WorldWideScience

Sample records for extreme-ultraviolet normal-incidence spectrometer

  1. The Normal-incidence Vacuum-ultraviolet Spectrometer for the TJ-II and First Experimental Results

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, K.J.; Zurro, B.; Baciero, A.

    2002-07-01

    A normal-incidence spectrometer, operating in the extreme-ultraviolet and ultraviolet wavelength regions, has been commissioned for the TJ-II stellarator. The instrument has been custom built by McPherson, Chelmsford, MA, and has several unique features and accessories that are described here. The instrument and CCD detector has been tested and calibrated, and its performance evaluated, using spectral lines from glow discharges and a RF excited flow lamp. Finally, the first spectra collected with the instrument of TJ-II plasmas are presented and a preliminary estimation of an oxygen ion temperature is made. (Author) 23 refs.

  2. The Normal-incidence Vacuum-ultraviolet Spectrometer for the TJ-II and First Experimental Results

    International Nuclear Information System (INIS)

    McCarthy, K. J.; Zurro, B.; Baciero, A.

    2002-01-01

    A normal-incidence spectrometer, operating in the extreme-ultraviolet and ultraviolet wavelength regions, has been commissioned for the TJ-II stellarator. The instrument has been custom built by McPherson, Chelmsford, MA, and has several unique features and accessories that are described here. The instrument and CCD detector has been tested and calibrated, and its performance evaluated, using spectral lines from glow discharges and a RF excited flow lamp. Finally, the first spectra collected with the instrument of TJ-II plasmas are presented and a preliminary estimation of an oxygen ion temperature is made. (Author) 23 refs

  3. The quiet Sun extreme ultraviolet spectrum observed in normal incidence by the SOHO Coronal Diagnostic Spectrometer

    CERN Document Server

    Brooks, D H; Fludra, A; Harrison, R A; Innes, D E; Landi, E; Landini, M; Lang, J; Lanzafame, A C; Loch, S D; McWhirter, R W P; Summers, H P; Thompson, W T

    1999-01-01

    The extreme ultraviolet quiet Sun spectrum, observed at normal incidence by the Coronal Diagnostic Spectrometer on the SOHO spacecraft, is presented. The spectrum covers the wavelength ranges 308-381 AA and 513-633 AA and is based $9 on data recorded at various positions on the solar disk between October 1996 and February 1997. Datasets at twelve of these `positions' were judged to be free from active regions and data faults and selected for detailed study. A $9 constrained maximum likelihood spectral line fitting code was used to analyse the spectral features. In all over 200 spectrum lines have been measured and about 50 186584dentified. The line identification process consisted of a $9 number of steps. Firstly assignment of well known lines was made and used to obtain the primary wavelength calibration. Variations of wavelengths with position were used to assess the precision of calibration achievable. Then, an $9 analysis method first used in studies with the CHASE experiment, was applied to the new obser...

  4. Three new extreme ultraviolet spectrometers on NSTX-U for impurity monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Weller, M. E., E-mail: weller4@llnl.gov; Beiersdorfer, P.; Soukhanovskii, V. A.; Magee, E. W.; Scotti, F. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-11-15

    Three extreme ultraviolet (EUV) spectrometers have been mounted on the National Spherical Torus Experiment–Upgrade (NSTX-U). All three are flat-field grazing-incidence spectrometers and are dubbed X-ray and Extreme Ultraviolet Spectrometer (XEUS, 8–70 Å), Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS, 190–440 Å), and Metal Monitor and Lithium Spectrometer Assembly (MonaLisa, 50–220 Å). XEUS and LoWEUS were previously implemented on NSTX to monitor impurities from low- to high-Z sources and to study impurity transport while MonaLisa is new and provides the system increased spectral coverage. The spectrometers will also be a critical diagnostic on the planned laser blow-off system for NSTX-U, which will be used for impurity edge and core ion transport studies, edge-transport code development, and benchmarking atomic physics codes.

  5. Extreme ultraviolet spectroscopy of highly charged argon ions at the Berlin EBIT

    International Nuclear Information System (INIS)

    Biedermann, C; Radtke, R; Fussmann, G; Allen, F I

    2007-01-01

    Extreme ultraviolet radiation from highly charged argon was investigated at the Berlin Electron Beam Ion Trap with a 2 m grazing incidence spectrometer. Lines in the wavelength range 150 to 660 A originating from C-like Ar 12+ to Li-like Ar 15+ ions have been identified and are compared with database information from solar line lists and predictions. Line ratios for the observed resonance, intercombination and forbidden lines offer important diagnostic capabilities for low density, hot plasmas

  6. 3m vacuum ultraviolet spectrometer with optical multichanel detector

    International Nuclear Information System (INIS)

    Marin, P.; Peraza, C.; Blanco, F.; Campos, J.

    1993-01-01

    This paper, describes the design and the performance of a normal incidence vacuum ultraviolet spectrometer, for the 300-2400 A spectral range. It is provided with a multichannel detection system. The monochromator is original design and it has been built at CIEMAT: It is equipped with a 3 m concave holographic grating with 2400 grooves/mm. The multichannel detector consists of a windowless double microchannel plate/phosphor screen image intensifier, coupled by fiber optic to a 1024 elements self-scanning linear photodiode array. The output from the arrays is digitized by a 12-bit analog to digital converter and stored in a computer for its later analysis. The necessary software to store and display data has been developed. (Author)

  7. Stellar extreme ultraviolet astronomy

    International Nuclear Information System (INIS)

    Cash, W.C. Jr.

    1978-01-01

    The design, calibration, and launch of a rocket-borne imaging telescope for extreme ultraviolet astronomy are described. The telescope, which employed diamond-turned grazing incidence optics and a ranicon detector, was launched November 19, 1976, from the White Sands Missile Range. The telescope performed well and returned data on several potential stellar sources of extreme ultraviolet radiation. Upper limits ten to twenty times more sensitive than previously available were obtained for the extreme ultraviolet flux from the white dwarf Sirius B. These limits fall a factor of seven below the flux predicted for the star and demonstrate that the temperature of Sirius B is not 32,000 K as previously measured, but is below 30,000 K. The new upper limits also rule out the photosphere of the white dwarf as the source of the recently reported soft x-rays from Sirius. Two other white dwarf stars, Feige 24 and G191-B2B, were observed. Upper limits on the flux at 300 A were interpreted as lower limits on the interstellar hydrogen column densities to these stars. The lower limits indicate interstellar hydrogen densitites of greater than .02 cm -3 . Four nearby stars (Sirius, Procyon, Capella, and Mirzam) were observed in a search for intense low temperature coronae or extended chromospheres. No extreme ultraviolet radiation from these stars was detected, and upper limits to their coronal emisson measures are derived

  8. 3m Vacuum Ultraviolet Spectrometer with Optical Multichannel Detector

    International Nuclear Information System (INIS)

    Martin, P.; Peraza, C.; Blanco, F.; Campos, J.

    1993-01-01

    This paper describes the design and the performance of a normal incidence vacuum ultraviolet spectrometer, for the 300-2400 A spectral range. It is provided with a multichannel detection system. The monochromator is original design and it has been built at CIEMAT. It is equipped with a 3 m concave holographic grating with 2400 grooves/mm. The multichannel detector consists of a windowless double microchannel plate / phosphor screen image intensifier, coupled by fiber optic to a 1024 elements self-scanning linear photodiode array. The output from the array is digitized by a 12-bit analog to digital converter and stored in a computer, for its later analysis. The necessary software to store and display data has been developed. (Author) 18 refs

  9. The Extreme Ultraviolet spectrometer on bard the Hisaki satellite

    Science.gov (United States)

    Yoshioka, K.; Murakami, G.; Yamazaki, A.; Tsuchiya, F.; Kagitani, M.; Kimura, T.; Yoshikawa, I.

    2017-12-01

    The extreme ultraviolet spectroscope EXCEED (EXtrem ultraviolet spetrosCope for ExosphEric Dynamics) on board the Hisaki satellite was launched in September 2013 from the Uchinoura space center, Japan. It is orbiting around the Earth with an orbital altitude of around 950-1150 km. This satellite is dedicated to and optimized for observing the atmosphere and magnetosphere of terrestrial planets such as Mercury, Venus, Mars, as well as Jupiter. The instrument consists of an off axis parabolic entrance mirror, switchable slits with multiple filters and shapes, a toroidal grating, and a photon counting detector, together with a field of view guiding camera. The design goal is to achieve a large effective area but with high spatial and spectral resolution. Based on the after-launch calibration, the spectral resolution of EXCEED is found to be 0.3-0.5 nm FWHM (Full Width at Half Maximum) over the entire spectral band, and the spatial resolution is around 17". The evaluated effective area is larger than 1cm2. In this presentation, the basic concept of the instrument design and the observation technique are introduced. The current status of the spacecraft and its future observation plan are also shown.

  10. USING HINODE/EXTREME-ULTRAVIOLET IMAGING SPECTROMETER TO CONFIRM A SEISMOLOGICALLY INFERRED CORONAL TEMPERATURE

    International Nuclear Information System (INIS)

    Marsh, M. S.; Walsh, R. W.

    2009-01-01

    The Extreme-Ultraviolet Imaging Spectrometer on board the HINODE satellite is used to examine the loop system described in Marsh et al. by applying spectroscopic diagnostic methods. A simple isothermal mapping algorithm is applied to determine where the assumption of isothermal plasma may be valid, and the emission measure locii technique is used to determine the temperature profile along the base of the loop system. It is found that, along the base, the loop has a uniform temperature profile with a mean temperature of 0.89 ± 0.09 MK which is in agreement with the temperature determined seismologically in Marsh et al., using observations interpreted as the slow magnetoacoustic mode. The results further strengthen the slow mode interpretation, propagation at a uniform sound speed, and the analysis method applied in Marsh et al. It is found that it is not possible to discriminate between the slow mode phase speed and the sound speed within the precision of the present observations.

  11. Spectrometer system for diffuse extreme ultraviolet radiation

    Science.gov (United States)

    Labov, Simon E.

    1989-01-01

    A unique grazing incidence spectrometer system has been designed to study diffuse line emission between 80 and 650 A with 10-30 A resolution. The minimum detectable emission line strength during a 5-min observation ranges from 100-2000 ph/sq cm sec str. The instrument uses mechanically ruled reflection gratings placed in front of a linear array of mirrors. These mirrors focus the spectral image on microchannel plate detectors located behind thin filters. The field of view is 40 min of arc by 15 deg, and there is no spatial imaging. This instrument has been fabricated, calibrated, and successfully flown on a sounding rocket to observe the astronomical background radiation.

  12. Normal incidence spectrophotometer using high density transmission grating technology and highly efficiency silicon photodiodes for absolute solar EUV irradiance measurements

    Science.gov (United States)

    Ogawa, H. S.; Mcmullin, D.; Judge, D. L.; Korde, R.

    1992-01-01

    New developments in transmission grating and photodiode technology now make it possible to realize spectrometers in the extreme ultraviolet (EUV) spectral region (wavelengths less than 1000 A) which are expected to be virtually constant in their diffraction and detector properties. Time dependent effects associated with reflection gratings are eliminated through the use of free standing transmission gratings. These gratings together with recently developed and highly stable EUV photodiodes have been utilized to construct a highly stable normal incidence spectrophotometer to monitor the variability and absolute intensity of the solar 304 A line. Owing to its low weight and compactness, such a spectrometer will be a valuable tool for providing absolute solar irradiance throughout the EUV. This novel instrument will also be useful for cross-calibrating other EUV flight instruments and will be flown on a series of Hitchhiker Shuttle Flights and on SOHO. A preliminary version of this instrument has been fabricated and characterized, and the results are described.

  13. A fast-time-response extreme ultraviolet spectrometer for measurement of impurity line emissions in the Experimental Advanced Superconducting Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ling; Xu, Zong; Wu, Zhenwei; Zhang, Pengfei; Wu, Chengrui; Gao, Wei; Shen, Junsong; Chen, Yingjie; Liu, Xiang; Wang, Yumin; Gong, Xianzu; Hu, Liqun; Chen, Junlin; Zhang, Xiaodong; Wan, Baonian; Li, Jiangang [Institute of Plasma Physics Chinese Academy of Sciences, Hefei 230026, Anhui (China); Morita, Shigeru; Ohishi, Tetsutarou; Goto, Motoshi [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); Dong, Chunfeng [Southwestern Institute of Physics, Chengdu 610041, Sichuan (China); and others

    2015-12-15

    A flat-field extreme ultraviolet (EUV) spectrometer working in the 20-500 Å wavelength range with fast time response has been newly developed to measure line emissions from highly ionized tungsten in the Experimental Advanced Superconducting Tokamak (EAST) with a tungsten divertor, while the monitoring of light and medium impurities is also an aim in the present development. A flat-field focal plane for spectral image detection is made by a laminar-type varied-line-spacing concave holographic grating with an angle of incidence of 87°. A back-illuminated charge-coupled device (CCD) with a total size of 26.6 × 6.6 mm{sup 2} and pixel numbers of 1024 × 255 (26 × 26 μm{sup 2}/pixel) is used for recording the focal image of spectral lines. An excellent spectral resolution of Δλ{sub 0} = 3-4 pixels, where Δλ{sub 0} is defined as full width at the foot position of a spectral line, is obtained at the 80-400 Å wavelength range after careful adjustment of the grating and CCD positions. The high signal readout rate of the CCD can improve the temporal resolution of time-resolved spectra when the CCD is operated in the full vertical binning mode. It is usually operated at 5 ms per frame. If the vertical size of the CCD is reduced with a narrow slit, the time response becomes faster. The high-time response in the spectral measurement therefore makes possible a variety of spectroscopic studies, e.g., impurity behavior in long pulse discharges with edge-localized mode bursts. An absolute intensity calibration of the EUV spectrometer is also carried out with a technique using the EUV bremsstrahlung continuum at 20-150 Å for quantitative data analysis. Thus, the high-time resolution tungsten spectra have been successfully observed with good spectral resolution using the present EUV spectrometer system. Typical tungsten spectra in the EUV wavelength range observed from EAST discharges are presented with absolute intensity and spectral identification.

  14. Plans for the extreme ultraviolet explorer data base

    Science.gov (United States)

    Marshall, Herman L.; Dobson, Carl A.; Malina, Roger F.; Bowyer, Stuart

    1988-01-01

    The paper presents an approach for storage and fast access to data that will be obtained by the Extreme Ultraviolet Explorer (EUVE), a satellite payload scheduled for launch in 1991. The EUVE telescopes will be operated remotely from the EUVE Science Operation Center (SOC) located at the University of California, Berkeley. The EUVE science payload consists of three scanning telescope carrying out an all-sky survey in the 80-800 A spectral region and a Deep Survey/Spectrometer telescope performing a deep survey in the 80-250 A spectral region. Guest Observers will remotely access the EUVE spectrometer database at the SOC. The EUVE database will consist of about 2 X 10 to the 10th bytes of information in a very compact form, very similar to the raw telemetry data. A history file will be built concurrently giving telescope parameters, command history, attitude summaries, engineering summaries, anomalous events, and ephemeris summaries.

  15. Reflective masks for extreme ultraviolet lithography

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Khanh Bao [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    Extreme ultraviolet lithographic masks are made by patterning multilayer reflective coatings with high normal incidence reflectivity. Masks can be patterned by depositing a patterned absorber layer above the coating or by etching the pattern directly into the coating itself. Electromagnetic simulations showed that absorber-overlayer masks have superior imaging characteristics over etched masks (less sensitive to incident angles and pattern profiles). In an EUVL absorber overlayer mask, defects can occur in the mask substrate, reflective coating, and absorber pattern. Electromagnetic simulations showed that substrate defects cause the most severe image degradation. A printability study of substrate defects for absorber overlayer masks showed that printability of 25 nm high substrate defects are comparable to defects in optical lithography. Simulations also indicated that the manner in which the defects are covered by multilayer reflective coatings can affect printability. Coverage profiles that result in large lateral spreading of defect geometries amplify the printability of the defects by increasing their effective sizes. Coverage profiles of Mo/Si coatings deposited above defects were studied by atomic force microscopy and TEM. Results showed that lateral spread of defect geometry is proportional to height. Undercut at defect also increases the lateral spread. Reductions in defect heights were observed for 0.15 μm wide defect lines. A long-term study of Mo/Si coating reflectivity revealed that Mo/Si coatings with Mo as the top layer suffer significant reductions in reflectivity over time due to oxidation.

  16. GLOBAL SIMULATION OF AN EXTREME ULTRAVIOLET IMAGING TELESCOPE WAVE

    International Nuclear Information System (INIS)

    Schmidt, J. M.; Ofman, L.

    2010-01-01

    We use the observation of an Extreme Ultraviolet Imaging Telescope (EIT) wave in the lower solar corona, seen with the two Solar Terrestrial Relations Observatory (STEREO) spacecraft in extreme ultraviolet light on 2007 May 19, to model the same event with a three-dimensional (3D) time-depending magnetohydrodynamic (MHD) code that includes solar coronal magnetic fields derived with Wilcox Solar Observatory magnetogram data, and a solar wind outflow accelerated with empirical heating functions. The model includes a coronal mass ejection (CME) of Gibson and Low flux rope type above the reconstructed active region with parameters adapted from observations to excite the EIT wave. We trace the EIT wave running as circular velocity enhancement around the launching site of the CME in the direction tangential to the sphere produced by the wave front, and compute the phase velocities of the wave front. We find that the phase velocities are in good agreement with theoretical values for a fast magnetosonic wave, derived with the physical parameters of the model, and with observed phase speeds of an incident EIT wave reflected by a coronal hole and running at about the same location. We also produce in our 3D MHD model the observed reflection of the EIT wave at the coronal hole boundary, triggered by the magnetic pressure difference between the wave front hitting the hole and the boundary magnetic fields of the coronal hole, and the response of the coronal hole, which leads to the generation of secondary reflected EIT waves radiating away in different directions than the incident EIT wave. This is the first 3D MHD model of an EIT wave triggered by a CME that includes realistic solar magnetic field, with results comparing favorably to STEREO Extreme Ultraviolet Imager observations.

  17. EIT: Solar corona synoptic observations from SOHO with an Extreme-ultraviolet Imaging Telescope

    Science.gov (United States)

    Delaboudiniere, J. P.; Gabriel, A. H.; Artzner, G. E.; Michels, D. J.; Dere, K. P.; Howard, R. A.; Catura, R.; Stern, R.; Lemen, J.; Neupert, W.

    1988-01-01

    The Extreme-ultraviolet Imaging Telescope (EIT) of SOHO (solar and heliospheric observatory) will provide full disk images in emission lines formed at temperatures that map solar structures ranging from the chromospheric network to the hot magnetically confined plasma in the corona. Images in four narrow bandpasses will be obtained using normal incidence multilayered optics deposited on quadrants of a Ritchey-Chretien telescope. The EIT is capable of providing a uniform one arc second resolution over its entire 50 by 50 arc min field of view. Data from the EIT will be extremely valuable for identifying and interpreting the spatial and temperature fine structures of the solar atmosphere. Temporal analysis will provide information on the stability of these structures and identify dynamical processes. EIT images, issued daily, will provide the global corona context for aid in unifying the investigations and in forming the observing plans for SOHO coronal instruments.

  18. Extreme Ultraviolet Explorer Bright Source List

    Science.gov (United States)

    Malina, Roger F.; Marshall, Herman L.; Antia, Behram; Christian, Carol A.; Dobson, Carl A.; Finley, David S.; Fruscione, Antonella; Girouard, Forrest R.; Hawkins, Isabel; Jelinsky, Patrick

    1994-01-01

    Initial results from the analysis of the Extreme Ultraviolet Explorer (EUVE) all-sky survey (58-740 A) and deep survey (67-364 A) are presented through the EUVE Bright Source List (BSL). The BSL contains 356 confirmed extreme ultraviolet (EUV) point sources with supporting information, including positions, observed EUV count rates, and the identification of possible optical counterparts. One-hundred twenty-six sources have been detected longward of 200 A.

  19. Complementary ion and extreme ultra-violet spectrometer for laser-plasma diagnosis.

    Science.gov (United States)

    Ter-Avetisyan, S; Ramakrishna, B; Doria, D; Sarri, G; Zepf, M; Borghesi, M; Ehrentraut, L; Stiel, H; Steinke, S; Priebe, G; Schnürer, M; Nickles, P V; Sandner, W

    2009-10-01

    Simultaneous detection of extreme ultra-violet (XUV) and ion emission along the same line of sight provides comprehensive insight into the evolution of plasmas. This type of combined spectroscopy is applied to diagnose laser interaction with a spray target. The use of a micro-channel-plate detector assures reliable detection of both XUV and ion signals in a single laser shot. The qualitative analysis of the ion emission and XUV spectra allows to gain detailed information about the plasma conditions, and a correlation between the energetic proton emission and the XUV plasma emission can be suggested. The measured XUV emission spectrum from water spray shows efficient deceleration of laser accelerated electrons with energies up to keV in the initially cold background plasma and the collisional heating of the plasma.

  20. Complementary ion and extreme ultra-violet spectrometer for laser-plasma diagnosis

    International Nuclear Information System (INIS)

    Ter-Avetisyan, S.; Ramakrishna, B.; Doria, D.; Sarri, G.; Zepf, M.; Borghesi, M.; Ehrentraut, L.; Stiel, H.; Steinke, S.; Schnuerer, M.; Nickles, P. V.; Sandner, W.; Priebe, G.

    2009-01-01

    Simultaneous detection of extreme ultra-violet (XUV) and ion emission along the same line of sight provides comprehensive insight into the evolution of plasmas. This type of combined spectroscopy is applied to diagnose laser interaction with a spray target. The use of a micro-channel-plate detector assures reliable detection of both XUV and ion signals in a single laser shot. The qualitative analysis of the ion emission and XUV spectra allows to gain detailed information about the plasma conditions, and a correlation between the energetic proton emission and the XUV plasma emission can be suggested. The measured XUV emission spectrum from water spray shows efficient deceleration of laser accelerated electrons with energies up to keV in the initially cold background plasma and the collisional heating of the plasma.

  1. Tabletop single-shot extreme ultraviolet Fourier transform holography of an extended object.

    Science.gov (United States)

    Malm, Erik B; Monserud, Nils C; Brown, Christopher G; Wachulak, Przemyslaw W; Xu, Huiwen; Balakrishnan, Ganesh; Chao, Weilun; Anderson, Erik; Marconi, Mario C

    2013-04-22

    We demonstrate single and multi-shot Fourier transform holography with the use of a tabletop extreme ultraviolet laser. The reference wave was produced by a Fresnel zone plate with a central opening that allowed the incident beam to illuminate the sample directly. The high reference wave intensity allows for larger objects to be imaged compared to mask-based lensless Fourier transform holography techniques. We obtain a spatial resolution of 169 nm from a single laser pulse and a resolution of 128 nm from an accumulation of 20 laser pulses for an object ~11x11μm(2) in size. This experiment utilized a tabletop extreme ultraviolet laser that produces a highly coherent ~1.2 ns laser pulse at 46.9 nm wavelength.

  2. Berkeley extreme-ultraviolet airglow rocket spectrometer - BEARS

    Science.gov (United States)

    Cotton, D. M.; Chakrabarti, S.

    1992-01-01

    The Berkeley EUV airglow rocket spectrometer (BEARS) instrument is described. The instrument was designed in particular to measure the dominant lines of atomic oxygen in the FUV and EUV dayglow at 1356, 1304, 1027, and 989 A, which is the ultimate source of airglow emissions. The optical and mechanical design of the instrument, the detector, electronics, calibration, flight operations, and results are examined.

  3. SPRED: a multichannel grazing-incidence spectrometer for plasma impurity diagnosis

    International Nuclear Information System (INIS)

    Fonck, R.J.; Ramsey, A.T.; Yelle, R.V.

    1982-03-01

    A compact vacuum ultraviolet spectrometer system has been developed to provide time-resolved impurity spectra from tokamak plasmas. Two interchangeable aberration-corrected toroidal diffraction gratings with flat focal fields provide simultaneous coverage over the ranges 100 to 1100 A or 160 to 1700 A. The detector is an intensified self-scanning photodiode array. Spectral resolution is 2 A with the higher dispersion grating. Minimum readout time for a full spectrum is 20 ms, but up to 7 individual spectral lines can be measured with a 1 ms time resolution. The sensitivity of the system is comparable to that of a conventional grazing incidence monochromator

  4. SPRED: a multichannel grazing-incidence spectrometer for plasma impurity diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Fonck, R.J.; Ramsey, A.T.; Yelle, R.V.

    1982-03-01

    A compact vacuum ultraviolet spectrometer system has been developed to provide time-resolved impurity spectra from tokamak plasmas. Two interchangeable aberration-corrected toroidal diffraction gratings with flat focal fields provide simultaneous coverage over the ranges 100 to 1100 A or 160 to 1700 A. The detector is an intensified self-scanning photodiode array. Spectral resolution is 2 A with the higher dispersion grating. Minimum readout time for a full spectrum is 20 ms, but up to 7 individual spectral lines can be measured with a 1 ms time resolution. The sensitivity of the system is comparable to that of a conventional grazing incidence monochromator.

  5. High-efficiency collector design for extreme-ultraviolet and x-ray applications

    International Nuclear Information System (INIS)

    Zocchi, Fabio E.

    2006-01-01

    A design of a two-reflection mirror for nested grazing-incidence optics is proposed in which maximum overall reflectivity is achieved by making the two grazing-incidence angles equal for each ray. The design is proposed mainly for application to nonimaging collector optics for extreme-ultraviolet microlithography where the radiation emitted from a hot plasma source needs to be collected and focused on the illuminator optics. For completeness, the design of a double-reflection mirror with equal reflection angles is also briefly outlined for the case of an object at infinity for possible use in x-ray applications

  6. High-efficiency collector design for extreme-ultraviolet and x-ray applications.

    Science.gov (United States)

    Zocchi, Fabio E

    2006-12-10

    A design of a two-reflection mirror for nested grazing-incidence optics is proposed in which maximum overall reflectivity is achieved by making the two grazing-incidence angles equal for each ray. The design is proposed mainly for application to nonimaging collector optics for extreme-ultraviolet microlithography where the radiation emitted from a hot plasma source needs to be collected and focused on the illuminator optics. For completeness, the design of a double- reflection mirror with equal reflection angles is also briefly outlined for the case of an object at infinity for possible use in x-ray applications.

  7. A Fourier transform spectrometer for visible and near ultra-violet measurements of atmospheric absorption

    Science.gov (United States)

    Parsons, C. L.; Gerlach, J. C.; Whitehurst, M.

    1982-01-01

    The development of a prototype, ground-based, Sun-pointed Michelson interferometric spectrometer is described. Its intended use is to measure the atmospheric amount of various gases which absorb in the near-infrared, visible, and near-ultraviolet portions of the electromagnetic spectrum. Preliminary spectra which contain the alpha, 0.8 micrometer, and rho sigma tau water vapor absorption bands in the near-infrared are presented to indicate the present capability of the system. Ultimately, the spectrometer can be used to explore the feasible applications of Fourier transform spectroscopy in the ultraviolet where grating spectrometers were used exclusively.

  8. SPECTROSCOPIC OBSERVATIONS OF CONTINUOUS OUTFLOWS AND PROPAGATING WAVES FROM NOAA 10942 WITH EXTREME ULTRAVIOLET IMAGING SPECTROMETER/HINODE

    International Nuclear Information System (INIS)

    Nishizuka, N.; Hara, H.

    2011-01-01

    We focused on 'sit-and-stare' observations of an outflow region at the edge of active region NOAA 10942 on 2007 February 20 obtained by the Extreme ultraviolet Imaging Spectrometer on board Hinode. We analyzed the data above the base of the outflow and found both continuous outflows and waves, which propagate from the base of the outflow. The spectra at the base of the outflow and at higher locations show different properties. The line profiles show blue-side asymmetry at the base of the outflow where nonthermal broadening becomes large because of fast upflows generated by heating events. On the other hand, at higher locations line profiles are symmetric and the intensity disturbances vary in phase with the velocity disturbances. The correlations between the intensity and velocity disturbances become noticeable at higher locations, so this indicates evidence of (at least locally) upward propagating slow-mode waves along the outflow. We also found a transient oscillation of different period in the wavelet spectrum. This indicates that a different wave is additionally observed during a limited period. High cadence spectroscopic observations revealed intermittent signatures of nonthermal velocities. Each of them seems to correspond to the base of the propagating disturbances. Furthermore, a jet was captured by the sit-and-stare observations across the slit. The similarity of line profiles of the outflow and the jet may indicate that the flows and waves originate in unresolved explosive events in the lower atmosphere of the corona.

  9. Preliminary observations and results obtained with the ultraviolet spectrometer and polarimeter

    International Nuclear Information System (INIS)

    Tandberg-Hanssen, E.; Athay, R.G.; Beckers, J.M.; Brandt, J.C.; Bruner, E.C.; Chapman, R.D.; Cheng, C.C.; Burman, J.G.; Henze, W.; Hyder, C.L.; Michalitsianos, A.G.; Shine, R.A.; Schoolman, S.A.; Woodgate, B.E.

    1981-01-01

    We present new observations with the Ultraviolet Spectrometer and Polarimeter (UVSP) of a number of manifestations of solar activity obtained during the first 3 months of Solar Maximum Mission operations

  10. Solar maximum ultraviolet spectrometer and polarimeter

    Science.gov (United States)

    Tandberg-Hanssen, E.; Woodgate, B. E.; Brandt, J. C.; Chapman, R. D.; Hyder, C. L.; Michalitsianos, A. G.; Shine, R. A.; Athay, R. G.; Beckers, J. M.; Bruner, E. C.

    1979-01-01

    The objectives of the UVSP experiment are to study solar ultraviolet radiations, particularly from flares and active regions, and to measure constituents in the terrestrial atmosphere by the extinction of sunlight at satellite dawn and dusk. The instrument is designed to observe the Sun at a variety of spectral and spatial resolutions in the range from 1150 to 3600 A. A Gregorian telescope with effective focal length of 1.8 m is used to feed a 1 m Ebert-Fastie spectrometer. A polarimeter containing rotatable magnesium fluoride waveplates is included behind the spectrometer entrance slit and will allow all four Stokes parameters to be determined. Velocities on the Sun can also be measured. The instrument is controlled by a computer which can interact with the data stream to modify the observing program. The observing modes, including rasters, spectral scans, velocity measurements, and polarimetry, are also described along with plans for mission operations, data handling, and analysis of the observations.

  11. 3m Vacuum Ultraviolet Spectrometer with Optical Multichannel Detector; Espectrometro de ultravioleta de vacio de 3m provisto de sistema de deteccion optical multicanal

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P; Peraza, C; Blanco, F; Campos, J

    1993-07-01

    This paper describes the design and the performance of a normal incidence vacuum ultraviolet spectrometer, for the 300-2400 A spectral range. It is provided with a multichannel detection system. The monochromator is original design and it has been built at CIEMAT. It is equipped with a 3 m concave holographic grating with 2400 grooves/mm. The multichannel detector consists of a windowless double microchannel plate / phosphor screen image intensifier, coupled by fiber optic to a 1024 elements self-scanning linear photodiode array. The output from the array is digitized by a 12-bit analog to digital converter and stored in a computer, for its later analysis. The necessary software to store and display data has been developed. (Author) 18 refs.

  12. ACCURATELY CALCULATING THE SOLAR ORIENTATION OF THE TIANGONG-2 ULTRAVIOLET FORWARD SPECTROMETER

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2018-04-01

    Full Text Available The Ultraviolet Forward Spectrometer is a new type of spectrometer for monitoring the vertical distribution of atmospheric trace gases in the global middle atmosphere. It is on the TianGong-2 space laboratory, which was launched on 15 September 2016. The spectrometer uses a solar calibration mode to modify its irradiance. Accurately calculating the solar orientation is a prerequisite of spectral calibration for the Ultraviolet Forward Spectrometer. In this paper, a method of calculating the solar orientation is proposed according to the imaging geometric characteristics of the spectrometer. Firstly, the solar orientation in the horizontal rectangular coordinate system is calculated based on the solar declination angle algorithm proposed by Bourges and the solar hour angle algorithm proposed by Lamm. Then, the solar orientation in the sensor coordinate system is achieved through several coordinate system transforms. Finally, we calculate the solar orientation in the sensor coordinate system and evaluate its calculation accuracy using actual orbital data of TianGong-2. The results show that the accuracy is close to the simulation method with STK (Satellite Tool Kit, and the error is not more than 2 %. The algorithm we present does not need a lot of astronomical knowledge, but only needs some observation parameters provided by TianGong-2.

  13. Analysis of buried interfaces in multilayer mirrors using grazing incidence extreme ultraviolet reflectometry near resonance edges.

    Science.gov (United States)

    Sertsu, M G; Nardello, M; Giglia, A; Corso, A J; Maurizio, C; Juschkin, L; Nicolosi, P

    2015-12-10

    Accurate measurements of optical properties of multilayer (ML) mirrors and chemical compositions of interdiffusion layers are particularly challenging to date. In this work, an innovative and nondestructive experimental characterization method for multilayers is discussed. The method is based on extreme ultraviolet (EUV) reflectivity measurements performed on a wide grazing incidence angular range at an energy near the absorption resonance edge of low-Z elements in the ML components. This experimental method combined with the underlying physical phenomenon of abrupt changes of optical constants near EUV resonance edges enables us to characterize optical and structural properties of multilayers with high sensitivity. A major advantage of the method is to perform detailed quantitative analysis of buried interfaces of multilayer structures in a nondestructive and nonimaging setup. Coatings of Si/Mo multilayers on a Si substrate with period d=16.4  nm, number of bilayers N=25, and different capping structures are investigated. Stoichiometric compositions of Si-on-Mo and Mo-on-Si interface diffusion layers are derived. Effects of surface oxidation reactions and carbon contaminations on the optical constants of capping layers and the impact of neighboring atoms' interactions on optical responses of Si and Mo layers are discussed.

  14. Responsivity calibration of the extreme ultraviolet spectrometer in the range of 175-435 Å

    Directory of Open Access Journals (Sweden)

    B. Tu

    2017-04-01

    Full Text Available We reported the relative responsivity calibration of the grazing-incidence flat-field EUV spectrometer between 175 and 435 Å by means of two methods. The first method is implemented by measuring the diffraction efficiency of the grating with synchrotron radiation light source. Considering the transmission efficiency and quantum efficiency of the other optical components in the spectrometer, the total responsivity was then obtained. The second one was carried out by measuring line emissions from C3+, N4+ and O3+ ions at Shanghai high temperature super conductor electron beam ion trap (SH-HtscEBIT. The EUV spectra were also simulated theoretically via a collisional radiative model. In the calculation, the second-order relativistic many-body perturbation theory approach based on the flexible atomic code was used to calculate the energy levels and transition rates; the close-coupling R-matrix approach and relativistic distorted wave method were utilized to calculate the collision strength of electron impact excitation. In comparison with the spectroscopic measurements at EBIT device, the differences between the measured and simulated relative line intensities were obtained. The responsivity calibration for the spectrometer was then achieved by a 3rd degree polynomial function fitting. Our measurement shows that the responsivity between 175 and 435 Å varies by factor of ∼ 46. The two results of calibration demonstrated a consistency within an average deviation of 24%. In addition, an evaluation of our calculations on C iv, N v and O iv line emissions in this wavelength region was given.

  15. Large-solid-angle illuminators for extreme ultraviolet lithography with laser plasmas

    International Nuclear Information System (INIS)

    Kubiak, G.D.; Tichenor, D.A.; Sweatt, W.C.; Chow, W.W.

    1995-06-01

    Laser Plasma Sources (LPSS) of extreme ultraviolet radiation are an attractive alternative to synchrotron radiation sources for extreme ultraviolet lithography (EUVL) due to their modularity, brightness, and modest size and cost. To fully exploit the extreme ultraviolet power emitted by such sources, it is necessary to capture the largest possible fraction of the source emission half-sphere while simultaneously optimizing the illumination stationarity and uniformity on the object mask. In this LDRD project, laser plasma source illumination systems for EUVL have been designed and then theoretically and experimentally characterized. Ellipsoidal condensers have been found to be simple yet extremely efficient condensers for small-field EUVL imaging systems. The effects of aberrations in such condensers on extreme ultraviolet (EUV) imaging have been studied with physical optics modeling. Lastly, the design of an efficient large-solid-angle condenser has been completed. It collects 50% of the available laser plasma source power at 14 nm and delivers it properly to the object mask in a wide-arc-field camera

  16. Characterization of carbon contamination under ion and hot atom bombardment in a tin-plasma extreme ultraviolet light source

    NARCIS (Netherlands)

    Dolgov, A.; Lopaev, D.; Lee, Christopher James; Zoethout, E.; Medvedev, Viacheslav; Yakushev, O.; Bijkerk, Frederik

    2015-01-01

    Molecular contamination of a grazing incidence collector for extreme ultraviolet (EUV) lithography was experimentally studied. A carbon film was found to have grown under irradiation from a pulsed tin plasma discharge. Our studies show that the film is chemically inert and has characteristics that

  17. Extreme-Ultraviolet Vortices from a Free-Electron Laser

    Directory of Open Access Journals (Sweden)

    Primož Rebernik Ribič

    2017-08-01

    Full Text Available Extreme-ultraviolet vortices may be exploited to steer the magnetic properties of nanoparticles, increase the resolution in microscopy, and gain insight into local symmetry and chirality of a material; they might even be used to increase the bandwidth in long-distance space communications. However, in contrast to the generation of vortex beams in the infrared and visible spectral regions, production of intense, extreme-ultraviolet and x-ray optical vortices still remains a challenge. Here, we present an in-situ and an ex-situ technique for generating intense, femtosecond, coherent optical vortices at a free-electron laser in the extreme ultraviolet. The first method takes advantage of nonlinear harmonic generation in a helical undulator, producing vortex beams at the second harmonic without the need for additional optical elements, while the latter one relies on the use of a spiral zone plate to generate a focused, micron-size optical vortex with a peak intensity approaching 10^{14}  W/cm^{2}, paving the way to nonlinear optical experiments with vortex beams at short wavelengths.

  18. Nonlinear wave-mixing processes in the extreme ultraviolet

    International Nuclear Information System (INIS)

    Misoguti, L.; Christov, I. P.; Backus, S.; Murnane, M. M.; Kapteyn, H. C.

    2005-01-01

    We present data from two-color high-order harmonic generation in a hollow waveguide, that suggest the presence of a nonlinear-optical frequency conversion process driven by extreme ultraviolet light. By combining the fundamental and second harmonic of an 800 nm laser in a hollow-core fiber, with varying relative polarizations, and by observing the pressure and power scaling of the various harmonic orders, we show that the data are consistent with a picture where we drive the process of high-harmonic generation, which in turn drives four-wave frequency mixing processes in the extreme EUV. This work promises a method for extending nonlinear optics into the extreme ultraviolet region of the spectrum using an approach that has not previously been considered, and has compelling implications for generating tunable light at short wavelengths

  19. The Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission

    Science.gov (United States)

    Woodgate, B. E.; Brandt, J. C.; Kalet, M. W.; Kenny, P. J.; Tandberg-Hanssen, E. A.; Bruner, E. C.; Beckers, J. M.; Henze, W.; Knox, E. D.; Hyder, C. L.

    1980-01-01

    The Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission spacecraft is described, including the experiment objectives, system design, performance, and modes of operation. The instrument operates in the wavelength range 1150-3600 A with better than 2 arcsec spatial resolution, raster range 256 x 256 sq arcsec, and 20 mA spectral resolution in second order. Observations can be made with specific sets of four lines simultaneously, or with both sides of two lines simultaneously for velocity and polarization. A rotatable retarder can be inserted into the spectrometer beam for measurement of Zeeman splitting and linear polarization in the transition region and chromosphere.

  20. The ultraviolet spectrometer and polarimeter on the solar maximum mission

    International Nuclear Information System (INIS)

    Woodgate, B.E.; Brandt, J.C.; Kalet, M.W.; Kenny, P.J.; Beckers, J.M.; Henze, W.; Hyder, C.L.; Knox, E.D.

    1980-01-01

    The Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission spacecraft is described, including the experiment objectives, system design. performance, and modes of operation. The instrument operates in the wavelength range 1150-3600 Angstreom with better than 2 arc sec spatial resolution, raster range 256 x 256 arc sec 2 , and 20 m Angstroem spectral resolution in second order. Observations can be made with specific sets of 4 lines simultaneously, or with both sides of 2 lines simultaneously for velocity and polarization. A rotatable retarder can be inserted into the spectrometer beam for measurement of Zeeman splitting and linear polarization in the transition region and chromosphere. (orig.)

  1. Divertor extreme ultraviolet (EUV) survey spectroscopy in DIII-D

    Science.gov (United States)

    McLean, Adam; Allen, Steve; Ellis, Ron; Jarvinen, Aaro; Soukhanovskii, Vlad; Boivin, Rejean; Gonzales, Eduardo; Holmes, Ian; Kulchar, James; Leonard, Anthony; Williams, Bob; Taussig, Doug; Thomas, Dan; Marcy, Grant

    2017-10-01

    An extreme ultraviolet spectrograph measuring resonant emissions of D and C in the lower divertor has been added to DIII-D to help resolve an 2X discrepancy between bolometrically measured radiated power and that predicted by boundary codes for DIII-D, JET and ASDEX-U. With 290 and 450 gr/mm gratings, the DivSPRED spectrometer, an 0.3 m flat-field McPherson model 251, measures ground state transitions for D (the Lyman series) and C (e.g., C IV, 155 nm) which account for >75% of radiated power in the divertor. Combined with Thomson scattering and imaging in the DIII-D divertor, measurements of position, temperature and fractional power emission from plasma components are made and compared to UEDGE/SOLPS-ITER. Mechanical, optical, electrical, vacuum, and shielding aspects of DivSPRED are presented. Work supported under USDOE Cooperative Agreement DE-FC02-04ER54698 and DE-AC52-07NA27344, and by the LLNL Laboratory Directed R&D Program, project #17-ERD-020.

  2. Chromospheric Evaporation in an M1.8 Flare Observed by the Extreme-ultraviolet Imaging Spectrometer (EIS) on Hinode

    Science.gov (United States)

    Doschek, G. A.; Warren, H. P.

    2012-12-01

    We discuss observations of chromospheric evaporation for a flare that occurred on 9 March 2012 near 03:30 UT obtained from the Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft. This was a multiple event with a strong energy input that reached the M1.8 class when observed by EIS. EIS was in raster mode and fortunately the slit reached almost the exact location of a significant energy input. Also, fortunately EIS obtained a full-CCD spectrum of the flare, i.e., the entire CCD was readout so that data were obtained for about the 500 lines identified in the EIS wavelength ranges. Chromospheric evaporation characterized by 150-200 km/s upflows was observed in several locations in multi-million degree spectral lines of flare ions such as Fe XXII, Fe XXIII, Fe XXIV, with simultaneous 20 - 60 km/s upflows in a host of million degree coronal lines from ions such as Fe XI - Fe XVI. The behavior of cooler, transition region ions such as O VI, Fe VIII, He II, and Fe X is more complex. At a point close to strong energy input, the flare ions reveal an isothermal source with a temperature close to 14 MK. At this point there is a strong downflow in cooler active region lines from ions such as Fe XIII and Fe XIV. Electron densities were obtained from density sensitive lines ratios from Fe XIII and Fe XIV. The results to be presented are refined from the preliminary data given above and combined with context AIA observations for a comparison with predictions of models of chromospheric evaporation as envisaged in the Standard Flare Model.

  3. The Marshall Grazing Incidence X-ray Spectrometer

    Science.gov (United States)

    Kobayashi, Ken; Winebarger, Amy R.; Savage, Sabrina; Champey, Patrick; Cheimets, Peter N.; Hertz, Edward; Bruccoleri, Alexander R.; Golub, Leon; Ramsey, Brian; Ranganathan, Jaganathan; Marquez, Vanessa; Allured, Ryan; Parker, Theodore; Heilmann, Ralf K.; Schattenburg, Mark L.

    2017-08-01

    The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a NASA sounding rocket instrument designed to obtain spatially resolved soft X-ray spectra of the solar atmosphere in the 6-24 Å (0.5-2.0 keV) range. The instrument consists of a single shell Wolter Type-I telescope, a slit, and a spectrometer comprising a matched pair of grazing incidence parabolic mirrors and a planar varied-line space diffraction grating. The instrument is designed to achieve a 50 mÅ spectral resolution and 5 arcsecond spatial resolution along a +/-4-arcminute long slit, and launch is planned for 2019. We report on the status and our approaches for fabrication and alignment for this novel optical system. The telescope and spectrometer mirrors are replicated nickel shells, and are currently being fabricated at the NASA Marshall Space Flight Center. The diffraction grating is currently under development by the Massachusetts Institute of Technology (MIT); because of the strong line spacing variation across the grating, it will be fabricated through e-beam lithography.

  4. High-resolution Fourier-transform extreme ultraviolet photoabsorption spectroscopy of 14N15N

    Science.gov (United States)

    Heays, A. N.; Dickenson, G. D.; Salumbides, E. J.; de Oliveira, N.; Joyeux, D.; Nahon, L.; Lewis, B. R.; Ubachs, W.

    2011-12-01

    The first comprehensive high-resolution photoabsorption spectrum of 14N15N has been recorded using the Fourier-transform spectrometer attached to the Desirs beamline at the Soleil synchrotron. Observations are made in the extreme ultraviolet and span 100 000-109 000 cm-1 (100-91.7 nm). The observed absorption lines have been assigned to 25 bands and reduced to a set of transition energies, f values, and linewidths. This analysis has verified the predictions of a theoretical model of N2 that simulates its photoabsorption and photodissociation cross section by solution of an isotopomer independent formulation of the coupled-channel Schrödinger equation. The mass dependence of predissociation linewidths and oscillator strengths is clearly evident and many local perturbations of transition energies, strengths, and widths within individual rotational series have been observed.

  5. Wave-mixing with high-order harmonics in extreme ultraviolet region

    International Nuclear Information System (INIS)

    Dao, Lap Van; Dinh, Khuong Ba; Le, Hoang Vu; Gaffney, Naylyn; Hannaford, Peter

    2015-01-01

    We report studies of the wave-mixing process in the extreme ultraviolet region with two near-infrared driving and controlling pulses with incommensurate frequencies (at 1400 nm and 800 nm). A non-collinear scheme for the two beams is used in order to spatially separate and to characterise the properties of the high-order wave-mixing field. We show that the extreme ultraviolet frequency mixing can be treated by perturbative, very high-order nonlinear optics; the modification of the wave-packet of the free electron needs to be considered in this process

  6. Extreme ultraviolet spectral irradiance measurements since 1946

    Science.gov (United States)

    Schmidtke, G.

    2015-03-01

    In the physics of the upper atmosphere the solar extreme ultraviolet (EUV) radiation plays a dominant role controlling most of the thermospheric/ionospheric (T/I) processes. Since this part of the solar spectrum is absorbed in the thermosphere, platforms to measure the EUV fluxes became only available with the development of rockets reaching altitude levels exceeding 80 km. With the availability of V2 rockets used in space research, recording of EUV spectra started in 1946 using photographic films. The development of pointing devices to accurately orient the spectrographs toward the sun initiated intense activities in solar-terrestrial research. The application of photoelectric recording technology enabled the scientists placing EUV spectrometers aboard satellites observing qualitatively strong variability of the solar EUV irradiance on short-, medium-, and long-term scales. However, as more measurements were performed more radiometric EUV data diverged due to the inherent degradation of the EUV instruments with time. Also, continuous recording of the EUV energy input to the T/I system was not achieved. It is only at the end of the last century that there was progress made in solving the serious problem of degradation enabling to monitore solar EUV fluxes with sufficient radiometric accuracy. The data sets available allow composing the data available to the first set of EUV data covering a period of 11 years for the first time. Based on the sophisticated instrumentation verified in space, future EUV measurements of the solar spectral irradiance (SSI) are promising accuracy levels of about 5% and less. With added low-cost equipment, real-time measurements will allow providing data needed in ionospheric modeling, e.g., for correcting propagation delays of navigation signals from space to earth. Adding EUV airglow and auroral emission monitoring by airglow cameras, the impact of space weather on the terrestrial T/I system can be studied with a spectral terrestrial

  7. The Dual-channel Extreme Ultraviolet Continuum Experiment: Sounding Rocket EUV Observations of Local B Stars to Determine Their Potential for Supplying Intergalactic Ionizing Radiation

    Science.gov (United States)

    Erickson, Nicholas; Green, James C.; France, Kevin; Stocke, John T.; Nell, Nicholas

    2018-06-01

    We describe the scientific motivation and technical development of the Dual-channel Extreme Ultraviolet Continuum Experiment (DEUCE). DEUCE is a sounding rocket payload designed to obtain the first flux-calibrated spectra of two nearby B stars in the EUV 650-1150Å bandpass. This measurement will help in understanding the ionizing flux output of hot B stars, calibrating stellar models and commenting on the potential contribution of such stars to reionization. DEUCE consists of a grazing incidence Wolter II telescope, a normal incidence holographic grating, and the largest (8” x 8”) microchannel plate detector ever flown in space, covering the 650-1150Å band in medium and low resolution channels. DEUCE will launch on December 1, 2018 as NASA/CU sounding rocket mission 36.331 UG, observing Epsilon Canis Majoris, a B2 II star.

  8. Laboratory calibration of density-dependent lines in the extreme ultraviolet spectral region

    Science.gov (United States)

    Lepson, J. K.; Beiersdorfer, P.; Gu, M. F.; Desai, P.; Bitter, M.; Roquemore, L.; Reinke, M. L.

    2012-05-01

    We have been making spectral measurements in the extreme ultraviolet (EUV) from different laboratory sources in order to investigate the electron density dependence of various astrophysically important emission lines and to test the atomic models underlying the diagnostic line ratios. The measurement are being performed at the Livermore EBIT-I electron beam ion trap, the National Spherical Torus Experiment (NSTX) at Princeton, and the Alcator C-Mod tokamak at the Massachusetts Institute of Technology, which together span an electron density of four orders of magnitude and which allow us to test the various models at high and low density limits. Here we present measurements of Fe XXII and Ar XIV, which include new data from an ultra high resolution (λ/Δλ >4000) spectrometer at the EBIT-I facility. We found good agreement between the measurements and modeling calculations for Fe XXII, but poorer agreement for Ar XIV.

  9. Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hong; Duan, Lian; Lan, Hui [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Wang, Xinbing, E-mail: xbwang@hust.edu.cn; Chen, Ziqi; Zuo, Duluo [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Lu, Peixiang [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-05-21

    Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressed as a function of the opacity using the Beer–Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data.

  10. Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma

    International Nuclear Information System (INIS)

    Chen, Hong; Duan, Lian; Lan, Hui; Wang, Xinbing; Chen, Ziqi; Zuo, Duluo; Lu, Peixiang

    2015-01-01

    Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressed as a function of the opacity using the Beer–Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data

  11. Design and performance of an ultraviolet resonance Raman spectrometer for proteins and nucleic acids.

    Science.gov (United States)

    Russell, M P; Vohník, S; Thomas, G J

    1995-04-01

    We describe an ultraviolet resonance Raman (UVRR) spectrometer appropriate for structural studies of biological macromolecules and their assemblies. Instrument design includes the following features: a continuous wave, intracavity doubled, ultraviolet laser source for excitation of the Raman spectrum; a rotating cell (or jet source) for presentation of the sample to the laser beam; a Cassegrain optic with f/1.0 aperture for collection of the Raman scattering; a quartz prism dispersing element for rejection of stray light and Rayleigh scattering; a 0.75-m single grating monochromator for dispersion of the Raman scattering; and a liquid-nitrogen-cooled, charge-coupled device for detection of the Raman photons. The performance of this instrument, assessed on the basis of the observed signal-to-noise ratios, the apparent resolution of closely spaced spectral bands, and the wide spectrometer bandpass of 2200 cm-1, is believed superior to previously described UVRR spectrometers of similar design. Performance characteristics of the instrument are demonstrated in UVRR spectra obtained from standard solvents, p-ethylphenol, which serves as a model for the tyrosine side chain, the DNA nucleotide deoxyguanosine-5'-monophosphate, and the human tumor necrosis factor binding protein, which is considered representative of soluble globular proteins.

  12. Ultraviolet spectrometer and polarimeter (UVSP) software development and hardware tests for the solar maximum mission

    Science.gov (United States)

    Bruner, M. E.; Haisch, B. M.

    1986-01-01

    The Ultraviolet Spectrometer/Polarimeter Instrument (UVSP) for the Solar Maximum Mission (SMM) was based on the re-use of the engineering model of the high resolution ultraviolet spectrometer developed for the OSO-8 mission. Lockheed assumed four distinct responsibilities in the UVSP program: technical evaluation of the OSO-8 engineering model; technical consulting on the electronic, optical, and mechanical modifications to the OSO-8 engineering model hardware; design and development of the UVSP software system; and scientific participation in the operations and analysis phase of the mission. Lockheed also provided technical consulting and assistance with instrument hardware performance anomalies encountered during the post launch operation of the SMM observatory. An index to the quarterly reports delivered under the contract are contained, and serves as a useful capsule history of the program activity.

  13. Multidimensional spectrometer

    Science.gov (United States)

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  14. Repair of ultraviolet light-induced damage in Micrococcus radiophilus, and extremely resistant microorganism

    International Nuclear Information System (INIS)

    Lavin, M.F.; Jenkins, A.; Kidson, C.

    1976-01-01

    Repair of ultraviolet radiation damage was examined in an extremely radioresistant organism, Micrococcus radiophilus. Measurement of the number of thymine-containing dimers formed as a function of ultraviolet dose suggests that the ability of this organism to withstand high doses of ultraviolet radiation (20,000 ergs/mm 2 ) is not related to protective screening by pigments. M. radiophilus carries out a rapid excision of thymine dimers at doses of ultraviolet light up to 10,000 ergs/mm 2 . Synthesis of deoxyribonucleic acid is reduced after irradiation, but after removal of photodamage the rate approaches that in unirradiated cells. A comparison is drawn with Micrococcus luteus and M. radiodurans. We conclude that the extremely high resistance to ultraviolet irradiation in M. radiophilus is at least partly due to the presence of an efficient excision repair system

  15. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    Energy Technology Data Exchange (ETDEWEB)

    Wang, He [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Xu, Yiming [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Ulonska, Stefan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Robinson, Joseph S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Ranitovic, Predrag [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Kaindl, Robert A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division

    2015-06-11

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. In this article, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s-1 is generated at 22.3 eV, with 5 × 10-5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Finally, spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications.

  16. Graphene defect formation by extreme ultraviolet generated photoelectrons

    NARCIS (Netherlands)

    Gao, An; Lee, Christopher James; Bijkerk, Frederik

    2014-01-01

    We have studied the effect of photoelectrons on defect formation in graphene during extreme ultraviolet (EUV) irradiation. Assuming the major role of these low energy electrons, we have mimicked the process by using low energy primary electrons. Graphene is irradiated by an electron beam with energy

  17. Normal-incidence spectroscopic ellipsometry for critical dimension monitoring

    International Nuclear Information System (INIS)

    Huang, Hsu-Ting; Kong, Wei; Terry, Fred Lewis

    2001-01-01

    In this letter, we show that normal-incidence spectroscopic ellipsometry can be used for high-accuracy topography measurements on surface relief gratings. We present both experimental and theoretical results which show that spectroscopic ellipsometry or reflectance-difference spectroscopy at near-normal incidence coupled with vector diffraction theory for data analysis is capable of high-accuracy critical dimension (CD), feature height, and sidewall angle measurements in the extreme submicron regime. Quantitative comparisons of optical and cross-sectional scanning electron microscopy (SEM) topography measurements from a number of 350 nm line/space reactive-ion-etched Si gratings demonstrate the strong potential for in situ etching monitoring. This technique can be used for both ex situ and in situ applications and has the potential to replace the use of CD-SEM measurements in some applications. [copyright] 2001 American Institute of Physics

  18. CHROMOSPHERIC EVAPORATION IN AN M1.8 FLARE OBSERVED BY THE EXTREME-ULTRAVIOLET IMAGING SPECTROMETER ON HINODE

    International Nuclear Information System (INIS)

    Doschek, G. A.; Warren, H. P.; Young, P. R.

    2013-01-01

    We discuss observations of chromospheric evaporation for a complex flare that occurred on 2012 March 9 near 03:30 UT obtained from the Extreme-ultraviolet Imaging Spectrometer (EIS) on board the Hinode spacecraft. This was a multiple event with a strong energy input that reached the M1.8 class when observed by EIS. EIS was in raster mode and fortunately the slit was almost at the exact location of a significant energy input. Also, EIS obtained a full-CCD spectrum of the flare, i.e., the entire CCD was readout so that data were obtained for about the 500 lines identified in the EIS wavelength ranges. Chromospheric evaporation characterized by 150-200 km s –1 upflows was observed in multiple locations in multi-million degree spectral lines of flare ions such as Fe XXII, Fe XXIII, and Fe XXIV, with simultaneous 20-60 km s –1 upflows in million degree coronal lines from ions such as Fe XII-Fe XVI. The behavior of cooler, transition region ions such as O VI, Fe VIII, He II, and Fe X is more complex, but upflows were also observed in Fe VIII and Fe X lines. At a point close to strong energy input in space and time, the flare ions Fe XXII, Fe XXIII, and Fe XXIV reveal an isothermal source with a temperature close to 14 MK and no strong blueshifted components. At this location there is a strong downflow in cooler active region lines from ions such as Fe XIII and Fe XIV, on the order of 200 km s –1 . We speculate that this downflow may be evidence of the downward shock produced by reconnection in the current sheet seen in MHD simulations. A sunquake also occurred near this location. Electron densities were obtained from density sensitive lines ratios from Fe XIII and Fe XIV. Atmospheric Imaging Assembly (AIA) observations from the Solar Dynamics Observatory are used with JHelioviewer to obtain a qualitative overview of the flare. However, AIA data are not presented in this paper. In summary, spectroscopic data from EIS are presented that can be used for predictive

  19. Chromospheric Evaporation in an M1.8 Flare Observed by the Extreme-ultraviolet Imaging Spectrometer on Hinode

    Science.gov (United States)

    Doschek, G. A.; Warren, H. P.; Young, P. R.

    2013-04-01

    We discuss observations of chromospheric evaporation for a complex flare that occurred on 2012 March 9 near 03:30 UT obtained from the Extreme-ultraviolet Imaging Spectrometer (EIS) on board the Hinode spacecraft. This was a multiple event with a strong energy input that reached the M1.8 class when observed by EIS. EIS was in raster mode and fortunately the slit was almost at the exact location of a significant energy input. Also, EIS obtained a full-CCD spectrum of the flare, i.e., the entire CCD was readout so that data were obtained for about the 500 lines identified in the EIS wavelength ranges. Chromospheric evaporation characterized by 150-200 km s-1 upflows was observed in multiple locations in multi-million degree spectral lines of flare ions such as Fe XXII, Fe XXIII, and Fe XXIV, with simultaneous 20-60 km s-1 upflows in million degree coronal lines from ions such as Fe XII-Fe XVI. The behavior of cooler, transition region ions such as O VI, Fe VIII, He II, and Fe X is more complex, but upflows were also observed in Fe VIII and Fe X lines. At a point close to strong energy input in space and time, the flare ions Fe XXII, Fe XXIII, and Fe XXIV reveal an isothermal source with a temperature close to 14 MK and no strong blueshifted components. At this location there is a strong downflow in cooler active region lines from ions such as Fe XIII and Fe XIV, on the order of 200 km s-1. We speculate that this downflow may be evidence of the downward shock produced by reconnection in the current sheet seen in MHD simulations. A sunquake also occurred near this location. Electron densities were obtained from density sensitive lines ratios from Fe XIII and Fe XIV. Atmospheric Imaging Assembly (AIA) observations from the Solar Dynamics Observatory are used with JHelioviewer to obtain a qualitative overview of the flare. However, AIA data are not presented in this paper. In summary, spectroscopic data from EIS are presented that can be used for predictive tests of

  20. Elastic modulus of Extreme Ultraviolet exposed single-layer graphene

    NARCIS (Netherlands)

    Mund, Baibhav Kumar; Gao, An; Sturm, Jacobus Marinus; Lee, Christopher James; Bijkerk, Frederik

    2015-01-01

    Highly transparent membranes are required for a number of applications, such as protective coatings for components in Extreme Ultraviolet (EUV) lithography, beam splitters (EUV pump-probe experiments), transmission gratings, and reticles. Graphene is an excellent candidate due to its high tensile

  1. Infrared diffractive filtering for extreme ultraviolet multilayer Bragg reflectors

    NARCIS (Netherlands)

    Medvedev, Viacheslav; van den Boogaard, Toine; van der Meer, R.; Yakshin, Andrey; Louis, Eric; Krivtsun, V.M.; Bijkerk, Frederik

    2013-01-01

    Abstract: We report on the development of a hybrid mirror realized by integrating an EUV-reflecting multilayer coating with a lamellar grating substrate. This hybrid irror acts as an efficient Bragg reflector for extreme ultraviolet (EUV) radiation at a given wavelength while simultaneously

  2. Design and performance of capping layers for extreme-ultraviolet multilayer mirrors

    International Nuclear Information System (INIS)

    Bajt, Sasa; Chapman, Henry N.; Nguyen, Nhan; Alameda, Jennifer; Robinson, Jeffrey C.; Malinowski, Michael; Gullikson, Eric; Aquila, Andrew; Tarrio, Charles; Grantham, Steven

    2003-01-01

    Multilayer lifetime has emerged as one of the major issues for the commercialization of extreme-ultraviolet lithography (EUVL). We describe the performance of an oxidation-resistant capping layer of Ru atop multilayers that results in a reflectivity above 69% at 13.2 nm, which is suitable for EUVL projection optics and has been tested with accelerated electron-beam and extreme-ultraviolet (EUV) light in a water-vapor environment. Based on accelerated exposure results, we calculated multilayer lifetimes for all reflective mirrors in a typical commercial EUVL tool and concluded that Ru-capped multilayers have ∼40x longer lifetimes than Si-capped multilayers, which translates to 3 months to many years, depending on the mirror dose

  3. Optical properties and electronic transitions of zinc oxide, ferric oxide, cerium oxide, and samarium oxide in the ultraviolet and extreme ultraviolet

    DEFF Research Database (Denmark)

    Pauly, N; Yubero, F; Espinós, J P

    2017-01-01

    Optical properties and electronic transitions of four oxides, namely zinc oxide, ferric oxide, cerium oxide, and samarium oxide, are determined in the ultraviolet and extreme ultraviolet by reflection electron energy loss spectroscopy using primary electron energies in the range 0.3-2.0 ke...

  4. Dynamical structure of extreme ultraviolet macrospicules

    Science.gov (United States)

    Karovska, Margarita; Habbal, Shadia Rifai

    1994-01-01

    We describe the substructures forming the macrospicules and their temporal evolution, as revealed by the application of an image enhancement algorithm to extreme ultraviolet (EUV) observations of macrospicules. The enhanced images uncover, for the first time, the substructures forming the column-like structures within the macrospicules and the low-lying arches at their base. The spatial and temporal evolution of macrospicules clearly show continuous interaction between these substructures with occasional ejection of plasma following a ballistic trajectory. We comment on the importance of these results for planning near future space observations of macrospicules with better temporal and spatial resolution.

  5. Femtosecond tracking of carrier relaxation in germanium with extreme ultraviolet transient reflectivity

    Science.gov (United States)

    Kaplan, Christopher J.; Kraus, Peter M.; Ross, Andrew D.; Zürch, Michael; Cushing, Scott K.; Jager, Marieke F.; Chang, Hung-Tzu; Gullikson, Eric M.; Neumark, Daniel M.; Leone, Stephen R.

    2018-05-01

    Extreme ultraviolet (XUV) transient reflectivity around the germanium M4 ,5 edge (3 d core-level to valence transition) at 30 eV is advanced to obtain the transient dielectric function of crystalline germanium [100] on femtosecond to picosecond time scales following photoexcitation by broadband visible-to-infrared (VIS/NIR) pulses. By fitting the transient dielectric function, carrier-phonon induced relaxations are extracted for the excited carrier distribution. The measurements reveal a hot electron relaxation rate of 3.2 ±0.2 ps attributed to the X -L intervalley scattering and a hot hole relaxation rate of 600 ±300 fs ascribed to intravalley scattering within the heavy hole (HH) band, both in good agreement with previous work. An overall energy shift of the XUV dielectric function is assigned to a thermally induced band gap shrinkage by formation of acoustic phonons, which is observed to be on a timescale of 4-5 ps, in agreement with previously measured optical phonon lifetimes. The results reveal that the transient reflectivity signal at an angle of 66∘ with respect to the surface normal is dominated by changes to the real part of the dielectric function, due to the near critical angle of incidence of the experiment (66∘-70∘) for the range of XUV energies used. This work provides a methodology for interpreting XUV transient reflectivity near core-level transitions, and it demonstrates the power of the XUV spectral region for measuring ultrafast excitation dynamics in solids.

  6. Photoionization capable, extreme and vacuum ultraviolet emission in developing low temperature plasmas in air

    NARCIS (Netherlands)

    Stephens, J.; Fierro, A.; Beeson, S.; Laity, G.; Trienekens, D.; Joshi, R.P.; Dickens, J.; Neuber, A.

    2016-01-01

    Experimental observation of photoionization capable extreme ultraviolet and vacuum ultraviolet emission from nanosecond timescale, developing low temperature plasmas (i.e. streamer discharges) in atmospheric air is presented. Applying short high voltage pulses enabled the observation of the onset of

  7. Preliminary observations and results obtained with the ultraviolet spectrometer and polarimeter. [for Solar Maximum Mission

    Science.gov (United States)

    Tandberg-Hassen, E.; Cheng, C. C.; Athay, R. G.; Beckers, J. M.; Brandt, J. C.; Chapman, R. D.; Bruner, E. C.; Henze, W.; Hyder, C. L.; Gurman, J. B.

    1981-01-01

    New observation with the Ultraviolet Spectrometer and Polarimeter (UVSP) of a number of manifestations of solar activity obtained during the first three months of Solar Maximum Mission operations are presented. Attention is given to polarimetry in sunspots, oscillations above sunspots, density diagnostics of transition-zone plasmas in active regions, and the eruptive prominence - coronal transient link.

  8. Extreme Ultraviolet Stokesmeter for Pulsed Magneto-Optics

    Directory of Open Access Journals (Sweden)

    Mabel Ruiz-Lopez

    2015-02-01

    Full Text Available Several applications in material science and magnetic holography using extreme ultraviolet (EUV radiation require the measurement of the degree and state of polarization. In this work, an instrument to measure simultaneously both parameters from EUV pulses is presented. The instrument determines the Stokes parameters after a reflection on an array of multilayer mirrors at the Brewster angle. The Stokesmeter was tested at Swiss Light Source at different EUV wavelengths. The experimental Stokes patterns of the source were compared with the simulated pattern.

  9. Performance improvement of two-dimensional EUV spectroscopy based on high frame rate CCD and signal normalization method

    International Nuclear Information System (INIS)

    Zhang, H.M.; Morita, S.; Ohishi, T.; Goto, M.; Huang, X.L.

    2014-01-01

    In the Large Helical Device (LHD), the performance of two-dimensional (2-D) extreme ultraviolet (EUV) spectroscopy with wavelength range of 30-650A has been improved by installing a high frame rate CCD and applying a signal intensity normalization method. With upgraded 2-D space-resolved EUV spectrometer, measurement of 2-D impurity emission profiles with high horizontal resolution is possible in high-density NBI discharges. The variation in intensities of EUV emission among a few discharges is significantly reduced by normalizing the signal to the spectral intensity from EUV_—Long spectrometer which works as an impurity monitor with high-time resolution. As a result, high resolution 2-D intensity distribution has been obtained from CIV (384.176A), CV(2x40.27A), CVI(2x33.73A) and HeII(303.78A). (author)

  10. A study of the terrestrial thermosphere by remote sensing of OI dayglow in the far and extreme ultraviolet

    International Nuclear Information System (INIS)

    Cotton, D.M.

    1991-01-01

    The upper region of the Earth's atmosphere, the thermosphere, is a key part of the coupled solar-terrestrial system. An important method of obtaining information in the this region is through analysis of radiation excited through the interactions of the thermosphere with solar ionizing, extreme and far ultraviolet radiation. This dissertation presents one such study by the remote sensing of OI in the far and extreme ultraviolet dayglow. The research program included the development construction, and flight of a sounding rocket spectrometer to test this current understanding of the excitation and transport mechanisms of the OI 1356, 1304, 1027, and 989 angstrom emissions. This data set was analyzed using current electron and radiative transport models with the purpose of checking the viability of OI remote sensing; that is, whether existing models and input parameters are adequate to predict these detailed measurements. From discrepancies between modeled and measured emissions, inferences about these input parameters were made. Among other things, the data supports a 40% optically thick cascade contribution to the 1304 angstrom emission. From upper lying states corresponding to 1040, 1027 and 989 angstrom about half of this cascade has been accounted for in this study. There is also evidence that the Lyman β airglow from the geo-corona contributes a significant proportion (30-50%) to the OI 1027 angstrom feature. Furthermore, the photoelectron contribution to the 1027 angstrom feature appears to be underestimated in the current models by a factor of 20

  11. Measurements of transition probabilities in the range from vacuum ultraviolet to infrared

    International Nuclear Information System (INIS)

    Peraza Fernandez, M.C.

    1992-01-01

    In this memory we describe the design, testing and calibration of different spectrometers to measure transition probabilities from the vacuum ultraviolet to the infrared spectral region. For the infrared measurements we have designed and performed a phase sensitive detection system, using an InGaAs photodiode like detector. With this system we have determined the transition probabilities of infrared lines of KrI and XeI. For these lines we haven't found previous measurements. In the vacuum ultraviolet spectral region we have designed a 3 m normal incidence monochromator where we have installed an optical multichannel analyzer. We have tested its accurate working, obtaining the absorption spectrum of KrI. In the visible region we have obtained the emission spectrum of Al using different spectral: hallow-cathode lamp and Nd: YAG laser produced Al plasma. With these spectra we have determined different atomic parameters like transition probabilities and electron temperatures.(author). 83 refs

  12. Calibration of windowless photodiode for extreme ultraviolet pulse energy measurement

    Czech Academy of Sciences Publication Activity Database

    Koláček, Karel; Schmidt, Jiří; Štraus, Jaroslav; Frolov, Oleksandr

    2015-01-01

    Roč. 54, č. 35 (2015), s. 10454-10459 ISSN 1559-128X R&D Projects: GA MŠk(CZ) LG13029 Institutional support: RVO:61389021 Keywords : Photodetectors * Soft-X-ray * Extreme ultraviolet * Detection * Filters * Metrology Subject RIV: BH - Optics , Masers, Lasers Impact factor: 1.598, year: 2015

  13. FIBRILLAR CHROMOSPHERIC SPICULE-LIKE COUNTERPARTS TO AN EXTREME-ULTRAVIOLET AND SOFT X-RAY BLOWOUT CORONAL JET

    International Nuclear Information System (INIS)

    Sterling, Alphonse C.; Moore, Ronald L.; Harra, Louise K.

    2010-01-01

    We observe an erupting jet feature in a solar polar coronal hole, using data from Hinode/Solar Optical Telescope (SOT), Extreme Ultraviolet Imaging Spectrometer (EIS), and X-Ray Telescope (XRT), with supplemental data from STEREO/EUVI. From extreme-ultraviolet (EUV) and soft X-ray (SXR) images we identify the erupting feature as a blowout coronal jet: in SXRs it is a jet with a bright base, and in EUV it appears as an eruption of relatively cool (∼50,000 K) material of horizontal size scale ∼30'' originating from the base of the SXR jet. In SOT Ca II H images, the most pronounced analog is a pair of thin (∼1'') ejections at the locations of either of the two legs of the erupting EUV jet. These Ca II features eventually rise beyond 45'', leaving the SOT field of view, and have an appearance similar to standard spicules except that they are much taller. They have velocities similar to that of 'type II' spicules, ∼100 km s -1 , and they appear to have spicule-like substructures splitting off from them with horizontal velocity ∼50 km s -1 , similar to the velocities of splitting spicules measured by Sterling et al. Motions of splitting features and of other substructures suggest that the macroscopic EUV jet is spinning or unwinding as it is ejected. This and earlier work suggest that a subpopulation of Ca II type II spicules are the Ca II manifestation of portions of larger scale erupting magnetic jets. A different subpopulation of type II spicules could be blowout jets occurring on a much smaller horizontal size scale than the event we observe here.

  14. High intensity vacuum ultraviolet and extreme ultraviolet production by noncollinear mixing in laser vaporized media

    Energy Technology Data Exchange (ETDEWEB)

    Todt, Michael A.; Albert, Daniel R.; Davis, H. Floyd, E-mail: hfd1@cornell.edu [Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301 (United States)

    2016-06-15

    A method is described for generating intense pulsed vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) laser radiation by resonance enhanced four-wave mixing of commercial pulsed nanosecond lasers in laser vaporized mercury under windowless conditions. By employing noncollinear mixing of the input beams, the need of dispersive elements such as gratings for separating the VUV/XUV from the residual UV and visible beams is eliminated. A number of schemes are described, facilitating access to the 9.9–14.6 eV range. A simple and convenient scheme for generating wavelengths of 125 nm, 112 nm, and 104 nm (10 eV, 11 eV, and 12 eV) using two dye lasers without the need for dye changes is described.

  15. Autonomous portable solar ultraviolet spectroradiometer (APSUS) - a new CCD spectrometer system for localized, real-time solar ultraviolet (280-400 nm) radiation measurement.

    Science.gov (United States)

    Hooke, Rebecca; Pearson, Andy; O'Hagan, John

    2014-01-01

    Terrestrial solar ultraviolet (UV) radiation has significant implications for human health and increasing levels are a key concern regarding the impact of climate change. Monitoring solar UV radiation at the earth's surface is therefore of increasing importance. A new prototype portable CCD (charge-coupled device) spectrometer-based system has been developed that monitors UV radiation (280-400 nm) levels at the earth's surface. It has the ability to deliver this information to the public in real time. Since the instrument can operate autonomously, it is called the Autonomous Portable Solar Ultraviolet Spectroradiometer (APSUS). This instrument incorporates an Ocean Optics QE65000 spectrometer which is contained within a robust environmental housing. The APSUS system can gather reliable solar UV spectral data from approximately April to October inclusive (depending on ambient temperature) in the UK. In this study the new APSUS unit and APSUS system are presented. Example solar UV spectra and diurnal UV Index values as measured by the APSUS system in London and Weymouth in the UK in summer 2012 are shown. © 2014 Crown copyright. Photochemistry and Photobiology © 2014 The American Society of Photobiology. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland and Public Health England.

  16. A method of incident angle estimation for high resolution spectral recovery in filter-array-based spectrometers

    Science.gov (United States)

    Kim, Cheolsun; Lee, Woong-Bi; Ju, Gun Wu; Cho, Jeonghoon; Kim, Seongmin; Oh, Jinkyung; Lim, Dongsung; Lee, Yong Tak; Lee, Heung-No

    2017-02-01

    In recent years, there has been an increasing interest in miniature spectrometers for research and development. Especially, filter-array-based spectrometers have advantages of low cost and portability, and can be applied in various fields such as biology, chemistry and food industry. Miniaturization in optical filters causes degradation of spectral resolution due to limitations on spectral responses and the number of filters. Nowadays, many studies have been reported that the filter-array-based spectrometers have achieved resolution improvements by using digital signal processing (DSP) techniques. The performance of the DSP-based spectral recovery highly depends on the prior information of transmission functions (TFs) of the filters. The TFs vary with respect to an incident angle of light onto the filter-array. Conventionally, it is assumed that the incident angle of light on the filters is fixed and the TFs are known to the DSP. However, the incident angle is inconstant according to various environments and applications, and thus TFs also vary, which leads to performance degradation of spectral recovery. In this paper, we propose a method of incident angle estimation (IAE) for high resolution spectral recovery in the filter-array-based spectrometers. By exploiting sparse signal reconstruction of the L1- norm minimization, IAE estimates an incident angle among all possible incident angles which minimizes the error of the reconstructed signal. Based on IAE, DSP effectively provides a high resolution spectral recovery in the filter-array-based spectrometers.

  17. Reflectance Tuning at Extreme Ultraviolet (EUV) Wavelengths with Active Multilayer Mirrors

    NARCIS (Netherlands)

    Bayraktar, Muharrem; Lee, Christopher James; van Goor, F.A.; Koster, Gertjan; Rijnders, Augustinus J.H.M.; Bijkerk, Frederik

    2011-01-01

    At extreme ultraviolet (EUV) wavelengths the refractive power of transmission type optical components is limited, therefore reflective components are used. Reflective optics (multilayer mirrors) usually consist of many bilayers and each bilayer is composed of a high and a low refractive index

  18. Computer program design specifications for the Balloon-borne Ultraviolet Stellar Spectrometer (BUSS) science data decommutation program (BAPS48)

    Science.gov (United States)

    Rodriguez, R. M.

    1975-01-01

    The Balloon-Borne Ultraviolet Stellar Spectrometer (BUSS) Science Data Docummutation Program (BAPS48) is a pulse code modulation docummutation program that will format the BUSS science data contained on a one inch PCM tracking tape into a seven track serial bit stream formatted digital tape.

  19. Development of a liquid tin microjet target for an efficient laser-produced plasma extreme ultraviolet source

    Science.gov (United States)

    Higashiguchi, Takeshi; Hamada, Masaya; Kubodera, Shoichi

    2007-03-01

    A regenerative tin liquid microjet target was developed for a high average power extreme ultraviolet (EUV) source. The diameter of the target was smaller than 160 μm and good vacuum lower than 0.5 Pa was maintained during the operation. A maximum EUV conversion efficiency of 1.8% at the Nd:yttrium-aluminum-garnet laser intensity of around 2×1011 W/cm2 with a spot diameter of 175 μm (full width at half maximum) was observed. The angular distribution of the EUV emission remained almost isotropic, whereas suprathermal ions mainly emerged toward the target normal.

  20. Development of a liquid tin microjet target for an efficient laser-produced plasma extreme ultraviolet source

    International Nuclear Information System (INIS)

    Higashiguchi, Takeshi; Hamada, Masaya; Kubodera, Shoichi

    2007-01-01

    A regenerative tin liquid microjet target was developed for a high average power extreme ultraviolet (EUV) source. The diameter of the target was smaller than 160 μm and good vacuum lower than 0.5 Pa was maintained during the operation. A maximum EUV conversion efficiency of 1.8% at the Nd:yttrium-aluminum-garnet laser intensity of around 2x10 11 W/cm 2 with a spot diameter of 175 μm (full width at half maximum) was observed. The angular distribution of the EUV emission remained almost isotropic, whereas suprathermal ions mainly emerged toward the target normal

  1. Development of a liquid tin microjet target for an efficient laser-produced plasma extreme ultraviolet source.

    Science.gov (United States)

    Higashiguchi, Takeshi; Hamada, Masaya; Kubodera, Shoichi

    2007-03-01

    A regenerative tin liquid microjet target was developed for a high average power extreme ultraviolet (EUV) source. The diameter of the target was smaller than 160 microm and good vacuum lower than 0.5 Pa was maintained during the operation. A maximum EUV conversion efficiency of 1.8% at the Nd:yttrium-aluminum-garnet laser intensity of around 2 x 10(11) Wcm(2) with a spot diameter of 175 microm (full width at half maximum) was observed. The angular distribution of the EUV emission remained almost isotropic, whereas suprathermal ions mainly emerged toward the target normal.

  2. System performance modeling of extreme ultraviolet lithographic thermal issues

    International Nuclear Information System (INIS)

    Spence, P. A.; Gianoulakis, S. E.; Moen, C. D.; Kanouff, M. P.; Fisher, A.; Ray-Chaudhuri, A. K.

    1999-01-01

    Numerical simulation is used in the development of an extreme ultraviolet lithography Engineering Test Stand. Extensive modeling was applied to predict the impact of thermal loads on key lithographic parameters such as image placement error, focal shift, and loss of CD control. We show that thermal issues can be effectively managed to ensure that their impact on lithographic performance is maintained within design error budgets. (c) 1999 American Vacuum Society

  3. Bottom Extreme-Ultraviolet-Sensitive Coating for Evaluation of the Absorption Coefficient of Ultrathin Film

    Science.gov (United States)

    Hijikata, Hayato; Kozawa, Takahiro; Tagawa, Seiichi; Takei, Satoshi

    2009-06-01

    A bottom extreme-ultraviolet-sensitive coating (BESC) for evaluation of the absorption coefficients of ultrathin films such as extreme ultraviolet (EUV) resists was developed. This coating consists of a polymer, crosslinker, acid generator, and acid-responsive chromic dye and is formed by a conventional spin-coating method. By heating the film after spin-coating, a crosslinking reaction is induced and the coating becomes insoluble. A typical resist solution can be spin-coated on a substrate covered with the coating film. The evaluation of the linear absorption coefficients of polymer films was demonstrated by measuring the EUV absorption of BESC substrates on which various polymers were spin-coated.

  4. Plasma control for efficient extreme ultra-violet source

    International Nuclear Information System (INIS)

    Takahashi, Kensaku; Nakajima, Mitsuo; Kawamura, Tohru; Shiho, Makoto; Hotta, Eiki; Horioka, Kazuhiko

    2008-01-01

    To generate a high efficiency extreme-ultraviolet (EUV) source, effects of plasma shape for controlling radiative plasmas based on xenon capillary discharge are experimentally investigated. The radiation characteristics observed via tapered capillary discharge are compared with those of straight one. From the comparison, the long emission period and different plasma behaviors of tapered capillary discharge are confirmed. This means that control of the plasma geometry is effective for prolonging the EUV emission period. This result also indicates that the plasma shape control seems to have a potential for enhancing the conversion efficiency. (author)

  5. Design, fabrication, and characterization of high-efficiency extreme ultraviolet diffusers

    Energy Technology Data Exchange (ETDEWEB)

    Naulleau, Patrick P.; Liddle, J. Alexander; Salmassi, Farhad; Anderson, Erik H.; Gullikson, Eric M.

    2004-02-19

    As the development of extreme ultraviolet (EUV) lithography progresses, interest grows in the extension of traditional optical components to the EUV regime. The strong absorption of EUV by most materials and its extremely short wavelength, however, makes it very difficult to implement many components that are commonplace in the longer wavelength regimes. One such example is the diffuser often implemented with ordinary ground glass in the visible light regime. Here we demonstrate the fabrication of reflective EUV diffusers with high efficiency within a controllable bandwidth. Using these techniques we have fabricated diffusers with efficiencies exceeding 10% within a moderate angular single-sided bandwidth of approximately 0.06 radians.

  6. Three-dimensional characterization of extreme ultraviolet mask blank defects by interference contrast photoemission electron microscopy.

    Science.gov (United States)

    Lin, Jingquan; Weber, Nils; Escher, Matthias; Maul, Jochen; Han, Hak-Seung; Merkel, Michael; Wurm, Stefan; Schönhense, Gerd; Kleineberg, Ulf

    2008-09-29

    A photoemission electron microscope based on a new contrast mechanism "interference contrast" is applied to characterize extreme ultraviolet lithography mask blank defects. Inspection results show that positioning of interference destructive condition (node of standing wave field) on surface of multilayer in the local region of a phase defect is necessary to obtain best visibility of the defect on mask blank. A comparative experiment reveals superiority of the interference contrast photoemission electron microscope (Extreme UV illumination) over a topographic contrast one (UV illumination with Hg discharge lamp) in detecting extreme ultraviolet mask blank phase defects. A depth-resolved detection of a mask blank defect, either by measuring anti-node peak shift in the EUV-PEEM image under varying inspection wavelength condition or by counting interference fringes with a fixed illumination wavelength, is discussed.

  7. Shrinking the Synchrotron : Tabletop Extreme Ultraviolet Absorption of Transition-Metal Complexes

    NARCIS (Netherlands)

    Zhang, Kaili; Lin, Ming Fu; Ryland, Elizabeth S.; Verkamp, Max A.; Benke, Kristin; De Groot, Frank M F; Girolami, Gregory S.; Vura-Weis, Josh

    2016-01-01

    We show that the electronic structure of molecular first-row transition-metal complexes can be reliably measured using tabletop high-harmonic XANES at the metal M2,3 edge. Extreme ultraviolet photons in the 50-70 eV energy range probe 3p → 3d transitions, with the same selection rules as soft X-ray

  8. Telescience - Concepts and contributions to the Extreme Ultraviolet Explorer mission

    Science.gov (United States)

    Marchant, Will; Dobson, Carl; Chakrabarti, Supriya; Malina, Roger F.

    1987-01-01

    It is shown how the contradictory goals of low-cost and fast data turnaround characterizing the Extreme Ultraviolet Explorer (EUVE) mission can be achieved via the early use of telescience style transparent tools and simulations. The use of transparent tools reduces the parallel development of capability while ensuring that valuable prelaunch experience is not lost in the operations phase. Efforts made to upgrade the 'EUVE electronics' simulator are described.

  9. A search for thermal extreme ultraviolet radiation from nearby pulsars

    International Nuclear Information System (INIS)

    Greenstein, G.; Margon, B.

    1977-01-01

    We present the first extreme ultraviolet (100-1000 A) observations of radio pulsars. Using an EUV telescope carried aboard the Apollo-Soyuz mission, data were acquired on the nearby pulsars PSR 1133 + 16, 1451 - 68 and 1929 + 10. The data are interpreted to set limits on the effective temperatures of the neutron stars, yielding T 5 K in the best cases, and the limits compared with theoretical predictions. (orig./BJ) [de

  10. Masks for extreme ultraviolet lithography

    International Nuclear Information System (INIS)

    Cardinale, G; Goldsmith, J; Kearney, P A; Larson, C; Moore, C E; Prisbrey, S; Tong, W; Vernon, S P; Weber, F; Yan, P-Y.

    1998-01-01

    In extreme ultraviolet lithography (EUVL), the technology specific requirements on the mask are a direct consequence of the utilization of radiation in the spectral region between 10 and 15 nm. At these wavelengths, all condensed materials are highly absorbing and efficient radiation transport mandates the use of all-reflective optical systems. Reflectivity is achieved with resonant, wavelength-matched multilayer (ML) coatings on all of the optical surfaces - including the mask. The EUV mask has a unique architecture - it consists of a substrate with a highly reflective ML coating (the mask blank) that is subsequently over-coated with a patterned absorber layer (the mask). Particulate contamination on the EUVL mask surface, errors in absorber definition and defects in the ML coating all have the potential to print in the lithographic process. While highly developed technologies exist for repair of the absorber layer, no viable strategy for the repair of ML coating defects has been identified. In this paper the state-of-the-art in ML deposition technology, optical inspection of EUVL mask blank defects and candidate absorber patterning approaches are reviewed

  11. Tomographic extreme-ultraviolet spectrographs: TESS.

    Science.gov (United States)

    Cotton, D M; Stephan, A; Cook, T; Vickers, J; Taylor, V; Chakrabarti, S

    2000-08-01

    We describe the system of Tomographic Extreme Ultraviolet (EUV) SpectrographS (TESS) that are the primary instruments for the Tomographic Experiment using Radiative Recombinative Ionospheric EUV and Radio Sources (TERRIERS) satellite. The spectrographs were designed to make high-sensitivity {80 counts/s)/Rayleigh [one Rayleigh is equivalent to 10(6) photons/(4pi str cm(2)s)}, line-of-sight measurements of the oi 135.6- and 91.1-nm emissions suitable for tomographic inversion. The system consists of five spectrographs, four identical nightglow instruments (for redundancy and added sensitivity), and one instrument with a smaller aperture to reduce sensitivity and increase spectral resolution for daytime operation. Each instrument has a bandpass of 80-140 nm with approximately 2- and 1-nm resolution for the night and day instruments, respectively. They utilize microchannel-plate-based two-dimensional imaging detectors with wedge-and-strip anode readouts. The instruments were designed, fabricated, and calibrated at Boston University, and the TERRIERS satellite was launched on 18 May 1999 from Vandenberg Air Force Base, California.

  12. Spatial-Resolved Measurement and Analysis of Extreme-Ultraviolet Emission Spectra from Laser-Produced Al Plasmas

    International Nuclear Information System (INIS)

    Cao Shi-Quan; Su Mao-Gen; Sun Dui-Xiong; Min Qi; Dong Chen-Zhong

    2016-01-01

    Extreme ultraviolet emission from laser-produced Al plasma is experimentally and theoretically investigated. Spatial-evolution emission spectra are measured by using the spatio-temporally resolved laser produced plasma technique. Based on the assumptions of a normalized Boltzmann distribution among the excited states and a steady-state collisional-radiative model, we succeed in reproducing the spectra at different detection positions, which are in good agreement with experiments. The decay curves about the electron temperature and electron density, as well as the fractions of individual Al ions and average ionization stage with increasing the detection distance are obtained by comparison with the experimental measurements. These parameters are critical points for deeply understanding the expanding and cooling of laser produced plasmas in vacuum. (paper)

  13. High-resolution VUV spectra of carbon, neon and argon in a wavelength range of 250 to 2300 A for plasma diagnostics observed with a 3 m normal incidence spectrometer in LHD

    International Nuclear Information System (INIS)

    Katai, Ryuji; Morita, Shigeru; Goto, Motoshi

    2007-01-01

    Intrinsic impurities have been much reduced in toroidal fusion devices through the development of several wall-conditioning techniques as well as by the use of carbon materials in the first wall and divertor plates. Impurity elements useful for passive plasma spectroscopy have been then extremely limited. At present, only carbon is a subject for spectroscopic diagnostics in most discharges except for fuel atoms. The use of rare gas as a brighter light source is a method to overcome the present difficulty in passive spectroscopy. Recently, rare gases have also been used for edge cooling to reduce the divertor heat flux. Therefore, high-resolution spectra (Δλ - 0.2 A) from neon and argon in a 250 to 2300 A wavelength range have been measured using a 3 m normal incidence spectrometer in Large Helical Device (LHD) and the measured spectra were precisely analyzed. The VUV spectra of carbon, neon and argon are presented for spectroscopic use and their wavelengths are tabulated with their relative intensities. The spectral profiles of almost all the spectral lines measured here are formed by the Doppler broadening and self-absorption processes. The Doppler broadening of neon and argon spectra are plotted against the ionization energies and Doppler spectra from carbon lines are presented. The self-absorption spectra of the hydrogen Lyman-α line, which are found in the LHD high-density discharge, are also presented and the neutral density is analytically estimated. (author)

  14. Characteristics of extreme ultraviolet emission from high-Z plasmas

    International Nuclear Information System (INIS)

    Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.

    2016-01-01

    We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics. (paper)

  15. Characteristics of extreme ultraviolet emission from high-Z plasmas

    Science.gov (United States)

    Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.

    2016-03-01

    We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics.

  16. Production of narrowband tunable extreme-ultraviolet radiation by noncollinear resonance-enhanced four-wave mixing

    NARCIS (Netherlands)

    Hannemann, S.; Hollenstein, U.; van Duijn, E.J.; Ubachs, W.M.G.

    2005-01-01

    Fourier-transform-limited extreme-ultraviolet (XUV) radiation (bandwidth ≲300 MHz) tunable around 91 nm is produced by use of two-photon resonance-enhanced four-wave mixing on the Kr resonance at 94 093 cm

  17. Prospects for the design of an ultraviolet imaging Fourier transform spectrometer

    Science.gov (United States)

    Lemaire, Philippe

    2017-11-01

    Recent results from solar observations in the far and extremeultraviolet (FUV/EUV) obtained from SOHO (SOlar and Heliospheric Observatory) and TRACE (Transition Region Camera) show the extreme variability of the solar atmosphere. Within the limited resolution of the instruments (1-2 arcseconds) horizontal and vertical velocities up-to 100 to 400 km s-1 have been measured. With an horizontal velocity of 100 km s-1 an one arsecond structure crosses the one arcsecond slit width of a classical slit spectrometer in less than 10 seconds. In the future, with higher angular resolution (e.g. 0.1 arcsecond), the capability to study small structures will be greatly reduced by a classical slit spectrometer. To be able to characterize the small scale solar atmospheric structures formed in the 104 K to 106 K temperature range (which emit in the 30 to 180 nm wavelength range) a spectrometer without slit (or with wide slit) is required. At the same time to obtain an accurate measurement of the doppler velocity an high spectral resolution is needed. The two requirements, high spectral resolution and large slit, are difficult to be simultaneously fulfilled with a classical slit spectrometer within the limited volume of a space instrumentation. Also, we propose to use an Imaging Fourier Transform Spectrometer (IFTS) to provide simultaneously a bidimensionnal field and an accurate determination of line profiles and positions. The development of Fourier Transform Spectrometers (FTS), although popular in the infrared, has been very limited in the UV/FUV by the lack of very high quality beam splitter. Since 10 years, the use of diffraction gratings as beam splitters has been suggested and few intruments have been built ([Chak 94]; [Clea 92]; [File 00]). These instruments illustrate some applications in the new wavelength domain opened by using a beam splitter grating, but do not yet provide the full capabilities of an FTS. In this paper we present several optical schemes which can

  18. Extreme Ultraviolet Imaging of Electron Heated Targets in Petawatt Laser Experiments

    International Nuclear Information System (INIS)

    Ma, T.; MacPhee, A.; Key, M.; Akli, K.; Mackinnon, A.; Chen, C.; Barbee, T.; Freeman, R.; King, J.; Link, A.; Offermann, D.; Ovchinnikov, V.; Patel, P.; Stephens, R.; VanWoerkom, L.; Zhang, B.; Beg, F.

    2007-01-01

    The study of the transport of electrons, and the flow of energy into a solid target or dense plasma, is instrumental in the development of fast ignition inertial confinement fusion. An extreme ultraviolet (XUV) imaging diagnostic at 256 eV and 68 eV provides information about heating and energy deposition within petawatt laser-irradiated targets. XUV images of several irradiated solid targets are presented

  19. Micro- and Nanoprocessing of Polymers Using a Laser Plasma Extreme Ultraviolet Source

    International Nuclear Information System (INIS)

    Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Rakowski, R.; Szczurek, A.; Szczurek, M.

    2010-01-01

    Laser plasma with temperature of the order of tens eV can be an efficient source of extreme ultraviolet (EUV). The radiation can be focused using different kind of optics, giving sufficient fluence for some applications. In this work we present results of investigations concerning applications of a laser plasma EUV source based on a double stream gas puff target. The source was equipped with two different grazing incidence collectors. One of them was a multifoil collector, the second one was an axisymmetrical ellipsoidal collector. The multifoil mirror was used mainly in experiments concerning micromachining of organic polymers by direct photo-etching. The experiments were performed for different polymers that were irradiated through a fine metal grid as a contact mask. The smallest element of a pattern structure obtained in this way was 5 μm, while the structure height was 50 μm giving an aspect ratio about 10. The laser-plasma EUV source equipped with the axisymmetrical ellipsoidal collector was used for surface modification of organic polymers and inorganic solids. The surface morphology after irradiation was investigated. Different forms of micro- and nanostructures were obtained depending on material and irradiation conditions. (author)

  20. Extreme-ultraviolet wavelength and lifetime measurements in highly ionized krypton

    CERN Document Server

    Kukla, K W; Vogt, C M V; Berry, H G; Dunford, R W; Curtis, L J; Cheng, S

    2005-01-01

    We have studied the spectrum of highly ionized krypton in the extreme-ultraviolet wavelength region (50-300 Aa), using beam-foil excitation of fast krypton ions at the Argonne ATLAS accelerator facility. We report measurements of transition wavelengths and excited-state lifetimes for n=2 states in the lithiumlike, berylliumlike, and boronlike ions, Kr/sup 31+,32+,33+/. Excited state lifetimes ranging from 10 ps to 3 ns were measured by acquiring time- of-flight-delayed spectra with a position-sensitive multichannel detector.

  1. Spin-resolved photoelectron spectroscopy using femtosecond extreme ultraviolet light pulses from high-order harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Plötzing, M.; Adam, R., E-mail: r.adam@fz-juelich.de; Weier, C.; Plucinski, L.; Schneider, C. M. [Forschungszentrum Jülich GmbH, Peter Grünberg Institut (PGI-6), 52425 Jülich (Germany); Eich, S.; Emmerich, S.; Rollinger, M.; Aeschlimann, M. [University of Kaiserslautern and Research Center OPTIMAS, 67663 Kaiserslautern (Germany); Mathias, S. [Georg-August-Universität Göttingen, I. Physikalisches Institut, 37077 Göttingen (Germany)

    2016-04-15

    The fundamental mechanism responsible for optically induced magnetization dynamics in ferromagnetic thin films has been under intense debate since almost two decades. Currently, numerous competing theoretical models are in strong need for a decisive experimental confirmation such as monitoring the triggered changes in the spin-dependent band structure on ultrashort time scales. Our approach explores the possibility of observing femtosecond band structure dynamics by giving access to extended parts of the Brillouin zone in a simultaneously time-, energy- and spin-resolved photoemission experiment. For this purpose, our setup uses a state-of-the-art, highly efficient spin detector and ultrashort, extreme ultraviolet light pulses created by laser-based high-order harmonic generation. In this paper, we present the setup and first spin-resolved spectra obtained with our experiment within an acquisition time short enough to allow pump-probe studies. Further, we characterize the influence of the excitation with femtosecond extreme ultraviolet pulses by comparing the results with data acquired using a continuous wave light source with similar photon energy. In addition, changes in the spectra induced by vacuum space-charge effects due to both the extreme ultraviolet probe- and near-infrared pump-pulses are studied by analyzing the resulting spectral distortions. The combination of energy resolution and electron count rate achieved in our setup confirms its suitability for spin-resolved studies of the band structure on ultrashort time scales.

  2. The association of extreme temperatures and the incidence of tuberculosis in Japan

    Science.gov (United States)

    Onozuka, Daisuke; Hagihara, Akihito

    2015-08-01

    Seasonal variation in the incidence of tuberculosis (TB) has been widely assumed. However, few studies have investigated the association between extreme temperatures and the incidence of TB. We collected data on cases of TB and mean temperature in Fukuoka, Japan for 2008-2012 and used time-series analyses to assess the possible relationship of extreme temperatures with TB incident cases, adjusting for seasonal and interannual variation. Our analysis revealed that the occurrence of extreme heat temperature events resulted in a significant increase in the number of TB cases (relative risk (RR) 1.20, 95 % confidence interval (CI) 1.01-1.43). We also found that the occurrence of extreme cold temperature events resulted in a significant increase in the number of TB cases (RR 1.23, 95 % CI 1.05-1.45). Sex and age did not modify the effect of either heat or cold extremes. Our study provides quantitative evidence that the number of TB cases increased significantly with extreme heat and cold temperatures. The results may help public health officials predict extreme temperature-related TB incidence and prepare for the implementation of preventive public health interventions.

  3. X-ray photographs of a solar active region with a multilayer telescope at normal incidence

    Science.gov (United States)

    Underwood, J. H.; Bruner, M. E.; Haisch, B. M.; Brown, W. A.; Acton, L. W.

    1987-01-01

    An astronomical photograph was obtained with a multilayer X-ray telescope. A 4-cm tungsten-carbon multilayer mirror was flown as part of an experimental solar rocket payload, and successful images were taken of the sun at normal incidence at a wavelength of 44 A. Coronal Si XII emission from an active region was recorded on film; as expected, the structure is very similar to that observed at O VIII wavelengths by the Solar Maximum Mission flat-crystal spectrometer at the same time. The small, simple optical system used in this experiment appears to have achieved a resolution of 5 to 10 arcsec.

  4. Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) Slit-Jaw Imaging System

    Science.gov (United States)

    Wilkerson, P.; Champey, P. R.; Winebarger, A. R.; Kobayashi, K.; Savage, S. L.

    2017-12-01

    The Marshall Grazing Incidence X-ray Spectrometer is a NASA sounding rocket payload providing a 0.6 - 2.5 nm spectrum with unprecedented spatial and spectral resolution. The instrument is comprised of a novel optical design, featuring a Wolter1 grazing incidence telescope, which produces a focused solar image on a slit plate, an identical pair of stigmatic optics, a planar diffraction grating and a low-noise detector. When MaGIXS flies on a suborbital launch in 2019, a slit-jaw camera system will reimage the focal plane of the telescope providing a reference for pointing the telescope on the solar disk and aligning the data to supporting observations from satellites and other rockets. The telescope focuses the X-ray and EUV image of the sun onto a plate covered with a phosphor coating that absorbs EUV photons, which then fluoresces in visible light. This 10-week REU project was aimed at optimizing an off-axis mounted camera with 600-line resolution NTSC video for extremely low light imaging of the slit plate. Radiometric calculations indicate an intensity of less than 1 lux at the slit jaw plane, which set the requirement for camera sensitivity. We selected a Watec 910DB EIA charge-coupled device (CCD) monochrome camera, which has a manufacturer quoted sensitivity of 0.0001 lux at F1.2. A high magnification and low distortion lens was then identified to image the slit jaw plane from a distance of approximately 10 cm. With the selected CCD camera, tests show that at extreme low-light levels, we achieve a higher resolution than expected, with only a moderate drop in frame rate. Based on sounding rocket flight heritage, the launch vehicle attitude control system is known to stabilize the instrument pointing such that jitter does not degrade video quality for context imaging. Future steps towards implementation of the imaging system will include ruggedizing the flight camera housing and mounting the selected camera and lens combination to the instrument structure.

  5. Low-defect reflective mask blanks for extreme ultraviolet lithography

    International Nuclear Information System (INIS)

    Burkhart, S C; Cerjarn, C; Kearney, P; Mirkarimi, P; Ray-Chaudhuri, A; Walton, C.

    1999-01-01

    Extreme Ultraviolet Lithgraphy (EUVL) is an emerging technology for fabrication of sub-100 nm feature sizes on silicon, following the SIA road map well into the 21st century. The specific EUVL system described is a scanned, projection lithography system with a 4:1 reduction, using a laser plasma EUV source. The mask and all of the system optics are reflective, multilayer mirrors which function in the extreme ultraviolet at 13.4 nm wavelength. Since the masks are imaged to the wafer exposure plane, mask defects greater than 80% of the exposure plane CD (for 4:1 reduction) will in many cases render the mask useless, whereas intervening optics can have defects which are not a printing problem. For the 100 nm node, we must reduce defects to less than 0.01/cm ampersand sup2; at sign 80nm or larger to obtain acceptable mask production yields. We have succeeded in reducing the defects to less than 0.1/cm ampersand sup2; for defects larger than 130 nm detected by visible light inspection tools, however our program goal is to achieve 0.01/cm ampersand sup2; in the near future. More importantly though, we plan to have a detailed understanding of defect origination and the effect on multilayer growth in order to mitigate defects below the 10 -2 /cm ampersand sup2; level on the next generation of mask blank deposition systems. In this paper we will discuss issues and results from the ion-beam multilayer deposition tool, details of the defect detection and characterization facility, and progress on defect printability modeling

  6. Rabi oscillations in extreme ultraviolet ionization of atomic argon

    Science.gov (United States)

    Flögel, Martin; Durá, Judith; Schütte, Bernd; Ivanov, Misha; Rouzée, Arnaud; Vrakking, Marc J. J.

    2017-02-01

    We demonstrate Rabi oscillations in nonlinear ionization of argon by an intense femtosecond extreme ultraviolet (XUV) laser field produced by high-harmonic generation. We monitor the formation of A r2 + as a function of the time delay between the XUV pulse and an additional near-infrared (NIR) femtosecond laser pulse, and show that the population of an A r+* intermediate resonance exhibits strong modulations both due to an NIR laser-induced Stark shift and XUV-induced Rabi cycling between the ground state of A r+ and the A r+* excited state. Our experiment represents a direct experimental observation of a Rabi-cycling process in the XUV regime.

  7. Operation of a free-electron laser from the extreme ultraviolet to the water window

    Science.gov (United States)

    Ackermann, W.; Asova, G.; Ayvazyan, V.; Azima, A.; Baboi, N.; Bähr, J.; Balandin, V.; Beutner, B.; Brandt, A.; Bolzmann, A.; Brinkmann, R.; Brovko, O. I.; Castellano, M.; Castro, P.; Catani, L.; Chiadroni, E.; Choroba, S.; Cianchi, A.; Costello, J. T.; Cubaynes, D.; Dardis, J.; Decking, W.; Delsim-Hashemi, H.; Delserieys, A.; di Pirro, G.; Dohlus, M.; Düsterer, S.; Eckhardt, A.; Edwards, H. T.; Faatz, B.; Feldhaus, J.; Flöttmann, K.; Frisch, J.; Fröhlich, L.; Garvey, T.; Gensch, U.; Gerth, Ch.; Görler, M.; Golubeva, N.; Grabosch, H.-J.; Grecki, M.; Grimm, O.; Hacker, K.; Hahn, U.; Han, J. H.; Honkavaara, K.; Hott, T.; Hüning, M.; Ivanisenko, Y.; Jaeschke, E.; Jalmuzna, W.; Jezynski, T.; Kammering, R.; Katalev, V.; Kavanagh, K.; Kennedy, E. T.; Khodyachykh, S.; Klose, K.; Kocharyan, V.; Körfer, M.; Kollewe, M.; Koprek, W.; Korepanov, S.; Kostin, D.; Krassilnikov, M.; Kube, G.; Kuhlmann, M.; Lewis, C. L. S.; Lilje, L.; Limberg, T.; Lipka, D.; Löhl, F.; Luna, H.; Luong, M.; Martins, M.; Meyer, M.; Michelato, P.; Miltchev, V.; Möller, W. D.; Monaco, L.; Müller, W. F. O.; Napieralski, O.; Napoly, O.; Nicolosi, P.; Nölle, D.; Nuñez, T.; Oppelt, A.; Pagani, C.; Paparella, R.; Pchalek, N.; Pedregosa-Gutierrez, J.; Petersen, B.; Petrosyan, B.; Petrosyan, G.; Petrosyan, L.; Pflüger, J.; Plönjes, E.; Poletto, L.; Pozniak, K.; Prat, E.; Proch, D.; Pucyk, P.; Radcliffe, P.; Redlin, H.; Rehlich, K.; Richter, M.; Roehrs, M.; Roensch, J.; Romaniuk, R.; Ross, M.; Rossbach, J.; Rybnikov, V.; Sachwitz, M.; Saldin, E. L.; Sandner, W.; Schlarb, H.; Schmidt, B.; Schmitz, M.; Schmüser, P.; Schneider, J. R.; Schneidmiller, E. A.; Schnepp, S.; Schreiber, S.; Seidel, M.; Sertore, D.; Shabunov, A. V.; Simon, C.; Simrock, S.; Sombrowski, E.; Sorokin, A. A.; Spanknebel, P.; Spesyvtsev, R.; Staykov, L.; Steffen, B.; Stephan, F.; Stulle, F.; Thom, H.; Tiedtke, K.; Tischer, M.; Toleikis, S.; Treusch, R.; Trines, D.; Tsakov, I.; Vogel, E.; Weiland, T.; Weise, H.; Wellhöfer, M.; Wendt, M.; Will, I.; Winter, A.; Wittenburg, K.; Wurth, W.; Yeates, P.; Yurkov, M. V.; Zagorodnov, I.; Zapfe, K.

    2007-06-01

    We report results on the performance of a free-electron laser operating at a wavelength of 13.7 nm where unprecedented peak and average powers for a coherent extreme-ultraviolet radiation source have been measured. In the saturation regime, the peak energy approached 170 µJ for individual pulses, and the average energy per pulse reached 70 µJ. The pulse duration was in the region of 10 fs, and peak powers of 10 GW were achieved. At a pulse repetition frequency of 700 pulses per second, the average extreme-ultraviolet power reached 20 mW. The output beam also contained a significant contribution from odd harmonics of approximately 0.6% and 0.03% for the 3rd (4.6 nm) and the 5th (2.75 nm) harmonics, respectively. At 2.75 nm the 5th harmonic of the radiation reaches deep into the water window, a wavelength range that is crucially important for the investigation of biological samples.

  8. The University of Colorado OSO-8 spectrometer experiment. I

    International Nuclear Information System (INIS)

    Bruner, E.C. Jr.

    1977-01-01

    The optical design of the high resolution ultraviolet spectrometer prepared for the OSO-8 spacecraft by the University of Colorado is discussed. The instrument is a conventional 1 m Ebert-Fastie spectrometer fed by a Cassegrainian telescope. The instrument operates in the spectral range 1200 A to about 2000 A with spectral resolution of order 0.02 A. Spatial resolution is about 2.5 sec normal to the direction of the slit and is selectable from about 3 sec to 15' along the direction of the slit. Time resolution for the single spectrometer channel is selectable according to the needs of an individual observation and is limited to a maximum sampling rate of 40 ms per data point. The instrument is controlled by an internal general purpose computer. In this paper the author develops the performance requirements of the spectrometer and attempts to highlight some of the tradeoffs available to the instrument designer. (Auth.)

  9. Ion beam sputtered aluminum based multilayer mirrors for extreme ultraviolet solar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ziani, A. [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Centre National d’Etudes Spatiales (CNES), 18 Avenue E. Belin, 31401 Toulouse (France); Delmotte, F., E-mail: Franck.Delmotte@InstitutOptique.fr [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Le Paven-Thivet, C. [Institut d' Electronique et de Télécommunications de Rennes (IETR) UMR-CNRS 6164, Université de Rennes 1, UEB, IUT Saint Brieuc, 18 rue Henri Wallon, 22004 Saint Brieuc cedex France (France); Meltchakov, E.; Jérome, A. [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Roulliay, M. [Institut des Sciences Moléculaires d’Orsay UMR 8214, Univ Paris Sud, 91405 Orsay France (France); Bridou, F. [Laboratoire Charles Fabry, Institut d' Optique, CNRS, Univ Paris Sud, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex France (France); Gasc, K. [Centre National d’Etudes Spatiales (CNES), 18 Avenue E. Belin, 31401 Toulouse (France)

    2014-02-03

    In this paper, we report on the design, synthesis and characterization of extreme ultraviolet interferential mirrors for solar imaging applications in the spectral range 17 nm–34 nm. This research is carried out in the context of the preparation of the European Space Agency Solar Orbiter mission. The purpose of this study consists in optimizing the deposition of Al-based multilayers by ion beam sputtering according to several parameters such as the ion beam current and the sputtering angle. After optimization of Al thin films, several kinds of Al-based multilayer mirrors have been compared. We have deposited and characterized bi-material and also tri-material periodic multilayers: aluminum/molybdenum [Al/Mo], aluminum/molybdenum/boron carbide [Al/Mo/B{sub 4}C] and aluminum/molybdenum/silicon carbide [Al/Mo/SiC]. Best experimental results have been obtained on Al/Mo/SiC samples: we have measured reflectivity up to 48% at 17.3 nm and 27.5% at 28.2 nm on a synchrotron radiation source. - Highlights: • Design and synthesis of extreme ultraviolet interferential mirrors. • Optimization of aluminum thin films by adjusting several deposition parameters. • Comparison of results obtained with different types of Al-based multilayer mirrors. • Reflectivity up to 48% at 17.3 nm on a synchrotron radiation source.

  10. Ion beam sputtered aluminum based multilayer mirrors for extreme ultraviolet solar imaging

    International Nuclear Information System (INIS)

    Ziani, A.; Delmotte, F.; Le Paven-Thivet, C.; Meltchakov, E.; Jérome, A.; Roulliay, M.; Bridou, F.; Gasc, K.

    2014-01-01

    In this paper, we report on the design, synthesis and characterization of extreme ultraviolet interferential mirrors for solar imaging applications in the spectral range 17 nm–34 nm. This research is carried out in the context of the preparation of the European Space Agency Solar Orbiter mission. The purpose of this study consists in optimizing the deposition of Al-based multilayers by ion beam sputtering according to several parameters such as the ion beam current and the sputtering angle. After optimization of Al thin films, several kinds of Al-based multilayer mirrors have been compared. We have deposited and characterized bi-material and also tri-material periodic multilayers: aluminum/molybdenum [Al/Mo], aluminum/molybdenum/boron carbide [Al/Mo/B 4 C] and aluminum/molybdenum/silicon carbide [Al/Mo/SiC]. Best experimental results have been obtained on Al/Mo/SiC samples: we have measured reflectivity up to 48% at 17.3 nm and 27.5% at 28.2 nm on a synchrotron radiation source. - Highlights: • Design and synthesis of extreme ultraviolet interferential mirrors. • Optimization of aluminum thin films by adjusting several deposition parameters. • Comparison of results obtained with different types of Al-based multilayer mirrors. • Reflectivity up to 48% at 17.3 nm on a synchrotron radiation source

  11. OBSERVATIONS OF FIVE-MINUTE SOLAR OSCILLATIONS IN THE CORONA USING THE EXTREME ULTRAVIOLET SPECTROPHOTOMETER (ESP) ON BOARD THE SOLAR DYNAMICS OBSERVATORY EXTREME ULTRAVIOLET VARIABILITY EXPERIMENT (SDO/EVE)

    International Nuclear Information System (INIS)

    Didkovsky, L.; Judge, D.; Wieman, S.; Kosovichev, A. G.; Woods, T.

    2011-01-01

    We report on the detection of oscillations in the corona in the frequency range corresponding to five-minute acoustic modes of the Sun. The oscillations have been observed using soft X-ray measurements from the Extreme Ultraviolet Spectrophotometer (ESP) of the Extreme Ultraviolet Variability Experiment on board the Solar Dynamics Observatory. The ESP zeroth-order channel observes the Sun as a star without spatial resolution in the wavelength range of 0.1-7.0 nm (the energy range is 0.18-12.4 keV). The amplitude spectrum of the oscillations calculated from six-day time series shows a significant increase in the frequency range of 2-4 mHz. We interpret this increase as a response of the corona to solar acoustic (p) modes and attempt to identify p-mode frequencies among the strongest peaks. Due to strong variability of the amplitudes and frequencies of the five-minute oscillations in the corona, we study how the spectrum from two adjacent six-day time series combined together affects the number of peaks associated with the p-mode frequencies and their amplitudes. This study shows that five-minute oscillations of the Sun can be observed in the corona in variations of the soft X-ray emission. Further investigations of these oscillations may improve our understanding of the interaction of the oscillation modes with the solar atmosphere, and the interior-corona coupling, in general.

  12. A NOISE ADAPTIVE FUZZY EQUALIZATION METHOD FOR PROCESSING SOLAR EXTREME ULTRAVIOLET IMAGES

    Energy Technology Data Exchange (ETDEWEB)

    Druckmueller, M., E-mail: druckmuller@fme.vutbr.cz [Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, 616 69 Brno (Czech Republic)

    2013-08-15

    A new image enhancement tool ideally suited for the visualization of fine structures in extreme ultraviolet images of the corona is presented in this paper. The Noise Adaptive Fuzzy Equalization method is particularly suited for the exceptionally high dynamic range images from the Atmospheric Imaging Assembly instrument on the Solar Dynamics Observatory. This method produces artifact-free images and gives significantly better results than methods based on convolution or Fourier transform which are often used for that purpose.

  13. Laser waveform control of extreme ultraviolet high harmonics from solids.

    Science.gov (United States)

    You, Yong Sing; Wu, Mengxi; Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Gholam-Mirzaei, Shima; Browne, Dana A; Chini, Michael; Chang, Zenghu; Schafer, Kenneth J; Gaarde, Mette B; Ghimire, Shambhu

    2017-05-01

    Solid-state high-harmonic sources offer the possibility of compact, high-repetition-rate attosecond light emitters. However, the time structure of high harmonics must be characterized at the sub-cycle level. We use strong two-cycle laser pulses to directly control the time-dependent nonlinear current in single-crystal MgO, leading to the generation of extreme ultraviolet harmonics. We find that harmonics are delayed with respect to each other, yielding an atto-chirp, the value of which depends on the laser field strength. Our results provide the foundation for attosecond pulse metrology based on solid-state harmonics and a new approach to studying sub-cycle dynamics in solids.

  14. Extreme ultraviolet observations of G191-B2B and the local interstellar medium with the Hopkins Ultraviolet Telescope

    Science.gov (United States)

    Kimble, Randy A.; Davidsen, Arthur F.; Blair, William P.; Bowers, Charles W.; Van Dyke Dixon, W.; Durrance, Samuel T.; Feldman, Paul D.; Ferguson, Henry C.; Henry, Richard C.; Kriss, Gerard A.

    1993-01-01

    During the Astro-l mission in 1990 December, the Hopkins Ultraviolet Telescope (HUT) was used to observe the extreme ultraviolet spectrum (415-912 A) of the hot DA white dwarf GI91-B2B. Absorption by neutral helium shortward of the 504 A He I absorption edge is clearly detected in the raw spectrum. Model fits to the observed spectrum require interstellar neutral helium and neutral hydrogen column densities of 1.45 +/- 0.065 x 10 exp 17/sq cm and 1.69 +/- 0.12 x 10 exp 18/sq cm, respectively. Comparison of the neutral columns yields a direct assessment of the ionization state of the local interstellar cloud surrounding the Sun. The neutral hydrogen to helium ratio of 11.6 +/- 1.0 observed by HUT strongly contradicts the widespread view that hydrogen is much more ionized than helium in the local interstellar medium, a view which has motivated some exotic theoretical explanations for the supposed high ionization.

  15. The creation of radiation dominated plasmas using laboratory extreme ultra-violet lasers

    Science.gov (United States)

    Tallents, G. J.; Wilson, S.; West, A.; Aslanyan, V.; Lolley, J.; Rossall, A. K.

    2017-06-01

    Ionization in experiments where solid targets are irradiated by high irradiance extreme ultra-violet (EUV) lasers is examined. Free electron degeneracy effects on ionization in the presence of a high EUV flux of radiation is shown to be important. Overlap of the physics of such plasmas with plasma material under compression in indirect inertial fusion is explored. The design of the focusing optics needed to achieve high irradiance (up to 1014 Wcm-2) using an EUV capillary laser is presented.

  16. Extreme ultraviolet patterning of tin-oxo cages

    Science.gov (United States)

    Haitjema, Jarich; Zhang, Yu; Vockenhuber, Michaela; Kazazis, Dimitrios; Ekinci, Yasin; Brouwer, Albert M.

    2017-07-01

    We report on the extreme ultraviolet (EUV) patterning performance of tin-oxo cages. These cage molecules were already known to function as a negative tone photoresist for EUV radiation, but in this work, we significantly optimized their performance. Our results show that sensitivity and resolution are only meaningful photoresist parameters if the process conditions are optimized. We focus on contrast curves of the materials using large area EUV exposures and patterning of the cages using EUV interference lithography. It is shown that baking steps, such as postexposure baking, can significantly affect both the sensitivity and contrast in the open-frame experiments as well as the patterning experiments. A layer thickness increase reduced the necessary dose to induce a solubility change but decreased the patterning quality. The patterning experiments were affected by minor changes in processing conditions such as an increased rinsing time. In addition, we show that the anions of the cage can influence the sensitivity and quality of the patterning, probably through their effect on physical properties of the materials.

  17. High-resolution extreme ultraviolet spectroscopy of G191-B2B: structure of the stellar photosphere and the surrounding interstellar medium

    Science.gov (United States)

    Barstow, M. A.; Cruddace, R. G.; Kowalski, M. P.; Bannister, N. P.; Yentis, D.; Lapington, J. S.; Tandy, J. A.; Hubeny, I.; Schuh, S.; Dreizler, S.; Barbee, T. W.

    2005-10-01

    We have continued our detailed analysis of the high-resolution (R= 4000) spectroscopic observation of the DA white dwarf G191-B2B, obtained by the Joint Astrophysical Plasmadynamic Experiment (J-PEX) normal incidence sounding rocket-borne telescope, comparing the observed data with theoretical predictions for both homogeneous and stratified atmosphere structures. We find that the former models give the best agreement over the narrow waveband covered by J-PEX, in conflict with what is expected from previous studies of the lower resolution but broader wavelength coverage Extreme Ultraviolet Explorer spectra. We discuss the possible limitations of the atomic data and our understanding of the stellar atmospheres that might give rise to this inconsistency. In our earlier study, we obtained an unusually high ionization fraction for the ionized HeII present along the line of sight to the star. In the present paper, we obtain a better fit when we assume, as suggested by Space Telescope Imaging Spectrograph results, that this HeII resides in two separate components. When one of these is assigned to the local interstellar cloud, the implied He ionization fraction is consistent with measurements along other lines of sight. However, the resolving power and signal-to-noise available from the instrument configuration used in this first successful J-PEX flight are not sufficient to clearly identify and prove the existence of the two components.

  18. Method for the protection of extreme ultraviolet lithography optics

    Science.gov (United States)

    Grunow, Philip A.; Clift, Wayne M.; Klebanoff, Leonard E.

    2010-06-22

    A coating for the protection of optical surfaces exposed to a high energy erosive plasma. A gas that can be decomposed by the high energy plasma, such as the xenon plasma used for extreme ultraviolet lithography (EUVL), is injected into the EUVL machine. The decomposition products coat the optical surfaces with a protective coating maintained at less than about 100 .ANG. thick by periodic injections of the gas. Gases that can be used include hydrocarbon gases, particularly methane, PH.sub.3 and H.sub.2S. The use of PH.sub.3 and H.sub.2S is particularly advantageous since films of the plasma-induced decomposition products S and P cannot grow to greater than 10 .ANG. thick in a vacuum atmosphere such as found in an EUVL machine.

  19. Absolute measurement of undulator radiation in the extreme ultraviolet

    International Nuclear Information System (INIS)

    Maezawa, H.; Kitamura, H.; Sasaki, T.; Mitani, S.; Osaka City Univ.; Suzuki, Y.; Kanamori, H.; Tamamushi, S.; Tokyo Univ.; Mikuni, A.; Tokyo Univ., Tanashi

    1983-01-01

    The spectral brightness of undulator radiation emitted by the model PMU-1 incorporated in the SOR-RING, the dedicated synchrotron radiation source in Tokyo, has been studied in the extreme ultraviolet region from 21.6 to 72.9 eV as a function of the electron energy #betta#, the field parameter K, and the angle of observation THETA in the absolute scale. A series of measurements covering the first and the second harmonic component of undulator radiation was compared with the fundamental formula lambdasub(n)=lambda 0 /2n#betta# 2 (1+K 2 /2+#betta# 2 THETA 2 ), and the effects of finite emittance were studied. The brightness at the first peak was smaller than the theoretical value, while an enhanced second harmonic component was observed. (orig.)

  20. The University of Colorado OSO-8 spectrometer experiment. I - Introduction and optical design considerations

    Science.gov (United States)

    Bruner, E. C., Jr.

    1977-01-01

    The optical design of the high-resolution ultraviolet spectrometer prepared for the OSO-8 spacecraft is discussed. The instrument is a conventional 1 m Ebert-Fastie spectrometer fed by a Cassegrainian telescope. The instrument operates in the spectral range 1200-2000 A with spectral resolution of order 0.02 A. Spatial resolution is about 2.5 arcsec normal to the direction of the slit and is selectable from about 3 arcsec to 15 arcmin along the direction of the slit. Time resolution for the single spectrometer channel is selectable according to the needs of an individual observation and is limited to a maximum sampling rate of 40 ms per data point. The instrument is controlled by an internal general purpose computer.

  1. Performance Assessment of a Plate Beam Splitter for Deep-Ultraviolet Raman Measurements with a Spatial Heterodyne Raman Spectrometer.

    Science.gov (United States)

    Lamsal, Nirmal; Angel, S Michael

    2017-06-01

    In earlier works, we demonstrated a high-resolution spatial heterodyne Raman spectrometer (SHRS) for deep-ultraviolet (UV) Raman measurements, and showed its ability to measure UV light-sensitive compounds using a large laser spot size. We recently modified the SHRS by replacing the cube beam splitter (BS) with a custom plate beam splitter with higher light transmission, an optimized reflectance/transmission ratio, higher surface flatness, and better refractive index homogeneity than the cube beam splitter. Ultraviolet Raman measurements were performed using a SHRS modified to use the plate beam splitter and a matching compensator plate and compared to the previously described cube beam splitter setup. Raman spectra obtained using the modified SHRS exhibit much higher signals and signal-to-noise (S/N) ratio and show fewer spectral artifacts. In this paper, we discuss the plate beam splitter SHRS design features, the advantages over previous designs, and discuss some general SHRS issues such as spectral bandwidth, S/N ratio characteristics, and optical efficiency.

  2. Optical proximity correction for anamorphic extreme ultraviolet lithography

    Science.gov (United States)

    Clifford, Chris; Lam, Michael; Raghunathan, Ananthan; Jiang, Fan; Fenger, Germain; Adam, Kostas

    2017-10-01

    The change from isomorphic to anamorphic optics in high numerical aperture (NA) extreme ultraviolet (EUV) scanners necessitates changes to the mask data preparation flow. The required changes for each step in the mask tape out process are discussed, with a focus on optical proximity correction (OPC). When necessary, solutions to new problems are demonstrated, and verified by rigorous simulation. Additions to the OPC model include accounting for anamorphic effects in the optics, mask electromagnetics, and mask manufacturing. The correction algorithm is updated to include awareness of anamorphic mask geometry for mask rule checking (MRC). OPC verification through process window conditions is enhanced to test different wafer scale mask error ranges in the horizontal and vertical directions. This work will show that existing models and methods can be updated to support anamorphic optics without major changes. Also, the larger mask size in the Y direction can result in better model accuracy, easier OPC convergence, and designs which are more tolerant to mask errors.

  3. New type of discharge-produced plasma source for extreme ultraviolet based on liquid tin jet electrodes

    NARCIS (Netherlands)

    Koshelev, K.N.; Krivtsun, V.M.; Ivanov, V.; Yakushev, O.; Chekmarev, A.; Koloshnikov, V.; Snegirev, E.; Medvedev, Viacheslav

    2012-01-01

    A new approach for discharge-produced plasma (DPP) extreme ultraviolet (EUV) sources based on the usage of two liquid metallic alloy jets as discharge electrodes has been proposed and tested. Discharge was ignited using laser ablation of one of the cathode jets. A system with two jet electrodes was

  4. The MEDUSA electron and ion spectrometer and the PIA ultraviolet photometers on Astrid-2

    Directory of Open Access Journals (Sweden)

    O. Norberg

    2001-06-01

    Full Text Available The miniature electron and ion spectrometer MEDUSA on Astrid-2 consists of two "top-hat"-type spherical electrostatic analyzers, sharing a common top-hat. Fast energy sweeps (16 electron sweeps and 8 ion sweeps per second allow for very high temporal resolution measurements of a two-dimensional slice of the particle distribution function. The energy range covered, is in the case of electrons, 4 eV to 22 keV and, in the case of ions, 2 eV to 12 keV. MEDUSA is mounted with its aperture close to the spin plane of Astrid-2, which allows for good pitch-angle coverage when the local magnetic field is in the satellite spin plane. The PIA-1/2 spin-scanning ultraviolet photometers measure auroral emissions. Using the spacecraft spin and orbital motion, it is possible to create two-dimensional images from the data. Spin-scanning photometers, such as PIA, are low-cost, low mass alternatives to auroral imagers, but place constraints on the satellite attitude. Data from MEDUSA are used to study processes in the auroral region, in particular, electrodynamics of aurora and "black aurora". MEDUSA is also a technological development, paving the way for highly capable, miniaturized particle spectrometers.Key words. Ionosphere (instruments and techniques – Magnetospheric physics (auroral phenomena; instruments and techniques

  5. Development of a free-electron laser user facility for the extreme ultraviolet

    International Nuclear Information System (INIS)

    Newnam, B.E.

    1987-01-01

    A free-electron laser user facility for scientific experimentation in the extreme ultraviolet is being developed at Los Alamos. A series of laser oscillators and amplifiers, driven by a single, rf linear accelerator, will generate broadly tunable, picosecond-pulse, coherent radiation from 1 nm to 400 nm. The design and output parameters of this facility are described, comparison with synchrotron radiation sources is made, and recent progress in developing the three primary components (electron beam, undulator, and resonator mirrors) is reviewed, and various categories of scientific applications are indicated

  6. Solar minimum Lyman alpha sky background observations from Pioneer Venus orbiter ultraviolet spectrometer - Solar wind latitude variation

    Science.gov (United States)

    Ajello, J. M.

    1990-01-01

    Measurements of interplanetary H I Lyman alpha over a large portion of the celestial sphere were made at the recent solar minimum by the Pioneer Venus orbiter ultraviolet spectrometer. These measurements were performed during a series of spacecraft maneuvers conducted to observe Halley's comet in early 1986. Analysis of these data using a model of the passage of interstellar wind hydrogen through the solar system shows that the rate of charge exchange with solar wind protons is 30 percent less over the solar poles than in the ecliptic. This result is in agreement with a similar experiment performed with Mariner 10 at the previous solar minimum.

  7. Sensitivity determination of CR-39 from Normal and inclined incidence

    International Nuclear Information System (INIS)

    Abou, A.A.; El-Kheir, A.A.; Daas, A.F.; Awwad, Z.; Reda, A.M.

    2000-01-01

    An experimental study have been carried out on alpha- particle track opening (Major and minor axes) using alpha-particles of different energies incident with different angels in addition to the normal incidence. The sensitivity of CR-39 in present work is determined for each of normal and inclined incidence. The results indicated a difference in the sensitivity according to angle of incidence. The variation of alpha- particle tracks (major and minor axes) are calculated and compared with our measured values. Also, it is found that the sensitivity of CR-39 detector is change due to the storage time at room temperature

  8. New measurements on water ice photodesorption and product formation under ultraviolet irradiation

    Science.gov (United States)

    Cruz-Diaz, Gustavo A.; Martín-Doménech, Rafael; Moreno, Elena; Muñoz Caro, Guillermo M.; Chen, Yu-Jung

    2018-03-01

    The photodesorption of icy grain mantles has been claimed to be responsible for the abundance of gas-phase molecules towards cold regions. Being water a ubiquitous molecule, it is crucial to understand its role in photochemistry and its behaviour under an ultraviolet field. We report new measurements on the ultraviolet (UV) photodesorption of water ice and its H2, OH, and O2 photoproducts using a calibrated quadrupole mass spectrometer. Solid water was deposited under ultra-high-vacuum conditions and then UV-irradiated at various temperatures starting from 8 K with a microwave discharged hydrogen lamp. Deuterated water was used for confirmation of the results. We found a photodesorption yield of 1.3 × 10-3 molecules per incident photon for water and 0.7 × 10-3 molecules per incident photon for deuterated water at the lowest irradiation temperature, 8 K. The photodesorption yield per absorbed photon is given and comparison with astrophysical scenarios, where water ice photodesorption could account for the presence of gas-phase water towards cold regions in the absence of a thermal desorption process, is addressed.

  9. Coherence techniques at extreme ultraviolet wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chang [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    The renaissance of Extreme Ultraviolet (EUV) and soft x-ray (SXR) optics in recent years is mainly driven by the desire of printing and observing ever smaller features, as in lithography and microscopy. This attribute is complemented by the unique opportunity for element specific identification presented by the large number of atomic resonances, essentially for all materials in this range of photon energies. Together, these have driven the need for new short-wavelength radiation sources (e.g. third generation synchrotron radiation facilities), and novel optical components, that in turn permit new research in areas that have not yet been fully explored. This dissertation is directed towards advancing this new field by contributing to the characterization of spatial coherence properties of undulator radiation and, for the first time, introducing Fourier optical elements to this short-wavelength spectral region. The first experiment in this dissertation uses the Thompson-Wolf two-pinhole method to characterize the spatial coherence properties of the undulator radiation at Beamline 12 of the Advanced Light Source. High spatial coherence EUV radiation is demonstrated with appropriate spatial filtering. The effects of small vertical source size and beamline apertures are observed. The difference in the measured horizontal and vertical coherence profile evokes further theoretical studies on coherence propagation of an EUV undulator beamline. A numerical simulation based on the Huygens-Fresnel principle is performed.

  10. Attosecond extreme ultraviolet generation in cluster by using spatially inhomogeneous field

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Liqiang, E-mail: lqfeng-lngy@126.com [College of Science, Liaoning University of Technology, Jinzhou, 121000 (China); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics Chinese Academy of Sciences, Dalian 116023 (China); Liu, Hang [School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121000 (China)

    2015-01-15

    A promising method to generate the attosecond extreme ultraviolet (XUV) sources has been theoretically investigated emerging from the two-dimensional Ar{sup +} cluster driven by the spatially inhomogeneous field. The results show that with the introduction of the Ar{sup +} cluster model, not only the harmonic cutoffs are enhanced, but also the harmonic yields are reinforced. Furthermore, by properly moderating the inhomogeneity as well as the laser parameters of the inhomogeneous field, the harmonic cutoff can be further extended. As a result, three almost linearly polarized XUV pulses with durations of 40 as, 42 as, and 45 as can be obtained.

  11. Thermal deformation prediction in reticles for extreme ultraviolet lithography based on a measurement-dependent low-order model

    NARCIS (Netherlands)

    Bikcora, C.; Weiland, S.; Coene, W.M.J.

    2014-01-01

    In extreme ultraviolet lithography, imaging errors due to thermal deformation of reticles are becoming progressively intolerable as the source power increases. Despite this trend, such errors can be mitigated by adjusting the wafer and reticle stages based on a set of predicted deformation-induced

  12. Spontaneous and artificial direct nanostructuring of solid surface by extreme ultraviolet laser with nanosecond pulses

    Czech Academy of Sciences Publication Activity Database

    Koláček, Karel; Schmidt, Jiří; Štraus, Jaroslav; Frolov, Oleksandr; Prukner, Václav; Melich, Radek; Psota, Pavel

    2016-01-01

    Roč. 34, č. 1 (2016), s. 11-22 ISSN 0263-0346 Institutional support: RVO:61389021 Keywords : Extreme ultraviolet (XUV) interferometer * Aspheric interferometer mirrors * Multilayer reflection coating for 46.9 nm * Ar8+ laser application * XUV direct nanostructuring Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.420, year: 2016 http://dx.doi.org/10.1017/S0263034615000786

  13. Spin-on-glass coatings for the generation of super-polishedsubstrates for extreme ultraviolet optics

    Energy Technology Data Exchange (ETDEWEB)

    Salmassi, Farhad; Naulleau, Patrick P.; Gullikson, Eric M.

    2005-01-01

    Substrates intended for use as extreme ultraviolet (EUV) optics have extremely stringent requirements in terms of finish. These requirements can dramatically increase the cost and fabrication time, especially when non-conventional shapes, such as toroids, are required. Here we present a spin-on-glass resist process capable of generating super-polished parts from inexpensive substrates. The method has been used to render diamond-turned substrates compatible for use as EUV optics. Toroidal diamond-turned optics with starting rms roughness in the 3.3 to 3.7 nm range have been smoothed to the 0.4 to 0.6 nm range. EUV reflectometry characterization of these optics has demonstrated reflectivities of approximately 63%.

  14. Extreme ultra-violet movie camera for imaging microsecond time scale magnetic reconnection

    International Nuclear Information System (INIS)

    Chai, Kil-Byoung; Bellan, Paul M.

    2013-01-01

    An ultra-fast extreme ultra-violet (EUV) movie camera has been developed for imaging magnetic reconnection in the Caltech spheromak/astrophysical jet experiment. The camera consists of a broadband Mo:Si multilayer mirror, a fast decaying YAG:Ce scintillator, a visible light block, and a high-speed visible light CCD camera. The camera can capture EUV images as fast as 3.3 × 10 6 frames per second with 0.5 cm spatial resolution. The spectral range is from 20 eV to 60 eV. EUV images reveal strong, transient, highly localized bursts of EUV radiation when magnetic reconnection occurs

  15. Extreme ultra-violet movie camera for imaging microsecond time scale magnetic reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Kil-Byoung; Bellan, Paul M. [Applied Physics, Caltech, 1200 E. California Boulevard, Pasadena, California 91125 (United States)

    2013-12-15

    An ultra-fast extreme ultra-violet (EUV) movie camera has been developed for imaging magnetic reconnection in the Caltech spheromak/astrophysical jet experiment. The camera consists of a broadband Mo:Si multilayer mirror, a fast decaying YAG:Ce scintillator, a visible light block, and a high-speed visible light CCD camera. The camera can capture EUV images as fast as 3.3 × 10{sup 6} frames per second with 0.5 cm spatial resolution. The spectral range is from 20 eV to 60 eV. EUV images reveal strong, transient, highly localized bursts of EUV radiation when magnetic reconnection occurs.

  16. Silicon photodiode with selective Zr/Si coating for extreme ultraviolet spectral range

    International Nuclear Information System (INIS)

    Aruev, P N; Barysheva, Mariya M; Ber, B Ya; Zabrodskaya, N V; Zabrodskii, V V; Lopatin, A Ya; Pestov, Alexey E; Petrenko, M V; Polkovnikov, V N; Salashchenko, Nikolai N; Sukhanov, V L; Chkhalo, Nikolai I

    2012-01-01

    The procedure of manufacturing silicon photodiodes with an integrated Zr/Si filter for extreme ultraviolet (EUV) spectral range is developed. A setup for measuring the sensitivity profile of detectors with spatial resolution better than 100 μm is fabricated. The optical properties of silicon photodiodes in the EUV and visible spectral ranges are investigated. Some characteristics of SPD-100UV diodes with Zr/Si coating and without it, as well as of AXUV-100 diodes, are compared. In all types of detectors a narrow region beyond the operating aperture is found to be sensitive to the visible light. (photodetectors)

  17. Extreme ultra-violet emission spectroscopy of highly charged gadolinium ions with an electron beam ion trap

    International Nuclear Information System (INIS)

    Ohashi, Hayato; Nakamura, Nobuyuki; Sakaue, Hiroyuki A

    2013-01-01

    We present extreme ultra-violet emission spectra of highly charged gadolinium ions obtained with an electron beam ion trap at electron energies of 0.53–1.51 keV. The electron energy dependence of the spectra in the 5.7–11.3 nm range is compared with calculation with the flexible atomic code. (paper)

  18. Broadband interference lithography at extreme ultraviolet and soft x-ray wavelengths.

    Science.gov (United States)

    Mojarad, Nassir; Fan, Daniel; Gobrecht, Jens; Ekinci, Yasin

    2014-04-15

    Manufacturing efficient and broadband optics is of high technological importance for various applications in all wavelength regimes. Particularly in the extreme ultraviolet and soft x-ray spectra, this becomes challenging due to the involved atomic absorption edges that rapidly change the optical constants in these ranges. Here we demonstrate a new interference lithography grating mask that can be used for nanopatterning in this spectral range. We demonstrate photolithography with cutting-edge resolution at 6.5 and 13.5 nm wavelengths, relevant to the semiconductor industry, as well as using 2.5 and 4.5 nm wavelength for patterning thick photoresists and fabricating high-aspect-ratio metal nanostructures for plasmonics and sensing applications.

  19. Human fibroblast strain with normal survival but abnormal postreplication repair after ultraviolet light irradiation

    International Nuclear Information System (INIS)

    Doniger, J.; Barrett, S.F.; Robbins, J.H.

    1980-01-01

    Postreplication repair has been studied in ultraviolet light (UV-irradiated) fibroblast strains derived from eight apparently normal control donors and seven xeroderma pigmentosum patients. One control donor strain had an intermediate defect in postreplication repair similar to that in excision-deficient xeroderma pigmentosum fibroblasts. However, unlike the xeroderma pigmentosum strains, this control donor strain had normal UV-induced unscheduled DNA synthesis and normal survival after irradiation with UV. This unique fibroblast strain should be useful in studies designed to elucidate the possible role of postreplication repair in UV-induced carcinogenesis and mutagenesis

  20. AN AUTOMATIC DETECTION METHOD FOR EXTREME-ULTRAVIOLET DIMMINGS ASSOCIATED WITH SMALL-SCALE ERUPTION

    Energy Technology Data Exchange (ETDEWEB)

    Alipour, N.; Safari, H. [Department of Physics, University of Zanjan, P.O. Box 45195-313, Zanjan (Iran, Islamic Republic of); Innes, D. E. [Max-Planck Institut fuer Sonnensystemforschung, 37191 Katlenburg-Lindau (Germany)

    2012-02-10

    Small-scale extreme-ultraviolet (EUV) dimming often surrounds sites of energy release in the quiet Sun. This paper describes a method for the automatic detection of these small-scale EUV dimmings using a feature-based classifier. The method is demonstrated using sequences of 171 Angstrom-Sign images taken by the STEREO/Extreme UltraViolet Imager (EUVI) on 2007 June 13 and by Solar Dynamics Observatory/Atmospheric Imaging Assembly on 2010 August 27. The feature identification relies on recognizing structure in sequences of space-time 171 Angstrom-Sign images using the Zernike moments of the images. The Zernike moments space-time slices with events and non-events are distinctive enough to be separated using a support vector machine (SVM) classifier. The SVM is trained using 150 events and 700 non-event space-time slices. We find a total of 1217 events in the EUVI images and 2064 events in the AIA images on the days studied. Most of the events are found between latitudes -35 Degree-Sign and +35 Degree-Sign . The sizes and expansion speeds of central dimming regions are extracted using a region grow algorithm. The histograms of the sizes in both EUVI and AIA follow a steep power law with slope of about -5. The AIA slope extends to smaller sizes before turning over. The mean velocity of 1325 dimming regions seen by AIA is found to be about 14 km s{sup -1}.

  1. Design of a normal incidence multilayer imaging X-ray microscope

    Science.gov (United States)

    Shealy, David L.; Gabardi, David R.; Hoover, Richard B.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.

    Normal incidence multilayer Cassegrain X-ray telescopes were flown on the Stanford/MSFC Rocket X-ray Spectroheliograph. These instruments produced high spatial resolution images of the sun and conclusively demonstrated that doubly reflecting multilayer X-ray optical systems are feasible. The images indicated that aplanatic imaging soft X-ray/EUV microscopes should be achievable using multilayer optics technology. A doubly reflecting normal incidence multilayer imaging X-ray microscope based on the Schwarzschild configuration has been designed. The design of the microscope and the results of the optical system ray trace analysis are discussed. High resolution aplanatic imaging X-ray microscopes using normal incidence multilayer X-ray mirrors should have many important applications in advanced X-ray astronomical instrumentation, X-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  2. Probing of Hermean Exosphere by ultraviolet spectroscopy: Instrument presentation, calibration philosophy and first lights results

    Science.gov (United States)

    Mariscal, J. F.; Rouanet, N.; Maria, J. L.; Quémerais, E.; Mine, P. O.; Zuppella, P.; Suman, M.; Nicolosi, P.; Pelizzo, M. G.; Yoshikawa, I.; Yoshioka, K.; Murakami, G.

    2017-11-01

    PHEBUS (Probing of Hermean Exosphere by Ultraviolet Spectroscopy) is a double spectrometer for the Extreme Ultraviolet range (55-155 nm) and the Far Ultraviolet range (145-315 nm) dedicated to the characterization of Mercury's exosphere composition and dynamics, and surface-exosphere connections. PHEBUS is part of the ESA BepiColombo cornerstone mission payload devoted to the study of Mercury. The BepiColombo mission consists of two spacecrafts: the Mercury Magnetospheric Orbiter (MMO) and the Mercury Planetary Orbiter (MPO) on which PHEBUS will be mounted. PHEBUS is a French-led instrument implemented in a cooperative scheme involving Japan (detectors), Russia (scanner) and Italy (ground calibration). Before launch, PHEBUS team want to perform a full absolute calibration on ground, in addition to calibrations which will be made in-flight, in order to know the instrument's response as precisely as possible. Instrument overview and calibration philosophy are introduced along with the first lights results observed by a first prototype.

  3. Grazing incidence optics; Proceedings of the Meeting, Orlando, FL, Apr. 3, 4, 1986

    Science.gov (United States)

    Osantowski, John F. (Editor); Van Speybroeck, Leon (Editor)

    1986-01-01

    Papers are presented on the diffraction-limited performance of grazing incidence optical systems; transverse ray aberrations of Wolter type 1 telescopes; hybrid X-ray telescope systems; surface characterization of grazing incidence optics in the extreme UV and X-ray regions; and the surface roughness properties of synchrotron radiation optics. Topics discussed include the simulation of free-abrasive grinding of grazing incidence mirrors with vertical-honing and flexible blades; mirrors for the Extreme Ultraviolet Explorer; the design and development of conical X-ray imaging mirrors; thermal loading considerations for synchrotron radiation mirrors; and grazing incidence optics for synchrotron radiation insertion-device beams. Consideration is given to the interpretation of glancing incidence scattering measurements; damage processes in short wavelength coated FEL optics; the replication of grain incidence optics; and the assembly and alignment of the Technology Mirror Assembly.

  4. Dissociative multiple ionization of diatomic molecules by extreme-ultraviolet free-electron-laser pulses

    DEFF Research Database (Denmark)

    Madsen, Lars Bojer; Leth, Henriette Astrup

    2011-01-01

    Nuclear dynamics in dissociative multiple ionization processes of diatomic molecules exposed to extreme-ultraviolet free-electron-laser pulses is studied theoretically using the Monte Carlo wave packet approach. By simulated detection of the emitted electrons, the model reduces a full propagation...... of the system to propagations of the nuclear wave packet in one specific electronic charge state at a time. Suggested ionization channels can be examined, and kinetic energy release spectra for the nuclei can be calculated and compared with experiments. Double ionization of O2 is studied as an example, and good...

  5. THE ULTRAVIOLET BRIGHTEST TYPE Ia SUPERNOVA 2011de

    International Nuclear Information System (INIS)

    Brown, Peter J.

    2014-01-01

    We present and discuss the ultraviolet (UV)/optical photometric light curves and absolute magnitudes of the Type Ia supernova (SN Ia) 2011de from the Swift Ultraviolet/Optical Telescope. We find it to be the UV brightest SN Ia yet observed—more than a factor of 10 brighter than normal SNe Ia in the mid-ultraviolet. We find that the UV/optical brightness and broad light curve evolution can be modeled with additional flux from the shock of the ejecta hitting a relatively large red giant companion separated by 6 × 10 13 cm. However, the post-maximum behavior of other UV-bright SNe Ia can also be modeled in a similar manner, including objects with UV spectroscopy or pre-maximum photometry which is inconsistent with this model. This suggests that similar UV luminosities can be intrinsic or caused by other forms of shock interaction. The high velocities reported for SN 2011de make it distinct from the UV-bright ''super-Chandrasekhar'' SNe Ia and the NUV-blue group of normal SNe Ia. SN 2011de is an extreme example of the UV variations in SNe Ia

  6. X-Ray Emission Spectrometer Design with Single-Shot Pump-Probe and Resonant Excitation Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Spoth, Katherine; /SUNY, Buffalo /SLAC

    2012-08-28

    Core-level spectroscopy in the soft X-ray regime is a powerful tool for the study of chemical bonding processes. The ultrafast, ultrabright X-ray pulses generated by the Linac Coherent Light Source (LCLS) allow these reactions to be studied in greater detail than ever before. In this study, we investigated a conceptual design of a spectrometer for the LCLS with imaging in the non-dispersive direction. This would allow single-shot collection of X-ray emission spectroscopy (XES) measurements with varying laser pump X-ray probe delay or a variation of incoming X-ray energy over the illuminated area of the sample. Ray-tracing simulations were used to demonstrate how the components of the spectrometer affect its performance, allowing a determination of the optimal final design. These simulations showed that the spectrometer's non-dispersive focusing is extremely sensitive to the size of the sample footprint; the spectrometer is not able to image a footprint width larger than one millimeter with the required resolution. This is compatible with a single shot scheme that maps out the laser pump X-ray probe delay in the non-dispersive direction as well as resonant XES applications at normal incidence. However, the current capabilities of the Soft X-Ray (SXR) beamline at the LCLS do not produce the required energy range in a small enough sample footprint, hindering the single shot resonant XES application at SXR for chemical dynamics studies at surfaces. If an upgraded or future beamline at LCLS is developed with lower monochromator energy dispersion the width can be made small enough at the required energy range to be imaged by this spectrometer design.

  7. Laser-produced plasma-extreme ultraviolet light source for next generation lithography

    International Nuclear Information System (INIS)

    Nishihara, Katsunobu; Nishimura, Hiroaki; Gamada, Kouhei; Murakami, Masakatsu; Mochizuki, Takayasu; Sasaki, Akira; Sunahara, Atsushi

    2005-01-01

    Extreme ultraviolet (EUV) lithography is the most promising candidate for the next generation lithography for the 45 nm technology node and below. EUV light sources under consideration use 13.5 nm radiations from multicharged xenon, tin and lithium ions, because Mo/Si multiplayer mirrors have high reflectivity at this wavelength. A review of laser-produced plasma (LPP) EUV light sources is presented with a focus on theoretical and experimental studies under the auspices of the Leading Project promoted by MEXT. We discuss three theoretical topics: atomic processes in the LPP-EUV light source, conversion efficiency from laser light to EUV light at 13.5 nm wave-length with 2% bound width, and fast ion spectra. The properties of EUV emission from tin and xenon plasmas are also shown based on experimental results. (author)

  8. Extreme ultraviolet fluorescence spectroscopy of pure and core-shell rare gas clusters at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Schroedter, Lasse

    2013-08-15

    The interaction of rare gas clusters with short-wavelength radiation of free-electron lasers (FELs) has been studied extensively over the last decade by means of electron and ion time-of-flight spectroscopy. This thesis describes the design and construction of a fluorescence spectrometer for the extreme ultraviolet (XUV) spectral range and discusses the cluster experiments performed at FLASH, the Free-electron LAser in Hamburg. Fluorescence of xenon and of argon clusters was studied, both in dependence on the FEL pulse intensity and on the cluster size. The FEL wavelength was set to the giant 4d-resonance of xenon at 13.5 nm and the FEL pulse intensity reached peak values of 2.7.10{sup 15} W/cm{sup 2}. For xenon clusters, charge states of at least 11+ were identified. For argon, charge states up to 7+ were detected. The cluster-size dependent study revealed a decrease of the fluorescence yield per atom with increasing cluster size. This decrease is explained with the help of a geometric model. It assumes that virtually the entire fluorescence yield stems from shells of ions on the cluster surface, whereas ions in the cluster core predominantly recombine non-radiatively with electrons. However, the detailed analysis of fluorescence spectra from clusters consisting of a core of Xe atoms and a surrounding shell of argon atoms shows that, in fact, a small fraction of the fluorescence signal comes from Xe ions in the cluster core. Interestingly, these ions are as highly charged as the ions in the shells of a pure Xe cluster. This result goes beyond the current understanding of charge and energy transfer processes in these systems and points toward the observation of ultrafast charging dynamics in a time window where mass spectrometry is inherently blind. (orig.)

  9. Extreme ultraviolet fluorescence spectroscopy of pure and core-shell rare gas clusters at FLASH

    International Nuclear Information System (INIS)

    Schroedter, Lasse

    2013-08-01

    The interaction of rare gas clusters with short-wavelength radiation of free-electron lasers (FELs) has been studied extensively over the last decade by means of electron and ion time-of-flight spectroscopy. This thesis describes the design and construction of a fluorescence spectrometer for the extreme ultraviolet (XUV) spectral range and discusses the cluster experiments performed at FLASH, the Free-electron LAser in Hamburg. Fluorescence of xenon and of argon clusters was studied, both in dependence on the FEL pulse intensity and on the cluster size. The FEL wavelength was set to the giant 4d-resonance of xenon at 13.5 nm and the FEL pulse intensity reached peak values of 2.7.10 15 W/cm 2 . For xenon clusters, charge states of at least 11+ were identified. For argon, charge states up to 7+ were detected. The cluster-size dependent study revealed a decrease of the fluorescence yield per atom with increasing cluster size. This decrease is explained with the help of a geometric model. It assumes that virtually the entire fluorescence yield stems from shells of ions on the cluster surface, whereas ions in the cluster core predominantly recombine non-radiatively with electrons. However, the detailed analysis of fluorescence spectra from clusters consisting of a core of Xe atoms and a surrounding shell of argon atoms shows that, in fact, a small fraction of the fluorescence signal comes from Xe ions in the cluster core. Interestingly, these ions are as highly charged as the ions in the shells of a pure Xe cluster. This result goes beyond the current understanding of charge and energy transfer processes in these systems and points toward the observation of ultrafast charging dynamics in a time window where mass spectrometry is inherently blind. (orig.)

  10. CAN A NANOFLARE MODEL OF EXTREME-ULTRAVIOLET IRRADIANCES DESCRIBE THE HEATING OF THE SOLAR CORONA?

    Energy Technology Data Exchange (ETDEWEB)

    Tajfirouze, E.; Safari, H. [Department of Physics, University of Zanjan, P.O. Box 45195-313, Zanjan (Iran, Islamic Republic of)

    2012-01-10

    Nanoflares, the basic units of impulsive energy release, may produce much of the solar background emission. Extrapolation of the energy frequency distribution of observed microflares, which follows a power law to lower energies, can give an estimation of the importance of nanoflares for heating the solar corona. If the power-law index is greater than 2, then the nanoflare contribution is dominant. We model a time series of extreme-ultraviolet emission radiance as random flares with a power-law exponent of the flare event distribution. The model is based on three key parameters: the flare rate, the flare duration, and the power-law exponent of the flare intensity frequency distribution. We use this model to simulate emission line radiance detected in 171 A, observed by Solar Terrestrial Relation Observatory/Extreme-Ultraviolet Imager and Solar Dynamics Observatory/Atmospheric Imaging Assembly. The observed light curves are matched with simulated light curves using an Artificial Neural Network, and the parameter values are determined across the active region, quiet Sun, and coronal hole. The damping rate of nanoflares is compared with the radiative losses cooling time. The effect of background emission, data cadence, and network sensitivity on the key parameters of the model is studied. Most of the observed light curves have a power-law exponent, {alpha}, greater than the critical value 2. At these sites, nanoflare heating could be significant.

  11. Solar ultraviolet radiation in Syria measurements and relationship with skin cancer incidence

    International Nuclear Information System (INIS)

    Othman, I; Baydon, S.A.; Dawood, S.

    1994-11-01

    Seasonal variations of solar UVB (285-320) and UVA (320-400) were measured in three sites in Syria (33-37 N sup O) for two years: 1992-1993. UVB measurements were performed using polysulphone films and Robertson-Berger meter, while UVA measurements were done by NVA intensity meter. Two sets of measurements were carried out : - Maximal daily doses three times a week (every other day) - Diurnal variations from sun-rise to sun-set every two hours twice a month (every fortnight). The biological consequences of ultraviolet radiation withreference to some epidemiological data of skin cancer incidence in Syria since 1980 were discussed .(author). 36 refs., 21 figs., 11 tabs

  12. Extreme ultraviolet (EUV) and FUV calibration facility for special sensor ultraviolet limb imager (SSULI)

    Science.gov (United States)

    Boyer, Craig N.; Osterman, Steven N.; Thonnard, Stefan E.; McCoy, Robert P.; Williams, J. Z.; Parker, S. E.

    1994-09-01

    A facility for calibrating far ultraviolet and extreme ultraviolet instruments has recently been completed at the Naval Research Laboratory. Our vacuum calibration vessel is 2-m in length, 1.67-m in diameter, and can accommodate optical test benches up to 1.2-m wide by 1.5-m in length. A kinematically positioned frame with four axis precision pointing capability of 10 microns for linear translation and .01 degrees for rotation is presently used during vacuum optical calibration of SSULI. The chamber was fabricated from 304 stainless steel and polished internally to reduce surface outgassing. A dust-free environment is maintained at the rear of the vacuum chamber by enclosing the 2-m hinged vacuum access door in an 8 ft. by 8 ft. class 100 clean room. Every effort was made to obtain an oil-free environment within the vacuum vessel. Outgassing products are continually monitored with a 1 - 200 amu residual gas analyzer. An oil-free claw and vane pump evacuates the chamber to 10-2 torr through 4 in. diameter stainless steel roughing lines. High vacuum is achieved and maintained with a magnetically levitated 480 l/s turbo pump and a 3000 l/s He4 cryopump. Either of two vacuum monochrometers, a 1-m f/10.4 or a 0.2-m f/4.5 are coaxially aligned with the optical axis of the chamber and are used to select single UV atomic resonance lines from a windowless capillary or penning discharge UV light source. A calibrated channeltron detector is coaxially mounted with the SSULI detector during calibration. All vacuum valves, the cooling system for the cryopump compressor, and the roughing pump are controlled through optical fibers which are interfaced to a computer through a VME board. Optical fibers were chosen to ensure that complete electrical isolation is maintained between the computer and the vacuum system valves-solenoids and relays.

  13. Exploring the temporally resolved electron density evolution in extreme ultra-violet induced plasmas

    International Nuclear Information System (INIS)

    Van der Horst, R M; Beckers, J; Nijdam, S; Kroesen, G M W

    2014-01-01

    We measured the electron density in an extreme ultra-violet (EUV) induced plasma. This is achieved in a low-pressure argon plasma by using a method called microwave cavity resonance spectroscopy. The measured electron density just after the EUV pulse is 2.6 × 10 16  m −3 . This is in good agreement with a theoretical prediction from photo-ionization, which yields a density of 4.5 × 10 16  m −3 . After the EUV pulse the density slightly increases due to electron impact ionization. The plasma (i.e. electron density) decays in tens of microseconds. (fast track communication)

  14. Surface roughness control by extreme ultraviolet (EUV) radiation

    Science.gov (United States)

    Ahad, Inam Ul; Obeidi, Muhannad Ahmed; Budner, Bogusław; Bartnik, Andrzej; Fiedorowicz, Henryk; Brabazon, Dermot

    2017-10-01

    Surface roughness control of polymeric materials is often desirable in various biomedical engineering applications related to biocompatibility control, separation science and surface wettability control. In this study, Polyethylene terephthalate (PET) polymer films were irradiated with Extreme ultraviolet (EUV) photons in nitrogen environment and investigations were performed on surface roughness modification via EUV exposure. The samples were irradiated at 3 mm and 4 mm distance from the focal spot to investigate the effect of EUV fluence on topography. The topography of the EUV treated PET samples were studied by AFM. The detailed scanning was also performed on the sample irradiated at 3 mm. It was observed that the average surface roughness of PET samples was increased from 9 nm (pristine sample) to 280 nm and 253 nm for EUV irradiated samples. Detailed AFM studies confirmed the presence of 1.8 mm wide period U-shaped channels in EUV exposed PET samples. The walls of the channels were having FWHM of about 0.4 mm. The channels were created due to translatory movements of the sample in horizontal and transverse directions during the EUV exposure. The increased surface roughness is useful for many applications. The nanoscale channels fabricated by EUV exposure could be interesting for microfluidic applications based on lab-on-a-chip (LOC) devices.

  15. Mechanisms of inhibition of DNA replication by ultraviolet light in normal human and xeroderma pigmentosum fibroblasts

    International Nuclear Information System (INIS)

    Kaufmann, W.K.; Cleaver, J.E.

    1981-01-01

    The inhibition of DNA replication in ultraviolet-irradiated human fibroblasts was characterized by quantitative analysis of radiation-induced alterations in the steady-state distribution of sizes of pulse-labeled, nascent DNA. Low, noncytotoxic fluences rapidly produced an inhibition of DNA synthesis in half-replicon-size replication intermediates. With time, the inhibition produced by low fluences spread progressively to include multi-replicon-size intermediates. The results indicate that ultraviolet radiation inhibits the initiation of DNA synthesis in replicons. Higher cytotoxic fluences inhibited DNA synthesis in operating replicons. Xeroderma pigmentosum fibroblasts with deficiencies in DNA excision repair exhibited an inhibition of replicon initiation after low radiation fluences, indicating the effect was not solely dependent upon operation of the nucleotidyl excision repair pathway. Owing to their inability to remove pyrimidine dimers ahead of DNA growing points, the repair-deficient cells also were more sensitive than normal cells to the ultraviolet-induced inhibition of chain elongation. Xeroderma pigmentosum cells belonging to the variant class were even more sensitive to inhibition of chain elongation despite their ability to remove pyrimidine dimers. The analysis suggested that normal and repair-deficient human fibroblasts either are able to rapidly bypass certain dimers or these dimers are not recognized by the chain elongation machinery. (author)

  16. Ultraviolet photoelectron spectroscopy of transient species

    International Nuclear Information System (INIS)

    Leeuw, D.M. de.

    1979-01-01

    Transient species are studied in the isolation of the gas phase using ultraviolet photoelectron spectroscopy (PES). A description of the equipment used and a discussion of some theoretical topics, which play a role in the interpretation of PE spectra, are given. Koopmans' theorem, Hartree-Fock-Slater (HFS) calculations and the sum rule are discussed. A versatile ultraviolet PE spectrometer, designed specifically for this purpose, has been built and the construction and performance of this instrument are described. (Auth.)

  17. Extreme ultraviolet observations of coronal holes. II

    International Nuclear Information System (INIS)

    Bohlin, J.D.; Sheeley, N.R. Jr.

    1978-01-01

    Extreme-ultraviolet Skylab and ground-based solar magnetic field data have been combined to study the origin and evolution of coronal holes. It is shown that holes exist only within the large-scale unipolar magnetic cells into which the solar surface is divided at any given time. A well-defined boundary zone usually exists between the edge of a hole and the neutral line which marks the edge of its magnetic cell. This boundary zone is the region across which a cell is connected by magnetic arcades with adjacent cells of opposite polarity. Three pieces of observational evidence are offered to support the hypothesis that the magnetic lines of force from a hole are open. Kitt Peak magnetograms are used to show that, at least on a relative scale, the average field strengths within holes are quite variable, but indistinguishable from the field strengths in other quiet parts of the Sun's surface. Finally it is shown that the large, equatorial holes characteristic of the declining phase of the last solar cycle during Skylab (1973-74) were all formed as a result of the mergence of bipolar magnetic regions (BMR's), confirming an earlier hypothesis by Timothy et al. (1975). Systematic application of this model to the different aspects of the solar cycle correctly predicts the occurrence of both large, equatorial coronal holes (the 'M-regions' which cause recurrent geomagnetic storms) and the polar cap holes. (Auth.)

  18. Broadband transmission masks, gratings and filters for extreme ultraviolet and soft X-ray lithography

    International Nuclear Information System (INIS)

    Brose, S.; Danylyuk, S.; Juschkin, L.; Dittberner, C.; Bergmann, K.; Moers, J.; Panaitov, G.; Trellenkamp, St.; Loosen, P.; Grützmacher, D.

    2012-01-01

    Lithography and patterning on a nanometre scale with extreme ultraviolet (EUV) and soft X-ray radiation allow creation of high resolution, high density patterns independent of a substrate type. To realize the full potential of this method, especially for EUV proximity printing and interference lithography, a reliable technology for manufacturing of the transmission masks and gratings should be available. In this paper we present a development of broadband amplitude transmission masks and gratings for extreme ultraviolet and soft X-ray lithography based on free-standing niobium membranes. In comparison with a standard silicon nitride based technology the transmission masks demonstrate high contrast not only for in-band EUV (13.5 nm) radiation but also for wavelengths below Si L-absorption edge (12.4 nm). The masks and filters with free standing areas up to 1000 × 1000 μm 2 and 100 nm to 300 nm membrane thicknesses are shown. Electron beam structuring of an absorber layer with dense line and dot patterns with sub-50 nm structures is demonstrated. Diffractive and filtering properties of obtained structures are examined with EUV radiation from a gas discharge plasma source. - Highlights: ► Broadband transmission masks for EUV proximity and interference lithography. ► Technology for free standing niobium membranes with areas up to 1 mm 2 . ► High density patterns with periods of 100 nm and structure sizes below 40 nm. ► Measured diffraction efficiency at 11 nm is in agreement with the theory. ► Produced masks can be effectively used with wavelengths between 6 nm and 17 nm.

  19. Properites of ultrathin films appropriate for optics capping layers in extreme ultraviolet lithography (EUVL)

    Energy Technology Data Exchange (ETDEWEB)

    Bajt, S; Edwards, N V; Madey, T E

    2007-06-25

    The contamination of optical surfaces by irradiation shortens optics lifetime and is one of the main concerns for optics used in conjunction with intense light sources, such as high power lasers, 3rd and 4th generation synchrotron sources or plasma sources used in extreme ultraviolet lithography (EUVL) tools. This paper focuses on properties and surface chemistry of different materials, which as thin layers, could be used as capping layers to protect and extend EUVL optics lifetime. The most promising candidates include single element materials such as ruthenium and rhodium, and oxides such as TiO{sub 2} and ZrO{sub 2}.

  20. Production and analysis of some atomic emission spectra in the vacuum ultraviolet

    International Nuclear Information System (INIS)

    Meijer, F.G.

    1979-01-01

    The development of technical facilities for spectra analysis are described including the design, construction and adjustment of a grazing incidence spectrograph for the extreme ultraviolet and the improvements in light sources. The investigations of the fifth and fourth spectra of tantalum, the analysis of the sixth spectrum of tungsten, the extension of the analysis of the fourth spectrum of hafnium and a start of the analysis of the seventh spectrum of rhenium are presented. (C.F.)

  1. Development of an imaging VUV monochromator in normal incidence region

    Energy Technology Data Exchange (ETDEWEB)

    Koog, Joong-San

    1996-07-01

    This paper describes a development of the two-dimensional imaging monochromator system. A commercial normal incidence monochromator working on off-Rowland circle mounting is used for this purpose. The imaging is achieved with utilizing the pinhole camera effect created by an entrance slit of limited height. The astigmatism in the normal incidence mounting is small compared with a grazing incidence mount, but has a finite value. The point is that for near normal incidence, the vertical focusing with a concave grating is produced at outside across the exit slit. Therefore, by putting a 2-D detector at the position away from the exit slit ({approx}30 cm), a one-to-one correspondence between the position of a point on the detector and where it originated in the source is accomplished. This paper consists of (1) the principle and development of the imaging monochromator using the off-Rowland mounting, including the 2-D detector system, (2) a computer simulation by ray tracing for investigations of the imaging properties of imaging system, and aberration from the spherical concave grating on the exit slit, (3) the plasma light source (TPD-S) for the test experiments, (4) Performances of the imaging monochromator system on the spatial resolution and sensitivity, and (5) the use of this system for diagnostic studies on the JIPP T-IIU tokamak. (J.P.N.)

  2. Development of an imaging VUV monochromator in normal incidence region

    International Nuclear Information System (INIS)

    Koog, Joong-San.

    1996-07-01

    This paper describes a development of the two-dimensional imaging monochromator system. A commercial normal incidence monochromator working on off-Rowland circle mounting is used for this purpose. The imaging is achieved with utilizing the pinhole camera effect created by an entrance slit of limited height. The astigmatism in the normal incidence mounting is small compared with a grazing incidence mount, but has a finite value. The point is that for near normal incidence, the vertical focusing with a concave grating is produced at outside across the exit slit. Therefore, by putting a 2-D detector at the position away from the exit slit (∼30 cm), a one-to-one correspondence between the position of a point on the detector and where it originated in the source is accomplished. This paper consists of 1) the principle and development of the imaging monochromator using the off-Rowland mounting, including the 2-D detector system, 2) a computer simulation by ray tracing for investigations of the imaging properties of imaging system, and aberration from the spherical concave grating on the exit slit, 3) the plasma light source (TPD-S) for the test experiments, 4) Performances of the imaging monochromator system on the spatial resolution and sensitivity, and 5) the use of this system for diagnostic studies on the JIPP T-IIU tokamak. (J.P.N.)

  3. Non-Gaussian Velocity Distributions in Solar Flares from Extreme Ultraviolet Lines: A Possible Diagnostic of Ion Acceleration

    International Nuclear Information System (INIS)

    Jeffrey, Natasha L. S.; Fletcher, Lyndsay; Labrosse, Nicolas

    2017-01-01

    In a solar flare, a large fraction of the magnetic energy released is converted rapidly to the kinetic energy of non-thermal particles and bulk plasma motion. This will likely result in non-equilibrium particle distributions and turbulent plasma conditions. We investigate this by analyzing the profiles of high temperature extreme ultraviolet emission lines from a major flare (SOL2014-03-29T17:44) observed by the EUV Imaging Spectrometer (EIS) on Hinode . We find that in many locations the line profiles are non-Gaussian, consistent with a kappa distribution of emitting ions with properties that vary in space and time. At the flare footpoints, close to sites of hard X-ray emission from non-thermal electrons, the κ index for the Fe xvi 262.976 Å line at 3 MK takes values of 3–5. In the corona, close to a low-energy HXR source, the Fe xxiii 263.760 Å line at 15 MK shows κ values of typically 4–7. The observed trends in the κ parameter show that we are most likely detecting the properties of the ion population rather than any instrumental effects. We calculate that a non-thermal ion population could exist if locally accelerated on timescales ≤0.1 s. However, observations of net redshifts in the lines also imply the presence of plasma downflows, which could lead to bulk turbulence, with increased non-Gaussianity in cooler regions. Both interpretations have important implications for theories of solar flare particle acceleration.

  4. Final Report: Spectral Analysis of L-shell Data in the Extreme Ultraviolet from Tokamak Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lepson, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jernigan, J. Garrett [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Beiersdorfer, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-02-05

    We performed detailed analyses of extreme ultraviolet spectra taken by Lawrence Livermore National Laboratory on the National Spherical Torus Experiment at Princeton Plasma Physics Laboratory and on the Alcator CKmod tokamak at the M.I.T. Plasma Science and Fusion Center. We focused on the emission of iron, carbon, and other elements in several spectral band pass regions covered by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory. We documented emission lines of carbon not found in currently used solar databases and demonstrated that this emission was due to charge exchange.

  5. Correlated proton-electron hole dynamics in protonated water clusters upon extreme ultraviolet photoionization

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2016-07-01

    Full Text Available The ultrafast nuclear and electronic dynamics of protonated water clusters H+(H2On after extreme ultraviolet photoionization is investigated. In particular, we focus on cluster cations with n = 3, 6, and 21. Upon ionization, two positive charges are present in the cluster related to the excess proton and the missing electron, respectively. A correlation is found between the cluster's geometrical conformation and initial electronic energy with the size of the final fragments produced. For situations in which the electron hole and proton are initially spatially close, the two entities become correlated and separate in a time-scale of 20 to 40 fs driven by strong non-adiabatic effects.

  6. Correlated proton-electron hole dynamics in protonated water clusters upon extreme ultraviolet photoionization

    Science.gov (United States)

    Li, Zheng; Vendrell, Oriol

    2016-01-01

    The ultrafast nuclear and electronic dynamics of protonated water clusters H+(H2O)n after extreme ultraviolet photoionization is investigated. In particular, we focus on cluster cations with n = 3, 6, and 21. Upon ionization, two positive charges are present in the cluster related to the excess proton and the missing electron, respectively. A correlation is found between the cluster's geometrical conformation and initial electronic energy with the size of the final fragments produced. For situations in which the electron hole and proton are initially spatially close, the two entities become correlated and separate in a time-scale of 20 to 40 fs driven by strong non-adiabatic effects. PMID:26798842

  7. Extreme ultraviolet (EUV) degradation of poly(olefin sulfone)s: Towards applications as EUV photoresists

    International Nuclear Information System (INIS)

    Lawrie, Kirsten; Blakey, Idriss; Blinco, James; Gronheid, Roel; Jack, Kevin; Pollentier, Ivan; Leeson, Michael J.; Younkin, Todd R.; Whittaker, Andrew K.

    2011-01-01

    Poly(olefin sulfone)s, formed by the reaction of sulfur dioxide (SO 2 ) and an olefin, are known to be highly susceptible to degradation by radiation and thus have been identified as candidate materials for chain scission-based extreme ultraviolet lithography (EUVL) resist materials. In order to investigate this further, the synthesis and characterisation of two poly(olefin sulfone)s namely poly(1-pentene sulfone) (PPS) and poly(2-methyl-1-pentene sulfone) (PMPS), was achieved and the two materials were evaluated for possible chain scission EUVL resist applications. It was found that both materials possess high sensitivities to EUV photons; however; the rates of outgassing were extremely high. The only observed degradation products were found to be SO 2 and the respective olefin suggesting that depolymerisation takes place under irradiation in a vacuum environment. In addition to depolymerisation, a concurrent conversion of SO 2 moieties to a sulfide phase was observed using XPS.

  8. Observations of the 1980 April 30 limb flare by the ultraviolet spectrometer and polarimeter on the Solar Maximum Mission

    International Nuclear Information System (INIS)

    Woodgate, B.W.; Shine, R.A.; Brandt, J.C.; Chapman, R.D.; Michalitsianos, A.G.; Kenny, P.J.; Bruner, E.C.; Rehse, R.A.; Schoolman, S.A.; Cheng, C.C.; Tandberg-Hanssen, E.; Athay, R.G.; Beckers, J.M.; Gurman, J.B.; Henze, W.; Hyder, C.L.

    1981-01-01

    Observations of the M2 limb flare of 1980 April 30 by the Ultraviolet Spectrometer and Polarimeter in the C IV 1548 A line are described and compared with observations from other SMM instruments and with ground-based Hα data. Events observed during the 18 minutes leading up to the flare impulsive phase include the filling of a small loop with material moving at about 20 km s -1 , followed by a rapid brightening in C IV, Hα, and hard X-rays, with a subsequent brightening of a higher set of loops. The rapid brightening appears to be at the junction of the small loop with the overlying magnetic structures, which suggests the flare may be caused by their interaction

  9. Observations of the 1980 April 30 limb flare by the ultraviolet spectrometer and polarimeter on the Solar Maximum Mission

    Science.gov (United States)

    Woodgate, B. E.; Shine, R. A.; Brandt, J. C.; Chapman, R. D.; Michalitsianos, A. G.; Kenny, P. J.; Bruner, E. C.; Rehse, R. A.; Schoolman, S. A.; Cheng, C. C.

    1981-01-01

    Observations of the M2 limb flare of 1980 April 30 by the ultraviolet spectrometer and polarimeter in the C IV 1548 A line are described and compared with observations from other SMM instruments and with ground-based H-alpha data. Events observed during the 18 minutes leading up to the flare impulsive phase include the filling of a small loop with material moving at about 20 km/s, followed by a rapid brightening in C IV, H-alpha, and hard X-rays, with a subsequent brightening of a higher set of loops. The rapid brightening appears to be at the junction of the small loop with the overlying magnetic structures, which suggests the flare may be caused by their interaction.

  10. Formation of DNA single-strand breaks by near-ultraviolet and gamma-rays in normal and Bloom's syndrome skin fibroblasts

    International Nuclear Information System (INIS)

    Hirschi, M.; Netrawali, M.S.; Remsen, J.F.; Cerutti, P.A.

    1981-01-01

    The formation of single-strand breaks by near-ultraviolet light at 313 nm and by aerobic gamma-rays was compared for skin fibroblast monolayer cultures from 4 normal donors (NF) and 8 patients with Bloom's syndrome (BS) by the alkaline elution method. In 6 of 8 BS strains, the number of breaks induced by near-ultraviolet light, 2.25 kJ/sq m, at 0 degrees was comparable to NF, while elevated breakage was observed in BS strains HG 369 and HG 916. Breakage frequencies were increased substantially in 6 of 8 BS strains relative to NF when the near-ultraviolet light exposure was at 37 degrees. BS strain GM 2520 represents an exception since normal breakage frequencies were induced both at 0 degrees and 37 degrees. Aerobic gamma-rays (75 R) induced comparable numbers of single-strand breaks in BS and NF strains at 0 degrees. The breakage frequencies were reduced an average of 17% in NF when the same dose was given at 30 degrees followed by 6 min incubation. Under the same conditions, the breakage frequencies were on the average reduced by 42% relative to 0 degrees in the BS strains, indicating that they possess normal or possibly slightly increased capacities for the rejoining of gamma-ray-induced breaks

  11. Spectrometer sensitivity calibration in the extreme uv by means of branching ratios of magnetic dipole lines

    International Nuclear Information System (INIS)

    Denne, B.; Hinnov, E.

    1984-04-01

    Relative intensity measurements of various line pairs resulting from magnetic dipole transitions within the configurations s 2 p 2 and s 2 p 4 , in conjunction with calculated transition probabilities, have been used to determine the wavelength dependence of the sensitivity of a grazing incidence spectrometer, in the range 400 to 1000 A. Emissions from Cr XIX, Fe XXI, Ni XXI and XXIII, Cu XXIV, and Zr XXVII ions in PLT tokamak discharges were used for this purpose. Absolute sensitivity of the spectrometer at selected wavelengths had been determined by the traditional hydrogen, helium, carbon, and oxygen electric-dipole line pairs from the same discharges. Similar attempts to use transitions in the s 2 p 3 configurations in Cr XVIII, Zr XXVI, and Mo XXVIII ions resulted in significant discrepancies that are ascribed to uncertainties in the corresponding calculated transition probabilities

  12. Relative incidence of phlebitis associated with peripheral intravenous catheters in the lower versus upper extremities.

    Science.gov (United States)

    Benaya, A; Schwartz, Y; Kory, R; Yinnon, A M; Ben-Chetrit, E

    2015-05-01

    Peripheral venous access in elderly, hospitalized patients is often challenging. The usual alternative is insertion of a central venous catheter, with associated risk for complications. The purpose of this investigation was to determine the relative incidence of phlebitis secondary to lower as compared to upper extremity intravenous catheters (IVCs) and associated risk factors. A non-randomized, observational, cohort-controlled study was carried out. Consecutive patients receiving a lower extremity IVC were enrolled and compared with patients receiving an upper extremity IVC. Patients were followed from insertion until removal of the IVC. The major endpoint was phlebitis. The incidence of phlebitis secondary to upper extremity IVCs was 3/50 (6 %) compared to 5/53 (9.4 %) in lower extremity IVCs (χ(2) Yates = 0.08, p = 0.776). Age, gender, obesity, diabetes mellitus, site (arm versus leg, left versus right), and size of needle were not found to be risk factors for phlebitis according to univariate analysis. None of the patients developed bloodstream infection. In elderly patients with poor venous access, lower extremity IVCs are a reasonable and low-risk alternative to central venous catheters.

  13. The Preflight Photometric Calibration of the Extreme-Ultraviolet Imaging Telescope EIT

    Science.gov (United States)

    Dere, K. P.; Moses, J. D.; Delaboudiniere, J. -P.; Brunaud, J.; Carabetian, C.; Hochedez, J. -F.; Song, X. Y.; Catura, R. C.; Clette, F.; Defise, J. -M.

    2000-01-01

    This paper presents the preflight photometric calibration of the Extreme-ultraviolet Imaging Telescope (EIT) aboard the Solar and Heliospheric Observatory (SOHO). The EIT consists of a Ritchey-Chretien telescope with multilayer coatings applied to four quadrants of the primary and secondary mirrors, several filters and a backside-thinned CCD detector. The quadrants of the EIT optics were used to observe the Sun in 4 wavelength bands that peak near 171, 195, 284, and 304 . Before the launch of SOHO, the EIT mirror reflectivities, the filter transmissivities and the CCD quantum efficiency were measured and these values are described here. The instrumental throughput in terms of an effective area is presented for each of the various mirror quadrant and filter wheel combinations. The response to a coronal plasma as a function of temperature is also determined and the expected count rates are compared to the count rates observed in a coronal hole, the quiet Sun and an active region.

  14. Assessment of Transition Element Speciation in Glasses Using a Portable Transmission Ultraviolet-Visible-Near-Infrared (UV-Vis-NIR) Spectrometer.

    Science.gov (United States)

    Hunault, Myrtille; Lelong, Gérald; Gauthier, Michel; Gélébart, Frédéric; Ismael, Saindou; Galoisy, Laurence; Bauchau, Fanny; Loisel, Claudine; Calas, Georges

    2016-05-01

    A new low-cost experimental setup based on two compact dispersive optical spectrometers has been developed to measure optical absorption transmission spectra over the 350-2500 nm energy range. We demonstrate how near-infrared (NIR) data are essential to identify the coloring species in addition to ultraviolet visible data. After calibration with reference glasses, the use of an original sample stage that maintains the window panel in the vertical position enables the comparison of ancient and modern glasses embedded in a panel from the Sainte-Chapelle of Paris, without any sampling. The spectral resolution enables to observe fine resonances arising in the absorption bands of Cr(3+), and the complementary information obtained in the NIR enables to determine the contribution of Fe(2+), a key indicator of glassmaking conditions. © The Author(s) 2016.

  15. Performance of a high resolution monochromator for the vacuum ultraviolet radiation from the DORIS storage ring

    International Nuclear Information System (INIS)

    Saile, V.; Skibowski, M.; Steinmann, W.; Guertler, P.; Koch, E.E.; Kozevnikov, A.

    1976-03-01

    The unique properties of the DORIS storage ring at DESY as a synchrotron radiation source are exploited for high resolution spectroscopy in the vacuum ultraviolet. We describe a new experimental set up with a 3 meter normal incidence monochromator for wavelengths between 3,000 A to 300 A (4 [de

  16. ZnO quantum dot-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity

    Science.gov (United States)

    Lu, Yanghua; Wu, Zhiqian; Xu, Wenli; Lin, Shisheng

    2016-12-01

    A ZnO quantum dot photo-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity of more than 1915 A W-1 and detectivity of more than 1.02 × 1013 Jones (Jones = cm Hz1/2 W-1) has been demonstrated. The interfaced h-BN layer increases the barrier height at the graphene/GaN heterojunction, which decreases the dark current and improves the on/off current ratio of the device. The photo-doping effect increases the barrier height and carrier concentration at the graphene/h-BN/GaN heterojunction, thus the responsivity is improved from 1473 A W-1 to 1915 A W-1 and the detectivity is improved from 5.8 × 1012 to 1.0 × 1013 Jones. Moreover, all of the responsivity and detectivity values are the highest values among all the graphene-based ultraviolet photodetectors.

  17. Characterization of ethanol concentrations at ultraviolet wavelength ...

    African Journals Online (AJOL)

    This paper presents the measurement of optical absorption spectrum for different concentrations of ethanol at ultraviolet wavelength. Ethanol absorption spectrum was measured using portable spectroscopy setup from Avantes. It consists of Balanced Deuterium Halogen light source and spectrometer. The light source can ...

  18. Mapping the spectral phase of isolated attosecond pulses by extreme-ultraviolet emission spectrum.

    Science.gov (United States)

    Liu, Candong; Zeng, Zhinan; Li, Ruxin; Xu, Zhizhan; Nisoli, Mauro

    2015-04-20

    An all-optical method is proposed for the measurement of the spectral phase of isolated attosecond pulses. The technique is based on the generation of extreme-ultraviolet (XUV) radiation in a gas by the combination of an attosecond pulse and a strong infrared (IR) pulse with controlled electric field. By using a full quantum simulation, we demonstrate that, for particular temporal delays between the two pulses, the IR field can drive back to the parent ions the photoelectrons generated by the attosecond pulse, thus leading to the generation of XUV photons. It is found that the generated XUV spectrum is notably sensitive to the chirp of the attosecond pulse, which can then be reliably retrieved. A classical quantum-path analysis is further used to quantitatively explain the main features exhibited in the XUV emission.

  19. Methods and apparatus for use with extreme ultraviolet light having contamination protection

    Science.gov (United States)

    Chilese, Francis C.; Torczynski, John R.; Garcia, Rudy; Klebanoff, Leonard E.; Delgado, Gildardo R.; Rader, Daniel J.; Geller, Anthony S.; Gallis, Michail A.

    2016-07-12

    An apparatus for use with extreme ultraviolet (EUV) light comprising A) a duct having a first end opening, a second end opening and an intermediate opening intermediate the first end opening the second end opening, B) an optical component disposed to receive EUV light from the second end opening or to send light through the second end opening, and C) a source of low pressure gas at a first pressure to flow through the duct, the gas having a high transmission of EUV light, fluidly coupled to the intermediate opening. In addition to or rather than gas flow the apparatus may have A) a low pressure gas with a heat control unit thermally coupled to at least one of the duct and the optical component and/or B) a voltage device to generate voltage between a first portion and a second portion of the duet with a grounded insulative portion therebetween.

  20. Normal Incidence for Graded Index Surfaces

    Science.gov (United States)

    Khankhoje, Uday K.; Van Zyl, Jakob

    2011-01-01

    A plane wave is incident normally from vacuum (eta(sub 0) = 1) onto a smooth surface. The substrate has three layers; the top most layer has thickness d(sub 1) and permittivity epsilon(sub 1). The corresponding numbers for the next layer are d(sub 2); epsilon(sub 2), while the third layer which is semi-in nite has index eta(sub 3). The Hallikainen model [1] is used to relate volumetric soil moisture to the permittivity. Here, we consider the relation for the real part of the permittivity for a typical loam soil: acute epsilon(mv) = 2.8571 + 3.9678 x mv + 118:85 x mv(sup 2).

  1. Telescience - Concepts And Contributions To The Extreme Ultraviolet Explorer Mission

    Science.gov (United States)

    Marchant, Will; Dobson, Carl; Chakrabarti, Supriya; Malina, Roger F.

    1987-10-01

    A goal of the telescience concept is to allow scientists to use remotely located instruments as they would in their laboratory. Another goal is to increase reliability and scientific return of these instruments. In this paper we discuss the role of transparent software tools in development, integration, and postlaunch environments to achieve hands on access to the instrument. The use of transparent tools helps to reduce the parallel development of capability and to assure that valuable pre-launch experience is not lost in the operations phase. We also discuss the use of simulation as a rapid prototyping technique. Rapid prototyping provides a cost-effective means of using an iterative approach to instrument design. By allowing inexpensive produc-tion of testbeds, scientists can quickly tune the instrument to produce the desired scientific data. Using portions of the Extreme Ultraviolet Explorer (EUVE) system, we examine some of the results of preliminary tests in the use of simulation and tran-sparent tools. Additionally, we discuss our efforts to upgrade our software "EUVE electronics" simulator to emulate a full instrument, and give the pros and cons of the simulation facilities we have developed.

  2. Extreme ultraviolet narrow band emission from electron cyclotron resonance plasmas

    International Nuclear Information System (INIS)

    Zhao, H. Y.; Zhao, H. W.; Sun, L. T.; Zhang, X. Z.; Wang, H.; Ma, B. H.; Li, X. X.; Zhu, Y. H.; Sheng, L. S.; Zhang, G. B.; Tian, Y. C.

    2008-01-01

    Extreme ultraviolet lithography (EUVL) is considered as the most promising solution at and below dynamic random access memory 32 nm half pitch among the next generation lithography, and EUV light sources with high output power and sufficient lifetime are crucial for the realization of EUVL. However, there is no EUV light source completely meeting the requirements for the commercial application in lithography yet. Therefore, ECR plasma is proposed as a novel concept EUV light source. In order to investigate the feasibility of ECR plasma as a EUV light source, the narrow band EUV power around 13.5 nm emitted by two highly charged ECR ion sources--LECR2M and SECRAL--was measured with a calibrated EUV power measurement tool. Since the emission lines around 13.5 nm can be attributed to the 4d-5p transitions of Xe XI or the 4d-4f unresolved transition array of Sn VIII-XIII, xenon plasma was investigated. The dependence of the EUV throughput and the corresponding conversion efficiency on the parameters of the ion source, such as the rf power and the magnetic confinement configurations, were preliminarily studied

  3. Exchange rate arrangements: From extreme to "normal"

    Directory of Open Access Journals (Sweden)

    Beker Emilija

    2006-01-01

    Full Text Available The paper studies theoretical and empirical location dispersion of exchange rate arrangements - rigid-intermediate-flexible regimes, in the context of extreme arrangements of a currency board, dollarization and monetary union moderate characteristics of intermediate arrangements (adjustable pegs crawling pegs and target zones and imperative-process "normalization" in the form of a managed or clean floating system. It is established that de iure and de facto classifications generate "fear of floating" and "fear of pegging". The "impossible trinity" under the conditions of capital liberalization and globalization creates a bipolar view or hypothesis of vanishing intermediate exchange rate regimes.

  4. ZnO quantum dot-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity.

    Science.gov (United States)

    Lu, Yanghua; Wu, Zhiqian; Xu, Wenli; Lin, Shisheng

    2016-12-02

    A ZnO quantum dot  photo-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity of more than 1915 A W -1 and detectivity of more than 1.02 × 10 13 Jones (Jones = cm Hz 1/2 W -1 ) has been demonstrated. The interfaced h-BN layer increases the barrier height at the graphene/GaN heterojunction, which decreases the dark current and improves the on/off current ratio of the device. The photo-doping effect increases the barrier height and carrier concentration at the graphene/h-BN/GaN heterojunction, thus the responsivity is improved from 1473 A W -1 to 1915 A W -1 and the detectivity is improved from 5.8 × 10 12 to 1.0 × 10 13 Jones. Moreover, all of the responsivity and detectivity values are the highest values among all the graphene-based ultraviolet photodetectors.

  5. Development of high resolution vacuum ultraviolet beam line at Indus-1 synchrotron source

    International Nuclear Information System (INIS)

    Shukla, R.P.; Das, N.C.; Udupa, D.V.; Saraswathy, P.; Sunanda, K.; Jha, S.N.; Shastri, Aparna; Singh, Paramjeet; Mallick, Manika; Mishra, A.P.; Sahoo, N.K.; Sinha, A.K.; Bhatt, S.; Sahni, V.C.

    2005-07-01

    High resolution vacuum ultraviolet beamline at Indus-1 450 MeV synchrotron source has been developed for carrying out absorption spectral studies of atoms and molecules. The beamline consists of three major parts i.e. a focusing optical system, an absorption cell and a high resolution 6.65 m vacuum ultraviolet spectrometer in Eagle mount. The wavelength range of the spectrometer is from 700 A to 2000 A and the resolution of the spectrometer is 0.01 A. Using the synchrotron source Indus-1, the absorption spectra of oxygen, ammonia and carbon disulphide have been recorded at the wavelength band of 1750 A, 1881 A and 3100 A respectively. Details of different aspects of design and development of the high resolution VUV beamline are described in this report. (author)

  6. Direct Analysis of Organic Compounds in Liquid Using a Miniature Photoionization Ion Trap Mass Spectrometer with Pulsed Carrier-Gas Capillary Inlet.

    Science.gov (United States)

    Lu, Xinqiong; Yu, Quan; Zhang, Qian; Ni, Kai; Qian, Xiang; Tang, Fei; Wang, Xiaohao

    2017-08-01

    A miniature ion trap mass spectrometer with capillary direct sampling and vacuum ultraviolet photoionization source was developed to conduct trace analysis of organic compounds in liquids. Self-aspiration sampling is available where the samples are drawn into the vacuum chamber through a capillary with an extremely low flow rate (less than 1 μL/min), which minimizes sample consumption in each analysis to tens of micrograms. A pulsed gas-assisted inlet was designed and optimized to promote sample transmission in the tube and facilitate the cooling of ions, thereby improving instrument sensitivity. A limit of detection of 2 ppb could be achieved for 2,4-dimethylaniline in a methanol solution. The sampling system described in the present study is specifically suitable for a miniature photoionization ion trap mass spectrometer that can perform rapid and online analysis for liquid samples. Graphical Abstract ᅟ.

  7. Ultraviolet observations of AM Herculis

    International Nuclear Information System (INIS)

    Tanzi, E.G.; Treves, A.; Milan Univ.; Sandford, M.C.W.; Willis, A.J.; Wilson, R.

    1980-01-01

    Seven ultraviolet spectra (1100-3200 Angstroem) of AM Her were obtained with the low resolution spectrometer of the IUE satellite. Strong emission features appear superimposed on a well defined continuum which is well fitted by a Fsub(lambda) D lambda -2 law. The observations are compared with the expectations from models of the source. (orig.) 891 WL/orig. 892 HIS

  8. Enhancement of conversion efficiency of extreme ultraviolet radiation from a liquid aqueous solution microjet target by use of dual laser pulses

    Science.gov (United States)

    Higashiguchi, Takeshi; Dojyo, Naoto; Hamada, Masaya; Kawasaki, Keita; Sasaki, Wataru; Kubodera, Shoichi

    2006-03-01

    We demonstrated a debris-free, efficient laser-produced plasma extreme ultraviolet (EUV) source by use of a regenerative liquid microjet target containing tin-dioxide (SnO II) nano-particles. By using a low SnO II concentration (6%) solution and dual laser pulses for the plasma control, we observed the EUV conversion efficiency of 1.2% with undetectable debris.

  9. Technique for rapid at-wavelength inspection of extreme ultraviolet mask blanks

    International Nuclear Information System (INIS)

    Spector, S. J.; White, D. L.; Tennant, D. M.; Ocola, L. E.; Novembre, A. E.; Peabody, M. L.; Wood, O. R. II

    1999-01-01

    We have developed two new methods for at-wavelength inspection of mask blanks for extreme-ultraviolet (EUV) lithography. In one method an EUV photoresist is applied directly to a mask blank which is then flood exposed with EUV light and partially developed. In the second method, the photoresist is applied to an EUV transparent membrane that is placed in close proximity to the mask and then exposed and developed. Both reflectivity defects and phase defects alter the exposure of the resist, resulting in mounds of resist at defect sites that can then be located by visual inspection. In the direct application method, a higher contrast resist was shown to increase the height of the mounds, thereby improving the sensitivity of the technique. In the membrane method, a holographic technique was used to reconstruct an image of the mask, revealing the presence of very small defects, approximately 0.2 μm in size. The demonstrated clean transfer of phase and amplitude defects to resist features on a membrane will be important when flagging defects in an automatic inspection tool. (c) 1999 American Vacuum Society

  10. Status of Mirror Development for the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS)

    Science.gov (United States)

    Champey, P. R.; Winebarger, A. R.; Kobayashi, K.; Savage, S. L.; Ramsey, B.; Kolodziejczak, J.; Speegle, C.; Young, M.; Kester, T.; Cheimets, P.; Hertz, E.

    2017-12-01

    The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a NASA sounding rocket instrument designed to observe soft X-ray emissions at 0.5 - 2.0 keV energies (24 - 6 Å) from a solar active region. MaGIXS will, for the first time, obtain spatially resolved spectra of high-temperature, low-emission plasma within an active region core. The unique optical design includes a Wolter I telescope and a 3-optic grazing incidence spectrograph. The spectrograph consists of a finite conjugate, stigmatic mirror pair and a planar varied line space grating. The grazing incidence mirrors are being developed at NASA Marshall Space Flight Center (MSFC) and are produced using electroform nickel-replication techniques, employing the same facilities developed for HERO, FOXSI, ART-XC and IXPE. The MaGIXS mirror mandrels have been fabricated, figured, and have completed the first phase of polishing. A set of three test shells were replicated and exposed to X-rays in the Stray Light Facility (SLF) at MSFC. Here we present results from mandrel metrology and X-ray testing at the SLF. We also discuss the development of a new polishing technique for the MaGIXS mirror mandrels, where we plan to use the Zeeko polishing machine.

  11. Kr photoionized plasma induced by intense extreme ultraviolet pulses

    Science.gov (United States)

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.; Skrzeczanowski, W.

    2016-04-01

    Irradiation of any gas with an intense EUV (extreme ultraviolet) radiation beam can result in creation of photoionized plasmas. The parameters of such plasmas can be significantly different when compared with those of the laser produced plasmas (LPP) or discharge plasmas. In this work, the photoionized plasmas were created in a krypton gas irradiated using an LPP EUV source operating at a 10 Hz repetition rate. The Kr gas was injected into the vacuum chamber synchronously with the EUV radiation pulses. The EUV beam was focused onto a Kr gas stream using an axisymmetrical ellipsoidal collector. The resulting low temperature Kr plasmas emitted electromagnetic radiation in the wide spectral range. The emission spectra were measured either in the EUV or an optical range. The EUV spectrum was dominated by emission lines originating from Kr III and Kr IV ions, and the UV/VIS spectra were composed from Kr II and Kr I lines. The spectral lines recorded in EUV, UV, and VIS ranges were used for the construction of Boltzmann plots to be used for the estimation of the electron temperature. It was shown that for the lowest Kr III and Kr IV levels, the local thermodynamic equilibrium (LTE) conditions were not fulfilled. The electron temperature was thus estimated based on Kr II and Kr I species where the partial LTE conditions could be expected.

  12. NEW SOLAR EXTREME-ULTRAVIOLET IRRADIANCE OBSERVATIONS DURING FLARES

    International Nuclear Information System (INIS)

    Woods, Thomas N.; Hock, Rachel; Eparvier, Frank; Jones, Andrew R.; Chamberlin, Phillip C.; Klimchuk, James A.; Didkovsky, Leonid; Judge, Darrell; Mariska, John; Warren, Harry; Schrijver, Carolus J.; Webb, David F.; Bailey, Scott; Tobiska, W. Kent

    2011-01-01

    New solar extreme-ultraviolet (EUV) irradiance observations from the NASA Solar Dynamics Observatory (SDO) EUV Variability Experiment provide full coverage in the EUV range from 0.1 to 106 nm and continuously at a cadence of 10 s for spectra at 0.1 nm resolution and even faster, 0.25 s, for six EUV bands. These observations can be decomposed into four distinct characteristics during flares. First, the emissions that dominate during the flare's impulsive phase are the transition region emissions, such as the He II 30.4 nm. Second, the hot coronal emissions above 5 MK dominate during the gradual phase and are highly correlated with the GOES X-ray. A third flare characteristic in the EUV is coronal dimming, seen best in the cool corona, such as the Fe IX 17.1 nm. As the post-flare loops reconnect and cool, many of the EUV coronal emissions peak a few minutes after the GOES X-ray peak. One interesting variation of the post-eruptive loop reconnection is that warm coronal emissions (e.g., Fe XVI 33.5 nm) sometimes exhibit a second large peak separated from the primary flare event by many minutes to hours, with EUV emission originating not from the original flare site and its immediate vicinity, but rather from a volume of higher loops. We refer to this second peak as the EUV late phase. The characterization of many flares during the SDO mission is provided, including quantification of the spectral irradiance from the EUV late phase that cannot be inferred from GOES X-ray diagnostics.

  13. Quasi-normal modes of extremal BTZ black holes in TMG

    Science.gov (United States)

    Afshar, Hamid R.; Alishahiha, Mohsen; Mosaffa, Amir E.

    2010-08-01

    We study the spectrum of tensor perturbations on extremal BTZ black holes in topologically massive gravity for arbitrary values of the coefficient of the Chern-Simons term, μ. Imposing proper boundary conditions at the boundary of the space and at the horizon, we find that the spectrum contains quasi-normal modes.

  14. Adaptive Tunable Laser Spectrometer for Space Applications

    Science.gov (United States)

    Flesch, Gregory; Keymeulen, Didier

    2010-01-01

    An architecture and process for the rapid prototyping and subsequent development of an adaptive tunable laser absorption spectrometer (TLS) are described. Our digital hardware/firmware/software platform is both reconfigurable at design time as well as autonomously adaptive in real-time for both post-integration and post-launch situations. The design expands the range of viable target environments and enhances tunable laser spectrometer performance in extreme and even unpredictable environments. Through rapid prototyping with a commercial RTOS/FPGA platform, we have implemented a fully operational tunable laser spectrometer (using a highly sensitive second harmonic technique). With this prototype, we have demonstrated autonomous real-time adaptivity in the lab with simulated extreme environments.

  15. Ultraviolet radiation

    International Nuclear Information System (INIS)

    Hawk, J.

    1986-01-01

    Ultraviolet radiation (UVR) from the sun or artificial sources is reflected or transmitted at the surface of the skin, about 5% of normally incident rays being directly reflected. The transmitted fraction is scattered, photochemically absorbed or dissipated as heat within the skin, or passes from it to contribute to the variable total amount of reflected and transmitted radiation. The UVR absorbers in skin are not definitely known, but DNA is a definite target and probably lipoprotein membranes, RNA, proteins, mucopolysaccharides, elastin and collagen. Photochemical or free radical damage to absorber or nearby organelles leads to pharmacological, ultrastructural, histological and clinical changes. Most frequent DNA damage is pyrimidine dimer formation, apparently inhibiting cell function and replication. This is largely enzymatically repaired in man in the dark by excision repair, post-replication repair and possible other enzymatic mechanisms, and at least in some organisms by light-induced photoreactivation repair. UVR exposure causes well recognized acute and chronic clinical syndromes in man. These are discussed in this paper

  16. A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host.

    Science.gov (United States)

    Gaudi, B Scott; Stassun, Keivan G; Collins, Karen A; Beatty, Thomas G; Zhou, George; Latham, David W; Bieryla, Allyson; Eastman, Jason D; Siverd, Robert J; Crepp, Justin R; Gonzales, Erica J; Stevens, Daniel J; Buchhave, Lars A; Pepper, Joshua; Johnson, Marshall C; Colon, Knicole D; Jensen, Eric L N; Rodriguez, Joseph E; Bozza, Valerio; Novati, Sebastiano Calchi; D'Ago, Giuseppe; Dumont, Mary T; Ellis, Tyler; Gaillard, Clement; Jang-Condell, Hannah; Kasper, David H; Fukui, Akihiko; Gregorio, Joao; Ito, Ayaka; Kielkopf, John F; Manner, Mark; Matt, Kyle; Narita, Norio; Oberst, Thomas E; Reed, Phillip A; Scarpetta, Gaetano; Stephens, Denice C; Yeigh, Rex R; Zambelli, Roberto; Fulton, B J; Howard, Andrew W; James, David J; Penny, Matthew; Bayliss, Daniel; Curtis, Ivan A; DePoy, D L; Esquerdo, Gilbert A; Gould, Andrew; Joner, Michael D; Kuhn, Rudolf B; Labadie-Bartz, Jonathan; Lund, Michael B; Marshall, Jennifer L; McLeod, Kim K; Pogge, Richard W; Relles, Howard; Stockdale, Christopher; Tan, T G; Trueblood, Mark; Trueblood, Patricia

    2017-06-22

    The amount of ultraviolet irradiation and ablation experienced by a planet depends strongly on the temperature of its host star. Of the thousands of extrasolar planets now known, only six have been found that transit hot, A-type stars (with temperatures of 7,300-10,000 kelvin), and no planets are known to transit the even hotter B-type stars. For example, WASP-33 is an A-type star with a temperature of about 7,430 kelvin, which hosts the hottest known transiting planet, WASP-33b (ref. 1); the planet is itself as hot as a red dwarf star of type M (ref. 2). WASP-33b displays a large heat differential between its dayside and nightside, and is highly inflated-traits that have been linked to high insolation. However, even at the temperature of its dayside, its atmosphere probably resembles the molecule-dominated atmospheres of other planets and, given the level of ultraviolet irradiation it experiences, its atmosphere is unlikely to be substantially ablated over the lifetime of its star. Here we report observations of the bright star HD 195689 (also known as KELT-9), which reveal a close-in (orbital period of about 1.48 days) transiting giant planet, KELT-9b. At approximately 10,170 kelvin, the host star is at the dividing line between stars of type A and B, and we measure the dayside temperature of KELT-9b to be about 4,600 kelvin. This is as hot as stars of stellar type K4 (ref. 5). The molecules in K stars are entirely dissociated, and so the primary sources of opacity in the dayside atmosphere of KELT-9b are probably atomic metals. Furthermore, KELT-9b receives 700 times more extreme-ultraviolet radiation (that is, with wavelengths shorter than 91.2 nanometres) than WASP-33b, leading to a predicted range of mass-loss rates that could leave the planet largely stripped of its envelope during the main-sequence lifetime of the host star.

  17. Resistance of plateau-phase human normal and xeroderma pigmentosum fibroblasts to the cytotoxic effect of ultraviolet light

    International Nuclear Information System (INIS)

    Chan, G.L.; Little, J.B.

    1979-01-01

    Clonogenic survival response to 254-nm ultraviolet light was measured in 2 strains of repair-proficient normal human fibroblasts and 4 strains of xeroderma pigmentosum (XP) fibroblasts belonging to complementation groups A, C, D and variant. In all strains except XPA, cells irradiated in plateau phase and subcultured immediately were much more resistant to the lethal effect of UV than cells irradiated in the exponential phase of growth. Typically, 10-20% of plateau-phase cells were extremely resistant. When the cultures were held in plateau phase for 24 h after irradiation and before subculture, there was a further enhancement of survival. By use of a UV-specific endonuclease assay, no difference was found in the number of DNA lesions induced in exponentially growing and plateau cultures by the same dose of UV light. Thus plateau-phase cells appear to be more efficient in their DNA-repair capability than cells in exponential growth. XP group A cells were uniquely found to be deficient in the processes which lead to plateau-phase resistance. Since plateau-phase repair was not lacking in XP groups C, D and variant, it may be related to a DNA-repair process different from that which is responsible for the overall UV sensitivity of these cells. (orig.)

  18. DUVAS (derivative uv-absorption spectrometer): instrument description and operating manual

    International Nuclear Information System (INIS)

    Hawthorne, A.R.; Dougherty, J.M.; Metcalfe, C.E.

    1980-11-01

    DUVAS is a real-time, field-portable spectrometer capable of monitoring a variety of aromatic organic vapors and inorganic gases at sub-ppM concentrations. The instrument is a prototype, microcomputer-controlled, derivative ultraviolet (UV) absorption spectrometer (DUVAS) developed primarily for area monitoring at coal conversion facilities, although other important occupational and environmental monitoring applications for compounds such as SO 2 , NO/sub x/, NH 3 , and HCHO are also being pursued

  19. INSCAN PRO: a fast ultraviolet spectrometer design approach

    Science.gov (United States)

    Myer, Brian Walker; Dias, João. Mendanha

    2013-11-01

    Spectroscopy diagnostic techniques have applications in such diverse areas as mechanical and aerospace engineering, physical chemistry, optics, food and pharmaceutical industries. However, the technological state-of-the-art spectrometers do not allow very fast processes to be evaluated or controlled. This ability is crucial in the optimization of industrial processes (welding, burning flames, spark ignition, pulsed radiolysis…) where more theoretical-experimental analysis should be performed. The INSCAN project aims to overcome this technological limitation, to satisfy needs in academia and industrial markets, by developing a compact spectrometer with focal lengths less than 200 mm, taking into account three important aspects: acquisition rate of approximately 10 kHz spectra, spectral resolution on the order of 0.1 nm and operating in the spectral range 200 nm to 700 nm. Initial work is described on the optical design of the device and several possible approaches to achieve the specifications are considered. To guide the first order design, we relate the optical linewidth, spectral bandwidth and imaging properties to component characteristics. The symmetrical Czerny-Turner optical mount was chosen for its flexibility and elaborated using ZEMAX. Predictions made based on the simulated system are compared with calibration and characterization measurements on an experimental test bench used to refine the model assumptions.

  20. The response of normal and ataxia-telangiectasia human fibroblasts to the lethal effects of far, mid and near ultraviolet radiations

    International Nuclear Information System (INIS)

    Keyse, S.M.; McAleer, M.A.; Davies, D.J.G.; Moss, S.H.

    1985-01-01

    The responses of two ataxia-telangiectasia (A-T) cell strains to the lethal effects of monochromatic far, mid and near ultraviolet radiations have been determined and compared with the responses of three normal human cell strains. The authors results confirm a previous observation that the A-T cell strain AT4BI is abnormally sensitive to the lethal effects of mid u.v. (313 nm) radiation. After far u.v. (254 nm) radiation the strain AT4BI exhibits a small but statistically significant increase in sensitivity compared to the normal strains. Of most interest, in terms of a mechanistic interpretation of the sensitivity of A-T strains, the survival responses of neither A-T strain tested to near u.v. (365 nm) radiation differed significantly from the mean response of the normal strains, although it is of interest that one normal strain (48BR) was found to be significantly more resistant to near u.v. radiation than any of the other strains tested. The results are discussed in terms of the possible induction of radiogenic lesions in DNA by ultraviolet radiations and the possible mechanisms of radiation sensitivity in ataxia-telangiectasia. (author)

  1. [Idiopathic normal pressure hydrocephalus: High incidence in people over 80 years of age].

    Science.gov (United States)

    Aragonès, Josep Maria; Altimiras, Jacint; Alonso, Francisco; Roura, Pere; Alfonso, Sebastián; Bajo, Lorena

    Idiopathic normal pressure hydrocephalus is usually observed in adults over 60 years of age. The highest incidence of cases is between 70 and 80 years-old, and it could be under-diagnosed in over 80 year-olds. A description is presented on the overall incidence and age group incidence, the delay in the diagnosis, and main outcomes. A descriptive study was performed on patients with idiopathic normal pressure hydrocephalus, in the population of Osona County during the years 2010-2015. The annual incidence rate was 4.43 per 100,000 inhabitants. The incidence increased with age; from 8.09 per 100,000 in the 60 to 69 years age group, to 23.61 per 100,000 in the 70-79 years age group of, and to 37.02 per 100,000 in the 80-89 years age. The delay in the diagnosis was 15.01 ± 10.35 months. All the patients improved after surgery, but only 73.3% of the patients maintained the improvement after one year. Idiopathic normal pressure hydrocephalus is an age related disease and probably underdiagnosed in the elderly. An early diagnosis and a clinical suspicion are essential in patients over 80 years old. Copyright © 2017 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Higher levels of albuminuria within the normal range predict incident hypertension.

    Science.gov (United States)

    Forman, John P; Fisher, Naomi D L; Schopick, Emily L; Curhan, Gary C

    2008-10-01

    Higher levels of albumin excretion within the normal range are associated with cardiovascular disease in high-risk individuals. Whether incremental increases in urinary albumin excretion, even within the normal range, are associated with the development of hypertension in low-risk individuals is unknown. This study included 1065 postmenopausal women from the first Nurses' Health Study and 1114 premenopausal women from the second Nurses' Health Study who had an albumin/creatinine ratio who did not have diabetes or hypertension. Among the older women, 271 incident cases of hypertension occurred during 4 yr of follow-up, and among the younger women, 296 incident cases of hypertension occurred during 8 yr of follow-up. Cox proportional hazards regression was used to examine prospectively the association between the albumin/creatinine ratio and incident hypertension after adjustment for age, body mass index, estimated GFR, baseline BP, physical activity, smoking, and family history of hypertension. Participants who had an albumin/creatinine ratio in the highest quartile (4.34 to 24.17 mg/g for older women and 3.68 to 23.84 mg/g for younger women) were more likely to develop hypertension than those who had an albumin/creatinine ratio in the lowest quartile (hazard ratio 1.76 [95% confidence interval 1.21 to 2.56] and hazard ratio 1.35 [95% confidence interval 0.97 to 1.91] for older and younger women, respectively). Higher albumin/creatinine ratios, even within the normal range, are independently associated with increased risk for development of hypertension among women without diabetes. The definition of normal albumin excretion should be reevaluated.

  3. Development of a cosmic veto gamma-spectrometer

    International Nuclear Information System (INIS)

    Burnett, J.L.; Davies, A.V.

    2012-01-01

    Cosmic radiation contributes significantly towards the background radiation measured by a gamma-spectrometer. A novel cosmic veto gamma-spectrometer has been developed that provides a mean background reduction of 54.5%. The system consists of plastic scintillation plates operated in time-stamp mode to detect coincident muon interactions within an HPGe gamma-spectrometer. The instrument is easily configurable and provides improved sensitivity for radionuclides indicative of nuclear weapons tests and reactor incidents, including 140 Ba, 95 Zr, 99 Mo, 141 Ce, 147 Nd, 131 I, 134 Cs and 137 Cs. This has been demonstrated for Comprehensive Nuclear-Test-Ban Treaty applications to obtain the required 140 Ba MDA of 24 mBq within 2 days counting. Analysis of an air filter sample collected during the Fukushima incident indicates improved sensitivity compared to conventional gamma-spectrometers. (author)

  4. Extreme-ultraviolet limb spectra of a prominence observed from SKYLAB

    International Nuclear Information System (INIS)

    Mariska, J.T.; Doschek, G.A.; Feldman, U.

    1979-01-01

    Line profiles of extreme ultraviolet emission lines observed in a solar prominence at positions above the white-light limb with the NRL slit spectrograph on Skylab are discussed. Absolute line intensities and full widths at half-maximum are presented for lines formed over the temperature range approx.1 x 10 4 to 2.2 x 10 5 K. The volume emission measures calculated using resonance line intensities are greater than quiet-Sun emission measures at the same height above the limb and indicate a somewhat different distribution of material with temperature in the prominence compared to the quiet-Sun emission measure at +8''. Electron densities in the prominence determined using the calculated emission measures and the intensities of density-sensitive intersystem lines are between the quiet-Sun electron density and half the quiet-Sun electron density. Random mass-motion velocities calculated from the measured full widths at half-maximum show a range of velocities. For T/sub e/> or approx. =4 x 10 4 K, the nonthermal velocity decreases with increasing height in the prominence. For T/sub e/ 4 K, the calculated mass motions are near zero. From the He II 1640 A line profile we derive an average temperature of 27,000 K for the region in which He II is emitted

  5. Orbital Normalization of MESSENGER Gamma-Ray Spectrometer Data

    Science.gov (United States)

    Rhodes, E. A.; Peplowski, P. N.; Evans, L. G.; Hamara, D. K.; Boynton, W. V.; Solomon, S. C.

    2011-12-01

    The MESSENGER Gamma-Ray Spectrometer (GRS) measures energy spectra of gamma rays emanating from the surface of Mercury. Analysis of these spectra provides elemental abundances of surface material. The MESSENGER mission necessarily provides some data normalization challenges for GRS analysis. So as to keep the spacecraft cool while orbiting the dayside of the planet, the orbits are highly eccentric, with altitudes varying from 200-500 km to ~ 15,000 km. A small fraction of time is spent at the low altitudes where gamma-ray signals are largest, requiring a large number of orbits to yield sufficient counting statistics for elemental analysis. Also, the sunshade must always shield the spacecraft from the Sun, which causes the orientation of the GRS often to be far from nadir-pointing, so the detector efficiency and attenuation of gamma rays from the planet must be known for a wide range of off-nadir orientations. An efficiency/attenuation map for the expected ranges of orientations and energies was constructed in a ground calibration experiment for a limited range of orientations using a nuclear reactor and radioisotope sources, and those results were extended to other orientations by radiation transport computations using as input a computer-aided design model of the spacecraft and its composition. This normalization has allowed abundance determinations of elements K, Th, and U from radioisotopes of these elements in the Mercury regolith during the first quarter of the year-long mission. These results provide constraints on models of Mercury's chemical and thermal evolution. The normalization of gamma-ray spectra for surface elements not having radioisotopes is considerably more complex; these gamma rays come from neutron inelastic-scatter and capture reactions in the regolith, where the neutrons are generated by cosmic ray impact onto the planet. A radiation transport computation was performed to generate the expected count rates in the neutron-generated gamma

  6. Extreme Ultraviolet Solar Images Televised In-Flight with a Rocket-Borne SEC Vidicon System.

    Science.gov (United States)

    Tousey, R; Limansky, I

    1972-05-01

    A TV image of the entire sun while an importance 2N solar flare was in progress was recorded in the extreme ultraviolet (XUV) radiation band 171-630 A and transmitted to ground from an Aerobee-150 rocket on 4 November 1969 using S-band telemetry. The camera tube was a Westinghouse Electric Corporation SEC vidicon, with its fiber optic faceplate coated with an XUV to visible conversion layer of p-quaterphenyl. The XUV passband was produced by three 1000-A thick aluminum filters in series together with the platinized reflecting surface of the off-axis paraboloid that imaged the sun. A number of images were recorded with integration times between 1/30 see and 2 sec. Reconstruction of pictures was enhanced by combining several to reduce the noise.

  7. Invisible marking system by extreme ultraviolet radiation: the new frontier for anti-counterfeiting tags

    International Nuclear Information System (INIS)

    Lazzaro, P. Di; Bollanti, S.; Flora, F.; Mezi, L.; Murra, D.; Torre, A.; Bonfigli, F.; Montereali, R.M.; Vincenti, M.A.

    2016-01-01

    We present a marking technology which uses extreme ultraviolet radiation to write invisible patterns on tags based on alkali fluoride thin films. The shape of the pattern is pre-determined by a mask (in the case of contact lithography) or by a suitable mirror (projection lithography). Tags marked using this method offer a much better protection against fakes than currently available anti-counterfeiting techniques. The complexity and cost of this technology can be tailored to the value of the good to be protected, leaving, on the other hand, the specific reading technique straightforward. So far, we have exploited our invisible marking to tag artworks, identity cards, electrical components, and containers of radioactive wastes. Advantages and limits of this technology are discussed in comparison with the anti-counterfeiting systems available in the market.

  8. Inactivation of ultraviolet repair in normal and xeroderma pigmentosum cells by methyl methanesulfonate

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1982-01-01

    Excision repair of ultraviolet damage in the DNA of normal and xeroderma pigmentosum (Groups C, D, and variant) cells was inactivated by exposure of cells to methyl methanesulfonate immediately before irradiation independent of the presence of 0 to 10% fetal calf serum. The inactivation could be represented by a semilog relationship between the amount of repair and methyl methanesulfonate concentration up to approximately 5 mM. The inactivation can be considered to occur as the result of alkylation of a large (about 10(6) daltons) repair enzyme complex, and the dose required to reduce repair to 37% for most cells types was between 4 and 7 mM. No consistent, large difference in sensitivity to methyl methanesulfonate was found in any xeroderma pigmentosum complementation group compared to normal cells, implying that reduced repair in these groups may be caused by small inherited changes in the amino acid composition (i.e., point mutations or small deletions) rather than by losses of major components of the repair enzyme complex

  9. Cold-target recoil-ion momentum spectroscopy for diagnostics of high harmonics of the extreme-ultraviolet free-electron laser light source at SPring-8

    International Nuclear Information System (INIS)

    Liu, X.-J.; Fukuzawa, H.; Pruemper, G.; Ueda, K.; Okunishi, M.; Shimada, K.; Motomura, K.; Saito, N.; Iwayama, H.; Nagaya, K.; Yao, M.; Rudenko, A.; Ullrich, J.; Foucar, L.; Czasch, A.; Schmidt-Boecking, H.; Doerner, R.; Nagasono, M.; Higashiya, A.; Yabashi, M.

    2009-01-01

    We have developed a cold-target recoil-ion momentum spectroscopy apparatus dedicated to the experiments using the extreme-ultraviolet light pulses at the free-electron laser facility, SPring-8 Compact SASE Source test accelerator, in Japan and used it to measure spatial distributions of fundamental, second, and third harmonics at the end station.

  10. Superfluid to normal phase transition and extreme regularity od superdeformed bands

    CERN Document Server

    Pavlichenkov, I M

    2002-01-01

    The exact semiclassical expression for the second inertial parameter B for the superfluid and normal phases is derived. Interpolation between these limiting values shows that the function B(I) changes sign at the spin I sub c , which is critical for a rotational spectrum. The quantity B turns out to be a sensitive measure of the change in static pairing correlations. The superfluid-to-normal transition reveals itself in the specific variation of the ratio B/A versus spin I with the plateau characteristic of the normal phase. This dependence is find to be universal for normal deformed and superdeformed nuclei. The long plateau with a small value B/A approx A sup - sup 8 sup / sup 3 explains the extreme regularity of superdeformed bands

  11. Spectra from foil-excited molybdenum ions

    International Nuclear Information System (INIS)

    Johnson, B.M.; Jones, K.W.; Cecchi, J.L.; Kruse, T.H.

    1978-01-01

    The extreme-ultraviolet spectra (5 to 55 nm) for foil-excited molybdenum ions have been measured using 22 to 200 MeV beams from the Brookhaven National Laboratory MP tandem Van de Graaff accelerator facility, 20 μg/cm 2 C stripping foils, and a grazing incidence spectrometer. The mean ion charge states (13 to 28) and the narrow distribution widths (about 2 charge states) were accurately predictable from experimental parameters. Where possible, comparisons are given with Mo radiation from tokamaks, vacuum sparks, and laser-excited plasmas

  12. Thermal conduction properties of Mo/Si multilayers for extreme ultraviolet optics

    Science.gov (United States)

    Bozorg-Grayeli, Elah; Li, Zijian; Asheghi, Mehdi; Delgado, Gil; Pokrovsky, Alexander; Panzer, Matthew; Wack, Daniel; Goodson, Kenneth E.

    2012-10-01

    Extreme ultraviolet (EUV) lithography requires nanostructured optical components, whose reliability can be influenced by radiation absorption and thermal conduction. Thermal conduction analysis is complicated by sub-continuum electron and phonon transport and the lack of thermal property data. This paper measures and interprets thermal property data, and their evolution due to heating exposure, for Mo/Si EUV mirrors with 6.9 nm period and Mo/Si thickness ratios of 0.4/0.6 and 0.6/0.4. We use time-domain thermoreflectance and the 3ω method to estimate the thermal resistance between the Ru capping layer and the Mo/Si multilayers (RRu-Mo/Si = 1.5 m2 K GW-1), as well as the out-of-plane thermal conductivity (kMo/Si 1.1 W m-1 K-1) and thermal anisotropy (η = 13). This work also reports the impact of annealing on thermal conduction in a co-deposited MoSi2 layer, increasing the thermal conductivity from 1.7 W m-1 K-1 in the amorphous phase to 2.8 W m-1 K-1 in the crystalline phase.

  13. Calculational approach to ionization spectrometer design

    International Nuclear Information System (INIS)

    Gabriel, T.A.

    1974-01-01

    Many factors contribute to the design and overall performance of an ionization spectrometer. These factors include the conditions under which the spectrometer is to be used, the required performance, the development of the hadronic and electromagnetic cascades, leakage and binding energies, saturation effects of densely ionizing particles, nonuniform light collection, sampling fluctuations, etc. The calculational procedures developed at Oak Ridge National Laboratory that have been applied to many spectrometer designs and that include many of the influencing factors in spectrometer design are discussed. The incident-particle types which can be considered with some generality are protons, neutrons, pions, muons, electrons, positrons, and gamma rays. Charged kaons can also be considered but with less generality. The incident-particle energy range can extend into the hundreds of GeV range. The calculations have been verified by comparison with experimental data but only up to approximately 30 GeV. Some comparisons with experimental data are also discussed and presented so that the flexibility of the calculational methods can be demonstrated. (U.S.)

  14. Rocket flight performance of a preprototype Apollo 17 UV spectrometer S-169

    Science.gov (United States)

    Fastie, W. G.

    1971-01-01

    The design, construction, testing, calibration, flight performance and flight data of an Ebert ultraviolet spectrometer are described which is an accurate representation of the conceptual design of the Apollo 17 UV spectrometer. The instrument was flown in an Aerobee 350 rocket from Wallops Island, Va., at 7:10 p.m. EDT on June 10, 1971 to an altitude of 328 km with a solar elevation angle of about 11 deg.

  15. Characterisation of the incident beam and current diffraction capabilities on the VESUVIO spectrometer

    Science.gov (United States)

    Romanelli, G.; Krzystyniak, M.; Senesi, R.; Raspino, D.; Boxall, J.; Pooley, D.; Moorby, S.; Schooneveld, E.; Rhodes, N. J.; Andreani, C.; Fernandez-Alonso, F.

    2017-09-01

    The VESUVIO spectrometer at the ISIS pulsed neutron and muon source is a unique instrument amongst those available at neutron facilities. This is the only inverted-geometry neutron spectrometer accessing values of energy and wavevector transfer above tens of eV and {\\mathringA}-1 , respectively, and where deep inelastic neutron scattering experiments are routinely performed. As such, the procedure at the base of the technique has been previously described in an article published by this journal (Mayers and Reiter 2012 Meas. Sci. Technol. 23 045902). The instrument has recently witnessed an upsurge of interest due to a new trend to accommodate, within a single experiment, neutron diffraction and transmission measurements in addition to deep inelastic neutron scattering. This work presents a broader description of the instrument following these recent developments. In particular, we assess the absolute intensity and two-dimensional profile of the incident neutron beam and the capabilities of the backscattering diffraction banks. All results are discussed in the light of recent changes to the moderator viewed by the instrument. We find that VESUVIO has to be considered a high-resolution diffractometer as much as other diffractometers at ISIS, with a resolution as high as 2× 10-3 in backscattering. Also, we describe the extension of the wavelength range of the instrument to include lower neutron energies for diffraction measurements, an upgrade that could be readily applied to other neutron instruments as well.

  16. Incidence and determinants of lower extremity running injuries in long distance runners: a systematic review

    Science.gov (United States)

    van Gent, R N; Siem, D; van Middelkoop, M; van Os, A G; Bierma‐Zeinstra, S M A; Koes, B W

    2007-01-01

    The purpose of this study was to present a systematic overview of published reports on the incidence and associated potential risk factors of lower extremity running injuries in long distance runners. An electronic database search was conducted using the PubMed–Medline database. Two observers independently assessed the quality of the studies and a best evidence synthesis was used to summarise the results. The incidence of lower extremity running injuries ranged from 19.4% to 79.3%. The predominant site of these injuries was the knee. There was strong evidence that a long training distance per week in male runners and a history of previous injuries were risk factors for injuries, and that an increase in training distance per week was a protective factor for knee injuries. PMID:17473005

  17. The ultraviolet telescope on the Astron satellite

    International Nuclear Information System (INIS)

    Boyarchuk, A.A.

    1987-01-01

    On 23 March 1983 in the USSR, the Astron astrophysical satellite, with the largest ultraviolet telescope (the UVT) in the world (main mirror diameter 80 cm) and a set of X-ray instruments on board was placed in a high-apogee orbit. The design of the ultraviolet telescope and the results of some of the observations carried out with it are described here. The X-ray instruments are discussed in a separate article. The ultraviolet telescope on the Astron astrophysical satellite is a result of the joint efforts of scientists and engineers at the Crimean Astrophysical Observatory (Academy of Sciences of the USSR), the Byurakan Astrophysical Observatory (Academy of Sciences of the Armenian USSR), and several industrial enterprises in our country. The Laboratoire d'Astronomie Spatiale (CNRS, Marseille, France) played a large role in building the spectrometer for the UVT

  18. Design considerations of 10 kW-scale, extreme ultraviolet SASE FEL for lithography

    CERN Document Server

    Pagani, C; Schneidmiller, E A; Yurkov, M V

    2001-01-01

    The semiconductor industry growth is driven to a large extent by steady advancements in microlithography. According to the newly updated industry road map, the 70 nm generation is anticipated to be available in the year 2008. However, the path to get there is not clear. The problem of construction of extreme ultraviolet (EUV) quantum lasers for lithography is still unsolved: progress in this field is rather moderate and we cannot expect a significant breakthrough in the near future. Nevertheless, there is clear path for optical lithography to take us to sub-100 nm dimensions. Theoretical and experimental work in Self-Amplified Spontaneous Emission (SASE) Free Electron Lasers (FEL) physics and the physics of superconducting linear accelerators over the last 10 years has pointed to the possibility of the generation of high-power optical beams with laser-like characteristics in the EUV spectral range. Recently, there have been important advances in demonstrating a high-gain SASE FEL at 100 nm wavelength (J. Andr...

  19. Ultimate waveform reproducibility of extreme-ultraviolet pulses by high-harmonic generation in quartz

    Science.gov (United States)

    Garg, M.; Kim, H. Y.; Goulielmakis, E.

    2018-05-01

    Optical waveforms of light reproducible with subcycle precision underlie applications of lasers in ultrafast spectroscopies, quantum control of matter and light-based signal processing. Nonlinear upconversion of optical pulses via high-harmonic generation in gas media extends these capabilities to the extreme ultraviolet (EUV). However, the waveform reproducibility of the generated EUV pulses in gases is inherently sensitive to intensity and phase fluctuations of the driving field. We used photoelectron interferometry to study the effects of intensity and carrier-envelope phase of an intense single-cycle optical pulse on the field waveform of EUV pulses generated in quartz nanofilms, and contrasted the results with those obtained in gas argon. The EUV waveforms generated in quartz were found to be virtually immune to the intensity and phase of the driving field, implying a non-recollisional character of the underlying emission mechanism. Waveform-sensitive photonic applications and precision measurements of fundamental processes in optics will benefit from these findings.

  20. Normal venous anatomy and physiology of the lower extremity.

    Science.gov (United States)

    Notowitz, L B

    1993-06-01

    Venous disease of the lower extremities is common but is often misunderstood. It seems that the focus is on the exciting world of arterial anatomy and pathology, while the topic of venous anatomy and pathology comes in second place. However, venous diseases such as chronic venous insufficiency, leg ulcers, and varicose veins affect much of the population and may lead to disability and death. Nurses are often required to answer complex questions from the patients and his or her family about the patient's disease. Patients depend on nurses to provide accurate information in terms they can understand. Therefore it is important to have an understanding of the normal venous system of the legs before one can understand the complexities of venous diseases and treatments. This presents an overview of normal venous anatomy and physiology.

  1. Real-time monitoring of trace-level VOCs by an ultrasensitive compact lamp-based VUV photoionization mass spectrometer

    Science.gov (United States)

    Sun, W. Q.; Shu, J. N.; Zhang, P.; Li, Z.; Li, N. N.; Liang, M.; Yang, B.

    2015-06-01

    In this study, we report on the development of a compact lamp-based vacuum ultraviolet (VUV) photoionization mass spectrometer (PIMS; hereafter referred to as VUV-PIMS) in our laboratory; it is composed of a radio frequency-powered VUV lamp, a VUV photoionizer, an ion-immigration region, and a reflection time-of-flight mass spectrometer. By utilizing the novel photoionizer consisting of a photoionization cavity and a VUV light baffle, extremely low background noise was obtained. An ultrasensitive detection limit (2σ) of 3 pptv was achieved for benzene after an acquisition time of 10 s. To examine its potential for application in real-time sample monitoring, the developed VUV-PIMS was employed for the continuous measurement of urban air for six days in Beijing, China. Strong signals of trace-level volatile organic compounds such as benzene and its alkylated derivatives were observed in the mass spectra. These initial experimental results reveal that the instrument can be used for the online monitoring of trace-level species in the atmosphere.

  2. HISS spectrometer

    International Nuclear Information System (INIS)

    Greiner, D.E.

    1984-11-01

    This talk describes the Heavy Ion Spectrometer System (HISS) facility at the Lawrence Berkeley Laboratory's Bevalac. Three completed experiments and their results are illustrated. The second half of the talk is a detailed discussion of the response of drift chambers to heavy ions. The limitations of trajectory measurement over a large range in incident particle charge are presented

  3. Extreme ultraviolet spectroscopy of low pressure helium microwave driven discharges

    Science.gov (United States)

    Espinho, Susana; Felizardo, Edgar; Tatarova, Elena; Alves, Luis Lemos

    2016-09-01

    Surface wave driven discharges are reliable plasma sources that can produce high levels of vacuum and extreme ultraviolet radiation (VUV and EUV). The richness of the emission spectrum makes this type of discharge a possible alternative source in EUV/VUV radiation assisted applications. However, due to challenging experimental requirements, publications concerning EUV radiation emitted by microwave plasmas are scarce and a deeper understanding of the main mechanisms governing the emission of radiation in this spectral range is required. To this end, the EUV radiation emitted by helium microwave driven plasmas operating at 2.45 GHz has been studied for low pressure conditions. Spectral lines from excited helium atoms and ions were detected via emission spectroscopy in the EUV/VUV regions. Novel data concerning the spectral lines observed in the 23 - 33 nm wavelength range and their intensity behaviour with variation of the discharge operational conditions are presented. The intensity of all the spectral emissions strongly increases with the microwave power delivered to the plasma up to 400 W. Furthermore, the intensity of all the ion spectral emissions in the EUV range decreases by nearly one order of magnitude as the pressure was raised from 0.2 to 0.5 mbar. Work funded by FCT - Fundacao para a Ciencia e a Tecnologia, under Project UID/FIS/50010/2013 and grant SFRH/BD/52412/2013 (PD-F APPLAuSE).

  4. Speckle-based spectrometer

    DEFF Research Database (Denmark)

    Chakrabarti, Maumita; Jakobsen, Michael Linde; Hanson, Steen Grüner

    2015-01-01

    A novel spectrometer concept is analyzed and experimentally verified. The method relies on probing the speckle displacement due to a change in the incident wavelength. A rough surface is illuminated at an oblique angle, and the peak position of the covariance between the speckle patterns observed...

  5. Effect of ultraviolet light on creatinine measurement in jaundiced specimens

    International Nuclear Information System (INIS)

    Nisbet, J.A.; D'Souza, R.

    1986-01-01

    During initial evaluation of a creatinine method using the RA-1000 analyser, experiments with addition of bilirubin indicated negligible interference. However the finding of a 'zero' creatinine value in an extremely jaundiced specimen prompted to re-examine the method. In contrast to earlier findings with normal plasma containing added bilirubin, the authors found that plasma from moderately or severely jaundiced patients gave creatinine values lower than those obtained with a reference method. Since bilirubin has been implicated in the interference, the authors studied the effect of destroying bilirubin with ultraviolet light to see if this provided a practical solution to the problem. (Auth.)

  6. Spatio-temporal coherence of free-electron laser radiation in the extreme ultraviolet determined by a Michelson interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Hilbert, V.; Rödel, C.; Zastrau, U., E-mail: ulf.zastrau@uni-jena.de [Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Max-Wien-Platz 1, 07743 Jena (Germany); Brenner, G.; Düsterer, S.; Dziarzhytski, S.; Harmand, M.; Przystawik, A.; Redlin, H.; Toleikis, S. [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); Döppner, T.; Ma, T. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Fletcher, L. [Department of Physics, University of California, Berkeley, California 94720 (United States); Förster, E. [Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Max-Wien-Platz 1, 07743 Jena (Germany); Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena (Germany); Glenzer, S. H.; Lee, H. J. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Hartley, N. J. [Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Kazak, L.; Komar, D.; Skruszewicz, S. [Institut für Physik, Universität Rostock, 18051 Rostock (Germany); and others

    2014-09-08

    A key feature of extreme ultraviolet (XUV) radiation from free-electron lasers (FELs) is its spatial and temporal coherence. We measured the spatio-temporal coherence properties of monochromatized FEL pulses at 13.5 nm using a Michelson interferometer. A temporal coherence time of (59±8) fs has been determined, which is in good agreement with the spectral bandwidth given by the monochromator. Moreover, the spatial coherence in vertical direction amounts to about 15% of the beam diameter and about 12% in horizontal direction. The feasibility of measuring spatio-temporal coherence properties of XUV FEL radiation using interferometric techniques advances machine operation and experimental studies significantly.

  7. The Lockheed OSO-8 program. Task 2: Analysis of data from the high resolution ultraviolet spectrometer experiment. [carbon 4 and silicon 4 line and emission spectra from solar flares

    Science.gov (United States)

    Bruner, E. C., Jr.

    1980-01-01

    The complete set of C 4 time sequences generated by the University of Colorado high resolution ultraviolet spectrometer experiment on OSO-8 were examined in a comprehensive and systematic fashion. As a result a new limit is placed on the acoustic flux passing through the transition zone of the Sun's atmosphere. It is found to be three orders of magnitude too small to heat the corona, and is consistent with zero. In collaborative efforts, the properties of transient C 4 brightenings were examined in considerable detail.

  8. THE HIGH-RESOLUTION EXTREME-ULTRAVIOLET SPECTRUM OF N{sub 2} BY ELECTRON IMPACT

    Energy Technology Data Exchange (ETDEWEB)

    Heays, A. N. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Ajello, J. M.; Aguilar, A. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Lewis, B. R.; Gibson, S. T., E-mail: heays@strw.leidenuniv.nl [Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)

    2014-04-01

    We have analyzed high-resolution (FWHM = 0.2 Å) extreme-ultraviolet (EUV, 800-1350 Å) laboratory emission spectra of molecular nitrogen excited by an electron impact at 20 and 100 eV under (mostly) optically thin, single-scattering experimental conditions. A total of 491 emission features were observed from N{sub 2} electronic-vibrational transitions and atomic N I and N II multiplets and their emission cross sections were measured. Molecular emission was observed at vibrationally excited ground-state levels as high as v'' = 17, from the a {sup 1}Π {sub g} , b {sup 1}Π {sub u} , and b'{sup 1}Σ {sub u} {sup +} excited valence states and the Rydberg series c'{sub n} {sub +1} {sup 1}Σ {sub u} {sup +}, c{sub n} {sup 1}Π {sub u} , and o{sub n} {sup 1}Π {sub u} for n between 3 and 9. The frequently blended molecular emission bands were disentangled with the aid of a sophisticated and predictive quantum-mechanical model of excited states that includes the strong coupling between valence and Rydberg electronic states and the effects of predissociation. Improved model parameters describing electronic transition moments were obtained from the experiment and allowed for a reliable prediction of the vibrationally summed electronic emission cross section, including an extrapolation to unobserved emission bands and those that are optically thick in the experimental spectra. Vibrationally dependent electronic excitation functions were inferred from a comparison of emission features following 20 and 100 eV electron-impact collisional excitation. The electron-impact-induced fluorescence measurements are compared with Cassini Ultraviolet Imaging Spectrograph observations of emissions from Titan's upper atmosphere.

  9. The implementation of the Wendelstein 7-X control a data acquisition concepts at VUV/XUV overview spectrometers HEXOS

    International Nuclear Information System (INIS)

    Schacht, Jörg; Pingel, Steffen; Herbst, Uwe; Hennig, Christine; Burhenn, Rainer; Hollfeld, Klaus-Peter; Jordan, Frank

    2013-01-01

    Highlights: ► Shown in this paper is the implementation of the W7-X CoDaC concept for the HEXOS diagnostic. ► It explains the field, process and supervision level. ► The paper contains descriptions of the slow and fast control and data acquisition stations. ► It introduces the diagnosticians view to CoDaC via high level concept. -- Abstract: HEXOS (high efficiency extreme ultraviolet overview spectrometer) is an optimized set of four efficient VUV/XUV spectrometers. It is suitable for a complete coverage of the wavelength range of interest with sufficient spectral resolution. The spectrometers cover the entire wavelength range of 2.5–160 nm with high performance (up to 9999 spectra at spectra rate of 1000 s −1 ). To operate according to the Wendelstein 7-X (W7-X) control and data acquisition guidelines all necessary concepts for safety, autonomous and subordinated operation, and segment program controlled experiment operation will be implemented at HEXOS. The design of the HEXOS control and data acquisition system and the implementation of the main W7-X control and data acquisition concepts are described. An outlook on the test phase at the TEXTOR (Tokamak Experiment for Technology Oriented Research) device and the commissioning phase at W7-X is given

  10. Microwave Absorption Properties of Co@C Nanofiber Composite for Normal and Oblique Incidence

    Science.gov (United States)

    Zhang, Junming; Wang, Peng; Chen, Yuanwei; Wang, Guowu; Wang, Dian; Qiao, Liang; Wang, Tao; Li, Fashen

    2018-05-01

    Co@C nanofibers have been prepared by an electrospinning technique. Uniform morphology of the nanofibers and good dispersion of the magnetic cobalt nanoparticles in the carbon fiber frame were confirmed by field-emission scanning electron microscopy and high-resolution transmission electron microscopy. The electromagnetic parameters of a composite absorber composed of Co@C nanofibers/paraffin were measured from 2 GHz to 15 GHz. The electromagnetic wave absorption properties were simulated and investigated in the case of normal and oblique incidence. In the normal case, the absorber achieved absorption performance of - 40 dB at 7.1 GHz. When the angle of incidence was increased to 60°, the absorption effect with reflection loss (RL) exceeding - 10 dB could still be obtained. These results demonstrate that the reported Co@C nanofiber absorber exhibits excellent absorption performance over a wide range of angle of incidence.

  11. Study of the intrinsic background noise of a quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Sysoev, A.A.; Islamov, I.M.; Khafizov, R.S.

    1977-01-01

    A proper background noise of a quadrupole mass-spectrometer is studied. The main sources of the noise have been analysed as well as their contributions to the overall noise of the device. It is shown that the main contribution is made by the photocurrent of the first dynode of the secondary-electron multiplier from ultraviolet radiation. The construction of the detecting system of the mass-spectrometer is given allowing one to increase the signal-to-noise ratio by a factor of > 500

  12. Desorption/ablation of lithium fluoride induced by extreme ultraviolet laser radiation

    Directory of Open Access Journals (Sweden)

    Blejchař Tomáš

    2016-06-01

    Full Text Available The availability of reliable modeling tools and input data required for the prediction of surface removal rate from the lithium fluoride targets irradiated by the intense photon beams is essential for many practical aspects. This study is motivated by the practical implementation of soft X-ray (SXR or extreme ultraviolet (XUV lasers for the pulsed ablation and thin film deposition. Specifically, it is focused on quantitative description of XUV laser-induced desorption/ablation from lithium fluoride, which is a reference large band-gap dielectric material with ionic crystalline structure. Computational framework was proposed and employed here for the reconstruction of plume expansion dynamics induced by the irradiation of lithium fluoride targets. The morphology of experimentally observed desorption/ablation craters were reproduced using idealized representation (two-zone approximation of the laser fluence profile. The calculation of desorption/ablation rate was performed using one-dimensional thermomechanic model (XUV-ABLATOR code taking into account laser heating and surface evaporation of the lithium fluoride target occurring on a nanosecond timescale. This step was followed by the application of two-dimensional hydrodynamic solver for description of laser-produced plasma plume expansion dynamics. The calculated plume lengths determined by numerical simulations were compared with a simple adiabatic expansion (blast-wave model.

  13. Spitzer Infrared Spectrograph Observations of the Galactic Center: Quantifying the Extreme Ultraviolet/Soft X-ray Fluxes

    Science.gov (United States)

    Simpson, Janet P.

    2018-04-01

    It has long been shown that the extreme ultraviolet spectrum of the ionizing stars of H II regions can be estimated by comparing the observed line emission to detailed models. In the Galactic Center (GC), however, previous observations have shown that the ionizing spectral energy distribution (SED) of the local photon field is strange, producing both very low excitation ionized gas (indicative of ionization by late O stars) and also widespread diffuse emission from atoms too highly ionized to be found in normal H II regions. This paper describes the analysis of all GC spectra taken by Spitzer's Infrared Spectrograph and downloaded from the Spitzer Heritage Archive. In it, H II region densities and abundances are described, and serendipitously discovered candidate planetary nebulae, compact shocks, and candidate young stellar objects are tabulated. Models were computed with Cloudy, using SEDs from Starburst99 plus additional X-rays, and compared to the observed mid-infrared forbidden and recombination lines. The ages inferred from the model fits do not agree with recent proposed star formation sequences (star formation in the GC occurring along streams of gas with density enhancements caused by close encounters with the black hole, Sgr A*), with Sgr B1, Sgr C, and the Arches Cluster being all about the same age, around 4.5 Myr old, with similar X-ray requirements. The fits for the Quintuplet Cluster appear to give a younger age, but that could be caused by higher-energy photons from shocks from stellar winds or from a supernova.

  14. Low-debris, efficient laser-produced plasma extreme ultraviolet source by use of a regenerative liquid microjet target containing tin dioxide (SnO2) nanoparticles

    Science.gov (United States)

    Higashiguchi, Takeshi; Dojyo, Naoto; Hamada, Masaya; Sasaki, Wataru; Kubodera, Shoichi

    2006-05-01

    We demonstrated a low-debris, efficient laser-produced plasma extreme ultraviolet (EUV) source by use of a regenerative liquid microjet target containing tin-dioxide (SnO2) nanoparticles. By using a low SnO2 concentration (6%) solution and dual laser pulses for the plasma control, we observed the EUV conversion efficiency of 1.2% with undetectable debris.

  15. Low-debris, efficient laser-produced plasma extreme ultraviolet source by use of a regenerative liquid microjet target containing tin dioxide (SnO2) nanoparticles

    International Nuclear Information System (INIS)

    Higashiguchi, Takeshi; Dojyo, Naoto; Hamada, Masaya; Sasaki, Wataru; Kubodera, Shoichi

    2006-01-01

    We demonstrated a low-debris, efficient laser-produced plasma extreme ultraviolet (EUV) source by use of a regenerative liquid microjet target containing tin-dioxide (SnO 2 ) nanoparticles. By using a low SnO 2 concentration (6%) solution and dual laser pulses for the plasma control, we observed the EUV conversion efficiency of 1.2% with undetectable debris

  16. Incidence of Central Vein Stenosis and Occlusion Following Upper Extremity PICC and Port Placement

    International Nuclear Information System (INIS)

    Gonsalves, Carin F.; Eschelman, David J.; Sullivan, Kevin L.; DuBois, Nancy; Bonn, Joseph

    2003-01-01

    The purpose of this study was to determine the incidence of central vein stenosis and occlusion following upper extremity placement of peripherally inserted central venous catheters(PICCs) and venous ports. One hundred fifty-four patients who underwent venography of the ipsilateral central veins prior to initial and subsequent venous access device insertion were retrospectively identified. All follow-up venograms were interpreted at the time of catheter placement by one interventional radiologist over a 5-year period and compared to the findings on initial venography. For patients with central vein abnormalities, hospital and home infusion service records and radiology reports were reviewed to determine catheter dwelltime and potential alternative etiologies of central vein stenosis or occlusion. The effect of catheter caliber and dwell time on development of central vein abnormalities was evaluated. Venography performed prior to initial catheter placement showed that 150 patients had normal central veins. Three patients had central vein stenosis, and one had central vein occlusion. Subsequent venograms (n = 154)at the time of additional venous access device placement demonstrated 8 patients with occlusions and 10 with stenoses. Three of the 18 patients with abnormal follow-up venograms were found to have potential alternative causes of central vein abnormalities. Excluding these 3 patients and the 4 patients with abnormal initial venograms, a 7% incidence of central vein stenosis or occlusion was found in patients with prior indwelling catheters and normal initial venograms. Catheter caliber showed no effect on the subsequent development of central vein abnormalities. Patients who developed new or worsened central vein stenosis or occlusion had significantly (p =0.03) longer catheter dwell times than patients without central vein abnormalities. New central vein stenosis or occlusion occurred in 7% of patients following upper arm placement of venous access devices

  17. Resist Parameter Extraction from Line-and-Space Patterns of Chemically Amplified Resist for Extreme Ultraviolet Lithography

    Science.gov (United States)

    Kozawa, Takahiro; Oizumi, Hiroaki; Itani, Toshiro; Tagawa, Seiichi

    2010-11-01

    The development of extreme ultraviolet (EUV) lithography has progressed owing to worldwide effort. As the development status of EUV lithography approaches the requirements for the high-volume production of semiconductor devices with a minimum line width of 22 nm, the extraction of resist parameters becomes increasingly important from the viewpoints of the accurate evaluation of resist materials for resist screening and the accurate process simulation for process and mask designs. In this study, we demonstrated that resist parameters (namely, quencher concentration, acid diffusion constant, proportionality constant of line edge roughness, and dissolution point) can be extracted from the scanning electron microscopy (SEM) images of patterned resists without the knowledge on the details of resist contents using two types of latest EUV resist.

  18. Thiazide use is associated with reduced risk for incident lower extremity fractures in men with spinal cord injury.

    Science.gov (United States)

    Carbone, Laura D; Chin, Amy S; Lee, Todd A; Burns, Stephen P; Svircev, Jelena N; Hoenig, Helen M; Bailey, Lauren; Weaver, Frances M

    2014-06-01

    To determine the association between thiazide use and lower extremity fractures in patients who are men with a spinal cord injury (SCI). Cohort study from fiscal years 2002 to 2007. Medical centers. Men (N=6969) with an SCI from the Veterans Affairs (VA) Spinal Cord Dysfunction (SCD) Registry, including 1433 users of thiazides and 5536 nonusers of thiazides. Thiazide use versus nonuse. Incident lower extremity fractures. Among the men, 21% in the VA SCD Registry (fiscal years 2002-2007) included in these analyses used thiazide diuretics. There were 832 incident lower extremity fractures over the time period of this study: 110 fractures (7.7%) in 1433 thiazide users and 722 fractures (13%) in 5536 nonusers of thiazides. In unadjusted and adjusted models alike, thiazide use was associated with at least a one-quarter risk reduction in lower extremity fracture at any given point in time (unadjusted: hazard ratio (HR)=.75; 95% confidence interval (CI), .59-.94; adjusted: HR=.74; 95% CI, .58-.95). Thiazide use is common in men with SCI and is associated with a decreased likelihood for lower extremity fractures. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  19. UNDERFLIGHT CALIBRATION OF SOHO/CDS AND HINODE/EIS WITH EUNIS-07

    Energy Technology Data Exchange (ETDEWEB)

    Wang Tongjiang; Brosius, Jeffrey W. [Institute for Astrophysics and Computational Sciences (IACS) in the Department of Physics, Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); Thomas, Roger J.; Rabin, Douglas M.; Davila, Joseph M. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Young, Peter R. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Del Zanna, Giulio, E-mail: tongjiang.wang@nasa.gov [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2011-12-01

    Flights of Goddard Space Flight Center's Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS) sounding rocket in 2006 and 2007 provided updated radiometric calibrations for Solar and Heliospheric Observatory/Coronal Diagnostic Spectrometer (SOHO/CDS) and Hinode/Extreme Ultraviolet Imaging Spectrometer (Hinode/EIS). EUNIS carried two independent imaging spectrographs covering wavebands of 300-370 A in first order and 170-205 A in second order. After each flight, end-to-end radiometric calibrations of the rocket payload were carried out in the same facility used for pre-launch calibrations of CDS and EIS. During the 2007 flight, EUNIS, SOHO/CDS, and Hinode/EIS observed the same solar locations, allowing the EUNIS calibrations to be directly applied to both CDS and EIS. The measured CDS NIS 1 line intensities calibrated with the standard (version 4) responsivities with the standard long-term corrections are found to be too low by a factor of 1.5 due to the decrease in responsivity. The EIS calibration update is performed in two ways. One uses the direct calibration transfer of the calibrated EUNIS-07 short wavelength (SW) channel. The other uses the insensitive line pairs, in which one member was observed by the EUNIS-07 long wavelength (LW) channel and the other by EIS in either the LW or SW waveband. Measurements from both methods are in good agreement, and confirm (within the measurement uncertainties) the EIS responsivity measured directly before the instrument's launch. The measurements also suggest that the EIS responsivity decreased by a factor of about 1.2 after the first year of operation (although the size of the measurement uncertainties is comparable to this decrease). The shape of the EIS SW response curve obtained by EUNIS-07 is consistent with the one measured in laboratory prior to launch. The absolute value of the quiet-Sun He II 304 A intensity measured by EUNIS-07 is consistent with the radiance measured by CDS NIS in quiet regions

  20. Mode Conversion of a Solar Extreme-ultraviolet Wave over a Coronal Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Weiguo [Key Laboratory of Space Weather, National Center for Space Weather, China Meteorological Administration, Beijing 100081 (China); Dai, Yu, E-mail: ydai@nju.edu.cn [Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210023 (China)

    2017-01-10

    We report on observations of an extreme-ultraviolet (EUV) wave event in the Sun on 2011 January 13 by Solar Terrestrial Relations Observatory and Solar Dynamics Observatory in quadrature. Both the trailing edge and the leading edge of the EUV wave front in the north direction are reliably traced, revealing generally compatible propagation velocities in both perspectives and a velocity ratio of about 1/3. When the wave front encounters a coronal cavity near the northern polar coronal hole, the trailing edge of the front stops while its leading edge just shows a small gap and extends over the cavity, meanwhile getting significantly decelerated but intensified. We propose that the trailing edge and the leading edge of the northward propagating wave front correspond to a non-wave coronal mass ejection component and a fast-mode magnetohydrodynamic wave component, respectively. The interaction of the fast-mode wave and the coronal cavity may involve a mode conversion process, through which part of the fast-mode wave is converted to a slow-mode wave that is trapped along the magnetic field lines. This scenario can reasonably account for the unusual behavior of the wave front over the coronal cavity.

  1. EDITORIAL: Extreme Ultraviolet Light Sources for Semiconductor Manufacturing

    Science.gov (United States)

    Attwood, David

    2004-12-01

    The International Technology Roadmap for Semiconductors (ITRS) [1] provides industry expectations for high volume computer chip fabrication a decade into the future. It provides expectations to anticipated performance and requisite specifications. While the roadmap provides a collective projection of what international industry expects to produce, it does not specify the technology that will be employed. Indeed, there are generally several competing technologies for each two or three year step forward—known as `nodes'. Recent successful technologies have been based on KrF (248 nm), and now ArF (193 nm) lasers, combined with ultraviolet transmissive refractive optics, in what are known as step and scan exposure tools. Less fortunate technologies in the recent past have included soft x-ray proximity printing and, it appears, 157 nm wavelength F2 lasers. In combination with higher numerical aperture liquid emersion optics, 193 nm is expected to be used for the manufacture of leading edge chip performance for the coming five years. Beyond that, starting in about 2009, the technology to be employed is less clear. The leading candidate for the 2009 node is extreme ultraviolet (EUV) lithography, however this requires that several remaining challenges, including sufficient EUV source power, be overcome in a timely manner. This technology is based on multilayer coated reflective optics [2] and an EUV emitting plasma. Following Moore's Law [3] it is expected, for example, that at the 2009 `32 nm node' (printable patterns of 32 nm half-pitch), isolated lines with 18 nm width will be formed in resist (using threshold effects), and that these will be further narrowed to 13 nm in transfer to metalized electronic gates. These narrow features are expected to provide computer chips of 19 GHz clock frequency, with of the order of 1.5 billion transistors per chip [1]. This issue of Journal of Physics D: Applied Physics contains a cluster of eight papers addressing the critical

  2. Psoriasis and ultraviolet radiation

    International Nuclear Information System (INIS)

    Farber, E.M.; Nall, L.

    1993-01-01

    Prevention and detection screening programs as a public health service in curtailing the ever-increasing incidence of all forms of skin cancer are reviewed. The effect of solar and artificial ultraviolet radiation on the general population and persons with psoriasis is examined. 54 refs

  3. Advanced materials for multilayer mirrors for extreme ultraviolet solar astronomy.

    Science.gov (United States)

    Bogachev, S A; Chkhalo, N I; Kuzin, S V; Pariev, D E; Polkovnikov, V N; Salashchenko, N N; Shestov, S V; Zuev, S Y

    2016-03-20

    We provide an analysis of contemporary multilayer optics for extreme ultraviolet (EUV) solar astronomy in the wavelength ranges: λ=12.9-13.3  nm, λ=17-21  nm, λ=28-33  nm, and λ=58.4  nm. We found new material pairs, which will make new spaceborne experiments possible due to the high reflection efficiencies, spectral resolution, and long-term stabilities of the proposed multilayer coatings. In the spectral range λ=13  nm, Mo/Be multilayer mirrors were shown to demonstrate a better ratio of reflection efficiency and spectral resolution compared with the commonly used Mo/Si. In the spectral range λ=17-21  nm, a new multilayer structure Al/Si was proposed, which had higher spectral resolution along with comparable reflection efficiency compared with the commonly used Al/Zr multilayer structures. In the spectral range λ=30  nm, the Si/B4C/Mg/Cr multilayer structure turned out to best obey reflection efficiency and long-term stability. The B4C and Cr layers prevented mutual diffusion of the Si and Mg layers. For the spectral range λ=58  nm, a new multilayer Mo/Mg-based structure was developed; its reflection efficiency and long-term stability have been analyzed. We also investigated intrinsic stresses inherent for most of the multilayer structures and proposed possibilities for stress elimination.

  4. Extreme Ultraviolet Emission Lines of Iron Fe XI-XIII

    Science.gov (United States)

    Lepson, Jaan; Beiersdorfer, P.; Brown, G. V.; Liedahl, D. A.; Brickhouse, N. S.; Dupree, A. K.

    2013-04-01

    The extreme ultraviolet (EUV) spectral region (ca. 20--300 Å) is rich in emission lines from low- to mid-Z ions, particularly from the middle charge states of iron. Many of these emission lines are important diagnostics for astrophysical plasmas, providing information on properties such as elemental abundance, temperature, density, and even magnetic field strength. In recent years, strides have been made to understand the complexity of the atomic levels of the ions that emit the lines that contribute to the richness of the EUV region. Laboratory measurements have been made to verify and benchmark the lines. Here, we present laboratory measurements of Fe XI, Fe XII, and Fe XIII between 40-140 Å. The measurements were made at the Lawrence Livermore electron beam ion trap (EBIT) facility, which has been optimized for laboratory astrophysics, and which allows us to select specific charge states of iron to help line identification. We also present new calculations by the Hebrew University - Lawrence Livermore Atomic Code (HULLAC), which we also utilized for line identification. We found that HULLAC does a creditable job of reproducing the forest of lines we observed in the EBIT spectra, although line positions are in need of adjustment, and line intensities often differed from those observed. We identify or confirm a number of new lines for these charge states. This work was supported by the NASA Solar and Heliospheric Program under Contract NNH10AN31I and the DOE General Plasma Science program. Work was performed in part under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344.

  5. Evidence for a New Class of Extreme Ultraviolet Sources

    Science.gov (United States)

    Maoz, Dan; Ofek, Eran O.; Shemi, Amotz

    1997-01-01

    Most of the sources detected in the extreme ultraviolet (EUV; 100-600 A) by the ROSAT/WFC and EUVE all-sky surveys have been identified with active late-type stars and hot white dwarfs that are near enough to the Earth to escape absorption by interstellar gas. However, about 15 per cent of EUV sources are as yet unidentified with any optical counterparts. We examine whether the unidentified EUV sources may consist of the same population of late-type stars and white dwarfs. We present B and R photometry of stars in the fields of seven of the unidentified EUV sources. We detect in the optical the entire main-sequence and white dwarf population out to the greatest distances where they could still avoid absorption. We use color-magnitude diagrams to demonstrate that, in most of the fields, none of the observed stars has the colours and magnitudes of late-type dwarfs at distances less than 100 pc. Similarly, none of the observed stars is a white dwarf within 500 pc that is hot enough to be a EUV emitter. The unidentified EUV sources we study are not detected in X-rays, while cataclysmic variables, X-ray binaries, and active galactic nuclei generally are. We conclude that some of the EUV sources may be a new class of nearby objects, which are either very faint at optical bands or which mimic the colours and magnitudes of distant late-type stars or cool white dwarfs. One candidate for optically faint objects is isolated old neutron stars, slowly accreting interstellar matter. Such neutron stars are expected to be abundant in the Galaxy, and have not been unambiguously detected.

  6. Efficient extreme ultraviolet plasma source generated by a CO2 laser and a liquid xenon microjet target

    Science.gov (United States)

    Ueno, Yoshifumi; Ariga, Tatsuya; Soumagne, George; Higashiguchi, Takeshi; Kubodera, Shoichi; Pogorelsky, Igor; Pavlishin, Igor; Stolyarov, Daniil; Babzien, Marcus; Kusche, Karl; Yakimenko, Vitaly

    2007-05-01

    We demonstrated efficacy of a CO2-laser-produced xenon plasma in the extreme ultraviolet (EUV) spectral region at 13.5nm at variable laser pulse widths between 200ps and 25ns. The plasma target was a 30μm liquid xenon microjet. To ensure the optimum coupling of CO2 laser energy with the plasma, they applied a prepulse yttrium aluminum garnet laser. The authors measured the conversion efficiency (CE) of the 13.5nm EUV emission for different pulse widths of the CO2 laser. A maximum CE of 0.6% was obtained for a CO2 laser pulse width of 25ns at an intensity of 5×1010W/cm2.

  7. Efficient extreme ultraviolet plasma source generated by a CO2 laser and a liquid xenon microjet target

    International Nuclear Information System (INIS)

    Ueno, Yoshifumi; Ariga, Tatsuya; Soumagne, George; Higashiguchi, Takeshi; Kubodera, Shoichi; Pogorelsky, Igor; Pavlishin, Igor; Stolyarov, Daniil; Babzien, Marcus; Kusche, Karl; Yakimenko, Vitaly

    2007-01-01

    We demonstrated efficacy of a CO 2 -laser-produced xenon plasma in the extreme ultraviolet (EUV) spectral region at 13.5 nm at variable laser pulse widths between 200 ps and 25 ns. The plasma target was a 30 μm liquid xenon microjet. To ensure the optimum coupling of CO 2 laser energy with the plasma, they applied a prepulse yttrium aluminum garnet laser. The authors measured the conversion efficiency (CE) of the 13.5 nm EUV emission for different pulse widths of the CO 2 laser. A maximum CE of 0.6% was obtained for a CO 2 laser pulse width of 25 ns at an intensity of 5x10 10 W/cm 2

  8. Characteristics of soft x-ray and extreme ultraviolet (XUV) emission from laser-produced highly charged rhodium ions

    Science.gov (United States)

    Barte, Ellie Floyd; Hara, Hiroyuki; Tamura, Toshiki; Gisuji, Takuya; Chen, When-Bo; Lokasani, Ragava; Hatano, Tadashi; Ejima, Takeo; Jiang, Weihua; Suzuki, Chihiro; Li, Bowen; Dunne, Padraig; O'Sullivan, Gerry; Sasaki, Akira; Higashiguchi, Takeshi; Limpouch, Jiří

    2018-05-01

    We have characterized the soft x-ray and extreme ultraviolet (XUV) emission of rhodium (Rh) plasmas produced using dual pulse irradiation by 150-ps or 6-ns pre-pulses, followed by a 150-ps main pulse. We have studied the emission enhancement dependence on the inter-pulse time separation and found it to be very significant for time separations less than 10 ns between the two laser pulses when using 6-ns pre-pulses. The behavior using a 150-ps pre-pulse was consistent with such plasmas displaying only weak self-absorption effects in the expanding plasma. The results demonstrate the advantage of using dual pulse irradiation to produce the brighter plasmas required for XUV applications.

  9. Extreme Ultraviolet Emission Spectrum of CO_2 Induced by Electron Impact at 200 eV

    Science.gov (United States)

    Kanik, I.; Ajello, J. M.; James, G. K.

    1993-01-01

    We present the extreme ultraviolet (EUV) emission spectrum of CO_2 induced by electronimpact at 200 eV. There are 36 spectral features which are identified with a resolution of 0.5 nmover the wavelength range of 40 to 125 nm. Absolute emission cross sections were obtained for eachof these features. The EUV emission spectrum induced by electron impact consist of atomicmultiplets of CI,II and OI,II,III as well as CO and CO^+ molecular band systems produced bydissociative excitation. The CI (119.4 nm) multiplet is the strongest feature of CI with a peak crosssection of 3.61 x 10^(-19) cm^2 at 200 eV. The strongest feature of OI in the EUV spectrum is theOI (99.0 nm) multiplet with a peak cross section of 3.59 x 10^(-19) cm^2 at 200 eV.

  10. Ultraviolet photometry from the Orbiting Astronomical Observatory. XXXII - An atlas of ultraviolet stellar spectra

    Science.gov (United States)

    Code, A. D.; Meade, M. R.

    1979-01-01

    Ultraviolet stellar fluxes are presented in graphs and tables for 164 bright stars in the spectral region from 1200 to 3600 A. The spectra represent a subset of OAO 2 spectrometer data on file at the National Space Science Data Center. The monochromatic flux is given in units of erg per (sq cm-s-A) with a spectral resolution of about 22 A in the region from 3600 to 1850 A and of approximately 12 A in the region from 1850 to 1160 A.

  11. The electronics in fluorescent bulbs and light emitting diodes (LED), rather than ultraviolet radiation, cause increased malignant melanoma incidence in indoor office workers and tanning bed users.

    Science.gov (United States)

    Milham, Samuel; Stetzer, Dave

    2018-07-01

    The epidemiology of cutaneous malignant melanoma (CMM) has a number of facets that do not fit with sunlight and ultraviolet light as the primary etiologic agents. Indoor workers have higher incidence and mortality rates of CMM than outdoor workers; CMM occurs in body locations never exposed to sunlight; CMM incidence is increasing in spite of use of UV blocking agents and small changes in solar radiation. Installation of two new fluorescent lights in the milking parlor holding area of a Minnesota dairy farm in 2015 caused an immediate drop in milk production. This lead to measurement of body amperage in humans exposed to modern non-incandescent lighting. People exposed to old and new fluorescent lights, light emitting diodes (LED) and compact fluorescent lights (CFL) had body amperage levels above those considered carcinogenic. We hypothesize that modern electric lighting is a significant health hazard, a carcinogen, and is causing increasing CMM incidence in indoor office workers and tanning bed users. These lights generate dirty electricity (high frequency voltage transients), radio frequency (RF) radiation, and increase body amperage, all of which have been shown to be carcinogenic. This could explain the failure of ultraviolet blockers to stem the malignant melanoma pandemic. Tanning beds and non-incandescent lighting could be made safe by incorporating a grounded Faraday cage which allows passage of ultraviolet and visible light frequencies and blocks other frequencies. Modern electric lighting should be fabricated to be electrically clean. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. A New Family of Consistent and Asymptotically-Normal Estimators for the Extremal Index

    Directory of Open Access Journals (Sweden)

    Jose Olmo

    2015-08-01

    Full Text Available The extremal index (θ is the key parameter for extending extreme value theory results from i.i.d. to stationary sequences. One important property of this parameter is that its inverse determines the degree of clustering in the extremes. This article introduces a novel interpretation of the extremal index as a limiting probability characterized by two Poisson processes and a simple family of estimators derived from this new characterization. Unlike most estimators for θ in the literature, this estimator is consistent, asymptotically normal and very stable across partitions of the sample. Further, we show in an extensive simulation study that this estimator outperforms in finite samples the logs, blocks and runs estimation methods. Finally, we apply this new estimator to test for clustering of extremes in monthly time series of unemployment growth and inflation rates and conclude that runs of large unemployment rates are more prolonged than periods of high inflation.

  13. TOMS as a monitor of the ultraviolet radiation environment: applications to photobiology

    International Nuclear Information System (INIS)

    Frederick, J.E.

    1987-01-01

    The flux of biologically relevant ultraviolet radiation that reaches the surface of the Earth varies with the ozone amount, surface reflectivity, and cloudcover. The Total Ozone Mapping Spectrometer (TOMS) provides information relevant to all three items. A recent application of satellite-based ozone measurements has been to develop climatologies of the biologically significant UV-B radiation reaching the Earth's surface. A growing body of research suggests that UV-B radiation tends to suppress the immune system of laboratory mice. At tropical latitudes, it is likely that parasitical diseases develop most readily in people who have experienced immune system suppression from UV-B exposure. The computed distribution of surface radiation combined with information on disease incidence may clarify the role of UV-B as a suppressor of the human immune system. TOMS used in conjunction with radiative transfer calculations can provide information of relevance in photobiology

  14. Classification of mini-dimmings associated with extreme ultraviolet eruptions by using graph theory

    Directory of Open Access Journals (Sweden)

    S Bazargan

    2016-09-01

    Full Text Available Coronal dimmings in both micro and macro scales, can be observed by extreme ultraviolet images, recorded from Solar Dynamics Observatory or Atmospheric Imaging Assembly (SDO/AIA. Mini-dimmings are sometimes associated with wave-like brightening, called coronal mass ejections. Here, the sun full disk images with 171 Å wavelenght, cadence of 2.5, and  0.6 arcsec cell size, were taken on 3 March 2012, then the obtained data were analyzed. Using Zernike Moment and Support Vector Machine (SVM, mini dimmings are detected. 538 active region events, 680 coronal hole events and 723 quiet sun events have been recognized using algorithm. The position, time duration and spatial expansion of these events were computed .The eruptive dimmings have a more spatial development than thermal dimmings after eruptions. This is evident in their graph characteristics length. Then, using graph theory, eruptive and thermal mini-dimmings were classified, with 13% error, for 200 dimmings. 68 dimmings were classified as thermal, and 132 as eruptive. To do this, evolution of graph characteristic length were used.

  15. Dynamic absorption coefficients of chemically amplified resists and nonchemically amplified resists at extreme ultraviolet

    Science.gov (United States)

    Fallica, Roberto; Stowers, Jason K.; Grenville, Andrew; Frommhold, Andreas; Robinson, Alex P. G.; Ekinci, Yasin

    2016-07-01

    The dynamic absorption coefficients of several chemically amplified resists (CAR) and non-CAR extreme ultraviolet (EUV) photoresists are measured experimentally using a specifically developed setup in transmission mode at the x-ray interference lithography beamline of the Swiss Light Source. The absorption coefficient α and the Dill parameters ABC were measured with unprecedented accuracy. In general, the α of resists match very closely with the theoretical value calculated from elemental densities and absorption coefficients, whereas exceptions are observed. In addition, through the direct measurements of the absorption coefficients and dose-to-clear values, we introduce a new figure of merit called chemical sensitivity to account for all the postabsorption chemical reaction ongoing in the resist, which also predicts a quantitative clearing volume and clearing radius, due to the photon absorption in the resist. These parameters may help provide deeper insight into the underlying mechanisms of the EUV concepts of clearing volume and clearing radius, which are then defined and quantitatively calculated.

  16. Combined raman spectrometer/laser-induced breakdown spectrometer design concept

    Science.gov (United States)

    Bazalgette Courrèges-Lacoste, Gregory; Ahlers, Berit; Boslooper, Erik; Rull-Perez, Fernando; Maurice, Sylvestre

    2017-11-01

    Amongst the different instruments that have been preselected to be on-board the Pasteur payload on ExoMars is the Raman/ Laser Induced Breakdown Spectroscopy (LIBS) instrument. Raman spectroscopy and LIBS will be integrated into a single instrument sharing many hardware commonalities. An international team under the lead of TNO has been gathered to produce a design concept for a combined Raman Spectrometer/ LIBS Elegant Bread-Board (EBB). The instrument is based on a specifically designed extremely compact spectrometer with high resolution over a large wavelength range, suitable for both Raman spectroscopy and LIBS measurements. Low mass, size and resources are the main drivers of the instrument's design concept. The proposed design concept, realization and testing programme for the combined Raman/ LIBS EBB is presented as well as background information on Raman and LIBS.

  17. Uric acid detection using uv-vis spectrometer

    Science.gov (United States)

    Norazmi, N.; Rasad, Z. R. Abdul; Mohamad, M.; Manap, H.

    2017-10-01

    The aim of this research is to detect uric acid (UA) concentration using Ultraviolet-Visible (UV-Vis) spectrometer in the Ultraviolet (UV) region. Absorption technique was proposed to detect different uric acid concentrations and its UV absorption wavelength. Current practices commonly take a lot of times or require complicated structures for the detection process. By this proposed spectroscopic technique, every concentration can be detected and interpreted into an absorbance value at a constant wavelength peak in the UV region. This is due to the chemical characteristics belong to the uric acid since it has a particular absorption cross-section, σ which can be calculated using Beer’s Lambert law formula. The detection performance was displayed using Spectrasuite sofware. It showed fast time response about 3 seconds. The experiment proved that the concentrations of uric acid were successfully detected using UV-Vis spectrometer at a constant absorption UV wavelength, 294.46 nm in a low time response. Even by an artificial sample of uric acid, it successfully displayed a close value as the ones reported with the use of the medical sample. It is applicable in the medical field and can be implemented in the future for earlier detection of abnormal concentration of uric acid.

  18. LPI studies with grazing incidence irradiation at the Nike laser

    Science.gov (United States)

    Weaver, J.; Kehne, D.; Schmitt, A.; Obenschain, S.; Serlin, V.; Oh, J.; Lehmberg, R.; Seely, J.

    2013-10-01

    Studies of laser plasma instabilities (LPI) at the Nike laser facility at NRL have previously concentrated on planar targets irradiated with their surface normal aligned to the central axis of the laser. Shots with planar targets rotated up 60° to the laser have shown changes in thresholds for the two-plasmon decay instability and stimulated Raman scattering near the quarter critical region. In the case of rotated low-Z targets, spectra were observed to shift to lower wavelength and were substantially stronger in the visible and ultraviolet spectral ranges. The low-Z target data show growth at an incident intensity slightly below (~30%) the threshold values observed at normal incidence. A rapid rise in signal level over the same laser intensities was also observed in the hard x-ray data which serve as an overall indicator of LPI activity. Shots with rotated planar high-Z targets showed that the visible and ultraviolet emissions dropped significantly when compared to low-Z targets in the same geometry. This presentation will include results from upcoming experiments to determine the LPI signal for low-Z, high-Z, and high-Z coated targets at lower laser intensities for several angles of target rotation. Shots with widely separated laser beams are also planned to explore cross beam energy transport at Nike. Work supported by DoE/NNSA.

  19. Compact 13.5-nm free-electron laser for extreme ultraviolet lithography

    Directory of Open Access Journals (Sweden)

    Y. Socol

    2011-04-01

    Full Text Available Optical lithography has been actively used over the past decades to produce more and more dense integrated circuits. To keep with the pace of the miniaturization, light of shorter and shorter wavelength was used with time. The capabilities of the present 193-nm UV photolithography were expanded time after time, but it is now believed that further progress will require deployment of extreme ultraviolet (EUV lithography based on the use of 13.5-nm radiation. However, presently no light source exists with sufficient average power to enable high-volume manufacturing. We report here the results of a study that shows the feasibility of a free-electron laser EUV source driven by a multiturn superconducting energy-recovery linac (ERL. The proposed 40×20  m^{2} facility, using MW-scale consumption from the power grid, is estimated to provide about 5 kW of average EUV power. We elaborate the self-amplified spontaneous emission (SASE option, which is presently technically feasible. A regenerative-amplifier option is also discussed. The proposed design is based on a short-period (2–3 cm undulator. The corresponding electron beam energy is about 0.5–1.0 GeV. The proposed accelerator consists of a photoinjector, a booster, and a multiturn ERL.

  20. Detailed characterisation of the incident neutron beam on the TOSCA spectrometer

    Science.gov (United States)

    Pinna, Roberto S.; Rudić, Svemir; Capstick, Matthew J.; McPhail, David J.; Pooley, Daniel E.; Howells, Gareth D.; Gorini, Giuseppe; Fernandez-Alonso, Felix

    2017-10-01

    We report a detailed characterisation of the incident neutron beam on the TOSCA spectrometer. A bespoke time-of-flight neutron monitor has been designed, constructed and used to perform extensive spatially resolved measurements of the absolute neutron flux and its underlying time structure at the instrument sample position. The obtained data give a quantitative understanding of the current instrument beyond neutronic simulations and provide a baseline in order to assess the performance of the upgraded instrument. At an average proton current-on-target of 153 μA (ISIS Target Station 1; at the time of measurements) we have found that the wavelength-integrated neutron flux (from 0.28 Å to 4.65 Å) at the position of the TOSCA instrument sample (spatially averaged across the 3 × 3cm2 surface centred around (0,0) position) is approximately 1 . 2 × 106 neutrons cm-2s-1, while the whole beam has a homogeneous distribution across the 3 . 0 × 3 . 5cm2 sample surface. The spectra reproduced the well-known shape of the neutrons moderated by the room temperature water moderator and exhibit a neutron flux of 7 . 3 × 105 neutrons cm-2s-1Å-1 at 1 Å.

  1. Spectral filter for splitting a beam with electromagnetic radiation having wavelengths in the extreme ultraviolet (EUV) or soft X-Ray (Soft X) and the infrared (IR) wavelength range

    NARCIS (Netherlands)

    van Goor, F.A.; Bijkerk, Frederik; van den Boogaard, Toine; van den Boogaard, A.J.R.; van der Meer, R.

    2012-01-01

    Spectral filter for splitting the primary radiation from a generated beam with primary electromagnetic radiation having a wavelength in the extreme ultraviolet (EUV radiation) or soft X-ray (soft X) wavelength range and parasitic radiation having a wavelength in the infrared wavelength range (IR

  2. Optical studies of noctilucent clouds in the extreme ultraviolet

    Directory of Open Access Journals (Sweden)

    J. Hedin

    2008-05-01

    Full Text Available In order to better understand noctilucent clouds (NLC and their sensitivity to the variable environment of the polar mesosphere, more needs to be learned about the actual cloud particle population. Optical measurements are today the only means of obtaining information about the size of mesospheric ice particles. In order to efficiently access particle sizes, scattering experiments need to be performed in the Mie scattering regime, thus requiring wavelengths of the order of the particle size. Previous studies of NLC have been performed at wavelengths down to 355 nm from the ground and down to about 200 nm from rockets and satellites. However, from these measurements it is not possible to access the smaller particles in the mesospheric ice population. This current lack of knowledge is a major limitation when studying important questions about the nucleation and growth processes governing NLC and related particle phenomena in the mesosphere. We show that NLC measurements in the extreme ultraviolet, in particular using solar Lyman-α radiation at 121.57 nm, are an efficient way to further promote our understanding of NLC particle size distributions. This applies both to global measurements from satellites and to detailed in situ studies from sounding rockets. Here, we present examples from recent rocket-borne studies that demonstrate how ambiguities in the size retrieval at longer wavelengths can be removed by invoking Lyman-α. We discuss basic requirements and instrument concepts for future rocket-borne NLC missions. In order for Lyman-α radiation to reach NLC altitudes, high solar elevation and, hence, daytime conditions are needed. Considering the effects of Lyman-α on NLC in general, we argue that the traditional focus of rocket-borne NLC missions on twilight conditions has limited our ability to study the full complexity of the summer mesopause environment.

  3. The interaction of ultraviolet light with Arctic sea ice during SHEBA

    Science.gov (United States)

    Perovich, Donald K.

    The reflection, absorption and transmission of ultraviolet light by a sea-ice cover strongly impacts primary productivity, higher trophic components of the food web, and humans. Measurements of the incident irradiance at 305, 320, 340 and 380 nm and of the photosynthetically active radiation were made from April through September 1998 as part of the SHEBA (Surface Heat Budget of the Arctic Ocean program) field experiment in the Arctic Ocean. In addition, observations of snow depth and ice thickness were made at more than 100 sites encompassing a comprehensive range of conditions. The thickness observations were combined with a radiative transfer model to compute a time series of the ultraviolet light transmitted by the ice cover from April through September. Peak values of incident ultraviolet irradiance occurred in mid-June. Peak transmittance was later in the summer at the end of the melt season when the snow cover had completely melted, the ice had thinned and pond coverage was extensive. The fraction of the incident ultraviolet irradiance transmitted through the ice increased by several orders of magnitude as the melt season progressed. Ultraviolet transmittance was approximately a factor of ten greater for melt ponds than bare ice. Climate change has the potential to alter the amplitude and timing of the annual albedo cycle of sea ice. If the onset of melt occurs at increasingly earlier dates, ultraviolet transmittance will be significantly enhanced, with potentially deleterious biological impacts.

  4. Similar distributions of repaired sites in chromatin of normal and xeroderma pigmentosum variant cells damaged by ultraviolet light

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1979-01-01

    Excision repair of damage from ultraviolet light in both normal and xeroderma pigmentosum variant fibroblasts at early times after irradiation occurred preferentially in regions of DNA accessible to micrococcal nuclease digestion. These regions are predominantly the linker regions between nucleosomes in chromatin. The alterations reported at polymerization and ligation steps of excision repair in the variant are therefore not associated with changes in the relative distributions of repair sites in linker and core particle regions of DNA. (Auth.)

  5. THE EXTREME ULTRAVIOLET DEFICIT AND MAGNETICALLY ARRESTED ACCRETION IN RADIO-LOUD QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Punsly, Brian, E-mail: brian.punsly1@verizon.net [1415 Granvia Altamira, Palos Verdes Estates, CA 90274 (United States); ICRANet, Piazza della Repubblica, I-65100 10 Pescara (Italy)

    2014-12-20

    The Hubble Space Telescope composite quasar spectra presented in Telfer et al. show a significant deficit of emission in the extreme ultraviolet for the radio-loud component of the quasar population (RLQs) compared to the radio-quiet component of the quasar population. The composite quasar continuum emission between 1100 Å and ∼580 Å is generally considered to be associated with the innermost regions of the accretion flow onto the central black hole. The deficit between 1100 Å and 580 Å in RLQs has a straightforward interpretation as a missing or a suppressed innermost region of local energy dissipation in the accretion flow. It is proposed that this can be the result of islands of large-scale magnetic flux in RLQs that are located close to the central black hole that remove energy from the accretion flow as Poynting flux (sometimes called magnetically arrested accretion). These magnetic islands are natural sites for launching relativistic jets. Based on the Telfer et al. data and the numerical simulations of accretion flows in Penna et al., the magnetic islands are concentrated between the event horizon and an outer boundary of <2.8 M (in geometrized units) for rapidly rotating black holes and <5.5 M for modestly rotating black holes.

  6. The performance of TOF near backscattering spectrometer DNA in MLF, J-PARC

    International Nuclear Information System (INIS)

    Shibata, Kaoru; Kawakita, Yukinobu; Kambara, Wataru; Inamura, Yasuhiro; Nakatani, Takeshi; Nakajima, Kenji; Arai, Masatoshi; Takahashi, Nobuaki; Matsuura, Masato; Yamada, Takeshi; Tominaga, Taiki; Kobayashi, Makoto

    2015-01-01

    The time-of-flight (TOF) type near-backscattering spectrometer (n-BSS), DNA, with Si crystal analyzers was built and started operation in 2012 at the Materials and Life Science Experimental Facility (MLF) of the Japan Proton Accelerator Research Complex (J-PARC). DNA is the first n-BSS with pulse shaping chopper installed at a spallation pulsed neutron source. It offers currently the highest energy-resolution of about 2.4 micro eV by operating a pulse shaping double-disk chopper at 225 Hz whose phase is optimized to the narrowest slit of 10 mm width. Energy resolution can be flexibly compromised with intensity during experiment by using two type slits with different widths and changing the copper frequency. An example of measurement with high energy-resolution under the condition that the pulse shaping chopper was operated is shown, where the limited measurable energy range was widely expanded by multi incident energy band technique. The experimental data demonstrate extremely high signal-to-noise ratio (∼10"5) of this spectrometer. (author)

  7. The extreme ultraviolet spectrum of G191 - B2B and the ionization of the local interstellar medium

    Science.gov (United States)

    Green, James; Jelinsky, Patrick; Bowyer, Stuart

    1990-01-01

    The measurement of the extreme ultraviolet spectrum of the nearby hot white dwarf G191 - B2B is reported. The results are used to derive interstellar neutral column densities of 1.6 + or - 0.2 x 10 to the 18th/sq cm and 9.8 + 2.8 or - 2.6 x 10 to the 16th/sq cm for H I and He I, respectively. This ratio of neutral hydrogen to neutral helium indicates that the ionization of hydrogen along the line of sight is less than about 30 percent unless significant helium ionization is present. The scenario in which the hydrogen is highly ionized and the helium is neutral is ruled out by this observation.

  8. Broadband transmission grating spectrometer for measuring the emission spectrum of EUV sources

    NARCIS (Netherlands)

    Bayraktar, Muharrem; Bastiaens, Hubertus M.J.; Bruineman, Caspar; Vratzov, Boris; Bijkerk, Frederik

    2016-01-01

    Extreme ultraviolet (EUV) light sources and their optimization for emission within a narrow wavelength band are essential in applications such as photolithography. Most light sources however also emit radiation outside this wavelength band and have a spectrum extending up to deep ultraviolet (DUV)

  9. Impact of increasing alanine aminotransferase levels within normal range on incident diabetes

    OpenAIRE

    Chong-Shan Wang; Ting-Tsung Chang; Wei-Jen Yao; Shan-Tair Wang; Pesus Chou

    2012-01-01

    Abnormal alanine aminotransferase level (ALT) levels might be associated with type 2 diabetes, but whether higher ALT levels within the normal range predict the risk is unknown. Methods: We followed a community-based cohort of 3446 individuals who were ≥35 years old without diabetes and hepatitis B or C in southern Taiwan for 8 years (1997–2004) to study the risk for type 2 diabetes with different normal ALT levels. Results: Among the 337 incident diabetes cases, 16.0% were from those w...

  10. Proton radiation damage assessment of a CCD for use in a Ultraviolet and Visible Spectrometer

    International Nuclear Information System (INIS)

    Gow, J.P.D.; Mason, J.; Leese, M.; Patel, M.; Hathi, B.

    2017-01-01

    This paper describes the radiation environment and radiation damage analysis performed for the Nadir and Occultation for MArs Discovery (NOMAD) Ultraviolet and Visible Spectrometer (UVIS) channel launched onboard the ExoMars Trace Gas Orbiter (TGO) in 2016. The aim of the instrument is to map the temporal and spatial variation of trace gases such as ozone and dust/cloud aerosols in the atmosphere of Mars. The instrument consists of a set of two miniature telescope viewing optics which allow for selective input onto the optical bench, where an e2v technologies CCD30-11 will be used as the detector. A Geometry Description Markup Language model of the spacecraft and instrument box was created and through the use of ESA's SPace ENVironment Information System (SPENVIS) an estimate of the 10 MeV equivalent proton fluence was made at a number of radiation sensitive regions within NOMAD, including that of the CCD30-11 which is the focus of this paper. The end of life 10 MeV equivalent proton fluence at the charge coupled device was estimated to be 4.7 × 10 9 protons.cm −2 ; three devices were irradiated at different levels up a 10 MeV equivalent fluence of 9.4 × 10 9 protons.cm −2 . The dark current, charge transfer inefficiency, charge storage, and cosmetic quality of the devices was investigated pre- and post-irradiation, determining that the devices will continue to provide excellent science throughout the mission.

  11. Harmful effects of ultraviolet radiation

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Tanning for cosmetic purposes by sunbathing or by using artificial tanning devices is widespread. The hazards associated with exposure to ultraviolet radiation are of concern to the medical profession. Depending on the amount and form of the radiation, as well as on the skin type of the individual exposed, ultraviolet radiation causes erythema, sunburn, photodamage (photoaging), photocarcinogenesis, damage to the eyes, alteration of the immune system of the skin, and chemical hypersensitivity. Skin cancers most commonly produced by ultraviolet radiation are basal and squamous cell carcinomas. There also is much circumstantial evidence that the increase in the incidence of cutaneous malignant melanoma during the past half century is related to increased sun exposure, but this has not been proved. Effective and cosmetically acceptable sunscreen preparations have been developed that can do much to prevent or reduce most harmful effects to ultraviolet radiation if they are applied properly and consistently. Other safety measures include (1) minimizing exposure to ultraviolet radiation, (2) being aware of reflective surfaces while in the sun, (3) wearing protective clothing, (4) avoiding use of artificial tanning devices, and (5) protecting infants and children

  12. Ultraviolet extinction in M-supergiant circumstellar envelopes

    International Nuclear Information System (INIS)

    Buss, R.H. Jr.; Snow, T.P. Jr.

    1986-01-01

    Using International Ultraviolet (IUS) archival low-dispersion spectra, ultraviolet spectral extinctions were derived for the circumstellar envelopes of two M supergiants: HD 60414 and HD 213310. The observed stellar systems belong to a class of widely-separated spectroscopic binaries that are called VV Cephei stars. The total extinction was calculated by dividing the reddened fluxes with unreddened comparison fluxes of similar stars (g B2.5 for HD 213310 and a normalized s+B3 for HD 60414) from the reference atlas. After substracting the interstellar extinctions, which were estimated from the E(B-V) reddening of nearby stars, the resultant circumstellar extinctions were normalized at about 3.5 inverse microns. Not only is the 2175 A extinction bump absent in the circumstellar extinctions, but the far-ultraviolet extinction rise is also absent. The rather flat, ultraviolet extinction curves were interpreted as signatures of a population of noncarbonaceous, oxygen-rich grains with diameters larger than the longest observed wavelength

  13. A high throughput 2 m normal incidence monochromator for SURF-II

    International Nuclear Information System (INIS)

    Ederer, D.L.; Cole, B.E.; West, J.B.

    1980-01-01

    The high intrinsic brightness of the circulating electron beam at SURF-II is used as the entrance slit for a two-meter normal incidence monochromator. A typical beam size for the electron beam is 100 μm high by 2 mm wide yielding an obserbed resolution of 0.4 Angstroem with a 200 μm exit slit and a 2400 lines/mm grating. The instrument accepts a beam with a 65 mrad horizontal divergence and a 10 mrad vertical divergence. A plane pre-mirror used near normal incidence reflects the incoming radiation onto the 2 m grating; this combination provides a horizontal exit beam, and enables the experiment to be located three meters from the orbit tangent point. With magnesium fluoride coated aluminium optics a flux of 2 x 10'' photon/s x Angstroem at 1200 Angstroem is observed with a 10 mA circulating current. A flux of 5 x 10 10 photon/s x Angstroem at 600 Angstroem is obserbed with an osmium coated grating and a 10 mA circulating current. Sample spectra of the angle-resolved photoelectron spectrum of CO are presented. (orig.)

  14. Extreme sensitivity to ultraviolet light in the fungal pathogen causing white-nose syndrome of bats.

    Science.gov (United States)

    Palmer, Jonathan M; Drees, Kevin P; Foster, Jeffrey T; Lindner, Daniel L

    2018-01-02

    Bat white-nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans, has decimated North American hibernating bats since its emergence in 2006. Here, we utilize comparative genomics to examine the evolutionary history of this pathogen in comparison to six closely related nonpathogenic species. P. destructans displays a large reduction in carbohydrate-utilizing enzymes (CAZymes) and in the predicted secretome (~50%), and an increase in lineage-specific genes. The pathogen has lost a key enzyme, UVE1, in the alternate excision repair (AER) pathway, which is known to contribute to repair of DNA lesions induced by ultraviolet (UV) light. Consistent with a nonfunctional AER pathway, P. destructans is extremely sensitive to UV light, as well as the DNA alkylating agent methyl methanesulfonate (MMS). The differential susceptibility of P. destructans to UV light in comparison to other hibernacula-inhabiting fungi represents a potential "Achilles' heel" of P. destructans that might be exploited for treatment of bats with WNS.

  15. Langmuir probe measurement of the bismuth plasma plume formed by an extreme-ultraviolet pulsed laser

    International Nuclear Information System (INIS)

    Pira, P; Burian, T; Kolpaková, A; Tichý, M; Kudrna, P; Daniš, S; Wild, J; Juha, L; Lančok, J; Vyšín, L; Civiš, S; Zelinger, Z; Kubát, P

    2014-01-01

    Properties of the plasma plume produced on a bismuth (Bi) target irradiated by a focused extreme-ultraviolet (XUV) capillary-discharge laser beam were investigated. Langmuir probes were used in both single- and double-probe arrangements to determine the electron temperature and the electron density, providing values of 1–3 eV and ∼10 13 –10 14  m −3 , respectively. Although the temperatures seem to be comparable with values obtained in ablation plasmas produced by conventional, long-wavelength lasers, the density is significantly lower. This finding indicates that the desorption-like phenomena are responsible for the plume formation rather than the ablation processes. A very thin Bi film was prepared on an MgO substrate by pulsed XUV laser deposition. The non-uniform, sub-monolayer character of the deposited bismuth film confirms the Langmuir probe's observation of the desorption-like erosion induced by the XUV laser on the primary Bi target. (paper)

  16. Reflection and transmission of normally incident full-vector X waves on planar interfaces

    KAUST Repository

    Salem, Mohamed; Bagci, Hakan

    2011-01-01

    The reflection and transmission of full-vector X waves normally incident on planar half-spaces and slabs are studied. For this purpose, X waves are expanded in terms of weighted vector Bessel beams; this new decomposition and reconstruction method

  17. Studies on normal incidence backscattering in nodule areas using the multibeam-hydrosweep system

    Digital Repository Service at National Institute of Oceanography (India)

    Pathak, D.; Chakraborty, B.

    The acoustic response from areas of varying nodule abundance and number densities in the Central Indian Ocean has been studied by using the echo peak amplitudes of the normal incidence beam in the Multibeam Hydrosweep system. It is observed...

  18. Extreme ultraviolet lithography: A few more pieces of the puzzle

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Christopher N. [Univ. of California, Berkeley, CA (United States)

    2009-05-20

    The work described in this dissertation has improved three essential components of extreme ultraviolet (EUV) lithography: exposure tools, photoresist, and metrology. Exposure tools. A field-averaging illumination stage is presented that enables nonuniform, high-coherence sources to be used in applications where highly uniform illumination is required. In an EUV implementation, it is shown that the illuminator achieves a 6.5% peak-to-valley intensity variation across the entire design field of view. In addition, a design for a stand-alone EUV printing tool capable of delivering 15 nm half-pitch sinusoidal fringes with available sources, gratings and nano-positioning stages is presented. It is shown that the proposed design delivers a near zero line-edge-rougness (LER) aerial image, something extremely attractive for the application of resist testing. Photoresist. Two new methods of quantifying the deprotection blur of EUV photoresists are described and experimentally demonstrated. The deprotection blur, LER, and sensitivity parameters of several EUV photoresists are quantified simultaneously as base weight percent, photoacid generator (PAG) weight percent, and post-exposure bake (PEB) temperature are varied. Two surprising results are found: (1) changing base weight percent does not significantly affect the deprotection blur of EUV photoresist, and (2) increasing PAG weight percent can simultaneously reduce LER and E-size in EUV photoresist. The latter result motivates the development of an EUV exposure statistics model that includes the effects of photon shot noise, the PAG spatial distribution, and the changing of the PAG distribution during the exposure. In addition, a shot noise + deprotection blur model is used to show that as deprotection blur becomes large relative to the size of the printed feature, LER reduction from improved counting statistics becomes dominated by an increase in LER due to reduced deprotection contrast. Metrology. Finally, this

  19. Ambient ultraviolet radiation exposure and hepatocellular carcinoma incidence in the United States.

    Science.gov (United States)

    VoPham, Trang; Bertrand, Kimberly A; Yuan, Jian-Min; Tamimi, Rulla M; Hart, Jaime E; Laden, Francine

    2017-08-18

    Hepatocellular carcinoma (HCC), the most commonly occurring type of primary liver cancer, has been increasing in incidence worldwide. Vitamin D, acquired from sunlight exposure, diet, and dietary supplements, has been hypothesized to impact hepatocarcinogenesis. However, previous epidemiologic studies examining the associations between dietary and serum vitamin D reported mixed results. The purpose of this study was to examine the association between ambient ultraviolet (UV) radiation exposure and HCC risk in the U.S. The Surveillance, Epidemiology, and End Results (SEER) database provided information on HCC cases diagnosed between 2000 and 2014 from 16 population-based cancer registries across the U.S. Ambient UV exposure was estimated by linking the SEER county with a spatiotemporal UV exposure model using a geographic information system. Poisson regression with robust variance estimation was used to calculate incidence rate ratios (IRRs) and 95% confidence intervals (CIs) for the association between ambient UV exposure per interquartile range (IQR) increase (32.4 mW/m 2 ) and HCC risk adjusting for age at diagnosis, sex, race, year of diagnosis, SEER registry, and county-level information on prevalence of health conditions, lifestyle, socioeconomic, and environmental factors. Higher levels of ambient UV exposure were associated with statistically significant lower HCC risk (n = 56,245 cases; adjusted IRR per IQR increase: 0.83, 95% CI 0.77, 0.90; p ambient UV and HCC risk was observed among males (p for interaction = 0.01) and whites (p for interaction = 0.01). Higher ambient UV exposure was associated with a decreased risk of HCC in the U.S. UV exposure may be a potential modifiable risk factor for HCC that should be explored in future research.

  20. The Copernicus ultraviolet spectral atlas of Iota Herculis

    Science.gov (United States)

    Upson, W. L., II; Rogerson, J. B., Jr.

    1980-01-01

    An ultraviolet spectral atlas is presented for the B3 IV star Iota Herculis, which has been scanned from 999 to 1467 A by the Princeton spectrometer aboard the Copernicus satellite. From 999 to 1422 A the observations have a nominal resolution of 0.05 A. At the longer wavelengths the resolution is 0.1 A. The atlas is presented in graphs. Lines identified in the spectrum are also listed.

  1. Photoionization mass spectrometer for studies of flame chemistry with a synchrotron light source

    International Nuclear Information System (INIS)

    Cool, Terrill A.; McIlroy, Andrew; Qi, Fei; Westmoreland, Phillip R.; Poisson, Lionel; Peterka, Darcy S.; Ahmed, Musahid

    2005-01-01

    A flame-sampling molecular-beam photoionization mass spectrometer, recently designed and constructed for use with a synchrotron-radiation light source, provides significant improvements over previous molecular-beam mass spectrometers that have employed either electron-impact ionization or vacuum ultraviolet laser photoionization. These include superior signal-to-noise ratio, soft ionization, and photon energies easily and precisely tunable [E/ΔE(FWHM)≅250-400] over the 7.8-17-eV range required for quantitative measurements of the concentrations and isomeric compositions of flame species. Mass resolution of the time-of-flight mass spectrometer is m/Δm=400 and sensitivity reaches ppm levels. The design of the instrument and its advantages for studies of flame chemistry are discussed

  2. Plasma-assisted cleaning of extreme UV optics

    NARCIS (Netherlands)

    Dolgov, Alexandr Alexeevich

    2018-01-01

    Plasma-assisted cleaning of extreme UV optics EUV-induced surface plasma chemistry of photo-active agents The next generation of photolithography, extreme ultraviolet (EUV) lithography, makes use of 13.5 nm radiation. The ionizing photon flux, and vacuum requirements create a challenging operating

  3. VEGAS: VErsatile GBT Astronomical Spectrometer

    Science.gov (United States)

    Bussa, Srikanth; VEGAS Development Team

    2012-01-01

    The National Science Foundation Advanced Technologies and Instrumentation (NSF-ATI) program is funding a new spectrometer backend for the Green Bank Telescope (GBT). This spectrometer is being built by the CICADA collaboration - collaboration between the National Radio Astronomy Observatory (NRAO) and the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California Berkeley.The backend is named as VErsatile GBT Astronomical Spectrometer (VEGAS) and will replace the capabilities of the existing spectrometers. This backend supports data processing from focal plane array systems. The spectrometer will be capable of processing up to 1.25 GHz bandwidth from 8 dual polarized beams or a bandwidth up to 10 GHz from a dual polarized beam.The spectrometer will be using 8-bit analog to digital converters (ADC), which gives a better dynamic range than existing GBT spectrometers. There will be 8 tunable digital sub-bands within the 1.25 GHz bandwidth, which will enhance the capability of simultaneous observation of multiple spectral transitions. The maximum spectral dump rate to disk will be about 0.5 msec. The vastly enhanced backend capabilities will support several science projects with the GBT. The projects include mapping temperature and density structure of molecular clouds; searches for organic molecules in the interstellar medium; determination of the fundamental constants of our evolving Universe; red-shifted spectral features from galaxies across cosmic time and survey for pulsars in the extreme gravitational environment of the Galactic Center.

  4. The extreme ultraviolet spectrum of G191 - B2B and the ionization of the local interstellar medium

    International Nuclear Information System (INIS)

    Green, J.; Jelinsky, P.; Bowyer, S.

    1990-01-01

    The measurement of the extreme ultraviolet spectrum of the nearby hot white dwarf G191 - B2B is reported. The results are used to derive interstellar neutral column densities of 1.6 + or - 0.2 x 10 to the 18th/sq cm and 9.8 + 2.8 or - 2.6 x 10 to the 16th/sq cm for H I and He I, respectively. This ratio of neutral hydrogen to neutral helium indicates that the ionization of hydrogen along the line of sight is less than about 30 percent unless significant helium ionization is present. The scenario in which the hydrogen is highly ionized and the helium is neutral is ruled out by this observation. 54 refs

  5. The Sandia laser plasma extreme ultraviolet and soft x-ray (XUV) light source

    International Nuclear Information System (INIS)

    Tooman, T.P.

    1986-01-01

    Laser produced plasmas have been shown to be extremely bright sources of extreme ultraviolet and soft x-ray (XUV) radiation; however, certain practical difficulties have hindered the development of this source as a routinely usable laboratory device. To explore solutions to these difficulties, Sandia has constructed an XUV laser plasma source (LASPS) with the intention of developing an instrument that can be used for experiments requiring intense XUV radiation from 50-300 eV. The driving laser for this source is a KrF excimer with a wavelength of 248 nm, divergence of 200 μrad, pulse width of 23 ns at 20 Hz and typical pulse energy of 500 mJ which allows for good energy coupling to the plasma at moderate (10/sup 12/ W cm/sup 2/) power densities. This source has been pulsed approximately 2 x 10/sup 5/ times, demonstrating good tolerance to plasma debris. The source radiates from the visible to well above 1000 eV, however, to date attention has been concentrated on the 50-300 eV region. In this paper, spectral data and plasma images for both stainless steel and gold targets are presented with the gold target yielding a 200 μm plasma and reradiating 3.9% of the pump energy into 15-73 eV band, a flux of 1.22 x 10/sup 13/ photons/pulse/eV into 2π sr. Further efforts will expand these measurements to rare earth targets and to higher spectral energies. A special high throughput wide angle XUV (50-300 eV) monochromator and associated optics is being concurrently developed to collect the plasma radiation, perform energy dispersion and focus the radiation onto the experimental area

  6. VUV spectroscopy in impurity injection experiments at KSTAR using prototype ITER VUV spectrometer

    Science.gov (United States)

    Seon, C. R.; Hong, J. H.; Song, I.; Jang, J.; Lee, H. Y.; An, Y. H.; Kim, B. S.; Jeon, T. M.; Park, J. S.; Choe, W.; Lee, H. G.; Pak, S.; Cheon, M. S.; Choi, J. H.; Kim, H. S.; Biel, W.; Bernascolle, P.; Barnsley, R.

    2017-08-01

    The ITER vacuum ultra-violet (VUV) core survey spectrometer has been designed as a 5-channel spectral system so that the high spectral resolving power of 200-500 could be achieved in the wavelength range of 2.4-160 nm. To verify the design of the ITER VUV core survey spectrometer, a two-channel prototype spectrometer was developed. As a subsequent step of the prototype test, the prototype VUV spectrometer has been operated at KSTAR since the 2012 experimental campaign. From impurity injection experiments in the years 2015 and 2016, strong emission lines, such as Kr xxv 15.8 nm, Kr xxvi 17.9 nm, Ne vii 46.5 nm, Ne vi 40.2 nm, and an array of largely unresolved tungsten lines (14-32 nm) could be measured successfully, showing the typical photon number of 1013-1015 photons/cm2 s.

  7. Energy dependence of ion-induced sputtering yields from monoatomic solids at normal incidence

    International Nuclear Information System (INIS)

    Yamamura, Yasunori; Tawara, Hiro.

    1995-03-01

    The yields of the ion-induced sputtering from monoatomic solids at normal incidence for various ion-target combinations are presented graphically as a function of the incident ion energy. In order to fill the lack of the experimental data, the sputtering yields are also calculated by the Monte Carlo simulation code ACAT for some ion-target combinations. Each graph shows available experimental data points and the ACAT data, together with the sputtering yields calculated by the present empirical formula, whose parameters are determined by the best-fit to available data. (author)

  8. Solar Maximum Mission Experiment - Ultraviolet Spectroscopy and Polarimetry on the Solar Maximum Mission

    Science.gov (United States)

    Tandberg-Hanssen, E.; Cheng, C. C.; Woodgate, B. E.; Brandt, J. C.; Chapman, R. D.; Athay, R. G.; Beckers, J. M.; Bruner, E. C.; Gurman, J. B.; Hyder, C. L.

    1981-01-01

    The Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission spacecraft is described. It is pointed out that the instrument, which operates in the wavelength range 1150-3600 A, has a spatial resolution of 2-3 arcsec and a spectral resolution of 0.02 A FWHM in second order. A Gregorian telescope, with a focal length of 1.8 m, feeds a 1 m Ebert-Fastie spectrometer. A polarimeter comprising rotating Mg F2 waveplates can be inserted behind the spectrometer entrance slit; it permits all four Stokes parameters to be determined. Among the observing modes are rasters, spectral scans, velocity measurements, and polarimetry. Examples of initial observations made since launch are presented.

  9. High-resolution grazing-incidence grating spectrometer for temperature measurements of low-Z ions emitting in the 100-300 Å spectral banda)

    Science.gov (United States)

    Widmann, K.; Beiersdorfer, P.; Magee, E. W.; Boyle, D. P.; Kaita, R.; Majeski, R.

    2014-11-01

    We have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li+ or Li2 +, which radiate near 199 Å and 135 Å, respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 mÅ at the 200 Å setting and better than 40 mÅ for the 135-Å range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Å Li+ and 65 eV for the 135 Å Li2 + lines. Recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.

  10. Plasma radiation dynamics with the upgraded Absolute Extreme Ultraviolet tomographical system in the Tokamak à Configuration Variable

    Energy Technology Data Exchange (ETDEWEB)

    Tal, B.; Nagy, D.; Veres, G. [Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Association EURATOM, P. O. Box 49, H-1525 Budapest (Hungary); Labit, B.; Chavan, R.; Duval, B. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association EURATOM-Confédération Suisse, EPFL SB CRPP, Station 13, CH-1015 Lausanne (Switzerland)

    2013-12-15

    We introduce an upgraded version of a tomographical system which is built up from Absolute Extreme Ultraviolet-type (AXUV) detectors and has been installed on the Tokamak à Configuration Variable (TCV). The system is suitable for the investigation of fast radiative processes usually observed in magnetically confined high-temperature plasmas. The upgrade consists in the detector protection by movable shutters, some modifications to correct original design errors and the improvement in the data evaluation techniques. The short-term sensitivity degradation of the detectors, which is caused by the plasma radiation itself, has been monitored and found to be severe. The results provided by the system are consistent with the measurements obtained with the usual plasma radiation diagnostics installed on TCV. Additionally, the coupling between core plasma radiation and plasma-wall interaction is revealed. This was impossible with other available diagnostics on TCV.

  11. Prevalence, incidence and course of lower extremity injuries in runners during a 12-month follow-up period

    NARCIS (Netherlands)

    Poppel van, D.; Scholten-Peeters, G G M; van Middelkoop, M.; Verhagen, Arianne P

    2014-01-01

    To describe the incidence, 12-month prevalence, and course of lower extremity injuries that occurred during and after the Amgen Singelloop Breda in 2009. The design was based on a prospective cohort study with a population-based setting. In total, 3605 registered runners received a web-based

  12. Spectroscopic observation of the middle ultraviolet earth albedo by S-520-4 rocket and mesospheric ozone density profile

    International Nuclear Information System (INIS)

    Suzuki, Katsuhisa; Ogawa, Toshihiro.

    1982-01-01

    The ozone Hartey absorption band in the middle ultraviolet range is commonly adopted for the ozone measurement by rocket and satellite observations. In Japan, since 1965 the ozone absorption in the solar ultraviolet radiation has been observed by rocket-borne uv photometers. On the other hand the spectroscopic measurements of the scattered solar ultraviolet radiation from the terrestrial atmosphere will be performed by the EXOS-C satellite which will be launched in 1984. We tested the spectrometer for this satellite experiment by S-520-4 rocket launched on 5 September 1981. This instrument observed the scattered radiation of 2500 A -- 3300 A and the visible earth albedo of 4030 A. The spectrometer is consisted of a concave grating and has about 10 A wavelength resolution. A photomultiplier having a Cs-Te photocathode is used as a uv detector. The visible albedo is measured by a photometer consisting of an interference filter and a phototube. We estimated the atmospheric ozone profile, comparing the uv spectrum obtained by this experiment with the model calculations. The estimated ozone density profile higher than 30 km altitude has good agreement with the profile obtained by the previous uv photometer experiments at Uchinoura. There are differences between the observed spectrum and the calculated one in = 3100 A. We can explain them by the effect of Mie scattering and the uv stray light. In the present experiment we could successfully test the functions of the instrument in the space. rocket, spectrometer, solar ultraviolet radiation, earth albedo, ozone (author)

  13. Analysis of extreme ultraviolet spectra from laser produced rhenium plasmas

    Science.gov (United States)

    Wu, Tao; Higashiguchi, Takeshi; Li, Bowen; Suzuki, Yuhei; Arai, Goki; Dinh, Thanh-Hung; Dunne, Padraig; O'Reilly, Fergal; Sokell, Emma; Liu, Luning; O'Sullivan, Gerry

    2015-08-01

    Extreme ultraviolet spectra of highly-charged rhenium ions were observed in the 1-7 nm region using two Nd:YAG lasers with pulse lengths of 150 ps and 10 ns, respectively, operating at a number of laser power densities. The maximum focused peak power density was 2.6 × 1014 W cm-2 for the former and 5.5 × 1012 W cm-2 for the latter. The Cowan suite of atomic structure codes and unresolved transition array (UTA) approach were used to calculate and interpret the emission properties of the different spectra obtained. The results show that n = 4-n = 4 and n = 4-n = 5 UTAs lead to two intense quasi-continuous emission bands in the 4.3-6.3 nm and 1.5-4.3 nm spectral regions. As a result of the different ion stage distributions in the plasmas induced by ps and ns laser irradiation the 1.5-4.3 nm UTA peak moves to shorter wavelength in the ps laser produced plasma spectra. For the ns spectrum, the most populated ion stage during the lifetime of this plasma that could be identified from the n = 4-n = 5 transitions was Re23+ while for the ps plasma the presence of significantly higher stages was demonstrated. For the n = 4-n = 4 4p64dN-4p54dN+1 + 4p64dN-14f transitions, the 4d-4f transitions contribute mainly in the most intense 4.7-5.5 nm region while the 4p-4d subgroup gives rise to a weaker feature in the 4.3-4.7 nm region. A number of previously unidentified spectral features produced by n = 4-n = 5 transitions in the spectra of Re XVI to Re XXXIX are identified.

  14. Intensities of incident and transmitted ultraviolet-a rays through gafchromic films

    Directory of Open Access Journals (Sweden)

    Toshizo Katsuda

    2017-01-01

    Full Text Available Gafchromic films have been applied to X-ray dosimetry in diagnostic radiology. To correct nonuniformity errors in Gafchromic films, X-rays in the double-exposure technique can be replaced with ultraviolet (UV-A rays. Intensities of the incident and transmitted UV-A rays were measured. However, it is unclear whether the chemical color change of Gafchromic films affects the UV-A transmission intensity. Gafchromic EBT3 films were suitable to be used in this study because non-UV protection layers are present on both sides of the film. The film is placed between UV-A ray light-emitting diodes and a probe of a UV meter. Gafchromic EBT3 films were irradiated by UV-A rays for up to 60 min. Data for analysis were obtained in the subsequent 60 min. Images from before and after UV-A irradiation were subtracted. When using 375 nm UV-A, the mean ± standard deviation (SD of the pixel values in the subtracted image was remarkably high (11,194.15 ± 586.63. However, the UV-A transmissivity remained constant throughout the 60 min irradiation period. The mean ± SD UV-A transmission intensity was 184.48 ± 0.50 μm/cm2. Our findings demonstrate that color density changes in Gafchromic EBT3 films do not affect their UV-A transmission. Therefore, Gafchromic films were irradiated by UV-A rays as a preexposure.

  15. Compact Solid-State 213 nm Laser Enables Standoff Deep Ultraviolet Raman Spectrometer: Measurements of Nitrate Photochemistry.

    Science.gov (United States)

    Bykov, Sergei V; Mao, Michael; Gares, Katie L; Asher, Sanford A

    2015-08-01

    We describe a new compact acousto-optically Q-switched diode-pumped solid-state (DPSS) intracavity frequency-tripled neodymium-doped yttrium vanadate laser capable of producing ~100 mW of 213 nm power quasi-continuous wave as 15 ns pulses at a 30 kHz repetition rate. We use this new laser in a prototype of a deep ultraviolet (UV) Raman standoff spectrometer. We use a novel high-throughput, high-resolution Echelle Raman spectrograph. We measure the deep UV resonance Raman (UVRR) spectra of solid and solution sodium nitrate (NaNO3) and ammonium nitrate (NH4NO3) at a standoff distance of ~2.2 m. For this 2.2 m standoff distance and a 1 min spectral accumulation time, where we only monitor the symmetric stretching band, we find a solid state NaNO3 detection limit of ~100 μg/cm(2). We easily detect ~20 μM nitrate water solutions in 1 cm path length cells. As expected, the aqueous solutions UVRR spectra of NaNO3 and NH4NO3 are similar, showing selective resonance enhancement of the nitrate (NO3(-)) vibrations. The aqueous solution photochemistry is also similar, showing facile conversion of NO3(-) to nitrite (NO2(-)). In contrast, the observed UVRR spectra of NaNO3 and NH4NO3 powders significantly differ, because their solid-state photochemistries differ. Whereas solid NaNO3 photoconverts with a very low quantum yield to NaNO2, the NH4NO3 degrades with an apparent quantum yield of ~0.2 to gaseous species.

  16. Resveratrol anti-ultraviolet-induced guinea pig skin injury

    International Nuclear Information System (INIS)

    Li Wenxing; Zhao Ying

    2014-01-01

    Objective: To Estimate on the protection effect of Stilbene on skin damage induced by ultraviolet radiation. Methods: After the normal skin in guinea pig under the intervene of Resveratrol was irradiated with over- dose of ultraviolet rays (UVB and UVA), the samples in every group were matched and compared. Results: The skin tissue in the Resveratrol intervene group irradiated by ultraviolet rays didn't change obviously as compared with that in the self-control group. But, the damage skin tissue in the control group irradiated by ultraviolet did change significantly as compared with that in the Stilbene intervene group. Conclusion: Resveratrol is a good material to protect the skin from damage effect by ultraviolet radiation. (authors)

  17. The Formation of a Power Multi-Pulse Extreme Ultraviolet Radiation in the Pulse Plasma Diode of Low Pressure

    Directory of Open Access Journals (Sweden)

    Ievgeniia V. Borgun

    2013-01-01

    Full Text Available In this paper results are presented on experimental studies of the temporal characteristics of spike extreme ultraviolet (EUV radiation in the spectral range of 12.2 ÷ 15.8 nm from the anode region of high-current (I = 40 kA pulsed discharges in tin vapor. It is observed that the intense multi-spike radiation in this range arises at an inductive stage of the discharge. It has been shown that the radiation spikes correlate with the sharp increase of active resistance and of pumped power, due to plasma heating by an electron beam, formed in the double layer of charged particles. It has been observed that for large number of spikes the conversion efficiency of pumped energy into radiationat double layer formation is essentially higher in comparison with collisional heating.

  18. Maximum material thickness for extreme ultra-violet and X-ray backlighter probing of dense plasma

    International Nuclear Information System (INIS)

    Huang, H.; Tallents, G.J.

    2008-01-01

    Extreme ultra-violet (EUV) lasers, X-ray lasers and other backlighter sources can be used to probe high-energy density materials if their brightness can overcome self-emission from the material. We investigate the maximum plasma thickness of aluminum, silicon and iron that can be probed with EUV or X-ray photons of energy 89-1243 eV before self-emission from the plasma overwhelms the backlighter output. For a uniform plasma, backlighter transmission decreases exponentially with increasing thickness of the material following Beer's law at a rate dependent on the plasma opacity. We evaluate the plasma opacity with the Los Alamos TOPS opacity data. The self-emission is assumed to be either that of a black body to arise from a plasma in LTE or to only consist of free-free and free-bound emission. It is shown that at higher plasma temperature (≥40 eV), EUV radiation (e.g. photon energy=89 eV) can probe a greater thickness of plasma than X-ray radiation (e.g. photon energy=1243 eV)

  19. Extreme nuclear deformations studied at the GASP spectrometer

    International Nuclear Information System (INIS)

    Lunardi, S.; Bazzacco, D.; Fabris, D.; Lunardon, M.; Medina, N.H.; Nebbia, G.; Petrache, C.M.; Rizzuto, M.A.; Alvarez, C.R.; Viesti, G.

    1997-01-01

    Very exotic shapes can be assumed for the nuclei at high angular momenta. Their study has become possible with the advent of the last generation high-resolution γ-ray spectrometers. In this talk results are presented on superdeformed nuclei of the A = 140 mass region where a detailed spectroscopy in the second minimum is now possible. Hyperdeformed rotational bands, expected in the third minimum, lie at even higher spins where their observation is very difficult from the experimental point of view. Up to now only weak signals of their presence have been observed. The status of the search for hyperdeformation in 152 Dy is reported. (author)

  20. Fiscal 2000 survey and research achievement report on the survey and research on next-generation EUVL (extreme ultraviolet lithography) technology; 2000 nendo jisedai EUVL (Extreme Ultra-Violet Lithography) gijutsu chosa kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    While surveys of technical progress and tasks of EUVL in Japan and overseas are under way for submitting a proposition for the industrialization of EUVL technology by expatiating the results of the EUVL research and development program scheduled to be complete in fiscal 2001, the future of EUVL is considered. The survey results are summarized in five chapters which involve (1) the outlines of survey and research results, (2) technical trends of lithography, (3) systems for EUVL research and development in the world, and (5) the conclusion. In chapter (4), light sources, systems (exposure devices), masks, resists, and other element technologies are investigated. The survey results about light sources involve the background against which their development is described, performance that an extreme ultraviolet ray source is requested to have, candidate EUVL light sources, their technical features and tasks they present, and the latest trends overseas. Concerning the exposure device, the body (device constitution), stage, sensor, projection system, and the irradiation system are investigated. As for masks, the outline of a EUVL mask, masking substrate, multilayer film fabrication, masking pattern formation, and other tasks for development are investigated. (NEDO)

  1. Magnetic storm effects on the tropical ultraviolet airglow

    International Nuclear Information System (INIS)

    Gerard, J.; Anderson, D.N.; Matsushita, S.

    1977-01-01

    The intensity and latitudinal distribution of the O I 1304- and 1356-A nighttime emissions associated with the equatorial anomaly have been observed by the ultraviolet spectrometer on board the Ogo 4 satellite. Conspicuous effects, apparently related to magnetic activity, have been noticed during the geomagnetic storm of October 29 to November 4, 1968. These effects include (1) large latitudinal variations of the 1304/1356-A intensity ratio, (2) large interhemispheric asymmetries in the 1356-A intensity, and (3) a pronounced longitude dependence in the airglow intensity during the recovery phase. The results of model calculations allowing for changes in the vertical E x B drift velocity, the meridional and zonal wind velocity, and neutral composition are discussed. The variations of the 1304/1356-A ratio can be accounted for by changes in the altitude of the F layer due to neutral wind and E x B drift. Zonal wind speeds approaching 300 m/s explain the interhemispheric asymmetries observed in the Pacific sector, and both drift velocity and composition changes can explain the longitudinal differences observed during the recovery phase. In addition, it is found that the ratio 1304/1356 A=6 maps out H/sub max/(F 2 ) extremely well, independent of which E x B drift or neutral wind model is used

  2. Trends in Survival and Incidence of Bronchopulmonary Dysplasia in Extremely Preterm Infants at 23–26 Weeks Gestation

    Science.gov (United States)

    2016-01-01

    The aim of this study was to investigate the relationship between survival and incidence of bronchopulmonary dysplasia (BPD) in extremely premature infants, and identify clinical factors responsible for this association. Medical records of 350 infants at 23–26 weeks gestation from 2000 to 2005 (period I, n = 137) and 2006 to 2010 (period II, n = 213) were retrospectively reviewed. The infants were stratified into 23–24 and 25–26 weeks gestation, and the survival, BPD incidence, and clinical characteristics were analyzed. BPD was defined as oxygen dependency at 36 weeks postmenstrual age. The overall survival rate was significantly improved in period II compared to period I (80.3% vs. 70.0%, respectively; P = 0.028), especially in infants at 23–24 weeks gestation (73.9% vs. 47.4%, respectively; P = 0.001). The BPD incidence in survivors during period II (55.0%) was significantly decreased compared to period I (67.7%; P = 0.042), especially at 25–26 weeks gestation (41.7% vs. 62.3%, respectively; P = 0.008). Significantly improved survival at 23–24 weeks gestation was associated with a higher antenatal steroid use and an improved 5-minute Apgar score. A significant decrease in BPD incidence at 25–26 weeks gestation was associated with early extubation, prolonged use of less invasive continuous positive airway pressure, and reduced supplemental oxygen. Improved perinatal and neonatal care can simultaneously lead to improved survival and decreased BPD incidence in extremely premature infants. PMID:26955244

  3. Ultraviolet energy distributions and the temperatures of peculiar B and A stars

    International Nuclear Information System (INIS)

    Adelman, S.J.; NASA, Goddard Space Flight Center, Greenbelt, MD)

    1985-01-01

    Color temperatures have been estimated by comparing ultraviolet observations of HgMn and magnetic Ap stars with those of normal stars. Ultraviolet data from the OAO-2, ANS, TD-1, and IUE satellites generally give similar results. The values for the normal stars were derived from comparison of fluxes predicted by solar-composition fully line-blanketed model atmospheres with optical region spectrophotometry. The ultraviolet temperatures of the HgMn stars cover a narrower temperature range than do their optical region values. Magnetic Ap stars with similar optical region temperatures can show substantial differences in their ultraviolet color temperatures. This may result from magnetic field configuration and abundance differences. 27 references

  4. THE EFFECT OF WAIST CIRCUMFERENCES MORE THAN NORMAL ON THE INCIDENT OF CORONARY HEART DISEASE

    Directory of Open Access Journals (Sweden)

    Pria Wahyu

    2017-07-01

    Full Text Available Introduction: Coronary heart disease is known as the most common disease that causes mortality in the world, one of the examination to identify the risks of coronary heart disease is measuring waist circumference. The purpose of this study was to identify correlation between large waist circumferences and the incident of coroner heart disease. Method: Design used in this study was analytic observational (retrospective with cross sectional approach. There were 63 respondents which sampling by simple random sampling. The independent variable was waist circumferences and the dependent variable was coronary heart disease. Data were collected by direct observation then analyzed by spearman correlation statistic test with significance level α≤0.05. Result: The result showed that waist circumferences more than normal had significant correlation with the incident of coronary heart disease (p=0.02. Analysis: It can be concluded that there was correlation between waist circumferences more than normal and the incident of coronary heart disease to the clients with coroner cardiac disease. Discussion: Earlier screening and detection is needed to prevent coronary heart disease.

  5. TEMPERATURE AND EXTREME-ULTRAVIOLET INTENSITY IN A CORONAL PROMINENCE CAVITY AND STREAMER

    Energy Technology Data Exchange (ETDEWEB)

    Kucera, T. A. [NASA/GSFC, Code 671, Greenbelt, MD 20771 (United States); Gibson, S. E.; Schmit, D. J. [HAO/NCAR, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Landi, E. [Department of Atmospheric, Oceanic and Space Science, Space Research Building, University of Michigan, 2455 Hayward St., Ann Arbor, MI 48109-2143 (United States); Tripathi, D. [Inter-University Centre for Astronomy and Astrophysics, Post Bag-4, Ganeshkhind, Pune University Campus, Pune 411 007 (India)

    2012-09-20

    We analyze the temperature and EUV line emission of a coronal cavity and surrounding streamer in terms of a morphological forward model. We use a series of iron line ratios observed with the Hinode Extreme-ultraviolet Imaging Spectrograph (EIS) on 2007 August 9 to constrain temperature as a function of altitude in a morphological forward model of the streamer and cavity. We also compare model predictions to the EIS EUV line intensities and polarized brightness (pB) data from the Mauna Loa Solar Observatory (MLSO) Mark 4 K-coronameter. This work builds on earlier analysis using the same model to determine geometry of and density in the same cavity and streamer. The fit to the data with altitude-dependent temperature profiles indicates that both the streamer and cavity have temperatures in the range 1.4-1.7 MK. However, the cavity exhibits substantial substructure such that the altitude-dependent temperature profile is not sufficient to completely model conditions in the cavity. Coronal prominence cavities are structured by magnetism so clues to this structure are to be found in their plasma properties. These temperature substructures are likely related to structures in the cavity magnetic field. Furthermore, we find that the model overestimates the EUV line intensities by a factor of 4-10, without overestimating pB. We discuss this difference in terms of filling factors and uncertainties in density diagnostics and elemental abundances.

  6. DNA repair synthesis in human skin exposed to ultraviolet radiation used in PUVA (psoralen and UV-A) therapy for psoriasis

    International Nuclear Information System (INIS)

    Bishop, S.C.

    1979-01-01

    The ultraviolet radiation used in psoralen and UV-A (PUVA) therapy stimulated DNA repair activity in normal human skin and in the uninvolved skin from psoriatic patients. The activity detected by autoradiography increased linearly with exposure time. No stimulation was observed when the UV-B component was removed from the incident radiation by filtration through glass. Therefore UV-B damage to DNA was found responsible for the activity detected following exposure to the unfiltered PUVA light source. (author)

  7. Assessment of radiation doses due to normal operation, incidents and accidents of the final disposal facility

    International Nuclear Information System (INIS)

    Rossi, J.; Raiko, H.; Suolanen, V.; Ilvonen, M.

    1999-03-01

    Radiation doses for workers of the encapsulation and disposal facility and for inhabitants in the environment caused by the facility during its operation were considered. The study covers both the normal operation of the plant and some hypothetical incidents and accidents. Occupational radiation doses inside the plant during normal operation are based on the design basis, assuming that highest permitted dose levels are prevailing in control rooms during fuel transfer and encapsulation processes. Release through the ventilation stack is assumed to be filtered both in normal operation and in hypothetical incident and accident cases. Calculation of the offsite doses from normal operation is based on the hypothesis that one fuel pin per 100 fuel bundles for all batches of spent fuel transported to the encapsulation facility is leaking. The release magnitude in incidents and accidents is based on the event chains, which lead to loss of fuel pin tightness followed by a discharge of radionuclides into the handling chamber and to some degree through the ventilation stack into atmosphere. The weather data measured at the Olkiluoto meteorological mast was employed for calculating of offsite doses. Therefore doses could be calculated in a large amount of different dispersion conditions, the statistical frequencies of which have, been measured. Finally doses were combined into cumulative distributions, from which a dose value representing the 99.5 % confidence level, is presented. The dose values represent the exposure of a critical group, which is assumed to live at the distance of 200 meters from the encapsulation and disposal plant and thus it will receive the largest doses in most dispersion conditions. Exposure pathways considered were: cloudsnine, inhalation, groundshine and nutrition (milk of cow, meat of cow, green vegetables, grain and root vegetables). Nordic seasonal variation is included in ingestion dose models. The results obtained indicate that offsite doses

  8. High-resolution grazing-incidence grating spectrometer for temperature measurements of low-Z ions emitting in the 100–300 Å spectral band

    Energy Technology Data Exchange (ETDEWEB)

    Widmann, K., E-mail: widmann1@llnl.gov; Beiersdorfer, P.; Magee, E. W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Boyle, D. P.; Kaita, R.; Majeski, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-11-15

    We have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li{sup +} or Li{sup 2+}, which radiate near 199 Å and 135 Å, respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 mÅ at the 200 Å setting and better than 40 mÅ for the 135-Å range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Å Li{sup +} and 65 eV for the 135 Å Li{sup 2+} lines. Recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.

  9. Reliability of digital photography for assessing lower extremity alignment in individuals with flatfeet and normal feet types.

    Science.gov (United States)

    Ashnagar, Zinat; Hadian, Mohammad Reza; Olyaei, Gholamreza; Talebian Moghadam, Saeed; Rezasoltani, Asghar; Saeedi, Hassan; Yekaninejad, Mir Saeed; Mahmoodi, Rahimeh

    2017-07-01

    The aim of this study was to investigate the intratester reliability of digital photographic method for quantifying static lower extremity alignment in individuals with flatfeet and normal feet types. Thirteen females with flexible flatfeet and nine females with normal feet types were recruited from university communities. Reflective markers were attached over the participant's body landmarks. Frontal and sagittal plane photographs were taken while the participants were in a standardized standing position. The markers were removed and after 30 min the same procedure was repeated. Pelvic angle, quadriceps angle, tibiofemoral angle, genu recurvatum, femur length and tibia length were measured from photographs using the Image j software. All measured variables demonstrated good to excellent intratester reliability using digital photography in both flatfeet (ICC: 0.79-0.93) and normal feet type (ICC: 0.84-0.97) groups. The findings of the current study indicate that digital photography is a highly reliable method of measurement for assessing lower extremity alignment in both flatfeet and normal feet type groups. Copyright © 2016. Published by Elsevier Ltd.

  10. Performance of The Far Ultraviolet Spectroscopic Explorer Mirror Assemblies

    Science.gov (United States)

    Ohi, Raymond G.; Barkhouser, Robert H.; Conard, Steven J.; Friedman, Scott D.; Hampton, Jeffery; Moos, H. Warren; Nikulla, Paul; Oliveira, Cristina M.; Saha, Timo T.; Obenschain, Arthur (Technical Monitor)

    2000-01-01

    The Far Ultraviolet Spectroscopic Explorer is a NASA astrophysics satellite which produces high-resolution spectra in the far-ultraviolet (90.5-118.7 nm bandpass) using a high effective area and low background detectors. The observatory was launched on its three-year mission from Cape Canaveral Air Station on 24 June 1999. The instrument contains four coaligned, normal incidence, off-axis parabolic mirrors which illuminate separate Rowland circle spectrograph channels equipped with holographically ruled diffraction gratings and delay line microchannel plate detectors. The telescope mirrors have a 352 x 387 mm aperture and 2245 mm focal length and are attached to actuator assemblies, which provide on-orbit, tip, tilt, and focus control. Two mirrors are coated with silicon carbide (SiC) and two are coated with lithium fluoride over aluminum (Al:LiF). We describe mirror assembly in-flight optical and mechanical performance. On-orbit measurements of the far-ultraviolet point spread function associated with each mirror are compared to expectations based on pre-flight laboratory measurements and modeling using the Optical Surface Analysis Code and surface metrology data. On-orbit imaging data indicate that the mirrors meet their instrument-level requirement of 50 percent and 95 percent slit transmission for the high- and mid-resolution spectrograph entrance slits, respectively. The degradation of mirror reflectivity during satellite integration and test is also discussed. The far-ultraviolet reflectivity of the SiC- and AlLiF-coated mirrors decreased about six percent and three percent, respectively, between coating and launch. Each mirror is equipped with three actuators, which consist of a stepper motor driving a ball screw via a two-stage planetary gear train. We also discuss the mechanical performance of the mirror assemblies, including actuator performance and thermal effects.

  11. Study of CD variation caused by the black border effect and out-of-band radiation in extreme ultraviolet lithography

    Science.gov (United States)

    Gao, Weimin; Niroomand, Ardavan; Lorusso, Gian F.; Boone, Robert; Lucas, Kevin; Demmerle, Wolfgang

    2014-04-01

    Although extreme ultraviolet lithography (EUVL) remains a promising candidate for semiconductor device manufacturing of the 1× nm half pitch node and beyond, many technological burdens have to be overcome. The "field edge effect" in EUVL is one of them. The image border region of an EUV mask, also known as the "black border" (BB), reflects a few percent of the incident EUV light, resulting in a leakage of light into neighboring exposure fields, especially at the corner of the field where three adjacent exposures take place. This effect significantly impacts on critical dimension (CD) uniformity (CDU) across the exposure field. To avoid this phenomenon, a light-shielding border is introduced by etching away the entire absorber and multilayer at the image border region of the EUV mask. We present a method of modeling the field edge effect (also called the BB effect) by using rigorous lithography simulation with a calibrated resist model. An additional "flare level" at the field edge is introduced on top of the exposure tool flare map to account for the BB effect. The parameters in this model include the reflectivity and the width of the BB, which are mainly determining the leakage of EUV light and its influence range, respectively. Another parameter is the transition width which represents the half shadow effect of the reticle masking blades. By setting the corresponding parameters, the simulation results match well the experimental results obtained at the IMEC's NXE:3100 EUV exposure tool. Moreover, these results indicate that the out-of-band (OoB) radiation also contributes to the CDU. Using simulation, we can also determine the OoB effect rigorously using the methodology of an "effective mask blank." The study demonstrates that the impact of BB and OoB effects on CDU can be well predicted by simulations.

  12. Solar ultraviolet-B exposure and cancer incidence and mortality in the United States, 1993–2002

    International Nuclear Information System (INIS)

    Boscoe, Francis P; Schymura, Maria J

    2006-01-01

    An inverse relationship between solar ultraviolet-B (UV-B) exposure and non-skin cancer mortality has long been reported. Vitamin D, acquired primarily through exposure to the sun via the skin, is believed to inhibit tumor development and growth and reduce mortality for certain cancers. We extend the analysis of this relationship to include cancer incidence as well as mortality, using higher quality and higher resolution data sets than have typically been available. Over three million incident cancer cases between 1998 and 2002 and three million cancer deaths between 1993 and 2002 in the continental United States were regressed against daily satellite-measured solar UV-B levels, adjusting for numerous confounders. Relative risks of reduced solar UV-B exposure were calculated for thirty-two different cancer sites. For non-Hispanic whites, an inverse relationship between solar UV-B exposure and cancer incidence and mortality was observed for ten sites: bladder, colon, Hodgkin lymphoma, myeloma, other biliary, prostate, rectum, stomach, uterus, and vulva. Weaker evidence of an inverse relationship was observed for six sites: breast, kidney, leukemia, non-Hodgkin lymphoma, pancreas, and small intestine. For three sites, inverse relationships were seen that varied markedly by sex: esophagus (stronger in males than females), gallbladder (stronger in females than males), and thyroid (only seen in females). No association was found for bone and joint, brain, larynx, liver, nasal cavity, ovary, soft tissue, male thyroid, and miscellaneous cancers. A positive association between solar UV-B exposure and cancer mortality and incidence was found for anus, cervix, oral cavity, melanoma, and other non-epithelial skin cancer. This paper adds to the mounting evidence for the influential role of solar UV-B exposure on cancer, particularly for some of the less-well studied digestive cancers. The relative risks for cancer incidence are similar to those for cancer mortality for most

  13. Beyond Extreme Ultra Violet (BEUV) Radiation from Spherically symmetrical High-Z plasmas

    Science.gov (United States)

    Yoshida, Kensuke; Fujioka, Shinsuke; Higashiguchi, Takeshi; Ugomori, Teruyuki; Tanaka, Nozomi; Kawasaki, Masato; Suzuki, Yuhei; Suzuki, Chihiro; Tomita, Kentaro; Hirose, Ryouichi; Eshima, Takeo; Ohashi, Hayato; Nishikino, Masaharu; Scally, Enda; Nshimura, Hiroaki; Azechi, Hiroshi; O'Sullivan, Gerard

    2016-03-01

    Photo-lithography is a key technology for volume manufacture of high performance and compact semiconductor devices. Smaller and more complex structures can be fabricated by using shorter wavelength light in the photolithography. One of the most critical issues in development of the next generation photo-lithography is to increase energy conversion efficiency (CE) from laser to shorter wavelength light. Experimental database of beyond extreme ultraviolet (BEUV) radiation was obtained by using spherically symmetrical high-Z plasmas generated with spherically allocated laser beams. Absolute energy and spectra of BEUV light emitted from Tb, Gd, and Mo plasmas were measured with a absolutely calibrated BEUV calorimeter and a transmission grating spectrometer. 1.0 x 1012 W/cm2 is the optimal laser intensity to produced efficient BEUV light source plasmas with Tb and Gd targets. Maximum CE is achieved at 0.8% that is two times higher than the published CEs obtained with planar targets.

  14. Analytical evaluation for the sputtering yield of monoatomic solids at normal ion incidence

    International Nuclear Information System (INIS)

    Shao Qiyun; Pan Zhengying

    1994-01-01

    A universal formula of sputtering yield for normal incidence of mono-energetic ions on single element targets is presented. The results based on this method are compared with the Monte Carlo simulation and the experimental data. By means of Wilcoxon two-sample paired signed rank test, the statistically significant difference of the above results is discussed

  15. A rotated transmission grating spectrometer for detecting spectral separation of doublet Na

    Energy Technology Data Exchange (ETDEWEB)

    Santosa, Ignatius Edi [Department of Physics Education, Sanata Dharma University, Paingan Maguwohardjo Depok Sleman, Yogyakarta 55281, Indonesia edi@usd.ac.id (Indonesia)

    2015-04-16

    Transmission gratings are usually used in a spectrometer for measuring the wavelength of light. In the common design, the position of the grating is perpendicular to the incident light. In order to increase the angular dispersion, in contrary to the common design, in this experiment the transmission grating was rotated. Due to the non-zero incident angle, the diffracted light was shifted. This rotated transmission grating spectrometer has been used to determine the separation of doublet Na. In this experiment, the diffraction angle was measured at various incident angles. The spectral separation of doublet Na was identified from the difference in the diffraction angle of two spectral lines. This spectral separation depends on the incident angle, the grating constant and the order of diffraction. As the effect of increasing the incident angle, a significant increase of the spectral separation can be achieved up to three fold.

  16. A rotated transmission grating spectrometer for detecting spectral separation of doublet Na

    International Nuclear Information System (INIS)

    Santosa, Ignatius Edi

    2015-01-01

    Transmission gratings are usually used in a spectrometer for measuring the wavelength of light. In the common design, the position of the grating is perpendicular to the incident light. In order to increase the angular dispersion, in contrary to the common design, in this experiment the transmission grating was rotated. Due to the non-zero incident angle, the diffracted light was shifted. This rotated transmission grating spectrometer has been used to determine the separation of doublet Na. In this experiment, the diffraction angle was measured at various incident angles. The spectral separation of doublet Na was identified from the difference in the diffraction angle of two spectral lines. This spectral separation depends on the incident angle, the grating constant and the order of diffraction. As the effect of increasing the incident angle, a significant increase of the spectral separation can be achieved up to three fold

  17. Effects of normal and extreme turbulence spectral parameters on wind turbine loads

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Mann, Jakob

    2017-01-01

    the recommended values in the IEC 61400-1 Ed.3 that is used for wind turbine design. The present paper investigates the impact of Mann turbulence model parameter variations on the design loads envelope for 5 MW and 10 MW reference wind turbines. Specific focus is made on the blade root loads, tower top moments...... of design loads is investigated with a focus on the commonly used Mann turbulence model. Quantification of the Mann model parameters is made through wind measurements acquired from the Høvsøre site. The parameters of the Mann model fitted to site specific observations can differ significantly from...... and tower base loads under normal turbulence and extreme turbulence, whereby the change in operating extreme and fatigue design loads obtained through turbulence model parameter variations is compared with corresponding variations obtained from random seeds of turbulence. The investigations quantify...

  18. Resonant ultrasound spectrometer

    Science.gov (United States)

    Migliori, Albert; Visscher, William M.; Fisk, Zachary

    1990-01-01

    An ultrasound resonant spectrometer determines the resonant frequency spectrum of a rectangular parallelepiped sample of a high dissipation material over an expected resonant response frequency range. A sample holder structure grips corners of the sample between piezoelectric drive and receive transducers. Each transducer is mounted on a membrane for only weakly coupling the transducer to the holder structure and operatively contacts a material effective to remove system resonant responses at the transducer from the expected response range. i.e., either a material such as diamond to move the response frequencies above the range or a damping powder to preclude response within the range. A square-law detector amplifier receives the response signal and retransmits the signal on an isolated shield of connecting cabling to remove cabling capacitive effects. The amplifier also provides a substantially frequency independently voltage divider with the receive transducer. The spectrometer is extremely sensitive to enable low amplitude resonance to be detected for use in calculating the elastic constants of the high dissipation sample.

  19. Coronary arterial Disease associated with arteriosclerosis in lower extremity: Angiographic analysis

    International Nuclear Information System (INIS)

    Kim, Ji Hye; Chung, Jin Wook; Lee, Seon Kyu; Han, Joon Koo; Park, Jae Hyung; Kim, Jae Seung; Han, Man Chung

    1993-01-01

    We performed both peripheral and coronary angiographies in 52 patients with an arteriosclerosis in lower extremities. The severity of arteriosclerotic narrowing of the coronary and peripheral arteries were compared on angiographies. An angiographic vascular score(AVS, 0-5) reflecting the number and the degree of stenosis in 12 lower extremity arteries and three major coronary arteries was assigned to each angiogram and the sun of scores in the lower extremity arteries was compared with the incidence of significant coronary artery disease (more than grade 3) and coronary score. Relation of incidence and severity of vascular stenosis and risk factors (diabetes metallitus, hypertension, smoking, and hypercholesterolemia) was also analyzed. Thirty-four of 52 patients (65%) had an angiographically significant coronary artery disease. Thirteen of these 34 patients (38%) had no clinical symptom and sign of the ischemic heart disease. There was no statistically significant difference in the incidence and severity of coronary artery disease between high (more than 30) and low AVS group in lower extremity (p>0.14). All patients had at least one risk factor and 49 of 52 patients (94%) had multiple risk factors. Coronary angiography was normal in there patients with only one risk factors, and angiographically significant coronary artery disease existed in nine of 16 cases (56.3%) with two risk factors. 13 of 17 case (76.5%) with three risk factors, and 12 of 16 cases (75.0%) with all four risk factors. There were no significant correlations between individual risk factors and incidence, severity of arteriosclerosis in coronary and lower extremity arteries. In conclusion, angiographic evaluation of the coronary artery disease in patients with lower extremity arteriosclerosis is necessary because of the high chance of coronary artery disease and difficulty in the prediction of coronary artery disease with a severity of the peripheral arteriosclerosis, presence of various risk

  20. Extreme ultraviolet and soft x-ray diagnostics of high-temperature plasmas. Annual progress report, June 1, 1976--May 31, 1977

    International Nuclear Information System (INIS)

    Moos, H.W.; Armstrong, L. Jr.; Fastie, W.G.

    1977-01-01

    The results of the research program at this laboratory from mid February 1976 until January 31, 1977, are described. The four major research areas of the program: diagnostic studies of magnetically confined high temperature plasmas, supporting laboratory studies, theoretical studies of highly ionized atoms, and instrument development are discussed. Spatially resolved ultraviolet measurements on Elmo Bumpy Torus have determined impurity confinement times. The measured oxygen densities and fluxes are being determined at Alcator; the spectroscopic studies show that hydrogen discharges in this tokamak have an effective Z close to one. A laboratory study of the Penning discharge between 100 and 300 A shows that it is a bright source for evaluation of EUV diagnostic instrumentation. Design of a multispatial element spectrometer system is complete and construction has begun. A spectrophotometer compatible with both types of facilities is available for absolute intensity calibration transfer from the NBS SURF II facility to ERDA plasma facilities. Computer programs needed for relativistic calculation of transition probabilities and wavelengths have been completed and applied to calculations in the Li, Be, Ar, and K isoelectronic sequences

  1. Both near ultraviolet radiation and the oxidizing agent hydrogen peroxide induce a 32-kDa stress protein in normal human skin fibroblasts

    International Nuclear Information System (INIS)

    Keyse, S.M.; Tyrrell, R.M.

    1987-01-01

    We have analyzed the pattern of protein synthesis in solar near ultraviolet (334 nm, 365 nm) and near visible (405 nm) irradiated normal human skin fibroblasts. Two hours after irradiation we find that one major stress protein of approximately 32 kDa is induced in irradiated cells. This protein is not induced by ultraviolet radiation at wavelengths shorter than 334 nm and is not inducible by heat shock treatment of these cells. Although sodium arsenite, diamide, and menadione all induced a 32-kDa protein, they also induced the major heat shock proteins. In contrast, the oxidizing agent, hydrogen peroxide, induced the low molecular weight stress protein without causing induction of the major heat shock proteins. A comparison of the 32-kDa proteins induced by sodium arsenite, H 2 O 2 , and solar near ultraviolet radiation using chemical peptide mapping shows that they are closely related. These results imply that the pathways for induction of the heat shock response and the 32-kDa protein are not identical and suggest that, at least in the case of radiation and treatment with H 2 O 2 , the 32-kDa protein might be induced in response to cellular oxidative stress. This conclusion is supported by the observation that depletion of endogenous cellular glutathione prior to solar near ultraviolet irradiation lowers the fluence threshold for induction of the 32-kDa stress protein

  2. Normal and Extreme Wind Conditions for Power at Coastal Locations in China.

    Science.gov (United States)

    Gao, Meng; Ning, Jicai; Wu, Xiaoqing

    2015-01-01

    In this paper, the normal and extreme wind conditions for power at 12 coastal locations along China's coastline were investigated. For this purpose, the daily meteorological data measured at the standard 10-m height above ground for periods of 40-62 years are statistically analyzed. The East Asian Monsoon that affects almost China's entire coastal region is considered as the leading factor determining wind energy resources. For most stations, the mean wind speed is higher in winter and lower in summer. Meanwhile, the wind direction analysis indicates that the prevalent winds in summer are southerly, while those in winter are northerly. The air densities at different coastal locations differ significantly, resulting in the difference in wind power density. The Weibull and lognormal distributions are applied to fit the yearly wind speeds. The lognormal distribution performs better than the Weibull distribution at 8 coastal stations according to two judgement criteria, the Kolmogorov-Smirnov test and absolute error (AE). Regarding the annual maximum extreme wind speed, the generalized extreme value (GEV) distribution performs better than the commonly-used Gumbel distribution. At these southeastern coastal locations, strong winds usually occur in typhoon season. These 4 coastal provinces, that is, Guangdong, Fujian, Hainan, and Zhejiang, which have abundant wind resources, are also prone to typhoon disasters.

  3. Design, conception, and metrology of Extreme Ultraviolet multilayers mirrors resistant environments of space and EUV sources

    International Nuclear Information System (INIS)

    Hecquet, Ch.

    2009-03-01

    The Extreme Ultraviolet Spectrum (EUV) wavelengths, which range between 13 nm and 40 nm, have many applications in science and technology. These have been developed for example in plasma physics (high order harmonics sources, X ray lasers). The work presented is about the design, the fabrication and the metrology of periodic multilayer mirrors. The main motivation of this study is to establish a cycle of development taking into account both the optical properties of reflective coatings (reflectivity, spectral selectivity, attenuation) and their behaviour under various environments. To improve the spectral selectivity, new multilayer periodic structures have been developed. They are characterized by a bimodal reflectance profile with adjustable attenuation. The effect of environment on the stability of performance is especially critical for the optical collection. The addition of material barriers has stabilized the performance of the peak reflectivity for over 200 h at 400 C deg. and it reduces the influence of other factors of instability on the reflectance. In addition, all structures have been fabricated successfully and evaluated in severe environments. (author)

  4. Note: Retrofitting an analog spectrometer for high resolving power in NUV-NIR

    Science.gov (United States)

    Taylor, Andrew S.; Batishchev, Oleg V.

    2017-11-01

    We demonstrate how an older spectrometer designed for photographic films can be efficiently retrofitted with a narrow laser-cut slit and a modern μm-pixel-size imaging CMOS camera, yielding sub-pm resolution in the broad near ultraviolet to near infrared (NUV-NIR) spectral range. Resolving power approaching 106 is achieved. Such digital retrofitting of an analog instrument is practical for research and teaching laboratories.

  5. Analysis of extreme ultraviolet spectra from laser produced rhenium plasmas

    International Nuclear Information System (INIS)

    Wu, Tao; Dunne, Padraig; O’Reilly, Fergal; Sokell, Emma; Liu, Luning; O’Sullivan, Gerry; Higashiguchi, Takeshi; Suzuki, Yuhei; Arai, Goki; Dinh, Thanh-Hung; Li, Bowen

    2015-01-01

    Extreme ultraviolet spectra of highly-charged rhenium ions were observed in the 1–7 nm region using two Nd:YAG lasers with pulse lengths of 150 ps and 10 ns, respectively, operating at a number of laser power densities. The maximum focused peak power density was 2.6 × 10 14 W cm −2 for the former and 5.5 × 10 12 W cm −2 for the latter. The Cowan suite of atomic structure codes and unresolved transition array (UTA) approach were used to calculate and interpret the emission properties of the different spectra obtained. The results show that n = 4-n = 4 and n = 4-n = 5 UTAs lead to two intense quasi-continuous emission bands in the 4.3–6.3 nm and 1.5–4.3 nm spectral regions. As a result of the different ion stage distributions in the plasmas induced by ps and ns laser irradiation the 1.5–4.3 nm UTA peak moves to shorter wavelength in the ps laser produced plasma spectra. For the ns spectrum, the most populated ion stage during the lifetime of this plasma that could be identified from the n = 4-n = 5 transitions was Re 23+ while for the ps plasma the presence of significantly higher stages was demonstrated. For the n = 4-n = 4 4p 6 4d N -4p 5 4d N+1  + 4p 6 4d N−1 4f transitions, the 4d-4f transitions contribute mainly in the most intense 4.7–5.5 nm region while the 4p-4d subgroup gives rise to a weaker feature in the 4.3–4.7 nm region. A number of previously unidentified spectral features produced by n = 4-n = 5 transitions in the spectra of Re XVI to Re XXXIX are identified. (paper)

  6. Design, conception, and metrology of Extreme Ultraviolet multilayers mirrors resistant environments of space and EUV sources; Conception, realisation et metrologie de miroirs multicouches pour l'extreme ultraviolet resistants aux environnements du spatial et des sources EUV

    Energy Technology Data Exchange (ETDEWEB)

    Hecquet, Ch.

    2009-03-15

    The Extreme Ultraviolet Spectrum (EUV) wavelengths, which range between 13 nm and 40 nm, have many applications in science and technology. These have been developed for example in plasma physics (high order harmonics sources, X ray lasers). The work presented is about the design, the fabrication and the metrology of periodic multilayer mirrors. The main motivation of this study is to establish a cycle of development taking into account both the optical properties of reflective coatings (reflectivity, spectral selectivity, attenuation) and their behaviour under various environments. To improve the spectral selectivity, new multilayer periodic structures have been developed. They are characterized by a bimodal reflectance profile with adjustable attenuation. The effect of environment on the stability of performance is especially critical for the optical collection. The addition of material barriers has stabilized the performance of the peak reflectivity for over 200 h at 400 C deg. and it reduces the influence of other factors of instability on the reflectance. In addition, all structures have been fabricated successfully and evaluated in severe environments. (author)

  7. 4D space access neutron spectrometer 4SEASONS (SIKI)

    International Nuclear Information System (INIS)

    Kajimoto, Ryoichi; Nakamura, Mitsutaka

    2010-01-01

    The 4D Space Access Neutron Spectrometer (4SEASONS) is a high-intensity Fermi-chopper spectrometer. It is intended to provide high counting rate for thermal neutrons with medium resolution (ΔE/E i -6% at E=0) to efficiently collect weak inelastic signals from novel spin and lattice dynamics especially in high-T c superconductors and related materials. To achieve this goal, the spectrometer equips advanced instrumental design such as an elliptic-shaped converging neutron guide coated with high-Q c (m=3-4) supermirror, and long-length (2.5 m) 3 He position sensitive detectors (PSDs) arranged cylindrically inside the vacuum scattering chamber. Furthermore, the spectrometer is ready for multi-incident-energy measurements by the repetition rate multiplication method, which greatly improves the measurement efficiency. (author)

  8. Ultra-Wideband Optical Modulation Spectrometer (OMS) Development

    Science.gov (United States)

    Gardner, Jonathan (Technical Monitor); Tolls, Volker

    2004-01-01

    The optical modulation spectrometer (OMS) is a novel, highly efficient, low mass backend for heterodyne receiver systems. Current and future heterodyne receiver systems operating at frequencies up to a few THz require broadband spectrometer backends to achieve spectral resolutions of R approximately 10(exp 5) to 10(exp 6) to carry out many important astronomical investigations. Among these are observations of broad emission and absorption lines from extra-galactic objects at high redshifts, spectral line surveys, and observations of planetary atmospheres. Many of these lines are pressure or velocity broadened with either large half-widths or line wings extending over several GHz. Current backend systems can cover the needed bandwidth only by combining the output of several spectrometers, each with typically up to 1 GHz bandwidth, or by combining several frequency-shifted spectra taken with a single spectrometer. An ultra-wideband optical modulation spectrometer with 10 - 40 GHz bandwidth will enable broadband ob- servations without the limitations and disadvantages of hybrid spectrometers. Spectrometers like the OMS will be important for both ground-based observatories and future space missions like the Single Aperture Far-Infrared Telescope (SAFIR) which might carry IR/submm array heterodyne receiver systems requiring a spectrometer for each array pixel. Small size, low mass and small power consumption are extremely important for space missions. This report summarizes the specifications developed for the OMS and lists already identified commercial parts. The report starts with a review of the principle of operation, then describes the most important components and their specifications which were derived from theory, and finishes with a conclusion and outlook.

  9. The Harwell back-scattering spectrometer

    International Nuclear Information System (INIS)

    Windsor, C.G.; Bunce, L.J.; Borcherds, P.H.; Cole, I.; Fitzmaurice, M.; Johnson, D.A.G.; Sinclair, R.N.

    1976-01-01

    Neutron diffraction spectra in which both high resolution (Δ Q/Q approximately equal to 0.003) and high intensity are maintained up to scattering vectors as high as 30A -1 (sin theta/lambda = 2.5) have been obtained with the back-scattering spectrometer (BSS) recently installed on the Harwell electron linac. The theory behind the spectrometer design is described, and it is shown how the above resolution requirement leads to its basic features of a 12m incident flight path, a 2m scattering flight path and a scattering angle (2theta) acceptance from 165 0 to 175 0 . Examples of the resolution, intensity and background are given. It is shown that the problem of frame overlap may be overcome by using an absorbing filter. (author)

  10. Calibration of personal dosemeters for extremities of fields of radiation gamma

    International Nuclear Information System (INIS)

    Papadopulos, S.; Gregori, S.; Moreno, B.; Guillen, J.

    1998-01-01

    In this work the conversion factors are presented obtained experimentally of kerma in free air in equivalent dose H(d,O o ) in finger and in arm for fields of radiation gamma of normal incidence dosemeters of extremities was irradiated, based on detecting TL of LIF 7 (TLD-700, Harshaw), placed on the surface of the finger phantom and arm

  11. Ultraviolet Radiation Exposure and the Incidence of Oral, Pharyngeal and Cervical Cancer and Melanoma: An Analysis of the SEER Data.

    Science.gov (United States)

    Adams, Spencer; Lin, Jie; Brown, Derek; Shriver, Craig D; Zhu, Kangmin

    2016-01-01

    Based on the hypothesis that ultraviolet radiation (UVR) exposure can cause DNA damage that may activate dormant viruses such as human papilloma virus, a recent ecological study, which estimated state-level UVR exposure, reported positive correlations between annual UVR exposure and the incidence of oral, pharyngeal, and cervical cancer in 16 U.S. states using the International Agency for Research on Cancer (IARC) data. The purpose of the current study was to further investigate whether the annual UVR level, estimated on a county level, is associated with incidence rates of such cancers using the National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) 18 data. If UVR exposure is associated with incidence of these cancer types, we would expect to see a similar or stronger association with melanoma because UVR exposure is a well-demonstrated risk factor for this disease. Thus, we also included melanoma in the study. The study subjects were White and Black individuals with oral, pharyngeal, cervical cancer or melanoma diagnosed between 1973 and 2011 from the SEER 18 data. UVR was estimated at the county level and grouped into high-, medium- and low-exposure levels. Age-adjusted incidence rates of cancer were calculated and compared among the UVR exposure groups. The comparisons were also stratified by sex and race. There was an inverse association between UVR exposure and incidence of oral, pharyngeal, and cervical cancer. The inverse association was also observed for melanoma. When stratified by race and sex, the inverse associations remained except for melanoma among Blacks. In contrast to a previous study, our study found that there were inverse associations between UVR exposure and the incidence of oral, pharyngeal, and cervical cancer, as well as of melanoma. Our findings are in agreement with several other published studies reporting no positive correlation between UVR exposure and the incidence rates of oral, pharyngeal, and cervical

  12. Revised ultraviolet absorption cross sections of H2CO for the HITRAN database

    International Nuclear Information System (INIS)

    Chance, K.; Orphal, J.

    2011-01-01

    A revised set of temperature-dependent absorption cross sections for ultraviolet (UV) measurements of formaldehyde (H 2 CO) has been derived from two existing sets of laboratory cross sections, one using a Fourier transform spectrometer (FTS), and one using a grating instrument. This is conducted to satisfy the recommendation of the HITRAN Advisory Committee to provide a dataset with the spectral resolution and wavelength calibration of Fourier transform spectrometer measurements with the better intensity calibration that the grating measurements obtained. The re-scaled cross sections are now in the HITRAN database, and are recommended for use in atmospheric measurements and modeling, including photolysis calculations.

  13. Solar ultraviolet-B exposure and cancer incidence and mortality in the United States, 1993–2002

    Directory of Open Access Journals (Sweden)

    Boscoe Francis P

    2006-11-01

    Full Text Available Abstract Background An inverse relationship between solar ultraviolet-B (UV-B exposure and non-skin cancer mortality has long been reported. Vitamin D, acquired primarily through exposure to the sun via the skin, is believed to inhibit tumor development and growth and reduce mortality for certain cancers. Methods We extend the analysis of this relationship to include cancer incidence as well as mortality, using higher quality and higher resolution data sets than have typically been available. Over three million incident cancer cases between 1998 and 2002 and three million cancer deaths between 1993 and 2002 in the continental United States were regressed against daily satellite-measured solar UV-B levels, adjusting for numerous confounders. Relative risks of reduced solar UV-B exposure were calculated for thirty-two different cancer sites. Results For non-Hispanic whites, an inverse relationship between solar UV-B exposure and cancer incidence and mortality was observed for ten sites: bladder, colon, Hodgkin lymphoma, myeloma, other biliary, prostate, rectum, stomach, uterus, and vulva. Weaker evidence of an inverse relationship was observed for six sites: breast, kidney, leukemia, non-Hodgkin lymphoma, pancreas, and small intestine. For three sites, inverse relationships were seen that varied markedly by sex: esophagus (stronger in males than females, gallbladder (stronger in females than males, and thyroid (only seen in females. No association was found for bone and joint, brain, larynx, liver, nasal cavity, ovary, soft tissue, male thyroid, and miscellaneous cancers. A positive association between solar UV-B exposure and cancer mortality and incidence was found for anus, cervix, oral cavity, melanoma, and other non-epithelial skin cancer. Conclusion This paper adds to the mounting evidence for the influential role of solar UV-B exposure on cancer, particularly for some of the less-well studied digestive cancers. The relative risks for cancer

  14. Ultraviolet spectrophotometry from Gemini 11 of stars in Orion

    International Nuclear Information System (INIS)

    Morgan, T.H.; Spear, G.G.; Kondo, Y.; Henize, K.G.

    1975-01-01

    Ultraviolet spectrophotometry in the wavelength region 2600--3600 A is reported for the bright early-type stars β, eta, γ, delta, iota, epsilon, sigma, xi, and kappa Ori. The results are in good agreement with other observations, and with the possible exception of the supergiants, are in good agreement with recent line-blanketed model atmospheres. There is evidence that the supergiants possess a small ultraviolet deficiency shortward of 3000 A relative to main-sequence stars of similar spectral type. The most extreme example of this phenomenon is the star kappa Ori

  15. Miniaturized NIR scanning grating spectrometer for use in mobile phones

    Science.gov (United States)

    Knobbe, Jens; Pügner, Tino; Grüger, Heinrich

    2016-05-01

    An extremely miniaturized scanning grating spectrometer at the size of a sugar cube has been developed at Fraunhofer IPMS. To meet the requirements for the integration into a mobile phone a new system approach has been pursued. The key component within the system is a silicon-based deflectable diffraction grating with an integrated driving mechanism. A first sample of the new spectrometer was built and characterized. It was found to have a spectral range from 950 nm to 1900 nm at a resolution of 10 nm. The results show that the performance of the new MEMS spectrometer is in good agreement with the requirements for mobile phone integration.

  16. Time-of-flight small-angle scattering spectrometers on pulsed neutron sources

    International Nuclear Information System (INIS)

    Ostanevich, Yu.M.

    1987-01-01

    The operation principles, constructions, advantages and shortcomings of known time-of-flight small angle neutron scattering (TOF SANS) spectrometers built up with pulsed neutron sources are reviewed. The most important characteristics of TOF SANS apparatuses are rather a high luminosity and the possibility for the measurement in an extremely wide range of scattering vector at a single exposure. This is achieved by simultaneous employment of white beam, TOF technique for wave length-scan and the commonly known angle-scan. However, the electronic equipment, data-matching programs, and the measurement procedure, necessary for accurate normalization of experimental data and their transformation into absolute cross-section scale, they all become more complex, as compared with those for SANS apparatuses operating on steady-state neutron sources, where only angle-scan is used

  17. Electron impact collision strengths and transition rates for extreme ultraviolet emission from Xe10+

    International Nuclear Information System (INIS)

    Shen Yunfeng; Gao Cheng; Zeng Jiaolong

    2009-01-01

    The energy levels, oscillator strengths, and electron impact collision strengths are calculated for the Xe 10+ ion using the configuration interaction scheme implemented by the Flexible Atomic Code. These data pertain to the 3917 levels belonging to the following configurations: 4s 2 4p 6 4d 8 , 4s 2 4p 6 4d 7 4f, 4s 2 4p 6 4d 7 5l (l = s, p, d, or f), 4s 2 4p 5 4d 9 , 4s 2 4p 5 4d 8 4f, 4s 2 4p 5 4d 8 5l, 4s 2 4p 6 4d 6 5s5p, 4s 2 4p 6 4d 6 5p5d. Configuration interactions among these configurations are included in the calculation. Collision strengths are obtained at 10 scattered electron energies (1-1000 eV) and are tabulated here at five representative energies of 10, 50, 100, 500, and 1000 eV. Effective collision strengths are obtained by assuming a Maxwellian electron velocity distribution at 10 temperatures ranging from 10 to 100 eV, and are tabulated at five representative temperatures of 10, 30, 50, 70 and 100 eV in this work. The whole data set should be useful for research involving extreme ultraviolet emission from Xe 10+

  18. On the Importance of the Flare's Late Phase for the Solar Extreme Ultraviolet Irradiance

    Science.gov (United States)

    Woods, Thomas N.; Eparvier, Frank; Jones, Andrew R.; Hock, Rachel; Chamberlin, Phillip C.; Klimchuk, James A.; Didkovsky, Leonid; Judge, Darrell; Mariska, John; Bailey, Scott; hide

    2011-01-01

    The new solar extreme ultraviolet (EUV) irradiance observations from NASA Solar Dynamics Observatory (SDO) have revealed a new class of solar flares that are referred to as late phase flares. These flares are characterized by the hot 2-5 MK coronal emissions (e.g., Fe XVI 33.5 nm) showing large secondary peaks that appear many minutes to hours after an eruptive flare event. In contrast, the cool 0.7-1.5 MK coronal emissions (e.g., Fe IX 17.1 nm) usually dim immediately after the flare onset and do not recover until after the delayed second peak of the hot coronal emissions. We refer to this period of 1-5 hours after the fl amrea sin phase as the late phase, and this late phase is uniquely different than long duration flares associated with 2-ribbon flares or large filament eruptions. Our analysis of the late phase flare events indicates that the late phase involves hot coronal loops near the flaring region, not directly related to the original flaring loop system but rather with the higher post-eruption fields. Another finding is that space weather applications concerning Earth s ionosphere and thermosphere need to consider these late phase flares because they can enhance the total EUV irradiance flare variation by a factor of 2 when the late phase contribution is included.

  19. Effects of antibiotics and ultraviolet radiation on the halophilic blue-green alga

    International Nuclear Information System (INIS)

    Yopp, J.H.; Albright, G.; Miller, D.M.; Southern Illinois Univ., Carbondale

    1979-01-01

    The effects of a variety of antibiotics, ultraviolet radiation and N-methyl-N-nitro-N-nitro-N-nitrosoguanidine (NTG) on the survival and mutability of the halophilic blue-green alga, Aphanothece halophytica, were determined. The halophile was found extremely sensitive to penicillin G and bacitracin; moderately sensitive to novobiocin, amino acid analogs, chloramphenicol and streptomycin; and tolerant to actidione and hydroxyurea. Ultraviolet and NTG killing curves and photoreactivation capabilities were seimilar to those reported for other members of the Chroococcales. Three stable morphological mutants were obtained by ultraviolet and NTG treatment, the latter being much more efficient in the production of mutants. (orig.)

  20. High-flux normal incidence monochromator for circularly polarized synchrotron radiation

    International Nuclear Information System (INIS)

    Schaefers, F.; Peatman, W.; Eyers, A.; Heckenkamp, C.; Schoenhense, G.; Heinzmann, U.

    1986-01-01

    A 6.5-m normal incidence monochromator installed at the storage ring BESSY, which is optimized for a high throughput of circularly polarized off-plane radiation at moderate resolution is described. The monochromator employs two exit slits and is specially designed and used for low-signal experiments such as spin- and angle-resolved photoelectron spectroscopy on solids, adsorbates, free atoms, and molecules. The Monk--Gillieson mounting (plane grating in a convergent light beam) allows for large apertures with relatively little astigmatism. With two gratings, a flux of more than 10 11 photons s -1 bandwidth -1 (0.2--0.5 nm) with a circular polarization of more than 90% in the wavelength range from 35 to 675 nm is achieved

  1. An imaging proton spectrometer for short-pulse laser plasma experiments

    International Nuclear Information System (INIS)

    Chen Hui; Hazi, A. U.; Maren, R. van; Chen, S. N.; Le Pape, S.; Rygg, J. R.; Shepherd, R.; Fuchs, J.; Gauthier, M.

    2010-01-01

    The ultraintense short pulse laser pulses incident on solid targets can generate energetic protons. In addition to their potentially important applications such as in cancer treatments and proton fast ignition, these protons are essential to understand the complex physics of intense laser plasma interaction. To better characterize these laser-produced protons, we designed and constructed a novel spectrometer that will not only measure proton energy distribution with high resolution but also provide its angular characteristics. The information obtained from this spectrometer compliments those from commonly used diagnostics including radiochromic film packs, CR39 nuclear track detectors, and nonimaging magnetic spectrometers. The basic characterizations and sample data from this instrument are presented.

  2. An imaging proton spectrometer for short-pulse laser plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Chen Hui; Hazi, A. U.; Maren, R. van; Chen, S. N.; Le Pape, S.; Rygg, J. R.; Shepherd, R. [Lawrence Livermore National Laboratory, Livemore, California 94551 (United States); Fuchs, J.; Gauthier, M. [LULI Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2010-10-15

    The ultraintense short pulse laser pulses incident on solid targets can generate energetic protons. In addition to their potentially important applications such as in cancer treatments and proton fast ignition, these protons are essential to understand the complex physics of intense laser plasma interaction. To better characterize these laser-produced protons, we designed and constructed a novel spectrometer that will not only measure proton energy distribution with high resolution but also provide its angular characteristics. The information obtained from this spectrometer compliments those from commonly used diagnostics including radiochromic film packs, CR39 nuclear track detectors, and nonimaging magnetic spectrometers. The basic characterizations and sample data from this instrument are presented.

  3. Differential features of sister-chromatid exchange responses to ultraviolet radiation and caffeine in xeroderma pigmentosum lymphoblastoid cell lines

    International Nuclear Information System (INIS)

    Tohda, H.; Oikawa, A.

    1983-01-01

    Sister-chromatic exchange (SCE) induced by ultraviolet (UV) irradiation and viability after UV irradiation were studied in lymphoblastoid cell lines derived from 7 patients with xeroderma pigmentosum (XP) and 6 normal donors. UV irradiation caused significant increases of SCEs in both XP and normal cells. In 3 XP cell lines, which were deficient in unscheduled DNA synthesis (UDS) and sensitive to the killing effect of UV, very high SCE frequencies were observed after UV irradiation. Cells from a patient with the De Sanctis-Cacchione syndrome were the most sensitive to UV in terms of both SCE induction and cell killing. In 2 of 4 UDS-proficient XP cell lines tested, the incidences of UV-induced SCEs were similar to those in normal cell lines, but in 2 other UDS-proficient lines from 2 XP patients with skin cancer, the frequencies of UV-induced SCEs were significantly higher than in normal cells. (orig./AJ)

  4. Laser-assisted vacuum arc extreme ultraviolet source: a comparison of picosecond and nanosecond laser triggering

    Science.gov (United States)

    Beyene, Girum A.; Tobin, Isaac; Juschkin, Larissa; Hayden, Patrick; O'Sullivan, Gerry; Sokell, Emma; Zakharov, Vassily S.; Zakharov, Sergey V.; O'Reilly, Fergal

    2016-06-01

    Extreme ultraviolet (EUV) light generation by hybrid laser-assisted vacuum arc discharge plasmas, utilizing Sn-coated rotating-disc-electrodes, was investigated. The discharge was initiated by localized ablation of the liquid tin coating of the cathode disc by a laser pulse. The laser pulse, at 1064 nm, was generated by Nd:YAG lasers with variable energy from 1 to 100 mJ per pulse. The impact of shortening the laser pulse from 7 ns to 170 ps on the EUV generation has been investigated in detail. The use of ps pulses resulted in an increase in emission of EUV radiation. With a fixed discharge energy of ~4 J, the EUV conversion efficiency tends to plateau at ~2.4  ±  0.25% for the ps laser pulses, while for the ns pulses, it saturates at ~1.7  ±  0.3%. Under similar discharge and laser energy conditions, operating the EUV source with the ps-triggering resulted also in narrower spectral profiles of the emission in comparison to ns-triggering. The results indicate an advantage in using ps-triggering in laser-assisted discharges to produce brighter plasmas required for applications such as metrology.

  5. Extreme ultraviolet emission and confinement of tin plasmas in the presence of a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Amitava, E-mail: roy@fzu.cz, E-mail: aroy@barc.gov.in [School of Nuclear Engineering and Center for Materials Under Extreme Environment(CMUXE), Purdue University, West Lafayette, Indiana 47907 (United States); HiLASE Project, Department of Diode-pumped Lasers, Institute of Physics of the ASCR, Na Slovance 2, 18221 Prague (Czech Republic); Murtaza Hassan, Syed; Harilal, Sivanandan S.; Hassanein, Ahmed [School of Nuclear Engineering and Center for Materials Under Extreme Environment(CMUXE), Purdue University, West Lafayette, Indiana 47907 (United States); Endo, Akira; Mocek, Tomas [HiLASE Project, Department of Diode-pumped Lasers, Institute of Physics of the ASCR, Na Slovance 2, 18221 Prague (Czech Republic)

    2014-05-15

    We investigated the role of a guiding magnetic field on extreme ultraviolet (EUV) and ion emission from a laser produced Sn plasma for various laser pulse duration and intensity. For producing plasmas, planar slabs of pure Sn were irradiated with 1064 nm, Nd:YAG laser pulses with varying pulse duration (5–15 ns) and intensity. A magnetic trap was fabricated with the use of two neodymium permanent magnets which provided a magnetic field strength ∼0.5 T along the plume expansion direction. Our results indicate that the EUV conversion efficiency do not depend significantly on applied axial magnetic field. Faraday Cup ion analysis of Sn plasma show that the ion flux reduces by a factor of ∼5 with the application of an axial magnetic field. It was found that the plasma plume expand in the lateral direction with peak velocity measured to be ∼1.2 cm/μs and reduced to ∼0.75 cm/μs with the application of an axial magnetic field. The plume expansion features recorded using fast photography in the presence and absence of 0.5 T axial magnetic field are simulated using particle-in-cell code. Our simulation results qualitatively predict the plasma behavior.

  6. Characterization of extreme ultraviolet light-emitting plasmas from a laser-excited fluorine containing liquid polymer jet target

    International Nuclear Information System (INIS)

    Abel, B.; Assmann, J.; Faubel, M.; Gaebel, K.; Kranzusch, S.; Lugovoj, E.; Mann, K.; Missalla, T.; Peth, Ch.

    2004-01-01

    The operation of a liquid polymer jet laser-plasma target and the characterization of the absolute x-ray emission in the extreme ultraviolet wavelength window from 9-19 nm is reported. The target is a liquid polymer (perfluoro-polyether) that is exposed to pulsed and focused laser light at 532 nm in the form of a thin, liquid microjet (d=40 to 160 μm) in vacuum. The spectral brightness of the source in the 13 nm range is relatively high because a large fraction of radiative energy is emitted in one single line only, which is assigned to be the 2p-3d F VII doublet at 12.8 nm, with a laser energy conversion efficiency of 0.45% (2π sr, 2% bandwidth) in our initial experiment. A further increase of the relative emission has been found in the wavelength range between 7 and 17 nm when the jet diameter was increased from 40 to 160 μm. The two-dimensional spatial profile of the source plasma (d=40 to 50 μm) has been analyzed with a pinhole camera

  7. Ghrelin gene: identification of missense variants and a frameshift mutation in extremely obese children and adolescents and healthy normal weight students.

    Science.gov (United States)

    Hinney, Anke; Hoch, Anne; Geller, Frank; Schäfer, Helmut; Siegfried, Wolfgang; Goldschmidt, Hanspeter; Remschmidt, Helmut; Hebebrand, Johannes

    2002-06-01

    Ghrelin induces obesity via central and peripheral mechanisms. Administration of ghrelin leads to increased food intake and decreased fat utilisation in rodents. Ghrelin levels are decreased in obese individuals. Recently, a polymorphism (Arg-51-Gln) within the ghrelin gene (GHRL) was described to be associated with obesity. We screened the GHRL coding region in 215 extremely obese German Children and adolescents (study group 1) and 93 normal weight students (study group 2) by single strand conformation polymorphism analysis (SSCP). We found the two previously described single nucleotide polymorphisms (SNP: Arg-51-Gln and Leu-72-Met) in similar frequencies in study groups 1 and 2 (allele frequencies were: 0.019 and 0.016 for the 51-Gln allele and 0.091 and 0.086 for the 72-Met allele, respectively). Hence, we could not confirm the previous finding. Additionally, two novel variants were identified within the coding region: (1) We detected one healthy normal weight individual with a frameshift mutation (2bp deletion at codon 34). This frameshift mutation affects the coding region of the mature ghrelin. Hence, it is highly likely that the normal weight student is haplo-insufficient for ghrelin. (2) An A to T transversion leads to an amino acid exchange from Gln to Leu at amino acid position 90. The frequency of the 90-Leu allele was significantly higher in the extremely obese children and adolescents (0.063) than in the normal weight students (0.016; nominal p = 0.011). Additionally, we genotyped 134 underweight students and 44 normal weight adults for this SNP. Genotype frequencies were similar in extremely obese children and adolescents, underweight students and normal weight adults (p > 0.8). In conclusion, we identified four sequence variants in the coding region of the ghrelin gene in individuals belonging to different weight extremes. A frameshift mutation was detected in a normal weight individual. None of the variants seem to influence weight regulation.

  8. Charged-particle magnetic-quadrupole spectrometer for neutron induced reactions

    International Nuclear Information System (INIS)

    Haight, R.C.; Grimes, S.M.; Tuckey, B.J.; Anderson, J.D.

    1975-01-01

    A spectrometer has been developed for measuring the charged particle production cross sections and spectra in neutron-induced reactions. The spectrometer consists of a magnetic quadrupole doublet which focuses the charged particles onto a silicon surface barrier detector telescope which is 2 meters or more from the irradiated sample. Collimators, shielding, and the large source-to-detector distance reduce the background enough to use the spectrometer with a 14-MeV neutron source producing 4 . 10 12 n/s. The spectrometer has been used in investigations of proton, deuteron, and alpha particle production by 14-MeV neutrons incident on various materials. Protons with energies as low as 1.1 MeV have been measured. The good resolution of the detectors has also made possible an improved measurement of the neutron- neutron scattering length from the 0 0 proton spectrum from deuteron breakup by 14-MeV neutrons

  9. Reply to “Comment on ‘Ultrafast Demagnetization Measurements Using Extreme Ultraviolet Light: Comparison of Electronic and Magnetic Contributions’ ”

    Directory of Open Access Journals (Sweden)

    Emrah Turgut

    2013-09-01

    Full Text Available In the following, we show that the conclusions of our article titled “Ultrafast Demagnetization Measurements Using Extreme Ultraviolet Light: Comparison of Electronic and Magnetic Contributions” are correct. The Comment of Vodungbo et al. argues that a unique determination of the refractive index variation over time is not possible using the data set presented in our paper. Furthermore, it was suggested that the lack of uniqueness allows for the possibility of a very specific time-dependent trajectory of the refractive index in the complex plane that could give rise to a large nonmagnetic modulation of the measured asymmetry, in spite of a negligible change in the s-polarized reflectivity. In this Reply, we conclusively show that any nonmagnetic contribution to the measured asymmetry is indeed negligible (<2%, below the noise level of the magnetic-asymmetry measurements. First, we use a few additional measurements to unambiguously rule out the presence of any nonmagnetic contributions to the signal. Second, we show that the scenario proposed by Vodungbo et al. would require both exotic time and energy dependences of the refractive index near the M edge that are extremely unlikely (virtually impossible in real materials. Thus, the conclusions of our original article are preserved.

  10. Progress in coherent lithography using table-top extreme ultraviolet lasers

    Science.gov (United States)

    Li, Wei

    Nanotechnology has drawn a wide variety of attention as interesting phenomena occurs when the dimension of the structures is in the nanometer scale. The particular characteristics of nanoscale structures had enabled new applications in different fields in science and technology. Our capability to fabricate these nanostructures routinely for sure will impact the advancement of nanoscience. Apart from the high volume manufacturing in semiconductor industry, a small-scale but reliable nanofabrication tool can dramatically help the research in the field of nanotechnology. This dissertation describes alternative extreme ultraviolet (EUV) lithography techniques which combine table-top EUV laser and various cost-effective imaging strategies. For each technique, numerical simulations, system design, experiment result and its analysis will be presented. In chapter II, a brief review of the main characteristics of table-top EUV lasers will be addressed concentrating on its high power and large coherence radius that enable the lithography application described herein. The development of a Talbot EUV lithography system which is capable of printing 50nm half pitch nanopatterns will be illustrated in chapter III. A detailed discussion of its resolution limit will be presented followed by the development of X-Y-Z positioning stage, the fabrication protocol for diffractive EUV mask, and the pattern transfer using self- developed ion beam etching, and the dose control unit. In addition, this dissertation demonstrated the capability to fabricate functional periodic nanostructures using Talbot EUV lithography. After that, resolution enhancement techniques like multiple exposure, displacement Talbot EUV lithography, fractional Talbot EUV lithography, and Talbot lithography using 18.9nm amplified spontaneous emission laser will be demonstrated. Chapter IV will describe a hybrid EUV lithography which combines the Talbot imaging and interference lithography rendering a high resolution

  11. Applicability of portable spectrometer for activity measurement of contaminated water and soil samples

    International Nuclear Information System (INIS)

    Krishnan, Narayani; Rekha, A.K.; Anilkumar, S.; Sharma, D.N.

    2011-01-01

    The absolute activity measurement is often necessary to assess the impact of radioactivity contamination due to various incidents. Commercially available portable spectrometer cum dose rate meter is used for the identification of radionuclides involved and associated dose rates. In this paper the authors discusses the study carried out on the applicability of portable spectrometer for absolute radioactivity measurements in water and soil matrices. The portable spectrometer and the methodology developed for activity estimation has been used in many insitu applications. (author)

  12. A Soft X-ray Spectrometer using a Highly Dispersive Multilayer Grating

    International Nuclear Information System (INIS)

    Warwick, Tony; Padmore, Howard; Voronov, Dmitriy; Yashchuk, Valeriy

    2010-01-01

    There is a need for higher resolution spectrometers as a tool for inelastic x-ray scattering. Currently, resolving power around R = 10,000 is advertised. Measured RIXS spectra are often limited by this instrumental resolution and higher resolution spectrometers using conventional gratings would be prohibitively large. We are engaged in a development program to build blazed multilayer grating structures for diffracting soft x-rays in high order. This leads to spectrometers with dispersion much higher than is possible using metal coated-gratings. The higher dispersion then provides higher resolution and the multilayer gratings are capable of operating away from grazing incidence as required. A spectrometer design is presented with a total length 3.8 m and capable of 10 5 resolving power.

  13. A Soft X-ray Spectrometer using a Highly Dispersive Multilayer Grating

    International Nuclear Information System (INIS)

    Warwick, Tony; Padmore, Howard; Voronov, Dmitriy; Yashchuk, Valeriy

    2010-01-01

    There is a need for higher resolution spectrometers as a tool for inelastic x-ray scattering. Currently, resolving power around R = 10,000 is advertised. Measured RIXS spectra are often limited by this instrumental resolution and higher resolution spectrometers using conventional gratings would be prohibitively large. We are engaged in a development program to build blazed multilayer grating structures for diffracting soft x-rays in high order. This leads to spectrometers with dispersion much higher than is possible using metal coated-gratings. The higher dispersion then provides higher resolution and the multilayer gratings are capable of operating away from grazing incidence as required. A spectrometer design is presented with a total length 3.8m and capable of 10 5 resolving power.

  14. Near-ultraviolet radiation-induced damage using an actinic reticuloid strain as a possible sensitive model

    International Nuclear Information System (INIS)

    Kralli, A.

    1987-01-01

    The introduction to this thesis consists of a review of current concepts regarding the effects of ultraviolet radiation on living cells. Actinic reticuloid, a disease condition for which a near-ultraviolet radiation cellular sensitivity has been proposed as an underlying cause, is described. The experimental work, the broad aim of which is to expand existing knowledge of the effects of near-ultraviolet radiation that may lead to cell lethality, has centred upon the irradiation of a normal human skin fibroblast strain, GM730, and a strain derived from an actinic reticuloid patient, AR6LO. Parts 1 and 2 examine the effects of the irradiation on both normal and actinic fibroblast sensitivities to a range of ultraviolet wavelengths. The next two sections include observations on the protective effect of Trolox-C, a vitamin E analogue and the sensitization resulting from the replacement of the irradiation medium by a deuterated one, using both normal and actinic reticuloid fibroblasts. The final part examines broad-band near- and far-ultraviolet radiation induced membrane damage by the use of radioactively labelled rubidium as a potassium analogue. (author)

  15. Ion beam deposition system for depositing low defect density extreme ultraviolet mask blanks

    Science.gov (United States)

    Jindal, V.; Kearney, P.; Sohn, J.; Harris-Jones, J.; John, A.; Godwin, M.; Antohe, A.; Teki, R.; Ma, A.; Goodwin, F.; Weaver, A.; Teora, P.

    2012-03-01

    Extreme ultraviolet lithography (EUVL) is the leading next-generation lithography (NGL) technology to succeed optical lithography at the 22 nm node and beyond. EUVL requires a low defect density reflective mask blank, which is considered to be one of the top two critical technology gaps for commercialization of the technology. At the SEMATECH Mask Blank Development Center (MBDC), research on defect reduction in EUV mask blanks is being pursued using the Veeco Nexus deposition tool. The defect performance of this tool is one of the factors limiting the availability of defect-free EUVL mask blanks. SEMATECH identified the key components in the ion beam deposition system that is currently impeding the reduction of defect density and the yield of EUV mask blanks. SEMATECH's current research is focused on in-house tool components to reduce their contributions to mask blank defects. SEMATECH is also working closely with the supplier to incorporate this learning into a next-generation deposition tool. This paper will describe requirements for the next-generation tool that are essential to realize low defect density EUV mask blanks. The goal of our work is to enable model-based predictions of defect performance and defect improvement for targeted process improvement and component learning to feed into the new deposition tool design. This paper will also highlight the defect reduction resulting from process improvements and the restrictions inherent in the current tool geometry and components that are an impediment to meeting HVM quality EUV mask blanks will be outlined.

  16. Comparison of photospheric electric current and ultraviolet and x-ray emission in a solar active region

    International Nuclear Information System (INIS)

    Haisch, B.M.; Bruner, M.E.; Hagyard, M.J.; Bonnet, R.M.; NASA, Marshall Space Flight Center, Huntsville, AL; ESA, Paris, France)

    1986-01-01

    This paper presents an extensive set of coordinated observations of a solar active region, taking into account spectroheliograms obtained with the aid of the Solar Maximum Mission (SMM) Ultraviolet Spectrometer Polarimeter (UVSP) instrument, SMM soft x-ray polychromator (XRP) raster maps, and high spatial resolution ultraviolet images of the sun in Lyman-alpha and in the 1600 A continuum. These data span together the upper solar atmosphere from the temperature minimum to the corona. The data are compared to maps of the inferred photospheric electric current derived from the Marshall Space Flight Center (MSFC) vector magnetograph observations. Some empirical correlation is found between regions of inferred electric current density and the brightest features in the ultraviolet continuum and to a lesser extent those seen in Lyman-alpha within an active region. 29 references

  17. Ultraviolet Raman scattering from persistent chemical warfare agents

    Science.gov (United States)

    Kullander, Fredrik; Wästerby, Pär.; Landström, Lars

    2016-05-01

    Laser induced Raman scattering at excitation wavelengths in the middle ultraviolet was examined using a pulsed tunable laser based spectrometer system. Droplets of chemical warfare agents, with a volume of 2 μl, were placed on a silicon surface and irradiated with sequences of laser pulses. The Raman scattering from V-series nerve agents, Tabun (GA) and Mustard gas (HD) was studied with the aim of finding the optimum parameters and the requirements for a detection system. A particular emphasis was put on V-agents that have been previously shown to yield relatively weak Raman scattering in this excitation band.

  18. Harmonium: A pulse preserving source of monochromatic extreme ultraviolet (30–110 eV radiation for ultrafast photoelectron spectroscopy of liquids

    Directory of Open Access Journals (Sweden)

    J. Ojeda

    2016-03-01

    Full Text Available A tuneable repetition rate extreme ultraviolet source (Harmonium for time resolved photoelectron spectroscopy of liquids is presented. High harmonic generation produces 30–110 eV photons, with fluxes ranging from ∼2 × 1011 photons/s at 36 eV to ∼2 × 108 photons/s at 100 eV. Four different gratings in a time-preserving grating monochromator provide either high energy resolution (0.2 eV or high temporal resolution (40 fs between 30 and 110 eV. Laser assisted photoemission was used to measure the temporal response of the system. Vibrational progressions in gas phase water were measured demonstrating the ∼0.2 eV energy resolution.

  19. Aplanatic telescopes based on Schwarzschild optical configuration: from grazing incidence Wolter-like x-ray optics to Cherenkov two-mirror normal incidence telescopes

    Science.gov (United States)

    Sironi, Giorgia

    2017-09-01

    At the beginning of XX century Karl Schwarzschild defined a method to design large-field aplanatic telescopes based on the use of two aspheric mirrors. The approach was then refined by Couder (1926) who, in order to correct for the astigmatic aberration, introduced a curvature of the focal plane. By the way, the realization of normal-incidence telescopes implementing the Schwarzschild aplanatic configuration has been historically limited by the lack of technological solutions to manufacture and test aspheric mirrors. On the other hand, the Schwarzschild solution was recovered for the realization of coma-free X-ray grazing incidence optics. Wolter-like grazing incidence systems are indeed free of spherical aberration, but still suffer from coma and higher order aberrations degrading the imaging capability for off-axis sources. The application of the Schwarzschild's solution to X-ray optics allowed Wolter to define an optical system that exactly obeys the Abbe sine condition, eliminating coma completely. Therefore these systems are named Wolter-Schwarzschild telescopes and have been used to implement wide-field X-ray telescopes like the ROSAT WFC and the SOHO X-ray telescope. Starting from this approach, a new class of X-ray optical system was proposed by Burrows, Burg and Giacconi assuming polynomials numerically optimized to get a flat field of view response and applied by Conconi to the wide field x-ray telescope (WFXT) design. The Schwarzschild-Couder solution has been recently re-discovered for the application to normal-incidence Cherenkov telescopes, thanks to the suggestion by Vassiliev and collaborators. The Italian Institute for Astrophysics (INAF) realized the first Cherenkov telescope based on the polynomial variation of the Schwarzschild configuration (the so-called ASTRI telescope). Its optical qualification was successfully completed in 2016, demonstrating the suitability of the Schwarzschild-like configuration for the Cherenkov astronomy requirements

  20. Micro-Spec: A High Performance Compact Spectrometer for Submillimeter Astronomy

    Science.gov (United States)

    Hsieh, Wen-Ting; Moseley, Harvey; Stevenson, Thomas; Brown, Ari; Patel, Amil; U-Yen, Kongpop; Ehsan, Negar; Caltado, Giuseppe; Wollock, Edward

    2012-01-01

    We describe the micro-Spec, an extremely compact high performance spectrometer for the submillimeter and millimeter spectral ranges. We have designed a fully integrated submillimeter spectrometer based on superconducting microstrip technology and fabricated its critical elements. Using low loss transmission lines, we can produce a fully integrated high resolution submillimeter spectrometer on a single four inch Si wafer. A resolution of 500 can readily be achieved with standard fabrication tolerance, higher with phase trimming. All functions of the spectrometer are integrated - light is coupled to the micro strip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using a built-in planar filter, and the light is detected using photon counting Microwave Kinetic Inductance Detectors (MKID). We will discus the design principle of the instrument, describe its technical advantages, and report the progress on the development of the instrument.

  1. Mu-Spec: A High Performance Compact Spectrometer for Submillimeter Astronomy

    Science.gov (United States)

    Hsieh, Wen-Ting; Moseley, Harvey; Stevenson, Thomas; Brown, Ari; Patel, Amil; U-yen, Kongpop; Ehsan, Negar; Cataldo, Giuseppe; Wollack, Ed

    2012-01-01

    We describe the Mu-Spec, an extremely compact high performance spectrometer for the submillimeter and millimeter spectral ranges. We have designed a fully integrated submillimeter spectrometer based on superconducting microstrip technology and fabricated its critical elements. Using low loss transmission lines, we can produce a fully integrated high resolution submillimeter spectrometer on a single four inch Si wafer. A resolution of 500 can readily be achieved with standard fabrication tolerance, higher with phase trimming. All functions of the spectrometer are integrated - light is coupled to the microstrip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using a built-in planar filter, and the light is detected using photon counting Microwave Kinetic Inductance Detectors (MKID). We will discus the design principle of the instrument, describe its technical advantages, and report the progress on the development of the instrument.

  2. Ultraviolet spectrophotometry of three LINERs

    Science.gov (United States)

    Goodrich, R. W.; Keel, W. C.

    1986-01-01

    Three galaxies known to be LINERs were observed spectroscopically in the ultraviolet in an attempt to detect the presumed nonthermal continuum source thought to be the source of photoionization in the nuclei. NGC 4501 was found to be too faint for study with the IUE spectrographs, while NGC 5005 had an extended ultraviolet light profile. Comparison with the optical light profile of NGC 5005 indicates that the ultraviolet source is distributed spatially in the same manner as the optical starlight, probably indicating that the ultraviolet excess is due to a component of hot stars in the nucleus. These stars contribute detectable absorption features longward of 2500 A; together with optical data, the IUE spectra suggest a burst of star formation about 1 billion yr ago, with a lower rate continuing to produce a few OB stars. In NGC 4579, a point source contributing most of the ultraviolet excess is found that is much different than the optical light distribution. Furthermore, the ultraviolet to X-ray spectral index in NGC 4579 is 1.4, compatible with the UV to X-ray indices found for samples of Seyfert galaxies. This provides compelling evidence for the detection of the photoionizing continuum in NGC 4579 and draws the research fields of normal galaxies and active galactic nuclei closer together. The emission-line spectrum of NGC 4579 is compared with calculations from a photoionization code, CLOUDY, and several shock models. The photoionization code is found to give superior results, adding to the increasing weight of evidence that the LINER phenomenon is essentially a scaled-down version of the Seyfert phenomenon.

  3. Wavefront measurement of single-mode quantum cascade laser beam for seed application in laser-produced plasma extreme ultraviolet system.

    Science.gov (United States)

    Nowak, Krzysztof M; Ohta, Takeshi; Suganuma, Takashi; Yokotsuka, Toshio; Fujimoto, Junichi; Mizoguchi, Hakaru

    2012-12-01

    Quantum cascade laser (QCL) is a very attractive seed source for a multikilowatt pulsed CO2 lasers applied for driving extreme ultraviolet emitting plasmas. In this Letter, we investigate output beam properties of a QCL designed to address P18 and P20 lines of 10.6 micron band of CO2 molecule. In particular, output beam quality and stability are investigated for the first time. A well-defined linear polarization and a single-mode operation enabled a use of phase retrieval method for full description of QCL output beam. A direct, multi-image numerical phase retrieval technique was developed and successfully applied to the measured intensity patterns of a QCL beam. Very good agreement between the measured and reconstructed beam profiles was observed at distances ranging from QCL aperture to infinity, proving a good understanding of the beam propagation. The results also confirm a high spatial coherence and high stability of the beam parameters, the features expected from an excellent seed source.

  4. Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars

    Science.gov (United States)

    Bazalgette Courrèges-Lacoste, Grégory; Ahlers, Berit; Pérez, Fernando Rull

    2007-12-01

    Among the different instruments that have been pre-selected to be on-board the Pasteur payload on ExoMars is the Raman/ laser induced breakdown spectroscopy (LIBS) instrument. Raman spectroscopy and LIBS will be integrated into a single instrument sharing many hardware commonalities. An international team under the lead of TNO has been gathered to produce a design concept for a combined Raman spectrometer/LIBS elegant bread-board (EBB). The instrument is based on a specially designed, extremely compact, spectrometer with high resolution over a large wavelength range, suitable for both Raman spectroscopy and LIBS measurements. Low mass, size and power consumption are the main drivers of the instrument's design concept. In this paper, science objectives for the combined instrument are detailed. Background information on Raman spectroscopy and LIBS are presented, focussing on the synergy of these two techniques. In the last section, the instrument concept resulting from the assessment of the feasibility of the combined Raman/LIBS EBB is presented.

  5. [Spectroscopic diagnostics of high temperature plasmas

    International Nuclear Information System (INIS)

    Moos, W.

    1989-01-01

    A research program in soft x-ray/ultraviolet/visible diagnostics for magnetic fusion is described. Recent results include the electron temperature, electron density and impurity densities during EML activity on the TEXT tokamak. The Zeeman effect induced circular polarization in Li neutral beam emissions has been analyzed to determine the safety factor in sawtoothing and ECRH heated discharge. The reflective properties of multilayer mirrors (10-200 Angstrom) were measured. Future work includes an order of magnitude improvement in the time resolution of the circular-polarimeter, development of a soft x-ray normal incidence spectrometer and a feasibility study for a narrow band x-ray photometer

  6. A comparison of photospheric electric current and ultraviolet and X-ray emission in a solar active region

    Science.gov (United States)

    Haisch, B. M.; Bruner, M. E.; Hagyard, M. J.; Bonnet, R. M.

    1986-01-01

    This paper presents an extensive set of coordinated observations of a solar active region, taking into account spectroheliograms obtained with the aid of the Solar Maximum Mission (SMM) Ultraviolet Spectrometer Polarimeter (UVSP) instrument, SMM soft X-ray polychromator (XRP) raster maps, and high spatial resolution ultraviolet images of the sun in Lyman-alpha and in the 1600 A continuum. These data span together the upper solar atmosphere from the temperature minimum to the corona. The data are compared to maps of the inferred photospheric electric current derived from the Marshall Space Flight Center (MSFC) vector magnetograph observations. Some empirical correlation is found between regions of inferred electric current density and the brightest features in the ultraviolet continuum and to a lesser extent those seen in Lyman-alpha within an active region.

  7. A multiplex coding imaging spectrometer for X-ray astronomy

    International Nuclear Information System (INIS)

    Rocchia, R.; Deschamps, J.Y.; Koch-Miramond, L.; Tarrius, A.

    1985-06-01

    The paper describes a multiplex coding system associated with a solid state spectrometer Si(Li) designed to be placed at the focus of a grazing incidence telescope. In this instrument the spectrometric and imaging functions are separated. The coding system consists in a movable mask with pseudo randomly distributed holes, located in the focal plane of the telescope. The pixel size lies in the range 100-200 microns. The close association of the coding system with a Si(Li) detector gives an imaging spectrometer combining the good efficiency (50% between 0,5 and 10 keV) and energy resolution (ΔE approximately 90 to 160 eV) of solid state spectrometers with the spatial resolution of the mask. Simulations and results obtained with a laboratory model are presented

  8. Spectra of W19 +-W32 + observed in the EUV region between 15 and 55 Å with an electron-beam ion trap

    Science.gov (United States)

    Sakaue, H. A.; Kato, D.; Yamamoto, N.; Nakamura, N.; Murakami, I.

    2015-07-01

    We present extreme ultraviolet spectra of highly charged tungsten ions (W19 +-W32 + ) in the wavelength range of 15 -55 Å obtained with a compact electron-beam ion trap (CoBIT) and a grazing-incidence spectrometer at the National Institute for Fusion Science. The electron energy dependence of the spectra was investigated for electron energies from 490 to 1320 eV . Identification of the observed lines was aided by collisional-radiative (CR) modeling of CoBIT plasma. Good quantitative agreement was obtained between the CR-modeling results and the experimental observations. The ion charge dependence of the 6 g -4 f ,5 g -4 f ,5 f -4 d ,5 p -4 d , and 4 f -4 d transition wavelengths were measured.

  9. A Fourier transform spectrometer without a beam splitter for the vacuum ultraviolet range: From the optical design to the first UV spectrum.

    Science.gov (United States)

    de Oliveira, N; Joyeux, D; Phalippou, D; Rodier, J C; Polack, F; Vervloet, M; Nahon, L

    2009-04-01

    We describe a Fourier transform (FT) spectrometer designed to operate down to 60 nm (20 eV) on a synchrotron radiation beamline for high resolution absorption spectrometry. As far as we know, such an instrument is not available below 140 nm mainly because manufacturing accurate and efficient beam splitters remains a major problem at these wavelengths, especially if a wide bandwidth operation is desired. In order to overcome this difficulty, we developed an interferometer based on wave front division instead of amplitude division. It relies on a modified Fresnel bimirror configuration that requires only flat mirrors. The instrument provides path difference scanning through the translation of one reflector. During the scanning, the moving reflector is controlled by an optical system that keeps its direction constant within a tolerable value and provides an accurate interferometric measurement of the path difference variation. Therefore, a regular interferogram sampling is obtained, producing a nominal spectral impulse response and an accurate spectral calibration. The first results presented in this paper show a measured spectral resolution of delta(sigma)=0.33 cm-1 (interval between spectral samples). This was obtained with a sampling interval of 29 nm (path difference) and 512 K samples from a one-sided interferogram using a cosine FT. Such a sampling interval should allow the recording of large bandwidth spectra down to lambda=58 nm with an ultimate resolving power of 500,000 at this wavelength. In order to check the instrument performances, we first recorded an interferogram from a He-Ne stabilized laser. This provided the actual spectral impulse function, which was found to be fully satisfactory. The determination of the impulse response distortion and of the noise on the vacuum ultraviolet (VUV) spectral range provided accurate information in the sampling error profile over a typical scan. Finally, the instrument has been moved to the SU5 undulator

  10. Ultraviolet-induced DNA excision repair in human B and T lymphocytes. II

    International Nuclear Information System (INIS)

    Yew, F.F.-H.; Johnson, R.T.

    1979-01-01

    Despite their great sensitivity to ultraviolet light purified human B and T lymphocytes are capable of complete repair provided that the ultraviolet dose does not exceed 0.5 Jm -2 . Their capacity to repair, as measured by the restoration of DNA supercoiling in preparations of nucleoids, and their survival are significantly increased in the presence of deoxyribonucleosides. Certain agents which inhibit semi-conservative DNA synthesis (hydroxyurea, 1-β-D-arabino-furanosylcytosine (arafCyt) either stop or delay the repair process in lymphocytes. The effect of hydroxyurea is eventually overcome spontaneously, but changes in the sedimentation behaviour of ultraviolet-irradiated nucleoids caused by arafCyt can only be neutralized by addition of deoxycytidine. The effective inhibition of repair by arafCyt permits the detection of extremely small amounts of ultraviolet damage and also the estimation of when repair is complete. (Auth.)

  11. Near infrared and extreme ultraviolet light pulses induced modifications of ultrathin Co films

    Directory of Open Access Journals (Sweden)

    Jan Kisielewski

    2017-05-01

    Full Text Available We report on comparative study of magnetic properties of Pt/Co/Pt trilayers after irradiation with different light sources. Ultrathin Pt/Co/Pt films were deposited by molecular beam epitaxy technique on sapphire (0001 substrates. Pt buffers were grown at room temperature (RT and at 750°C (high temperature, HT. The samples were irradiated with a broad range of light energy densities (up to film ablation using two different single pulse irradiation sources: (i 40 fs laser with 800 nm wavelength and (ii 3 ns laser-plasma source of extreme ultraviolet (EUV with the most intense emission centered at 11 nm. The light pulse-driven irreversible structural and as a consequence, magnetic modifications were investigated using polar magneto-optical Kerr effect-based microscopy and atomic and magnetic force microscopies. The light pulse-induced transitions from the out-of-plane to in-plane magnetization state, and from in-plane to out-of-plane, were observed for both types of samples and irradiation methods. Diagrams of the magnetic states as a function of the Co layer thickness and energy density of the absorbed femtosecond pulses were constructed for the samples with both the RT and HT buffers. The energy density range responsible for the creation of the out-of-plane magnetization was wider for the HT than for RT buffer. This is correlated with the higher (for HT crystalline quality and much smoother Pt/Co surface deduced from the X-ray diffraction studies. Submicrometer magnetic domains were observed in the irradiated region while approaching the out-of-plane magnetization state. Changes of Pt/Co/Pt structures are discussed for both types of light pulses.

  12. Thermal transport studies using extreme ultraviolet spectroscopy: Final technical report, 5 March 1986-30 June 1987

    International Nuclear Information System (INIS)

    Griem, H.R.

    1987-12-01

    Thermal transport was investigated in laser-produced plasmas using spectroscopic measurements in the extreme ultraviolet. Theoretical work in collaboration with the University of Rochester allowed comparisons to be made of experimental spectra to a lagrangian hydrodynamic code. Results showed that transport is influenced by thermal flux inhibition in addition to non-uniformities in the laser irradiation. This work is a continuation of last year's project in which the main thermal transport results are reported. Very rich spectra were obtained in these experiments which yielded additional information on the ablating plasmas. A doppler shift was observed for neonlike titanium lines relative to higher ionization states of Ti. This shift is attributed to differences in expansion velocities between different charge states of Ti. A detailed report discussing this effect is attached. New lines were identified for Ti XXI and Ti XIX from these spectra in the wavelength region from 12 to 15 /angstrom/. The new heliumlike lines of Ti can exhibit population inversion and are candidates for x-ray laser experiments. A preprint of this paper is attached. Finally, line ratios of Ti XIX and Ti XX were employed to determine electron densities and temperatures. A report is also attached discussing these results

  13. Radiation damage resistance of AlGaN detectors for applications in the extreme-ultraviolet spectral range

    Energy Technology Data Exchange (ETDEWEB)

    Barkusky, Frank; Peth, Christian; Bayer, Armin; Mann, Klaus [Laser-Laboratorium-Goettingen e.V., Hans-Adolf-Krebs-Weg 1, D-37077 Goettingen (Germany); John, Joachim; Malinowski, Pawel E. [Interuniversity MicroElectronic Center (IMEC), Kapeldreef 75, B-3001 Leuven (Belgium)

    2009-09-15

    We report on the fabrication of aluminum gallium nitride (AlGaN) Schottky-photodiode-based detectors. AlGaN layers were grown using metal-organic chemical vapor deposition (MOCVD) on Si(111) wafers. The diodes were characterized at a wavelength of 13.5 nm using a table-top extreme-ultraviolet (EUV) radiation source, consisting of a laser-produced xenon plasma and a Schwarzschild objective. The responsivity of the diodes was tested between EUV energies ranging from 320 nJ down to several picojoules. For low fluences, a linear responsivity of 7.14 mAs/J could be determined. Saturation starts at approximately 1 nJ, merging into a linear response of 0.113 mAs/J, which could be attributed to the photoeffect on the Au electrodes on top of the diode. Furthermore, degradation tests were performed up to an absolute dose of 3.3x10{sup 19} photons/cm{sup 2}. AlGaN photodiodes were compared to commercially available silicon-based photodetectors. For AlGaN diodes, responsivity does not change even for the highest EUV dose, whereas the response of the Si diode decreases linearly to {approx}93% after 2x10{sup 19} photons/cm{sup 2}.

  14. Orientation-dependent ion beam sputtering at normal incidence conditions in FeSiAl alloy

    International Nuclear Information System (INIS)

    Batic, Barbara Setina; Jenko, Monika

    2010-01-01

    The authors have performed Ar+ broad ion beam sputtering of a polycrystalline Fe-Si-Al alloy at normal incidence at energies varying from 6 to 10 keV. Sputtering results in the formation of etch pits, which can be classified in three shapes: triangular, rectangular, and square. As each grain of individual orientation exhibits a certain type of pattern, the etch pits were correlated with the crystal orientations by electron backscattered diffraction technique.

  15. Low power ion spectrometer for high counting rates

    International Nuclear Information System (INIS)

    Klein, J.W.; Dullenkopf, P.; Glasmachers, A.; Melbert, J.; Winkelnkemper, W.

    1980-01-01

    This report describes in detail the electronic concept for a time-of-flight (TOF) ion spectrometer for high counting rates and high dynamic range which can be used as a satellite instrument. The detection principle of the spectrometer is based on a time-of-flight and energy measurement for each incident ion. The ionmass is related to these two quantities by a simple equation. The described approach for the mass identification systems is using an analog fast-slow concept: The fast TOF-signal preselects the gainstep in the much slower energy channel. The conversion time of the mass identifier is approximately 10 -6 s and the dynamic range of the energy channel is better than 10 3 (20 keV to 25 MeV). The purpose of this study was to demonstrate the feasibility of a TOF-spectrometer capable to measure the ion composition in planetary magnetospheres. (orig.) [de

  16. Incidence and Severity of Lymphoedema following Limb Salvage of Extremity Soft Tissue Sarcoma

    Directory of Open Access Journals (Sweden)

    Daniel Friedmann

    2011-01-01

    Material and Method. Patient and tumor characteristics, treatment modalities and complications and functional outcomes (MSTS 1987, TESS, and lymphoedema severity (Stern were all collected from prospective databases. Charts were retrospectively abstracted for BMI and comorbidities. Results. There were 289 patients (158 males. Mean age was 53 (16–88. Followup ranged between 12 and 60 months with an average of 35 and a median of 36 months. Mean BMI was 27.4 (15.8–52.1. 72% had lower extremity tumors and 38% upper extremity. Mean tumor size was 8.1 cm (1.0–35.6 cm. 27% had no adjuvant radiation, 62% had 50 Gy, and 11% received 66 Gy. The incidence of lymphoedema was 28.8% (206 none, 58 mild, 22 moderate, 3 severe, and 0 very severe. Mean MSTS score was 32 (11–35 and TESS was 89.4 (32.4–100. Radiation dose was significantly correlated with tumor size>5 cm (P=0.0001 and TESS score (P=0.001, but not MSTS score (P=0.090. Only tumor size>5 cm and depth were found to be independent predictors of significant lymphoedema. Conclusion. Nine percent of STS patients in our cohort developed significant (grade≥2 lymphoedema. Tumor size>5 cm and deep tumors were associated with an increased occurrence of lymphoedema but not radiation dosage.

  17. Climate change, ozone depletion and the impact on ultraviolet exposure of human skin

    International Nuclear Information System (INIS)

    Diffey, Brian

    2004-01-01

    For 30 years there has been concern that anthropogenic damage to the Earth's stratospheric ozone layer will lead to an increase of solar ultraviolet (UV) radiation reaching the Earth's surface, with a consequent adverse impact on human health, especially to the skin. More recently, there has been an increased awareness of the interactions between ozone depletion and climate change (global warming), which could also impact on human exposure to terrestrial UV. The most serious effect of changing UV exposure of human skin is the potential rise in incidence of skin cancers. Risk estimates of this disease associated with ozone depletion suggest that an additional peak incidence of 5000 cases of skin cancer per year in the UK would occur around the mid-part of this century. Climate change, which is predicted to lead to an increased frequency of extreme temperature events and high summer temperatures, will become more frequent in the UK. This could impact on human UV exposure by encouraging people to spend more time in the sun. Whilst future social trends remain uncertain, it is likely that over this century behaviour associated with climate change, rather than ozone depletion, will be the largest determinant of sun exposure, and consequent impact on skin cancer, of the UK population. (topical review)

  18. Ultraviolet B irradiation induces expansion of intraepithelial tumor cells in a tissue model of early cancer progression.

    Science.gov (United States)

    Mudgil, Adarsh V; Segal, Nadav; Andriani, Frank; Wang, Youai; Fusenig, Norbert E; Garlick, Jonathan A

    2003-07-01

    Ultraviolet B irradiation is thought to enable skin cancer progression as clones of genetically damaged keratinocytes escape apoptosis and expand at the expense of adjacent normal cells. Mechanisms through which potentially malignant cells in human skin undergo clonal expansion, however, are not well understood. The goal of this study was to characterize the role of ultraviolet B irradiation on the intraepithelial expansion of early stage human tumor cells in organotypic skin cultures. To accomplish this, we have studied the effect of ultraviolet B irradiation on organotypic cultures that were fabricated by mixing normal human keratinocytes with beta-galactosidase-marked, intraepithelial tumor cells (HaCaT-ras, clone II-4), which bear mutations in both p53 alleles and harbor an activated H-ras oncogene. We found that when organotypic mixtures were exposed to an ultraviolet B dose of 50 mJ per cm2, intraepithelial tumor cells underwent a significant degree of proliferative expansion compared to nonirradiated cultures. To understand this response, organotypic cultures of nor-mal keratinocytes were exposed to ultraviolet B and showed a dose-dependent increase in numbers of sunburn cells and TUNEL-positive cells although their proliferation was suppressed. In contrast, neither the apoptotic nor the proliferative response of II-4 cells was altered by ultraviolet B in organotypic cultures. The differential response of these cell types suggested that II-4 cells were resistant to ultraviolet-B-induced alterations, which allowed these intraepithelial tumor cells to gain a selective growth and survival advantage relative to neighboring normal cells. These findings demonstrate that ultraviolet B exposure can induce the intraepithelial expansion of apoptosis-resistant, p53-mutant, and ras-activated keratinocytes, suggesting that this agent can act to promote the early stages of epithelial carcinogenesis.

  19. An Extreme-ultraviolet Wave Generating Upward Secondary Waves in a Streamer-like Solar Structure

    Science.gov (United States)

    Zheng, Ruisheng; Chen, Yao; Feng, Shiwei; Wang, Bing; Song, Hongqiang

    2018-05-01

    Extreme-ultraviolet (EUV) waves, spectacular horizontally propagating disturbances in the low solar corona, always trigger horizontal secondary waves (SWs) when they encounter the ambient coronal structure. We present the first example of upward SWs in a streamer-like structure after the passing of an EUV wave. This event occurred on 2017 June 1. The EUV wave happened during a typical solar eruption including a filament eruption, a coronal mass ejection (CME), and a C6.6 flare. The EUV wave was associated with quasi-periodic fast propagating (QFP) wave trains and a type II radio burst that represented the existence of a coronal shock. The EUV wave had a fast initial velocity of ∼1000 km s‑1, comparable to high speeds of the shock and the QFP wave trains. Intriguingly, upward SWs rose slowly (∼80 km s‑1) in the streamer-like structure after the sweeping of the EUV wave. The upward SWs seemed to originate from limb brightenings that were caused by the EUV wave. All of the results show that the EUV wave is a fast-mode magnetohydrodynamic (MHD) shock wave, likely triggered by the flare impulses. We suggest that part of the EUV wave was probably trapped in the closed magnetic fields of the streamer-like structure, and upward SWs possibly resulted from the release of slow-mode trapped waves. It is believed that the interplay of the strong compression of the coronal shock and the configuration of the streamer-like structure is crucial for the formation of upward SWs.

  20. A condensed matter electron momentum spectrometer with parallel detection in energy and momentum

    Energy Technology Data Exchange (ETDEWEB)

    Storer, P; Caprari, R S; Clark, S A.C.; Vos, M; Weigold, E

    1994-03-01

    An electron momentum spectrometer has been constructed which measures electron binding energies and momenta by fully determining the kinematics of the incident, scattered and ejected electrons resulting from (e,2e) ionizing collisions in a thin solid foil. The spectrometer operates with incident beam energies of 20-30 keV in an asymmetric, non-coplanar scattering geometry. Bethe ridge kinematics are used. The technique uses transmission through the target foil, but it is most sensitive to the surface from which the 1.2 keV electrons emerge, to a depth of about 5 nm. Scattered and ejected electron energies and azimuthal angles are detected in parallel using position sensitive detection, yielding true coincidence count rates of 6 Hz from a 5.5 nm thick evaporated carbon target and an incident beam current of around 100 nA. The energy resolution is approximately 1.3 eV and momentum resolution approximately 0.15 a{sub 0}{sup -1}. The energy resolution could readily be improved by monochromating the incident electron beam. 28 refs., 15 figs.

  1. A condensed matter electron momentum spectrometer with parallel detection in energy and momentum

    International Nuclear Information System (INIS)

    Storer, P.; Caprari, R.S.; Clark, S.A.C.; Vos, M.; Weigold, E.

    1994-03-01

    An electron momentum spectrometer has been constructed which measures electron binding energies and momenta by fully determining the kinematics of the incident, scattered and ejected electrons resulting from (e,2e) ionizing collisions in a thin solid foil. The spectrometer operates with incident beam energies of 20-30 keV in an asymmetric, non-coplanar scattering geometry. Bethe ridge kinematics are used. The technique uses transmission through the target foil, but it is most sensitive to the surface from which the 1.2 keV electrons emerge, to a depth of about 5 nm. Scattered and ejected electron energies and azimuthal angles are detected in parallel using position sensitive detection, yielding true coincidence count rates of 6 Hz from a 5.5 nm thick evaporated carbon target and an incident beam current of around 100 nA. The energy resolution is approximately 1.3 eV and momentum resolution approximately 0.15 a 0 -1 . The energy resolution could readily be improved by monochromating the incident electron beam. 28 refs., 15 figs

  2. Theory of emission spectra from metal films irradiated by low energy electrons near normal incidence

    International Nuclear Information System (INIS)

    Kretschmann, E.; Callcott, T.A.; Arakawa, E.T.

    1980-01-01

    The emission spectrum produced by low energy electrons incident on a rough metal surface has been calculated for a roughness auto-correlation function containing a prominent peak at a high wave vector. For low energy electrons near normal incidence, the high wavevector peak dominates the roughness coupled surface plasmon radiation (RCSPR) process. The calculation yields estimates of the ratio of RCSPR to transition radiation, the dependence of emission intensity on electron energy and the shape and position of the RCSPR peak. The most interesting result is that the high-wavevector roughness can split the RCSPR radiation into peaks lying above and below the asymptotic surface plasma frequency. The results are compared with data from Ag in the following paper. (orig.)

  3. Photoionization of resonantly driven atomic states by an extreme ultraviolet-free-electron laser: intensity dependence and renormalization of Rabi frequencies

    International Nuclear Information System (INIS)

    Kaiser, B; Brand, A; Glässl, M; Vagov, A; Axt, V M; Pietsch, U

    2013-01-01

    We analyze theoretically the high intensity photoionization dynamics of a system with two atomic states resonantly coupled by coherent extreme ultraviolet laser radiation that also gives rise to the ionization. The ground state occupation of such a system is shown to exhibit damped Rabi oscillations. The corresponding ionization, which is responsible for the damping, scales almost linearly with the field intensity when the pulse length exceeds the Rabi period. For shorter pulses a quadratic scaling is found. The Rabi frequency is shifted compared to its value for an isolated two-level system. The shift increases with excitation intensity and can acquire a high percentage of the unrenormalized frequency at high intensities. Analytical results obtained within a simplified solvable model demonstrate that the damping and the shift both result from the coupling of the discrete states to the ionization continuum and are therefore closely related. Numerical simulations for a two-electron system reveal at high intensities the importance of off-resonant ionization channels. (paper)

  4. Application of Laser Plasma Sources of Soft X-rays and Extreme Ultraviolet (EUV) in Imaging, Processing Materials and Photoionization Studies

    Science.gov (United States)

    Fiedorowicz, H.; Bartnik, A.; Wachulak, P. W.; Jarocki, R.; Kostecki, J.; Szczurek, M.; Ahad, I. U.; Fok, T.; Szczurek, A.; Wȩgrzyński, Ł.

    In the paper we present new applications of laser plasma sources of soft X-rays and extreme ultraviolet (EUV) in various areas of plasma physics, nanotechnology and biomedical engineering. The sources are based on a gas puff target irradiated with nanosecond laser pulses from commercial Nd: YAG lasers, generating pulses with time duration from 1 to 10 ns and energies from 0.5 to 10 J at a 10 Hz repetition rate. The targets are produced with the use of a double valve system equipped with a special nozzle to form a double-stream gas puff target which allows for high conversion efficiency of laser energy into soft X-rays and EUV without degradation of the nozzle. The sources are equipped with various optical systems to collect soft X-ray and EUV radiation and form the radiation beam. New applications of these sources in imaging, including EUV tomography and soft X-ray microscopy, processing of materials and photoionization studies are presented.

  5. Nonlinear Dichroism in Back-to-Back Double Ionization of He by an Intense Elliptically Polarized Few-Cycle Extreme Ultraviolet Pulse.

    Science.gov (United States)

    Ngoko Djiokap, J M; Manakov, N L; Meremianin, A V; Hu, S X; Madsen, L B; Starace, Anthony F

    2014-11-28

    Control of double ionization of He by means of the polarization and carrier-envelope phase (CEP) of an intense, few-cycle extreme ultraviolet (XUV) pulse is demonstrated numerically by solving the six-dimensional two-electron, time-dependent Schrödinger equation for He interacting with an elliptically polarized XUV pulse. Guided by perturbation theory (PT), we predict the existence of a nonlinear dichroic effect (∝I^{3/2}) that is sensitive to the CEP, ellipticity, peak intensity I, and temporal duration of the pulse. This dichroic effect (i.e., the difference of the two-electron angular distributions for opposite helicities of the ionizing XUV pulse) originates from interference of first- and second-order PT amplitudes, allowing one to probe and control S- and D-wave channels of the two-electron continuum. We show that the back-to-back in-plane geometry with unequal energy sharing is an ideal one for observing this dichroic effect that occurs only for an elliptically polarized, few-cycle attosecond pulse.

  6. Ultrasonographic, quantitative comparison of lower extremity lymphedema versus normal control. Technical note with case reports

    Directory of Open Access Journals (Sweden)

    Vanessa Lôbo de Carvalho

    2018-01-01

    Full Text Available Characterization of tissue by ultrasonography (CATUS is a modern-day research endeavor intended to improve visual perception and image quantification. Visual perception increases with color. Quantification focuses on pixel echo brightnesses. A previously presented case report demonstrated reappearance of lymphatic channels a few days after manual drainage. Ultrasonographic images (US of lymphatic leg and foot were quantitated and compared to a normal extremity based on proportions of pixels in specific brightness intervals. Anatomy evaluated included control- subcutaneous and lymphatic compartments. US with 256 brightness levels were obtained at the proximal, mid and distal leg and foot. Control and lymphatic Gray Scale Medians (GSM and histograms were compared using t-test and Chi-square statistics. Average GSM was 97±9 (SD (82-114, n=12 images for control, greater than 51±15 (24-69, n=12 for lymphedematous leg/foot (P99% of pixels with brightness in the muscle-fiber range (41-196, in contrast to 62% for the lymphatic extremity (P<0.001. Lymphedema averaged 7%, 3%, 15% and 14% of pixels in blood, blood/fat, fat and fat/muscle-like regions (0-4, 5-7, 8-26, 27- 40 brightness intervals. Such regions were visually interpreted as lymphatic channels or lakes. Visual perception by colorization is subjective, but most people perceives details better, for example, during the day than at night. Furthermore, US images have 16 times more shades of gray, 256, than that perceived by the human visual system, 16 on average. Colorization improved perception of lymphatic channels and lakes by transforming blood echoes into red and lymphatic liquid with echoes similar to fat into yellow. Pixel proportions in low brightness intervals were higher in the lymphatic than in the normal extremity. Lymphedema severity was quantified. The CATUS technique may be used to monitor treatment effects or disease evolution.

  7. Spectrometer of Cherenkov radiation rings with hodoscopic photomultipliers

    International Nuclear Information System (INIS)

    Abramov, V.V.; Alekseev, A.V.; Baldin, B.Yu.

    1983-01-01

    Characteristics of SKOCH Cherenkov radiation ring spectrometer intended for identification of π- and K-mesons and protons in a wide divergent beam in the pulse range of 5.5-30 GeV/s are investigated. The spectrometer detecting system is based on using the hodoscopic photoelectron multipliers (HPEM). The HPEM specific feature is that they have an extended cathode and permit to determine the coordinate of an incident photon by measuring the time of photoelectron drift to a dinode system. The spectrometer has been tested at the FODS facility in the secondary particle beam with angular divergence equal to 16x6 mrad and aperture of 400x200 mm in the pulse range of 6-20 GeV/s. The range of Cherenkov radiation angle detection is 40-100 mrad which corresponds to the particle velocity range of 0.996-1. The angular and radial aperture is 30 mrad, the diameter is 420 mm. The obtained velocity resolution is 6x10 -5

  8. Subdwarf ultraviolet excesses and metal abundances

    International Nuclear Information System (INIS)

    Carney, B.W.

    1979-01-01

    The relation between stellar ultraviolet excesses and abundances is reexamined with the aid of new data, and an investigation is made of the accuracy of previous abundance analyses. A high-resolution echellogram of the subdwarf HD 201891 is analyzed to illustrate some of the problems. Generally, the earliest and latest analytical techniques yield consistent results for dwarfs. New UBV data yield normalized ultraviolet excesses, delta (U-B)/sub 0.6/, which are compared to abundances to produce a graphical relation that may be used to estimate [Fe/H] to +- 0.2 dex, given UBV colors accurate to +- 0.01 mag. The relation suggests a possible discontinuity between the halo and old-disk stars

  9. Nanoscale inhomogeneity and photoacid generation dynamics in extreme ultraviolet resist materials

    Science.gov (United States)

    Wu, Ping-Jui; Wang, Yu-Fu; Chen, Wei-Chi; Wang, Chien-Wei; Cheng, Joy; Chang, Vencent; Chang, Ching-Yu; Lin, John; Cheng, Yuan-Chung

    2018-03-01

    The development of extreme ultraviolet (EUV) lithography towards the 22 nm node and beyond depends critically on the availability of resist materials that meet stringent control requirements in resolution, line edge roughness, and sensitivity. However, the molecular mechanisms that govern the structure-function relationships in current EUV resist systems are not well understood. In particular, the nanoscale structures of the polymer base and the distributions of photoacid generators (PAGs) should play a critical roles in the performance of a resist system, yet currently available models for photochemical reactions in EUV resist systems are exclusively based on homogeneous bulk models that ignore molecular-level details of solid resist films. In this work, we investigate how microscopic molecular organizations in EUV resist affect photoacid generations in a bottom-up approach that describes structure-dependent electron-transfer dynamics in a solid film model. To this end, molecular dynamics simulations and stimulated annealing are used to obtain structures of a large simulation box containing poly(4-hydroxystyrene) (PHS) base polymers and triphenylsulfonium based PAGs. Our calculations reveal that ion-pair interactions govern the microscopic distributions of the polymer base and PAG molecules, resulting in a highly inhomogeneous system with nonuniform nanoscale chemical domains. Furthermore, the theoretical structures were used in combination of quantum chemical calculations and the Marcus theory to evaluate electron transfer rates between molecular sites, and then kinetic Monte Carlo simulations were carried out to model electron transfer dynamics with molecular structure details taken into consideration. As a result, the portion of thermalized electrons that are absorbed by the PAGs and the nanoscale spatial distribution of generated acids can be estimated. Our data reveal that the nanoscale inhomogeneous distributions of base polymers and PAGs strongly affect the

  10. A high resolution x-ray fluorescence spectrometer for near edge absorption studies

    International Nuclear Information System (INIS)

    Stojanoff, V.; Hamalainen, K.; Siddons, D.P.; Hastings, J.B.; Berman, L.E.; Cramer, S.; Smith, G.

    1991-01-01

    A high resolution fluorescence spectrometer using a Johann geometry in a back scattering arrangement was developed. The spectrometer, with a resolution of 0.3 eV at 6.5 keV, combined with an incident beam, with a resolution of 0.7 eV, form the basis of a high resolution instrument for measuring x-ray absorption spectra. The advantages of the instrument are illustrated with the near edge absorption spectrum of dysprosium nitrate. 10 refs., 4 figs

  11. Coupling of morphology to surface transport in ion-beam-irradiated surfaces: normal incidence and rotating targets

    International Nuclear Information System (INIS)

    Munoz-Garcia, Javier; Cuerno, Rodolfo; Castro, Mario

    2009-01-01

    Continuum models have proved their applicability to describe nanopatterns produced by ion-beam sputtering of amorphous or amorphizable targets at low and medium energies. Here we pursue the recently introduced 'hydrodynamic approach' in the cases of bombardment at normal incidence, or of oblique incidence onto rotating targets, known to lead to self-organized arrangements of nanodots. Our approach stresses the dynamical roles of material (defect) transport at the target surface and of local redeposition. By applying results previously derived for arbitrary angles of incidence, we derive effective evolution equations for these geometries of incidence, which are then numerically studied. Moreover, we show that within our model these equations are identical (albeit with different coefficients) in both cases, provided surface tension is isotropic in the target. We thus account for the common dynamics for both types of incidence conditions, namely formation of dots with short-range order and long-wavelength disorder, and an intermediate coarsening of dot features that improves the local order of the patterns. We provide for the first time approximate analytical predictions for the dependence of stationary dot features (amplitude and wavelength) on phenomenological parameters, that improve upon previous linear estimates. Finally, our theoretical results are discussed in terms of experimental data.

  12. DNA excision repair in human cells treated with ultraviolet radiation and 7,12-dimethylbenz(a)anthracene 5,6-oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, F.E.; Gentil, A.; Renstein, B.S.; Setlow, R.B.

    1980-01-01

    Excision repair was measured in normal human and xeroderma pigmentosum group C cells treated with 7,12-dimethylbenz(a)anthracene 5,6-oxide and with ultraviolet radiation by the techniques of unscheduled DNA synthesis, repair replication, a modification and bromodeoxyuridine photolysis and endonuclease-sensitive sites assay. Radiautography and repair replication showed that in normal cells the magnitude of repair after a saturation dose of the epoxide to be 0.1 to 0.2, that after a saturating ultraviolet dose, though survival data showed that both doses gave nearly similar killings. Repair was of the long-patch type and repair kinetics after the epoxide treatment were similar to ultraviolet. After a combined treatment with both agents, unscheduled synthesis in normal cells was more than additive. The data indicate that there are different rate-limiting steps in the removal of the ultraviolet and the epoxide damages, and that the residual repair activity in xeroderma pigmentosum cells is accomplished by different, not just fewer, enzymes than in normal cells.

  13. Solar cell angle of incidence corrections

    Science.gov (United States)

    Burger, Dale R.; Mueller, Robert L.

    1995-01-01

    from normal which prevented any firm conclusions about extreme angle effects although a trend in the right direction was seen. Measurement errors were estimated and found to be consistent with the conclusions that were drawn. A controlled experiment using coverglasses and cells from the same lots and extending to larger incidence angles would probably lead to further insight into the subject area.

  14. Effect of ultraviolet rays in low temperature Si02 deposition

    International Nuclear Information System (INIS)

    Calix, V.M.; Peccoud, L.; Chevallier, M.

    1976-09-01

    Vitreous silicon dioxide films have been prepared on silicon wafers by the oxidation of SiH 2 at temperature below 360 deg C. In this experiment the samples were exposed to ultraviolet rays during deposition process. Results show that there is marked effect on the deposition rate which in turn is temperature dependent. The physical characteristics between the normal and ultraviolet-enhanced deposition show an increase of minute nodules of the latter

  15. High brightness extreme ultraviolet (at 13.5 nm) emission from time-of-flight controlled discharges with coaxial fuel injection

    International Nuclear Information System (INIS)

    Hosokai, Tomonao; Horioka, Kazuhiko; Hotta, Eiki; Yokoyama, Takuma; Sato, Hiroto; Zhidkov, Alexei

    2008-01-01

    Extreme ultraviolet (EUV) emission from discharge produced plasma with the coaxial injection of fuel vapor (tin and lithium) produced by laser ablation is experimentally studied. Multiple plasma pinches preceding a strong and long recombination radiation of EUV are observed in the first half cycle of a sinusoidal discharge current. Due to the time-of-flight control type of the discharge, the shape of pinch radiation pulses is almost identical. With the coaxial injection of time-of-flight controlled discharges, the highest brightness of EUV emission (maximum extracted energy of 244.3 mJ/2π sr per pulse with the emitter size of ∼1x0.3 mm 2 in full width at half maximum) is provided with efficiency exceeding 2% of deposited energy into the plasma (or 1% of dissipated energy in the discharge) due to a much better matching with the optimal plasma parameters in the recombination regime and a decrease in the off-duty factor. Stability of emitting plasma of the repetitive pinches is essentially improved with use of a second laser pulse

  16. Extreme Ultraviolet Process Optimization for Contact Layer of 14 nm Node Logic and 16 nm Half Pitch Memory Devices

    Science.gov (United States)

    Tseng, Shih-En; Chen, Alek

    2012-06-01

    Extreme ultraviolet (EUV) lithography is considered the most promising single exposure technology at the 27 nm half-pitch node and beyond. The imaging performance of ASML TWINSCAN NXE:3100 has been demonstrated to be able to resolve 26 nm Flash gate layer and 16 nm static random access memory (SRAM) metal layer with a 0.25 numerical aperture (NA) and conventional illumination. Targeting for high volume manufacturing, ASML TWINSCAN NXE:3300B, featuring a 0.33 NA lens with off-axis illumination, will generate a higher contrast aerial image due to improved diffraction order collection efficiency and is expected to reduce target dose via mask biasing. This work performed a simulation to determine how EUV high NA imaging benefits the mask rule check trade-offs required to achieve viable lithography solutions in two device application scenarios: a 14 nm node 6T-SRAM contact layer and a 16 nm half-pitch NAND Flash staggered contact layer. In each application, the three-dimensional mask effects versus Kirchhoff mask were also investigated.

  17. Radiation effects in silicon and gallium arsenide solar cells using isotropic and normally incident radiation

    Science.gov (United States)

    Anspaugh, B. E.; Downing, R. G.

    1984-01-01

    Several types of silicon and gallium arsenide solar cells were irradiated with protons with energies between 50 keV and 10 MeV at both normal and isotropic incidence. Damage coefficients for maximum power relative to 10 MeV were derived for these cells for both cases of omni-directional and normal incidence. The damage coefficients for the silicon cells were found to be somewhat lower than those quoted in the Solar Cell Radiation Handbook. These values were used to compute omni-directional damage coefficients suitable for solar cells protected by coverglasses of practical thickness, which in turn were used to compute solar cell degradation in two proton-dominated orbits. In spite of the difference in the low energy proton damage coefficients, the difference between the handbook prediction and the prediction using the newly derived values was negligible. Damage coefficients for GaAs solar cells for short circuit current, open circuit voltage, and maximum power were also computed relative to 10 MeV protons. They were used to predict cell degradation in the same two orbits and in a 5600 nmi orbit. Results show the performance of the GaAs solar cells in these orbits to be superior to that of the Si cells.

  18. Dysphonia in extremely preterm children: A longitudinal observation.

    Science.gov (United States)

    Reynolds, Victoria; Meldrum, Suzanne; Simmer, Karen; Vijayasekaran, Shyan; French, Noel

    2016-12-01

    Dysphonia is a potential long-term complication of preterm birth. Childhood voice disorders caused by vocal hyperfunction resolve with pubertal changes to the vocal mechanism in many cases. In extremely preterm children, whose voice quality is affected by supraglottic hyperfunction adapted secondary to underlying structural laryngeal pathology sustained during neonatal intubation, the prognosis is unknown. A pilot study was conducted to assess the incidence and severity of dysphonia in children born at dysphonia severity scores were significantly lower on repeat assessment, but no differences were observed in objective or quality of life scores. Individual variation was observed: the difference in CAPE-V scores ranged from -36 to + 1. No participant presented with normal voice quality on repeat assessment. Analysis of group data masked individual variability in this series. Mechanisms underlying such individual variation are currently unknown. These data suggest that dysphonia is persistent in extremely preterm children. Further investigation is warranted to elucidate the progression of voice disorders in extremely preterm children, to inform prognostic predictors and treatment decisions.

  19. Electron-hole pairs generated in ZrO2 nanoparticle resist upon exposure to extreme ultraviolet radiation

    Science.gov (United States)

    Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro

    2018-02-01

    Metal oxide nanoparticle resists have attracted much attention as the next-generation resist used for the high-volume production of semiconductor devices. However, the sensitization mechanism of the metal oxide nanoparticle resists is unknown. Understanding the sensitization mechanism is important for the efficient development of resist materials. In this study, the energy deposition in a zirconium oxide (ZrO2) nanoparticle resist was investigated. The numbers of electron-hole pairs generated in a ZrO2 core and an methacrylic acid (MAA) ligand shell upon exposure to 1 mJ cm-2 (exposure dose) extreme ultraviolet (EUV) radiations were theoretically estimated to be 0.16 at most and 0.04-0.17 cm2 mJ-1, respectively. By comparing the calculated distribution of electron-hole pairs with the line-and-space patterns of the ZrO2 nanoparticle resist fabricated by an EUV exposure tool, the number of electron-hole pairs required for the solubility change of the resist films was estimated to be 1.3-2.2 per NP. NP denotes a nanoparticle consisting of a metal oxide core with a ligand shell. In the material design of metal oxide nanoparticle resists, it is important to efficiently use the electron-hole pairs generated in the metal oxide core for the chemical change of ligand molecules.

  20. Impurity study of TMX using ultraviolet spectroscopy

    International Nuclear Information System (INIS)

    Allen, S.L.; Strand, O.T.; Moos, H.W.; Fortner, R.J.; Nash, T.J.; Dietrich, D.D.

    1981-01-01

    An extreme ultraviolet (EUV) study of the emissions from intrinsic and injected impurities in TMX is presented. Two survey spectrographs were used to determine that the major impurities present were oxygen, nitrogen, carbon, and titanium. Three absolutely-calibrated monochromators were used to measure the time histories and radial profiles of these impurity emissions in the central cell and each plug. Two of these instruments were capable of obtaining radial profiles as a function of time in a single shot

  1. Ultraviolet Studies of Jupiter's Hydrocarbons and Aerosols from Galileo

    Science.gov (United States)

    Gladstone, G. Randall

    2001-01-01

    This is the final report for this project. The purpose of this project was to support PI Wayne Pryor's effort to reduce and analyze Galileo UVS (Ultraviolet Spectrometer) data under the JSDAP program. The spectral observations made by the Galileo UVS were to be analyzed to determine mixing ratios for important hydrocarbon species (and aerosols) in Jupiter's stratosphere as a function of location on Jupiter. Much of this work is still ongoing. To date, we have concentrated on analyzing the variability of the auroral emissions rather than the absorption signatures of hydrocarbons, although we have done some work in this area with related HST-STIS data.

  2. Feasibility of the Precise Energy Calibration for Fast Neutron Spectrometers

    Science.gov (United States)

    Gaganov, V. V.; Usenko, P. L.; Kryzhanovskaja, M. A.

    2017-12-01

    Computational studies aimed at improving the accuracy of measurements performed using neutron generators with a tritium target were performed. A measurement design yielding an extremely narrow peak in the energy spectrum of DT neutrons was found. The presence of such a peak establishes the conditions for precise energy calibration of fast-neutron spectrometers.

  3. Scientific Payload Of The Emirates Mars Mission: Emirates Mars Infrared Spectrometer (Emirs) Overview.

    Science.gov (United States)

    Altunaiji, E. S.; Edwards, C. S.; Christensen, P. R.; Smith, M. D.; Badri, K. M., Sr.

    2017-12-01

    The Emirates Mars Mission (EMM) will launch in 2020 to explore the dynamics in the atmosphere of Mars on a global scale. EMM has three scientific instruments to an improved understanding of circulation and weather in the Martian lower and middle atmosphere. Two of the EMM's instruments, which are the Emirates eXploration Imager (EXI) and Emirates Mars Infrared Spectrometer (EMIRS) will focus on the lower atmosphere observing dust, ice clouds, water vapor and ozone. On the other hand, the third instrument Emirates Mars Ultraviolet Spectrometer (EMUS) will focus on both the thermosphere of the planet and its exosphere. The EMIRS instrument, shown in Figure 1, is an interferometric thermal infrared spectrometer that is jointly developed by Arizona State University (ASU) and Mohammed Bin Rashid Space Centre (MBRSC). It builds on a long heritage of thermal infrared spectrometers designed, built, and managed, by ASU's Mars Space Flight Facility, including the Thermal Emission Spectrometer (TES), Miniature Thermal Emission Spectrometer (Mini-TES), and the OSIRIS-REx Thermal Emission Spectrometer (OTES). EMIRS operates in the 6-40+ µm range with 5 cm-1 spectral sampling, enabled by a Chemical Vapor-Deposited (CVD) diamond beamsplitter and state of the art electronics. This instrument utilizes a 3×3 detector array and a scan mirror to make high-precision infrared radiance measurements over most of a Martian hemisphere. The EMIRS instrument is optimized to capture the integrated, lower-middle atmosphere dynamics over a Martian hemisphere and will capture 60 global images per week ( 20 images per orbit) at a resolution of 100-300 km/pixel. After processing through an atmospheric retrieval algorithm, EMIRS will determine the vertical temperature profiles to 50km altitude and measure the column integrated global distribution and abundances of key atmospheric parameters (e.g. dust, water ice (clouds) and water vapor) over the Martian day, seasons and year.

  4. High resolution krypton M/sub 4,5/ x-ray emission spectra

    International Nuclear Information System (INIS)

    Perera, R.C.C.; Hettrick, M.C.; Lindle, D.W.

    1987-10-01

    High resolution M/sub 4,5/ (3d → 4p) x-ray emission spectra from a krypton plasma were measured using a recently developed grazing-incidence reflection-grating monochromator/spectrometer with very high flux rates at extreme ultraviolet and soft x-ray wave lengths. The nominal resolving power of the instrument, E/ΔE, is about 300 in this energy range (∼80 eV). Three dipole-allowed 3d → 4p emission lines were observed at 80.98 eV, 80.35 eV and 79.73 eV. A broad peak at about 82.3 eV is tentatively assigned to transitions resulting from Kr 2+ , and effects of excitation energy on M/sub 4,5/ x-ray emission were observed. 9 refs., 3 figs., 1 tab

  5. Filtering and polychromatic vision in mantis shrimps: themes in visible and ultraviolet vision.

    Science.gov (United States)

    Cronin, Thomas W; Bok, Michael J; Marshall, N Justin; Caldwell, Roy L

    2014-01-01

    Stomatopod crustaceans have the most complex and diverse assortment of retinal photoreceptors of any animals, with 16 functional classes. The receptor classes are subdivided into sets responsible for ultraviolet vision, spatial vision, colour vision and polarization vision. Many of these receptor classes are spectrally tuned by filtering pigments located in photoreceptors or overlying optical elements. At visible wavelengths, carotenoproteins or similar substances are packed into vesicles used either as serial, intrarhabdomal filters or lateral filters. A single retina may contain a diversity of these filtering pigments paired with specific photoreceptors, and the pigments used vary between and within species both taxonomically and ecologically. Ultraviolet-filtering pigments in the crystalline cones serve to tune ultraviolet vision in these animals as well, and some ultraviolet receptors themselves act as birefringent filters to enable circular polarization vision. Stomatopods have reached an evolutionary extreme in their use of filter mechanisms to tune photoreception to habitat and behaviour, allowing them to extend the spectral range of their vision both deeper into the ultraviolet and further into the red.

  6. Contrasting effects of ultraviolet-A and ultraviolet B exposure on induction of contact sensitivity in human skin

    DEFF Research Database (Denmark)

    Skov, Lone; Hansen, Henrik; Barker, J. N.

    1997-01-01

    Ultraviolet-B (UVB), in addition to direct effects on DNA, induces immunological changes in the skin that predispose to the development of skin cancer. Whether ultraviolet-A (UVA) induces similar changes is unknown. This effect can be investigated in humans in vivo using epicutaneous antigens...... as a model of tumour antigens. Volunteers (n = 46) were randomly assigned to received no sensitization, sensitization with the allergen diphenylcyclopropenone (DPCP) on non-UV-exposed normal skin, or sensitization with DPCP on skin exposed to three minimal erythema doses (MED) of either UVA or UVB radiation...... the immunization rate compared with sensitization on non-irradiated skin (P UVA radiation did not result in a decreased immunization rate compared with non-irradiated skin. These results indicate that in humans erythemagenic...

  7. Lead-Tungstate Crystal of the ALICE Photon Spectrometer (PHOS)

    CERN Multimedia

    2003-01-01

    The photon spectrometer (PHOS) is designed to measure the temperature of collisions by detecting photons emerging from them. It will be made of lead tungstate crystals like these. When high-energy photons strike lead tungstate, they make it glow, or scintillate, and this glow can be measured. Lead tungstate is extremely dense (denser than iron), stopping most photons that reach it.

  8. Dose modeling in ultraviolet phototherapy

    International Nuclear Information System (INIS)

    Grimes, David Robert; Robbins, Chris; O'Hare, Neil John

    2010-01-01

    Purpose: Ultraviolet phototherapy is widely used in the treatment of numerous skin conditions. This treatment is well established and largely beneficial to patients on both physical and psychological levels; however, overexposure to ultraviolet radiation (UVR) can have detrimental effects, such as erythemal responses and ocular damage in addition to the potentially carcinogenic nature of UVR. For these reasons, it is essential to control and quantify the radiation dose incident upon the patient to ensure that it is both biologically effective and has the minimal possible impact on the surrounding unaffected tissue. Methods: To date, there has been little work on dose modeling, and the output of artificial UVR sources is an area where research has been recommended. This work characterizes these sources by formalizing an approach from first principles and experimentally examining this model. Results: An implementation of a line source model is found to give impressive accuracy and quantifies the output radiation well. Conclusions: This method could potentially serve as a basis for a full computational dose model for quantifying patient dose.

  9. Sub-50-as isolated extreme ultraviolet continua generated by 1.6-cycle near-infrared pulse combined with double optical gating scheme

    Science.gov (United States)

    Oguri, Katsuya; Mashiko, Hiroki; Ogawa, Tatsuya; Hanada, Yasutaka; Nakano, Hidetoshi; Gotoh, Hideki

    2018-04-01

    We demonstrate the generation of ultrabroad bandwidth attosecond continua extending to sub-50-as duration in the extreme ultraviolet (EUV) region based on a 1.6-cycle Ti:sapphire laser pulse. The combination of the amplitude gating scheme with a sub-two-cycle driver pulse and the double optical gating scheme achieves the continuum generation with a bandwidth of 70 eV at the full width at half maximum near the peak photon energy of 140 eV, which supports a Fourier-transform-limited pulse duration as short as 32 as. The carrier-envelope-phase (CEP) dependence of the attosecond continua shows a single-peak structure originating from the half-cycle cut-off at appropriate CEP values, which strongly indicates the generation of a single burst of an isolated attosecond pulse. Our approach suggests a possibility for isolated sub-50-as pulse generation in the EUV region by compensating for the intrinsic attosecond chirp with a Zr filter.

  10. High-order harmonics measured by the photon statistics of the infrared driving-field exiting the atomic medium.

    Science.gov (United States)

    Tsatrafyllis, N; Kominis, I K; Gonoskov, I A; Tzallas, P

    2017-04-27

    High-order harmonics in the extreme-ultraviolet spectral range, resulting from the strong-field laser-atom interaction, have been used in a broad range of fascinating applications in all states of matter. In the majority of these studies the harmonic generation process is described using semi-classical theories which treat the electromagnetic field of the driving laser pulse classically without taking into account its quantum nature. In addition, for the measurement of the generated harmonics, all the experiments require diagnostics in the extreme-ultraviolet spectral region. Here by treating the driving laser field quantum mechanically we reveal the quantum-optical nature of the high-order harmonic generation process by measuring the photon number distribution of the infrared light exiting the harmonic generation medium. It is found that the high-order harmonics are imprinted in the photon number distribution of the infrared light and can be recorded without the need of a spectrometer in the extreme-ultraviolet.

  11. UV Resonant Raman Spectrometer with Multi-Line Laser Excitation

    Science.gov (United States)

    Lambert, James L.; Kohel, James M.; Kirby, James P.; Morookian, John Michael; Pelletier, Michael J.

    2013-01-01

    A Raman spectrometer employs two or more UV (ultraviolet) laser wavel engths to generate UV resonant Raman (UVRR) spectra in organic sampl es. Resonant Raman scattering results when the laser excitation is n ear an electronic transition of a molecule, and the enhancement of R aman signals can be several orders of magnitude. In addition, the Ra man cross-section is inversely proportional to the fourth power of t he wavelength, so the UV Raman emission is increased by another fact or of 16, or greater, over visible Raman emissions. The Raman-scatter ed light is collected using a high-resolution broadband spectrograph . Further suppression of the Rayleigh-scattered laser light is provi ded by custom UV notch filters.

  12. Transformation of ultraviolet-irradiated human fibroblasts by simian virus 40 is enhanced by cellular DNA repair functions

    International Nuclear Information System (INIS)

    Hall, J.D.

    1981-01-01

    Human fibroblasts irradiated with ultraviolet light were either tested for survival (colony formation) or infected with simian virus 40 and examined for transformation (foci formation). For normal cell cultures, the fractions of surviving colonies which were also transformed increased with increasing irradiation dose. In contrast, little increase in the transformation of ultraviolet-irradiated repair-deficient (xeroderma pigmentosum and xeroderma pigmentosum variant) cells was observed. Similar experiments with xeroderma pigmentosum variant cells treated with caffeine following irradiation indicated that, under these conditions, the deficient cells produced more transformants among the survivors of ultraviolet irradiation than did unirradiated cells. These results suggest (1) that DNA repair functions, not DNA damage per se, are required for enhanced viral transformation in normal cells; (2) that functions involved in excision repair and functions needed for replication of ultraviolet-damaged DNA appear necessary for this stimulation; and (3) that blocking DNA replication in ultraviolet-irradiated xeroderma pigmentosum variant cells by caffeine enhances viral transformation. (Auth.)

  13. Trends in the incidence of lower extremity amputations in people with and without diabetes over a five-year period in the Republic of Ireland.

    LENUS (Irish Health Repository)

    Buckley, Claire M

    2012-01-01

    To describe trends in the incidence of non-traumatic amputations among people with and without diabetes and estimate the relative risk of an individual with diabetes undergoing a lower extremity amputation compared to an individual without diabetes in the Republic of Ireland.

  14. A single-shot nonlinear autocorrelation approach for time-resolved physics in the vacuum ultraviolet spectral range

    International Nuclear Information System (INIS)

    Rompotis, Dimitrios

    2016-02-01

    In this work, a single-shot temporal metrology scheme operating in the vacuum-extreme ultraviolet spectral range has been designed and experimentally implemented. Utilizing an anti-collinear geometry, a second-order intensity autocorrelation measurement of a vacuum ultraviolet pulse can be performed by encoding temporal delay information on the beam propagation coordinate. An ion-imaging time-of-flight spectrometer, offering micrometer resolution has been set-up for this purpose. This instrument enables the detection of a magnified image of the spatial distribution of ions exclusively generated by direct two-photon absorption in the combined counter-propagating pulse focus and thus obtain the second-order intensity autocorrelation measurement on a single-shot basis. Additionally, an intense VUV light source based on high-harmonic generation has been experimentally realized. It delivers intense sub-20 fs Ti:Sa fifth-harmonic pulses utilizing a loose-focusing geometry in a long Ar gas cell. The VUV pulses centered at 161.8 nm reach pulse energies of 1.1 μJ per pulse, while the corresponding pulse duration is measured with a second-order, fringe-resolved autocorrelation scheme to be 18 ± 1 fs on average. Non-resonant, two-photon ionization of Kr and Xe and three-photon ionization of Ne verify the fifth-harmonic pulse intensity and indicate the feasibility of multi-photon VUV pump/VUV probe studies of ultrafast atomic and molecular dynamics. Finally, the extended functionally of the counter-propagating pulse metrology approach is demonstrated by a single-shot VUV pump/VUV probe experiment aiming at the investigation of ultrafast dissociation dynamics of O 2 excited in the Schumann-Runge continuum at 162 nm.

  15. Characterization of a smartphone camera's response to ultraviolet A radiation.

    Science.gov (United States)

    Igoe, Damien; Parisi, Alfio; Carter, Brad

    2013-01-01

    As part of a wider study into the use of smartphones as solar ultraviolet radiation monitors, this article characterizes the ultraviolet A (UVA; 320-400 nm) response of a consumer complementary metal oxide semiconductor (CMOS)-based smartphone image sensor in a controlled laboratory environment. The CMOS image sensor in the camera possesses inherent sensitivity to UVA, and despite the attenuation due to the lens and neutral density and wavelength-specific bandpass filters, the measured relative UVA irradiances relative to the incident irradiances range from 0.0065% at 380 nm to 0.0051% at 340 nm. In addition, the sensor demonstrates a predictable response to low-intensity discrete UVA stimuli that can be modelled using the ratio of recorded digital values to the incident UVA irradiance for a given automatic exposure time, and resulting in measurement errors that are typically less than 5%. Our results support the idea that smartphones can be used for scientific monitoring of UVA radiation. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  16. Effect of retardation on the reflectance properties of the metallic Fibonacci quasi-superlattice

    International Nuclear Information System (INIS)

    Feng Weiguo; Yao Hesheng; Xu Xiang

    1989-12-01

    Based on the hydrodynamic model theory and the transfer matrix method, we have re-examined the reflection properties by taking account of the retardation effect to the system of the metallic Fibonacci quasi-superlattice. For the normal incident S-polarized Soft X-rays and extreme ultraviolet, we find that the self-similar reflecting spectrum will be restrained with the increasing of the retardation, but for the higher frequency region or at the smaller grazing angle, the self similarity will still exist for the lower generation quasi-superlattice. (author). 19 refs, 2 figs, 1 tab

  17. Doubly curved imaging Bragg crystal spectrometer for X-ray astronomy

    DEFF Research Database (Denmark)

    Byrnak, B. P.; Christensen, Finn Erland; Westergaard, Niels Jørgen Stenfeldt

    1985-01-01

    An X-ray spectrometer which is sensitive in the 0.5-7-keV energy range and is intended for use onboard astronomical satellites has been studied. The Bragg reflected rays from a doubly bent crystal positioned downstream of the focal plane of a grazing-incidence concentrator are focused along the a...

  18. Population exposure to ultraviolet radiation in Finland 1920-1995: Exposure trends and a time-series analysis of exposure and cutaneous melanoma incidence

    International Nuclear Information System (INIS)

    Kojo, Katja; Jansen, Christer T.; Nybom, Pia; Huurto, Laura; Laihia, Jarmo; Ilus, Taina; Auvinen, Anssi

    2006-01-01

    Ultraviolet radiation (UVR) is the principal cause of cutaneous malignant melanoma (CMM). However, the relation between CMM and UVR exposure is not clear. We present the trends of population exposure to UVR and conduct a time-series analysis of the relation between UVR exposure and incidence of CMM. Data on CMM incidence were obtained from the Finnish Cancer Registry. Clothing coverage of the body was scored from archival photographs and the proportion of uncovered skin was used as a measure of solar exposure. Information on the number of sunny resort holidays, duration of annual holidays, and sunscreen sales were obtained from various sources. Exposed skin area doubled from 1920 to 1985. The average duration of annual holidays increased 30-fold. The number of sunny resort holidays and the sales of sunscreens increased rapidly from 1980. CMM was most strongly associated with solar exposure of 5-19 years earlier. There is a considerable decrease in clothing coverage during the 20th century. UVR exposure preceding CMM occurrence 4 years or less does not appear relevant, whereas the period 5-19 years prior to CMM occurrence might be the most relevant period. However, findings of ecological studies may not be applicable at the individual level

  19. Temporal variations of electron density and temperature in Kr/Ne/H2 photoionized plasma induced by nanosecond pulses from extreme ultraviolet source

    Science.gov (United States)

    Saber, I.; Bartnik, A.; Wachulak, P.; Skrzeczanowski, W.; Jarocki, R.; Fiedorowicz, H.

    2017-06-01

    Spectral investigations of low-temperature photoionized plasmas created in a Kr/Ne/H2 gas mixture were performed. The low-temperature plasmas were generated by gas mixture irradiation using extreme ultraviolet pulses from a laser-plasma source. Emission spectra in the ultraviolet/visible range from the photoionized plasmas contained lines that mainly corresponded to neutral atoms and singly charged ions. Temporal variations in the plasma electron temperature and electron density were studied using different characteristic emission lines at various delay times. Results, based on Kr II lines, showed that the electron temperature decreased from 1.7 to 0.9 eV. The electron densities were estimated using different spectral lines at each delay time. In general, except for the Hβ line, in which the electron density decreased from 3.78 × 1016 cm-3 at 200 ns to 5.77 × 1015 cm-3 at 2000 ns, most of the electron density values measured from the different lines were of the order of 1015 cm-3 and decreased slightly while maintaining the same order when the delay time increased. The time dependences of the measured and simulated intensities of a spectral line of interest were also investigated. The validity of the partial or full local thermodynamic equilibrium (LTE) conditions in plasma was explained based on time-resolved electron density measurements. The partial LTE condition was satisfied for delay times in the 200 ns to 1500 ns range. The results are summarized, and the dominant basic atomic processes in the gas mixture photoionized plasma are discussed.

  20. Excluded volume effects caused by high concentration addition of acid generators in chemically amplified resists used for extreme ultraviolet lithography

    Science.gov (United States)

    Kozawa, Takahiro; Watanabe, Kyoko; Matsuoka, Kyoko; Yamamoto, Hiroki; Komuro, Yoshitaka; Kawana, Daisuke; Yamazaki, Akiyoshi

    2017-08-01

    The resolution of lithography used for the high-volume production of semiconductor devices has been improved to meet the market demands for highly integrated circuits. With the reduction in feature size, the molecular size becomes non-negligible in the resist material design. In this study, the excluded volume effects caused by adding high-concentration acid generators were investigated for triphenylsulfonium nonaflate. The resist film density was measured by X-ray diffractometry. The dependences of absorption coefficient and protected unit concentration on acid generator weight ratio were calculated from the measured film density. Using these values, the effects on the decomposition yield of acid generators, the protected unit fluctuation, and the line edge roughness (LER) were evaluated by simulation on the basis of sensitization and reaction mechanisms of chemically amplified extreme ultraviolet resists. The positive effects of the increase in acid generator weight ratio on LER were predominant below the acid generator weight ratio of 0.3, while the negative effects became equivalent to the positive effects above the acid generator weight ratio of 0.3 owing to the excluded volume effects.

  1. Contrasting behavior of covalent and molecular carbon allotropes exposed to extreme ultraviolet and soft x-ray free-electron laser radiation

    Science.gov (United States)

    Toufarová, M.; Hájková, V.; Chalupský, J.; Burian, T.; Vacík, J.; Vorlíček, V.; Vyšín, L.; Gaudin, J.; Medvedev, N.; Ziaja, B.; Nagasono, M.; Yabashi, M.; Sobierajski, R.; Krzywinski, J.; Sinn, H.; Störmer, M.; Koláček, K.; Tiedtke, K.; Toleikis, S.; Juha, L.

    2017-12-01

    All carbon materials, e.g., amorphous carbon (a-C) coatings and C60 fullerene thin films, play an important role in short-wavelength free-electron laser (FEL) research motivated by FEL optics development and prospective nanotechnology applications. Responses of a-C and C60 layers to the extreme ultraviolet (SPring-8 Compact SASE Source in Japan) and soft x-ray (free-electron laser in Hamburg) free-electron laser radiation are investigated by Raman spectroscopy, differential interference contrast, and atomic force microscopy. A remarkable difference in the behavior of covalent (a-C) and molecular (C60) carbonaceous solids is demonstrated under these irradiation conditions. Low thresholds for ablation of a fullerene crystal (estimated to be around 0.15 eV/atom for C60 vs 0.9 eV/atom for a-C in terms of the absorbed dose) are caused by a low cohesive energy of fullerene crystals. An efficient mechanism of the removal of intact C60 molecules from the irradiated crystal due to Coulomb repulsion of fullerene-cage cation radicals formed by the ionizing radiation is revealed by a detailed modeling.

  2. Familial melanoma associated with dominant ultraviolet radiation sensitivity

    International Nuclear Information System (INIS)

    Ramsay, R.G.; Chen, P.; Imray, F.P.; Kidson, C.; Lavin, M.F.; Hockey, A.

    1982-01-01

    Sensitivity to ultraviolet radiation was studied in lymphoblastoid cell lines derived from 32 members of two families with histories of multiple primary melanomas in several generations. As assayed by colony formation in agar or by trypan blue exclusion following irradiation, cellular sensitivity showed a bimodal distribution. All persons with melanoma or multiple moles were in the sensitive group, while some family members exhibited responses similar to those of controls. Cells from four cases of sporadic melanoma showed normal levels of sensitivity. The data are consistent with a dominantly inherited ultraviolet light sensitivity associated with these examples of familial melanoma. Spontaneous and ultraviolet light-induced sister chromatid exchange frequencies were similar to those in control cell lines. No defect in excision repair was detected in any of the above cell lines, but the sensitive group showed postirradiation inhibition of DNA replication intermediate between controls and an excision-deficient xeroderma pigmentosum cell line

  3. Precision tracking at high background rates with the ATLAS muon spectrometer

    CERN Document Server

    Hertenberger, Ralf; The ATLAS collaboration

    2012-01-01

    Since start of data taking the ATLAS muon spectrometer performs according to specification. End of this decade after the luminosity upgrade of LHC by a factor of ten the proportionally increasing background rates require the replacement of the detectors in the most forward part of the muon spectrometer to ensure high quality muon triggering and tracking at background hit rates of up to 15,kHz/cm$^2$. Square meter sized micromegas detectors together with improved thin gap trigger detectors are suggested as replacement. Micromegas detectors are intrinsically high rate capable. A single hit spatial resolution below 40,$mu$m has been shown for 250,$mu$m anode strip pitch and perpendicular incidence of high energy muons or pions. The ongoing development of large micromegas structures and their investigation under non-perpendicular incidence or in high background environments requires precise and reliable monitoring of muon tracks. A muon telescope consisting of six small micromegas works reliably and is presently ...

  4. Ultraviolet Extensions

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Side-by-Side Comparison Click on image for larger view This ultraviolet image from NASA's Galaxy Evolution Explorer shows the Southern Pinwheel galaxy, also know as Messier 83 or M83. It is located 15 million light-years away in the southern constellation Hydra. Ultraviolet light traces young populations of stars; in this image, young stars can be seen way beyond the main spiral disk of M83 up to 140,000 light-years from its center. Could life exist around one of these far-flung stars? Scientists say it's unlikely because the outlying regions of a galaxy are lacking in the metals required for planets to form. The image was taken at scheduled intervals between March 15 and May 20, 2007. It is one of the longest-exposure, or deepest, images ever taken of a nearby galaxy in ultraviolet light. Near-ultraviolet light (or longer-wavelength ultraviolet light) is colored yellow, and far-ultraviolet light is blue. What Lies Beyond the Edge of a Galaxy The side-by-side comparison shows the Southern Pinwheel galaxy, or M83, as seen in ultraviolet light (right) and at both ultraviolet and radio wavelengths (left). While the radio data highlight the galaxy's long, octopus-like arms stretching far beyond its main spiral disk (red), the ultraviolet data reveal clusters of baby stars (blue) within the extended arms. The ultraviolet image was taken by NASA's Galaxy Evolution Explorer between March 15 and May 20, 2007, at scheduled intervals. Back in 2005, the telescope first photographed M83 over a shorter period of time. That picture was the first to reveal far-flung baby stars forming up to 63,000 light-years from the edge of the main spiral disk. This came as a surprise to astronomers because a galaxy's outer territory typically lacks high densities of star-forming materials. The newest picture of M83 from the Galaxy Evolution Explorer is shown at the right, and was taken over a longer period of time. In fact, it is one of the

  5. Measurement of the solar ultraviolet radiation at ground level in Bangi, Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Aljawi, Ohoud; Gopir, Geri; Duay, Abdul Basit [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia. ohoud-aljawi@hotmail.com (Malaysia)

    2015-04-24

    Understanding the amount of ultraviolet (UV) radiation received by human, plant, and animal organisms near the earth’s surface is important to a wide range of fields such as cancer research, agriculture and forestry. The solar ultraviolet spectral irradiance at ground level was measured using the Avantes spectrometer for the period of January to March 2014 at Bangi (2°55´N, 101°46´E, 50 m above sea level) in Malaysia. These data were used to estimate the diurnal variation of UV irradiance (300 – 400 nm). The maximum irradiance of UV radiation was 45 W m{sup −2} on horizontal surface. The maximum irradiance of UV received in the local noon time, and the minimum values of UV irradiance was received in the local morning time. It is found a bigger value of UV radiation was observed on clear sky in January. The estimation of daily flux average of UV irradiance was (921± 91) kJ m{sup −2}.

  6. Recent advances in ground-based ultraviolet remote sensing of volcanic SO2 fluxes

    Directory of Open Access Journals (Sweden)

    Euripides P. Kantzas

    2011-06-01

    Full Text Available Measurements of volcanic SO2 emission rates have been the mainstay of remote-sensing volcanic gas geochemistry for almost four decades, and they have contributed significantly to our understanding of volcanic systems and their impact upon the atmosphere. The last ten years have brought step-change improvements in the instrumentation applied to these observations, which began with the application of miniature ultraviolet spectrometers that were deployed in scanning and traverse configurations, with differential optical absorption spectroscopy evaluation routines. This study catalogs the more recent empirical developments, including: ultraviolet cameras; wide-angle field-of-view differential optical absorption spectroscopy systems; advances in scanning operations, including tomography; and improved understanding of errors, in particular concerning radiative transfer. Furthermore, the outcomes of field deployments of sensors during the last decade are documented, with respect to improving our understanding of volcanic dynamics and degassing into the atmosphere.

  7. Absorption spectra of localized surface plasmon resonance observed in an inline/picoliter spectrometer cell fabricated by a near ultraviolet femtosecond laser

    Science.gov (United States)

    Shiraishi, Masahiko; Nishiyama, Michiko; Watanabe, Kazuhiro; Kubodera, Shoichi

    2018-03-01

    Absorption spectra based on localized surface plasmon resonance (LSPR) were obtained with an inline/picoliter spectrometer cell. The spectrometer cell was fabricated into an optical glass fiber by focusing a near UV (NUV) femtosecond laser pulses at a wavelength of 400 nm with an energy of 30 μJ. The laser beam was focused from two directions opposite to each other to fabricate a through-hole spectrometer cell. A diameter of the cell was approximately 3 μm, and the length was approximately 62.5 μm, which was nearly equal to the core diameter of the optical fiber. Liquid solution of gold nanoparticles (GNPs) with a diameter of 5-10 nm was injected into the spectrometer cell with its volume of 0.4 pL. The absorption peak centered at 518 nm was observed. An increase of absorption associated with the increase of the number of nanoparticles was in agreement with the numerical calculation based on the Lambert-Beer law.

  8. Ultraviolet-Absorption Spectroscopic Biofilm Monitor

    Science.gov (United States)

    Micheels, Ronald H.

    2004-01-01

    An ultraviolet-absorption spectrometer system has been developed as a prototype instrument to be used in continuous, real-time monitoring to detect the growth of biofilms. Such monitoring is desirable because biofilms are often harmful. For example, biofilms in potable-water and hydroponic systems act as both sources of pathogenic bacteria that resist biocides and as a mechanism for deterioration (including corrosion) of pipes. Biofilms formed from several types of hazardous bacteria can thrive in both plant-growth solutions and low-nutrient media like distilled water. Biofilms can also form in condensate tanks in air-conditioning systems and in industrial heat exchangers. At present, bacteria in potable-water and plant-growth systems aboard the space shuttle (and previously on the Mir space station) are monitored by culture-plate counting, which entails an incubation period of 24 to 48 hours for each sample. At present, there are no commercially available instruments for continuous monitoring of biofilms in terrestrial or spaceborne settings.

  9. Ultraviolet transitions from the 2 3P states of helium-like argon

    International Nuclear Information System (INIS)

    Davis, W.A.

    1976-09-01

    This thesis describes the observation of two allowed electric dipole transitions in helium-like argon. The transitions are 2 3 P 2 --2 3 S 1 and 2 3 P 0 --2 3 S 1 . These transitions were observed by using a vacuum ultraviolet monochromator to collect photons from decays-in-flight of a beam-foil excited argon ion beam. The ion beam was generated by the Lawrence Berkeley Laboratory heavy ion linear accelerator (SuperHILAC) and had a beam energy of 138 MeV with a charge current of roughly 500 nanoamperes. After initial observation, the lifetimes and absolute wavelengths of these transitions were measured. The results are tau(2 3 P 2 ) = 1.62 +- 0.08 X 10 -9 sec, tau(2 3 P 0 ) = 4.87 +- 0.44 X 10 -9 sec, lambda(2 3 P 2 --2 3 S 1 ) = 560.2 +- 0.9A, and lambda(2 3 P 0 --2 3 S 1 ) = 660.7 +- 1.1A. This work has demonstrated the observability of these transitions in high-Z ions using beam-foil excitation. Employing a new grazing-incidence spectrometer this work will be pursued in ions of higher Z. Accuracies of at least one part in a thousand should be attainable and will probe the radiative contributions to these transitions to better than 10 percent in a previously unstudied region

  10. Biological effects of extreme environmental conditions. [considering limits of biosphere

    Science.gov (United States)

    Imshenetskiy, A. A.

    1975-01-01

    Actions of extreme physical and chemical space factors on microorganisms and plants are elaborated in order to establish limits for the biosphere. Considered are effects of low and high temperatures; ionizing and ultraviolet radiation; various gases; and effects of vibration, desiccation and acceleration.

  11. Cervical cancer incidence after normal cytological sample in routine screening using SurePath, ThinPrep, and conventional cytology

    DEFF Research Database (Denmark)

    Rozemeijer, Kirsten; Naber, Steffie K; Penning, Corine

    2017-01-01

    of histo- and cytopathology in the Netherlands (PALGA), January 2000 to March 2013.Population Women with 5 924 474 normal screening samples (23 833 123 person years).Exposure Use of SurePath or ThinPrep versus conventional cytology as screening test.Main outcome measure 72 month cumulative incidence...

  12. Continuum modeling of ion-beam eroded surfaces under normal incidence: Impact of stochastic fluctuations

    International Nuclear Information System (INIS)

    Dreimann, Karsten; Linz, Stefan J.

    2010-01-01

    Graphical abstract: Deterministic surface pattern (left) and its stochastic counterpart (right) arising in a stochastic damped Kuramoto-Sivashinsky equation that serves as a model equation for ion-beam eroded surfaces and is systematically investigated. - Abstract: Using a recently proposed field equation for the surface evolution of ion-beam eroded semiconductor target materials under normal incidence, we systematically explore the impact of additive stochastic fluctuations that are permanently present during the erosion process. Specifically, we investigate the dependence of the surface roughness, the underlying pattern forming properties and the bifurcation behavior on the strength of the fluctuations.

  13. Incidences des extremes pluviometriques au Benin Impact of ...

    African Journals Online (AJOL)

    . These data were extracted from the file of ASECNA-Cotonou. In addition, surveys have been conducted to understand the impacts of these extreme rainfalls. The data and information collected was processed using descriptive statistics.

  14. Chang'e 3 and Jade Rabbit's: observations and the landing zone

    Science.gov (United States)

    Ping, Jinsong

    Chang’E-3 was launched and landed on the near side of the Moon in December 2013. It is realizing the 2nd phase of Chinese lunar scientific exploration projects. Together with the various in-situ optical observations around the landing sites, the mission carried 4 kinds of radio science experiments, cover the various lunar scientific disciplines as well as lunar surface radio astronomy studies. The key payloads onboard the lander and rover include the near ultraviolet telescope, extreme ultraviolet cameras, ground penetrating radar, very low frequency radio spectrum analyzer, which have not been used in earlier lunar landing missions. Optical spectrometer, Alpha Paticle X-ray spectrometer and Gama Ray spectrometer is also used. The mission is using extreme ultraviolet camera to observe the sun activity and geomagnetic disturbances on geo-space plasma layer of extreme ultraviolet radiation, studying space weather in the plasma layer role in the process; the mission also carries the first time lunar base optical astronomical observations. Most importantly, the topography, landforms and geological structure has been explored in detail. Additionally, the very precise Earth-Moon radio phase ranging technique was firstly tested and realized in this mission. It may increase the study of lunar dyanmics together with LLR technique. Similar to Luna-Glob landers, together with the VLBI radio beacons, the radio transponders are also set on the Chang’E-3. Transponder will receive the uplink X band radio wave transmitted from the two newly constructed Chinese deep space stations, where the high quality hydrogen maser atomic clocks have been used as local time and frequency standard. Radio science receivers have been developed by updating the multi-channel open loop Doppler receiver developed for VLBI and Doppler tracking in Yinghuo-1 and Phobos-Glob Martian missions. This experiment will improve the study of lunar dynamics, by means of measuring the lunar physical liberations

  15. Ion mobility analyzer - quadrupole mass spectrometer system design

    International Nuclear Information System (INIS)

    Cuna, C; Leuca, M; Lupsa, N; Mirel, V; Cuna, Stela; Cosma, V; Tusa, Florina; Bocos-Bintintan, V

    2009-01-01

    Because of their extremely high sensitivity for chemicals with elevated electronegativity or high proton affinity the ion mobility analysers are ideal for the ultra-trace detection of toxic or explosive chemicals, most of these situated often at concentration levels of sub-ppb (parts-per-billion). Ion mobility spectrometers (IMS) can be used to identify illicit drugs or environmental pollutants. Since resolution of an IMS is relatively low, to achieve an accurate identification of target analyte it is recommended to couple the IMS with a quadrupole mass spectrometer (QMS) or a time of flight mass spectrometer, acquiring in this way confirmatory information. This coupling is made through a specific interface. In this paper, an experimental model of such a tandem instrument, IMS-QMS is described. Accomplishment of this general purpose will be done, overcoming a series of specific issues. This implies the solving, using innovative solutions, of a series of complex issues: ensuring the stability of the ions beam generated by ion source; transfer with a good efficiency of the ionic current from IMS analyser to QMS; and realization of a special electronic circuitry which will be able to detect both positive and negative ions.

  16. Ion mobility analyzer - quadrupole mass spectrometer system design

    Energy Technology Data Exchange (ETDEWEB)

    Cuna, C; Leuca, M; Lupsa, N; Mirel, V; Cuna, Stela; Cosma, V; Tusa, Florina [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Bocos-Bintintan, V, E-mail: cornel.cuna@itim-cj.r [Babes-Bolyai University, Faculty of Environmental Sciences, 3 Fantanele, 400294 Cluj Napoca (Romania)

    2009-08-01

    Because of their extremely high sensitivity for chemicals with elevated electronegativity or high proton affinity the ion mobility analysers are ideal for the ultra-trace detection of toxic or explosive chemicals, most of these situated often at concentration levels of sub-ppb (parts-per-billion). Ion mobility spectrometers (IMS) can be used to identify illicit drugs or environmental pollutants. Since resolution of an IMS is relatively low, to achieve an accurate identification of target analyte it is recommended to couple the IMS with a quadrupole mass spectrometer (QMS) or a time of flight mass spectrometer, acquiring in this way confirmatory information. This coupling is made through a specific interface. In this paper, an experimental model of such a tandem instrument, IMS-QMS is described. Accomplishment of this general purpose will be done, overcoming a series of specific issues. This implies the solving, using innovative solutions, of a series of complex issues: ensuring the stability of the ions beam generated by ion source; transfer with a good efficiency of the ionic current from IMS analyser to QMS; and realization of a special electronic circuitry which will be able to detect both positive and negative ions.

  17. Spherical grating spectrometers

    Science.gov (United States)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  18. Some physics highlights from the EUROBALL spectrometer

    International Nuclear Information System (INIS)

    Korten, W.

    2004-01-01

    The latest generation of large γ-ray spectrometers, such as EUROBALL, has boosted the explorations of nuclei under extreme conditions especially at the limits of angular momentum and at finite temperatures. But the coupling of this instrument to very selective ''ancillary'' devices allows for more and more refined investigations of the third important degree of freedom in contemporary nuclear-structure studies, the isospin. This contribution summarises some of the recent highlights from the physics at EUROBALL obtained in some of the different areas of nuclear-structure research

  19. Autonomous celestial navigation based on Earth ultraviolet radiance and fast gradient statistic feature extraction

    Science.gov (United States)

    Lu, Shan; Zhang, Hanmo

    2016-01-01

    To meet the requirement of autonomous orbit determination, this paper proposes a fast curve fitting method based on earth ultraviolet features to obtain accurate earth vector direction, in order to achieve the high precision autonomous navigation. Firstly, combining the stable characters of earth ultraviolet radiance and the use of transmission model software of atmospheric radiation, the paper simulates earth ultraviolet radiation model on different time and chooses the proper observation band. Then the fast improved edge extracting method combined Sobel operator and local binary pattern (LBP) is utilized, which can both eliminate noises efficiently and extract earth ultraviolet limb features accurately. And earth's centroid locations on simulated images are estimated via the least square fitting method using part of the limb edges. Taken advantage of the estimated earth vector direction and earth distance, Extended Kalman Filter (EKF) is applied to realize the autonomous navigation finally. Experiment results indicate the proposed method can achieve a sub-pixel earth centroid location estimation and extremely enhance autonomous celestial navigation precision.

  20. A ring image Cerenkov detector for the CERN Omega Spectrometer

    International Nuclear Information System (INIS)

    Davenport, M.; Deol, R.S.; Flower, P.S.

    1983-05-01

    A development program has been undertaken to produce a large ring image Cerenkov detector (RICH) for use at the CERN Omega Spectrometer. A prototype Cerenkov counter has been constructed and successfully operated in a high energy particle beam, Cerenkov rings having been observed in an experimental time projection chamber (TPC) using the photoionising agents Triethylamine (TEA) and Tetrakis (dimethylamine) ethylene (TMAE). Systematic measurements have been made of the optical properties of window materials and reflecting surfaces in the vacuum ultraviolet region. Results of these tests are presented, and the design of the large detector based on these experiences together with Monte Carlo simulations of the events expected in the WA69 experiment, is discussed. (author)

  1. Study on the resistance of haloferax radiotolerans, an extreme Halophilic archaebacterium from Uromia lake against ultraviolet (UV) light and 60Co gamma-rays

    International Nuclear Information System (INIS)

    Asgarni, E.; Shirzad, M.; Soudi, M. R.; Shahmohammadi, H. R.; Falsafi, T.

    2006-01-01

    In this work, the capacity of an extreme halophilic archaebacterium, isolated from Uromia lake, Haloferax radiotolerans to withstand the lethal effects of ultraviolet light (UV),and 60 Co r-rays has been studied. The resistibility of this organism against the DNA-damaging agents was evaluated by calculating of the survival fractions at different dose rates of W and 60 Co r-rays radiations and compared with those of Escherichia coli B/r (a radioresistant strain of E. coli). D 37 values for Haloferax radiotolerans and E. coli B/r were 23 1, and 9 J/m 2 , respectively, by exposure to the UV light. They were 645, and 99 Gy, respectively, by exposure to 60 Co r-rays. Against these agents, Haloferax radiotolerans shows much more resistance compare to that of E. coli B/r. This is categorized as the first report of resistibility in the member of Archaea

  2. Vacuum ultraviolet spectroscopy of some hydrocarbons by electron impact technique

    International Nuclear Information System (INIS)

    Azevedo e Souza, A.C. de.

    1985-07-01

    A detailed description of the construction and operation of the electron impact spectrometer of the Electron Impact Laboratory at the Chemistry Institute of Federal University of Rio de Janeiro are presented. The main characteristics of this spectrometer are: incident energy from 0.5 to 3.0 KeV; angular range from -60 0 to + 60 0 ; energy loss from 0 to 500 eV; energy resolution from 0.5 to 2.5 eV and; electron velocity analyser equal to electrostatic (Mollenstedt type. The data acquisition system is based on a microcomputer Motorola; recently an APPLE II system has been incorporated to the spectrometer. Electron energy loss spectra for the nitrogen molecule as well as for some hydrocarbons (C 2 H 6 , C 2 H 4 , C 2 H 2 ) have been obtained. The data were converted into double differential cross sections and generalized oscillator strenghts. (author) [pt

  3. Ultraviolet spectrographs for thermospheric and ionospheric remote sensing

    International Nuclear Information System (INIS)

    Dymond, K.F.; McCoy, R.P.

    1993-01-01

    The Naval Research Laboratory (NRL) has been developing far- and extreme-ultraviolet spectrographs for remote sensing the Earth's upper atmosphere and ionosphere. The first of these sensors, called the Special Sensor Ultraviolet Limb Imager (SSULI), will be flying on the Air Force's Defense Meteorological Satellite Program (DMSP) block 5D3 satellites as an operational sensor in the 1997-2010 time frame. A second sensor, called the High-resolution ionospheric and Thermospheric Spectrograph (HITS), will fly in late 1995 on the Air Force Space Test Program's Advanced Research and Global Observation Satellite (ARGOS, also known as P91-1) as part of NRL's High Resolution Airglow and Auroral Spectroscopy (HIRAAS) experiment. Both of these instruments are compact and do not draw much power and would be good candidates for small satellite applications. The instruments and their capabilities are discussed. Possible uses of these instruments in small satellite applications are also presented

  4. Observations of Local ISM Emission with the Berkeley EUV/FUV Shuttle Telescope

    Science.gov (United States)

    Martin, C.; Bowyer, S.

    1984-01-01

    The Berkeley extreme ultraviolet/far ultraviolet shuttle telescope (BEST) will be launched on the Space Shuttle as part of the NASA UVX project. The Berkeley spectrometer will make observations of the cosmic diffuse background in the 600 to 1900 A band, with a spectral resolution of 10 A. The sensitivity and spectral resolution of the instrument make it ideal for the study of components of the interstellar medium in the 10 to the 4th power to 10 to the 6th power K range.

  5. Combined Raman/LIBS spectrometer elegant breadboard: built and tested - and flight model spectrometer unit

    Science.gov (United States)

    Ahlers, B.; Hutchinson, I.; Ingley, R.

    2017-11-01

    A spectrometer for combined Raman and Laser Induced Breakdown Spectroscopy (LIBS) is amongst the different instruments that have been pre-selected for the Pasteur payload of the ExoMars rover. It is regarded as a fundamental, next-generation instrument for organic, mineralogical and elemental characterisation of Martian soil, rock samples and organic molecules. Raman spectroscopy and LIBS will be integrated into a single instrument sharing many hardware commonalities [1]. The combined Raman / LIBS instrument has been recommended as the highest priority mineralogy instrument to be included in the rover's analytical laboratory for the following tasks: Analyse surface and sub-surface soil and rocks on Mars, identify organics in the search for life and determine soil origin & toxicity. The synergy of the system is evident: the Raman spectrometer is dedicated to molecular analysis of organics and minerals; the LIBS provides information on the sample's elemental composition. An international team, under ESA contract and with the leadership of TNO Science and Industry, has built and tested an Elegant Bread Board (EBB) of the combined Raman / LIBS instrument. The EBB comprises a specifically designed, extremely compact, spectrometer with high resolution over a large wavelength range, suitable for both Raman spectroscopy and LIBS measurements. The EBB also includes lasers, illumination and imaging optics as well as fibre optics for light transfer. A summary of the functional and environmental requirements together with a description of the optical design and its expected performance are described in [2]. The EBB was developed and constructed to verify the instruments' end-to-end functional performance with natural samples. The combined Raman / LIBS EBB realisation and test results of natural samples will be presented. For the Flight Model (FM) instrument, currently in the design phase, the Netherlands will be responsible for the design, development and verification of the

  6. High incidence of rickets in extremely low birth weight infants with severe parenteral nutrition-associated cholestasis and bronchopulmonary dysplasia.

    Science.gov (United States)

    Lee, Soon Min; Namgung, Ran; Park, Min Soo; Eun, Ho Sun; Park, Kook In; Lee, Chul

    2012-12-01

    Risk factors for rickets of prematurity have not been re-examined since introduction of high mineral formula, particularly in ELBW infants. We analyzed the incidence and the risk factors of rickets in extremely low birth weight (ELBW) infants. As a retrospective case-control study from 2004 to 2008, risk factors were analyzed in 24 patients with rickets versus 31 patients without. The frequency of rickets in ELBW infants was 24/55 (44%). Infants with rickets were diagnosed at 48.2 ± 16.1 days of age, and improved by 85.3 ± 25.3 days. By radiologic evaluation, 29% were grade 1 rickets, 58% grade 2 and 13% grade 3. In univariate analysis, infants with rickets had significantly higher incidence of patent ductus arteriosus, parenteral nutrition associated cholestasis (PNAC), severe PNAC and moderate/severe bronchopulmonary dysplasia (BPD). In multiple regression analysis, after adjustment for gestation and birth weight, rickets significantly correlated with severe PNAC and with moderate/severe BPD. Serum peak alkaline phosphatase levels were significantly elevated in rickets (P rickets of prematurity remains high and the incidence of severe PNAC and moderate/severe BPD was significantly increased 18 and 3 times, respectively.

  7. Incidence of ascariasis in gastric carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Woo; Rhee, Hak Song; Bahk, Yong Whee [St Mary' s Hospital Catholic Medical College, Seoul (Korea, Republic of)

    1972-09-15

    Prompted by the finding that the radiological incidence of small bowel ascariasis in the patient with gastric carcinoma was unexpectedly lower than the incidence in the normal population, a clinical study was performed to investigate possible relationship between gastric carcinoma and intestinal ascariasis. As a preliminary survey, we reviewed the radiological incidence of ascariasis in a total of 2,446 cases of upper GI series performed at the Department of Radiology, St Mary's Hospital Catholic Medical College. These included 1,573 normal subjects, 146 gastric carcinoma patients, 100 benign gastric ulcer and 249 duodenal ulcer patients and 378 other upper GI diseases. Following the preliminary study, a more accurate parasitologic study was conducted in another 578 normal subjects and 51 gastric carcinoma patients. The radiological incidences of ascaiasis in normal subjects and gastric carcinoma patients were 15.1% and 28.1%, respectively. The incidence of overall helminthiasis including ascaris lumbricoides, trichocephalus trichiurus and trichostrongyloides orientalis in normal subjects of the present series was 73.5%. This figure is virtually the same with 69.1% of the general population incidence reported by Kim, et al. (1971), but the incidence in gastric carcinoma patients was 94.1%. The high incidence pattern of overall helminthiasis in gastric carcinoma patients is, however, reversed as for as ascariasis is concerned. Thus, the incidence of ascariasis of gastric carcinoma patients was much lower than that of normal subjects (9.8% vs 19.4%). From the present observation, it is postulated that there can be some possible antagonistic relationship between evolution of gastric carcinoma and small bowel infestation of ascaris lumbricoides.

  8. Incidence of ascariasis in gastric carcinoma

    International Nuclear Information System (INIS)

    Kim, Jong Woo; Rhee, Hak Song; Bahk, Yong Whee

    1972-01-01

    Prompted by the finding that the radiological incidence of small bowel ascariasis in the patient with gastric carcinoma was unexpectedly lower than the incidence in the normal population, a clinical study was performed to investigate possible relationship between gastric carcinoma and intestinal ascariasis. As a preliminary survey, we reviewed the radiological incidence of ascariasis in a total of 2,446 cases of upper GI series performed at the Department of Radiology, St Mary's Hospital Catholic Medical College. These included 1,573 normal subjects, 146 gastric carcinoma patients, 100 benign gastric ulcer and 249 duodenal ulcer patients and 378 other upper GI diseases. Following the preliminary study, a more accurate parasitologic study was conducted in another 578 normal subjects and 51 gastric carcinoma patients. The radiological incidences of ascaiasis in normal subjects and gastric carcinoma patients were 15.1% and 28.1%, respectively. The incidence of overall helminthiasis including ascaris lumbricoides, trichocephalus trichiurus and trichostrongyloides orientalis in normal subjects of the present series was 73.5%. This figure is virtually the same with 69.1% of the general population incidence reported by Kim, et al. (1971), but the incidence in gastric carcinoma patients was 94.1%. The high incidence pattern of overall helminthiasis in gastric carcinoma patients is, however, reversed as for as ascariasis is concerned. Thus, the incidence of ascariasis of gastric carcinoma patients was much lower than that of normal subjects (9.8% vs 19.4%). From the present observation, it is postulated that there can be some possible antagonistic relationship between evolution of gastric carcinoma and small bowel infestation of ascaris lumbricoides

  9. Using a portable ion mobility spectrometer to screen dietary supplements for sibutramine.

    Science.gov (United States)

    Dunn, Jamie D; Gryniewicz-Ruzicka, Connie M; Kauffman, John F; Westenberger, Benjamin J; Buhse, Lucinda F

    2011-02-20

    In response to recent incidents of undeclared sibutramine, an appetite suppressant found in dietary supplements, we developed a method to detect sibutramine using hand-held ion mobility spectrometers with an analysis time of 15 s. Ion mobility spectrometry is a high-throughput and sensitive technique that has been used for illicit drug, explosive, volatile organic compound and chemical warfare detection. We evaluated a hand-held ion mobility spectrometer as a tool for the analysis of supplement extracts containing sibutramine. The overall instrumental limit of detection of five portable ion mobility spectrometers was 2 ng of sibutramine HCl. When sample extractions containing 30 ng/μl or greater of sibutramine were analyzed, saturation of the ionization chamber of the spectrometer occurred and the instrument required more than three cleaning cycles to remove the drug. Hence, supplement samples suspected of containing sibutramine should be prepared at concentrations of 2-20 ng/μl. To obtain this target concentration range for products containing unknown amounts of sibutramine, we provided a simple sample preparation procedure, allowing the U.S. Food and Drug Administration or other agencies to screen products using the portable ion mobility spectrometer. Published by Elsevier B.V.

  10. Short-wavelength soft-x-ray laser pumped in double-pulse single-beam non-normal incidence

    International Nuclear Information System (INIS)

    Zimmer, D.; Ros, D.; Guilbaud, O.; Habib, J.; Kazamias, S.; Zielbauer, B.; Bagnoud, V.; Ecker, B.; Aurand, B.; Kuehl, T.; Hochhaus, D. C.; Neumayer, P.

    2010-01-01

    We demonstrated a 7.36 nm Ni-like samarium soft-x-ray laser, pumped by 36 J of a neodymium:glass chirped-pulse amplification laser. Double-pulse single-beam non-normal-incidence pumping was applied for efficient soft-x-ray laser generation. In this case, the applied technique included a single-optic focusing geometry for large beam diameters, a single-pass grating compressor, traveling-wave tuning capability, and an optimized high-energy laser double pulse. This scheme has the potential for even shorter-wavelength soft-x-ray laser pumping.

  11. Solar ultraviolet hazards

    International Nuclear Information System (INIS)

    Azmah Ali

    1995-01-01

    The paper discussed the following subjects: the sources of ultraviolet radiation, solar ultraviolet radiation definition, effects of over exposure to solar ultraviolet radiation, exposure limits and radiation protection of this radiation

  12. THE MUSCLES TREASURY SURVEY. II. INTRINSIC LY α AND EXTREME ULTRAVIOLET SPECTRA OF K AND M DWARFS WITH EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, Allison; France, Kevin; Loyd, R. O. Parke [Laboratory for Atmospheric and Space Physics, University of Colorado, 600 UCB, Boulder, CO 80309 (United States); Linsky, Jeffrey L. [JILA, University of Colorado and NIST, 440 UCB, Boulder, CO 80309 (United States); Redfield, Seth [Astronomy Department and Van Vleck Observatory, Wesleyan University, Middletown, CT 06459-0123 (United States); Schneider, P. Christian [European Space Research and Technology Centre (ESA/ESTEC), Keplerlaan 1, 2201 AZ Noordwijk (Netherlands); Wood, Brian E. [Naval Research Laboratory, Space Science Division, Washington, DC 20375 (United States); Brown, Alexander [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Froning, Cynthia [Dept. of Astronomy C1400, University of Texas, Austin, TX 78712 (United States); Miguel, Yamila [Laboratoire Lagrange, Universite de Nice-Sophia Antipolis, Observatoire de la Cote d’Azur, CNRS, Blvd de l’Observatoire, CS 34229, F-06304 Nice cedex 4 (France); Rugheimer, Sarah [Department of Earth and Environmental Sciences, Irvine Building, University of St. Andrews, St. Andrews KY16 9AL (United Kingdom); Walkowicz, Lucianne, E-mail: allison.youngblood@colorado.edu [The Adler Planetarium, 1300 S Lakeshore Dr, Chicago, IL 60605 (United States)

    2016-06-20

    The ultraviolet (UV) spectral energy distributions (SEDs) of low-mass (K- and M-type) stars play a critical role in the heating and chemistry of exoplanet atmospheres, but are not observationally well-constrained. Direct observations of the intrinsic flux of the Ly α line (the dominant source of UV photons from low-mass stars) are challenging, as interstellar H i absorbs the entire line core for even the closest stars. To address the existing gap in empirical constraints on the UV flux of K and M dwarfs, the MUSCLES Hubble Space Telescope Treasury Survey has obtained UV observations of 11 nearby M and K dwarfs hosting exoplanets. This paper presents the Ly α and extreme-UV spectral reconstructions for the MUSCLES targets. Most targets are optically inactive, but all exhibit significant UV activity. We use a Markov Chain Monte Carlo technique to correct the observed Ly α profiles for interstellar absorption, and we employ empirical relations to compute the extreme-UV SED from the intrinsic Ly α flux in ∼100 Å bins from 100–1170 Å. The reconstructed Ly α profiles have 300 km s{sup −1} broad cores, while >1% of the total intrinsic Ly α flux is measured in extended wings between 300 and 1200 km s{sup −1}. The Ly α surface flux positively correlates with the Mg ii surface flux and negatively correlates with the stellar rotation period. Stars with larger Ly α surface flux also tend to have larger surface flux in ions formed at higher temperatures, but these correlations remain statistically insignificant in our sample of 11 stars. We also present H i column density measurements for 10 new sightlines through the local interstellar medium.

  13. Ultraviolet sterilization

    International Nuclear Information System (INIS)

    Schenck, G.O.

    1987-01-01

    Artificial ultraviolet radiation sources can supply bactericidal energy in such a high dosage that in less than a second a higher degree of disinfection is accomplished than by sun irradiation in hours. Bacteria, viruses, phages, and organic micropollutants can be degraded by photochemical wet combustion down to and below detection limits of organic carbon. There are no known ultraviolet-resistant microorganisms. There are limitations to ultraviolet treatment which can often be overcome by adequate technical measures. Unlike other water purification processes, ultraviolet irradiation only exterminates living organisms. The radiation must be able to penetrate to the objects of the kill; in a dose large enough to kill, and long enough to kill and prevent new growth. Contrary to filters, ultraviolet flow-through reactors do not restrict free flow significantly. In contrast to distillation, ultraviolet irradiation imposes no phase changes to the water. Used as a sequence in ultrapure water systems, maintenance requirements are virtually nonexistent; because of the absence of dissolved and particulate matter in purified water, mechanical cleaning of the photoreactor chambers is not essential. The process is highly economical; energy consumption is low and supervision minimal. 103 refs., 45 figs., 15 tabs

  14. Proposed design for a fast (parallel) preprocessor for the spin spectrometer and other eventful albatrosses

    International Nuclear Information System (INIS)

    Hensley, D.C.

    1981-01-01

    Because devices like the Spin Spectrometer described in a previous paper to this conference can produce an extremely fast but fairly simple-to-process data stream, it seems reasonable to consider front-end preprocessors having special characteristics. In general, the kinds of transformations being considered do not require floating point calculations or extensive calculations. In order to be somewhat specific, the particular data acquisition/processing problems posed by the Spin Spectrometer at the Holifield Heavy Ion Facility will be discussed

  15. The ultraviolet interstellar extinction curve in the Pleiades

    Science.gov (United States)

    Witt, A. N.; Bohlin, R. C.; Stecher, T. P.

    1981-01-01

    The wavelength dependence of ultraviolet extinction in the Pleiades dust clouds has been determined from IUE observations of HD 23512, the brightest heavily reddened member of the Pleiades cluster. There is evidence for an anomalously weak absorption bump at 2200 A, followed by an extinction rise in the far ultraviolet with an essentially normal slope. A relatively weak absorption band at 2200 A and a weak diffuse absorption band at 4430 A seem to be common characteristics of dust present in dense clouds. Evidence is presented which suggests that the extinction characteristics found for HD 23512 are typical for a class of extinction curves observed in several cases in the Galaxy and in the LMC.

  16. Digital PIV Measurements of Acoustic Particle Displacements in a Normal Incidence Impedance Tube

    Science.gov (United States)

    Humphreys, William M., Jr.; Bartram, Scott M.; Parrott, Tony L.; Jones, Michael G.

    1998-01-01

    Acoustic particle displacements and velocities inside a normal incidence impedance tube have been successfully measured for a variety of pure tone sound fields using Digital Particle Image Velocimetry (DPIV). The DPIV system utilized two 600-mj Nd:YAG lasers to generate a double-pulsed light sheet synchronized with the sound field and used to illuminate a portion of the oscillatory flow inside the tube. A high resolution (1320 x 1035 pixel), 8-bit camera was used to capture double-exposed images of 2.7-micron hollow silicon dioxide tracer particles inside the tube. Classical spatial autocorrelation analysis techniques were used to ascertain the acoustic particle displacements and associated velocities for various sound field intensities and frequencies. The results show that particle displacements spanning a range of 1-60 microns can be measured for incident sound pressure levels of 100-130 dB and for frequencies spanning 500-1000 Hz. The ability to resolve 1 micron particle displacements at sound pressure levels in the 100 dB range allows the use of DPIV systems for measurement of sound fields at much lower sound pressure levels than had been previously possible. Representative impedance tube data as well as an uncertainty analysis for the measurements are presented.

  17. Normalization Strategies for Enhancing Spatio-Temporal Analysis of Social Media Responses during Extreme Events: A Case Study based on Analysis of Four Extreme Events using Socio-Environmental Data Explorer (SEDE

    Directory of Open Access Journals (Sweden)

    J. Ajayakumar

    2017-10-01

    Full Text Available With social media becoming increasingly location-based, there has been a greater push from researchers across various domains including social science, public health, and disaster management, to tap in the spatial, temporal, and textual data available from these sources to analyze public response during extreme events such as an epidemic outbreak or a natural disaster. Studies based on demographics and other socio-economic factors suggests that social media data could be highly skewed based on the variations of population density with respect to place. To capture the spatio-temporal variations in public response during extreme events we have developed the Socio-Environmental Data Explorer (SEDE. SEDE collects and integrates social media, news and environmental data to support exploration and assessment of public response to extreme events. For this study, using SEDE, we conduct spatio-temporal social media response analysis on four major extreme events in the United States including the “North American storm complex” in December 2015, the “snowstorm Jonas” in January 2016, the “West Virginia floods” in June 2016, and the “Hurricane Matthew” in October 2016. Analysis is conducted on geo-tagged social media data from Twitter and warnings from the storm events database provided by National Centers For Environmental Information (NCEI for analysis. Results demonstrate that, to support complex social media analyses, spatial and population-based normalization and filtering is necessary. The implications of these results suggests that, while developing software solutions to support analysis of non-conventional data sources such as social media, it is quintessential to identify the inherent biases associated with the data sources, and adapt techniques and enhance capabilities to mitigate the bias. The normalization strategies that we have developed and incorporated to SEDE will be helpful in reducing the population bias associated with

  18. Normalization Strategies for Enhancing Spatio-Temporal Analysis of Social Media Responses during Extreme Events: A Case Study based on Analysis of Four Extreme Events using Socio-Environmental Data Explorer (SEDE)

    Science.gov (United States)

    Ajayakumar, J.; Shook, E.; Turner, V. K.

    2017-10-01

    With social media becoming increasingly location-based, there has been a greater push from researchers across various domains including social science, public health, and disaster management, to tap in the spatial, temporal, and textual data available from these sources to analyze public response during extreme events such as an epidemic outbreak or a natural disaster. Studies based on demographics and other socio-economic factors suggests that social media data could be highly skewed based on the variations of population density with respect to place. To capture the spatio-temporal variations in public response during extreme events we have developed the Socio-Environmental Data Explorer (SEDE). SEDE collects and integrates social media, news and environmental data to support exploration and assessment of public response to extreme events. For this study, using SEDE, we conduct spatio-temporal social media response analysis on four major extreme events in the United States including the "North American storm complex" in December 2015, the "snowstorm Jonas" in January 2016, the "West Virginia floods" in June 2016, and the "Hurricane Matthew" in October 2016. Analysis is conducted on geo-tagged social media data from Twitter and warnings from the storm events database provided by National Centers For Environmental Information (NCEI) for analysis. Results demonstrate that, to support complex social media analyses, spatial and population-based normalization and filtering is necessary. The implications of these results suggests that, while developing software solutions to support analysis of non-conventional data sources such as social media, it is quintessential to identify the inherent biases associated with the data sources, and adapt techniques and enhance capabilities to mitigate the bias. The normalization strategies that we have developed and incorporated to SEDE will be helpful in reducing the population bias associated with social media data and will be useful

  19. ULTRAVIOLET SPECTROSCOPIC ANALYSIS OF TRANSIENT MASS FLOW OUTBURST IN U CEPHEI

    Energy Technology Data Exchange (ETDEWEB)

    Tupa, Peter R.; DeLeo, Gary G.; McCluskey, George E. [Physics Department, Lehigh University, Bethlehem, PA 18015 (United States); Kondo, Yoji [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sahade, Jorge [Facultad de Ciencias Astronómicas, Paseo del Bosque s/n, B1900FWA-La Plata (Argentina); Giménez, Alvaro [Centro de Astrobiologia, CSIC/INTA, Carretera de Torrejon a Ajalvir, E-28850 Torrejon de Ardoz (Madrid) (Spain); Caton, Daniel B., E-mail: pet205@lehigh.edu [Appalachian State University, Boone, NC 28608 (United States)

    2013-09-20

    Spectra from the International Ultraviolet Explorer taken in 1989 September over one full orbital period of U Cephei (U Cep, HD 5796) are analyzed. The TLUSTY and SYNSPEC stellar atmospheric simulation programs are used to generate synthetic spectra to which U Cep continuum levels are normalized. Absorption lines attributed to the photosphere are divided out to isolate mass flow and accretion spectra. A radial velocity curve is constructed for conspicuous gas stream features, and shows evidence for a transient flow during secondary eclipse with outward velocities ranging between 200 and 350 km s{sup –1}, and a number density of (3 ± 2) × 10{sup 10} cm{sup –3}. The validity of C IV 1548 and 1550 and Si IV 1393 and 1402 lines are re-examined in the context of extreme rotational blending effects. A G-star to B-star mass transfer rate of (5 ± 4) × 10{sup –9} M{sub ☉} yr{sup –1} is calculated as an approximate upper limit, and a model system is presented.

  20. ULTRAVIOLET SPECTROSCOPIC ANALYSIS OF TRANSIENT MASS FLOW OUTBURST IN U CEPHEI

    International Nuclear Information System (INIS)

    Tupa, Peter R.; DeLeo, Gary G.; McCluskey, George E.; Kondo, Yoji; Sahade, Jorge; Giménez, Alvaro; Caton, Daniel B.

    2013-01-01

    Spectra from the International Ultraviolet Explorer taken in 1989 September over one full orbital period of U Cephei (U Cep, HD 5796) are analyzed. The TLUSTY and SYNSPEC stellar atmospheric simulation programs are used to generate synthetic spectra to which U Cep continuum levels are normalized. Absorption lines attributed to the photosphere are divided out to isolate mass flow and accretion spectra. A radial velocity curve is constructed for conspicuous gas stream features, and shows evidence for a transient flow during secondary eclipse with outward velocities ranging between 200 and 350 km s –1 , and a number density of (3 ± 2) × 10 10 cm –3 . The validity of C IV 1548 and 1550 and Si IV 1393 and 1402 lines are re-examined in the context of extreme rotational blending effects. A G-star to B-star mass transfer rate of (5 ± 4) × 10 –9 M ☉ yr –1 is calculated as an approximate upper limit, and a model system is presented

  1. Prevention of Lower Extremity Injuries in Basketball

    Science.gov (United States)

    Taylor, Jeffrey B.; Ford, Kevin R.; Nguyen, Anh-Dung; Terry, Lauren N.; Hegedus, Eric J.

    2015-01-01

    Context: Lower extremity injuries are common in basketball, yet it is unclear how prophylactic interventions affect lower extremity injury incidence rates. Objective: To analyze the effectiveness of current lower extremity injury prevention programs in basketball athletes, focusing on injury rates of (1) general lower extremity injuries, (2) ankle sprains, and (3) anterior cruciate ligament (ACL) tears. Data Sources: PubMed, MEDLINE, CINAHL, SPORTDiscus, and the Cochrane Register of Controlled Trials were searched in January 2015. Study Selection: Studies were included if they were randomized controlled or prospective cohort trials, contained a population of competitive basketball athletes, and reported lower extremity injury incidence rates specific to basketball players. In total, 426 individual studies were identified. Of these, 9 met the inclusion criteria. One other study was found during a hand search of the literature, resulting in 10 total studies included in this meta-analysis. Study Design: Systematic review and meta-analysis. Level of Evidence: Level 2. Data Extraction: Details of the intervention (eg, neuromuscular vs external support), size of control and intervention groups, and number of injuries in each group were extracted from each study. Injury data were classified into 3 groups based on the anatomic diagnosis reported (general lower extremity injury, ankle sprain, ACL rupture). Results: Meta-analyses were performed independently for each injury classification. Results indicate that prophylactic programs significantly reduced the incidence of general lower extremity injuries (odds ratio [OR], 0.69; 95% CI, 0.57-0.85; P basketball athletes. Conclusion: In basketball players, prophylactic programs may be effective in reducing the risk of general lower extremity injuries and ankle sprains, yet not ACL injuries. PMID:26502412

  2. Cumulative increased risk of incident type 2 diabetes mellitus with increasing triglyceride glucose index in normal-weight people: The Rural Chinese Cohort Study.

    Science.gov (United States)

    Zhang, Ming; Wang, Bingyuan; Liu, Yu; Sun, Xizhuo; Luo, Xinping; Wang, Chongjian; Li, Linlin; Zhang, Lu; Ren, Yongcheng; Zhao, Yang; Zhou, Junmei; Han, Chengyi; Zhao, Jingzhi; Hu, Dongsheng

    2017-03-01

    Risk of type 2 diabetes mellitus (T2DM) is increased in metabolically obese but normal-weight people. However, we have limited knowledge of how to prevent T2DM in normal-weight people. We aimed to evaluate the association between triglyceride glucose (TyG) index and incident T2DM among normal-weight people in rural China. We included data from 5706 people with normal body mass index (BMI) (18.5-23.9 kg/m 2 ) without baseline T2DM in a rural Chinese cohort followed for a median of 6.0 years. A Cox proportional-hazard model was used to assess the risk of incident T2DM by quartiles of TyG index and difference in TyG index between follow-up and baseline (TyG-D), estimating hazard ratios (HRs) and 95% confidence intervals (CIs). A generalized additive plot was used to show the nonparametric smoothed exposure-response association between risk of T2DM and TyG index as a continuous variable. TyG was calculated as ln [fasting triglyceride level (mg/dl) × fasting plasma glucose level (mg/dl)/2]. Risk of incident T2DM was increased with quartiles 2, 3 and 4 versus quartile 1 of TyG index (adjusted HR [aHR] 2.48 [95% CI 1.20-5.11], 3.77 [1.83-7.79], and 5.30 [2.21-12.71], P trend  index). Risk of incident T2DM was increased with quartile 4 versus quartile 1 of TyG-D (aHR 3.91 [2.22-6.87]). The results were consistent when analyses were restricted to participants without baseline metabolic syndrome and impaired fasting glucose level. The generalized additive plot showed cumulative increased risk of T2DM with increasing TyG index. Risk of incident T2DM is increased with increasing TyG index among rural Chinese people, so the index might be an important indicator for identifying people at high risk of T2DM.

  3. Correlation spectrometer

    Science.gov (United States)

    Sinclair, Michael B [Albuquerque, NM; Pfeifer, Kent B [Los Lunas, NM; Flemming, Jeb H [Albuquerque, NM; Jones, Gary D [Tijeras, NM; Tigges, Chris P [Albuquerque, NM

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  4. Proposal for a forward spectrometer at the 4π detector

    International Nuclear Information System (INIS)

    Berdermann, E.; Luehning, J.; Lynen, U.; Milkau, U.; Mueller, K.; Sann, H.; Stelzer, H.; Trautmann, W.; Kreutz, P.; Kuehmichel, A.; Pinkenburg, C.; Pochodzalla, J.; Moretto, L.; Mueller, W.F.J.; Wozniak, G.; Imme, G.; Raciti, G.; Adloff, G.C.; Bilwes, B.; Bilwes, R.; Michel, M.; Masse, C.; Rudolf, G.; Scheibling, F.; Stuttge, L.

    1988-03-01

    We propose to complement the 4π detector to be installed at the SIS-ESR facility with a forward spectrometer (ALADiN) capable of detecting and identifying nuclear fragments up to the largest masses and momenta expected at SIS. Positioned behind the time-of-flight wall of the 4π detector the spectrometer should subtend an angular range of approximately ±5 0 in horizontal and at least ±2 0 in vertical direction and thus cover a sufficiently large part of the forward region. In order to satisfy these requirements and to obtain the necessary resolution in mass and momentum the dipole magnet needs, at least, a gap height of 0.5 m, a horizontal acceptance of 1.5 m and a bending power of 2 Tm. The following sections of this proposal start out with a more detailed presentation of the physics motivation which will concentrate on multifragmentation as a new and hitherto unexplored decay mode of nuclear matter under extreme conditions. The description of the spectrometer divides into three sections containing the description of the magnet and the vacuum system, of the detectors needed to track and to identify the fragments, and of the performance of the spectrometer. (orig./HSI)

  5. Incidence angle normalization of radar backscatter data

    Science.gov (United States)

    NASA’s Soil Moisture Passive Active (SMAP) satellite (~2014) will include a radar system that will provide L-band multi-polarization backscatter at a constant incidence angle of 40º. During the pre-launch phase of the project there is a need for observations that will support the radar-based soil mo...

  6. Setup of Mössbauer spectrometers at RCPTM

    Science.gov (United States)

    Pechoušek, J.; Jančík, D.; Frydrych, J.; Navařík, J.; Novák, P.

    2012-10-01

    Setup of Mössbauer spectrometers (MS) for structural, phase, and magnetic characterization of iron-or tin-containing samples is presented. This comprehensive line of 57Fe and 119Sn Mössbauer spectrometers covers transmission spectrometers (TMS) for roomtemperature (RT) measurements, temperature dependent measurements and measurements in an external magnetic field. An RT Conversion Electron/Conversion X-ray Mössbauer technique (CEMS/CXMS) is also available. The main concept of the RT MS is a table-top spectrometric bench with a control unit based on special-purpose hardware or standard PC platform. The first way offers a compact design and PC independent spectra collection system. The second setup, a PC-based system, which uses commercial devices and LabVIEW software, offers easy customization and enables advancement in spectrometer construction. The both types of control systems are able to operate special parts (velocity transducers, gamma-ray detectors) of unusual spectrometric benches. The standard velocity axis range is up to ±20 mm/s with a maximum nonlinearity of 0.1%. Applicable measuring conditions of presented TMSs cover a cryogenic temperature range from 1.5 up to 300 K and high temperature range from RT up to 1000 °C. With in-field low-temperature MS, we are able to analyze samples normally in the external magnetic fields up to 8 T (in temperature interval from 1.5 up to 300 K). In addition, special modes of measurements can be applied including backscattering gamma-ray geometry or measurement in an inert or controlled-humidity atmosphere. Technical details and construction aspects of spectrometers are presented.

  7. Interfacing an aspiration ion mobility spectrometer to a triple quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Adamov, Alexey; Viidanoja, Jyrki; Kaerpaenoja, Esko; Paakkanen, Heikki; Ketola, Raimo A.; Kostiainen, Risto; Sysoev, Alexey; Kotiaho, Tapio

    2007-01-01

    This article presents the combination of an aspiration-type ion mobility spectrometer with a mass spectrometer. The interface between the aspiration ion mobility spectrometer and the mass spectrometer was designed to allow for quick mounting of the aspiration ion mobility spectrometer onto a Sciex API-300 triple quadrupole mass spectrometer. The developed instrumentation is used for gathering fundamental information on aspiration ion mobility spectrometry. Performance of the instrument is demonstrated using 2,6-di-tert-butyl pyridine and dimethyl methylphosphonate

  8. Spatiotemporal changes of normalized difference vegetation index (NDVI) and response to climate extremes and ecological restoration in the Loess Plateau, China

    Science.gov (United States)

    Zhao, Anzhou; Zhang, Anbing; Liu, Xianfeng; Cao, Sen

    2018-04-01

    Extreme drought, precipitation, and other extreme climatic events often have impacts on vegetation. Based on meteorological data from 52 stations in the Loess Plateau (LP) and a satellite-derived normalized difference vegetation index (NDVI) from the third-generation Global Inventory Modeling and Mapping Studies (GIMMS3g) dataset, this study investigated the relationship between vegetation change and climatic extremes from 1982 to 2013. Our results showed that the vegetation coverage increased significantly, with a linear rate of 0.025/10a ( P NDVI revealed an increasing trend from the northwest to the southeast, with about 61.79% of the LP exhibiting a significant increasing trend ( P NDVI at the yearly time scale ( P NDVI during the spring and autumn ( P NDVI and RX1day, TMAXmean, TXn, and TXx was insignificant in summer. Vegetation exhibited a significant negative relationship with precipitation extremes in winter ( P NDVI in Yan'an and Yulin during 1998-2013, r = 0.859 and 0.85, n = 16, P < 0.001.

  9. Typical xeroderma pigmentosum complementation group A fibroblasts have detectable ultraviolet light-induced unscheduled DNA synthesis

    International Nuclear Information System (INIS)

    Petinga, R.A.; Andrews, A.D.; Robbins, J.H.; Tarone, R.E.

    1977-01-01

    Ultraviolet-induced nuclear uptake of tritiated thymidine [ 3 H]dThd demonstrable by autoradiography in non-synthesis phases of the cell cycle is known as unscheduled DNA synthesis and reflects repair replication of ultraviolet-damaged DNA. We have reported that the rate of any such unscheduled DNA synthesis in typical group A xeroderma pigmentosum fibroblasts, if present, is less than 2% of the normal rate. We have now performed experiments to determine whether these fibroblasts have any unscheduled DNA synthesis. Fibroblast coverslip cultures of four xeroderma pigmentosum group A strains were prepared. Irradiated (254 nm ultraviolet light) and unirradiated cultures from each strain were incubated with [ 3 H]dThd at 37degC, and autoradiograms were prepared using NTB-3 emulsion. A nuclear grain count was made of 100 consecutive nuclei of non-S-phase irradiated and unirradiated cells. A slide background grain count was simultaneously made from an acellular area adjacent to each cell analyzed. When a strain's irradiated and unirradiated autoradiograms having similar slide background grain count averages were compared, the nuclear grain count average of the irradiated cells was always higher than that of the unirradiated cells. This ultraviolet-induced increase in the mean nuclear grain count ranged from 0.4 to 1.3% of that given by normal non-xeroderma pigmentosum fibroblasts and was not reduced by 10 -2 M hydroxyurea. Planimetric studies showed that the ultraviolet-induced increase in nuclear grain count is not due to an increased nuclear area in irradiated cells. We conclude that these typical group A xeroderma pigmentosum strains perform very low, but detectable, ultraviolet-induced unscheduled DNA synthesis which probably reflects repair replication. We cannot, however, determine if there are significantly different rates of ultraviolet-induced unscheduled DNA synthesis among these ultraviolet strains

  10. On the extreme value statistics of normal random matrices and 2D Coulomb gases: Universality and finite N corrections

    Science.gov (United States)

    Ebrahimi, R.; Zohren, S.

    2018-03-01

    In this paper we extend the orthogonal polynomials approach for extreme value calculations of Hermitian random matrices, developed by Nadal and Majumdar (J. Stat. Mech. P04001 arXiv:1102.0738), to normal random matrices and 2D Coulomb gases in general. Firstly, we show that this approach provides an alternative derivation of results in the literature. More precisely, we show convergence of the rescaled eigenvalue with largest modulus of a normal Gaussian ensemble to a Gumbel distribution, as well as universality for an arbitrary radially symmetric potential. Secondly, it is shown that this approach can be generalised to obtain convergence of the eigenvalue with smallest modulus and its universality for ring distributions. Most interestingly, the here presented techniques are used to compute all slowly varying finite N correction of the above distributions, which is important for practical applications, given the slow convergence. Another interesting aspect of this work is the fact that we can use standard techniques from Hermitian random matrices to obtain the extreme value statistics of non-Hermitian random matrices resembling the large N expansion used in context of the double scaling limit of Hermitian matrix models in string theory.

  11. Soft X-ray images of the solar corona using normal incidence optics

    Science.gov (United States)

    Bruner, M. E.; Haisch, B. M.; Brown, W. A.; Acton, L. W.; Underwood, J. H.

    1988-01-01

    A solar coronal loop system has been photographed in soft X-rays using a normal incidence telescope based on multilayer mirror technology. The telescope consisted of a spherical objective mirror of 4 cm aperture and 1 m focal length, a film cassette, and a focal plane shutter. A metallized thin plastic film filter was used to exclude visible light. The objective mirror was covered with a multilayer coating consisting of alternating layers of tungsten and carbon whose combined thicknesses satisfied the Bragg diffraction condition for 44 A radiation. The image was recorded during a rocket flight on October 25, 1985 and was dominated by emission lines arising from the Si XII spectrum. The rocket also carried a high resolution soft X-ray spectrograph that confirmed the presence of Si XII line radiation in the source. This image represents the first successful use of multilayer technology for astrophysical observations.

  12. Time resolved 3D momentum imaging of ultrafast dynamics by coherent VUV-XUV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, F. P., E-mail: fpsturm@lbl.gov [Ultrafast X-Ray Science Lab, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Institut für Kernphysik, Universität Frankfurt, Max-von-Laue Str. 1, D-60438 Frankfurt (Germany); Wright, T. W.; Ray, D.; Zalyubovskaya, I.; Shivaram, N.; Slaughter, D. S.; Belkacem, A.; Weber, Th. [Ultrafast X-Ray Science Lab, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Ranitovic, P. [Ultrafast X-Ray Science Lab, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); ELI-ALPS, ELI-Hu Nkft, Dugonics ter 13, Szeged H6720 (Hungary)

    2016-06-15

    We present a new experimental setup for measuring ultrafast nuclear and electron dynamics of molecules after photo-excitation and ionization. We combine a high flux femtosecond vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) source with an internally cold molecular beam and a 3D momentum imaging particle spectrometer to measure electrons and ions in coincidence. We describe a variety of tools developed to perform pump-probe studies in the VUV-XUV spectrum and to modify and characterize the photon beam. First benchmark experiments are presented to demonstrate the capabilities of the system.

  13. ASASSN-15LH: A SUPERLUMINOUS ULTRAVIOLET REBRIGHTENING OBSERVED BY SWIFT AND HUBBLE

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Peter J.; Yang, Yi; Wang, Lifan [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A. and M. University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States); Cooke, Jeff; Mould, Jeremy [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn VIC 3122 (Australia); Olaes, Melanie; Quimby, Robert M. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Baade, Dietrich [European Organisation for Astronomical Research in the Southern Hemisphere (ESO), Karl-Schwarzschild-Str. 2, D-85748 Garching b. München (Germany); Gehrels, Neil [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Hoeflich, Peter [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Maund, Justyn [Department of Physics and Astronomy F39 Hicks Building, Hounsfield Road Sheffield, S3 7RH (United Kingdom); Wheeler, J. Craig [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States)

    2016-09-01

    We present and discuss ultraviolet and optical photometry from the Ultraviolet/Optical Telescope, X-ray limits from the X-Ray Telescope on Swift, and imaging polarimetry and ultraviolet/optical spectroscopy with the Hubble Space Telescope , all from observations of ASASSN-15lh. It has been classified as a hydrogen-poor superluminous supernova (SLSN I), making it more luminous than any other supernova observed. ASASSN-15lh is not detected in the X-rays in individual or co-added observations. From the polarimetry we determine that the explosion was only mildly asymmetric. We find the flux of ASASSN-15lh to increase strongly into the ultraviolet, with an ultraviolet luminosity 100 times greater than the hydrogen-rich, ultraviolet-bright SLSN II SN 2008es. We find that objects as bright as ASASSN-15lh are easily detectable beyond redshifts of ∼4 with the single-visit depths planned for the Large Synoptic Survey Telescope. Deep near-infrared surveys could detect such objects past a redshift of ∼20, enabling a probe of the earliest star formation. A late rebrightening—most prominent at shorter wavelengths—is seen about two months after the peak brightness, which is itself as bright as an SLSN. The ultraviolet spectra during the rebrightening are dominated by the continuum without the broad absorption or emission lines seen in SLSNe or tidal disruption events (TDEs) and the early optical spectra of ASASSN-15lh. Our spectra show no strong hydrogen emission, showing only Ly α absorption near the redshift previously found by optical absorption lines of the presumed host. The properties of ASASSN-15lh are extreme when compared to either SLSNe or TDEs.

  14. Nucleus spectroscopy: extreme masses and deformations

    International Nuclear Information System (INIS)

    Theisen, Ch.

    2009-12-01

    The author proposes a synthesis of research activities performed since 1995 in the field of experimental nuclear physics, and more particularly in the investigation of two nucleus extreme states: deformation on the one hand, heavy and very heavy nuclei on the other hand. After a presentation of the context of investigations on deformation, rotation, and heavy nuclei, he gives an overview of developments regarding instruments (gamma spectrometers, detection of fission fragments, and detection at the focal plane of spectrometers or separators) and analysis techniques. Experiments and results are then reported and discussed, concerning super-deformed states with a high angular moment, spectroscopy of neutron-rich nuclei, very heavy nuclei close to nucleus map borders. He finally draws perspectives for middle and long term studies on the heaviest nuclei

  15. A finite element propagation model for extracting normal incidence impedance in nonprogressive acoustic wave fields

    Science.gov (United States)

    Watson, Willie R.; Jones, Michael G.; Tanner, Sharon E.; Parrott, Tony L.

    1995-01-01

    A propagation model method for extracting the normal incidence impedance of an acoustic material installed as a finite length segment in a wall of a duct carrying a nonprogressive wave field is presented. The method recasts the determination of the unknown impedance as the minimization of the normalized wall pressure error function. A finite element propagation model is combined with a coarse/fine grid impedance plane search technique to extract the impedance of the material. Results are presented for three different materials for which the impedance is known. For each material, the input data required for the prediction scheme was computed from modal theory and then contaminated by random error. The finite element method reproduces the known impedance of each material almost exactly for random errors typical of those found in many measurement environments. Thus, the method developed here provides a means for determining the impedance of materials in a nonprogressirve wave environment such as that usually encountered in a commercial aircraft engine and most laboratory settings.

  16. Step-scan Fourier transform infrared (FTIR) spectrometer for investigating chemical reactions of energy-related materials. Final report, April 1, 1995--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Eyring, E.M.

    1997-11-04

    Two step-scan Fourier transform infrared (FTIR) spectrometers were purchased with URI-DOE funds by the University of Utah. These infrared spectrometers have been used to carry out the following investigations: the determination of strength of adsorption of organic molecules at the liquid-solid interface of coated attenuated total reflectance (ATR) elements, the kinetic study of the photoinitiated polymerization of a dental resin, the exploration of the kinetics of photochemical reactions of organic molecules in solution, and the development of a stopped-flow FTIR interface for measuring rates and mechanisms of reactions in solution that are not photoinitiated and do not have convenient ultraviolet-visible spectral features.

  17. Ionization and dissociation dynamics of vinyl bromide probed by femtosecond extreme ultraviolet transient absorption spectroscopy

    International Nuclear Information System (INIS)

    Lin, Ming-Fu; Neumark, Daniel M.; Gessner, Oliver; Leone, Stephen R.

    2014-01-01

    Strong-field induced ionization and dissociation dynamics of vinyl bromide, CH 2 =CHBr, are probed using femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy. Strong-field ionization is initiated with an intense femtosecond, near infrared (NIR, 775 nm) laser field. Femtosecond XUV pulses covering the photon energy range of 50-72 eV probe the subsequent dynamics by measuring the time-dependent spectroscopic features associated with transitions of the Br (3d) inner-shell electrons to vacancies in molecular and atomic valence orbitals. Spectral signatures are observed for the depletion of neutral C 2 H 3 Br, the formation of C 2 H 3 Br + ions in their ground (X ~ ) and first excited (A ~ ) states, the production of C 2 H 3 Br ++ ions, and the appearance of neutral Br ( 2 P 3/2 ) atoms by dissociative ionization. The formation of free Br ( 2 P 3/2 ) atoms occurs on a timescale of 330 ± 150 fs. The ionic A ~ state exhibits a time-dependent XUV absorption energy shift of ∼0.4 eV within the time window of the atomic Br formation. The yield of Br atoms correlates with the yield of parent ions in the A ~ state as a function of NIR peak intensity. The observations suggest that a fraction of vibrationally excited C 2 H 3 Br + (A ~ ) ions undergoes intramolecular vibrational energy redistribution followed by the C–Br bond dissociation. The C 2 H 3 Br + (X ~ ) products and the majority of the C 2 H 3 Br ++ ions are relatively stable due to a deeper potential well and a high dissociation barrier, respectively. The results offer powerful new insights about orbital-specific electronic processes in high field ionization, coupled vibrational relaxation and dissociation dynamics, and the correlation of valence hole-state location and dissociation in polyatomic molecules, all probed simultaneously by ultrafast table-top XUV spectroscopy

  18. An extreme ultraviolet wave associated with a failed eruption observed by the Solar Dynamics Observatory

    Science.gov (United States)

    Zheng, R.; Jiang, Y.; Yang, J.; Bi, Y.; Hong, J.; Yang, B.; Yang, D.

    2012-05-01

    Aims: Taking advantage of the high temporal and spatial resolution of the Solar Dynamics Observatory (SDO) observations, we present an extreme ultraviolet (EUV) wave associated with a failed filament eruption that generated no coronal mass ejection (CME) on 2011 March 1. We aim at understanding the nature and origin of this EUV wave. Methods: Combining the high-quality observations in the photosphere, the chromosphere, and the corona, we studied the characteristics of the wave and its relations to the associated eruption. Results: The event occurred at an ephemeral region near a small active region. The continuous magnetic flux cancelation in the ephemeral region produced pre-eruption brightenings and two EUV jets, and excited the filament eruption, accompanying it with a microflare. After the eruption, the filament material appeared far from the eruption center, and the ambient loops seemed to be intact. It was evident that the filament eruption had failed and was not associated with a CME. The wave happened just after the north jet arrived, and apparently emanated ahead of the north jet, far from the eruption center. The wave propagated at nearly constant velocities in the range of 260-350 km s-1, with a slight negative acceleration in the last phase. Remarkably, the wave continued to propagate, and a loop in its passage was intact when wave and loop met. Conclusions: Our analysis confirms that the EUV wave is a true wave, which we interpret as a fast-mode wave. In addition, the close temporal and spatial relationship between the wave and the jet provides evidence that the wave was likely triggered by the jet when the CME failed to happen. Three movies are available in electronic form at http://www.aanda.org

  19. Signal-to-noise analysis of a birefringent spectral zooming imaging spectrometer

    Science.gov (United States)

    Li, Jie; Zhang, Xiaotong; Wu, Haiying; Qi, Chun

    2018-05-01

    Study of signal-to-noise ratio (SNR) of a novel spectral zooming imaging spectrometer (SZIS) based on two identical Wollaston prisms is conducted. According to the theory of radiometry and Fourier transform spectroscopy, we deduce the theoretical equations of SNR of SZIS in spectral domain with consideration of the incident wavelength and the adjustable spectral resolution. An example calculation of SNR of SZIS is performed over 400-1000 nm. The calculation results indicate that SNR with different spectral resolutions of SZIS can be optionally selected by changing the spacing between the two identical Wollaston prisms. This will provide theoretical basis for the design, development and engineering of the developed imaging spectrometer for broad spectrum and SNR requirements.

  20. Spectrometer for shot-to-shot photon energy characterization in the multi-bunch mode of the free electron laser at Hamburg

    International Nuclear Information System (INIS)

    Palutke, S.; Wurth, W.; Gerken, N. C.; Mertens, K.; Klumpp, S.; Martins, M.; Mozzanica, A.; Schmitt, B.; Wunderer, C.; Graafsma, H.; Meiwes-Broer, K.-H.

    2015-01-01

    The setup and first results from commissioning of a fast online photon energy spectrometer for the vacuum ultraviolet free electron laser at Hamburg (FLASH) at DESY are presented. With the use of the latest advances in detector development, the presented spectrometer reaches readout frequencies up to 1 MHz. In this paper, we demonstrate the ability to record online photon energy spectra on a shot-to-shot base in the multi-bunch mode of FLASH. Clearly resolved shifts in the mean wavelength over the pulse train as well as shot-to-shot wavelength fluctuations arising from the statistical nature of the photon generating self-amplified spontaneous emission process have been observed. In addition to an online tool for beam calibration and photon diagnostics, the spectrometer enables the determination and selection of spectral data taken with a transparent experiment up front over the photon energy of every shot. This leads to higher spectral resolutions without the loss of efficiency or photon flux by using single-bunch mode or monochromators

  1. Incidence and prevalence of psoriasis in Denmark

    DEFF Research Database (Denmark)

    Egeberg, Alexander; Skov, Lone; Gislason, Gunnar H.

    2017-01-01

    The incidence and temporal trends of psoriasis in Denmark between 2003 and 2012 were examined. There was a female predominance ranging between 50.0% (2007) and 55.4% (2009), and the mean age at time of diagnosis was 47.7-58.7 years. A total of 126,055 patients with psoriasis (prevalence 2.2%) were...... identified. Incidence rates of psoriasis (per 100,000 person years) ranged from 107.5 in 2005 to a peak incidence of 199.5 in 2010. Incidence rates were higher for women, and patients aged 60-69 years, respectively. Use of systemic non-biologic agents, i.e. methotrexate, cyclosporine, retinoids, or psoralen...... plus ultraviolet A (PUVA) increased over the study course, and were used in 15.0% of all patients. Biologic agents (efalizumab, etanercept, infliximab, adalimumab, or ustekinumab) were utilized in 2.7% of patients. On a national level, incidence of psoriasis fluctuated during the 10- year study course...

  2. Incidence and Prevalence of Psoriasis in Denmark

    DEFF Research Database (Denmark)

    Egeberg, Alexander; Skov, Lone; Gislason, Gunnar H

    2017-01-01

    The incidence and temporal trends of psoriasis in Denmark between 2003 and 2012 were examined. There was a female predominance ranging between 50.0% (2007) and 55.4% (2009), and the mean age at time of diagnosis was 47.7-58.7 years. A total of 126,055 patients with psoriasis (prevalence 2.2%) were...... identified. Incidence rates of psoriasis (per 100,000 person years) ranged from 107.5 in 2005 to a peak incidence of 199.5 in 2010. Incidence rates were higher for women, and patients aged 60-69 years, respectively. Use of systemic non-biologic agents, i.e. methotrexate, cyclosporine, retinoids, or psoralen...... plus ultraviolet A (PUVA) increased over the study course, and were used in 15.0% of all patients. Biologic agents (efalizumab, etanercept, infliximab, adalimumab, or ustekinumab) were utilized in 2.7% of patients. On a national level, incidence of psoriasis fluctuated during the 10-year study course...

  3. Very high coronary artery calcium score with normal myocardial perfusion SPECT imaging is associated with a moderate incidence of severe coronary artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Yuoness, Salem A.; Goha, Ahmed M.; Romsa, Jonathan G.; Akincioglu, Cigdem; Warrington, James C.; Datta, Sudip; Gambhir, Sanjay; Urbain, Jean-Luc C.; Vezina, William C. [London Health Sciences Centre, Department of Nuclear Medicine, London, ON (Canada); Massel, David R. [London Health Sciences Centre, Division of Cardiology, London, ON (Canada); Martell, Rafael [Private Practice, London, ON (Canada)

    2015-09-15

    Myocardial perfusion imaging (MPI) has limitations in the presence of balanced multivessel disease (MVD) and left main (LM) coronary artery disease, occasionally resulting in false-normal results despite the high cardiovascular risk associated with this condition. The purpose of this study was to assess the incidence of severe coronary artery disease (CAD) in the presence of a very high Agatston coronary artery calcium (CAC) score (>1,000) in stable symptomatic patients without known CAD but with normal MPI results. A total of 2,659 prospectively acquired consecutive patients were referred for MPI and evaluation of CAC score by CT. Of this patient population, 8 % (222/2,659) had ischemia without myocardial infarction (MI) on MPI and 11 % (298/2,659) had abnormal MPI (MI and/or ischemia). On presentation 1 % of the patients (26/2,659) were symptomatic, had a CAC score >1,000 and normal MPI results. The definition of normal MPI was strict and included a normal hemodynamic response without ischemic ECG changes and normal imaging, particularly absence of transient ischemic dilation. All of these 26 patients with a CAC score >1,000 and normal MPI findings underwent cardiac catheterization. Of these 26 patients, 58 % (15/26) had severe disease (≥70 % stenosis) leading to revascularization. Of this group, 47 % (7/15) underwent percutaneous intervention, and 53 % (8/15) underwent coronary artery bypass grafting. All of these 15 patients had either MVD (14/15) or LM coronary artery disease (1/15), and represented 0.6 % (15/2,659) of all referred patients (95 % CI 0.3 - 0.9 %). The majority, 90 % (8/9), had severe CAD with typical chest pain. A very high CAC score (>1,000) with normal MPI in a small subset of symptomatically stable patients was associated with a moderate incidence of severe CAD (95 % CI 37 - 77 %). Larger studies and/or a meta-analysis of small studies are needed to more precisely estimate the incidence of CAD in this population. This study also supports

  4. Cryogenic system for a superconducting spectrometer

    International Nuclear Information System (INIS)

    Porter, J.

    1983-03-01

    The Heavy Ion Spectrometer System (HISS) relies upon superconducting coils of cryostable, pool boiling design to provide a maximum particle bending field of 3 tesla. This paper describes the cryogenic facility including helium refrigeration, gas management, liquid nitrogen system, and the overall control strategy. The system normally operates with a 4 K heat load of 150 watts; the LN 2 circuits absorb an additional 4000 watts. 80K intercept control is by an LSI 11 computer. Total available refrigeration at 4K is 400 watts using reciprocating expanders at the 20K and 4K level. The minicomputer has the capability of optimizing overall utility input cost by varying operating points. A hybrid of pneumatic, analog, and digital control is successful in providing full time unattended operation. The 7m diameter magnet/cryostat assembly is rotatable through 180 degrees to provide a variety of spectrometer orientations

  5. The absolute flux of six hot stars in the ultraviolet (912-1600 A)

    Science.gov (United States)

    Woods, T. N.; Feldman, P. D.; Bruner, G. H.

    1985-01-01

    Six hot stars were observed on 1984 March 2 from a Black Brant V sounding rocket (NASA 21.085UG). The absolute fluxes from Gamma 2 Vel, Zeta Pup, Alpha CMa ,Gamma Ori, Beta Tau, and Epsilon Per were measured in the spectral region between 912 and 1600 A at 10 A resolution. Comparisons with revised Voyager 1 and Voyager 2 Ultraviolet Spectrometer data and previous sounding rocket data are evaluated. In general, the two sounding rocket experiments are in good agreement, and the revised Voyager data and the sounding rocket data are in agreement except at wavelengths below 1000 A.

  6. Remote Sensing of the Upper Atmosphere and the Ionosphere in the Extreme and Far Ultraviolet: Results from the LITES Experiment aboard the IS

    Science.gov (United States)

    Finn, S. C.; Chakrabarti, S.; Stephan, A. W.; Geddes, G.; Budzien, S. A.; Cook, T.; Aryal, S.; Martel, J.; Galkin, I. A.; Erickson, P. J.

    2017-12-01

    The Limb-Imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) was launched as part of the Space Test Program Houston #5 (STP-H5) payload aboard a commercial resupply flight on February 19, 2017 and was subsequently installed on the International Space Station (ISS). LITES is an imaging spectrograph that spans the 60 - 140 nm wavelength range at 1 nm spectral resolution and samples tangent altitudes 150 - 350 km with 0.2° angular resolution. LITES, in combination with the GPS Radio Occultation and Ultraviolet Photometry - Colocated (GROUP-C) experiment, which includes a GPS receiver and a nadir viewing 135.6 nm photometer, jointly collect new information on the thermosphere and the ionosphere using simultaneous UV and radio emissions. LITES, which uses standard stars to perform in-flight calibration, observes altitude profiles of day and night airglow emissions that are being used to infer thermospheric and ionospheric density profiles. Furthermore, due to the inclination of the ISS, LITES has also observed auroral spectrum and their altitude and spatial variations. Finally, geomagnetic storm effects on its UV emissions can be used to remotely sense their effects on the upper atmospheric morphology. These ISS observations,which are complement to the upcoming ICON and GOLD NASA missions, are focused on ionosphere-atmosphere coupling and global-scale atmospheric response to space weather observed from higher altitudes . We will present an overview of the LITES instrument, some early results from the first few months of operations. We will also summarize the advantages in calibration and validation activities that are possible through space-based LITES, GROUP-C and stellar measurements and simultaneous ground-based optical and radar observations.

  7. Exposure of Finnish population to ultraviolet radiation and radiation measurements

    International Nuclear Information System (INIS)

    Hoikkala, M.; Lappalainen, J.; Leszczynski, K.; Paile, W.

    1990-01-01

    This report is based on a survey of the literature on radiation risks involved in sunbathing and the use of solaria. The purpose of the report is to provide background information for the development of regulations on solaria and for informing the public about the risks posed by solaria and the sun. The report gives an overview of the properties and biological effects of ultraviolet radiation. The most important regulations and recommendations issued in various countries are presented. The connection between ultraviolet radiation and the risks of skin cancer is examined both on a general level and in reference to information obtained from the Finnish Cancer Registry. In Finland, the incidence of melanomas nearly tripled between 1960 and 1980. The most important cause is considered to be the population's increased exposure to the su's ultraviolet radiation. There are no reliable data on the connection between the use of solaria and the risks of skin cancer. It is estimated, however, that solaria account for less than 10 per cent of the skin cancer risk of the whole population. There are some difficult physical problems associated with the measurement of ultraviolet radiation emitted by both natural sources and solaria. A preliminary study of these problems has been undertaken by means of a survey of the available literature, supplemented by a review of measurements performed by the Finnish Centre For Radiation and Nuclear Safety. The estimated inaccuracy of the Optronic 742 spectroradiometer used by the Centre in the measurement of ultraviolet radiation emitted by the sun and solaria is about +-14%

  8. Absolutely calibrated vacuum ultraviolet spectra in the 150-250-nm range from plasmas generated by the NIKE KrF laser

    International Nuclear Information System (INIS)

    Seely, J.F.; Feldman, Uri; Holland, G.E.; Weaver, J.L.; Mostovych, A.N.; Obenschain, S.P.; Schmitt, A.J.; Lehmberg, R.; Kjornarattanawanich, Benjawan; Back, C.A.

    2005-01-01

    High-resolution vacuum ultraviolet (VUV) spectra were recorded from plasmas generated by the NIKE KrF laser for the purpose of observing emission from the two-plasmon decay instability (TPDI) at 2/3 the NIKE wavelength (165 nm). The targets were irradiated by up to 43 overlapping beams with intensity up to ≅10 14 W/cm 2 and with beam smoothing by induced spatial incoherence (ISI). The targets consisted of planar foils of CH, BN, Al, Si, S, Ti, Pd, and Au. Titanium-doped silica aerogels in Pyrex cylinders were also irradiated. The spectra of the target elements were observed from charge states ranging from the neutral atoms to five times ionized. The spectrometer was absolutely calibrated using synchrotron radiation, and absolute VUV plasma emission intensities were determined. Emission from the TPDI at 165-nm wavelength was not observed from any of the irradiated targets. An upper bound on the possible TPDI emission was less than 4x10 -8 the incident NIKE laser energy. The NIKE laser radiation backscattered from the silica aerogel targets at 248 nm was typically 6x10 -6 the incident NIKE laser energy, and the spectral broadening corresponded to the 1-THz bandwidth of the ISI smoothing. The spectra from the moderately charged plasma ions (up to five times ionized), spectral linewidths, absolute continuum emission level, and slope of the continuum were consistent with plasma temperatures in the 100-300-eV range

  9. Mask characterization for critical dimension uniformity budget breakdown in advanced extreme ultraviolet lithography

    Science.gov (United States)

    Nikolsky, Peter; Strolenberg, Chris; Nielsen, Rasmus; Nooitgedacht, Tjitte; Davydova, Natalia; Yang, Greg; Lee, Shawn; Park, Chang-Min; Kim, Insung; Yeo, Jeong-Ho

    2013-04-01

    As the International Technology Roadmap for Semiconductors critical dimension uniformity (CDU) specification shrinks, semiconductor companies need to maintain a high yield of good wafers per day and high performance (and hence market value) of finished products. This cannot be achieved without continuous analysis and improvement of on-product CDU as one of the main drivers for process control and optimization with better understanding of main contributors from the litho cluster: mask, process, metrology and scanner. We will demonstrate a study of mask CDU characterization and its impact on CDU Budget Breakdown (CDU BB) performed for advanced extreme ultraviolet (EUV) lithography with 1D (dense lines) and 2D (dense contacts) feature cases. We will show that this CDU contributor is one of the main differentiators between well-known ArFi and new EUV CDU budgeting principles. We found that reticle contribution to intrafield CDU should be characterized in a specific way: mask absorber thickness fingerprints play a role comparable with reticle CDU in the total reticle part of the CDU budget. Wafer CD fingerprints, introduced by this contributor, may or may not compensate variations of mask CDs and hence influence on total mask impact on intrafield CDU at the wafer level. This will be shown on 1D and 2D feature examples. Mask stack reflectivity variations should also be taken into account: these fingerprints have visible impact on intrafield CDs at the wafer level and should be considered as another contributor to the reticle part of EUV CDU budget. We also observed mask error enhancement factor (MEEF) through field fingerprints in the studied EUV cases. Variations of MEEF may play a role towards the total intrafield CDU and may need to be taken into account for EUV lithography. We characterized MEEF-through-field for the reviewed features, with results herein, but further analysis of this phenomenon is required. This comprehensive approach to quantifying the mask part of

  10. Prototype Neutron Energy Spectrometer

    International Nuclear Information System (INIS)

    Mitchell, Stephen; Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald

    2010-01-01

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production (ship effect), (a, n) reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  11. Prototype Neutron Energy Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  12. Using extreme value theory approaches to forecast the probability of outbreak of highly pathogenic influenza in Zhejiang, China.

    Directory of Open Access Journals (Sweden)

    Jiangpeng Chen

    Full Text Available Influenza is a contagious disease with high transmissibility to spread around the world with considerable morbidity and mortality and presents an enormous burden on worldwide public health. Few mathematical models can be used because influenza incidence data are generally not normally distributed. We developed a mathematical model using Extreme Value Theory (EVT to forecast the probability of outbreak of highly pathogenic influenza.The incidence data of highly pathogenic influenza in Zhejiang province from April 2009 to November 2013 were retrieved from the website of Health and Family Planning Commission of Zhejiang Province. MATLAB "VIEM" toolbox was used to analyze data and modelling. In the present work, we used the Peak Over Threshold (POT model, assuming the frequency as a Poisson process and the intensity to be Pareto distributed, to characterize the temporal variability of the long-term extreme incidence of highly pathogenic influenza in Zhejiang, China.The skewness and kurtosis of the incidence of highly pathogenic influenza in Zhejiang between April 2009 and November 2013 were 4.49 and 21.12, which indicated a "fat tail" distribution. A QQ plot and a mean excess plot were used to further validate the features of the distribution. After determining the threshold, we modeled the extremes and estimated the shape parameter and scale parameter by the maximum likelihood method. The results showed that months in which the incidence of highly pathogenic influenza is about 4462/2286/1311/487 are predicted to occur once every five/three/two/one year, respectively.Despite the simplicity, the present study successfully offers the sound modeling strategy and a methodological avenue to implement forecasting of an epidemic in the midst of its course.

  13. Solar ultraviolet radiation from cancer induction to cancer prevention: solar ultraviolet radiation and cell biology.

    Science.gov (United States)

    Tuorkey, Muobarak J

    2015-09-01

    Although decades have elapsed, researchers still debate the benefits and hazards of solar ultraviolet radiation (UVR) exposure. On the one hand, humans derive most of their serum 25-hydroxycholecalciferol [25(OH)D3], which has potent anticancer activity, from solar UVB radiation. On the other hand, people are more aware of the risk of cancer incidence associated with harmful levels of solar UVR from daily sunlight exposure. Epidemiological data strongly implicate UV radiation exposure as a major cause of melanoma and other cancers, as UVR promotes mutations in oncogenes and tumor-suppressor genes. This review highlights the impact of the different mutagenic effects of solar UVR, along with the cellular and carcinogenic challenges with respect to sun exposure.

  14. Prostate cancer incidence in Australia correlates inversely with solar radiation.

    Science.gov (United States)

    Loke, Tim W; Seyfi, Doruk; Sevfi, Doruk; Khadra, Mohamed

    2011-11-01

    What's known on the subject? and What does the study add? Increased sun exposure and blood levels of vitamin D have been postulated to be protective against prostate cancer. This is controversial. We investigated the relationship between prostate cancer incidence and solar radiation in non-urban Australia, and found a lower incidence in regions receiving more sunlight. In landmark ecological studies, prostate cancer mortality rates have been shown to be inversely related to ultraviolet radiation exposure. Investigators have hypothesised that ultraviolet radiation acts by increasing production of vitamin D, which inhibits prostate cancer cells in vitro. However, analyses of serum levels of vitamin D in men with prostate cancer have failed to support this hypothesis. This study has found an inverse correlation between solar radiation and prostate cancer incidence in Australia. Our population (previously unstudied) represents the third group to exhibit this correlation. Significantly, the demographics and climate of Australia differ markedly from those of previous studies conducted on men in the United Kingdom and the United States. • To ascertain if prostate cancer incidence rates correlate with solar radiation among non-urban populations of men in Australia. • Local government areas from each state and territory were selected using explicit criteria. Urban areas were excluded from analysis. • For each local government area, prostate cancer incidence rates and averaged long-term solar radiation were obtained. • The strength of the association between prostate cancer incidence and solar radiation was determined. • Among 70 local government areas of Australia, age-standardized prostate cancer incidence rates for the period 1998-2007 correlated inversely with daily solar radiation averaged over the last two decades. •  There exists an association between less solar radiation and higher prostate cancer incidence in Australia. © 2011 THE AUTHORS. BJU

  15. A Numerical Theory for Impedance Education in Three-Dimensional Normal Incidence Tubes

    Science.gov (United States)

    Watson, Willie R.; Jones, Michael G.

    2016-01-01

    A method for educing the locally-reacting acoustic impedance of a test sample mounted in a 3-D normal incidence impedance tube is presented and validated. The unique feature of the method is that the excitation frequency (or duct geometry) may be such that high-order duct modes may exist. The method educes the impedance, iteratively, by minimizing an objective function consisting of the difference between the measured and numerically computed acoustic pressure at preselected measurement points in the duct. The method is validated on planar and high-order mode sources with data synthesized from exact mode theory. These data are then subjected to random jitter to simulate the effects of measurement uncertainties on the educed impedance spectrum. The primary conclusions of the study are 1) Without random jitter the method is in excellent agreement with that for known impedance samples, and 2) Random jitter that is compatible to that found in a typical experiment has minimal impact on the accuracy of the educed impedance.

  16. The octadecanoid signalling pathway in plants mediates a response to ultraviolet radiation

    International Nuclear Information System (INIS)

    Conconi, A.; Smerdon, M.J.; Howe, G.A.; Ryan, C.A.

    1996-01-01

    Many plant genes that respond to environmental and developmental changes are regulated by jasmonic acid, which is derived from linolenic acid via the octadecanoid pathway. Linolenic acid is an important fatty-acid constituent of membranes in most plant species and its intracellular levels increase in response to certain signals. Here we report that irradiation of tomato leaves with ultraviolet light induces the expression of several plant defensive genes that are normally activated through the octadecanoid pathway after wounding. The response to ultraviolet light is blocked by an inhibitor of the octadecanoid pathway and it does not occur in a tomato mutant defective in this pathway. The ultraviolet irradiation maximally induces the defence genes at levels where cyclobutane pyrimidine dimer formation, an indicator of DNA damage, is less than 0.2 dimers per gene. Our evidence indicates that this plant defence response to certain wavelengths of ultraviolet radiation requires the activation of the octadecanoid defence signalling pathway. (author)

  17. Evolution of porous network in GaSb under normally incident 60 keV Ar{sup +}-ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Datta, D.P. [SUNAG Laboratory, Institute of Physics, Bhubaneswar 751 005, Odisha (India); Kanjilal, A. [Department of Physics, Shiv Nadar University, Gautam Budh Nagar 203 207, Uttar Pradesh (India); Garg, S.K. [SUNAG Laboratory, Institute of Physics, Bhubaneswar 751 005, Odisha (India); Sahoo, P.K. [School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar 751 005, Odisha (India); Satpati, B. [Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Kanjilal, D. [Inter-University Accelerator Center, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Som, T., E-mail: tsom@iopb.res.in [SUNAG Laboratory, Institute of Physics, Bhubaneswar 751 005, Odisha (India)

    2014-08-15

    Highlights: • We show the evolution of a nanoporous layer in GaSb under Ar{sup +}-ion bombardment at normal incidence in the hitherto unexplored high fluence regime, namely 7 × 10{sup 16}–3 × 10{sup 18} ions cm{sup −2}. • Fluence dependent formation and growth of patches on top of the nanoporous layer is demonstrated by scanning electron microscopy. • We also show high amount of oxidation of such ion-beam-generated nanoporous structures, with formation of Ga{sub 2}O{sub 3} and Sb{sub 2}O{sub 3}. • Our study reveals the presence of nanocrystallites within the porous layer even at the highest fluence used in the experiment. • We interpret the experimental observations through a qualitative model where we take into account the effect of re-deposition of atoms sputtered from the nanoporous layer during Ar{sup +}-ion irradiation of GaSb. - Abstract: GaSb(1 0 0) samples were irradiated with 60 keV Ar{sup +}-ions at normal incidence for fluences in the range of 7 × 10{sup 16} to 3 × 10{sup 18} ions cm{sup −2} at room temperature, showing gradual evolution of a porous surface layer containing interconnected nanofibers. In particular, fluence dependent formation of patches on the nanoporous layer is observed by scanning electron microscopy. Combined results of grazing incidence x-ray diffraction and transmission electron microscopy reveal the presence of nanocrystallites in the porous structures. Compositional analysis by x-ray photoelectron spectroscopy indicates the development of oxide phases, mainly Ga{sub 2}O{sub 3} and Sb{sub 2}O{sub 3} where the former increases with fluence. We have proposed a model addressing a competition between ion-induced-defect driven growth of the nanoporous layer and redeposition of sputtered target atoms on the growing layer.

  18. Develop of analytic method for the determination of vitamin D3 in multivitaminics and minerals using chromatography it liquidates of high efficiency in normal phase with ultraviolet detection

    International Nuclear Information System (INIS)

    Solis Barrantes, J. A.

    1999-01-01

    The good chromatography conditions settled down for the determination vitamin D 3 in multivitaminic samples by means of the analytic technique of chromatography it liquidates of high efficiency (HPLC) in normal phase, with ultraviolet detection to 265 nm. The best conditions in the proposed methodology settled down and the variables of analytic acting were validated, for the analytic quantification of vitamin D 3 in International units. The applicability of the methodology was demonstrated in the vitamin determination D 3 in multivitaminis samples in pill form [es

  19. Monolithic spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Rajic, Slobodan (Knoxville, TN); Egert, Charles M. (Oak Ridge, TN); Kahl, William K. (Knoxville, TN); Snyder, Jr., William B. (Knoxville, TN); Evans, III, Boyd M. (Oak Ridge, TN); Marlar, Troy A. (Knoxville, TN); Cunningham, Joseph P. (Oak Ridge, TN)

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  20. Melanin distribution in human epidermis affords localized protection against DNA photodamage and concurs with skin cancer incidence difference in extreme phototypes.

    Science.gov (United States)

    Fajuyigbe, Damilola; Lwin, Su M; Diffey, Brian L; Baker, Richard; Tobin, Desmond J; Sarkany, Robert P E; Young, Antony R

    2018-02-02

    Epidermal DNA damage, especially to the basal layer, is an established cause of keratinocyte cancers (KCs). Large differences in KC incidence (20- to 60-fold) between white and black populations are largely attributable to epidermal melanin photoprotection in the latter. The cyclobutane pyrimidine dimer (CPD) is the most mutagenic DNA photolesion; however, most studies suggest that melanin photoprotection against CPD is modest and cannot explain the considerable skin color-based differences in KC incidence. Along with melanin quantity, solar-simulated radiation-induced CPD assessed immediately postexposure in the overall epidermis and within 3 epidermal zones was compared in black West Africans and fair Europeans. Melanin in black skin protected against CPD by 8.0-fold in the overall epidermis and by 59.0-, 16.5-, and 5.0-fold in the basal, middle, and upper epidermis, respectively. Protection was related to the distribution of melanin, which was most concentrated in the basal layer of black skin. These results may explain, at least in part, the considerable skin color differences in KC incidence. These data suggest that a DNA protection factor of at least 60 is necessary in sunscreens to reduce white skin KC incidence to a level that is comparable with that of black skin.-Fajuyigbe, D., Lwin, S. M., Diffey, B. L., Baker, R., Tobin, D. J., Sarkany, R. P. E., Young, A. R. Melanin distribution in human epidermis affords localized protection against DNA photodamage and concurs with skin cancer incidence difference in extreme phototypes.