, and the envisaged baseline performance.

  12. The Diagnostic Value of 3-Dimensional Sampling Perfection With Application Optimized Contrasts Using Different Flip Angle Evolutions (SPACE) MRI in Evaluating Lower Extremity Deep Venous Thrombus.

    Science.gov (United States)

    Wu, Gang; Xie, Ruyi; Zhang, Xiaoli; Morelli, John; Yan, Xu; Zhu, Xiaolei; Li, Xiaoming

    2017-12-01

    The aim of this study was to evaluate the diagnostic performance of noncontrast magnetic resonance imaging utilizing sampling perfection with application optimized contrasts using different flip angle evolutions (SPACE) in detecting deep venous thrombus (DVT) of the lower extremity and evaluating clot burden. This prospective study was approved by the institutional review board. Ninety-four consecutive patients (42 men, 52 women; age range, 14-87 years; average age, 52.7 years) suspected of lower extremity DVT underwent ultrasound (US) and SPACE. The venous visualization score for SPACE was determined by 2 radiologists independently according to a 4-point scale (1-4, poor to excellent). The sensitivity and specificity of SPACE in detecting DVT were calculated based on segment, limb, and patient, with US serving as the reference standard. The clot burden for each segment was scored (0-3, patent to entire segment occlusion). The clot burden score obtained with SPACE was compared with US using a Wilcoxon test based on region, limb, and patient. Interobserver agreement in assessing DVT (absent, nonocclusive, or occlusive) with SPACE was determined by calculating Cohen kappa coefficients. The mean venous visualization score for SPACE was 3.82 ± 0.50 for reader 1 and 3.81 ± 0.50 for reader 2. For reader 1, sensitivity/specificity values of SPACE in detecting DVT were 96.53%/99.90% (segment), 95.24%/99.04% (limb), and 95.89%/95.24% (patient). For reader 2, corresponding values were 97.20%/99.90%, 96.39%/99.05%, and 97.22%/95.45%. The clot burden assessed with SPACE was not significantly different from US (P > 0.05 for region, limb, patient). Interobserver agreement of SPACE in assessing thrombosis was excellent (kappa = 0.894 ± 0.014). Non-contrast-enhanced 3-dimensional SPACE magnetic resonance imaging is highly accurate in detecting lower extremity DVT and reliable in the evaluation of clot burden. SPACE could serve as an important alternative for patients in whom US

  13. Systems, computer-implemented methods, and tangible computer-readable storage media for wide-field interferometry

    Science.gov (United States)

    Lyon, Richard G. (Inventor); Leisawitz, David T. (Inventor); Rinehart, Stephen A. (Inventor); Memarsadeghi, Nargess (Inventor)

    2012-01-01

    Disclosed herein are systems, computer-implemented methods, and tangible computer-readable storage media for wide field imaging interferometry. The method includes for each point in a two dimensional detector array over a field of view of an image: gathering a first interferogram from a first detector and a second interferogram from a second detector, modulating a path-length for a signal from an image associated with the first interferogram in the first detector, overlaying first data from the modulated first detector and second data from the second detector, and tracking the modulating at every point in a two dimensional detector array comprising the first detector and the second detector over a field of view for the image. The method then generates a wide-field data cube based on the overlaid first data and second data for each point. The method can generate an image from the wide-field data cube.

  14. Stellar photometry in the inner bulge of M31 using the Hubble Space Telescope wide field camera

    Science.gov (United States)

    Rich, R. M.; Mighell, K. J.

    1995-01-01

    We present photometry of two fields in the M31 bulge imaged with the Hubble Space Telescope (HST) Wide-Field Camara (WFC). The nuclear field (r less than 40 arcsecs = 150 pc) giant branch extends to I = 19.5, M(sub I) = -5 (Cousins system), a full 0.9 mag brighter than the giant-branch tips of metal-poor Galactic globular clusters and M31 halo fields. This is also approximately = 1.5 mag brighter than the giant branches of metal-rich Galactic globular clusters, but is no brighter than Mould's (1986) M31 bulge field 1 kpc from the nucleus. The data also suggest that the brighter stars may be preferentially concentrated to the center. The 648 luminous stars detected in 2 x 10(exp 9) solar luminosity is approximately = 25% that expected from a hypothetical population of evolved asymptotic giant branch (AGB) stars with lifetimes approximately = 10(exp 5) yr, with the cautionary note that we are near the detection limit. The number of bright stars is also consistent with the progeny of blue stragglers, if one uses a lifetime for the thermal-pulsing AGB of 2 x 10(exp 6) yr. We strongly caution that incompleteness becomes severe below I = 19.9 mag and that future surveys are likely to find numbers of bright stars too large to accomodate the blue straggler progeny hypothesis. We have imaged an additional field 2 arcmin = 500 pc south of the nucleus. The brightest stars in this field are also I = 19.5, but bright stars appear less numerous than in the nuclear field. If the population resembles that of the Galactic bulge, then M(sub bol) = -4.5 is a lower limit to the giant-branch tip luminosity; infrared studies should reveal stars 0.5 mag or more brighter. Either high-metallicity or (more likely) age approximately = 10 Gyr may be responsible for the presence of these luminous AGB stars. These observations confirm that previous ground-based infrared studies (e.g., Rich & Mould 1991) very likely detect an extended giant branch and not spurious luminous stars caused by

  15. Wide field imaging - I. Applications of neural networks to object detection and star/galaxy classification

    Science.gov (United States)

    Andreon, S.; Gargiulo, G.; Longo, G.; Tagliaferri, R.; Capuano, N.

    2000-12-01

    Astronomical wide-field imaging performed with new large-format CCD detectors poses data reduction problems of unprecedented scale, which are difficult to deal with using traditional interactive tools. We present here NExt (Neural Extractor), a new neural network (NN) based package capable of detecting objects and performing both deblending and star/galaxy classification in an automatic way. Traditionally, in astronomical images, objects are first distinguished from the noisy background by searching for sets of connected pixels having brightnesses above a given threshold; they are then classified as stars or as galaxies through diagnostic diagrams having variables chosen according to the astronomer's taste and experience. In the extraction step, assuming that images are well sampled, NExt requires only the simplest a priori definition of `what an object is' (i.e. it keeps all structures composed of more than one pixel) and performs the detection via an unsupervised NN, approaching detection as a clustering problem that has been thoroughly studied in the artificial intelligence literature. The first part of the NExt procedure consists of an optimal compression of the redundant information contained in the pixels via a mapping from pixel intensities to a subspace individualized through principal component analysis. At magnitudes fainter than the completeness limit, stars are usually almost indistinguishable from galaxies, and therefore the parameters characterizing the two classes do not lie in disconnected subspaces, thus preventing the use of unsupervised methods. We therefore adopted a supervised NN (i.e. a NN that first finds the rules to classify objects from examples and then applies them to the whole data set). In practice, each object is classified depending on its membership of the regions mapping the input feature space in the training set. In order to obtain an objective and reliable classification, instead of using an arbitrarily defined set of features

  16. Automatic Processing of Chinese GF-1 Wide Field of View Images

    Science.gov (United States)

    Zhang, Y.; Wan, Y.; Wang, B.; Kang, Y.; Xiong, J.

    2015-04-01

    The wide field of view (WFV) imaging instrument carried on the Chinese GF-1 satellite includes four cameras. Each camera has 200km swath-width that can acquire earth image at the same time and the observation can be repeated within only 4 days. This enables the applications of remote sensing imagery to advance from non-scheduled land-observation to periodically land-monitoring in the areas that use the images in such resolutions. This paper introduces an automatic data analysing and processing technique for the wide-swath images acquired by GF-1 satellite. Firstly, the images are validated by a self-adaptive Gaussian mixture model based cloud detection method to confirm whether they are qualified and suitable to be involved into the automatic processing workflow. Then the ground control points (GCPs) are quickly and automatically matched from the public geo-information products such as the rectified panchromatic images of Landsat-8. Before the geometric correction, the cloud detection results are also used to eliminate the invalid GCPs distributed in the cloud covered areas, which obviously reduces the ratio of blunders of GCPs. The geometric correction module not only rectifies the rational function models (RFMs), but also provides the self-calibration model and parameters for the non-linear distortion, and it is iteratively processed to detect blunders. The maximum geometric distortion in WFV image decreases from about 10-15 pixels to 1-2 pixels when compensated by self-calibration model. The processing experiments involve hundreds of WFV images of GF-1 satellite acquired from June to September 2013, which covers the whole mainland of China. All the processing work can be finished by one operator within 2 days on a desktop computer made up by a second-generation Intel Core-i7 CPU and a 4-solid-State-Disk array. The digital ortho maps (DOM) are automatically generated with 3 arc second Shuttle Radar Topography Mission (SRTM). The geometric accuracies of the

  17. Wide-Field Gamma-Spectrometer BDRG: GRB Monitor On-Board the Lomonosov Mission

    Science.gov (United States)

    Svertilov, S. I.; Panasyuk, M. I.; Bogomolov, V. V.; Amelushkin, A. M.; Barinova, V. O.; Galkin, V. I.; Iyudin, A. F.; Kuznetsova, E. A.; Prokhorov, A. V.; Petrov, V. L.; Rozhkov, G. V.; Yashin, I. V.; Gorbovskoy, E. S.; Lipunov, V. M.; Park, I. H.; Jeong, S.; Kim, M. B.

    2018-02-01

    The study of GRB prompt emissions (PE) is one of the main goals of the Lomonosov space mission. The payloads of the GRB monitor (BDRG) with the wide-field optical cameras (SHOK) and the ultra-fast flash observatory (UFFO) onboard the Lomonosov satellite are intended for the observation of GRBs, and in particular, their prompt emissions. The BDRG gamma-ray spectrometer is designed to obtain the temporal and spectral information of GRBs in the energy range of 10-3000 keV as well as to provide GRB triggers on several time scales (10 ms, 1 s and 20 s) for ground and space telescopes, including the UFFO and SHOK. The BDRG instrument consists of three identical detector boxes with axes shifted by 90° from each other. This configuration allows us to localize a GRB source in the sky with an accuracy of ˜ 2°. Each BDRG box contains a phoswich NaI(Tl)/CsI(Tl) scintillator detector. A thick CsI(Tl) crystal in size of \\varnothing 130 × 17 mm is placed underneath the NaI(Tl) as an active shield in the soft energy range and as the main detector in the hard energy range. The ratio of the CsI(Tl) to NaI(Tl) event rates at varying energies can be employed as an independent metric to distinguish legitimate GRB signals from false positives originating from electrons in near-Earth vicinities. The data from three detectors are collected in a BA BDRG information unit, which generates a GRB trigger and a set of data frames in output format. The scientific data output is ˜ 500 Mb per day, including ˜ 180 Mb of continuous data for events with durations in excess of 100 ms for 16 channels in each detector, detailed energy spectra, and sets of frames with ˜ 5 Mb of detailed information for each burst-like event. A number of pre-flight tests including those for the trigger algorithm and calibration were carried out to confirm the reliability of the BDRG for operation in space.

  18. Clinical assessment of human breast cancer margins with wide-field optical coherence micro-elastography (Conference Presentation)

    Science.gov (United States)

    Allen, Wes M.; Chin, Lixin; Wijesinghe, Philip; Kirk, Rodney W.; Latham, Bruce; Sampson, David D.; Saunders, Christobel M.; Kennedy, Brendan F.

    2017-02-01

    Breast cancer has the second highest mortality rate of all cancers in females. Surgical excision of malignant tissue forms a central component of breast-conserving surgery (BCS) procedures. Incomplete excision of malignant tissue is a major issue in BCS with typically 20 - 30% cases requiring a second surgical procedure due to postoperative detection of tumor in the margin. A major challenge for surgeons during BCS is the lack of effective tools to assess the surgical margin intraoperatively. Such tools would enable the surgeon to more effectively remove all tumor during the initial surgery, hence reducing re-excision rates. We report advances in the development of a new tool, optical coherence micro-elastography, which forms images, known as elastograms, based on mechanical contrast within the tissue. We demonstrate the potential of this technique to increase contrast between malignant tumor and healthy stroma in elastograms over OCT images. We demonstrate a key advance toward clinical translation by conducting wide-field imaging in intraoperative time frames with a wide-field scanning system, acquiring mosaicked elastograms with overall dimensions of 50 × 50 mm, large enough to image an entire face of most lumpectomy specimens. We describe this wide-field imaging system, and demonstrate its operation by presenting wide-field optical coherence tomography images and elastograms of a tissue mimicking silicone phantom and a number of representative freshly excised human breast specimens. Our results demonstrate the feasibility of scanning large areas of lumpectomies, which is an important step towards practical intraoperative margin assessment.

  19. Wide-Field Multi-Parameter FLIM: Long-Term Minimal Invasive Observation of Proteins in Living Cells.

    NARCIS (Netherlands)

    Vitali, M.; Picazo, F.; Prokazov, Y.; Duci, A.; Turbin, E.; Götze, C.; Llopis, J.; Hartig, R.; Visser, A.J.W.G.; Zuschratter, W.

    2011-01-01

    Time-domain Fluorescence Lifetime Imaging Microscopy (FLIM) is a remarkable tool to monitor the dynamics of fluorophore-tagged protein domains inside living cells. We propose a Wide-Field Multi-Parameter FLIM method (WFMP-FLIM) aimed to monitor continuously living cells under minimum light intensity

  20. Initial evaluation of safety of wide-field irradiation in the treatment of hematopoietic neoplasia in the cat.

    Science.gov (United States)

    Husbands, Brian D; McNiel, Elizabeth A; Modiano, Jaime F

    2010-01-01

    Localized radiation therapy is well tolerated in cats with confined tumors; however, the use of wide-field radiation therapy to treat disseminated neoplasia has not been evaluated systematically in this species. Wide-field external beam radiation therapy, which we define as irradiation of cranial or caudal halves of the body either individually or sequentially, was undertaken as an experimental option to treat cats with either chemotherapy-refractory or naive hematopoietic neoplasia considered to have a poor prognosis. Fifteen cats with hematopoietic malignancies received wide-field external beam radiation therapy between 2003 and 2006. Cats received 8 Gy delivered in 4 Gy fractions with 60Co photons. Treatment-related toxicity was scored according to criteria established by the Veterinary Cooperative Oncology Group. Animals without preexisting abnormalities on hemograms exhibited no or mild (Grade 1 or 2) hematopoietic toxicity. Although most cats (14 of 15) had preexisting gastrointestinal (GI) signs, these signs were stable (29%) or improved (42%) following irradiation. Worsening GI signs following irradiation occurred transiently in two cats and in association with progressive disease in two others. No pulmonary, renal, hepatic, or dermatologic toxicities were detected. In summary, wide-field external beam radiation therapy can be administered safely to, and may provide therapeutic benefit for, cats with disseminated hematopoietic neoplasia.

  1. Determining the magnitude of surveillance bias in the assessment of lower extremity deep venous thrombosis: A prospective observational study of two centers.

    Science.gov (United States)

    Shackford, Steven R; Cipolle, Mark D; Badiee, Jayraan; Mosby, Danielle L; Knudson, M Margaret; Lewis, Paul R; McDonald, Victoria S; Olson, Erik J; Thompson, Kimberly A; Van Gent, Jan-Michael; Zander, Ashley L

    2016-05-01

    Venous thromboembolism (VTE) remains a significant cause of morbidity and mortality in trauma. Controversy exists regarding the use of lower extremity duplex ultrasound screening and surveillance (LEDUS). Advocates cite earlier diagnosis and treatment of deep venous thrombosis (DVT) to prevent clot propagation and pulmonary embolism (PE). Opponents argue that LEDUS identifies more DVT (surveillance bias) but does not reduce the incidence of PE. We sought to determine the magnitude of surveillance bias associated with LEDUS and test the hypothesis that LEDUS does not decrease the incidence of PE after injury. We compared data from two Level 1 trauma centers: Scripps Mercy Hospital, which used serial LEDUS, and Christiana Care Health System, which used LEDUS only for symptomatic patients. Beginning in 2013, both centers prospectively collected data on demographics, injury severity, and VTE risk for patients admitted for more than 48 hours. Both centers used mechanical and pharmacologic prophylaxis based on VTE risk assessment. Scripps Mercy treated 772 patients and Christiana Care treated 454 patients with similar injury severity and VTE risk. The incidence of PE was 0.4% at both centers. The odds of a DVT diagnosis were 5.3 times higher (odds ratio, 5.3; 95% confidence interval, 2.5-12.9; p < 0.0001) for patients admitted to Scripps Mercy than for patients admitted to Christiana Care. Of the 80 patients who developed DVT, PE, or both, 99% received prophylaxis before the event. Among those who received pharmacologic prophylaxis, the VTE rates between the two centers were not statistically significantly different (Scripps Mercy, 11% vs. Christiana Care, 3%; p = 0.06). The odds of a diagnosis of DVT are increased significantly when a program of LEDUS is used in trauma patients. Neither pharmacologic prophylaxis nor mechanical prophylaxis is completely effective in preventing VTE in trauma patients. VTE should not be considered a "never event" in this cohort. Prognostic

  2. Hubble Space Telescope Wide Field Planetary Camera 2 Observations of Neptune

    Science.gov (United States)

    1995-01-01

    Two groups have recently used the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC 2) to acquire new high-resolution images of the planet Neptune. Members of the WFPC-2 Science Team, lead by John Trauger, acquired the first series of images on 27 through 29 June 1994. These were the highest resolution images of Neptune taken since the Voyager-2 flyby in August of 1989. A more comprehensive program is currently being conducted by Heidi Hammel and Wes Lockwood. These two sets of observations are providing a wealth of new information about the structure, composition, and meteorology of this distant planet's atmosphere.Neptune is currently the most distant planet from the sun, with an orbital radius of 4.5 billion kilometers (2.8 billion miles, or 30 Astronomical Units). Even though its diameter is about four times that of the Earth (49,420 vs. 12,742 km), ground-based telescopes reveal a tiny blue disk that subtends less than 1/1200 of a degree (2.3 arc-seconds). Neptune has therefore been a particularly challenging object to study from the ground because its disk is badly blurred by the Earth's atmosphere. In spite of this, ground-based astronomers had learned a great deal about this planet since its position was first predicted by John C. Adams and Urbain Leverrier in 1845. For example, they had determined that Neptune was composed primarily of hydrogen and helium gas, and that its blue color caused by the presence of trace amounts of the gas methane, which absorbs red light. They had also detected bright cloud features whose brightness changed with time, and tracked these clouds to infer a rotation period between 17 and 22 hours.When the Voyager-2 spacecraft flew past the Neptune in 1989, its instruments revealed a surprising array of meteorological phenomena, including strong winds, bright, high-altitude clouds, and two large dark spots attributed to long-lived giant storm systems. These bright clouds and dark spots were tracked as they moved

  3. WIDE-FIELD INFRARED POLARIMETRY OF THE ρ OPHIUCHI CLOUD CORE

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jungmi; Tamura, Motohide; Kusakabe, Nobuhiko [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Hough, James H. [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Nakajima, Yasushi [Center of Information and Communication Technology, Hitotsubashi University, 2-1 Naka, Kunitachi, Tokyo 186-8601 (Japan); Nishiyama, Shogo [Miyagi University of Education, Sendai 980-0845 (Japan); Nagata, Tetsuya [Department of Astronomy, Kyoto University, Kyoto 606-8502 (Japan); Kandori, Ryo, E-mail: jungmi.kwon@astron.s.u-tokyo.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2015-09-15

    We conducted wide and deep simultaneous JHK{sub s}-band imaging polarimetry of the ρ Ophiuchi cloud complex. Aperture polarimetry in the JHK{sub s} band was conducted for 2136 sources in all three bands, of which 322 sources have significant polarizations in all the JHK{sub s} bands and have been used for a discussion of the core magnetic fields. There is a positive correlation between degrees of polarization and H − K{sub s} color up to H − K{sub s} ≈ 3.5. The magnetic field structures in the core region are revealed up to at least A{sub V} ≈ 47 mag and are unambiguously defined in each sub-region (core) of Oph-A, Oph-B, Oph-C, Oph-E, Oph-F, and Oph-AC. Their directions, degrees of polarization, and polarization efficiencies differ but their changes are gradual; thus, the magnetic fields appear to be connected from core to core, rather than as a simple overlap of the different cloud core components. Comparing our results with the large-scale field structures obtained from previous optical polarimetric studies, we suggest that the magnetic field structures in the core were distorted by the cluster formation in this region, which may have been induced by shock compression due to wind/radiation from the Scorpius–Centaurus association.

  4. Hyper Suprime-Camera Survey of the Akari NEP Wide Field

    Science.gov (United States)

    Goto, Tomotsugu; Toba, Yoshiki; Utsumi, Yousuke; Oi, Nagisa; Takagi, Toshinobu; Malkan, Matt; Ohayma, Youichi; Murata, Kazumi; Price, Paul; Karouzos, Marios; Matsuhara, Hideo; Nakagawa, Takao; Wada, Takehiko; Serjeant, Steve; Burgarella, Denis; Buat, Veronique; Takada, Masahiro; Miyazaki, Satoshi; Oguri, Masamune; Miyaji, Takamitsu; Oyabu, Shinki; White, Glenn; Takeuchi, Tsutomu; Inami, Hanae; Perason, Chris; Malek, Katarzyna; Marchetti, Lucia; Lee, Hyung Mok; Im, Myung; Kim, Seong Jin; Koptelova, Ekaterina; Chao, Dani; Wu, Yi-Han; AKARI NEP Survey Team; AKARI All Sky Survey Team

    2017-03-01

    The extragalactic background suggests half the energy generated by stars was reprocessed into the infrared (IR) by dust. At z ∼1.3, 90% of star formation is obscured by dust. To fully understand the cosmic star formation history, it is critical to investigate infrared emission. AKARI has made deep mid-IR observation using its continuous 9-band filters in the NEP field (5.4 deg^2), using ∼10% of the entire pointed observations available throughout its lifetime. However, there remain 11,000 AKARI infrared sources undetected with the previous CFHT/Megacam imaging (r ∼25.9ABmag). Redshift and IR luminosity of these sources are unknown. These sources may contribute significantly to the cosmic star-formation rate density (CSFRD). For example, if they all lie at 1 Camera (HSC), which has 1.5 deg field of view in diameter on Subaru 8m telescope. This will provide photometric redshift information, and thereby IR luminosity for the previously-undetected 11,000 faint AKARI IR sources. Combined with AKARI's mid-IR AGN/SF diagnosis, and accurate mid-IR luminosity measurement, this will allow a complete census of cosmic star-formation/AGN accretion history obscured by dust.

  5. Picosecond wide-field time-correlated single photon counting fluorescence microscopy with a delay line anode detector

    Energy Technology Data Exchange (ETDEWEB)

    Hirvonen, Liisa M.; Le Marois, Alix; Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Becker, Wolfgang; Smietana, Stefan [Becker & Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Milnes, James; Conneely, Thomas [Photek Ltd., 26 Castleham Rd, Saint Leonards-on-Sea TN38 9NS (United Kingdom); Jagutzki, Ottmar [Institut für Kernphysik, Max-von-Laue-Str. 1, 60438 Frankfurt (Germany)

    2016-08-15

    We perform wide-field time-correlated single photon counting-based fluorescence lifetime imaging (FLIM) with a crossed delay line anode image intensifier, where the pulse propagation time yields the photon position. This microchannel plate-based detector was read out with conventional fast timing electronics and mounted on a fluorescence microscope with total internal reflection (TIR) illumination. The picosecond time resolution of this detection system combines low illumination intensity of microwatts with wide-field data collection. This is ideal for fluorescence lifetime imaging of cell membranes using TIR. We show that fluorescence lifetime images of living HeLa cells stained with membrane dye di-4-ANEPPDHQ exhibit a reduced lifetime near the coverslip in TIR compared to epifluorescence FLIM.

  6. Laser Light-field Fusion for Wide-field Lensfree On-chip Phase Contrast Microscopy of Nanoparticles.

    Science.gov (United States)

    Kazemzadeh, Farnoud; Wong, Alexander

    2016-12-13

    Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast microscopy for detecting nanoparticles, where interferometric laser light-field encodings acquired using a lensfree, on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images of particles at the nanometer scale. As a proof of concept, we demonstrate, for the first time, a wide-field lensfree on-chip instrument successfully detecting 300 nm particles across a large field-of-view of ~30 mm(2) without any specialized or intricate sample preparation, or the use of synthetic aperture- or shift-based techniques.

  7. Wide-field time-resolved luminescence imaging and spectroscopy to decipher obliterated documents in forensic science

    Science.gov (United States)

    Suzuki, Mototsugu; Akiba, Norimitsu; Kurosawa, Kenji; Kuroki, Kenro; Akao, Yoshinori; Higashikawa, Yoshiyasu

    2016-01-01

    We applied a wide-field time-resolved luminescence (TRL) method with a pulsed laser and a gated intensified charge coupled device (ICCD) for deciphering obliterated documents for use in forensic science. The TRL method can nondestructively measure the dynamics of luminescence, including fluorescence and phosphorescence lifetimes, which prove to be useful parameters for image detection. First, we measured the TRL spectra of four brands of black porous-tip pen inks on paper to estimate their luminescence lifetimes. Next, we acquired the TRL images of 12 obliterated documents at various delay times and gate times of the ICCD. The obliterated contents were revealed in the TRL images because of the difference in the luminescence lifetimes of the inks. This method requires no pretreatment, is nondestructive, and has the advantage of wide-field imaging, which makes it is easy to control the gate timing. This demonstration proves that TRL imaging and spectroscopy are powerful tools for forensic document examination.

  8. Design of refocusing system for a high-resolution space TDICCD camera with wide-field of view

    Science.gov (United States)

    Lv, Shiliang; Liu, Jinguo

    2015-10-01

    This paper describes the design and realization of a refocusing system for a space TDICCD camera of 2.2-meter focal length, which, features a three mirror anastigmatic(TMA) optical system along with 8 TDICCDs assemble at the focal plane, is high resolution and wide field of view. TDICCDs assemble is a kind of major method of acquiring wide field of view for space camera. In this way, the swath width reach 60km. First, the design of TMA optical system and its advantage of this space TDICCD camera was introduced; Then, the refocusing system as well as the technique of mechanical interleaving assemble for TDICCDs focal plane of this space camera was discussed in detail, At last, the refocusing system was measured. Experimental results indicated that the precision of the refocusing system is +/- 3.12μm(3σ), which satisfy the refocusing control system requirements of higher precision and stabilization.

  9. Status and Perspectives of the Mini-MegaTORTORA Wide-field Monitoring System with High Temporal Resolution

    Directory of Open Access Journals (Sweden)

    Sergey Karpov

    2013-01-01

    Full Text Available Here we briefly summarize our long-term experience of constructing and operating wide-field monitoring cameras with sub-second temporal resolution to look for optical components of GRBs, fast-moving satellites and meteors. The general hardware requirements for these systems are discussed, along with algorithms for real-time detection and classification of various kinds of short optical transients. We also give a status report on the next generation, the MegaTORTORA multi-objective and transforming monitoring system, whose 6-channel (Mini-MegaTORTORA-Spain and 9-channel prototypes (Mini-MegaTORTORA-Kazan we have been building at SAO RAS. This system combines a wide field of view with subsecond temporal resolution in monitoring regime, and is able, within fractions of a second, to reconfigure itself to follow-up mode, which has better sensitivity and simultaneously provides multi-color and polarimetric information on detected transients.

  10. Laser Light-field Fusion for Wide-field Lensfree On-chip Phase Contrast Microscopy of Nanoparticles

    Science.gov (United States)

    Kazemzadeh, Farnoud; Wong, Alexander

    2016-12-01

    Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast microscopy for detecting nanoparticles, where interferometric laser light-field encodings acquired using a lensfree, on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images of particles at the nanometer scale. As a proof of concept, we demonstrate, for the first time, a wide-field lensfree on-chip instrument successfully detecting 300 nm particles across a large field-of-view of ~30 mm2 without any specialized or intricate sample preparation, or the use of synthetic aperture- or shift-based techniques.

  11. Searching for fast optical transients by means of a wide-field monitoring observations with high temporal resolution

    Science.gov (United States)

    Beskin, G.; Karpov, S.; Plokhotnichenko, V.; Bondar, S.; Ivanov, E.; Perkov, A.; Greco, G.; Guarnieri, A.; Bartolini, C.

    We discuss the strategy of search for fast optical transients accompanying gamma-ray bursts by means of continuous monitoring of wide sky fields with high temporal resolution. We describe the design, performance and results of our cameras, FAVOR and TORTORA. Also we discuss the perspectives of this strategy and possible design of next-generation equipment for wide-field monitoring which will be able to detect optical transients and to study their color and polarization properties with high time resolution.

  12. Obtaining Sub-uas Astrometry on a Wide-field, Coronagraph Equipped, Space Telescope Using a Diffractive Pupil

    Science.gov (United States)

    Bendek, Eduardo; Belikov, R.; Guyon, O.

    2013-01-01

    Detection and mass measurement of earth-size exoplanets using the astrometric signal of the host star requires sub-uas measurement precision. One major challenge in achieving this precision using medium-size space telescopes is the calibration of dynamic distortions. To solve this problem, we propose a diffractive pupil approach in which an array of dots on the primary mirror generates polychromatic diffraction spikes in the focal plane used to calibrate the distortions in the optical system. According to our simulations, this technique enables 0.2microarcsecond or better single-visit precision astrometric measurements on a 2.4m wide-field (>0.1deg2) space telescope. We present the laboratory results of the diffractive pupil concept performed at the University of Arizona, showing that this approach can calibrate dynamic distortion errors even for wide field applications. Also, this technique can be used simultaneously with a high-performance coronagraph to determine/constrain the masses, composition, atmospheric properties, and planetary system architectures. Numerical simulations and experiments performed at the NASA Ames ACE test bed have shown that the diffractive pupil does not affect the coronagraph performance. Finally, we assess the compatibility of a diffractive pupil telescope with a general astrophysics mission, showing that the spikes are too faint to impact wide field observations.

  13. Multimodal wide-field two-photon excitation imaging: characterization of the technique for in vivo applications.

    Science.gov (United States)

    Hwang, Jae Youn; Wachsmann-Hogiu, Sebastian; Ramanujan, V Krishnan; Nowatzyk, Andreas G; Koronyo, Yosef; Medina-Kauwe, Lali K; Gross, Zeev; Gray, Harry B; Farkas, Daniel L

    2011-01-13

    We report fast, non-scanning, wide-field two-photon fluorescence excitation with spectral and lifetime detection for in vivo biomedical applications. We determined the optical characteristics of the technique, developed a Gaussian flat-field correction method to reduce artifacts resulting from non-uniform excitation such that contrast is enhanced, and showed that it can be used for ex vivo and in vivo cellular-level imaging. Two applications were demonstrated: (i) ex vivo measurements of beta-amyloid plaques in retinas of transgenic mice, and (ii) in vivo imaging of sulfonated gallium(III) corroles injected into tumors. We demonstrate that wide-field two photon fluorescence excitation with flat-field correction provides more penetration depth as well as better contrast and axial resolution than the corresponding one-photon wide field excitation for the same dye. Importantly, when this technique is used together with spectral and fluorescence lifetime detection modules, it offers improved discrimination between fluorescence from molecules of interest and autofluorescence, with higher sensitivity and specificity for in vivo applications.

  14. Deep Echo State Network (DeepESN): A Brief Survey

    OpenAIRE

    Gallicchio, Claudio; Micheli, Alessio

    2017-01-01

    The study of deep recurrent neural networks (RNNs) and, in particular, of deep Reservoir Computing (RC) is gaining an increasing research attention in the neural networks community. The recently introduced deep Echo State Network (deepESN) model opened the way to an extremely efficient approach for designing deep neural networks for temporal data. At the same time, the study of deepESNs allowed to shed light on the intrinsic properties of state dynamics developed by hierarchical compositions ...

  15. Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view

    Science.gov (United States)

    Coskun, Ahmet F.; Cetin, Arif E.; Galarreta, Betty C.; Alvarez, Daniel Adrianzen; Altug, Hatice; Ozcan, Aydogan

    2014-01-01

    We demonstrate a high-throughput biosensing device that utilizes microfluidics based plasmonic microarrays incorporated with dual-color on-chip imaging toward real-time and label-free monitoring of biomolecular interactions over a wide field-of-view of >20 mm2. Weighing 40 grams with 8.8 cm in height, this biosensor utilizes an opto-electronic imager chip to record the diffraction patterns of plasmonic nanoapertures embedded within microfluidic channels, enabling real-time analyte exchange. This plasmonic chip is simultaneously illuminated by two different light-emitting-diodes that are spectrally located at the right and left sides of the plasmonic resonance mode, yielding two different diffraction patterns for each nanoaperture array. Refractive index changes of the medium surrounding the near-field of the nanostructures, e.g., due to molecular binding events, induce a frequency shift in the plasmonic modes of the nanoaperture array, causing a signal enhancement in one of the diffraction patterns while suppressing the other. Based on ratiometric analysis of these diffraction images acquired at the detector-array, we demonstrate the proof-of-concept of this biosensor by monitoring in real-time biomolecular interactions of protein A/G with immunoglobulin G (IgG) antibody. For high-throughput on-chip fabrication of these biosensors, we also introduce a deep ultra-violet lithography technique to simultaneously pattern thousands of plasmonic arrays in a cost-effective manner. PMID:25346102

  16. A Panchromatic Catalog of Early-type Galaxies at Intermediate Redshift in the Hubble Space Telescope Wide Field Camera 3 Early Release Science Field

    Science.gov (United States)

    Rutkowski, M. J.; Cohen, S. H.; Kaviraj, S.; O'Connell, R. W.; Hathi, N. P.; Windhorst, R. A.; Ryan, R. E., Jr.; Crockett, R. M.; Yan, H.; Kimble, R. A.; Silk, J.; McCarthy, P. J.; Koekemoer, A.; Balick, B.; Bond, H. E.; Calzetti, D.; Disney, M. J.; Dopita, M. A.; Frogel, J. A.; Hall, D. N. B.; Holtzman, J. A.; Paresce, F.; Saha, A.; Trauger, J. T.; Walker, A. R.; Whitmore, B. C.; Young, E. T.

    2012-03-01

    In the first of a series of forthcoming publications, we present a panchromatic catalog of 102 visually selected early-type galaxies (ETGs) from observations in the Early Release Science (ERS) program with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) of the Great Observatories Origins Deep Survey-South (GOODS-S) field. Our ETGs span a large redshift range, 0.35 lsim z lsim 1.5, with each redshift spectroscopically confirmed by previous published surveys of the ERS field. We combine our measured WFC3 ERS and Advanced Camera for Surveys (ACS) GOODS-S photometry to gain continuous sensitivity from the rest-frame far-UV to near-IR emission for each ETG. The superior spatial resolution of the HST over this panchromatic baseline allows us to classify the ETGs by their small-scale internal structures, as well as their local environment. By fitting stellar population spectral templates to the broadband photometry of the ETGs, we determine that the average masses of the ETGs are comparable to the characteristic stellar mass of massive galaxies, 1011 publications which address the diversity of stellar populations likely to be present in these ETGs, and the potential mechanisms by which recent star formation episodes are activated, are discussed.

  17. Optimizing ultrafast wide field-of-view illumination for high-throughput multi-photon imaging and screening of mutant fluorescent proteins

    Science.gov (United States)

    Stoltzfus, Caleb; Mikhailov, Alexandr; Rebane, Aleksander

    2017-02-01

    Fluorescence induced by 1wo-photon absorption (2PA) and three-photon absorption (3PA) is becoming an increasingly important tool for deep-tissue microscopy, especially in conjunction with genetically-encoded functional probes such as fluorescent proteins (FPs). Unfortunately, the efficacy of the multi-photon excitation of FPs is notoriously low, and because relations between a biological fluorophore's nonlinear-optical properties and its molecular structure are inherently complex, there are no practical avenues available that would allow boosting the performance of current FPs. Here we describe a novel method, where we apply directed evolution to optimize the 2PA properties of EGFP. Key to the success of this approach consists in high-throughput screening of mutants that would allow selection of variants with promising 2PA and 3PA properties in a broad near-IR excitation range of wavelength. For this purpose, we construct and test a wide field-of-view (FOV), femtosecond imaging system that we then use to quantify the multi-photon excited fluorescence in the 550- 1600 nm range of tens of thousands of E. coli colonies expressing randomly mutated FPs in a standard 10 cm diameter Petri dish configuration. We present a quantitative analysis of different factors that are currently limiting the maximum throughput of the femtosecond multi-photon screening techniques and also report on quantitative measurement of absolute 2PA and 3PA cross sections spectra.

  18. Lensfree Fluorescent On-Chip Imaging of Transgenic Caenorhabditis elegans Over an Ultra-Wide Field-of-View

    Science.gov (United States)

    Ozcan, Aydogan

    2011-01-01

    We demonstrate lensfree on-chip fluorescent imaging of transgenic Caenorhabditis elegans (C. elegans) over an ultra-wide field-of-view (FOV) of e.g., >2–8 cm2 with a spatial resolution of ∼10µm. This is the first time that a lensfree on-chip platform has successfully imaged fluorescent C. elegans samples. In our wide-field lensfree imaging platform, the transgenic samples are excited using a prism interface from the side, where the pump light is rejected through total internal reflection occurring at the bottom facet of the substrate. The emitted fluorescent signal from C. elegans samples is then recorded on a large area opto-electronic sensor-array over an FOV of e.g., >2–8 cm2, without the use of any lenses, thin-film interference filters or mechanical scanners. Because fluorescent emission rapidly diverges, such lensfree fluorescent images recorded on a chip look blurred due to broad point-spread-function of our platform. To combat this resolution challenge, we use a compressive sampling algorithm to uniquely decode the recorded lensfree fluorescent patterns into higher resolution images, demonstrating ∼10 µm resolution. We tested the efficacy of this compressive decoding approach with different types of opto-electronic sensors to achieve a similar resolution level, independent of the imaging chip. We further demonstrate that this wide FOV lensfree fluorescent imaging platform can also perform sequential bright-field imaging of the same samples using partially-coherent lensfree digital in-line holography that is coupled from the top facet of the same prism used in fluorescent excitation. This unique combination permits ultra-wide field dual-mode imaging of C. elegans on a chip which could especially provide a useful tool for high-throughput screening applications in biomedical research. PMID:21253611

  19. Rapid wide-field Mueller matrix polarimetry imaging based on four photoelastic modulators with no moving parts.

    Science.gov (United States)

    Alali, Sanaz; Gribble, Adam; Vitkin, I Alex

    2016-03-01

    A new polarimetry method is demonstrated to image the entire Mueller matrix of a turbid sample using four photoelastic modulators (PEMs) and a charge coupled device (CCD) camera, with no moving parts. Accurate wide-field imaging is enabled with a field-programmable gate array (FPGA) optical gating technique and an evolutionary algorithm (EA) that optimizes imaging times. This technique accurately and rapidly measured the Mueller matrices of air, polarization elements, and turbid phantoms. The system should prove advantageous for Mueller matrix analysis of turbid samples (e.g., biological tissues) over large fields of view, in less than a second.

  20. Optical System and Desing Of The New 1.6 Meter Wide-Field Telescope With Active Optics

    Science.gov (United States)

    Papushev, Pavel; Denisenko, Sergey; Kamus, Sergey; Pimenov, Yury; Tergoev, Vladim

    2006-08-01

    In this report we present and discuss the design, construction and capabilities of the two meters class wide field survey telescope. The designs based on modified R-C system with two or three lens correctors in visible and near infrared (2,2 mkm) spectral range. The optical systems of the 1.6 meters telescope with up to 3 degrees field of view and less than 15% obscuration area are considered in detail. Optical performance of system, its mount and separate element of the active optics system are examined.

  1. Preliminary Analysis of Ground-based Orbit Determination Accuracy for the Wide Field Infrared Survey Telescope (WFIRST)

    Science.gov (United States)

    Sease, Brad

    2017-01-01

    The Wide Field Infrared Survey Telescope is a 2.4-meter telescope planned for launch to the Sun-Earth L2 point in 2026. This paper details a preliminary study of the achievable accuracy for WFIRST from ground-based orbit determination routines. The analysis here is divided into two segments. First, a linear covariance analysis of early mission and routine operations provides an estimate of the tracking schedule required to meet mission requirements. Second, a simulated operations scenario gives insight into the expected behavior of a daily Extended Kalman Filter orbit estimate over the first mission year given a variety of potential momentum unloading schemes.

  2. ISS-Lobster: A Proposed Wide-Field X-Ray Telescope on the International Space Station

    Science.gov (United States)

    Camp, Jordan

    2012-01-01

    The Lobster wide-field imaging telescope combines simultaneous high FOV, high sensitivity and good position resolution. These characteristics can open the field of X-Ray time domain astronomy, which will study many interesting transient sources, including tidal disruptions of stars, supernova shock breakouts, and high redshift gamma-ray bursts. Also important will be its use for the X-ray follow-up of gravitational wave detections. I will describe our present effort to propose the Lobster concept for deployment on the International Space Station through a NASA Mission of Opportunity this fall.

  3. A wide-field TCSPC FLIM system based on an MCP PMT with a delay-line anode

    OpenAIRE

    Becker, Wolfgang; Hirvonen, Liisa; Milnes, James; Conneely, Thomas; Jagutzki, Ottmar; Netz, Holger; Smietana, Stefan; Suhling, Klaus

    2016-01-01

    We report on the implementation of a wide-field time-correlated single photon counting (TCSPC) method for fluorescence lifetime imaging (FLIM). It is based on a 40 mm diameter crossed delay line anode detector, where the readout is performed by three standard TCSPC boards. Excitation is performed by a picosecond diode laser with 50 MHz repetition rate. The photon arrival timing is obtained directly from the microchannel plates, with an instrumental response of ∼190 to 230 ps full width at hal...

  4. All sky coordination initiative, simple service for wide-field monitoring systems to cooperate in searching for fast optical transients

    Science.gov (United States)

    Karpov, S.; Sokołowski, M.; Gorbovskoy, E.

    Here we stress the necessity of cooperation between different wide-field monitoring projects (FAVOR/TORTORA, Pi of the Sky, MASTER, etc), aimed for independent detection of fast optical transients, in order to maximize the area of the sky covered at any moment and to coordinate the monitoring of gamma-ray telescopes' field of view. We review current solutions available for it and propose a simple protocol with dedicated service (ASCI) for such systems to share their current status and pointing schedules.

  5. Impacts on the Hubble Space Telescope Wide Field and Planetary Camera 2: Experimental Simulation of Micrometeoroid Capture

    Science.gov (United States)

    Price, M. C.; Kearsley, A. T.; Wozniakiewicz, P. J.; Spratt, J.; Burchell, M. J.; Cole, M. J.; Anz-Meador, P.; Liou, J. C.; Ross, D. K.; Opiela, J.; hide

    2014-01-01

    Hypervelocity impact features have been recognized on painted surfaces returned from the Hubble Space Telescope (HST). Here we describe experiments that help us to understand their creation, and the preservation of micrometeoroid (MM) remnants. We simulated capture of silicate and sulfide minerals on the Zinc orthotitanate (ZOT) paint and Al alloy plate of the Wide Field and Planetary Camera 2 (WFPC2) radiator, which was returned from HST after 16 years in low Earth orbit (LEO). Our results also allow us to validate analytical methods for identification of MM (and orbital debris) impacts in LEO.

  6. Exploration of the Most Alkaline Extreme in a Deep-Sea Serpentine Seamount, the South Chamorro Seamount as an Interface Between Abiotic and Biotic in this Planet

    Science.gov (United States)

    Takai, K.; Miyazaki, J.; Morono, Y.; Inagaki, F.; Kubota, K.; Moyer, C.; Seewald, J.; Wheat, G.

    2010-04-01

    The most alkaline-extreme environment beneath the Mariana Forearc serpentine seamount was geochemicallly and microbiologicallly explored. The results suggested that the environment was a marginal between abiotic and biotic terrains in this planet.

  7. Retinal pigment epithelium findings in patients with albinism using wide-field polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Schütze, Christopher; Ritter, Markus; Blum, Robert; Zotter, Stefan; Baumann, Bernhard; Pircher, Michael; Hitzenberger, Christoph K; Schmidt-Erfurth, Ursula

    2014-11-01

    To investigate pigmentation characteristics of the retinal pigment epithelium (RPE) in patients with albinism using wide-field polarization-sensitive optical coherence tomography compared with intensity-based spectral domain optical coherence tomography and fundus autofluorescence imaging. Five patients (10 eyes) with previously genetically diagnosed albinism and 5 healthy control subjects (10 eyes) were imaged by a wide-field polarization-sensitive optical coherence tomography system (scan angle: 40 × 40° on the retina), sensitive to melanin contained in the RPE, based on the polarization state of backscattered light. Conventional intensity-based spectral domain optical coherence tomography and fundus autofluorescence examinations were performed. Retinal pigment epithelium-pigmentation was analyzed qualitatively and quantitatively based on depolarization assessed by polarization-sensitive optical coherence tomography. This study revealed strong evidence of polarization-sensitive optical coherence tomography to specifically image melanin in the RPE. Depolarization of light backscattered by the RPE in patients with albinism was reduced compared with normal subjects. Heterogeneous RPE-specific depolarization characteristics were observed in patients with albinism. Reduction of depolarization observed in the light backscattered by the RPE in patients with albinism corresponds to expected decrease of RPE pigmentation. The degree of depigmentation of the RPE is possibly associated with visual acuity. Findings suggest that different albinism genotypes result in heterogeneous levels of RPE pigmentation. Polarization-sensitive optical coherence tomography showed a heterogeneous appearance of RPE pigmentation in patients with albinism depending on different genotypes.

  8. Wide-Field Landers Temporary Keratoprosthesis in Severe Ocular Trauma: Functional and Anatomical Results after One Year

    Science.gov (United States)

    Nowomiejska, Katarzyna; Haszcz, Dariusz; Forlini, Cesare; Forlini, Matteo; Moneta-Wielgos, Joanna; Maciejewski, Ryszard; Zarnowski, Tomasz; Juenemann, Anselm G.

    2015-01-01

    Purpose. To evaluate longitudinal functional and anatomical results after combined pars plana vitrectomy (PPV) and penetrating keratoplasty (PKP) using a wide-field Landers intraoperative temporary keratoprosthesis (TKP) in patients with vitreoretinal pathology and corneal opacity due to severe ocular trauma. Material and Methods. Medical records of 12 patients who had undergone PPV/PKP/KP due to severe eye trauma were analyzed. Functional (best-corrected visual acuity) and anatomic outcomes (clarity of the corneal graft, retinal attachment, and intraocular pressure) were assessed during the follow-up (mean 16 months). Results. Final visual acuities varied from NLP to CF to 2 m. Visual acuity improved in 7 cases, was unchanged in 4 eyes, and worsened in 1 eye. The corneal graft was transparent during the follow-up in 3 cases and graft failure was observed in 9 eyes. Silicone oil was used as a tamponade in all cases and retina was reattached in 92% of cases. Conclusions. Combined PPV and PKP with the use of wide-field Landers TKP allowed for surgical intervention in patients with vitreoretinal pathology coexisting with corneal wound. Although retina was attached in most of the cases, corneal graft survived only in one-fourth of patients and final visual acuities were poor. PMID:26617994

  9. Wide-Field InfraRed Survey Telescope (WFIRST) Mission and Synergies with LISA and LIGO-Virgo

    Science.gov (United States)

    Gehrels, N.; Spergel, D.

    2015-01-01

    The Wide-Field InfraRed Survey Telescope (WFIRST) is a NASA space mission in study for launch in 2024. It has a 2.4 m telescope, wide-field IR instrument operating in the 0.7 - 2.0 micron range and an exoplanet imaging coronagraph instrument operating in the 400 - 1000 nm range. The observatory will perform galaxy surveys over thousands of square degrees to J=27 AB for dark energy weak lensing and baryon acoustic oscillation measurements and will monitor a few square degrees for dark energy SN Ia studies. It will perform microlensing observations of the galactic bulge for an exoplanet census and direct imaging observations of nearby exoplanets with a pathfinder coronagraph. The mission will have a robust and wellfunded guest observer program for 25% of the observing time. WFIRST will be a powerful tool for time domain astronomy and for coordinated observations with gravitational wave experiments. Gravitational wave events produced by mergers of nearby binary neutron stars (LIGO-Virgo) or extragalactic supermassive black hole binaries (LISA) will produce electromagnetic radiation that WFIRST can observe.

  10. Wide-field retinal optical coherence tomography with wavefront sensorless adaptive optics for enhanced imaging of targeted regions.

    Science.gov (United States)

    Polans, James; Keller, Brenton; Carrasco-Zevallos, Oscar M; LaRocca, Francesco; Cole, Elijah; Whitson, Heather E; Lad, Eleonora M; Farsiu, Sina; Izatt, Joseph A

    2017-01-01

    The peripheral retina of the human eye offers a unique opportunity for assessment and monitoring of ocular diseases. We have developed a novel wide-field (>70°) optical coherence tomography system (WF-OCT) equipped with wavefront sensorless adaptive optics (WSAO) for enhancing the visualization of smaller (23°) retina. We demonstrated the ability of our WF-OCT system to acquire non wavefront-corrected wide-field images rapidly, which could then be used to locate regions of interest, zoom into targeted features, and visualize the same region at different time points. A pilot clinical study was conducted on seven healthy volunteers and two subjects with prodromal Alzheimer's disease which illustrated the capability to image Drusen-like pathologies as far as 32.5° from the fovea in un-averaged volume scans. This work suggests that the proposed combination of WF-OCT and WSAO may find applications in the diagnosis and treatment of ocular, and potentially neurodegenerative, diseases of the peripheral retina, including diabetes and Alzheimer's disease.

  11. Wide-Field Landers Temporary Keratoprosthesis in Severe Ocular Trauma: Functional and Anatomical Results after One Year

    Directory of Open Access Journals (Sweden)

    Katarzyna Nowomiejska

    2015-01-01

    Full Text Available Purpose. To evaluate longitudinal functional and anatomical results after combined pars plana vitrectomy (PPV and penetrating keratoplasty (PKP using a wide-field Landers intraoperative temporary keratoprosthesis (TKP in patients with vitreoretinal pathology and corneal opacity due to severe ocular trauma. Material and Methods. Medical records of 12 patients who had undergone PPV/PKP/KP due to severe eye trauma were analyzed. Functional (best-corrected visual acuity and anatomic outcomes (clarity of the corneal graft, retinal attachment, and intraocular pressure were assessed during the follow-up (mean 16 months. Results. Final visual acuities varied from NLP to CF to 2 m. Visual acuity improved in 7 cases, was unchanged in 4 eyes, and worsened in 1 eye. The corneal graft was transparent during the follow-up in 3 cases and graft failure was observed in 9 eyes. Silicone oil was used as a tamponade in all cases and retina was reattached in 92% of cases. Conclusions. Combined PPV and PKP with the use of wide-field Landers TKP allowed for surgical intervention in patients with vitreoretinal pathology coexisting with corneal wound. Although retina was attached in most of the cases, corneal graft survived only in one-fourth of patients and final visual acuities were poor.

  12. GravityCam: ground-based wide-field high-resolution imaging and high-speed photometry

    Science.gov (United States)

    Dominik, Martin; Mackay, Craig; Steele, Iain; Snodgrass, Colin; Hirsch, Michael; Gråe Jørgensen, Uffe; Hundertmark, Markus; Rebolo, Rafael; Horne, Keith; Bridle, Sarah; Sicardy, Bruno; Bramich, Daniel; Alsubai, Khalid

    2015-12-01

    The image blurring by the Earth's atmosphere generally poses a substantial limitation to ground-based observations. While opportunities in space are scarce, lucky imaging can correct over a much larger patch of sky and with much fainter reference stars. We propose the first of a new kind of versatile instruments, "GravityCam", composed of ~100 EMCCDs, that will open up two entirely new windows to ground-based astronomy: (1) wide-field high-resolution imaging, and (2) wide-field high-speed photometry. Potential applications include (a) a gravitational microlensing survey going 4 magnitudes deeper than current efforts, and thereby gaining a factor 100 in mass at the same sensitivity, which means probing down to Lunar mass or even below, (b) extra-solar planet hunting via transits in galactic bulge fields, with high time resolution well-suited for transit timing variation studies, (c) variable stars in crowded fields, with sensitivity to very short periods, (d) asteroseismology with many bright stars in one pointing, (e) serendipitous occultations of stars by small solar system bodies, giving access to the small end of the Kuiper Belt size distribution and potentially leading to the first detection of true Oort cloud objects, while predicted occultations at high time resolution can reveal atmospheres, satellites, or rings, (f) general data mining of the high-speed variable sky (down to 40 ms cadence).

  13. Unveiling the extreme nature of the hyper faint galaxy Virgo I

    Science.gov (United States)

    Crnojevic, Denija

    2017-08-01

    We request HST/ACS imaging to obtain a deep color-magnitude diagram of the newly discovered candidate Milky Way satellite Virgo I. With an estimated absolute magnitude of only M_V -0.8 and a Galactocentric radius of 90 kpc, Virgo I is one of the faintest and most distant dwarfs ever observed, and could be identified as a prototype ''hyper'' faint galaxy. The detailed characterization of the smallest inhabited dark matter subhalos is crucial to guide hierarchical galaxy formation models, and in particular to constrain reionization, the nature of the dark matter particle, etc. With the advent of deep wide-field, ground-based surveys, the potential of uncovering these lowest-mass galaxies is quickly turning into reality, as demonstrated by the discovery in the past two years of tens of new Local Group members in the ultra-faint regime (M_V>-8). Virgo I represents a new record in galaxy physical properties, and urges us to be prepared for the likely emergence of an entirely new class of such objects in the era of future wide-field surveys (e.g., LSST). Only high resolution HST observations can enable us to confirm the nature of Virgo I, providing significantly more accurate estimates for its distance and structural properties, when compared to the discovery Subaru/HyperSuprimeCam imaging. Our proposed dataset will constitute a fundamental step in the upcoming hunt for galaxies with similarly extreme properties.

  14. AWARE Wide Field View

    Science.gov (United States)

    2016-04-29

    RGB colors to the standard sRGB to allow spectrally consistent colors on monitors for viewing . Finally, the images from each sensor are corrected based ...on the exposure time used and the calibrated sensitivity of each image sensor, again based on the flat field calibration, to allow viewing of imagery...prediction is scaled based on available bandwidth and the computational resources of the cluster. In addition to the interface described in the

  15. A search for a distant companion to the sun with the wide-field infrared survey explorer

    Energy Technology Data Exchange (ETDEWEB)

    Luhman, K. L., E-mail: kluhman@astro.psu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States)

    2014-01-20

    I have used multi-epoch astrometry from the Wide-field Infrared Survey Explorer to perform a search for a distant companion to the Sun via its parallactic motion. I have not found an object of this kind down to W2 = 14.5. This limit corresponds to analogs of Saturn and Jupiter at 28,000 and 82,000 AU, respectively, according to models of the Jovian planets by Fortney and coworkers. Models of brown dwarfs by Burrows and coworkers predict fainter fluxes at a given mass for the age of the solar system, producing a closer distance limit of 26,000 AU for a Jupiter-mass brown dwarf. These constraints exclude most combinations of mass and separation at which a solar companion has been suggested to exist by various studies over the years.

  16. Wide-Field Multi-Parameter FLIM: long-term minimal invasive observation of proteins in living cells.

    Science.gov (United States)

    Vitali, Marco; Picazo, Fernando; Prokazov, Yury; Duci, Alessandro; Turbin, Evgeny; Götze, Christian; Llopis, Juan; Hartig, Roland; Visser, Antonie J W G; Zuschratter, Werner

    2011-02-02

    Time-domain Fluorescence Lifetime Imaging Microscopy (FLIM) is a remarkable tool to monitor the dynamics of fluorophore-tagged protein domains inside living cells. We propose a Wide-Field Multi-Parameter FLIM method (WFMP-FLIM) aimed to monitor continuously living cells under minimum light intensity at a given illumination energy dose. A powerful data analysis technique applied to the WFMP-FLIM data sets allows to optimize the estimation accuracy of physical parameters at very low fluorescence signal levels approaching the lower bound theoretical limit. We demonstrate the efficiency of WFMP-FLIM by presenting two independent and relevant long-term experiments in cell biology: 1) FRET analysis of simultaneously recorded donor and acceptor fluorescence in living HeLa cells and 2) tracking of mitochondrial transport combined with fluorescence lifetime analysis in neuronal processes.

  17. A flexible wide-field FLIM endoscope utilising blue excitation light for label-free contrast of tissue.

    Science.gov (United States)

    Sparks, Hugh; Warren, Sean; Guedes, Joana; Yoshida, Nagisa; Charn, Tze Choong; Guerra, Nadia; Tatla, Taranjit; Dunsby, Christopher; French, Paul

    2015-01-01

    Fluorescence lifetime imaging (FLIM) has previously been shown to provide contrast between normal and diseased tissue. Here we present progress towards clinical and preclinical FLIM endoscopy of tissue autofluorescence, demonstrating a flexible wide-field endoscope that utilised a low average power blue picosecond laser diode excitation source and was able to acquire ∼mm-scale spatial maps of autofluorescence lifetimes from fresh ex vivo diseased human larynx biopsies in ∼8 seconds using an average excitation power of ∼0.5 mW at the specimen. To illustrate its potential for FLIM at higher acquisition rates, a higher power mode-locked frequency doubled Ti:Sapphire laser was used to demonstrate FLIM of ex vivo mouse bowel at up to 2.5 Hz using 10 mW of average excitation power at the specimen. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Wide-field time-correlated single photon counting (TCSPC) microscopy with time resolution below the frame exposure time

    Energy Technology Data Exchange (ETDEWEB)

    Hirvonen, Liisa M. [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Petrášek, Zdeněk [Max Planck Institute of Biochemistry, Department of Cellular and Molecular Biophysics, Am Klopferspitz 18, D-82152 Martinsried (Germany); Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom)

    2015-07-01

    Fast frame rate CMOS cameras in combination with photon counting intensifiers can be used for fluorescence imaging with single photon sensitivity at kHz frame rates. We show here how the phosphor decay of the image intensifier can be exploited for accurate timing of photon arrival well below the camera exposure time. This is achieved by taking ratios of the intensity of the photon events in two subsequent frames, and effectively allows wide-field TCSPC. This technique was used for measuring decays of ruthenium compound Ru(dpp) with lifetimes as low as 1 μs with 18.5 μs frame exposure time, including in living HeLa cells, using around 0.1 μW excitation power. We speculate that by using an image intensifier with a faster phosphor decay to match a higher camera frame rate, photon arrival time measurements on the nanosecond time scale could well be possible.

  19. KOALA: a wide-field 1000 element integral-field unit for the Anglo-Australian Telescope

    Science.gov (United States)

    Ellis, S. C.; Ireland, M.; Lawrence, J. S.; Tims, J.; Staszak, N.; Brzeski, J.; Parker, Q. A.; Sharp, R.; Bland-Hawthorn, J.; Case, S.; Colless, M.; Croom, S.; Couch, W.; De Marco, O.; Glazebrook, K.; Saunders, W.; Webster, R.; Zucker, D. B.

    2012-09-01

    KOALA, the Kilofibre Optimised Astronomical Lenslet Array, is a wide-field, high efficiency integral field unit being designed for use with the bench mounted AAOmega spectrograph on the AAT. KOALA will have 1000 fibres in a rectangular array with a selectable field of view of either 1390 or 430 sq. arcseconds with a spatial sampling of 1.25" or 0.7" respectively. To achieve this KOALA will use a telecentric double lenslet array with interchangeable fore-optics. The IFU will feed AAOmega via a 31m fibre run. The efficiency of KOALA is expected to be ≍ 52% at 3700A and ≍ 66% at 6563°Å with a throughput of > 52% over the entire wavelength range.

  20. Combining wide-field super-resolution microscopy and electron tomography: rendering nanoscopic correlative arrays on subcellular architecture.

    Science.gov (United States)

    Braet, Filip; Cheng, Delfine; Huynh, Minh; Henriquez, Jeffrey; Shami, Gerry; Lampe, Marko

    2014-01-01

    In this chapter, the authors outline in full detail, an uncomplicated approach that enables the combination of wide-field fluorescence super-resolution microscopy with electron tomography, thereby providing an approach that affords the best possible confidence in the structures investigated. The methodical steps to obtain these high-throughput correlative nanoscopic arrays will be visually explored and outlined in detail. The authors will demonstrate the feasibility of the method on cultured Caco-2 colorectal cancer cells that are labeled for filamentous actin. The presented images, morphometric data, and generated models illustrate the strengths of our correlative approach for future advanced structural-biology-oriented questions. Correlative nanoscopy applications can be readily found in which there is a need to reveal biomolecular information at unprecedented resolution on subcellular behavior in various biological and pathobiological processes. © 2014 Elsevier Inc. All rights reserved.

  1. Mini-Mega-TORTORA wide-field monitoring system with sub-second temporal resolution: first year of operation

    Science.gov (United States)

    Karpov, S.; Beskin, G.; Biryukov, A.; Bondar, S.; Ivanov, E.; Katkova, E.; Perkov, A.; Sasyuk, V.

    2016-12-01

    Here we present the summary of first years of operation and the first results of a novel 9-channel wide-field optical monitoring system with sub-second temporal resolution, Mini-Mega-TORTORA (MMT-9), which is in operation now at Special Astrophysical Observatory on Russian Caucasus. The system is able to observe the sky simultaneously in either wide (˜900 square degrees) or narrow (˜100 square degrees) fields of view, either in clear light or with any combination of color (Johnson-Cousins B, V or R) and polarimetric filters installed, with exposure times ranging from 0.1 s to hundreds of seconds. The real-time system data analysis pipeline performs automatic detection of rapid transient events, both near-Earth and extragalactic. The objects routinely detected by MMT include faint meteors and artificial satellites. The pipeline for a longer time scales variability analysis is still in development.

  2. VizieR Online Data Catalog: Wide-field spectrosc. survey of GCs in Virgo cluster (Ko+, 2017)

    Science.gov (United States)

    Ko, Y.; Hwang, H. S.; Lee, M. G.; Park, H. S.; Lim, S.; Sohn, J.; Jang, I. S.; Hwang, N.; Park, B.-G.

    2017-08-01

    We selected globular cluster (GC) candidates using the Next Generation Virgo Cluster Survey (NGVS; Ferrarese+ 2012ApJS..200....4F) archival images covering the central region of the Virgo cluster. The NGVS is a wide-field imaging survey of the Virgo cluster using MegaCam with a field of view of 1°x1° attached at the Canada-French-Hawaii Telescope. We carried out spectroscopic observation of GC candidates in the Virgo using the Hectospec mounted on the 6.5m Multiple-Mirror Telescope in queue mode under program ID 2014A-UAO-G18 (PI: Myung Gyoon Lee) between 2014 February and March (wavelength range: 3650Å to 9200Å). (3 data files).

  3. Impacts on the Hubble Space Telescope Wide Field and Planetary Camera 2: Microanalysis and Recognition of Micrometeoroid Compositions

    Science.gov (United States)

    Kearsley, A. T.; Ross, D. K.; Anz-Meador, P.; Liou, J. C.; Opiela, J.; Grime, G. W.; Webb, R. P.; Jeynes, C.; Palitsin, V. V.; Colaux, J. L.; hide

    2014-01-01

    Postflight surveys of the Wide Field and Planetary Camera 2 (WFPC2) on the Hubble Space Telescope have located hundreds of features on the 2.2 by 0.8 m curved plate, evidence of hypervelocity impact by small particles during 16 years of exposure to space in low Earth orbit (LEO). The radiator has a 100 - 200 micron surface layer of white paint, overlying 4 mm thick Al alloy, which was not fully penetrated by any impact. Over 460 WFPC2 samples were extracted by coring at JSC. About half were sent to NHM in a collaborative program with NASA, ESA and IBC. The structural and compositional heterogeneity at micrometer scale required microanalysis by electron and ion beam microscopes to determine the nature of the impactors (artificial orbital debris, or natural micrometeoroids, MM). Examples of MM impacts are described elsewhere. Here we describe the development of novel electron beam analysis protocols, required to recognize the subtle traces of MM residues.

  4. Micrometeoroid Impacts on the Hubble Sace Telescope Wide Field and Planetary Camera 2: Ion Beam Analysis of Subtle Impactor Traces

    Science.gov (United States)

    Grime, G. W.; Webb, R. P.; Jeynes, C.; Palitsin, V. V.; Colaux, J. L.; Kearsley, A. T.; Ross, D. K.; Anz-Meador, P.; Liou, J. C.; Opiela, J.; hide

    2014-01-01

    Recognition of origin for particles responsible for impact damage on spacecraft such as the Hubble Space Telescope (HST) relies upon postflight analysis of returned materials. A unique opportunity arose in 2009 with collection of the Wide Field and Planetary Camera 2 (WFPC2) from HST by shuttle mission STS-125. A preliminary optical survey confirmed that there were hundreds of impact features on the radiator surface. Following extensive discussion between NASA, ESA, NHM and IBC, a collaborative research program was initiated, employing scanning electron microscopy (SEM) and ion beam analysis (IBA) to determine the nature of the impacting grains. Even though some WFPC2 impact features are large, and easily seen without the use of a microscope, impactor remnants may be hard to find.

  5. Wide-field infrared survey explorer observations of young stellar objects in the Lynds 1509 dark cloud in Auriga

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wilson M.; McCollum, Bruce; Fajardo-Acosta, Sergio [Infrared Processing and Analysis Center, California Institute of Technology, MC 100-22, Pasadena, CA 91125 (United States); Padgett, Deborah L. [National Aeronautics and Space Administration, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Terebey, Susan; Angione, John [Department of Physics and Astronomy, California State University, Los Angeles, CA 90032 (United States); Rebull, Luisa M. [Spitzer Science Center, California Institute of Technology, MC 314-6, Pasadena, CA 91125 (United States); Leisawitz, David, E-mail: wliu@ipac.caltech.edu [National Aeronautics and Space Administration, Goddard Space Flight Center, Code 605, Greenbelt, MD 20771 (United States)

    2014-06-01

    The Wide-Field Infrared Survey Explorer (WISE) has uncovered a striking cluster of young stellar object (YSO) candidates associated with the L1509 dark cloud in Auriga. The WISE observations, at 3.4 μm, 4.6 μm, 12 μm, and 22 μm, show a number of objects with colors consistent with YSOs, and their spectral energy distributions suggest the presence of circumstellar dust emission, including numerous Class I, flat spectrum, and Class II objects. In general, the YSOs in L1509 are much more tightly clustered than YSOs in other dark clouds in the Taurus-Auriga star forming region, with Class I and flat spectrum objects confined to the densest aggregates, and Class II objects more sparsely distributed. We estimate a most probable distance of 485-700 pc, and possibly as far as the previously estimated distance of 2 kpc.

  6. Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery

    Science.gov (United States)

    Li, Zhiwei; Shen, Huanfeng; Li, Huifang; Xia, Guisong; Gamba, Paolo; Zhang, Liangpei

    2017-03-01

    The wide field of view (WFV) imaging system onboard the Chinese GaoFen-1 (GF-1) optical satellite has a 16-m resolution and four-day revisit cycle for large-scale Earth observation. The advantages of the high temporal-spatial resolution and the wide field of view make the GF-1 WFV imagery very popular. However, cloud cover is an inevitable problem in GF-1 WFV imagery, which influences its precise application. Accurate cloud and cloud shadow detection in GF-1 WFV imagery is quite difficult due to the fact that there are only three visible bands and one near-infrared band. In this paper, an automatic multi-feature combined (MFC) method is proposed for cloud and cloud shadow detection in GF-1 WFV imagery. The MFC algorithm first implements threshold segmentation based on the spectral features and mask refinement based on guided filtering to generate a preliminary cloud mask. The geometric features are then used in combination with the texture features to improve the cloud detection results and produce the final cloud mask. Finally, the cloud shadow mask can be acquired by means of the cloud and shadow matching and follow-up correction process. The method was validated using 108 globally distributed scenes. The results indicate that MFC performs well under most conditions, and the average overall accuracy of MFC cloud detection is as high as 96.8%. In the contrastive analysis with the official provided cloud fractions, MFC shows a significant improvement in cloud fraction estimation, and achieves a high accuracy for the cloud and cloud shadow detection in the GF-1 WFV imagery with fewer spectral bands. The proposed method could be used as a preprocessing step in the future to monitor land-cover change, and it could also be easily extended to other optical satellite imagery which has a similar spectral setting.

  7. Development of a lightweight near-zero CTE optical bench for the Wide-Field Camera 3 instrument

    Science.gov (United States)

    Holz, Jill M.; Kunt, Cengiz; Lashley, Chris; McGuffey, Douglas B.

    2003-02-01

    The design and development of an optical bench (OB) for Wide Field Camera 3 (WFC3), a next generation science instrument for the Hubble Space Telescope (HST) has proven a challenging task. WFC3 will replace Wide Field Planetary Camera 2 (WF/PC 2) during the next servicing mission of the HST in 2004. The WFC3 program is re-using much of the hardware from WF/PC 1, returned from the First Servicing Mission, which has added complexity to the program. This posed some significant packaging challenges, further complicated by WFC3 utilizing two, separate optical channels. The WF/PC 1 optical bench could not house the additional optical components, so a new bench was developed. The new bench had to be designed to accommodate the sometimes-conflicting requirements of the two channels, which operate over a wavelength range of 200nm to 1800nm, from Near Ultraviolet to Near Infrared. In addition, the bench had to interface to the reused WF/PC 1 hardware, which was not optimized for this mission. To aid in the design of the bench, the team used software tools to merge structural, thermal and optical models to obtain performance (STOP) of the optical systems in operation. Several iterations of this performance analysis were needed during the design process to verify the bench would meet requirements. The fabrication effort included a rigorous material characterization program and significant tooling. After assembly, the optical bench underwent an extensive qualification program to prove the design and manufacturing processes. This paper provides the details of the design and development process of this highly optimized optical bench.

  8. NEAR-INFRARED IMAGING OF A z = 6.42 QUASAR HOST GALAXY WITH THE HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3

    Energy Technology Data Exchange (ETDEWEB)

    Mechtley, M.; Windhorst, R. A.; Cohen, S. H.; Jansen, R. A.; Scannapieco, E. [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287 (United States); Ryan, R. E.; Koekemoer, A. M. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Schneider, G.; Fan, X. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Hathi, N. P. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Keel, W. C. [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States); Roettgering, H. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA, Leiden (Netherlands); Schneider, D. P. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Strauss, M. A. [Princeton University Observatory, Princeton, NJ 08544 (United States); Yan, H. J. [Department of Physics and Astronomy, The University of Missouri, 701 South College Ave, Columbia, MO 65211 (United States)

    2012-09-10

    We report on deep near-infrared F125W (J) and F160W (H) Hubble Space Telescope Wide Field Camera 3 images of the z = 6.42 quasar J1148+5251 to attempt to detect rest-frame near-ultraviolet emission from the host galaxy. These observations included contemporaneous observations of a nearby star of similar near-infrared colors to measure temporal variations in the telescope and instrument point-spread function (PSF). We subtract the quasar point source using both this direct PSF and a model PSF. Using direct subtraction, we measure an upper limit for the quasar host galaxy of m{sub J} > 22.8 and m{sub H} > 23.0 AB mag (2 {sigma}). After subtracting our best model PSF, we measure a limiting surface brightness from 0.''3 to 0.''5 radius of {mu}{sub J} > 23.5 and {mu}{sub H} > 23.7 AB mag arcsec{sup -2} (2 {sigma}). We test the ability of the model subtraction method to recover the host galaxy flux by simulating host galaxies with varying integrated magnitude, effective radius, and Sersic index, and conducting the same analysis. These models indicate that the surface brightness limit ({mu}{sub J} > 23.5 AB mag arcsec{sup -2}) corresponds to an integrated upper limit of m{sub J} > 22-23 AB mag, consistent with the direct subtraction method. Combined with existing far-infrared observations, this gives an infrared excess log (IRX) > 1.0 and corresponding ultraviolet spectral slope {beta} > -1.2 {+-} 0.2. These values match those of most local luminous infrared galaxies, but are redder than those of almost all local star-forming galaxies and z {approx_equal} 6 Lyman break galaxies.

  9. Using mobile, internet connected deep sea crawlers for spatial and temporal analysis of cold seep ecosystems and the collection of real-time classroom data for extreme environment education.

    Science.gov (United States)

    Purser, Autun; Kwasnitschka, Tom; Duda, Alexander; Schwendner, Jakob; Bamberg, Marlene; Sohl, Frank; Doya, Carol; Aguzzi, Jacopo; Best, Mairi; Llovet, Neus Campanya I.; Scherwath, Martin; Thomsen, Laurenz

    2015-04-01

    Cabled internet and power connectivity with the deep sea allow instruments to operate in the deep sea at higher temporal resolutions than was possible historically, with the reliance on battery life and data storage capacities. In addition to the increase in sensor temporal frequency, cabled infrastructures now allow remote access to and control of mobile platforms on the seafloor. Jacobs University Bremen, in combination with collaborators from the Robotic Exploration of Extreme Environments (ROBEX) project, CSIC Barcelona and Ocean Networks Canada have been operating tracked deep sea crawler vehicles at ~890 m depth at the dynamic Barkley Canyon methane seep site, Pacific Canada during the last ~4 years. The vehicle has been able to explore an area of ~50 m radius, allowing repeated visits to numerous microhabitats. Mounting a range of sensors, including temperature, pressure, conductivity, fluorescence, turbidity, flow and methane concentration sensors, as well as various camera systems a large dataset has been compiled. Several methane pockmarks are present in the survey area, and geological, biological and oceanographic changes have been monitored over a range of timescales. Several publications have been produced, and in this presentation we introduce further data currently under analysis. Cabled internet connectivity further allows mobile platforms to be used directly in education. As part of the ROBEX project, researchers and students from both terrestrial and planetary sciences are using the crawler in an ongoing study project. Students are introduced to statistical methods from both fields during the course and in later stages they can plan their own research using the in-situ crawler, and follow the progress of their investigations live, then analyse the collected data using the techniques introduced during the course. Cabled infrastructures offer a unique facility for spatial investigation of extreme ecosystems over time, and for the 'hands on

  10. Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution

    National Research Council Canada - National Science Library

    Antonio C Sobieranski; Fatih Inci; H Cumhur Tekin; Mehmet Yuksekkaya; Eros Comunello; Daniel Cobra; Aldo Von Wangenheim; Utkan Demirci

    2015-01-01

      In this paper, an irregular displacement-based lensless wide-field microscopy imaging platform is presented by combining digital in-line holography and computational pixel super-resolution using multi-frame processing...

  11. The HST/WFC3 Quicklook Project: A User Interface to Hubble Space Telescope Wide Field Camera 3 Data

    Science.gov (United States)

    Bourque, Matthew; Bajaj, Varun; Bowers, Ariel; Dulude, Michael; Durbin, Meredith; Gosmeyer, Catherine; Gunning, Heather; Khandrika, Harish; Martlin, Catherine; Sunnquist, Ben; Viana, Alex

    2017-06-01

    The Hubble Space Telescope's Wide Field Camera 3 (WFC3) instrument, comprised of two detectors, UVIS (Ultraviolet-Visible) and IR (Infrared), has been acquiring ~ 50-100 images daily since its installation in 2009. The WFC3 Quicklook project provides a means for instrument analysts to store, calibrate, monitor, and interact with these data through the various Quicklook systems: (1) a ~ 175 TB filesystem, which stores the entire WFC3 archive on disk, (2) a MySQL database, which stores image header data, (3) a Python-based automation platform, which currently executes 22 unique calibration/monitoring scripts, (4) a Python-based code library, which provides system functionality such as logging, downloading tools, database connection objects, and filesystem management, and (5) a Python/Flask-based web interface to the Quicklook system. The Quicklook project has enabled large-scale WFC3 analyses and calibrations, such as the monitoring of the health and stability of the WFC3 instrument, the measurement of ~ 20 million WFC3/UVIS Point Spread Functions (PSFs), the creation of WFC3/IR persistence calibration products, and many others.

  12. Development of a Data Reduction Algorithm for Optical Wide Field Patrol (OWL II: Improving Measurement of Lengths of Detected Streaks

    Directory of Open Access Journals (Sweden)

    Sun-Youp Park

    2016-09-01

    Full Text Available As described in the previous paper (Park et al. 2013, the detector subsystem of optical wide-field patrol (OWL provides many observational data points of a single artificial satellite or space debris in the form of small streaks, using a chopper system and a time tagger. The position and the corresponding time data are matched assuming that the length of a streak on the CCD frame is proportional to the time duration of the exposure during which the chopper blades do not obscure the CCD window. In the previous study, however, the length was measured using the diagonal of the rectangle of the image area containing the streak; the results were quite ambiguous and inaccurate, allowing possible matching error of positions and time data. Furthermore, because only one (position, time data point is created from one streak, the efficiency of the observation decreases. To define the length of a streak correctly, it is important to locate the endpoints of a streak. In this paper, a method using a differential convolution mask pattern is tested. This method can be used to obtain the positions where the pixel values are changed sharply. These endpoints can be regarded as directly detected positional data, and the number of data points is doubled by this result.

  13. Wide-field spectral imaging of human ovary autofluorescence and oncologic diagnosis via previously collected probe data

    Science.gov (United States)

    Renkoski, Timothy E.; Hatch, Kenneth D.; Utzinger, Urs

    2012-03-01

    With no sufficient screening test for ovarian cancer, a method to evaluate the ovarian disease state quickly and nondestructively is needed. The authors have applied a wide-field spectral imager to freshly resected ovaries of 30 human patients in a study believed to be the first of its magnitude. Endogenous fluorescence was excited with 365-nm light and imaged in eight emission bands collectively covering the 400- to 640-nm range. Linear discriminant analysis was used to classify all image pixels and generate diagnostic maps of the ovaries. Training the classifier with previously collected single-point autofluorescence measurements of a spectroscopic probe enabled this novel classification. The process by which probe-collected spectra were transformed for comparison with imager spectra is described. Sensitivity of 100% and specificity of 51% were obtained in classifying normal and cancerous ovaries using autofluorescence data alone. Specificity increased to 69% when autofluorescence data were divided by green reflectance data to correct for spatial variation in tissue absorption properties. Benign neoplasm ovaries were also found to classify as nonmalignant using the same algorithm. Although applied ex vivo, the method described here appears useful for quick assessment of cancer presence in the human ovary.

  14. THE LOW-FREQUENCY CHARACTERISTICS OF PSR J0437–4715 OBSERVED WITH THE MURCHISON WIDE-FIELD ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, N. D. R.; Ord, S. M.; Tremblay, S. E.; Tingay, S. J.; Oronsaye, S.; Emrich, D. [International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102 (Australia); Deshpande, A. A. [Raman Research Institute, Bangalore 560080 (India); Van Straten, W.; Briggs, F. [ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Curtin University, Bentley, WA 6102 (Australia); Bernardi, G. [Square Kilometre Array South Africa, 3rd Floor, The Park, Park Road, Pinelands, 7405 (South Africa); Bowman, J. D. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Cappallo, R. J.; Corey, B. E. [MIT Haystack Observatory, Westford, MA 01886 (United States); Goeke, R.; Hewitt, J. N. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Greenhill, L. J.; Kasper, J. C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Hazelton, B. J. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Kaplan, D. L. [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201 (United States); and others

    2014-08-20

    We report on the detection of the millisecond pulsar PSR J0437–4715 with the Murchison Wide-field Array (MWA) at a frequency of 192 MHz. Our observations show rapid modulations of pulse intensity in time and frequency that arise from diffractive scintillation effects in the interstellar medium (ISM), as well as prominent drifts of intensity maxima in the time-frequency plane that arise from refractive effects. Our analysis suggests that the scattering screen is located at a distance of ∼80-120 pc from the Sun, in disagreement with a recent claim that the screen is closer (∼10 pc). Comparisons with higher frequency data from Parkes reveal a dramatic evolution of the pulse profile with frequency, with the outer conal emission becoming comparable in strength to that from the core and inner conal regions. As well as demonstrating the high time resolution science capabilities currently possible with the MWA, our observations underscore the potential to conduct low-frequency investigations of timing-array millisecond pulsars, which may lead to increased sensitivity in the detection of nanoHertz gravitational waves via the accurate characterization of ISM effects.

  15. Mapping the Tidal Destruction of the Hercules Dwarf: A Wide-field DECam Imaging Search for RR Lyrae Stars

    Science.gov (United States)

    Garling, Christopher; Willman, Beth; Sand, David J.; Hargis, Jonathan; Crnojević, Denija; Bechtol, Keith; Carlin, Jeffrey L.; Strader, Jay; Zou, Hu; Zhou, Xu; Nie, Jundan; Zhang, Tianmeng; Zhou, Zhimin; Peng, Xiyan

    2018-01-01

    We investigate the hypothesized tidal disruption of the Hercules ultra-faint dwarf galaxy (UFD). Previous tidal disruption studies of the Hercules UFD have been hindered by the high degree of foreground contamination in the direction of the dwarf. We bypass this issue by using RR Lyrae stars, which are standard candles with a very low field-volume density at the distance of Hercules. We use wide-field imaging from the Dark Energy Camera on CTIO to identify candidate RR Lyrae stars, supplemented with observations taken in coordination with the Beijing–Arizona Sky Survey on the Bok Telescope. Combining color, magnitude, and light-curve information, we identify three new RR Lyrae stars associated with Hercules. All three of these new RR Lyrae stars lie outside its published tidal radius. When considered with the nine RR Lyrae stars already known within the tidal radius, these results suggest that a substantial fraction of Hercules’ stellar content has been stripped. With this degree of tidal disruption, Hercules is an interesting case between a visibly disrupted dwarf (such as the Sagittarius dwarf spheroidal galaxy) and one in dynamic equilibrium. The degree of disruption also shows that we must be more careful with the ways we determine object membership when estimating dwarf masses in the future. One of the three discovered RR Lyrae stars sits along the minor axis of Hercules, but over two tidal radii away. This type of debris is consistent with recent models that suggest Hercules’ orbit is aligned with its minor axis.

  16. An experiment in big data: storage, querying and visualisation of data taken from the Liverpool Telescope's wide field cameras

    Science.gov (United States)

    Barnsley, R. M.; Steele, Iain A.; Smith, R. J.; Mawson, Neil R.

    2014-07-01

    The Small Telescopes Installed at the Liverpool Telescope (STILT) project has been in operation since March 2009, collecting data with three wide field unfiltered cameras: SkycamA, SkycamT and SkycamZ. To process the data, a pipeline was developed to automate source extraction, catalogue cross-matching, photometric calibration and database storage. In this paper, modifications and further developments to this pipeline will be discussed, including a complete refactor of the pipeline's codebase into Python, migration of the back-end database technology from MySQL to PostgreSQL, and changing the catalogue used for source cross-matching from USNO-B1 to APASS. In addition to this, details will be given relating to the development of a preliminary front-end to the source extracted database which will allow a user to perform common queries such as cone searches and light curve comparisons of catalogue and non-catalogue matched objects. Some next steps and future ideas for the project will also be presented.

  17. Development of digital system for the wide-field x-ray imaging detector aboard Kanazawa-SAT3

    Science.gov (United States)

    Kagawa, Yasuaki; Yonetoku, Daisuke; Sawano, Tatsuya; Mihara, Tatehiro; Kyutoku, Koutarou; Ikeda, Hirokazu; Yoshida, Kazuki; Ina, Masao; Ota, Kaichi; Suzuki, Daichi; Miyao, Kouga; Watanabe, Syouta; Hatori, Satoshi; Kume, Kyo; Mizushima, Satoshi; Hasegawa, Takashi

    2017-08-01

    We are planning to launch a micro satellite, Kanazawa-SAT3 , at the end of FY2018 to localize X-ray transients associated with gravitational wave sources. Now we are testing a prototype model of wide-field Xray imaging detector named T-LEX (Transient Localization EXperiment). T-LEX is an orthogonally distributed two sets of 1-dimensional silicon strip detectors with coded aperture masks, and covers more than 1 steradian field of view in the energy range of 1 - 20 keV. Each dimension has 512 readout electrodes (totally 1,024 channels), and they are read out with application specific integrated circuits (ASICs) controlled by two onboard FPGAs. Moreover, each FPGA calculates the cross correlation between the X-ray intensity and mask patterns every 64 msec, makes a histogram of lightcurves and energy spectra, and also plays a role of telemetry/command interface to mission CPU. In this paper, we report an overview of digital electronics system. Especially, we focus on the high-speed imaging processor on FPGA and demonstrate its performance as an X-ray imaging system.

  18. Gradient Permittivity Meta-Structure model for Wide-field Super-resolution imaging with a sub-45 nm resolution.

    Science.gov (United States)

    Cao, Shun; Wang, Taisheng; Xu, Wenbin; Liu, Hua; Zhang, Hongxin; Hu, Bingliang; Yu, Weixing

    2016-03-21

    A gradient permittivity meta-structure (GPMS) model and its application in super-resolution imaging were proposed and discussed in this work. The proposed GPMS consists of alternate metallic and dielectric films with a gradient permittivity which can support surface plasmons (SPs) standing wave interference patterns with a super resolution. By employing the rigorous numerical FDTD simulation method, the GPMS was carefully simulated to find that the period of the SPs interference pattern is only 84 nm for a 532 nm incident light. Furthermore, the potential application of the GPMS for wide-field super-resolution imaging was also discussed and the simulation results show that an imaging resolution of sub-45 nm can be achieved based on the plasmonic structure illumination microscopic method, which means a 5.3-fold improvement on resolution has been achieved in comparison with conventional epifluorescence microscopy. Moreover, besides the super-resolution imaging application, the proposed GPMS model can also be applied for nanolithography and other areas where super resolution patterns are needed.

  19. Cross-Comparative Analysis of GF-1 Wide Field View and Landsat-7 Enhanced Thematic Mapper Plus Data

    Science.gov (United States)

    Wei, X.-Q.; Gu, X.-F.; Meng, Q.-Y.; Yu, T.; Jia, K.; Zhan, Y.-L.; Wang, Ch.-M.

    2017-11-01

    The wide field view (WFV) sensor on-board GF-1 satellite can acquire multi-spectral data with moderate spatial resolution, which holds great potential for monitoring the Earth's surface. This study assesses WFV data through cross-comparison of spectral band reflectances and vegetation indices with Landsat-7 Enhanced Thematic Mapper plus (ETM+) data. The four vegetation indices considered in this study are the normalized difference vegetation index (NDVI), the enhanced vegetation index (EVI), the ratio vegetation index (RVI), and the soil adjusted vegetation index (SAVI). The R2 between the WFV and ETM+ data were 0.82, 0.89, 0.92, and 0.80 for the blue, green, red, and near-infrared bands reflectance, and 0.90, 0.84, 0.83, and 0.91 for NDVI, EVI, RVI, and SAVI, respectively. The results displayed a high correlation between the spectral reflectances and vegetation indices of the two sensors' data, which indicated the reliability of the WFV data. Furthermore, the WFV data were better than the ETM+ data with regards to spatial and temporal resolutions.

  20. Wide field of view tabletop light field display based on piece-wise tracking and off-axis pickup

    Science.gov (United States)

    Zhu, Yanhong; Sang, Xinzhu; Yu, Xunbo; Wang, Peng; Xing, Shujun; Chen, Duo; Yan, Binbin; Wang, Kuiru; Yu, Chongxiu

    2017-11-01

    A wide field of view (FOV) tabletop light field display (LFD) based on piece-wise tracking and off-axis pickup is presented to display the floating three-dimensional (3D) scene, which is 360°surrounding viewable. The demonstrated LFD is specially designed with an integral imaging display (IID) with 83 × 83 viewpoints and a full-parallax holographic functional screen (HFS). To improve the FOV, a piece-wise tracking based FOV enhancement method is proposed. The relationship between the viewing zone and the elemental images (EIs) is formulated. A ray-tracing based method using off-axis pickup instead of parallel pickup directly is adopted to render the 3D scene to EIs. Then the piece-wise tracking method of varying the viewing zone by placing the EIs according to the position of viewer is analyzed. The floating 3D scene with a FOV of 70° × 70°is experimentally demonstrated with a good 3D perception.

  1. ON THE BINARY FREQUENCY OF THE LOWEST MASS MEMBERS OF THE PLEIADES WITH HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, E. V. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff (United States); Dupuy, Trent J. [The University of Texas at Austin, Department of Astronomy, 2515 Speedway C1400, Austin, TX 78712 (United States); Allers, Katelyn N. [Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837 (United States); Liu, Michael C. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Deacon, Niall R., E-mail: eugenio.v.garcia@gmail.com [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, AL1 5TL (United Kingdom)

    2015-05-01

    We present the results of a Hubble Space Telescope Wide Field Camera 3 (WFC3) imaging survey of 11 of the lowest mass brown dwarfs in the Pleiades known (25–40 M{sub Jup}). These objects represent the predecessors to T dwarfs in the field. Using a semi-empirical binary point-spread function (PSF)-fitting technique, we are able to probe to 0.″ 03 (0.75 pixel), better than 2x the WFC3/UVIS diffraction limit. We did not find any companions to our targets. From extensive testing of our PSF-fitting method on simulated binaries, we compute detection limits which rule out companions to our targets with mass ratios of ≳0.7 and separations ≳4 AU. Thus, our survey is the first to attain the high angular resolution needed to resolve brown dwarf binaries in the Pleiades at separations that are most common in the field population. We constrain the binary frequency over this range of separation and mass ratio of 25–40 M{sub Jup} Pleiades brown dwarfs to be <11% for 1σ (<26% at 2σ). This binary frequency is consistent with both younger and older brown dwarfs in this mass range.

  2. A wide-field TCSPC FLIM system based on an MCP PMT with a delay-line anode.

    Science.gov (United States)

    Becker, Wolfgang; Hirvonen, Liisa M; Milnes, James; Conneely, Thomas; Jagutzki, Ottmar; Netz, Holger; Smietana, Stefan; Suhling, Klaus

    2016-09-01

    We report on the implementation of a wide-field time-correlated single photon counting (TCSPC) method for fluorescence lifetime imaging (FLIM). It is based on a 40 mm diameter crossed delay line anode detector, where the readout is performed by three standard TCSPC boards. Excitation is performed by a picosecond diode laser with 50 MHz repetition rate. The photon arrival timing is obtained directly from the microchannel plates, with an instrumental response of ∼190 to 230 ps full width at half maximum depending on the position on the photocathode. The position of the photon event is obtained from the pulse propagation time along the two delay lines, one in x and one in y. One end of a delay line is fed into the "start" input of the corresponding TCSPC board, and the other end is delayed by 40 ns and fed into the "stop" input. The time between start and stop is directly converted into position, with a resolution of 200-250 μm. The data acquisition software builds up the distribution of the photons over their spatial coordinates, x and y, and their times after the excitation pulses, typically into 512 × 512 pixels and 1024 time channels per pixel. We apply the system to fluorescence lifetime imaging of cells labelled with Alexa 488 phalloidin in an epi-fluorescence microscope and discuss the application of our approach to other fluorescence microscopy methods.

  3. Measuring galaxy [O ii] emission line doublet with future ground-based wide-field spectroscopic surveys

    Science.gov (United States)

    Comparat, Johan; Kneib, Jean-Paul; Bacon, Roland; Mostek, Nick J.; Newman, Jeffrey A.; Schlegel, David J.; Yèche, Christophe

    2013-11-01

    The next generation of wide-field spectroscopic redshift surveys will map the large-scale galaxy distribution in the redshift range 0.7 ≤ z ≤ 2 to measure baryonic acoustic oscillations (BAO). The primary optical signature used in this redshift range comes from the [Oii] emission line doublet, which provides a unique redshift identification that can minimize confusion with other single emission lines. To derive the required spectrograph resolution for these redshift surveys, we simulate observations of the [Oii] (λλ 3727, 3729) doublet for various instrument resolutions, and line velocities. We foresee two strategies for the choice of the resolution for future spectrographs for BAO surveys. For bright [Oii] emitter surveys ([Oii] flux ~30 × 10-17 erg cm-2 s-1 like SDSS-IV/eBOSS), a resolution of R ~ 3300 allows the separation of 90 percent of the doublets. The impact of the sky lines on the completeness in redshift is less than 6 percent. For faint [Oii] emitter surveys ([Oii] flux ~10 × 10-17 erg cm-2 s-1 like DESi), the detection improves continuously with resolution, so we recommend the highest possible resolution, the limit being given by the number of pixels (4k by 4k) on the detector and the number of spectroscopic channels (2 or 3).

  4. A wide-field TCSPC FLIM system based on an MCP PMT with a delay-line anode

    Science.gov (United States)

    Becker, Wolfgang; Hirvonen, Liisa M.; Milnes, James; Conneely, Thomas; Jagutzki, Ottmar; Netz, Holger; Smietana, Stefan; Suhling, Klaus

    2016-09-01

    We report on the implementation of a wide-field time-correlated single photon counting (TCSPC) method for fluorescence lifetime imaging (FLIM). It is based on a 40 mm diameter crossed delay line anode detector, where the readout is performed by three standard TCSPC boards. Excitation is performed by a picosecond diode laser with 50 MHz repetition rate. The photon arrival timing is obtained directly from the microchannel plates, with an instrumental response of ˜190 to 230 ps full width at half maximum depending on the position on the photocathode. The position of the photon event is obtained from the pulse propagation time along the two delay lines, one in x and one in y. One end of a delay line is fed into the "start" input of the corresponding TCSPC board, and the other end is delayed by 40 ns and fed into the "stop" input. The time between start and stop is directly converted into position, with a resolution of 200-250 μm. The data acquisition software builds up the distribution of the photons over their spatial coordinates, x and y, and their times after the excitation pulses, typically into 512 × 512 pixels and 1024 time channels per pixel. We apply the system to fluorescence lifetime imaging of cells labelled with Alexa 488 phalloidin in an epi-fluorescence microscope and discuss the application of our approach to other fluorescence microscopy methods.

  5. Argus+: The Future of Wide-Field, Spectral-Line Imaging at 3-mm with the Green Bank Telescope

    Science.gov (United States)

    Maddalena, Ronald; Frayer, David; Lockman, Felix; O'Neil, Karen; White, Steven; Argus+ Collaboration

    2018-01-01

    The Robert C Byrd Green Bank Telescope has met its design goal of providing high-quality observations at 115 GHz. Observers also have access to the new, 16-pixel, 3-mm Argus receiver, which is providing high-dynamic range images over wide fields for the multitude of spectral lines between 85 and 115 GHz, including CO, 13CO, C18O, SiO, HCN, HCO+, HNC, N2H+, and CS. The small number of pixels in Argus limits its ability to map many of the most interesting objects whose extent exceeds many arc-minutes. The successful performance of Argus, and its modular design, demonstrates that receivers with many more pixels could be built for the GBT. A 12 x 12 array of the Argus design would have mapping speeds about nine times faster than Argus without suffering any degradation in performance for the outer pixels in the array. We present our plans to build the next-generation Argus instrument (Argus+) with 144-pixels, a footprint 5’x5’, and 7" resolution at 110 GHz. The project will be a collaboration between the Green Bank Observatory and university groups, who will supply key components. The key science drivers for Argus+ are studies of molecular filaments in the Milky Way, studies of molecular clouds in nearby galaxies, and the observations of rapidly evolving solar system objects.

  6. Sensing deep extreme environments: the receptor cell types, brain centers, and multi-layer neural packaging of hydrothermal vent endemic worms.

    Science.gov (United States)

    Shigeno, Shuichi; Ogura, Atsushi; Mori, Tsukasa; Toyohara, Haruhiko; Yoshida, Takao; Tsuchida, Shinji; Fujikura, Katsunori

    2014-01-01

    Deep-sea alvinellid worm species endemic to hydrothermal vents, such as Alvinella and Paralvinella, are considered to be among the most thermotolerant animals known with their adaptability to toxic heavy metals, and tolerance of highly reductive and oxidative stressful environments. Despite the number of recent studies focused on their overall transcriptomic, proteomic, and metabolic stabilities, little is known regarding their sensory receptor cells and electrically active neuro-processing centers, and how these can tolerate and function in such harsh conditions. We examined the extra- and intracellular organizations of the epidermal ciliated sensory cells and their higher centers in the central nervous system through immunocytochemical, ultrastructural, and neurotracing analyses. We observed that these cells were rich in mitochondria and possessed many electron-dense granules, and identified specialized glial cells and serial myelin-like repeats in the head sensory systems of Paralvinella hessleri. Additionally, we identified the major epidermal sensory pathways, in which a pair of distinct mushroom bodies-like or small interneuron clusters was observed. These sensory learning and memory systems are commonly found in insects and annelids, but the alvinellid inputs are unlikely derived from the sensory ciliary cells of the dorsal head regions. Our evidence provides insight into the cellular and system-wide adaptive structure used to sense, process, and combat the deep-sea hydrothermal vent environment. The alvinellid sensory cells exhibit characteristics of annelid ciliary types, and among the most unique features were the head sensory inputs and structure of the neural cell bodies of the brain, which were surrounded by multiple membranes. We speculated that such enhanced protection is required for the production of normal electrical signals, and to avoid the breakdown of the membrane surrounding metabolically fragile neurons from oxidative stress. Such pivotal

  7. Acute lower extremity ischaemia

    African Journals Online (AJOL)

    In a nutshell. • A patient with sudden onset of a cold, weak, numb and painful foot has acute lower extremity ischaemia (ALEXI) until proven otherwise. Labelling patients as acute gout, acute phlegmasia (deep vein thrombosis), acute sciatica, etc. may result in unnecessary delays in treatment, with tragic consequences.

  8. Wide Field-of-View Fluorescence Imaging with Optical-Quality Curved Microfluidic Chamber for Absolute Cell Counting

    Directory of Open Access Journals (Sweden)

    Mohiuddin Khan Shourav

    2016-07-01

    Full Text Available Field curvature and other aberrations are encountered inevitably when designing a compact fluorescence imaging system with a simple lens. Although multiple lens elements can be used to correct most such aberrations, doing so increases system cost and complexity. Herein, we propose a wide field-of-view (FOV fluorescence imaging method with an unconventional optical-quality curved sample chamber that corrects the field curvature caused by a simple lens. Our optics simulations and proof-of-concept experiments demonstrate that a curved substrate with lens-dependent curvature can reduce greatly the distortion in an image taken with a conventional planar detector. Following the validation study, we designed a curved sample chamber that can contain a known amount of sample volume and fabricated it at reasonable cost using plastic injection molding. At a magnification factor of approximately 0.6, the curved chamber provides a clear view of approximately 119 mm2, which is approximately two times larger than the aberration-free area of a planar chamber. Remarkably, a fluorescence image of microbeads in the curved chamber exhibits almost uniform intensity over the entire field even with a simple lens imaging system, whereas the distorted boundary region has much lower brightness than the central area in the planar chamber. The absolute count of white blood cells stained with a fluorescence dye was in good agreement with that obtained by a commercially available conventional microscopy system. Hence, a wide FOV imaging system with the proposed curved sample chamber would enable us to acquire an undistorted image of a large sample volume without requiring a time-consuming scanning process in point-of-care diagnostic applications.

  9. THE SIZE EVOLUTION OF PASSIVE GALAXIES: OBSERVATIONS FROM THE WIDE-FIELD CAMERA 3 EARLY RELEASE SCIENCE PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R. E. Jr. [Physics Department, University of California, Davis, CA 95616 (United States); McCarthy, P. J. [Observatories of the Carnegie Institute of Washington, Pasadena, CA 91101 (United States); Cohen, S. H.; Rutkowski, M. J.; Mechtley, M. R.; Windhorst, R. A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Yan, H. [Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States); Hathi, N. P. [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Koekemoer, A. M.; Bond, H. E.; Bushouse, H. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); O' Connell, R. W. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Calzetti, D. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Crockett, R. M. [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Disney, M. [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); Dopita, M. A. [Research School of Astronomy and Astrophysics, The Australian National University, Weston Creek, ACT 2611 (Australia); Frogel, J. A. [Galaxies Unlimited, Lutherville, MD 21093 (United States); Hall, D. N. B. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Holtzman, J. A., E-mail: rryan@physics.ucdavis.edu [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); and others

    2012-04-10

    We present the size evolution of passively evolving galaxies at z {approx} 2 identified in Wide-Field Camera 3 imaging from the Early Release Science program. Our sample was constructed using an analog to the passive BzK galaxy selection criterion, which isolates galaxies with little or no ongoing star formation at z {approx}> 1.5. We identify 30 galaxies in {approx}40 arcmin{sup 2} to H < 25 mag. By fitting the 10-band Hubble Space Telescope photometry from 0.22 {mu}m {approx}< {lambda}{sub obs} {approx}< 1.6 {mu}m with stellar population synthesis models, we simultaneously determine photometric redshift, stellar mass, and a bevy of other population parameters. Based on the six galaxies with published spectroscopic redshifts, we estimate a typical redshift uncertainty of {approx}0.033(1 + z). We determine effective radii from Sersic profile fits to the H-band image using an empirical point-spread function. By supplementing our data with published samples, we propose a mass-dependent size evolution model for passively evolving galaxies, where the most massive galaxies (M{sub *} {approx} 10{sup 11} M{sub Sun }) undergo the strongest evolution from z {approx} 2 to the present. Parameterizing the size evolution as (1 + z){sup -{alpha}}, we find a tentative scaling of {alpha} Almost-Equal-To (- 0.6 {+-} 0.7) + (0.9 {+-} 0.4)log (M{sub *}/10{sup 9} M{sub Sun }), where the relatively large uncertainties reflect the poor sampling in stellar mass due to the low numbers of high-redshift systems. We discuss the implications of this result for the redshift evolution of the M{sub *}-R{sub e} relation for red galaxies.

  10. Outcome of universal newborn eye screening with wide-field digital retinal image acquisition system: a pilot study.

    Science.gov (United States)

    Goyal, P; Padhi, T R; Das, T; Pradhan, L; Sutar, S; Butola, S; Behera, U C; Jain, L; Jalali, S

    2017-07-24

    PurposeTo evaluate the outcome of universal newborn eye screening with wide-field digital retinal imaging (WFDRI) system.MethodsIn this pilot study, we examined 1152 apparently healthy newborn infants in the obstetrics and gynecology ward of a civil hospital in Eastern India over 1.5 years. The examination included external eye examination, red reflex test and fundus imaging by WFDRI (RetCam II, Clarity medical system, Pleasanton, CA, USA) by a trained optometrist. The pathologies detected, net monetary gain and skilled manpower saved were documented. The results were compared with three similar studies thus far published in the literature.ResultsOcular abnormality of any kind was seen in 172 (14.93%) babies. Retinal hemorrhage in 153 babies (88.9% of all abnormal findings) was the most common abnormality; it was bilateral in 118 (77.12%) babies and 4 babies had foveal hemorrhage. Other abnormalities included vitreous hemorrhage (n=1), congenital glaucoma (n=2), uveal coloboma (n=2), retinopathy mimicking retinopathy of prematurity (n=2), and cystic fovea (n=3). The retinal hemorrhages resolved spontaneously in all eyes. One baby with congenital glaucoma received surgery and the other was treated medically. The benefits included savings in skilled manpower, a net monetary gain of INR 4.195 million (US$ 62,612) and skilled manpower saving by 319.4 h.ConclusionsThe universal neonatal eye screening using WFDRI detected pathologies that needed immediate care or regular follow up; saved skilled manpower with a net monetary gain. But compared to a red reflex test the benefits were marginal in terms of detecting treatment warranting ocular pathologies.Eye advance online publication, 24 July 2017; doi:10.1038/eye.2017.129.

  11. Wide-field human photoreceptor morphological analysis using phase-resolved sensorless adaptive optics swept-source OCT (Conference Presentation)

    Science.gov (United States)

    Ju, Myeong Jin; Heisler, Morgan; Zawadzki, Robert J.; Bonora, Stefano; Jian, Yifan; Sarunic, Marinko V.

    2017-02-01

    Adaptive optics optical coherence tomography (AO-OCT) systems capable of 3D high resolution imaging have been applied to posterior eye imaging in order to resolve the fine morphological features in the retina. Human cone photoreceptors have been extensively imaged and studied for the investigation of retinal degeneration resulting in photoreceptor cell death. However, there are still limitations of conventional approaches to AO in the clinic, such as relatively small field-of-view (FOV) and the complexities in system design and operation. In this research, a recently developed phase-resolved Sensorless AO Swept Source based OCT (SAO-SS-OCT) system which is compact in size and easy to operate is presented. Owing to its lens-based system design, wide-field imaging can be performed up to 6° on the retina. A phase stabilization unit was integrated with the OCT system. With the phase stabilized OCT signal, we constructed retinal micro-vasculature image using a phase variance technique. The retinal vasculature image was used to align and average multiple OCT volumes acquired sequentially. The contrast-enhanced photoreceptor projection image was then extracted from the averaged volume, and analyzed based on its morphological features through a novel photoreceptor structure evaluation algorithm. The retinas of twelve human research subjects (10 normal and 2 pathological cases) were measured in vivo. Quantitative parameters used for evaluating the cone photoreceptor mosaic such as cell density, cell area, and mosaic regularity are presented and discussed. The SAO-SS-OCT system and the proposed photoreceptor evaluation method has significant potential to reveal early stage retinal diseases associated with retinal degeneration.

  12. Quantitative analysis of wide field-of-view and broadband quarter-wave plate based on metasurface

    Science.gov (United States)

    Chen, Yanjun; Guo, Zhe; Liu, Ke; Liu, Lihui; Li, Yanqiu

    2018-01-01

    As the numerical aperture (NA) of the projection objective increases continually and the exposure pattern feature size decreases gradually, the polarization illumination is introduced into the lithography system. Therefore, it is necessary to design a wide field-of-view (FOV) wave plate to eliminate the effect of oblique incident light on the phase delay of the traditional zero order wave plate effectively. The quarter-wave plate with 20° FOV based on birefringent optical crystals has been designed in our laboratory by Dong et al. In order to obtain a wider FOV, we explore a previously reported Ag patch ultrathin quarter-wave plate whose performances were not analyzed by finite-difference time-domain (FDTD) method. In this paper, we mainly investigate three performances of the Ag patch quarter-wave plate consisting of FOV, achromatic band and achromatic band transmission. The simulation results indicate that when phase difference error is controlled at +/-2° (1) the range of FOV of the quarter-wave plate is +/-29° at 632nm; (2) the achromatic band ranges from 618nm to 658nm at normal incidence; (3) the achromatic band transmission ranges from 11% to 30%. Compared with the traditional wave plate made of birefringent crystals, the achromatic band and transmission is slightly lower but the FOV of this quarter-wave plate is much wider. Thus, this Ag patch nanoscale wide FOV quarter-wave plate can be effectively used in high NA lithography projection exposure systems to reduce the polarization aberration caused by oblique incidence of light.

  13. THE HUBBLE WIDE FIELD CAMERA 3 TEST OF SURFACES IN THE OUTER SOLAR SYSTEM: SPECTRAL VARIATION ON KUIPER BELT OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Wesley C. [Herzberg Institute of Astrophysics, 5071 West Saanich Road Victoria, BC V9E 2E7 (Canada); Brown, Michael E. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91101 (United States); Glass, Florian, E-mail: wesley.fraser@nrc.ca [Observatoire de Genve, Universit de Genve, 51 chemin des Maillettes, CH-1290 Sauverny (Switzerland)

    2015-05-01

    Here, we present additional photometry of targets observed as part of the Hubble Wide Field Camera 3 (WFC3) Test of Surfaces in the Outer Solar System. Twelve targets were re-observed with the WFC3 in the optical and NIR wavebands designed to complement those used during the first visit. Additionally, all of the observations originally presented by Fraser and Brown were reanalyzed through the same updated photometry pipeline. A re-analysis of the optical and NIR color distribution reveals a bifurcated optical color distribution and only two identifiable spectral classes, each of which occupies a broad range of colors and has correlated optical and NIR colors, in agreement with our previous findings. We report the detection of significant spectral variations on five targets which cannot be attributed to photometry errors, cosmic rays, point-spread function or sensitivity variations, or other image artifacts capable of explaining the magnitude of the variation. The spectrally variable objects are found to have a broad range of dynamical classes and absolute magnitudes, exhibit a broad range of apparent magnitude variations, and are found in both compositional classes. The spectrally variable objects with sufficiently accurate colors for spectral classification maintain their membership, belonging to the same class at both epochs. 2005 TV189 exhibits a sufficiently broad difference in color at the two epochs that span the full range of colors of the neutral class. This strongly argues that the neutral class is one single class with a broad range of colors, rather than the combination of multiple overlapping classes.

  14. Detector Control and Data Acquisition for the Wide-Field Infrared Survey Telescope (WFIRST) with a Custom ASIC

    Science.gov (United States)

    Smith, Brian S.; Loose, Markus; Alkire, Greg; Joshi, Atul; Kelly, Daniel; Siskind, Eric; Rossetti, Dino; Mah, Jonathan; Cheng, Edward; Miko, Laddawan; hide

    2016-01-01

    The Wide-Field Infrared Survey Telescope (WFIRST) will have the largest near-IR focal plane ever flown by NASA, a total of 18 4K x 4K devices. The project has adopted a system-level approach to detector control and data acquisition where 1) control and processing intelligence is pushed into components closer to the detector to maximize signal integrity, 2) functions are performed at the highest allowable temperatures, and 3) the electronics are designed to ensure that the intrinsic detector noise is the limiting factor for system performance. For WFIRST, the detector arrays operate at 90 to 100 K, the detector control and data acquisition functions are performed by a custom ASIC at 150 to 180 K, and the main data processing electronics are at the ambient temperature of the spacecraft, notionally approx.300 K. The new ASIC is the main interface between the cryogenic detectors and the warm instrument electronics. Its single-chip design provides basic clocking for most types of hybrid detectors with CMOS ROICs. It includes a flexible but simple-to-program sequencer, with the option of microprocessor control for more elaborate readout schemes that may be data-dependent. All analog biases, digital clocks, and analog-to-digital conversion functions are incorporated and are connected to the nearby detectors with a short cable that can provide thermal isolation. The interface to the warm electronics is simple and robust through multiple LVDS channels. It also includes features that support parallel operation of multiple ASICs to control detectors that may have more capability or requirements than can be supported by a single chip.

  15. Atmospheric characterization of five hot Jupiters with the wide field Camera 3 on the Hubble space telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ranjan, Sukrit; Charbonneau, David [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Désert, Jean-Michel [Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States); Madhusudhan, Nikku [Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06511 (United States); Deming, Drake; Wilkins, Ashlee [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Mandell, Avi M., E-mail: sranjan@cfa.harvard.edu [NASA' s Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-04-20

    We probe the structure and composition of the atmospheres of five hot Jupiter exoplanets using the Hubble Space Telescope Wide Field Camera 3 (WFC3) instrument. We use the G141 grism (1.1-1.7 μm) to study TrES-2b, TrES-4b, and CoRoT-1b in transit; TrES-3b in secondary eclipse; and WASP-4b in both. This wavelength region includes a predicted absorption feature from water at 1.4 μm, which we expect to be nondegenerate with the other molecules that are likely to be abundant for hydrocarbon-poor (e.g., solar composition) hot Jupiter atmospheres. We divide our wavelength regions into 10 bins. For each bin we produce a spectrophotometric light curve spanning the time of transit or eclipse. We correct these light curves for instrumental systematics without reference to an instrument model. For our transmission spectra, our mean 1σ precision per bin corresponds to variations of 2.1, 2.8, and 3.0 atmospheric scale heights for TrES-2b, TrES-4b, and CoRoT-1b, respectively. We find featureless spectra for these three planets. We are unable to extract a robust transmission spectrum for WASP-4b. For our dayside emission spectra, our mean 1σ precision per bin corresponds to a planet-to-star flux ratio of 1.5 × 10{sup –4} and 2.1 × 10{sup –4} for WASP-4b and TrES-3b, respectively. We combine these estimates with previous broadband measurements and conclude that for both planets isothermal atmospheres are disfavored. We find no signs of features due to water. We confirm that WFC3 is suitable for studies of transiting exoplanets, but in staring mode multivisit campaigns are necessary to place strong constraints on water abundance.

  16. Atmospheric Characterization of Five Hot Jupiters with the Wide Field Camera 3 on the Hubble Space Telescope

    Science.gov (United States)

    Ranjan, Sukrit; Charbonneau, David; Desert, Jean-Michel; Madhusudhan, Nikku; Deming, Drake; Wilkins, Ashlee; Mandell, Avi M.

    2014-01-01

    We probe the structure and composition of the atmospheres of five hot Jupiter exoplanets using the Hubble Space Telescope Wide Field Camera 3 (WFC3) instrument. We use the G141 grism (1.1-1.7 micrometers) to study TrES-2b, TrES-4b, and CoRoT-1b in transit; TrES-3b in secondary eclipse; and WASP-4b in both. This wavelength region includes a predicted absorption feature from water at 1.4 micrometers, which we expect to be nondegenerate with the other molecules that are likely to be abundant for hydrocarbon-poor (e.g., solar composition) hot Jupiter atmospheres. We divide our wavelength regions into 10 bins. For each bin we produce a spectrophotometric light curve spanning the time of transit or eclipse. We correct these light curves for instrumental systematics without reference to an instrument model. For our transmission spectra, our mean 1s precision per bin corresponds to variations of 2.1, 2.8, and 3.0 atmospheric scale heights for TrES-2b, TrES-4b, and CoRoT-1b, respectively. We find featureless spectra for these three planets. We are unable to extract a robust transmission spectrum for WASP-4b. For our dayside emission spectra, our mean 1 sigma precision per bin corresponds to a planet-to-star flux ratio of 1.5 x 10(exp -4) and 2.1 x 10(exp -4) for WASP-4b and TrES-3b, respectively. We combine these estimates with previous broadband measurements and conclude that for both planets isothermal atmospheres are disfavored. We find no signs of features due to water. We confirm that WFC3 is suitable for studies of transiting exoplanets, but in staring mode multivisit campaigns are necessary to place strong constraints on water abundance.

  17. A PANCHROMATIC CATALOG OF EARLY-TYPE GALAXIES AT INTERMEDIATE REDSHIFT IN THE HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3 EARLY RELEASE SCIENCE FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Rutkowski, M. J.; Cohen, S. H.; Windhorst, R. A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404 (United States); Kaviraj, S.; Crockett, R. M.; Silk, J. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); O' Connell, R. W. [Department of Astronomy, University of Virginia, P.O. Box 3818, Charlottesville, VA 22903 (United States); Hathi, N. P.; McCarthy, P. J. [Observatories of the Carnegie Institute of Washington, Pasadena, CA 91101 (United States); Ryan, R. E. Jr.; Koekemoer, A.; Bond, H. E. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Yan, H. [Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States); Kimble, R. A. [NASA-Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA 98195-1580 (United States); Calzetti, D. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Disney, M. J. [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); Dopita, M. A. [Research School of Physics and Astronomy, The Australian National University, ACT 2611 (Australia); Frogel, J. A. [Astronomy Department, King Abdulaziz University, P.O. Box 80203, Jeddah (Saudi Arabia); Hall, D. N. B. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); and others

    2012-03-01

    In the first of a series of forthcoming publications, we present a panchromatic catalog of 102 visually selected early-type galaxies (ETGs) from observations in the Early Release Science (ERS) program with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) of the Great Observatories Origins Deep Survey-South (GOODS-S) field. Our ETGs span a large redshift range, 0.35 {approx}< z {approx}< 1.5, with each redshift spectroscopically confirmed by previous published surveys of the ERS field. We combine our measured WFC3 ERS and Advanced Camera for Surveys (ACS) GOODS-S photometry to gain continuous sensitivity from the rest-frame far-UV to near-IR emission for each ETG. The superior spatial resolution of the HST over this panchromatic baseline allows us to classify the ETGs by their small-scale internal structures, as well as their local environment. By fitting stellar population spectral templates to the broadband photometry of the ETGs, we determine that the average masses of the ETGs are comparable to the characteristic stellar mass of massive galaxies, 10{sup 11} < M{sub *}[M{sub Sun }]<10{sup 12}. By transforming the observed photometry into the Galaxy Evolution Explorer FUV and NUV, Johnson V, and Sloan Digital Sky Survey g' and r' bandpasses we identify a noteworthy diversity in the rest-frame UV-optical colors and find the mean rest-frame (FUV-V) = 3.5 and (NUV-V) = 3.3, with 1{sigma} standard deviations {approx_equal}1.0. The blue rest-frame UV-optical colors observed for most of the ETGs are evidence for star formation during the preceding gigayear, but no systems exhibit UV-optical photometry consistent with major recent ({approx}<50 Myr) starbursts. Future publications which address the diversity of stellar populations likely to be present in these ETGs, and the potential mechanisms by which recent star formation episodes are activated, are discussed.

  18. High silicon content silylating reagents for dry-developed positive-tone resists for extreme ultraviolet (13.5 nm) and deep ultraviolet (248 nm) microlithography

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.; Scharrer, E.; Kubiak, G. [and others

    1994-12-31

    Recent results in the use of disilanes as silylating reagents for near-surface imaging with deep-UV (248 nm) and EUV (13.5 nm) lithography are reported. A relatively thin imaging layer of a photo-cross-linking resist is spun over a thicker layer of hard-baked resist that functions as a planarizing layer and antireflective coating. Photoinduced acid generation and subsequent heating crosslinks and renders exposed areas impermeable to an aminodisilane that reacts with the unexposed regions. Subsequent silylation and reactive ion etching afford a positive-tone image. The use of disilanes introduces a higher concentration of silicon into the polymer than is possible with silicon reagents that incorporate only one silicon atom per reactive site. The higher silicon content in the silylated polymer increases etching selectivity between exposed and unexposed regions and thereby increases the contrast. Additional improvements that help to minimize flow during silylation are also discussed, including the addition of bifunctional disilanes. We have resolved high aspect ratio, very high quality 0.20 {mu}m line and space patterns at 248 nm with a stepper having a numerical aperture (NA)= 0.53, and have resolved {<=} 0.15 {mu}m line and spaces at 13.5 nm.

  19. Consequences of long-distance swimming and travel over deep-water pack ice for a female polar bear during a year of extreme sea ice retreat

    Science.gov (United States)

    Durner, G.M.; Whiteman, J.P.; Harlow, H.J.; Amstrup, Steven C.; Regehr, E.V.; Ben-David, M.

    2011-01-01

    Polar bears (Ursus maritimus) prefer to live on Arctic sea ice but may swim between ice floes or between sea ice and land. Although anecdotal observations suggest that polar bears are capable of swimming long distances, no data have been available to describe in detail long distance swimming events or the physiological and reproductive consequences of such behavior. Between an initial capture in late August and a recapture in late October 2008, a radio-collared adult female polar bear in the Beaufort Sea made a continuous swim of 687 km over 9 days and then intermittently swam and walked on the sea ice surface an additional 1,800 km. Measures of movement rate, hourly activity, and subcutaneous and external temperature revealed distinct profiles of swimming and walking. Between captures, this polar bear lost 22% of her body mass and her yearling cub. The extraordinary long distance swimming ability of polar bears, which we confirm here, may help them cope with reduced Arctic sea ice. Our observation, however, indicates that long distance swimming in Arctic waters, and travel over deep water pack ice, may result in high energetic costs and compromise reproductive fitness. ?? 2011 US Government.

  20. Wide-Field Survey around Local Group Dwarf Spheroidal Galaxy Leo II: Spatial Distribution of Stellar Content

    Science.gov (United States)

    Komiyama, Yutaka; Doi, Mamoru; Furusawa, Hisanori; Hamabe, Masaru; Imi, Katsumi; Kimura, Masahiko; Miyazaki, Satoshi; Nakata, Fumiaki; Okada, Norio; Okamura, Sadanori; Ouchi, Masami; Sekiguchi, Maki; Shimasaku, Kazuhiro; Yagi, Masafumi; Yasuda, Naoki

    2007-08-01

    We carried out a wide-field V, I imaging survey of the Local Group dwarf spheroidal galaxy Leo II using the Subaru Prime Focus Camera on the 8.2 m Subaru Telescope. The survey covered an area of 26.67×26.67 arcmin2, far beyond the tidal radius of Leo II (8.63'), down to the limiting magnitude of V~=26, which is roughly 1 mag deeper than the turnoff point of the main-sequence stars of Leo II. Radial number density profiles of bright and faint red giant branch (RGB) stars were found to change their slopes at around the tidal radius, and extend beyond the tidal radius with shallower slopes. A smoothed surface brightness map of Leo II suggests the existence of a small substructure (4×2.5 arcmin2, 270×170 pc 2 in physical size) of globular cluster luminosity beyond the tidal radius. We investigated the properties of the stellar population by means of a color-magnitude diagram. The horizontal branch (HB) morphology index shows a radial gradient in which red HB stars are more concentrated than blue HB stars, which is common to many Local Group dwarf spheroidal galaxies. The color distribution of RGB stars around the mean RGB sequence shows a larger dispersion at the center than in the outskirts, indicating a mixture of stellar populations at the center and a more homogeneous population in the outskirts. Based on the age estimation using subgiant branch stars, we found that although the major star formation took place ~8 Gyr ago, a considerable stellar population younger than 8 Gyr is found at the center; such a younger population is insignificant in the outskirts. The following star formation history is suggested for Leo II. Star-forming activity occurred more than ~8 Gyr ago throughout the galaxy at a modest star formation rate. The star-forming region gradually shrank from the outside toward the center, and star-forming activity finally dropped to ~0 by ~4 Gyr ago, except for the center, where a small population younger than 4 Gyr is present. Based on data collected

  1. Prime Focus Spectrograph: A very wide-field, massively multiplexed, optical & near-infrared spectrograph for Subaru Telescope

    Science.gov (United States)

    Tamura, Naoyuki

    This short article is about Prime Focus Spectrograph (PFS), a very wide-field, massively-multiplexed, and optical & near-infrared (NIR) spectrograph as a next generation facility instrument on Subaru Telescope. More details and updates are available on the PFS official website (http://pfs.ipmu.jp), blog (http://pfs.ipmu.jp/blog/), and references therein. The project, instrument, & timeline PFS will position 2400 fibers to science targets or blank sky in the 1.3 degree field on the Subaru prime focus. These fibers will be quickly (~60sec) reconfigurable and feed the photons during exposures to the Spectrograph System (SpS). SpS consists of 4 modules each of which accommodate ~600 fibers and deliver spectral images ranging from 380nm to 1260nm simultaneously at one exposure via the 3 arms of blue, red, and NIR cameras. The instrument development has been undertaken by the international collaboration at the initiative of Kavli IPMU. The project is now going into the construction phase aiming at system integration and on-sky engineering observations in 2017-2018, and science operation in 2019. The survey design has also been under development envisioning a survey spanning ~300 nights over ~5 years in the framework of Subaru Strategic Program (SSP). The key science areas are: Cosmology, galaxy/AGN evolution, and Galactic Archaeology (GA) (Takada et al. 2014). The cosmology program will be to constrain the nature of dark energy via a survey of emission line galaxies over a comoving volume of 10 Gpc3 at z=0.8-2.4. In the galaxy/AGN program, the wide wavelength coverage of PFS as well as the large field of view will be exploited to characterize the galaxy populations and its clustering properties over a wide redshift range. A survey of color-selected galaxies/AGN at z = 1-2 will be conducted over 20 square degrees yielding a fair sample of galaxies with stellar masses down to ~1010 M ⊙. In the GA program, radial velocities and chemical abundances of stars in the Milky

  2. ProtoEXIST2: Advanced Wide-field Imaging CZT Detector Development For The HET On The Proposed EXIST Mission

    Science.gov (United States)

    Hong, JaeSub; Allen, B.; Grindlay, J.; Barthelmy, S.; Baker, R.; Gehrels, N.; Cook, W.; Kaye, S.; Harrison, F.

    2010-03-01

    We describe our development of ProtoEXIST2, the advanced CZT imaging detector and wide field telescope prototype for the High Energy Telescope (HET) on the proposed Energetic X-ray Imaging Survey Telescope (EXIST) mission. EXIST is a multi-wavelength Medium class mission which would explore the early Universe using high redshift Gamma-ray Bursts and survey black holes on all scales. ProtoEXIST2 will demonstrate the feasibility of a large scale imaging module (256 cm2) with a close-tiled array of fine pixel (0.6 mm) CZT with a balloon flight test in 2010 or 2011. This second generation close-tiled CZT imager follows ProtoEXIST1, which had a recent successful balloon flight (see Allen et al in this meeting) using the same area CZT detector module (256 cm2) but with larger pixel size (2.5mm). For signal readout and event processing, we use the Direct-Bond (DB) ASIC, developed for the NuSTAR mission to be used in a close-tiled 2 x 2 array of 2x2 cm2 CZT detectors, each with 32x32 pixels. The DB-ASIC is attractive for a large scale implementation of tiled imaging CZT detectors given its low noise and power consumption (70uW/pixel). We are developing readout for the DB-ASIC that incorporates our back-end FPGA readout architecture developed for ProtoEXIST1 in order to accomplish the 256 cm2 detector module area with totally vertical integration (i.e. no auxialliary boards to the sides of the module. This is required to tile large numbers of modules into the very large total area (4.5m^2) proposed for the HET on EXIST. We review the design of the EXIST/HET and its optimum shielding in light of our ProtoEXIST1 balloon flight and our plan for future development of ProtoEXIST3, a final EXIST/HET detector module that would incorporate a still lower power version of the DB ASIC.

  3. Fast, wide-field and distortion-free telescope with curved detectors for surveys at ultralow surface brightness.

    Science.gov (United States)

    Muslimov, Eduard; Valls-Gabaud, David; Lemaître, Gérard; Hugot, Emmanuel; Jahn, Wilfred; Lombardo, Simona; Wang, Xin; Vola, Pascal; Ferrari, Marc

    2017-11-01

    We present the design of an all-reflective, bifolded Schmidt telescope aimed at surveys of extended astronomical objects with extremely low surface brightness. The design leads to a high image quality without any diffracting spider, a large aperture and field of view (FoV), and a small central obstruction that barely alters the point spread function (PSF). As an example, we design a high-quality, 36 cm diameter, fast (f/2.5) telescope working in the visible with a large FoV (1.6°×2.6°). The telescope can operate with a curved detector (or with a flat detector with a field flattener) and a set of filters. The entrance mirror is anamorphic and replaces the classical Schmidt entrance corrector plate. We show that this anamorphic primary mirror can be manufactured through stress polishing, avoiding high spatial frequency errors, and testing with a simple interferometer scheme. This prototype is intended to serve as a fast-track scientific and technological pathfinder for the future space-based MESSIER mission.

  4. Distributed Episodic Exploratory Planning (DEEP)

    Science.gov (United States)

    2012-04-01

    and numbers representing case identifiers, it showed the memory usage to be extremely minimal. 3.2.2.2. Latent Semantic Analysis (LSA) The DEEP team...faced a challenge in preparing historical StarCraft log files for storage in a DEEP-friendly case-base. Latent semantic analysis (LSA) is a...the document. (Using Latent Semantic Analysis to Improve Information Retrieval, 1988) The challenge for DEEP was to convert a continuous APPROVED FOR

  5. Ground to on-orbit alignment study of the WFIRST wide-field channel and resulting changes in the telescope architecture

    Science.gov (United States)

    Hagopian, John; Armani, Nerses; Bartusek, Lisa; Casey, Tom; Content, Dave; Conturie, Yves; Gao, Guangjun; Jurling, Alden; Marx, Cathy; Marzouk, Joe; Pasquale, Bert; Smith, J. Scott; Tang, Hong; Whipple, Arthur

    2017-08-01

    The Wide-Field Infrared Survey Telescope (WFIRST) mission[1] is the top-ranked large space mission in the New Worlds, New Horizon (NWNH) Decadal Survey of Astronomy and Astrophysics. WFIRST will settle essential questions in both exoplanet and dark energy research and will advance topics ranging from galaxy evolution to the study of objects within the galaxy. The WFIRST mission uses a repurposed 2.4-m Forward Optical Telescope assembly (FOA), which, when completed with new aft optics will be an Integrated Optical Assembly (IOA). WFIRST is equipped with a Wide Field Instrument (WFI) and a Coronagraph Instrument (CGI). An Instrument Carrier (IC) meters these payload elements together and to the spacecraft bus (S/C). A distributed ground system receives the data, uploads commands and software updates, and processes the data. After transition from the study phase, Pre-Phase-A (a.k.a., "Cycle 6") design to NASA Phase A formulation, a significant change to the IOA was initiated; including moving the tertiary mirror from the instrument package to a unified three-mirror anastigmat (TMA) placement, that provides a wide 0.28-sq° instrumented field of view to the Wide Field Instrument (WFI). In addition, separate relays from the primary and secondary mirror feed the Wide Field Instrument (WFI) and Coronagraph Instrument (CGI). During commissioning the telescope is aligned using wavefront sensing with the WFI[2]. A parametric and Monte-Carlo analysis was performed, which determined that alignment compensation with the secondary mirror alone degraded performance in the other instruments. This led to the addition of a second compensator in the WFI optical train to alleviate this concern. This paper discusses the trades and analyses that were performed and resulting changes to the WFIRST telescope architecture.

  6. Low-frequency wide-field fluorescence lifetime imaging using a high-power near-infrared light-emitting diode light source

    OpenAIRE

    Gioux, Sylvain; Lomnes, Stephen J.; Choi, Hak Soo; Frangioni, John V.

    2010-01-01

    Fluorescence lifetime imaging (FLi) could potentially improve exogenous near-infrared (NIR) fluorescence imaging, because it offers the capability of discriminating a signal of interest from background, provides real-time monitoring of a chemical environment, and permits the use of several different fluorescent dyes having the same emission wavelength. We present a high-power, LED-based, NIR light source for the clinical translation of wide-field (larger than 5 cm in diameter) FLi at frequenc...

  7. Deep Learning Microscopy

    KAUST Repository

    Rivenson, Yair

    2017-05-12

    We demonstrate that a deep neural network can significantly improve optical microscopy, enhancing its spatial resolution over a large field-of-view and depth-of-field. After its training, the only input to this network is an image acquired using a regular optical microscope, without any changes to its design. We blindly tested this deep learning approach using various tissue samples that are imaged with low-resolution and wide-field systems, where the network rapidly outputs an image with remarkably better resolution, matching the performance of higher numerical aperture lenses, also significantly surpassing their limited field-of-view and depth-of-field. These results are transformative for various fields that use microscopy tools, including e.g., life sciences, where optical microscopy is considered as one of the most widely used and deployed techniques. Beyond such applications, our presented approach is broadly applicable to other imaging modalities, also spanning different parts of the electromagnetic spectrum, and can be used to design computational imagers that get better and better as they continue to image specimen and establish new transformations among different modes of imaging.

  8. Simulations of the x-ray imaging capabilities of the silicon drift detectors (SDD) for the LOFT wide-field monitor

    DEFF Research Database (Denmark)

    Evangelista, Y.; Campana, R.; Del Monte, E.

    2012-01-01

    The Large Observatory For X-ray Timing (LOFT), selected by ESA as one of the four Cosmic Vision M3 candidate missions to undergo an assessment phase, will revolutionize the study of compact objects in our galaxy and of the brightest supermassive black holes in active galactic nuclei. The Large Area...... Detector (LAD), carrying an unprecedented effective area of 10 m^2, is complemented by a coded-mask Wide Field Monitor, in charge of monitoring a large fraction of the sky potentially accessible to the LAD, to provide the history and context for the sources observed by LAD and to trigger its observations...

  9. Wide-field-of-view phase-contrast imaging of nanostructures with a comparatively large polychromatic soft x-ray plasma source.

    Science.gov (United States)

    Gasilov, S V; Faenov, A Ya; Pikuz, T A; Fukuda, Y; Kando, M; Kawachi, T; Skobelev, I Yu; Daido, H; Kato, Y; Bulanov, S V

    2009-11-01

    Polychromatic soft x-ray plasma sources were not previously considered to be among the sources suitable for the propagation based phase contrast imaging because of their comparatively large emission-zone size. In the current work a scheme based on the combination of soft x-ray emission of multicharged ions, generated by the interaction of femtosecond laser pulses with an ultrasonic jet of gas clusters, and an LiF crystal detector was used to obtain phase-enhanced high-resolution images of micro- and nanoscale objects in a wide field of view.

  10. An automated wide-field time-gated optically sectioning fluorescence lifetime imaging multiwell plate reader for high-content analysis of protein-protein interactions

    Science.gov (United States)

    Alibhai, Dominic; Kumar, Sunil; Kelly, Douglas; Warren, Sean; Alexandrov, Yuriy; Munro, Ian; McGinty, James; Talbot, Clifford; Murray, Edward J.; Stuhmeier, Frank; Neil, Mark A. A.; Dunsby, Chris; French, Paul M. W.

    2011-03-01

    We describe an optically-sectioned FLIM multiwell plate reader that combines Nipkow microscopy with wide-field time-gated FLIM, and its application to high content analysis of FRET. The system acquires sectioned FLIM images in protein. It has been applied to study the formation of immature HIV virus like particles (VLPs) in live cells by monitoring Gag-Gag protein interactions using FLIM FRET of HIV-1 Gag transfected with CFP or YFP. VLP formation results in FRET between closely packed Gag proteins, as confirmed by our FLIM analysis that includes automatic image segmentation.

  11. Extreme cosmos

    CERN Document Server

    Gaensler, Bryan

    2011-01-01

    The universe is all about extremes. Space has a temperature 270°C below freezing. Stars die in catastrophic supernova explosions a billion times brighter than the Sun. A black hole can generate 10 million trillion volts of electricity. And hypergiants are stars 2 billion kilometres across, larger than the orbit of Jupiter. Extreme Cosmos provides a stunning new view of the way the Universe works, seen through the lens of extremes: the fastest, hottest, heaviest, brightest, oldest, densest and even the loudest. This is an astronomy book that not only offers amazing facts and figures but also re

  12. Electronics for Extreme Environments

    Science.gov (United States)

    Patel, J. U.; Cressler, J.; Li, Y.; Niu, G.

    2001-01-01

    Most of the NASA missions involve extreme environments comprising radiation and low or high temperatures. Current practice of providing friendly ambient operating environment to electronics costs considerable power and mass (for shielding). Immediate missions such as the Europa orbiter and lander and Mars landers require the electronics to perform reliably in extreme conditions during the most critical part of the mission. Some other missions planned in the future also involve substantial surface activity in terms of measurements, sample collection, penetration through ice and crust and the analysis of samples. Thus it is extremely critical to develop electronics that could reliably operate under extreme space environments. Silicon On Insulator (SOI) technology is an extremely attractive candidate for NASA's future low power and high speed electronic systems because it offers increased transconductance, decreased sub-threshold slope, reduced short channel effects, elimination of kink effect, enhanced low field mobility, and immunity from radiation induced latch-up. A common belief that semiconductor devices function better at low temperatures is generally true for bulk devices but it does not hold true for deep sub-micron SOI CMOS devices with microscopic device features of 0.25 micrometers and smaller. Various temperature sensitive device parameters and device characteristics have recently been reported in the literature. Behavior of state of the art technology devices under such conditions needs to be evaluated in order to determine possible modifications in the device design for better performance and survivability under extreme environments. Here, we present a unique approach of developing electronics for extreme environments to benefit future NASA missions as described above. This will also benefit other long transit/life time missions such as the solar sail and planetary outposts in which electronics is out open in the unshielded space at the ambient space

  13. Biology and ecology of the ``Pompeii worm'' (Alvinella pompejana Desbruyères and Laubier), a normal dweller of an extreme deep-sea environment: A synthesis of current knowledge and recent developments

    Science.gov (United States)

    Desbruyères, D.; Chevaldonné, P.; Alayse, A.-M.; Jollivet, D.; Lallier, F. H.; Jouin-Toulmond, C.; Zal, F.; Sarradin, P.-M.; Cosson, R.; Caprais, J.-C.; Arndt, C.; O'Brien, J.; Guezennec, J.; Hourdez, S.; Riso, R.; Gaill, F.; Laubier, L.; Toulmond, A.

    1998-01-01

    Alvinella pompejana, the "Pompeii worm" lives on active hydrothermal edifices at deep-sea vents of the East Pacific Rise. The physical and chemical patterns of its microhabitat were determined from temperature probe measurements, temperature time series, and on-board and shore-based chemical analyses based on discrete sampling (pH, H 2S, CO 2, CH 4, S 2O 2-3, Ca, Mg, Cu, Cd, Zn). The microhabitat is characterised by high temporal and microscale spatial variability, with temperature values in the range of 20°-45°C at the immediate periphery of tubes but reaching higher, still undetermined, values inside the tubes. The difference observed between in vitro temperature limits for the stability of biomolecules and metabolic rates, and suggested in situ conditions seems to indicate a significant protective role of biological interfaces (tubes and cuticle). Temporal instability possibly also plays an important role in the ability for these worms to colonise such an extreme habitat. The functional role of dominant epibiotic bacteria is discussed in the light of recent biochemical and molecular data: the tube-worm-bacteria system can be considered as a symbiotic entity where carbon is probably metabolised and recycled. Sulphide detoxification occurs by oxidation at the gill level and possibly at the intracellular haemoglobin level. Heavy metals, ingested or absorbed, are trapped in spherocrystals and bound to metallothionein-like proteins. Anatomical, physiological and molecular adaptations to hypoxia allow the worm to successfully colonise the chimneys. A. pompejana lives in an ephemeral environment and must reproduce and disperse accordingly. It is a gonochoric species that displays a pseucopulatory behaviour allowing transfer of sperm to female spermathecae, thus avoiding dispersion of the gametes. The size of the oocytes suggests a lecithotrophic or benthic development. The population size structure is polymodal, indicating discontinuous recruitment. Population

  14. Deep-sea fungi

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Damare, S.

    pressure of 10 MPa (73). Several species of Aspergillus showed abnonnal morphology immediately afterisola~ tion. These showed extremely long conidiophores with vesicles that were covered with long hyphae, instead of phialides or metulae or conidia... at SoC and pH 9.0 (17). In contrast, out of 22 fungi isolated from shallow \\vater, only 14% showed Iow-temperature-active protease production. The deep-sea fungi when grown under elevated pressure synthesized extracellular protease, albeit in very low...

  15. DeepSurveyCam—A Deep Ocean Optical Mapping System

    OpenAIRE

    Tom Kwasnitschka; Kevin Köser; Jan Sticklus; Marcel Rothenbeck; Tim Weiß; Emanuel Wenzlaff; Timm Schoening; Lars Triebe; Anja Steinführer; Colin Devey; Jens Greinert

    2016-01-01

    Underwater photogrammetry and in particular systematic visual surveys of the deep sea are by far less developed than similar techniques on land or in space. The main challenges are the rough conditions with extremely high pressure, the accessibility of target areas (container and ship deployment of robust sensors, then diving for hours to the ocean floor), and the limitations of localization technologies (no GPS). The absence of natural light complicates energy budget considerations for deep ...

  16. Design of 1-μm-pitch liquid crystal spatial light modulators having dielectric shield wall structure for holographic display with wide field of view

    Science.gov (United States)

    Isomae, Yoshitomo; Shibata, Yosei; Ishinabe, Takahiro; Fujikake, Hideo

    2017-04-01

    In the development of electronic holographic displays with a wide field of view, one issue is the realization of 1-μm-pitch spatial light modulators (SLMs) using liquid crystal on silicon (LCOS) techniques. We clarified that it is necessary to suppress not only the leakage of fringe electric fields from adjacent pixels but also the effect of elastic forces in the liquid crystal to achieve full-phase modulation (2 π) in individual pixels. We proposed a novel LCOS-SLM with a dielectric shield wall structure, and achieved driving of individual 1-μm-pitch pixels. We also investigated the optimum values for width and dielectric constant of the wall structure when enlarging the area that can modulate light in the pixels. These results contribute to the design of 1-μm-pitch LCOS-SLM devices for wide-viewing-angle holographic displays.

  17. Green-to-red photoconvertible fluorescent proteins: tracking cell and protein dynamics on standard wide-field mercury arc-based microscopes

    Directory of Open Access Journals (Sweden)

    Buckheit Robert W

    2010-02-01

    Full Text Available Abstract Background Green fluorescent protein (GFP and other FP fusions have been extensively utilized to track protein dynamics in living cells. Recently, development of photoactivatable, photoswitchable and photoconvertible fluorescent proteins (PAFPs has made it possible to investigate the fate of discrete subpopulations of tagged proteins. Initial limitations to their use (due to their tetrameric nature were overcome when monomeric variants, such as Dendra, mEos, and mKikGR were cloned/engineered. Results Here, we report that by closing the field diaphragm, selective, precise and irreversible green-to-red photoconversion (330-380 nm illumination of discrete subcellular protein pools was achieved on a wide-field fluorescence microscope equipped with standard DAPI, Fluorescein, and Rhodamine filter sets and mercury arc illumination within 5-10 seconds. Use of a DAPI-filter cube with long-pass emission filter (LP420 allowed the observation and control of the photoconversion process in real time. Following photoconversion, living cells were imaged for up to 5 hours often without detectable phototoxicity or photobleaching. Conclusions We demonstrate the practicability of this technique using Dendra2 and mEos2 as monomeric, photoconvertible PAFP representatives fused to proteins with low (histone H2B, medium (gap junction channel protein connexin 43, and high (α-tubulin; clathrin light chain dynamic cellular mobility as examples. Comparable efficient, irreversible green-to-red photoconversion of selected portions of cell nuclei, gap junctions, microtubules and clathrin-coated vesicles was achieved. Tracking over time allowed elucidation of the dynamic live-cycle of these subcellular structures. The advantage of this technique is that it can be performed on a standard, relatively inexpensive wide-field fluorescence microscope with mercury arc illumination. Together with previously described laser scanning confocal microscope-based photoconversion

  18. Optomechanical design concept for GMACS: a wide-field multi-object moderate resolution optical spectrograph for the Giant Magellan Telescope (GMT)

    Science.gov (United States)

    Smee, Stephen A.; Prochaska, Travis; Shectman, Stephen A.; Hammond, Randolph P.; Barkhouser, Robert H.; DePoy, D. L.; Marshall, J. L.

    2012-09-01

    We describe the conceptual optomechanical design for GMACS, a wide-field, multi-object, moderate-resolution optical spectrograph for the Giant Magellan Telescope (GMT). GMACS is a candidate first-light instrument for the GMT and will be one of several instruments housed in the Gregorian Instrument Rotator (GIR) located at the Gregorian focus. The instrument samples a 9 arcminute x 18 arcminute field of view providing two resolution modes (i.e, low resolution, R ~ 2000, and moderate resolution, R ~ 4000) over a 3700 Å to 10200 Å wavelength range. To minimize the size of the optics, four fold mirrors at the GMT focal plane redirect the full field into four individual "arms", that each comprises a double spectrograph with a red and blue channel. Hence, each arm samples a 4.5 arcminute x 9 arcminute field of view. The optical layout naturally leads to three separate optomechanical assemblies: a focal plane assembly, and two identical optics modules. The focal plane assembly contains the last element of the telescope's wide-field corrector, slit-mask, tent-mirror assembly, and slit-mask magazine. Each of the two optics modules supports two of the four instrument arms and houses the aft-optics (i.e. collimators, dichroics, gratings, and cameras). A grating exchange mechanism, and articulated gratings and cameras facilitate multiple resolution modes. In this paper we describe the details of the GMACS optomechanical design, including the requirements and considerations leading to the design, mechanism details, optics mounts, and predicted flexure performance.

  19. On the Extreme Wave Height Analysis

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Liu, Zhou

    1994-01-01

    The determination of the design wave height is usually based on the statistical analysis of long-term extreme wave height measurements. After an introduction to the procedure of the extreme wave height analysis, the paper presents new development concerning various aspects of the extreme wave...... height analysis. Finally, the paper gives a practical example based on a data set of the hindcasted wave heights for a deep water location in the Mediterranean Sea....

  20. THE 2012 HUBBLE ULTRA DEEP FIELD (UDF12): OBSERVATIONAL OVERVIEW

    Energy Technology Data Exchange (ETDEWEB)

    Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Ellis, Richard S.; Schenker, Matthew A. [Department of Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); McLure, Ross J.; Dunlop, James S.; Bowler, Rebecca A. A.; Rogers, Alexander B.; Curtis-Lake, Emma; Cirasuolo, Michele; Wild, V.; Targett, T. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Robertson, Brant E.; Schneider, Evan; Stark, Daniel P. [Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Ono, Yoshiaki; Ouchi, Masami [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa City, Chiba 277-8582 (Japan); Charlot, Stephane [UPMC-CNRS, UMR7095, Institut d' Astrophysique de Paris, F-75014, Paris (France); Furlanetto, Steven R. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)

    2013-11-01

    We present the 2012 Hubble Ultra Deep Field campaign (UDF12), a large 128 orbit Cycle 19 Hubble Space Telescope program aimed at extending previous Wide Field Camera 3 (WFC3)/IR observations of the UDF by quadrupling the exposure time in the F105W filter, imaging in an additional F140W filter, and extending the F160W exposure time by 50%, as well as adding an extremely deep parallel field with the Advanced Camera for Surveys (ACS) in the F814W filter with a total exposure time of 128 orbits. The principal scientific goal of this project is to determine whether galaxies reionized the universe; our observations are designed to provide a robust determination of the star formation density at z ∼> 8, improve measurements of the ultraviolet continuum slope at z ∼ 7-8, facilitate the construction of new samples of z ∼ 9-10 candidates, and enable the detection of sources up to z ∼ 12. For this project we committed to combining these and other WFC3/IR imaging observations of the UDF area into a single homogeneous dataset to provide the deepest near-infrared observations of the sky. In this paper we present the observational overview of the project and describe the procedures used in reducing the data as well as the final products that were produced. We present the details of several special procedures that we implemented to correct calibration issues in the data for both the WFC3/IR observations of the main UDF field and our deep 128 orbit ACS/WFC F814W parallel field image, including treatment for persistence, correction for time-variable sky backgrounds, and astrometric alignment to an accuracy of a few milliarcseconds. We release the full, combined mosaics comprising a single, unified set of mosaics of the UDF, providing the deepest near-infrared blank-field view of the universe currently achievable, reaching magnitudes as deep as AB ∼ 30 mag in the near-infrared, and yielding a legacy dataset on this field.

  1. The 2012 Hubble Ultra Deep Field (UDF12): Observational Overview

    Science.gov (United States)

    Koekemoer, Anton M.; Ellis, Richard S.; McLure, Ross J.; Dunlop, James S.; Robertson, Brant E.; Ono, Yoshiaki; Schenker, Matthew A.; Ouchi, Masami; Bowler, Rebecca A. A.; Rogers, Alexander B.; Curtis-Lake, Emma; Schneider, Evan; Charlot, Stephane; Stark, Daniel P.; Furlanetto, Steven R.; Cirasuolo, Michele; Wild, V.; Targett, T.

    2013-11-01

    We present the 2012 Hubble Ultra Deep Field campaign (UDF12), a large 128 orbit Cycle 19 Hubble Space Telescope program aimed at extending previous Wide Field Camera 3 (WFC3)/IR observations of the UDF by quadrupling the exposure time in the F105W filter, imaging in an additional F140W filter, and extending the F160W exposure time by 50%, as well as adding an extremely deep parallel field with the Advanced Camera for Surveys (ACS) in the F814W filter with a total exposure time of 128 orbits. The principal scientific goal of this project is to determine whether galaxies reionized the universe; our observations are designed to provide a robust determination of the star formation density at z >~ 8, improve measurements of the ultraviolet continuum slope at z ~ 7-8, facilitate the construction of new samples of z ~ 9-10 candidates, and enable the detection of sources up to z ~ 12. For this project we committed to combining these and other WFC3/IR imaging observations of the UDF area into a single homogeneous dataset to provide the deepest near-infrared observations of the sky. In this paper we present the observational overview of the project and describe the procedures used in reducing the data as well as the final products that were produced. We present the details of several special procedures that we implemented to correct calibration issues in the data for both the WFC3/IR observations of the main UDF field and our deep 128 orbit ACS/WFC F814W parallel field image, including treatment for persistence, correction for time-variable sky backgrounds, and astrometric alignment to an accuracy of a few milliarcseconds. We release the full, combined mosaics comprising a single, unified set of mosaics of the UDF, providing the deepest near-infrared blank-field view of the universe currently achievable, reaching magnitudes as deep as AB ~ 30 mag in the near-infrared, and yielding a legacy dataset on this field.

  2. Deep frying

    NARCIS (Netherlands)

    Koerten, van K.N.

    2016-01-01

    Deep frying is one of the most used methods in the food processing industry. Though practically any food can be fried, French fries are probably the most well-known deep fried products. The popularity of French fries stems from their unique taste and texture, a crispy outside with a mealy soft

  3. Deep learning

    CERN Document Server

    Goodfellow, Ian; Courville, Aaron

    2016-01-01

    Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language proces...

  4. WFIRST: Science from Deep Field Surveys

    Science.gov (United States)

    Koekemoer, Anton; Foley, Ryan; WFIRST Deep Field Working Group

    2018-01-01

    WFIRST will enable deep field imaging across much larger areas than those previously obtained with Hubble, opening up completely new areas of parameter space for extragalactic deep fields including cosmology, supernova and galaxy evolution science. The instantaneous field of view of the Wide Field Instrument (WFI) is about 0.3 square degrees, which would for example yield an Ultra Deep Field (UDF) reaching similar depths at visible and near-infrared wavelengths to that obtained with Hubble, over an area about 100-200 times larger, for a comparable investment in time. Moreover, wider fields on scales of 10-20 square degrees could achieve depths comparable to large HST surveys at medium depths such as GOODS and CANDELS, and would enable multi-epoch supernova science that could be matched in area to LSST Deep Drilling fields or other large survey areas. Such fields may benefit from being placed on locations in the sky that have ancillary multi-band imaging or spectroscopy from other facilities, from the ground or in space. The WFIRST Deep Fields Working Group has been examining the science considerations for various types of deep fields that may be obtained with WFIRST, and present here a summary of the various properties of different locations in the sky that may be considered for future deep fields with WFIRST.

  5. Deep web

    OpenAIRE

    Bago, Neven

    2016-01-01

    Završnom radu „Deep Web“ je cilj da se u osnovi nauči što je on te koliko je rasprostranjen. Korištenjem programa TOR pristupa se „sakrivenom“ dijelu interneta poznatom kao Deep Web. U radu je opisan proces pristupanja Deep Webu pomoću spomenutog programa. Navodi sve njegove mogućnosti i prednosti nad ostalim web pretraživačima. Istražena je valuta BitCoin koja se koristi u online transakcijama zbog mogućnosti kojom pruža anonimnost. Cilj ovog rada je pokazati do koje mjere ...

  6. Retinal Astrocytes and GABAergic Wide-Field Amacrine Cells Express PDGFRα: Connection to Retinal Ganglion Cell Neuroprotection by PDGF-AA.

    Science.gov (United States)

    Takahama, Shokichi; Adetunji, Modupe O; Zhao, Tantai; Chen, Shan; Li, Wei; Tomarev, Stanislav I

    2017-09-01

    Our previous experiments demonstrated that intravitreal injection of platelet-derived growth factor-AA (PDGF-AA) provides retinal ganglion cell (RGC) neuroprotection in a rodent model of glaucoma. Here we used PDGFRα-enhanced green fluorescent protein (EGFP) mice to identify retinal cells that may be essential for RGC protection by PDGF-AA. PDGFRα-EGFP mice expressing nuclear-targeted EGFP under the control of the PDGFRα promoter were used. Localization of PDGFRα in the neural retina was investigated by confocal imaging of EGFP fluorescence and immunofluorescent labeling with a panel of antibodies recognizing different retinal cell types. Primary cultures of mouse RGCs were produced by immunopanning. Neurobiotin injection of amacrine cells in a flat-mounted retina was used for the identification of EGFP-positive amacrine cells in the inner nuclear layer. In the mouse neural retina, PDGFRα was preferentially localized in the ganglion cell and inner nuclear layers. Immunostaining of the retina demonstrated that astrocytes in the ganglion cell layer and a subpopulation of amacrine cells in the inner nuclear layer express PDGFRα, whereas RGCs (in vivo or in vitro) did not. PDGFRα-positive amacrine cells are likely to be Type 45 gamma-aminobutyric acidergic (GABAergic) wide-field amacrine cells. These data indicate that the neuroprotective effect of PDGF-AA in a rodent model of glaucoma could be mediated by astrocytes and/or a subpopulation of amacrine cells. We suggest that after intravitreal injection of PDGF-AA, these cells secrete factors protecting RGCs.

  7. Challenges and advantages in wide-field optical coherence tomography angiography imaging of the human retinal and choroidal vasculature at 1.7-MHz A-scan rate

    Science.gov (United States)

    Poddar, Raju; Migacz, Justin V.; Schwartz, Daniel M.; Werner, John S.; Gorczynska, Iwona

    2017-10-01

    We present noninvasive, three-dimensional, depth-resolved imaging of human retinal and choroidal blood circulation with a swept-source optical coherence tomography (OCT) system at 1065-nm center wavelength. Motion contrast OCT imaging was performed with the phase-variance OCT angiography method. A Fourier-domain mode-locked light source was used to enable an imaging rate of 1.7 MHz. We experimentally demonstrate the challenges and advantages of wide-field OCT angiography (OCTA). In the discussion, we consider acquisition time, scanning area, scanning density, and their influence on visualization of selected features of the retinal and choroidal vascular networks. The OCTA imaging was performed with a field of view of 16 deg (5 mm×5 mm) and 30 deg (9 mm×9 mm). Data were presented in en face projections generated from single volumes and in en face projection mosaics generated from up to 4 datasets. OCTA imaging at 1.7 MHz A-scan rate was compared with results obtained from a commercial OCTA instrument and with conventional ophthalmic diagnostic methods: fundus photography, fluorescein, and indocyanine green angiography. Comparison of images obtained from all methods is demonstrated using the same eye of a healthy volunteer. For example, imaging of retinal pathology is presented in three cases of advanced age-related macular degeneration.

  8. Evaluation of Visunex Medical's PanoCam(TM) LT and PanoCam(TM) Pro wide-field imaging systems for the screening of ROP in newborn infants.

    Science.gov (United States)

    Wood, Edward H; Moshfeghi, Andrew A; Nudleman, Eric D; Moshfeghi, Darius M

    2016-08-01

    Retinopathy of Prematurity (ROP) is a leading cause of childhood blindness. The incidence of ROP is rising, placing greater demands on the healthcare providers that serve these patients and their families. Telemedicine remote digital fundus imaging (TM-RDFI) plays a pivotal role in ROP management, and has allowed for the expansion of ROP care into previously underserved areas. A broad literature review through the pubmed index was undertaken with the goal of summarizing the current state of ROP and guidelines for its screening . Furthermore, all currently used telemedicine remote digital fundus imaging devices were analyzed both via the literature and the companies' websites/brochures. Finally, the PanoCam LT™ and PanoCam™ Pro created by Visunex Medical were analyzed via the company website/brochures. Expert commentary: The PanoCam LT™ and PanoCam™ Pro have recently been approved for use within the USA and CE marked for international commercialization in European Union and other countries requiring CE mark. These wide-field imaging systems have the intended use of ophthalmic imaging of all newborn babies and meet the requirements for ROP screening, thereby serving as competition within the ROP screening market previously dominated by one camera imaging system.

  9. Reflection, phase and en- face sectional imaging of scattering objects using quasi-single-shot wide-field optical coherence tomography

    Science.gov (United States)

    Anna, Tulsi; Kimura, Satoshi; Mehta, Dalip Singh; Sato, Manabu

    2015-10-01

    We report a quasi-single-shot wide-field optical coherence tomography system that enables to measure the reflection, phase and en- face OCT images from the same setup using the glass jig. The jig consisting of a wedge glass substrate and a glue dot is contacted to the tissue surfaces, and the data within glue dot is used to reduce the phase noise of the interference signal. The reconstructed image size of the object was 4.0 mm × 4.3 mm. The standard deviation (STD) of the phase variation was minimized by 54 % and obtained to be 0.027 rad for the poke tissue. The corresponding STD in optical path length change was measured to be 1.4 nm. The refractive index of the water and poke tissue at the surface is also evaluated as 1.36 and 1.39, respectively, using reflection intensity images. Further, the en- face sectional images of the tissue sample are also measured.

  10. 3D wide field-of-view Gabor-domain optical coherence microscopy advancing real-time in-vivo imaging and metrology

    Science.gov (United States)

    Canavesi, Cristina; Cogliati, Andrea; Hayes, Adam; Tankam, Patrice; Santhanam, Anand; Rolland, Jannick P.

    2017-02-01

    Real-time volumetric high-definition wide-field-of-view in-vivo cellular imaging requires micron-scale resolution in 3D. Compactness of the handheld device and distortion-free images with cellular resolution are also critically required for onsite use in clinical applications. By integrating a custom liquid lens-based microscope and a dual-axis MEMS scanner in a compact handheld probe, Gabor-domain optical coherence microscopy (GD-OCM) breaks the lateral resolution limit of optical coherence tomography through depth, overcoming the tradeoff between numerical aperture and depth of focus, enabling advances in biotechnology. Furthermore, distortion-free imaging with no post-processing is achieved with a compact, lightweight handheld MEMS scanner that obtained a 12-fold reduction in volume and 17-fold reduction in weight over a previous dual-mirror galvanometer-based scanner. Approaching the holy grail of medical imaging - noninvasive real-time imaging with histologic resolution - GD-OCM demonstrates invariant resolution of 2 μm throughout a volume of 1 x 1 x 0.6 mm3, acquired and visualized in less than 2 minutes with parallel processing on graphics processing units. Results on the metrology of manufactured materials and imaging of human tissue with GD-OCM are presented.

  11. Noncontact and Wide-Field Characterization of the Absorption and Scattering Properties of Apple Fruit Using Spatial-Frequency Domain Imaging

    Science.gov (United States)

    Hu, Dong; Fu, Xiaping; He, Xueming; Ying, Yibin

    2016-12-01

    Spatial-frequency domain imaging (SFDI), as a noncontact, low-cost and wide-field optical imaging technique, offers great potential for agro-product safety and quality assessment through optical absorption (μa) and scattering (μ) property measurements. In this study, a laboratory-based SFDI system was constructed and developed for optical property measurement of fruits and vegetables. The system utilized a digital light projector to generate structured, periodic light patterns and illuminate test samples. The diffuse reflected light was captured by a charge coupled device (CCD) camera with the resolution of 1280 × 960 pixels. Three wavelengths (460, 527, and 630 nm) were selected for image acquisition using bandpass filters in the system. The μa and μ were calculated in a region of interest (ROI, 200 × 300 pixels) via nonlinear least-square fitting. Performance of the system was demonstrated through optical property measurement of ‘Redstar’ apples. Results showed that the system was able to acquire spatial-frequency domain images for demodulation and calculation of the μa and μ. The calculated μa of apple tissue experiencing internal browning (IB) were much higher than healthy apple tissue, indicating that the SFDI technique had potential for IB tissue characterization.

  12. A Wide-Field Fluorescence Microscope Extension for Ultrafast Screening of One-Bead One-Compound Libraries Using a Spectral Image Subtraction Approach.

    Science.gov (United States)

    Heusermann, Wolf; Ludin, Beat; Pham, Nhan T; Auer, Manfred; Weidemann, Thomas; Hintersteiner, Martin

    2016-05-09

    The increasing involvement of academic institutions and biotech companies in drug discovery calls for cost-effective methods to identify new bioactive molecules. Affinity-based on-bead screening of combinatorial one-bead one-compound libraries combines a split-mix synthesis design with a simple protein binding assay operating directly at the bead matrix. However, one bottleneck for academic scale on-bead screening is the unavailability of a cheap, automated, and robust screening platform that still provides a quantitative signal related to the amount of target protein binding to individual beads for hit bead ranking. Wide-field fluorescence microscopy has long been considered unsuitable due to significant broad spectrum autofluorescence of the library beads in conjunction with low detection sensitivity. Herein, we demonstrate how such a standard microscope equipped with LED-based excitation and a modern CMOS camera can be successfully used for selecting hit beads. We show that the autofluorescence issue can be overcome by an optical image subtraction approach that yields excellent signal-to-noise ratios for the detection of bead-associated target proteins. A polymer capillary attached to a semiautomated bead-picking device allows the operator to efficiently isolate individual hit beads in less than 20 s. The system can be used for ultrafast screening of >200,000 bead-bound compounds in 1.5 h, thereby making high-throughput screening accessible to a wider group within the scientific community.

  13. Addressing Thermal Model Run Time Concerns of the Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA)

    Science.gov (United States)

    Peabody, Hume; Guerrero, Sergio; Hawk, John; Rodriguez, Juan; McDonald, Carson; Jackson, Cliff

    2016-01-01

    The Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA) utilizes an existing 2.4 m diameter Hubble sized telescope donated from elsewhere in the federal government for near-infrared sky surveys and Exoplanet searches to answer crucial questions about the universe and dark energy. The WFIRST design continues to increase in maturity, detail, and complexity with each design cycle leading to a Mission Concept Review and entrance to the Mission Formulation Phase. Each cycle has required a Structural-Thermal-Optical-Performance (STOP) analysis to ensure the design can meet the stringent pointing and stability requirements. As such, the models have also grown in size and complexity leading to increased model run time. This paper addresses efforts to reduce the run time while still maintaining sufficient accuracy for STOP analyses. A technique was developed to identify slews between observing orientations that were sufficiently different to warrant recalculation of the environmental fluxes to reduce the total number of radiation calculation points. The inclusion of a cryocooler fluid loop in the model also forced smaller time-steps than desired, which greatly increases the overall run time. The analysis of this fluid model required mitigation to drive the run time down by solving portions of the model at different time scales. Lastly, investigations were made into the impact of the removal of small radiation couplings on run time and accuracy. Use of these techniques allowed the models to produce meaningful results within reasonable run times to meet project schedule deadlines.

  14. Self-Management of Patient Body Position, Pose, and Motion Using Wide-Field, Real-Time Optical Measurement Feedback: Results of a Volunteer Study

    Energy Technology Data Exchange (ETDEWEB)

    Parkhurst, James M. [Developing Technologies, Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester (United Kingdom); Price, Gareth J., E-mail: gareth.price@christie.nhs.uk [Developing Technologies, Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester (United Kingdom); Faculty of Medical and Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester (United Kingdom); Sharrock, Phil J. [Developing Technologies, Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester (United Kingdom); Jackson, Andrew S.N. [Clinical Oncology, Southampton University Hospitals Foundation Trust, Southampton (United Kingdom); Stratford, Julie [Department of Radiotherapy, The Christie NHS Foundation Trust, Manchester (United Kingdom); Moore, Christopher J. [Developing Technologies, Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester (United Kingdom); Faculty of Medical and Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester (United Kingdom)

    2013-12-01

    Purpose: We present the results of a clinical feasibility study, performed in 10 healthy volunteers undergoing a simulated treatment over 3 sessions, to investigate the use of a wide-field visual feedback technique intended to help patients control their pose while reducing motion during radiation therapy treatment. Methods and Materials: An optical surface sensor is used to capture wide-area measurements of a subject's body surface with visualizations of these data displayed back to them in real time. In this study we hypothesize that this active feedback mechanism will enable patients to control their motion and help them maintain their setup pose and position. A capability hierarchy of 3 different level-of-detail abstractions of the measured surface data is systematically compared. Results: Use of the device enabled volunteers to increase their conformance to a reference surface, as measured by decreased variability across their body surfaces. The use of visual feedback also enabled volunteers to reduce their respiratory motion amplitude to 1.7 ± 0.6 mm compared with 2.7 ± 1.4 mm without visual feedback. Conclusions: The use of live feedback of their optically measured body surfaces enabled a set of volunteers to better manage their pose and motion when compared with free breathing. The method is suitable to be taken forward to patient studies.

  15. Reconsidering the advantages of the three-dimensional representation of the interferometric transform for imaging with non-coplanar baselines and wide fields of view

    Science.gov (United States)

    Smith, D. M. P.; Young, A.; Davidson, D. B.

    2017-07-01

    Radio telescopes with baselines that span thousands of kilometres and with fields of view that span tens of degrees have been recently deployed, such as the Low Frequency Array, and are currently being developed, such as the Square Kilometre Array. Additionally, there are proposals for space-based instruments with all-sky imaging capabilities, such as the Orbiting Low Frequency Array. Such telescopes produce observations with three-dimensional visibility distributions and curved image domains. In most work to date, the visibility distribution has been converted to a planar form to compute the brightness map using a two-dimensional Fourier transform. The celestial sphere is faceted in order to counter pixel distortion at wide angles, with each such facet requiring a unique planar form of the visibility distribution. Under the above conditions, the computational and storage complexities of this approach can become excessive. On the other hand, when using the direct Fourier transform approach, which maintains the three-dimensional shapes of the visibility distribution and celestial sphere, the non-coplanar visibility component requires no special attention. Furthermore, as the celestial samples are placed directly on the curved surface of the celestial sphere, pixel distortion at wide angles is avoided. In this paper, a number of examples illustrate that under these conditions (very long baselines and very wide fields of view) the costs of the direct Fourier transform may be comparable to (or even lower than) methods that utilise the two-dimensional fast Fourier transform.

  16. Wide-field color imaging of scatter-based tissue contrast using both high spatial frequency illumination and cross-polarization gating.

    Science.gov (United States)

    Carlson, Mackenzie L; McClatchy, David M; Gunn, Jason R; Elliott, Jonathan T; Paulsen, Keith D; Kanick, Stephen C; Pogue, Brian W

    2017-08-11

    This study characterizes the scatter-specific tissue contrast that can be obtained by high spatial frequency (HSF) domain imaging and cross-polarization (CP) imaging, using a standard color imaging system, and how combining them may be beneficial. Both HSF and CP approaches are known to modulate the sensitivity of epi-illumination reflectance images between diffuse multiply scattered and superficially backscattered photons, providing enhanced contrast from microstructure and composition than what is achieved by standard wide-field imaging. Measurements in tissue-simulating optical phantoms show that CP imaging returns localized assessments of both scattering and absorption effects, while HSF has uniquely specific sensitivity to scatter-only contrast, with a strong suppression of visible contrast from blood. The combination of CP and HSF imaging provided an expanded sensitivity to scatter compared with CP imaging, while rejecting specular reflections detected by HSF imaging. ex vivo imaging of an atlas of dissected rodent organs/tissues demonstrated the scatter-based contrast achieved with HSF, CP and HSF-CP imaging, with the white light spectral signal returned by each approach translated to a color image for intuitive encoding of scatter-based contrast within images of tissue. The results suggest that visible CP-HSF imaging could have the potential to aid diagnostic imaging of lesions in skin or mucosal tissues and organs, where just CP is currently the standard practice imaging modality. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The Fifteen-Year Attitude History of the Wide Field Planetary Camera 2 Radiator and Collection Efficiencies for Micrometeoroids and Orbital Debris

    Science.gov (United States)

    Anz-Meador, Phillip D.; Liou, Jer-Chyi; Cooke, William J.; Koehler, H.

    2010-01-01

    An examination of the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC-2) radiator assembly was conducted at NASA Goddard Space Flight Center (GSFC) during the summer of 2009. Immediately apparent was a distinct biasing of the largest 45 impact features towards one side of the radiator, in contrast to an approximately uniform distribution of smaller impacts. Such a distribution may be a consequence of the HST s attitude history and pointing requirements for the cold radiator, or of environmental effects, such as an anisotropic distribution of the responsible population in that size regime. Understanding the size-dependent spatial distribution of impact features is essential to the general analysis of these features. We have obtained from GSFC a 15 minute temporal resolution record of the state vector (Earth Centered Inertial position and velocity) and HST attitude, consisting of the orientation of the velocity and HST-sun vectors in HST body coordinates. This paper reviews the actual state vector and attitude history of the radiator in the context of the randomly tumbling plate assumption and assesses the statistical likelihood (or collection efficiency) of the radiator for the micrometeoroid and orbital debris environments. The NASA Marshall Space Flight Center s Meteoroid Environment Model is used to assess the micrometeoroid component. The NASA Orbital Debris Engineering Model (ORDEM) is used to model the orbital debris component. Modeling results are compared with observations of the impact feature spatial distribution, and the relative contribution of each environmental component are examined in detail.

  18. Simulator sickness when performing gaze shifts within a wide field of view optic flow environment: preliminary evidence for using virtual reality in vestibular rehabilitation

    Directory of Open Access Journals (Sweden)

    Whitney Susan L

    2004-12-01

    Full Text Available Abstract Background Wide field of view virtual environments offer some unique features that may be beneficial for use in vestibular rehabilitation. For one, optic flow information extracted from the periphery may be critical for recalibrating the sensory processes used by people with vestibular disorders. However, wide FOV devices also have been found to result in greater simulator sickness. Before a wide FOV device can be used in a clinical setting, its safety must be demonstrated. Methods Symptoms of simulator sickness were recorded by 9 healthy adult subjects after they performed gaze shifting tasks to locate targets superimposed on an optic flow background. Subjects performed 8 trials of gaze shifting on each of the six separate visits. Results The incidence of symptoms of simulator sickness while subjects performed gaze shifts in an optic flow environment was lower than the average reported incidence for flight simulators. The incidence was greater during the first visit compared with subsequent visits. Furthermore, the incidence showed an increasing trend over the 8 trials. Conclusion The performance of head unrestrained gaze shifts in a wide FOV optic flow environment is tolerated well by healthy subjects. This finding provides rationale for testing these environments in people with vestibular disorders, and supports the concept of using wide FOV virtual reality for vestibular rehabilitation.

  19. Simulator sickness when performing gaze shifts within a wide field of view optic flow environment: preliminary evidence for using virtual reality in vestibular rehabilitation.

    Science.gov (United States)

    Sparto, Patrick J; Whitney, Susan L; Hodges, Larry F; Furman, Joseph M; Redfern, Mark S

    2004-12-23

    BACKGROUND: Wide field of view virtual environments offer some unique features that may be beneficial for use in vestibular rehabilitation. For one, optic flow information extracted from the periphery may be critical for recalibrating the sensory processes used by people with vestibular disorders. However, wide FOV devices also have been found to result in greater simulator sickness. Before a wide FOV device can be used in a clinical setting, its safety must be demonstrated. METHODS: Symptoms of simulator sickness were recorded by 9 healthy adult subjects after they performed gaze shifting tasks to locate targets superimposed on an optic flow background. Subjects performed 8 trials of gaze shifting on each of the six separate visits. RESULTS: The incidence of symptoms of simulator sickness while subjects performed gaze shifts in an optic flow environment was lower than the average reported incidence for flight simulators. The incidence was greater during the first visit compared with subsequent visits. Furthermore, the incidence showed an increasing trend over the 8 trials. CONCLUSION: The performance of head unrestrained gaze shifts in a wide FOV optic flow environment is tolerated well by healthy subjects. This finding provides rationale for testing these environments in people with vestibular disorders, and supports the concept of using wide FOV virtual reality for vestibular rehabilitation.

  20. THE FLAT TRANSMISSION SPECTRUM OF THE SUPER-EARTH GJ1214b FROM WIDE FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Berta, Zachory K.; Charbonneau, David; Desert, Jean-Michel; Irwin, Jonathan [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Miller-Ricci Kempton, Eliza; Fortney, Jonathan J.; Nutzman, Philip [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); McCullough, Peter R. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Burke, Christopher J. [SETI Institute/NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States); Homeier, Derek, E-mail: zberta@cfa.harvard.edu [Centre de Recherche Astrophysique de Lyon, UMR 5574, CNRS, Universite de Lyon, Ecole Normale Superieure de Lyon, F-69364 Lyon Cedex 07 (France)

    2012-03-01

    Capitalizing on the observational advantage offered by its tiny M dwarf host, we present Hubble Space Telescope/Wide Field Camera 3 (WFC3) grism measurements of the transmission spectrum of the super-Earth exoplanet GJ1214b. These are the first published WFC3 observations of a transiting exoplanet atmosphere. After correcting for a ramp-like instrumental systematic, we achieve nearly photon-limited precision in these observations, finding the transmission spectrum of GJ1214b to be flat between 1.1 and 1.7 {mu}m. Inconsistent with a cloud-free solar composition atmosphere at 8.2{sigma}, the measured achromatic transit depth most likely implies a large mean molecular weight for GJ1214b's outer envelope. A dense atmosphere rules out bulk compositions for GJ1214b that explain its large radius by the presence of a very low density gas layer surrounding the planet. High-altitude clouds can alternatively explain the flat transmission spectrum, but they would need to be optically thick up to 10 mbar or consist of particles with a range of sizes approaching 1 {mu}m in diameter.

  1. Globular Cluster Photometry with the Hubble Space Telescope. VII. Color Gradients and Blue Stragglers in the Central Region of M30 from Wide Field Planetary Camera 2 Observations

    Science.gov (United States)

    Guhathakurta, Puragra; Webster, Zodiac T.; Yanny, Brian; Schneider, Donald P.; Bahcall, John N.

    1998-10-01

    We present F555W (V), F439W (B), and F336W (U) photometry of 9507 stars in the central 2' of the dense, post-core-collapse cluster M30 (NGC 7099) derived from Hubble Space Telescope Wide Field Planetary Camera 2 images. These data are used to study the mix of stellar populations in the central region of the cluster. Forty-eight blue straggler stars are identified; they are found to be strongly concentrated toward the cluster center. The specific frequency of blue stragglers, F_BSS = N(BSS)/N(V responsible for about half of the observed color gradient; the rest of the gradient is caused by the relative underabundance of faint red main-sequence stars near the cluster center (presumably a result of mass segregation). The luminosity function of M30's evolved stars does not match the luminosity function shape derived from standard stellar evolutionary models: the ratio of the number of bright giants to the number of turnoff stars in the cluster is 30% higher than predicted by the model (3.8 sigma effect), roughly independent of red giant brightness over the range M_V = -2 to +2. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. Lick Observatory Bulletin No. 1377.

  2. [Deep vein thrombosis prophylaxis.

    Science.gov (United States)

    Sandoval-Chagoya, Gloria Alejandra; Laniado-Laborín, Rafael

    2013-01-01

    Background: despite the proven effectiveness of preventive therapy for deep vein thrombosis, a significant proportion of patients at risk for thromboembolism do not receive prophylaxis during hospitalization. Our objective was to determine the adherence to thrombosis prophylaxis guidelines in a general hospital as a quality control strategy. Methods: a random audit of clinical charts was conducted at the Tijuana General Hospital, Baja California, Mexico, to determine the degree of adherence to deep vein thrombosis prophylaxis guidelines. The instrument used was the Caprini's checklist for thrombosis risk assessment in adult patients. Results: the sample included 300 patient charts; 182 (60.7 %) were surgical patients and 118 were medical patients. Forty six patients (15.3 %) received deep vein thrombosis pharmacologic prophylaxis; 27.1 % of medical patients received deep vein thrombosis prophylaxis versus 8.3 % of surgical patients (p < 0.0001). Conclusions: our results show that adherence to DVT prophylaxis at our hospital is extremely low. Only 15.3 % of our patients at risk received treatment, and even patients with very high risk received treatment in less than 25 % of the cases. We have implemented strategies to increase compliance with clinical guidelines.

  3. EXTREME EMISSION-LINE GALAXIES IN CANDELS: BROADBAND-SELECTED, STARBURSTING DWARF GALAXIES AT z > 1

    Energy Technology Data Exchange (ETDEWEB)

    Van der Wel, A.; Rix, H.-W.; Jahnke, K. [Max-Planck Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Straughn, A. N. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Finkelstein, S. L.; Salmon, B. W. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Koekemoer, A. M.; Ferguson, H. C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Weiner, B. J. [Steward Observatory, 933 N. Cherry St., University of Arizona, Tucson, AZ 85721 (United States); Wuyts, S. [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Bell, E. F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Faber, S. M.; Trump, J. R.; Koo, D. C. [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Scarlata, C. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church St. S.E. Minneapolis, MN 55455 (United States); Hathi, N. P. [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States); Dunlop, J. S. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Newman, J. A. [Department of Physics and Astronomy, University of Pittsburgh, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); Dickinson, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); De Mello, D. F., E-mail: vdwel@mpia.de [Department of Physics, The Catholic University of America, Washington, DC 20064 (United States); and others

    2011-12-01

    We identify an abundant population of extreme emission-line galaxies (EELGs) at redshift z {approx} 1.7 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). Sixty-nine EELG candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared broadband magnitudes. Supported by spectroscopic confirmation of strong [O III] emission lines-with rest-frame equivalent widths {approx}1000 A-in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are galaxies with {approx}10{sup 8} M{sub Sun} in stellar mass, undergoing an enormous starburst phase with M{sub *}/ M-dot{sub *} of only {approx}15 Myr. These bursts may cause outflows that are strong enough to produce cored dark matter profiles in low-mass galaxies. The individual star formation rates and the comoving number density (3.7 Multiplication-Sign 10{sup -4} Mpc{sup -3}) can produce in {approx}4 Gyr much of the stellar mass density that is presently contained in 10{sup 8}-10{sup 9} M{sub Sun} dwarf galaxies. Therefore, our observations provide a strong indication that many or even most of the stars in present-day dwarf galaxies formed in strong, short-lived bursts, mostly at z > 1.

  4. Deep Hubble Space Telescope imaging of Sextans A. II. Cepheids and distance

    NARCIS (Netherlands)

    Dolphin, AE; Saha, A; Skillman, ED; Dohm-Palmer, RC; Tolstoy, E; Cole, AA; Gallagher, JS; Hoessel, JG; Mateo, M

    We have identified 82 short-period variable stars in Sextans A from deep Wide Field Planetary Camera 2 observations. All the periodic variables appear to be short-period Cepheids, with periods as small as 0.8 days for fundamental mode Cepheids and 0.5 days for first-overtone Cepheids. These objects

  5. Flight performance of an advanced CZT imaging detector in a balloon-borne wide-field hard X-ray telescope—ProtoEXIST1

    Science.gov (United States)

    Hong, J.; Allen, B.; Grindlay, J.; Barthelemy, S.; Baker, R.; Garson, A.; Krawczynski, H.; Apple, J.; Cleveland, W. H.

    2011-10-01

    We successfully carried out the first high-altitude balloon flight of a wide-field hard X-ray coded-aperture telescope ProtoEXIST1, which was launched from the Columbia Scientific Balloon Facility at Ft. Sumner, New Mexico on October 9, 2009. ProtoEXIST1 is the first implementation of an advanced CdZnTe (CZT) imaging detector in our ongoing program to establish the technology required for next generation wide-field hard X-ray telescopes such as the High Energy Telescope (HET) in the Energetic X-ray Imaging Survey Telescope (EXIST). The CZT detector plane in ProtoEXIST1 consists of an 8×8 array of closely tiled 2 cm×2 cm×0.5 cm thick pixellated CZT crystals, each with 8×8 pixels, mounted on a set of readout electronics boards and covering a 256 cm2 active area with 2.5 mm pixels. A tungsten mask, mounted at 90 cm above the detector provides shadowgrams of X-ray sources in the 30-600 keV band for imaging, allowing a fully coded field of view of 9°×9° (and 19°×19° for 50% coding fraction) with an angular resolution of 20‧. In order to reduce the background radiation, the detector is surrounded by semi-graded (Pb/Sn/Cu) passive shields on the four sides all the way to the mask. On the back side, a 26 cm×26 cm×2 cm CsI(Na) active shield provides signals to tag charged particle induced events as well as ≳100keV background photons from below. The flight duration was only about 7.5 h due to strong winds (60 knots) at float altitude (38-39 km). Throughout the flight, the CZT detector performed excellently. The telescope observed Cyg X-1, a bright black hole binary system, for ˜1h at the end of the flight. Despite a few problems with the pointing and aspect systems that caused the telescope to track about 6.4° off the target, the analysis of the Cyg X-1 data revealed an X-ray source at 7.2σ in the 30-100 keV energy band at the expected location from the optical images taken by the onboard daytime star camera. The success of this first flight is very

  6. An Optically Faint Quasar Survey at z ˜ 5 in the CFHTLS Wide Field: Estimates of the Black Hole Masses and Eddington Ratios

    Science.gov (United States)

    Ikeda, H.; Nagao, T.; Matsuoka, K.; Kawakatu, N.; Kajisawa, M.; Akiyama, M.; Miyaji, T.; Morokuma, T.

    2017-09-01

    We present the result of our spectroscopic follow-up observation for faint quasar candidates at z ˜ 5 in part of the Canada-France-Hawaii Telescope Legacy Survey wide field. We select nine photometric candidates and identify three z ˜ 5 faint quasars, one z ˜ 4 faint quasar, and a late-type star. Since two faint quasar spectra show the C IV emission line without suffering from a heavy atmospheric absorption, we estimate their black hole masses ({M}{BH}) and Eddington ratios (L/{L}{Edd}). The inferred {log}{M}{BH} are 9.04 ± 0.14 and 8.53 ± 0.20, respectively. In addition, the inferred {log}(L/{L}{Edd}) are -1.00 ± 0.15 and -0.42 ± 0.22, respectively. If we adopt that L/{L}{Edd}={constant} {or}\\propto {(1+z)}2, the seed black hole masses ({M}{seed}) of our z ˜ 5 faint quasars are expected to be > {10}5 {M}⊙ in most cases. We also compare the observational results with a mass accretion model, where angular momentum is lost due to supernova explosions. Accordingly, {M}{BH} of the z ˜ 5 faint quasars in our sample can be explained even if {M}{seed} is ˜ {10}3 {M}⊙ . Since z ˜ 6 luminous qusars and our z ˜ 5 faint quasars are not on the same evolutionary track, z ˜ 6 luminous quasars and our z ˜ 5 quasars are not the same populations but different populations, due to the difference of a period of the mass supply from host galaxies. Furthermore, we confirm that one can explain {M}{BH} of z ˜ 6 luminous quasars and our z ˜ 5 faint quasars even if their seed black holes are formed at z ˜ 7.

  7. Surgical feasibility and biocompatibility of wide-field dual-array suprachoroidal-transretinal stimulation prosthesis in middle-sized animals.

    Science.gov (United States)

    Lohmann, Tibor Karl; Kanda, Hiroyuki; Morimoto, Takeshi; Endo, Takao; Miyoshi, Tomomitsu; Nishida, Kentaro; Kamei, Motohiro; Walter, Peter; Fujikado, Takashi

    2016-04-01

    To investigate the safety and efficacy of a newly-developed wide-field dual-array suprachoroidal-transretinal stimulation (STS) prosthesis in middle-sized animals. The prosthesis consisted of two arrays with 50 to 74 electrodes. To test the feasibility of implanting the prosthesis and its efficacy, the prosthesis was implanted for 14 days into two rabbits. Optical coherence tomography (OCT) and ophthalmoscopy were performed 7 and 14 days after the implantation. Then the rabbits were euthanized, eyes were enucleated, and the posterior segment of the eye was examined histologically. In a second experiment, the arrays were implanted into two cats, and their ability to elicit neural responses was determined by electrically evoked potentials (EEPs) at the chiasm and by optical imaging of the retina. All arrays were successfully implanted, and no major complications occurred during the surgery or during the 2-week postoperative period. Neither OCT nor ophthalmoscopy showed any major complications or instability of the arrays. Histological evaluations showed only mild cellular infiltration and overall good retinal preservation. Stimulation of the retina by the arrays evoked EEPs recorded from the chiasm. Retinal imaging showed that the electrical pulses from the arrays altered the retinal images indicating an activation of retinal neurons. The thresholds were as low as 100 μA for a chiasm response and 300 μA for the retinal imaging. Implantation of a newly-developed dual-array STS prosthesis for 2 weeks in rabbits was feasible surgically, and safe. The results of retinal imaging showed that the dual-array system was able to activate retinal neurons. We conclude that the dual-array design can be implanted without complication and is able to activate retinal neurons and optic nerve axons.

  8. A Wide-field Study of the z 0.8 Cluster RX J0152.7-1357: The Role of Environment in Galaxy Evolution

    Science.gov (United States)

    Patel, Shannon; Kelson, D. D.; Holden, B. P.; Illingworth, G. D.; Franx, M.; van der Wel, A.; Ford, H.

    2009-01-01

    We study the influence of local environment on the formation and evolution of galaxies in the z 0.8 galaxy cluster RX J0152.7-1357 (RXJ0152-13) and its outskirts. Simulations show that massive clusters like RXJ0152-13 will grow in mass by a factor of 2-3 by z=0 through accretion of infalling galaxies and groups of galaxies. Our goal is to understand the transformation process that changes these infalling galaxies into red, early-type cluster members. We used a low-dispersion prism in the IMACS spectrograph at Magellan to obtain low-resolution spectroscopy for large numbers of galaxies over a wide field (D 30') in order to identify members in the vicinity of the cluster. With a mass limited sample (M>4x1010 MSun), we examined the rest-frame colors of galaxies as a function of local projected galaxy density. We found that the high-density regions in the core of the cluster and in the infalling groups support a high fraction of red galaxies compared to the lower density regions, as others have found at lower redshift. Intermediate density regions also revealed an elevated fraction of red galaxies. We also studied the star formation rates (SFRs) of members using Spitzer MIPS 24µm flux as a tracer. Our initial results show a lack of star-forming galaxies in the core of the cluster and in the high-density regions of the groups in the outskirts, which is consistent with their red colors discussed above. These results suggest that many future cluster members are transformed into passively evolving, red, early-types in infalling groups and in the surrounding filamentary structure of the cluster.

  9. Low-frequency wide-field fluorescence lifetime imaging using a high-power near-infrared light-emitting diode light source.

    Science.gov (United States)

    Gioux, Sylvain; Lomnes, Stephen J; Choi, Hak Soo; Frangioni, John V

    2010-01-01

    Fluorescence lifetime imaging (FLi) could potentially improve exogenous near-infrared (NIR) fluorescence imaging, because it offers the capability of discriminating a signal of interest from background, provides real-time monitoring of a chemical environment, and permits the use of several different fluorescent dyes having the same emission wavelength. We present a high-power, LED-based, NIR light source for the clinical translation of wide-field (larger than 5 cm in diameter) FLi at frequencies up to 35 MHz. Lifetime imaging of indocyanine green (ICG), IRDye 800-CW, and 3,3(')-diethylthiatricarbocyanine iodide (DTTCI) was performed over a large field of view (10 cm by 7.5 cm) using the LED light source. For comparison, a laser diode light source was employed as a gold standard. Experiments were performed both on the bench by diluting the fluorescent dyes in various chemical environments in Eppendorf tubes, and in vivo by injecting the fluorescent dyes mixed in Matrigel subcutaneously into CD-1 mice. Last, measured fluorescence lifetimes obtained using the LED and the laser diode sources were compared with those obtained using a state-of-the-art time-domain imaging system and with those previously described in the literature. On average, lifetime values obtained using the LED and the laser diode light sources were consistent, exhibiting a mean difference of 3% from the expected values and a coefficient of variation of 12%. Taken together, our study offers an alternative to laser diodes for clinical translation of FLi and explores the use of relatively low frequency modulation for in vivo imaging.

  10. Microneedles rollers as a potential device to increase ALA diffusion and PpIX production: evaluations by wide-field fluorescence imaging and fluorescence spectroscopy

    Science.gov (United States)

    Gracielli Sousa, R. Phamilla; de Menezes, Priscila F. C.; Fujita, Alessandra K. L.; Requena, Michelle B.; Govone, Angelo Biassi; Escobar, André; de Nardi, Andrigo B.; Kurachi, Cristina; Bagnato, Vanderlei Salvador

    2014-03-01

    One of the limitations of topical photodynamic therapy (PDT) using 5-aminolevulinic acid (ALA) is the poor ability to penetrate biological barriers of skin and the recurrence rates in treatments. This study aimed to identify possible signs of increased diffusion of ALA-induced PpIX by fluorescence images and fluorescence spectroscopy. The research was done using in vivo porcine skin model. Before the cream application, microholes was performed with microneedles rollers in only one direction, afterward the ALA cream was applied at a 2.5cm2 area in triplicate and an occlusive dressing was placed. PpIX production was monitored using fluorescence spectroscopy collected at skin surface after 70, 100, 140, and 180 minutes of ALA incubation. About 100 fluorescence spectra of each treatment were collected, distributed by about five points for each site. Wide-field fluorescence imaging was made after 70, 90, and 170 minutes after treatment. The results obtained by imaging analysis indicated increase of the PpIX diffusion in the skin surface using the microneedles rollers (MNs) before ALA application. Circular regions of red fluorescence around the microholes were observed. In addition, the fluorescence spectra showed a greater intensity (2 times as many) in groups microneedles rollers associated. In conclusion, our data shown greater homogeneity and PpIX production in the groups pre-treated with microneedles indicating that the technique can be used to greater uniformity of PpIX production throughout the area to be treated reducing the chances of recurrent tumor as well as has potential for decreasing the time of therapy. (FUNDING SUPPORT:CAPES, CNPq and FAPESP)

  11. Deep learning

    Science.gov (United States)

    Lecun, Yann; Bengio, Yoshua; Hinton, Geoffrey

    2015-05-01

    Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

  12. Deep Fish.

    Science.gov (United States)

    Ishaq, Omer; Sadanandan, Sajith Kecheril; Wählby, Carolina

    2017-01-01

    Zebrafish ( Danio rerio) is an important vertebrate model organism in biomedical research, especially suitable for morphological screening due to its transparent body during early development. Deep learning has emerged as a dominant paradigm for data analysis and found a number of applications in computer vision and image analysis. Here we demonstrate the potential of a deep learning approach for accurate high-throughput classification of whole-body zebrafish deformations in multifish microwell plates. Deep learning uses the raw image data as an input, without the need of expert knowledge for feature design or optimization of the segmentation parameters. We trained the deep learning classifier on as few as 84 images (before data augmentation) and achieved a classification accuracy of 92.8% on an unseen test data set that is comparable to the previous state of the art (95%) based on user-specified segmentation and deformation metrics. Ablation studies by digitally removing whole fish or parts of the fish from the images revealed that the classifier learned discriminative features from the image foreground, and we observed that the deformations of the head region, rather than the visually apparent bent tail, were more important for good classification performance.

  13. The ArTéMiS wide-field sub-millimeter camera: preliminary on-sky performance at 350 microns

    Science.gov (United States)

    Revéret, Vincent; André, Philippe; Le Pennec, Jean; Talvard, Michel; Agnèse, Patrick; Arnaud, Agnès.; Clerc, Laurent; de Breuck, Carlos; Cigna, Jean-Charles; Delisle, Cyrille; Doumayrou, Eric; Duband, Lionel; Dubreuil, Didier; Dumaye, Luc; Ercolani, Eric; Gallais, Pascal; Groult, Elodie; Jourdan, Thierry; Leriche, Bernadette; Maffei, Bruno; Lortholary, Michel; Martignac, Jérôme; Rabaud, Wilfried; Relland, Johan; Rodriguez, Louis; Vandeneynde, Aurélie; Visticot, François

    2014-07-01

    ArTeMiS is a wide-field submillimeter camera operating at three wavelengths simultaneously (200, 350 and 450 μm). A preliminary version of the instrument equipped with the 350 μm focal plane, has been successfully installed and tested on APEX telescope in Chile during the 2013 and 2014 austral winters. This instrument is developed by CEA (Saclay and Grenoble, France), IAS (France) and University of Manchester (UK) in collaboration with ESO. We introduce the mechanical and optical design, as well as the cryogenics and electronics of the ArTéMiS camera. ArTeMiS detectors consist in Si:P:B bolometers arranged in 16×18 sub-arrays operating at 300 mK. These detectors are similar to the ones developed for the Herschel PACS photometer but they are adapted to the high optical load encountered at APEX site. Ultimately, ArTeMiS will contain 4 sub-arrays at 200 μm and 2×8 sub-arrays at 350 and 450 μm. We show preliminary lab measurements like the responsivity of the instrument to hot and cold loads illumination and NEP calculation. Details on the on-sky commissioning runs made in 2013 and 2014 at APEX are shown. We used planets (Mars, Saturn, Uranus) to determine the flat-field and to get the flux calibration. A pointing model was established in the first days of the runs. The average relative pointing accuracy is 3 arcsec. The beam at 350 μm has been estimated to be 8.5 arcsec, which is in good agreement with the beam of the 12 m APEX dish. Several observing modes have been tested, like "On- The-Fly" for beam-maps or large maps, spirals or raster of spirals for compact sources. With this preliminary version of ArTeMiS, we concluded that the mapping speed is already more than 5 times better than the previous 350 μm instrument at APEX. The median NEFD at 350 μm is 600 mJy.s1/2, with best values at 300 mJy.s1/2. The complete instrument with 5760 pixels and optimized settings will be installed during the first half of 2015.

  14. ANALYZING STAR CLUSTER POPULATIONS WITH STOCHASTIC MODELS: THE HUBBLE SPACE TELESCOPE/WIDE FIELD CAMERA 3 SAMPLE OF CLUSTERS IN M83

    Energy Technology Data Exchange (ETDEWEB)

    Fouesneau, Morgan; Lancon, Ariane [Observatoire astronomique and CNRS UMR 7550, Universite de Strasbourg, Strasbourg (France); Chandar, Rupali [Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); Whitmore, Bradley C., E-mail: morgan.fouesneau@astro.u-strasbg.fr [Space Telescope Science Institute, Baltimore, MD (United States)

    2012-05-01

    The majority of clusters in the universe have masses well below 10{sup 5} M{sub Sun }. Hence, their integrated fluxes and colors can be affected by the presence or absence of a few bright stars introduced by stochastic sampling of the stellar mass function. Specific methods are being developed to extend the analysis of cluster energy distributions into the low-mass regime. In this paper, we apply such a method to real observations of star clusters, in the nearby spiral galaxy M83. We reassess the ages and masses of a sample of 1242 clusters for which UBVIH{alpha} fluxes were obtained from observations with the Wide Field Camera 3 instrument on board the Hubble Space Telescope. Synthetic clusters with known properties are used to characterize the limitations of the method (valid range and resolution in age and mass, method artifacts). The ensemble of color predictions of the discrete cluster models are in good agreement with the distribution of observed colors. We emphasize the important role of the H{alpha} data in the assessment of the fraction of young objects, particularly in breaking the age-extinction degeneracy that hampers an analysis based on UBVI data only. We find the mass distribution of the cluster sample to follow a power law of index -2.1 {+-} 0.2, and the distribution of ages a power law of index -1.0 {+-} 0.2 for log (M/ M{sub Sun }) > 3.5, and ages between 10{sup 7} and 10{sup 9} yr. An extension of our main method, which makes full use of the probability distributions of age and mass obtained for the individual clusters of the sample, is explored. It produces similar power-law slopes and will deserve further investigation. Although the properties derived for individual clusters significantly differ from those obtained with traditional, non-stochastic models in about 30% of the objects, the first-order aspect of the age and mass distributions is similar to those obtained previously for this M83 sample in the range of overlap of the studies. We

  15. Wide field of view computed tomography and mid carpal instability: The value of the sagittal radius–lunate–capitate axis – Preliminary experience

    Energy Technology Data Exchange (ETDEWEB)

    Repse, Stephen E., E-mail: stephrep@gmail.com [Department of Diagnostic Imaging, Monash Health, VIC (Australia); Koulouris, George, E-mail: GeorgeK@melbourneradiology.com.au [Melbourne Radiology Clinic, Ground Floor, 3-6/100 Victoria Parade, East Melbourne, VIC (Australia); Centre for Orthopaedic Research, School of Surgery, University of Western Australia, Nedlands, WA (Australia); Troupis, John M., E-mail: john.troupis@gmail.com [Department of Diagnostic Imaging & Monash Cardiovascular Research Centre, Monash Health and Department of Biomedical Radiation Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, VIC (Australia)

    2015-05-15

    Highlights: • Unique insight into the assessment of mid carpal instability. • 4D CT using sagittal reconstructions along the radius–lunate–capitate axis. • 4D CT observations of vacuum phenomenon, trigger lunate and capitate subluxation. • Earlier recognition of mid carpal instability. - Abstract: Purpose: Dynamic four dimensional (4D) computed tomography (CT) has recently emerged as a practical method for evaluating complex functional abnormality of joints. We retrospectively analysed 4D CT studies undertaken as part of the clinical management of hand and wrist symptoms. We present our initial experience of 4D CT in the assessment of functional abnormalities of the wrist in a group of patients with mid carpal instability (MCI), specifically carpal instability non-dissociative. We aim to highlight unique features in assessment of the radius–lunate–capitate (RLC) axis which allows insight and understanding of abnormalities in function, not just morphology, which may be contributing to symptoms. Materials and methods: Wide field of view multi-detector CT scanner (320 slices, 0.5 mm detector thickness) was used to acquire bilateral continuous motion assessment in hand flexion and extension. A maximum z-axis coverage of 16 cm was available for each acquisition, and a large field of view (FOV) was used. Due to the volume acquisition during motion, reconstructions at multiple time points were undertaken. Dynamic and anatomically targeted multi-planar-reconstructions (MPRs) were then used to establish the kinematic functionality of the joint. Results: Our initial cohort of 20 patients was reviewed. Three findings were identified which were present either in isolation or in combination. These are vacuum phenomenon, triggering of the lunate and capitate subluxation. We provide 4D CT representations of each and highlight features considered of clinical importance and their significance. We also briefly discuss how the current classifications of dynamic wrist

  16. Insertion sequences enrichment in extreme Red sea brine pool vent

    KAUST Repository

    Elbehery, Ali H. A.

    2016-12-03

    Mobile genetic elements are major agents of genome diversification and evolution. Limited studies addressed their characteristics, including abundance, and role in extreme habitats. One of the rare natural habitats exposed to multiple-extreme conditions, including high temperature, salinity and concentration of heavy metals, are the Red Sea brine pools. We assessed the abundance and distribution of different mobile genetic elements in four Red Sea brine pools including the world’s largest known multiple-extreme deep-sea environment, the Red Sea Atlantis II Deep. We report a gradient in the abundance of mobile genetic elements, dramatically increasing in the harshest environment of the pool. Additionally, we identified a strong association between the abundance of insertion sequences and extreme conditions, being highest in the harshest and deepest layer of the Red Sea Atlantis II Deep. Our comparative analyses of mobile genetic elements in secluded, extreme and relatively non-extreme environments, suggest that insertion sequences predominantly contribute to polyextremophiles genome plasticity.

  17. Book review: Extreme ocean waves

    Science.gov (United States)

    Geist, Eric L.

    2017-01-01

    Extreme Ocean Waves”, edited by E. Pelinovsky and C. Kharif, second edition, Springer International Publishing, 2016; ISBN: 978-3-319-21574-7, ISBN (eBook): 978-3-319-21575-4The second edition of “Extreme Ocean Waves” published by Springer is an update of a collection of 12 papers edited by Efim Pelinovsky and Christian Kharif following the April 2007 meeting of the General Assembly of the European Geosciences Union. In this edition, three new papers have been added and three more have been substantially revised. Color figures are now included, which greatly aids in reading several of the papers, and is especially helpful in visualizing graphs as in the paper on symbolic computation of nonlinear wave resonance (Tobisch et al.). A note on terminology: extreme waves in this volume broadly encompass different types of waves, including deep-water and shallow-water rogue waves (which are alternatively termed freak waves), and internal waves. One new paper on tsunamis (Viroulet et al.) is now included in the second edition of this volume. Throughout the book, the reader will find a combination of laboratory, theoretical, and statistical/empirical treatment necessary for the complete examination of this subject. In the Introduction, the editors underscore the importance of studying extreme waves, documenting a dramatic instance of damaging extreme waves that recently occurred in 2014.

  18. Deep learning for studies of galaxy morphology

    Science.gov (United States)

    Tuccillo, D.; Huertas-Company, M.; Decencière, E.; Velasco-Forero, S.

    2017-06-01

    Establishing accurate morphological measurements of galaxies in a reasonable amount of time for future big-data surveys such as EUCLID, the Large Synoptic Survey Telescope or the Wide Field Infrared Survey Telescope is a challenge. Because of its high level of abstraction with little human intervention, deep learning appears to be a promising approach. Deep learning is a rapidly growing discipline that models high-level patterns in data as complex multilayered networks. In this work we test the ability of deep convolutional networks to provide parametric properties of Hubble Space Telescope like galaxies (half-light radii, Sérsic indices, total flux etc..). We simulate a set of galaxies including point spread function and realistic noise from the CANDELS survey and try to recover the main galaxy parameters using deep-learning. We compare the results with the ones obtained with the commonly used profile fitting based software GALFIT. This way showing that with our method we obtain results at least equally good as the ones obtained with GALFIT but, once trained, with a factor 5 hundred time faster.

  19. Extreme Emission Line Galaxies in CANDELS: Broad-Band Selected, Star-Bursting Dwarf Galaxies at Z greater than 1

    Science.gov (United States)

    vanderWel, A.; Straughn, A. N.; Rix, H.-W.; Finkelstein, S. L.; Koekemoer, A. M.; Weiner, B. J.; Wuyts, S.; Bell, E. F.; Faber, S. M.; Trump, J. R.; hide

    2012-01-01

    We identify an abundant population of extreme emission line galaxies (EELGs) at redshift z approx. 1.7 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). 69 EELG candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared broad-band magnitudes. Supported by spectroscopic confirmation of strong [OIII] emission lines . with rest-frame equivalent widths approx. 1000A in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are galaxies with approx.10(exp 8) Solar Mass in stellar mass, undergoing an enormous starburst phase with M*/M* of only approx. 15 Myr. These bursts may cause outflows that are strong enough to produce cored dark matter profiles in low-mass galaxies. The individual star formation rates and the co-moving number density (3.7x10(exp -4) Mpc(sup -3) can produce in approx.4 Gyr much of the stellar mass density that is presently contained in 10(exp 8) - 10(exp 9) Solar Mass dwarf galaxies. Therefore, our observations provide a strong indication that many or even most of the stars in present-day dwarf galaxies formed in strong, short-lived bursts, mostly at z > 1.

  20. Extremely Preterm Birth

    Science.gov (United States)

    ... Education & Events Advocacy For Patients About ACOG Extremely Preterm Birth Home For Patients Search FAQs Extremely Preterm ... Pamphlets - Spanish FAQ173, June 2016 PDF Format Extremely Preterm Birth Pregnancy When is a baby considered “preterm” ...

  1. Deep Pain

    DEFF Research Database (Denmark)

    Rodriguez, Pau; Cucurull, Guillem; Gonzàlez, Jordi

    2017-01-01

    appearance versus taking into account the whole image: As a result, we outperform current state- of-the-art AUC performance in the UNBC-McMaster Shoulder Pain Expression Archive Database. In addition, to evaluate the generalization properties of our proposed methodology on facial motion recognition, we also......Pain is an unpleasant feeling that has been shown to be an important factor for the recovery of patients. Since this is costly in human resources and difficult to do objectively, there is the need for automatic systems to measure it. In this paper, con- trary to current state-of-the-art techniques...... in pain assessment, which are based on facial features only, we suggest that the performance can be enhanced by feeding the raw frames to deep learning models, outperforming the latest state-of-the-art results while also directly facing the problem of imbalanced data. As a baseline, our approach first...

  2. Zooplankton at deep Red Sea brine pools

    KAUST Repository

    Kaartvedt, Stein

    2016-03-02

    The deep-sea anoxic brines of the Red Sea comprise unique, complex and extreme habitats. These environments are too harsh for metazoans, while the brine–seawater interface harbors dense microbial populations. We investigated the adjacent pelagic fauna at two brine pools using net tows, video records from a remotely operated vehicle and submerged echosounders. Waters just above the brine pool of Atlantis II Deep (2000 m depth) appeared depleted of macrofauna. In contrast, the fauna appeared to be enriched at the Kebrit Deep brine–seawater interface (1466 m).

  3. Deep Carbon Cycling in the Deep Hydrosphere: Abiotic Organic Synthesis and Biogeochemical Cycling

    Science.gov (United States)

    Sherwood Lollar, B.; Sutcliffe, C. N.; Ballentine, C. J.; Warr, O.; Li, L.; Ono, S.; Wang, D. T.

    2014-12-01

    Research into the deep carbon cycle has expanded our understanding of the depth and extent of abiotic organic synthesis in the deep Earth beyond the hydrothermal vents of the deep ocean floor, and of the role of reduced gases in supporting deep subsurface microbial communities. Most recently, this research has expanded our understanding not only of the deep biosphere but the deep hydrosphere - identifying for the first time the extreme antiquity (millions to billions of years residence time) of deep saline fracture waters in the world's oldest rocks. Energy-rich saline fracture waters in the Precambrian crust that makes up more than 70% of the Earth's continental lithosphereprovide important constraints on our understanding of the extent of the crust that is habitable, on the time scales of hydrogeologic isolation (and conversely mixing) of fluids relevant to the deep carbon cycle, and on the geochemistry of substrates that sustain both abiotic organic synthesis and biogeochemical cycles driven by microbial communities. Ultimately the chemistry and hydrogeology of the deep hydrosphere will help define the limits for life in the subsurface and the boundary between the biotic-abiotic fringe. Using a variety of novel techniques including noble gas analysis, clumped isotopologues of methane, and compound specific isotope analysis of CHNOS, this research is addressing questions about the distribution of deep saline fluids in Precambrian rocks worldwide, the degree of interconnectedness of these potential biomes, the habitability of these fluids, and the biogeographic diversity of this new realm of the deep hydrosphere.

  4. Deep pockets for deep seas

    Science.gov (United States)

    Showstack, Randy

    Peter Auster, a fisheries ecologist with the National Undersea Research Center in Connecticut, plans to assess degradation of the deep-shelf seafloor from bottom trawling. Magnus Ngoile, an official with Tanzania's National Environmental Management Council, will work on building capacity of poor villagers to protect their coastline. And Alison Rieser, a lawyer with the University of Maine School of Law, will produce a textbook to educate scientists on how to apply the law for marine conservation.These individuals are among 11 recipients of the Pew Charitable Trust's 10th annual marine conservation fellowships, announced on July 12. With each recipient receiving an award of $150,000, the program is the world's largest award for marine conservationists. Other 1999 recipients will be involved with areas including investigating marine pollution in the Arctic region, examining economic incentives for conservation in Baja, Mexico, and establishing a marine conservation biology training program for minority students.

  5. The deep-sea under global change.

    Science.gov (United States)

    Danovaro, Roberto; Corinaldesi, Cinzia; Dell'Anno, Antonio; Snelgrove, Paul V R

    2017-06-05

    The deep ocean encompasses 95% of the oceans' volume and is the largest and least explored biome of Earth's Biosphere. New life forms are continuously being discovered. The physiological mechanisms allowing organisms to adapt to extreme conditions of the deep ocean (high pressures, from very low to very high temperatures, food shortage, lack of solar light) are still largely unknown. Some deep-sea species have very long life-spans, whereas others can tolerate toxic compounds at high concentrations; these characteristics offer an opportunity to explore the specialized biochemical and physiological mechanisms associated with these responses. Widespread symbiotic relationships play fundamental roles in driving host functions, nutrition, health, and evolution. Deep-sea organisms communicate and interact through sound emissions, chemical signals and bioluminescence. Several giants of the oceans hunt exclusively at depth, and new studies reveal a tight connection between processes in the shallow water and some deep-sea species. Limited biological knowledge of the deep-sea limits our capacity to predict future response of deep-sea organisms subject to increasing human pressure and changing global environmental conditions. Molecular tools, sensor-tagged animals, in situ and laboratory experiments, and new technologies can enable unprecedented advancement of deep-sea biology, and facilitate the sustainable management of deep ocean use under global change. Copyright © 2017. Published by Elsevier Ltd.

  6. Ultrasonography of the lower extremity veins: Anatomy and basic approach

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Kyu; Ahn, Kyung Sik; Kang, Chang Ho; Cho, Sung Bum [Dept. of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul (Korea, Republic of)

    2017-04-15

    Ultrasonography is an imaging modality widely used to evaluate venous diseases of the lower extremities. It is important to understand the normal venous anatomy of the lower extremities, which has deep, superficial, and perforating venous components, in order to determine the pathophysiology of venous disease. This review provides a basic description of the anatomy of the lower extremity veins and useful techniques for approaching each vein via ultrasonography.

  7. Hot, Massive Stars in the Extremely Metal-Poor Galaxy, I Zw 18

    Science.gov (United States)

    Heap, Sara R.; Malumuth, Eliot M.

    2010-01-01

    The extremely metal-poor galaxy I Zw 18, is the Rosetta Stone for understanding z=7-8 galaxies now being discovered by Hubb|e's Wide Field Camera 3 (HST/WFC3). Using HST/STIS images and recently obtained HST/COS ultraviolet spectra, we derive information about the hot, massive stars in this galaxy including stellar abundances, constraints on the stellar IMF and mass distribution of young clusters containing hot, massive stars.

  8. DeepPy: Pythonic deep learning

    DEFF Research Database (Denmark)

    Larsen, Anders Boesen Lindbo

    This technical report introduces DeepPy – a deep learning framework built on top of NumPy with GPU acceleration. DeepPy bridges the gap between highperformance neural networks and the ease of development from Python/NumPy. Users with a background in scientific computing in Python will quickly...... be able to understand and change the DeepPy codebase as it is mainly implemented using high-level NumPy primitives. Moreover, DeepPy supports complex network architectures by letting the user compose mathematical expressions as directed graphs. The latest version is available at http...

  9. The Deep Seas--Unexpectedly, An Astounding Variety of Life

    Science.gov (United States)

    MOSAIC, 1976

    1976-01-01

    As oceanographic technology advances, the study of deep-sea environments is accelerating. Numerous ecological theories concerning deep-sea food relationships, environmental extremes, and life forms are changing as the environments of the deepest ocean trenches are studied. Thousands of new species are being discovered and studied constantly. (MA)

  10. Weather and Climate Extremes

    National Research Council Canada - National Science Library

    Krause, Paul

    1997-01-01

    .... All extremes are presented in terms of their location and date and, where supportive information is available in the professional literature, detailed discussions of the extreme event are provided...

  11. Legacy to the extreme

    NARCIS (Netherlands)

    A. van Deursen (Arie); T. Kuipers (Tobias); L.M.F. Moonen (Leon)

    2000-01-01

    textabstractWe explore the differences between developing a system using extreme programming techniques, and maintaining a legacy system. We investigate whether applying extreme programming techniques to legacy maintenance is useful and feasible.

  12. Invited Article: First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results.

    Science.gov (United States)

    Collier, Michael R; Porter, F Scott; Sibeck, David G; Carter, Jenny A; Chiao, Meng P; Chornay, Dennis J; Cravens, Thomas E; Galeazzi, Massimiliano; Keller, John W; Koutroumpa, Dimitra; Kujawski, Joseph; Kuntz, Kip; Read, Andy M; Robertson, Ina P; Sembay, Steve; Snowden, Steven L; Thomas, Nicholas; Uprety, Youaraj; Walsh, Brian M

    2015-07-01

    We describe the development, launch into space, and initial results from a prototype wide field-of-view soft X-ray imager that employs lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The sheath transport observer for the redistribution of mass is the first instrument using this type of optics launched into space and provides proof-of-concept for future flight instruments capable of imaging structures such as the terrestrial cusp, the entire dayside magnetosheath from outside the magnetosphere, comets, the Moon, and the solar wind interaction with planetary bodies like Venus and Mars [Kuntz et al., Astrophys. J. (in press)].

  13. Extreme environment electronics

    CERN Document Server

    Cressler, John D

    2012-01-01

    Unfriendly to conventional electronic devices, circuits, and systems, extreme environments represent a serious challenge to designers and mission architects. The first truly comprehensive guide to this specialized field, Extreme Environment Electronics explains the essential aspects of designing and using devices, circuits, and electronic systems intended to operate in extreme environments, including across wide temperature ranges and in radiation-intense scenarios such as space. The Definitive Guide to Extreme Environment Electronics Featuring contributions by some of the world's foremost exp

  14. Solar Power Generation in Extreme Space Environments

    Science.gov (United States)

    Elliott, Frederick W.; Piszczor, Michael F.

    2016-01-01

    The exploration of space requires power for guidance, navigation, and control; instrumentation; thermal control; communications and data handling; and many subsystems and activities. Generating sufficient and reliable power in deep space through the use of solar arrays becomes even more challenging as solar intensity decreases and high radiation levels begin to degrade the performance of photovoltaic devices. The Extreme Environments Solar Power (EESP) project goal is to develop advanced photovoltaic technology to address these challenges.

  15. Lower Extremity Deep Vein Thrombosis among Intensive Care ...

    African Journals Online (AJOL)

    plethysmography, as it is not available in our set up. Conclusions and Recommendations. This study highlights the significance of detecting associated risk factors to determine high risk patient groups. Prophylaxis against VTE was highly under utilised by the physicians, indeed it was not provided to any of the patients in the ...

  16. Deep venous thrombosis of the upper extremity. A review

    DEFF Research Database (Denmark)

    Klitfod, Lotte; Broholm, R; Baekgaard, N

    2013-01-01

    Thrombotic Syndrome (PTS) are the major complications after UEDVT. PTS is a chronic condition leading to significant functional disability and impaired quality of life. Diagnosis: compression ultrasonography is noninvasive and the most frequently used objective test with a high accuracy in experienced hands...

  17. Lower extremity deep vein thrombosis among intensive care ...

    African Journals Online (AJOL)

    VTE) is a major health problem with high mortality throughout the world. The patients at risk must be identified and given appropriate prophylaxis in order to decrease the mortality. Objective: To investigate and identify risk factors associated with ...

  18. Upper extremity deep vein thrombosis after elbow trauma: a case ...

    African Journals Online (AJOL)

    Treatment by low molecular weight heparin (LMWH) then by vitamin K antagonists was conducted and evaluation by Doppler ultrasonography realized 18 months after trauma showed recanalization of basilica and humeral veins and thrombosis of axillary and subclavian veins. Management of occupational activity was ...

  19. Lower extremity deep vein thrombosis among intensive care ...

    African Journals Online (AJOL)

    The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

  20. Time series forecasting based on deep extreme learning machine

    NARCIS (Netherlands)

    Guo, Xuqi; Pang, Y.; Yan, Gaowei; Qiao, Tiezhu; Yang, Guang-Hong; Yang, Dan

    2017-01-01

    Multi-layer Artificial Neural Networks (ANN) has caught widespread attention as a new method for time series forecasting due to the ability of approximating any nonlinear function. In this paper, a new local time series prediction model is established with the nearest neighbor domain theory, in

  1. Greedy Deep Dictionary Learning

    OpenAIRE

    Tariyal, Snigdha; Majumdar, Angshul; Singh, Richa; Vatsa, Mayank

    2016-01-01

    In this work we propose a new deep learning tool called deep dictionary learning. Multi-level dictionaries are learnt in a greedy fashion, one layer at a time. This requires solving a simple (shallow) dictionary learning problem, the solution to this is well known. We apply the proposed technique on some benchmark deep learning datasets. We compare our results with other deep learning tools like stacked autoencoder and deep belief network; and state of the art supervised dictionary learning t...

  2. Primary leiomyosarcoma of saphenous vein presenting as deep venous thrombosis.

    Science.gov (United States)

    Fremed, Daniel I; Faries, Peter L; Schanzer, Harry R; Marin, Michael L; Ting, Windsor

    2014-12-01

    Only a small number of venous leiomyosarcomas have been previously reported. Of these tumors, those of saphenous origin comprise a minority of cases. A 59-year-old man presented with symptoms of deep vein thrombosis and was eventually diagnosed with primary leiomyosarcoma of great saphenous vein origin. The tumor was treated with primary resection and femoral vein reconstruction with autologous patch. Although extremely rare, saphenous leiomyosarcoma can present as deep vein thrombosis. Vascular tumors should be included in the differential diagnosis of atypical extremity swelling refractory to conventional deep vein thrombosis management. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  3. Extreme value distributions

    CERN Document Server

    Ahsanullah, Mohammad

    2016-01-01

    The aim of the book is to give a through account of the basic theory of extreme value distributions. The book cover a wide range of materials available to date. The central ideas and results of extreme value distributions are presented. The book rwill be useful o applied statisticians as well statisticians interrested to work in the area of extreme value distributions.vmonograph presents the central ideas and results of extreme value distributions.The monograph gives self-contained of theory and applications of extreme value distributions.

  4. Upper ocean response of the Mesoamerican Barrier Reef System to Hurricane Mitch and coastal freshwater inputs: A study using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color data and a nested-grid ocean circulation model

    Science.gov (United States)

    Sheng, Jinyu; Wang, Liang; AndréFouëT, Serge; Hu, Chuanmin; Hatcher, Bruce G.; Muller-Karger, Frank E.; Kjerfve, BjöRn; Heyman, William D.; Yang, Bo

    2007-07-01

    The passage of category-5 Hurricane Mitch through the Mesoamerican Barrier Reef System (MBRS) in October 1998 was an extreme event with the potential to create unusual patterns of reef connectivity. The impact of this hurricane on the upper ocean of the MBRS is investigated using a triply nested grid ocean circulation modeling system. The model results are validated with contemporaneous ocean color data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite and oceanographic measurements in the MBRS. The nested grid system is forced by 6-hourly National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) winds for the first 294 days prior to the arrival of the hurricane in the MBRS, and then by the combination of the NCEP/NCAR wind-forcing and an idealized vortex representative of Mitch for the following 20 days. The system is also forced by the monthly mean sea surface heat and freshwater fluxes and buoyancy forcing associated with major river discharges and storm-induced precipitation in the western Caribbean Sea. The simulated upper ocean circulation during Mitch is characterized by strong and divergent currents under the storm and intense near-inertial currents and sea surface temperature cooling behind the storm. The nested grid system also reproduces the buoyant estuarine plumes extending from the coast off Honduras as inferred from SeaWiFS satellite data and detected in field measurements at Gladden Spit in Belize shortly after the passage of Hurricane Mitch. The present model results suggest that populations of site-attached organisms associated with nearshore and offshore reef features that are dynamically isolated in normal conditions experienced greater potential for ecological connection under Mitch's extreme conditions.

  5. Generic Hurricane Extreme Seas State

    DEFF Research Database (Denmark)

    Wehmeyer, Christof; Skourup, Jesper; Frigaard, Peter

    2012-01-01

    Extreme sea states, which the IEC 61400-3 (2008) standard requires for the ultimate limit state (ULS) analysis of offshore wind turbines are derived to establish the design basis for the conceptual layout of deep water floating offshore wind turbine foundations in hurricane affected areas...... data is required for a type specific conceptual design. ULS conditions for different return periods are developed, which can subsequently be applied in siteindependent analysis and conceptual design. Recordings provided by National Oceanic and Atmospheric Administration (NOAA), of hurricanes along...... for hurricane generates seas by Young (1998, 2003, and 2006), requiring maximum wind speeds, forward velocity and radius to maximum wind speed. An averaged radius to maximum sustained wind speeds, according to Hsu et al. (1998) and averaged forward speed of cyclonic storms are applied in the initial state...

  6. Deep Sea Actinomycetes and Their Secondary Metabolites

    Directory of Open Access Journals (Sweden)

    Kui Hong

    2017-05-01

    Full Text Available Deep sea is a unique and extreme environment. It is a hot spot for hunting marine actinomycetes resources and secondary metabolites. The novel deep sea actinomycete species reported from 2006 to 2016 including 21 species under 13 genera with the maximum number from Microbacterium, followed by Dermacoccus, Streptomyces and Verrucosispora, and one novel species for the other 9 genera. Eight genera of actinomycetes were reported to produce secondary metabolites, among which Streptomyces is the richest producer. Most of the compounds produced by the deep sea actinomycetes presented antimicrobial and anti-cancer cell activities. Gene clusters related to biosynthesis of desotamide, heronamide, and lobophorin have been identified from the deep sea derived Streptomyces.

  7. Review The Ooty Wide Field Array

    Indian Academy of Sciences (India)

    latitude, effectively making the telescope equatorially mounted. The sky can hence be tracked by rotation ..... spectral index (Bera et al. 2016). Clearly transient searches with the OWFA would be of high ... We are grateful to the staff at the Radio Astronomy. Centre (RAC) Ooty, whose help formed a critical com- ponent of this ...

  8. Rare etiological causes of iliofemoral deep venous thrombosis: Reports of 2 cases

    Directory of Open Access Journals (Sweden)

    Emrah Ereren

    2015-09-01

    Full Text Available Deep venous thrombosis is frequently seen in lower extremities. However, when seen in the iliac level, mass effect of an underlying pathology must be considered. In this report, we present two cases with upper region deep venous thrombosis, which had underlying pathologies of appendicitis and non-Hodgkin lymphoma. Keywords: Deep venous thrombosis, Etiology, Emergency department

  9. A deep ALMA image of the Hubble Ultra Deep Field

    Science.gov (United States)

    Dunlop, J. S.; McLure, R. J.; Biggs, A. D.; Geach, J. E.; Michałowski, M. J.; Ivison, R. J.; Rujopakarn, W.; van Kampen, E.; Kirkpatrick, A.; Pope, A.; Scott, D.; Swinbank, A. M.; Targett, T. A.; Aretxaga, I.; Austermann, J. E.; Best, P. N.; Bruce, V. A.; Chapin, E. L.; Charlot, S.; Cirasuolo, M.; Coppin, K.; Ellis, R. S.; Finkelstein, S. L.; Hayward, C. C.; Hughes, D. H.; Ibar, E.; Jagannathan, P.; Khochfar, S.; Koprowski, M. P.; Narayanan, D.; Nyland, K.; Papovich, C.; Peacock, J. A.; Rieke, G. H.; Robertson, B.; Vernstrom, T.; Werf, P. P. van der; Wilson, G. W.; Yun, M.

    2017-04-01

    We present the results of the first, deep Atacama Large Millimeter Array (ALMA) imaging covering the full ≃4.5 arcmin2 of the Hubble Ultra Deep Field (HUDF) imaged with Wide Field Camera 3/IR on HST. Using a 45-pointing mosaic, we have obtained a homogeneous 1.3-mm image reaching σ1.3 ≃ 35 μJy, at a resolution of ≃0.7 arcsec. From an initial list of ≃50 > 3.5σ peaks, a rigorous analysis confirms 16 sources with S1.3 > 120 μJy. All of these have secure galaxy counterparts with robust redshifts ( = 2.15). Due to the unparalleled supporting data, the physical properties of the ALMA sources are well constrained, including their stellar masses (M*) and UV+FIR star formation rates (SFR). Our results show that stellar mass is the best predictor of SFR in the high-redshift Universe; indeed at z ≥ 2 our ALMA sample contains seven of the nine galaxies in the HUDF with M* ≥ 2 × 1010 M⊙, and we detect only one galaxy at z > 3.5, reflecting the rapid drop-off of high-mass galaxies with increasing redshift. The detections, coupled with stacking, allow us to probe the redshift/mass distribution of the 1.3-mm background down to S1.3 ≃ 10 μJy. We find strong evidence for a steep star-forming 'main sequence' at z ≃ 2, with SFR ∝M* and a mean specific SFR ≃ 2.2 Gyr-1. Moreover, we find that ≃85 per cent of total star formation at z ≃ 2 is enshrouded in dust, with ≃65 per cent of all star formation at this epoch occurring in high-mass galaxies (M* > 2 × 1010 M⊙), for which the average obscured:unobscured SF ratio is ≃200. Finally, we revisit the cosmic evolution of SFR density; we find this peaks at z ≃ 2.5, and that the star-forming Universe transits from primarily unobscured to primarily obscured at z ≃ 4.

  10. DeepSurveyCam—A Deep Ocean Optical Mapping System

    Science.gov (United States)

    Kwasnitschka, Tom; Köser, Kevin; Sticklus, Jan; Rothenbeck, Marcel; Weiß, Tim; Wenzlaff, Emanuel; Schoening, Timm; Triebe, Lars; Steinführer, Anja; Devey, Colin; Greinert, Jens

    2016-01-01

    Underwater photogrammetry and in particular systematic visual surveys of the deep sea are by far less developed than similar techniques on land or in space. The main challenges are the rough conditions with extremely high pressure, the accessibility of target areas (container and ship deployment of robust sensors, then diving for hours to the ocean floor), and the limitations of localization technologies (no GPS). The absence of natural light complicates energy budget considerations for deep diving flash-equipped drones. Refraction effects influence geometric image formation considerations with respect to field of view and focus, while attenuation and scattering degrade the radiometric image quality and limit the effective visibility. As an improvement on the stated issues, we present an AUV-based optical system intended for autonomous visual mapping of large areas of the seafloor (square kilometers) in up to 6000 m water depth. We compare it to existing systems and discuss tradeoffs such as resolution vs. mapped area and show results from a recent deployment with 90,000 mapped square meters of deep ocean floor. PMID:26828495

  11. DeepSurveyCam--A Deep Ocean Optical Mapping System.

    Science.gov (United States)

    Kwasnitschka, Tom; Köser, Kevin; Sticklus, Jan; Rothenbeck, Marcel; Weiß, Tim; Wenzlaff, Emanuel; Schoening, Timm; Triebe, Lars; Steinführer, Anja; Devey, Colin; Greinert, Jens

    2016-01-28

    Underwater photogrammetry and in particular systematic visual surveys of the deep sea are by far less developed than similar techniques on land or in space. The main challenges are the rough conditions with extremely high pressure, the accessibility of target areas (container and ship deployment of robust sensors, then diving for hours to the ocean floor), and the limitations of localization technologies (no GPS). The absence of natural light complicates energy budget considerations for deep diving flash-equipped drones. Refraction effects influence geometric image formation considerations with respect to field of view and focus, while attenuation and scattering degrade the radiometric image quality and limit the effective visibility. As an improvement on the stated issues, we present an AUV-based optical system intended for autonomous visual mapping of large areas of the seafloor (square kilometers) in up to 6000 m water depth. We compare it to existing systems and discuss tradeoffs such as resolution vs. mapped area and show results from a recent deployment with 90,000 mapped square meters of deep ocean floor.

  12. DeepSurveyCam—A Deep Ocean Optical Mapping System

    Directory of Open Access Journals (Sweden)

    Tom Kwasnitschka

    2016-01-01

    Full Text Available Underwater photogrammetry and in particular systematic visual surveys of the deep sea are by far less developed than similar techniques on land or in space. The main challenges are the rough conditions with extremely high pressure, the accessibility of target areas (container and ship deployment of robust sensors, then diving for hours to the ocean floor, and the limitations of localization technologies (no GPS. The absence of natural light complicates energy budget considerations for deep diving flash-equipped drones. Refraction effects influence geometric image formation considerations with respect to field of view and focus, while attenuation and scattering degrade the radiometric image quality and limit the effective visibility. As an improvement on the stated issues, we present an AUV-based optical system intended for autonomous visual mapping of large areas of the seafloor (square kilometers in up to 6000 m water depth. We compare it to existing systems and discuss tradeoffs such as resolution vs. mapped area and show results from a recent deployment with 90,000 mapped square meters of deep ocean floor.

  13. Classifying Returns as Extreme

    DEFF Research Database (Denmark)

    Christiansen, Charlotte

    2014-01-01

    I consider extreme returns for the stock and bond markets of 14 EU countries using two classification schemes: One, the univariate classification scheme from the previous literature that classifies extreme returns for each market separately, and two, a novel multivariate classification scheme...... that classifies extreme returns for several markets jointly. The new classification scheme holds about the same information as the old one, while demanding a shorter sample period. The new classification scheme is useful....

  14. EXTREME AND TERMINAL STATES

    Directory of Open Access Journals (Sweden)

    P.F. Litvitsky

    2010-01-01

    Full Text Available Author brings modern conception of extreme and terminal states, their types, likenesses and differences, etiology, key common chains of pathogenesis, principles and methods of their treatment. Pathophysiological data on one of extreme states — collapse — is described in details. Next publications will present the data on shock and coma.Key words: extreme and terminal states, vicious circle of pathogenesis, extreme regulation, principles of treatment.(Voprosy sovremennoi pediatrii — Current Pediatrics. – 2010;9(3:74-80

  15. The deep Ionian Basin revisited

    Science.gov (United States)

    Tugend, Julie; Chamot-Rooke, Nicolas; Arsenikos, Stavros; Frizon de Lamotte, Dominique; Blanpied, Christian

    2016-04-01

    The deep Eastern Mediterranean Basins (Ionian and Herodotus) are characterized by thick sedimentary sequences overlying an extremely thinned basement evidenced from different geophysical methods. Yet, the nature of the crust (continental or oceanic) and the timing of the extreme crustal and lithosphere thinning in the different sub-basins remain highly controversial, casting doubts on the tectonic setting related to the formation of this segment of the North Gondwana paleo-margin. We focus on the Ionian Basin located at the western termination of the Eastern Mediterranean with the aim of identifying, characterizing and mapping the deepest sedimentary sequences. We present tentative age correlations relying on calibrations and observations from the surrounding margins and basins (Malta shelf and Escarpment, Cyrenaica margin, Sirte Basin, Apulian Platform). Two-ship deep refraction seismic data (Expanding Spread Profiles from the PASIPHAE cruise) combined with reprocessed reflection data (from the ARCHIMEDE survey) enabled us to present a homogeneous seismic stratigraphy across the basin and to investigate the velocity structure of its basement. Based on our results, and on a review of geological and geophysical observations, we suggest an Upper Triassic-Early Dogger age for the formation of the deep Ionian Basin. The nature of the underlying basement remains uncertain, both highly-thinned continental and slow-spreading type oceanic crust being compatible with the available constraints. The narrow size and relatively short-lived evolution of the Ionian Basin lead us to suggest that it is more likely the remnant of an immature oceanic basin than of a stable oceanic domain. Eventually, upscaling these results at the scale of the Eastern Mediterranean Basins highlights the complex interaction observed between two propagating oceans: The Central Atlantic and Neo-Tethys.

  16. Taoism and Deep Ecology.

    Science.gov (United States)

    Sylvan, Richard; Bennett, David

    1988-01-01

    Contrasted are the philosophies of Deep Ecology and ancient Chinese. Discusses the cosmology, morality, lifestyle, views of power, politics, and environmental philosophies of each. Concludes that Deep Ecology could gain much from Taoism. (CW)

  17. Deep Incremental Boosting

    OpenAIRE

    Mosca, Alan; Magoulas, George D

    2017-01-01

    This paper introduces Deep Incremental Boosting, a new technique derived from AdaBoost, specifically adapted to work with Deep Learning methods, that reduces the required training time and improves generalisation. We draw inspiration from Transfer of Learning approaches to reduce the start-up time to training each incremental Ensemble member. We show a set of experiments that outlines some preliminary results on some common Deep Learning datasets and discuss the potential improvements Deep In...

  18. Deep Space Telecommunications

    Science.gov (United States)

    Kuiper, T. B. H.; Resch, G. M.

    2000-01-01

    The increasing load on NASA's deep Space Network, the new capabilities for deep space missions inherent in a next-generation radio telescope, and the potential of new telescope technology for reducing construction and operation costs suggest a natural marriage between radio astronomy and deep space telecommunications in developing advanced radio telescope concepts.

  19. Deep Learning Online Course

    Science.gov (United States)

    2016-11-01

    TECHNICAL REPORT 3053 November 2016 Deep Learning Online Couse Katie Rainey Approved for public release...Science and Engineering (NISE) project entitled Deep Learning Online Course, executed in fiscal year 2016 at Space and Naval Warfare Systems Center...Pacific (SSC Pacific). RESULTS The project was successful in training a large group of scientists and engineers in the topic of deep learning , a

  20. Deep learning with Python

    CERN Document Server

    Chollet, Francois

    2018-01-01

    DESCRIPTION Deep learning is applicable to a widening range of artificial intelligence problems, such as image classification, speech recognition, text classification, question answering, text-to-speech, and optical character recognition. Deep Learning with Python is structured around a series of practical code examples that illustrate each new concept introduced and demonstrate best practices. By the time you reach the end of this book, you will have become a Keras expert and will be able to apply deep learning in your own projects. KEY FEATURES • Practical code examples • In-depth introduction to Keras • Teaches the difference between Deep Learning and AI ABOUT THE TECHNOLOGY Deep learning is the technology behind photo tagging systems at Facebook and Google, self-driving cars, speech recognition systems on your smartphone, and much more. AUTHOR BIO Francois Chollet is the author of Keras, one of the most widely used libraries for deep learning in Python. He has been working with deep neural ...

  1. Deep Learning for Climate Pattern Detection

    Science.gov (United States)

    Prabhat, M.; Liu, Y.; Correa, J.; Racah, E.; Oh, S. Y.; Khosrowshahi, A.; Lavers, D. A.; Wehner, M. F.; Collins, W.

    2015-12-01

    Science motivation In the era of 'Big Data', mining large observational products (satellite measurements, ground-based readings) and massive climate simulations output is key for gaining scientific insights. An important scientific goal is the characterization of extreme weather in current day, and future climate change scenarios. In this work, we consider the problem of finding extreme patterns (such as Tropical Cyclones, Extra-Tropical Cyclones, Atmospheric Rivers) in large climate archives. We present the successful application of Deep Learning, a state-of-the-art machine learning methodology, for finding spatio-temporal patterns. The results from the application of this method can be used for characterizing statistical changes in extreme weather events (both their intensity and frequency) under climate change scenarios. Methods We formulate the problem of finding patterns as a classic image classification task. We prepare labeled data (ground truth is obtained from the application of the TECA tool, a catalog of known events from the literature and hand-labeling). We utilize 8 input variables for Tropical Cyclones and 2 variables for Atmospheric Rivers. We construct a Deep Convolutional Neural Network based on the deep learning library-NEON-developed at Nervana System, in conjunction with the Spearmint package for hyperparameter optimization. Our optimal network consists of 4 layers (2 convolutional layer and 2 fully connected layers). Results We obtain good classification performance for extreme weather patterns: 99% accuracy for Tropical Cyclones, 90.5% (US Atmospheric Rivers) and 89.5% (European Atmospheric Rivers). The attached figure shows sample weather patterns correctly classified by the Deep Learning architecture.

  2. Analysis of extreme events

    CSIR Research Space (South Africa)

    Khuluse, S

    2009-04-01

    Full Text Available ) determination of the distribution of the damage and (iii) preparation of products that enable prediction of future risk events. The methodology provided by extreme value theory can also be a powerful tool in risk analysis...

  3. Extreme bosonic linear channels

    Science.gov (United States)

    Holevo, A. S.

    2013-02-01

    The set of all channels with a fixed input and output is convex. We first give a convenient formulation of the necessary and sufficient condition for a channel to be an extreme point of this set in terms of the complementary channel, a notion of great importance in quantum information theory. This formulation is based on the general approach to extremality of completely positive maps in an operator algebra in the spirit of Arveson. We then use this formulation to prove our main result: under certain nondegeneracy conditions, environmental purity is necessary and sufficient for the extremality of a bosonic linear (quasifree) channel. It hence follows that a Gaussian channel between finite-mode bosonic systems is extreme if and only if it has minimum noise.

  4. Extreme environments and exobiology

    Science.gov (United States)

    Friedmann, E. I.

    1993-01-01

    Ecological research on extreme environments can be applied to exobiological problems such as the question of life on Mars. If life forms (fossil or extant) are found on Mars, their study will help to solve fundamental questions about the nature of life on Earth. Extreme environments that are beyond the range of adaptability of their inhabitants are defined as "absolute extreme". Such environments can serve as terrestrial models for the last stages of life in the history of Mars, when the surface cooled down and atmosphere and water disappeared. The cryptoendolithic microbial community in porous rocks of the Ross Desert in Antarctica and the microbial mats at the bottom of frozen Antarctic lakes are such examples. The microbial communities of Siberian permafrost show that, in frozen but stable communities, long-term survival is possible. In the context of terraforming Mars, selected microorganisms isolated from absolute extreme environments are considered for use in creation of a biological carbon cycle.

  5. DeepBipolar: Identifying genomic mutations for bipolar disorder via deep learning.

    Science.gov (United States)

    Laksshman, Sundaram; Bhat, Rajendra Rana; Viswanath, Vivek; Li, Xiaolin

    2017-09-01

    Bipolar disorder, also known as manic depression, is a brain disorder that affects the brain structure of a patient. It results in extreme mood swings, severe states of depression, and overexcitement simultaneously. It is estimated that roughly 3% of the population of the United States (about 5.3 million adults) suffers from bipolar disorder. Recent research efforts like the Twin studies have demonstrated a high heritability factor for the disorder, making genomics a viable alternative for detecting and treating bipolar disorder, in addition to the conventional lengthy and costly postsymptom clinical diagnosis. Motivated by this study, leveraging several emerging deep learning algorithms, we design an end-to-end deep learning architecture (called DeepBipolar) to predict bipolar disorder based on limited genomic data. DeepBipolar adopts the Deep Convolutional Neural Network (DCNN) architecture that automatically extracts features from genotype information to predict the bipolar phenotype. We participated in the Critical Assessment of Genome Interpretation (CAGI) bipolar disorder challenge and DeepBipolar was considered the most successful by the independent assessor. In this work, we thoroughly evaluate the performance of DeepBipolar and analyze the type of signals we believe could have affected the classifier in distinguishing the case samples from the control set. © 2017 Wiley Periodicals, Inc.

  6. E.X.T.R.E.M.E. project. Launch; Projet EXTREME. Rapport de lancement

    Energy Technology Data Exchange (ETDEWEB)

    Eyrolle, F.; Charmasson, S.; Masson, O

    2005-07-01

    Due to the drastic decrease in artificial radioactivity levels from primary sources such as atmospheric fallout or industrial releases, radioactive storages constituted in the past within several environmental compartments act today as non negligible secondary sources. These delayed sources are particularly active during extreme weather or climatic events such as rainfalls or atmospheric deposits, floods, storms, etc...that may remove important mass, generate activity levels higher than the predicted ones from modeling based on mean transfer process, and produce in a couple of hours or days fluxes similar to those accrued over several month or years. Extreme aims at assessing the consequences on man and its environment of natural events that generate extreme radioactive stocks and/or fluxes within several environmental compartments (atmosphere, soils, rivers, coastal marine environment and deep sea areas). (authors)

  7. Deep learning relevance

    DEFF Research Database (Denmark)

    Lioma, Christina; Larsen, Birger; Petersen, Casper

    2016-01-01

    train a Recurrent Neural Network (RNN) on existing relevant information to that query. We then use the RNN to "deep learn" a single, synthetic, and we assume, relevant document for that query. We design a crowdsourcing experiment to assess how relevant the "deep learned" document is, compared...... to existing relevant documents. Users are shown a query and four wordclouds (of three existing relevant documents and our deep learned synthetic document). The synthetic document is ranked on average most relevant of all....

  8. Three New Cool Brown Dwarfs Discovered with the Wide-field Infrared Survey Explorer (WISE) and an Improved Spectrum of the Y0 Dwarf WISE J041022.71+150248.4

    Science.gov (United States)

    Cushing, Michael C.; Kirkpatrick, J. Davy; Gelino, Christopher R.; Mace, Gregory N.; Skrutskie, Michael F.; Gould, Andrew

    2014-05-01

    As part of a larger search of Wide-field Infrared Survey Explorer (WISE) data for cool brown dwarfs with effective temperatures less than 1000 K, we present the discovery of three new cool brown dwarfs with spectral types later than T7. Using low-resolution, near-infrared spectra obtained with the NASA Infrared Telescope Facility and the Hubble Space Telescope, we derive spectral types of T9.5 for WISE J094305.98+360723.5, T8 for WISE J200050.19+362950.1, and Y0: for WISE J220905.73+271143.9. The identification of WISE J220905.73+271143.9 as a Y dwarf brings the total number of spectroscopically confirmed Y dwarfs to 17. In addition, we present an improved spectrum (i.e., higher signal-to-noise ratio) of the Y0 dwarf WISE J041022.71+150248.4 that confirms the Cushing et al. classification of Y0. Spectrophotometric distance estimates place all three new brown dwarfs at distances less than 12 pc, with WISE J200050.19+362950.1 lying at a distance of only 3.9-8.0 pc. Finally, we note that brown dwarfs like WISE J200050.19+362950.1 that lie in or near the Galactic plane offer an exciting opportunity to directly measure the mass of a brown dwarf via astrometric microlensing.

  9. Three new cool brown dwarfs discovered with the wide-field infrared survey explorer (WISE) and an improved spectrum of the Y0 dwarf wise J041022.71+150248.4

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, Michael C. [Department of Physics and Astronomy, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Kirkpatrick, J. Davy; Gelino, Christopher R. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Mace, Gregory N. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095 (United States); Skrutskie, Michael F. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Gould, Andrew, E-mail: michael.cushing@utoledo.edu [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States)

    2014-05-01

    As part of a larger search of Wide-field Infrared Survey Explorer (WISE) data for cool brown dwarfs with effective temperatures less than 1000 K, we present the discovery of three new cool brown dwarfs with spectral types later than T7. Using low-resolution, near-infrared spectra obtained with the NASA Infrared Telescope Facility and the Hubble Space Telescope, we derive spectral types of T9.5 for WISE J094305.98+360723.5, T8 for WISE J200050.19+362950.1, and Y0: for WISE J220905.73+271143.9. The identification of WISE J220905.73+271143.9 as a Y dwarf brings the total number of spectroscopically confirmed Y dwarfs to 17. In addition, we present an improved spectrum (i.e., higher signal-to-noise ratio) of the Y0 dwarf WISE J041022.71+150248.4 that confirms the Cushing et al. classification of Y0. Spectrophotometric distance estimates place all three new brown dwarfs at distances less than 12 pc, with WISE J200050.19+362950.1 lying at a distance of only 3.9-8.0 pc. Finally, we note that brown dwarfs like WISE J200050.19+362950.1 that lie in or near the Galactic plane offer an exciting opportunity to directly measure the mass of a brown dwarf via astrometric microlensing.

  10. Extreme Programming: Maestro Style

    Science.gov (United States)

    Norris, Jeffrey; Fox, Jason; Rabe, Kenneth; Shu, I-Hsiang; Powell, Mark

    2009-01-01

    "Extreme Programming: Maestro Style" is the name of a computer programming methodology that has evolved as a custom version of a methodology, called extreme programming that has been practiced in the software industry since the late 1990s. The name of this version reflects its origin in the work of the Maestro team at NASA's Jet Propulsion Laboratory that develops software for Mars exploration missions. Extreme programming is oriented toward agile development of software resting on values of simplicity, communication, testing, and aggressiveness. Extreme programming involves use of methods of rapidly building and disseminating institutional knowledge among members of a computer-programming team to give all the members a shared view that matches the view of the customers for whom the software system is to be developed. Extreme programming includes frequent planning by programmers in collaboration with customers, continually examining and rewriting code in striving for the simplest workable software designs, a system metaphor (basically, an abstraction of the system that provides easy-to-remember software-naming conventions and insight into the architecture of the system), programmers working in pairs, adherence to a set of coding standards, collaboration of customers and programmers, frequent verbal communication, frequent releases of software in small increments of development, repeated testing of the developmental software by both programmers and customers, and continuous interaction between the team and the customers. The environment in which the Maestro team works requires the team to quickly adapt to changing needs of its customers. In addition, the team cannot afford to accept unnecessary development risk. Extreme programming enables the Maestro team to remain agile and provide high-quality software and service to its customers. However, several factors in the Maestro environment have made it necessary to modify some of the conventional extreme

  11. Venous Ultrasound (Extremities)

    Science.gov (United States)

    ... the leg – a condition often referred to as deep vein thrombosis. Ultrasound does not use ionizing radiation and has no known harmful effects. ... not responsible for the content contained on the web pages found at these links. About Us | Contact ... Terms of Use | Links | Site Map Copyright © 2017 Radiological Society of ...

  12. Extremely deformable structures

    CERN Document Server

    2015-01-01

    Recently, a new research stimulus has derived from the observation that soft structures, such as biological systems, but also rubber and gel, may work in a post critical regime, where elastic elements are subject to extreme deformations, though still exhibiting excellent mechanical performances. This is the realm of ‘extreme mechanics’, to which this book is addressed. The possibility of exploiting highly deformable structures opens new and unexpected technological possibilities. In particular, the challenge is the design of deformable and bi-stable mechanisms which can reach superior mechanical performances and can have a strong impact on several high-tech applications, including stretchable electronics, nanotube serpentines, deployable structures for aerospace engineering, cable deployment in the ocean, but also sensors and flexible actuators and vibration absorbers. Readers are introduced to a variety of interrelated topics involving the mechanics of extremely deformable structures, with emphasis on ...

  13. Statistics of Extremes

    KAUST Repository

    Davison, Anthony C.

    2015-04-10

    Statistics of extremes concerns inference for rare events. Often the events have never yet been observed, and their probabilities must therefore be estimated by extrapolation of tail models fitted to available data. Because data concerning the event of interest may be very limited, efficient methods of inference play an important role. This article reviews this domain, emphasizing current research topics. We first sketch the classical theory of extremes for maxima and threshold exceedances of stationary series. We then review multivariate theory, distinguishing asymptotic independence and dependence models, followed by a description of models for spatial and spatiotemporal extreme events. Finally, we discuss inference and describe two applications. Animations illustrate some of the main ideas. © 2015 by Annual Reviews. All rights reserved.

  14. Deep Vein Thrombosis

    African Journals Online (AJOL)

    OWNER

    CONCLUSION: Deep Venous Thrombosis is a common disease with fatal and serious long term burdensome complications. ... WAJM 2009; 28(2): 77–82. Keywords: Deep Vein Thrombosis, Venous Thrombosis,. Phlebothrombosis. ... phlebitic syndrome, ulcers and varicose veins. In surgical patients with malignant disease ...

  15. Adventure and Extreme Sports.

    Science.gov (United States)

    Gomez, Andrew Thomas; Rao, Ashwin

    2016-03-01

    Adventure and extreme sports often involve unpredictable and inhospitable environments, high velocities, and stunts. These activities vary widely and include sports like BASE jumping, snowboarding, kayaking, and surfing. Increasing interest and participation in adventure and extreme sports warrants understanding by clinicians to facilitate prevention, identification, and treatment of injuries unique to each sport. This article covers alpine skiing and snowboarding, skateboarding, surfing, bungee jumping, BASE jumping, and whitewater sports with emphasis on epidemiology, demographics, general injury mechanisms, specific injuries, chronic injuries, fatality data, and prevention. Overall, most injuries are related to overuse, trauma, and environmental or microbial exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Extremal graph theory

    CERN Document Server

    Bollobas, Bela

    2004-01-01

    The ever-expanding field of extremal graph theory encompasses a diverse array of problem-solving methods, including applications to economics, computer science, and optimization theory. This volume, based on a series of lectures delivered to graduate students at the University of Cambridge, presents a concise yet comprehensive treatment of extremal graph theory.Unlike most graph theory treatises, this text features complete proofs for almost all of its results. Further insights into theory are provided by the numerous exercises of varying degrees of difficulty that accompany each chapter. A

  17. [Deep neck infections].

    Science.gov (United States)

    Nowak, Katarzyna; Szyfter, Witold

    2006-01-01

    Deep neck infection is relatively rare but potentially life threatening complication of common oropharyngeal infections. This retrospective study was aimed at analyzing the occurrence of complications, diagnostic methods and proper management of deep neck infection. A review was conducted in 32 cases who were diagnosed as having deep neck infection from 1995 to 2005. The causes of deep neck infections were tonsillitis (16 cases), tooth diseases (6 cases), paratonsillar abscess (4 cases), parotitis (1 case), pussy lymphonodes after tonsillectomy (2 cases), pussy congenital neck cyst (1 case), chronic otitis media (1 case), parotitis (1 case), foreign body of the esophagus (1 case). All the puss bacterial cultivation were positive. All the patients were treated by different ways of chirurgical drainage and use of large dosage of antibiotics. Deep neck infection should be suspected in patients with long lasting fever and painful swelling of the neck and treatment should begin quick as possible.

  18. Variability of particulate organic carbon concentration in the north polar Atlantic based on ocean color observations with Sea-viewing Wide Field-of-view Sensor (SeaWiFS)

    Science.gov (United States)

    Stramska, Malgorzata; Stramski, Dariusz

    2005-01-01

    We use satellite data from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) to investigate distributions of particulate organic carbon (POC) concentration in surface waters of the north polar Atlantic Ocean during the spring summer season (April through August) over a 6-year period from 1998 through 2003. By use of field data collected at sea, we developed regional relationships for the purpose of estimating POC from remote-sensing observations of ocean color. Analysis of several approaches used in the POC algorithm development and match-up analysis of coincident in situ derived and satellite-derived estimates of POC resulted in selection of an algorithm that is based on the blue-to-green ratio of remote-sensing reflectance R(sub rs) (or normalized water-leaving radiance L(sub wn)). The application of the selected algorithm to a 6-year record of SeaWiFS monthly composite data of L(sub wn) revealed patterns of seasonal and interannual variability of POC in the study region. For example, the results show a clear increase of POC throughout the season. The lowest values, generally less than 200 mg per cubic meters, and at some locations often less than 50 mg per cubic meters, were observed in April. In May and June, POC can exceed 300 or even 400 mg per cubic meters in some parts of the study region. Patterns of interannual variability are intricate, as they depend on the geographic location within the study region and particular time of year (month) considered. By comparing the results averaged over the entire study region and the entire season (April through August) for each year separately, we found that the lowest POC occurred in 2001 and the highest POC occurred in 2002 and 1999.

  19. A Physical Model-based Correction for Charge Traps in the Hubble Space Telescope’s Wide Field Camera 3 Near-IR Detector and Its Applications to Transiting Exoplanets and Brown Dwarfs

    Science.gov (United States)

    Zhou, Yifan; Apai, Dániel; Lew, Ben W. P.; Schneider, Glenn

    2017-06-01

    The Hubble Space Telescope Wide Field Camera 3 (WFC3) near-IR channel is extensively used in time-resolved observations, especially for transiting exoplanet spectroscopy as well as brown dwarf and directly imaged exoplanet rotational phase mapping. The ramp effect is the dominant source of systematics in the WFC3 for time-resolved observations, which limits its photometric precision. Current mitigation strategies are based on empirical fits and require additional orbits to help the telescope reach a thermal equilibrium. We show that the ramp-effect profiles can be explained and corrected with high fidelity using charge trapping theories. We also present a model for this process that can be used to predict and to correct charge trap systematics. Our model is based on a very small number of parameters that are intrinsic to the detector. We find that these parameters are very stable between the different data sets, and we provide best-fit values. Our model is tested with more than 120 orbits (∼40 visits) of WFC3 observations and is proved to be able to provide near photon noise limited corrections for observations made with both staring and scanning modes of transiting exoplanets as well as for starting-mode observations of brown dwarfs. After our model correction, the light curve of the first orbit in each visit has the same photometric precision as subsequent orbits, so data from the first orbit no longer need to be discarded. Near-IR arrays with the same physical characteristics (e.g., JWST/NIRCam) may also benefit from the extension of this model if similar systematic profiles are observed.

  20. Brown Dwarfs in the UKIRT Infrared Deep Sky Survey (UKIDSS)

    Science.gov (United States)

    Hambly, Nigel; UKIDSS Consortium

    2003-06-01

    During the final quarter of 2003, UKIRT will take delivery of WFCAM. This new wide--field camera will have a FOV of 0.2 square degrees, and is therefore well suited to large--scale survey work. A consortium of more than 60 astronomers has successfully bid for a large fraction of all UKIRT time over the next 5 years to undertake several public surveys using this new facility. These surveys are collectively known as the UKIRT Infrared Deep Sky Survey (UKIDSS). In this short paper I will describe the project and review the prospects for BD research using UKIDSS data, highlighting some of the major science goals related to BDs that we hope will be achieved.

  1. Injuries in extreme sports.

    Science.gov (United States)

    Laver, Lior; Pengas, Ioannis P; Mei-Dan, Omer

    2017-04-18

    Extreme sports (ES) are usually pursued in remote locations with little or no access to medical care with the athlete competing against oneself or the forces of nature. They involve high speed, height, real or perceived danger, a high level of physical exertion, spectacular stunts, and heightened risk element or death.Popularity for such sports has increased exponentially over the past two decades with dedicated TV channels, Internet sites, high-rating competitions, and high-profile sponsors drawing more participants.Recent data suggest that the risk and severity of injury in some ES is unexpectedly high. Medical personnel treating the ES athlete need to be aware there are numerous differences which must be appreciated between the common traditional sports and this newly developing area. These relate to the temperament of the athletes themselves, the particular epidemiology of injury, the initial management following injury, treatment decisions, and rehabilitation.The management of the injured extreme sports athlete is a challenge to surgeons and sports physicians. Appropriate safety gear is essential for protection from severe or fatal injuries as the margins for error in these sports are small.The purpose of this review is to provide an epidemiologic overview of common injuries affecting the extreme athletes through a focus on a few of the most popular and exciting extreme sports.

  2. Deficiently extremal Gorenstein algebras

    Indian Academy of Sciences (India)

    For the given codimension g ≥ 3 and initial degree p ≥ 2, a Gorenstein algebra R/I with minimal multiplicity is extremal in the sense of Schenzel [8]. This has a nice structural implication: the minimal resolution of R/I must be pure and almost linear, and so their. Betti numbers are given by Herzog and Kühl [3] formulae.

  3. Hydrological extremes and security

    Directory of Open Access Journals (Sweden)

    Z. W. Kundzewicz

    2015-04-01

    Full Text Available Economic losses caused by hydrological extremes – floods and droughts – have been on the rise. Hydrological extremes jeopardize human security and impact on societal livelihood and welfare. Security can be generally understood as freedom from threat and the ability of societies to maintain their independent identity and their functional integrity against forces of change. Several dimensions of security are reviewed in the context of hydrological extremes. The traditional interpretation of security, focused on the state military capabilities, has been replaced by a wider understanding, including economic, societal and environmental aspects that get increasing attention. Floods and droughts pose a burden and serious challenges to the state that is responsible for sustaining economic development, and societal and environmental security. The latter can be regarded as the maintenance of ecosystem services, on which a society depends. An important part of it is water security, which can be defined as the availability of an adequate quantity and quality of water for health, livelihoods, ecosystems and production, coupled with an acceptable level of water-related risks to people, environments and economies. Security concerns arise because, over large areas, hydrological extremes − floods and droughts − are becoming more frequent and more severe. In terms of dealing with water-related risks, climate change can increase uncertainties, which makes the state’s task to deliver security more difficult and more expensive. However, changes in population size and development, and level of protection, drive exposure to hydrological hazards.

  4. Extremism and Disability Chic

    Science.gov (United States)

    Kauffman, James M.; Badar, Jeanmarie

    2018-01-01

    The word chic refers to something fashionable or stylish. Chic varies for individuals and groups and with time and place. Something chic may have desirable or undesirable long-term consequences. Disability and extremism are also changeable concepts, depending on comparison to social norms. People with disabilities should have the option of being…

  5. The JPL optical communications telescope laboratory (OCTL) test bed for the future optical Deep Space Network

    Science.gov (United States)

    Wilson, K. E.; Page, N.; Wu, J.; Srinivasan, M.

    2003-01-01

    Relative to RF, the lower power-consumption and lower mass of high bandwidth optical telecommunications make this technology extremely attractive for returning data from future NASA/JPL deep space probes.

  6. Deep learning in bioinformatics.

    Science.gov (United States)

    Min, Seonwoo; Lee, Byunghan; Yoon, Sungroh

    2017-09-01

    In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, application of deep learning in bioinformatics to gain insight from data has been emphasized in both academia and industry. Here, we review deep learning in bioinformatics, presenting examples of current research. To provide a useful and comprehensive perspective, we categorize research both by the bioinformatics domain (i.e. omics, biomedical imaging, biomedical signal processing) and deep learning architecture (i.e. deep neural networks, convolutional neural networks, recurrent neural networks, emergent architectures) and present brief descriptions of each study. Additionally, we discuss theoretical and practical issues of deep learning in bioinformatics and suggest future research directions. We believe that this review will provide valuable insights and serve as a starting point for researchers to apply deep learning approaches in their bioinformatics studies. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. New Extreme Trans-Neptunian Objects: Towards A Super-Earth In Our Solar System Beyond A Few Hundred AU

    Science.gov (United States)

    Sheppard, Scott S.; Trujillo, Chadwick A.; Tholen, David J.

    2016-10-01

    We are conducting the widest and deepest survey ever obtained for extreme distant solar system objects. Our goal is to increase understanding of the origin of extremely high perihelion objects like Sedna and 2012 VP113. We also want to determine if the extreme trans-Neptunian objects cluster in their orbital angles, which would be an indication of a yet unobserved massive shepherding planet in the distant solar system, as first shown in Trujillo and Sheppard (2014). Our survey, started in 2012, has covered about 2000 square degrees to over 24th magnitude using the wide-field imagers on the Subaru 8 meter and CTIO 4 meter telescopes. We have found several new extreme solar system objects and inner Oort cloud objects as well as discovered the first outer Oort cloud object with a perihelion beyond Neptune. We will discuss these objects along with several other interesting objects discovered in our ongoing survey.

  8. Management of an extremely displaced maxillary canine.

    Science.gov (United States)

    Grande, Torsten; Stolze, Annemarie; Goldbecher, Heiko

    2005-07-01

    Aligning a displaced maxillary canine into the dental arch is one of the most complicated problems in orthodontics. In cases of extremely high displacement, the tooth is frequently removed surgically. Because of the upper canines' significance to dental esthetics and functional occlusion, such a decision is a very serious one. This case report illustrates the treatment of an extremely high displaced maxillary canine. The main diagnosis was the displacement and the retention of tooth 13 (in nearly horizontal position, apical to the neighboring teeth); further diagnoses were: transversal maxillary deficiency with frontal crowding and a distal bite of one premolar in width, a deep bite of 6 mm with contact in the palatal mucosa, mandibular midline deviation of 2.5 mm to the right, lingual eruption of teeth 32 and 42, retroinclination of the maxillary incisors, and retarded eruption of the permanent teeth. Initial treatment with active and functional appliances to correct the distal bite, midline deviation and deep bite. Surgical exposure of the high displaced canine at the age of 14. Onset of cuspid elongation with removable appliances and elastics, further movement with a transpalatinal bar and welded arm, and full alignment of the upper and lower arches with fixed appliances in both jaws. Stabilization of the orthodontic treatment results with retention devices. Duration of treatment: 5 years and 8 months. For the alignment of tooth 13, 2 years and 10 months were required; 1 year and 4 months were necessary with complete fixed appliance. The aim of this case report was to demonstrate the potential of aligning an extremely displaced canine. Because of the esthetic and functional importance of the upper canines, therapeutic alignment should be initiated, provided there are no indications to the contrary.

  9. Non-extremal branes

    Directory of Open Access Journals (Sweden)

    Pablo Bueno

    2015-04-01

    Full Text Available We prove that for arbitrary black brane solutions of generic Supergravities there is an adapted system of variables in which the equations of motion are exactly invariant under electric–magnetic duality, i.e. the interchange of a given extended object by its electromagnetic dual. We obtain thus a procedure to automatically construct the electromagnetic dual of a given brane without needing to solve any further equation. We apply this procedure to construct the non-extremal (p,q-string of Type-IIB String Theory (new in the literature, explicitly showing how the dual (p,q-five-brane automatically arises in this construction. In addition, we prove that the system of variables used is suitable for a generic characterization of every double-extremal Supergravity brane solution, which we perform in full generality.

  10. A simple statistical signal loss model for deep underground garage

    DEFF Research Database (Denmark)

    Nguyen, Huan Cong; Gimenez, Lucas Chavarria; Kovacs, Istvan

    2016-01-01

    In this paper we address the channel modeling aspects for a deep-indoor scenario with extreme coverage conditions in terms of signal losses, namely underground garage areas. We provide an in-depth analysis in terms of path loss (gain) and large scale signal shadowing, and a propose simple...

  11. Deep Water Survey Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The deep water biodiversity surveys explore and describe the biodiversity of the bathy- and bentho-pelagic nekton using Midwater and bottom trawls centered in the...

  12. Extremes in nature

    CERN Document Server

    Salvadori, Gianfausto; Kottegoda, Nathabandu T

    2007-01-01

    This book is about the theoretical and practical aspects of the statistics of Extreme Events in Nature. Most importantly, this is the first text in which Copulas are introduced and used in Geophysics. Several topics are fully original, and show how standard models and calculations can be improved by exploiting the opportunities offered by Copulas. In addition, new quantities useful for design and risk assessment are introduced.

  13. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources

    NARCIS (Netherlands)

    Zhu, Xiao Xiang; Tuia, Devis; Mou, Lichao; Xia, Gui-Song; Zhang, Liangpei; Xu, Feng; Fraundorfer, Friedrich

    2017-01-01

    Central to the looming paradigm shift toward data-intensive science, machine-learning techniques are becoming increasingly important. In particular, deep learning has proven to be both a major breakthrough and an extremely powerful tool in many fields. Shall we embrace deep learning as the key to

  14. A Wide-Field Study of the z ~ 0.8 Cluster RX J0152.7-1357: The Role of Environment in the Formation of the Red Sequence

    Science.gov (United States)

    Patel, Shannon G.; Kelson, Daniel D.; Holden, Bradford P.; Illingworth, Garth D.; Franx, Marijn; van der Wel, Arjen; Ford, Holland

    2009-04-01

    We present the first results from the largest spectroscopic survey to date of an intermediate redshift galaxy cluster, the z = 0.834 cluster RX J0152.7-1357. We use the colors of galaxies, assembled from a D ~ 12 Mpc region centered on the cluster, to investigate the properties of the red sequence as a function of density and clustercentric radius. Our wide-field multislit survey with a low-dispersion prism in the Inamori Magellan Areal Camera and Spectrograph at the 6.5 m Baade telescope allowed us to identify 475 new members of the cluster and its surrounding large-scale structure with a redshift accuracy of σ z /(1 + z) ≈ 1% and a contamination rate of ~2% for galaxies with i' 4 × 1010 M sun (log M/M sun>10.6). We find that the red galaxy fraction is 93 ± 3% in the two merging cores of the cluster and declines to a level of 64 ± 3% at projected clustercentric radii R gsim 3 Mpc. At these large projected distances, the correlation between clustercentric radius and local density is nonexistent. This allows an assessment of the influence of the local environment on galaxy evolution, as opposed to mechanisms that operate on cluster scales (e.g., harassment, ram-pressure stripping). Even beyond R>3 Mpc we find an increasing fraction of red galaxies with increasing local density. The red galaxy fraction at the highest local densities in two large groups at R>3 Mpc matches the red galaxy fraction found in the two cores. Strikingly, galaxies at intermediate densities at R>3 Mpc, that are not obvious members of groups, also show signs of an enhanced red galaxy fraction. Our results point to such intermediate-density regions and the groups in the outskirts of the cluster, as sites where the local environment influences the transition of galaxies onto the red sequence. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California

  15. Deep Time Contagion

    Directory of Open Access Journals (Sweden)

    Andy Weir

    2012-11-01

    Full Text Available An artist from London researching the effects of deprioritised subjectivity and contemporary art, Weir presents acoustic recordings made in deep geological repository sites. Repurposing these sites from their typical use as storage space for nuclear waste, Weir addresses the extra-human scale of Deep Time through sonic-fiction. Inhumanly enduring and impinging upon humanity largely imperceptibly, what agency—at what scale—is present?

  16. The Number Density Evolution of Extreme Emission Line Galaxies in 3D-HST: Results from a Novel Automated Line Search Technique for Slitless Spectroscopy

    Science.gov (United States)

    Maseda, Michael V.; van der Wel, Arjen; Rix, Hans-Walter; Momcheva, Ivelina; Brammer, Gabriel B.; Franx, Marijn; Lundgren, Britt F.; Skelton, Rosalind E.; Whitaker, Katherine E.

    2018-02-01

    The multiplexing capability of slitless spectroscopy is a powerful asset in creating large spectroscopic data sets, but issues such as spectral confusion make the interpretation of the data challenging. Here we present a new method to search for emission lines in the slitless spectroscopic data from the 3D-HST survey utilizing the Wide-Field Camera 3 on board the Hubble Space Telescope. Using a novel statistical technique, we can detect compact (extended) emission lines at 90% completeness down to fluxes of 1.5(3.0)× {10}-17 {erg} {{{s}}}-1 {{cm}}-2, close to the noise level of the grism exposures, for objects detected in the deep ancillary photometric data. Unlike previous methods, the Bayesian nature allows for probabilistic line identifications, namely redshift estimates, based on secondary emission line detections and/or photometric redshift priors. As a first application, we measure the comoving number density of Extreme Emission Line Galaxies (restframe [O III] λ5007 equivalent widths in excess of 500 Å). We find that these galaxies are nearly 10× more common above z ∼ 1.5 than at z ≲ 0.5. With upcoming large grism surveys such as Euclid and WFIRST, as well as grisms featured prominently on the NIRISS and NIRCam instruments on the James Webb Space Telescope, methods like the one presented here will be crucial for constructing emission line redshift catalogs in an automated and well-understood manner. This work is based on observations taken by the 3D-HST Treasury Program and the CANDELS Multi-Cycle Treasury Program with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  17. DCMDN: Deep Convolutional Mixture Density Network

    Science.gov (United States)

    D'Isanto, Antonio; Polsterer, Kai Lars

    2017-09-01

    Deep Convolutional Mixture Density Network (DCMDN) estimates probabilistic photometric redshift directly from multi-band imaging data by combining a version of a deep convolutional network with a mixture density network. The estimates are expressed as Gaussian mixture models representing the probability density functions (PDFs) in the redshift space. In addition to the traditional scores, the continuous ranked probability score (CRPS) and the probability integral transform (PIT) are applied as performance criteria. DCMDN is able to predict redshift PDFs independently from the type of source, e.g. galaxies, quasars or stars and renders pre-classification of objects and feature extraction unnecessary; the method is extremely general and allows the solving of any kind of probabilistic regression problems based on imaging data, such as estimating metallicity or star formation rate in galaxies.

  18. Why & When Deep Learning Works: Looking Inside Deep Learnings

    OpenAIRE

    Ronen, Ronny

    2017-01-01

    The Intel Collaborative Research Institute for Computational Intelligence (ICRI-CI) has been heavily supporting Machine Learning and Deep Learning research from its foundation in 2012. We have asked six leading ICRI-CI Deep Learning researchers to address the challenge of "Why & When Deep Learning works", with the goal of looking inside Deep Learning, providing insights on how deep networks function, and uncovering key observations on their expressiveness, limitations, and potential. The outp...

  19. [The extremely violent child].

    Science.gov (United States)

    Berger, M; Bonneville, E

    2009-02-01

    More and more children have extremely violent behaviour which appears about the age of 15-16 months, when walking makes their hands free. This violence is individual, can appear suddenly at anytime, and is not accompanied by guilt. It is caused by early psychological and repeated traumas, whose importance is usually underestimated: unpredictable, violent parents, exposure to the spectacle of conjugal violence, distortion of the signals emitted by the toddler. These traumas bring about specific psychological structure. The prevention of these troubles exists but is impossible to realise in France.

  20. Extreme Programming Pocket Guide

    CERN Document Server

    Chromatic

    2003-01-01

    Extreme Programming (XP) is a radical new approach to software development that has been accepted quickly because its core practices--the need for constant testing, programming in pairs, inviting customer input, and the communal ownership of code--resonate with developers everywhere. Although many developers feel that XP is rooted in commonsense, its vastly different approach can bring challenges, frustrations, and constant demands on your patience. Unless you've got unlimited time (and who does these days?), you can't always stop to thumb through hundreds of pages to find the piece of info

  1. Mycetoma of lower extremity

    Directory of Open Access Journals (Sweden)

    Sahariah S

    1978-01-01

    Full Text Available Ten cases of mycetoma of the lower extremity were seen and treated at the Postgraduate Institute of Medical Education & Research, Chandigarh, India, during the years 1973 to 1975. Six were treated by conservative method e.g. antibiotics, sulfonamides and immobilization of the part while remaining four were submitted t o surgery. Four out o f six from the first group had recurrence and has been put on second line of therapy. Recurrence occurred in only one case from the second group and he required an above knee amputation while the remaining three are free of disease and are well rehabilitated.

  2. Cultured and uncultured fungal diversity in deep-sea environments.

    Science.gov (United States)

    Nagahama, Takahiko; Nagano, Yuriko

    2012-01-01

    The importance of fungi found in deep-sea extreme environments is becoming increasingly recognized. In this chapter, current scientific findings on the fungal diversity in several deep-sea environments by conventional culture and culture-independent methods are reviewed and discussed, primarily focused on culture-independent approaches. Fungal species detected by conventional culture methods mostly belonged to Ascomycota and Basidiomycota phyla. Culture-independent approaches have revealed the presence of highly novel fungal phylotypes, including new taxonomic groups placed in deep branches within the phylum Chytridiomycota and unknown ancient fungal groups. Future attempts to culture these unknown fungal groups may provide key insights into the early evolution of fungi and their ecological and physiological significance in deep-sea environments.

  3. Vertical structure of extreme currents in the Faroe-Bank Channel

    Directory of Open Access Journals (Sweden)

    C. Carollo

    2005-09-01

    Full Text Available Extreme currents are studied with the aim of understanding their vertical and spatial structures in the Faroe-Bank Channel. Acoustic Doppler Current Profiler time series recorded in 3 deployments in this channel were investigated. To understand the main features of extreme events, the measurements were separated into their components through filtering and tidal analysis before applying the extreme value theory to the surge component. The Generalized Extreme Value (GEV distribution and the Generalized Pareto Distribution (GPD were used to study the variation of surge extremes from near-surface to deep waters. It was found that this component alone is not able to explain the extremes measured in total currents, particularly below 500 m. Here the mean residual flow enhanced by tidal rectification was found to be the component feature dominating extremes. Therefore, it must be taken into consideration when applying the extreme value theory, not to underestimate the return level for total currents. Return value speeds up to 250 cm s–1 for 50/250 years return period were found for deep waters, where the flow is constrained by the topography at bearings near 300/330° It is also found that the UK Meteorological Office FOAM model is unable to reproduce either the magnitude or the form for the extremes, perhaps due to its coarse vertical and horizontal resolution, and is thus not suitable to model extremes on a regional scale.

    Keywords. Oceanography: Physical (Currents; General circulation; General or miscellaneous

  4. Deep Dysgraphia in Turkish

    Directory of Open Access Journals (Sweden)

    Ilhan Raman

    2005-01-01

    Full Text Available Deep dysgraphic patients make semantic errors when writing to dictation and they cannot write nonwords. Extant reports of deep dysgraphia come from languages with relatively opaque orthographies. Turkish is a transparent orthography because the bidirectional mappings between phonology and orthography are completely predictable. We report BRB, a biscriptal Turkish-English speaker who has acquired dysgraphia characterised by semantic errors as well as effects of grammatical class and imageability on writing in Turkish. Nonword spelling is abolished. A similar pattern of errors is observed in English. BRB is the first report of acquired dysgraphia in a truly transparent writing system. We argue that deep dysgraphia results from damage to the mappings that are common to both languages between word meanings and orthographic representations.

  5. Deep dysgraphia in Turkish.

    Science.gov (United States)

    Raman, Ilhan; Weekes, Brendan Stuart

    2005-01-01

    Deep dysgraphic patients make semantic errors when writing to dictation and they cannot write nonwords. Extant reports of deep dysgraphia come from languages with relatively opaque orthographies. Turkish is a transparent orthography because the bidirectional mappings between phonology and orthography are completely predictable. We report BRB, a biscriptal Turkish-English speaker who has acquired dysgraphia characterised by semantic errors as well as effects of grammatical class and imageability on writing in Turkish. Nonword spelling is abolished. A similar pattern of errors is observed in English. BRB is the first report of acquired dysgraphia in a truly transparent writing system. We argue that deep dysgraphia results from damage to the mappings that are common to both languages between word meanings and orthographic representations.

  6. News on Deep Mixing

    Science.gov (United States)

    Lattanzio, John C.; Dearborn, Davis S. P.; Eggleton, Peter P.

    2008-04-01

    We briefly summarize the abundant observational evidence for the need of a ``deep mixing'' mechanism in first-ascent red-giant stars, and probably in AGB stars as well. By the term ``deep mixing'' we mean some mixing mechanism which operates in the radiative zone below the convective envelope, and which transports material from the convective region to hotter regions, near the top of the hydrogen shell, where nuclear burning may take place. We then discuss a recent discovery of deep-mixing caused by the burning of 3He following first dredge-up in low-mass stars. This is expected to be a thermohaline process and preliminary calculations show that it has many of the properties required to explain the observations.

  7. Auxiliary Deep Generative Models

    DEFF Research Database (Denmark)

    Maaløe, Lars; Sønderby, Casper Kaae; Sønderby, Søren Kaae

    2016-01-01

    Deep generative models parameterized by neural networks have recently achieved state-of-the-art performance in unsupervised and semi-supervised learning. We extend deep generative models with auxiliary variables which improves the variational approximation. The auxiliary variables leave...... the generative model unchanged but make the variational distribution more expressive. Inspired by the structure of the auxiliary variable we also propose a model with two stochastic layers and skip connections. Our findings suggest that more expressive and properly specified deep generative models converge...... faster with better results. We show state-of-the-art performance within semi-supervised learning on MNIST (0.96%), SVHN (16.61%) and NORB (9.40%) datasets....

  8. Deep boreholes; Tiefe Bohrloecher

    Energy Technology Data Exchange (ETDEWEB)

    Bracke, Guido [Gesellschaft fuer Anlagen- und Reaktorsicherheit gGmbH Koeln (Germany); Charlier, Frank [NSE international nuclear safety engineering gmbh, Aachen (Germany); Geckeis, Horst [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Nukleare Entsorgung; and others

    2016-02-15

    The report on deep boreholes covers the following subject areas: methods for safe enclosure of radioactive wastes, requirements concerning the geological conditions of possible boreholes, reversibility of decisions and retrievability, status of drilling technology. The introduction covers national and international activities. Further chapters deal with the following issues: basic concept of the storage in deep bore holes, status of the drilling technology, safe enclosure, geomechanics and stability, reversibility of decisions, risk scenarios, compliancy with safe4ty requirements and site selection criteria, research and development demand.

  9. DEEP UNDERGROUND NEUTRINO EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Robert J. [Fermilab

    2016-03-03

    The Deep Underground Neutrino Experiment (DUNE) collaboration will perform an experiment centered on accelerator-based long-baseline neutrino studies along with nucleon decay and topics in neutrino astrophysics. It will consist of a modular 40-kt (fiducial) mass liquid argon TPC detector located deep underground at the Sanford Underground Research Facility in South Dakota and a high-resolution near detector at Fermilab in Illinois. This conguration provides a 1300-km baseline in a megawatt-scale neutrino beam provided by the Fermilab- hosted international Long-Baseline Neutrino Facility.

  10. Deep Mantle Fluids Bottled Up in Diamonds

    Science.gov (United States)

    Weiss, Y.; Pearson, D. G.

    2015-12-01

    Many mantle xenoliths and mineral inclusions in diamonds reflect refertilisation and enrichment by mantle metasomatism, a key mechanism for controlling abrupt changes in the chemical and physical properties of the continental lithospheric mantle (CLM) globally. However, the nature of the fluids involved can normally only be constrained indirectly from geochemical proxies or calculated using mineral/melt partition coefficients. Direct samples of mantle metasomatic fluids, shielded from any late stage alteration, are encased as microinclusions in fast-growing diamonds - "fibrous diamonds". These trapped high-density fluids (HDFs) provide a unique chemical and physical record for tracing the sources of deep mantle fluids and constraining the processes that shape their nature.Diamond HDFs vary between four major compositional types: saline, silicic and high-Mg plus low-Mg carbonatitic. A strong connection has been established between high-Mg carbonatitic HDFs and a carbonated peridotite source. In addition, the silicic and low-Mg carbonatitic HDFs have been related to hydrous eclogite (±carbonate). However, the compositionally extreme saline fluid endmember remained enigmatic and its source in the deep lithosphere has remained ambiguous. Our new data on fluid-rich diamonds show the geochemical fingerprints of a subducting slab as the source of deep mantle fluids of saline composition. In addition, for the first time, we show that these deep saline fluids are parental, via fluid rock interaction, to in-situ forming carbonatitic and silicic melts in the lithosphere. This model provides a strong platform for resolving the effects of the compositional spectrum of mantle fluids, which alter the deep lithosphere globally and play key roles in diamond formation.

  11. An alma survey of sub-millimeter galaxies in the extended Chandra deep field south: Sub-millimeter properties of color-selected galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Decarli, R.; Walter, F.; Hodge, J. A.; Rix, H.-W.; Schinnerer, E. [Max-Planck Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Smail, I.; Swinbank, A. M.; Karim, A.; Simpson, J. M. [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Chapman, S. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Coppin, K. E. K. [Centre for Astrophysics, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Cox, P. [IRAM, 300 rue de la piscine, F-38406 Saint-Martin d' Hères (France); Dannerbauer, H. [Universität Wien, Institut für Astrophysik, Türenschanzstrasse 17, A-1180 Wien (Austria); Greve, T. R. [University College London, Department of Physics and Astronomy, Gower Street, London WC1E 6BT (United Kingdom); Ivison, R. [Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Knudsen, K. K.; Lindroos, L. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, Onsala SE-439 92 (Sweden); Van der Werf, P. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Weiß, A., E-mail: decarli@mpia.de [Max-Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2014-01-10

    We study the sub-millimeter properties of color-selected galaxies via a stacking analysis applied for the first time to interferometric data at sub-millimeter wavelengths. We base our study on 344 GHz ALMA continuum observations of ∼20''-wide fields centered on 86 sub-millimeter sources detected in the LABOCA Extended Chandra Deep Field South (ECDFS) Sub-millimeter Survey. We select various classes of galaxies (K-selected, star-forming sBzK galaxies, extremely red objects, and distant red galaxies) according to their optical/near-infrared fluxes. We find clear, >10σ detections in the stacked images of all these galaxy classes. We include in our stacking analysis Herschel/SPIRE data to constrain the dust spectral energy distribution of these galaxies. We find that their dust emission is well described by a modified blackbody with T {sub dust} ≈ 30 K and β = 1.6 and infrared luminosities of (5-11) × 10{sup 11} L {sub ☉} or implied star formation rates of 75-140 M {sub ☉} yr{sup –1}. We compare our results with those of previous studies based on single-dish observations at 870 μm and find that our flux densities are a factor 2-3 higher than previous estimates. The discrepancy is observed also after removing sources individually detected in ALESS maps. We report a similar discrepancy by repeating our analysis on 1.4 GHz observations of the whole ECDFS. Hence, we find tentative evidence that galaxies that are associated in projected and redshift space with sub-mm bright sources are brighter than the average population. Finally, we put our findings in the context of the cosmic star formation rate density as a function of redshift.

  12. Statistics of Local Extremes

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Bierbooms, W.; Hansen, Kurt Schaldemose

    2003-01-01

    The gust events described in the IEC-standard are formulated as coherent gusts of an inherent deterministic character, whereas the gusts experienced in real situation are of a stochastic nature with a limited spatial extension. This conceptual differencemay cause substantial differences in the load......, 1996]. However, dealing with wind turbine design, not only detailed knowledge on the spatial/time structure of the gust event is required. The probabilityof occurrence of a gust event with a given wind speed amplitude/magnitude is equally important. This theme is addressed in the present report......"Modelling of Extreme Gusts for Design Calculations " (NEWGUST), which is co-funded through JOULEIII on contract no. JOR3-CT98-0239....

  13. Teaching for Deep Learning

    Science.gov (United States)

    Smith, Tracy Wilson; Colby, Susan A.

    2007-01-01

    The authors have been engaged in research focused on students' depth of learning as well as teachers' efforts to foster deep learning. Findings from a study examining the teaching practices and student learning outcomes of sixty-four teachers in seventeen different states (Smith et al. 2005) indicated that most of the learning in these classrooms…

  14. Deep Vein Thrombosis

    Centers for Disease Control (CDC) Podcasts

    2012-04-05

    This podcast discusses the risk for deep vein thrombosis in long-distance travelers and ways to minimize that risk.  Created: 4/5/2012 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 4/5/2012.

  15. The Ultra Deep Field 2012: Hubble's First View of the Universe to Redshifts 12

    Science.gov (United States)

    Ellis, Richard S.; McLure, R.; Koekemoer, A. M.; Dunlop, J.; Robertson, B. E.; Schenker, M.; Ono, Y.; UDF12 Team

    2013-01-01

    Deep exposures with the Hubble Space Telescope (HST) have provided the primary evidence that star-forming galaxies were present in the first billion years of cosmic history. Through a sequence of ever-deeper HST images commencing with the Hubble Deep Field, the Ultra Deep Field (UDF) and further imaging with the near-infrared arm of the Wide Field Camera 3 (WFC3/IR), the frontiers of early galaxy formation have been pushed to redshifts beyond 8, corresponding to 650 million years after the Big Bang. Tentative claims have been made for sources at even earlier times. We present the first exciting results from the Ultra Deep Field 2012 - a new series of images totalling 128 orbits taken in the UDF with WFC3/IR during August and September this year. These extend our knowledge of this last frontier of cosmic history both in depth and, via the use of additional filters, in the fidelity of the sources found. In the key filters by which early galaxies are selected, the new survey termed UDF12 reaches nearly a magnitude deeper and the total infrared exposure is twice that of earlier data. Via these spectacularly deep images, we gain our first unambiguous view of the Universe beyond a redshift 8 and can clarify the abundance of sources to redshift 10 and beyond. Via the combination of deeper imaging and an improved strategy for eliminating foreground sources, the UDF12 takes us closer to the first generation of galaxies.

  16. Moving in extreme environments:extreme loading; carriage versus distance

    OpenAIRE

    Lucas, Samuel J. E.; Helge, Jørn W.; Schütz, Uwe H W; Goldman, Ralph F.; Cotter, James D

    2016-01-01

    This review addresses human capacity for movement in the context of extreme loading and with it the combined effects of metabolic, biomechanical and gravitational stress on the human body. This topic encompasses extreme duration, as occurs in ultra-endurance competitions (e.g. adventure racing and transcontinental races) and expeditions (e.g. polar crossings), to the more gravitationally limited load carriage (e.g. in the military context). Juxtaposed to these circumstances is the extreme met...

  17. 4Deep Seismix

    Science.gov (United States)

    Stephenson, M. A.; Brown, L. D.

    2004-12-01

    4D, or time-lapse, seismic reflection imaging is rapidly becoming a mainstream tool in monitoring oil field production. The same technology offers considerable potential in addressing issues central to active tectonics in deeper crust. In this study, we employ acoustic finite difference wave equation modeling using MATLAB (CREWES) to evaluate the issues that constrain the feasibility of time-lapse imaging of seismic and volcanic systems. Such systems are the most likely to have temporal variations which occur on time scales where such surveys may have operational practicality. Among the processes modeled are changes in inflation (or deflation) of magma sills at midcrustal depths, fluid pressure in the deep seismogenic zone, and offset of potential marker horizons by aseismic creep in slow earthquakes. While the latter would seem to be beyond practical consideration, at least at the present time, differential seismic sections produced for a variety of magma inflation models indicate that monitoring of magma movements at depth is a realistic goal. Possible seismogenic variations in deep faults zones are perhaps more problematic, though our model suggests scenarios wherein useful results may be obtained. In all of these cases, resolution is perhaps less of an issue than S/N. Noise sources include both ambient noise, and systematic property variations in overlying media. The latter may be addressed by standard signal enhancement procedures, both in acquisition and processing. The former may be addressed by "registration' of data against natural deep markers. While one can envision a number of significant practical hurdles to time lapse imaging of deep processes, this study indicates that it is not an unreasonable goal. Moreover, the deep crust may prove to be considerably less `static' that we normally assume.

  18. Lower extremity injuries in snowboarding.

    Science.gov (United States)

    Ishimaru, Daichi; Ogawa, Hiroyasu; Sumi, Hiroshi; Sumi, Yasuhiko; Shimizu, Katsuji

    2011-03-01

    In snowboarding, the upper extremity is known as the most common injury site and little information is available for lower extremity injuries. Here, we aim to discuss lower extremity injuries during snowboarding. We retrospectively analyzed the epidemiologic factors, injury types, and injury mechanisms for injured snowboarders (7,793 cases) between 2004-2005 and 2008-2009 seasons; information was gathered via questionnaires. Individuals were classified into a lower extremity injury group (961 cases) and a control group with other injuries (6,832 cases). The incidence of lower extremity injuries in snowboarding was 0.16 per 1,000 participant days, accounting for 12.3% of all snowboarding injuries. The mean age of the lower extremity injury group and injured control group was 26.1 years ± 5.9 years and 25.1 years ± 5.6 years, respectively. Approximately 90% of snowboarders in both the groups were equipped with soft-shelled boots. Skilled snowboarders tended to sustain lower extremity injuries (psnowboarding is lacerations/contusions caused by collision with other snow sport participants. Lower extremity injuries in snowboarding differ considerably from well-known upper extremity injuries in terms of injury types and mechanisms. The incidence of lower extremity injuries is high and deserves further attention. Copyright © 2011 by Lippincott Williams & Wilkins

  19. The NASA Energy and Water Cycle Extreme (NEWSE) Integration Project

    Science.gov (United States)

    House, P. R.; Lapenta, W.; Schiffer, R.

    2008-01-01

    Skillful predictions of water and energy cycle extremes (flood and drought) are elusive. To better understand the mechanisms responsible for water and energy extremes, and to make decisive progress in predicting these extremes, the collaborative NASA Energy and Water cycle Extremes (NEWSE) Integration Project, is studying these extremes in the U.S. Southern Great Plains (SGP) during 2006-2007, including their relationships with continental and global scale processes, and assessment of their predictability on multiple space and time scales. It is our hypothesis that an integrative analysis of observed extremes which reflects the current understanding of the role of SST and soil moisture variability influences on atmospheric heating and forcing of planetary waves, incorporating recently available global and regional hydro- meteorological datasets (i.e., precipitation, water vapor, clouds, etc.) in conjunction with advances in data assimilation, can lead to new insights into the factors that lead to persistent drought and flooding. We will show initial results of this project, whose goals are to provide an improved definition, attribution and prediction on sub-seasonal to interannual time scales, improved understanding of the mechanisms of decadal drought and its predictability, including the impacts of SST variability and deep soil moisture variability, and improved monitoring/attributions, with transition to applications; a bridging of the gap between hydrological forecasts and stakeholders (utilization of probabilistic forecasts, education, forecast interpretation for different sectors, assessment of uncertainties for different sectors, etc.).

  20. Numerical modelling of extreme waves by Smoothed Particle Hydrodynamics

    Directory of Open Access Journals (Sweden)

    M. H. Dao

    2011-02-01

    Full Text Available The impact of extreme/rogue waves can lead to serious damage of vessels as well as marine and coastal structures. Such extreme waves in deep water are characterized by steep wave fronts and an energetic wave crest. The process of wave breaking is highly complex and, apart from the general knowledge that impact loadings are highly impulsive, the dynamics of the breaking and impact are still poorly understood. Using an advanced numerical method, the Smoothed Particle Hydrodynamics enhanced with parallel computing is able to reproduce well the extreme waves and their breaking process. Once the waves and their breaking process are modelled successfully, the dynamics of the breaking and the characteristics of their impact on offshore structures could be studied. The computational methodology and numerical results are presented in this paper.

  1. Extreme winds in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, L.; Rathmann, O.; Hansen, S.O.

    1999-02-01

    Wind-speed data from four sites in Denmark have been analyzed in order to obtain estimates of the basic wind velocity which is defined as the 50-year wind speed under standard conditions, i.e. ten-minute averages at the height 10 m over a uniform terrain with the roughness length 0.05 m. The sites are, from west, Skjern (15 years), Kegnaes (7 years), Sprogoe (20 years), and Tystofte (15 years). The data are ten minute averages of wind speed, wind direction, temperature and pressure. The last two quantities are used to determine the air density {rho}. The data are cleaned for terrain effects by means of a slightly modified WASP technique where the sector speed-up factors and roughness lengths are linearly smoothed with a direction resolution of one degree. Assuming geotropic balance, all the wind-velocity data are transformed to friction velocity u{sub *} and direction at standard conditions by means of the geotropic drag law for neutral stratification. The basic wind velocity in 30 deg. sectors are obtained through ranking of the largest values of the friction velocity pressure 1/2{rho}u{sub *}{sup 2} taken both one every two months and once every year. The main conclusion is that the basic wind velocity is significantly larger at Skjern, close to the west coast of Jutland, than at any of the other sites. Irrespective of direction, the present standard estimates of 50-year wind are 25 {+-} 1 m/s at Skern and 22 {+-} 1 m/s at the other three sites. These results are in agreement with those obtained by Jensen and Franck (1970) and Abild (1994) and supports the conclusion that the wind climate at the west coast of Jutland is more extreme than in any other part of the country. Simple procedures to translate in a particular direction sector the standard basic wind velocity to conditions with a different roughness length and height are presented. It is shown that a simple scheme makes it possible to calculate the total 50-year extreme load on a general structure without

  2. Deep Learning for Population Genetic Inference.

    Directory of Open Access Journals (Sweden)

    Sara Sheehan

    2016-03-01

    Full Text Available Given genomic variation data from multiple individuals, computing the likelihood of complex population genetic models is often infeasible. To circumvent this problem, we introduce a novel likelihood-free inference framework by applying deep learning, a powerful modern technique in machine learning. Deep learning makes use of multilayer neural networks to learn a feature-based function from the input (e.g., hundreds of correlated summary statistics of data to the output (e.g., population genetic parameters of interest. We demonstrate that deep learning can be effectively employed for population genetic inference and learning informative features of data. As a concrete application, we focus on the challenging problem of jointly inferring natural selection and demography (in the form of a population size change history. Our method is able to separate the global nature of demography from the local nature of selection, without sequential steps for these two factors. Studying demography and selection jointly is motivated by Drosophila, where pervasive selection confounds demographic analysis. We apply our method to 197 African Drosophila melanogaster genomes from Zambia to infer both their overall demography, and regions of their genome under selection. We find many regions of the genome that have experienced hard sweeps, and fewer under selection on standing variation (soft sweep or balancing selection. Interestingly, we find that soft sweeps and balancing selection occur more frequently closer to the centromere of each chromosome. In addition, our demographic inference suggests that previously estimated bottlenecks for African Drosophila melanogaster are too extreme.

  3. Deep Learning for Population Genetic Inference

    Science.gov (United States)

    Sheehan, Sara; Song, Yun S.

    2016-01-01

    Given genomic variation data from multiple individuals, computing the likelihood of complex population genetic models is often infeasible. To circumvent this problem, we introduce a novel likelihood-free inference framework by applying deep learning, a powerful modern technique in machine learning. Deep learning makes use of multilayer neural networks to learn a feature-based function from the input (e.g., hundreds of correlated summary statistics of data) to the output (e.g., population genetic parameters of interest). We demonstrate that deep learning can be effectively employed for population genetic inference and learning informative features of data. As a concrete application, we focus on the challenging problem of jointly inferring natural selection and demography (in the form of a population size change history). Our method is able to separate the global nature of demography from the local nature of selection, without sequential steps for these two factors. Studying demography and selection jointly is motivated by Drosophila, where pervasive selection confounds demographic analysis. We apply our method to 197 African Drosophila melanogaster genomes from Zambia to infer both their overall demography, and regions of their genome under selection. We find many regions of the genome that have experienced hard sweeps, and fewer under selection on standing variation (soft sweep) or balancing selection. Interestingly, we find that soft sweeps and balancing selection occur more frequently closer to the centromere of each chromosome. In addition, our demographic inference suggests that previously estimated bottlenecks for African Drosophila melanogaster are too extreme. PMID:27018908

  4. Deep Learning for Population Genetic Inference.

    Science.gov (United States)

    Sheehan, Sara; Song, Yun S

    2016-03-01

    Given genomic variation data from multiple individuals, computing the likelihood of complex population genetic models is often infeasible. To circumvent this problem, we introduce a novel likelihood-free inference framework by applying deep learning, a powerful modern technique in machine learning. Deep learning makes use of multilayer neural networks to learn a feature-based function from the input (e.g., hundreds of correlated summary statistics of data) to the output (e.g., population genetic parameters of interest). We demonstrate that deep learning can be effectively employed for population genetic inference and learning informative features of data. As a concrete application, we focus on the challenging problem of jointly inferring natural selection and demography (in the form of a population size change history). Our method is able to separate the global nature of demography from the local nature of selection, without sequential steps for these two factors. Studying demography and selection jointly is motivated by Drosophila, where pervasive selection confounds demographic analysis. We apply our method to 197 African Drosophila melanogaster genomes from Zambia to infer both their overall demography, and regions of their genome under selection. We find many regions of the genome that have experienced hard sweeps, and fewer under selection on standing variation (soft sweep) or balancing selection. Interestingly, we find that soft sweeps and balancing selection occur more frequently closer to the centromere of each chromosome. In addition, our demographic inference suggests that previously estimated bottlenecks for African Drosophila melanogaster are too extreme.

  5. HST Imaging of the Brightest z ∼ 8–9 Galaxies from UltraVISTA: The Extreme Bright End of the UV Luminosity Function

    Science.gov (United States)

    Stefanon, Mauro; Labbé, Ivo; Bouwens, Rychard J.; Brammer, Gabriel B.; Oesch, Pascal; Franx, Marijn; Fynbo, Johan P. U.; Milvang-Jensen, Bo; Muzzin, Adam; Illingworth, Garth D.; Le Fèvre, Olivier; Caputi, Karina I.; Holwerda, Benne W.; McCracken, Henry J.; Smit, Renske; Magee, Dan

    2017-12-01

    We report on the discovery of three especially bright candidate {z}{phot}≳ 8 galaxies. Five sources were targeted for follow-up with the Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3), selected from a larger sample of 16 bright (24.8≲ H≲ 25.5 mag) candidate z≳ 8 Lyman break galaxies (LBGs) identified over 1.6 degrees2 of the COSMOS/UltraVISTA field. These were selected as Y and J dropouts by leveraging the deep (Y-to-{K}{{S}}∼ 25.3{--}24.8 mag, 5σ ) NIR data from the UltraVISTA DR3 release, deep ground-based optical imaging from the CFHTLS and Suprime-Cam programs, and Spitzer/IRAC mosaics combining observations from the SMUVS and SPLASH programs. Through the refined spectral energy distributions, which now also include new HyperSuprimeCam g-, r-, i-, z-, and Y-band data, we confirm that 3/5 galaxies have robust {z}{phot}∼ 8.0{--}8.7, consistent with the initial selection. The remaining 2/5 galaxies have a nominal {z}{phot}∼ 2. However, with HST data alone, these objects have increased probability of being at z∼ 9. We measure mean UV continuum slopes β =-1.74+/- 0.35 for the three z∼ 8{--}9 galaxies, marginally bluer than similarly luminous z∼ 4{--}6 in CANDELS but consistent with previous measurements of similarly luminous galaxies at z∼ 7. The circularized effective radius for our brightest source is 0.9 ± 0.3 kpc, similar to previous measurements for a bright z∼ 11 galaxy and bright z∼ 7 galaxies. Finally, enlarging our sample to include the six brightest z∼ 8 LBGs identified over UltraVISTA (i.e., including three other sources from Labbé et al.) we estimate for the first time the volume density of galaxies at the extreme bright end ({M}{UV}∼ -22 mag) of the z∼ 8 UV luminosity function. Despite this exceptional result, the still large statistical uncertainties do not allow us to discriminate between a Schechter and a double-power-law form.

  6. Hydro-meteorologic assessment of October 2015 extreme precipitation event on Santee Experimental Forest Watersheds, South Carolina

    Science.gov (United States)

    D.M. Amatya; C.A. Harrison; C.C. Trettin

    2016-01-01

    The extreme precipitation event on October 3-4, 2015, likely resulting from the convergence of a persistent deep easterly flow, the continuous supply of moisture, the terrain, and the circulation associated with Hurricane Joaquin off the eastern Atlantic Coast (http://cms.met.psu. edu/sref/severe/2015/04Oct2015.pdf) resulted in extreme and prolonged flooding in many...

  7. Deep Convection in the Ocean

    National Research Council Canada - National Science Library

    McWilliams, James

    1999-01-01

    ... mechanism of water mass transformation. The resultant newly mixed deep water masses form a component of the thermohaline circulation, and hence it is essential to understand the deep convection process if the variability of the meridional...

  8. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2004-01-01

    (PDF) of turbulence driven short-term extreme wind shear events, conditioned on the mean wind speed, for an arbitrary recurrence period. The model is based on an asymptotic expansion, and only a few and easily accessible parameters are needed as input. The model of the extreme PDF is supplemented...... by a model that, on a statistically consistent basis, describe the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of high-sampled full-scale time series measurements...... are consistent, given the inevitabel uncertainties associated with model as well as with the extreme value data analysis. Keywords: Statistical model, extreme wind conditions, statistical analysis, turbulence, wind loading, statistical analysis, turbulence, wind loading, wind shear, wind turbines....

  9. Detectors in Extreme Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Blaj, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Carini, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Carron, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Haller, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hart, P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hasi, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Herrmann, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kenney, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Segal, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tomada, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-06

    Free Electron Lasers opened a new window on imaging the motion of atoms and molecules. At SLAC, FEL experiments are performed at LCLS using 120Hz pulses with 1012 - 1013 photons in 10 femtoseconds (billions of times brighter than the most powerful synchrotrons). This extreme detection environment raises unique challenges, from obvious to surprising. Radiation damage is a constant threat due to accidental exposure to insufficiently attenuated beam, focused beam and formation of ice crystals reflecting the beam onto the detector. Often high power optical lasers are also used (e.g., 25TW), increasing the risk of damage or impeding data acquisition through electromagnetic pulses (EMP). The sample can contaminate the detector surface or even produce shrapnel damage. Some experiments require ultra high vacuum (UHV) with strict design, surface contamination and cooling requirements - also for detectors. The setup is often changed between or during experiments with short turnaround times, risking mechanical and ESD damage, requiring work planning, training of operators and sometimes continuous participation of the LCLS Detector Group in the experiments. The detectors used most often at LCLS are CSPAD cameras for hard x-rays and pnCCDs for soft x-rays.

  10. Likelihood estimators for multivariate extremes

    KAUST Repository

    Huser, Raphaël

    2015-11-17

    The main approach to inference for multivariate extremes consists in approximating the joint upper tail of the observations by a parametric family arising in the limit for extreme events. The latter may be expressed in terms of componentwise maxima, high threshold exceedances or point processes, yielding different but related asymptotic characterizations and estimators. The present paper clarifies the connections between the main likelihood estimators, and assesses their practical performance. We investigate their ability to estimate the extremal dependence structure and to predict future extremes, using exact calculations and simulation, in the case of the logistic model.

  11. Deep Keck u-band imaging of the Hubble Ultra Deep Field: A catalog of z~3 Lyman Break Galaxies

    OpenAIRE

    Rafelski, Marc; Wolfe, Arthur M.; Cooke, Jeff; Chen, Hsiao-Wen; Armandroff, Taft E.; Wirth, Gregory D.

    2009-01-01

    We present a sample of 407 z~3 Lyman break galaxies (LBGs) to a limiting isophotal u-band magnitude of 27.6 mag in the Hubble Ultra Deep Field (UDF). The LBGs are selected using a combination of photometric redshifts and the u-band drop-out technique enabled by the introduction of an extremely deep u-band image obtained with the Keck I telescope and the blue channel of the LRIS spectrometer. The Keck u-band image, totaling 9 hours of integration time, has a one sigma depth of 30.7 mag arcsec^...

  12. Deep Energy Retrofit

    DEFF Research Database (Denmark)

    Zhivov, Alexander; Lohse, Rüdiger; Rose, Jørgen

    Deep Energy Retrofit – A Guide to Achieving Significant Energy User Reduction with Major Renovation Projects contains recommendations for characteristics of some of core technologies and measures that are based on studies conducted by national teams associated with the International Energy Agency...... Energy Conservation in Buildings and Communities Program (IEA-EBC) Annex 61 (Lohse et al. 2016, Case, et al. 2016, Rose et al. 2016, Yao, et al. 2016, Dake 2014, Stankevica et al. 2016, Kiatreungwattana 2014). Results of these studies provided a base for setting minimum requirements to the building...... envelope-related technologies to make Deep Energy Retrofit feasible and, in many situations, cost effective. Use of energy efficiency measures (EEMs) in addition to core technologies bundle and high-efficiency appliances will foster further energy use reduction. This Guide also provides best practice...

  13. UVUDF: Ultraviolet Through Near-infrared Catalog and Photometric Redshifts of Galaxies in the Hubble Ultra Deep Field

    OpenAIRE

    Rafelski, Marc; Teplitz, Harry I.; Colbert, James W.; Hanish, Daniel J.

    2015-01-01

    We present photometry and derived redshifts from up to eleven bandpasses for 9927 galaxies in the Hubble Ultra Deep field (UDF), covering an observed wavelength range from the near-ultraviolet (NUV) to the near-infrared (NIR) with Hubble Space Telescope observations. Our Wide Field Camera 3 (WFC3)/UV F225W, F275W, and F336W image mosaics from the ultra-violet UDF (UVUDF) imaging campaign are newly calibrated to correct for charge transfer inefficiency, and use new dark calibrations to minimiz...

  14. Deep-Sarsa

    Science.gov (United States)

    Andrecut, M.; Ali, M. K.

    In this paper we discuss the application of reinforcement learning algorithms to the problem of autonomous robot navigation. We show that the autonomous navigation using the standard delayed reinforcement learning algorithms is an ill posed problem and we present a more efficient algorithm for which the convergence speed is greatly improved. The proposed algorithm (Deep-Sarsa) is based on a combination between the Depth-First Search (a graph searching algorithm) and Sarsa (a delayed reinforcement learning algorithm).

  15. Deep Water Ocean Acoustics

    Science.gov (United States)

    2016-12-22

    Final Report 3. DATES COVERED (From - To) 7/1/15 to 12/22/16 4. TITLE AND SUBTITLE Deep Water Ocean Acoustics 5a. CONTRACT NUMBER...shortening of the water column); 2.) Explicitly defined the geo-acoustics so that both models had the same sponge ; 3.) Output the complete computational...chosen because this VLA was spaced at /2 at 250Hz and is therefore beamforming capable, covering the conjugate depth. An ambient noise model was

  16. Deep Blind Compressed Sensing

    OpenAIRE

    Singh, Shikha; Singhal, Vanika; Majumdar, Angshul

    2016-01-01

    This work addresses the problem of extracting deeply learned features directly from compressive measurements. There has been no work in this area. Existing deep learning tools only give good results when applied on the full signal, that too usually after preprocessing. These techniques require the signal to be reconstructed first. In this work we show that by learning directly from the compressed domain, considerably better results can be obtained. This work extends the recently proposed fram...

  17. ExtremeBounds: Extreme Bounds Analysis in R

    Directory of Open Access Journals (Sweden)

    Marek Hlavac

    2016-08-01

    Full Text Available This article introduces the R package ExtremeBounds to perform extreme bounds analysis (EBA, a sensitivity test that examines how robustly the dependent variable of a regression model is related to a variety of possible determinants. ExtremeBounds supports Leamer's EBA that focuses on the upper and lower extreme bounds of regression coefficients, as well as Sala-i-Martin's EBA which considers their entire distribution. In contrast to existing alternatives, it can estimate models of a variety of user-defined sizes, use regression models other than ordinary least squares, incorporate non-linearities in the model specification, and apply custom weights and standard errors. To alleviate concerns about the multicollinearity and conceptual overlap of examined variables, ExtremeBounds allows users to specify sets of mutually exclusive variables, and can restrict the analysis to coefficients from regression models that yield a variance inflation factor within a prespecified limit.

  18. Extreme Environments: Why NASA?

    Science.gov (United States)

    Meyer, M. A.

    2002-12-01

    Life on our planet is the only known example in the universe and so we are relegated to this planet for the study of life. However, life may be a natural consequence of planet formation, and so the study of the origin, evolution, distribution and future of life may be greatly informed by planetary exploration. Astrobiology has adopted several approaches to study life on Earth, for deducing our origins, for determining the likelihood of life elsewhere, and for enabling the search for evidence of past or present life. The first approach has been the Exobiology Program, centered around understanding the origins of life and which supports individual investigator research. Second has been the construction of consortia-type research in which researchers from different disciplines focus on a larger problem. This structure began with NASA Specialized Centers of Research and Training and has grown to include the Astrobiology Institute - a collection of competitively selected groups of researchers attacking problems in Astrobiology as individual teams and as a consolidated Institute. With the formation of an intellectual basis for exploring for life elsewhere, Astrobiology has initiated the competitive research and development program in instrument development (Astrobiology Science and Technology for Instrument Development [ASTID] Program) that would enable future mission instruments for the exploration of planetary bodies in the search for prebiotic chemistry, habitable environments (past or present), biomarkers, and possibly life itself. However, the act of exploring requires robust instrumentation, mobile robotic platforms, efficient operations, and a high level of autonomy. To this end, Astrobiology has started a new research activity that promotes scientifically-driven robotic exploration of extreme environments on Earth that are analogous to suspected habitable environments on other planetary bodies. The program is called Astrobiology Science and Technology for

  19. Deep learning for galaxy surface brightness profile fitting

    Science.gov (United States)

    Tuccillo, D.; Huertas-Company, M.; Decencière, E.; Velasco-Forero, S.; Domínguez Sánchez, H.; Dimauro, P.

    2018-03-01

    Numerous ongoing and future large area surveys (e.g. Dark Energy Survey, EUCLID, Large Synoptic Survey Telescope, Wide Field Infrared Survey Telescope) will increase by several orders of magnitude the volume of data that can be exploited for galaxy morphology studies. The full potential of these surveys can be unlocked only with the development of automated, fast, and reliable analysis methods. In this paper, we present DeepLeGATo, a new method for 2-D photometric galaxy profile modelling, based on convolutional neural networks. Our code is trained and validated on analytic profiles (HST/CANDELS F160W filter) and it is able to retrieve the full set of parameters of one-component Sérsic models: total magnitude, effective radius, Sérsic index, and axis ratio. We show detailed comparisons between our code and GALFIT. On simulated data, our method is more accurate than GALFIT and ˜3000 time faster on GPU (˜50 times when running on the same CPU). On real data, DeepLeGATo trained on simulations behaves similarly to GALFIT on isolated galaxies. With a fast domain adaptation step made with the 0.1-0.8 per cent the size of the training set, our code is easily capable to reproduce the results obtained with GALFIT even on crowded regions. DeepLeGATo does not require any human intervention beyond the training step, rendering it much automated than traditional profiling methods. The development of this method for more complex models (two-component galaxies, variable point spread function, dense sky regions) could constitute a fundamental tool in the era of big data in astronomy.

  20. The DEEP-South: Network Construction and Test Operations

    Science.gov (United States)

    Moon, Hong-Kyu; Kim, Myung-Jin; Yim, Hong-Suh; Choi, Young-Jun; Bae, Youngho; Roh, Dong-Goo; the DEEP-South Team

    2015-08-01

    Korea Astronomy and Space Science Institute achieved completion of a network of optical telescopes called the KMTNet (Korea Micro-lensing Telescope Network) in the end of 2014. The KMTNet is comprised of three 1.6-m prime focus wide-field optics and 18K×18K mosaic CCDs, each providing 2×2 degrees field of view. This network facilities located at CTIO (Chile), SAAO (South Africa), and SSO (Australia) are expected to be on line in mid-2015 with their CCDs fully functional. While its primary objective is discovery and characterization of extrasolar planets, it is also being used for “Deep Ecliptic Patrol of the Southern Sky (DEEP-South)” aiming at asteroid and comet studies as one of its secondary science projects. The KMTNet telescopes are almost equally separated in longitude, and hence enable a 24-hour uninterrupted monitoring of the southern sky. The DEEP-South will thus provide a prompt solution to a demand from the scientific community to bridge the gaps in global sky coverage with a coordinated use of a network of ground-based telescopes in the southern hemisphere. Thanks to round-the-clock capability orbits, spin states and three dimensional shape of an object will be systematically investigated and archived for the first time. Based on SDSS and BVRI colors, we will also constrain their surface mineralogy, with an emphasis on targeted photometry of km-sized Potentially Hazardous Asteroids (PHAs) in the first stage (2015-2019). In the end of 2015, we plan to complete implementing dedicated software subsystem made of an automated observation scheduler and data pipeline for the sake of an increased discovery rate, rapid follow-up, timely phase coverage, and more efficient data reduction and analysis. We will give a brief introduction to a series of test operations conducted at the KMTNet-CTIO in February, March and April in 2015 with experimental data processing. Preliminary scientific results will also be presented.

  1. Identification of large-scale meteorological patterns associated with extreme precipitation in the US northeast

    Science.gov (United States)

    Agel, Laurie; Barlow, Mathew; Feldstein, Steven B.; Gutowski, William J.

    2017-05-01

    Patterns of daily large-scale circulation associated with Northeast US extreme precipitation are identified using both k-means clustering (KMC) and Self-Organizing Maps (SOM) applied to tropopause height. The tropopause height provides a compact representation of the upper-tropospheric potential vorticity, which is closely related to the overall evolution and intensity of weather systems. Extreme precipitation is defined as the top 1% of daily wet-day observations at 35 Northeast stations, 1979-2008. KMC is applied on extreme precipitation days only, while the SOM algorithm is applied to all days in order to place the extreme results into the overall context of patterns for all days. Six tropopause patterns are identified through KMC for extreme day precipitation: a summertime tropopause ridge, a summertime shallow trough/ridge, a summertime shallow eastern US trough, a deeper wintertime eastern US trough, and two versions of a deep cold-weather trough located across the east-central US. Thirty SOM patterns for all days are identified. Results for all days show that 6 SOM patterns account for almost half of the extreme days, although extreme precipitation occurs in all SOM patterns. The same SOM patterns associated with extreme precipitation also routinely produce non-extreme precipitation; however, on extreme precipitation days the troughs, on average, are deeper and the downstream ridges more pronounced. Analysis of other fields associated with the large-scale patterns show various degrees of anomalously strong moisture transport preceding, and upward motion during, extreme precipitation events.

  2. DeepLensing: The Use of Deep Machine Learning to Find Strong Gravitational Lenses in Astronomical Surveys

    Science.gov (United States)

    Nord, Brian

    2017-01-01

    Strong gravitational lenses have potential as very powerful probes of dark energy and cosmic structure. However, efficiently finding lenses poses a significant challenge—especially in the era of large-scale cosmological surveys. I will present a new application of deep machine learning algorithms to find strong lenses, as well as the strong lens discovery program of the Dark Energy Survey (DES).Strong lenses provide unique information about the evolution of distant galaxies, the nature of dark energy, and the shapes of dark matter haloes. Current and future surveys, like DES and the Large Synoptic Survey Telescope, present an opportunity to find many thousands of strong lenses, far more than have ever been discovered. By and large, searches have heretofore relied on the time-consuming effort of human scanners. Deep machine learning frameworks, like convolutional neural nets, have revolutionized the task of image recognition, and have a natural place in the processing of astronomical images, including the search for strong lenses.Over five observing seasons, which started in August 2013, DES will carry out a wide-field survey of 5000 square degrees of the Southern Galactic Cap. DES has identified nearly 200 strong lensing candidates in the first two seasons of data. We have performed spectroscopic follow-up on a subsample of these candidates at Gemini South, confirming over a dozen new strong lenses. I will present this DES discovery program, including searches and spectroscopic follow-up of galaxy-scale, cluster-scale and time-delay lensing systems.I will focus, however, on a discussion of the successful search for strong lenses using deep learning methods. In particular, we show that convolutional neural nets present a new set of tools for efficiently finding lenses, and accelerating advancements in strong lensing science.

  3. Cosmic Extremes: Probing Energetic Transients with Radio Observations

    Science.gov (United States)

    Denham Alexander, Kate

    2018-01-01

    With the advent of sensitive facilities like the Karl G. Jansky Very Large Array (VLA) and planning well underway for vastly more powerful wide-field interferometers like the Square Kilometer Array, the study of radio astrophysical transients is poised for dramatic growth. Radio observations provide a unique window into a wide variety of transient events, from gamma-ray bursts (GRBs) to supernovae to tidal disruption events (TDEs) in which a star is torn apart by a supermassive black hole. In particular, GRBs and TDEs have emerged as valuable probes of some of the most extreme physics in the Universe. In these high-energy laboratories, the longer timescale of radio emission allows for extensive followup and characterization of the event energies and the densities of surrounding material. I will present high-cadence broadband radio studies of GRB afterglows and TDEs undertaken with the goal of learning more about their physical properties, the physics underlying the formation and growth of relativistic jets and outflows, and the environments in which these events occur. Our observations confirm that only a small fraction of TDEs produce relativistic jets but reveal low-luminosity, non-relativistic outflows in two nearby TDEs, allowing us to begin constraining the bulk of the TDE population. Our GRB radio observations reveal both intrinsic variability (reverse shocks) and extrinsic variability (interstellar scintillation). The insights derived from these studies will be invaluable for designing and interpreting the results from future radio transient surveys.

  4. [Deep brain stimulation].

    Science.gov (United States)

    Fraix, V; Pollak, P; Chabardes, S; Ardouin, C; Koudsie, A; Benazzouz, A; Krack, P; Batir, A; Le Bas, J-F; Benabid, A-L

    2004-05-01

    The present renewal of the surgical treatment of Parkinson's disease, almost abandoned for twenty Years, arises from two main reasons. The first is the better understanding of the functional organization of the basal ganglia. It was demonstrated in animal models of Parkinson's disease that the loss of dopaminergic neurons within the substantia nigra, at the origin of the striatal dopaminergic defect, induces an overactivity of the excitatory glutamatergic subthalamo-internal pallidum pathway. The decrease in this hyperactivity might lead to an improvement in the pakinsonian symptoms. The second reason is the improvement in stereotactic neurosurgery in relation with the progress in neuroimaging techniques and with intraoperative electrophysiological microrecordings and stimulations, which help determine the location of the deep brain targets. In the 1970s chronic deep brain stimulation in humans was applied to the sensory nucleus of the thalamus for the treatment of intractable pain. In 1987, Benabid and colleagues suggested high frequency stimulation of the ventral intermediate nucleus of the thalamus in order to treat drug-resistant tremors and to avoid the adverse effects of thalamotomies. How deep brain stimulation works is not well known but it has been hypothetized that it could change the neuronal activities and thus avoid disease-related abnormal neuronal discharges. Potential candidates for deep brain stimulation are selected according to exclusion and inclusion criteria. Surgery can be applied to patients in good general and mental health, neither depressive nor demented and who are severely disabled despite all available drug therapies but still responsive to levodopa. The first session of surgery consists in the location of the target by ventriculography and/or brain MRI. The electrodes are implanted during the second session. The last session consists in the implantation of the neurostimulator. The ventral intermediate nucleus of the thalamus was the

  5. Physiological, metabolic and biotechnological features of extremely thermophilic microorganisms.

    Science.gov (United States)

    Counts, James A; Zeldes, Benjamin M; Lee, Laura L; Straub, Christopher T; Adams, Michael W W; Kelly, Robert M

    2017-05-01

    The current upper thermal limit for life as we know it is approximately 120°C. Microorganisms that grow optimally at temperatures of 75°C and above are usually referred to as 'extreme thermophiles' and include both bacteria and archaea. For over a century, there has been great scientific curiosity in the basic tenets that support life in thermal biotopes on earth and potentially on other solar bodies. Extreme thermophiles can be aerobes, anaerobes, autotrophs, heterotrophs, or chemolithotrophs, and are found in diverse environments including shallow marine fissures, deep sea hydrothermal vents, terrestrial hot springs-basically, anywhere there is hot water. Initial efforts to study extreme thermophiles faced challenges with their isolation from difficult to access locales, problems with their cultivation in laboratories, and lack of molecular tools. Fortunately, because of their relatively small genomes, many extreme thermophiles were among the first organisms to be sequenced, thereby opening up the application of systems biology-based methods to probe their unique physiological, metabolic and biotechnological features. The bacterial genera Caldicellulosiruptor, Thermotoga and Thermus, and the archaea belonging to the orders Thermococcales and Sulfolobales, are among the most studied extreme thermophiles to date. The recent emergence of genetic tools for many of these organisms provides the opportunity to move beyond basic discovery and manipulation to biotechnologically relevant applications of metabolic engineering. WIREs Syst Biol Med 2017, 9:e1377. doi: 10.1002/wsbm.1377 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  6. Learning Multimodal Deep Representations for Crowd Anomaly Event Detection

    Directory of Open Access Journals (Sweden)

    Shaonian Huang

    2018-01-01

    Full Text Available Anomaly event detection in crowd scenes is extremely important; however, the majority of existing studies merely use hand-crafted features to detect anomalies. In this study, a novel unsupervised deep learning framework is proposed to detect anomaly events in crowded scenes. Specifically, low-level visual features, energy features, and motion map features are simultaneously extracted based on spatiotemporal energy measurements. Three convolutional restricted Boltzmann machines are trained to model the mid-level feature representation of normal patterns. Then a multimodal fusion scheme is utilized to learn the deep representation of crowd patterns. Based on the learned deep representation, a one-class support vector machine model is used to detect anomaly events. The proposed method is evaluated using two available public datasets and compared with state-of-the-art methods. The experimental results show its competitive performance for anomaly event detection in video surveillance.

  7. Deep Red (Profondo Rosso)

    CERN Multimedia

    Cine Club

    2015-01-01

    Wednesday 29 April 2015 at 20:00 CERN Council Chamber    Deep Red (Profondo Rosso) Directed by Dario Argento (Italy, 1975) 126 minutes A psychic who can read minds picks up the thoughts of a murderer in the audience and soon becomes a victim. An English pianist gets involved in solving the murders, but finds many of his avenues of inquiry cut off by new murders, and he begins to wonder how the murderer can track his movements so closely. Original version Italian; English subtitles

  8. Deep Space Positioning System

    Science.gov (United States)

    Vaughan, Andrew T. (Inventor); Riedel, Joseph E. (Inventor)

    2016-01-01

    A single, compact, lower power deep space positioning system (DPS) configured to determine a location of a spacecraft anywhere in the solar system, and provide state information relative to Earth, Sun, or any remote object. For example, the DPS includes a first camera and, possibly, a second camera configured to capture a plurality of navigation images to determine a state of a spacecraft in a solar system. The second camera is located behind, or adjacent to, a secondary reflector of a first camera in a body of a telescope.

  9. Evolution caused by extreme events.

    Science.gov (United States)

    Grant, Peter R; Grant, B Rosemary; Huey, Raymond B; Johnson, Marc T J; Knoll, Andrew H; Schmitt, Johanna

    2017-06-19

    Extreme events can be a major driver of evolutionary change over geological and contemporary timescales. Outstanding examples are evolutionary diversification following mass extinctions caused by extreme volcanism or asteroid impact. The evolution of organisms in contemporary time is typically viewed as a gradual and incremental process that results from genetic change, environmental perturbation or both. However, contemporary environments occasionally experience strong perturbations such as heat waves, floods, hurricanes, droughts and pest outbreaks. These extreme events set up strong selection pressures on organisms, and are small-scale analogues of the dramatic changes documented in the fossil record. Because extreme events are rare, almost by definition, they are difficult to study. So far most attention has been given to their ecological rather than to their evolutionary consequences. We review several case studies of contemporary evolution in response to two types of extreme environmental perturbations, episodic (pulse) or prolonged (press). Evolution is most likely to occur when extreme events alter community composition. We encourage investigators to be prepared for evolutionary change in response to rare events during long-term field studies.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  10. Spatial dependence of extreme rainfall

    Science.gov (United States)

    Radi, Noor Fadhilah Ahmad; Zakaria, Roslinazairimah; Satari, Siti Zanariah; Azman, Muhammad Az-zuhri

    2017-05-01

    This study aims to model the spatial extreme daily rainfall process using the max-stable model. The max-stable model is used to capture the dependence structure of spatial properties of extreme rainfall. Three models from max-stable are considered namely Smith, Schlather and Brown-Resnick models. The methods are applied on 12 selected rainfall stations in Kelantan, Malaysia. Most of the extreme rainfall data occur during wet season from October to December of 1971 to 2012. This period is chosen to assure the available data is enough to satisfy the assumption of stationarity. The dependence parameters including the range and smoothness, are estimated using composite likelihood approach. Then, the bootstrap approach is applied to generate synthetic extreme rainfall data for all models using the estimated dependence parameters. The goodness of fit between the observed extreme rainfall and the synthetic data is assessed using the composite likelihood information criterion (CLIC). Results show that Schlather model is the best followed by Brown-Resnick and Smith models based on the smallest CLIC's value. Thus, the max-stable model is suitable to be used to model extreme rainfall in Kelantan. The study on spatial dependence in extreme rainfall modelling is important to reduce the uncertainties of the point estimates for the tail index. If the spatial dependency is estimated individually, the uncertainties will be large. Furthermore, in the case of joint return level is of interest, taking into accounts the spatial dependence properties will improve the estimation process.

  11. Monte Carlo modelling of multi-object adaptive optics performance on the European Extremely Large Telescope

    Science.gov (United States)

    Basden, A. G.; Morris, T. J.

    2016-12-01

    The performance of a wide-field adaptive optics (AO) system depends on input design parameters. Here we investigate the performance of a multi-object AO system design for the European Extremely Large Telescope, using an end-to-end Monte Carlo AO simulation tool, Durham adaptive optics simulation platform, with relevance for proposed instruments such as MOSAIC. We consider parameters such as the number of laser guide stars, sodium layer depth, wavefront sensor pixel scale, actuator pitch and natural guide star availability. We provide potential areas where costs savings can be made, and investigate trade-offs between performance and cost, and provide solutions that would enable such an instrument to be built with currently available technology. Our key recommendations include a trade-off for laser guide star wavefront sensor pixel scale of about 0.7 arcsec per pixel, and a field of view of at least 7 arcsec, that electron multiplying CCD technology should be used for natural guide star wavefront sensors even if reduced frame rate is necessary, and that sky coverage can be improved by a slight reduction in natural guide star sub-aperture count without significantly affecting tomographic performance. We find that AO correction can be maintained across a wide field of view, up to 7 arcmin in diameter. We also recommend the use of at least four laser guide stars, and include ground-layer and multi-object AO performance estimates.

  12. DeepTox: Toxicity Prediction using Deep Learning

    Directory of Open Access Journals (Sweden)

    Andreas eMayr

    2016-02-01

    Full Text Available The Tox21 Data Challenge has been the largest effort of the scientific community to compare computational methods for toxicity prediction. This challenge comprised 12,000 environmental chemicals and drugs which were measured for 12 different toxic effects by specifically designed assays. We participated in this challenge to assess the performance of Deep Learning in computational toxicity prediction. Deep Learning has already revolutionized image processing, speech recognition, and language understanding but has not yet been applied to computational toxicity. Deep Learning is founded on novel algorithms and architectures for artificial neural networks together with the recent availability of very fast computers and massive datasets. It discovers multiple levels of distributed representations of the input, with higher levels representing more abstract concepts. We hypothesized that the construction of a hierarchy of chemical features gives Deep Learning the edge over other toxicity prediction methods. Furthermore, Deep Learning naturally enables multi-task learning, that is, learning of all toxic effects in one neural network and thereby learning of highly informative chemical features.In order to utilize Deep Learning for toxicity prediction, we have developed the DeepTox pipeline. First, DeepTox normalizes the chemical representations of the compounds. Then it computes a large number of chemical descriptors that are used as input to machine learning methods. In its next step, DeepTox trains models, evaluates them, and combines the best of them to ensembles. Finally, DeepTox predicts the toxicity of new compounds. In the Tox21 Data Challenge, DeepTox had the highest performance of all computational methods winning the grand challenge, the nuclear receptor panel, the stress response panel, and six single assays (teams ``Bioinf@JKU''. We found that Deep Learning excelled in toxicity prediction and outperformed many other computational approaches

  13. Changing precipitation extremes in Europe

    Science.gov (United States)

    van den Besselaar, E. J. M.; Klein Tank, A. M. G.; van der Schrier, G.

    2010-09-01

    A growing number of studies indicate trends in precipitation extremes over Europe during recent decades. These results are generally based on descriptive indices of extremes which occur on average once (or several times) each year (or season). An example is the maximum one-day precipitation amount per year. Extreme value theory complements the descriptive indices, in order to evaluate the intensity and frequency of more rare events. Trends in more rare extremes are difficult to detect, because per definition only few events exist in the observational series. Although single extreme events cannot be simply and directly attributed to anthropogenic climate change, as there is always a finite chance that the event in question might have occurred naturally, the odds may have shifted to make some of them more likely than in an unchanging climate (IPCC, 2007). In this study we focus on climate extremes defined as rare events within the statistical reference distribution of rainfall that is monitored daily at a particular place. We examine the daily precipitation series from the European Climate Assessment and Dataset (ECA&D) project. Comparisons will be made between the trends in modest extremes detected using the descriptive indices and the trends in more rare extremes determined by fitting an extreme value distribution to the data in consecutive 20-yr periods of the record. The trends in multi-year return levels are determined for groups of stations in several subregions of Europe. Because the typical record length is about 50 yr, we will assess the trends in events that occur on average up to once in 50 yr.

  14. AGN with extreme X-ray amplitude variations

    Directory of Open Access Journals (Sweden)

    Gallo L.C.

    2012-12-01

    Full Text Available We present active galactic nuclei (AGNs that have shown extreme amplitude variability in X-rays. These AGN appear as bright for long periods, but then suddenly become extremely X-ray weak sources. Most likely this behavior is due to strong absorption along the line of sight or by relativistically blurred reflection. Two extreme examples are the Narrow Line Seyfert 1 (NLS1 galaxies WPVS 007 and Mkn 335. WPVS 007 is a peculiar AGN because it combines the properties of a normal NLS1 with those of a broad-absorption line (BAL quasar, which typically only appear in high-luminousity, high black hole mass systems. Mkn 335 has appeared an an X-ray bright AGN for most of the past few decades, but was caught by Swift in a deep X-ray flux minimum state in 2007, and has remained in that state for most of the time since. One potential explanation for this low state is absorption. Several Other AGN have been in deep minimum X-ray flux states, including PG 0844+349 and 1H 0707–495, for which the dramatic drops in X-ray flux have been explained by blurred X-ray reflection.

  15. The Extreme Right Filter Bubble

    OpenAIRE

    O'Callaghan, Derek; Greene, Derek; Conway, Maura; Carthy, Joe; Cunningham, Pádraig

    2013-01-01

    Due to its status as the most popular video sharing platform, YouTube plays an important role in the online strategy of extreme right groups, where it is often used to host associated content such as music and other propaganda. In this paper, we develop a categorization suitable for the analysis of extreme right channels found on YouTube. By combining this with an NMF-based topic modelling method, we categorize channels originating from links propagated by extreme right Twitter accounts. This...

  16. Tensor deep stacking networks.

    Science.gov (United States)

    Hutchinson, Brian; Deng, Li; Yu, Dong

    2013-08-01

    A novel deep architecture, the tensor deep stacking network (T-DSN), is presented. The T-DSN consists of multiple, stacked blocks, where each block contains a bilinear mapping from two hidden layers to the output layer, using a weight tensor to incorporate higher order statistics of the hidden binary (½0; 1) features. A learning algorithm for the T-DSN’s weight matrices and tensors is developed and described in which the main parameter estimation burden is shifted to a convex subproblem with a closed-form solution. Using an efficient and scalable parallel implementation for CPU clusters, we train sets of T-DSNs in three popular tasks in increasing order of the data size: handwritten digit recognition using MNIST (60k), isolated state/phone classification and continuous phone recognition using TIMIT (1.1 m), and isolated phone classification using WSJ0 (5.2 m). Experimental results in all three tasks demonstrate the effectiveness of the T-DSN and the associated learning methods in a consistent manner. In particular, a sufficient depth of the T-DSN, a symmetry in the two hidden layers structure in each T-DSN block, our model parameter learning algorithm, and a softmax layer on top of T-DSN are shown to have all contributed to the low error rates observed in the experiments for all three tasks.

  17. Hall Sensors for Extreme Temperatures

    Directory of Open Access Journals (Sweden)

    Maciej Oszwaldowski

    2011-01-01

    Full Text Available We report on the preparation of the first complete extreme temperature Hall sensor. This means that the extreme-temperature magnetic sensitive semiconductor structure is built-in an extreme-temperature package especially designed for that purpose. The working temperature range of the sensor extends from −270 °C to +300 °C. The extreme-temperature Hall-sensor active element is a heavily n-doped InSb layer epitaxially grown on GaAs. The magnetic sensitivity of the sensor is ca. 100 mV/T and its temperature coefficient is less than 0.04 %/K. This sensor may find applications in the car, aircraft, spacecraft, military and oil and gas industries.

  18. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.

    2005-01-01

    (PDF) of turbulence driven short-term extreme wind shear events, conditioned on the mean wind speed, for an arbitrary recurrence period. The model is based on an asymptotic expansion, and only a few and easily accessible parameters are needed as input. The model of the extreme PDF is supplemented...... by a model that, on a statistically consistent basis, describes the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of full-scale measurements recorded with a high sampling rate......In order to continue cost-optimisation of modern large wind turbines, it is important to continuously increase the knowledge of wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...

  19. Doppler ultrasonography of the lower extremity arteries: anatomy and scanning guidelines

    Directory of Open Access Journals (Sweden)

    Ji Young Hwang

    2017-04-01

    Full Text Available Doppler ultrasonography of the lower extremity arteries is a valuable technique, although it is less frequently indicated for peripheral arterial disease than for deep vein thrombosis or varicose veins. Ultrasonography can diagnose stenosis through the direct visualization of plaques and through the analysis of the Doppler waveforms in stenotic and poststenotic arteries. To perform Doppler ultrasonography of the lower extremity arteries, the operator should be familiar with the arterial anatomy of the lower extremities, basic scanning techniques, and the parameters used in color and pulsed-wave Doppler ultrasonography.

  20. Doppler ultrasonography of the lower extremity arteries: anatomy and scanning guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ji Young [Dept. of Radiology, Ewha Womans University School of Medicine, Seoul (Korea, Republic of)

    2017-04-15

    Doppler ultrasonography of the lower extremity arteries is a valuable technique, although it is less frequently indicated for peripheral arterial disease than for deep vein thrombosis or varicose veins. Ultrasonography can diagnose stenosis through the direct visualization of plaques and through the analysis of the Doppler waveforms in stenotic and poststenotic arteries. To perform Doppler ultrasonography of the lower extremity arteries, the operator should be familiar with the arterial anatomy of the lower extremities, basic scanning techniques, and the parameters used in color and pulsed-wave Doppler ultrasonography.