WorldWideScience

Sample records for extreme wind events

  1. Extreme Velocity Wind Sensor

    Science.gov (United States)

    Perotti, Jose; Voska, Ned (Technical Monitor)

    2002-01-01

    This presentation provides an overview of the development of new hurricane wind sensor (Extreme Velocity Wind Sensor) for the Kennedy Space Center (KSC) which is designed to withstand winds of up to three hundred miles an hour. The proposed Extreme Velocity Wind Sensor contains no moveable components that would be exposed to extreme wind conditions. Topics covered include: need for new hurricane wind sensor, conceptual design, software applications, computational fluid dynamic simulations of design concept, preliminary performance tests, and project status.

  2. Turbulent Extreme Event Simulations for Lidar-Assisted Wind Turbine Control

    Science.gov (United States)

    Schlipf, David; Raach, Steffen

    2016-09-01

    This work presents a wind field generator which allows to shape wind fields in the time domain while maintaining the spectral properties. This is done by an iterative generation of wind fields and by minimizing the error between wind characteristics of the generated wind fields and desired values. The method leads towards realistic ultimate load calculations for lidar-assisted control. This is demonstrated by fitting a turbulent wind field to an Extreme Operating Gust. The wind field is then used to compare a baseline feedback controller alone against a combined feedback and feedforward controller using simulated lidar measurements. The comparison confirms that the lidar-assisted controller is still able to significantly reduce the ultimate loads on the tower base under this more realistic conditions.

  3. Extreme winds in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, L.; Rathmann, O.; Hansen, S.O.

    1999-02-01

    Wind-speed data from four sites in Denmark have been analyzed in order to obtain estimates of the basic wind velocity which is defined as the 50-year wind speed under standard conditions, i.e. ten-minute averages at the height 10 m over a uniform terrain with the roughness length 0.05 m. The sites are, from west, Skjern (15 years), Kegnaes (7 years), Sprogoe (20 years), and Tystofte (15 years). The data are ten minute averages of wind speed, wind direction, temperature and pressure. The last two quantities are used to determine the air density {rho}. The data are cleaned for terrain effects by means of a slightly modified WASP technique where the sector speed-up factors and roughness lengths are linearly smoothed with a direction resolution of one degree. Assuming geotropic balance, all the wind-velocity data are transformed to friction velocity u{sub *} and direction at standard conditions by means of the geotropic drag law for neutral stratification. The basic wind velocity in 30 deg. sectors are obtained through ranking of the largest values of the friction velocity pressure 1/2{rho}u{sub *}{sup 2} taken both one every two months and once every year. The main conclusion is that the basic wind velocity is significantly larger at Skjern, close to the west coast of Jutland, than at any of the other sites. Irrespective of direction, the present standard estimates of 50-year wind are 25 {+-} 1 m/s at Skern and 22 {+-} 1 m/s at the other three sites. These results are in agreement with those obtained by Jensen and Franck (1970) and Abild (1994) and supports the conclusion that the wind climate at the west coast of Jutland is more extreme than in any other part of the country. Simple procedures to translate in a particular direction sector the standard basic wind velocity to conditions with a different roughness length and height are presented. It is shown that a simple scheme makes it possible to calculate the total 50-year extreme load on a general structure without

  4. Analysis of extreme events

    CSIR Research Space (South Africa)

    Khuluse, S

    2009-04-01

    Full Text Available ) determination of the distribution of the damage and (iii) preparation of products that enable prediction of future risk events. The methodology provided by extreme value theory can also be a powerful tool in risk analysis...

  5. Using long term synthetic time series to assess the impact of meteorological extreme events on renewable energy systems: a case study of wind and hydro power in Sweden

    Science.gov (United States)

    Höltinger, Stefan; Schmidt, Johannes; Weterlund, Elisabeth

    2017-04-01

    Synthetic time series of renewable energy generation provide important inputs for energy system models that study the transition to low carbon energy systems. The coverage of national energy statistics is usually too short or temporal resolution too low - in particular if meteorological extreme events should be assessed. These extreme events may put high stress on power systems with very high shares of renewables and therefore have to be studied in detail. We use simulated time series of Swedish wind energy generation for a 35 year period based on MERRA reanalysis datasets. The simulation of hydropower generation is more complex and requires hydrological models that combine precipitation data with spatially explicit information on soil type and land cover to simulate river discharge. For this purpose, we use time series of daily river discharge that have been simulated using the open source model HYPE (HYdrological Predictions for the Environment). We compared the derived time series for wind and hydropower generation in the four Swedish bidding areas with respect to their long-term correlation, patterns of seasonality, and length and duration of extreme events. Preliminary results show that expanding wind power capacities could significantly reduce the overall variability of renewable energy generation. Furthermore, the frequency and duration of extreme production events in a combined wind-hydropower system is lower than in a hydropower system only. Further work will study the need for backup capacities in a future Swedish power system with very high shares of hydro, wind and solar power (>90%).

  6. Extreme winds in Denmark

    DEFF Research Database (Denmark)

    Kristensen, L.; Rathmann, O.; Hansen, S.O.

    2000-01-01

    ), Kegnaes (7 yr), Sprogo (20 yr), and Tystofte (16 yr). The measured data are wind speed, wind direction, temperature and pressure. The wind records are cleaned for terrain effects by means of WASP (Mortensew ct al., Technical Report I-666 (EN), Riso National Laboratory, 1993. Vol. 2. User's Guide...

  7. How good are remote sensors at measuring extreme winds?

    NARCIS (Netherlands)

    Sathe, A.R.; Courtney, M.; Mann, J.; Wagner, R.

    2011-01-01

    This article describes some preliminary efforts within the SafeWind project, aimed to identify the possible added value of using wind lidars to detect extreme wind events. Exceptionally good performance is now regularly reported in the measurement of the mean wind speed with some wind lidars in flat

  8. How good are remote sensors at measuring extreme winds?

    NARCIS (Netherlands)

    Sathe, A.R.; Courtney, M.; Mann, J.; Wagner, R.

    2011-01-01

    This article describes some preliminary efforts within the SafeWind project, aimed to identify the possible added value of using wind lidars to detect extreme wind events. Exceptionally good performance is now regularly reported in the measurement of the mean wind speed with some wind lidars in flat

  9. Extreme Winds from the NCEP/NCAR Reanalysis Data

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Mann, Jakob

    2009-01-01

    wind. We examined extreme winds in different places where the strongest wind events are weather phenomena of different scales, including the mid-latitude lows in Denmark, channelling winds in the Gulf of Suez, typhoons in the western North Pacific, cyclones in the Caribbean Sea, local strong winds...

  10. Solar extreme events

    CERN Document Server

    Hudson, Hugh S

    2015-01-01

    Solar flares and CMEs have a broad range of magnitudes. This review discusses the possibility of "extreme events," defined as those with magnitudes greater than have been seen in the existing historical record. For most quantitative measures, this direct information does not extend more than a century and a half into the recent past. The magnitude distributions (occurrence frequencies) of solar events (flares/CMEs) typically decrease with the parameter measured or inferred (peak flux, mass, energy etc. Flare radiation fluxes tend to follow a power law slightly flatter than $S^{-2}$, where S represents a peak flux; solar particle events (SPEs) follow a still flatter power law up to a limiting magnitude, and then appear to roll over to a steeper distribution, which may take an exponential form or follow a broken power law. This inference comes from the terrestrial $^{14}$C record and from the depth dependence of various radioisotope proxies in the lunar regolith and in meteorites. Recently major new observation...

  11. Interplanetary shocks and solar wind extremes

    Science.gov (United States)

    Vats, Hari

    The interplanetary shocks have a very high correlation with the annual sunspot numbers during the solar cycle; however the correlation falls very low on shorter time scale. Thus poses questions and difficulty in the predictability. Space weather is largely controlled by these interplanetary shocks, solar energetic events and the extremes of solar wind. In fact most of the solar wind extremes are related to the solar energetic phenomena. It is quite well understood that the energetic events like flares, filament eruptions etc. occurring on the Sun produce high speed extremes both in terms of density and speed. There is also high speed solar wind steams associated with the coronal holes mainly because the magnetic field lines are open there and the solar plasma finds it easy to escape from there. These are relatively tenuous high speed streams and hence create low intensity geomagnetic storms of higher duration. The solar flares and/or filament eruptions usually release excess coronal mass into the interplanetary medium and thus these energetic events send out high density and high speed solar wind which statistically found to produce more intense storms. The other extremes of solar wind are those in which density and speed are much lower than the normal values. Several such events have been observed and are found to produce space weather consequences of different kind. It is found that such extremes are more common around the maximum of solar cycle 20 and 23. Most of these have significantly low Alfven Mach number. This article is intended to outline the interplanetary and geomagnetic consequences of observed by ground based and satellite systems for the solar wind extremes.

  12. Extreme winds in Denmark

    DEFF Research Database (Denmark)

    Kristensen, L.; Rathmann, Ole; Hansen, S.O.

    1999-01-01

    by means of a slightly modified WAsP technique where the sector speed-up factors and roughness lengths are linearly smoothed with a direction resolution of one degree.Assuming geostrophic balance, all the wind-velocity data are transformed to friction velocity ¤u_x¤ and direction at standard conditions...

  13. How good are remote sensors at measuring extreme winds?

    OpenAIRE

    Sathe, A.R.; Courtney, M; Mann, J.; Wagner, R.

    2011-01-01

    This article describes some preliminary efforts within the SafeWind project, aimed to identify the possible added value of using wind lidars to detect extreme wind events. Exceptionally good performance is now regularly reported in the measurement of the mean wind speed with some wind lidars in flat terrain. For turbulence measurements, recent theoretical work has revealed that the components of the Reynolds stress tensor are subjected to significant spatial attenuation and contamination by t...

  14. Early warnings of extreme winds using the ECMWF Extreme Forecast Index

    DEFF Research Database (Denmark)

    Petroliagis, Thomas I.; Pinson, Pierre

    2014-01-01

    regimes. Overall, it becomes clear that the first indications of an extreme wind event might come from the ECMWF deterministic and/or probabilistic components capturing very intense weather systems (possible windstorms) in the medium term. For early warnings, all available EPS Extreme Forecast Index (EFI...... stations (airports) of North Germany (Bremen, Hamburg and Hannover) were considered for the construction of time series of daily maximum wind speeds. All daily wind extremes were found to be linked to very intense surface cyclonic circulation systems being advected mainly by southwest and northwest flow......The European FP7 SafeWind Project aims at developing research towards a European vision of wind power forecasting, which requires advanced meteorological support concerning extreme wind events. This study is focused mainly on early warnings of extreme winds in the early medium-range. Three synoptic...

  15. Extreme Energy Events Monitoring report

    CERN Document Server

    Baimukhamedova, Nigina

    2015-01-01

    Following paper reflects the progress I made on Summer Student Program within Extreme Energy Events Monitor project I was working on. During 8 week period I managed to build a simple detector system that is capable of triggering events similar to explosions (sudden change in sound levels) and measuring approximate location of the event. Source codes are available upon request and settings described further.

  16. A global quantification of compound precipitation and wind extremes

    Science.gov (United States)

    Martius, Olivia; Pfahl, Stephan; Chevalier, Clément

    2016-07-01

    The concomitant occurrence of extreme precipitation and winds can have severe impacts. Here this concomitant occurrence is quantified globally using ERA-Interim reanalysis data. A logistic regression model is used to determine significant changes in the odds of precipitation extremes given a wind extreme that occurs on the same day, the day before, or the day after. High percentages of cooccurring wind and precipitation extremes are found in coastal regions and in areas with frequent tropical cyclones, with maxima of more than 50% of concomitant events. Strong regional-scale variations in this percentage are related to the interaction of weather systems with topography resulting in Föhn winds, gap winds, and orographic drying and the structure and tracks of extratropical and tropical cyclones. The percentage of concomitant events increases substantially if spatial shifts by one grid point are taken into account. Such spatially shifted but cooccurring events are important in insurance applications.

  17. A global quantification of compound precipitation and wind extremes

    Science.gov (United States)

    Martius, Olivia; Pfahl, Stephan; Chevalier, Clément

    2017-04-01

    The concomitant occurrence of extreme precipitation and winds can have severe impacts. Here this concomitant occurrence is quantified globally using ERA-Interim reanalysis data. A logistic regression model is used to determine significant changes in the odds ratio of precipitation extremes given a wind extreme occurs on the same day, the day before or the day after. High percentages of co-occurring wind and precipitation extremes are found in coastal regions and in areas with frequent tropical cyclones, with maxima of more than 50% of concomitant events. Strong regional-scale variations in this percentage are related to the interaction of weather systems with topography resulting in Föhn winds, gap winds, and orographic drying, and the structure and tracks of extratropical and tropical cyclones. The percentage of concomitant events increases substantially if spatial shifts by one grid point are taken into account. Such spatially shifted, but co-occurring events are important in insurance applications.

  18. Geo-effectiveness of Solar Wind Extremes

    Indian Academy of Sciences (India)

    Hari Om Vats

    2006-06-01

    Examples of extreme events of solar wind and their effect on geomagnetic conditions are discussed here. It is found that there are two regimes of high speed solar wind streams with a threshold of ∼ 850 km s-1. Geomagnetic activity enhancement rate (GAER) is defined as an average increase in Ap value per unit average increase in the peak solar wind velocity (Vp) during the stream. GAER was found to be different in the two regimes of high speed streams with +ve and -ve IMF. GAER is 0.73 and 0.53 for solar wind streams with +ve and -ve IMF respectively for the extremely high speed streams (< 850 km s-1). This indicates that streams above the threshold speed with +ve IMF are 1.4 times more effective in enhancing geomagnetic activity than those with -ve IMF. However, the high speed streams below the threshold with -ve IMF are 1.1 times more effective in enhancing geomagnetic activity than those with +ve IMF. The violent solar activity period (October–November 2003) of cycle 23 presents a very special case during which many severe and strong effects were seen in the environment of the Earth and other planets; however, the z-component of IMF (Bz) is mostly positive during this period. The most severe geomagnetic storm of this cycle occurred when Bz was positive.

  19. Wind Turbine Extreme Gust Control. Recognition and Control of extreme operation gusts and wind direction changes

    Energy Technology Data Exchange (ETDEWEB)

    Kanev, S.K.; Van Engelen, T.G. [ECN Wind Energy, Petten (Netherlands)

    2008-10-15

    This report presents the research activities and achieved results on extreme event recognition (EER) and control (EEC). This work has been performed within the framework of WP3 of the SenterNovem project Sustainable Control (SusCon). An extreme wind gust with direction change can lead to large loads on the turbine (causing fatigue) and unnecessary turbine shut-downs by the supervisory system due to rotor overspeed. The proposed EER algorithm is based on a nonlinear observer (extended Kalman filter) that estimates the oblique wind inflow angle and the blade effective wind speed signals, which are then used by a detection algorithm (CUSUM test) to recognize extreme events. The nonlinear observer requires that blade root bending moments measurements (in-plane and out-of-plane) are available. Once an extreme event is detected, an EEC algorithm is activated that (1) tries to prevent the rotor speed from exceeding the overspeed limit by fast collective blade pitching, and (2) reduces 1p blade loads by means of individual pitch control algorithm, designed in an H1 optimal control setting. The method is demonstrated on a complex nonlinear test turbine model.

  20. Early warnings of extreme winds using the ECMWF Extreme Forecast Index

    National Research Council Canada - National Science Library

    Petroliagis, Thomas I; Pinson, Pierre

    2014-01-01

    .... Overall, it becomes clear that the first indications of an extreme wind event might come from the ECMWF deterministic and/or probabilistic components capturing very intense weather systems (possible windstorms) in the medium term...

  1. Wind simulation for extreme and fatigue loads

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M.; Larsen, G.C.; Mann, J.; Ott, S.; Hansen, K.S.; Pedersen, B.J.

    2004-01-01

    Measurements of atmospheric turbulence have been studied and found to deviate from a Gaussian process, in particular regarding the velocity increments over small time steps, where the tails of the pdf are exponential rather than Gaussian. Principles for extreme event counting and the occurrence of cascading events are presented. Empirical extreme statistics agree with Rices exceedence theory, when it is assumed that the velocity and its time derivative are independent. Prediction based on the assumption that the velocity is a Gaussian process underpredicts the rate of occurrence of extreme events by many orders of magnitude, mainly because the measured pdf is non-Gaussian. Methods for simulation of turbulent signals have been developed and their computational efficiency are considered. The methods are applicable for multiple processes with individual spectra and probability distributions. Non-Gaussian processes are simulated by the correlation-distortion method. Non-stationary processes are obtained by Bezier interpolation between a set of stationary simulations with identical random seeds. Simulation of systems with some signals available is enabled by conditional statistics. A versatile method for simulation of extreme events has been developed. This will generate gusts, velocity jumps, extreme velocity shears, and sudden changes of wind direction. Gusts may be prescribed with a specified ensemble average shape, and it is possible to detect the critical gust shape for a given construction. The problem is formulated as the variational problem of finding the most probable adjustment of a standard simulation of a stationary Gaussian process subject to relevant event conditions, which are formulated as linear combination of points in the realization. The method is generalized for multiple correlated series, multiple simultaneous conditions, and 3D fields of all velocity components. Generalization are presented for a single non-Gaussian process subject to relatively

  2. Enhanced horizontal extreme-echo speed occurrence leading to polar mesospheric summer echoes (PMSE) increase at solar-wind pressure enhancement during high-speed solar wind stream events

    Science.gov (United States)

    Lee, Y.; Kirkwood, S.; Kwak, Y.; Kim, K.; Shepherd, G. G.

    2013-12-01

    We report on horizontal extreme echo speeds (HEES, ≥ 300 ms^{-1}) observed in long-periodic polar mesospheric summer echoes (PMSE) correlated with solar-wind speed in high speed solar wind streams (HSS) events. The observations were made from VHF 52 MHz radar measurements at Esrange (67.8°N, 20.4°E) between June 1-August 8 in 2006 and 2008. The periodicities of PMSE counts and the volume reflectivity primarily occur at 7, 9 and 13.5 days possibly by the effects of HSS, while the periodicities at 4-6 days are competitively coherent between planetary waves appearing in temperature and solar-wind speed during HSS events. The peaks of both HEES occurrence rate relative to PMSE and turbulence dominantly occur at solar-wind pressure enhancement with minor peaks continued under the passage of HSS over the magnetopause, followed by PMSE peaks in 1-3 days later. This study gives the results that the precipitating high-energetic particles (> 30 keV) during HSS likely induce D-region ionization involved with the consecutive processes of HEES, turbulence and PMSE. The turbulence evolved from the HEES can be explained with the Kelvin-Helmholtz instability, which was observed in PMSE by Röttger et al. [11th International Workshop on technical and scientific aspects of MST Radar, 2006] and firstly simulated for PMSE generation by Hill et al. [Earth Planets Space, 1999]. The HEES is understood as the speed of fast moving ions, accelerated by strong electric field as Lee & Shepherd [JGR, 2010] suggested with the supersonic velocities persisting in polar mesospheric clouds (PMC) region observed at enhanced O(^1S) emission rate ( 10 kR) by WINDII/UARS satellite.

  3. Warm-season severe wind events in Germany

    Science.gov (United States)

    Gatzen, Christoph

    2013-04-01

    A 15-year data set of wind measurements was analyzed with regard to warm season severe wind gusts in Germany. For April to September of the years 1997 to 2011, 1035 wind measurements of 26 m/s or greater were found. These wind reports were associated with 268 wind events. In total, 252 convective wind events contributed to 837 (81%) of the wind reports, 16 non-convective synoptic-scale wind events contributed to 198 reports (19%). Severe wind events were found with synoptic situations characterized by rather strong mid-level flow and advancing mid-level troughs. Severe convective wind events were analyzed using radar images and classified with respect to the observed radar structure. The most important convective mode was squall lines that were associated with one third of all severe wind gusts, followed by groups, bow echo complexes, and bow echoes. Supercells and cells were not associated with many wind reports. The low contribution of isolated cells indicates that rather large-scale forcing by synoptic-scale features like fronts is important for German severe wind events. Bow echoes were found to be present for 58% of all wind reports. The movement speed of bow echoes indicated a large variation with a maximum speed of 33 m/s. Extreme wind events as well as events with more than 15 wind reports were found to be related to higher movement speeds. Concentrating on the most intense events, derechos seem to be very important to the warm season wind threat in Germany. Convective events with a path length of more than 400 km contributed to 36% of all warm-season wind gusts in this data set. Furthermore, eight of nine extreme gusts exceeding 40 m/s were recorded with derecho events.

  4. Extreme wind estimate for Hornsea wind farm

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo

    The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two...... approaches. One is through the measurements from the wind Doppler lidar, WindCube, which implies serious uncertainty, and the other one is through similarity theory for the atmospheric surface layer where the hub height is likely to belong to during strong storms. The turbulence intensity for storm wind...... strength is taken as 0.1. The shear exponents at several heights were calculated from the measurements. The values at 100 m are less than the limit given by IEC standard for all sectors. The 50-year winds have been calculated from various global reanalysis and analysis products as well as mesoscale models...

  5. On causality of extreme events

    CERN Document Server

    Zanin, Massimiliano

    2016-01-01

    Multiple metrics have been developed to detect causality relations between data describing the elements constituting complex systems, all of them considering their evolution through time. Here we propose a metric able to detect causality within static data sets, by analysing how extreme events in one element correspond to the appearance of extreme events in a second one. The metric is able to detect both linear and non-linear causalities; to analyse both cross-sectional and longitudinal data sets; and to discriminate between real causalities and correlations caused by confounding factors. We validate the metric through synthetic data, dynamical and chaotic systems, and data representing the human brain activity in a cognitive task.

  6. On causality of extreme events

    Directory of Open Access Journals (Sweden)

    Massimiliano Zanin

    2016-06-01

    Full Text Available Multiple metrics have been developed to detect causality relations between data describing the elements constituting complex systems, all of them considering their evolution through time. Here we propose a metric able to detect causality within static data sets, by analysing how extreme events in one element correspond to the appearance of extreme events in a second one. The metric is able to detect non-linear causalities; to analyse both cross-sectional and longitudinal data sets; and to discriminate between real causalities and correlations caused by confounding factors. We validate the metric through synthetic data, dynamical and chaotic systems, and data representing the human brain activity in a cognitive task. We further show how the proposed metric is able to outperform classical causality metrics, provided non-linear relationships are present and large enough data sets are available.

  7. On causality of extreme events

    Science.gov (United States)

    2016-01-01

    Multiple metrics have been developed to detect causality relations between data describing the elements constituting complex systems, all of them considering their evolution through time. Here we propose a metric able to detect causality within static data sets, by analysing how extreme events in one element correspond to the appearance of extreme events in a second one. The metric is able to detect non-linear causalities; to analyse both cross-sectional and longitudinal data sets; and to discriminate between real causalities and correlations caused by confounding factors. We validate the metric through synthetic data, dynamical and chaotic systems, and data representing the human brain activity in a cognitive task. We further show how the proposed metric is able to outperform classical causality metrics, provided non-linear relationships are present and large enough data sets are available. PMID:27330866

  8. Interpretation of Extreme Scattering Events

    CERN Document Server

    Walker, M A

    2000-01-01

    Extreme Scattering Events are sometimes manifest in the light-curves of compact radio-quasars at frequencies of a few GHz. These events are not understood. The model which appears to offer the best explanation requires a new population of AU-sized, neutral gas clouds; these clouds would then make up a large fraction of the Galaxy's dark matter. Independent of the question of which theoretical model is correct, if we extrapolate the observed behaviour to low radio-frequencies, we expect that the sky should be criss-crossed by a network of narrow caustics, at frequencies below about 700 MHz. Consequently at these frequencies sources should typically manifest additional, faint images which are substantially delayed with respect to the primary image. Although some examples of this type of behaviour are already known, it is expected that these are just the tip of the iceberg, with strong selection biases having been imposed by the instrumentation employed to date.

  9. Extreme wind estimate for Hornsea wind farm

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo

    strength is taken as 0.1. The shear exponents at several heights were calculated from the measurements. The values at 100 m are less than the limit given by IEC standard for all sectors. The 50-year winds have been calculated from various global reanalysis and analysis products as well as mesoscale models...

  10. Extreme Response for Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2009-01-01

    The characteristic load on wind turbines during operation are among others dependent on the mean wind speed, the turbulence intensity and type and settings of the control system. The characteristic load during operation is normally estimated by statistical extrapolation of a limited number...... of simulated 10min time series of the response according to the wind turbine standard IEC 61400-1. However, this method assumes that the individual 10min time series and the extracted peaks from the time series are independent. In the present paper is this assumption investigated based on field measurements...

  11. Extreme winds in the Western North Pacific

    DEFF Research Database (Denmark)

    Ott, Søren

    2006-01-01

    A statistical model for extreme winds in the western North Pacific is developed, the region on the Planet where tropical cyclones are most common. The model is based on best track data derived mostly from satellite images of tropical cyclones. The methodsused to estimate surface wind speeds from...

  12. Extremely long hard bursts observed by Konus-Wind

    CERN Document Server

    Pal'shin, V; Frederiks, D; Golenetskii, S; Il'Inskii, V; Mazets, E; Yamaoka, K; Ohno, M; Hurley, K; Sakamoto, T; Oleynik, P; Ulanov, M; Mitrofanov, I G; Golovin, D; Litvak, M L; Sanin, A B; Boynton, W; Fellows, C; Harshman, K; Shinohara, C; Starr, R; 10.1063/1.2943422

    2013-01-01

    We report the observations of the prompt emission of the extremely long hard burst, GRB 060814B, discovered by Konus-Wind and localized by the IPN. The observations reveal a smooth, hard, ~40-min long pulse followed by weaker emission seen several hours after the burst onset. We also present the Konus-Wind data on similar burst, GRB 971208, localized by BATSE/IPN. And finally we discuss the different possible origins of these unusual events.

  13. Extreme wind turbine response during operation

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Nielsen, S.R.K.

    2007-01-01

    Estimation of extreme response values is very important for structural design of wind turbines. Due to the influence of control system and nonlinear structural behavior the extreme response is usually assessed based on simulation of turbulence time series. In this paper the problem of statistical...... provides a tool to obtain consistent estimates incl. the statistical uncertainty. An illustrative example indicates that the statistical uncertainty is important compared to the coefficient of variation of the extreme response when the number of 10 minutes simulations at each mean wind speed is limited...

  14. Operational experience of extreme wind penetrations

    Energy Technology Data Exchange (ETDEWEB)

    Estanqueiro, Ana [INETI/LNEG - National Laboratory for Energy and Geology, Lisbon (Portugal); Mateus, Carlos B. [Instituto de Meteorologia, Lisboa (Portugal); Pestana, Rui [Redes Energeticas Nacionais (REN), Lisboa (Portugal)

    2010-07-01

    This paper reports the operational experience from the Portuguese Power System during the 2009/2010 winter months when record wind penerations were observed: the instantaneous wind power penetration peaked at 70% of consumption during no-load periods and the wind energy accounted for more than 50% of the energy consumed for a large period. The regulation measures taken by the TSO are presented in the paper, together with the additional reserves operated for added system security. Information on the overall power system behavior under such extreme long-term wind power penetrations will also be addressed. (org.)

  15. Extreme Events in Nature and Society

    CERN Document Server

    Albeverio, Sergio; Kantz, Holger

    2006-01-01

    Significant, and usually unwelcome, surprises, such as floods, financial crisis, epileptic seizures, or material rupture, are the topics of Extreme Events in Nature and Society. The book, authored by foremost experts in these fields, reveals unifying and distinguishing features of extreme events, including problems of understanding and modelling their origin, spatial and temporal extension, and potential impact. The chapters converge towards the difficult problem of anticipation: forecasting the event and proposing measures to moderate or prevent it. Extreme Events in Nature and Society will interest not only specialists, but also the general reader eager to learn how the multifaceted field of extreme events can be viewed as a coherent whole.

  16. Extreme gust wind estimation using mesoscale modeling

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Kruger, Andries

    2014-01-01

    through turbulent eddies. This process is modeled using the mesoscale Weather Forecasting and Research (WRF) model. The gust at the surface is calculated as the largest winds over a layer where the averaged turbulence kinetic energy is greater than the averaged buoyancy force. The experiments have been......Currently, the existing estimation of the extreme gust wind, e.g. the 50-year winds of 3 s values, in the IEC standard, is based on a statistical model to convert the 1:50-year wind values from the 10 min resolution. This statistical model assumes a Gaussian process that satisfies the classical...... done for Denmark and two areas in South Africa. For South Africa, the extreme gust atlases from South Africa were created from the output of the mesoscale modelling using Climate Forecasting System Reanalysis (CFSR) forcing for the period 1998 – 2010. The extensive measurements including turbulence...

  17. Extreme weather events and infectious disease outbreaks

    OpenAIRE

    McMichael, Anthony J.

    2015-01-01

    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental c...

  18. Stationarity of extreme bursts in the solar wind.

    Science.gov (United States)

    Moloney, N R; Davidsen, J

    2014-05-01

    Recent results have suggested that the statistics of bursts in the solar wind vary with solar cycle. Here, we show that this variation is basically absent if one considers extreme bursts. These are defined as threshold-exceeding events over the range of high thresholds for which their number decays as a power law. In particular, we find that the distribution of duration times and energies of extreme bursts in the solar wind ε parameter and similar observables are independent of the solar cycle and in this sense stationary, and show robust asymptotic power laws with exponents that are independent of the specific threshold. This is consistent with what has been observed for solar flares and, thus, provides evidence in favor of a link between solar flares and extreme bursts in the solar wind.

  19. Extreme inflow events and synoptic forcing in Sydney catchments

    Energy Technology Data Exchange (ETDEWEB)

    Pepler, Acacia S; Rakich, Clinton S, E-mail: a.pepler@bom.gov.a [NSW Climate Services Section, Bureau of Meteorology PO Box 413, Darlinghurst, NSW 1300 (Australia)

    2010-08-15

    The Sydney catchment region encompasses over 16,000km{sup 2}, supplying water to over 4 million inhabitants. However, few studies have investigated the synoptic and climatic influences on inflow in this region, which are crucial for understanding the vulnerability of water supply in a changing climate. This study identifies extremely high and low inflow events between 1960 and 2008 based on catchment averages. The focus of the study is an analysis of the synoptic cause/s of each extreme inflow event. The events are evaluated to identify any trends and also to determine the concurrent significant climatic influences on rainfall over the catchments. Relationships between catchment inflow, rainfall, tropical SST indices, and other influencing factors such as observed wind and temperatures are investigated. Our results show that East Coast Lows and anomalously easterly flow are the drivers of high inflow events, with low inflow events dominated by westerly wind patterns and the El Nino-Southern Oscillation.

  20. Extreme wave and wind response predictions

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Olsen, Anders S.; Mansour, Alaa E.

    2011-01-01

    The aim of the paper is to advocate effective stochastic procedures, based on the First Order Reliability Method (FORM) and Monte Carlo simulations (MCS), for extreme value predictions related to wave and wind-induced loads.Due to the efficient optimization procedures implemented in standard FORM...

  1. Extreme weather events and infectious disease outbreaks.

    Science.gov (United States)

    McMichael, Anthony J

    2015-01-01

    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental conditions of extreme weather events. This review article examines infectious disease risks associated with extreme weather events; it draws on recent experiences including Hurricane Katrina in 2005 and the 2010 Pakistan mega-floods, and historical examples from previous centuries of epidemics and 'pestilence' associated with extreme weather disasters and climatic changes. A fuller understanding of climatic change, the precursors and triggers of extreme weather events and health consequences is needed in order to anticipate and respond to the infectious disease risks associated with human-driven climate change. Post-event risks to human health can be constrained, nonetheless, by reducing background rates of persistent infection, preparatory action such as coordinated disease surveillance and vaccination coverage, and strengthened disaster response. In the face of changing climate and weather conditions, it is critically important to think in ecological terms about the determinants of health, disease and death in human populations.

  2. Climate projection of extreme wind speed regime in the Arctic

    Science.gov (United States)

    Surkova, Galina; Sokolova, Larisa

    2016-04-01

    Extreme surface wind events over the Arctic (60-90N, 0-360 E) are studied for the modern climate and for its future possible changes on the base of ERA-Interim reanalysis data and CMIP5 scenario RCP8.5. Horizontal surface wind speed (10 m) probability distribution functions in every grid point of reanalysis and models data over the Arctic were evaluated as well as wind speed for 50, 95, 99, 99.9 percentiles (V0.50, V0.95, V0.99, V0.999). At first, changes of V0.50, V0.95, V0.99, V0.999 were studied on the base of ERA-Interim reanalysis for 1981-2010. Results showed regional inhomogenity of wind speed trend intensity. Also, analysis was made for zonal means and separate sectors of the Arctic. To study climate projection of high wind speed there were taken u,v values from CMIP5 numerical experiments for 1961-1990 (Historical) and 2081-2100 (RCP8.5). RCP8.5 scenario was chosen as having the most pronounced response in the climate system, which gave more statistical significance to the calculated trends. Modeled extreme wind speeds for the total Arctic and zonal means show rather good agreement with reanalysis data (compared for decades 1981-1990, 1991-2000). At the same time regional intermodel variability of wind speed is revealed. Trend of extreme surface wind speed in 21 century and for 2081-2100 over the Arctic are analyzed for each model. The study was supported by the Russian Science Foundation (project no. 14-37-00038).

  3. Energy Infrastructure and Extreme Events (Invited)

    Science.gov (United States)

    Wakimoto, R. M.

    2013-12-01

    The country's energy infrastructure is sensitive to the environment, especially extreme events. Increasing global temperatures, intense storms, and space weather have the potential to disrupt energy production and transport. It can also provide new opportunities as illustrated by the opening of the Northwest Passage. The following provides an overview of some of the high impacts of major geophysical events on energy production and transport. Future predictions of hurricanes suggest that we can expect fewer storms but they will be associated with stronger winds and more precipitation. The winds and storm surge accompanying hurricane landfall along the Gulf States has had a major impact on the coastal energy infrastructure and the oil/natural gas platforms. The impact of these surges will increase with predicted sea level rise. Hurricane Katrina caused damage to crude oil pipelines and refineries that reduced oil production by 19% for the year. The disruption that can occur is not necessarily linked with the maximum winds of the tropical storm as recently shown by Hurricane Sandy which was classified as a ';post-tropical cyclone' during landfall. Another intense circulation, the tornado, can also cause power outages and network breaks from high winds that can topple power poles or damage power lines from fallen trees. Fortunately, the Moore tornado, rated EF5, did not have a major impact on the oil and gas infrastructure in Oklahoma. The impact of earthquakes and tsunamis on energy was illustrated in Japan in 2011 with the shutdown of the Fukushima Daiichi plant. Other studies have suggested that there are areas in the United States where the energy services are highly vulnerable to major earthquakes that would disrupt electrical and gas networks for extended periods of time. Seismic upgrades to the energy infrastructure would help mitigate the impact. In 1859, a coronal mass ejection triggered a geomagnetic storm that disrupted communication wires around the world

  4. Extreme Weather Events and Climate Change Attribution

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Katherine [National Academy of Sciences, Washington, DC (United States)

    2016-03-31

    A report from the National Academies of Sciences, Engineering, and Medicine concludes it is now possible to estimate the influence of climate change on some types of extreme events. The science of extreme event attribution has advanced rapidly in recent years, giving new insight to the ways that human-caused climate change can influence the magnitude or frequency of some extreme weather events. This report examines the current state of science of extreme weather attribution, and identifies ways to move the science forward to improve attribution capabilities. Confidence is strongest in attributing types of extreme events that are influenced by climate change through a well-understood physical mechanism, such as, the more frequent heat waves that are closely connected to human-caused global temperature increases, the report finds. Confidence is lower for other types of events, such as hurricanes, whose relationship to climate change is more complex and less understood at present. For any extreme event, the results of attribution studies hinge on how questions about the event's causes are posed, and on the data, modeling approaches, and statistical tools chosen for the analysis.

  5. Characteristics of Extreme Auroral Charging Events

    Science.gov (United States)

    Minow, Joseph I.; Willis, Emily; Parker, Linda Neergaard

    2014-01-01

    Today’s presentation describes preliminary results from a study of extreme auroral charging in low Earth orbit. Goal of study is to document characteristics of auroral charging events of importance to spacecraft design, operations, and anomaly investigations.

  6. Extreme events monitoring from space

    Science.gov (United States)

    Kerr, Yann; Bitar, Ahmad Al; Mahmoodi, Ali; Richaume, Philippe; Al-Yaari, Amen; Wigneron, Jean-Pierre

    2016-04-01

    The SMOS (Soil Moisture and Ocean Salinity) satellite was successfully launched in November 2009. This ESA led mission for Earth Observation is dedicated to provide soil moisture over continental surface (with an accuracy goal of 0.04 m3/m3), vegetation water content over land, and ocean salinity. These geophysical features are important as they control the energy balance between the surface and the atmosphere. Their knowledge at a global scale is of interest for climatic and weather researches, and in particular in improving model forecasts. The Soil Moisture and Ocean Salinity mission has now been collecting data for 6 years. The whole data set has just been reprocessed (Version 620 for levels 1 and 2 and version 3 for level 3 CATDS). After 6 years it seems important to start using data for having a look at anomalies and see how they can relate to large scale events The purpose of this communication is to present the mission results after more than six years in orbit in a climatic trend perspective, as through such a period anomalies can be detected. Thereby we benefit from consistent datasets provided through the latest reprocessing using most recent algorithm enhancements. Using the above mentioned products it is possible to follow large events such as the evolution of the droughts in North America, or water fraction evolution over the Amazonian basin. In this occasion we will focus on the analysis of SMOS and ancillary products anomalies to reveal two climatic trends, the temporal evolution of water storage over the Indian continent in relation to rainfall anomalies, and the global impact of El Nino types of events on the general water storage distribution. This presentation shows in detail the use of long term data sets of L-band microwave radiometry in two specific cases, namely droughts and water budget over a large basin. Several other analyses are under way currently. Obviously, vegetation water content, but also dielectric constant, are carrying a wealth

  7. SMOS data and extreme events

    Science.gov (United States)

    Kerr, Yann; Wigneron, Jean-Pierre; Ferrazzoli, Paolo; Mahmoodi, Ali; Al-Yaari, Amen; Parrens, Marie; Bitar, Ahmad Al; Rodriguez-Fernandez, Nemesio; Bircher, Simone; Molero-rodenas, Beatriz; Drusch, Matthias; Mecklenburg, Susanne

    2017-04-01

    The SMOS (Soil Moisture and Ocean Salinity) satellite was successfully launched in November 2009. This ESA led mission for Earth Observation is dedicated to provide soil moisture over continental surface (with an accuracy goal of 0.04 m3/m3), vegetation water content over land, and ocean salinity. These geophysical features are important as they control the energy balance between the surface and the atmosphere. Their knowledge at a global scale is of interest for climatic and weather researches, and in particular in improving model forecasts. The Soil Moisture and Ocean Salinity mission has now been collecting data for over 7 years. The whole data set has been reprocessed (Version 620 for levels 1 and 2 and version 3 for level 3 CATDS) while operational near real time soil moisture data is now available and assimilation of SMOS data in NWP has proved successful. After 7 years it seems important to start using data for having a look at anomalies and see how they can relate to large scale events. We have also produced a 15 year soil moisture data set by merging SMOS and AMSR using a neural network approach. The purpose of this communication is to present the mission results after more than seven years in orbit in a climatic trend perspective, as through such a period anomalies can be detected. Thereby we benefit from consistent datasets provided through the latest reprocessing using most recent algorithm enhancements. Using the above mentioned products it is possible to follow large events such as the evolution of the droughts in North America, or water fraction evolution over the Amazonian basin. In this occasion we will focus on the analysis of SMOS and ancillary products anomalies to reveal two climatic trends, the temporal evolution of water storage over the Indian continent in relation to rainfall anomalies, and the global impact of El Nino types of events on the general water storage distribution. This presentation shows in detail the use of long term data sets

  8. Extreme winds in the Western North Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Ott, S.

    2006-11-15

    A statistical model for extreme winds in the western North Pacific is developed, the region on the Planet where tropical cyclones are most common. The model is based on best track data derived mostly from satellite images of tropical cyclones. The methods used to estimate surface wind speeds from satellite images is discussed with emphasis on the empirical basis, which, unfortunately, is not very strong. This is stressed by the fact that Japanese and US agencies arrive at markedly different estimates. On the other hand, best track data records cover a long period of time and if not perfect they are at least coherent over time in their imperfections. Applying the the Holland model to the best track data, wind profiles can be assigned along the tracks. From this annual wind speed maxima at any particular point in the region can be derived. The annual maxima, in turn, are fitted to a Gumbel distribution using a generalization Abild's method that allows for data wind collected from multiple positions. The choice of this method is justified by a Monte Carlo simulation comparing it to two other methods. The principle output is a map showing fifty year winds in the region. The method is tested against observed winds from Philippine synoptic stations and fair agreement is found for observed and predicted 48 year maxima. However, the almost biasfree performance of the model could be fortuitous, since precise definitions of 'windspeed' in terms averaging time, height above ground and assumed surface roughness are not available, neither for best tracks nor for the synoptic data. The work has been carried out under Danish Research Agency grant 2104-04-0005 'Offshore wind power' and it also covers the findings and analysis carried out in connection with task 1.6 of the project 'Feasibility Assessment and Capacity Building for Wind Energy Development in Cambodia, The Philippines and Vietnam' during 2005-06 under contract 125-2004 with EU

  9. Extreme winds over Europe in the ENSEMBLES regional climate models

    Directory of Open Access Journals (Sweden)

    S. D. Outten

    2013-01-01

    Full Text Available Extreme winds cause vast amounts of damage every year and represent a major concern for numerous industries including construction, afforestation, wind energy and many others. Under a changing climate, the intensity and frequency of extreme events are expected to change, and accurate predictions of these changes will be invaluable to decision makers and society as a whole. This work examines four regional climate model downscalings over Europe from the "ENSEMBLE-based Predictions of Climate Changes and their Impacts" project (ENSEMBLES, and investigates the predicted changes in the 50 yr return wind speeds and the associated uncertainties. This is accomplished by employing the peaks-over-threshold method with the use of the Generalised Pareto Distribution. The models show that for much of Europe the 50 yr return wind is projected to change by less than 2 m s−1, while the uncertainties associated with the statistical estimates are larger than this. In keeping with previous works in this field, the largest source of uncertainty is found to be the inter-model spread, with some locations showing differences in the 50 yr return wind of over 20 m s−1 between two different downscalings.

  10. Extreme winds over Europe in the ENSEMBLES regional climate models

    Directory of Open Access Journals (Sweden)

    S. D. Outten

    2013-05-01

    Full Text Available Extreme winds cause vast amounts of damage every year and represent a major concern for numerous industries including construction, afforestation, wind energy and many others. Under a changing climate, the intensity and frequency of extreme events are expected to change, and accurate projections of these changes will be invaluable to decision makers and society as a whole. This work examines four regional climate model downscalings over Europe following the SRES A1B scenario from the "ENSEMBLE-based Predictions of Climate Changes and their Impacts" project (ENSEMBLES. It investigates the projected changes in the 50 yr return wind speeds and the associated uncertainties. This is accomplished by employing the peaks-over-threshold method with the use of the generalised Pareto distribution. The models show that, for much of Europe, the 50 yr return wind is projected to change by less than 2 m s−1, while the uncertainties associated with the statistical estimates are larger than this. In keeping with previous works in this field, the largest source of uncertainty is found to be the inter-model spread, with some locations showing differences in the 50 yr return wind of over 20 m s−1 between two different downscalings.

  11. Overview of the biology of extreme events

    Science.gov (United States)

    Gutschick, V. P.; Bassirirad, H.

    2008-12-01

    Extreme events have, variously, meteorological origins as in heat waves or precipitation extremes, or biological origins as in pest and disease eruptions (or tectonic, earth-orbital, or impact-body origins). Despite growing recognition that these events are changing in frequency and intensity, a universal model of ecological responses to these events is slow to emerge. Extreme events, negative and positive, contrast with normal events in terms of their effects on the physiology, ecology, and evolution of organisms, hence also on water, carbon, and nutrient cycles. They structure biogeographic ranges and biomes, almost surely more than mean values often used to define biogeography. They are challenging to study for obvious reasons of field-readiness but also because they are defined by sequences of driving variables such as temperature, not point events. As sequences, their statistics (return times, for example) are challenging to develop, as also from the involvement of multiple environmental variables. These statistics are not captured well by climate models. They are expected to change with climate and land-use change but our predictive capacity is currently limited. A number of tools for description and analysis of extreme events are available, if not widely applied to date. Extremes for organisms are defined by their fitness effects on those organisms, and are specific to genotypes, making them major agents of natural selection. There is evidence that effects of extreme events may be concentrated in an extended recovery phase. We review selected events covering ranges of time and magnitude, from Snowball Earth to leaf functional loss in weather events. A number of events, such as the 2003 European heat wave, evidence effects on water and carbon cycles over large regions. Rising CO2 is the recent extreme of note, for its climatic effects and consequences for growing seasons, transpiration, etc., but also directly in its action as a substrate of photosynthesis

  12. Extreme wind speeds in mixed climates revisited

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Nicholas J.; Ian Harris, R. [Anemos Associates Ltd., 14 The Chestnuts, Hemel Hempstead HP3 0DZ (United Kingdom); Whiting, Richard [Department of Aerospace, University of Bristol, Bristol BS8 1TR (United Kingdom)

    2003-02-01

    The methodology for the analysis of extreme wind speeds in mixed climates originally proposed in 1978 by Gomes and Vickery is updated to take advantage of recent improvements in methodology and available data records. The revised methodology is demonstrated for two sites in Australia: Onslow and Brisbane. This work shows that the observed curvature in the upper tail is due to incomplete convergence to the Fisher-Tippett Type 1 asymptote and is not an indicator of Type 3 behaviour as sometimes supposed. It is also shown that moving from a reference epoch of 1 year to an epoch of 50 years frees the method from most of the rate-dependent assumptions, and simplifies the problem to a single, dominant wind mechanism.

  13. Predictability of extreme events in social media

    CERN Document Server

    Miotto, José M

    2014-01-01

    It is part of our daily social-media experience that seemingly ordinary items (videos, news, publications, etc.) unexpectedly gain an enormous amount of attention. Here we investigate how unexpected these events are. We propose a method that, given some information on the items, quantifies the predictability of events, i.e., the potential of identifying in advance the most successful items defined as the upper bound for the quality of any prediction based on the same information. Applying this method to different data, ranging from views in YouTube videos to posts in Usenet discussion groups, we invariantly find that the predictability increases for the most extreme events. This indicates that, despite the inherently stochastic collective dynamics of users, efficient prediction is possible for the most extreme events.

  14. A Fourier analysis of extreme events

    DEFF Research Database (Denmark)

    Mikosch, Thomas Valentin; Zhao, Yuwei

    2014-01-01

    The extremogram is an asymptotic correlogram for extreme events constructed from a regularly varying stationary sequence. In this paper, we define a frequency domain analog of the correlogram: a periodogram generated from a suitable sequence of indicator functions of rare events. We derive basic ...... properties of the periodogram such as the asymptotic independence at the Fourier frequencies and use this property to show that weighted versions of the periodogram are consistent estimators of a spectral density derived from the extremogram....

  15. On Extreme Events in Banking and Finance

    NARCIS (Netherlands)

    M.R.C. Oordt (Maarten)

    2013-01-01

    textabstractUncertainty and new developments spread at an astonishing speed across the globe in financial markets. The recent extreme events in banking and finance triggered many new questions among academics, policy makers and the general public. Is global diversification at financial institutions

  16. Performance of wind turbines during icing events

    Energy Technology Data Exchange (ETDEWEB)

    Gillenwater, D. [Ecole de Technologie Superieure, Montreal, PQ (Canada). Dept. of Mechanical Engineering; Masson, C. [Canada Research Chair on Nordic Environment Aerodynamics of Wind Turbines, Ottawa, ON (Canada)]|[Ecole de Technologie Superieure, Montreal, PQ (Canada); Perron, J. [Quebec Univ., Chicoutimi, PQ (Canada). Anti-Icing Materials International Laboratory

    2007-07-01

    Wind turbines are increasingly being installed in cold climate sites where the cold climate can have a great impact on the operation and performance of the wind turbine. Issues of concern include turbine stoppage, mechanical failure, instrument failure, aerodynamic disruption, difficult access and safety concerns. The scope of this study was to calculate energy losses caused by ice accretions on a wind turbine and to analyze different icing prediction and icing detection tools. The purpose was to improve knowledge on wind turbine operation in cold climate and assist pertinent parties in wind farm siting and wind turbine operation. Another objective was to precisely calculate the financial losses caused by icing of wind turbines. The study was based on stall regulated wind turbines that have a nominal power of 750 kW. Data from Environment Canada included various meteorological measurements as well as visual observations. The reference mast's measurement data included various meteorological measurements as well as some wind turbine operational parameters. The wind turbine's operational data included all measurements saved by the wind turbine's acquisition system. The study revealed that stall controlled turbines are seriously affected by icing and that all measuring instruments should be selected with care. It was recommended that precise evaluation of losses due to icing should be made in order to avoid overestimating losses. The probability and severity of icing events on Quebec territory will be determined. figs.

  17. Biological Extreme Events - Past, Present, and Future

    Science.gov (United States)

    Gutschick, V. P.

    2010-12-01

    Biological extreme events span wide ranges temporally and spatially and in type - population dieoffs, extinctions, ecological reorganizations, changes in biogeochemical fluxes, and more. Driving variables consist in meteorology, tectonics, orbital changes, anthropogenic changes (land-use change, species introductions, reactive N injection into the biosphere), and evolution (esp. of diseases). However, the mapping of extremes in the drivers onto biological extremes as organismal responses is complex, as laid out originally in the theoretical framework of Gutschick and BassiriRad (New Phytologist [2003] 100:21-42). Responses are nonlinear and dependent on (mostly unknown and) complex temporal sequences - often of multiple environmental variables. The responses are species- and genotype specific. I review extreme events over from past to present over wide temporal scales, while noting that they are not wholly informative of responses to the current and near-future drivers for at least two reasons: 1) the current combination of numerous environmental extremes - changes in CO2, temperature, precipitation, reactive N, land fragmentation, O3, etc. -is unprecedented in scope, and 2) adaptive genetic variation for organismal responses is constrained by poorly-characterized genetic structures (in organisms and populations) and by loss of genetic variation by genetic drift over long periods. We may expect radical reorganizations of ecosystem and biogeochemical functions. These changes include many ecosystem services in flood control, crop pollination and insect/disease control, C-water-mineral cycling, and more, as well as direct effects on human health. Predictions of such changes will necessarily be very weak in the critical next few decades, given the great deal of observation, experimentation, and theory construction that will be necessary, on both organisms and drivers. To make the research efforts most effective will require extensive, insightful planning, beginning

  18. Climate change and extreme events in weather

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    monsoon and b) tropical cyclones. Basically the climate of India is domi- nated by the south west monsoon season which accounts for about 75% of the annual rainfall. The extreme weather events occur over India are: Floods, Droughts, Tropical Cyclones..., Heat Waves and Cold Waves, Storms Surges, Hail Storms, Thunderstorms, Dust Storms. Floods, droughts and tropical cyclones have specific significance a far as India is concerned. Floods and droughts are the two sides of the weather phenomena...

  19. Are extreme events (statistically) special? (Invited)

    Science.gov (United States)

    Main, I. G.; Naylor, M.; Greenhough, J.; Touati, S.; Bell, A. F.; McCloskey, J.

    2009-12-01

    We address the generic problem of testing for scale-invariance in extreme events, i.e. are the biggest events in a population simply a scaled model of those of smaller size, or are they in some way different? Are large earthquakes for example ‘characteristic’, do they ‘know’ how big they will be before the event nucleates, or is the size of the event determined only in the avalanche-like process of rupture? In either case what are the implications for estimates of time-dependent seismic hazard? One way of testing for departures from scale invariance is to examine the frequency-size statistics, commonly used as a bench mark in a number of applications in Earth and Environmental sciences. Using frequency data however introduces a number of problems in data analysis. The inevitably small number of data points for extreme events and more generally the non-Gaussian statistical properties strongly affect the validity of prior assumptions about the nature of uncertainties in the data. The simple use of traditional least squares (still common in the literature) introduces an inherent bias to the best fit result. We show first that the sampled frequency in finite real and synthetic data sets (the latter based on the Epidemic-Type Aftershock Sequence model) converge to a central limit only very slowly due to temporal correlations in the data. A specific correction for temporal correlations enables an estimate of convergence properties to be mapped non-linearly on to a Gaussian one. Uncertainties closely follow a Poisson distribution of errors across the whole range of seismic moment for typical catalogue sizes. In this sense the confidence limits are scale-invariant. A systematic sample bias effect due to counting whole numbers in a finite catalogue makes a ‘characteristic’-looking type extreme event distribution a likely outcome of an underlying scale-invariant probability distribution. This highlights the tendency of ‘eyeball’ fits to unconsciously (but

  20. Detecting Extreme Events in Gridded Climate Data

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandra, Bharathkumar [North Carolina State University (NCSU), Raleigh; Gadiraju, Krishna [North Carolina State University (NCSU), Raleigh; Vatsavai, Raju [North Carolina State University (NCSU), Raleigh; Kaiser, Dale Patrick [ORNL; Karnowski, Thomas Paul [ORNL

    2016-01-01

    Detecting and tracking extreme events in gridded climatological data is a challenging problem on several fronts: algorithms, scalability, and I/O. Successful detection of these events will give climate scientists an alternate view of the behavior of different climatological variables, leading to enhanced scientific understanding of the impacts of events such as heat and cold waves, and on a larger scale, the El Nin o Southern Oscillation. Recent advances in computing power and research in data sciences enabled us to look at this problem with a different perspective from what was previously possible. In this paper we present our computationally efficient algorithms for anomalous cluster detection on climate change big data. We provide results on detection and tracking of surface temperature and geopotential height anomalies, a trend analysis, and a study of relationships between the variables. We also identify the limitations of our approaches, future directions for research and alternate approaches.

  1. Extreme Events and Energy Providers: Science and Innovation

    Science.gov (United States)

    Yiou, P.; Vautard, R.

    2012-04-01

    Most socio-economic regulations related to the resilience to climate extremes, from infrastructure or network design to insurance premiums, are based on a present-day climate with an assumption of stationarity. Climate extremes (heat waves, cold spells, droughts, storms and wind stilling) affect in particular energy production, supply, demand and security in several ways. While national, European or international projects have generated vast amounts of climate projections for the 21st century, their practical use in long-term planning remains limited. Estimating probabilistic diagnostics of energy user relevant variables from those multi-model projections will help the energy sector to elaborate medium to long-term plans, and will allow the assessment of climate risks associated to those plans. The project "Extreme Events for Energy Providers" (E3P) aims at filling a gap between climate science and its practical use in the energy sector and creating in turn favourable conditions for new business opportunities. The value chain ranges from addressing research questions directly related to energy-significant climate extremes to providing innovative tools of information and decision making (including methodologies, best practices and software) and climate science training for the energy sector, with a focus on extreme events. Those tools will integrate the scientific knowledge that is developed by scientific communities, and translate it into a usable probabilistic framework. The project will deliver projection tools assessing the probabilities of future energy-relevant climate extremes at a range of spatial scales varying from pan-European to local scales. The E3P project is funded by the Knowledge and Innovation Community (KIC Climate). We will present the mechanisms of interactions between academic partners, SMEs and industrial partners for this project. Those mechanisms are elementary bricks of a climate service.

  2. Enigmatic Solar Wind Disappearance Events – Do We Understand Them?

    Indian Academy of Sciences (India)

    Janardhan P.

    2006-06-01

    At the Sun–Earth distance of one astronomical unit (1 AU), the solar wind is known to be strongly supersonic and super Alfvénic with Mach and Alfvén numbers being on average 12 and 9 respectively. Also, solar wind densities (average ∼ 10 cm-3) and velocities (average ∼ 450 km s-1) at 1 AU, are known to be inversely correlated with low velocities having higher than average densities and vice versa. However, on May 11 and 12 1999 the Earth was engulfed by an unusually low density (< 0.1 cm-3) and low velocity (< 350 km s-1) solar wind with an Alfvén Mach number significantly less than 1. This was a unique low-velocity, low-density, sub-Alfvénic solar wind flow which spacecraft observations have shown lasted more than 24 hours. One consequence of this extremely tenuous solar wind was a spectacular expansion of the Earth’s magnetosphere and bow shock. The expanding bow shock was observed by several spacecraft and reached record upstream distances of nearly 60 Earth radii, the lunar orbit. The event was so dramatic that it has come to be known as the solar wind disappearance event. Though extensive studies of this event were made by many authors in the past, it has only been recently shown that the unusual solar wind flows characterizing this event originated from a small coronal hole in the vicinity of a large active region on the Sun. These recent results have put to rest speculation that such events are associated with global phenomenon like the periodic solar polar field reversal that occurs at the maximum of each solar cycle. In this paper we revisit the 11 May 1999 event, look at other disappearance events that have ocurred in the past, examine the reasons why speculations about the association of such events with global phenomena like solar polar field reversals were made and also examine the role of transient coronal holes as a possible solar source for such events.

  3. The relationship between extreme weather events and crop losses in central Taiwan

    Science.gov (United States)

    Lai, Li-Wei

    2017-09-01

    The frequency of extreme weather events, which cause severe crop losses, is increasing. This study investigates the relationship between crop losses and extreme weather events in central Taiwan from 2003 to 2015 and determines the main factors influencing crop losses. Data regarding the crop loss area and meteorological information were obtained from government agencies. The crops were categorised into the following five groups: `grains', `vegetables', `fruits', `flowers' and `other crops'. The extreme weather events and their synoptic weather patterns were categorised into six and five groups, respectively. The data were analysed using the z score, correlation coefficient and stepwise regression model. The results show that typhoons had the highest frequency of all extreme weather events (58.3%). The largest crop loss area (4.09%) was caused by two typhoons and foehn wind in succession. Extreme wind speed coupled with heavy rainfall is an important factor affecting the losses in the grain and vegetable groups. Extreme wind speed is a common variable that affects the loss of `grains', `vegetables', `fruits' and `flowers'. Consecutive extreme weather events caused greater crop losses than individual events. Crops with long production times suffered greater losses than those with short production times. This suggests that crops with physical structures that can be easily damaged and long production times would benefit from protected cultivation to maintain food security.

  4. The selective dynamical downscaling method for extreme-wind atlases

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Badger, Jake; Hahmann, Andrea N.

    2012-01-01

    and (iii) post-processing. The post-processing generalizes the winds from the mesoscale modelling to standard conditions, i.e. 10-m height over a homogeneous surface with roughness length of 5 cm. The generalized winds are then used to calculate the 50-year wind using the annual maximum method for each......A selective dynamical downscaling method is developed to obtain extreme-wind atlases for large areas. The method is general, efficient and flexible. The method consists of three steps: (i) identifying storm episodes for a particular area, (ii) downscaling of the storms using mesoscale modelling...... mesoscale grid point. The generalization of the mesoscale winds through the post-processing provides a framework for data validation and for applying further the mesoscale extreme winds at specific places using microscale modelling. The results are compared with measurements from two areas with different...

  5. Extreme winds over Denmark from the NCEP/NCAR reanalysis

    DEFF Research Database (Denmark)

    Frank, H.P.

    2001-01-01

    years at the North Sea west of Denmark is 27 ms-1. It is approximately 11 % less than estimates from observations. However, values at grid points over land in Denmark cannot be compared with observations because theroughness length of these land surfaces is far to big in the model. A transformation...... to a common roughness length of 5 cm using the geostrophic drag law yields too high values. At points in northern Germany, where the surface roughness of the model isless, the transformed 50-years wind speed is 22-23 ms-1, which agrees well with estimates obtained from measurements. The analyses of the wind...... pressure indicate a weak decrease from west to east, whereas the geostrophic wind data at constant pressure levels show almost constant extreme winds across Denmark. All upper-air and and geostrophic wind data show higher extreme winds in northernGermany than in Denmark. Further investigations...

  6. Calculation of extreme wind atlases using mesoscale modeling. Final report

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Badger, Jake

    This is the final report of the project PSO-10240 "Calculation of extreme wind atlases using mesoscale modeling". The overall objective is to improve the estimation of extreme winds by developing and applying new methodologies to confront the many weaknesses in the current methodologies...... as explained in Section 2. The focus has been put on developing a number of new methodologies through numerical modeling and statistical modeling....

  7. Extreme load predictions for floating offshore wind turbines

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2009-01-01

    An effective stochastic procedure for extreme value predictions related to wave and wind induced stochastic loads is applied to a tension-leg concept for floating offshore wind turbines. The method is based on the First Order Reliability Method (FORM) and as the procedure makes use of only short...

  8. Directional analysis of extreme winds under mixed climate conditions

    CSIR Research Space (South Africa)

    Kruger, A

    2013-07-01

    Full Text Available -1 European-African Conference on Wind Engineering 2013, Robinson College, Cambridge, July 2013 Directional Analysis of Extreme Winds under Mixed Climate Conditions *Andries Kruger1, Adam Goliger2 and Johan Retief3 1Climate Service, South African...

  9. Extreme wind atlases of South Africa from global reanalysis data

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Kruger, Andries; Badger, Jake

    2013-01-01

    Extreme wind atlases of South Africa were developed using three reanalysis data and recently developed approaches. The results are compared with the maps produced using standard wind measurements over the region. It was found that different reanalyses with the same approach provide similar spatia...

  10. Extreme wind conditions for a Danish offshore site

    DEFF Research Database (Denmark)

    Hansen, Kurt S.

    2000-01-01

    This paper presents an analysis of extreme wind speed gust values measured at a shallow water offshore site and at a coastal onshore site in Denmark. An estimate of 50-year extreme values has been evaluated using a new statistical method. In addition a mean gust shape is determined, based on a la...

  11. Gravo-Aeroelastic Scaling for Extreme-Scale Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fingersh, Lee J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Loth, Eric [University of Virginia; Kaminski, Meghan [University of Virginia; Qin, Chao [University of Virginia; Griffith, D. Todd [Sandia National Laboratories

    2017-06-09

    A scaling methodology is described in the present paper for extreme-scale wind turbines (rated at 10 MW or more) that allow their sub-scale turbines to capture their key blade dynamics and aeroelastic deflections. For extreme-scale turbines, such deflections and dynamics can be substantial and are primarily driven by centrifugal, thrust and gravity forces as well as the net torque. Each of these are in turn a function of various wind conditions, including turbulence levels that cause shear, veer, and gust loads. The 13.2 MW rated SNL100-03 rotor design, having a blade length of 100-meters, is herein scaled to the CART3 wind turbine at NREL using 25% geometric scaling and blade mass and wind speed scaled by gravo-aeroelastic constraints. In order to mimic the ultralight structure on the advanced concept extreme-scale design the scaling results indicate that the gravo-aeroelastically scaled blades for the CART3 are be three times lighter and 25% longer than the current CART3 blades. A benefit of this scaling approach is that the scaled wind speeds needed for testing are reduced (in this case by a factor of two), allowing testing under extreme gust conditions to be much more easily achieved. Most importantly, this scaling approach can investigate extreme-scale concepts including dynamic behaviors and aeroelastic deflections (including flutter) at an extremely small fraction of the full-scale cost.

  12. Uncertainty analysis in statistical modeling of extreme hydrological events

    NARCIS (Netherlands)

    Xu, Yue-Ping; Booij, Martijn J.; Tong, Yang-Bin

    2010-01-01

    With the increase of both magnitude and frequency of hydrological extreme events such as drought and flooding, the significance of adequately modeling hydrological extreme events is fully recognized. Estimation of extreme rainfall/flood for various return periods is of prime importance for hydrologi

  13. Wind and waves in extreme hurricanes

    NARCIS (Netherlands)

    Holthuijsen, L.H.; Powell, M.D.; Pietrzak, J.D.

    2012-01-01

    Waves breaking at the ocean surface are important to the dynamical, chemical and biological processes at the air-sea interface. The traditional view is that the white capping and aero-dynamical surface roughness increase with wind speed up to a limiting value. This view is fundamental to hurricane

  14. Extreme wind mapping over the North Sea

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo

    Atlases of the 50-year wind over the North Sea have been created for two heights, 10 m and 100 m. The atlases have also been made for a range of temporal resolutions, from the original time resolution of the NCEP/NCAR reanalysis of 6 hours to 1 hour and further to 10 min. Two methods were used fo...

  15. Wind and waves in extreme hurricanes

    NARCIS (Netherlands)

    Holthuijsen, L.H.; Powell, M.D.; Pietrzak, J.D.

    2012-01-01

    Waves breaking at the ocean surface are important to the dynamical, chemical and biological processes at the air-sea interface. The traditional view is that the white capping and aero-dynamical surface roughness increase with wind speed up to a limiting value. This view is fundamental to hurricane f

  16. Wind and waves in extreme hurricanes

    NARCIS (Netherlands)

    Holthuijsen, L.H.; Powell, M.D.; Pietrzak, J.D.

    2012-01-01

    Waves breaking at the ocean surface are important to the dynamical, chemical and biological processes at the air-sea interface. The traditional view is that the white capping and aero-dynamical surface roughness increase with wind speed up to a limiting value. This view is fundamental to hurricane f

  17. Elements of extreme wind modeling for hurricanes

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling; Ejsing Jørgensen, Hans; Kelly, Mark C.;

    The report summarizes characteristics of the winds associated with Tropical Cyclones (Hurricanes, Typhoons). It has been conducted by the authors across several years, from 2012-2015, to identify the processes and aspects that one should consider when building at useful computer support system...

  18. A probabilistic analysis of wind gusts using extreme value statistics

    Energy Technology Data Exchange (ETDEWEB)

    Friederichs, Petra; Bentzien, Sabrina; Lenz, Anne; Krampitz, Rebekka [Meteorological Inst., Univ. of Bonn (Germany); Goeber, Martin [Deutscher Wetterdienst, Offenbach (Germany)

    2009-12-15

    The spatial variability of wind gusts is probably as large as that of precipitation, but the observational weather station network is much less dense. The lack of an area-wide observational analysis hampers the forecast verification of wind gust warnings. This article develops and compares several approaches to derive a probabilistic analysis of wind gusts for Germany. Such an analysis provides a probability that a wind gust exceeds a certain warning level. To that end we have 5 years of observations of hourly wind maxima at about 140 weather stations of the German weather service at our disposal. The approaches are based on linear statistical modeling using generalized linear models, extreme value theory and quantile regression. Warning level exceedance probabilities are estimated in response to predictor variables such as the observed mean wind or the operational analysis of the wind velocity at a height of 10 m above ground provided by the European Centre for Medium Range Weather Forecasts (ECMWF). The study shows that approaches that apply to the differences between the recorded wind gust and the mean wind perform better in terms of the Brier skill score (which measures the quality of a probability forecast) than those using the gust factor or the wind gusts only. The study points to the benefit from using extreme value theory as the most appropriate and theoretically consistent statistical model. The most informative predictors are the observed mean wind, but also the observed gust velocities recorded at the neighboring stations. Out of the predictors used from the ECMWF analysis, the wind velocity at 10 m above ground is the most informative predictor, whereas the wind shear and the vertical velocity provide no additional skill. For illustration the results for January 2007 and during the winter storm Kyrill are shown. (orig.)

  19. Mapping of extreme wind speed for landscape modelling of the Bohemian Forest, Czech Republic

    Directory of Open Access Journals (Sweden)

    L. Pop

    2014-01-01

    Full Text Available Extreme wind events are among the most damaging weather-related hazards in the Czech Republic, forestry is heavily affected. In order to successfully run a landscape model dealing with such effects, spatial distribution of extreme wind speed statistics is needed. The presented method suggests using sector-wise wind field calculations together with extreme value statistics fitted at a reference station. A special algorithm is proposed to provide the data in the form expected by the landscape model, i.e. raster data of annual wind speed maxima. The method is demonstrated on the area of Bohemian Forest that represents one of largest and most compact forested mountains in Central Europe. The reference meteorological station Churáňov is located within the selected domain. Numerical calculations were based on linear model of WAsP Engineering methodology. Observations were cleaned of inhomogeneity and classified into convective and non-convective cases using index CAPE. Due to disjunct sampling of synoptic data, appropriate corrections were applied to the observed extremes. Finally they were fitted with Gumbel distribution. The output of numerical simulation is presented for the windiest direction sector. Another map shows probability that annual extreme exceeds required threshold. The method offers a tool for generation of spatially variable annual maxima of wind speed. It assumes a small limited model domain containing a reliable wind measurement. We believe that this is typical setup for applications similar to one presented in the paper.

  20. Pulsar Observations of Extreme Scattering Events

    CERN Document Server

    Coles, W A; Shannon, R M; Hobbs, G; Manchester, R N; You, X P; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Levin, Y; Oslowski, S; Ravi, V; Reardon, D; Toomey, L; van Straten, W; Wang, J B; Wen, L; Zhu, X J

    2015-01-01

    Extreme scattering events (ESEs) in the interstellar medium (ISM) were first observed in regular flux measurements of compact extragalactic sources. They are characterized by a flux variation over a period of weeks, suggesting the passage of a "diverging plasma lens" across the line of sight. Modeling the refraction of such a lens indicates that the structure size must be of order AU and the electron density of order 10s of cm^{-3}. Similar structures have been observed in measurements of pulsar intensity scintillation and group delay. Here we report observations of two ESEs showing increases in both intensity scintillation and dispersion made with the Parkes Pulsar Timing Array (PPTA). These allow us to make more complete models of the ESE, including an estimate of the "outer-scale" of the turbulence in the plasma lens. These observations show clearly that the ESE structure is fully turbulent on an AU scale. They provide some support for the idea that the structures are extended along the line of sight, such...

  1. Dynamic behavior of parked wind turbine at extreme wind speed

    DEFF Research Database (Denmark)

    Totsuka, Yoshitaka; Imamura, Hiroshi; Yde, Anders

    2016-01-01

    of standstill and idling is analyzed by time domain simulations using two different coupled aero-hydro-servo-elastic codes. Trend in modern wind turbines is development of bigger, lighter and more flexible rotors where vibration issues may cause aero-elastic instabilities which have a serious impact...

  2. Extreme sport participation as serious leisure : athletes' overall satisfaction with the event extreme sports week

    OpenAIRE

    Rumba, Maira

    2012-01-01

    This study is concentrating on the extreme sport athletes who have participated in the spectacular event Extreme Sport Week (Mykletun, 2009; Ekstremsportveko, 2012) in Voss, Norway 2011. In particular, it addresses the extreme sport athletes’ involvement with the sport, their career development, and their experiences during the event. The aim is to investigate extreme sport athletes satisfaction with the event based on Pine and Gilmore’s (1999) experience four-realm model and Getz’s and Ander...

  3. Extreme wind speed regime and weather patterns in the Barents Sea

    Science.gov (United States)

    Surkova, Galina; Krylov, Aleksey

    2016-04-01

    The synoptic patterns of extreme wind events over the Barents Sea during 1981-2010 are studied on the base of ERA-Interim reanalysis data (6-hours, 0.75x0.75 degrees of latitude and longitude). Frequency of events was defined after analysis of 50, 95, 99, 99.9 percentiles (V(0.50), V(0.95), V(0.99), V(0.999)) of wind speed probability distribution function over the central part of the sea where wind speed is the highest. First part of the study was devoted to the features of seasonal and interannual variability of the surface (10 m) wind speed. Results showed very slow and statistically almost insignificant decreasing of wind speed for all percentile speed values during 1981-2010. The highest standard deviation for annual percentile speed values were derived for the most seldom events, V(0.999). Mean values for the central part of the Barents Sea are V(0.95)=14.3 m/s, V(0.99)=17.2 m/s, V(0.999)=20.3 m/s. At the next stage the calendar of extreme events with wind speed more the threshold value V(0.99) was extracted. Sea level pressure (SLP) fields for these extreme events were classified by cluster analysis. Formal detection of typical SLP fields accompanying by storm winds allows to evaluate their frequency in different time periods. It is more reliable then use of wind speed data because the accuracy of SLP simulation in re-analysis and climate models is higher than that for the wind speed. The progress of the work is seen as further development of climate projection of extreme events on the base of CMIP5 scenarios through the projection of synoptic situations that create these events as it was shown in our previous works. Developed methodology allows to assess the frequency of synoptic events accompanying by hazards, not only in the past, but in the future. The study was supported by the Russian Science Foundation (project no. 14-37-00038).

  4. Spatiotemporal Chaos Induces Extreme Events in an Extended Microcavity Laser

    Science.gov (United States)

    Selmi, F.; Coulibaly, S.; Loghmari, Z.; Sagnes, I.; Beaudoin, G.; Clerc, M. G.; Barbay, S.

    2016-01-01

    Extreme events such as rogue waves in optics and fluids are often associated with the merging dynamics of coherent structures. We present experimental and numerical results on the physics of extreme event appearance in a spatially extended semiconductor microcavity laser with an intracavity saturable absorber. This system can display deterministic irregular dynamics only, thanks to spatial coupling through diffraction of light. We have identified parameter regions where extreme events are encountered and established the origin of this dynamics in the emergence of deterministic spatiotemporal chaos, through the correspondence between the proportion of extreme events and the dimension of the strange attractor.

  5. Potential of Offshore Wind Energy and Extreme Wind Speed Forecasting on the West Coast of Taiwan

    Directory of Open Access Journals (Sweden)

    Pei-Chi Chang

    2015-02-01

    Full Text Available It is of great importance and urgency for Taiwan to develop offshore wind power. However, relevant data on offshore wind energy resources are limited. This study imported wind speeds measured by a tidal station and a buoy into the software WAsP to estimate the high-altitude wind speeds in the two areas. A light detection and ranging (Lidar system was set up near the tidal station and buoy. High-altitude wind speeds measured by the Lidar system were compared with the WAsP-estimated values, and it was discovered that the two data sets were consistent. Then, long-term wind speed data observed by buoys and tidal stations at various locations were imported into WAsP to forecast wind speeds at heights of 55–200 m on the west coast of Taiwan. The software WAsP Engineering was used to analyze the extreme wind speeds in the same areas. The results show that wind speeds at 100 m are approximately 9.32–11.24 m/s, which means that the coastal areas of west Taiwan are rich in wind energy resources. When a long-term 10-min average wind speed is used, the extreme wind speed on the west coast is estimated to be between 36.4 and 55.3 m/s.

  6. Probabilistic forecasting of wind power generation using extreme learning machine

    DEFF Research Database (Denmark)

    Wan, Can; Xu, Zhao; Pinson, Pierre

    2014-01-01

    an extreme learning machine (ELM)-based probabilistic forecasting method for wind power generation. To account for the uncertainties in the forecasting results, several bootstrapmethods have been compared for modeling the regression uncertainty, based on which the pairs bootstrap method is identified...... demonstrate that the proposed method is effective for probabilistic forecasting of wind power generation with a high potential for practical applications in power systems....

  7. A Fourier analysis of extremal events

    DEFF Research Database (Denmark)

    Zhao, Yuwei

    is the extremal periodogram. The extremal periodogram shares numerous asymptotic properties with the periodogram of a linear process in classical time series analysis: the asymptotic distribution of the periodogram ordinates at the Fourier frequencies have a similar form and smoothed versions of the periodogram...

  8. Modelling extreme climatic events in Guadalquivir Estuary ( Spain)

    Science.gov (United States)

    Delgado, Juan; Moreno-Navas, Juan; Pulido, Antoine; García-Lafuente, Juan; Calero Quesada, Maria C.; García, Rodrigo

    2017-04-01

    Extreme climatic events, such as heat waves and severe storms are predicted to increase in frequency and magnitude as a consequence of global warming but their socio-ecological effects are poorly understood, particularly in estuarine ecosystems. The Guadalquivir Estuary has been anthropologically modified several times, the original salt marshes have been transformed to grow rice and cotton and approximately one-fourth of the total surface of the estuary is now part of two protected areas, one of them is a UNESCO, MAB Biosphere Reserve. The climatic events are most likely to affect Europe in forthcoming decades and a further understanding how these climatic disturbances drive abrupt changes in the Guadalquivir estuary is needed. A barotropic model has been developed to study how severe storm events affects the estuary by conducting paired control and climate-events simulations. The changes in the local wind and atmospheric pressure conditions in the estuary have been studied in detail and several scenarios are obtained by running the model under control and real storm conditions. The model output has been validated with in situ water elevation and good agreement between modelled and real measurements have been obtained. Our preliminary results show that the model demonstrated the capability describe of the tide-surge levels in the estuary, opening the possibility to study the interaction between climatic events and the port operations and food production activities. The barotropic hydrodynamic model provide spatially explicit information on the key variables governing the tide dynamics of estuarine areas under severe climatic scenarios . The numerical model will be a powerful tool in future climate change mitigation and adaptation programs in a complex socio-ecological system.

  9. Extreme seawater compositions during Oceanic Anoxic Events

    Science.gov (United States)

    Cohen, A.; Bottini, C.; Dickson, A. J.; Izon, G. J.; Coe, A. L.

    2012-12-01

    For almost the entire duration of the Phanerozoic, the oceans have remained well oxygenated and highly conducive to the development of animal and plant life. However, there have been relatively brief intervals, known as Oceanic Anoxic Events (OAEs), when a very significant expansion of low-oxygen regions occurred throughout the world's oceans. OAEs were characterised by highly atypical seawater chemistry, as reflected in the chemical and isotopic compositions of contemporaneous sediments and fossil remains. These oxygen-deficient intervals also exerted profound pressures on many marine species as indicated by major changes in species populations and distributions. High-resolution chemical and isotopic data recovered from marine sediments and sedimentary rocks, together with biotic information, provide us with the best means of understanding the significance of OAEs and their place in the evolution of the Earth system. We present new Mo- and Os-isotope and geochemical data from OAE 1a (early Cretaceous), which help define how this event evolved in relation to the other major environmental parameters - including global warming, continental weathering and Ontong-Java volcanism - of that time. We compare these new observations with published results from other Mesozoic OAEs and the PETM. Recently published Os-isotope data from DSDP site 463 (mid-Pacific) [1] and northern Italy [1, 2] show that the Os budget of the oceans was dominated for a period of c. 880 ka during OAE 1a by the hydrothermal flux of unradiogenic Os from the Ontong-Java province. The observation of identical Os-isotope compositions at these two very distant sites indicates that seawater was well mixed at that time. Over the same interval, the seawater Mo-isotope composition, based upon well-preserved samples from Italy, was persistently atypical, with δ98/95Mo ranging between -0.7 and +0.7 permil [3]. All the samples analysed here accumulated under highly anoxic conditions and contain highly abundant

  10. Wind Simulation for Extreme and Fatigue Loads

    DEFF Research Database (Denmark)

    Nielsen, Morten; Larsen, Gunner Chr.; Mann, Jakob

    2003-01-01

    by many orders of magnitude, mainly because the measured pdf is non-Gaussian. Methods for simulation of turbulent signals have been developed and theircomputational efficiency are considered. The methods are applicable for multiple processes with individual spectra and probability distributions. Non......-Gaussian processes are simulated by the correlation-distortion method. Non-stationary processes areobtained by Bezier interpolation between a set of stationary simulations with identical random seeds. Simulation of systems with some signals available is enabled by conditional statistics. A versatile method...... is formulated as the variational problem of finding the most probable adjustment of a standard simulation of a stationary Gaussian process subject to relevant event conditions, which are formulated as linear combination of pointsin the realization. The method is generalized for multiple correlated series...

  11. Coping with extreme climate events: Institutional flocking

    NARCIS (Netherlands)

    Koppen, van C.S.A.; Mol, A.P.J.; Tatenhove, van J.P.M.

    2010-01-01

    The article explores the governance structures that would be needed to cope with extreme and unpredictable climate change. The impacts on the Netherlands of a Gulf Stream collapse in the Northern Atlantic are taken as a case. This hypothetical situation of serious risks and high uncertainties requir

  12. Coping with extreme climate events: Institutional flocking

    NARCIS (Netherlands)

    Koppen, van C.S.A.; Mol, A.P.J.; Tatenhove, van J.P.M.

    2010-01-01

    The article explores the governance structures that would be needed to cope with extreme and unpredictable climate change. The impacts on the Netherlands of a Gulf Stream collapse in the Northern Atlantic are taken as a case. This hypothetical situation of serious risks and high uncertainties

  13. Reliability of offshore wind power production under extreme wind conditions. Deliverable D 9.5. Work Package 9: Electrical grid

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Zeni, Lorenzo

    Reliability of offshore wind production under extreme wind conditions was investigated in this report. The wind power variability from existing and future large offshore wind farms in Western Denmark were simulated using the Correlated Wind model developed at Risø. The analysis was done for five ...... ramp rates and reserves requirements....

  14. A Floating Offshore Wind Turbine in Extreme Wave Conditions

    DEFF Research Database (Denmark)

    Wehmeyer, Christof

    probability is equal to an event occurring once in a lifetime of an offshore wind turbine structure, i.e. a 50 year return period event. It can be shown that the applied sea state is representative for harsh European offshore wind sites as well, providing hence a more general applicability. The floating...... a satisfying match, though the hybrid model over predicts the remaining 5% to 10% maximum loads by 32%, 34% and 29% for a linear irregular sea state, a nonlinear irregular sea state and a nonlinear irregular sea state with an embedded Stream-function wave, respectively. The limited number of sea states during...... measure to assess critical ULS events for FOWT – though still towards the background of necessary further developments. The approach is similar to current state of the art ULS analysis of bottom fixed offshore wind turbines. So far it has however not been applied in floating structure designs...

  15. Extreme events in multilayer, interdependent complex networks and control

    Science.gov (United States)

    Chen, Yu-Zhong; Huang, Zi-Gang; Zhang, Hai-Feng; Eisenberg, Daniel; Seager, Thomas P.; Lai, Ying-Cheng

    2015-11-01

    We investigate the emergence of extreme events in interdependent networks. We introduce an inter-layer traffic resource competing mechanism to account for the limited capacity associated with distinct network layers. A striking finding is that, when the number of network layers and/or the overlap among the layers are increased, extreme events can emerge in a cascading manner on a global scale. Asymptotically, there are two stable absorption states: a state free of extreme events and a state of full of extreme events, and the transition between them is abrupt. Our results indicate that internal interactions in the multiplex system can yield qualitatively distinct phenomena associated with extreme events that do not occur for independent network layers. An implication is that, e.g., public resource competitions among different service providers can lead to a higher resource requirement than naively expected. We derive an analytical theory to understand the emergence of global-scale extreme events based on the concept of effective betweenness. We also articulate a cost-effective control scheme through increasing the capacity of very few hubs to suppress the cascading process of extreme events so as to protect the entire multi-layer infrastructure against global-scale breakdown.

  16. Review of Wind Energy Forecasting Methods for Modeling Ramping Events

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

    2011-03-28

    Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

  17. Extreme events in excitable systems and mechanisms of their generation.

    Science.gov (United States)

    Ansmann, Gerrit; Karnatak, Rajat; Lehnertz, Klaus; Feudel, Ulrike

    2013-11-01

    We study deterministic systems, composed of excitable units of FitzHugh-Nagumo type, that are capable of self-generating and self-terminating strong deviations from their regular dynamics without the influence of noise or parameter change. These deviations are rare, short-lasting, and recurrent and can therefore be regarded as extreme events. Employing a range of methods we analyze dynamical properties of the systems, identifying features in the systems' dynamics that may qualify as precursors to extreme events. We investigate these features and elucidate mechanisms that may be responsible for the generation of the extreme events.

  18. Cyclones and extreme windstorm events over Europe under climate change: Global and regional climate model diagnostics

    Science.gov (United States)

    Leckebusch, G. C.; Ulbrich, U.

    2003-04-01

    More than any changes of the climate system mean state conditions, the development of extreme events may influence social, economic and legal aspects of our society. This linkage results from the impact of extreme climate events (natural hazards) on environmental systems which again are directly linked to human activities. Prominent examples from the recent past are the record breaking rainfall amounts of August 2002 in central Europe which produced widespread floodings or the wind storm Lothar of December 1999. Within the MICE (Modelling the Impact of Climate Extremes) project framework an assessment of the impact of changes in extremes will be done. The investigation is carried out for several different impact categories as agriculture, energy use and property damage. Focus is laid on the diagnostics of GCM and RCM simulations under different climate change scenarios. In this study we concentrate on extreme windstorms and their relationship to cyclone activity in the global HADCM3 as well as in the regional HADRM3 model under two climate change scenarios (SRESA2a, B2a). In order to identify cyclones we used an objective algorithm from Murry and Simmonds which was widely tested under several different conditions. A slight increase in the occurrence of systems is identified above northern parts of central Europe for both scenarios. For more severe systems (core pressure wind events can be defined via different percentile values of the windspeed (e.g. above the 95 percentile). By this means the relationship between strong wind events and cyclones is also investigated. For several regions (e.g. Germany, France, Spain) a shift to more deep cyclones connected with an increasing number of strong wind events is found.

  19. General Resilience to Cope with Extreme Events

    Directory of Open Access Journals (Sweden)

    Brian Walker

    2012-11-01

    Full Text Available Resilience to specified kinds of disasters is an active area of research and practice. However, rare or unprecedented disturbances that are unusually intense or extensive require a more broad-spectrum type of resilience. General resilience is the capacity of social-ecological systems to adapt or transform in response to unfamiliar, unexpected and extreme shocks. Conditions that enable general resilience include diversity, modularity, openness, reserves, feedbacks, nestedness, monitoring, leadership, and trust. Processes for building general resilience are an emerging and crucially important area of research.

  20. Outlier robustness for wind turbine extrapolated extreme loads

    DEFF Research Database (Denmark)

    Natarajan, Anand; Verelst, David Robert

    2012-01-01

    Methods for extrapolating extreme loads to a 50 year probability of exceedance, which display robustness to the presence of outliers in simulated loads data set, are described. Case studies of isolated high extreme out-of-plane loads are discussed to emphasize their underlying physical reasons....... Stochastic identification of numerical artifacts in simulated loads is demonstrated using the method of principal component analysis. The extrapolation methodology is made robust to outliers through a weighted loads approach, whereby the eigenvalues of the correlation matrix obtained using the loads with its...... simulation is demonstrated and compared with published results. Further effects of varying wind inflow angles and shear exponent is brought out. Parametric fitting techniques that consider all extreme loads including ‘outliers’ are proposed, and the physical reasons that result in isolated high extreme loads...

  1. Multispacecraft observations of the terrestrial bow shock and magnetopause during extreme solar wind disturbances

    DEFF Research Database (Denmark)

    Tatrallyay, M.; Erdos, G.; Nemeth, Z.

    2012-01-01

    by the interplanetary magnetic field (IMF) component transverse to the solar wind flow. The observed magnetopause crossings could be predicted with a reasonable accuracy (0.1-0.2 RE) by one of the presented models at least. For geosynchronous magnetopause crossings observed by the GOES satellites, (1) the new model...... provided the best predictions when the IMF was extremely large having a large negative Bz component, and (2) the predictions of the model of Shue et al. (1998) agreed best with the observations when the solar wind dynamic pressure was extremely large. The magnetopause crossings close to the cusp observed......Three events are discussed from the declining phase of the last solar cycle when the magnetopause and/or the bow shock were observed unusually close to the Earth due to major interplanetary disturbances. The observed extreme locations of the discontinuities are compared with the predictions...

  2. Observations and Impact Assessments of Extreme Space Weather Events

    Science.gov (United States)

    Baker, D. N.

    2007-05-01

    "Space weather" refers to conditions on the Sun, in the solar wind, and in Earth`s magnetosphere, ionosphere, and thermosphere. Activity on the Sun such as solar flares and coronal mass ejections can lead to high levels of radiation in space and can cause major magnetic storms at the Earth. Space radiation can come as energetic particles or as electromagnetic emissions. Adverse conditions in the near-Earth space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids. This can lead to a variety of socioeconomic losses. Astronauts and airline passengers exposed to high levels of radiation are also at risk. Society`s vulnerability to space weather effects is an issue of increasing concern. We are dependent on technological systems that are becoming more susceptible to space weather disturbances. We also have a permanent human presence in space with the International Space Station and the President and NASA have expressed a desire to expand our human space activities with missions to the moon and Mars. This will make space weather of even greater concern in the future. In this talk I will describe many space weather effects and will describe some of the societal and economic impacts that extreme events have had.

  3. THE IMPACT OF EXTREME RISK EVENTS ON THE ECONOMY

    Directory of Open Access Journals (Sweden)

    Ionela-Daniela GĂITAN

    2016-02-01

    Full Text Available In this paper I wanted to highlight the impact of extreme risk events on the economy. The issue that I will approach in this paper is one of great importance, taking into account that extreme risk events that occur are  different  and are becoming more frequent  and harder to  control.  The quickly  development  of  these eventsrequires the implementation of a suitable risk management system. The complexity of this issue involves different approaches that can be interrelated in: computer science, mathematics, risk management, crisis management, andmodeling and simulation of extreme risk events. Natural disasters are rare events, but when they occur are causing a huge damage and an adequate management is necessary to return to a state of normality in a short time. To achieve our goal, in the first part of the paper, we presented the problems that an extreme risk event causes in a country when they occur. In the last part of the paper I presented analytical, statistical and econometric methods used in analysis of the impact on the economy of extreme risk events. Natural  disasters,  which  are  extreme  risk  events,  rarely  produce,  but  when  they  occur  causing  hugedamage and an adequate management is necessary to return to a state of normality in a short time.

  4. Crop Diversiifcation in Coping with Extreme Weather Events in China

    Institute of Scientific and Technical Information of China (English)

    HUANG Ji-kun; JIANG Jing; WANG Jin-xia; HOU Ling-ling

    2014-01-01

    Apart from the long-term effects of climate change, the frequency and severity of extreme weather events have been increasing. Given the risks posed by climate change, particularly the changes in extreme weather events, the question of how to adapt to these changes and mitigate their negative impacts has received great attention from policy makers. The overall goals of this study are to examine whether farmers adapt to extreme weather events through crop diversiifcation and which factors inlfuence farmers’ decisions on crop diversiifcation against extreme weather events in China. To limit the scope of this study, we focus on drought and lfood events only. Based on a unique large-scale household survey in nine provinces, this study ifnds that farmers respond to extreme weather events by increasing crop diversiifcation. Their decision to diversify crops is significantly influenced by their experiences of extreme weather events in the previous year. Such results are understandable because farmers’ behaviors are normally based on their expectations. Moreover, household characteristics also affect farmers’ decisions on crop diversiifcation strategy, and their effects differ by farmers’ age and gender. This paper concludes with several policy implications.

  5. Extreme water-related weather events and waterborne disease.

    Science.gov (United States)

    Cann, K F; Thomas, D Rh; Salmon, R L; Wyn-Jones, A P; Kay, D

    2013-04-01

    Global climate change is expected to affect the frequency, intensity and duration of extreme water-related weather events such as excessive precipitation, floods, and drought. We conducted a systematic review to examine waterborne outbreaks following such events and explored their distribution between the different types of extreme water-related weather events. Four medical and meteorological databases (Medline, Embase, GeoRef, PubMed) and a global electronic reporting system (ProMED) were searched, from 1910 to 2010. Eighty-seven waterborne outbreaks involving extreme water-related weather events were identified and included, alongside 235 ProMED reports. Heavy rainfall and flooding were the most common events preceding outbreaks associated with extreme weather and were reported in 55·2% and 52·9% of accounts, respectively. The most common pathogens reported in these outbreaks were Vibrio spp. (21·6%) and Leptospira spp. (12·7%). Outbreaks following extreme water-related weather events were often the result of contamination of the drinking-water supply (53·7%). Differences in reporting of outbreaks were seen between the scientific literature and ProMED. Extreme water-related weather events represent a risk to public health in both developed and developing countries, but impact will be disproportionate and likely to compound existing health disparities.

  6. National scale multivariate extreme value modelling of waves, winds and sea levels

    Directory of Open Access Journals (Sweden)

    Gouldby Ben

    2016-01-01

    Full Text Available It has long been recognised that extreme coastal flooding can arise from the joint occurrence of extreme waves, winds and sea levels. The standard simplified joint probability approach used in England and Wales can result in an underestimation of flood risk unless correction factors are applied. This paper describes the application of a state-of-the-art multivariate extreme value model to offshore winds, waves and sea levels around the coast of England. The methodology overcomes the limitations of the traditional method. The output of the new statistical analysis is a Monte-Carlo (MC simulation comprising many thousands of offshore extreme events and it is necessary to translate all of these events into overtopping rates for use as input to flood risk assessments. It is computationally impractical to transform all of these MC events from the offshore to the nearshore. Computationally efficient statistical emulators of the SWAN wave transformation model have therefore been constructed. The emulators translate the thousands of MC events offshore. Whilst the methodology has been applied for national flood risk assessment, it has the potential to be implemented for wider use, including climate change impact assessment, nearshore wave climates for detailed local assessments and coastal flood forecasting.

  7. Sovereign Default Analysis through Extreme Events Identification

    Directory of Open Access Journals (Sweden)

    Vasile George MARICA

    2015-06-01

    Full Text Available This paper investigates contagion in international credit markets through the use of a novel jump detection technique proposed by Chan and Maheuin (2002. This econometrical methodology is preferred because it is non-linear by definition and not a subject to volatility bias. Also, the identified jumps in CDS premiums are considered as outliers positioned beyond any stochastic movement that can and is already modelled through well-known linear analysis. Though contagion is hard to define, we show that extreme discrete movements in default probabilities inferred from CDS premiums can lead to sound economic conclusions about the risk profile of sovereign nations in international bond markets. We find evidence of investor sentiment clustering for countries with unstable political regimes or that are engaged in armed conflict. Countries that have in their recent history faced currency or financial crises are less vulnerable to external unexpected shocks. First we present a brief history of sovereign defaults with an emphasis on their increased frequency and geographical reach, as financial markets become more and more integrated. We then pass to a literature review of the most important definitions for contagion, and discuss what quantitative methods are available to detect the presence of contagion. The paper continues with the details for the methodology of jump detection through non-linear modelling and its use in the field of contagion identification. In the last sections we present the estimation results for simultaneous jumps between emerging markets CDS and draw conclusions on the difference of behavior in times of extreme movement versus tranquil periods.

  8. Understanding Extreme Spanish Coastal Flood Events

    Science.gov (United States)

    Diez, J. Javier; Esteban, M. Dolores; Silvestre, J. Manuel

    2013-04-01

    The Santa Irene flood event, at the end of October 1982, is one of the most dramatically widely reported flood events in Spain. Its renown is mainly due to the collapse of the Tous dam, but its main message is to be the paradigm of the incidence of the maritime/littoral weather and its temporal sea level rise by storm surge accompanying rain process on the coastal plains inland floods. Looking at damages the presentation analyzes the adapted measures from the point of view of the aims of the FP7 SMARTeST Project related to the Flood Resilience improvement in urban areas through looking for Technologies, Systems and Tools an appropriate "road to de market". The event was due to the meteorological phenomenon known as "gota fría" (cold drop), a relatively frequent and intense rainy phenomenon affecting one or more basins on the Iberian Peninsula, particularly on the Spanish east to southeast inlands and coasts. There are some circumstances that can easily come together to unleash the cold drop there: cold and dry polar air masses coming onto the whole Iberian Peninsula and the north of Africa, high sea water temperatures, and low atmospheric pressure (cyclone) areas in the western Mediterranean basin; these circumstances are quite common during the autumn season there, and, as it happens, in other places around the world (East/Southeast Africa). Their occurrence, however shows a great space-temporal variability (in a similar way to hurricanes, on Caribbean and western North-Atlantic areas, or to typhoons do). As a matter of fact, all of these equivalent though different phenomena may have different magnitude each time. An overview of the very main events since 11th century in the East to Southeast areas in Spain is shown in the presentation, looking for relation with climatic conditions and Climate changes on one hand, and with geomorphologic and geotechnical conditions on the other It also describes the results of a detailed analysis and reflection about this cold

  9. Public perceptions of climate change and extreme weather events

    Science.gov (United States)

    Bruine de Bruin, W.; Dessai, S.; Morgan, G.; Taylor, A.; Wong-Parodi, G.

    2013-12-01

    Climate experts face a serious communication challenge. Public debate about climate change continues, even though at the same time people seem to complain about extreme weather events becoming increasingly common. As compared to the abstract concept of ';climate change,' (changes in) extreme weather events are indeed easier to perceive, more vivid, and personally relevant. Public perception research in different countries has suggested that people commonly expect that climate change will lead to increases in temperature, and that unseasonably warm weather is likely to be interpreted as evidence of climate change. However, relatively little is known about whether public concerns about climate change may also be driven by changes in other types of extreme weather events, such as exceptional amounts of precipitation or flooding. We therefore examined how perceptions of and personal experiences with changes in these specific weather events are related to public concerns about climate change. In this presentation, we will discuss findings from two large public perception surveys conducted in flood-prone Pittsburgh, Pennsylvania (US) and with a national sample in the UK, where extreme flooding has recently occurred across the country. Participants completed questions about their perceptions of and experiences with specific extreme weather events, and their beliefs about climate change. We then conducted linear regressions to predict individual differences in climate-change beliefs, using perceptions of and experiences with specific extreme weather events as predictors, while controlling for demographic characteristics. The US study found that people (a) perceive flood chances to be increasing over the decades, (b) believe climate change to play a role in increases in future flood chances, and (c) would interpret future increases in flooding as evidence for climate change. The UK study found that (a) UK residents are more likely to perceive increases in ';wet' events such

  10. Measuring the effects of extreme weather events on yields

    Directory of Open Access Journals (Sweden)

    J.P. Powell

    2016-06-01

    Full Text Available Extreme weather events are expected to increase worldwide, therefore, anticipating and calculating their effects on crop yields is important for topics ranging from food security to the economic viability of biomass products. Given the local nature of weather, particularly precipitation, effects are best measured at a local level. This paper analyzes weather events at the level of the farm for a specific crop, winter wheat. Once it has been established that extreme events are expected to continue occurring at historically high levels for farming locations throughout the Netherlands, the effects of those events on wheat yields are estimated while controlling for the other major input factors affecting yields. Econometric techniques are applied to an unbalanced panel data set of 334 farms for a period of up to 12 years. Analyzes show that the number of days with extreme high temperatures in Dutch wheat growing regions has significantly increased since the early 1900s, while the number of extreme low temperature events has fallen over that same period. The effects of weather events on wheat yields were found to be time specific in that the week in which an event occurred determined its effect on yields. High temperature events and precipitation events were found to significantly decrease yields.

  11. Statistical analysis of long-duration low-density solar wind events

    Directory of Open Access Journals (Sweden)

    S. Watari

    Full Text Available Low solar wind density with long duration was measured by in situ observation between 11 and 12 May 1999. As a result of this low-density solar wind condition, the magnetosphere of the Earth expanded considerably. We used a database of one-hour-averaged solar wind (1963–1999 near 1 AU to determine whether or not the observed low-density event was extremely abnormal. As a result it was found that this event has the longest duration in approximately 36 years of solar wind observations. There are three events with density 0.5 cm-3 or less and duration ten hours or longer. They were observed on 4 and 31 July 1979, and 11–12 May 1999. The 4 July 1979 event recurred on 31 July 1979. The events were characterized by low-beta, low Alfven Mach number (MA , and low dynamic pressure. The occurrence rate of low-density solar wind with density 0.5 cm-3 or less shows several peaks near solar maxima. However, it is difficult to find a clear relationship between the sunspot number and the occurrence rate.

    Key words. Interplanetary physics (flare and stream dynamics; solar wind plasma; sources of the solar wind

  12. Extreme event statistics in a drifting Markov chain

    Science.gov (United States)

    Kindermann, Farina; Hohmann, Michael; Lausch, Tobias; Mayer, Daniel; Schmidt, Felix; Widera, Artur

    2017-07-01

    We analyze extreme event statistics of experimentally realized Markov chains with various drifts. Our Markov chains are individual trajectories of a single atom diffusing in a one-dimensional periodic potential. Based on more than 500 individual atomic traces we verify the applicability of the Sparre Andersen theorem to our system despite the presence of a drift. We present detailed analysis of four different rare-event statistics for our system: the distributions of extreme values, of record values, of extreme value occurrence in the chain, and of the number of records in the chain. We observe that, for our data, the shape of the extreme event distributions is dominated by the underlying exponential distance distribution extracted from the atomic traces. Furthermore, we find that even small drifts influence the statistics of extreme events and record values, which is supported by numerical simulations, and we identify cases in which the drift can be determined without information about the underlying random variable distributions. Our results facilitate the use of extreme event statistics as a signal for small drifts in correlated trajectories.

  13. Projected changes to surface wind characteristics and extremes over North America in CRCM5

    Science.gov (United States)

    Jeong, Dae Il; Sushama, Laxmi

    2017-04-01

    Changes in the tendency of wind speed and direction have significant implications for long-term water cycle, air pollution, arid and semiarid environments, fire activity, and wind energy production. Furthermore, changes in wind extremes have direct impacts on buildings, infrastructures, agriculture, power lines, and trees. This study evaluates projected changes to wind speed characteristics (i.e., seasonal and annual mean, seasonal and diurnal cycles, directional distribution, and extreme events) for the future 2071-2100 period, with respect to the current 1981-2010 period over North America, using four different simulations from the fifth-generation Canadian Regional Climate Model (CRCM5) with two driving GCMs under RCP (Representative Concentration Pathways) 4.5 and 8.5 scenarios. The CRCM5 simulates the climatology of mean sea level pressure gradient and associated wind direction over North America well when compared to ERA-Interim reanalysis dataset. The CRCM5 also reproduces properly the spatial distributions of observed seasonal and annual mean wind speeds obtained from 611 meteorological stations across North America. The CRCM5 simulations generally suggest an increase in future mean wind speed for northern and eastern parts of Canada, due to a decrease of future mean sea level pressure and more intense low pressure air circulation systems already situated in those regions such as Aleutian and Icelandic Lows. Projected changes to annual maximum wind speed show more spatial variability compared to seasonal and annual mean wind speed as extreme wind speed is influenced more by regional-scale features associated with instantaneous surface temperature and air pressure gradients. The CRCM5 simulations suggest some increases in the future 50-year return levels of wind speed, mainly due to changes in the inter-annual variability of annual maximum wind speed. However, the projected changes vary in spatial pattern with the driving GCM fields and emission scenarios

  14. On the Probability of Occurrence of Extreme Space Weather Events

    Science.gov (United States)

    Riley, Pete

    2012-01-01

    By virtue of their rarity, extreme space weather events, such as the Carrington event of 1859, are difficult to study, their rates of occurrence are difficult to estimate, and prediction of a specific future event is virtually impossible. Additionally, events may be extreme relative to one parameter but normal relative to others. In this study, we analyze several measures of the severity of space weather events (flare intensity, coronal mass ejection speeds, Dst, and greater than 30 MeV proton fluences as inferred from nitrate records) to estimate the probability of occurrence of extreme events. By showing that the frequency of occurrence scales as an inverse power of the severity of the event, and assuming that this relationship holds at higher magnitudes, we are able to estimate the probability that an event larger than some criteria will occur within a certain interval of time in the future. For example, the probability of another Carrington event (based on Dst less than - 850 nT) occurring within the next decade is approximately 12%. We also identify and address several limitations with this approach. In particular, we assume time stationarity, and thus, the effects of long-term space climate change are not considered. While this technique cannot be used to predict specific events, it may ultimately be useful for probabilistic forecasting.

  15. On the Probability of Occurrence of Extreme Space Weather Events

    Science.gov (United States)

    Riley, Pete

    2012-01-01

    By virtue of their rarity, extreme space weather events, such as the Carrington event of 1859, are difficult to study, their rates of occurrence are difficult to estimate, and prediction of a specific future event is virtually impossible. Additionally, events may be extreme relative to one parameter but normal relative to others. In this study, we analyze several measures of the severity of space weather events (flare intensity, coronal mass ejection speeds, Dst, and greater than 30 MeV proton fluences as inferred from nitrate records) to estimate the probability of occurrence of extreme events. By showing that the frequency of occurrence scales as an inverse power of the severity of the event, and assuming that this relationship holds at higher magnitudes, we are able to estimate the probability that an event larger than some criteria will occur within a certain interval of time in the future. For example, the probability of another Carrington event (based on Dst less than - 850 nT) occurring within the next decade is approximately 12%. We also identify and address several limitations with this approach. In particular, we assume time stationarity, and thus, the effects of long-term space climate change are not considered. While this technique cannot be used to predict specific events, it may ultimately be useful for probabilistic forecasting.

  16. Extreme sea-level events in coastal regions

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.

    Simulation, Belur Campus, Bangalore 560 037, India e-mail: uns@cmmacs.ernet.in Extreme sea-level events in coastal regions A recently published report1 by the Intergovernmental Panel on Climate Change (IPCC) has made an assessment... of the extreme climate events. Their past trends, future projections and vulnerabi- lity and adaptation to such events are discussed in the report. The report was based on the efforts of both the working groups of the IPCC, WG I, which deals with the science...

  17. The National Extreme Events Data and Research Center (NEED)

    Science.gov (United States)

    Gulledge, J.; Kaiser, D. P.; Wilbanks, T. J.; Boden, T.; Devarakonda, R.

    2014-12-01

    The Climate Change Science Institute at Oak Ridge National Laboratory (ORNL) is establishing the National Extreme Events Data and Research Center (NEED), with the goal of transforming how the United States studies and prepares for extreme weather events in the context of a changing climate. NEED will encourage the myriad, distributed extreme events research communities to move toward the adoption of common practices and will develop a new database compiling global historical data on weather- and climate-related extreme events (e.g., heat waves, droughts, hurricanes, etc.) and related information about impacts, costs, recovery, and available research. Currently, extreme event information is not easy to access and is largely incompatible and inconsistent across web sites. NEED's database development will take into account differences in time frames, spatial scales, treatments of uncertainty, and other parameters and variables, and leverage informatics tools developed at ORNL (i.e., the Metadata Editor [1] and Mercury [2]) to generate standardized, robust documentation for each database along with a web-searchable catalog. In addition, NEED will facilitate convergence on commonly accepted definitions and standards for extreme events data and will enable integrated analyses of coupled threats, such as hurricanes/sea-level rise/flooding and droughts/wildfires. Our goal and vision is that NEED will become the premiere integrated resource for the general study of extreme events. References: [1] Devarakonda, Ranjeet, et al. "OME: Tool for generating and managing metadata to handle BigData." Big Data (Big Data), 2014 IEEE International Conference on. IEEE, 2014. [2] Devarakonda, Ranjeet, et al. "Mercury: reusable metadata management, data discovery and access system." Earth Science Informatics 3.1-2 (2010): 87-94.

  18. Estimation of extreme wind speeds in the mixed strong wind climate of South Africa

    CSIR Research Space (South Africa)

    Kruger, AC

    2010-08-01

    Full Text Available The South African Weather Service, with the support of the Council for Scientific and Industrial Research (CSIR) and the University of Stellenbosch, is in the process of updating the extreme surface wind statistics for South Africa. A previous...

  19. Extreme-value time-series analysis of Australian Region A gust wind speeds to examine instrument bias

    Science.gov (United States)

    Cechet, R. P.; Sanabria, L. A.

    2010-08-01

    Australian building codes through the Australia/New Zealand Wind Actions Standard as well as the wind engineering community in general rely to a significant extent on the peak gust wind speed observations collected over more than 70 years by the Australian Bureau of Meteorology (BoM). In the mid-1980's BoM commenced a program to replace the aging pressure tube Dines anemometers with cup anemometers. During the replacement procedure, many localities had more than one type of anemometer operating, recording extreme events. Systematic differences between instrument measurements during this overlap period raised serious concerns about the utility of the peak gust wind speed database. This paper presents the results of a reanalysis of the current BoM peak wind gust database for the non-cyclonic region (Region A) of the Australia/New Zealand Wind Actions Standard. The study utilises extreme value distribution analysis and compares estimates of the 500-year return-period (RP) peak gust wind exceedance level derived from segments of the record measured with the Dines and replacement anemometers. Results indicate that the later period appears to have a significant reduction in extreme events; 17 of 31 sites have a mean 500 year RP exceedance level for the replacement anemometer section of the record below the lower 95% confidence limit for the Dines anemometer part of the record. The 3PM mean wind speed time-series observations have also been examined, and they exhibit a similar trend.

  20. Geophysical Hazards and Preventive Disaster Management of Extreme Natural Events

    Science.gov (United States)

    Ismail-Zadeh, A.; Takeuchi, K.

    2007-12-01

    Geophysical hazard is potentially damaging natural event and/or phenomenon, which may cause the loss of life or injury, property damage, social and economic disruption, or environmental degradation. Extreme natural hazards are a key manifestation of the complex hierarchical nonlinear Earth system. An understanding, accurate modeling and forecasting of the extreme hazards are most important scientific challenges. Several recent extreme natural events (e.g., 2004 Great Indian Ocean Earthquake and Tsunami and the 2005 violent Katrina hurricane) demonstrated strong coupling between solid Earth and ocean, and ocean and atmosphere. These events resulted in great humanitarian tragedies because of a weak preventive disaster management. The less often natural events occur (and the extreme events are rare by definition), the more often the disaster managers postpone the preparedness to the events. The tendency to reduce the funding for preventive disaster management of natural catastrophes is seldom follows the rules of responsible stewardship for future generations neither in developing countries nor in highly developed economies where it must be considered next to malfeasance. Protecting human life and property against earthquake disasters requires an uninterrupted chain of tasks: from (i) understanding of physics of the events, analysis and monitoring, through (ii) interpretation, modeling, hazard assessment, and prediction, to (iii) public awareness, preparedness, and preventive disaster management.

  1. Extreme events in gross primary production: a characterization across continents

    Directory of Open Access Journals (Sweden)

    J. Zscheischler

    2014-01-01

    Full Text Available Climate extremes can affect the functioning of terrestrial ecosystems, for instance via a reduction of the photosynthetic capacity or alterations of respiratory processes. Yet the dominant regional and seasonal effects of hydrometeorological extremes are still not well documented. Here we quantify and characterize the role of large spatiotemporal extreme events in gross primary production (GPP as triggers of continental anomalies. We also investigate seasonal dynamics of extreme impacts on continental GPP anomalies. We find that the 50 largest positive (increase in uptake and negative extremes (decrease in uptake on each continent can explain most of the continental variation in GPP, which is in line with previous results obtained at the global scale. We show that negative extremes are larger than positive ones and demonstrate that this asymmetry is particularly strong in South America and Europe. Most extremes in GPP start in early summer. Our analysis indicates that the overall impacts and the spatial extents of GPP extremes are power law distributed with exponents that vary little across continents. Moreover, we show that on all continents and for all data sets the spatial extents play a more important role than durations or maximal GPP anomaly when it comes to the overall impact of GPP extremes. An analysis of possible causes implies that across continents most extremes in GPP can best be explained by water scarcity rather than by extreme temperatures. However, for Europe, South America and Oceania we identify also fire as an important driver. Our findings are consistent with remote sensing products. An independent validation against a literature survey on specific extreme events supports our results to a large extent.

  2. The Extreme Climate Index: a novel and multi-hazard index for extreme weather events.

    Science.gov (United States)

    Cucchi, Marco; Petitta, Marcello; Calmanti, Sandro

    2017-04-01

    In this presentation we introduce the Extreme Climate Index (ECI): an objective, multi-hazard index capable of tracking changes in the frequency or magnitude of extreme weather events in African countries, thus indicating that a shift to a new climate regime is underway in a particular area. This index has been developed in the context of XCF (eXtreme Climate Facilities) project lead by ARC (African Risk Capacity, specialised agency of the African Union), and will be used in the payouts triggering mechanism of an insurance programme against risks related to the increase of frequency and magnitude of extreme weather events due to climate regimes' changes. The main hazards covered by ECI will be extreme dry, wet and heat events, with the possibility of adding region-specific risk events such as tropical cyclones for the most vulnerable areas. It will be based on data coming from consistent, sufficiently long, high quality historical records and will be standardized across broad geographical regions, so that extreme events occurring under different climatic regimes in Africa can be comparable. The first step to construct such an index is to define single hazard indicators. In this first study we focused on extreme dry/wet and heat events, using for their description respectively the well-known SPI (Standardized Precipitation Index) and an index developed by us, called SHI (Standardized Heat-waves Index). The second step consists in the development of a computational strategy to combine these, and possibly other indices, so that the ECI can describe, by means of a single indicator, different types of climatic extremes. According to the methodology proposed in this paper, the ECI is defined by two statistical components: the ECI intensity, which indicates whether an event is extreme or not; the angular component, which represent the contribution of each hazard to the overall intensity of the index. The ECI can thus be used to identify "extremes" after defining a

  3. Evaluation of Convective Wind Forecasting Methods During High Wind Events

    Science.gov (United States)

    2006-03-01

    is referred to as a derecho . Derechos are described as long-lived convective systems in the form of long bow-shaped segments of cells. Bow-echoes...within a derecho can cause widespread severe winds causing damage for hundreds of miles during the lifetime of a derecho . The shape of a bow-echo

  4. Modeling and investigation of Gulf El-Zayt wind farm for stability studying during extreme

    Directory of Open Access Journals (Sweden)

    Omar Noureldeen

    2014-03-01

    Full Text Available This paper investigates the impact of extreme gust wind as a case of wind speed variation on a wind farm interconnected electrical grid. The impact of extreme gust wind speed variation on active and reactive power of the wind farms is studied for variable speed wind farm equipped with Doubly Fed Induction Generators (DFIGs. A simulation model of the under implementation 120 MW wind farm at Gulf El-Zayt region, Red Sea, Egypt, is simulated as a case study. A detailed model of extreme gust wind speed variation is implemented and simulated, using MATLAB/Simulink toolbox, based on International Electrotechnical Commission IEC 61400-1 and climate characteristic of Gulf El-Zayt site. The simulation results show the influence of different extreme gust wind speed variations on the fluctuation of active power and reactive power at the Point of Common Coupling (PCC of the studied wind farm.

  5. Laws of small numbers extremes and rare events

    CERN Document Server

    Falk, Michael; Hüsler, Jürg

    2004-01-01

    Since the publication of the first edition of this seminar book in 1994, the theory and applications of extremes and rare events have enjoyed an enormous and still increasing interest. The intention of the book is to give a mathematically oriented development of the theory of rare events underlying various applications. This characteristic of the book was strengthened in the second edition by incorporating various new results on about 130 additional pages. Part II, which has been added in the second edition, discusses recent developments in multivariate extreme value theory. Particularly notable is a new spectral decomposition of multivariate distributions in univariate ones which makes multivariate questions more accessible in theory and practice. One of the most innovative and fruitful topics during the last decades was the introduction of generalized Pareto distributions in the univariate extreme value theory. Such a statistical modelling of extremes is now systematically developed in the multivariate fram...

  6. Probability distribution analysis of observational extreme events and model evaluation

    Science.gov (United States)

    Yu, Q.; Lau, A. K. H.; Fung, J. C. H.; Tsang, K. T.

    2016-12-01

    Earth's surface temperatures were the warmest in 2015 since modern record-keeping began in 1880, according to the latest study. In contrast, a cold weather occurred in many regions of China in January 2016, and brought the first snowfall to Guangzhou, the capital city of Guangdong province in 67 years. To understand the changes of extreme weather events as well as project its future scenarios, this study use statistical models to analyze on multiple climate data. We first use Granger-causality test to identify the attribution of global mean temperature rise and extreme temperature events with CO2 concentration. The four statistical moments (mean, variance, skewness, kurtosis) of daily maximum temperature distribution is investigated on global climate observational, reanalysis (1961-2010) and model data (1961-2100). Furthermore, we introduce a new tail index based on the four moments, which is a more robust index to measure extreme temperatures. Our results show that the CO2 concentration can provide information to the time series of mean and extreme temperature, but not vice versa. Based on our new tail index, we find that other than mean and variance, skewness is an important indicator should be considered to estimate extreme temperature changes and model evaluation. Among the 12 climate model data we investigate, the fourth version of Community Climate System Model (CCSM4) from National Center for Atmospheric Research performs well on the new index we introduce, which indicate the model have a substantial capability to project the future changes of extreme temperature in the 21st century. The method also shows its ability to measure extreme precipitation/ drought events. In the future we will introduce a new diagram to systematically evaluate the performance of the four statistical moments in climate model output, moreover, the human and economic impacts of extreme weather events will also be conducted.

  7. Extreme cyclone events in the Arctic: Wintertime variability and trends

    Science.gov (United States)

    Rinke, A.; Maturilli, M.; Graham, R. M.; Matthes, H.; Handorf, D.; Cohen, L.; Hudson, S. R.; Moore, J. C.

    2017-09-01

    Typically 20-40 extreme cyclone events (sometimes called ‘weather bombs’) occur in the Arctic North Atlantic per winter season, with an increasing trend of 6 events/decade over 1979-2015, according to 6 hourly station data from Ny-Ålesund. This increased frequency of extreme cyclones is consistent with observed significant winter warming, indicating that the meridional heat and moisture transport they bring is a factor in rising temperatures in the region. The winter trend in extreme cyclones is dominated by a positive monthly trend of about 3-4 events/decade in November-December, due mainly to an increasing persistence of extreme cyclone events. A negative trend in January opposes this, while there is no significant trend in February. We relate the regional patterns of the trend in extreme cyclones to anomalously low sea-ice conditions in recent years, together with associated large-scale atmospheric circulation changes such as ‘blockinglike’ circulation patterns (e.g. Scandinavian blocking in December and Ural blocking during January-February).

  8. Predicting extreme wind speeds on a tropical island for multi-peril catastrophe modelling

    Science.gov (United States)

    Thornton, James; Moncoulon, David; Millinship, Ian; Raven, Emma

    2013-04-01

    Catastrophe models are important tools used by the reinsurance industry for assessing and managing risk. Here, we present the methods used to develop high-resolution wind hazard maps for the Indian Ocean island of La Réunion. As the recent Cyclone Dumile (January 2013) reminded us, the island is at considerable risk from the extreme weather associated with tropical cyclones. It also contains a significant proportion of the total value insured in French overseas territories. The wind maps, alongside flood and storm surge maps, were ultimately combined with exposure information in a multi-peril catastrophe model to provide probabilistic estimates of insured loss. Our wind mapping methodology used established extreme value theory statistics to estimate the annual probability of extreme wind speeds, including those exceeding the observed maxima of our 19 year record, at meteorological stations. This gave approximate wind speeds for a range of return periods at these specific locations. Since the spatial density of the stations was insufficient to resolve the numerous potential effects of the complex island topography, geographically weighted regression (GWR) models were then developed to interpolate these cyclonic wind speeds across the entire island. Factors known to affect local wind speed such as elevation, surface roughness and coastal proximity were explicitly accounted for. Using this advanced interpolation method, wind hazard maps were produced for six return periods between 1 in 10 and 1 in 1000 years. Our maps compared favourably with those of historical events, and also showed patterns of wind speed in agreement with the findings of other studies investigating the effects of topography. Leave-one-out cross-validation (LOOCV) further confirmed the satisfactory performance of the models in providing a robust and comprehensive description of wind patterns during cyclone passage. Uncertainty increased with return period as more extrapolation of the limited

  9. Extreme weather and climate events with ecological relevance: a review.

    Science.gov (United States)

    Ummenhofer, Caroline C; Meehl, Gerald A

    2017-06-19

    Robust evidence exists that certain extreme weather and climate events, especially daily temperature and precipitation extremes, have changed in regard to intensity and frequency over recent decades. These changes have been linked to human-induced climate change, while the degree to which climate change impacts an individual extreme climate event (ECE) is more difficult to quantify. Rapid progress in event attribution has recently been made through improved understanding of observed and simulated climate variability, methods for event attribution and advances in numerical modelling. Attribution for extreme temperature events is stronger compared with other event types, notably those related to the hydrological cycle. Recent advances in the understanding of ECEs, both in observations and their representation in state-of-the-art climate models, open new opportunities for assessing their effect on human and natural systems. Improved spatial resolution in global climate models and advances in statistical and dynamical downscaling now provide climatic information at appropriate spatial and temporal scales. Together with the continued development of Earth System Models that simulate biogeochemical cycles and interactions with the biosphere at increasing complexity, these make it possible to develop a mechanistic understanding of how ECEs affect biological processes, ecosystem functioning and adaptation capabilities. Limitations in the observational network, both for physical climate system parameters and even more so for long-term ecological monitoring, have hampered progress in understanding bio-physical interactions across a range of scales. New opportunities for assessing how ECEs modulate ecosystem structure and functioning arise from better scientific understanding of ECEs coupled with technological advances in observing systems and instrumentation.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events

  10. Extreme Events in China under Climate Change: Uncertainty and related impacts (CSSP-FOREX)

    Science.gov (United States)

    Leckebusch, Gregor C.; Befort, Daniel J.; Hodges, Kevin I.

    2016-04-01

    Suitable adaptation strategies or the timely initiation of related mitigation efforts in East Asia will strongly depend on robust and comprehensive information about future near-term as well as long-term potential changes in the climate system. Therefore, understanding the driving mechanisms associated with the East Asian climate is of major importance. The FOREX project (Fostering Regional Decision Making by the Assessment of Uncertainties of Future Regional Extremes and their Linkage to Global Climate System Variability for China and East Asia) focuses on the investigation of extreme wind and rainfall related events over Eastern Asia and their possible future changes. Here, analyses focus on the link between local extreme events and their driving weather systems. This includes the coupling between local rainfall extremes and tropical cyclones, the Meiyu frontal system, extra-tropical teleconnections and monsoonal activity. Furthermore, the relation between these driving weather systems and large-scale variability modes, e.g. NAO, PDO, ENSO is analysed. Thus, beside analysing future changes of local extreme events, the temporal variability of their driving weather systems and related large-scale variability modes will be assessed in current CMIP5 global model simulations to obtain more robust results. Beyond an overview of FOREX itself, first results regarding the link between local extremes and their steering weather systems based on observational and reanalysis data are shown. Special focus is laid on the contribution of monsoonal activity, tropical cyclones and the Meiyu frontal system on the inter-annual variability of the East Asian summer rainfall.

  11. Analysis of strong wind events around Adelie Land, East Antarctica

    Directory of Open Access Journals (Sweden)

    G. Mastrantonio

    2003-06-01

    Full Text Available Strong wind events at Dumont d'Urville (DdU, an East Antarctic coastal station, and Dome C, an interior station, were studied to determine if the wind along the Adelie Land coast increases with the approach of the depression from the west of the site or after its passage to the east of it. The events for the year 1993 were studied using synoptic observations, mean sea level pressure charts and composite infrared satellite images. It was found that the winds are enhanced with the approach of a depression from the west towards the DdU coast. The wind increases in response to the decreasing pressure at the coastal site and increasing downslope pressure difference (dp. The wind starts decreasing once the system moves to the east of DdU and the pressure at DdU starts building up, as reported in some earlier studies. The response of wind to the approaching depression is not the same for all the events but depends on the downslope pressure difference and the movement of the depression that is often conditioned by the presence of a blocking high to the northeast. The wind comes down if the system starts penetrating inland due to the presence of the high pressure ridge to the northeast and decreasing dp. It is observed that the winds at Dome C increase to as high as 17 m s-1 with the inland penetration of the depression.

  12. Attribution of Extreme Heat Event Using a Seasonal Forecast Framework

    Science.gov (United States)

    Wang, Guomin; Hope, Pandora; Lim, Eun-Pa; Hendon, Harry; Arblaster, Julie

    2017-04-01

    Here we present a method for the attribution of extreme climate events using an initialised climate prediction system to attribute the degree of influence from increasing levels of atmospheric carbon dioxide (CO2) on an extreme event. The initial-value nature of our method allows little time for the growth of model-driven biases, while allowing the full coupled response of the ocean-atmosphere-land system. To illustrate the use of this method, we attribute the causes of two recent month long record heat events that occurred in October 2014 and 2015 over Australia. The events were forecast twice, one initialised with real world analysed ocean-land-atmosphere states and current CO2 concentration and another with altered ocean-land-atmosphere states corresponding to a counterfactual world with low CO2. We find that relative to the climatology with CO2 level of 1960, at least half of the heat anomaly forecasted across Australia in the two events can be attributed to global warming associated with increased CO2. Additional sensitivity experiments were conducted to assess the impact of the internal climate drivers on the events. The sensitivity experiment results suggest that the atmospheric circulation anomalies played a more important role than the direct impact from the ocean in promoting extreme heat across Australia.

  13. Impacts of Extreme Events on Human Health. Chapter 4

    Science.gov (United States)

    Bell, Jesse E.; Herring, Stephanie C.; Jantarasami, Lesley; Adrianopoli, Carl; Benedict, Kaitlin; Conlon, Kathryn; Escobar, Vanessa; Hess, Jeremy; Luvall, Jeffrey; Garcia-Pando, Carlos Perez; Quattrochi, Dale; Runkle, Jennifer; Schreck, Carl J., III

    2016-01-01

    Increased Exposure to Extreme Events Key Finding 1: Health impacts associated with climate-related changes in exposure to extreme events include death, injury, or illness; exacerbation of underlying medical conditions; and adverse effects on mental health[High Confidence]. Climate change will increase exposure risk in some regions of the United States due to projected increases in the frequency and/or intensity of drought, wildfires, and flooding related to extreme precipitation and hurricanes [Medium Confidence].Disruption of Essential Infrastructure Key Finding 2: Many types of extreme events related to climate change cause disruption of infrastructure, including power, water, transportation, and communication systems, that are essential to maintaining access to health care and emergency response services and safeguarding human health [High Confidence].Vulnerability to Coastal Flooding Key Finding 3: Coastal populations with greater vulnerability to health impacts from coastal flooding include persons with disabilities or other access and functional needs, certain populations of color, older adults, pregnant women and children, low-income populations, and some occupational groups [High Confidence].Climate change will increase exposure risk to coastal flooding due to increases in extreme precipitation and in hurricane intensity and rainfall rates, as well as sea level rise and the resulting increases in storm surge.

  14. Expected impacts of climate change on extreme climate events; Impacts du changement climatique sur les evenements climatiques extremes

    Energy Technology Data Exchange (ETDEWEB)

    Planton, S.; Deque, M.; Chauvin, F. [Meteo-France, Centre National de Recherches Meteorologiques/groupe d' Etude de l' Atmosphere Meteorologique (CNRM/GAME), 31 - Toulouse (France); Terray, L. [Centre Europeen de Recherches Avancees en Calcul Scientifique, 31 - Toulouse (France)

    2008-09-15

    An overview of the expected change of climate extremes during this century due to greenhouse gases and aerosol anthropogenic emissions is presented. The most commonly used methodologies rely on the dynamical or statistical down-scaling of climate projections, performed with coupled atmosphere-ocean general circulation models. Either of dynamical or of statistical type, down-scaling methods present strengths and weaknesses, but neither their validation on present climate conditions, nor their potential ability to project the impact of climate change on extreme event statistics allows one to give a specific advantage to one of the two types. The results synthesized in the last IPCC report and more recent studies underline a convergence for a very likely increase in heat wave episodes over land surfaces, linked to the mean warming and the increase in temperature variability. In addition, the number of days of frost should decrease and the growing season length should increase. The projected increase in heavy precipitation events appears also as very likely over most areas and also seems linked to a change in the shape of the precipitation intensity distribution. The global trends for drought duration are less consistent between models and down-scaling methodologies, due to their regional variability. The change of wind-related extremes is also regionally dependent, and associated to a poleward displacement of the mid-latitude storm tracks. The specific study of extreme events over France reveals the high sensitivity of some statistics of climate extremes at the decadal time scale as a consequence of regional climate internal variability. (authors)

  15. Danish extreme wind atlas: Background and methods for a WAsP engineering option

    Energy Technology Data Exchange (ETDEWEB)

    Rathmann, O.; Kristensen, L.; Mann, J. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark); Hansen, S.O. [Svend Ole Hansen ApS, Copenhagen (Denmark)

    1999-03-01

    Extreme wind statistics is necessary design information when establishing wind farms and erecting bridges, buildings and other structures in the open air. Normal mean wind statistics in terms of directional and speed distribution may be estimated by wind atlas methods and are used to estimate e.g. annual energy output for wind turbines. It is the purpose of the present work to extend the wind atlas method to also include the local extreme wind statistics so that an extreme value as e.g. the 50-year wind can be estimated at locations of interest. Together with turbulence estimates such information is important regarding the necessary strength of wind turbines or structures to withstand high wind loads. In the `WAsP Engineering` computer program a flow model, which includes a model for the dynamic roughness of water surfaces, is used to realise such an extended wind atlas method. With basis in an extended wind atlas, also containing extreme wind statistics, this allows the program to estimate extreme winds in addition to mean winds and turbulence intensities at specified positions and heights. (au) EFP-97. 15 refs.

  16. Westerly Wind Events in the Tropical Pacific, 1986-95*.

    Science.gov (United States)

    Harrison, D. E.; Vecchi, Gabriel A.

    1997-12-01

    Based on examination of 10 yr of 10-m winds and wind anomalies from European Centre for Medium-Range Weather Forecasts (ECWMF) analysis, definitions for westerly wind events (WWEs) of eight different types are proposed. The authors construct a composite for each type of event, show that a simple propagating Gaussian model satisfactorily describes the evolution of zonal wind anomaly for each type of event, and determine the scales of each composite event by fitting the model to each composite. The authors discuss the WWEs that occurred during the Tropical Oceans Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) intensive observing period (IOP) and show the extent to which these composite events are able to reproduce the major westerly wind features of the IOP. The frequency of occurrence of each type of WWE for each year of this record and by calendar month are described; the authors find several types of events are negatively correlated with the annual mean troup Southern Oscillation index (SOI), and that the stronger WWEs often have a statistically significant seasonality. Several instances of widespread westerly wind anomaly are identified and described, but these `mega'-WWEs have few features in common. Although the authors' composites underestimate the peak amplitude of many WWEs and cannot always accurately represent the time evolution of each WWE, the authors believe that they offer a useful framework for representing the sort of westerly wind variability that occurs in the western and central tropical Pacific and can provide a basis for further study of the importance of such winds in the climatological and interannual variability of this part of the World Ocean.

  17. The Integrated periodogram of a dependent extremal event sequence

    DEFF Research Database (Denmark)

    Mikosch, Thomas Valentin; Zhao, Yuwei

    2015-01-01

    We investigate the asymptotic properties of the integrated periodogram calculated from a sequence of indicator functions of dependent extremal events. An event in Euclidean space is extreme if it occurs far away from the origin. We use a regular variation condition on the underlying stationary.......i.d. case a Brownian bridge appears. In the general case, we propose a stationary bootstrap procedure for approximating the distribution of the limiting process. The developed theory can be used to construct classical goodness-of-fit tests such as the Grenander–Rosenblatt and Cramér–von Mises tests which...... are based only on the extremes in the sample. We apply the test statistics to simulated and real-life data....

  18. What is the right way to talk about extreme events?

    Science.gov (United States)

    Sobel, A. H.

    2013-12-01

    Extreme weather events draw the attention of the public. By demonstrating the vulnerability of human society to climate, extreme events can cause nonscientists -government leaders as well as the broader population - to take the danger posed by anthropogenic global warming more seriously than they otherwise might. An extreme event that draws media attention can become a 'teachable moment'. But extreme events are difficult to talk about in a way that honors both the strengths and weaknesses of the underlying science. No single event can be attributed to climate change, and some types of events are not even clearly influenced by it (or not in any ways our science can yet demonstrate). Strong, media-friendly statements that closely connect specific events to climate - designed to make best use of the moment's teachability - can easily overstate the case. This will raise the hackles of one's colleagues, at a minimum, and at worst, may damage the credibility of the field more broadly. Yet talking too much about the uncertainties runs the risk of understating the basic truth that global warming is real and dangerous, and may lend inadvertent support to anti-scientific denialism. I will discuss this tension in the context of my own experiences in the media after 'Superstorm' Sandy. I will address arguments I have heard, from social scientists and media consultants, to the effect that climate scientists should adopt communications strategies that lead to stronger, more media-friendly statements, and learn to suppress the tendency, bred into us during our scientific training, to emphasize the uncertainties.

  19. The December 2008 flood event in Rome: Was it really an extreme event?

    Science.gov (United States)

    Lastoria, B.; Mariani, S.; Casaioli, M.; Bussettini, M.

    2009-04-01

    In mid December 2008, Italy suffered bad weather with heavy snowfall blanketing the north and strong winds and downpours pelting the centre-south. In particular, during the period between 10th and 12th December, intense precipitation struck the Tyrrhenian Sea side of the peninsula, inducing a flood event, which captured the attention of the national and international media, on the Tiber river and on its tributary, the Aniene. The relevance of the event was caused by the actual damages occurred in several zones over Rome area, in particular due to the downpours and to damages which would have occurred if Tiber river had overflowed its banks. The event, which was initially considered as extreme, was indeed severe but not so exceptional as shown by the meteo-hydrological post-event analysis. The peak water level of 12.55 m, recorded on 13th December at 1:30 a.m. (local time) at the Ripetta station, which is situated along the Tiber river in the centre of Rome, was higher than those observed during the last ten years (which to the utmost reached 11.41 m in December 2005). However, it did not reach the historical maximum of 16.90 m observed in 1937. Moreover, on the basis of the Ripetta historical series, such a level is associated to an ordinary flood event. Even if the flood was ordinary, a state of emergency was declared by the Rome's Mayor, since the event caused severe damages by disrupting flight and train services, blocking off major roads leading into Rome, flooding underpasses and sealing off industrial activities sited in the flooded areas, in particular nearby the confluence of the Aniene river with the Tiber river. In addition, hundreds of people were evacuated and a woman died in a her car which was submerged by a wave of water and mud in an underpass. Given these premises, the present work examines the relation between a severe, but not extraordinary, event and the considerable damages that occurred as a consequence. First, the meteorological evolution of

  20. A mechanism for decadal variations in the frequency of extreme El Niño events

    Science.gov (United States)

    Wang, G.; Cai, W.

    2015-12-01

    The El Niño Southern Oscillation (ENSO), the largest source of Earth's climate variability on interannual time scales, has massive impacts on extreme weathers, agriculture and ecosystems, particularly during extreme El Niño events, such as the 1982/83 and 1997/98 episodes. However, the associated mechanism is not fully understood, hindering their forecasts, as attested by the false alarm of an extreme El Niño in 2014 predicted by many models. Recent studies have identified additional precursors beyond westerly wind anomalies and oceanic heat content along the equatorial Pacific, including the southwest Pacific southerly jets, which tend to occur strongly and concurrently with equatorial westerly anomalies during extreme El Niño, but NOT during weak El Niño events. Here we show that the concurrences of southwest Pacific southerlies, anomalous equatorial westerlies, and their relationship, are modulated by the Pacific Decadal Oscillation (PDO)/Interdecadal Pacific Oscillation (IPO), even on daily timescales. During a positive phase of the PDO/IPO, occurrences of westerly wind events (WWEs), in the region between the Maritime continent and the eastern Pacific Ocean, are reinforced by the southwest Pacific southerly surges (SPSSs) in austral winter. By contrast, during a negative phase of the PDO/IPO, such SPSSs are not reinforcing WWEs; instead stronger SPSSs are associated with weaker WWEs. This interdecadal contrast in the relationship between SPSSs and WWEs contributes to the decadal variations in the frequency of extreme El Niño events. The associated mechanism will be discussed.

  1. Exploring the causes of rare extreme precipitation events

    Science.gov (United States)

    Schroeer, Katharina; Kirchengast, Gottfried

    2015-04-01

    Whereas trends of precipitation changes in general are disparate, an increase of extreme intensities of short precipitation events (daily to sub-hourly scale) with increasing temperatures seems unambiguous (e.g. Trenberth et al., Clim. Res. 47, 123-138, 2011; Berg et al., Nat. Clim. Change 13, 181-185, 2013; Kendon et al., Nat. Clim. Change 4, 570-576, 2014). In probability density functions (PDFs) of observed precipitation intensities that are frequently used in science and practice, high magnitude ("extreme") low frequency ("rare") precipitation events naturally appear at the tails of PDFs. Due to the factual data scarcity, rare extreme events ("REEs") are difficult to come by with statistical analyses. Amongst studies of extreme precipitation, statistical work nevertheless makes a major contribution to the research field. Usually as a first step, a threshold is defined to classify extreme events out of a sample (statistical extreme events, "SEEs"), where methods are affected by the sample size. Such thresholds can be described user-defined or constructed. Subsequently, a PDF is sought, fit and applied (e.g. Yilmaz et al., Hydrol. Earth Syst. Sci. 18, 4065-4076, 2014;, Papalexiou et al., Hydrol. Earth Syst. Sci. 17, 851-862, 2013). While these studies respond to the needs of engeneering practice in e.g. infrastructure design, or trend analysis of precipitation in climate studies, they a) have to ignore REEs because of practical or statistical/data limitations (i.e. left out as "residual risk") and b) tell us little about the underlying processes of the climate and weather system causing REEs. We define REEs in contrast to SEEs as to be of such occurrence that they cannot be sufficiently described nor predicted by means of a regular or fat-tailed PDF. We introduce a working hypothesis assuming that REEs are conditioned and caused by a conjunction of specific circumstances on different scales. We differentiate spatio-temporal circumstances of large

  2. Extreme midlatitude cyclones and their implications for precipitation and wind speed extremes in simulations of the Maunder Minimum versus present day conditions

    Energy Technology Data Exchange (ETDEWEB)

    Raible, C.C.; Casty, C. [University of Bern, Climate and Environmental Physics, Physics Institute, Bern (Switzerland); Yoshimori, M. [University of Bern, Climate and Environmental Physics, Physics Institute, Bern (Switzerland); Rutgers University, Center for Environmental Prediction, New Brunswick, NJ (United States); Stocker, T.F. [University of Bern, Climate and Environmental Physics, Physics Institute, Bern (Switzerland); University of Hawaii, International Pacific Research Center, SOEST, Honolulu, HI (United States)

    2007-03-15

    Extreme midlatitude cyclone characteristics, precipitation, wind speed events, their inter-relationships, and the connection to large-scale atmospheric patterns are investigated in simulations of a prolonged cold period, known as the Maunder Minimum from 1640 to 1715 and compared with today. An ensemble of six simulations for the Maunder Minimum as well as a control simulation for perpetual 1990 conditions are carried out with a coupled atmosphere-ocean general circulation model, i.e., the Climate Community System Model (CCSM). The comparison of the simulations shows that in a climate state colder than today the occurrence of cyclones, the extreme events of precipitation and wind speed shift southward in all seasons in the North Atlantic and the North Pacific. The extremes of cyclone intensity increases significantly in winter in almost all regions, which is related to a stronger meridional temperature gradient and an increase in lower tropospheric baroclinicity. Extremes of cyclone intensity in subregions of the North Atlantic are related to extremes in precipitation and in wind speed during winter. Moreover, extremes of cyclone intensity are also connected to distinct large-scale atmospheric patterns for the different subregions, but these relationships vanish during summer. Analyzing the mean 1,000 hPa geopotential height change of the Maunder Minimum simulations compared with the control simulation, we find a similar pattern as the correlation pattern with the cyclone intensity index of the southern Europe cyclones. This illustrates that changes in the atmospheric high-frequency, i.e., the simulated southward shift of cyclones in the North Atlantic and the related increase of extreme precipitation and wind speed in particular in the Mediterranean in winter, are associated with large-scale atmospheric circulation changes. (orig.)

  3. Methodology for assessing probability of extreme hydrologic events coincidence

    Directory of Open Access Journals (Sweden)

    Prohaska Stevan

    2010-01-01

    Full Text Available The aim of the presented research is improvement of methodology for probability calculation of coinciding occurrence of historic floods and droughts in the same year. The original procedure was developed in order to determine the occurrence probability of such an extreme historic event. There are two phases in calculation procedure for assessment of both extreme drought and flood occurrence probability in the same year. In the first phase outliers are detected as indicators of extreme events, their return periods are calculated and series' statistics adjusted. In the second phase conditional probabilities are calculated: empirical points are plotted, and both extreme drought and flood occurrence probability in the same year is assessed based on the plot. Outlier detection is performed for the territory of Serbia. Results are shown as maps of regions (basins prone to floods, hydrologic drought, or both. Step-by-step numeric example is given for assessing conditional probability of occurrence of flood and drought for GS Raska on the river Raska. Results of assessment of conditional probability in two more cases are given for combination of extreme flood and 30 day minimum flow.

  4. Reproducing an extreme flood with uncertain post-event information

    Science.gov (United States)

    Fuentes-Andino, Diana; Beven, Keith; Halldin, Sven; Xu, Chong-Yu; Reynolds, José Eduardo; Di Baldassarre, Giuliano

    2017-07-01

    Studies for the prevention and mitigation of floods require information on discharge and extent of inundation, commonly unavailable or uncertain, especially during extreme events. This study was initiated by the devastating flood in Tegucigalpa, the capital of Honduras, when Hurricane Mitch struck the city. In this study we hypothesized that it is possible to estimate, in a trustworthy way considering large data uncertainties, this extreme 1998 flood discharge and the extent of the inundations that followed from a combination of models and post-event measured data. Post-event data collected in 2000 and 2001 were used to estimate discharge peaks, times of peak, and high-water marks. These data were used in combination with rain data from two gauges to drive and constrain a combination of well-known modelling tools: TOPMODEL, Muskingum-Cunge-Todini routing, and the LISFLOOD-FP hydraulic model. Simulations were performed within the generalized likelihood uncertainty estimation (GLUE) uncertainty-analysis framework. The model combination predicted peak discharge, times of peaks, and more than 90 % of the observed high-water marks within the uncertainty bounds of the evaluation data. This allowed an inundation likelihood map to be produced. Observed high-water marks could not be reproduced at a few locations on the floodplain. Identifications of these locations are useful to improve model set-up, model structure, or post-event data-estimation methods. Rainfall data were of central importance in simulating the times of peak and results would be improved by a better spatial assessment of rainfall, e.g. from radar data or a denser rain-gauge network. Our study demonstrated that it was possible, considering the uncertainty in the post-event data, to reasonably reproduce the extreme Mitch flood in Tegucigalpa in spite of no hydrometric gauging during the event. The method proposed here can be part of a Bayesian framework in which more events can be added into the analysis as

  5. Extreme flood events in the Dead Sea basin

    Science.gov (United States)

    Ahlborn, Marieke; Ben Dor, Yoav; Schwab, Markus J.; Neugebauer, Ina; Plessen, Birgit; Tjallingii, Rik; Erel, Yigal; Enzel, Yehouda; Brauer, Achim

    2016-04-01

    The Dead Sea is a hypersaline, terminal lake located within the Dead Sea basin at the lowest continental elevation on Earth (~425 m below mean sea level). Extreme hydro-meteorological events in terms of flash floods occur regularly during the wet season in the Dead Sea basin and adjacent mountain ranges. However, little is known about the impact of these extreme floods on the sedimentary dynamics in the Dead Sea and possible links to long-term climate changes. The trilateral research project PALEX (Paleoclimate in the Eastern Mediterranean Region - Levante: Paleohydrology and Extreme Flood Events) was recently initiated within the framework of the DFG priority program 1006 ICDP (International Continental Scientific Drilling Program) to investigate extreme flood events in the Dead Sea basin during the Late Pleistocene and Holocene. Within the ICDP Dead Sea Deep Drilling Project (DSDDP) the ~455 m long sediment core 5017-1 was recovered from the northern Dead Sea basin. Previously published results (Neugebauer et al., 2014, 2015) have demonstrated the occurrence of extreme flood events represented in the sediments as thick graded detrital layers during Late Holocene dry phases. Based on these results we will apply a comprehensive analytical approach including microfacies analyses, μXRF element scanning, and stable isotope geochemistry to different time intervals of core 5017-1. Particularly, we aim to investigate the structure and composition of detrital layers in order to decipher sediment transport mechanisms and the provenance of the flood-triggered sediments. The overarching goal is to establish a high-resolution extreme flood time series for the Dead Sea basin on the basis of a previously established radiocarbon and U-Th chronology (Torfstein et al., 2015; Neugebauer et al., 2014) and to study a possible link between the frequency and magnitude of extreme flood events and the long-term climate trend. Neugebauer I, Brauer A, Schwab MJ, et al. (2014) Lithology of

  6. Investigation on rainfall extremes events trough a geoadditive model

    Science.gov (United States)

    Bocci, C.; Caporali, E.; Petrucci, A.; Rossi, G.

    2012-04-01

    Rainfall can be considered a very important variable, and rainfall extreme events analysis of great concern for the enormous impacts that they may have on everyday life particularly when related to intense rainfalls and floods, and hydraulic risk management. On the catchment area of Arno River in Tuscany, Central Italy, a geoadditive mixed model of rainfall extremes is developed. Most of the territory of Arno River has suffered in the past of many severe hydro-geological events, with high levels of risk due to the vulnerability of a unique artistic and cultural heritage. The area has a complex topography that greatly influences the precipitation regime. The dataset is composed by the time series of the annual maxima of daily rainfall recorded in about 400 rain gauges, spatially distributed over the catchment area of about 8.800 km2. The record period covers mainly the second half of 20th century. The rainfall observations are assumed to follow generalized extreme value distributions whose locations are spatially dependent and where the dependence is captured using a geoadditive model. In particular, since rainfall has a natural spatial domain and a significant spatial variability, a spatial hierarchical model for extremes is used. The spatial hierarchical models, in fact, take into account data from all locations, borrowing strength from neighbouring locations when they estimate parameters and are of great interest when small set of data is available, as in the case of rainfall extreme values. Together with rain gauges location variables further physiographic variables are investigated as explanation variables. The implemented geoadditive mixed model of spatially referenced time series of rainfall extreme values, is able to capture the spatial dynamics of the rainfall extreme phenomenon. Since the model shows evidence of a spatial trend in the rainfall extreme dynamic, the temporal dynamic and the time influence can be also taken into account. The implemented

  7. Temporal variation of extreme precipitation events in Lithuania

    Directory of Open Access Journals (Sweden)

    Egidijus Rimkus

    2011-05-01

    Full Text Available Heavy precipitation events in Lithuania for the period 1961-2008 were analysed. The spatial distribution and dynamics of precipitation extremes were investigated. Positive tendencies and in some cases statistically significant trends were determined for the whole of Lithuania. Atmospheric circulation processes were derived using Hess & Brezowski's classification of macrocirculation forms. More than one third of heavy precipitation events (37% were observed when the atmospheric circulation was zonal. The location of the central part of a cyclone (WZ weather condition subtype over Lithuania is the most common synoptic situation (27% during heavy precipitation events. Climatic projections according to outputs of the CCLM model are also presented in this research. The analysis shows that the recurrence of heavy precipitation events in the 21st century will increase significantly (by up to 22% in Lithuania.

  8. Possible future changes in extreme events over Northern Eurasia

    Science.gov (United States)

    Monier, Erwan; Sokolov, Andrei; Scott, Jeffery

    2013-04-01

    In this study, we investigate possible future climate change over Northern Eurasia and its impact on extreme events. Northern Eurasia is a major player in the global carbon budget because of boreal forests and peatlands. Circumpolar boreal forests alone contain more than five times the amount of carbon of temperate forests and almost double the amount of carbon of the world's tropical forests. Furthermore, severe permafrost degradation associated with climate change could result in peatlands releasing large amounts of carbon dioxide and methane. Meanwhile, changes in the frequency and magnitude of extreme events, such as extreme precipitation, heat waves or frost days are likely to have substantial impacts on Northern Eurasia ecosystems. For this reason, it is very important to quantify the possible climate change over Northern Eurasia under different emissions scenarios, while accounting for the uncertainty in the climate response and changes in extreme events. For several decades, the Massachusetts Institute of Technology (MIT) Joint Program on the Science and Policy of Global Change has been investigating uncertainty in climate change using the MIT Integrated Global System Model (IGSM) framework, an integrated assessment model that couples an earth system model of intermediate complexity (with a 2D zonal-mean atmosphere) to a human activity model. In this study, regional change is investigated using the MIT IGSM-CAM framework that links the IGSM to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM). New modules were developed and implemented in CAM to allow climate parameters to be changed to match those of the IGSM. The simulations presented in this paper were carried out for two emission scenarios, a "business as usual" scenario and a 660 ppm of CO2-equivalent stabilization, which are similar to, respectively, the Representative Concentration Pathways RCP8.5 and RCP4.5 scenarios. Values of climate sensitivity and net aerosol

  9. High resolution modelling of extreme precipitation events in urban areas

    Science.gov (United States)

    Siemerink, Martijn; Volp, Nicolette; Schuurmans, Wytze; Deckers, Dave

    2015-04-01

    The present day society needs to adjust to the effects of climate change. More extreme weather conditions are expected, which can lead to longer periods of drought, but also to more extreme precipitation events. Urban water systems are not designed for such extreme events. Most sewer systems are not able to drain the excessive storm water, causing urban flooding. This leads to high economic damage. In order to take appropriate measures against extreme urban storms, detailed knowledge about the behaviour of the urban water system above and below the streets is required. To investigate the behaviour of urban water systems during extreme precipitation events new assessment tools are necessary. These tools should provide a detailed and integral description of the flow in the full domain of overland runoff, sewer flow, surface water flow and groundwater flow. We developed a new assessment tool, called 3Di, which provides detailed insight in the urban water system. This tool is based on a new numerical methodology that can accurately deal with the interaction between overland runoff, sewer flow and surface water flow. A one-dimensional model for the sewer system and open channel flow is fully coupled to a two-dimensional depth-averaged model that simulates the overland flow. The tool uses a subgrid-based approach in order to take high resolution information of the sewer system and of the terrain into account [1, 2]. The combination of using the high resolution information and the subgrid based approach results in an accurate and efficient modelling tool. It is now possible to simulate entire urban water systems using extreme high resolution (0.5m x 0.5m) terrain data in combination with a detailed sewer and surface water network representation. The new tool has been tested in several Dutch cities, such as Rotterdam, Amsterdam and The Hague. We will present the results of an extreme precipitation event in the city of Schiedam (The Netherlands). This city deals with

  10. Statistics of Extreme Events with Application to Climate

    Science.gov (United States)

    1992-01-01

    costs associated with global warming will be measured in terms of changes in the frequency and intensity of extreme events such as droughts, floods...in climate studies or in discussions of greenhouse warming despite the obvious importance of large deviations from 1 the mean. The theory and...examining 33 7.60 Globa Averaged Temerture Range for Gaussian Distributi, Dew oin Tepertur 6.40 r5-0Sea Surface Temperature - 5.20 4.60 4,00

  11. Distributing urban resilience to extreme precipitation events with green infrastructure

    Science.gov (United States)

    Montalto, F. A.; Catalano De Sousa, M.; Yu, Z.

    2013-12-01

    New urban green spaces are being designed to manage stormwater, but their performance in a changing climate is untested. Key questions pertain to the ability of these systems to mitigate flood and sewer overflow concerns during impact of extreme events on, and to withstand (biologically and physically) increased frequency and intensity of drought and flood conditions. In this presentation, we present field data characterizing performance of a bioretention area, a stormwater treatment wetland, and a green roof under Hurricane Irene (2011), Superstorm Sandy (2012), and a variety of extreme precipitation events during the summer of 2013. Specifically, we characterize the fate and volume of incident runon and/or precipitation to the facilities during these extreme events, and compare them to long term monitored performance metrics. We also present laboratory test results documenting how vegetation in these facilities stands up to simulated flood and drought conditions. The results are discussed in the context of predicted climate change, specifically associated with the amount and timing of precipitation.

  12. Predicting Indoor Heat Exposure Risk during Extreme Heat Events

    Science.gov (United States)

    Quinn, Ashlinn; Tamerius, James D.; Perzanowski, Matthew; Jacobson, Judith S.; Goldstein, Inge; Acosta, Luis; Shaman, Jeffrey

    2014-01-01

    Increased heat-related morbidity and mortality are expected direct consequences of global warming. In the developed world, most fatal heat exposures occur in the indoor home environment, yet little is known of the correspondence between outdoor and indoor heat. Here we show how summertime indoor heat and humidity measurements from 285 low- and middle-income New York City homes vary as a function of concurrent local outdoor conditions. Indoor temperatures and heat index levels were both found to have strong positive linear associations with their outdoor counterparts; however, among the sampled homes a broad range of indoor conditions manifested for the same outdoor conditions. Using these models, we simulated indoor conditions for two extreme events: the 10-day 2006 NYC heat wave and a 9-day event analogous to the more extreme 2003 Paris heat wave. These simulations indicate that many homes in New York City would experience dangerously high indoor heat index levels during extreme heat events. These findings also suggest that increasing numbers of NYC low- and middle-income households will be exposed to heat index conditions above important thresholds should the severity of heat waves increase with global climate change. The study highlights the urgent need for improved indoor temperature and humidity management. PMID:24893319

  13. Extreme Rainfall Events Over Southern Africa: Assessment of a Climate Model to Reproduce Daily Extremes

    Science.gov (United States)

    Williams, C.; Kniveton, D.; Layberry, R.

    2007-12-01

    It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable extreme events, due to a number of factors including extensive poverty, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of a state-of-the-art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. Once the model's ability to reproduce extremes has been assessed, idealised regions of SST anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, results from sensitivity testing of the UK Meteorological Office Hadley Centre's climate model's domain size are firstly presented. Then simulations of current climate from the model, operating in both regional and global mode, are compared to the MIRA dataset at daily timescales. Thirdly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset. Finally, the results from the idealised SST experiments are briefly presented, suggesting associations between rainfall extremes and both local and remote SST anomalies.

  14. BOLIVAR-tool for analysis and simulation of metocean extreme events

    Science.gov (United States)

    Lopatoukhin, Leonid; Boukhanovsky, Alexander

    2015-04-01

    Metocean extreme events are caused by the combination of multivariate and multiscale processes which depend from each other in different scales (due to short-term, synoptic, annual, year-to-year variability). There is no simple method for their estimation with controllable tolerance. Thus, the extreme analysis in practice is sometimes reduced to the exploration of various methods and models in respect to decreasing the uncertainty of estimates. Therefore, a researcher needs the multifaceted computational tools which cover the various branches of extreme analysis. BOLIVAR is the multi-functional computational software for the researches and engineers who explore the extreme environmental conditions to design and build offshore structures and floating objects. It contains a set of computational modules of various methods for extreme analysis, and a set of modules for the stochastic and hydrodynamic simulation of metocean processes. In this sense BOLIVAR is a Problem Solving Environment (PSE). The BOLIVAR is designed for extreme events analysis and contains a set of computational modules of IDM, AMS, POT, MENU, and SINTEF methods, and a set of modules for stochastic simulation of metocean processes in various scales. The BOLIVAR is the tool to simplify the resource-consuming computational experiments to explore the metocean extremes in univariate and multivariate cases. There are field ARMA models for short-term variability, spatial-temporal random pulse model for synoptic variability (storms and calms alteration), cyclostationare model of annual and year-to-year variability. The combination of above mentioned modules and data sources allows to estimate: omnidirectional and directional extremes (with T-years return periods); multivariate extremes (the set of parameters) and evaluation of their impacts to marine structures and floating objects; extremes of spatial-temporal fields (including the trajectory of T-years storms). An employment of concurrent methods for

  15. Understanding extreme rainfall events in Australia through historical data

    Science.gov (United States)

    Ashcroft, Linden; Karoly, David John

    2016-04-01

    Historical climate data recovery is still an emerging field in the Australian region. The majority of Australia's instrumental climate analyses begin in 1900 for rainfall and 1910 for temperature, particularly those focussed on extreme event analysis. This data sparsity for the past in turn limits our understanding of long-term climate variability, constraining efforts to predict the impact of future climate change. To address this need for improved historical data in Australia, a new network of recovered climate observations has recently been developed, centred on the highly populated southeastern Australian region (Ashcroft et al., 2014a, 2014b). The dataset includes observations from more than 39 published and unpublished sources and extends from British settlement in 1788 to the formation of the Australian Bureau of Meteorology in 1908. Many of these historical sources provide daily temperature and rainfall information, providing an opportunity to improve understanding of the multidecadal variability of Australia's extreme events. In this study we combine the historical data for three major Australian cities - Melbourne, Sydney and Adelaide - with modern observations to examine extreme rainfall variability over the past 174 years (1839-2013). We first explore two case studies, combining instrumental and documentary evidence to support the occurrence of severe storms in Sydney in 1841 and 1844. These events appear to be at least as extreme as Sydney's modern 24-hour rainfall record. Next we use a suite of rainfall indices to assess the long-term variability of rainfall in southeastern Australia. In particular, we focus on the stationarity of the teleconnection between the El Niño-Southern Oscillation (ENSO) phenomenon and extreme rainfall events. Using ENSO reconstructions derived from both palaeoclimatic and documentary sources, we determine the historical relationship between extreme rainfall in southeastern Australia and ENSO, and examine whether or not this

  16. Reliability of structural systems subjected to extreme forcing events

    CERN Document Server

    Joo, Han-Kyul; Sapsis, Themistoklis P

    2016-01-01

    We characterize the complex, heavy-tailed probability distribution functions (pdf) describing the response and its local extrema for structural systems subjected to random forcing that includes extreme events. Our approach is based on the recent probabilistic decomposition-synthesis technique in, where we decouple rare events regimes from the background fluctuations. The result of the analysis has the form of a semi-analytical approximation formula for the pdf of the response (displacement, velocity, and acceleration) and the pdf of the local extrema. For special limiting cases (lightly damped or heavily damped systems) our analysis provides fully analytical approximations. We also demonstrate how the method can be applied to high dimensional structural systems through a two-degrees-of-freedom structural system undergoing rare events due to intermittent forcing. The derived formulas can be evaluated with very small computational cost and are shown to accurately capture the complicated heavy-tailed and asymmet...

  17. Impacts of extreme weather events on transport infrastructure in Norway

    Science.gov (United States)

    Frauenfelder, Regula; Solheim, Anders; Isaksen, Ketil; Romstad, Bård; Dyrrdal, Anita V.; Ekseth, Kristine H. H.; Gangstø Skaland, Reidun; Harbitz, Alf; Harbitz, Carl B.; Haugen, Jan E.; Hygen, Hans O.; Haakenstad, Hilde; Jaedicke, Christian; Jónsson, Árni; Klæboe, Ronny; Ludvigsen, Johanna; Meyer, Nele K.; Rauken, Trude; Sverdrup-Thygeson, Kjetil

    2016-04-01

    With the latest results on expected future increase in air temperature and precipitation changes reported by the Intergovernmental Panel on Climate Change (IPCC), the climate robustness of important infrastructure is of raising concern in Norway, as well as in the rest of Europe. Economic consequences of natural disasters have increased considerably since 1950. In addition to the effect of demographic changes such as population growth, urbanization and more and more concentration of valuable assets, this increase is also related to an augmenting frequency of extreme events, such as storms, flooding, drought, and landslides. This change is also observable in Norway, where the increased frequency of strong precipitation has led to frequent flooding and landslide events during the last 20 years. A number of studies show that climate change causes an increase in both frequency and intensity of several types of extreme weather, especially when it comes to precipitation. Such extreme weather events greatly affect the transport infrastructure, with numerous and long closures of roads and railroads, in addition to damage and repair costs. Frequent closures of railroad and roads lead to delay or failure in delivery of goods, which again may lead to a loss of customers and/or - eventually - markets. Much of the Norwegian transport infrastructure is more than 50 years old and therefore not adequately dimensioned, even for present climatic conditions. In order to assess these problems and challenges posed to the Norwegian transport infrastructure from present-day and future extreme weather events, the project "Impacts of extreme weather events on infrastructure in Norway (InfraRisk)" was performed under the research Council of Norway program 'NORKLIMA', between 2009 and 2013. The main results of the project are: - Moderate to strong precipitation events have become more frequent and more intense in Norway over the last 50 years, and this trend continues throughout the 21st

  18. Financial market response to extreme events indicating climatic change

    Science.gov (United States)

    Anttila-Hughes, J. K.

    2016-05-01

    A variety of recent extreme climatic events are considered to be strong evidence that the climate is warming, but these incremental advances in certainty often seem ignored by non-scientists. I identify two unusual types of events that are considered to be evidence of climate change, announcements by NASA that the global annual average temperature has set a new record, and the sudden collapse of major polar ice shelves, and then conduct an event study to test whether news of these events changes investors' valuation of energy companies, a subset of firms whose future performance is closely tied to climate change. I find evidence that both classes of events have influenced energy stock prices since the 1990s, with record temperature announcements on average associated with negative returns and ice shelf collapses associated with positive returns. I identify a variety of plausible mechanisms that may be driving these differential responses, discuss implications for energy markets' views on long-term regulatory risk, and conclude that investors not only pay attention to scientifically significant climate events, but discriminate between signals carrying different information about the nature of climatic change.

  19. Characteristics of extreme dust events observed over two urban areas in Iran

    Indian Academy of Sciences (India)

    Abbas-Ali A Bidokhti; Maryam Gharaylou; Nafiseh Pegahfar; Samaneh Sabetghadam; Maryam Rezazadeh

    2016-03-01

    Determination of dust loading in the atmosphere is important not only from the public health point of view, but also for regional climate changes. The present study focuses on the characteristics of two major dust events for two urban areas in Iran, Kermanshah and Tehran, over the period of 4 years from 2006 to 2009. To detect extreme dust outbreaks, various datasets including synoptic data, dust concentration, reanalysis data and numerical results of WRF and HYSPLIT models were used. The weather maps demonstrate that for these events dusts are mainly generated when wind velocity is high and humidity islow in the lower troposphere and the region is under the influence of a thermal low. The event lasts until the atmospheric stability prevails and the surface wind speed weakens. The thermal low nature of the synoptic conditions of these major events is also responsible for deep boundary layer development with its thermals affecting the vertical dust flux over the region. Trajectory studies show that the dust events originated from deserts in Iraq and Syria and transported towards Iran. The main distinction between the two types of mobilizations seems to affect the dust concentrations in the Tehran urban area.

  20. Extreme Wind Calculation Applying Spectral Correction Method – Test and Validation

    DEFF Research Database (Denmark)

    Rathmann, Ole Steen; Hansen, Brian Ohrbeck; Larsén, Xiaoli Guo

    2016-01-01

    We present a test and validation of extreme wind calculation applying the Spectral Correction (SC) method as implemented in a DTU Wind Condition Software. This method can do with a short-term(~1 year) local measured wind data series in combination with a long-term (10-20 years) reference modelled...

  1. Extreme Motion Predictions for Deepwater TLP Floaters for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Mansour, A. E.

    2006-01-01

    The paper addresses the calculation of extreme motion of a TLP type of floater for an offshore wind turbine. Motions are of significant importance for the operation of the wind turbine as they influence the blade loadings and hence the downtime of the wind turbine energy production. The paper ill...

  2. Analogues of atmospheric circulation to probe extreme and rare events

    Science.gov (United States)

    Yiou, P.

    2015-12-01

    Analogues of atmospheric circulation have had many applications, from weather prediction to the downscaling of climate variables. The main assumptions behind this methodology are that climate variables (such as temperature or precipitation) are linked a large-scale atmospheric predictand, which is usually taken as sea-level pressure, and that such predictands recur through time. They offer a possibility to estimate probability distributions of a climate variable, conditional to patterns of atmospheric circulation. In addition, this methodology allows the quantification of unusual weather patterns that have been observed. I will represent a way to use analogues of circulation for the detection/attribution of extreme events of precipitation and temperature. This approach will be illustrated on test cases, including the warm European winter of 2006/2007, the extremes of precipitation over Southern UK and northwestern France in January 2014, and the European summer of 2015. I will show how this analysis provides a low-cost estimate of the fraction of attributable risk (FAR) for extreme events that verify the above mentioned hypotheses. Such an analysis can be performed in continuous time with reanalysis data and meteorological observations.

  3. Reproducing an extreme flood with uncertain post-event information

    Directory of Open Access Journals (Sweden)

    D. Fuentes-Andino

    2017-07-01

    Full Text Available Studies for the prevention and mitigation of floods require information on discharge and extent of inundation, commonly unavailable or uncertain, especially during extreme events. This study was initiated by the devastating flood in Tegucigalpa, the capital of Honduras, when Hurricane Mitch struck the city. In this study we hypothesized that it is possible to estimate, in a trustworthy way considering large data uncertainties, this extreme 1998 flood discharge and the extent of the inundations that followed from a combination of models and post-event measured data. Post-event data collected in 2000 and 2001 were used to estimate discharge peaks, times of peak, and high-water marks. These data were used in combination with rain data from two gauges to drive and constrain a combination of well-known modelling tools: TOPMODEL, Muskingum–Cunge–Todini routing, and the LISFLOOD-FP hydraulic model. Simulations were performed within the generalized likelihood uncertainty estimation (GLUE uncertainty-analysis framework. The model combination predicted peak discharge, times of peaks, and more than 90 % of the observed high-water marks within the uncertainty bounds of the evaluation data. This allowed an inundation likelihood map to be produced. Observed high-water marks could not be reproduced at a few locations on the floodplain. Identifications of these locations are useful to improve model set-up, model structure, or post-event data-estimation methods. Rainfall data were of central importance in simulating the times of peak and results would be improved by a better spatial assessment of rainfall, e.g. from radar data or a denser rain-gauge network. Our study demonstrated that it was possible, considering the uncertainty in the post-event data, to reasonably reproduce the extreme Mitch flood in Tegucigalpa in spite of no hydrometric gauging during the event. The method proposed here can be part of a Bayesian framework in which more events

  4. The Estimation of Probability of Extreme Events for Small Samples

    Science.gov (United States)

    Pisarenko, V. F.; Rodkin, M. V.

    2017-02-01

    The most general approach to the study of rare extreme events is based on the extreme value theory. The fundamental General Extreme Value Distribution lies in the basis of this theory serving as the limit distribution for normalized maxima. It depends on three parameters. Usually the method of maximum likelihood (ML) is used for the estimation that possesses well-known optimal asymptotic properties. However, this method works efficiently only when sample size is large enough ( 200-500), whereas in many applications the sample size does not exceed 50-100. For such sizes, the advantage of the ML method in efficiency is not guaranteed. We have found that for this situation the method of statistical moments (SM) works more efficiently over other methods. The details of the estimation for small samples are studied. The SM is applied to the study of extreme earthquakes in three large virtual seismic zones, representing the regime of seismicity in subduction zones, intracontinental regime of seismicity, and the regime in mid-ocean ridge zones. The 68%-confidence domains for pairs of parameter (ξ, σ) and (σ, μ) are derived.

  5. Probabilistic forecast of daily areal precipitation focusing on extreme events

    Science.gov (United States)

    Bliefernicht, J.; Bárdossy, A.

    2007-04-01

    A dynamical downscaling scheme is usually used to provide a short range flood forecasting system with high-resolved precipitation fields. Unfortunately, a single forecast of this scheme has a high uncertainty concerning intensity and location especially during extreme events. Alternatively, statistical downscaling techniques like the analogue method can be used which can supply a probabilistic forecasts. However, the performance of the analogue method is affected by the similarity criterion, which is used to identify similar weather situations. To investigate this issue in this work, three different similarity measures are tested: the euclidean distance (1), the Pearson correlation (2) and a combination of both measures (3). The predictor variables are geopotential height at 1000 and 700 hPa-level and specific humidity fluxes at 700 hPa-level derived from the NCEP/NCAR-reanalysis project. The study is performed for three mesoscale catchments located in the Rhine basin in Germany. It is validated by a jackknife method for a period of 44 years (1958-2001). The ranked probability skill score, the Brier Skill score, the Heidke skill score and the confidence interval of the Cramer association coefficient are calculated to evaluate the system for extreme events. The results show that the combined similarity measure yields the best results in predicting extreme events. However, the confidence interval of the Cramer coefficient indicates that this improvement is only significant compared to the Pearson correlation but not for the euclidean distance. Furthermore, the performance of the presented forecasting system is very low during the summer and new predictors have to be tested to overcome this problem.

  6. Hydro-meteorological extreme events in the 18th century in Portugal

    Science.gov (United States)

    Fragoso, Marcelo; João Alcoforado, Maria; Taborda, João Paulo

    2013-04-01

    The present work is carried out in the frame of the KLIMHIST PROJECT ("Reconstruction and model simulations of past climate in Portugal using documentary and early instrumental sources, 17th-19th century)", and is devoted to the study of hydro-meteorological extreme events during the last 350 years, in order to understand how they have changed in time and compare them with current analogues. More specifically, the results selected to this presentation will focus on some hydro-meteorological extreme events of the 18th century, like severe droughts, heavy precipitation episodes and windstorms. One of the most noteworthy events was the winterstorm Bárbara (3rd to 6th December 1739), already studied in prior investigations (Taborda et al, 2004; Pfister et al, 2010), a devastating storm with strong impacts in Portugal caused by violent winds and heavy rainfall. Several other extreme events were detected by searching different documentary archives, including individual, administrative and ecclesiastic sources. Moreover, a more detailed insight to the 1783-1787 period will be made with regard the Lisbon region, taking into consideration the availability of information for daily meteorological observations as well as documentary evidences, like descriptions from Gazeta de Lisboa, the periodic with more continuous publication in the 18thcentury. Key-words: Instrumental data, Documentary data, Extreme events, Klimhist Project, Portugal References Pfister, C., Garnier, E., Alcoforado, M.J., Wheeler, D. Luterbacher, J. Nunes, M.F., Taborda, J.P. (2010) The meteorological framework and the cultural memory of three severe winter-storms in early eighteenth-century Europe, Climatic Change, 101, 1-2, 281-310 Taborda, JP; Alcoforado, MJ and Garcia, JC (2004) O Clima do Sul de Portugal no Séc.XVIII, Centro de Estudos Geográficos, Área de de Investigação de Geo-Ecologia, relatório no 2

  7. Mesoscale high-resolution modeling of extreme wind speeds over western water areas of the Russian Arctic

    Science.gov (United States)

    Platonov, Vladimir S.; Kislov, Alexander V.

    2016-11-01

    A statistical analysis of extreme weather events over coastal areas of the Russian Arctic based on observational data has revealed many interesting features of wind velocity distributions. It has been shown that the extremes contain data belonging to two different statistical populations. Each of them is reliably described by a Weibull distribution. According to the standard terminology, these sets of extremes are named ‘black swans’ and ‘dragons’. The ‘dragons’ are responsible for most extremes, surpassing the ‘black swans’ by 10 - 30 %. Since the data of the global climate model INM-CM4 do not contain ‘dragons’, the wind speed extremes are investigated on the mesoscale using the COSMO-CLM model. The modelling results reveal no differences between the ‘swans’ and ‘dragons’ situations. It could be associated with the poor sample data used. However, according to many case studies and modeling results we assume that it is caused by a rare superposition of large-scale synoptic factors and many local meso- and microscale factors (surface, coastline configuration, etc.). Further studies of extreme wind speeds in the Arctic, such as ‘black swans’ and ‘dragons’, are necessary to focus on non-hydrostatic high-resolution atmospheric modelling using downscaling techniques.

  8. Modelling the extreme precipitation event over Madeira Island on 20 February 2010

    Directory of Open Access Journals (Sweden)

    T. Luna

    2011-09-01

    Full Text Available In the morning of the 20 February of 2010 an extreme precipitation event occurred over Madeira Island. This event triggered several flash floods and mudslides in the southern parts of the island, resulting in 42 confirmed deaths, 100 injured, and at least 8 people still missing. These extreme weather conditions were associated to a weather frontal system moving northeastwards embedded in a low pressure area centered in the Azores archipelago. This storm was one in a series of such storms that affected Portugal, Spain, Morocco and the Canary islands causing flooding and strong winds. These storms were bolstered by an unusually strong sea surface temperature gradient across the Atlantic Ocean.

    In this study, the WRF model is used to evaluate the intensity and predictability of this precipitation extreme event over the island. The synoptic/orographic nature of the precipitation is also evaluated, as well as the sensitivity of the model to horizontal resolution and cumulus parameterization. Orography was found to be the main factor explaining the occurrence, amplitude and phase of precipitation over the Island.

  9. PRACE resources to study extreme natural events: the SCENE project

    Science.gov (United States)

    Fiori, Elisabetta; Galizia, Antonella; Danovaro, Emanuele; Clematis, Andrea; Bedrina, Tatiana; Parodi, Antonio

    2014-05-01

    Forecasting severe storms and floods is one of the main challenges of 21th century. Floods are the most dangerous meteorological hazard in the Mediterranean basins due to both the number of people affected and to the relatively high frequency by which human activities and goods suffer damages and losses. The numerical simulations of extreme events which happen over small basins as the Mediterranean ones are need a very fine-resolution in space and time and as a consequence considerable memory and computational power are required. Since the resources provided by the PRACE project represent the solution for satisfying such requirements, the Super Computing of Extreme Natural Events (SCENE) project has been proposed. SCENE aims to provide an advanced understanding of the intrinsic predictability of severe precipitation processes and the associated predictive ability of high-resolution meteorological models with a special focus on flash flood-producing storms in regions of complex orography (e.g. Mediterranean area) through the assessment of the role of both the convective and microphysical processes. The meteorological model considered in the project is the Weather Research and Forecasting (WRF) model, a state of the art mesoscale numerical weather prediction system designed to serve both operational forecasting and atmospheric research needs. Thus, among all the parameterizations available in the WRF model, the WRF Single-Moment 6-Class Scheme and the Thompson microphysics scheme will be adopted for the numerical simulations in combination with three different approaches for the treatment of the convective processes, that is the use of explicit method, Betts-Miller-Janjic Scheme and Kain-Fritsch. As for flash-flood producing storms, the project considers the recent sequence of extreme events occurred in the north-western portion of the Mediterranean sea; some of these events are the so-called critical cases of the DRIHM project (www.drihm.eu), i.e. selected severe

  10. Bernoulli-Langevin Wind Speed Model for Simulation of Storm Events

    Science.gov (United States)

    Fürstenau, Norbert; Mittendorf, Monika

    2016-12-01

    We present a simple nonlinear dynamics Langevin model for predicting the instationary wind speed profile during storm events typically accompanying extreme low-pressure situations. It is based on a second-degree Bernoulli equation with δ-correlated Gaussian noise and may complement stationary stochastic wind models. Transition between increasing and decreasing wind speed and (quasi) stationary normal wind and storm states are induced by the sign change of the controlling time-dependent rate parameter k(t). This approach corresponds to the simplified nonlinear laser dynamics for the incoherent to coherent transition of light emission that can be understood by a phase transition analogy within equilibrium thermodynamics [H. Haken, Synergetics, 3rd ed., Springer, Berlin, Heidelberg, New York 1983/2004.]. Evidence for the nonlinear dynamics two-state approach is generated by fitting of two historical wind speed profiles (low-pressure situations "Xaver" and "Christian", 2013) taken from Meteorological Terminal Air Report weather data, with a logistic approximation (i.e. constant rate coefficients k) to the solution of our dynamical model using a sum of sigmoid functions. The analytical solution of our dynamical two-state Bernoulli equation as obtained with a sinusoidal rate ansatz k(t) of period T (=storm duration) exhibits reasonable agreement with the logistic fit to the empirical data. Noise parameter estimates of speed fluctuations are derived from empirical fit residuals and by means of a stationary solution of the corresponding Fokker-Planck equation. Numerical simulations with the Bernoulli-Langevin equation demonstrate the potential for stochastic wind speed profile modeling and predictive filtering under extreme storm events that is suggested for applications in anticipative air traffic management.

  11. High resolution simulations of extreme weather event in south Sardinia

    Science.gov (United States)

    Dessy, C.

    2010-05-01

    In the last decade, like most region of Mediterranean Europe, Sardinia has experienced severe precipitation events generating flash floods resulting in loss of lives and large economic damage. A numerical meteorological operational set-up is applied in the local weather service with the aim to improve the operational short range weather forecast of the Service with particular attention to intense, mostly rare and potentially severe, events. On the early hours of 22 October 2008 an intense and almost stationary mesoscale convective system interested particularly the south of Sardinia, heavy precipitation caused a flash flood with fatalities and numerous property damages. The event was particularly intense: about 400 mm of rain in 12 hours (a peak of 150 mm in an hour) were misured by the regional network of weather stations and these values appear extremely meaningfulls since those are about seven times the climatological monthly rainfall for that area and nearly the climatological annual rainfall. With the aim to improve significantly quantitative precipitation forecasting, it was evaluated a different set-up of a high resolution convection resolving model (MM5) initialised with different initial and boundary conditions (ECMWF and NCAR). In this paper it is discussed the meteorological system related to the mentioned event by using different numerical weather models (GCM and LAM) combined with conventional data, radar Doppler and Meteosat images. Preliminary results say that a different set-up of a non hydrostatic model can forecast severe convection events in advance of about one day and produce more realistic rainfall than that current operational and also improve the weather forecasts to respect the ECMWF-GCM. So it could drive an operational alert system in order to limit the risks associated with heavy precipitation events.

  12. Recent Changes of Some Observed Climate Extreme Events in Kano

    Directory of Open Access Journals (Sweden)

    Imole Ezekiel Gbode

    2015-01-01

    Full Text Available Observed rainfall and temperature data for the period 1960–2007 were used to examine recent changes of extreme climate over Kano, located in the Sahelian region of Nigeria. The RClimDex software package was employed to generate nine important climate indices as defined by the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI. For the entire period, the results show a warming trend, an increased number of cool nights, more warm days, and a strong increase in the number of warm spells. The rainfall indices show a slight increase in annual total rainfall, a decrease in the maximum number of consecutive wet days, and a significant increase in the number of extremely wet days. Such changes in climate may result in an increasing demand for domestic energy for cooling and a higher evaporation rate from water bodies and irrigated crop. These findings may give some guidance to politicians and planners in how to best cope with these extreme weather and climate events.

  13. Operational risk of a wind farm energy production by Extreme Value Theory and Copulas

    CERN Document Server

    D'Amico, Guglielmo; Prattico, Flavio

    2014-01-01

    In this paper we use risk management techniques to evaluate the potential effects of those operational risks that affect the energy production of a wind farm. We concentrate our attention on three major risk factors: wind speed uncertainty, wind turbine reliability and interactions of wind turbines due mainly to their placement. As a first contribution, we show that the Weibull distribution, commonly used to fit recorded wind speed data, underestimates rare events. Therefore, in order to achieve a better estimation of the tail of the wind speed distribution, we advance a Generalized Pareto distribution. The wind turbines reliability is considered by modeling the failures events as a compound Poisson process. Finally, the use of Copula able us to consider the correlation between wind turbines that compose the wind farm. Once this procedure is set up, we show a sensitivity analysis and we also compare the results from the proposed procedure with those obtained by ignoring the aforementioned risk factors.

  14. Assessing Hydrological Extreme Events with Geospatial Data and Models

    Science.gov (United States)

    Vivoni, Enrique R.; Grimaldi, Salvatore; Nardi, Fernando; Ivanov, Valeriy Y.; Castelli, Fabio; Bras, Rafael L.; Ubertini, Lucio

    2004-09-01

    Prediction of river basin hydrological response to extreme meteorological events is a primary concern in areas with frequent flooding, landslides, and debris flows. Natural hydrogeological disasters in many regions lead to extensive property damage, impact on societal activities, and loss of life. Hydrologists have a long history of assessing and predicting hydrologic hazards through the combined use of field observations, monitoring networks, remote sensing, and numerical modeling. Nevertheless, the integration of field data and computer models has yet to result in prediction systems that capture space-time interactions between meteorological forcing, land surface characteristics, and the internal hydrological response in river basins. Capabilities for assessing hydrologic extreme events are greatly enhanced via the use of geospatial data sets describing watershed properties such as topography, channel structure, soils, vegetation, and geological features. Recent advances in managing, processing, and visualizing cartographic data with geographic information systems (GIS) have enabled their direct use in spatially distributed hydrological models. In a distributed model application, geospatial data sets can be used to establish the model domain, specify boundary and initial conditions, determine the spatial variation of parameter values, and provide the spatial model forcing. By representing a watershed through a set of discrete elements, distributed models simulate water, energy, and mass transport in a landscape and provide estimates of the spatial pattern of hydrologic states, fluxes, and pathways.

  15. The Climatology of Taiwan extreme rainfall events and the attributions

    Science.gov (United States)

    Su, S. H.; Kuo, H. C.; Chen, Y. H.; Chu, J. L.; Lin, L. Y.

    2015-12-01

    Taiwan is located in the East-Asian monsoon region with average 2,500mm annual precipitation. Most significant Meteorological disasters are related to extreme precipitation which is associated with a complex terrain. Therefore, the long-term trends or climate variations in precipitation due to climate change are our major concern. We studied the climatology of extreme rainfall (ER, 95thpercentile) events in Taiwan using hourly precipitation data form 21 surface stations during 1960-2014. ER contributes about 40% of the total rain amount. It was found that approximately 68% of ER is related to typhoon (TY) and 22% associated with the Mei-Yu (MY) frontal system. The total ER amount annual variation is strongly related to TY, with correlation coefficient of 0.89 for rainfall amount and 0.86 for frequency. There is a significant increasing trend of TY-ER in past 55 years, but also has large variations over the annual and decadal time scales. The inter-annual variation of astounding extreme rainfall (AER, 99.9thpercentile) is increased significantly, especially in the past 15 years. It implies that the increasing of AER rainfall amount majorly caused by the increasing of frequency instead of average rain intensity of TY-AER. The MY-ER events are also highly correlated with the frontal system. The correlation is 0.84 for the rainfall amount and 0.83 of the frequency with the frontal days. There are also strong inter-annual variations of MY-ER, but the long-term trends are not as significant as TY-ER. The variation of frontal system number is another parameter may impact the MY-ER. The observational frontal system numbers had positive correlation with the MY-ER. The attribution of Taiwan TY-ER changes was debated in the research community. In general, the public acceptance of Taiwan extreme precipitation events is affected by multi-scale systems. According to observational data, the increasing of TY-ER amount is 37 % (48% )in Taiwan and some resent studies (Wang et al

  16. Distribution of extreme rainfall events over Ebro River basin

    Science.gov (United States)

    Saa, Antonio; Tarquis, Ana Maria; Valencia, Jose Luis; Gascó, Jose Maria

    2010-05-01

    The purpose of this work is to provide a description of the heavy rainfall phenomenon on statistical tools from a Spanish region. We want to quantify the effect of the climate change to verify the rapidity of its evolution across the variation of the probability distributions. Our conclusions have special interest for the agrarian insurances, which may make estimates of costs more realistically. In this work, the analysis mainly focuses on: The distribution of consecutive days without rain for each gauge stations and season. We estimate density Kernel functions and Generalized Pareto Distribution (GPD) for a network of station from the Ebro River basin until a threshold value u. We can establish a relation between distributional parameters and regional characteristics. Moreover we analyze especially the tail of the probability distribution. These tails are governed by law of power means that the number of events n can be expressed as the power of another quantity x : n(x) = x? . ? can be estimated as the slope of log-log plot the number of events and the size. The most convenient way to analyze n(x) is using the empirical probability distribution. Pr(X > x) ∞ x-?. The distribution of rainfall over percentile of order 0.95 from wet days at the seasonal scale and in a yearly scale with the same treatment of tails than in the previous section. The evolution of the distribution in the second XXth century and the impact on the extreme values model. After realized the analyses it does not appreciate difference in the distribution throughout the time which suggests that this region does not appreciate increase of the extreme values both for the number of dry consecutive days and for the value of the rainfall References: Coles, Stuart (2001). An Introduction to Statistical Modeling of Extreme Values,. Springer-Verlag Krishnamoorthy K. (2006), Handbook of Statistical Distributions with Applications, Chapman & Hall/CRC. Bodini A., Cossu A. (2010). Vulnerability assessment

  17. Spatiotemporal distribution characteristics and attribution of extreme regional low temperature event

    Institute of Scientific and Technical Information of China (English)

    封泰晨; 张珂铨; 苏海晶; 王晓娟; 龚志强; 张文煜

    2015-01-01

    Based on an objective identification technique for regional low temperature event (OITRLTE), the daily minimum temperature in China has been detected from 1960 to 2013. During this period, there were 60 regional extreme low temperature events (ERLTEs), which are included in the 690 regional low temperature events (RLTEs). The 60 ERLTEs are analyzed in this paper. The results show that in the last 50 years, the intensity of the ERLTEs has become weak;the number of lasted days has decreased;and, the affected area has become small. However, that situation has changed in this century. In terms of spatial distribution, the high intensity regions are mainly in Northern China while the high frequency regions concentrate in Central and Eastern China. According to the affected area of each event, the 60 ERLTEs are classified into six types. The atmospheric circulation background fields which correspond to these types are also analyzed. The results show that, influenced by stronger blocking highs of Ural and Lake Baikal, as well as stronger southward polar vortex and East Asia major trough at 500-hPa geopotential height, cold air from high latitudes is guided to move southward and abnormal northerly winds at 850 hPa makes the cold air blow into China along diverse paths, thereby forming different types of regional extreme low temperatures in winter.

  18. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    Directory of Open Access Journals (Sweden)

    A. Mahmud

    2012-02-01

    Full Text Available The effect of climate change on population-weighted concentrations of particulate matter (PM during extreme events was studied using the Parallel Climate Model (PCM, the Weather Research and Forecasting (WRF model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44 global emissions scenario was dynamically downscaled for the entire state of California between the years 2000–2006 and 2047–2053. Air quality simulations were carried out for 1008 days in each of the present-day and future climate conditions using year-2000 emissions. Population-weighted concentrations of PM0.1, PM2.5, and PM10 total mass, components species, and primary source contributions were calculated for California and three air basins: the Sacramento Valley air basin (SV, the San Joaquin Valley air basin (SJV and the South Coast Air Basin (SoCAB. Results over annual-average periods were contrasted with extreme events.

    Climate change between 2000 vs. 2050 did not cause a statistically significant change in annual-average population-weighted PM2.5 mass concentrations within any major sub-region of California in the current study. Climate change did alter the annual-average composition of the airborne particles in the SoCAB, with notable reductions of elemental carbon (EC; −3% and organic carbon (OC; −3% due to increased annual-average wind speeds that diluted primary concentrations from gasoline combustion (−3% and food cooking (−4%. In contrast, climate change caused significant increases in population-weighted PM2.5 mass concentrations in central California during extreme events. The maximum 24-h average PM2.5 concentration experienced by an average person during a ten-year period in the SJV increased by 21% due to enhanced production of secondary particulate matter (manifested as NH4NO3. In general, climate change caused increased

  19. Extreme weather events in Iran under a changing climate

    Science.gov (United States)

    Alizadeh-Choobari, Omid; Najafi, M. S.

    2017-03-01

    Observations unequivocally show that Iran has been rapidly warming over recent decades, which in sequence has triggered a wide range of climatic impacts. Meteorological records of several ground stations across Iran with daily temporal resolution for the period 1951-2013 were analyzed to investigate the climate change and its impact on some weather extremes. Iran has warmed by nearly 1.3° C during the period 1951-2013 (+0.2° per decade), with an increase of the minimum temperature at a rate two times that of the maximum. Consequently, an increase in the frequency of heat extremes and a decrease in the frequency of cold extremes have been observed. The annual precipitation has decreased by 8 mm per decade, causing an expansion of Iran's dry zones. Previous studies have pointed out that warming is generally associated with more frequent heavy precipitation because a warmer air can hold more moisture. Nevertheless, warming in Iran has been associated with more frequent light precipitation, but less frequent moderate, heavy and extremely heavy precipitation. This is because in the subtropical dry zones, a longer time is required to recharge the atmosphere with water vapour in a warmer climate, causing more water vapour to be transported from the subtropics to high latitudes before precipitations forms. In addition, the altitude of the condensation level increases in a warmer climate in subtropical regions, causing an overall decrease of precipitation. We argue that changing in the frequency of heavy precipitation in response to warming varies depending on the geographical location. Warming over the dry subtropical regions is associated with a decrease in the frequency of heavy precipitation, while an increase is expected over both subpolar and tropical regions. The warmer climate has also led to the increase in the frequency of both thunderstorms (driven by convective heating) and dust events over Iran.

  20. Investigation of Meteorological Extreme Events in the North-East of Iran

    Directory of Open Access Journals (Sweden)

    S. Kouzegaran

    2016-02-01

    Full Text Available Introduction: Over the past hundred years, human activity has significantly altered the atmosphere and increase of concentration of greenhouse gases lead to warm the earth's surface. This global warming leads to change of climatic extreme index and increases the intensity and frequency of occurrence of extreme climate events. Investigation of extreme values for planning and policy for the agricultural sector and water resource management is important.In this study, a comprehensive review of extreme indices of temperature and precipitation are discussed. This paper aims to investigate extreme temperature and precipitation indices defined in accordance with CCL, and the study of other climatic parameters in the North East of Iran. Materials and Methods: In this research, statistics and data of some stations in the North East of Iran during the period 1992-2012 were used. To evaluate the extreme climate indices trend, 27 indices of rainfall and temperature, were defined by the ETCCDMI. They were calculated by RClimdex software. In this software, prior to the index calculation, data by quality control software became quantitative and incorrect data were controlled and outlier data were examined. The indices were calculated by daily data. 11 rainfall and 16 temperature indices were calculated by this software.The target of the ETCCDMI process is to delineate a standardized set of indices allowing for comparison across regions. These extreme indices were classified in five categories which included the percentile-based extreme indices, the absolute extreme indices, the threshold extreme indices, the periodic extreme indices, and the other indices. They were estimated at the 0.05 significant levels. The Mann-Kendall test was used to investigate the climatic parameters, maximum relative humidity, sunshine duration and maximum wind speed. Results and Discussion: Thermal analysis results are consistent with warming patterns, and they have showed that hot

  1. Simulation of the 23 July 2012 Extreme Space Weather Event: What if This Extremely Rare CME Was Earth Directed?

    Science.gov (United States)

    Ngwira, Chigomezyo M.; Pulkkinen, Antti; Mays, M. Leila; Kuznetsova, Maria M.; Galvin, A. B.; Simunac, Kristin; Baker, Daniel N.; Li, Xinlin; Zheng, Yihua; Glocer, Alex

    2013-01-01

    Extreme space weather events are known to cause adverse impacts on critical modern day technological infrastructure such as high-voltage electric power transmission grids. On 23 July 2012, NASA's Solar Terrestrial Relations Observatory-Ahead (STEREO-A) spacecraft observed in situ an extremely fast coronal mass ejection (CME) that traveled 0.96 astronomical units (approx. 1 AU) in about 19 h. Here we use the SpaceWeather Modeling Framework (SWMF) to perform a simulation of this rare CME.We consider STEREO-A in situ observations to represent the upstream L1 solar wind boundary conditions. The goal of this study is to examine what would have happened if this Rare-type CME was Earth-bound. Global SWMF-generated ground geomagnetic field perturbations are used to compute the simulated induced geoelectric field at specific ground-based active INTERMAGNET magnetometer sites. Simulation results show that while modeled global SYM-H index, a high-resolution equivalent of the Dst index, was comparable to previously observed severe geomagnetic storms such as the Halloween 2003 storm, the 23 July CME would have produced some of the largest geomagnetically induced electric fields, making it very geoeffective. These results have important practical applications for risk management of electrical power grids.

  2. Recipes for correcting the impact of effective mesoscale resolution on the estimation of extreme winds

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Ott, Søren; Badger, Jake

    2012-01-01

    Extreme winds derived from simulations using mesoscale models are underestimated due to the effective spatial and temporal resolutions. This is reflected in the spectral domain as an energy deficit in the mesoscale range. The energy deficit implies smaller spectral moments and thus underestimation...... in the extreme winds. We have developed two approaches for correcting the smoothing effect resulting from the mesoscale model resolution on the extreme wind estimation by taking into account the difference between the modeled and measured spectra in the high frequency range. Both approaches give estimates...... of the smoothing effect in good agreement with measurements from several sites in Denmark and Germany....

  3. Modern sedimentation and extreme event in the South China Sea

    Science.gov (United States)

    Chen, Yu-Huang; Su, Chih-Chieh

    2016-04-01

    The South China Sea is the largest marginal sea of the northwest Pacific. It is situated at the plate boundary of the Eurasian, Philippine Sea, and Indian plates and also on the North Western Pacific corridor of typhoons. The unique tectonic and climatic environment makes it has to face the potential of seafloor destructions, like submarine landslides and slumps, and high sediment discharges which induced by typhoon from Philippine. In this study, we analysis the sediment properties of modern extreme event records in cores and attempt to evaluate the history of extreme events in the South China Sea. Twelve gravity cores were collected in the central South China Sea basin and around Taiping island by using R/V Ocean Research 1 from 2014 to 2015 and a series of analysis including multi-sensor core logger, XRF core scanner (Itrax), core surface images, X-radiographs, bulk density, grain size, Pb-210 chronology and X-ray diffractometer were conducted in this study. On core surface images, an obvious brownish oxidized layer exist in core top with higher Pb-210 activity beneath this oxidized layer, and we speculate this layer is caused by nature hazard. According to the sampling time, we conjecture the oxidized layer might formed by typhoon Haiyan in 2013. In addition, the Itrax data shows high manganese content only exist in this layer which might related to the modern industrial pollution delivered by typhoon induced flooding from Philippine. The sedimentation rate of the non-event years in these cores which derived from Pb-210 chronology method is about 0.02 ~0.03 cm/yr. On contrary, the event layer caused by Haiyan with a recorded maximum 87cm deposits in the South China Sea. This study aims to characterize the typhoon induced deposits in the turbidite layer and use it to identify whether the other event layers recorded in these cores were related to typhoon activities and to reconstruct the strong tropical cyclone history in the western Pacific.

  4. Extreme fog events in Poland with respect to circulation conditions

    Science.gov (United States)

    Ustrnul, Z.; Czekierda, D.; Wypych, A.

    2010-09-01

    Fog is a phenomenon which belongs to a group of so-called hydrometeorites and, according to the different dictionaries, it is a suspension of water droplets or ice crystals in the ground layer of the air that impairs visibility in the horizontal direction below 1 km. The phenomenon of fog, although much less dynamic or violent than other extreme phenomena, such as thunderstorms or hail, is equally dangerous and brings about huge social and economic complications. Land and air transportation suffer and fog may sometimes leads to a complete crippling of the whole economy in an area where fog occurs. The main objective of the study is determination of the circulation types bringing extreme fog events in Poland. The duration of fog at each meteorological station was considered as the main input data originated from 54 synoptic stations located across the country. The mentioned data series cover the period of 56 years (1951-2006). The occurrence of fog depends on meteorological conditions caused to a large extent by a given synoptic situation and local terrain conditions. In this study, according to its objectives, only circulation conditions are taken into consideration. These have been described by 5 different circulation classifications (Grosswetterlagen, Litynski, Osuchowska-Klein, Niedzwiedz and Ustrnul). Situations when this phenomenon occurred across a large part of the country were taken into detailed consideration. Special attention was paid to fog coverage during 24-hour periods. In this work, in light of certain doubts about the homogeneity of the observation material available, the intensity of fog was not included, as it requires additional and very tedious analysis. In the first step all cases of fog during the 1966-2006 study period which lasted 24 hours at more than 10 of the considered weather stations, i.e: at least 5 stations have been considered. As expected, in most cases, either a centre of a classical high pressure system or a high pressure wedge

  5. Crop insurance evaluation in response to extreme events

    Science.gov (United States)

    Moriondo, Marco; Ferrise, Roberto; Bindi, Marco

    2013-04-01

    Crop yield insurance has been indicated as a tool to manage the uncertainties of crop yields (Sherrick et al., 2004) but the changes in crop yield variability as expected in the near future should be carefully considered for a better quantitative assessment of farmer's revenue risk and insurance values in a climatic change regime (Moriondo et al., 2011). Under this point of view, mechanistic crop growth models coupled to the output of General/Regional Circulation Models (GCMs, RCMs) offer a valuable tool to evaluate crop responses to climatic change and this approach has been extensively used to describe crop yield distribution in response to climatic change considering changes in both mean climate and variability. In this work, we studied the effect of a warmer climate on crop yield distribution of durum wheat (Triticum turgidum L. subsp durum) in order to assess the economic significance of climatic change in a risk decision context. Specifically, the outputs of 6 RCMs (Tmin, Tmax, Rainfall, Global Radiation) (van der Linden and Mitchell 2009) have been statistically downscaled by a stochastic weather generator over eight sites across the Mediterranean basin and used to feed the crop growth model Sirius Quality. Three time slices were considered i) the present period PP (average of the period 1975-1990, [CO2]=350 ppm), 2020 (average of the period 2010-2030, SRES scenario A1b, [CO2]=415 ppm) and 2040 (average of the period 2030-2050, SRES scenario A1b, [CO2]=480 ppm). The effect of extreme climate events (i.e. heat stress at anthesis stage) was also considered. The outputs of these simulations were used to estimate the expected payout per hectare from insurance triggered when yields fall below a specific threshold defined as "the insured yield". For each site, the threshold was calculated as a fraction (70%) of the median of yield distribution under PP that represents the percentage of median yield above which indemnity payments are triggered. The results

  6. Increased Stream Temperature in Response to Extreme Precipitation Events

    Science.gov (United States)

    Wilson, C. E.; Gooseff, M. N.

    2016-12-01

    Aquatic ecosystem temperature regulation is essential to the survival of riverine fish species restricted to limited water temperature ranges. Dissolved oxygen levels, similarly necessary to fish health, are decreased by rising temperatures, as warmer waters can hold less oxygen than colder waters. Climate change projections forecast increased precipitation intensities, a trend that has already been observed in the past decade. Though extreme events are becoming more common, the stream temperature response to high-intensity rainfall is not yet completely understood. Precipitation and stream temperature records from gages in the Upper Midwestern United States were analyzed to determine whether there exists a positive relationship between high-intensity rainfall and stream temperature response. This region was chosen for its already observed trends in increasing precipitation intensity, and rural gages were used in order to minimize the effect of impervious surfaces on runoff amounts and temperature. Days with recorded precipitation were divided by an intensity threshold and classified as either high-intensity or low-intensity days. While the effects of rain events on temperature are variable, increases in stream temperature in response to high-intensity rainfall were observed. For some basins, daily maximum rates of stream temperature increase were, on average, greater for higher intensity events. Similarly, the average daily stream temperature range was higher in streams on days of high-intensity precipitation, compared to days of low-intensity events. Understanding the effect of increasing precipitation intensity in conjunction with rising air temperatures will provide insight into the future of aquatic ecosystems and their adaptation to climate change.

  7. Management of the Extreme Events: Countering International Terrorism

    Directory of Open Access Journals (Sweden)

    Dr. Cristian Barna

    2011-12-01

    Full Text Available After the terrorism attacks of September 11, 2001, there is recognition by both the public and private sectors that one needs to rethink our strategy for dealing with these low probability but extreme consequence events. September 11, 2001 attacks against the United States raised numerous questions related to counter-terrorism, foreign policy, as well as national security in the United States and abroad. They also raised the fundamental question of who should pay for losses due to terrorism.The question of who should pay for terrorism risk prevention and sustainable coverage within a country is likely to be seen first as a matter of collective responsibility that each country has to consider – a societal choice

  8. Changes of extreme drought and flood events in Iran

    Science.gov (United States)

    Modarres, Reza; Sarhadi, Ali; Burn, Donald H.

    2016-09-01

    Located in an arid and semi-arid region of the world, Iran has experienced many extreme flood and drought events in the last and current century. The present study aims to assess the changes in Iran's flood magnitude and drought severity for 1950-2010, with some time span variation in some stations. The Mann-Kendall test for monotonic trend was first applied to assess changes in flood and drought severity data. In addition, to consider the effect of serial correlation, two Pre-Whitening Trend (PWT) tests were also applied. It was observed that the number of stations with statistically significant trends has increased after applying PWT tests. Both increasing and decreasing trends were observed for drought severity and flood magnitude in different climate regions and major basins of Iran using these tests. The increase in flood magnitude and drought severity can be attributed partly to land use changes, an annual rainfall negative trend, a maximum rainfall increasing trend, and inappropriate water resources management policies. The paper indicates a critical situation related to extreme climate change in Iran and the increasing risk of environmental changes in the 21st century.

  9. Normal and Extreme Wind Conditions for Power at Coastal Locations in China.

    Science.gov (United States)

    Gao, Meng; Ning, Jicai; Wu, Xiaoqing

    2015-01-01

    In this paper, the normal and extreme wind conditions for power at 12 coastal locations along China's coastline were investigated. For this purpose, the daily meteorological data measured at the standard 10-m height above ground for periods of 40-62 years are statistically analyzed. The East Asian Monsoon that affects almost China's entire coastal region is considered as the leading factor determining wind energy resources. For most stations, the mean wind speed is higher in winter and lower in summer. Meanwhile, the wind direction analysis indicates that the prevalent winds in summer are southerly, while those in winter are northerly. The air densities at different coastal locations differ significantly, resulting in the difference in wind power density. The Weibull and lognormal distributions are applied to fit the yearly wind speeds. The lognormal distribution performs better than the Weibull distribution at 8 coastal stations according to two judgement criteria, the Kolmogorov-Smirnov test and absolute error (AE). Regarding the annual maximum extreme wind speed, the generalized extreme value (GEV) distribution performs better than the commonly-used Gumbel distribution. At these southeastern coastal locations, strong winds usually occur in typhoon season. These 4 coastal provinces, that is, Guangdong, Fujian, Hainan, and Zhejiang, which have abundant wind resources, are also prone to typhoon disasters.

  10. Normal and Extreme Wind Conditions for Power at Coastal Locations in China.

    Directory of Open Access Journals (Sweden)

    Meng Gao

    Full Text Available In this paper, the normal and extreme wind conditions for power at 12 coastal locations along China's coastline were investigated. For this purpose, the daily meteorological data measured at the standard 10-m height above ground for periods of 40-62 years are statistically analyzed. The East Asian Monsoon that affects almost China's entire coastal region is considered as the leading factor determining wind energy resources. For most stations, the mean wind speed is higher in winter and lower in summer. Meanwhile, the wind direction analysis indicates that the prevalent winds in summer are southerly, while those in winter are northerly. The air densities at different coastal locations differ significantly, resulting in the difference in wind power density. The Weibull and lognormal distributions are applied to fit the yearly wind speeds. The lognormal distribution performs better than the Weibull distribution at 8 coastal stations according to two judgement criteria, the Kolmogorov-Smirnov test and absolute error (AE. Regarding the annual maximum extreme wind speed, the generalized extreme value (GEV distribution performs better than the commonly-used Gumbel distribution. At these southeastern coastal locations, strong winds usually occur in typhoon season. These 4 coastal provinces, that is, Guangdong, Fujian, Hainan, and Zhejiang, which have abundant wind resources, are also prone to typhoon disasters.

  11. Multispacecraft observations of the terrestrial bow shock and magnetopause during extreme solar wind disturbances

    Directory of Open Access Journals (Sweden)

    M. Tátrallyay

    2012-12-01

    Full Text Available Three events are discussed from the declining phase of the last solar cycle when the magnetopause and/or the bow shock were observed unusually close to the Earth due to major interplanetary disturbances. The observed extreme locations of the discontinuities are compared with the predictions of three magnetopause and four bow shock models which describe them in considerably different ways using statistical methods based on observations. A new 2-D magnetopause model is introduced (based on Verigin et al., 2009 which takes into account the pressure of the compressed magnetosheath field raised by the interplanetary magnetic field (IMF component transverse to the solar wind flow. The observed magnetopause crossings could be predicted with a reasonable accuracy (0.1–0.2 RE by one of the presented models at least. For geosynchronous magnetopause crossings observed by the GOES satellites, (1 the new model provided the best predictions when the IMF was extremely large having a large negative Bz component, and (2 the predictions of the model of Shue et al. (1998 agreed best with the observations when the solar wind dynamic pressure was extremely large. The magnetopause crossings close to the cusp observed by the Cluster spacecraft were best predicted by the 3-D model of Lin et al. (2010. The applied empirical bow shock models and the 3-D semi-empiric bow shock model combined with magnetohydrodynamic (MHD solution proved to be insufficient for predicting the observed unusual bow shock locations during large interplanetary disturbances. The results of a global 3-D MHD model were in good agreement with the Cluster observations on 17 January 2005, but they did not predict the bow shock crossings on 31 October 2003.

  12. Variability of extreme climate events in the territory and water area of Russia

    Science.gov (United States)

    Serykh, Ilya; Kostianoy, Andrey

    2016-04-01

    The Fourth (2007) and Fifth (2014) Assessment Reports on Climate Change of the Intergovernmental Panel on Climate Change (IPCC) state that in the XXI century, climate change will be accompanied by an increase in the frequency, intensity and duration of extreme nature events such as: extreme precipitation and extreme high and low air temperatures. All these will lead to floods, droughts, fires, shallowing of rivers, lakes and water reservoirs, desertification, dust storms, melting of glaciers and permafrost, algal bloom events in the seas, lakes and water reservoirs. In its turn, these events will lead to chemical and biological contamination of water, land and air. These events will result in a deterioration of quality of life, significant financial loss due to damage to the houses, businesses, roads, agriculture, forestry, tourism, and in many cases they end in loss of life. These predictions are confirmed by the results of the studies presented in the RosHydromet First (2008) and Second (2014) Assessment Reports on Climate Change and its Consequences in Russian Federation. Scientists predictions have been repeatedly confirmed in the last 15 years - floods in Novorossiysk (2002), Krymsk and Gelendzhik (2012), the Far East (2013), heat waves in 2010, unusually cold winter (February) of 2012 and unusually warm winter of 2013/2014 in the European territory of Russia. In this regard, analysis and forecasting of extreme climate events associated with climate change in the territory of Russia are an extremely important task. This task is complicated by the fact that modern atmospheric models used by IPCC and RosHydromet badly reproduce and predict the intensity of precipitation. We are analyzing meteorological reanalysis data (NCEP/NCAR, 20th Century Reanalysis, ERA-20C, JRA-55) and satellite data (NASA and AVISO) on air, water and land temperature, rainfall, wind speed and cloud cover, water levels in seas and lakes, index of vegetation over the past 30-60 years

  13. Role of Anomalous States of Upper Tropospheric Circulation on Extremely Dry and Wet Summer Monsoon Events

    Science.gov (United States)

    Ahmad, S.; Koike, T.; Nishii, K.; Shrestha, M.

    2011-12-01

    Seasonal changes in wind pattern, monsoon, sometimes result in severe droughts and intense flooding in many parts of the world including South Asian countries like Pakistan. The livelihood of a vast population in Pakistan depends on agriculture and land use is strongly influenced by water-based ecosystems that depend on the monsoon rains. Furthermore, climate change studies undertaken so far reveal that action is essential in order to prevent long term damage to water cycle and thus of great concern to the community and stakeholders. Pakistan Summer Monsoon (PSM) is affected by both the disturbances from the tropical and the extratropical regions; however there is lack of understanding of physical mechanisms of PSM compared to other regional studies i.e. Indian Summer Monsoon (ISM) and South-East Asian Monsoon (SEAM). In our study, we applied heat and vorticity budgets, and wave train analysis to reveal the mechanisms of the extremely dry and wet PSM events associated with the anomalous upper tropospheric conditions. We found that the extremely dry (wet) PSM events were closely related with the anomalous cyclonic (anticyclonic) upper-tropospheric circulation around northwest of Pakistan, and mid-upper tropospheric cooling (warming) anomaly around Pakistan and to its north/northwest. We also found in addition to Rossby wave response due to the suppressed (enhanced) convective activities around monsoon regions, the midlatitude wave energy propagation emanating around cyclonic/anticyclonic anomaly around northwestern Atlantic, northeastern Atlantic, Europe or Mediterranean regions induced/reinforced/maintained the anomalous upper tropospheric cyclonic (anticyclonic) circulation around northwest of Pakistan during extremely dry (wet) PSM events. Therefore, devastating drought (flood) events over the PSM region resulting from weak (strong) convection anomalies are induced by both the tropical and extratropical processes.

  14. Extreme Wind Calculation Applying Spectral Correction Method – Test and Validation

    OpenAIRE

    Hansen, Brian Ohrbeck; Larsén, Xiaoli Guo; Kelly, Mark C; Rathmann, Ole Steen; Berg, Jacob; Bechmann, Andreas; Sempreviva, Anna Maria; Ejsing Jørgensen, Hans

    2016-01-01

    This report presents a test and validation of extreme wind calculation applying the Spectral Correction method as implemented in the WAsP Engineering 4 software package. The test and validation is based on four sites located in Denmark, one site located in the Netherlands and one site located in the USA. Calculations have been carried out using wind data from on-site meteorological masts as well as long-term reference wind data.

  15. Solar energetic particle events in different types of solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Kahler, S. W. [Air Force Research Laboratory, Space Vehicles Directorate, 3550 Aberdeen Avenue, Kirtland AFB, NM 87117 (United States); Vourlidas, A., E-mail: stephen.kahler@kirtland.af.mil [Space Sciences Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2014-08-10

    We examine statistically some properties of 96 20 MeV gradual solar energetic proton (SEP) events as a function of three different types of solar wind (SW) as classified by Richardson and Cane. Gradual SEP (E > 10 MeV) events are produced in shocks driven by fast (V ≳ 900 km s{sup –1}) and wide (W > 60°) coronal mass ejections (CMEs). We find no differences among the transient, fast, and slow SW streams for SEP 20 MeV proton event timescales. It has recently been found that the peak intensities Ip of these SEP events scale with the ∼2 MeV proton background intensities, which may be a proxy for the near-Sun shock seed particles. Both the intensities Ip and their 2 MeV backgrounds are significantly enhanced in transient SW compared to those of fast and slow SW streams, and the values of Ip normalized to the 2 MeV backgrounds only weakly correlate with CME V for all SW types. This result implies that forecasts of SEP events could be improved by monitoring both the Sun and the local SW stream properties and that the well known power-law size distributions of Ip may differ between transient and long-lived SW streams. We interpret an observed correlation between CME V and the 2 MeV background for SEP events in transient SW as a manifestation of enhanced solar activity.

  16. Wintertime connections between extreme wind patterns in Spain and large-scale geopotential height field

    Science.gov (United States)

    Pascual, A.; Martín, M. L.; Valero, F.; Luna, M. Y.; Morata, A.

    2013-03-01

    The present study is focused on the study of the variability and the most significant wind speed patterns in Spain during the winter season analyzing as well connections between the wind speed field and the geopotential height at 1000 hPa over an Atlantic area. The daily wind speed variability is investigated by means of principal components using wind speed observations. Five main modes of variation, accounting 66% of the variance of the original data, have been identified, highlighting their differences in the Spanish wind speed behavior. Connections between the wind speeds and the large-scale atmospheric field were underlined by means of composite maps. Composite maps were built up to give an averaged atmospheric circulation associated with extreme wind speed variability in Spain. Moreover, the principal component analysis was also applied to the geopotential heights, providing relationships between the large-scale atmospheric modes and the observational local wind speeds. Such relationships are shown in terms of the cumulated frequency values of wind speed associated with the extreme scores of the obtained large-scale atmospheric modes, showing those large-scale atmospheric patterns more dominant in the wind field in Spain.

  17. Evaluation of extreme temperature events in northern Spain based on process control charts

    Science.gov (United States)

    Villeta, M.; Valencia, J. L.; Saá, A.; Tarquis, A. M.

    2017-02-01

    Extreme climate events have recently attracted the attention of a growing number of researchers because these events impose a large cost on agriculture and associated insurance planning. This study focuses on extreme temperature events and proposes a new method for their evaluation based on statistical process control tools, which are unusual in climate studies. A series of minimum and maximum daily temperatures for 12 geographical areas of a Spanish region between 1931 and 2009 were evaluated by applying statistical process control charts to statistically test whether evidence existed for an increase or a decrease of extreme temperature events. Specification limits were determined for each geographical area and used to define four types of extreme anomalies: lower and upper extremes for the minimum and maximum anomalies. A new binomial Markov extended process that considers the autocorrelation between extreme temperature events was generated for each geographical area and extreme anomaly type to establish the attribute control charts for the annual fraction of extreme days and to monitor the occurrence of annual extreme days. This method was used to assess the significance of changes and trends of extreme temperature events in the analysed region. The results demonstrate the effectiveness of an attribute control chart for evaluating extreme temperature events. For example, the evaluation of extreme maximum temperature events using the proposed statistical process control charts was consistent with the evidence of an increase in maximum temperatures during the last decades of the last century.

  18. Prediction of a thermodynamic wave train from the monsoon to the Arctic following extreme rainfall events

    Science.gov (United States)

    Krishnamurti, T. N.; Kumar, Vinay

    2016-06-01

    This study addresses numerical prediction of atmospheric wave trains that provide a monsoonal link to the Arctic ice melt. The monsoonal link is one of several ways that heat is conveyed to the Arctic region. This study follows a detailed observational study on thermodynamic wave trains that are initiated by extreme rain events of the northern summer south Asian monsoon. These wave trains carry large values of heat content anomalies, heat transports and convergence of flux of heat. These features seem to be important candidates for the rapid melt scenario. This present study addresses numerical simulation of the extreme rains, over India and Pakistan, and the generation of thermodynamic wave trains, simulations of large heat content anomalies, heat transports along pathways and heat flux convergences, potential vorticity and the diabatic generation of potential vorticity. We compare model based simulation of many features such as precipitation, divergence and the divergent wind with those evaluated from the reanalysis fields. We have also examined the snow and ice cover data sets during and after these events. This modeling study supports our recent observational findings on the monsoonal link to the rapid Arctic ice melt of the Canadian Arctic. This numerical modeling suggests ways to interpret some recent episodes of rapid ice melts that may require a well-coordinated field experiment among atmosphere, ocean, ice and snow cover scientists. Such a well-coordinated study would sharpen our understanding of this one component of the ice melt, i.e. the monsoonal link, which appears to be fairly robust.

  19. Prediction of a thermodynamic wave train from the monsoon to the Arctic following extreme rainfall events

    Science.gov (United States)

    Krishnamurti, T. N.; Kumar, Vinay

    2017-04-01

    This study addresses numerical prediction of atmospheric wave trains that provide a monsoonal link to the Arctic ice melt. The monsoonal link is one of several ways that heat is conveyed to the Arctic region. This study follows a detailed observational study on thermodynamic wave trains that are initiated by extreme rain events of the northern summer south Asian monsoon. These wave trains carry large values of heat content anomalies, heat transports and convergence of flux of heat. These features seem to be important candidates for the rapid melt scenario. This present study addresses numerical simulation of the extreme rains, over India and Pakistan, and the generation of thermodynamic wave trains, simulations of large heat content anomalies, heat transports along pathways and heat flux convergences, potential vorticity and the diabatic generation of potential vorticity. We compare model based simulation of many features such as precipitation, divergence and the divergent wind with those evaluated from the reanalysis fields. We have also examined the snow and ice cover data sets during and after these events. This modeling study supports our recent observational findings on the monsoonal link to the rapid Arctic ice melt of the Canadian Arctic. This numerical modeling suggests ways to interpret some recent episodes of rapid ice melts that may require a well-coordinated field experiment among atmosphere, ocean, ice and snow cover scientists. Such a well-coordinated study would sharpen our understanding of this one component of the ice melt, i.e. the monsoonal link, which appears to be fairly robust.

  20. Extrapolation of Extreme Response for Wind Turbines based on FieldMeasurements

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2009-01-01

    The characteristic loads on wind turbines during operation are among others dependent on the mean wind speed, the turbulence intensity and the type and settings of the control system. These parameters must be taken into account in the assessment of the characteristic load. The characteristic load...... extrapolation are presented. The first method is based on the same assumptions as the existing method but the statistical extrapolation is only performed for a limited number of mean wind speeds where the extreme load is likely to occur. For the second method the mean wind speeds are divided into storms which...

  1. PM10 Emission, Sandblasting Efficiency and Vertical Entrainment During Successive Wind-Erosion Events: A Wind-Tunnel Approach

    Science.gov (United States)

    Panebianco, J. E.; Mendez, M. J.; Buschiazzo, D. E.

    2016-11-01

    A wind-tunnel experiment was carried out to measure saltation and PM10 (particulate matter with a mean aerodynamic diameter less than 10 μm) emission during three successive wind-erosion events on three different surfaces: an unpaved road and two different textured agricultural soils: a sandy loam and a loamy sand. The total horizontal mass transport ( Q) and the PM10 emissions ( E), were measured at two friction velocities: 0.2 and 0.3 m s^{-1}. Results indicated that Q decreased rapidly in time over all surfaces, as the Q values were only 13-17 % of the amount registered during the first event. Similar trends were detected at both wind speeds. However, E values showed a lower relative decrease in the second wind-erosion event at the lower wind speed (25-51 % of the initial amounts) than at the higher wind speed (19-28 % of the initial amounts) over all surfaces. After the second wind-erosion event, both Q and E values remained constant except for the unpaved road, where both values decreased by 50 % in relation to the second event. Emission from the agricultural soils was sustained over successive wind-erosion events even when saltation was low. The sandblasting efficiency for PM10 emission was found to be higher for agricultural soils than for the unpaved road, and increased over wind-erosion events particularly in agricultural soils, and this was also reflected in the PM10 vertical entrainment. Results suggest that sandblasting efficiency and PM10 vertical distribution can change among wind-erosion events even for the same surface. The saltation fraction to PM10 content ratio can be a simple indicator of the general behaviour of an emitting surface during successive wind-erosion events.

  2. PM10 Emission, Sandblasting Efficiency and Vertical Entrainment During Successive Wind-Erosion Events: A Wind-Tunnel Approach

    Science.gov (United States)

    Panebianco, J. E.; Mendez, M. J.; Buschiazzo, D. E.

    2016-06-01

    A wind-tunnel experiment was carried out to measure saltation and PM10 (particulate matter with a mean aerodynamic diameter less than 10 μ m) emission during three successive wind-erosion events on three different surfaces: an unpaved road and two different textured agricultural soils: a sandy loam and a loamy sand. The total horizontal mass transport (Q) and the PM10 emissions (E), were measured at two friction velocities: 0.2 and 0.3 m {s}^{-1} . Results indicated that Q decreased rapidly in time over all surfaces, as the Q values were only 13-17 % of the amount registered during the first event. Similar trends were detected at both wind speeds. However, E values showed a lower relative decrease in the second wind-erosion event at the lower wind speed (25-51 % of the initial amounts) than at the higher wind speed (19-28 % of the initial amounts) over all surfaces. After the second wind-erosion event, both Q and E values remained constant except for the unpaved road, where both values decreased by 50 % in relation to the second event. Emission from the agricultural soils was sustained over successive wind-erosion events even when saltation was low. The sandblasting efficiency for PM10 emission was found to be higher for agricultural soils than for the unpaved road, and increased over wind-erosion events particularly in agricultural soils, and this was also reflected in the PM10 vertical entrainment. Results suggest that sandblasting efficiency and PM10 vertical distribution can change among wind-erosion events even for the same surface. The saltation fraction to PM10 content ratio can be a simple indicator of the general behaviour of an emitting surface during successive wind-erosion events.

  3. A Floating Offshore Wind Turbine in Extreme Wave Conditions

    DEFF Research Database (Denmark)

    Wehmeyer, Christof

    and peak enhancement factors, based on cyclonic storm conditions (Wehmeyer et al., 2012). 2. Based on Wehmeyer et al. (2012), a physical model test campaign was drafted, where an industry inspired floating offshore wind turbine was tested (Wehmeyer et al., 2013). 3. A comparison of measured pitch responses...

  4. Three-Dimensional Venturi Sensor for Measuring Extreme Winds

    Science.gov (United States)

    Zysko, Jan A.; Perotti, Jose M.; Amis, Christopher; Randazzo, John; Blalock, Norman; Eckhoff, Anthony

    2003-01-01

    A three-dimensional (3D) Venturi sensor is being developed as a compact, rugged means of measuring wind vectors having magnitudes of as much as 300 mph (134 m/s). This sensor also incorporates auxiliary sensors for measuring temperature from -40 to +120 F (-40 to +49 C), relative humidity from 0 to 100 percent, and atmospheric pressure from 846 to 1,084 millibar (85 to 108 kPa). Conventional cup-and-vane anemometers are highly susceptible to damage by both high wind forces and debris, due to their moving parts and large profiles. In addition, they exhibit slow recovery times contributing to an inaccurately high average-speed reading. Ultrasonic and hot-wire anemometers overcome some of the disadvantages of the cup and-vane anemometers, but they have other disadvantageous features, including limited dynamic range and susceptibility to errors caused by external acoustic noise and rain. In contrast, the novel 3D Venturi sensor is less vulnerable to wind damage because of its smaller profile and ruggedness. Since the sensor has no moving parts, it provides increased reliability and lower maintenance costs. It has faster response and recovery times to changing wind conditions than traditional systems. In addition, it offers wide dynamic range and is expected to be relatively insensitive to rain and acoustic energy. The Venturi effect in this sensor is achieved by the mirrored double-inflection curve, which is then rotated 360 to create the desired detection surfaces. The curve is optimized to provide a good balance of pressure difference between sensor ports and overall maximum fluid velocity while in the shape. Four posts are used to separate the two shapes, and their size and location were chosen to minimize effects on the pressure measurements. The 3D Venturi sensor has smart software algorithms to map the wind pressure exerted on the surfaces of the design. Using Bernoulli's equation, the speed of the wind is calculated from the differences among the pressure

  5. Changes in Wind Speed and Extremes in Beijing during 1960-2008 Based on Homogenized Observations

    Institute of Scientific and Technical Information of China (English)

    LI Zhen; YAN Zhongwei; TU Kai; LIU Weidong; WANG Yingchun

    2011-01-01

    Daily observations of wind speed at 12 stations in the Greater Beijing Area during 1960-2008 were homogenized using the Multiple Analysis of Series for Homogenization method. The linear trends in the regional mean annual and seasonal (winter, spring, summer and autumn) wind speed series were -0.26,-0.39, -0.30, -0.12 and -0.22 m s-1 (10 yr)-1, respectively. Winter showed the greatest magnitude in declining wind speed, followed by spring, autumn and summer. The annual and seasonal frequencies of wind speed extremes (days) also decreased, more prominently for winter than for the other seasons. The declining trends in wind speed and extremes were formed mainly by some rapid declines during the 1970s and 1980s. The maximum declining trend in wind speed occurred at Chaoyang (CY), a station within the central business district (CBD) of Beijing with the highest level of urbanization. The declining trends were in general smaller in magnitude away from the city center, except for the winter case in which the maximum declining trend shifted northeastward to rural Miyun (MY). The influence of urbanization on the annual wind speed was estimated to be about -0.05 m s-1 (10 yr)-1 during 1960-2008, accounting for around one fifth of the regional mean declining trend. The annual and seasonal geostrophic wind speeds around Beijing, based on daily mean sea level pressure (MSLP) from the ERA-40 reanalysis dataset, also exhibited decreasing trends, coincident with the results from site observations. A comparative analysis of the MSLP fields between 1966-1975 and 1992-2001 suggested that the influences of both the winter and summer monsoons on Beijing were weaker in the more recent of the two decades. It is suggested that the bulk of wind in Beijing is influenced considerably by urbanization, while changes in strong winds or wind speed extremes are prone to large-scale climate change in the region.

  6. Intensity changes in future extreme precipitation: A statistical event-based approach.

    Science.gov (United States)

    Manola, Iris; van den Hurk, Bart; de Moel, Hans; Aerts, Jeroen

    2017-04-01

    Short-lived precipitation extremes are often responsible for hazards in urban and rural environments with economic and environmental consequences. The precipitation intensity is expected to increase about 7% per degree of warming, according to the Clausius-Clapeyron (CC) relation. However, the observations often show a much stronger increase in the sub-daily values. In particular, the behavior of the hourly summer precipitation from radar observations with the dew point temperature (the Pi-Td relation) for the Netherlands suggests that for moderate to warm days the intensification of the precipitation can be even higher than 21% per degree of warming, that is 3 times higher than the expected CC relation. The rate of change depends on the initial precipitation intensity, as low percentiles increase with a rate below CC, the medium percentiles with 2CC and the moderate-high and high percentiles with 3CC. This non-linear statistical Pi-Td relation is suggested to be used as a delta-transformation to project how a historic extreme precipitation event would intensify under future, warmer conditions. Here, the Pi-Td relation is applied over a selected historic extreme precipitation event to 'up-scale' its intensity to warmer conditions. Additionally, the selected historic event is simulated in the high-resolution, convective-permitting weather model Harmonie. The initial and boundary conditions are alternated to represent future conditions. The comparison between the statistical and the numerical method of projecting the historic event to future conditions showed comparable intensity changes, which depending on the initial percentile intensity, range from below CC to a 3CC rate of change per degree of warming. The model tends to overestimate the future intensities for the low- and the very high percentiles and the clouds are somewhat displaced, due to small wind and convection changes. The total spatial cloud coverage in the model remains, as also in the statistical

  7. Large-scale Agroecosytem's Resiliency to Extreme Hydrometeorological and Climate Extreme Events in the Missouri River Basin

    Science.gov (United States)

    Munoz-Arriola, F.; Smith, K.; Corzo, G.; Chacon, J.; Carrillo-Cruz, C.

    2015-12-01

    A major challenge for water, energy and food security relies on the capability of agroecosyststems and ecosystems to adapt to a changing climate and land use changes. The interdependency of these forcings, understood through our ability to monitor and model processes across scales, indicate the "depth" of their impact on agroecosystems and ecosystems, and consequently our ability to predict the system's ability to return to a "normal" state. We are particularly interested in explore two questions: (1) how hydrometeorological and climate extreme events (HCEs) affect sub-seasonal to interannual changes in evapotranspiration and soil moisture? And (2) how agroecosystems recover from the effect of such events. To address those questions we use the land surface hydrologic Variable Infiltration Capacity (VIC) model and the Moderate Resolution Imaging Spectrometer-Leaf Area Index (MODIS-LAI) over two time spans (1950-2013 using a seasonal fixed LAI cycle) and 2001-2013 (an 8-day MODIS-LAI). VIC is forced by daily/16th degree resolution precipitation, minimum and maximum temperature, and wind speed. In this large-scale experiment, resiliency is defined by the capacity of a particular agroecosystem, represented by a grid cell's ET, SM, and LAI to return to a historical average. This broad, yet simplistic definition will contribute to identify the possible components and their scales involved in agroecosystems and ecosystems capacity to adapt to the incidence of HCEs and technologies used to intensify agriculture and diversify their use for food and energy production. Preliminary results show that dynamical changes in land use, tracked by MODIS data, require larger time spans to address properly the influence of technologic improvements in crop production as well as the competition for land for biofuel vs. food production. On the other hand, fixed seasonal changes in land use allow us just to identify hydrologic changes mainly due to climate variability.

  8. Atmospheric rivers and cool season extreme precipitation events in Arizona

    Science.gov (United States)

    Rivera Fernandez, Erick Reinaldo

    Atmospheric rivers (ARs) are important contributors to cool season precipitation in the Southwestern US, and in some cases can lead to extreme hydrometeorological events in the region. We performed a climatological analysis and identified two predominant types of ARs that affect the central mountainous region in Arizona: Type 1 ARs originate in the tropics near Hawaii (central Pacific) and enhance their moisture in the midlatitudes, with maximum moisture transport over the ocean at low-levels of the troposphere. On the other hand, moisture in Type 2 ARs has a more direct tropical origin and meridional orientation with maximum moisture transfer at mid-levels. We then analyze future projections of Southwest ARs in a suite of global and regional climate models used in the North American Regional Climate Change Assessment Program (NARCCAP), to evaluate projected future changes in the frequency and intensity of ARs under warmer global climate conditions. We find a consistent and clear intensification of the water vapor transport associated with the ARs that impinge upon Arizona and adjacent regions, however, the response of AR-related precipitation intensity to increased moisture flux and column-integrated water vapor is weak and no robust variations are projected either by the global or the regional NARCCAP models. To evaluate the effect of horizontal resolution and improve our physical understanding of these results, we numerically simulated a historical AR event using the Weather Research and Forecasting (WRF) model at a 3-km resolution. We then performed a pseudo-global warming experiment by modifying the lateral and lower boundary conditions to reflect possible changes in future ARs (as projected by the ensemble of global model simulations used for NARCCAP). Interestingly we find that despite higher specific humidity, some regions still receive less rainfall in the warming climate experiments - partially due to changes in thermodynamics, but primarily due to AR

  9. The Relation between Extreme Weather Events and the Solar Activity

    Science.gov (United States)

    Battinelli, P.; di Fazio, A.; Torelli, M.

    The oscillating part of the solar irradiance drives the cyclic component of the variations of the terrestrial atmosphere's thermodynamic state. In particular, the average temperature, and thus the turbulent atmospheric fuxes, are influenced. Reliable temperature data exist from ~220,000 years, while accurate solar irradiance space measurements (not affected by the atmosphere's absorption) are available only since 1979. Actually, there is a rather long data-set regarding solar activity, indicated by the Wolf number, which is found to be well correlated with the total solar flux. Thus, we use the Wolf number as a quantitative proxy of the incident flux, even in the interval before the space-based measurements. The fraction of solar energy trapped in the atmosphere due to the re-absorption of the infrared radiation by the greenhouse gases is an increasing function of time (in the latter 150-160 years). Over this interval, we spectrally analyzed the time series of both the Wolf number and the frequencies of extreme meteorological events, isolating and removing in the latter the cyclic components due to the periodic part of the radiative forcing exherted by the Sun. We were thus able to determine the time trend in the data regarding the observed frequencies of the U.S. continental tornadoes (National Center for Atmospheric Research) and of the global cyclones (hurricanes and tropical storms on all ocean basins, National Ocean and Atmospheric Administration). We find, for both the data sets an exponential behaviour, with e-folding times: for the cyclones tau ~= 110 years, and for the tornadoes tau ~= 70 years. We are happy to have given --through this work-- a contribution to the interdisciplinary scientific process coordinated by the IPCC (Intergovernmental Panel on Climate Change) through the ICSU (International Council of Scientific Unions) which takes place a latere of the international negotiations under the United Nations Framework Convention on Climate Change.

  10. Climate Resiliency Planning: Making Extreme Event Science Useful for Managers and Planners in Northern Nevada

    Science.gov (United States)

    McCarthy, M.; Kenneston, A.; Wall, T. U.; Brown, T. J.; Redmond, K. T.

    2014-12-01

    Effective climate resiliency planning at the regional level requires extensive interactive dialogue among climate scientists, emergency managers, public health officials, urban planners, social scientists, and policy makers. Engaging federal, tribal, state, local governments and private sector business and infrastructure owners/operators in defining, assessing and characterizing the impacts of extreme events allows communities to understand how different events "break the system" forcing local communities to seek support and resources from state/federal governments and/or the private sector and what actions can be taken proactively to mitigate consequences and accelerate recovery. The Washoe County Regional Resiliency Study was prepared in response to potential climate variability related impacts specific to the Northern Nevada Region. The last several decades have seen dramatic growth in the region, coupled with increased resource demands that have forced local governments to consider how those impacts will affect the region and may, in turn, impact the region's ability to provide essential services. The Western Regional Climate Center of the Desert Research Institute provided a synthesis of climate studies with predictions regarding plausible changes in the local climate of Northern California and Nevada for the next 50 years. In general, these predictions indicate that the region's climate is undergoing a gradual shift, which will primarily affect the frequency, amount, and form of precipitation in the Sierra Nevada and Great Basin. Changes in water availability and other extreme events may have serious and long lasting effects in the Northern Nevada Region, and create a variety of social, environmental and economic concerns. A range of extreme events were considered including Adverse Air Quality, Droughts, Floods, Heat Waves, High Wind, Structure Fires, Wildland Fires, and Major Winter Storms. Due to the complexity of our climate systems, and the difficulty in

  11. The XIV Global Warming International Conference & Expo (GWXIV)——Global extreme events

    Institute of Scientific and Technical Information of China (English)

    JamesA.Roberts

    2004-01-01

    The focus of this year's conference is Global Extreme Events, characterized as large-scale climatic effects that have been increasing in magnitude and frequency. Prof. Sinyan Shen, Chairman of the GW International Program Committee, has been leading the world on Global Extreme Events and Emergency Response. In the long term climate change will cause the Earth to transit to another equilibrium state through many oscillations in climatic pattern. Global warming causes extreme events and bad weather in the near term. The immediate

  12. Influence of the control system on wind turbine loads during power production in extreme turbulence: Structural reliability

    DEFF Research Database (Denmark)

    Abdallah, Imad; Natarajan, Anand; Sørensen, John Dalsgaard

    2016-01-01

    The wind energy industry is continuously researching better computational models of wind inflow and turbulence to predict extreme loading (the nature of randomness) and their corresponding probability of occurrence. Sophisticated load alleviation control systems are increasingly being designed an...

  13. Prediction of extreme wind velocity at the site of the Runyang Suspension Bridge

    Institute of Scientific and Technical Information of China (English)

    Yang DENG; You-liang DING; Ai-qun LI; Guang-dong ZHOU

    2011-01-01

    This paper presents a distribution free method for predicting the extreme wind velocity from wind monitoring data at the site of the Runyang Suspension Bridge (RSB),China using the maximum entropy theory.The maximum entropy theory is a rational approach for choosing the most unbiased probability distribution from a small sample,which is consistent with available data and contains a minimum of spurious information.In this paper,the theory is used for estimating a joint probability density function considering the combined action of wind speed and direction based on statistical analysis of wind monitoring data at the site of the RSB.The joint probability distribution model is further used to estimate the extreme wind velocity at the deck level of the RSB.The results of the analysis reveal that the probability density function of the maximum entropy method achieves a result that fits well with the monitoring data.Hypothesis testing shows that the distributions of the wind velocity data collected during the past three years do not obey the Gumbel distribution.Finally,our comparison shows that the wind predictions of the maximum entropy method are higher than that of the Gumbel distribution,but much lower than the design wind speed.

  14. Reconstructing extreme AMOC events through nudging of the ocean surface: a perfect model approach

    Science.gov (United States)

    Ortega, Pablo; Guilyardi, Eric; Swingedouw, Didier; Mignot, Juliette; Nguyen, Sébastien

    2017-01-01

    While the Atlantic Meridional Overturning Circulation (AMOC) is thought to be a crucial component of the North Atlantic climate, past changes in its strength are challenging to quantify, and only limited information is available. In this study, we use a perfect model approach with the IPSL-CM5A-LR model to assess the performance of several surface nudging techniques in reconstructing the variability of the AMOC. Special attention is given to the reproducibility of an extreme positive AMOC peak from a preindustrial control simulation. Nudging includes standard relaxation techniques towards the sea surface temperature and salinity anomalies of this target control simulation, and/or the prescription of the wind-stress fields. Surface nudging approaches using standard fixed restoring terms succeed in reproducing most of the target AMOC variability, including the timing of the extreme event, but systematically underestimate its amplitude. A detailed analysis of the AMOC variability mechanisms reveals that the underestimation of the extreme AMOC maximum comes from a deficit in the formation of the dense water masses in the main convection region, located south of Iceland in the model. This issue is largely corrected after introducing a novel surface nudging approach, which uses a varying restoring coefficient that is proportional to the simulated mixed layer depth, which, in essence, keeps the restoring time scale constant. This new technique substantially improves water mass transformation in the regions of convection, and in particular, the formation of the densest waters, which are key for the representation of the AMOC extreme. It is therefore a promising strategy that may help to better constrain the AMOC variability and other ocean features in the models. As this restoring technique only uses surface data, for which better and longer observations are available, it opens up opportunities for improved reconstructions of the AMOC over the last few decades.

  15. Extreme Wind Calculation Applying Spectral Correction Method – Test and Validation

    DEFF Research Database (Denmark)

    Hansen, Brian Ohrbeck; Larsén, Xiaoli Guo; Kelly, Mark C.

    This report presents a test and validation of extreme wind calculation applying the Spectral Correction method as implemented in the WAsP Engineering 4 software package. The test and validation is based on four sites located in Denmark, one site located in the Netherlands and one site located in ...... in the USA. Calculations have been carried out using wind data from on-site meteorological masts as well as long-term reference wind data.......This report presents a test and validation of extreme wind calculation applying the Spectral Correction method as implemented in the WAsP Engineering 4 software package. The test and validation is based on four sites located in Denmark, one site located in the Netherlands and one site located...

  16. Estimation of fatigue and extreme load distributions from limited data with application to wind energy systems.

    Energy Technology Data Exchange (ETDEWEB)

    Fitzwater, LeRoy M. (Stanford University, Stanford, CA)

    2004-01-01

    An estimate of the distribution of fatigue ranges or extreme loads for wind turbines may be obtained by separating the problem into two uncoupled parts, (1) a turbine specific portion, independent of the site and (2) a site-specific description of environmental variables. We consider contextually appropriate probability models to describe the turbine specific response for extreme loads or fatigue. The site-specific portion is described by a joint probability distribution of a vector of environmental variables, which characterize the wind process at the hub-height of the wind turbine. Several approaches are considered for combining the two portions to obtain an estimate of the extreme load, e.g., 50-year loads or fatigue damage. We assess the efficacy of these models to obtain accurate estimates, including various levels of epistemic uncertainty, of the turbine response.

  17. Representing Extreme Temperature Events and Resolving Their Implications for Yield

    Science.gov (United States)

    Huybers, P. J.; Mueller, N. D.; Butler, E. E.; Tingley, M.; McKinnon, K. A.; Rhines, A. N.

    2014-12-01

    Although it is well recognized that extreme temperatures occurring at particular growth stages are destructive to yield, there appears substantial scope for improved empirical assessment and simulation of the relationship between temperature and yield. Several anecdotes are discussed. First, a statistical analysis of historical U.S. extreme temperatures is provided. It is demonstrated that both reanalysis and model simulations significantly differ from near-surface temperature observations in the frequency and magnitude of extremes. This finding supports empirical assessment using near-surface instrumental records and underscores present difficulties in simulating past and predicting future changes. Second, an analysis of the implications of extreme temperatures on U.S. maize yield is provided where the response is resolved regionally and according to growth stage. Sensitivity to extreme temperatures during silking is found to be uniformly high across the U.S., but the response during grain filling varies spatially, with higher sensitivity in the North. This regional and growth-stage dependent sensitivity implies the importance of representing cultivar, planting times, and development rates, and is also indicative of the potential for future changes according to the combined effects of climate and technology. Finally, interaction between extreme temperatures and agriculture is indicated by analysis showing that historical extreme temperatures in the U.S. Midwest have cooled in relation to changes in regional productivity, possibly because of greater potential for cooling through evapotranspiration. This interpretation is consistent with changes in crop physiology and management, though also noteworthy is that the moderating influence of increased evapotranspiration on extreme temperatures appears to be lost during severe drought. Together, these findings indicate that a more accurate assessment of the historical relationship between extreme temperatures and yield

  18. Climate change impacts on extreme events in the United States: an uncertainty analysis

    Science.gov (United States)

    Extreme weather and climate events, such as heat waves, droughts and severe precipitation events, have substantial impacts on ecosystems and the economy. However, future climate simulations display large uncertainty in mean changes. As a result, the uncertainty in future changes ...

  19. Predictability of extreme weather events for NE U.S.: improvement of the numerical prediction using a Bayesian regression approach

    Science.gov (United States)

    Yang, J.; Astitha, M.; Anagnostou, E. N.; Hartman, B.; Kallos, G. B.

    2015-12-01

    Weather prediction accuracy has become very important for the Northeast U.S. given the devastating effects of extreme weather events in the recent years. Weather forecasting systems are used towards building strategies to prevent catastrophic losses for human lives and the environment. Concurrently, weather forecast tools and techniques have evolved with improved forecast skill as numerical prediction techniques are strengthened by increased super-computing resources. In this study, we examine the combination of two state-of-the-science atmospheric models (WRF and RAMS/ICLAMS) by utilizing a Bayesian regression approach to improve the prediction of extreme weather events for NE U.S. The basic concept behind the Bayesian regression approach is to take advantage of the strengths of two atmospheric modeling systems and, similar to the multi-model ensemble approach, limit their weaknesses which are related to systematic and random errors in the numerical prediction of physical processes. The first part of this study is focused on retrospective simulations of seventeen storms that affected the region in the period 2004-2013. Optimal variances are estimated by minimizing the root mean square error and are applied to out-of-sample weather events. The applicability and usefulness of this approach are demonstrated by conducting an error analysis based on in-situ observations from meteorological stations of the National Weather Service (NWS) for wind speed and wind direction, and NCEP Stage IV radar data, mosaicked from the regional multi-sensor for precipitation. The preliminary results indicate a significant improvement in the statistical metrics of the modeled-observed pairs for meteorological variables using various combinations of the sixteen events as predictors of the seventeenth. This presentation will illustrate the implemented methodology and the obtained results for wind speed, wind direction and precipitation, as well as set the research steps that will be

  20. How extreme weather events can influence the way of thinking about forest management?

    Science.gov (United States)

    Ziemblińska, Klaudia; Merbold, Lutz; Urbaniak, Marek; Haeni, Matthias; Olejnik, Janusz

    2014-05-01

    One third of the total area of Poland, which is covered by forests, is currently managed by "The State National Forest Holding" - the biggest organization in Europe managing forests. Common management practice is based on clear-cutting the vegetation to maintaining forests and ensuring regrowth. While sufficient information exists on the quantity of harvested biomass and particularly its economic value, little knowledge exists on the overall environmental impact of such management including the carbon budgets of forests in Poland. At the same time these forests are very vulnerable to extreme events such as wind throws. Large wind throws can be used as an experimental platform to study both, the effects of extreme events itself but also the effects of management such as clear-cuts, due to the fact that after such kind of natural disasters similar steps then following clear-cuts are implemented. These activities include the removal of whole trees, collection of branches and pulling out stems with heavy machinery, causing additional disturbance. In this study, we aim at providing information to fill the current knowledge gap of changing C budget after clear-cuts and wind throws. We hypothesize large C losses after clear-cuts and ask whether one can improve current forest management to "save" C and/or enhance C sequestration? To answer this specific question we used the eddy covariance (EC) method to adequately measure the net ecosystem exchange of carbon dioxide (NEE) between a deforested area and the atmosphere (treatment) and compare it to measurements from an intact forest of the same type (control). Both sites have the same soil type (brunic arenosoil - after FAO classification) which is sandy and relatively not fertile. Moreover, main species and composition were similar. The treatment area was chosen after the occurrence of a 20min-lasting tornado in July 2012 in Western Poland. The storm resulted in the destruction of more than 500 ha of 75-year old pine forest

  1. PROBABILISTIC HAZARD ASSESSMENT FOR TORNADOES, STRAIGHT-LINE WIND, AND EXTREME PRECIPITATION AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Werth, D.; (NOEMAIL), A.; Shine, G.

    2013-12-04

    Recent data sets for three meteorological phenomena with the potential to inflict damage on SRS facilities - tornadoes, straight winds, and heavy precipitation - are analyzed using appropriate statistical techniques to estimate occurrence probabilities for these events in the future. Summaries of the results for DOE-mandated return periods and comparisons to similar calculations performed in 1998 by Weber, et al., are given. Using tornado statistics for the states of Georgia and South Carolina, we calculated the probability per year of any location within a 2⁰ square area surrounding SRS being struck by a tornado (the ‘strike’ probability) and the probability that any point will experience winds above set thresholds. The strike probability was calculated to be 1.15E-3 (1 chance in 870) per year and wind speeds for DOE mandated return periods of 50,000 years, 125,000 years, and 1E+7 years (USDOE, 2012) were estimated to be 136 mph, 151 mph and 221 mph, respectively. In 1998 the strike probability for SRS was estimated to be 3.53 E-4 and the return period wind speeds were 148 mph every 50,000 years and 180 mph every 125,000 years. A 1E+7 year tornado wind speed was not calculated in 1998; however a 3E+6 year wind speed was 260 mph. The lower wind speeds resulting from this most recent analysis are largely due to new data since 1998, and to a lesser degree differences in the models used. By contrast, default tornado wind speeds taken from ANSI/ANS-2.3-2011 are somewhat higher: 161 mph for return periods of 50,000 years, 173 mph every 125,000 years, and 230 mph every 1E+7 years (ANS, 2011). Although the ANS model and the SRS models are very similar, the region defined in ANS 2.3 that encompasses the SRS also includes areas of the Great Plains and lower Midwest, regions with much higher occurrence frequencies of strong tornadoes. The SRS straight wind values associated with various return periods were calculated by fitting existing wind data to a Gumbel

  2. An Urban Resilience to Extreme Weather Events Framework for Development of Post Event Learning and Transformative Adaptation in Cities

    Science.gov (United States)

    Solecki, W. D.; Friedman, E. S.; Breitzer, R.

    2016-12-01

    Increasingly frequent extreme weather events are becoming an immediate priority for urban coastal practitioners and stakeholders, adding complexity to decisions concerning risk management for short-term action and long-term needs of city climate stakeholders. The conflict between the prioritization of short versus long-term events by decision-makers creates disconnect between climate science and its applications. The Consortium for Climate Risk in the Urban Northeast (CCRUN), a NOAA RISA team, is developing a set of mechanisms to help bridge this gap. The mechanisms are designed to promote the application of climate science on extreme weather events and their aftermath. It is in the post event policy window where significant opportunities for science-policy linkages exist. In particular, CCRUN is interested in producing actionable and useful information for city managers to use in decision-making processes surrounding extreme weather events and climate change. These processes include a sector specific needs assessment survey instrument and two tools for urban coastal practitioners and stakeholders. The tools focus on post event learning and connections between resilience and transformative adaptation. Elements of the two tools are presented. Post extreme event learning supports urban coastal practitioners and decision-makers concerned about maximizing opportunities for knowledge transfer and assimilation, and policy initiation and development following an extreme weather event. For the urban U.S. Northeast, post event learning helps coastal stakeholders build the capacity to adapt to extreme weather events, and inform and develop their planning capacity through analysis of past actions and steps taken in response to Hurricane Sandy. Connecting resilience with transformative adaptation is intended to promote resilience in urban Northeast coastal settings to the long-term negative consequences of extreme weather events. This is done through a knowledge co

  3. Effects of extreme wind shear on aeroelastic modal damping of wind turbines

    DEFF Research Database (Denmark)

    Skjoldan, P.F.; Hansen, Morten Hartvig

    2013-01-01

    the effect of wind shear on the modal damping of the turbine. In isotropic conditions with a uniform wind field, the modal properties can be extracted from the system matrix transformed into the inertial frame using the Coleman transformation. In shear conditions, an implicit Floquet analysis, which reduces...

  4. Recurring features of extreme rainfall events close to Veneto coast during autumn

    Science.gov (United States)

    Monai, M.; Barbi, A.; Racca, R.

    2010-09-01

    warm air coming from Adriatic sea, that is still warm (sea surface temperature above 20°C) in September; - previous weather conditions (7-10 days) with anticyclonic situation (frequently a ridge from north-Africa) with temperatures higher than usual. During most intense phases, recurring features were evidenced: - convective rains with significant thunderstorm activity; such systems are often associated to regeneration of cells, in the same coastal area; - convergence lines at low levels associated with winds coming from SE (from the sea) on the coast, and from NE (from the plane) immediately inland. It is particularly important to underline that rainfall values on short periods were extremely high if compared with mean annual amount: during last four episodes , rainfall amounts between 130 and 320 mm were recorded in 12 hours, i.e. during half a day something like 1/8 and 1/3 of total mean annual amount has fallen. Remarkable also intensity of rainfall : values like 90 mm in half an hour, or 125 mm in 1 hour were recorded. The final goal of this study was to better understand meteorological conditions associated with such events to improve forecasting and nowcasting skill. This is a crucial benefit for a Regional Met Service that must alert and support civil defence system properly, as is the case for Meteorological Centre of ARPAV in Veneto. Furthermore it is important to underline the fact that coastal area of Veneto is densely populated and it is one of the most important areas of Italian tourism, including the city of Venice and several seaside resorts with more than twenty millions of presences per year.

  5. Data-driven prediction and prevention of extreme events in a spatially extended excitable system.

    Science.gov (United States)

    Bialonski, Stephan; Ansmann, Gerrit; Kantz, Holger

    2015-10-01

    Extreme events occur in many spatially extended dynamical systems, often devastatingly affecting human life, which makes their reliable prediction and efficient prevention highly desirable. We study the prediction and prevention of extreme events in a spatially extended system, a system of coupled FitzHugh-Nagumo units, in which extreme events occur in a spatially and temporally irregular way. Mimicking typical constraints faced in field studies, we assume not to know the governing equations of motion and to be able to observe only a subset of all phase-space variables for a limited period of time. Based on reconstructing the local dynamics from data and despite being challenged by the rareness of events, we are able to predict extreme events remarkably well. With small, rare, and spatiotemporally localized perturbations which are guided by our predictions, we are able to completely suppress extreme events in this system.

  6. Probability assessment for the incidence of extreme events due to the climatic change. Focus Germany; Berechnung der Wahrscheinlichkeiten fuer das Eintreten von Extremereignissen durch Klimaaenderungen. Schwerpunkt Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Jonas, Martin; Staeger, Tim; Schoenwiese, Christian-Dietrich [Frankfurt Univ. (Germany). Inst. fuer Atmosphaere und Umwelt, Arbeitsgruppe Klimaforschung

    2005-08-15

    The study on the probability of occurrence of extreme weather events in Germany is based on compiled data covering ground-level temperature, precipitation and wind during the time period 1901 to 2000. The data processing approach is based on two methodologies: a time-gliding extreme value analysis and a structure-oriented time-series analysis. The results show a significant increase of very hot months and at the same time a decrease of extreme cold months within the 20th century. In the time period after 1951 the probability of very high daily maximum temperatures increased for all seasons. Concerning the precipitation the increase of extreme values and higher variabilities are observed for the winter period. The results concerning the wind are not so clear. Summarizing the extreme behavior of temperature and precipitation has shown strong variations during the last century.

  7. Climate Model Simulation of Present and Future Extreme Events in Latin America and the Caribbean: What Spatial Resolution is Required?

    Science.gov (United States)

    Rowe, C. M.; Oglesby, R. J.; Mawalagedara, R.; Mohammad Abadi Kamarei, A.

    2015-12-01

    Latin America and the Caribbean are at risk of extreme climate events, including flooding rains, damaging winds, drought, heat waves, and in high elevation mountainous regions, excessive snowfalls. The causes of these events are numerous - flooding rains and damaging winds are often associated with tropical cyclones, but also can occur, either separately or in tandem, due to smaller, more localized storms. Similarly, heat waves and droughts can be large scale or localized, and frequently occur together (as excessive drying can lead to enhanced heating, while enhanced heating in turn promotes additional drying). Even in the tropics, extreme snow and ice events can have severe consequences due to avalanches, and also impact water resources. Understanding and modeling the climate controls behind these extreme events requires consideration of a range of time and space scales. A common strategy is to use a global climate model (GCM) to simulate the large-scale (~100km) daily atmospheric controls on extreme events. A limited area, high resolution regional climate model (RCM) is then employed to dynamically downscale the results, so as to better incorporate the influence of topography and, secondarily, the nature of the land cover. But what resolution is required to provide the necessary results, i.e., minimize biases due to improper resolution? In conjunction with our partners from participating Latin American and Caribbean nations, we have made an extensive series of simulations, both region-wide and for individual countries, using the WRF regional climate model to downscale output from a variety of GCMs, as well as Reanalyses (as a proxy for observations). The simulations driven by the Reanalyses are used for robust model verification against actual weather station observations. The simulations driven by GCMs are designed to provide projections of future climate, including importantly how the nature and number of extreme events may change through coming decades. Our

  8. Extremely high reflection of solar wind protons as neutral hydrogen atoms from regolith in space

    CERN Document Server

    Wieser, Martin; Futaana, Yoshifumi; Holmström, Mats; Bhardwaj, Anil; Sridharan, R; Dhanya, MB; Wurz, Peter; Schaufelberger, Audrey; Asamura, Kazushi; 10.1016/j.pss.2009.09.012

    2010-01-01

    We report on measurements of extremely high reflection rates of solar wind particles from regolith-covered lunar surfaces. Measurements by the Sub-keV Atom Reflecting Analyzer (SARA) instrument on the Indian Chandrayaan-1 spacecraft in orbit around the Moon show that up to 20% of the impinging solar wind protons are reflected from the lunar surface back to space as neutral hydrogen atoms. This finding, generally applicable to regolith-covered atmosphereless bodies, invalidates the widely accepted assumption that regolith almost completely absorbs the impinging solar wind.

  9. Multivariate Modelling of Extreme Load Combinations for Wind Turbines

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov

    2015-01-01

    We demonstrate a model for estimating the joint probability distribution of two load components acting on a wind turbine blade cross section. The model addresses the problem of modelling the probability distribution of load time histories with large periodic components by dividing the signal...... into a periodic part and a perturbation term, where each part has a known probability distribution. The proposed model shows good agreement with simulated data under stationary conditions, and a design load envelope based on this model is comparable to the load envelope estimated using the standard procedure...... for determining contemporaneous loads. By defining a joint probability distribution and full return-period contours for multiple load components, the suggested procedure gives the possibility for determining the most critical loading direction in a blade cross section, or for carrying out reliability analysis...

  10. A Floating Offshore Wind Turbine in Extreme Wave Conditions

    DEFF Research Database (Denmark)

    Wehmeyer, Christof

    and peak enhancement factors, based on cyclonic storm conditions (Wehmeyer et al., 2012). 2. Based on Wehmeyer et al. (2012), a physical model test campaign was drafted, where an industry inspired floating offshore wind turbine was tested (Wehmeyer et al., 2013). 3. A comparison of measured pitch responses...... versus responses from an in-house developed numerical tool, as well as a code to code comparison in regular non-linear waves served as initial key performance indicator of numerical model quality and good agreement was found (Wehmeyer et al., 2014). 4. As a final step, the numerical model was extended...... in order to include non-linear irregular incident waves as well as non-linear irregular incident waves with an embedded Stream-function wave. A linear background sea state into which a Stream-function wave was embedded was assumed no longer appropriate. Therefore a 2nd order sea state model was developed...

  11. Impacts of the Future Changes in Extreme Events on the Regional Crop Yield in Turkey

    Science.gov (United States)

    An, Nazan; Turp, M. Tufan; Ozturk, Tugba; Kurnaz, M. Levent

    2016-04-01

    The changes in extreme events caused by climate change have the greatest impact on agricultural sector specifically crop yield. Therefore, it requires a clear understanding of how extreme events affect the crop yield and how it causes high economic losses. In this research, we cover the relationship between extreme events and the crop yield in Turkey for the period of 2020 - 2045 with respect to 1980 - 2005. We focus on the role of those extreme event causing natural disasters on the regional crop yield. This research comprises 2 parts. In the first part, the projection is performed according to the business as usual scenario of IPCC, RCP8.5, via the RegCM4.4 in order to obtain extreme event indices required for the crop assessment. In the second part, the crop yield and the extreme event indices are combined by applying the econometric analysis in order to see the relationship between natural disasters and crop yield. The risks for crop yield caused by the extreme events are estimated and interpreted. This study aims to assess the effect of frequency of expected extreme events on the crop yield at the cropland of Turkey. This research has been supported by Boǧaziçi University Research Fund Grant Number 10421.

  12. Evaluating aerosol impacts on Numerical Weather Prediction in two extreme dust and biomass-burning events

    Science.gov (United States)

    Remy, Samuel; Benedetti, Angela; Jones, Luke; Razinger, Miha; Haiden, Thomas

    2014-05-01

    The WMO-sponsored Working Group on Numerical Experimentation (WGNE) set up a project aimed at understanding the importance of aerosols for numerical weather prediction (NWP). Three cases are being investigated by several NWP centres with aerosol capabilities: a severe dust case that affected Southern Europe in April 2012, a biomass burning case in South America in September 2012, and an extreme pollution event in Beijing (China) which took place in January 2013. At ECMWF these cases are being studied using the MACC-II system with radiatively interactive aerosols. Some preliminary results related to the dust and the fire event will be presented here. A preliminary verification of the impact of the aerosol-radiation direct interaction on surface meteorological parameters such as 2m Temperature and surface winds over the region of interest will be presented. Aerosol optical depth (AOD) verification using AERONET data will also be discussed. For the biomass burning case, the impact of using injection heights estimated by a Plume Rise Model (PRM) for the biomass burning emissions will be presented.

  13. National vulnerability to extreme climatic events: the cases of electricity disruption in China and Japan

    OpenAIRE

    Jing-Li Fan; Qiao-Mei Liang; Xiao-Jie Liang; Hirokazu Tatano; Yoshio Kajitani; Yi-Ming Wei

    2014-01-01

    Extreme climatic events are likely to adversely affect many countries throughout the world, but the degrees among countries may be different. China and Japan are the countries with high incidences of extreme weather/disaster, both facing with the urgent task of addressing climate change. This study seeks to quantitatively compare the impacts of extreme climatic events on socio-economic systems (defined as vulnerability) of the two countries by simulating the consequences of hypothetical the s...

  14. Spatio-temporal extreme events in a laser with a saturable absorber

    CERN Document Server

    Rimoldi, Cristina; Prati, Franco; Tissoni, Giovanna

    2016-01-01

    We study extreme events occurring in the transverse $(x,y)$ section of the field emitted by a broad-area semiconductor laser with a saturable absorber. The spatio-temporal events on which we perform the statistical analysis are identified as maxima of the field intensity in the 3D space $(x,y,t)$. We identify regions in the parameter space where extreme events are more likely to occur and we study the connection of those extreme events with the cavity solitons that are known to exist in the same system, both stationary and self-pulsing.

  15. Extreme total column ozone events and effects on UV solar radiation at Thessaloniki, Greece

    Science.gov (United States)

    Fragkos, K.; Bais, A. F.; Fountoulakis, I.; Balis, D.; Tourpali, K.; Meleti, C.; Zanis, P.

    2016-11-01

    Thirty years of total ozone column (TOC) measurements conducted by a Brewer spectrophotometer, operating in Thessaloniki (40.6°) since March 1982, have been analyzed using the statistical extreme value theory for the identification of extreme TOC events. About 12 % of the total number of days with TOC measurements were identified as extreme-low and ˜15 % as extreme-high events. The influence of the extreme-low events on the annual mean TOC values is up to ˜18 DU, while the extreme-high events show lower impact (up to 12 DU). Removing the extreme events from the time series results in smoother year-to-year variability and reduction of the small long-term linear trend (-0.08 %/year) by a factor of 2. Furthermore, we examined the impact of the extreme events on the noon erythemal irradiance under clear skies, and we provide evidence that even under extreme-low TOC conditions, the UV radiation levels are determined to a great extent by the aerosol optical depth. Although the influence of aerosols is evident during all seasons, for spring and summer, the sensitivity of UV radiation is larger, probably due to the different nature of the aerosols over Thessaloniki during these seasons.

  16. Soliciting Feedback from Resource Managers to Inform Response to Extreme Event Impact

    Science.gov (United States)

    Bedsworth, L. W.

    2014-12-01

    To date, extreme events have been defined by scientists through a top-down approach, relying on observations for current extremes and climate model projections based on future scenarios for their expected changes. These abstract definitions of extreme events are based on a corresponding characterization of what is "normal" and perhaps the choice of a threshold (e.g., a percentile of a historical distribution for a given climate variable), beyond which would represent an extreme event. However, there are not necessarily direct connections between these definitions and what is considered "extreme" in terms of impacts that challenge resource management. Several researchers have suggested that extreme event definitions would also be informed by input from on-the-ground resource managers who are familiar with the systems being impacted, the climate conditions that pose risks to those systems, and their resilience and adaptive capacity. This research will present preliminary survey work designed to solicit input from air and water quality managers in terms of what is considered an extreme event, how these events have been weathered in the past, and planned for in the future. The survey is based on literature review, interviews with air and water quality managers in California, and outreach to the scientific community. This work is the first step of a multistage research effort to link input from resource managers with scientific information to better inform air and water quality management and impacts of extreme events under a changing climate.

  17. Detecting impacts of extreme events with ecological in situ monitoring networks

    Directory of Open Access Journals (Sweden)

    M. D. Mahecha

    2017-09-01

    Full Text Available Extreme hydrometeorological conditions typically impact ecophysiological processes on land. Satellite-based observations of the terrestrial biosphere provide an important reference for detecting and describing the spatiotemporal development of such events. However, in-depth investigations of ecological processes during extreme events require additional in situ observations. The question is whether the density of existing ecological in situ networks is sufficient for analysing the impact of extreme events, and what are expected event detection rates of ecological in situ networks of a given size. To assess these issues, we build a baseline of extreme reductions in the fraction of absorbed photosynthetically active radiation (FAPAR, identified by a new event detection method tailored to identify extremes of regional relevance. We then investigate the event detection success rates of hypothetical networks of varying sizes. Our results show that large extremes can be reliably detected with relatively small networks, but also reveal a linear decay of detection probabilities towards smaller extreme events in log–log space. For instance, networks with  ≈  100 randomly placed sites in Europe yield a  ≥  90 % chance of detecting the eight largest (typically very large extreme events; but only a  ≥  50 % chance of capturing the 39 largest events. These findings are consistent with probability-theoretic considerations, but the slopes of the decay rates deviate due to temporal autocorrelation and the exact implementation of the extreme event detection algorithm. Using the examples of AmeriFlux and NEON, we then investigate to what degree ecological in situ networks can capture extreme events of a given size. Consistent with our theoretical considerations, we find that today's systematically designed networks (i.e. NEON reliably detect the largest extremes, but that the extreme event detection rates are not higher than would

  18. Diagnosis, medium-range predictability and impacts of the North Atlantic Oscillation (NAO): the occurrence of extreme wind speed and precipitation events over central Europe. Final report; Diagnose, mittelfristige Vorhersagbarkeit und Auswirkungen der Nordatlantischen Oszillation (NAO): Das Auftreten extremer Windgeschwindigkeiten und Gebietsniederschlaege ueber Mitteleuropa. Abschlussbericht ueber die wissenschaftlichen Ergebnisse 1998 - 2000

    Energy Technology Data Exchange (ETDEWEB)

    Klawa, M.; Wefers, J.; Ulbrich, U.; Speth, P.

    2001-07-01

    In this research Rhine-floods at Cologne and severe storm events in Germany are investigated. Special emphasis is put on a possible link between these events and the North Atlantic Oscillation (NAO). Over Germany intensive storm events are identified with a statistical model based on gust-speed observations and NCEP-Reanalysis data. The model-output is validated to insurance data. It is found out that storm-probability in Germany increases with positive monthly and seasonal NAO-index values. Evaluations of scenario runs - simulating an intensification of greenhouse gas forcing due to anthropogenic emissions - show a trend to more positive phases of the NAO. For the future an increased number of severe storms is expected. An influence of the NAO on the Rhine floods can be stated. At slightly positive values of monthly NAO the frequency of floods is increased. Nevertheless, possible changes in the future NAO do have only a small influence on the number of events, but the impact on the flood-genesis has to be taken into account. (orig.) [German] In dieser Studie werden Hochwasser am Rhein bei Koeln und schadenintensive Sturmereignisse in Deutschland untersucht. Insbesondere wird der Zusammenhang zwischen der Nordatlantischen Oszillation (NAO) und diesen Extremereignissen erarbeitet. Schadenintensive Sturmereignisse werden mit Hilfe eines statistischen Sturmschadenmodells basierend auf Boeen und NCEP-Reanalysedaten identifiziert. Das Modell wurde zuvor an Schadendaten der Versicherungsindustrie verifiziert. Auf Basis der identifizierten Stuerme wird die Auftretenshaeufigkeit intensiver Ereignisse in Deutschland in Abhaengigkeit der NAO untersucht. Es wird festgestellt, dass bei positiven Phasen der Nordatlantischen Oszillation auf monatlicher bis saisonaler Zeitskala im Winterhalbjahr ein deutlich erhoehtes Auftretensrisiko intensiver Sturmereignisse in Deutschland besteht. Auswertungen von Klimaszenarienlaeufen deuten auf einen verstaerkten Trend zu hoeheren Phasen

  19. Assessing emergency planning zone for new nuclear power plant considering risk of extreme external events

    Science.gov (United States)

    Alzbutas, Robertas

    2015-04-01

    In general, the Emergency Planning Zones (EPZ) are defined as well as plant site and arrangement structures are designed to minimize the potential for natural and manmade hazards external to the plant from affecting the plant safety related functions, which can affect nearby population and environment. This may include consideration of extreme winds, fires, flooding, aircraft crash, seismic activity, etc. Thus the design basis for plant and site is deeply related to the effects of any postulated external events and the limitation of the plant capability to cope with accidents i.e. perform safety functions. It has been observed that the Probabilistic Safety Assessment (PSA) methodologies to deal with EPZ and extreme external events have not reached the same level of maturity as for severe internal events. The design basis for any plant and site is deeply related to the effects of any postulated external events and the limitation of the plant capability to cope with accidents i.e. perform safety functions. As a prime example of an advanced reactor and new Nuclear Power Plant (NPP) with enhanced safety, the International Reactor Innovative and Secure (IRIS) and Site selection for New NPP in Lithuania had been considered in this work. In the used Safety-by-Design™ approach, the PSA played obviously a key role; therefore a Preliminary IRIS PSA had been developed along with the design. For the design and pre-licensing process of IRIS the external events analysis included both qualitative evaluation and quantitative assessment. As a result of preliminary qualitative analyses, the external events that were chosen for more detailed quantitative scoping evaluation were high winds and tornadoes, aircraft crash, and seismic events. For the site selection in Lithuania a detail site evaluation process was performed and related to the EPZ and risk zoning considerations. In general, applying the quantitative assessment, bounding site characteristics could be used in order to

  20. Extreme Design Loads Calibration of Offshore Wind Turbine Blades through Real Time Measurements

    DEFF Research Database (Denmark)

    Natarajan, Anand; Vesth, Allan; Lamata, Rebeca Rivera

    Blade Root flap and Edge moments are measured on the blades of a 3.6MW offshore wind turbine in normal operation. Ten minute maxima of the measurements are sampled to determine the extreme blade root flap moment, edge moment and resultant moment over six month duration. A random subset of the mea...

  1. 76 FR 74776 - Forum-Trends in Extreme Winds, Waves, and Extratropical Storms Along the Coasts

    Science.gov (United States)

    2011-12-01

    ... National Oceanic and Atmospheric Administration Forum--Trends in Extreme Winds, Waves, and Extratropical... open public forum. SUMMARY: This notice sets forth the schedule and topics of an upcoming forum hosted... the forum and are required to RSVP to Brooke.Stewart@noaa.gov by 5 p.m. EST, Wednesday, December 28...

  2. Non-Cooperative Regulation Coordination Based on Game Theory for Wind Farm Clusters during Ramping Events

    DEFF Research Database (Denmark)

    Qi, Yongzhi; Liu, Yutian; Wu, Qiuwei

    2017-01-01

    of wind farm clusters (WFCs) in order to track scheduled wind power of the WFC during ramping events. In the proposed strategy, a non‐cooperative game is formulated and wind farms compete to provide regulation to the WFC during ramping events. A regulation revenue function is proposed to evaluate......With increasing penetration of wind power in power systems, it is important to track scheduled wind power output as much as possible during ramping events to ensure security of the system. In this paper, a non‐cooperative coordination strategy based on the game theory is proposed for the regulation...... the competition process of wind farms to provide regulation to the WFC which includes revenue of effective regulation (ER), power support regulation and punishment regulation. The multi‐time‐interval Nash equilibrium condition is derived for the regulation competition process of wind farms. By setting parameters...

  3. Characterization of the High-Speed-Stage Bearing Skidding of Wind Turbine Gearboxes Induced by Dynamic Electricity Grid Events

    Energy Technology Data Exchange (ETDEWEB)

    Helsen, Jan; Guillaume, Patrick; Guo, Yi; Keller, Jonathan

    2016-07-01

    Bearing behavior is an important factor for wind turbine drivetrain reliability. Extreme loads and dynamic excitations pose challenges to the bearing design and therefore its performance. Excessive skidding of the bearing rollers should be avoided because it can cause scuffing failures. Excitations coming from wind and the electricity grid can subject the drivetrain to fluctuating torque and nontorque loads. Wind-induced excitations have been investigated predominantly in literature. However, modern wind turbines are subjected more and more to grid-induced loads because of stricter electricity grid regulations. For example, during fault-ride-through events, turbines are required to stay connected for a longer period of time during the grid failure. This work investigates the influence of electrically induced excitations on the skidding behaviour of the tapered roller bearings on the high-speed stage of a wind turbine gearbox. This skidding behaviour during dynamic events is described as a potential bearing failure initiator by many researchers; however, only limited full-scale dynamic testing is documented. Therefore, a dedicated gridloss-type event is defined in the paper and conducted in a dynamometer test on a full-scale wind turbine nacelle. During the event, a complete electricity grid failure is simulated while the turbine is at rated speed and predefined torque levels. Particular focus is on the characterization of the high-speed shaft tapered roller bearing slip behavior. Strain-gauge bridges in grooves along the circumference of the outer ring are used to characterize the bearing load zone in detail. It is shown that during the torque reversals of the transient event, roller slip can be induced. This indicates the potential of the applied load case to go beyond the preload of the tapered roller bearing. Furthermore, the relation between the applied torque and skidding level is studied.

  4. Characterization of the High-Speed-Stage Bearing Skidding of Wind Turbine Gearboxes Induced by Dynamic Electricity Grid Events: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Helsen, Jan; Guillaume, Patrick; Guo, Yi; Keller, Jonathan

    2016-05-18

    Bearing behavior is an important factor for wind turbine drivetrain reliability. Extreme loads and dynamic excitations pose challenges to the bearing design and therefore its performance. Excessive skidding of the bearing rollers should be avoided because it can cause scuffing failures. Excitations coming from wind and the electricity grid can subject the drivetrain to fluctuating torque and nontorque loads. Wind-induced excitations have been investigated predominantly in literature. However, modern wind turbines are subjected more and more to grid-induced loads because of stricter electricity grid regulations. For example, during fault-ride-through events, turbines are required to stay connected for a longer period of time during the grid failure. This work investigates the influence of electrically induced excitations on the skidding behaviour of the tapered roller bearings on the high-speed stage of a wind turbine gearbox. This skidding behaviour during dynamic events is described as a potential bearing failure initiator by many researchers; however, only limited full-scale dynamic testing is documented. Therefore, a dedicated gridloss-type event is defined in the paper and conducted in a dynamometer test on a full-scale wind turbine nacelle. During the event, a complete electricity grid failure is simulated while the turbine is at rated speed and predefined torque levels. Particular focus is on the characterization of the high-speed shaft tapered roller bearing slip behavior. Strain-gauge bridges in grooves along the circumference of the outer ring are used to characterize the bearing load zone in detail. It is shown that during the torque reversals of the transient event, roller slip can be induced. This indicates the potential of the applied load case to go beyond the preload of the tapered roller bearing. Furthermore, the relation between the applied torque and skidding level is studied.

  5. Observed and projected urban extreme rainfall events in India

    Science.gov (United States)

    Ali, Haider; Mishra, Vimal; Pai, D. S.

    2014-11-01

    We examine changes in extreme rainfall indices over 57 major urban areas in India under the observed (1901-2010) and projected future climate (2010-2060). Between 1901 and 2010, only four out of the total 57 urban areas showed a significant (p-value urban areas experienced significant increases in the extreme rainfall indices for the different periods. Moreover, rainfall maxima for 1-10 day durations and at 100 year return period did not change significantly over the majority of urban areas in the post-1955 period. Results do not indicate any significant change (p > 0.05) in the pooled mean and distribution of the extreme rainfall indices for the pre- and post-1983 periods revealing an insignificant role of urbanization on rainfall extremes in the major urban areas in India. We find that at the majority of urban areas changes in the extreme rainfall indices are driven by large scale climate variability. Regional Climate Models (RCMs) that participated in the CORDEX-South Asia program showed a significant bias in the monsoon maximum rainfall and rainfall maxima at 100 year return period for the majority of urban areas. For instance, most of the models fail to simulate rainfall maxima within ±10% bias, which can be considered appropriate for a storm water design at many urban areas. Rainfall maxima at 1-3 day durations and 100 year return period is projected to increase significantly under the projected future climate at the majority of urban areas in India. The number of urban areas with significant increases in rainfall maxima under the projected future climate is far larger than the number of areas that experienced significant changes in the historic climate (1901-2010), which warrants a careful attention for urban storm water infrastructure planning and management.

  6. Unusual Solar Radio Events Observed by the Wind and STEREO Spacecraft

    Science.gov (United States)

    MacDowall, R. J.; Hess, R. A.

    2014-12-01

    We present several unusual solar radio events observed by the Wind spacecraft. These events - type II and type III bursts - show significant unexpected time-frequency structure that is likely due to interaction of the electron beam sources with atypical density variations of the solar wind. These events permit us to test our understanding of the emission processes, as well as demonstrating the remote detection of solar wind structure. We will also report on updates to the Wind Waves website at NASA GSFC of interest to radio data users.

  7. Seasonal and regional variations in extreme precipitation event frequency using CMIP5

    Science.gov (United States)

    Janssen, E.; Sriver, R. L.; Wuebbles, D. J.; Kunkel, K. E.

    2016-05-01

    Understanding how the frequency and intensity of extreme precipitation events are changing is important for regional risk assessments and adaptation planning. Here we use observational data and an ensemble of climate change model experiments (from the Coupled Model Intercomparison Project Phase 5 (CMIP5)) to examine past and potential future seasonal changes in extreme precipitation event frequency over the United States. Using the extreme precipitation index as a metric for extreme precipitation change, we find key differences between models and observations. In particular, the CMIP5 models tend to overestimate the number of spring events and underestimate the number of summer events. This seasonal shift in the models is amplified in projections. These results provide a basis for evaluating climate model skill in simulating observed seasonality and changes in regional extreme precipitation. Additionally, we highlight key sources of variability and uncertainty that can potentially inform regional impact analyses and adaptation planning.

  8. Climate Products and Services to Meet the Challenges of Extreme Events

    Science.gov (United States)

    McCalla, M. R.

    2008-12-01

    The 2002 Office of the Federal Coordinator for Meteorological Services and Supporting Research (OFCM1)-sponsored report, Weather Information for Surface Transportation: National Needs Assessment Report, addressed meteorological needs for six core modes of surface transportation: roadway, railway, transit, marine transportation/operations, pipeline, and airport ground operations. The report's goal was to articulate the weather information needs and attendant surface transportation weather products and services for those entities that use, operate, and manage America's surface transportation infrastructure. The report documented weather thresholds and associated impacts which are critical for decision-making in surface transportation. More recently, the 2008 Climate Change Science Program's (CCSP) Synthesis and Assessment Product (SAP) 4.7 entitled, Impacts of Climate Change and Variability on Transportation Systems and Infrastructure: Gulf Coast Study, Phase I, included many of the impacts from the OFCM- sponsored report in Table 1.1 of this SAP.2 The Intergovernmental Panel on Climate Change (IPCC) reported that since 1950, there has been an increase in the number of heat waves, heavy precipitation events, and areas of drought. Moreover, the IPCC indicated that greater wind speeds could accompany more severe tropical cyclones.3 Taken together, the OFCM, CCSP, and IPCC reports indicate not only the significance of extreme events, but also the potential increasing significance of many of the weather thresholds and associated impacts which are critical for decision-making in surface transportation. Accordingly, there is a real and urgent need to understand what climate products and services are available now to address the weather thresholds within the surface transportation arena. It is equally urgent to understand what new climate products and services are needed to address these weather thresholds, and articulate what can be done to fill the gap between the

  9. Generalized Extreme Value Distribution Models for the Assessment of Seasonal Wind Energy Potential of Debuncha, Cameroon

    Directory of Open Access Journals (Sweden)

    Nkongho Ayuketang Arreyndip

    2016-01-01

    Full Text Available The method of generalized extreme value family of distributions (Weibull, Gumbel, and Frechet is employed for the first time to assess the wind energy potential of Debuncha, South-West Cameroon, and to study the variation of energy over the seasons on this site. The 29-year (1983–2013 average daily wind speed data over Debuncha due to missing values in the years 1992 and 1994 is gotten from NASA satellite data through the RETScreen software tool provided by CANMET Canada. The data is partitioned into min-monthly, mean-monthly, and max-monthly data and fitted using maximum likelihood method to the two-parameter Weibull, Gumbel, and Frechet distributions for the purpose of determining the best fit to be used for assessing the wind energy potential on this site. The respective shape and scale parameters are estimated. By making use of the P values of the Kolmogorov-Smirnov statistic (K-S and the standard error (s.e analysis, the results show that the Frechet distribution best fits the min-monthly, mean-monthly, and max-monthly data compared to the Weibull and Gumbel distributions. Wind speed distributions and wind power densities of both the wet and dry seasons are compared. The results show that the wind power density of the wet season was higher than in the dry season. The wind speeds at this site seem quite low; maximum wind speeds are listed as between 3.1 and 4.2 m/s, which is below the cut-in wind speed of many modern turbines (6–10 m/s. However, we recommend the installation of low cut-in wind turbines like the Savonius or Aircon (10 KW for stand-alone low energy need.

  10. Climate Change, Extreme Weather Events, and Human Health Implications in the Asia Pacific Region.

    Science.gov (United States)

    Hashim, Jamal Hisham; Hashim, Zailina

    2016-03-01

    The Asia Pacific region is regarded as the most disaster-prone area of the world. Since 2000, 1.2 billion people have been exposed to hydrometeorological hazards alone through 1215 disaster events. The impacts of climate change on meteorological phenomena and environmental consequences are well documented. However, the impacts on health are more elusive. Nevertheless, climate change is believed to alter weather patterns on the regional scale, giving rise to extreme weather events. The impacts from extreme weather events are definitely more acute and traumatic in nature, leading to deaths and injuries, as well as debilitating and fatal communicable diseases. Extreme weather events include heat waves, cold waves, floods, droughts, hurricanes, tropical cyclones, heavy rain, and snowfalls. Globally, within the 20-year period from 1993 to 2012, more than 530 000 people died as a direct result of almost 15 000 extreme weather events, with losses of more than US$2.5 trillion in purchasing power parity.

  11. Estimating return periods of extreme values from relatively short time series of winds

    Science.gov (United States)

    Jonasson, Kristjan; Agustsson, Halfdan; Rognvaldsson, Olafur; Arfeuille, Gilles

    2013-04-01

    An important factor for determining the prospect of individual wind farm sites is the frequency of extreme winds at hub height. Here, extreme winds are defined as the value of the highest 10 minutes averaged wind speed with a 50 year return period, i.e. annual exceeding probability of 2% (Rodrigo, 2010). A frequently applied method to estimate winds in the lowest few hundred meters above ground is to extrapolate observed 10-meter winds logarithmically to higher altitudes. Recent study by Drechsel et al. (2012) showed however that this methodology is not as accurate as interpolating simulated results from the global ECMWF numerical weather prediction (NWP) model to the desired height. Observations of persistent low level jets near Colima in SW-Mexico also show that the logarithmic approach can give highly inaccurate results for some regions (Arfeuille et al., 2012). To address these shortcomings of limited, and/or poorly representative, observations and extrapolations of winds one can use NWP models to dynamically scale down relatively coarse resolution atmospheric analysis. In the case of limited computing resources one has typically to make a compromise between spatial resolution and the duration of the simulated period, both of which can limit the quality of the wind farm siting. A common method to estimate maximum winds is to fit an extreme value distribution (e.g. Gumbel, gev or Pareto) to the maximum values of each year of available data, or the tail of these values. If data are only available for a short period, e.g. 10 or 15 years, then this will give a rather inaccurate estimate. It is possible to deal with this problem by utilizing monthly or weekly maxima, but this introduces new problems: seasonal variation, autocorrelation of neighboring values, and increased discrepancy between data and fitted distribution. We introduce a new method to estimate return periods of extreme values of winds at hub height from relatively short time series of winds, simulated

  12. Spatial and Temporal Variation of the Extreme Saharan Dust Event over Turkey in March 2016

    Directory of Open Access Journals (Sweden)

    Hakki Baltaci

    2017-02-01

    Full Text Available In this study, the influence of an extraordinary Saharan dust episode over Turkey on 23–24 March 2016 and the atmospheric conditions that triggered this event were evaluated in detail. PM10 (particulate matter less than 10 μm observations from 97 air quality stations, METAR (Meteorological Terminal Aviation Routine Weather Report observations at 64 airports, atmospheric soundings, and satellite products were used for the analysis. To determine the surface and upper levels of atmospheric circulation, National Centers of Environmental Prediction (NCEP/National Center for Atmospheric Research (NCAR Reanalysis data were applied to the extreme dust episodes. On 23 March 2016, high southwesterly winds due to the interaction between surface low- and high-pressure centers over Italy and Levant basin brought thick dust particles from Libya to Turkey. The daily PM10 data from 43 stations exceeded their long-term spring means over Turkey (especially at the northern and western stations. As a consequence of the longitudinal movement of the surface low from Italy to the Balkan Peninsula, and the quasi-stationary conditions of the surface high-pressure center allowed for the penetration of strong south and southwesterly winds to inner parts of the country on the following day. As a consequence, 100%, 90%, 88%, and 87% of the monitoring stations in Marmara (NW Turkey, central Anatolia, western (Aegean and northern (Black Sea regions of Turkey, respectively, exhibited above-normal daily PM10 values. In addition, while strong subsidence at the low levels of the atmosphere plays a significant role in having excessive daily PM10 values in Black Sea, dry atmospheric conditions and thick inversion level near the ground surface of Marmara ensured this region to have peak PM10 values ~00 Local Time (LT.

  13. Forecasting extreme wave events in moderate and high sea states

    Science.gov (United States)

    Magnusson, Anne Karin; Reistad, Magnar; Bitner-Gregersen, Elzbieta Maria

    2013-04-01

    Empirical studies on measurements have not yet come to conclusive relations between occurrence of rogue waves and - parameters which could be forecasted . Theoretical and tank experiments have demonstrated that high spectral peakedness and low spectral width combined (high Benjamin-Feir instability index, Onorato et al., 2006) give higher probability of rogue wave occurrence. Directional spread seems to reduce the probability of occurrence of rogue waves in these studies. Many years of experience with forecasting and discussions with people working in ocean environment indicate that rogue waves may as well occur in crossing seas. This was also indicated in a study in the Maxwave project (Toffoli et al., 2003) and the EXTREME SEAS project (Toffoli et al., 2011). We have here experimented with some indexes describing both high BFI and crossing seas and run the WAM model for some North Sea storm cases. Wave distributions measured at Ekofisk are analysed in the different cases. References • Onorato, M., Osborne, A., Serio, M., Cavaleri, L., Brandini, C., and Stansberg, C.: Extreme waves, modulational instability and second order theory: wave flume experiments on irregular waves,Europ. J. Mech. B/Fluids, 25, 586-601, 2006. • Toffoli, A., Lefevre, J.M., Monbaliu, J., Savina, H., and Bitner-Gregersen, E., "Freak Waves:Clues for Prediction in Ship Accidents?", Proc. ISOPE'2003 Conf. Hawai, USA, 2003. • Toffoli A., Bitner-Gregersen E. M., Osborne A. R., Serio M. Monbaliu J., Onorato M. (2011) Extreme Waves in Random Crossing Seas: Laboratory Experiments and Numerical Simulations. Geophys. Res. Lett., Vol. 38, L06605, 5 pp. doi: 10.1029/2011.

  14. Predicting the extreme 2015/16 El Nino event

    CSIR Research Space (South Africa)

    Mpheshea, LE

    2015-09-01

    Full Text Available state-of-the-art coupled ocean-atmosphere model’s Niño3.4 SST forecast for January 2016 is presented, followed by an evaluation of the model’s ability to have predicted events of similar magnitude in the past. The January forecast, initialized in July...

  15. Extreme drought events in Germany during the last 60 yrs

    Science.gov (United States)

    Samaniego, L. E.; Kumar, R.; Zink, M.

    2011-12-01

    Droughts are among the most costly natural disasters because they heavily impact on the economy of a region as well as on its social and cultural activities. Droughts do not only occur in arid or semiarid regions but also in humid ones. The year 2007, for example, was the sunniest, hottest and driest in Germany in the last two centuries. In this case, it was too dry too early. As a result, the harvest was cut by half leading to enormous losses in the primary sector. Consumer prices of some agricultural products went up 26 percent. The purpose of this study is to identify the major agricultural and hydrological droughts in Germany since 1950 based on their severity, duration and areal extend. To achieve this goal, a 60-yr retrospective hydrological simulation of the land surface water budget over Germany was carried out with the process-based distributed hydrological model mHM. The model was forced with grided daily precipitation and temperature data at 4x4 km, and the model simulations were carried out at same spatial resolutions. Point measurement data from more than 5600 raingauges and about 1120 meteorological stations (DWD) were interpolated with EDK. Land cover change was also considered during this period. Drought indices were derived as monthly quantiles of the simulated fluxes which include root zone soil moisture and total runoff. A Gaussian kernel smoother was used to estimate these quantiles at each grid cell. A spatio-temporal cluster algorithm was used to consolidate all significant drought events. Main statistics such as magnitude, areal extend, duration, and severity were estimated only on those selected clusters. The mHM model was calibrated in major river basins giving Nash-Sutcliffe efficiencies for daily discharge simulations greater than 0.8 in the evaluation period. Plausibility tests between the simulated mHM soil moisture and land surface temperature from MODIS and regional climate model reanalysis data compared well. Results indicated that

  16. Rotor Position Estimation for Switched Reluctance Wind Generator Using Extreme Learning Machine

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Xiao; Chen, Zhe

    2014-01-01

    Reluctance Wind Generator (SRWG) based on Extreme Learning Machine (ELM) which could build a nonlinear mapping between flux linkage-current and rotor position. The learning data are derived from magnetization curves of the SRWG which are obtained from Finite Element Analysis (FEA) of an SRG with 8/6 stator...... wind turbines are operating. Fast and accurate rotor position estimation is essential to promote the sensorless control as well as sensor fault tolerant operation of the SRG, which may improve the reliability of the system. This paper presents a rotor position sensorless estimation scheme for Switched...

  17. Heat-related deaths after an extreme heat event--four states, 2012, and United States, 1999-2009.

    Science.gov (United States)

    2013-06-07

    On June 29, 2012, a rapidly moving line of intense thunderstorms with high winds swept across the midwestern and eastern United States, causing widespread damage and power outages. Afterward, the area experienced extreme heat, with maximum temperatures exceeding 100°F (37.8°C). This report describes 32 heat-related deaths in Maryland, Ohio, Virginia, and West Virginia that occurred during the 2 weeks following the storms and power outages. Median age of the decedents was 65 years, and most of the excessive heat exposures occurred within homes. During 1999-2009, an annual average of 658 heat-related deaths occurred in the United States. Heat-related deaths are preventable, and heat response plans should be in place before an extreme heat event (EHE). Interventions should focus on identifying and limiting heat exposure among vulnerable populations.

  18. An Ensemble Approach to Extreme Space Weather Event Probability -- A First Look

    Science.gov (United States)

    Jonas, S.; Fronczyk, K.; McCarron, E.; Pratt, L. M.

    2015-12-01

    An extreme space weather event has the potential to disrupt or damage infrastructure systems and technologies that many societies rely on for economic and social wellbeing. Space weather events occur regularly, but extreme events occur less frequently with only several historical examples over the last 160 years. During the past decade, published works have (1) forensically examined the physical characteristics of the extreme historical events; and (2) discussed the probability or return rate of select extreme geomagnetic disturbances, including the 1859 Carrington event. Here we present an analysis of several of these studies. We created a unified statistical framework to visualize previous analyses, and developed a model from an ensemble using statistical methods. We look at geomagnetic disturbance probability across multiple return periods. We discuss what the most likely 100-year extreme event (a parameter of interest to policy makers and planners) and the return period for other extreme historical events. We discuss the current state of these analyses, their utility to policy makers and planners, the current limitations (in data and understanding) when compared to other hazards, and the gaps that need to be filled to enhance space weather risk assessments.

  19. Changes in Climate Extremes and Catastrophic Events in the Mongolian Plateau from 1951 to 2012

    DEFF Research Database (Denmark)

    Wang, Lei; Yao, Zhi-Jun; Jiang, Liguang;

    2016-01-01

    The spatiotemporal changes in 21 indices of extreme temperature and precipitation for the Mongolian Plateau from 1951 to 2012 were investigated on the basis of daily temperature and precipitation data from 70 meteorological stations. Changes in catastrophic events, such as droughts, floods...... was shown for total precipitation from west to east as based on the spatial distribution of decadal trends. Drought was the most serious extreme disaster, and prolonged drought for longer than 3 yr occurred about every 7-11 yr. An increasing trend in the disaster area was apparent for flood events from 1951......, and snowstorms, were also investigated for the same period. The correlations between catastrophic events and the extreme indices were examined. The results show that the Mongolian Plateau experienced an asymmetric warming trend. Both the cold extremes and warm extremes showed greater warming at night than...

  20. Coherent structures and extreme events in rotating multiphase turbulent flows

    CERN Document Server

    Biferale, Luca; Mazzitelli, Irene M; van Hinsberg, Michel A T; Lanotte, Alessandra S; Musacchio, Stefano; Perlekar, Prasad; Toschi, Federico

    2016-01-01

    By using direct numerical simulations (DNS) at unprecedented resolution we study turbulence under rotation in the presence of simultaneous direct and inverse cascades. The accumulation of energy at large scale leads to the formation of vertical coherent regions with high vorticity oriented along the rotation axis. By seeding the flow with millions of inertial particles, we quantify -for the first time- the effects of those coherent vertical structures on the preferential concentration of light and heavy particles. Furthermore, we quantitatively show that extreme fluctuations, leading to deviations from a normal-distributed statistics, result from the entangled interaction of the vertical structures with the turbulent background. Finally, we present the first-ever measurement of the relative importance between Stokes drag, Coriolis force and centripetal forces along the trajectories of inertial particles. We discover that vortical coherent structures lead to unexpected diffusion properties for heavy and light ...

  1. Coherent Structures and Extreme Events in Rotating Multiphase Turbulent Flows

    Directory of Open Access Journals (Sweden)

    L. Biferale

    2016-11-01

    Full Text Available By using direct numerical simulations (DNS at unprecedented resolution, we study turbulence under rotation in the presence of simultaneous direct and inverse cascades. The accumulation of energy at large scale leads to the formation of vertical coherent regions with high vorticity oriented along the rotation axis. By seeding the flow with millions of inertial particles, we quantify—for the first time—the effects of those coherent vertical structures on the preferential concentration of light and heavy particles. Furthermore, we quantitatively show that extreme fluctuations, leading to deviations from a normal-distributed statistics, result from the entangled interaction of the vertical structures with the turbulent background. Finally, we present the first-ever measurement of the relative importance between Stokes drag, Coriolis force, and centripetal force along the trajectories of inertial particles. We discover that vortical coherent structures lead to unexpected diffusion properties for heavy and light particles in the directions parallel and perpendicular to the rotation axis.

  2. Coherent Structures and Extreme Events in Rotating Multiphase Turbulent Flows

    Science.gov (United States)

    Biferale, L.; Bonaccorso, F.; Mazzitelli, I. M.; van Hinsberg, M. A. T.; Lanotte, A. S.; Musacchio, S.; Perlekar, P.; Toschi, F.

    2016-10-01

    By using direct numerical simulations (DNS) at unprecedented resolution, we study turbulence under rotation in the presence of simultaneous direct and inverse cascades. The accumulation of energy at large scale leads to the formation of vertical coherent regions with high vorticity oriented along the rotation axis. By seeding the flow with millions of inertial particles, we quantify—for the first time—the effects of those coherent vertical structures on the preferential concentration of light and heavy particles. Furthermore, we quantitatively show that extreme fluctuations, leading to deviations from a normal-distributed statistics, result from the entangled interaction of the vertical structures with the turbulent background. Finally, we present the first-ever measurement of the relative importance between Stokes drag, Coriolis force, and centripetal force along the trajectories of inertial particles. We discover that vortical coherent structures lead to unexpected diffusion properties for heavy and light particles in the directions parallel and perpendicular to the rotation axis.

  3. Periods of Excess Energy in Extreme Weather Events

    Directory of Open Access Journals (Sweden)

    Igor G. Zurbenko

    2013-01-01

    Full Text Available The reconstruction of periodic signals that are embedded in noise is a very important task in many applications. This already difficult task is even more complex when some observations are missed or some are presented irregularly in time. Kolmogorov-Zurbenko (KZ filtration, a well-developed method, offers a solution to this problem. One section of this paper provides examples of very precise reconstructions of multiple periodic signals covered with high level noise, noise levels that make those signals invisible within the original data. The ability to reconstruct signals from noisy data is applied to the numerical reconstruction of tidal waves in atmospheric pressure. The existence of such waves was proved by well-known naturalist Chapman, but due to the high synoptic fluctuation in atmospheric pressure he was unable to numerically reproduce the waves. Reconstruction of the atmospheric tidal waves reveals a potential intensification on wind speed during hurricanes, which could increase the danger imposed by hurricanes. Due to the periodic structure of the atmospheric tidal wave, it is predictable in time and space, which is important information for the prediction of excess force in developing hurricanes.

  4. Extreme events following bifurcation to spatiotemporal chaos in a spatially extended microcavity laser

    Science.gov (United States)

    Coulibaly, S.; Clerc, M. G.; Selmi, F.; Barbay, S.

    2017-02-01

    The occurrence of extreme events in a spatially extended microcavity laser has been recently reported [Selmi et al., Phys. Rev. Lett. 116, 013901 (2016), 10.1103/PhysRevLett.116.013901] to be correlated to emergence of spatiotemporal chaos. In this dissipative system, the role of spatial coupling through diffraction is essential to observe the onset of spatiotemporal complexity. We investigate further the formation mechanism of extreme events by comparing the statistical and dynamical analyses. Experimental measurements together with numerical simulations allow us to assign the quasiperiodicity mechanism as the route to spatiotemporal chaos in this system. Moreover, by investigating the fine structure of the maximum Lyapunov exponent, of the Lyapunov spectrum, and of the Kaplan-Yorke dimension of the chaotic attractor, we are able to deduce that intermittency plays a key role in the proportion of extreme events measured. We assign the observed mechanism of generation of extreme events to quasiperiodic extended spatiotemporal intermittency.

  5. A Review of Recent Advances in Research on Extreme Heat Events

    Science.gov (United States)

    Horton, Radley M.; Mankin, Justin S.; Lesk, Corey; Coffel, Ethan; Raymond, Colin

    2016-01-01

    Reviewing recent literature, we report that changes in extreme heat event characteristics such as magnitude, frequency, and duration are highly sensitive to changes in mean global-scale warming. Numerous studies have detected significant changes in the observed occurrence of extreme heat events, irrespective of how such events are defined. Further, a number of these studies have attributed present-day changes in the risk of individual heat events and the documented global-scale increase in such events to anthropogenic-driven warming. Advances in process-based studies of heat events have focused on the proximate land-atmosphere interactions through soil moisture anomalies, and changes in occurrence of the underlying atmospheric circulation associated with heat events in the mid-latitudes. While evidence for a number of hypotheses remains limited, climate change nevertheless points to tail risks of possible changes in heat extremes that could exceed estimates generated from model outputs of mean temperature. We also explore risks associated with compound extreme events and nonlinear impacts associated with extreme heat.

  6. Human-biometeorological assessment of increasing summertime extreme heat events in Shanghai, China during 1973-2015

    Science.gov (United States)

    Kong, Qinqin; Ge, Quansheng; Xi, Jianchao; Zheng, Jingyun

    2016-09-01

    Summertime extreme heat events, defined by the Universal Thermal Climate Index (UTCI), have shown increasing trends in Shanghai from 1973 to 2015. There is a clear shift to higher temperatures for the daily maximum UTCI values, and the number of days with daily maximum UTCI exceeding 38 °C significantly increased by 4.34 days/10a. An upward trend of 3.67 days/10a was detected for the number of hot days which also displays an abrupt increase around 1998. Both the frequency and total duration of heat waves have significantly increased by 0.77 times/10a and 3.51 days/10a respectively. Their inter-decadal variations indicate a three-part division of the study period showing more and more heat waves and longer total duration, which are 1.0 times/a and 4.13 days/a for 1973-1987, 1.71 times/a and 7.64 days/a for 1988-2001, and 3.57 times/a and 16.0 days/a for 2002-2015. In addition to that are more occurrences of long-lasting heat waves. Compared with the UTCI, air temperature-based definitions have indicated substantially higher increases in extreme heat events, especially for hot nights. The relatively low humidity and strong wind speeds in the twenty-first century are considered to be responsible for this difference. Our study provides a more in-depth case to monitor extreme heat events under the combining effects of air temperature, humidity, wind speeds, total cloud cover, etc. and can support studies over other regions.

  7. Power System Extreme Event Detection: The Vulnerability Frontier

    OpenAIRE

    Lesieutre, Bernard C.; Pinar, Ali; Roy, Sandip

    2007-01-01

    In this work we apply graph theoretic tools to provide a close bound on a frontier relating the number of line outages in a grid to the power disrupted by the outages. This frontier describes the boundary of a space relating the possible severity of a disturbance in terms of power disruption, from zero to some maximum on the boundary, to the number line outages involved in the event. We present the usefulness of this analysis with a complete analysis of a 30 bus system, and present resul...

  8. Not ready for prime time: transitional events in the extremely preterm infant.

    Science.gov (United States)

    Armentrout, Debra

    2014-01-01

    Successful transition from intrauterine to extrauterine life involves significant physiologic changes. The majority of these changes occur relatively quickly during those first moments following delivery; however, transition for the extremely preterm infant occurs over a longer period of time. Careful assessment and perceptive interventions on the part of neonatal care providers is essential as the extremely preterm infant adjusts to life outside the womb. This article will focus on respiratory, cardiovascular, gastrointestinal, and neurologic transitional events experienced by the extremely premature infant.

  9. Understanding and predicting the impact of extreme storms events on European coastlines: the MICORE approach

    Science.gov (United States)

    Ciavola, P.

    2009-04-01

    Both the EU and The United Nations are now taking seriously the predicted climate change scenarios of the IPCC. Of particular relevance to Integrated Coastal Zone Management is the predicted increase in the intensity and frequency of powerful storm events characterised by larger peak wind speeds and consequently larger waves. Engineering has usually been favoured in the past as the best option for disaster mitigation at the coast. However, most engineering works are constrained by economics, and a compromise is sought between the potential threat to lives and property and the resources available for design and construction. Furthermore, the design of structures is based on predicted extreme events which themselves are subject to uncertainty, especially in a rapidly changing global climate. The huge damage to the city of New Orleans by Hurricane Katrina illustrates clearly what can go wrong when the engineering design is subjected to forcing beyond its design limits and when civil evacuation and management plans fail. The proposed paper will address the issue of encouraging and facilitating exchange of information on storm impacts produced by nationally funded projects in Member States; establishing robust data management and data quality control and engaging with stakeholders and end users to optimise dissemination strategies. It will heavily rely on the information produced by the MICORE Project (FP7 contract 202798), using and enlarging the database collated by the project regarding the characteristics of extreme storm events occurred in the last 50 years. The MICORE project (www.micore.eu) will provide the knowledge necessary to assess the present day risks and to study the economic and social impact of future severe storm events. Together, these elements will have an important strategic impact on the safety of the people living in coastal areas and upon decision processes aimed at minimising the economic consequences of extreme events. The project will also

  10. The differential effects of increasing frequency and magnitude of extreme events on coral populations

    OpenAIRE

    Fabina, NS; Baskett, ML; K. Gross

    2015-01-01

    © 2015 by the Ecological Society of America. Extreme events, which have profound ecological consequences, are changing in both frequency and magnitude with climate change. Because extreme temperatures induce coral bleaching, we can explore the relative impacts of changes in frequency and magnitude of high temperature events on coral reefs. Here, we combined climate projections and a dynamic population model to determine how changing bleaching regimes influence coral persistence. We additional...

  11. Soil biotic legacy effects of extreme weather events influence plant invasiveness

    NARCIS (Netherlands)

    Meisner, A.; De Deyn, G.B.; De Boer, W.; Van der Putten, W.H.

    2013-01-01

    Climate change is expected to increase future abiotic stresses on ecosystems through extreme weather events leading to more extreme drought and rainfall incidences [Jentsch A, et al. (2007) Front Ecol Environ 5(7):365–374]. These fluctuations in precipitation may affect soil biota, soil processes [E

  12. Extreme events statistics in a two-layer quasi-geostrophic atmospheric model

    Science.gov (United States)

    Galfi, Vera Melinda; Bodai, Tamas; Lucarini, Valerio

    2016-04-01

    Extreme events statistics provides a theoretical framework to analyze and predict extreme events based on the convergence of the distribution of the extremes to some limiting distribution. In this work we analyze the convergence of the distribution of extreme events to the Generalized Extreme Value (GEV) distribution and to the Generalized Pareto Distribution (GPD), using a two-layer quasi-geostrophic atmospheric model, and compare our results with theoretical findings from the field of extreme value theory for dynamical systems. We study the behavior of the GEV shape parameter by increasing the block size and of the GPD shape parameter by increasing the threshold, and compare the inferred parameters with a theoretical shape parameter that depends only on the geometrical properties of the attractor. The main objective is to find out whether this theoretical shape parameter can be used to evaluate extreme event analysis based on model output. For this, we perform very long simulations. We run our system with two different levels of forcing determined by two different meridional temperature gradients, one inducing a medium level of chaos and the other one a high level of chaos. We analyze in both cases extremes of energy variables.

  13. Triggering extreme events at the nanoscale in photonic seas

    KAUST Repository

    Liu, Changxu

    2015-03-09

    Hurricanes, tsunamis, rogue waves and tornadoes are rare natural phenomena that embed an exceptionally large amount of energy, which appears and quickly disappears in a probabilistic fashion. This makes them difficult to predict and hard to generate on demand. Here we demonstrate that we can trigger the onset of rare events akin to rogue waves controllably, and systematically use their generation to break the diffraction limit of light propagation. We illustrate this phenomenon in the case of a random field, where energy oscillates among incoherent degrees of freedom. Despite the low energy carried by each wave, we illustrate how to control a mechanism of spontaneous synchronization, which constructively builds up the spectral energy available in the whole bandwidth of the field into giant structures, whose statistics is predictable. The larger the frequency bandwidth of the random field, the larger the amplitude of rare events that are built up by this mechanism. Our system is composed of an integrated optical resonator, realized on a photonic crystal chip. Through near-field imaging experiments, we record confined rogue waves characterized by a spatial localization of 206 nm and with an ultrashort duration of 163 fs at a wavelength of 1.55 μm. Such localized energy patterns are formed in a deterministic dielectric structure that does not require nonlinear properties.

  14. Power outages, extreme events and health: a systematic review of the literature from 2011-2012.

    Science.gov (United States)

    Klinger, Chaamala; Landeg, Owen; Murray, Virginia

    2014-01-02

    Background Extreme events (e.g. flooding) threaten critical infrastructure including power supplies. Many interlinked systems in the modern world depend on a reliable power supply to function effectively. The health sector is no exception, but the impact of power outages on health is poorly understood. Greater understanding is essential so that adverse health impacts can be prevented and/or mitigated. Methods We searched Medline, CINAHL and Scopus for papers about the health impacts of power outages during extreme events published in 2011-2012. A thematic analysis was undertaken on the extracted information. The Public Health England Extreme Events Bulletins between 01/01/2013 - 31/03/2013 were used to identify extreme events that led to power outages during this three-month period. Results We identified 20 relevant articles. Power outages were found to impact health at many levels within diverse settings. Recurrent themes included the difficulties of accessing healthcare, maintaining frontline services and the challenges of community healthcare. We identified 52 power outages in 19 countries that were the direct consequence of extreme events during the first three months of 2013. Conclusions To our knowledge, this is the first review of the health impacts of power outages. We found the current evidence and knowledge base to be poor. With scientific consensus predicting an increase in the frequency and magnitude of extreme events due to climate change, the gaps in knowledge need to be addressed in order to mitigate the impact of power outages on global health.

  15. Identification of zones of strong wind events in South Africa

    CSIR Research Space (South Africa)

    Goliger, Adam M

    2002-11-01

    Full Text Available Africa. No information in this respect is available apart of general meteorological division of the country into 15 climatic zones, without any consideration given to wind climate [3]. 3. Risk of wind damage The risk of wind damage at a particular point... and interpreting the information, expertise and experience of selected experts at the SA Weather Bureau. The development process was carried out by means of a series of informal workshops and discussions organised, facilitated and documented by the CSIR. 4. Zones...

  16. Temporal energy partitions of Florida extreme sea level events as a function of Atlantic multidecadal oscillation

    Directory of Open Access Journals (Sweden)

    J. Park

    2010-06-01

    Full Text Available An energy-conservative metric based on the discrete wavelet transform is applied to assess the relative energy distribution of extreme sea level events across different temporal scales. The metric is applied to coastal events at Key West and Pensacola Florida as a function of two Atlantic Multidecadal Oscillation (AMO regimes. Under AMO warm conditions there is a small but significant redistribution of event energy from nearly static into more dynamic (shorter duration timescales at Key West, while at Pensacola the AMO-dependent changes in temporal event behaviour are less pronounced. Extreme events with increased temporal dynamics might be consistent with an increase in total energy of event forcings which may be a reflection of more energetic storm events during AMO warm phases. As dynamical models mature to the point of providing regional climate index predictability, coastal planners may be able to consider such temporal change metrics in planning scenarios.

  17. Temporal energy partitions of Florida extreme sea level events as a function of Atlantic multidecadal oscillation

    Directory of Open Access Journals (Sweden)

    J. Park

    2010-03-01

    Full Text Available An energy-conservative metric based on the discrete wavelet transform is applied to assess the relative energy distribution of non-stationary extreme sea level events across different temporal scales. The metric is applied to coastal events at Key West and Pensacola Florida as a function of two Atlantic Multidecadal Oscillation (AMO regimes. Under AMO warm conditions there is a small but significant redistribution of event energy from nearly static into more dynamic timescales at Key West, while at Pensacola the AMO-dependent changes in temporal event behaviour are less pronounced. Extreme events with increased temporal dynamics are consistent with an increase in total energy of event forcings which may be a reflection of more energetic storm events during AMO warm phases. As dynamical models mature to the point of providing regional climate index predictability, coastal planners may be able to consider such temporal change metrics in planning scenarios.

  18. The magnitude and effects of extreme solar particle events

    Directory of Open Access Journals (Sweden)

    Jiggens Piers

    2014-06-01

    Full Text Available The solar energetic particle (SEP radiation environment is an important consideration for spacecraft design, spacecraft mission planning and human spaceflight. Herein is presented an investigation into the likely severity of effects of a very large Solar Particle Event (SPE on technology and humans in space. Fluences for SPEs derived using statistical models are compared to historical SPEs to verify their appropriateness for use in the analysis which follows. By combining environment tools with tools to model effects behind varying layers of spacecraft shielding it is possible to predict what impact a large SPE would be likely to have on a spacecraft in Near-Earth interplanetary space or geostationary Earth orbit. Also presented is a comparison of results generated using the traditional method of inputting the environment spectra, determined using a statistical model, into effects tools and a new method developed as part of the ESA SEPEM Project allowing for the creation of an effect time series on which statistics, previously applied to the flux data, can be run directly. The SPE environment spectra is determined and presented as energy integrated proton fluence (cm−2 as a function of particle energy (in MeV. This is input into the SHIELDOSE-2, MULASSIS, NIEL, GRAS and SEU effects tools to provide the output results. In the case of the new method for analysis, the flux time series is fed directly into the MULASSIS and GEMAT tools integrated into the SEPEM system. The output effect quantities include total ionising dose (in rads, non-ionising energy loss (MeV g−1, single event upsets (upsets/bit and the dose in humans compared to established limits for stochastic (or cancer-causing effects and tissue reactions (such as acute radiation sickness in humans given in grey-equivalent and sieverts respectively.

  19. Characteristic Paths of Extratropical Cyclones that Cause High Wind Events in the Northeast United States

    Science.gov (United States)

    Booth, J. F.; Rieder, H. E.; Lee, D.; Kushnir, Y.

    2014-12-01

    This study analyzes the association between wintertime high wind events (HWEs) in the northeast United States US and extratropical cyclones. Sustained wind maxima in the Daily Summary Data from the National Climatic Data Center's Integrated Surface Database are analyzed for 1979-2012. For each station, a Generalized Pareto Distribution (GPD) is fit to the upper tail of the daily maximum wind speed data, and probabilistic return levels at intervals of 1, 3 and 5-years are derived from the GPD fit. At each interval, wind events meeting the return level criteria are termed HWEs. The HWEs occurring on the same day are grouped into multi-station events allowing the association with extratropical cyclones, which are tracked in the European Center for Medium-Range Weather Forecast ERA-Interim reanalysis. Using hierarchical clustering analysis, this study finds that the HWEs are most often associated with cyclones travelling from southwest to northeast, usually originating west of the Appalachian Mountains. The results show that a storm approaching from the southwest is four times more likely to cause strong surface winds than a Nor'easter. A series of sensitivity analyses confirms the robustness of this result. Next, the relationship between the strength of the wind events and the corresponding storm minimum sea level pressure is analyzed. No robust relationship between these quantities is found for strong wind events. Nevertheless, subsequent analysis shows that a relationship between deeper storms and stronger winds emerges if the analysis is extended to the entire set of wintertime storms.

  20. Super-extreme event's influence on a Weierstrass-Mandelbrot Continuous-Time Random Walk

    CERN Document Server

    Gubiec, Tomasz; Kutner, Ryszard; Sornette, Didier

    2010-01-01

    Two utmost cases of super-extreme event's influence on the velocity autocorrelation function (VAF) were considered. The VAF itself was derived within the hierarchical Weierstrass-Mandelbrot Continuous-Time Random Walk (WM-CTRW) formalism, which is able to cover a broad spectrum of continuous-time random walks. Firstly, we studied a super-extreme event in a form of a sustained drift, whose duration time is much longer than that of any other event. Secondly, we considered a super-extreme event in the form of a shock with the size and velocity much larger than those corresponding to any other event. We found that the appearance of these super-extreme events substantially changes the results determined by extreme events (the so called "black swans") that are endogenous to the WM-CTRW process. For example, changes of the VAF in the latter case are in the form of some instability and distinctly differ from those caused in the former case. In each case these changes are quite different compared to the situation with...

  1. Influence of Turbulence, Orientation, and Site Configuration on the Response of Buildings to Extreme Wind

    Science.gov (United States)

    2014-01-01

    Atmospheric turbulence results from the vertical movement of air, together with flow disturbances around surface obstacles which make low- and moderate-level winds extremely irregular. Recent advancements in wind engineering have led to the construction of new facilities for testing residential homes at relatively high Reynolds numbers. However, the generation of a fully developed turbulence in these facilities is challenging. The author proposed techniques for the testing of residential buildings and architectural features in flows that lack fully developed turbulence. While these methods are effective for small structures, the extension of the approach for large and flexible structures is not possible yet. The purpose of this study is to investigate the role of turbulence in the response of tall buildings to extreme winds. In addition, the paper presents a detailed analysis to investigate the influence of upstream terrain conditions, wind direction angle (orientation), and the interference effect from the surrounding on the response of high-rise buildings. The methodology presented can be followed to help decision makers to choose among innovative solutions like aerodynamic mitigation, structural member size adjustment, and/or damping enhancement, with an objective to improve the resiliency and the serviceability of buildings. PMID:24701140

  2. Influence of Turbulence, Orientation, and Site Configuration on the Response of Buildings to Extreme Wind

    Directory of Open Access Journals (Sweden)

    Aly Mousaad Aly

    2014-01-01

    Full Text Available Atmospheric turbulence results from the vertical movement of air, together with flow disturbances around surface obstacles which make low- and moderate-level winds extremely irregular. Recent advancements in wind engineering have led to the construction of new facilities for testing residential homes at relatively high Reynolds numbers. However, the generation of a fully developed turbulence in these facilities is challenging. The author proposed techniques for the testing of residential buildings and architectural features in flows that lack fully developed turbulence. While these methods are effective for small structures, the extension of the approach for large and flexible structures is not possible yet. The purpose of this study is to investigate the role of turbulence in the response of tall buildings to extreme winds. In addition, the paper presents a detailed analysis to investigate the influence of upstream terrain conditions, wind direction angle (orientation, and the interference effect from the surrounding on the response of high-rise buildings. The methodology presented can be followed to help decision makers to choose among innovative solutions like aerodynamic mitigation, structural member size adjustment, and/or damping enhancement, with an objective to improve the resiliency and the serviceability of buildings.

  3. Statistical extremes and peak factors in wind-induced vibration of tall buildings

    Institute of Scientific and Technical Information of China (English)

    Ming-feng HUANG; Chun-man CHAN; Wen-juan LOU; Kenny Chung-Siu KWOK

    2012-01-01

    In the structural design of tall buildings,peak factors have been widely used to predict mean extreme responses of tall buildings under wind excitations.Vanmarcke's peak factor is directly related to an explicit measure of structural reliability against a Gaussian response process.We review the use of this factor for time-variant reliability design by comparing it to the conventional Davenport's peak factor.Based on the asymptotic theory of statistical extremes,a new closed-form peak factor,the so-called Gamma peak factor,can be obtained for a non-Gaussian resultant response characterized by a Rayleigh distribution process.Using the Gamma peak factor,a combined peak factor method was developed for predicting the expected maximum resultant responses of a building undergoing lateral-torsional vibration.The effects of the standard deviation ratio of two sway components and the inter-component correlation on the evaluation of peak resultant response were also investigated.Utilizing wind tunnel data derived from synchronous multi-pressure measurements,we carried out a wind-induced time history response analysis of the Commonwealth Advisory Aeronautical Research Council (CAARC) standard tall building to validate the applicability of the Gamma peak factor to the prediction of the peak resultant acceleration.Results from the building example indicated that the use of the Gamma peak factor enables accurate predictions to be made of the mean extreme resultant acceleration responses for dynamic serviceability performance design of modern tall buildings.

  4. Climate Change Extreme Events: Meeting the Information Needs of Water Resource Managers

    Science.gov (United States)

    Quay, R.; Garfin, G. M.; Dominguez, F.; Hirschboeck, K. K.; Woodhouse, C. A.; Guido, Z.; White, D. D.

    2013-12-01

    Information about climate has long been used by water managers to develop short term and long term plans and strategies for regional and local water resources. Inherent within longer term forecasts is an element of uncertainty, which is particularly evident in Global Climate model results for precipitation. For example in the southwest estimates in the flow of the Colorado River based on GCM results indicate changes from 120% or current flow to 60%. Many water resource managers are now using global climate model down scaled estimates results as indications of potential climate change as part of that planning. They are addressing the uncertainty within these estimates by using an anticipatory planning approach looking at a range of possible futures. One aspect of climate that is important for such planning are estimates of future extreme storm (short term) and drought (long term) events. However, the climate science of future possible changes in extreme events is less mature than general climate change science. At a recent workshop among climate scientists and water managers in the southwest, it was concluded the science of climate change extreme events is at least a decade away from being robust enough to be useful for water managers in their water resource management activities. However, it was proposed that there are existing estimates and records of past flooding and drought events that could be combined with general climate change science to create possible future events. These derived events could be of sufficient detail to be used by water resource managers until such time that the science of extreme events is able to provide more detailed estimates. Based on the results of this workshop and other work being done by the Decision Center for a Desert City at Arizona State University and the Climate Assessment for the Southwest center at University of Arizona., this article will 1) review what are the extreme event data needs of Water Resource Managers in the

  5. Uncertainties of the 50-year wind from short time series using generalized extreme value distribution and generalized Pareto distribution

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Mann, Jakob; Rathmann, Ole

    2015-01-01

    as a guideline for applying GEVD and GPD to wind time series of limited length. The data analysis shows that, with reasonable choice of relevant parameters, GEVD and GPD give consistent estimates of the return winds. For GEVD, the base period should be chosen in accordance with the occurrence of the extreme wind......This study examines the various sources to the uncertainties in the application of two widely used extreme value distribution functions, the generalized extreme value distribution (GEVD) and the generalized Pareto distribution (GPD). The study is done through the analysis of measurements from...

  6. Identification of Extreme Events Under Climate Change Conditions Over Europe and The Northwest-atlantic Region: Spatial Patterns and Time Series Characteristics

    Science.gov (United States)

    Leckebusch, G.; Ulbrich, U.; Speth, P.

    In the context of climate change and the resulting possible impacts on socio-economic conditions for human activities it seems that due to a changed occurrence of extreme events more severe consequences have to be expected than from changes in the mean climate. These extreme events like floods, excessive heats and droughts or windstorms possess impacts on human social and economic life in different categories such as forestry, agriculture, energy use, tourism and the reinsurance business. Reinsurances are affected by nearly 70% of all insured damages over Europe in the case of wind- storms. Especially the December 1999 French windstorms caused damages about 10 billion. A new EU-founded project (MICE = Modelling the Impact of Climate Ex- tremes) will focus on these impacts caused by changed occurrences of extreme events over Europe. Based upon the output of general circulation models as well as regional climate models, investigations are carried out with regard to time series characteristics as well as the spatial patterns of extremes under climate changed conditions. After the definition of specific thresholds for climate extremes, in this talk we will focus on the results of the analysis for the different data sets (HadCM3 and CGCMII GCM's and RCM's, re-analyses, observations) with regard to windstorm events. At first the results of model outputs are validated against re-analyses and observations. Especially a comparison of the stormtrack (2.5 to 8 day bandpass filtered 500 hPa geopotential height), cyclone track, cyclone frequency and intensity is presented. Highly relevant to damages is the extreme wind near the ground level, so the 10 m wind speed will be investigated additionally. of special interest to possible impacts is the changed spatial occurrence of windspeed maxima under 2xCO2-induced climate change.

  7. "Extreme events" in STT-MRAM speed retention and reliability (Conference Presentation)

    Science.gov (United States)

    Wang, Xiaobin; Zhang, Jing; Wang, Zihui; Hao, Xiaojie; Zhou, Yuchen; Gan, Huadong; Jun, Dongha; Satoh, Kimihiro; Yen, Bing K.; Huai, Yiming

    2016-10-01

    Fast operation speed, high retention and high reliability are the most attractive features of the spin transfer torque magnetic random access memory (STT-MRAM) based upon perpendicular magnetic tunneling junction (pMTJ). For state-of-the-art pMTJ STT-MRAM, its device performance is fundamentally determined by material "extreme events" physics. For example, nanosecond write bit error rate is determined by extremely high probability (>(1-10^(-7))) stochastic magnetization switching events, retention is determined by magnetization configurations with extremely low switching probability, reliability is determined by extremely low probability (MRAM write, read, retention and reliability. Specifically, we will present our model that accurately calculates extremely low write BER for various magnetization configurations. We will review our study of thermal magnetization switching through the dynamic optimal reversal path approach, capable of characterizing extreme thermal magnetization switching events under both low frequency (e.g. static retention) and high frequency (e.g. fast read) excitations. We will also discuss a new MTJ breakdown reliability model that quantifies extreme events uniformly at different failure mode regions.

  8. Economic Evaluations of the Health Impacts of Weather-Related Extreme Events: A Scoping Review.

    Science.gov (United States)

    Schmitt, Laetitia H M; Graham, Hilary M; White, Piran C L

    2016-11-08

    The frequency and severity of extreme events is expected to increase under climate change. There is a need to understand the economic consequences of human exposure to these extreme events, to underpin decisions on risk reduction. We undertook a scoping review of economic evaluations of the adverse health effects from exposure to weather-related extreme events. We searched PubMed, Embase and Web of Science databases with no restrictions to the type of evaluations. Twenty studies were included, most of which were recently published. Most studies have been undertaken in the U.S. (nine studies) or Asia (seven studies), whereas we found no studies in Africa, Central and Latin America nor the Middle East. Extreme temperatures accounted for more than a third of the pool of studies (seven studies), closely followed by flooding (six studies). No economic study was found on drought. Whilst studies were heterogeneous in terms of objectives and methodology, they clearly indicate that extreme events will become a pressing public health issue with strong welfare and distributional implications. The current body of evidence, however, provides little information to support decisions on the allocation of scarce resources between risk reduction options. In particular, the review highlights a significant lack of research attention to the potential cost-effectiveness of interventions that exploit the capacity of natural ecosystems to reduce our exposure to, or ameliorate the consequences of, extreme events.

  9. Economic Evaluations of the Health Impacts of Weather-Related Extreme Events: A Scoping Review

    Directory of Open Access Journals (Sweden)

    Laetitia H. M. Schmitt

    2016-11-01

    Full Text Available The frequency and severity of extreme events is expected to increase under climate change. There is a need to understand the economic consequences of human exposure to these extreme events, to underpin decisions on risk reduction. We undertook a scoping review of economic evaluations of the adverse health effects from exposure to weather-related extreme events. We searched PubMed, Embase and Web of Science databases with no restrictions to the type of evaluations. Twenty studies were included, most of which were recently published. Most studies have been undertaken in the U.S. (nine studies or Asia (seven studies, whereas we found no studies in Africa, Central and Latin America nor the Middle East. Extreme temperatures accounted for more than a third of the pool of studies (seven studies, closely followed by flooding (six studies. No economic study was found on drought. Whilst studies were heterogeneous in terms of objectives and methodology, they clearly indicate that extreme events will become a pressing public health issue with strong welfare and distributional implications. The current body of evidence, however, provides little information to support decisions on the allocation of scarce resources between risk reduction options. In particular, the review highlights a significant lack of research attention to the potential cost-effectiveness of interventions that exploit the capacity of natural ecosystems to reduce our exposure to, or ameliorate the consequences of, extreme events.

  10. Impact of climate change on extreme rainfall events and flood risk in India

    Indian Academy of Sciences (India)

    P Guhathakurta; O P Sreejith; P A Menon

    2011-06-01

    The occurrence of exceptionally heavy rainfall events and associated flash floods in many areas during recent years motivate us to study long-term changes in extreme rainfall over India. The analysis of the frequency of rainy days, rain days and heavy rainfall days as well as one-day extreme rainfall and return period has been carried out in this study to observe the impact of climate change on extreme rainfall events and flood risk in India. The frequency of heavy rainfall events are decreasing in major parts of central and north India while they are increasing in peninsular, east and north east India. The study tries to bring out some of the interesting findings which are very useful for hydrological planning and disaster managements. Extreme rainfall and flood risk are increasing significantly in the country except some parts of central India.

  11. Changes in Climate Extremes and Catastrophic Events in the Mongolian Plateau from 1951 to 2012

    DEFF Research Database (Denmark)

    Wang, Lei; Yao, Zhi-Jun; Jiang, Liguang;

    2016-01-01

    The spatiotemporal changes in 21 indices of extreme temperature and precipitation for the Mongolian Plateau from 1951 to 2012 were investigated on the basis of daily temperature and precipitation data from 70 meteorological stations. Changes in catastrophic events, such as droughts, floods...... in the daytime. The spatial changes in significant trends showed a good homogeneity and consistency in Inner Mongolia. Changes in the precipitation extremes were not as obvious as those in the temperature extremes. The spatial distributions in changes of precipitation extremes were complex. Adecreasing trend...

  12. Simulation of extreme rainfall event of November 2009 over Jeddah, Saudi Arabia: the explicit role of topography and surface heating

    Science.gov (United States)

    Almazroui, Mansour; Raju, P. V. S.; Yusef, A.; Hussein, M. A. A.; Omar, M.

    2017-02-01

    In this paper, a nonhydrostatic Weather Research and Forecasting (WRF) model has been used to simulate the extreme precipitation event of 25 November 2009, over Jeddah, Saudi Arabia. The model is integrated in three nested (27, 9, and 3 km) domains with the initial and boundary forcing derived from the NCEP reanalysis datasets. As a control experiment, the model integrated for 48 h initiated at 0000 UTC on 24 November 2009. The simulated rainfall in the control experiment depicts in well agreement with Tropical Rainfall Measurement Mission rainfall estimates in terms of intensity as well as spatio-temporal distribution. Results indicate that a strong low-level (850 hPa) wind over Jeddah and surrounding regions enhanced the moisture and temperature gradient and created a conditionally unstable atmosphere that favored the development of the mesoscale system. The influences of topography and heat exchange process in the atmosphere were investigated on the development of extreme precipitation event; two sensitivity experiments are carried out: one without topography and another without exchange of surface heating to the atmosphere. The results depict that both surface heating and topography played crucial role in determining the spatial distribution and intensity of the extreme rainfall over Jeddah. The topography favored enhanced uplift motion that further strengthened the low-level jet and hence the rainfall over Jeddah and adjacent areas. On the other hand, the absence of surface heating considerably reduced the simulated rainfall by 30% as compared to the observations.

  13. Roadmap on optical rogue waves and extreme events

    Science.gov (United States)

    Akhmediev, Nail; Kibler, Bertrand; Baronio, Fabio; Belić, Milivoj; Zhong, Wei-Ping; Zhang, Yiqi; Chang, Wonkeun; Soto-Crespo, Jose M.; Vouzas, Peter; Grelu, Philippe; Lecaplain, Caroline; Hammani, K.; Rica, S.; Picozzi, A.; Tlidi, Mustapha; Panajotov, Krassimir; Mussot, Arnaud; Bendahmane, Abdelkrim; Szriftgiser, Pascal; Genty, Goery; Dudley, John; Kudlinski, Alexandre; Demircan, Ayhan; Morgner, Uwe; Amiraranashvili, Shalva; Bree, Carsten; Steinmeyer, Günter; Masoller, C.; Broderick, Neil G. R.; Runge, Antoine F. J.; Erkintalo, Miro; Residori, S.; Bortolozzo, U.; Arecchi, F. T.; Wabnitz, Stefan; Tiofack, C. G.; Coulibaly, S.; Taki, M.

    2016-06-01

    The pioneering paper ‘Optical rogue waves’ by Solli et al (2007 Nature 450 1054) started the new subfield in optics. This work launched a great deal of activity on this novel subject. As a result, the initial concept has expanded and has been enriched by new ideas. Various approaches have been suggested since then. A fresh look at the older results and new discoveries has been undertaken, stimulated by the concept of ‘optical rogue waves’. Presently, there may not by a unique view on how this new scientific term should be used and developed. There is nothing surprising when the opinion of the experts diverge in any new field of research. After all, rogue waves may appear for a multiplicity of reasons and not necessarily only in optical fibers and not only in the process of supercontinuum generation. We know by now that rogue waves may be generated by lasers, appear in wide aperture cavities, in plasmas and in a variety of other optical systems. Theorists, in turn, have suggested many other situations when rogue waves may be observed. The strict definition of a rogue wave is still an open question. For example, it has been suggested that it is defined as ‘an optical pulse whose amplitude or intensity is much higher than that of the surrounding pulses’. This definition (as suggested by a peer reviewer) is clear at the intuitive level and can be easily extended to the case of spatial beams although additional clarifications are still needed. An extended definition has been presented earlier by N Akhmediev and E Pelinovsky (2010 Eur. Phys. J. Spec. Top. 185 1-4). Discussions along these lines are always useful and all new approaches stimulate research and encourage discoveries of new phenomena. Despite the potentially existing disagreements, the scientific terms ‘optical rogue waves’ and ‘extreme events’ do exist. Therefore coordination of our efforts in either unifying the concept or in introducing alternative definitions must be continued. From

  14. Continuous and discrete extreme climatic events affecting the dynamics of a high-arctic reindeer population.

    Science.gov (United States)

    Chan, Kung-Sik; Mysterud, Atle; Øritsland, Nils Are; Severinsen, Torbjørn; Stenseth, Nils Chr

    2005-10-01

    Climate at northern latitudes are currently changing both with regard to the mean and the temporal variability at any given site, increasing the frequency of extreme events such as cold and warm spells. Here we use a conceptually new modelling approach with two different dynamic terms of the climatic effects on a Svalbard reindeer population (the Brøggerhalvøya population) which underwent an extreme icing event ("locked pastures") with 80% reduction in population size during one winter (1993/94). One term captures the continuous and linear effect depending upon the Arctic Oscillation and another the discrete (rare) "event" process. The introduction of an "event" parameter describing the discrete extreme winter resulted in a more parsimonious model. Such an approach may be useful in strongly age-structured ungulate populations, with young and very old individuals being particularly prone to mortality factors during adverse conditions (resulting in a population structure that differs before and after extreme climatic events). A simulation study demonstrates that our approach is able to properly detect the ecological effects of such extreme climate events.

  15. Occurrence of energetic extreme oceanic events in the Colombian Caribbean coasts and some approaches to assess their impact on ecosystems

    Science.gov (United States)

    Bernal, G.; Osorio, A. F.; Urrego, L.; Peláez, D.; Molina, E.; Zea, S.; Montoya, R. D.; Villegas, N.

    2016-12-01

    Above-normal meteorological and oceanographic conditions that generate damage on coastal ecosystems and associated human communities are called extreme oceanic events. Accurate data are needed to predict their occurrence and to understand their effects. We analyzed available data from four localities in the Colombian Caribbean to study the effect of wave-related extreme events (hurricanes, surges) in three coastal ecosystems, i.e., mangroves, beaches, and reefs. Three localities were continental (Portete Bay mangroves at the Guajira Peninsula, Bocagrande Public Beach at Cartagena City, Tayrona Natural Park reefs near Santa Marta City), and one was oceanic (Old Providence Island reefs in the San Andres and Old Providence Archipelago, SW Caribbean). We gathered data on ocean surface winds (1978-2011) for the four locations, then modeled significant wave heights, then identified extreme events, and finally tried to identify effects on the ecosystems, directly or from published literature. Wave-related extreme surges were also compiled from Colombian press news (1970-2008). Modeled wave maximums (> 5 m significant wave height) and press-reported events coincided with hurricanes, extreme dry season, mid-summer drought and northern hemisphere winter cold fronts, with neither a relationship to ENSO events, nor a temporal trend of increase, excepting Portete Bay, with a marked increase after 1995. Changes in Portete Bay mangroves were analyzed from aerial photographs before and after Tropical Storm Cesar (1996). In the 38 years before Cesar there was mangrove inland colonization, with some loss associated to beach erosion, while during the 8 years following the storm there were localized retreats and important changes in vegetation composition related to the falling of large trees and subsequent recolonization by species that are faster colonizers, and changes in soil composition brought about by inundation. Cartagena's Bocagrande Beach was followed between 2009 and 2011

  16. Effects of Cross-axis Wind Jet Events on the Northern Red Sea Circulation

    Science.gov (United States)

    Menezes, V. V.; Bower, A. S.; Farrar, J. T.

    2016-12-01

    Despite its small size, the Red Sea has a complex circulation. There are boundary currents in both sides of the basin, a meridional overturning circulation, water mass formation in the northern part and an intense eddy activity. This complex pattern is driven by strong air-sea interactions. The Red Sea has one of the largest evaporation rates of the global oceans (2m/yr), an intricate and seasonally varying wind pattern. The winds blowing over the Northern Rea Sea (NRS, north of 20N) are predominantly southeastward along the main axis all year round; in the southern, they reverse seasonally due to the monsoonal regime. Although the winds are mostly along-axis in the NRS, several works have shown that sometimes during the boreal winter, the winds blow in a cross-axis direction. The westward winds from Saudi Arabia bring relatively cold dry air and dust from the desert, enhancing heat loss and evaporation off the Red Sea. These wind-jet events may contribute to increased eddy activity and are a trigger for water mass formation. Despite that, our knowledge about the cross-axis winds and their effect on NRS circulation is still incipient. In the present work we analyze 10-years of Quikscat scatterometer winds and altimetric sea surface height anomalies, together with 2-yrs of mooring data, to characterize the westward wind jet events and their impacts on the circulation. We show that the cross-axis winds are, indeed, an important component of the wind regime, explaining 11% of wind variability of the NRS (well-described by a 2nd EOF mode). The westward events occur predominantly in the winter, preferentially in January (about 15 events in 10-years) and have a mean duration of 4-5 days, with a maximum of 12 days (north of 22N). There are around 6 events per year, but in 2002-2003 and 2007-2008, twice more events were detected. The westward wind events are found to strongly modify the wind stress curl, causing a distinct positive/negative curl pattern along the main axis

  17. Analyses of Observed and Anticipated Changes in Extreme Climate Events in the Northwest Himalaya

    Directory of Open Access Journals (Sweden)

    Dharmaveer Singh

    2016-02-01

    Full Text Available In this study, past (1970-2005 as well as future long term (2011-2099 trends in various extreme events of temperature and precipitation have been investigated over selected hydro-meteorological stations in the Sutlej river basin. The ensembles of two Coupled Model Intercomparison Project (CMIP3 models: third generation Canadian Coupled Global Climate Model and Hadley Centre Coupled Model have been used for simulation of future daily time series of temperature (maximum and minimum and precipitation under A2 emission scenario. Large scale atmospheric variables of both models and National Centre for Environmental Prediction/National Centre for Atmospheric Research reanalysis data sets have been downscaled using statistical downscaling technique at individual stations. A total number of 25 extreme indices of temperature (14 and precipitation (11 as specified by the Expert Team of the World Meteorological Organization and Climate Variability and Predictability are derived for the past and future periods. Trends in extreme indices are detected over time using the modified Mann-Kendall test method. The stations which have shown either decrease or no change in hot extreme events (i.e., maximum TMax, warm days, warm nights, maximum TMin, tropical nights, summer days and warm spell duration indicators for 1970–2005 and increase in cold extreme events (cool days, cool nights, frost days and cold spell duration indicators are predicted to increase and decrease respectively in the future. In addition, an increase in frequency and intensity of extreme precipitation events is also predicted.

  18. Combined effects of extreme climatic events and elevation on nutritional quality and herbivory of Alpine plants.

    Directory of Open Access Journals (Sweden)

    Annette Leingärtner

    Full Text Available Climatic extreme events can cause the shift or disruption of plant-insect interactions due to altered plant quality, e.g. leaf carbon to nitrogen ratios, and phenology. However, the response of plant-herbivore interactions to extreme events and climatic gradients has been rarely studied, although climatic extremes will increase in frequency and intensity in the future and insect herbivores represent a highly diverse and functionally important group. We set up a replicated climate change experiment along elevational gradients in the German Alps to study the responses of three plant guilds and their herbivory by insects to extreme events (extreme drought, advanced and delayed snowmelt versus control plots under different climatic conditions on 15 grassland sites. Our results indicate that elevational shifts in CN (carbon to nitrogen ratios and herbivory depend on plant guild and season. CN ratios increased with altitude for grasses, but decreased for legumes and other forbs. In contrast to our hypotheses, extreme climatic events did not significantly affect CN ratios and herbivory. Thus, our study indicates that nutritional quality of plants and antagonistic interactions with insect herbivores are robust against seasonal climatic extremes. Across the three functional plant guilds, herbivory increased with nitrogen concentrations. Further, increased CN ratios indicate a reduction in nutritional plant quality with advancing season. Although our results revealed no direct effects of extreme climatic events, the opposing responses of plant guilds along elevation imply that competitive interactions within plant communities might change under future climates, with unknown consequences for plant-herbivore interactions and plant community composition.

  19. Climate change and health in Israel: adaptation policies for extreme weather events.

    Science.gov (United States)

    Green, Manfred S; Pri-Or, Noemie Groag; Capeluto, Guedi; Epstein, Yoram; Paz, Shlomit

    2013-01-01

    Climatic changes have increased the world-wide frequency of extreme weather events such as heat waves, cold spells, floods, storms and droughts. These extreme events potentially affect the health status of millions of people, increasing disease and death. Since mitigation of climate change is a long and complex process, emphasis has recently been placed on the measures required for adaptation. Although the principles underlying these measures are universal, preparedness plans and policies need to be tailored to local conditions. In this paper, we conducted a review of the literature on the possible health consequences of extreme weather events in Israel, where the conditions are characteristic of the Mediterranean region. Strong evidence indicates that the frequency and duration of several types of extreme weather events are increasing in the Mediterranean Basin, including Israel. We examined the public health policy implications for adaptation to climate change in the region, and proposed public health adaptation policy options. Preparedness for the public health impact of increased extreme weather events is still relatively limited and clear public health policies are urgently needed. These include improved early warning and monitoring systems, preparedness of the health system, educational programs and the living environment. Regional collaboration should be a priority.

  20. Extreme weather events: Should drinking water quality management systems adapt to changing risk profiles?

    Science.gov (United States)

    Khan, Stuart J; Deere, Daniel; Leusch, Frederic D L; Humpage, Andrew; Jenkins, Madeleine; Cunliffe, David

    2015-11-15

    Among the most widely predicted and accepted consequences of global climate change are increases in both the frequency and severity of a variety of extreme weather events. Such weather events include heavy rainfall and floods, cyclones, droughts, heatwaves, extreme cold, and wildfires, each of which can potentially impact drinking water quality by affecting water catchments, storage reservoirs, the performance of water treatment processes or the integrity of distribution systems. Drinking water guidelines, such as the Australian Drinking Water Guidelines and the World Health Organization Guidelines for Drinking-water Quality, provide guidance for the safe management of drinking water. These documents present principles and strategies for managing risks that may be posed to drinking water quality. While these principles and strategies are applicable to all types of water quality risks, very little specific attention has been paid to the management of extreme weather events. We present a review of recent literature on water quality impacts of extreme weather events and consider practical opportunities for improved guidance for water managers. We conclude that there is a case for an enhanced focus on the management of water quality impacts from extreme weather events in future revisions of water quality guidance documents.

  1. Recent changes in extreme rainfall events in Peninsular Malaysia: 1971-2005

    Science.gov (United States)

    Wan Zin, Wan Zawiah; Jamaludin, Suhaila; Deni, Sayang Mohd; Jemain, Abdul Aziz

    2009-05-01

    This paper assesses recent changes in extremes of annual rainfall in Peninsular Malaysia based on daily rainfall data for ten rain-gauged stations over the period 1971-2005. Eight indices that represent the extreme events are defined and analyzed. Maps of trends for these indices, which are extreme dry spell (XDS), extreme rain sum (XRS), extreme wet day intensities at 95% and 99% percentiles (I95 and I99), proportion of extreme wet day to the total wet day (R95 and R99), and frequency of extreme wet day at 95% and 99% percentiles (N95 and N99), were analyzed based on annual data and seasons. When the indices are evaluated annually, the Mann-Kendall and linear regression trend tests showed increasing trends in the extreme intensity indices (I95 and I99) at two stations. A significant decrease in N99, associated with the frequency of extremely wet days, was observed at 60% of the stations. The change points for these indices are found to occur in the period of the 1980s. There is no significant trend detected for XDS, XRS, and proportion of extreme rainfall over total rainfall amount indices during the period considered in this study. Descriptive analysis of indices during the monsoon period showed that the annual spatial pattern for the peninsula is very much influenced by the northeast monsoon where the highest mean values for majority of the indices occur during this time period.

  2. Models for simulation of transient events in a wind farm

    DEFF Research Database (Denmark)

    Sørensen, P.; Hansen, A. D.; Bindner, H.

    2002-01-01

    with different tools with each other and with measurements. This present paper limits to describe the models including our reflections on which effects we expect to be essential for obtaining useful simulation results. The models comprise the substation, where the wind farm is connected, the power collection...

  3. Simulation and verification of transient events in large wind power installations

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, P.; Hansen, A.D.; Christensen, P.; Meritz, M.; Bech, J.; Bak-Jensen, B.; Nielsen, H.

    2003-10-01

    Models for wind power installations excited by transient events have been developed and verified. A number of cases have been investigated, including comparisons of simulations of a three-phase short circuit, validation with measurements of tripping of single wind turbine, islanding of a group of two wind turbines, and voltage steps caused by tripping of wind turbines and by manual transformer tap-changing. A Benchmark model is also presented, enabling the reader to test own simulation results against results obtained with models developed in EMTDC and DIgSILENT. (au)

  4. The demographic impact of extreme events: stochastic weather drives survival and population dynamics in a long-lived seabird.

    Science.gov (United States)

    Frederiksen, M; Daunt, F; Harris, M P; Wanless, S

    2008-09-01

    1. Most scenarios for future climate change predict increased variability and thus increased frequency of extreme weather events. To predict impacts of climate change on wild populations, we need to understand whether this translates into increased variability in demographic parameters, which would lead to reduced population growth rates even without a change in mean parameter values. This requires robust estimates of temporal process variance, for example in survival, and identification of weather covariates linked to interannual variability. 2. The European shag Phalacrocorax aristotelis (L.) shows unusually large variability in population size, and large-scale mortality events have been linked to winter gales. We estimated first-year, second-year and adult survival based on 43 years of ringing and dead recovery data from the Isle of May, Scotland, using recent methods to quantify temporal process variance and identify aspects of winter weather linked to survival. 3. Survival was highly variable for all age groups, and for second-year and adult birds process variance declined strongly when the most extreme year was excluded. Survival in these age groups was low in winters with strong onshore winds and high rainfall. Variation in first-year survival was not related to winter weather, and process variance, although high, was less affected by extreme years. A stochastic population model showed that increasing process variance in survival would lead to reduced population growth rate and increasing probability of extinction. 4. As in other cormorants, shag plumage is only partially waterproof, presumably an adaptation to highly efficient underwater foraging. We speculate that this adaptation may make individuals vulnerable to rough winter weather, leading to boom-and-bust dynamics, where rapid population growth under favourable conditions allows recovery from periodic large-scale weather-related mortality. 5. Given that extreme weather events are predicted to become

  5. Multispacecraft observations of the terrestrial bow shock and magnetopause during extreme solar wind disturbances

    DEFF Research Database (Denmark)

    Tatrallyay, M.; Erdos, G.; Nemeth, Z.

    2012-01-01

    Three events are discussed from the declining phase of the last solar cycle when the magnetopause and/or the bow shock were observed unusually close to the Earth due to major interplanetary disturbances. The observed extreme locations of the discontinuities are compared with the predictions of th...

  6. Ensemble reconstruction of spatio-temporal extreme low-flow events in France since 1871

    Science.gov (United States)

    Caillouet, Laurie; Vidal, Jean-Philippe; Sauquet, Eric; Devers, Alexandre; Graff, Benjamin

    2017-06-01

    The length of streamflow observations is generally limited to the last 50 years even in data-rich countries like France. It therefore offers too small a sample of extreme low-flow events to properly explore the long-term evolution of their characteristics and associated impacts. To overcome this limit, this work first presents a daily 140-year ensemble reconstructed streamflow dataset for a reference network of near-natural catchments in France. This dataset, called SCOPE Hydro (Spatially COherent Probabilistic Extended Hydrological dataset), is based on (1) a probabilistic precipitation, temperature, and reference evapotranspiration downscaling of the Twentieth Century Reanalysis over France, called SCOPE Climate, and (2) continuous hydrological modelling using SCOPE Climate as forcings over the whole period. This work then introduces tools for defining spatio-temporal extreme low-flow events. Extreme low-flow events are first locally defined through the sequent peak algorithm using a novel combination of a fixed threshold and a daily variable threshold. A dedicated spatial matching procedure is then established to identify spatio-temporal events across France. This procedure is furthermore adapted to the SCOPE Hydro 25-member ensemble to characterize in a probabilistic way unrecorded historical events at the national scale. Extreme low-flow events are described and compared in a spatially and temporally homogeneous way over 140 years on a large set of catchments. Results highlight well-known recent events like 1976 or 1989-1990, but also older and relatively forgotten ones like the 1878 and 1893 events. These results contribute to improving our knowledge of historical events and provide a selection of benchmark events for climate change adaptation purposes. Moreover, this study allows for further detailed analyses of the effect of climate variability and anthropogenic climate change on low-flow hydrology at the scale of France.

  7. Prediction of short-term distributions of load extremes of offshore wind turbines

    Science.gov (United States)

    Wang, Ying-guang

    2016-12-01

    This paper proposes a new methodology to select an optimal threshold level to be used in the peak over threshold (POT) method for the prediction of short-term distributions of load extremes of offshore wind turbines. Such an optimal threshold level is found based on the estimation of the variance-to-mean ratio for the occurrence of peak values, which characterizes the Poisson assumption. A generalized Pareto distribution is then fitted to the extracted peaks over the optimal threshold level and the distribution parameters are estimated by the method of the maximum spacing estimation. This methodology is applied to estimate the short-term distributions of load extremes of the blade bending moment and the tower base bending moment at the mudline of a monopile-supported 5MW offshore wind turbine as an example. The accuracy of the POT method using the optimal threshold level is shown to be better, in terms of the distribution fitting, than that of the POT methods using empirical threshold levels. The comparisons among the short-term extreme response values predicted by using the POT method with the optimal threshold levels and with the empirical threshold levels and by using direct simulation results further substantiate the validity of the proposed new methodology.

  8. Prediction of short-term distributions of load extremes of offshore wind turbines

    Science.gov (United States)

    Wang, Ying-guang

    2016-09-01

    This paper proposes a new methodology to select an optimal threshold level to be used in the peak over threshold (POT) method for the prediction of short-term distributions of load extremes of offshore wind turbines. Such an optimal threshold level is found based on the estimation of the variance-to-mean ratio for the occurrence of peak values, which characterizes the Poisson assumption. A generalized Pareto distribution is then fitted to the extracted peaks over the optimal threshold level and the distribution parameters are estimated by the method of the maximum spacing estimation. This methodology is applied to estimate the short-term distributions of load extremes of the blade bending moment and the tower base bending moment at the mudline of a monopile-supported 5MW offshore wind turbine as an example. The accuracy of the POT method using the optimal threshold level is shown to be better, in terms of the distribution fitting, than that of the POT methods using empirical threshold levels. The comparisons among the short-term extreme response values predicted by using the POT method with the optimal threshold levels and with the empirical threshold levels and by using direct simulation results further substantiate the validity of the proposed new methodology.

  9. Using Atmospheric Circulation Patterns to Detect and Attribute Changes in the Risk of Extreme Climate Events

    Science.gov (United States)

    Diffenbaugh, N. S.; Horton, D. E.; Singh, D.; Swain, D. L.; Touma, D. E.; Mankin, J. S.

    2015-12-01

    Because of the high cost of extreme events and the growing evidence that global warming is likely to alter the statistical distribution of climate variables, detection and attribution of changes in the probability of extreme climate events has become a pressing topic for the scientific community, elected officials, and the public. While most of the emphasis has thus far focused on analyzing the climate variable of interest (most often temperature or precipitation, but also flooding and drought), there is an emerging emphasis on applying detection and attribution analysis techniques to the underlying physical causes of individual extreme events. This approach is promising in part because the underlying physical causes (such as atmospheric circulation patterns) can in some cases be more accurately represented in climate models than the more proximal climate variable (such as precipitation). In addition, and more scientifically critical, is the fact that the most extreme events result from a rare combination of interacting causes, often referred to as "ingredients". Rare events will therefore always have a strong influence of "natural" variability. Analyzing the underlying physical mechanisms can therefore help to test whether there have been changes in the probability of the constituent conditions of an individual event, or whether the co-occurrence of causal conditions cannot be distinguished from random chance. This presentation will review approaches to applying detection/attribution analysis to the underlying physical causes of extreme events (including both "thermodynamic" and "dynamic" causes), and provide a number of case studies, including the role of frequency of atmospheric circulation patterns in the probability of hot, cold, wet and dry events.

  10. Uncertainties Related to Extreme Event Statistics of Sewer System Surcharge and Overflow

    DEFF Research Database (Denmark)

    Schaarup-Jensen, Kjeld; Johansen, C.; Thorndahl, Søren Liedtke

    2005-01-01

    by performing long term simulations - using a sewer flow simulation model - and draw up extreme event statistics from the model simulations. In this context it is important to realize that uncertainties related to the input parameters of rainfall runoff models will give rise to uncertainties related...... to draw up extreme event statistics covering return periods of as much as 33 years. By comparing these two different extreme event statistics it is evident that these to a great extent depend on the uncertainties related to the input parameters of the rainfall runoff model....... proceeding in an acceptable manner, if flooding of these levels is having an average return period bigger than a predefined value. This practice is also often used in functional analysis of existing sewer systems. If a sewer system can fulfil recommended flooding frequencies or not, can only be verified...

  11. Extreme events induced by self-action of laser beams in dynamic nonlinear liquid crystal cells

    Science.gov (United States)

    Bugaychuk, S.; Iljin, A.; Chunikhina, K.

    2017-06-01

    Optical extreme events represent a feature of nonlinear systems where there may emerge individual pulses possessing very high (or very low) intensity hardly probable statistically. Such property is being connected with the generation of solitons in the nonlinear systems. We carry out the first experiments for detection of extreme events during two-wave mixing with nonlinear dynamical liquid crystal (LC) cells. We investigate the statistics of the extreme events in dependence on relation between the duration of a laser pulse and the time characteristic of dynamic grating relaxation in LC cell. Our research shows that the self-diffraction of laser beams with a dynamical grating support the generation of envelope solitons in this system.

  12. Representation of extreme precipitation events in Nepal in CMIP5 models

    Science.gov (United States)

    Jung, Woosung; Ryu, Byeong; Yun, Myong

    2016-04-01

    Nepal is highly vulnerable to of extreme climate events due in part to its mountainous terrain and lack of infrastructure. Climate change is projected to increase the frequency and magnitude of extreme temperature and precipitation events worldwide, with particularly severe impacts likely in Nepal. In this study we analyze the performance of general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) at simulating temperature and precipitation in Nepal relative to the NCEP Reanalysis II and observational data, and we project how extreme events may change during the 21st century. We analyze the uncertainty in our projections, and compare the current generation of models in CMIP5 to prior results in this region using older climate models. Finally, we consider the impact of our projections on Nepal's society and economy.

  13. Army Corps of Engineers: Efforts to Assess the Impact of Extreme Weather Events

    Science.gov (United States)

    2015-07-01

    southern California dam, which allowed the Corps to retain rainwater to help respond to the state’s extreme drought conditions . The Corps has assessed...anticipate, prepare for, respond to, and adapt to changing conditions and to withstand and recover rapidly from disruptions with minimal damage. As directed... Extreme Weather Events in the Planning Process Page 16 GAO-15-660 Army Corps of Engineers adapting projects to this projected change.27

  14. Research on Trends in Extreme Weather Events and their Effects on Grapevine in Romanian Viticulture

    OpenAIRE

    Georgeta Mihaela Bucur; Anca Cristina Babes

    2016-01-01

    The aim of this work was to investigate the frequency and intensity of extreme weather events in various centers from Romania’s viticultural regions: winter frost, extreme temperatures during the growing season and summer droughts. Winter frost damaging the vine is a significant risk to grape production, mainly in the plains and lowlands to the foothills. The frequency of winter frost damaging the vine has increased during the last decades, in the context of climate change. Also, there has be...

  15. Trend in frequency of extreme precipitation events over Ontario from ensembles of multiple GCMs

    Science.gov (United States)

    Deng, Ziwang; Qiu, Xin; Liu, Jinliang; Madras, Neal; Wang, Xiaogang; Zhu, Huaiping

    2016-05-01

    As one of the most important extreme weather event types, extreme precipitation events have significant impacts on human and natural environment. This study assesses the projected long term trends in frequency of occurrence of extreme precipitation events represented by heavy precipitation days, very heavy precipitation days, very wet days and extreme wet days over Ontario, based on results of 21 CMIP3 GCM runs. To achieve this goal, first, all model data are linearly interpolated onto 682 grid points (0.45° × 0.45°) in Ontario; Next, biases in model daily precipitation amount are corrected with a local intensity scaling method to make the total wet days and total wet day precipitation from each of the GCMs are consistent with that from the climate forecast system reanalysis data, and then the four indices are estimated for each of the 21 GCM runs for 1968-2000, 2046-2065 and 2081-2100. After that, with the assumption that the rate parameter of the Poisson process for the occurrence of extreme precipitation events may vary with time as climate changes, the Poisson regression model which expresses the log rate as a linear function of time is used to detect the trend in frequency of extreme events in the GCMs simulations; Finally, the trends and their uncertainty are estimated. The result shows that in the twenty-first century annual heavy precipitation days, very heavy precipitation days and very wet days and extreme wet days are likely to significantly increase over major parts of Ontario and particularly heavy precipitation days, very wet days are very likely to significantly increase in some sub-regions in eastern Ontario. However, trends of seasonal indices are not significant.

  16. Optimized Swinging Door Algorithm for Wind Power Ramp Event Detection: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Mingjian; Zhang, Jie; Florita, Anthony R.; Hodge, Bri-Mathias; Ke, Deping; Sun, Yuanzhang

    2015-08-06

    Significant wind power ramp events (WPREs) are those that influence the integration of wind power, and they are a concern to the continued reliable operation of the power grid. As wind power penetration has increased in recent years, so has the importance of wind power ramps. In this paper, an optimized swinging door algorithm (SDA) is developed to improve ramp detection performance. Wind power time series data are segmented by the original SDA, and then all significant ramps are detected and merged through a dynamic programming algorithm. An application of the optimized SDA is provided to ascertain the optimal parameter of the original SDA. Measured wind power data from the Electric Reliability Council of Texas (ERCOT) are used to evaluate the proposed optimized SDA.

  17. Analysis and Modelling of Extreme Wind Speed Distributions in Complex Mountainous Regions

    Science.gov (United States)

    Laib, Mohamed; Kanevski, Mikhail

    2016-04-01

    Modelling of wind speed distributions in complex mountainous regions is an important and challenging problem which interests many scientists from several fields. In the present research, high frequency (10 min) Swiss wind speed monitoring data (IDAWEB service, Meteosuisse) are analysed and modelled with different parametric distributions (Weibull, GEV, Gamma, etc.) using maximum likelihood method. In total, 111 stations placed in different geomorphological units and at different altitude (from 203 to 3580 meters) are studied. Then, this information is used for training machine learning algorithms (Extreme Learning Machines, Support vector machine) to predict the distribution at new places, potentially useful for aeolian energy generation. An important part of the research deals with the construction and application of a high dimensional input feature space, generated from digital elevation model. A comprehensive study was carried out using feature selection approach to get the best model for the prediction. The main results are presented as spatial patterns of distributions' parameters.

  18. Extreme Events and Disaster Risk Reduction - a Future Earth KAN initiative

    Science.gov (United States)

    Frank, Dorothea; Reichstein, Markus

    2017-04-01

    The topic of Extreme Events in the context of global environmental change is both a scientifically challenging and exciting topic, and of very high societal relevance. The Future Earth Cluster initiative E3S organized in 2016 a cross-community/co-design workshop on Extreme Events and Environments from Climate to Society (http://www.e3s-future-earth.eu/index.php/ConferencesEvents/ConferencesAmpEvents). Based on the results, co-design research strategies and established network of the workshop, and previous activities, E3S is thriving to establish the basis for a longer-term research effort under the umbrella of Future Earth. These led to an initiative for a Future Earth Knowledge Action Network on Extreme Events and Disaster Risk Reduction. Example initial key question in this context include: What are meaningful indices to describe and quantify impact-relevant (e.g. climate) extremes? Which system properties yield resistance and resilience to extreme conditions? What are the key interactions between global urbanization processes, extreme events, and social and infrastructure vulnerability and resilience? The long-term goal of this KAN is to contribute to enhancing the resistance, resilience, and adaptive capacity of socio-ecological systems across spatial, temporal and institutional scales, in particular in the light of hazards affected by ongoing environmental change (e.g. climate change, global urbanization and land use/land cover change). This can be achieved by enhanced understanding, prediction, improved and open data and knowledge bases for detection and early warning decision making, and by new insights on natural and societal conditions and governance for resilience and adaptive capacity.

  19. Extreme events: being prepared for the pitfalls with progressing sustainable urban water management.

    Science.gov (United States)

    Keath, N A; Brown, R R

    2009-01-01

    It is widely accepted that new, more sustainable approaches to urban water management are required if cities and ecosystems are to become resilient to the effects of growing urban populations and global warming. Climate change predictions show that it is likely that cities around the world will be subject to an increasing number of extreme and less predictable events including flooding and drought. Historical transition studies have shown that major events such as extremes can expedite the adoption of new practices by destabilising existing management regimes and opening up new windows of opportunity for change. Yet, they can also act to reinforce and further entrench old practices. This case study of two Australian cities responding to extreme water scarcity reveals that being unprepared for extremes can undermine progress towards sustainable outcomes. The results showed that despite evidence of significant progress towards sustainable urban water management in Brisbane and Melbourne, the extreme water scarcity acted to reinforce traditional practices at the expense of emerging sustainability niches. Drawing upon empirical research and transitions literature, recommendations are provided for developing institutional mechanisms that are able to respond proactively to extreme events and be a catalyst for SUWM when such opportunities for change arise.

  20. Estimating return periods for daily precipitation extreme events over the Brazilian Amazon

    Science.gov (United States)

    Santos, Eliane Barbosa; Lucio, Paulo Sérgio; Santos e Silva, Cláudio Moisés

    2016-11-01

    This paper aims to model the occurrence of daily precipitation extreme events and to estimate the return period of these events through the extreme value theory (generalized extreme value distribution (GEV) and the generalized Pareto distribution (GPD)). The GEV and GPD were applied in precipitation series of homogeneous regions of the Brazilian Amazon. The GEV and GPD goodness of fit were evaluated by quantile-quantile (Q-Q) plot and by the application of the Kolmogorov-Smirnov (KS) test, which compares the cumulated empirical distributions with the theoretical ones. The Q-Q plot suggests that the probability distributions of the studied series are appropriated, and these results were confirmed by the KS test, which demonstrates that the tested distributions have a good fit in all sub-regions of Amazon, thus adequate to study the daily precipitation extreme event. For all return levels studied, more intense precipitation extremes is expected to occur within the South sub-regions and the coastal area of the Brazilian Amazon. The results possibly will have some practical application in local extreme weather forecast.

  1. Extreme climatic events in relation to global change and their impact on life histories

    Institute of Scientific and Technical Information of China (English)

    Juan MORENO; Anders Pape Mφller

    2011-01-01

    Extreme weather conditions occur at an increasing rate as evidenced by higher frequency of hurricanes and more extreme precipitation and temperature anomalies. Such extreme environmental conditions will have important implications for all living organisms through greater frequency of reproductive failure and reduced adult survival. We review examples of reproductive failure and reduced survival related to extreme weather conditions. Phenotypic plasticity may not be sufficient to allow adaptation to extreme weather for many animals. Theory predicts reduced reproductive effort as a response to increased stochasticity. We predict that patterns of natural selection will change towards truncation selection as environmental conditions become more extreme. Such changes in patterns of selection may facilitate adaptation to extreme events. However, effects of selection on reproductive effort are difficult to detect. We present a number of predictions for the effects of extreme weather conditions in need of empirical tests. Finally, we suggest a number of empirical reviews that could improve our ability to judge the effects of extreme environmental conditions on life history.

  2. Extreme climatic events in relation to global change and their impact on life histories

    Directory of Open Access Journals (Sweden)

    Juan MORENO, Anders Pape Møller

    2011-06-01

    Full Text Available Extreme weather conditions occur at an increasing rate as evidenced by higher frequency of hurricanes and more extreme precipitation and temperature anomalies. Such extreme environmental conditions will have important implications for all living organisms through greater frequency of reproductive failure and reduced adult survival. We review examples of reproductive failure and reduced survival related to extreme weather conditions. Phenotypic plasticity may not be sufficient to allow adaptation to extreme weather for many animals. Theory predicts reduced reproductive effort as a response to increased stochasticity. We predict that patterns of natural selection will change towards truncation selection as environmental conditions become more extreme. Such changes in patterns of selection may facilitate adaptation to extreme events. However, effects of selection on reproductive effort are difficult to detect. We present a number of predictions for the effects of extreme weather conditions in need of empirical tests. Finally, we suggest a number of empirical reviews that could improve our ability to judge the effects of extreme environmental conditions on life history [Current Zoology 57 (3: 375–389, 2011].

  3. Defining extreme GIC event scenarios: why and how to meet the power engineering needs?

    Science.gov (United States)

    Pulkkinen, A. A.

    2016-12-01

    The latest developments in terms of the US Federal Energy Regulatory Commission standards process and National Space Weather Action Plan have increased the pressure on the scientific community to develop reasonable extreme GIC event benchmarks and scenarios. At the same time, scientists and power engineerings have established robust communications that now allow passage of actionable information between the two communities. Consequently, it is now possible to describe and tailor the extreme event scenarios to meet the power engineering analysis requirements. Tailoring of the scenarios is critically important for the power engineers to be able to use the information provided by the scientific community. In this presentation, by reviewing the power transmission system impact mechanisms and engineering analyses flow, we present our current understanding of what actually is needed from the power engineering perspective to carry out extreme storm assessments. We hope that this information will help the scientific community to develop extreme event information that is directly actionable on the end-user side. We also review some of our recent work to develop extreme event information that meets the engineering needs. Some of this work was carried out in support of the FERC/NERC GMD standards development process.

  4. Hybrid Short Term Wind Speed Forecasting Using Variational Mode Decomposition and a Weighted Regularized Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Nantian Huang

    2016-11-01

    Full Text Available Accurate wind speed forecasting is a fundamental element of wind power prediction. Thus, a new hybrid wind speed forecasting model, using variational mode decomposition (VMD, the partial autocorrelation function (PACF, and weighted regularized extreme learning machine (WRELM, is proposed to improve the accuracy of wind speed forecasting. First, the historic wind speed time series is decomposed into several intrinsic mode functions (IMFs. Second, the partial correlation of each IMF sequence is analyzed using PACF to select the optimal subfeature set for particular predictors of each IMF. Then, the predictors of each IMF are constructed in order to enhance its strength using WRELM. Finally, wind speed is obtained by adding up all the predictors. The experiment, using real wind speed data, verified the effectiveness and advancement of the new approach.

  5. Impact of Extreme Heat Events on Emergency Department Visits in North Carolina (2007-2011).

    Science.gov (United States)

    Fuhrmann, Christopher M; Sugg, Margaret M; Konrad, Charles E; Waller, Anna

    2016-02-01

    Extreme heat is the leading cause of weather-related mortality in the U.S. Extreme heat also affects human health through heat stress and can exacerbate underlying medical conditions that lead to increased morbidity and mortality. In this study, data on emergency department (ED) visits for heat-related illness (HRI) and other selected diseases were analyzed during three heat events across North Carolina from 2007 to 2011. These heat events were identified based on the issuance and verification of heat products from local National Weather Service forecast offices (i.e. Heat Advisory, Heat Watch, and Excessive Heat Warning). The observed number of ED visits during these events were compared to the expected number of ED visits during several control periods to determine excess morbidity resulting from extreme heat. All recorded diagnoses were analyzed for each ED visit, thereby providing insight into the specific pathophysiological mechanisms and underlying health conditions associated with exposure to extreme heat. The most common form of HRI was heat exhaustion, while the percentage of visits with heat stroke was relatively low (65 years of age) were at greatest risk for HRI during the early summer heat event (8.9 visits per 100,000), while young and middle age adults (18-44 years of age) were at greatest risk during the mid-summer event (6.3 visits per 100,000). Many of these visits were likely due to work-related exposure. The most vulnerable demographic during the late summer heat event was adolescents (15-17 years of age), which may relate to the timing of organized sports. This demographic also exhibited the highest visit rate for HRI among all three heat events (10.5 visits per 100,000). Significant increases (p events (3-8%). The greatest increases were found in visits with hypotension during the late summer event (23%) and sequelae during the early summer event (30%), while decreases were noted for visits with hemorrhagic stroke during the middle and late

  6. Towards a unified study of extreme events using universality concepts and transdisciplinary analysis methods

    Science.gov (United States)

    Balasis, George; Donner, Reik V.; Donges, Jonathan F.; Radebach, Alexander; Eftaxias, Konstantinos; Kurths, Jürgen

    2013-04-01

    The dynamics of many complex systems is characterized by the same universal principles. In particular, systems which are otherwise quite different in nature show striking similarities in their behavior near tipping points (bifurcations, phase transitions, sudden regime shifts) and associated extreme events. Such critical phenomena are frequently found in diverse fields such as climate, seismology, or financial markets. Notably, the observed similarities include a high degree of organization, persistent behavior, and accelerated energy release, which are common to (among others) phenomena related to geomagnetic variability of the terrestrial magnetosphere (intense magnetic storms), seismic activity (electromagnetic emissions prior to earthquakes), solar-terrestrial physics (solar flares), neurophysiology (epileptic seizures), and socioeconomic systems (stock market crashes). It is an open question whether the spatial and temporal complexity associated with extreme events arises from the system's structural organization (geometry) or from the chaotic behavior inherent to the nonlinear equations governing the dynamics of these phenomena. On the one hand, the presence of scaling laws associated with earthquakes and geomagnetic disturbances suggests understanding these events as generalized phase transitions similar to nucleation and critical phenomena in thermal and magnetic systems. On the other hand, because of the structural organization of the systems (e.g., as complex networks) the associated spatial geometry and/or topology of interactions plays a fundamental role in the emergence of extreme events. Here, a few aspects of the interplay between geometry and dynamics (critical phase transitions) that could result in the emergence of extreme events, which is an open problem, will be discussed.

  7. Impacts of the Sahel-Sahara Interface Reforestation on West African Climate: Intraseasonal Variability and Extreme Precipitation Events

    Directory of Open Access Journals (Sweden)

    Ibrahima Diba

    2016-01-01

    Full Text Available This study aims to evaluate the impacts of the Sahel-Sahara interface reforestation on spatiotemporal variability of the summer rainfall and extreme precipitation events over West Africa using the RegCM4 model. The land surface scheme of RegCM4 was modified to incorporate an East-West reforested zone (15°N and 20°N. Two runs were performed using the standard version of RegCM4 and the modified one of the same model taking into account the incorporated forest. The reforestation significantly modifies rainfall signal over West Africa by increasing it over the reforested zone and the Fouta Jallon highlands (FJH. This rainfall increase is associated with a strengthening of the atmospheric moisture over the reforested area. This atmospheric moisture content increase associated with the wind dynamic may explain the spatiotemporal change of the rainfall and extreme precipitation events. The analysis of the impacts of the reforestation on some rainfall indices shows an increase of the 90th, 95th, and 99th percentiles over the reforested zone and off the FJH. This reforestation also causes an increase of the maximum length of the consecutive wet days over and off FJH and a decrease of the maximum length of the consecutive dry days over the northern Sahel and the reforested zone.

  8. On Predictive Understanding of Extreme Events: Pattern Recognition Approach; Prediction Algorithms; Applications to Disaster Preparedness

    Science.gov (United States)

    Keilis-Borok, V. I.; Soloviev, A.; Gabrielov, A.

    2011-12-01

    We describe a uniform approach to predicting different extreme events, also known as critical phenomena, disasters, or crises. The following types of such events are considered: strong earthquakes; economic recessions (their onset and termination); surges of unemployment; surges of crime; and electoral changes of the governing party. A uniform approach is possible due to the common feature of these events: each of them is generated by a certain hierarchical dissipative complex system. After a coarse-graining, such systems exhibit regular behavior patterns; we look among them for "premonitory patterns" that signal the approach of an extreme event. We introduce methodology, based on the optimal control theory, assisting disaster management in choosing optimal set of disaster preparedness measures undertaken in response to a prediction. Predictions with their currently realistic (limited) accuracy do allow preventing a considerable part of the damage by a hierarchy of preparedness measures. Accuracy of prediction should be known, but not necessarily high.

  9. A Numerical Approach for Hybrid Simulation of Power System Dynamics Considering Extreme Icing Events

    DEFF Research Database (Denmark)

    Chen, Lizheng; Zhang, Hengxu; Wu, Qiuwei

    2017-01-01

    The global climate change leads to more extreme meteorological conditions such as icing weather, which have caused great losses to power systems. Comprehensive simulation tools are required to enhance the capability of power system risk assessment under extreme weather conditions. A hybrid...... numerical simulation scheme integrating icing weather events with power system dynamics is proposed to extend power system numerical simulation. A technique is developed to efficiently simulate the interaction of slow dynamics of weather events and fast dynamics of power systems. An extended package for PSS....../E enabling hybrid simulation of icing event and power system disturbance is developed, based on which a hybrid simulation platform is established. Numerical studies show that the functionality of power system simulation is greatly extended by taking into account the icing weather events....

  10. Experimental characterization of extreme events of inertial dissipation in a turbulent swirling flow

    Science.gov (United States)

    Saw, E.-W.; Kuzzay, D.; Faranda, D.; Guittonneau, A.; Daviaud, F.; Wiertel-Gasquet, C.; Padilla, V.; Dubrulle, B.

    2016-08-01

    The three-dimensional incompressible Navier-Stokes equations, which describe the motion of many fluids, are the cornerstones of many physical and engineering sciences. However, it is still unclear whether they are mathematically well posed, that is, whether their solutions remain regular over time or develop singularities. Even though it was shown that singularities, if exist, could only be rare events, they may induce additional energy dissipation by inertial means. Here, using measurements at the dissipative scale of an axisymmetric turbulent flow, we report estimates of such inertial energy dissipation and identify local events of extreme values. We characterize the topology of these extreme events and identify several main types. Most of them appear as fronts separating regions of distinct velocities, whereas events corresponding to focusing spirals, jets and cusps are also found. Our results highlight the non-triviality of turbulent flows at sub-Kolmogorov scales as possible footprints of singularities of the Navier-Stokes equation.

  11. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2004-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continously increase the knowledge on wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describe the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of high-sampled full-scale time series measurements...... are consistent, given the inevitabel uncertainties associated with model as well as with the extreme value data analysis. Keywords: Statistical model, extreme wind conditions, statistical analysis, turbulence, wind loading, statistical analysis, turbulence, wind loading, wind shear, wind turbines....

  12. The effects of climatic fluctuations and extreme events on running water ecosystems

    OpenAIRE

    Woodward, Guy; Bonada, Nuria; Brown, Lee E; Death, Russell G.; Durance, Isabelle; Gray, Clare; Hladyz, Sally; Mark E. Ledger; Milner, Alexander; Ormerod, Stephen; Thomson, Ross M.; Pawar, Samraat

    2016-01-01

    Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods, or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity, and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanis...

  13. Ensuring Resilience of Natural Resources under Exposure to Extreme Climate Events

    OpenAIRE

    Brent Jacobs; Louise Boronyak-Vasco; Kristy Moyle; Peat Leith

    2016-01-01

    Natural resources directly support rural livelihoods and underpin much of the wealth of rural and regional Australia. Climate change manifesting as increasing frequency and or severity of extreme weather events poses a threat to sustainable management of natural resources because the recurrence of events may exceed the resilience of natural systems or the coping capacity of social systems. We report the findings of a series of participatory workshops with communities in eight discrete landsca...

  14. Fusing Simulation Results From Multifidelity Aero-servo-elastic Simulators - Application To Extreme Loads On Wind Turbine

    DEFF Research Database (Denmark)

    Abdallah, Imad; Sudret, Bruno; Lataniotis, Christos

    2015-01-01

    bending moment at the blade root of a large wind turbine as a function of wind speed, turbulence and shear exponent in the presence of model uncertainty and non-stationary noise in the output. The extreme responses are obtained by two widely accepted numerical aero-servo-elastic simulators, FAST......Fusing predictions from multiple simulators in the early stages of the conceptual design of a wind turbine results in reduction in model uncertainty and risk mitigation. Aero-servo-elastic is a term that refers to the coupling of wind inflow, aerodynamics, structural dynamics and controls. Fusing...

  15. METHOD TO ASSESS THE EXTREME HYDROLOGICAL EVENTS IN DANUBE FLUVIAL DELTA

    Directory of Open Access Journals (Sweden)

    MARIAN MIERLĂ

    2012-03-01

    Full Text Available Method to assess the extreme hydrological events in Danube fluvial Delta. In this paper the subject is about of testing a method for Romania to assess the extreme hydrological events. In this paper through hydrological extreme events it should be understood as the extreme droughts and the extreme flooding. The place to be tested this method for Romania is the Danube Delta, fluvial delta to be more precisely. The importance of the area consists in the fact that is the third Delta of the Europe (after the Volga’s and Kuban’s. The method that is supposed to be tested on a specific part of the delta is aiming to rise the knowledge about the extreme hydrological events (drought and flooding and to be able to respond in an appropriate way to these. For this paper it will be taken into account the hydrological events occurred in 2003 (the exceptional drought and in 2006 (the exceptional flood. To do the analysis there were used satellite images (LANDSAT from the period that was taken into account and additional there were used the hypsometrical model of the Danube Delta for the specific area. The first two datasets (2003 and 2006 satellite images give information about were the border of the water (in drought period and respective in flooding one reached. The second dataset (the delta’s hypsometry give information about the altitude of the terrain in order to establish which areas, at a certain water level, are flooded. The result of these datasets combination is the calibration of the hypsometrical model of the Danube Delta, in that region, regarding the hydrological events in the sense of building-up the hydrograds as isolines. The new approach of this matter can be more concrete and makes easier to see on the cartographic support the hydrologic events. The information obtained from these datasets makes the awareness regarding the extreme hydrological events to be higher and respective the measures taken to mitigate these will be more efficient.

  16. Erosion during extreme flood events dominates Holocene canyon evolution in northeast Iceland.

    Science.gov (United States)

    Baynes, Edwin R C; Attal, Mikaël; Niedermann, Samuel; Kirstein, Linda A; Dugmore, Andrew J; Naylor, Mark

    2015-02-24

    Extreme flood events have the potential to cause catastrophic landscape change in short periods of time (10(0) to 10(3) h). However, their impacts are rarely considered in studies of long-term landscape evolution (>10(3) y), because the mechanisms of erosion during such floods are poorly constrained. Here we use topographic analysis and cosmogenic (3)He surface exposure dating of fluvially sculpted surfaces to determine the impact of extreme flood events within the Jökulsárgljúfur canyon (northeast Iceland) and to constrain the mechanisms of bedrock erosion during these events. Surface exposure ages allow identification of three periods of intense canyon cutting about 9 ka ago, 5 ka ago, and 2 ka ago during which multiple large knickpoints retreated large distances (>2 km). During these events, a threshold flow depth was exceeded, leading to the toppling and transportation of basalt lava columns. Despite continuing and comparatively large-scale (500 m(3)/s) discharge of sediment-rich glacial meltwater, there is no evidence for a transition to an abrasion-dominated erosion regime since the last erosive event because the vertical knickpoints have not diffused over time. We provide a model for the evolution of the Jökulsárgljúfur canyon through the reconstruction of the river profile and canyon morphology at different stages over the last 9 ka and highlight the dominant role played by extreme flood events in the shaping of this landscape during the Holocene.

  17. Local instability driving extreme events in a pair of coupled chaotic electronic circuits

    Science.gov (United States)

    de Oliveira, Gilson F.; Di Lorenzo, Orlando; de Silans, Thierry Passerat; Chevrollier, Martine; Oriá, Marcos; Cavalcante, Hugo L. D. de Souza

    2016-06-01

    For a long time, extreme events happening in complex systems, such as financial markets, earthquakes, and neurological networks, were thought to follow power-law size distributions. More recently, evidence suggests that in many systems the largest and rarest events differ from the other ones. They are dragon kings, outliers that make the distribution deviate from a power law in the tail. Understanding the processes of formation of extreme events and what circumstances lead to dragon kings or to a power-law distribution is an open question and it is a very important one to assess whether extreme events will occur too often in a specific system. In the particular system studied in this paper, we show that the rate of occurrence of dragon kings is controlled by the value of a parameter. The system under study here is composed of two nearly identical chaotic oscillators which fail to remain in a permanently synchronized state when coupled. We analyze the statistics of the desynchronization events in this specific example of two coupled chaotic electronic circuits and find that modifying a parameter associated to the local instability responsible for the loss of synchronization reduces the occurrence of dragon kings, while preserving the power-law distribution of small- to intermediate-size events with the same scaling exponent. Our results support the hypothesis that the dragon kings are caused by local instabilities in the phase space.

  18. Extreme sea events during the last millennium in the northeast of Morocco

    Science.gov (United States)

    Raji, O.; Dezileau, L.; Von Grafenstein, U.; Niazi, S.; Snoussi, M.; Martinez, P.

    2015-02-01

    The Moroccan Mediterranean coast is located in one of the area's most vulnerable to extreme weather events or tsunami hazards. The objective of this research is to reconstruct the historical extreme submersion-event record using sea-induced deposits preserved in coastal lagoon. The Nador lagoon is the largest Moroccan lagoon (115 km2). It is located along the western Mediterranean, which has a high cyclogenetic character and is exposed to tsunamis from the Alboran Sea. The sandy barrier which separates the lagoon from the Mediterranean Sea is marked by much overwash, which indicate how intensely it has been exposed to the adverse sea events through history. Using the UWITEC© gravity coring platform, an undisturbed MC4.5 core (1.15 m long) was successfully sampled in the studied lagoon. To identify extreme sea events, a multi-proxy approach was applied combining sedimentological and geochemical data. Three paleoevents were identified; all of them are concentrated over the last 500 years, and the most recent event corresponds to the 1889 storm. For the others deposits, it is difficult to determine exactly their origin; however, the high frequency of storm events over the relevant period and the absence of historical tsunamis evidence is more in favor of the meteorological origin.

  19. Proactive modeling of water quality impacts of extreme precipitation events in a drinking water reservoir.

    Science.gov (United States)

    Jeznach, Lillian C; Hagemann, Mark; Park, Mi-Hyun; Tobiason, John E

    2017-10-01

    Extreme precipitation events are of concern to managers of drinking water sources because these occurrences can affect both water supply quantity and quality. However, little is known about how these low probability events impact organic matter and nutrient loads to surface water sources and how these loads may impact raw water quality. This study describes a method for evaluating the sensitivity of a water body of interest from watershed input simulations under extreme precipitation events. An example application of the method is illustrated using the Wachusett Reservoir, an oligo-mesotrophic surface water reservoir in central Massachusetts and a major drinking water supply to metropolitan Boston. Extreme precipitation event simulations during the spring and summer resulted in total organic carbon, UV-254 (a surrogate measurement for reactive organic matter), and total algae concentrations at the drinking water intake that exceeded recorded maximums. Nutrient concentrations after storm events were less likely to exceed recorded historical maximums. For this particular reservoir, increasing inter-reservoir transfers of water with lower organic matter content after a large precipitation event has been shown in practice and in model simulations to decrease organic matter levels at the drinking water intake, therefore decreasing treatment associated oxidant demand, energy for UV disinfection, and the potential for formation of disinfection byproducts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Climate change, extreme events and increased risk of salmonellosis in Maryland, USA: Evidence for coastal vulnerability.

    Science.gov (United States)

    Jiang, Chengsheng; Shaw, Kristi S; Upperman, Crystal R; Blythe, David; Mitchell, Clifford; Murtugudde, Raghu; Sapkota, Amy R; Sapkota, Amir

    2015-10-01

    Salmonella is a leading cause of acute gastroenteritis worldwide. Patterns of salmonellosis have been linked to weather events. However, there is a dearth of data regarding the association between extreme events and risk of salmonellosis, and how this risk may disproportionately impact coastal communities. We obtained Salmonella case data from the Maryland Foodborne Diseases Active Surveillance Network (2002-2012), and weather data from the National Climatic Data Center (1960-2012). We developed exposure metrics related to extreme temperature and precipitation events using a 30 year baseline (1960-1989) and linked them with county-level salmonellosis data. Data were analyzed using negative binomial Generalized Estimating Equations. We observed a 4.1% increase in salmonellosis risk associated with a 1 unit increase in extreme temperature events (incidence rate ratio (IRR):1.041; 95% confidence interval (CI):1.013-1.069). This increase in risk was more pronounced in coastal versus non-coastal areas (5.1% vs 1.5%). Likewise, we observed a 5.6% increase in salmonellosis risk (IRR:1.056; CI:1.035-1.078) associated with a 1 unit increase in extreme precipitation events, with the impact disproportionately felt in coastal areas (7.1% vs 3.6%). To our knowledge, this is the first empirical evidence showing that extreme temperature/precipitation events-that are expected to be more frequent and intense in coming decades-are disproportionately impacting coastal communities with regard to salmonellosis. Adaptation strategies need to account for this differential burden, particularly in light of ever increasing coastal populations. Copyright © 2015. Published by Elsevier Ltd.

  1. Model design for predicting extreme precipitation event impacts on water quality in a water supply reservoir

    Science.gov (United States)

    Hagemann, M.; Jeznach, L. C.; Park, M. H.; Tobiason, J. E.

    2016-12-01

    Extreme precipitation events such as tropical storms and hurricanes are by their nature rare, yet have disproportionate and adverse effects on surface water quality. In the context of drinking water reservoirs, common concerns of such events include increased erosion and sediment transport and influx of natural organic matter and nutrients. As part of an effort to model the effects of an extreme precipitation event on water quality at the reservoir intake of a major municipal water system, this study sought to estimate extreme-event watershed responses including streamflow and exports of nutrients and organic matter for use as inputs to a 2-D hydrodynamic and water quality reservoir model. Since extreme-event watershed exports are highly uncertain, we characterized and propagated predictive uncertainty using a quasi-Monte Carlo approach to generate reservoir model inputs. Three storm precipitation depths—corresponding to recurrence intervals of 5, 50, and 100 years—were converted to streamflow in each of 9 tributaries by volumetrically scaling 2 storm hydrographs from the historical record. Rating-curve models for concentratoin, calibrated using 10 years of data for each of 5 constituents, were then used to estimate the parameters of a multivariate lognormal probability model of constituent concentrations, conditional on each scenario's storm date and streamflow. A quasi-random Halton sequence (n = 100) was drawn from the conditional distribution for each event scenario, and used to generate input files to a calibrated CE-QUAL-W2 reservoir model. The resulting simulated concentrations at the reservoir's drinking water intake constitute a low-discrepancy sample from the estimated uncertainty space of extreme-event source water-quality. Limiting factors to the suitability of this approach include poorly constrained relationships between hydrology and constituent concentrations, a high-dimensional space from which to generate inputs, and relatively long run

  2. Changes in Extreme Events: from GCM Output to Social, Economic and Ecological Impacts

    Science.gov (United States)

    Tebaldi, C.; Meehl, G. A.

    2006-12-01

    Extreme events can deeply affect social and natural systems. The current generation of global climate model is producing information that can be directly used to characterize future changes in extreme events, and through a further step their impacts, despite their still relatively coarse resolution. It is important to define extreme indicators consistently with what we expect GCM to be able to represent reliably. We use two examples from our work, heat waves and frost days, that well describe different aspects of the analysis of extremes from GCM output. Frost days are "mild extremes" and their definition and computation is straightforward. GCMs can represent them accurately and display a strong consistent signal of change. The impacts of these changes will be extremely relevant for ecosystems and agriculture. Heat waves do not have a standard definition. On the basis of historical episodes we isolate characteristics that were responsible for the worst effects on human health, for example, and analyze these characteristics in model simulations, validating the model's historical simulations. The changes in these characteristics can then be easily translated in expected differential impacts on public health. Work in progress goes in the direction of better characterization of "heat waves" taking into account jointly a set of variables like maximum and minimum temperatures and humidity, better addressing the biological vulnerabilities of the populations at risk.

  3. Forest operations, extreme flooding events, and considerations for hydrologic modeling in the Appalachians--A review

    Science.gov (United States)

    M.A. Eisenbies; W.M. Aust; J.A. Burger; M.B. Adams

    2007-01-01

    The connection between forests and water resources is well established, but the relationships among controlling factors are only partly understood. Concern over the effects of forestry operations, particularly harvesting, on extreme flooding events is a recurrent issue in forest and watershed management. Due to the complexity of the system, and the cost of installing...

  4. Ultimate design load analysis of planetary gearbox bearings under extreme events

    DEFF Research Database (Denmark)

    Gallego Calderon, Juan Felipe; Natarajan, Anand; Cutululis, Nicolaos Antonio

    2017-01-01

    This paper investigates the impact of extreme events on the planet bearings of a 5 MW gearbox. The system is simulated using an aeroelastic tool, where the turbine structure is modeled, and MATLAB/Simulink, where the drivetrain (gearbox and generator) are modeled using a lumped-parameter approach...

  5. Magnetic storms and solar flares: can be analysed within similar mathematical framework with other extreme events?

    Science.gov (United States)

    Balasis, Georgios; Potirakis, Stelios M.; Papadimitriou, Constantinos; Zitis, Pavlos I.; Eftaxias, Konstantinos

    2015-04-01

    The field of study of complex systems considers that the dynamics of complex systems are founded on universal principles that may be used to describe a great variety of scientific and technological approaches of different types of natural, artificial, and social systems. We apply concepts of the nonextensive statistical physics, on time-series data of observable manifestations of the underlying complex processes ending up to different extreme events, in order to support the suggestion that a dynamical analogy characterizes the generation of a single magnetic storm, solar flare, earthquake (in terms of pre-seismic electromagnetic signals) , epileptic seizure, and economic crisis. The analysis reveals that all the above mentioned different extreme events can be analyzed within similar mathematical framework. More precisely, we show that the populations of magnitudes of fluctuations included in all the above mentioned pulse-like-type time series follow the traditional Gutenberg-Richter law as well as a nonextensive model for earthquake dynamics, with similar nonextensive q-parameter values. Moreover, based on a multidisciplinary statistical analysis we show that the extreme events are characterized by crucial common symptoms, namely: (i) high organization, high compressibility, low complexity, high information content; (ii) strong persistency; and (iii) existence of clear preferred direction of emerged activities. These symptoms clearly discriminate the appearance of the extreme events under study from the corresponding background noise.

  6. Impacts of Climate Change On The Occurrence of Extreme Events: The Mice Project

    Science.gov (United States)

    Palutikof, J. P.; Mice Team

    It is widely accepted that climate change due to global warming will have substan- tial impacts on the natural environment, and on human activities. Furthermore, it is increasingly recognized that changes in the severity and frequency of extreme events, such as windstorm and flood, are likely to be more important than changes in the average climate. The EU-funded project MICE (Modelling the Impacts of Climate Extremes) commenced in January 2002. It seeks to identify the likely changes in the occurrence of extremes of rainfall, temperature and windstorm due to global warm- ing, using information from climate models as a basis, and to study the impacts of these changes in selected European environments. The objectives are: a) to evaluate, by comparison with gridded and station observations, the ability of climate models to successfully reproduce the occurrence of extremes at the required spatial and temporal scales. b) to analyse model output with respect to future changes in the occurrence of extremes. Statistical analyses will determine changes in (i) the return periods of ex- tremes, (ii) the joint probability of extremes (combinations of damaging events such as windstorm followed by heavy rain), (iii) the sequential behaviour of extremes (whether events are well-separated or clustered) and (iv) the spatial patterns of extreme event occurrence across Europe. The range of uncertainty in model predictions will be ex- plored by analysing changes in model experiments with different spatial resolutions and forcing scenarios. c) to determine the impacts of the predicted changes in extremes occurrence on selected activity sectors: agriculture (Mediterranean drought), commer- cial forestry and natural forest ecosystems (windstorm and flood in northern Europe, fire in the Mediterranean), energy use (temperature extremes), tourism (heat stress and Mediterranean beach holidays, changes in the snow pack and winter sports ) and civil protection/insurance (windstorm and flood

  7. A spatial and nonstationary model for the frequency of extreme rainfall events

    DEFF Research Database (Denmark)

    Gregersen, Ida Bülow; Madsen, Henrik; Rosbjerg, Dan;

    2013-01-01

    Changes in the properties of extreme rainfall events have been observed worldwide. In relation to the discussion of ongoing climatic changes, it is of high importance to attribute these changes to known sources of climate variability. Focusing on spatial and temporal changes in the frequency...... of extreme rainfall events, a statistical model is tested for this purpose. The model is built on the theory of generalized linear models and uses Poisson regression solved by generalized estimation equations. Spatial and temporal explanatory variables can be included simultaneously, and their relative...... importance can be assessed. Additionally, the model allows for a spatial correlation between the measurements. Data from a Danish rain gauge network are used as a case study for model evaluation. Focusing on 10 min and 24 h rainfall extremes, it was found that regional variation in the mean annual...

  8. Solar Energetic Particle Event Associated with the 2012 July 23 Extreme Solar Storm

    CERN Document Server

    Zhu, Bei; Luhmann, Janet G; Hu, Huidong; Wang, Rui; Yang, Zhongwei

    2016-01-01

    We study the solar energetic particle (SEP) event associated with the 2012 July 23 extreme solar storm, for which STEREO and the spacecraft at L1 provide multi-point remote sensing and in situ observations. The extreme solar storm, with a superfast shock and extremely enhanced ejecta magnetic fields observed near 1 AU at STEREO A, was caused by the combination of successive coronal mass ejections (CMEs). Meanwhile, energetic particles were observed by STEREO and near-Earth spacecraft such as ACE and SOHO, suggestive of a wide longitudinal spread of the particles at 1 AU. Combining the SEP observations with in situ plasma and magnetic field measurements we investigate the longitudinal distribution of the SEP event in connection with the associated shock and CMEs. Our results underscore the complex magnetic configuration of the inner heliosphere formed by solar eruptions. The examinations of particle intensities, proton anisotropy distributions, element abundance ratios, magnetic connectivity and spectra also g...

  9. The Challenges from Extreme Climate Events for Sustainable Development in Amazonia: the Acre State Experience

    Science.gov (United States)

    Araújo, M. D. N. M.

    2015-12-01

    In the past ten years Acre State, located in Brazil´s southwestern Amazonia, has confronted sequential and severe extreme events in the form of droughts and floods. In particular, the droughts and forest fires of 2005 and 2010, the 2012 flood within Acre, the 2014 flood of the Madeira River which isolated Acre for two months from southern Brazil, and the most severe flooding throughout the state in 2015 shook the resilience of Acrean society. The accumulated costs of these events since 2005 have exceeded 300 million dollars. For the last 17 years, successive state administrations have been implementing a socio-environmental model of development that strives to link sustainable economic production with environmental conservation, particularly for small communities. In this context, extreme climate events have interfered significantly with this model, increasing the risks of failure. The impacts caused by these events on development in the state have been exacerbated by: a) limitations in monitoring; b) extreme events outside of Acre territory (Madeira River Flood) affecting transportation systems; c) absence of reliable information for decision-making; and d) bureaucratic and judicial impediments. Our experience in these events have led to the following needs for scientific input to reduce the risk of disasters: 1) better monitoring and forecasting of deforestation, fires, and hydro-meteorological variables; 2) ways to increase risk perception in communities; 3) approaches to involve more effectively local and regional populations in the response to disasters; 4) more accurate measurements of the economic and social damages caused by these disasters. We must improve adaptation to and mitigation of current and future extreme climate events and implement a robust civil defense, adequate to these new challenges.

  10. Food Security and Extreme Events: Evidence from Smallholder Farmers in Central America

    Science.gov (United States)

    Saborio-Rodriguez, M.; Alpizar, F.; Harvey, C.; Martinez, R.; Vignola, R.; Viguera, B.; Capitan, T.

    2016-12-01

    Extreme weather events, which are expected to increase in magnitude and frequency due to climate change, are one of the main threats for smallholder farmers in Central America. Using a rich dataset from carefully selected subsistence farm households, we explore the determinants and severity of food insecurity resulting from extreme hydrometeorological hazards. In addition, we analyze farmerś coping strategies. Our analysis sheds light over food insecurity as an expression of vulnerability in a region that is expected to be increasingly exposed to extreme events and in a population already stressed by poverty and lack of opportunities. Regarding food insecurity, multivariate analyses indicate that education, having at least one migrant in the household, labor allocation, number of plots, and producing coffee are determinants of the probability of experiencing lack of food after an extreme weather event. Once the household is lacking food, the duration of the episode is related to access to credit, number of plots, producing coffee, ownership of land and gender of the head of the household. This results are in line with previous literature on the determinants of food insecurity in particular, and vulnerability, in general. Our dataset also allows us to analyze coping strategies. Households experiencing lack of food after an extreme weather event report mainly changes in their habits, as decreasing the amount of food consumed (54%) and modifying their diet (35%). A low proportion of household (between 10% and 15%, depending on the nature of the event) use their assets, by redirecting their savings, migrating, and selling items from the house. Asking money or food from family and friends or from an organization is reported for 4% of the households. This general results are connected to the specific coping strategies related to damages in crops, which are explored in detail. Our results indicate that there are patterns among the household experiencing lack of food

  11. Spatial and temporal analysis of extreme sea level and storm surge events around the coastline of the UK.

    Science.gov (United States)

    Haigh, Ivan D; Wadey, Matthew P; Wahl, Thomas; Ozsoy, Ozgun; Nicholls, Robert J; Brown, Jennifer M; Horsburgh, Kevin; Gouldby, Ben

    2016-12-06

    In this paper we analyse the spatial footprint and temporal clustering of extreme sea level and skew surge events around the UK coast over the last 100 years (1915-2014). The vast majority of the extreme sea level events are generated by moderate, rather than extreme skew surges, combined with spring astronomical high tides. We distinguish four broad categories of spatial footprints of events and the distinct storm tracks that generated them. There have been rare events when extreme levels have occurred along two unconnected coastal regions during the same storm. The events that occur in closest succession (coastline. The spring/neap tidal cycle prevents successive extreme sea level events from happening within 4-8 days. Finally, the 2013/14 season was highly unusual in the context of the last 100 years from an extreme sea level perspective.

  12. Transformation of soil organics under extreme climate events: a project description

    Science.gov (United States)

    Blagodatskaya, Evgenia

    2017-04-01

    Recent climate scenarios predict not only continued global warming but also an increased frequency and intensity of extreme climatic events such as strong changes in temperature and precipitation with unusual regional dynamics. Weather anomalies at European territory of Russia are currently revealed as long-term drought and strong showers in summer and as an increased frequency of soil freezing-thawing cycles. Climate extremes totally change biogeochemical processes and elements cycling both at the ecosystem level and at the level of soil profile mainly affecting soil biota. Misbalance in these processes can cause a reduction of soil carbon stock and an increase of greenhouse gases emission. Our project aims to reveal the transformation mechanisms of soil organic matter caused by extreme weather events taking into consideration the role of biotic-abiotic interactions in regulation of formation, maintenance and turnover of soil carbon stock. Our research strategy is based on the novel concept considering extreme climatic events (showers after long-term droughts, soil flooding, freezing-thawing) as abiotic factors initiating a microbial succession. Study on stoichiometric flexibility of plants under climate extremes as well as on resulting response of soil heterotrophs on stoichiometric changes in substrate will be used for experimental prove and further development of the theory of ecological stoichiometry. The results enable us to reveal the mechanisms of biotic - abiotic interactions responsible for the balance between mobilization and stabilization of soil organic matter. Identified mechanisms will form the basis of an ecosystem model enabled to predict the effects of extreme climatic events on biogenic carbon cycle in the biosphere.

  13. Assessment of climate variations in temperature and precipitation extreme events over Iran

    Science.gov (United States)

    Soltani, M.; Laux, P.; Kunstmann, H.; Stan, K.; Sohrabi, M. M.; Molanejad, M.; Sabziparvar, A. A.; Ranjbar SaadatAbadi, A.; Ranjbar, F.; Rousta, I.; Zawar-Reza, P.; Khoshakhlagh, F.; Soltanzadeh, I.; Babu, C. A.; Azizi, G. H.; Martin, M. V.

    2016-11-01

    In this study, changes in the spatial and temporal patterns of climate extreme indices were analyzed. Daily maximum and minimum air temperature, precipitation, and their association with climate change were used as the basis for tracking changes at 50 meteorological stations in Iran over the period 1975-2010. Sixteen indices of extreme temperature and 11 indices of extreme precipitation, which have been quality controlled and tested for homogeneity and missing data, are examined. Temperature extremes show a warming trend, with a large proportion of stations having statistically significant trends for all temperature indices. Over the last 15 years (1995-2010), the annual frequency of warm days and nights has increased by 12 and 14 days/decade, respectively. The number of cold days and nights has decreased by 4 and 3 days/decade, respectively. The annual mean maximum and minimum temperatures averaged across Iran both increased by 0.031 and 0.059 °C/decade. The probability of cold nights has gradually decreased from more than 20 % in 1975-1986 to less than 15 % in 1999-2010, whereas the mean frequency of warm days has increased abruptly between the first 12-year period (1975-1986) and the recent 12-year period (1999-2010) from 18 to 40 %, respectively. There are no systematic regional trends over the study period in total precipitation or in the frequency and duration of extreme precipitation events. Statistically significant trends in extreme precipitation events are observed at less than 15 % of all weather stations, with no spatially coherent pattern of change, whereas statistically significant changes in extreme temperature events have occurred at more than 85 % of all weather stations, forming strongly coherent spatial patterns.

  14. Extreme Space Weather Events and Charging Hazard Assessments in Lunar Environments

    Science.gov (United States)

    Minow, Joseph I.; Parker, Linda N.; Blackwell, William C., Jr.

    2008-01-01

    The sunlit lunar surface charges to positive potentials with mean values of a few tens of volts where photoelectron currents dominate the charging process. In contrast, surfaces in darkness may charge to negative potentials on the order of a few hundred volts when the charging process is dominated by hot electron populations in the absence of solar photons. Recently, observations of electron beams measured by instruments on spacecraft in low lunar orbit have been interpreted as evidence for extreme lunar surface potentials exceeding a few kilovolts suggesting that lunar orbital and surface plasma environments may contain charging risks similar to geostationary orbit during extreme space weather conditions. Space system design for successful operation in a wide range of lunar environments will therefore require evaluation of charging hazards during extreme space weather conditions. We present results from a study of space weather environments conducted to obtained credible extreme charging environments for use in charging hazard assessments for lunar missions including extreme conditions encountered when the Moon is in the solar wind, the magnetosheath, and the Earth's magnetotail.

  15. Simulation and verification of transient events in large wind power installations

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Hansen, Anca Daniela; Christensen, P.

    2003-01-01

    Models for wind power installations excited by transient events have been developed and verified. A number of cases have been investigated, including comparisons of simulations of a three-phase short circuit, validation with measurements of tripping ofsingle wind turbine, islanding of a group...... and power electronic concepts was carried out in co-operation between Aalborg University and Risø National Laboratory in the scope of the research programmeElectric Design and Control....

  16. Improved understanding of an extreme rainfall event at the Himalayan foothills – a case study using COSMO

    Directory of Open Access Journals (Sweden)

    Prabhakar Shrestha

    2015-05-01

    Full Text Available In recent years, an increased occurrence of loss and damage of property and human casualties over the southern rim area of the Himalayas, caused by landslides following intense rainfall events, has been reported. An analysis of Tropical Rainfall Measuring Mission (TRMM-gridded rainfall data shows that events with an exceedance probability of 1.6% for 200 mm/d rainfall are common over this region during the monsoon season. An improved understanding of the mechanisms, which lead to such events, is important for their prediction and to estimate the impact of climate change on their recurrence. In this study, we analyse such an extreme precipitation event, which hit the Uttarakhand region of the central Himalayas on 13 September 2012. We use the operational regional weather forecast model COSMO at a convection-permitting resolution of 2.8 km to simulate this event. The spatial pattern of daily-accumulated precipitation and atmospheric state profiles simulated by the model compared well with the TRMM-gridded data and radiosonde observations, which adds confidence to our model results. Our analysis suggests a three-step mechanism leading to this event: (1 development of an easterly low-level wind along the Gangetic Plain caused by a low pressure system over the central Gangetic Plain; (2 convergence of moisture over the north-western part of India, leading to an increase of potential instability of the air mass along the valley recesses, which is capped by an inversion located above the ridgeline; and (3 strengthening of the north-westerly flow above the ridges, which supports the lifting of the potentially unstable air over the protruding ridge of the foothills of the Himalayas and triggers shallow convection, which on passing through adjacent folds initiates deep convection.

  17. Analysis of the Impact of Climate Change on Extreme Hydrological Events in California

    Science.gov (United States)

    Ashraf Vaghefi, Saeid; Abbaspour, Karim C.

    2016-04-01

    Estimating magnitude and occurrence frequency of extreme hydrological events is required for taking preventive remedial actions against the impact of climate change on the management of water resources. Examples include: characterization of extreme rainfall events to predict urban runoff, determination of river flows, and the likely severity of drought events during the design life of a water project. In recent years California has experienced its most severe drought in recorded history, causing water stress, economic loss, and an increase in wildfires. In this paper we describe development of a Climate Change Toolkit (CCT) and demonstrate its use in the analysis of dry and wet periods in California for the years 2020-2050 and compare the results with the historic period 1975-2005. CCT provides four modules to: i) manage big databases such as those of Global Climate Models (GCMs), ii) make bias correction using observed local climate data , iii) interpolate gridded climate data to finer resolution, and iv) calculate continuous dry- and wet-day periods based on rainfall, temperature, and soil moisture for analysis of drought and flooding risks. We used bias-corrected meteorological data of five GCMs for extreme CO2 emission scenario rcp8.5 for California to analyze the trend of extreme hydrological events. The findings indicate that frequency of dry period will increase in center and southern parts of California. The assessment of the number of wet days and the frequency of wet periods suggests an increased risk of flooding in north and north-western part of California, especially in the coastal strip. Keywords: Climate Change Toolkit (CCT), Extreme Hydrological Events, California

  18. Vulnerability assessment of Central-East Sardinia (Italy to extreme rainfall events

    Directory of Open Access Journals (Sweden)

    A. Bodini

    2010-01-01

    Full Text Available In Sardinia (Italy, the highest frequency of extreme events is recorded in the Central-East area (3–4 events per year. The presence of high and steep mountains near the sea on the central and south-eastern coast, causes an East-West precipitation gradient in autumn especially, due to hot and moist currents coming from Africa. Soil structure and utilization make this area highly vulnerable to flash flooding and landslides. The specific purpose of this work is to provide a description of the heavy rainfall phenomenon on a statistical basis. The analysis mainly focuses on i the existence of trends in heavy rainfall and ii the characterization of the distribution of extreme events. First, to study possible trends in extreme events a few indices have been analyzed by the linear regression test. The analysis has been carried out at annual and seasonal scales. Then, extreme values analysis has been carried out by fitting a Generalized Pareto Distribution (GPD to the data. As far as trends are concerned, different results are obtained at the two temporal scales: significant trends are obtained at the seasonal scale which are masked at the annual scale. By combining trend analysis and GPD analysis, the vulnerability of the study area to the occurrence of heavy rainfall has been characterized. Therefore, this work might support the improvement of land use planning and the application of suitable prevention systems. Future work will consider the extension of the analysis to all Sardinia and the application of statistical methods taking into account the spatial correlation of extreme events.

  19. Vulnerability assessment of Central-East Sardinia (Italy) to extreme rainfall events

    Science.gov (United States)

    Bodini, A.; Cossu, Q. A.

    2010-01-01

    In Sardinia (Italy), the highest frequency of extreme events is recorded in the Central-East area (3-4 events per year). The presence of high and steep mountains near the sea on the central and south-eastern coast, causes an East-West precipitation gradient in autumn especially, due to hot and moist currents coming from Africa. Soil structure and utilization make this area highly vulnerable to flash flooding and landslides. The specific purpose of this work is to provide a description of the heavy rainfall phenomenon on a statistical basis. The analysis mainly focuses on i) the existence of trends in heavy rainfall and ii) the characterization of the distribution of extreme events. First, to study possible trends in extreme events a few indices have been analyzed by the linear regression test. The analysis has been carried out at annual and seasonal scales. Then, extreme values analysis has been carried out by fitting a Generalized Pareto Distribution (GPD) to the data. As far as trends are concerned, different results are obtained at the two temporal scales: significant trends are obtained at the seasonal scale which are masked at the annual scale. By combining trend analysis and GPD analysis, the vulnerability of the study area to the occurrence of heavy rainfall has been characterized. Therefore, this work might support the improvement of land use planning and the application of suitable prevention systems. Future work will consider the extension of the analysis to all Sardinia and the application of statistical methods taking into account the spatial correlation of extreme events.

  20. Subsurface signatures and timing of extreme wave events along the southeast Indian coast

    Indian Academy of Sciences (India)

    Rajesh R Nair; Madhav K Murari; C S Vijaya Lakshmi; Ilya Buynevich; Ron J Goble; P Srinivasan; S G N Murthy; Deshraj Trivedi; Suresh Chandra Kandpal; S M Hussain; D Sengupta; Ashok K Singhvi

    2011-10-01

    Written history’s limitation becomes apparent when attempting to document the predecessors of extreme coastal events in the Indian Ocean, from 550–700 years in Thailand and 1000 years in Indonesia. Detailed ground-penetrating radar (GPR) surveys in Mahabalipuram, southeast India, complemented with sedimentological analyses, magnetic susceptibility measurements, and optical dating provide strong evidence of extreme wave events during the past 3700 years. The diagnostic event signatures include the extent and elevation of the deposits, as well as morphologic similarity of buried erosional scarps to those reported in northern Sumatra region. Optical ages immediately overlying the imaged discontinuities that coincides with high concentration of heavy minerals date the erosional events to 340 ± 35, 350 ± 20, 490 ± 30, 880 ± 40, 1080 ± 60, 1175 ± 188, 2193 ± 266, 2235 ± 881, 2489 ± 293, 2450 ± 130, 2585 ± 609, 3710 ± 200 years ago. These evidences are crucial in reconstructing paleo extreme wave events and will pave the way for regional correlation of erosional horizons along the northern margin of Indian Ocean.

  1. Extreme dissipation event due to plume collision in a turbulent convection cell

    CERN Document Server

    Schumacher, Joerg

    2016-01-01

    An extreme dissipation event in the bulk of a closed three-dimensional turbulent convection cell is found to be correlated with a strong reduction of the large-scale circulation flow in the system that happens at the same time as a plume emission event from the bottom plate. The reduction in the large-scale circulation opens the possibility for a nearly frontal collision of down- and upwelling plumes and the generation of a high-amplitude thermal dissipation layer in the bulk. This collision is locally connected to a subsequent high-amplitude energy dissipation event in the form of a strong shear layer. Our analysis illustrates the impact of transitions in the large-scale structures on extreme events at the smallest scales of the turbulence, a direct link that is observed in a flow with boundary layers. We also show that detection of extreme dissipation events which determine the far-tail statistics of the dissipation fields in the bulk requires long-time integrations of the equations of motion over at least ...

  2. Sea extreme events during the last millennium in north-east of Morocco

    Science.gov (United States)

    Raji, O.; Dezileau, L.; Von Grafenstein, U.; Niazi, S.; Snoussi, M.; Martinez, P.

    2014-03-01

    The Moroccan Mediterranean coast is located in one of the most vulnerable area to extreme weather events or tsunami hazards. The objective of this research is to reconstruct the historical extreme submersion-events record using sea-induced deposits preserved in coastal lagoon. The Nador lagoon is the largest Moroccan lagoon (115 km2) located along the Western Mediterranean which presents a high cyclogenetic character and is exposed to tsunamis from Alboran Sea. The sandy barrier which separates the lagoon from the Mediterranean Sea is marked by many overwashes, which indicate how intensely has been exposed to the adverse sea events through history. Using the UWITEC coring platform, an undisturbed MC4.5 core (1.15 m long) was successfully sampled in the studied lagoon. To identify sea extreme events, a multi-proxy approach was applied combining sedimentogical and geochemical data. The preliminary results show that the identified paleo-events are concentrated over the last 500 years. The challenge that remains now is to distinguish between the tsunami and the storm deposits.

  3. Sea extreme events during the last millennium in north-east of Morocco

    Directory of Open Access Journals (Sweden)

    O. Raji

    2014-03-01

    Full Text Available The Moroccan Mediterranean coast is located in one of the most vulnerable area to extreme weather events or tsunami hazards. The objective of this research is to reconstruct the historical extreme submersion-events record using sea-induced deposits preserved in coastal lagoon. The Nador lagoon is the largest Moroccan lagoon (115 km2 located along the Western Mediterranean which presents a high cyclogenetic character and is exposed to tsunamis from Alboran Sea. The sandy barrier which separates the lagoon from the Mediterranean Sea is marked by many overwashes, which indicate how intensely has been exposed to the adverse sea events through history. Using the UWITEC coring platform, an undisturbed MC4.5 core (1.15 m long was successfully sampled in the studied lagoon. To identify sea extreme events, a multi-proxy approach was applied combining sedimentogical and geochemical data. The preliminary results show that the identified paleo-events are concentrated over the last 500 years. The challenge that remains now is to distinguish between the tsunami and the storm deposits.

  4. Extreme dissipation event due to plume collision in a turbulent convection cell

    Science.gov (United States)

    Schumacher, Jörg; Scheel, Janet D.

    2016-10-01

    An extreme dissipation event in the bulk of a closed three-dimensional turbulent convection cell is found to be correlated with a strong reduction of the large-scale circulation flow in the system that happens at the same time as a plume emission event from the bottom plate. The reduction in the large-scale circulation opens the possibility for a nearly frontal collision of down- and upwelling plumes and the generation of a high-amplitude thermal dissipation layer in the bulk. This collision is locally connected to a subsequent high-amplitude energy dissipation event in the form of a strong shear layer. Our analysis illustrates the impact of transitions in the large-scale structures on extreme events at the smallest scales of the turbulence, a direct link that is observed in a flow with boundary layers. We also show that detection of extreme dissipation events which determine the far-tail statistics of the dissipation fields in the bulk requires long-time integrations of the equations of motion over at least a hundred convective time units.

  5. Extreme Rainfall Events and Associated Natural Hazards in Alaknanda Valley, Indian Himalayan Region

    Institute of Scientific and Technical Information of China (English)

    JOSHI Varun; KUMAR Kireet

    2006-01-01

    Entire Himalayan region is vulnerable to rain-induced (torrential rainfall) hazards in the form of flash flood, cloudburst or glacial lake outburst flood. Flash floods and cloudburst are generally caused by high intensity rainfall followed by debris flow or landslide often resulting into blockade of river channels. The examples of some major disasters caused by torrential rainfall events in last fifty years are the flash floods of 1968 in Teesta valley, in 1993 and 20o0 in Sntlej valley, in 1978 in Bhagirathi and in 197o in Alaknanda river valleys. The formation of landslide dams and subsequent breaching is also associated with such rainfall events. These dams may persist for years or may burst within a short span of its formation. Due to sudden surge of water level in the river valleys, havoc and panic are created in the down stream. In Alaknanda valley, frequencies of such extreme rainfall events are found to be increasing in last two decades. However, the monthly trend of extreme rainfall events has partly indicated this increase. In most of the years extreme rainfall events and cloudburst disaster were reported in August during the later part of the monsoon season.

  6. Large Scale Influences on Drought and Extreme Precipitation Events in the United States

    Science.gov (United States)

    Collow, A.; Bosilovich, M. G.; Koster, R. D.; Eichmann, A.

    2015-12-01

    Observations indicate that extreme weather events are increasing and it is likely that this trend will continue through the 21st century. However, there is uncertainty and disagreement in recent literature regarding the mechanisms by which extreme temperature and precipitation events are increasing, including the suggestion that enhanced Arctic warming has resulted in an increase in blocking events and a more meridional flow. A steady gradual increase in heavy precipitation events has been observed in the Midwestern and Northeastern United States, while the Southwestern United States, particularly California, has experienced suppressed precipitation and an increase in consecutive dry days over the past few years. The frequency, intensity, and duration of heavy precipitation events in the Midwestern United States and Northeastern United States, as well as drought in the Southwestern United States are examined using the Modern Era Retrospective Analysis for Research and Applications Version-2 (MERRA-2). Indices developed by the Expert Team on Climate Change Detection and Indices representing drought and heavy precipitation events have been calculated using the MERRA-2 dataset for the period of 1980 through 2014. Trends in these indices are analyzed and the indices are compared to large scale circulations and climate modes using a composite and statistical linkages approach. Statistically significant correlations are present in the summer months between heavy precipitation events and meridional flow despite the lack of enhanced Arctic warming, contradicting the suggested mechanisms. Weaker, though still significant, correlations are observed in the winter months when the Arctic is warming more rapidly than the Midlatitudes.

  7. Space-time extreme wind waves: Analysis and prediction of shape and height

    Science.gov (United States)

    Alvise, Benetazzo; Francesco, Barbariol; Filippo, Bergamasco; Sandro, Carniel; Mauro, Sclavo

    2017-05-01

    In this study, we present the analysis of the temporal profile and height of space-time (ST) extreme wind waves. Wave data were gathered from an observational ST sample of sea surface elevations collected during an active sea state, and they were examined to detect the highest waves (exceeding the rogue wave threshold) of specific 3D wave groups close to the apex of their development. Two different investigations are conducted. Firstly, local maximum elevations of the groups are examined within the framework of statistical models for ST extreme waves, and compared with observations and predictions of maxima derived by one-point time series of sea surface elevations. Secondly, the temporal profile near the maximum wave crests is analyzed and compared with the expectations of the linear and second-order nonlinear extension of the Quasi-Determinism (QD) theory. Our goal is to verify, with real sea data, to what extent, one can estimate the shape and the crest-to-trough height of near-focusing large 3D wave groups using the QD and ST extreme model results. From this study, it emerges that the elevations close to the crest apex are narrowly distributed around a mean profile, whilst a larger dispersion is observed away from the maximum elevation. Yet the QD model furnishes, on average, a fair prediction of the maximum wave heights, especially when nonlinearities are taken into account. Moreover, we discuss how the combination of ST extreme and QD model predictions allows establishing, for a given sea condition, the portrait of waves with very large crest height. Our results show that these theories have the potential to be implemented in a numerical spectral model for wave extreme prediction.

  8. Sensitivity of the WRF model to the lower boundary in an extreme precipitation event - Madeira island case study

    Science.gov (United States)

    Teixeira, J. C.; Carvalho, A. C.; Carvalho, M. J.; Luna, T.; Rocha, A.

    2014-08-01

    The advances in satellite technology in recent years have made feasible the acquisition of high-resolution information on the Earth's surface. Examples of such information include elevation and land use, which have become more detailed. Including this information in numerical atmospheric models can improve their results in simulating lower boundary forced events, by providing detailed information on their characteristics. Consequently, this work aims to study the sensitivity of the weather research and forecast (WRF) model to different topography as well as land-use simulations in an extreme precipitation event. The test case focused on a topographically driven precipitation event over the island of Madeira, which triggered flash floods and mudslides in the southern parts of the island. Difference fields between simulations were computed, showing that the change in the data sets produced statistically significant changes to the flow, the planetary boundary layer structure and precipitation patterns. Moreover, model results show an improvement in model skill in the windward region for precipitation and in the leeward region for wind, in spite of the non-significant enhancement in the overall results with higher-resolution data sets of topography and land use.

  9. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic

    Science.gov (United States)

    Hansen, Brage B.; Isaksen, Ketil; Benestad, Rasmus E.; Kohler, Jack; Pedersen, Åshild Ø.; Loe, Leif E.; Coulson, Stephen J.; Larsen, Jan Otto; Varpe, Øystein

    2014-11-01

    One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January-February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (˜5-20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties.

  10. Terrestrial Laser Scanner (TLS) as a tool for the reconstruction of extreme wave event characteristics

    Science.gov (United States)

    Schneider, Bastian; Hoffmann, Gösta

    2017-04-01

    The shores of the Northern Indian Ocean were exposed to extreme wave inundation in the past. Two relevant hazards, storm surges triggered by tropical cyclones and tsunamis, are known to occur in the region but are rarely instrumentally recorded. Various sediment deposits along the coast are the only remnants of those past events. A profound understanding of return periods and magnitudes of past events is essential for developing land-use planning and risk mitigation measures in Oman and neighboring countries. A detailed investigation of these deposits, in this case primarily blocks and boulder trains but also fine grained sediments, provides insight on parameters such as wave height and inundation distance. These parameters can then be used for modeling inundation scenarios superimposed on modern infrastructure. We are investigating the spatial 3D-distribution of the extreme wave event sediments along the coastline through a high-precision survey of the event deposits using a Faro Focus 3D X330 TLS. A TLS is capable of recording high-detail and colored point clouds, which allows detailed measurements and has proved to be a powerful tool in geosciences. These multi-parameter point clouds in combination with dating results serve as a base for extreme wave event return period and magnitude estimations. Relevant parameters on large sediments are size, shape, volume, mass as well as relative arrangement, sorting and orientation. Furthermore, the TLS data is used to distinguish between the various boulder lithologies using a multi-scale supervised classification. Surface roughness as a result of weathering can serve as an indicator for exposure time of boulders and hint on various generations of extreme wave events. The distribution of the boulders relative to the site they were quarried from indicates on the flow direction of the waves and consequently might help to distinguish between storm and tsunami waves.

  11. AP1000{sup R} design robustness against extreme external events - Seismic, flooding, and aircraft crash

    Energy Technology Data Exchange (ETDEWEB)

    Pfister, A.; Goossen, C.; Coogler, K.; Gorgemans, J. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    Both the International Atomic Energy Agency (IAEA) and the U.S. Nuclear Regulatory Commission (NRC) require existing and new nuclear power plants to conduct plant assessments to demonstrate the unit's ability to withstand external hazards. The events that occurred at the Fukushima-Dai-ichi nuclear power station demonstrated the importance of designing a nuclear power plant with the ability to protect the plant against extreme external hazards. The innovative design of the AP1000{sup R} nuclear power plant provides unparalleled protection against catastrophic external events which can lead to extensive infrastructure damage and place the plant in an extended abnormal situation. The AP1000 plant is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. The plant's compact safety related footprint and protection provided by its robust nuclear island structures prevent significant damage to systems, structures, and components required to safely shutdown the plant and maintain core and spent fuel pool cooling and containment integrity following extreme external events. The AP1000 nuclear power plant has been extensively analyzed and reviewed to demonstrate that it's nuclear island design and plant layout provide protection against both design basis and extreme beyond design basis external hazards such as extreme seismic events, external flooding that exceeds the maximum probable flood limit, and malicious aircraft impact. The AP1000 nuclear power plant uses fail safe passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems (such as AC power, component cooling water, service water, compressed air or HVAC). The plant has been designed to protect systems, structures, and components critical to placing the reactor in a safe shutdown condition within the steel

  12. Extreme fire severity patterns in topographic, convective and wind-driven historical wildfires of Mediterranean pine forests.

    Directory of Open Access Journals (Sweden)

    Judit Lecina-Diaz

    Full Text Available Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1 determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together and (2 ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires. The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn

  13. Extreme fire severity patterns in topographic, convective and wind-driven historical wildfires of Mediterranean pine forests.

    Science.gov (United States)

    Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier

    2014-01-01

    Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme

  14. Antarctic climate change: extreme events disrupt plastic phenotypic response in Adelie penguins.

    Directory of Open Access Journals (Sweden)

    Amélie Lescroël

    Full Text Available In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC on the foraging efficiency of Adélie penguins (Pygoscelis adeliae breeding in the Ross Sea. A 'natural experiment' brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The 'natural experiment' uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise.

  15. Antarctic climate change: extreme events disrupt plastic phenotypic response in Adélie penguins.

    Science.gov (United States)

    Lescroël, Amélie; Ballard, Grant; Grémillet, David; Authier, Matthieu; Ainley, David G

    2014-01-01

    In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC) on the foraging efficiency of Adélie penguins (Pygoscelis adeliae) breeding in the Ross Sea. A 'natural experiment' brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The 'natural experiment' uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise.

  16. Establishing a Numerical Modeling Framework for Hydrologic Engineering Analyses of Extreme Storm Events

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaodong; Hossain, Faisal; Leung, L. Ruby

    2017-08-01

    In this study a numerical modeling framework for simulating extreme storm events was established using the Weather Research and Forecasting (WRF) model. Such a framework is necessary for the derivation of engineering parameters such as probable maximum precipitation that are the cornerstone of large water management infrastructure design. Here this framework was built based on a heavy storm that occurred in Nashville (USA) in 2010, and verified using two other extreme storms. To achieve the optimal setup, several combinations of model resolutions, initial/boundary conditions (IC/BC), cloud microphysics and cumulus parameterization schemes were evaluated using multiple metrics of precipitation characteristics. The evaluation suggests that WRF is most sensitive to IC/BC option. Simulation generally benefits from finer resolutions up to 5 km. At the 15km level, NCEP2 IC/BC produces better results, while NAM IC/BC performs best at the 5km level. Recommended model configuration from this study is: NAM or NCEP2 IC/BC (depending on data availability), 15km or 15km-5km nested grids, Morrison microphysics and Kain-Fritsch cumulus schemes. Validation of the optimal framework suggests that these options are good starting choices for modeling extreme events similar to the test cases. This optimal framework is proposed in response to emerging engineering demands of extreme storm events forecasting and analyses for design, operations and risk assessment of large water infrastructures.

  17. The Definition and Classification of Extensive and Persistent Extreme Cold Events in China

    Institute of Scientific and Technical Information of China (English)

    PENG Jing-Bei; BUEH Cholaw

    2011-01-01

    Using the observed daily temperatures from 756 stations in China during the period from 1951 to 2009, extensive and persistent extreme cold events (EPECEs) were defined according to the following three steps: 1) a station was defined as an extreme cold station (ECS) if the observed temperature was lower than its 10th percentile threshold; 2) an extensive extreme cold event was determined to be present if the approximated area occupied by the ECSs was more than 10% of the total area of China (83rd percentile) on its starting day and the maximum area occupied by the ECSs was at least 20% of the total area of China (96th percentile); and 3) an EPECE was determined to be present if the extensive extreme cold event lasted for at least for eight days. 52 EPECEs were identified in this manner, and these identification results were also verified using other reliable data. On the basis of cluster analysis, five types of EPECEs were classified according to the spatial distribution of ECSs at their most extensive time over the course of the EPECE.

  18. Urban-Induced Mechanisms for an Extreme Rainfall Event in Beijing China: A Satellite Perspective

    Directory of Open Access Journals (Sweden)

    Menglin S. Jin

    2015-03-01

    Full Text Available Using 1 km satellite remote sensing observations, this paper examines the clouds, aerosols, water vapor and surface skin temperature over Beijing to understand the possible urban system contributions to the extreme rainfall event on 21 July 2012 (i.e., 721 event. Remote sensing measurements, with the advantage of high spatial resolution and coverage, reveal three key urban-related mechanisms: (a the urban heat island effect (UHI resulted in strong surface convection and high level cloud cover over Beijing; (b urban aerosol amount peaked before the rainfall, which “seeded” the clouds and invigorated precipitation; and (c urban tall buildings provided additional lift for the air mass and provided heat at the underlying boundary to keep the rainfall system alive for a long duration precipitation (>10 hours. With the existing rainfall system moving from the northwest and abundant water vapor was transported from the southeast into Beijing, the urban canyon-lifting, aerosol, and UHI effects all enhanced this extreme rainfall event. This work proves that urban system is responsible, at least partly, for urban rainfall extremes and thus should be considered for urban extreme rainfall prediction in the future.

  19. Mathematical aspects of assessing extreme events for the safety of nuclear plants

    Science.gov (United States)

    Potempski, Slawomir; Borysiewicz, Mieczyslaw

    2015-04-01

    In the paper the review of mathematical methodologies applied for assessing low frequencies of rare natural events like earthquakes, tsunamis, hurricanes or tornadoes, floods (in particular flash floods and surge storms), lightning, solar flares, etc., will be given in the perspective of the safety assessment of nuclear plants. The statistical methods are usually based on the extreme value theory, which deals with the analysis of extreme deviation from the median (or the mean). In this respect application of various mathematical tools can be useful, like: the extreme value theorem of Fisher-Tippett-Gnedenko leading to possible choices of general extreme value distributions, or the Pickands-Balkema-de Haan theorem for tail fitting, or the methods related to large deviation theory. In the paper the most important stochastic distributions relevant for performing rare events statistical analysis will be presented. This concerns, for example, the analysis of the data with the annual extreme values (maxima - "Annual Maxima Series" or minima), or the peak values, exceeding given thresholds at some periods of interest ("Peak Over Threshold"), or the estimation of the size of exceedance. Despite of the fact that there is a lack of sufficient statistical data directly containing rare events, in some cases it is still possible to extract useful information from existing larger data sets. As an example one can consider some data sets available from the web sites for floods, earthquakes or generally natural hazards. Some aspects of such data sets will be also presented taking into account their usefulness for the practical assessment of risk for nuclear power plants coming from extreme weather conditions.

  20. Detection and Attribution of Simulated Climatic Extreme Events and Impacts: High Sensitivity to Bias Correction

    Science.gov (United States)

    Sippel, S.; Otto, F. E. L.; Forkel, M.; Allen, M. R.; Guillod, B. P.; Heimann, M.; Reichstein, M.; Seneviratne, S. I.; Kirsten, T.; Mahecha, M. D.

    2015-12-01

    Understanding, quantifying and attributing the impacts of climatic extreme events and variability is crucial for societal adaptation in a changing climate. However, climate model simulations generated for this purpose typically exhibit pronounced biases in their output that hinders any straightforward assessment of impacts. To overcome this issue, various bias correction strategies are routinely used to alleviate climate model deficiencies most of which have been criticized for physical inconsistency and the non-preservation of the multivariate correlation structure. We assess how biases and their correction affect the quantification and attribution of simulated extremes and variability in i) climatological variables and ii) impacts on ecosystem functioning as simulated by a terrestrial biosphere model. Our study demonstrates that assessments of simulated climatic extreme events and impacts in the terrestrial biosphere are highly sensitive to bias correction schemes with major implications for the detection and attribution of these events. We introduce a novel ensemble-based resampling scheme based on a large regional climate model ensemble generated by the distributed weather@home setup[1], which fully preserves the physical consistency and multivariate correlation structure of the model output. We use extreme value statistics to show that this procedure considerably improves the representation of climatic extremes and variability. Subsequently, biosphere-atmosphere carbon fluxes are simulated using a terrestrial ecosystem model (LPJ-GSI) to further demonstrate the sensitivity of ecosystem impacts to the methodology of bias correcting climate model output. We find that uncertainties arising from bias correction schemes are comparable in magnitude to model structural and parameter uncertainties. The present study consists of a first attempt to alleviate climate model biases in a physically consistent way and demonstrates that this yields improved simulations of

  1. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events.

    Science.gov (United States)

    Choudhary, Sonal; Blaud, Aimeric; Osborn, A Mark; Press, Malcolm C; Phoenix, Gareth K

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem (15)N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g Nm(-2)yr(-1), applied as (15)NH4(15)NO3 in Svalbard (79(°)N), during the summer. Separate applications of (15)NO3(-) and (15)NH4(+) were also made to determine the importance of N form in their retention. More than 95% of the total (15)N applied was recovered after one growing season (~90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants>vascular plants>organic soil>litter>mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of (15)N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater (15)NO3(-) than (15)NH4(+), suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication.

  2. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community.

    Science.gov (United States)

    Bokhorst, Stef; Bjerke, Jarle W; Davey, Matthew P; Taulavuori, Kari; Taulavuori, Erja; Laine, Kari; Callaghan, Terry V; Phoenix, Gareth K

    2010-10-01

    Insulation provided by snow cover and tolerance of freezing by physiological acclimation allows Arctic plants to survive cold winter temperatures. However, both the protection mechanisms may be lost with winter climate change, especially during extreme winter warming events where loss of snow cover from snow melt results in exposure of plants to warm temperatures and then returning extreme cold in the absence of insulating snow. These events cause considerable damage to Arctic plants, but physiological responses behind such damage remain unknown. Here, we report simulations of extreme winter warming events using infrared heating lamps and soil warming cables in a sub-Arctic heathland. During these events, we measured maximum quantum yield of photosystem II (PSII), photosynthesis, respiration, bud swelling and associated bud carbohydrate changes and lipid peroxidation to identify physiological responses during and after the winter warming events in three dwarf shrub species: Empetrum hermaphroditum, Vaccinium vitis-idaea and Vaccinium myrtillus. Winter warming increased maximum quantum yield of PSII, and photosynthesis was initiated for E. hermaphroditum and V. vitis-idaea. Bud swelling, bud carbohydrate decreases and lipid peroxidation were largest for E. hermaphroditum, whereas V. myrtillus and V. vitis-idaea showed no or less strong responses. Increased physiological activity and bud swelling suggest that sub-Arctic plants can initiate spring-like development in response to a short winter warming event. Lipid peroxidation suggests that plants experience increased winter stress. The observed differences between species in physiological responses are broadly consistent with interspecific differences in damage seen in previous studies, with E. hermaphroditum and V. myrtillus tending to be most sensitive. This suggests that initiation of spring-like development may be a major driver in the damage caused by winter warming events that are predicted to become more

  3. The impacts of '05.6' extreme flood event on riverine carbon fluxes in Xijiang River

    Institute of Scientific and Technical Information of China (English)

    SUN HuiGuo; HAN JingTai; ZHANG ShuRong; LU XiXi

    2007-01-01

    An extreme flood event with a frequency of nearly 200 year occurred in June of 2005 in the Xijiang River,the main trunk stream of the Zhujiang River. Samples were systematically collected during the flood event, and water quality parameters, including total suspended sediment (TSS), dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), and particulate organic carbon (POC) were analyzed,and riverine carbon concentrations associated with its changing pattern through the flood process were discussed. These parameters reflect the changes in basin surface flow and subsurface flow during the flood. This flood event influenced annual flux estimations of POC, DOC, and DIC to great extents.Based on carbon flux estimations for the year 2005 and the flood event (June 21-28) in the Xijiang River, it was found that DIC, DOC, and POC fluxes during '05.6' flood event are 1.52x106 g.km-2.a-1,0.24x106 g.km-2.a-1, and 0.54x106 g.km-2.a-1, and account for 14.87%, 24.75% and 44.89% of the annual fluxes in 2005, respectively. The results suggested that carbon exports during extreme flood events had great contributions to the total carbon fluxes and composition of various carbon components, being important for accurate estimates of annual carbon fluxes in rivers with frequent floods.

  4. 'The plunger hypothesis' - predicting the tropospheric impact of extreme stratospheric events

    Science.gov (United States)

    Clark, Simon; Baldwin, Mark; Stephenson, David

    2016-04-01

    The coupling of events in the polar stratosphere to those in the polar troposphere is not currently understood. Extreme events in the stratosphere have been identified to have a lasting influence on the tropospheric circulation below for a period of up to 60 days. As such understanding the downward propagation of stratospheric circulation anomalies would be beneficial to surface forecasting. In this work we use the new 'plunger hypothesis', that mass fluxes into and out of the polar region compress the polar column of air - in a manner similar to a plunger - and cause pressure and temperature anomalies. We demonstrate how a quasigeostrophic assumption within this hypothesis allows for the prediction of mass fluxes across the boundary to the polar region given the pressure distribution at the boundary. This then allows for a prediction of how a given stratospheric event such as a sudden stratospheric warming (SSW) or a strong vortex event influences the polar troposphere. The performance of this hypothesis is tested; its usefulness in improving surface forecasts, its accuracy in response to stratospheric events, and its ability to predict downward propagation of Arctic Oscillation (AO) index in the aftermath of extreme stratospheric events. The link between this work and the PV inversion formulation of stratosphere-troposphere coupling is discussed. This work forms part of a three and a half year PhD project.

  5. Solar Wind Interaction with the Martian Upper Atmosphere at Early Mars/Extreme Solar Conditions

    Science.gov (United States)

    Dong, C.; Bougher, S. W.; Ma, Y.; Toth, G.; Lee, Y.; Nagy, A. F.; Tenishev, V.; Pawlowski, D. J.; Combi, M. R.

    2014-12-01

    The investigation of ion escape fluxes from Mars, resulting from the solar wind interaction with its upper atmosphere/ionosphere, is important due to its potential impact on the long-term evolution of Mars atmosphere (e.g., loss of water) over its history. In the present work, we adopt the 3-D Mars cold neutral atmosphere profiles (0 ~ 300 km) from the newly developed and validated Mars Global Ionosphere Thermosphere Model (M-GITM) and the 3-D hot oxygen profiles (100 km ~ 5 RM) from the exosphere Monte Carlo model Adaptive Mesh Particle Simulator (AMPS). We apply these 3-D model output fields into the 3-D BATS-R-US Mars multi-fluid MHD (MF-MHD) model (100 km ~ 20 RM) that can simulate the interplay between Mars upper atmosphere and solar wind by considering the dynamics of individual ion species. The multi-fluid MHD model solves separate continuity, momentum and energy equations for each ion species (H+, O+, O2+, CO2+). The M-GITM model together with the AMPS exosphere model take into account the effects of solar cycle and seasonal variations on both cold and hot neutral atmospheres. This feature allows us to investigate the corresponding effects on the Mars upper atmosphere ion escape by using a one-way coupling approach, i.e., both the M-GITM and AMPS model output fields are used as the input for the multi-fluid MHD model and the M-GITM is used as input into the AMPS exosphere model. In this study, we present M-GITM, AMPS, and MF-MHD calculations (1-way coupled) for 2.5 GYA conditions and/or extreme solar conditions for present day Mars (high solar wind velocities, high solar wind dynamic pressure, and high solar irradiance conditions, etc.). Present day extreme conditions may result in MF-MHD outputs that are similar to 2.5 GYA cases. The crustal field orientations are also considered in this study. By comparing estimates of past ion escape rates with the current ion loss rates to be returned by the MAVEN spacecraft (2013-2016), we can better constrain the

  6. A multigap resistive plate chamber array for the Extreme Energy Events project

    Science.gov (United States)

    De Gruttola, D.; Abbrescia, M.; Agocs, A.; Aiola, S.; Antolini, R.; Avanzini, C.; Baldini Ferroli, R.; Bencivenni, G.; Bossini, E.; Bressan, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccia, E.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Dreucci, M.; Fabbri, F. L.; Frolov, V.; Garbini, M.; Gemme, G.; Gnesi, I.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Li, S.; Librizzi, F.; Maggiora, A.; Massai, M.; Miozzi, S.; Panareo, M.; Paoletti, R.; Perasso, L.; Pilo, F.; Piragino, G.; Regano, A.; Riggi, F.; Righini, G. C.; Sartorelli, G.; Scapparone, E.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Spandre, G.; Squarcia, S.; Taiuti, M.; Tosello, F.; Votano, L.; Williams, M. C. S.; Yanez, G.; Zichichi, A.; Zouyevski, R.

    2014-10-01

    The Extreme Energy Events (EEE) Project is a Centro Fermi - CERN - INFN - MIUR Collaboration Project for the study of extremely high energy cosmic rays, which exploits the Multigap Resistive Plate Chamber (MRPC) technology. The excellent time resolution and good tracking capability of this kind of detector allows us to study Extensive Air Showers (EAS) with an array of MRPC telescopes distributed across the Italian territory. Each telescope is installed in a high school, with the further goal to introduce students to particle and astroparticle Physics. The status of the experiment and the results obtained are reported.

  7. A systemic approach for managing extreme risk events-dynamic financial analysis

    Directory of Open Access Journals (Sweden)

    Ph.D.Student Rodica Ianole

    2011-12-01

    Full Text Available Following the Black Swan logic, it often happens that what we do not know becomes more relevant that what we (believe to know. The management of extreme risks falls under this paradigm in the sense that it cannot be limited to a static approach based only on objective and easily quantifiable variables. Making appeal to the operational tools developed primarily for the insurance industry, the present paper aims to investigate how dynamic financial analysis (DFA can be used within the framework of extreme risk events.

  8. Fusing Simulation Results From Multifidelity Aero-servo-elastic Simulators - Application To Extreme Loads On Wind Turbine

    DEFF Research Database (Denmark)

    Abdallah, Imad; Sudret, Bruno; Lataniotis, Christos

    2015-01-01

    Fusing predictions from multiple simulators in the early stages of the conceptual design of a wind turbine results in reduction in model uncertainty and risk mitigation. Aero-servo-elastic is a term that refers to the coupling of wind inflow, aerodynamics, structural dynamics and controls. Fusing...... the response data from multiple aero-servo-elastic simulators could provide better predictive ability than using any single simulator. The co-Kriging approach to fuse information from multifidelity aero-servo-elastic simulators is presented. We illustrate the co-Kriging approach to fuse the extreme flapwise...... bending moment at the blade root of a large wind turbine as a function of wind speed, turbulence and shear exponent in the presence of model uncertainty and non-stationary noise in the output. The extreme responses are obtained by two widely accepted numerical aero-servo-elastic simulators, FAST...

  9. Occurrence of extreme solar particle events: Assessment from historical proxy data

    CERN Document Server

    Usoskin, I G

    2012-01-01

    The probability of occurrence of extreme solar particle events (SPEs) with the fluence of (>30 MeV) protons F30>10^{10} cm^{-2} is evaluated based on data of cosmogenic isotopes 14C and 10Be in terrestrial archives centennial-millennial time scales. Four potential candidates with F30=(1-1.5)x10^{10} cm^{-2} and no events with F30>2x10^{10} cm^{-2} are identified since 1400 AD in the annually resolved 10Be data. A strong SPE related to the Carrington flare of 1859 AD is not supported by the data. For the last 11400 years, 19 SPE candidates with F30=(1-3)x10^{10} cm^{-2} are found and clearly no event with F30>5x10^{10} cm^{-2} (50-fold the SPE of 23-Feb-1956) occurring. This values serve as an observational upper limit for the strength of SPE on the time scale of tens of millennia. Two events, ca. 780 and 1460 AD, appear in different data series making them strong candidates to extreme SPEs. We built a distribution of the occurrence probability of extreme SPEs, providing a new strict observational constraint. ...

  10. Characterization of extreme flood and drought events in Singapore and investigation of their relationships with ENSO

    Science.gov (United States)

    Li, Xin; Babovic, Vladan

    2016-04-01

    Flood and drought are hydrologic extreme events that have significant impact on human and natural systems. Characterization of flood and drought in terms of their start, duration and strength, and investigation of the impact of natural climate variability (i.e., ENSO) and anthropogenic climate change on them can help decision makers to facilitate adaptions to mitigate potential enormous economic costs. To date, numerous studies in this area have been conducted, however, they are primarily focused on extra-tropical regions. Therefore, this study presented a detailed framework to characterize flood and drought events in a tropical urban city-state (i.e., Singapore), based on daily data from 26 precipitation stations. Flood and drought events are extracted from standardized precipitation anomalies from monthly to seasonal time scales. Frequency, duration and magnitude of flood and drought at all the stations are analyzed based on crossing theory. In addition, spatial variation of flood and drought characteristics in Singapore is investigated using ordinary kriging method. Lastly, the impact of ENSO condition on flood and drought characteristics is analyzed using regional regression method. The results show that Singapore can be prone to extreme flood and drought events at both monthly and seasonal time scales. ENSO has significant influence on flood and drought characteristics in Singapore, but mainly during the South West Monsoon season. During the El Niño phase, drought can become more extreme. The results have implications for water management practices in Singapore.

  11. Ensuring Resilience of Natural Resources under Exposure to Extreme Climate Events

    Directory of Open Access Journals (Sweden)

    Brent Jacobs

    2016-06-01

    Full Text Available Natural resources directly support rural livelihoods and underpin much of the wealth of rural and regional Australia. Climate change manifesting as increasing frequency and or severity of extreme weather events poses a threat to sustainable management of natural resources because the recurrence of events may exceed the resilience of natural systems or the coping capacity of social systems. We report the findings of a series of participatory workshops with communities in eight discrete landscapes in South East New South Wales, Australia. The workshops focused on how natural resource management (NRM is considered in the Prevent-Prepare-Respond-Recover emergency management cycle. We found that NRM is generally considered only in relation to the protection of life and property and not for the intrinsic value of ecosystem services that support communities. We make three recommendations to improve NRM under extreme climate events. Firstly, the support to communities offered by emergency management agencies could be bolstered by guidance material co-produced with government NR agencies. Secondly, financial assistance from government should specifically target the restoration and maintenance of green infrastructure to avoid loss of social-ecological resilience. Thirdly, action by natural resource dependent communities should be encouraged and supported to better protect ecosystem services in preparation for future extreme events.

  12. An agent-based approach to modelling the effects of extreme events on global food prices

    Science.gov (United States)

    Schewe, Jacob; Otto, Christian; Frieler, Katja

    2015-04-01

    Extreme climate events such as droughts or heat waves affect agricultural production in major food producing regions and therefore can influence the price of staple foods on the world market. There is evidence that recent dramatic spikes in grain prices were at least partly triggered by actual and/or expected supply shortages. The reaction of the market to supply changes is however highly nonlinear and depends on complex and interlinked processes such as warehousing, speculation, and export restrictions. Here we present for the first time an agent-based modelling framework that accounts, in simplified terms, for these processes and allows to estimate the reaction of world food prices to supply shocks on a short (monthly) timescale. We test the basic model using observed historical supply, demand, and price data of wheat as a major food grain. Further, we illustrate how the model can be used in conjunction with biophysical crop models to assess the effect of future changes in extreme event regimes on the volatility of food prices. In particular, the explicit representation of storage dynamics makes it possible to investigate the potentially nonlinear interaction between simultaneous extreme events in different food producing regions, or between several consecutive events in the same region, which may both occur more frequently under future global warming.

  13. An analysis of extreme intraseasonal rainfall events during January-March 2010 over eastern China

    Science.gov (United States)

    Yao, Suxiang; Huang, Qian

    2016-09-01

    The precipitation over eastern China during January-March 2010 exhibited a marked intraseasonal oscillation (ISO) and a dominant period of 10-60 days. There were two active intraseasonal rainfall periods. The physical mechanisms responsible for the onset of the two rainfall events were investigated using ERA-interim data. In the first ISO event, anomalous ascending motion was triggered by vertically integrated (1000-300 hPa) warm temperature advection. In addition to southerly anomalies on the intraseasonal (10-60-day) timescale, synoptic-scale southeasterly winds helped advect warm air from the South China Sea and western Pacific into the rainfall region. In the second ISO event, anomalous convection was triggered by a convectively unstable stratification, which was caused primarily by anomalous moisture advection in the lower troposphere (1000-850 hPa) from the Bay of Bengal and the Indo-China Peninsula. Both the intraseasonal and the synoptic winds contributed to the anomalous moisture advection. Therefore, the winter intraseasonal rainfall events over East Asia in winter could be affected not only by intraseasonal activities but also by higher frequency disturbances.

  14. Environmental prediction, risk assessment and extreme events: adaptation strategies for the developing world.

    Science.gov (United States)

    Webster, Peter J; Jian, Jun

    2011-12-13

    The uncertainty associated with predicting extreme weather events has serious implications for the developing world, owing to the greater societal vulnerability to such events. Continual exposure to unanticipated extreme events is a contributing factor for the descent into perpetual and structural rural poverty. We provide two examples of how probabilistic environmental prediction of extreme weather events can support dynamic adaptation. In the current climate era, we describe how short-term flood forecasts have been developed and implemented in Bangladesh. Forecasts of impending floods with horizons of 10 days are used to change agricultural practices and planning, store food and household items and evacuate those in peril. For the first time in Bangladesh, floods were anticipated in 2007 and 2008, with broad actions taking place in advance of the floods, grossing agricultural and household savings measured in units of annual income. We argue that probabilistic environmental forecasts disseminated to an informed user community can reduce poverty caused by exposure to unanticipated extreme events. Second, it is also realized that not all decisions in the future can be made at the village level and that grand plans for water resource management require extensive planning and funding. Based on imperfect models and scenarios of economic and population growth, we further suggest that flood frequency and intensity will increase in the Ganges, Brahmaputra and Yangtze catchments as greenhouse-gas concentrations increase. However, irrespective of the climate-change scenario chosen, the availability of fresh water in the latter half of the twenty-first century seems to be dominated by population increases that far outweigh climate-change effects. Paradoxically, fresh water availability may become more critical if there is no climate change.

  15. Climate Extremes Events and their Connection with Runoff in the Yellow River Basin

    Science.gov (United States)

    Hu, Caihong; Lei, Deyi; He, Huli; Wang, Jijun

    2016-04-01

    This study analyzes the temporal and spatial distribution of runoff and their relationship with the extreme values of eight climate indices, based on observational data from 143 meteorological stations and 6 hydrological stations across the basin. The eight core indices selected from the STARDEX projects reflect rather moderate extremes. Statistics methods and GIS technology were be used for analysis on the relationship and distribution characteristics. We analyzed the reason of runoff change and the relationship between the climate extreme events and observed runoff from six hydrological stations. Our results show that the annual and seasonal runoff showed obviously decrease tendency. Sharp decreases of runoff in six hydrological stations occurred in the late 1980s and 1990s. It can be seen that the decrease in runoff was caused by climate change, increased demands for water supply, land use change, etc. And the difference between the magnitude of the increasing and decreasing trends for different indices at different stations suggests that the climate extremes and environment change resulted in a decrease in runoff. The results also show that the shortage of water resources will become more pronounced in the Yellow River Basin with the increased occurrence of climate extremes. The results presented here will help to improve our understanding of the changes to climate extremes, and provide a basis for further investigation.

  16. Fusing Simulation Results From Multifidelity Aero-servo-elastic Simulators - Application To Extreme Loads On Wind Turbine

    DEFF Research Database (Denmark)

    Abdallah, Imad; Sudret, Bruno; Lataniotis, Christos

    2015-01-01

    bending moment at the blade root of a large wind turbine as a function of wind speed, turbulence and shear exponent in the presence of model uncertainty and non-stationary noise in the output. The extreme responses are obtained by two widely accepted numerical aero-servo-elastic simulators, FAST...... and BLADED. With limited high-fidelity response samples, the co-Kriging model produced notably accurate prediction of validation data....

  17. Do climate extreme events foster violent civil conflicts? A coincidence analysis

    Science.gov (United States)

    Schleussner, Carl-Friedrich; Donges, Jonathan F.; Donner, Reik V.

    2014-05-01

    Civil conflicts promoted by adverse environmental conditions represent one of the most important potential feedbacks in the global socio-environmental nexus. While the role of climate extremes as a triggering factor is often discussed, no consensus is yet reached about the cause-and-effect relation in the observed data record. Here we present results of a rigorous statistical coincidence analysis based on the Munich Re Inc. extreme events database and the Uppsala conflict data program. We report evidence for statistically significant synchronicity between climate extremes with high economic impact and violent conflicts for various regions, although no coherent global signal emerges from our analysis. Our results indicate the importance of regional vulnerability and might aid to identify hot-spot regions for potential climate-triggered violent social conflicts.

  18. Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events

    DEFF Research Database (Denmark)

    Madsen, Henrik; Rasmussen, Peter F.; Rosbjerg, Dan

    1997-01-01

    Two different models for analyzing extreme hydrologic events, based on, respectively, partial duration series (PDS) and annual maximum series (AMS), are compared. The PDS model assumes a generalized Pareto distribution for modeling threshold exceedances corresponding to a generalized extreme value...... model with ML estimation for large positive shape parameters. Since heavy-tailed distributions, corresponding to negative shape parameters, are far the most common in hydrology, the PDS model generally is to be preferred for at-site quantile estimation....... distribution for annual maxima. The performance of the two models in terms of the uncertainty of the T-year event estimator is evaluated in the cases of estimation with, respectively, the maximum likelihood (ML) method, the method of moments (MOM), and the method of probability weighted moments (PWM...

  19. Developing research about extreme events and impacts to support international climate policy

    Science.gov (United States)

    Otto, Friederike; James, Rachel; Parker, Hannah; Boyd, Emily; Jones, Richard; Allen, Myles; Mitchell, Daniel; Cornforth, Rosalind

    2015-04-01

    Climate change is expected to have some of its most significant impacts through changes in the frequency and severity of extreme events. There is a pressing need for policy to support adaptation to changing climate risks, and to deal with residual loss and damage from climate change. In 2013, the Warsaw International Mechanism was established by the United Nations Framework Convention on Climate Change (UNFCCC) to address loss and damage in developing countries. Strategies to help vulnerable regions cope with losses from extreme events will presumably require information about the influence of anthropogenic forcing on extreme weather. But what kind of scientific evidence will be most useful for the Warsaw Mechanism? And how can the scientific communities working on extreme events and impacts develop their research to support the advance of this important policy? As climate scientists conducting probabilistic event attribution studies, we have been working with social scientists to investigate these questions. Our own research seeks to examine the role of external drivers, including greenhouse gas emissions, on the risk of extreme weather events such as heatwaves, flooding, and drought. We use large ensembles of climate models to compute the probability of occurrence of extreme events under current conditions and in a world which might have been without anthropogenic interference. In cases where the models are able to simulate extreme weather, the analysis allows for conclusions about the extent to which climate change may have increased, decreased, or made no change to the risk of the event occurring. These results could thus have relevance for the UNFCCC negotiations on loss and damage, and we have been communicating with policymakers and observers to the policy process to better understand how we can develop our research to support their work; by attending policy meetings, conducting interviews, and using a participatory game developed with the Red Cross

  20. Resilience of coastal wetlands to extreme hydrologic events in Apalachicola Bay

    Science.gov (United States)

    Tahsin, Subrina; Medeiros, Stephen C.; Singh, Arvind

    2016-07-01

    Extreme hydrologic events such as hurricanes and droughts continuously threaten wetlands which provide key ecosystem services in coastal areas. The recovery time for vegetation after impact from these extreme events can be highly variable depending on the hazard type and intensity. Apalachicola Bay in Florida is home to a rich variety of saltwater and freshwater wetlands and is subject to a wide range of hydrologic hazards. Using spatiotemporal changes in Landsat-based empirical vegetation indices, we investigate the impact of hurricane and drought on both freshwater and saltwater wetlands from year 2000 to 2015 in Apalachicola Bay. Our results indicate that saltwater wetlands are more resilient than freshwater wetlands and suggest that in response to hurricanes, the coastal wetlands took almost a year to recover, while recovery following a drought period was observed after only a month.

  1. Extreme event return times in long-term memory processes near 1/f

    Science.gov (United States)

    Blender, R.; Fraedrich, K.; Sienz, F.

    2008-07-01

    The distribution of extreme event return times and their correlations are analyzed in observed and simulated long-term memory (LTM) time series with 1/f power spectra. The analysis is based on tropical temperature and mixing ratio (specific humidity) time series from TOGA COARE with 1 min resolution and an approximate 1/f power spectrum. Extreme events are determined by Peak-Over-Threshold (POT) crossing. The Weibull distribution represents a reasonable fit to the return time distributions while the power-law predicted by the stretched exponential for 1/f deviates considerably. For a comparison and an analysis of the return time predictability, a very long simulated time series with an approximate 1/f spectrum is produced by a fractionally differenced (FD) process. This simulated data confirms the Weibull distribution (a power law can be excluded). The return time sequences show distinctly weaker long-term correlations than the original time series (correlation exponent γ≍0.56).

  2. Variability of continental water storage and its relationship to extreme hydrological events in the Amazon basin

    Directory of Open Access Journals (Sweden)

    Ana Emília Diniz Silva Guedes

    2013-08-01

    Full Text Available In this paper, we evaluated the variability of total continental water storage derived from estimates of balance water using satellite data in association with hydro-meteorological data. The occurrence of extreme hydrological events such as drought and flood in the Amazon basin was related to the variability of total storage of continental water. Both estimation methods (PER- Precipitation, Evapotranspiration and Runoff and GRACE show a strong decrease in water storage during the 2005 drought and a strong recovery during the 2009 flood. The results show that there is strong relationship between the occurrences of extreme hydrological events and water storage in the Amazon. Local and deep measurements of continental water storage can provide more precise indications of the dynamics of the hydrological system and its response to climate variability.

  3. Credible occurrence probabilities for extreme geophysical events: earthquakes, volcanic eruptions, magnetic storms

    Science.gov (United States)

    Love, Jeffrey J.

    2012-01-01

    Statistical analysis is made of rare, extreme geophysical events recorded in historical data -- counting the number of events $k$ with sizes that exceed chosen thresholds during specific durations of time $\\tau$. Under transformations that stabilize data and model-parameter variances, the most likely Poisson-event occurrence rate, $k/\\tau$, applies for frequentist inference and, also, for Bayesian inference with a Jeffreys prior that ensures posterior invariance under changes of variables. Frequentist confidence intervals and Bayesian (Jeffreys) credibility intervals are approximately the same and easy to calculate: $(1/\\tau)[(\\sqrt{k} - z/2)^{2},(\\sqrt{k} + z/2)^{2}]$, where $z$ is a parameter that specifies the width, $z=1$ ($z=2$) corresponding to $1\\sigma$, $68.3\\%$ ($2\\sigma$, $95.4\\%$). If only a few events have been observed, as is usually the case for extreme events, then these "error-bar" intervals might be considered to be relatively wide. From historical records, we estimate most likely long-term occurrence rates, 10-yr occurrence probabilities, and intervals of frequentist confidence and Bayesian credibility for large earthquakes, explosive volcanic eruptions, and magnetic storms.

  4. Climate Central World Weather Attribution (WWA) project: Real-time extreme weather event attribution analysis

    Science.gov (United States)

    Haustein, Karsten; Otto, Friederike; Uhe, Peter; Allen, Myles; Cullen, Heidi

    2015-04-01

    Extreme weather detection and attribution analysis has emerged as a core theme in climate science over the last decade or so. By using a combination of observational data and climate models it is possible to identify the role of climate change in certain types of extreme weather events such as sea level rise and its contribution to storm surges, extreme heat events and droughts or heavy rainfall and flood events. These analyses are usually carried out after an extreme event has occurred when reanalysis and observational data become available. The Climate Central WWA project will exploit the increasing forecast skill of seasonal forecast prediction systems such as the UK MetOffice GloSea5 (Global seasonal forecasting system) ensemble forecasting method. This way, the current weather can be fed into climate models to simulate large ensembles of possible weather scenarios before an event has fully emerged yet. This effort runs along parallel and intersecting tracks of science and communications that involve research, message development and testing, staged socialization of attribution science with key audiences, and dissemination. The method we employ uses a very large ensemble of simulations of regional climate models to run two different analyses: one to represent the current climate as it was observed, and one to represent the same events in the world that might have been without human-induced climate change. For the weather "as observed" experiment, the atmospheric model uses observed sea surface temperature (SST) data from GloSea5 (currently) and present-day atmospheric gas concentrations to simulate weather events that are possible given the observed climate conditions. The weather in the "world that might have been" experiments is obtained by removing the anthropogenic forcing from the observed SSTs, thereby simulating a counterfactual world without human activity. The anthropogenic forcing is obtained by comparing the CMIP5 historical and natural simulations

  5. Power Outages, Extreme Events and Health: a Systematic Review of the Literature from 2011-2012

    OpenAIRE

    Klinger, Chaamala; Landeg, Owen; Murray, Virginia

    2014-01-01

    Background Extreme events (e.g. flooding) threaten critical infrastructure including power supplies. Many interlinked systems in the modern world depend on a reliable power supply to function effectively. The health sector is no exception, but the impact of power outages on health is poorly understood. Greater understanding is essential so that adverse health impacts can be prevented and/or mitigated. Methods We searched Medline, CINAHL and Scopus for papers about the health impacts of power ...

  6. Indications of an extreme event deposits along the west coast of India: evidences from GPR investigations

    Digital Repository Service at National Institute of Oceanography (India)

    Loveson, V.J.; Gujar, A.R.; Iyer, S.D.; Srivastava, P.; Tirodkar, G.; Luis, R.A.A.

    architecture of sedimentary bed sets, to trace paleo-channels and to reconstruct fluvial dynamics are well known (Vandenberghe and van Overmeeren 1999; Neal et al. 2002; Gourry et al. 2003; Sridhar and Patidar 2005; Smith et al. 2006; Smith et al. 2009... architecture of extreme event deposits were established by various earlier studies (Neal 2002; Loveson et al. 2005; Loveson and Gujar 2010; Shukla 2012; Koster, 2012; Loveson et al. 2014). The main goals of the present study were to investigate...

  7. An assessment of the wind re-analyses in the modelling of an extreme sea state in the Black Sea

    Science.gov (United States)

    Akpinar, Adem; Ponce de León, S.

    2016-03-01

    This study aims at an assessment of wind re-analyses for modelling storms in the Black Sea. A wind-wave modelling system (Simulating WAve Nearshore, SWAN) is applied to the Black Sea basin and calibrated with buoy data for three recent re-analysis wind sources, namely the European Centre for Medium-Range Weather Forecasts Reanalysis-Interim (ERA-Interim), Climate Forecast System Reanalysis (CFSR), and Modern Era Retrospective Analysis for Research and Applications (MERRA) during an extreme wave condition that occurred in the north eastern part of the Black Sea. The SWAN model simulations are carried out for default and tuning settings for deep water source terms, especially whitecapping. Performances of the best model configurations based on calibration with buoy data are discussed using data from the JASON2, TOPEX-Poseidon, ENVISAT and GFO satellites. The SWAN model calibration shows that the best configuration is obtained with Janssen and Komen formulations with whitecapping coefficient (Cds) equal to 1.8e-5 for wave generation by wind and whitecapping dissipation using ERA-Interim. In addition, from the collocated SWAN results against the satellite records, the best configuration is determined to be the SWAN using the CFSR winds. Numerical results, thus show that the accuracy of a wave forecast will depend on the quality of the wind field and the ability of the SWAN model to simulate the waves under extreme wind conditions in fetch limited wave conditions.

  8. Modelling of extreme rainfall events in Peninsular Malaysia based on annual maximum and partial duration series

    Science.gov (United States)

    Zin, Wan Zawiah Wan; Shinyie, Wendy Ling; Jemain, Abdul Aziz

    2015-02-01

    In this study, two series of data for extreme rainfall events are generated based on Annual Maximum and Partial Duration Methods, derived from 102 rain-gauge stations in Peninsular from 1982-2012. To determine the optimal threshold for each station, several requirements must be satisfied and Adapted Hill estimator is employed for this purpose. A semi-parametric bootstrap is then used to estimate the mean square error (MSE) of the estimator at each threshold and the optimal threshold is selected based on the smallest MSE. The mean annual frequency is also checked to ensure that it lies in the range of one to five and the resulting data is also de-clustered to ensure independence. The two data series are then fitted to Generalized Extreme Value and Generalized Pareto distributions for annual maximum and partial duration series, respectively. The parameter estimation methods used are the Maximum Likelihood and the L-moment methods. Two goodness of fit tests are then used to evaluate the best-fitted distribution. The results showed that the Partial Duration series with Generalized Pareto distribution and Maximum Likelihood parameter estimation provides the best representation for extreme rainfall events in Peninsular Malaysia for majority of the stations studied. Based on these findings, several return values are also derived and spatial mapping are constructed to identify the distribution characteristic of extreme rainfall in Peninsular Malaysia.

  9. Agent Based Simulation of Group Emotions Evolution and Strategy Intervention in Extreme Events

    Directory of Open Access Journals (Sweden)

    Bo Li

    2014-01-01

    Full Text Available Agent based simulation method has become a prominent approach in computational modeling and analysis of public emergency management in social science research. The group emotions evolution, information diffusion, and collective behavior selection make extreme incidents studies a complex system problem, which requires new methods for incidents management and strategy evaluation. This paper studies the group emotion evolution and intervention strategy effectiveness using agent based simulation method. By employing a computational experimentation methodology, we construct the group emotion evolution as a complex system and test the effects of three strategies. In addition, the events-chain model is proposed to model the accumulation influence of the temporal successive events. Each strategy is examined through three simulation experiments, including two make-up scenarios and a real case study. We show how various strategies could impact the group emotion evolution in terms of the complex emergence and emotion accumulation influence in extreme events. This paper also provides an effective method of how to use agent-based simulation for the study of complex collective behavior evolution problem in extreme incidents, emergency, and security study domains.

  10. Variations of Dissolved Iron in the Amur River During an Extreme Flood Event in 2013

    Institute of Scientific and Technical Information of China (English)

    YAN Baixing; GUAN Jiunian; Vladimir SHESTERKIN; ZHU Hui

    2016-01-01

    As a key factor limiting primary productivity in marine ecosystem,dissolved iron (DFe) export from fluvial systems has increased recently.There is particular concern about discharges of DFe during extreme flooding,when they are thought to increase considerably.An extreme flood event that caused inundation of extensive areas of Far Eastern Russia and Northeastern China occurred in the basin of the Amur River during summer and autumn 2013.During this event,water samples were collected in the middle reaches of the Amur River and the lower reaches at Khabarovsk City and analyzed for DFe concentrations and other aquatic parameters.The resuits show that the average DFe concentrations in the middle reaches of the Amur River (right bank) and at Khabarovsk were 1.11 mg/L and 0.32 mg/L,respectively,during the extreme flood in 2013.The total discharge of DFe during the flood event was 6.25 x 104 t.The high discharge of DFe during the flood reflects the elevated discharge of the river,hydrologically connected riparian wetlands,vast quantities of terrestrial runoff,and flood discharges from the Zeya and Bureya reservoirs.These results show that long-term monitoring is needed to identify and assess the impacts of DFe transport on the downstream reaches,estuarine area,and coastal ecosystems of the Amur River.

  11. Herding interactions as an opportunity to prevent extreme events in financial markets

    Science.gov (United States)

    Kononovicius, Aleksejus; Gontis, Vygintas

    2015-07-01

    A characteristic feature of complex systems in general is a tight coupling between their constituent parts. In complex socio-economic systems this kind of behavior leads to self-organization, which may be both desirable (e.g. social cooperation) and undesirable (e.g. mass panic, financial "bubbles" or "crashes"). Abundance of the empirical data as well as general insights into the trading behavior enables the creation of simple agent-based models reproducing sophisticated statistical features of the financial markets. In this contribution we consider a possibility to prevent self-organized extreme events in financial market modeling its behavior using agent-based herding model, which reproduces main stylized facts of the financial markets. We show that introduction of agents with predefined fundamentalist trading behavior helps to significantly reduce the probability of the extreme price fluctuations events. We also investigate random trading, which was previously found to be promising extreme event prevention strategy, and find that its impact on the market has to be considered among other opportunities to stabilize the markets.

  12. Generating extreme weather event sets from very large ensembles of regional climate models

    Science.gov (United States)

    Massey, Neil; Guillod, Benoit; Otto, Friederike; Allen, Myles; Jones, Richard; Hall, Jim

    2015-04-01

    Generating extreme weather event sets from very large ensembles of regional climate models Neil Massey, Benoit P. Guillod, Friederike E. L. Otto, Myles R. Allen, Richard Jones, Jim W. Hall Environmental Change Institute, University of Oxford, Oxford, UK Extreme events can have large impacts on societies and are therefore being increasingly studied. In particular, climate change is expected to impact the frequency and intensity of these events. However, a major limitation when investigating extreme weather events is that, by definition, only few events are present in observations. A way to overcome this issue it to use large ensembles of model simulations. Using the volunteer distributed computing (VDC) infrastructure of weather@home [1], we run a very large number (10'000s) of RCM simulations over the European domain at a resolution of 25km, with an improved land-surface scheme, nested within a free-running GCM. Using VDC allows many thousands of climate model runs to be computed. Using observations for the GCM boundary forcings we can run historical "hindcast" simulations over the past 100 to 150 years. This allows us, due to the chaotic variability of the atmosphere, to ascertain how likely an extreme event was, given the boundary forcings, and to derive synthetic event sets. The events in these sets did not actually occur in the observed record but could have occurred given the boundary forcings, with an associated probability. The event sets contain time-series of fields of meteorological variables that allow impact modellers to assess the loss the event would incur. Projections of events into the future are achieved by modelling projections of the sea-surface temperature (SST) and sea-ice boundary forcings, by combining the variability of the SST in the observed record with a range of warming signals derived from the varying responses of SSTs in the CMIP5 ensemble to elevated greenhouse gas (GHG) emissions in three RCP scenarios. Simulating the future with a

  13. Relationships between interdecadal variability and extreme precipitation events in South America during the monsoon season

    Science.gov (United States)

    Grimm, Alice; Laureanti, Nicole; Rodakoviski, Rodrigo

    2016-04-01

    This study aims to clarify the impact of interdecadal climate oscillations (periods of 8 years and longer) on the frequency of extreme precipitation events over South America in the monsoon season (austral spring and summer), and determine the influence of these oscillations on the daily precipitation frequency distribution. Interdecadal variability modes of precipitation during the monsoon season are provided by a continental-scale rotated empirical orthogonal function analysis for the 60 years period 1950-2009. The main disclosed modes are robust, since they are reproduced for different periods. They can produce differences around 50% in monthly precipitation between opposite phases. Oceanic and atmospheric anomalous fields associated with these modes indicate that they have physical basis. The first modes in spring and summer display highest correlation with the Interdecadal Pacific Oscillation (IPO) SST mode, while the second modes have strongest correlation with the Atlantic Multidecadal Oscillation (AMO) SST mode. However, there are also other influences on these modes. As the most dramatic consequences of climate variability stem from its influence on the frequency of extreme precipitation events, it is important to also assess this influence, since variations in monthly or seasonal precipitation do not necessarily imply significant alterations in their extreme events. This study seeks to answer the questions: i) Do opposite phases of the main interdecadal modes of seasonal precipitation produce significant anomalies in the frequency of extreme events? ii) Does the interdecadal variability of the frequency of extreme events show similar spatial and temporal structure as the interdecadal variability of the seasonal precipitation? iii) Does the interdecadal variability change the daily precipitation probability distribution between opposite phases? iv) In this case, which ranges of daily precipitation are most affected? The significant anomalies of the extreme

  14. Advances in the Assessment of Wind Turbine Operating Extreme Loads via More Efficient Calculation Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Peter; Damiani, Rick R.; Dykes, Katherine; Jonkman, Jason M.

    2017-01-09

    A new adaptive stratified importance sampling (ASIS) method is proposed as an alternative approach for the calculation of the 50 year extreme load under operational conditions, as in design load case 1.1 of the the International Electrotechnical Commission design standard. ASIS combines elements of the binning and extrapolation technique, currently described by the standard, and of the importance sampling (IS) method to estimate load probability of exceedances (POEs). Whereas a Monte Carlo (MC) approach would lead to the sought level of POE with a daunting number of simulations, IS-based techniques are promising as they target the sampling of the input parameters on the parts of the distributions that are most responsible for the extreme loads, thus reducing the number of runs required. We compared the various methods on select load channels as output from FAST, an aero-hydro-servo-elastic tool for the design and analysis of wind turbines developed by the National Renewable Energy Laboratory (NREL). Our newly devised method, although still in its infancy in terms of tuning of the subparameters, is comparable to the others in terms of load estimation and its variance versus computational cost, and offers great promise going forward due to the incorporation of adaptivity into the already powerful importance sampling concept.

  15. Testing for scale-invariance in extreme events, with application to earthquake occurrence

    Science.gov (United States)

    Main, I.; Naylor, M.; Greenhough, J.; Touati, S.; Bell, A.; McCloskey, J.

    2009-04-01

    We address the generic problem of testing for scale-invariance in extreme events, i.e. are the biggest events in a population simply a scaled model of those of smaller size, or are they in some way different? Are large earthquakes for example ‘characteristic', do they ‘know' how big they will be before the event nucleates, or is the size of the event determined only in the avalanche-like process of rupture? In either case what are the implications for estimates of time-dependent seismic hazard? One way of testing for departures from scale invariance is to examine the frequency-size statistics, commonly used as a bench mark in a number of applications in Earth and Environmental sciences. Using frequency data however introduces a number of problems in data analysis. The inevitably small number of data points for extreme events and more generally the non-Gaussian statistical properties strongly affect the validity of prior assumptions about the nature of uncertainties in the data. The simple use of traditional least squares (still common in the literature) introduces an inherent bias to the best fit result. We show first that the sampled frequency in finite real and synthetic data sets (the latter based on the Epidemic-Type Aftershock Sequence model) converge to a central limit only very slowly due to temporal correlations in the data. A specific correction for temporal correlations enables an estimate of convergence properties to be mapped non-linearly on to a Gaussian one. Uncertainties closely follow a Poisson distribution of errors across the whole range of seismic moment for typical catalogue sizes. In this sense the confidence limits are scale-invariant. A systematic sample bias effect due to counting whole numbers in a finite catalogue makes a ‘characteristic'-looking type extreme event distribution a likely outcome of an underlying scale-invariant probability distribution. This highlights the tendency of ‘eyeball' fits unconsciously (but wrongly in

  16. Extreme climate events over northern China during the last 50 years

    Institute of Scientific and Technical Information of China (English)

    HANHui; GONGDaoyi

    2003-01-01

    Climate extremes for agriculture-pasture transitional zone, northem China, are analyzed on the basis of daily mean temperature and precipitation observations for 31 stations in the period 1956-2001. Analysis season for precipitation is May-September, i.e., the rainy season. For temperature is the hottest three months, i.e., June through August. Heavy rain events, defined as those with daily precipitation equal to or larger than 50 mm, show no significant secular trend. A jump-like change, however, is found occurring in about 1980. For the period 1980-1993, the frequency of heavy rain events is significantly lower than the previous periods. Simultaneously, the occurring time of heavy rains expanded, commencing about one month early and ending one month later. Long dry spells are defined as those with longer than 10 days without rainfall. The frequency of long dry spells displays a significant (at the 99% confidence level) trend at the value of +8.3% /10a. That may be one of the major causes of the frequent droughts emerging over northern China during the last decades. Extremely hot and low temperature events are defined as the uppermost 10% daily temperatures and the lowest 10% daily temperatures, respectively. There is a weak and non-significant upward trend in frequency of extremely high temperatures from the 1950s to the mid-1990s. But the number of hot events increases as much as twice since 1997. That coincides well with the sudden rise in mean summer temperature for the same period. Contrary to that, the fiequency of low temperature events have been decreasing steadily since the 1950s, with a significant linear trend of-15%/10a.

  17. Processes and Geomorphological Impacts of an Extreme Flash Flood Event in SE Spain

    Science.gov (United States)

    Hooke, J.

    2015-12-01

    A major flash flood event took place on 28 September, 2012 in SE Spain, resulting in 10 fatalities and much damage to infrastructure regionally. The flood affected long-term monitoring sites in two catchments in which morphological changes and flow dynamics of these ephemeral channels were being measured. Thus detailed data on channel state prior to the flood were available. The flood event in the Nogalte catchment was extreme in its peak flow, rate of rise and unit runoff. The catchment has steep relief and much bare soil under almond groves, resulting in high sediment supply. The channel is confined in places, but mostly wide and braided, composed of loose gravel and occupying much of the valley floor. Flow was spatially continuous, with high connectivity throughout the catchment. The flood effects were net depositional in the monitored sites, with massive sedimentation on the channel bars. Vegetation was destroyed. Bank erosion and destruction of embankments took place in some locations. Hydraulic calculations indicate very high velocities, stream power and Froude numbers. Modelling and field evidence demonstrate extremely high sediment competence and sediment loadings. The influence of the event dynamics on processes and net outcomes is discussed. The impacts are compared with other events in this and neighbouring catchments. Overall, the event in the Nogalte did not alter the morphology markedly in spite of its extreme characteristics. It is suggested that these valley floors are adapted to this type of flash flood but that flows of such force and magnitude need to be allowed for in management in such an environment.

  18. Short time step continuous rainfall modeling and simulation of extreme events

    Science.gov (United States)

    Callau Poduje, A. C.; Haberlandt, U.

    2017-09-01

    The design, planning, operation and overall assessment of urban drainage systems require long and continuous rain series in a high temporal resolution. Unfortunately, the availability of this data is usually short. Nevertheless a precipitation model could be used to tackle this shortcoming; therefore it is in the aim of this study to present a stochastic point precipitation model to reproduce average rainfall event properties along with extreme values. For this purpose a model is proposed to generate long synthetic series of rainfall for a temporal resolution of 5 min. It is based on an alternating renewal framework and events are characterized by variables describing durations, amounts and peaks. A group of 24 stations located in the north of Germany is used to set up and test the model. The adequate modeling of joint behaviour of rainfall amount and duration is found to be essential for reproducing the observed properties, especially for the extreme events. Copulas are advantageous tools for modeling these variables jointly; however caution must be taken in the selection of the proper copula. The inclusion of seasonality and small events is as well tested and found to be useful. The model is directly validated by generating long synthetic time series and comparing them with observed ones. An indirect validation is as well performed based on a fictional urban hydrological system. The proposed model is capable of reproducing seasonal behaviour and main characteristics of the rainfall events including extremes along with urban flooding and overflow behaviour. Overall the performance of the model is acceptable compared to the design practice. The proposed model is simple to interpret, fast to implement and to transfer to other regions, whilst showing acceptable results.

  19. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Sonal, E-mail: S.Choudhary@sheffield.ac.uk [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Management School, University of Sheffield, Conduit Road, Sheffield S10 1FL (United Kingdom); Blaud, Aimeric [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Osborn, A. Mark [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); School of Applied Sciences, RMIT University, PO Box 71, Bundoora, VIC 3083 (Australia); Press, Malcolm C. [School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Manchester Metropolitan University, Manchester, M15 6BH (United Kingdom); Phoenix, Gareth K. [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom)

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem {sup 15}N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g N m{sup −2} yr{sup −1}, applied as {sup 15}NH{sub 4}{sup 15}NO{sub 3} in Svalbard (79{sup °}N), during the summer. Separate applications of {sup 15}NO{sub 3}{sup −} and {sup 15}NH{sub 4}{sup +} were also made to determine the importance of N form in their retention. More than 95% of the total {sup 15}N applied was recovered after one growing season (~ 90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants > vascular plants > organic soil > litter > mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of {sup 15}N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater {sup 15}NO{sub 3}{sup −} than {sup 15}NH{sub 4}{sup +}, suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events

  20. Segmented Ultralight Pre-Aligned Rotor for Extreme-Scale Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Loth, E.; Steele, A.; Ichter, B.; Selig, M.; Moriarty, P.

    2012-01-01

    To alleviate the mass-scaling issues associated with conventional upwind rotors of extreme-scale turbines, a downwind rotor concept is proposed which employs fixed blade curvature based on force alignment at rated conditions. For a given peak stress constraint, the reduction in downwind cantilever loads allows reduced shell and spar thickness, and thus a reduced blade mass as compared with a conventional upwind rotor, especially as rotor sizes approach extreme-scales. To quantify this mass reduction, a Finite Element Analysis was conducted for a 10 MW rated rotor based on the NREL offshore 5 MW baseline wind turbine. The results show that this 'pre-alignment' yields a net downstream deflection of 32 deg, a downward hub-pitch angle of 6 deg, a 20% increase in blade length (to maintain the same radius as the conventional blade), and a net mass savings of about 50% through decreased shell and spar thicknesses. The pre-alignment may also allow a more straightforward and efficient segmentation of the blade since shear stresses near joints are substantially reduced. Segmenting, in turn, can dramatically reduce costs associated with fabrication, transport and assembly for extreme-scale off-shore systems. The pre-aligned geometric curvature can also help alleviate tower wake effects on the blades since blade tips (where shadow effects can be most problematic) are shifted downstream where the tower wake is weaker. In addition, the portion of the tower that is upstream of the blade tips can be faired with an externally-rotating aerodynamic shroud. Furthermore, the downwind rotor can allow a floating off-shore tri-pod platform to reduce tower weight and yaw-control requirements. A simple economic analysis of the segmented ultralight pre-aligned rotor (SUPAR) concept suggests that the overall system cost savings can be as much as 25%, indicating that more detailed (numerical and experimental) investigations are warranted.

  1. Tree-ring responses to extreme climate events as benchmarks for terrestrial dynamic vegetation models

    Directory of Open Access Journals (Sweden)

    A. Rammig

    2014-02-01

    Full Text Available Climate extremes can trigger exceptional responses in terrestrial ecosystems, for instance by altering growth or mortality rates. Effects of this kind are often manifested in reductions of the local net primary production (NPP. Investigating a set of European long-term data on annual radial tree growth confirms this pattern: we find that 53% of tree ring width (TRW indices are below one standard deviation, and up to 16% of the TRW values are below two standard deviations in years with extremely high temperatures and low precipitation. Based on these findings we investigate if climate driven patterns in long-term tree growth data may serve as benchmarks for state-of-the-art dynamic vegetation models such as LPJmL. The model simulates NPP but not explicitly the radial tree ring growth, hence requiring a generic method to ensure an objective comparison. Here we propose an analysis scheme that quantifies the coincidence rate of climate extremes with some biotic responses (here TRW or simulated NPP. We find that the reduction in tree-ring width during drought extremes is lower than the corresponding reduction of simulated NPP. We identify ten extreme years during the 20th century in which both, model and measurements indicate high coincidence rates across Europe. However, we detect substantial regional differences in simulated and observed responses to extreme events. One explanation for this discrepancy could be that the tree-ring data have preferentially been sampled at more climatically stressed sites. The model-data difference is amplified by the fact that dynamic vegetation models are designed to simulate mean ecosystem responses at landscape or regional scale. However, we find that both model-data and measurements display carry-over effects from the previous year. We conclude that using radial tree growth is a good basis for generic model-benchmarks if the data are analyzed by scale-free measures such as coincidence analysis. Our study shows

  2. Experimental Investigation of Bearing Slip in a Wind Turbine Gearbox During a Transient Grid Loss Event

    Energy Technology Data Exchange (ETDEWEB)

    Helsen, Jan; Guo, Yi; Keller, Jonathan; Guillaume, Patrick

    2016-12-01

    This work investigates the behaviour of the high speed stage of a wind turbine gearbox during a transient grid loss event. Dynamometer testing on a full scale wind turbine nacelle is used. A combination of external and internal gearbox measurements is analysed. Particular focus is on the characterization of the high speed shaft tapered roller bearing slip behaviour. This slipping behaviour is linked to dynamic events by many researchers and described as potential bearing failure initiator. However only limited full scale dynamic testing is documented. Strain gauge bridges in grooves along the circumference of the outer ring are used to characterize the bearing behaviour in detail. It is shown that during the transient event the high speed shaft experiences a combined torsional and bending deformation. These unfavourable loading conditions induce roller slip in the bearings during the torque reversals indicating the potential of the applied load case to go beyond the preload of the tapered roller bearing.

  3. Non-parametric frequency analysis of extreme values for integrated disaster management considering probable maximum events

    Science.gov (United States)

    Takara, K. T.

    2015-12-01

    This paper describes a non-parametric frequency analysis method for hydrological extreme-value samples with a size larger than 100, verifying the estimation accuracy with a computer intensive statistics (CIS) resampling such as the bootstrap. Probable maximum values are also incorporated into the analysis for extreme events larger than a design level of flood control. Traditional parametric frequency analysis methods of extreme values include the following steps: Step 1: Collecting and checking extreme-value data; Step 2: Enumerating probability distributions that would be fitted well to the data; Step 3: Parameter estimation; Step 4: Testing goodness of fit; Step 5: Checking the variability of quantile (T-year event) estimates by the jackknife resampling method; and Step_6: Selection of the best distribution (final model). The non-parametric method (NPM) proposed here can skip Steps 2, 3, 4 and 6. Comparing traditional parameter methods (PM) with the NPM, this paper shows that PM often underestimates 100-year quantiles for annual maximum rainfall samples with records of more than 100 years. Overestimation examples are also demonstrated. The bootstrap resampling can do bias correction for the NPM and can also give the estimation accuracy as the bootstrap standard error. This NPM has advantages to avoid various difficulties in above-mentioned steps in the traditional PM. Probable maximum events are also incorporated into the NPM as an upper bound of the hydrological variable. Probable maximum precipitation (PMP) and probable maximum flood (PMF) can be a new parameter value combined with the NPM. An idea how to incorporate these values into frequency analysis is proposed for better management of disasters that exceed the design level. The idea stimulates more integrated approach by geoscientists and statisticians as well as encourages practitioners to consider the worst cases of disasters in their disaster management planning and practices.

  4. Prior history of Mistral and Tramontane winds modulates heavy precipitation events in southern France

    Directory of Open Access Journals (Sweden)

    Ségolène Berthou

    2014-11-01

    Full Text Available Heavy precipitation events (HPEs are frequent in southern France in autumn. An HPE results from landward transport of low-level moisture from the Western Mediterranean: large potential instability is then released by local convergence and/or orography. In the upstream zone, the sea surface temperature (SST undergoes significant variations at the submonthly time scale primarily driven by episodic highly energetic events of relatively cold outflows from the neighbouring mountain ranges (the Mistral and Tramontane winds. Here, we study the HPE of 22–23 September 1994 which is preceded by a strong SST cooling due to the Mistral and Tramontane winds. This case confirms that the location of the precipitation is modulated by the SST in the upstream zone. In fact, changes in latent and sensible heat fluxes due to SST changes induce pressure and stratification changes which affect the low-level dynamics. Using three companion regional climate simulations running from 1989 to 2009, this article statistically shows that anomalies in the HPEs significantly correlate with the SST anomalies in the Western Mediterranean, and hence with the prior history of Mistral and Tramontane winds. In such cases, the role of the ocean as an integrator of the effect of past wind events over one or several weeks does indeed have an impact on HPEs in southern France.

  5. Spatial patterns of sediment dynamics within a medium-sized watershed over an extreme storm event

    Science.gov (United States)

    Gao, Peng; Zhang, Zhirou

    2016-08-01

    In this study, we quantified spatial patterns of sediment dynamics in a watershed of 311 km2 over an extreme storm event using watershed modeling and statistical analyses. First, we calibrated a watershed model, Dynamic Watershed Simulation Model (DWSM) by comparing the predicted with calculated hydrograph and sedigraph at the outlet for this event. Then we predicted values of event runoff volume (V), peak flow (Qpeak), and two types of event sediment yields for lumped morphological units that contain 42 overland elements and 21 channel segments within the study watershed. Two overland elements and the connected channel segment form a first-order subwatershed, several of which constitute a larger nested subwatershed. Next we examined (i) the relationships between these variables and area (A), precipitation (P), mean slope (S), soil erodibility factor, and percent of crop and pasture lands for all overland elements (i.e., the small spatial scale, SSS), and (ii) those between sediment yield, Qpeak, A, P, and event runoff depth (h) for the first-order and nested subwatersheds along two main creeks of the study watershed (i.e., the larger spatial scales, LSS). We found that at the SSS, sediment yield was nonlinearly well related to A and P, but not Qpeak and h; whereas at the LSS, linear relationships between sediment yield and Qpeak existed, so did the Qpeak-A, and Qpeak-P relationships. This linearity suggests the increased connectivity from the SSS to LSS, which was caused by ignorance of channel processes within overland elements. It also implies that sediment was transported at capacity during the extreme event. So controlling sediment supply from the most erodible overland elements may not efficiently reduce the downstream sediment load.

  6. Correlation between dust events in Mongolia and surface wind and precipitation

    Directory of Open Access Journals (Sweden)

    Ganbat Amgalan

    2017-01-01

    Full Text Available This study presents dust event spatiotemporal distribution and regional trends, and the impact of surface wind and precipitation on dust occurrences in Mongolia. We used data collected between 2000 and 2013 from 113 meteorological stations in natural forest steppe, steppe, Gobi Desert, and mountain zones. We analyzed the relationship between dusty days, derived using the sum of days with dust storms and/or drifting dust, and days with strong winds (at a threshold wind speed of a constant 6.5 m s-1, hereafter, strong wind days and precipitation by comparing the dusty days in dust-frequent years, dust-less years, and dust-mean years. Dusty days in dust-frequent years were associated with strong wind days when the precipitation is about 10 mm and dust occurrences were suppressed by large amounts of precipitation (approximately 22 mm in dust-less years over the southeastern part of the Gobi Desert in May. We propose a potential dust index (PDI based on the correlations among dusty days, strong winds and precipitation. The PDI performed as predicted in most areas of the country in the spring season.

  7. The role of easterly wind surges in La Niña and El Niño events

    Science.gov (United States)

    Chiodi, A. M.; Harrison, D.

    2015-12-01

    The processes responsible for the onset of La Niña events have not received the same attention as those responsible for the onset of El Niño events, for which Westerly Wind Events (WWEs) in the tropical Pacific have been identified as important contributors. We have previously shown that equatorial Pacific WWE wind stress composites in the years following the large El Niño event of 1997/98 are very like their pre-97-98 counterparts except that they also include an easterly anomaly element over the cold tongue. We have argued that this easterly component modifies the oceanic response so that warming is concentrated in the central equatorial Pacific. This significant change in forced SST anomaly results from the fact that a relatively small increase in easterly wind speed, acting on top of the background easterly trade winds, is sufficient to produce a stress anomaly comparable in magnitude to that of the westerly wind event and thereby produce current anomalies to balance out most of the cold tongue warming that would otherwise be driven by the WWE wind stresses. Motivated by the large effect of these "Easterly Wind Surges" (EWSs) we have examined their occurrence statistics and effects on ENSO-related sea surface temperature anomalies (SSTAs) in the period over which the TAO/TRITON buoy wind observations are available for verification. We find that EWSs are a prominent component of equatorial Pacific wind stress variability and play an important role in the onset and development of La Niña events akin to the role that Westerly Wind Events play in El Niño events. EWSs also help shape amplitude and pattern development of El Niño SSTAs. We examine how well recent ENSO-related sea surface temperature development can be accounted for by paying attention to the occurrence of each year's westerly and easterly wind events.

  8. Estimation of Extreme Response and Failure Probability of Wind Turbines under Normal Operation using Probability Density Evolution Method

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Nielsen, Søren R.K.; Liu, W. F.

    2013-01-01

    Estimation of extreme response and failure probability of structures subjected to ultimate design loads is essential for structural design of wind turbines according to the new standard IEC61400-1. This task is focused on in the present paper in virtue of probability density evolution method (PDEM......), which underlies the schemes of random vibration analysis and structural reliability assessment. The short-term rare failure probability of 5-mega-watt wind turbines, for illustrative purposes, in case of given mean wind speeds and turbulence levels is investigated through the scheme of extreme value...... distribution instead of any other approximate schemes of fitted distribution currently used in statistical extrapolation techniques. Besides, the comparative studies against the classical fitted distributions and the standard Monte Carlo techniques are carried out. Numerical results indicate that PDEM exhibits...

  9. Mitigation Efforts in Rural Communities after Extreme Weather Events - New Insights for Stakeholders

    Directory of Open Access Journals (Sweden)

    Vesela Radovic

    2016-09-01

    Full Text Available Global climate changes are undoubtedly course of the increasing frequency of extreme whether events all over the world. Rural communities belong to the “group of victims” which is greatly jeopardized by consequences of the extreme weather events. Having in mind limited capacities for the preparedness, response and recovery after any kind of emergency it is clear that the rural community mostly needs external help. That is the point of this paper: to make new insights about this important issue, and to discuss: “how to provide adequate help in the rural communities and build adequate adaptive and response capacities”. In many countries agriculture and rural tourism are main economic activities in the rural area and its interruption could be the obstacle for implementation of sustainable development. Various stakeholders omit to be aware of this issue. Emergency agencies and many others have to make the comprehensive plan for rural communities (having in mind all its limitations. In the Republic of Serbia rural communities do not have enough capacity for recovery and usually it takes many years after an event. A minimum of an economic recovery standard has to be created for the rural community. It also has to be a specific contingency plan in the future reorganizations of emergency services in Serbia and at the Western Balkan region. It should be one of the priority issues for stakeholders in the near future in disaster risk reduction. Providing equal access to resources to population in the rural community after the extreme weather event has to be the priority task for policy makers and all actors in emergency management.

  10. Current inversion and wind relaxation events along the western inner shelf of the Gulf of Cadiz

    Science.gov (United States)

    Garel, Erwan; Relvas, Paulo; Drago, Teresa

    2015-04-01

    At Eastern Boundary Upwelling Systems, warm counter-currents leaning along the coast are recurrently observed inshore of previously upwelled cold water. This feature is well-evidenced in summer by SST satellite imagery along the western part of the northern continental margin of the Gulf of Cadiz, Southern Iberia. At this location, wind driven upwelling prevails roughly from April till October, producing a typical equatorward (eastward) alongshore coastal circulation. This flow temporally alternates with a warm coastal counter-current propagating poleward (westward) that develops during non-upwelling (relaxation) wind conditions. These opposed circulation regimes occur also in winter but without the generation of thermal fronts. The onset of counter-currents along the inner shelf of the Gulf of Cadiz is driven by complex processes. It is generally assumed that inversion events develop when a background alongshore pressure gradient resulting from local wind or large scale atmospheric pressure systems becomes unbalanced during relaxation events. Additional mechanisms may include: strong upwelling jets producing local pressure gradients in the lee of capes and promontories; advection of warm water from very shallow inland areas in the eastern Gulf of Cadiz; and, flow response to short but strong westward wind events (Leventer) that typically occur after upwelling favourable winds. Until now, relatively short (less than 1 month) hydrodynamic observations were available for the study of the processes driving current inversions. The present research compiles 6 Acoustic Doppler Current Meter (ADCP) deployments of 2 to 3 months duration at a single location on the inner shelf (20 m water depth), constituting about 18 months of hourly records. Wind data from an offshore buoy (Cadiz) are also used to define relaxation periods, based on selected thresholds. The excellent correspondence between inversion periods and relaxations confirms that the circulation regime in this area

  11. Extreme climatic events: reducing ecological and social systems vulnerabilities; Evenements climatiques extremes: reduire les vulnerabilites des systemes ecologiques et sociaux

    Energy Technology Data Exchange (ETDEWEB)

    Decamps, H.; Amatore, C.; Bach, J.F.; Baccelli, F.; Balian, R.; Carpentier, A.; Charnay, P.; Cuzin, F.; Davier, M.; Dercourt, J.; Dumas, C.; Encrenaz, P.; Jeannerod, M.; Kahane, J.P.; Meunier, B.; Rebut, P.H.; Salencon, J.; Spitz, E.; Suquet, P.; Taquet, P.; Valleron, A.J.; Yoccoz, J.C.; Chapron, J.Y.; Fanon, J.; Andre, J.C.; Auger, P.; Bourrelier, P.H.; Combes, C.; Derrida, B.; Laubier, L.; Laval, K.; Le Maho, Y.; Marsily, G. De; Petit, M.; Schmidt-Laine, C.; Birot, Y.; Peyron, J.L.; Seguin, B.; Barles, S.; Besancenot, J.P.; Michel-Kerjan, E.; Hallegatte, S.; Dumas, P.; Ancey, V.; Requier-Desjardins, M.; Ducharnes, A.; Ciais, P.; Peylin, P.; Kaniewski, D.; Van Campo, E.; Planton, S.; Manuguerra, J.C.; Le Bars, Y.; Lagadec, P.; Kessler, D.; Pontikis, C.; Nussbaum, R.

    2010-07-01

    The Earth has to face more and more devastating extreme events. Between 1970 and 2009, at the worldwide scale, the 25 most costly catastrophes all took place after 1987, and for more than half of them after 2001. Among these 25 catastrophes, 23 were linked to climate conditions. France was not spared: the December 1999 storms led to 88 deaths, deprived 3.5 million households of electricity and costed more than 9 billion euros. The 2003 heat wave led to about 15000 supernumerary deaths between August 1 and August 20. The recent Xynthia storm, with its flood barrier ruptures, provoked 53 deaths in addition to many other tragedies that took place in areas liable to flooding. In the present day context of climate change, we know that we must be prepared to even more dangerous events, sometimes unexpected before. These events can have amplified effects because of the urban development, the overpopulation of coastal areas and the anthropization of natural environments. They represent real 'poverty traps' for the poorest countries of the Earth. The anticipation need is real but is our country ready to answer it? Does it have a sufficient contribution to international actions aiming at reducing risks? Is his scientific information suitable? France is not less vulnerable than other countries. It must reinforce its prevention, its response and resilience capacities in the framework of integrated policies of catastrophes risk management as well as in the framework of climate change adaptation plans. This reinforcement supposes the development of vigilance systems with a better risk coverage and benefiting by the advances gained in the meteorology and health domains. It supposes a town and country planning allowing to improve the viability of ecological and social systems - in particular by protecting their diversity. Finally, this reinforcement requires inciting financial coverage solutions for catastrophes prevention and for their management once they have taken

  12. Extreme Value Predictions for Wave- and Wind-induced Loads on Floating Offshore Wind Turbines using FORM

    DEFF Research Database (Denmark)

    Joensen, Sunvard; Jensen, Jørgen Juncher; Mansour, Alaa E.

    2007-01-01

    probable wave episodes leading to given re-sponses. As an example the motions of floating foundations for offshore wind turbines are analysed taking into consid-eration both the wave and wind induced loads and con-sidering different mooring systems. The possible large horizontal motions make it important...

  13. Granularity and textural analysis as a proxy for extreme wave events in southeast coast of India

    Indian Academy of Sciences (India)

    C S Vijaya Lakshmi; P Srinivasan; S G N Murthy; Deshraj Trivedi; Rajesh R Nair

    2010-06-01

    Extreme wave events of 1000 and 1500 years (radiocarbon ages) have been recently reported in Mahabalipuram region, southeast coast of India. Subsequently, we carried out extensive sedimentological analysis in regions covering a total lateral coverage of 12 km with a new archeological site as the central portion of the study area. Twelve trenches in shore normal profiles exhibit landward thinning sequences as well as upward fining sequences confirming with the global signatures of extreme wave events. The sediment size ranges from fine-to-medium and moderately well sorted-to-well sorted, and exhibit positive skewness with platykurtic-to-leptokurtic nature. We now propose the abrupt winnowing or back and forth motion including unidirectional transport of these deposited sediments, which results in positive skewness. Textural analyses derived from scanning electron microscope studies (SEM) demonstrate the alteration produced, in the ilmenite mineral with vivid presence of pits and crescents with deformation observed on the surface due to extreme wave activities. This is further confirmed with the predominance of high-density mineral such as magnetite (5.2) and other heavy minerals in these deposits inferred the high-intensity of the reworking process of the beach shelf sediments.

  14. An extreme internal solitary wave event observed in the northern South China Sea

    Science.gov (United States)

    Huang, Xiaodong; Chen, Zhaohui; Zhao, Wei; Zhang, Zhiwei; Zhou, Chun; Yang, Qingxuan; Tian, Jiwei

    2016-07-01

    With characteristics of large amplitude and strong current, internal solitary wave (ISW) is a major hazard to marine engineering and submarine navigation; it also has significant impacts on marine ecosystems and fishery activity. Among the world oceans, ISWs are particular active in the northern South China Sea (SCS). In this spirit, the SCS Internal Wave Experiment has been conducted since March 2010 using subsurface mooring array. Here, we report an extreme ISW captured on 4 December 2013 with a maximum amplitude of 240 m and a peak westward current velocity of 2.55 m/s. To the authors’ best knowledge, this is the strongest ISW of the world oceans on record. Full-depth measurements also revealed notable impacts of the extreme ISW on deep-ocean currents and thermal structures. Concurrent mooring measurements near Batan Island showed that the powerful semidiurnal internal tide generation in the Luzon Strait was likely responsible for the occurrence of the extreme ISW event. Based on the HYCOM data-assimilation product, we speculate that the strong stratification around Batan Island related to the strengthening Kuroshio may have contributed to the formation of the extreme ISW.

  15. Extreme weather event in spring 2013 delayed breeding time of Great Tit and Blue Tit.

    Science.gov (United States)

    Glądalski, Michał; Bańbura, Mirosława; Kaliński, Adam; Markowski, Marcin; Skwarska, Joanna; Wawrzyniak, Jarosław; Zieliński, Piotr; Bańbura, Jerzy

    2014-12-01

    The impact of climatic changes on life cycles by re-scheduling the timing of reproduction is an important topic in studies of biodiversity. Global warming causes and will probably cause in the future not only raising temperatures but also an increasing frequency of extreme weather events. In 2013, the winter in central and north Europe ended late, with low temperatures and long-retained snow cover--this extreme weather phenomenon acted in opposition to the increasing temperature trend. In 2013, thermal conditions measured by the warmth sum in the period 15 March–15 April, a critical time for early breeding passerines, went far beyond the range of the warmth sums for at least 40 preceding years. Regardless of what was the reason for the extreme early spring 2013 and assuming that there is a potential for more atypical years because of climate change, we should look closely at every extreme phenomenon and its consequences for the phenology of organisms. In this paper, we report that the prolonged occurrence of winter conditions during the time that is crucial for Blue Tit (Cyanistes caeruleus) and Great Tit (Parus major) reproduction caused a substantial delay in the onset of egg laying in comparison with typical springs.

  16. Extreme and superextreme events in a loss-modulated CO2 laser: Nonlinear resonance route and precursors

    Science.gov (United States)

    Bonatto, Cristian; Endler, Antonio

    2017-07-01

    We investigate the occurrence of extreme and rare events, i.e., giant and rare light pulses, in a periodically modulated CO2 laser model. Due to nonlinear resonant processes, we show a scenario of interaction between chaotic bands of different orders, which may lead to the formation of extreme and rare events. We identify a crisis line in the modulation parameter space, and we show that, when the modulation amplitude increases, remaining in the vicinity of the crisis, some statistical properties of the laser pulses, such as the average and dispersion of amplitudes, do not change much, whereas the amplitude of extreme events grows enormously, giving rise to extreme events with much larger deviations than usually reported, with a significant probability of occurrence, i.e., with a long-tailed non-Gaussian distribution. We identify recurrent regular patterns, i.e., precursors, that anticipate the emergence of extreme and rare events, and we associate these regular patterns with unstable periodic orbits embedded in a chaotic attractor. We show that the precursors may or may not lead to the emergence of extreme events. Thus, we compute the probability of success or failure (false alarm) in the prediction of the extreme events, once a precursor is identified in the deterministic time series. We show that this probability depends on the accuracy with which the precursor is identified in the laser intensity time series.

  17. Streamwise Evolution of Statistical Events in a Model Wind-Turbine Array

    Science.gov (United States)

    Viestenz, Kyle; Cal, Raúl Bayoán

    2016-02-01

    Hot-wire anemometry data, obtained from a wind-tunnel experiment containing a 3 × 3 model wind-turbine array, are used to conditionally average the Reynolds stresses. Nine profiles at the centreline behind the array are analyzed to characterize the turbulent velocity statistics of the wake flow. Quadrant analysis yields statistical events occurring in the wake of the wind farm where quadrants 2 and 4 produce ejections and sweeps, respectively. The scaled difference between these two events is expressed via the Δ R0 parameter and is based on the Δ S0 quantity as introduced by M. R. Raupach (J Fluid Mech 108:363-382, 1981). Δ R0 attains a maximum value at hub height and changes sign near the top of the rotor. The ratio of quadrant events of upward momentum flux to those of the downward flux, known as the exuberance, is examined and reveals the effect of root vortices persisting to eight rotor diameters downstream. These events are then associated with the triple correlation term present in the turbulent kinetic energy equation of the fluctuations where it is found that ejections play the dual role of entraining mean kinetic energy while convecting turbulent kinetic energy out of the turbine canopy. The development of these various quantities possesses significance in closure models, and is assessed in light of wake remediation, energy transport and power fluctuations, where it is found that the maximum fluctuation is about 30% of the mean power produced.

  18. Extreme meteorological events and nuclear facilities safety; Fenomenos meteorologicos extremos e a seguranca das instalacoes nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Patricia Moco Princisval

    2006-07-01

    An External Event is an event that originates outside the site and whose effects on the Nuclear Power Plants (NPP) should be considered. Such events could be of natural or human induced origin and should be identified and selected for design purposes during the site evaluation process. This work shows that the subtropics and mid latitudes of South America east of the Andes Mountain Range have been recognized as prone to severe convective weather. In Brazil, the events of tornadoes are becoming frequent; however there is no institutionalized procedure for a systematic documentation of severe weather. The information is done only for some scientists and by the newspapers. Like strong wind can affect the structural integrity of buildings or the pressure differential can affect the ventilation system, our concern is the safety of NPP and for this purpose the recommendations of International Atomic Energy Agency, Nuclear Regulatory Commission and Comissao Nacional de Energia Nuclear are showed and also a data base of tornadoes in Brazil is done. (author)

  19. Ecological Responses to Extreme Flooding Events: A Case Study with a Reintroduced Bird.

    Science.gov (United States)

    Soriano-Redondo, Andrea; Bearhop, Stuart; Cleasby, Ian R; Lock, Leigh; Votier, Stephen C; Hilton, Geoff M

    2016-06-27

    In recent years numerous studies have documented the effects of a changing climate on the world's biodiversity. Although extreme weather events are predicted to increase in frequency and intensity and are challenging to organisms, there are few quantitative observations on the survival, behaviour and energy expenditure of animals during such events. We provide the first data on activity and energy expenditure of birds, Eurasian cranes Grus grus, during the winter of 2013-14, which saw the most severe floods in SW England in over 200 years. We fitted 23 cranes with telemetry devices and used remote sensing data to model flood dynamics during three consecutive winters (2012-2015). Our results show that during the acute phase of the 2013-14 floods, potential feeding areas decreased dramatically and cranes restricted their activity to a small partially unflooded area. They also increased energy expenditure (+15%) as they increased their foraging activity and reduced resting time. Survival did not decline in 2013-14, indicating that even though extreme climatic events strongly affected time-energy budgets, behavioural plasticity alleviated any potential impact on fitness. However under climate change scenarios such challenges may not be sustainable over longer periods and potentially could increase species vulnerability.

  20. Preface: Impacts of extreme climate events and disturbances on carbon dynamics

    Science.gov (United States)

    Xiao, Jingfeng; Liu, Shuguang; Stoy, Paul C.

    2016-06-01

    The impacts of extreme climate events and disturbances (ECE&D) on the carbon cycle have received growing attention in recent years. This special issue showcases a collection of recent advances in understanding the impacts of ECE&D on carbon cycling. Notable advances include quantifying how harvesting activities impact forest structure, carbon pool dynamics, and recovery processes; observed drastic increases of the concentrations of dissolved organic carbon and dissolved methane in thermokarst lakes in western Siberia during a summer warming event; disentangling the roles of herbivores and fire on forest carbon dioxide flux; direct and indirect impacts of fire on the global carbon balance; and improved atmospheric inversion of regional carbon sources and sinks by incorporating disturbances. Combined, studies herein indicate several major research needs. First, disturbances and extreme events can interact with one another, and it is important to understand their overall impacts and also disentangle their effects on the carbon cycle. Second, current ecosystem models are not skillful enough to correctly simulate the underlying processes and impacts of ECE&D (e.g., tree mortality and carbon consequences). Third, benchmark data characterizing the timing, location, type, and magnitude of disturbances must be systematically created to improve our ability to quantify carbon dynamics over large areas. Finally, improving the representation of ECE&D in regional climate/earth system models and accounting for the resulting feedbacks to climate are essential for understanding the interactions between climate and ecosystem dynamics.

  1. Recovery trends of Scrobicularia plana populations after restoration measures, affected by extreme climate events.

    Science.gov (United States)

    Verdelhos, T; Cardoso, P G; Dolbeth, M; Pardal, M A

    2014-07-01

    The Mondego estuary (Portugal) went through different ecological scenarios over the last decades. An eutrophication process led to a decline in the ecosystem quality. The ensuing restoration plan resulted into a gradual ecological recovery, which was impaired by the occurrence of successive extreme climate events that affected dynamics and productivity of key species. In this study we assess the response of the bivalve Scrobicularia plana to the impacts of these events in a recovery scenario, by comparing populations in two different intertidal habitats: a seagrass bed and a sandflat area. As a general tendency, S. plana, which was negatively affected by eutrophication, responded positively to restoration. However, the occurrence of extreme climate events seemed to affect recruitment success, biomass and production, impairing the recovery process. In the seagrass bed, S. plana maintained a stable and structured population, while in the sandflat area recovery clearly reverted into a decline, mainly concerning biomass and production values. This sequence of multiple stressors might have reduced S. plana resilience to further impacts and therefore, understanding the behavior of biological populations following restoration initiatives requires acknowledgement that some changes may not be easily reversible.

  2. Quantifying the influence of global warming on unprecedented extreme climate events.

    Science.gov (United States)

    Diffenbaugh, Noah S; Singh, Deepti; Mankin, Justin S; Horton, Daniel E; Swain, Daniel L; Touma, Danielle; Charland, Allison; Liu, Yunjie; Haugen, Matz; Tsiang, Michael; Rajaratnam, Bala

    2017-05-09

    Efforts to understand the influence of historical global warming on individual extreme climate events have increased over the past decade. However, despite substantial progress, events that are unprecedented in the local observational record remain a persistent challenge. Leveraging observations and a large climate model ensemble, we quantify uncertainty in the influence of global warming on the severity and probability of the historically hottest month, hottest day, driest year, and wettest 5-d period for different areas of the globe. We find that historical warming has increased the severity and probability of the hottest month and hottest day of the year at >80% of the available observational area. Our framework also suggests that the historical climate forcing has increased the probability of the driest year and wettest 5-d period at 57% and 41% of the observed area, respectively, although we note important caveats. For the most protracted hot and dry events, the strongest and most widespread contributions of anthropogenic climate forcing occur in the tropics, including increases in probability of at least a factor of 4 for the hottest month and at least a factor of 2 for the driest year. We also demonstrate the ability of our framework to systematically evaluate the role of dynamic and thermodynamic factors such as atmospheric circulation patterns and atmospheric water vapor, and find extremely high statistical confidence that anthropogenic forcing increased the probability of record-low Arctic sea ice extent.

  3. The differential effects of increasing frequency and magnitude of extreme events on coral populations.

    Science.gov (United States)

    Fabina, Nicholas S; Baskett, Marissa L; Gross, Kevin

    2015-09-01

    Extreme events, which have profound ecological consequences, are changing in both frequency and magnitude with climate change. Because extreme temperatures induce coral bleaching, we can explore the relative impacts of changes in frequency and magnitude of high temperature events on coral reefs. Here, we combined climate projections and a dynamic population model to determine how changing bleaching regimes influence coral persistence. We additionally explored how coral traits and competition with macroalgae mediate changes in bleaching regimes. Our results predict that severe bleaching events reduce coral persistence more than frequent bleaching. Corals with low adult mortality and high growth rates are successful when bleaching is mild, but bleaching resistance is necessary to persist when bleaching is severe, regardless of frequency. The existence of macroalgae-dominated stable states reduces coral persistence and changes the relative importance of coral traits. Building on previous studies, our results predict that management efforts may need to prioritize protection of "weaker" corals with high adult mortality when bleaching is mild, and protection of "stronger" corals with high bleaching resistance when bleaching is severe. In summary, future reef projections and conservation targets depend on both local bleaching regimes and biodiversity.

  4. Quantifying the influence of global warming on unprecedented extreme climate events

    Science.gov (United States)

    Diffenbaugh, Noah S.; Singh, Deepti; Mankin, Justin S.; Horton, Daniel E.; Swain, Daniel L.; Touma, Danielle; Charland, Allison; Liu, Yunjie; Haugen, Matz; Tsiang, Michael; Rajaratnam, Bala

    2017-05-01

    Efforts to understand the influence of historical global warming on individual extreme climate events have increased over the past decade. However, despite substantial progress, events that are unprecedented in the local observational record remain a persistent challenge. Leveraging observations and a large climate model ensemble, we quantify uncertainty in the influence of global warming on the severity and probability of the historically hottest month, hottest day, driest year, and wettest 5-d period for different areas of the globe. We find that historical warming has increased the severity and probability of the hottest month and hottest day of the year at >80% of the available observational area. Our framework also suggests that the historical climate forcing has increased the probability of the driest year and wettest 5-d period at 57% and 41% of the observed area, respectively, although we note important caveats. For the most protracted hot and dry events, the strongest and most widespread contributions of anthropogenic climate forcing occur in the tropics, including increases in probability of at least a factor of 4 for the hottest month and at least a factor of 2 for the driest year. We also demonstrate the ability of our framework to systematically evaluate the role of dynamic and thermodynamic factors such as atmospheric circulation patterns and atmospheric water vapor, and find extremely high statistical confidence that anthropogenic forcing increased the probability of record-low Arctic sea ice extent.

  5. Application of a Coupled WRF-Hydro Model for Extreme Flood Events in the Mediterranean Basins

    Science.gov (United States)

    Fredj, Erick; Givati, Amir

    2015-04-01

    More accurate simulation of precipitation and streamflow is a challenge that can be addressed by using the Weather Research and Forecasting Model (WRF) in conjunction with the hydrological model coupling extension package (WRF-Hydro).This is demonstrated for the country of Israel and surrounding regions. Simulations from the coupled WRF/WRF-Hydro system were verified against measurements from rain gauges and hydrometric stations in the domain for the 2012-2013 and 2013-2014 winters (wet seasons). These periods were characterized by many punctuated hydrometeorological and hydroclimatic events, including both severe drought and extreme floods events. The WRF model simulations were initialized with 0.5 degree NOAA/NCEP GFS model data. The model domain was set up with 3 domains, up to 3km grid spacing resolution. The model configuration used here constitutes a fully distributed, 3-dimensional, variably-saturated surface and subsurface flow model. Application of terrain routing and, subsequently, channel and reservoir routing functions, to the uni-dimensional NOAA land surface model was motivated by the need to account for increased complexity in land surface states and fluxes and to provide a more physically-realistic conceptualization of terrestrial hydrologic processes. The simulation results indicated a good agreement with actual peak discharges for extreme flood events and for full hydrographs. Specifically the coupled WRF/WRF-Hydro model as configured in this study shows improvement in simulated precipitation over one way WRF precipitation simulations. The correlation between the observed and the simulated precipitation using the fully coupled WRF/WRF-Hydro system was higher than the standalone WRF model, especially for convective precipitation events that affect arid regions in the domain. The results suggest that the coupled WRF/WRF-Hydro system has potential for flood forecasting and flood warning purposes at 0-72 hour lead times for large cool season storm

  6. Forecasting extreme events in collective dynamics: an analytic signal approach to detecting discrete scale invariance

    CERN Document Server

    Viswanathan, G M

    2006-01-01

    A challenging problem in physics concerns the possibility of forecasting rare but extreme phenomena such as large earthquakes, financial market crashes, and material rupture. A promising line of research involves the early detection of precursory log-periodic oscillations to help forecast extreme events in collective phenomena where discrete scale invariance plays an important role. Here I investigate two distinct approaches towards the general problem of how to detect log-periodic oscillations in arbitrary time series without prior knowledge of the location of the moveable singularity. I first show that the problem has a definite solution in Fourier space, however the technique involved requires an unrealistically large signal to noise ratio. I then show that the quadrature signal obtained via analytic continuation onto the imaginary axis, using the Hilbert transform, necessarily retains the log-periodicities found in the original signal. This finding allows the development of a new method of detecting log-p...

  7. LISA extreme-mass-ratio inspiral events as probes of the black hole mass function

    CERN Document Server

    Gair, Jonathan R; Volonteri, Marta

    2010-01-01

    One of the sources of gravitational waves for the proposed space-based gravitational wave detector, the Laser Interferometer Space Antenna (LISA), are the inspirals of compact objects into supermassive black holes in the centres of galaxies - extreme-mass-ratio inspirals (EMRIs). Using LISA observations, we will be able to measure the parameters of each EMRI system detected to very high precision. However, the statistics of the set of EMRI events observed by LISA will be more important in constraining astrophysical models than extremely precise measurements for individual systems. The black holes to which LISA is most sensitive are in a mass range that is difficult to probe using other techniques, so LISA provides an almost unique window onto these objects. In this paper we explore, using Bayesian techniques, the constraints that LISA EMRI observations can place on the mass function of black holes at low redshift. We describe a general framework for approaching inference of this type --- using multiple observ...

  8. Uncertainty assessment in the prediction of extreme rainfall events: an example from the central Spanish Pyrenees

    Science.gov (United States)

    García-Ruiz, J. M.; Arnáez, J.; White, S. M.; Lorente, A.; Beguería, S.

    2000-04-01

    Extreme rainfall events occur frequently in the central Pyrenees, but they are responsible for mass movements and short, very intense erosion periods, accompanied at times by loss of human life and high costs of infrastructure. This paper tries to assess the existence of patterns in the spatial distribution of maximum precipitation. The calculation of return periods of the most intense rainfall demonstrates that in the Pyrenees it exhibits an erratic spatial and temporal distribution and can be extremely localized. In the case of precipitation between 150 and 200 mm in 24 h, some influence from the surrounding relief has been found, but this is not the case for precipitation exceeding 200 mm, characterized by the absence of patterns governing their spatial distribution. Geomorphological approaches are, therefore, the only way for assessing the areas more subject to hydromorphological risks.

  9. Extreme precipitation events in the Iberian Peninsula and its association with Atmospheric Rivers

    Science.gov (United States)

    Ramos, Alexandre M.; Liberato, Margarida L. R.; Trigo, Ricardo M.

    2015-04-01

    Extreme precipitation events in the Iberian Peninsula during the winter half of the year have major socio-economic impacts associated with floods, landslides, extensive property damage and life losses. In recent years, a number of works have shed new light on the role played by Atmospheric Rivers (ARs) in the occurrence of extreme precipitation events in both Europe and USA. ARs are relatively narrow regions of concentrated WV responsible for horizontal transport in the lower atmosphere corresponding to the core section of the broader warm conveyor belt occurring over the oceans along the warm sector of extra-tropical cyclones. Over the North Atlantic ARs are usually W-E oriented steered by pre-frontal low level jets along the trailing cold front and subsequently feed the precipitation in the extra-tropical cyclones. It was shown that more than 90% of the meridional WV transport in the mid-latitudes occurs in the AR, although they cover less than 10% of the area of the globe. The large amount of WV that is transported can lead to heavy precipitation and floods. An automated ARs detection algorithm is used for the North Atlantic Ocean Basin allowing the identification and a comprehensive characterization of the major AR events that affected the Iberian Peninsula over the 1948-2012 period. The extreme precipitation days in the Iberian Peninsula were assessed recently by us (Ramos et al., 2014) and their association (or not) with the occurrence of AR is analyzed in detail here. The extreme precipitation days are ranked by their magnitude and are obtained after considering 1) the area affected and 2) the precipitation intensity. Different rankings are presented for the entire Iberian Peninsula, Portugal and also for the six largest Iberian river basins (Minho, Duero, Tagus, Guadiana, Guadalquivir and Ebro) covering the 1950-2008 period (Ramos et al., 2014). Results show that the association between ARs and extreme precipitation days in the western domains (Portugal

  10. Identifying Stratospheric Air Intrusions and Associated Hurricane-Force Wind Events over the North Pacific Ocean

    Science.gov (United States)

    Malloy, Kelsey; Folmer, Michael J.; Phillips, Joseph; Sienkiewicz, Joseph M.; Berndt, Emily

    2017-01-01

    Motivation: Ocean data is sparse: reliance on satellite imagery for marine forecasting; Ocean Prediction Center (OPC) –“mariner’s weather lifeline”. Responsible for: Pacific, Atlantic, Pacific Alaska surface analyses –24, 48, 96 hrs.; Wind & wave analyses –24, 48, 96 hrs.; Issue warnings, make decisions, Geostationary Operational Environmental Satellite –R Series (now GOES-16), Compared to the old GOES: 3 times spectral resolution, 4 times spatial resolution, 5 times faster coverage; Comparable to Japanese Meteorological Agency’s Himawari-8, used a lot throughout this research. Research Question: How can integrating satellite data imagery and derived products help forecasters improve prognosis of rapid cyclogenesis and hurricane-force wind events? Phase I –Identifying stratospheric air intrusions: Water Vapor –6.2, 6.9, 7.3 micron channels; Airmass RGB Product; AIRS, IASI, NUCAPS total column ozone and ozone anomaly; ASCAT (A/B) and AMSR-2 wind data.

  11. Predictive Control of Wind Turbine for Load Reduction during Ramping Events

    DEFF Research Database (Denmark)

    Liu, Weipeng; Li, Changgang; Liu, Yutian

    2017-01-01

    With increasing penetration of wind power, the impact of its intermittence and volatility on power systems becomes more severe. A predictive control strategy for wind turbines (WTs) is proposed to deal with wind power ramping events and reduce WT load on the blades. The blade load model is based...... on the Blade Element Momentum (BEM) theory. The generator speed and pitch angle are simultaneously regulated to realize the control objectives. A two-stage optimization is designed in order to reduce the computational complexity. The objectives of the first stage are minimizing the ramping rate and maximizing...... the power generation. A trade-off is made between the two contradictory objectives by setting weight coefficients. The second stage reduces the WT load and meanwhile guarantees the power reference from the first stage is tracked. Feedback is designed based on neural network prediction to compensate...

  12. Prediction of solar energetic particle event histories using real-time particle and solar wind measurements

    Science.gov (United States)

    Roelof, E. C.; Gold, R. E.

    1978-01-01

    The comparatively well-ordered magnetic structure in the solar corona during the decline of Solar Cycle 20 revealed a characteristic dependence of solar energetic particle injection upon heliographic longitude. When analyzed using solar wind mapping of the large scale interplanetary magnetic field line connection from the corona to the Earth, particle fluxes display an approximately exponential dependence on heliographic longitude. Since variations in the solar wind velocity (and hence the coronal connection longitude) can severely distort the simple coronal injection profile, the use of real-time solar wind velocity measurements can be of great aid in predicting the decay of solar particle events. Although such exponential injection profiles are commonplace during 1973-1975, they have also been identified earlier in Solar Cycle 20, and hence this structure may be present during the rise and maximum of the cycle, but somewhat obscured by greater temporal variations in particle injection.

  13. Impacts of extreme events of drought and flood on local communities of Amazon basin

    Science.gov (United States)

    Borma, L. D.; Roballo, S.; Zauner, M.; Nascimento, V. F.

    2013-05-01

    The analysis of drought events of 1997/98, 2005 and 2010 in terms of discharge anomalies in the Amazon region confirmed previous findings, such as: a) the influence of the El Niño in more than one hydrological year; b) the increase of the influence of the Atlantic Multidecadal Oscillation of 1998, 2005 and 2010 drought events; c) the low levels of discharge observed in the 2010 drought are attributed to the association of discharge anomalies of the northern and southern tributaries of the Amazon river, and d) the 2010 drought lasted around 1 month (August to November) more than the other drought events analized here. The riverine communities located along the river banks of Solimões/Amazonas suit their economic activities to the oscillation of the water level. In general, low water periods favor the access to important sources of food such as fish and livestock, still allowing crop cultivation on fertile agricultural areas of the floodplain. Conversely, periods of drought increases the difficulties of transport and drinking water supply. During the high water, access to the main food supply (described above) are greatly hampered. However, the floods are recognized as an importance process of natural fertilization. Thus, despite the political, social and economic shortcomings, the local community has, since the pre-colonial period, learned to get the best of each season, providing local, regional and national markets with varzea products. During periods of extreme weather, however, the advantages of each season appear to be reduced, and the drawbacks increased. In fact, during flooding extremes, the access to primary sources of food is hampered by a long period of time and families find themselves forced to leave their homes, eventually losing them. Analysis of flow data to the extreme flooding of 2009, indicate a period of about 6 months of positive anomalies discharge (occurring mainly during high water). At the same time, Civil Defense data points to a

  14. Modernizing Distribution System Restoration to Achieve Grid Resiliency Against Extreme Weather Events: An Integrated Solution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chen; Wang, Jianhui; Ton, Dan

    2017-07-01

    Recent severe power outages caused by extreme weather hazards have highlighted the importance and urgency of improving the resilience of the electric power grid. As the distribution grids still remain vulnerable to natural disasters, the power industry has focused on methods of restoring distribution systems after disasters in an effective and quick manner. The current distribution system restoration practice for utilities is mainly based on predetermined priorities and tends to be inefficient and suboptimal, and the lack of situational awareness after the hazard significantly delays the restoration process. As a result, customers may experience an extended blackout, which causes large economic loss. On the other hand, the emerging advanced devices and technologies enabled through grid modernization efforts have the potential to improve the distribution system restoration strategy. However, utilizing these resources to aid the utilities in better distribution system restoration decision-making in response to extreme weather events is a challenging task. Therefore, this paper proposes an integrated solution: a distribution system restoration decision support tool designed by leveraging resources developed for grid modernization. We first review the current distribution restoration practice and discuss why it is inadequate in response to extreme weather events. Then we describe how the grid modernization efforts could benefit distribution system restoration, and we propose an integrated solution in the form of a decision support tool to achieve the goal. The advantages of the solution include improving situational awareness of the system damage status and facilitating survivability for customers. The paper provides a comprehensive review of how the existing methodologies in the literature could be leveraged to achieve the key advantages. The benefits of the developed system restoration decision support tool include the optimal and efficient allocation of repair

  15. Extreme Events in the tropics - Hurricane Manuel and La Pintada Landslide

    Science.gov (United States)

    Ramirez-Herrera, M. T.; Gaidzik, K.

    2016-12-01

    Extreme events in regions of humid-warm tropical climate are repeatedly causing loss of life and economic devastation. Deadly landslides are commonly triggered by extreme storms. Many of them originate on mountain slopes along river systems in areas often populated, increasing the risk to human settlements, theirs activities, and the local envrionment. Frequently hit by hurricanes and tropical cyclones the mountainous areas of Guerrero in southern Mexico are particularly prone to landslide hazard. On 16 September 2013 a huge landslide caused 71 fatalities and destroyed a large part of the La Pintada village. The landslide initiated after extreme rainfall caused by Hurricane Manuel. We performed a post-landslide field survey, applied remote sensing techniques using LIDAR DEM and images, digital models derived from Structure from Motion (SfM), satellite images, orthophotomaps, eyewitness accounts, geotechnical laboratory tests of slope material, and slope stability analysis to examine physical characteristics and processes that influenced the failure of La Pintada landslide. Our results indicate that anomalous precipitation producing oversaturation of soil was the direct factor that initiated the deep-sited La Pintada landslide, in an area where big landslides have occurred in the past. We hypothesized that climate change has contributed to the short recurrence period of extreme meteorological events that trigger great landslides in this tropical area. The lack of high and dense vegetation on La Pintada slope, resulting in increased soil erosion, acted as a preparatory causal factor for landsliding, making the slope more prone to mass wasting. It is likely that human activity (including deforestation activities) also contributed to the decrease of slope stability by cutting the toe of the slope to build houses. Seismic activity, even if did not contribute directly to the initiation of the La Pintada landslide, might have promoted the decrease in slope stability in

  16. Tambora and the mackerel year: Phenology and fisheries during an extreme climate event

    Science.gov (United States)

    Alexander, Karen E.; Leavenworth, William B.; Willis, Theodore V.; Hall, Carolyn; Mattocks, Steven; Bittner, Steven M.; Klein, Emily; Staudinger, Michelle; Bryan, Alexander; Rosset, Julianne; Carr, Benjamin H.; Jordaan, Adrian

    2017-01-01

    Global warming has increased the frequency of extreme climate events, yet responses of biological and human communities are poorly understood, particularly for aquatic ecosystems and fisheries. Retrospective analysis of known outcomes may provide insights into the nature of adaptations and trajectory of subsequent conditions. We consider the 1815 eruption of the Indonesian volcano Tambora and its impact on Gulf of Maine (GoM) coastal and riparian fisheries in 1816. Applying complex adaptive systems theory with historical methods, we analyzed fish export data and contemporary climate records to disclose human and piscine responses to Tambora’s extreme weather at different spatial and temporal scales while also considering sociopolitical influences. Results identified a tipping point in GoM fisheries induced by concatenating social and biological responses to extreme weather. Abnormal daily temperatures selectively affected targeted fish species—alewives, shad, herring, and mackerel—according to their migration and spawning phenologies and temperature tolerances. First to arrive, alewives suffered the worst. Crop failure and incipient famine intensified fishing pressure, especially in heavily settled regions where dams already compromised watersheds. Insufficient alewife runs led fishers to target mackerel, the next species appearing in abundance along the coast; thus, 1816 became the “mackerel year.” Critically, the shift from riparian to marine fisheries persisted and expanded after temperatures moderated and alewives recovered. We conclude that contingent human adaptations to extraordinary weather permanently altered this complex system. Understanding how adaptive responses to extreme events can trigger unintended consequences may advance long-term planning for resilience in an uncertain future. PMID:28116356

  17. The Evolution and Motion of Transient Events in The Solar Wind-Magnetosphere Interaction

    Science.gov (United States)

    Collado-Vega, Yaireska Marie

    Instabilities in the solar wind-magnetosphere interaction govern the entry of solar wind particles into the Earth's magnetosphere. These particles could ultimately be responsible for serious damage to our current technological systems. I use simulations and observations to investigate two kinds of instabilities that occur during unsteady interaction, magnetopause vortices and bursty reconnection resulting in flux transfer events (FTEs). For the magnetopause vortices analysis, magnetohydrodynamic (MHD) simulations were generated. Two cases were run, one for a nominal speed solar wind (360 km/s) and another for a high speed solar wind (700 km/s). Both cases had an abrupt change in the interplanetary magnetic field (IMF) orientation; 15 minutes being southward, -5 nT, and then turning northward, +5 nT, for two hours. No other parameter was changed in these runs. Using an IDL-based tool, I visualized the 2D and 3D nature of the vortices and compared my results with those obtained previously by Collado-Vega et al. (2007) who studied vortices using simulated MHD data initiated by real solar wind conditions. The characteristics of the vortices formed under dynamic solar wind conditions are consistent with vortices driven by surface waves on the magnetopause, like the Kelvin-Helmholtz (KH) instability. However, the majority of those developed under steady solar wind conditions suggest otherwise, especially the ones that developed on the dayside which are believed to be formed by the convection pattern created by high latitude reconnection. For the study of FTEs, I focus on Cluster satellite magnetopause encounters. The Cluster satellites orbit in a tetrahedral formation in near-polar orbits. I identified FTEs in Cluster observations from 2002 to 2003, and a total of 109 events were counted in the data set. A comparison of the analytical and global MHD simulation results indicates that most of the events form by component reconnection along a tilted subsolar reconnection

  18. The severe zonda wind event of 11 July 2006 east of the Andes Cordillera (Argentine): a case study using the BRAMS model

    Science.gov (United States)

    Norte, Federico Augusto; Ulke, Ana Graciela; Simonelli, Silvia Carmen; Viale, Maximiliano

    2008-11-01

    The zonda is a wind that exhibits the so-called foehn effect: a warm, dry, strong wind related to adiabatic compression upon descending in the lee of the Andes. This phenomenon occurs mostly in winter and spring over the entire length of the extratropical Andes. It is frequently detected near the cities of Mendoza and San Juan, the most important urban regions of western Argentina. The aim of this work is to understand why a zonda wind event, occurring on 11 July 2006, reached and maintained the higher category Z4 during several hours. A secondary aim is to evaluate the ability of a Brazilian regional atmospheric modeling system (BRAMS) model to represent the features of this extreme episode and to explore if it can be used to predict a zonda event. The difference found with respect to other severe zonda wind episodes analyzed was that the wind registered the highest category (Z4) with extreme gusts during a long period. This condition was registered in particular on southern plain areas of San Juan province. The phenomenon had a great impact on the community, with residences and buildings being affected or destroyed, trees being felled, power supply and communications being shutdown, and several rural and urban fires being reported. The event was characterized through surface and upper-level information and model results. The synoptic surface and upper-air conditions were those typically associated with a severe zonda wind occurrence: a surface cold front approaching the region, driven by a 500 hPa trough, a strong upper-air jet stream, and a deep low-pressure surface system at higher latitudes over the Atlantic Ocean. The North West Argentine Low in central west Argentina during the following hours could be observed centered approximately at 31°S 66°W. in a few lower latitude than the location observed by National Center of Environmental Prediction (NCEP) reanalysis. On the other hand, it is the authors’ impression that the BRAMS model achieved an acceptable

  19. Interpreting Climate Model Projections of Extreme Weather Events for Decision Makers

    Science.gov (United States)

    Vavrus, S. J.; Notaro, M.

    2014-12-01

    The proliferation of output from climate model ensembles, such as CMIP3 and CMIP5, has greatly expanded access to future projections, but there is no accepted blueprint for how this data should be interpreted. Decision makers are thus faced with difficult questions when trying to utilize such information: How reliable are the multi-model mean projections? How should the changes simulated by outlier models be treated? How can raw projections of temperature and precipitation be translated into probabilities? The multi-model average is often regarded as the most accurate single estimate of future conditions, but higher-order moments representing the variance and skewness of the distribution of projections provide important information about uncertainty. We have analyzed a set of statistically downscaled climate model projections from the CMIP3 archive to conduct an assessment of extreme weather events at a level designed to be relevant for decision makers. Our analysis uses the distribution of 13 GCM projections to derive the inter-model standard deviation (and coefficient of variation, COV), skewness, and percentile ranges for simulated changes in extreme heat, cold, and precipitation during the middle and late 21st century for the A1B emissions scenario. These metrics help to establish the overall confidence level across the entire range of projections (via the inter-model COV), relative confidence in the simulated high-end versus low-end changes (via skewness), and probabilistic uncertainty bounds derived from a bootstrapping technique. Over our analysis domain centered on the United States Midwest, some primary findings include: (1) Greater confidence in projections of less extreme cold than more extreme heat and intense precipitation, (2) Greater confidence in the low-end than high-end projections of extreme heat, a