WorldWideScience

Sample records for extreme wave heights

  1. Statistical analysis on extreme wave height

    Digital Repository Service at National Institute of Oceanography (India)

    Teena, N.V.; SanilKumar, V.; Sudheesh, K.; Sajeev, R.

    the distributions fitted to the GEV with annual maximum approach and GPD with peaks over threshold approach have indicated that both GEV and GPD models gave similar or comparable wave height for the study area since there is no multiple storm event in a year...

  2. Prediction of Extreme Significant Wave Height from Daily Maxima

    Institute of Scientific and Technical Information of China (English)

    刘德辅; 李华军; 温书勤; 宋艳; 王树青

    2001-01-01

    For prediction of the extreme significant wave height in the ocean areas where long term wave data are not available, the empirical method of extrapolating short term data (1 ~ 3 years) is used in design practice. In this paper two methods are proposed to predict extreme significant wave height based on short-term daily maxima. According to the daa recorded by the Oceanographic Station of Liaodong Bay at the Bohai Sea, it is supposed that daily maximum wave heights are statistically independent. The data show that daily maximum wave heights obey log-normal distribution, and that the numbers of daily maxima vary from year to year, obeying binomial distribution. Based on these statistical characteristics, the binomial-log-normal compound extremum distribution is derived for prediction of extreme significant wave heights (50~ 100 years). For examination of its accuracy and validity, the prediction of extreme wave heights is based on 12 years′ data at this station, and based on each 3 years′ data respectively. The results show that with consideration of confidence intervals, the predicted wave heights based on 3 years′ data are very close to those based on 12 years′data. The observed data in some ocean areas in the Atlantic Ocean and the North Sea show it is not correct to assume that daily maximum wave heights are statistically independent; they are subject to Markov chain condition, obeying log-normal distribution. In this paper an analytical method is derived to predict extreme wave heights in these cases. A comparison of the computations shows that the difference between the extreme wave heights based on the assumption that daily maxima are statistically independent and that they are subject to Markov Chain condition is smaller than 10%.

  3. Space-time extreme wind waves: Analysis and prediction of shape and height

    Science.gov (United States)

    Alvise, Benetazzo; Francesco, Barbariol; Filippo, Bergamasco; Sandro, Carniel; Mauro, Sclavo

    2017-05-01

    In this study, we present the analysis of the temporal profile and height of space-time (ST) extreme wind waves. Wave data were gathered from an observational ST sample of sea surface elevations collected during an active sea state, and they were examined to detect the highest waves (exceeding the rogue wave threshold) of specific 3D wave groups close to the apex of their development. Two different investigations are conducted. Firstly, local maximum elevations of the groups are examined within the framework of statistical models for ST extreme waves, and compared with observations and predictions of maxima derived by one-point time series of sea surface elevations. Secondly, the temporal profile near the maximum wave crests is analyzed and compared with the expectations of the linear and second-order nonlinear extension of the Quasi-Determinism (QD) theory. Our goal is to verify, with real sea data, to what extent, one can estimate the shape and the crest-to-trough height of near-focusing large 3D wave groups using the QD and ST extreme model results. From this study, it emerges that the elevations close to the crest apex are narrowly distributed around a mean profile, whilst a larger dispersion is observed away from the maximum elevation. Yet the QD model furnishes, on average, a fair prediction of the maximum wave heights, especially when nonlinearities are taken into account. Moreover, we discuss how the combination of ST extreme and QD model predictions allows establishing, for a given sea condition, the portrait of waves with very large crest height. Our results show that these theories have the potential to be implemented in a numerical spectral model for wave extreme prediction.

  4. An extreme value model for maximum wave heights based on weather types

    Science.gov (United States)

    Rueda, Ana; Camus, Paula; Méndez, Fernando J.; Tomás, Antonio; Luceño, Alberto

    2016-02-01

    Extreme wave heights are climate-related events. Therefore, special attention should be given to the large-scale weather patterns responsible for wave generation in order to properly understand wave climate variability. We propose a classification of weather patterns to statistically downscale daily significant wave height maxima to a local area of interest. The time-dependent statistical model obtained here is based on the convolution of the stationary extreme value model associated to each weather type. The interdaily dependence is treated by a climate-related extremal index. The model's ability to reproduce different time scales (daily, seasonal, and interannual) is presented by means of its application to three locations in the North Atlantic: Mayo (Ireland), La Palma Island, and Coruña (Spain).

  5. Modeling nonstationary extreme wave heights in present and future climate of Greek Seas

    Directory of Open Access Journals (Sweden)

    Panagiota Galiatsatou

    2016-01-01

    Full Text Available In this study the generalized extreme value (GEV distribution function was used to assess nonstationarity in annual maximum wave heights for selected locations in the Greek Seas, both in the present and future climate. The available significant wave height data were divided into groups corresponding to the present period (1951 to 2000, a first future period (2001 to 2050, and a second future period (2051 to 2100. For each time period, the parameters of the GEV distribution were specified as functions of time-varying covariates and estimated using the conditional density network (CDN. For each location and selected time period, a total number of 29 linear and nonlinear models were fitted to the wave data, for a given combination of covariates. The covariates used in the GEV-CDN models consisted of wind fields resulting from the Regional Climate Model version 3 (RegCM3 developed by the International Center for Theoritical Physics (ICTP with a spatial resolution of 10 km × 10 km, after being processed using principal component analysis (PCA. The results obtained from the best fitted models in the present and future periods for each location were compared, revealing different patterns of relationships between wind components and extreme wave height quantiles in different parts of the Greek Seas and different periods. The analysis demonstrates an increase of extreme wave heights in the first future period as compared with the present period, causing a significant threat to Greek coastal areas in the North Aegean Sea and the Ionian Sea.

  6. Modeling extreme wave heights from laboratory experiments with the nonlinear Schrödinger equation

    Science.gov (United States)

    Zhang, H. D.; Guedes Soares, C.; Cherneva, Z.; Onorato, M.

    2014-04-01

    Spatial variation of nonlinear wave groups with different initial envelope shapes is theoretically studied first, confirming that the simplest nonlinear theoretical model is capable of describing the evolution of propagating wave packets in deep water. Moreover, three groups of laboratory experiments run in the wave basin of CEHIPAR (Canal de Experiencias Hidrodinámicas de El Pardo, known also as El Pardo Model Basin) was founded in 1928 by the Spanish Navy. are systematically compared with the numerical simulations of the nonlinear Schrödinger equation. Although a little overestimation is detected, especially in the set of experiments characterized by higher initial wave steepness, the numerical simulation still displays a high degree of agreement with the laboratory experiments. Therefore, the nonlinear Schrödinger equation catches the essential characteristics of the extreme waves and provides an important physical insight into their generation. The modulation instability, resulting from the quasi-resonant four-wave interaction in a unidirectional sea state, can be indicated by the coefficient of kurtosis, which shows an appreciable correlation with the extreme wave height and hence is used in the modified Edgeworth-Rayleigh distribution. Finally, some statistical properties on the maximum wave heights in different sea states have been related with the initial Benjamin-Feir index.

  7. Non-conventional modeling of extreme significant wave height through random sets

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi; LAM Jasmine Siu Lee

    2014-01-01

    The analysis and design of offshore structures necessitates the consideration of wave loads. Realistic model-ing of wave loads is particularly important to ensure reliable performance of these structures. Among the available methods for the modeling of the extreme significant wave height on a statistical basis, the peak over threshold method has attracted most attention. This method employs Poisson process to character-ize time-varying properties in the parameters of an extreme value distribution. In this paper, the peak over threshold method is reviewed and extended to account for subjectivity in the modeling. The freedom in selecting the threshold and the time span to separate extremes from the original time series data is incorpo-rated as imprecision in the model. This leads to an extension from random variables to random sets in the probabilistic model for the extreme significant wave height. The extended model is also applied to different periods of the sampled data to evaluate the significance of the climatic conditions on the uncertainties of the parameters.

  8. A fuzzy quantification approach of uncertainties in an extreme wave height modeling

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi; CAO Yingyi

    2015-01-01

    A non-traditional fuzzy quantification method is presented in the modeling of an extreme significant wave height. First, a set of parametric models are selected to fit time series data for the significant wave height and the extrapolation for extremes are obtained based on high quantile estimations. The quality of these results is compared and discussed. Then, the proposed fuzzy model, which combines Poisson process and gener-alized Pareto distribution (GPD) model, is applied to characterizing the wave extremes in the time series data. The estimations for a long-term return value are considered as time-varying as a threshold is regarded as non-stationary. The estimated intervals coupled with the fuzzy theory are then introduced to construct the probability bounds for the return values. This nontraditional model is analyzed in comparison with the traditional model in the degree of conservatism for the long-term estimate. The impact on the fuzzy bounds of extreme estimations from the non stationary effect in the proposed model is also investigated.

  9. A Refined Method for Estimating the Annual Extreme Wave Heights at A Project Site

    Institute of Scientific and Technical Information of China (English)

    徐德伦; 范海梅; 张军

    2003-01-01

    This paper presents a refined method for estimating the annual extreme wave heights at a coastal or offshore project site on the basis of the data acquired at some nearby routine hydrographic stations. This method is based on the orthogonality principle in linear mean square estimation of stochastic processes. The error of the method is analyzed and compared with that of the conventional method. It is found that the method is able to effectively reduce the error so long as some feasible measures are adopted. A simulated test of the method has been conducted in a large-scale wind-wave flume. The test results are in good agreement with those given by theoretical error analysis. A scheme to implement the method is proposed on the basis of error analysis. The scheme is so designed as to reduce the estimation error as far as possible. This method is also suitable to utilizing satellite wave data for the estimation.

  10. Encounter Probability of Significant Wave Height

    DEFF Research Database (Denmark)

    Liu, Z.; Burcharth, H. F.

    The determination of the design wave height (often given as the significant wave height) is usually based on statistical analysis of long-term extreme wave height measurement or hindcast. The result of such extreme wave height analysis is often given as the design wave height corresponding to a c...

  11. A Maximum-Entropy Compound Distribution Model for Extreme Wave Heights of Typhoon-Affected Sea Areas

    Institute of Scientific and Technical Information of China (English)

    WANG Li-ping; SUN Xiao-guang; LU Ke-bo; XU De-lun

    2012-01-01

    A new compound distribution model for extreme wave heights of typhoon-affected sea areas is proposed on the basis of the maximum-entropy principle.The new model is formed by nesting a discrete distribution in a continuous one,having eight parameters which can be determined in terms of observed data of typhoon occurrence-frequency and extreme wave heights by numerically solving two sets of equations derived in this paper.The model is examined by using it to predict the N-year return-periodwave height at two hydrology stations in the Yellow Sea,and the predicted results are compared with those predicted by use of some other compound distribution models.Examinations and comparisons show that the model has some advantages for predicting the N-year return-period wave height in typhoon-affected sea areas.

  12. Extreme Value Predictions using Monte Carlo Simulations with Artificially Increased Wave Height

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2010-01-01

    accurate. In the present paper the generality of this relation is investigated, considering the probability that the design wave-induced hogging bending moment in a container ship is exceeded, accounting for both non-linear wave load effects (bow flare slamming) and hull flexibility (whipping vibrations)....... accurate result can be obtained by Monte Carlo simulations, but the necessary length of the time domain simulations for very low out-crossing rates might be prohibitively long. The present paper investigates whether the FORM property regarding the dependency of the reliability index on the significant wave...... to the actual significant wave height using this property. Previous results have been presented by Tonguc and Söding (1986), albeit in a more empirical way, and by Jensen (2010), where, considering the overturning of a jack-up rig, a slightly more general relation of the type ß=a(r)+b(r)/Hs was found to be very...

  13. Characterization of Wave Climate at Hanstholm Location with Focus on the Ratio between Average and Extreme Waves Heights

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Frigaard, Peter; Stratigaki, V.

    2011-01-01

    differences between the extreme wave conditions in which the device is designed to survive and the average wave conditions for which the device is to be optimised. Indeed, the ratio between extreme loads and operational loads has been identified to be a fundamental factor for the design and the cost analysis......The wave energy sector is in need of showing positive experience from the real sea trial in order to prove its feasibility. For this purpose, an accurate knowledge of wave conditions at the selected location of installation is fundamental. A design challenge for wave energy devices is the large...

  14. Encounter Probability of Individual Wave Height

    DEFF Research Database (Denmark)

    Liu, Z.; Burcharth, H. F.

    1998-01-01

    wave height corresponding to a certain exceedence probability within a structure lifetime (encounter probability), based on the statistical analysis of long-term extreme significant wave height. Then the design individual wave height is calculated as the expected maximum individual wave height...... associated with the design significant wave height, with the assumption that the individual wave heights follow the Rayleigh distribution. However, the exceedence probability of such a design individual wave height within the structure lifetime is unknown. The paper presents a method for the determination...... of the design individual wave height corresponding to an exceedence probability within the structure lifetime, given the long-term extreme significant wave height. The method can also be applied for estimation of the number of relatively large waves for fatigue analysis of constructions....

  15. Extremal periodic wave profiles

    Directory of Open Access Journals (Sweden)

    E. van Groesen

    2007-01-01

    Full Text Available As a contribution to deterministic investigations into extreme fluid surface waves, in this paper wave profiles of prescribed period that have maximal crest height will be investigated. As constraints the values of the momentum and energy integrals are used in a simplified description with the KdV model. The result is that at the boundary of the feasible region in the momentum-energy plane, the only possible profiles are the well known cnoidal wave profiles. Inside the feasible region the extremal profiles of maximal crest height are "cornered" cnoidal profiles: cnoidal profiles of larger period, cut-off and periodically continued with the prescribed period so that at the maximal crest height a corner results.

  16. Decadal variability of extreme wave height representing storm severity in the northeast Atlantic and North Sea since the foundation of the Royal Society

    Science.gov (United States)

    Santo, H.; Taylor, P. H.; Gibson, R.

    2016-09-01

    Long-term estimation of extreme wave height remains a key challenge because of the short duration of available wave data, and also because of the possible impact of climate variability on ocean waves. Here, we analyse storm-based statistics to obtain estimates of extreme wave height at locations in the northeast Atlantic and North Sea using the NORA10 wave hindcast (1958-2011), and use a 5 year sliding window to examine temporal variability. The decadal variability is correlated to the North Atlantic oscillation and other atmospheric modes, using a six-term predictor model incorporating the climate indices and their Hilbert transforms. This allows reconstruction of the historic extreme climate back to 1661, using a combination of known and proxy climate indices. Significant decadal variability primarily driven by the North Atlantic oscillation is observed, and this should be considered for the long-term survivability of offshore structures and marine renewable energy devices. The analysis on wave climate reconstruction reveals that the variation of the mean, 99th percentile and extreme wave climates over decadal time scales for locations close to the dominant storm tracks in the open North Atlantic are comparable, whereas the wave climates for the rest of the locations including the North Sea are rather different.

  17. Decadal variability of extreme wave height representing storm severity in the northeast Atlantic and North Sea since the foundation of the Royal Society.

    Science.gov (United States)

    Santo, H; Taylor, P H; Gibson, R

    2016-09-01

    Long-term estimation of extreme wave height remains a key challenge because of the short duration of available wave data, and also because of the possible impact of climate variability on ocean waves. Here, we analyse storm-based statistics to obtain estimates of extreme wave height at locations in the northeast Atlantic and North Sea using the NORA10 wave hindcast (1958-2011), and use a 5 year sliding window to examine temporal variability. The decadal variability is correlated to the North Atlantic oscillation and other atmospheric modes, using a six-term predictor model incorporating the climate indices and their Hilbert transforms. This allows reconstruction of the historic extreme climate back to 1661, using a combination of known and proxy climate indices. Significant decadal variability primarily driven by the North Atlantic oscillation is observed, and this should be considered for the long-term survivability of offshore structures and marine renewable energy devices. The analysis on wave climate reconstruction reveals that the variation of the mean, 99th percentile and extreme wave climates over decadal time scales for locations close to the dominant storm tracks in the open North Atlantic are comparable, whereas the wave climates for the rest of the locations including the North Sea are rather different.

  18. Scenario based tsunami wave height estimation towards hazard evaluation for the Hellenic coastline and examples of extreme inundation zones in South Aegean

    Science.gov (United States)

    Melis, Nikolaos S.; Barberopoulou, Aggeliki; Frentzos, Elias; Krassanakis, Vassilios

    2016-04-01

    A scenario based methodology for tsunami hazard assessment is used, by incorporating earthquake sources with the potential to produce extreme tsunamis (measured through their capacity to cause maximum wave height and inundation extent). In the present study we follow a two phase approach. In the first phase, existing earthquake hazard zoning in the greater Aegean region is used to derive representative maximum expected earthquake magnitude events, with realistic seismotectonic source characteristics, and of greatest tsunamigenic potential within each zone. By stacking the scenario produced maximum wave heights a global maximum map is constructed for the entire Hellenic coastline, corresponding to all expected extreme offshore earthquake sources. Further evaluation of the produced coastline categories based on the maximum expected wave heights emphasizes the tsunami hazard in selected coastal zones with important functions (i.e. touristic crowded zones, industrial zones, airports, power plants etc). Owing to its proximity to the Hellenic Arc, many urban centres and being a popular tourist destination, Crete Island and the South Aegean region are given a top priority to define extreme inundation zoning. In the second phase, a set of four large coastal cities (Kalamata, Chania, Heraklion and Rethymno), important for tsunami hazard, due i.e. to the crowded beaches during the summer season or industrial facilities, are explored towards preparedness and resilience for tsunami hazard in Greece. To simulate tsunamis in the Aegean region (generation, propagation and runup) the MOST - ComMIT NOAA code was used. High resolution DEMs for bathymetry and topography were joined via an interface, specifically developed for the inundation maps in this study and with similar products in mind. For the examples explored in the present study, we used 5m resolution for the topography and 30m resolution for the bathymetry, respectively. Although this study can be considered as

  19. Statistical distribution of nonlinear random wave height

    Institute of Scientific and Technical Information of China (English)

    HOU; Yijun; GUO; Peifang; SONG; Guiting; SONG; Jinbao; YIN; Baoshu; ZHAO; Xixi

    2006-01-01

    A statistical model of random wave is developed using Stokes wave theory of water wave dynamics. A new nonlinear probability distribution function of wave height is presented. The results indicate that wave steepness not only could be a parameter of the distribution function of wave height but also could reflect the degree of wave height distribution deviation from the Rayleigh distribution. The new wave height distribution overcomes the problem of Rayleigh distribution that the prediction of big wave is overestimated and the general wave is underestimated. The prediction of small probability wave height value of new distribution is also smaller than that of Rayleigh distribution. Wave height data taken from East China Normal University are used to verify the new distribution. The results indicate that the new distribution fits the measurements much better than the Rayleigh distribution.

  20. Estimation of design wave heights based on exterme value statistics for Kakinada coast, Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Chandramohan, P.; Nayak, B.U.; Raju, N.S.N.

    lower values, Gumbel distribution appears to estimate the extreme wave height reasonably well and gives a realistic value for the study region. The extreme wave estimated based only on the monsoon wave data deviated significantly from the estimate based...

  1. Challenges in Defining Tsunami Wave Heights

    Science.gov (United States)

    Dunbar, Paula; Mungov, George; Sweeney, Aaron; Stroker, Kelly; Arcos, Nicolas

    2017-08-01

    The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) and co-located World Data Service for Geophysics maintain the global tsunami archive consisting of the historical tsunami database, imagery, and raw and processed water level data. The historical tsunami database incorporates, where available, maximum wave heights for each coastal tide gauge and deep-ocean buoy that recorded a tsunami signal. These data are important because they are used for tsunami hazard assessment, model calibration, validation, and forecast and warning. There have been ongoing discussions in the tsunami community about the correct way to measure and report these wave heights. It is important to understand how these measurements might vary depending on how the data were processed and the definition of maximum wave height. On September 16, 2015, an 8.3 M w earthquake located 48 km west of Illapel, Chile generated a tsunami that was observed all over the Pacific region. We processed the time-series water level data for 57 coastal tide gauges that recorded this tsunami and compared the maximum wave heights determined from different definitions. We also compared the maximum wave heights from the NCEI-processed data with the heights reported by the NOAA Tsunami Warning Centers. We found that in the near field different methods of determining the maximum tsunami wave heights could result in large differences due to possible instrumental clipping. We also found that the maximum peak is usually larger than the maximum amplitude (½ peak-to-trough), but the differences for the majority of the stations were definition (maximum peak or amplitude) would have validated the forecasts issued by the NOAA Tsunami Warning Centers. Since there is currently only one field in the NCEI historical tsunami database to store the maximum tsunami wave height for each tide gauge and deep-ocean buoy, NCEI will consider adding an additional field for the maximum

  2. Observed Statistics of Extreme Waves

    Science.gov (United States)

    2006-12-01

    9 Figure 5. An energy stealing wave as a solution to the NLS equation . (From: Dysthe and...shown that nonlinear interaction between four colliding waves can produce extreme wave behavior. He utilized the NLS equation in his numerical ...2000) demonstrated the formation of extreme waves using the Korteweg de Vries ( KdV ) equation , which is valid in shallow water. It was shown in the

  3. Extreme waves at Filyos, southern Black Sea

    Directory of Open Access Journals (Sweden)

    E. Bilyay

    2011-03-01

    Full Text Available A wave measurement project was carried out for a new port planned in Filyos, in the Western Black Sea region of Turkey. The measurement at a depth of 12.5 m lasted for a period of two years and 7949 records were obtained. During the analysis, it was noticed that there were 209 records in which H/Hs ratio was higher than 2.0. These higher waves in a record are called extreme waves in this study. Although the purpose of wave measurement is not to investigate extreme waves, it is believed that studying these unexpected waves could be interesting. Therefore, detailed statistical and spectral analyses on the extreme waves were done for the records. The analyses results show that the distribution of surface profiles of the records containing extreme waves deviates from Gaussian distribution with the negative skewness changing between –0.01 and –0.4 and with the high kurtosis in the range of 3.1–4.2. Although the probability of occurrence of the extreme waves is over-predicted by the Rayleigh distribution, a higher ratio of Hsrms indicates that the wave height distribution can be represented by Rayleigh. The average value of the slope of the frequency spectrum at the high frequency range is proportional to f–9 which is much steeper than the typical wind-wave frequency power law, f–4, –5. The directional spreading is measured with the parameter Smax and it is in the range of 5–70 for the extreme wave records. The wave and current interaction was also investigated and it was found that in most cases, extreme waves occur when the wave and the current are almost aligned. Furthermore, it is observed that extreme waves appear within a group of high waves.

  4. Estimation of Design Wave Heights for Coastal Sea Areas

    Institute of Scientific and Technical Information of China (English)

    LI Luping; HUANG Peiji; CHEN Xueying

    2000-01-01

    Based on historical wind fields in the Bohai Sea, a sequence of annual extremal wave heightsis produced with numerical wave models for deep-water and shallow water. The design wave heights with different return periods for the nearest deep-water point and for the shallow water point are estimated on the basis of p-Ⅲ type, Weibull distribution, and Gumbel distribution; and the corresponding values for the shallow water point are also estimated based on the HISWA model with the input of design wave heightsfor the nearest deep-water point. Comparisons between design wave heights for the shallow water point estimated on the basis of both distribution functions are HISWA model show that the results from differentdistribution functions scatter considerably, and influenced strongly by return periods; however, the results from the HISWA model are convergent, that is, the influence of the design wave heights estimated with different distribution functions for deep water is weakened, and the estimated values decrease for long returnperiods and increase for short return periods. Therefore, the numerical wave model gives a more stable result in shallow water design wave estimation because of the consideration of the effect of physical processes which occur in shallow water.

  5. Estimation of wind speed and wave height during cyclones

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Mandal, S.; AshokKumar, K.

    reported by ships were comparable. Empirical expressions relating wind speed, wave height and wave period to storm parameters were derived. The design wave height for different return periods was obtained by fitting a two-parameter Weibull distribution...

  6. Book review: Extreme ocean waves

    Science.gov (United States)

    Geist, Eric L.

    2017-01-01

    Extreme Ocean Waves”, edited by E. Pelinovsky and C. Kharif, second edition, Springer International Publishing, 2016; ISBN: 978-3-319-21574-7, ISBN (eBook): 978-3-319-21575-4The second edition of “Extreme Ocean Waves” published by Springer is an update of a collection of 12 papers edited by Efim Pelinovsky and Christian Kharif following the April 2007 meeting of the General Assembly of the European Geosciences Union. In this edition, three new papers have been added and three more have been substantially revised. Color figures are now included, which greatly aids in reading several of the papers, and is especially helpful in visualizing graphs as in the paper on symbolic computation of nonlinear wave resonance (Tobisch et al.). A note on terminology: extreme waves in this volume broadly encompass different types of waves, including deep-water and shallow-water rogue waves (which are alternatively termed freak waves), and internal waves. One new paper on tsunamis (Viroulet et al.) is now included in the second edition of this volume. Throughout the book, the reader will find a combination of laboratory, theoretical, and statistical/empirical treatment necessary for the complete examination of this subject. In the Introduction, the editors underscore the importance of studying extreme waves, documenting a dramatic instance of damaging extreme waves that recently occurred in 2014.

  7. Wave Characteristics and Extreme Parameters in the Bohai Sea

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-feng; WU Ke-jian; ZHOU Liang-ming; WU Lun-yu

    2012-01-01

    This paper is aimed at the whole Bohai Sea,as the complement and improvement of wave characteristics and extreme parameters.Wave fields were simulated in the Bohai Sea by using wave model SWAN from 1985 to 2004.The input data based on the hindcast of high-resolution wind fields from RAMS and water level fields from POM,which have been tested and verified well.Comparisons of significant wave heights between simulation and station observations show a good agreement in general.By statistical analysis,the wave characteristics such as significant wave heights,dominant wave directions and their seasonal variations are discussed.In addition,main wave extreme parameters and directional extreme values particularly for 100-year return period are investigated.

  8. Statistical distribution of nonlinear random wave height in shallow water

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Here we present a statistical model of random wave,using Stokes wave theory of water wave dynamics,as well as a new nonlinear probability distribution function of wave height in shallow water.It is more physically logical to use the wave steepness of shallow water and the factor of shallow water as the parameters in the wave height distribution.The results indicate that the two parameters not only could be parameters of the distribution function of wave height but also could reflect the degree of wave height distribution deviation from the Rayleigh distribution.The new wave height distribution overcomes the problem of Rayleigh distribution that the prediction of big wave is overestimated and the general wave is underestimated.The prediction of small probability wave height value of new distribution is also smaller than that of Rayleigh distribution.The effect of wave steepness in shallow water is similar to that in deep water;but the factor of shallow water lowers the wave height distribution of the general wave with the reduced factor of wave steepness.It also makes the wave height distribution of shallow water more centralized.The results indicate that the new distribution fits the in situ measurements much better than other distributions.

  9. Tsunami focusing and leading wave height

    Science.gov (United States)

    Kanoglu, Utku

    2016-04-01

    and Synolakis, 1994, Proc. R. Soc. A: Math. Phys. Eng. Sci., 445, 99-112) with a finite crest length, which is most common tsunami initial waveform. We fit earthquake initial waveform calculated through Okada (1985, Bull. Seismol. Soc. Am. 75, 1135-1040) to the N-wave form presented by Tadepalli and Synolakis (1994). First, we investigate focusing phenomena as presented by Kanoglu et al. (2013, Proc. R. Soc. A: Math. Phys. Eng. Sci., 469, 20130015) and compare our results with their non-dispersive and dispersive linear analytical solutions. We confirm focusing phenomena, which amplify the wave height in the leading depression side. We then study sequencing of an N-wave profile with a finite crest length. Our preliminary results show that sequencing is more pronounced on the leading depression side. We perform parametric study to understand sequencing in terms of N-wave, hence earthquake, parameters. We then discuss the results both in terms of tsunami focusing and leading wave amplitude. Acknowledgment: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 603839 (Project ASTARTE - Assessment, Strategy and Risk Reduction for Tsunamis in Europe).

  10. Small-scale open ocean currents have large effects on wind wave heights

    Science.gov (United States)

    Ardhuin, Fabrice; Gille, Sarah T.; Menemenlis, Dimitris; Rocha, Cesar B.; Rascle, Nicolas; Chapron, Bertrand; Gula, Jonathan; Molemaker, Jeroen

    2017-06-01

    Tidal currents and large-scale oceanic currents are known to modify ocean wave properties, causing extreme sea states that are a hazard to navigation. Recent advances in the understanding and modeling capability of open ocean currents have revealed the ubiquitous presence of eddies, fronts, and filaments at scales 10-100 km. Based on realistic numerical models, we show that these structures can be the main source of variability in significant wave heights at scales less than 200 km, including important variations down to 10 km. Model results are consistent with wave height variations along satellite altimeter tracks, resolved at scales larger than 50 km. The spectrum of significant wave heights is found to be of the order of 70>>2/>(g2>>2>) times the current spectrum, where >> is the spatially averaged significant wave height, >> is the energy-averaged period, and g is the gravity acceleration. This variability induced by currents has been largely overlooked in spite of its relevance for extreme wave heights and remote sensing.Plain Language SummaryWe show that the variations in currents at scales 10 to 100 km are the main source of variations in wave heights at the same scales. Our work uses a combination of realistic numerical models for currents and waves and data from the Jason-3 and SARAL/AltiKa satellites. This finding will be of interest for the investigation of extreme wave heights, remote sensing, and air-sea interactions. As an immediate application, the present results will help constrain the error budget of the up-coming satellite missions, in particular the Surface Water and Ocean Topography (SWOT) mission, and decide how the data will have to be processed to arrive at accurate sea level and wave measurements. It will also help in the analysis of wave measurements by the CFOSAT satellite.

  11. Long-term statistics of extreme tsunami height at Crescent City

    Science.gov (United States)

    Dong, Sheng; Zhai, Jinjin; Tao, Shanshan

    2017-06-01

    Historically, Crescent City is one of the most vulnerable communities impacted by tsunamis along the west coast of the United States, largely attributed to its offshore geography. Trans-ocean tsunamis usually produce large wave runup at Crescent Harbor resulting in catastrophic damages, property loss and human death. How to determine the return values of tsunami height using relatively short-term observation data is of great significance to assess the tsunami hazards and improve engineering design along the coast of Crescent City. In the present study, the extreme tsunami heights observed along the coast of Crescent City from 1938 to 2015 are fitted using six different probabilistic distributions, namely, the Gumbel distribution, the Weibull distribution, the maximum entropy distribution, the lognormal distribution, the generalized extreme value distribution and the generalized Pareto distribution. The maximum likelihood method is applied to estimate the parameters of all above distributions. Both Kolmogorov-Smirnov test and root mean square error method are utilized for goodness-of-fit test and the better fitting distribution is selected. Assuming that the occurrence frequency of tsunami in each year follows the Poisson distribution, the Poisson compound extreme value distribution can be used to fit the annual maximum tsunami amplitude, and then the point and interval estimations of return tsunami heights are calculated for structural design. The results show that the Poisson compound extreme value distribution fits tsunami heights very well and is suitable to determine the return tsunami heights for coastal disaster prevention.

  12. Synthesizing Waves from Animated Height Fields

    DEFF Research Database (Denmark)

    Nielsen, Michael Bang; Söderström, Andreas; Bridson, Robert

    2013-01-01

    for synthesizing Fourier-based ocean waves that match a previs input, allowing artists to quickly enhance the input wave animation with additional higher-frequency detail that moves consistently with the coarse waves, tweak the wave shapes to flatten troughs and sharpen peaks if desired (as is characteristic...

  13. Reaching new heights: comparing interpretation bias modification to exposure therapy for extreme height fear.

    Science.gov (United States)

    Steinman, Shari A; Teachman, Bethany A

    2014-06-01

    Cognitive models of anxiety disorders posit that biases in interpretation maintain, and potentially cause, anxiety. This study tested whether it is possible to decrease height fear symptoms through cognitive bias modification for interpretations (CBM-I). Additionally, the clinical utility of CBM-I was tested by comparing it to an already established treatment: exposure therapy. Extremely height fearful individuals (N = 110) participated in the study. Acrophobic symptoms were measured before and after 2 sessions of CBM-I and were compared to the standard treatment for acrophobia (exposure therapy), a combination of CBM-I and exposure therapy, and a Control condition. In line with hypotheses, participants in the 3 active conditions showed greater response to treatment than the Control condition in height-relevant interpretation bias, symptoms, and behavioral avoidance on a height stressor, with few differences between the active conditions. Further, symptom change was mediated by change in interpretation bias. Overall, findings suggest that different pathways to fear reduction (exposure vs. shifting interpretations) can lead to similar reductions in height fear. This study provides the first evidence that directly shifting cognitive processing, even with no therapist involvement, can reduce symptoms as effectively as the gold standard, therapist-directed exposure therapy. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  14. The difference between the joint probability distributions of apparent wave heights and periods and individual wave heights and periods

    Institute of Scientific and Technical Information of China (English)

    ZHENGGuizhen; JIANGXiulan; HANShuzong

    2004-01-01

    The joint distribution of wave heights and periods of individual waves is usually approximated by the joint distribution of apparent wave heights and periods. However there is difference between them. This difference is addressed and the theoretical joint distributions of apparent wave heights and periods due to Longuet-Higgins and Sun are modified to give more reasonable representations of the joint distribution of wave heights and periods of individual waves. The modification has overcome an inherent drawback of these joint PDFs that the mean wave period is infinite. A comparison is made between the modified formulae and the field data of Goda, which shows that the new formulae consist with the measurement better than their original counterparts.

  15. Wave Height Distribution Observed by Ships in the North Atlantic

    DEFF Research Database (Denmark)

    Olsen, Anders Smærup; Schrøter, Carsten; Jensen, Jørgen Juncher

    2005-01-01

    The analysis of almost 25000 observation of the wave height from ships in the North Atlantic shows that the encountered wave height distribution is significantly lower than the distribution provided by the classification societies for structural assessment. The joint probability distribution for ...... that the ship will maintain the service speed even in relatively severe sea. The distribution derived could be used to incorporate the effect of weather routing in a long term analysis of the wave loads on a ship....

  16. Statistical Analysis of Wave Climate Data Using Mixed Distributions and Extreme Wave Prediction

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-05-01

    Full Text Available The investigation of various aspects of the wave climate at a wave energy test site is essential for the development of reliable and efficient wave energy conversion technology. This paper presents studies of the wave climate based on nine years of wave observations from the 2005–2013 period measured with a wave measurement buoy at the Lysekil wave energy test site located off the west coast of Sweden. A detailed analysis of the wave statistics is investigated to reveal the characteristics of the wave climate at this specific test site. The long-term extreme waves are estimated from applying the Peak over Threshold (POT method on the measured wave data. The significant wave height and the maximum wave height at the test site for different return periods are also compared. In this study, a new approach using a mixed-distribution model is proposed to describe the long-term behavior of the significant wave height and it shows an impressive goodness of fit to wave data from the test site. The mixed-distribution model is also applied to measured wave data from four other sites and it provides an illustration of the general applicability of the proposed model. The methodologies used in this paper can be applied to general wave climate analysis of wave energy test sites to estimate extreme waves for the survivability assessment of wave energy converters and characterize the long wave climate to forecast the wave energy resource of the test sites and the energy production of the wave energy converters.

  17. Extreme wave run-up on a vertical cliff

    CERN Document Server

    Carbone, Francesco; Dudley, John M; Dias, Frédéric

    2013-01-01

    Wave impact and run-up onto vertical obstacles are among the most important phenomena which must be taken into account in the design of coastal structures. From linear wave theory, we know that the wave amplitude on a vertical wall is twice the incident wave amplitude with weakly nonlinear theories bringing small corrections to this result. In this present study, however, we show that certain simple wave groups may produce much higher run-ups than previously predicted, with particular incident wave frequencies resulting in run up heights exceeding the initial wave amplitude by a factor of 5, suggesting that the notion of the design wave used in coastal structure design may need to be revisited. The results presented in this study can be considered as a note of caution for practitioners, on one side, and as a challenging novel material for theoreticians who work in the field of extreme wave - coastal structure interaction.

  18. Synthesizing Waves from Animated Height Fields

    DEFF Research Database (Denmark)

    Nielsen, Michael Bang; Söderström, Andreas; Bridson, Robert

    2013-01-01

    Computer animated ocean waves for feature films are typically carefully choreographed to match the vision of the director and to support the telling of the story. The rough shape of these waves is established in the previsualization (previs) stage, where artists use a variety of modeling tools...

  19. Wave height possibility distribution characteristics of significant wave height in China Sea based on multi-satellite grid data

    Science.gov (United States)

    Han, W.; Yang, J.

    2016-11-01

    This paper discusses the group of wave height possibility distribution characteristics of significant wave height in China Sea based on multi-satellite grid data, the grid SWH data merges six satellites (TOPEX/Poseidon, Jason-1/2, ENVISAT, Cryosat-2, HY-2A) corrected satellite altimeter data into the global SWH grid data in 2000∼2015 using Inverse Distance Weighting Method. Comparing the difference of wave height possibility distribution of two schemes that scheme two includes all of 6 satellite data and scheme one includes all of other 5 satellite data except HY-2A in two wave height interval, the first interval is [0,25) m, the second interval is [4,25) m, finding that two schemes have close wave height probability distribution and the probability change trend, there are difference only in interval [0.4, 1.8) m and the possibility in this interval occupies over 70%; then mainly discussing scheme two, finding that the interval of greatest wave height possibility is [0.6, 3) m, and the wave height possibility that the SWH is greater than 4m is less than 0.18%.

  20. Correlation techniques and measurements of wave-height statistics

    Science.gov (United States)

    Guthart, H.; Taylor, W. C.; Graf, K. A.; Douglas, D. G.

    1972-01-01

    Statistical measurements of wave height fluctuations have been made in a wind wave tank. The power spectral density function of temporal wave height fluctuations evidenced second-harmonic components and an f to the minus 5th power law decay beyond the second harmonic. The observations of second harmonic effects agreed very well with a theoretical prediction. From the wave statistics, surface drift currents were inferred and compared to experimental measurements with satisfactory agreement. Measurements were made of the two dimensional correlation coefficient at 15 deg increments in angle with respect to the wind vector. An estimate of the two-dimensional spatial power spectral density function was also made.

  1. Multiresolution wavelet-ANN model for significant wave height forecasting.

    Digital Repository Service at National Institute of Oceanography (India)

    Deka, P.C.; Mandal, S.; Prahlada, R.

    Hybrid wavelet artificial neural network (WLNN) has been applied in the present study to forecast significant wave heights (Hs). Here Discrete Wavelet Transformation is used to preprocess the time series data (Hs) prior to Artificial Neural Network...

  2. The Damage To The Armour Layer Due To Extreme Waves

    Science.gov (United States)

    Oztunali Ozbahceci, Berguzar; Ergin, Aysen; Takayama, Tomotsuka

    2010-05-01

    The sea waves are not regular but random and chaotic. In order to understand this randomness, it is common to make individual wave analysis in time domain or spectral analysis in frequency domain. Characteristic wave heights like Hmax, H%2,H1-10, H1-3, Hmean are obtained through individual wave analysis in time domain. These characteristic wave heights are important because they are used in the design of different type of coastal structures. It is common to use significant wave height, H1-3,for the design of rubble mound structures. Therefore, only spectrally derived or zero-crossing significant wave height is usually reported for the rubble mound breakwaters without any information on larger waves. However, even the values of H1-3are similar; some train of irregular waves may exhibit a large fluctuation of instantaneous wave energy, while another train may not show such a fluctuation (Goda, 1998). Moreover, freak or rogue wave, simply defined as the wave exceeding at least twice the significant wave height may also occur. Those larger waves were called as extreme waves in this study and the effect of extreme waves on the damage to the armour layer of rubble mound breakwaters was investigated by means of hydraulic model experiment. Rock armored rubble mound breakwater model with 1:1.5 slope was constructed in the wave channel of Hydraulics Laboratory of the Disaster Prevention Research Institute of Kyoto University, Japan. The model was consisted of a permeable core layer, a filter and armour layer with two stones thicknesses. Size of stones were same for both of the slopes as Dn50(armour)=0.034m, Dn50(filter)=0.021m and Dn50(core)=0.0148m for armour, filter and core layers, respectively. Time series which are approximately equal to 1000 waves, with similar significant wave height but different extreme wave height cases were generated. In order to generate necessary time series in the wave channel, they were firstly computed by numerically. For the numerical

  3. Height-dependent Refraction of A Global EUV Wave and Its Associated Sympathetic Eruptions

    Science.gov (United States)

    Liu, Wei; Ofman, Leon; Downs, Cooper; Schrijver, Karel

    2014-06-01

    The height dependence of global extreme-ultraviolet (EUV) waves in the solar corona, especially of their wave-like behaviors such as transmission and reflection, is critical to understanding their physical nature. Prior observations of such behaviors, when detected on the solar disk, were compromised because height-dependent information is lost due to the line-of-sight projection from a top-down view. We report a global EUV wave on the limb observed by SDO/AIA from a side-view that evidently shows height-dependent transmission and refraction. As the wave travels through an active region, the orientation of the low-corona wave front changes from a forward inclination toward the solar surface to a backward inclination. This indicates that the EUV wave speed is lower at higher altitudes, which is expected because of the rapid drop with height of the Alfven and fast-mode speeds in active regions, as predicted by MHD models. When traveling into the active region, the EUV wave speed in the low corona increases from ~600 km/s to ~900 km/s. In addition, in the neighborhood of the active region, sympathetic eruptions of local coronal structures take place sequentially upon the wave impact and may appear as wave reflection. Understanding propagation behaviors of global EUV waves brings us one step closer to fully utilizing them for seismological diagnostics of the global corona, such as mapping the spatial distribution of the Alfven speed and magnetic field strength.

  4. Wave Height Distribution for Spilling Waves in and outside the Surf Zone

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The wave characteristics affecting coastal sediment transport include wave height, wave period and breaking wave direction. Wave height is a critical factor in determining the amount of sediment transport in the coastal area. The force of sediment transport is much more intense under breaking waves than under non-breaking waves. Breaking waves exhibit various patterns, principally depending on the incident wave steepness and the beach slope. Based on the equations of conservation of mass, momentum and energy, a theoretical model for wave deformation in and outside the surf zone was obtained, which is used to calculate the wave shoaling, wave set-up and setdown and wave height distributions in and outside the surf zone. The analysis and comparison were made about the breaking point location and the wave height decay caused by the wave breaking and the bottom friction. Flume experiments relating to the spilling wave height distribution across the surf zone were conducted to verify the theoretical model. Advanced wave maker, data sampling devices and data processing system were utilized in the flume experiments with a slope covered by sands of different diameters to facilitate the observation and research on the wave transformation and breaking. The agreement between the theoretical and experimental results is good.

  5. Modelling of Performance of Caisson Type Breakwaters under Extreme Waves

    Science.gov (United States)

    Güney Doǧan, Gözde; Özyurt Tarakcıoǧlu, Gülizar; Baykal, Cüneyt

    2016-04-01

    Many coastal structures are designed without considering loads of tsunami-like waves or long waves although they are constructed in areas prone to encounter these waves. Performance of caisson type breakwaters under extreme swells is tested in Middle East Technical University (METU) Coastal and Ocean Engineering Laboratory. This paper presents the comparison of pressure measurements taken along the surface of caisson type breakwaters and obtained from numerical modelling of them using IH2VOF as well as damage behavior of the breakwater under the same extreme swells tested in a wave flume at METU. Experiments are conducted in the 1.5 m wide wave flume, which is divided into two parallel sections (0.74 m wide each). A piston type of wave maker is used to generate the long wave conditions located at one end of the wave basin. Water depth is determined as 0.4m and kept constant during the experiments. A caisson type breakwater is constructed to one side of the divided flume. The model scale, based on the Froude similitude law, is chosen as 1:50. 7 different wave conditions are applied in the tests as the wave period ranging from 14.6 s to 34.7 s, wave heights from 3.5 m to 7.5 m and steepness from 0.002 to 0.015 in prototype scale. The design wave parameters for the breakwater were 5m wave height and 9.5s wave period in prototype. To determine the damage of the breakwater which were designed according to this wave but tested under swell waves, video and photo analysis as well as breakwater profile measurements before and after each test are performed. Further investigations are carried out about the acting wave forces on the concrete blocks of the caisson structures via pressure measurements on the surfaces of these structures where the structures are fixed to the channel bottom minimizing. Finally, these pressure measurements will be compared with the results obtained from the numerical study using IH2VOF which is one of the RANS models that can be applied to simulate

  6. Experimental Investigation of Wave Heights in A Directional Wave Field Through Image Sequences

    Institute of Scientific and Technical Information of China (English)

    Chung-Ren CHOU; Teng-Wei LIN; Ruey-Syan SHIH; John Z. YIM

    2005-01-01

    Measurements of wave heights with image sequences from a Charged Coupled Device(CCD) camera were made. Sinusoidal, as well as unidirectional and directional, waves were used for the experiments. A transfer function was obtained by calibration of the magnitudes of the gray values of the images against the results of wave gauge measurements for directional waves. With this transfer function, wave heights for regular waves were deduced. It is shown that the average relative errors are smaller than 16% for both unidirectional and directional waves.

  7. Wave Prediction Model To Study On The Wave Height Variation In Terengganu Coast Of Malaysia

    Directory of Open Access Journals (Sweden)

    Nur Amalina Abdul Latif

    2015-08-01

    Full Text Available Abstract In this study the significant wave height at the Terengganu and the change of wave height at Kuala Terengganu to Merang shoreline were simulated by using the 2D Near-Shore Wave 2D NSW model. The significant wave height by the 2D NSW model at Kuala Terengganu to Merang shoreline from 2008-2012 were simulated. The model was forced by ECMWF European Centre for Medium Range Weather Forecast data. The simulated significant wave height by the 2D NSW model at Airport Kuala Terengganu AWAC station was compared with the observed significant wave height. The mean annual significant wave height indicate the higher wave height with average mean value in a range of 1.08-1.10 m in Kuala Terengganu to Batu Rakit area and lower in Merang area with average mean value in a range of 0.74 m. The detailed 5 years simulation period demonstrates that the strong variability of wave height exists during North-East monsoon. The findings of this study could be useful for the erosive calculation shoreline protection and coastal zone management activities.

  8. Measuring sea surface height with a GNSS-Wave Glider

    Science.gov (United States)

    Morales Maqueda, Miguel Angel; Penna, Nigel T.; Foden, Peter R.; Martin, Ian; Cipollini, Paolo; Williams, Simon D.; Pugh, Jeff P.

    2017-04-01

    A GNSS-Wave Glider is a novel technique to measure sea surface height autonomously using the Global Navigation Satellite System (GNSS). It consists of an unmanned surface vehicle manufactured by Liquid Robotics, a Wave Glider, and a geodetic-grade GNSS antenna-receiver system, with the antenna installed on a mast on the vehicle's deck. The Wave Glider uses the differential wave motion through the water column for propulsion, thus guaranteeing an, in principle, indefinite autonomy. Solar energy is collected to power all on-board instrumentation, including the GNSS system. The GNSS-Wave Glider was first tested in Loch Ness in 2013, demonstrating that the technology is capable of mapping geoid heights within the loch with an accuracy of a few centimetres. The trial in Loch Ness did not conclusively confirm the reliability of the technique because, during the tests, the state of the water surface was much more benign than would normally be expect in the open ocean. We now report on a first deployment of a GNSS-Wave Glider in the North Sea. The deployment took place in August 2016 and lasted thirteen days, during which the vehicle covered a distance of about 350 nautical miles in the north western North Sea off Great Britain. During the experiment, the GNSS-Wave Glider experienced sea states between 1 (0-0.1 m wave heights) and 5 (2.5-4 m wave heights). The GNSS-Wave Glider data, recorded at 5 Hz frequency, were analysed using a post-processed kinematic GPS-GLONASS precise point positioning (PPP) approach, which were quality controlled using double difference GPS kinematic processing with respect to onshore reference stations. Filtered with a 900 s moving-average window, the PPP heights reveal geoid patterns in the survey area that are very similar to the EGM2008 geoid model, thus demonstrating the potential use of a GNSS-Wave Glider for marine geoid determination. The residual of subtracting the modelled or measured marine geoid from the PPP signal combines information

  9. Magnetic Fields inside Extremely Fast Shock Waves

    NARCIS (Netherlands)

    Wiersma, J.

    2007-01-01

    The aim of my research on magnetic fields in extremely fast shock waves has been to predict the properties of shock waves that move almost with the speed of light. These shocks are created in the tenuous interstellar medium by catastrophic events such as the explosion of stars many times heavier

  10. Magnetic Fields inside Extremely Fast Shock Waves

    NARCIS (Netherlands)

    Wiersma, J.

    2007-01-01

    The aim of my research on magnetic fields in extremely fast shock waves has been to predict the properties of shock waves that move almost with the speed of light. These shocks are created in the tenuous interstellar medium by catastrophic events such as the explosion of stars many times heavier

  11. A new statistical model of wave heights based on the concept of wave breaking critical zone

    Institute of Scientific and Technical Information of China (English)

    YANG Jiaxuan; LI Xunqiang; ZHU Shouxian; ZHANG Wenjing; WANG Lei

    2015-01-01

    When waves propagate from deep water to shallow water, wave heights and steepness increase and then waves roll back and break. This phenomenon is called surf. Currently, the present statistical calculation model of surf was derived mainly from the wave energy conservation equation and the linear wave dispersion relation, but it cannot reflect accurately the process which is a rapid increasing in wave height near the broken point. So, the concept of a surf breaking critical zone is presented. And the nearshore is divided as deep water zone, shallow water zone, surf breaking critical zone and after breaking zone. Besides, the calculation formula for the height of the surf breaking critical zone has founded based on flume experiments, thereby a new statistical calculation model on the surf has been established. Using the new model, the calculation error of wave height maximum is reduced from 17.62% to 6.43%.

  12. Preliminary investigation on the relation between maximum wave height and wave spectra

    Science.gov (United States)

    Tao, Aifeng; Wen, Cheng; Wu, Yuqing; Wu, Haoran; Li, Shuo; Cao, Guangsui

    2016-04-01

    The maximum wave height is important not only for the determination of design wave parameters but also for the marine disaster defense. While it cannot be predicted straightforwardly at present, since the general numerical models for wave forecasting are all based on phase averaged spectra model. Then it becomes very useful to make clear the relationship between the maximum wave height and wave spectra parameters, such as average wave steepness, spectra width and spectra type, such as one single peak spectra or multi peaks spectra. In order to perform this research procedure, plenty of observed wave data are required. We collected ten years wave data measured from a ship in North Sea, one year wave pressure data from nine points around Korea, four years buoy data from three points along Chinese coast. The preliminary investigation results on the relations between maximum waves and spectra via the mention observed data will be present here.

  13. Dependence of Wave Height Distribution on Spectral Width and Wave Steepness

    Institute of Scientific and Technical Information of China (English)

    文凡; 吴自库; 吕红民

    2004-01-01

    In this paper experimental wind wave data are analyzed. It is found that differences in spectral width will give rise to differences in wave height distribution. The effect of spectral width on the distribution is mainly in the high wave range.The effect of wave steepness is in low, medium and high wave ranges. In the high wave range the effect of spectral width is comparable to that of wave steepness. Differences in spectral width in the observations may give rise to discrepancies in the result when wave steepness is the only parameter in the distribution.

  14. A New Approach to Estimating the T-Year Return-Period Wave Height

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun; SONG Wenpeng; GE Yong

    2011-01-01

    The paper introduces a new approach to estimating the T-year return-period wave height (TRPW),i.e.the wave height expected to occur in T-year,from two sets of observed extreme data and on the basis of the maximum entropy principle.The main points of the approach are as follows.1) A maximum entropy probability density function (PDF) for the extreme wave height H is derived from a Euler equation subject to some necessary and rational constraints.2) The parameters in the function are expressed in terms of the mth moment of H.3) This PDF is convenient to theoretical and practical applications as it is simple and its four parameters are easy to be determined from observed extreme data.An example is given for estimating the TRPW in 50 and 100 years by the present approach and by some currently used methods using observed data at two hydrographic stations.The comparison of the estimated results shows that the present approach is quite similar to the Pearson-Ⅲ and Gumbel methods.

  15. Mapping wave heights in sea ice with Sentinel 1

    Science.gov (United States)

    Stopa, Justin; Ardhuin, Fabrice; Collard, Fabrice; Mouche, Alexis; Guitton, Gilles; Sutherland, Peter

    2016-04-01

    Sea ice plays an important role in the Earth system by regulating air-sea fluxes. These fluxes can be enhanced by the breaking of ice into floes which critically depends on wave heights propagating across the ice. Remote sensing with SAR provides a unique coverage of the polar regions but so far the measurement of wave heights has been performed routinely only for open water. The presence of ice completely changes the mechanisms by which waves make patterns in radar images. Namely, in the open ocean, the constructed images appear blurred due to the fact that the high frequency waves are unresolved by the sensor. Instead, in ice-covered seas, high frequency waves have been dissipated or scattered away, and only the low-frequency swell components are observed. Two new algorithms have been proposed by Ardhuin et al. (2015). Refining these algorithms, we analyze the intricate wave patterns captured over sea ice by Sentinel 1-A, and measure both the wave heights and directional spreading of the wave spectrum. The procedure is a two-step process which uses an estimation of the orbital vertical velocities that produce the observed image intensity. The first step is implemented when wiggly lines are present. Wiggly lines are created by the presence of two swell systems and are removed by estimating the wave orbital velocity that causes the amplitude in the wiggly line. The second step uses Fourier analysis to invert the straightened image into a velocity field. As a result we obtain a full non-linear inversion the mapping from the velocity field to the SAR intensity image. The inverted velocities can be used to obtain the wavenumber-direction spectrum. Our algorithm is applied to S1A images from the Arctic and Antarctic and discussions follow in terms of wave-ice interaction. These data will be validated using in situ measurements from the ONR Sea State DRI (Beaufort sea, 2016), and combined with numerical modeling using the WAVEWATCH III model to adjust parameterization

  16. Significant wave heights from Sentinel-1 SAR: Validation and applications

    Science.gov (United States)

    Stopa, J. E.; Mouche, A.

    2017-03-01

    Two empirical algorithms are developed for wave mode images measured from the synthetic aperture radar aboard Sentinel-1 A. The first method, called CWAVE_S1A, is an extension of previous efforts developed for ERS2 and the second method, called Fnn, uses the azimuth cutoff among other parameters to estimate significant wave heights (Hs) and average wave periods without using a modulation transfer function. Neural networks are trained using colocated data generated from WAVEWATCH III and independently verified with data from altimeters and in situ buoys. We use neural networks to relate the nonlinear relationships between the input SAR image parameters and output geophysical wave parameters. CWAVE_S1A performs well and has reduced precision compared to Fnn with Hs root mean square errors within 0.5 and 0.6 m, respectively. The developed neural networks extend the SAR's ability to retrieve useful wave information under a large range of environmental conditions including extratropical and tropical cyclones in which Hs estimation is traditionally challenging.Plain Language SummaryTwo empirical algorithms are developed to estimate integral wave parameters from high resolution synthetic aperture radar (SAR) ocean images measured from recently launched the Sentinel 1 satellite. These methods avoid the use of the complicated image to wave mapping typically used to estimate sea state parameters. In addition, we are able to estimate wave parameters that are not able to be measured using existing techniques for the Sentinel 1 satellite. We use a machine learning technique to create a model that relates the ocean image properties to geophysical wave parameters. The models are developed using data from a numerical model because of the sufficiently large sample of global ocean conditions. We then verify that our developed models perform well with respect to independently measured wave observations from other satellite sensors and buoys. We successfully created models that

  17. Extreme waves and wave loading in shallow water

    NARCIS (Netherlands)

    Klopman, G.; Stive, M.J.F.

    1989-01-01

    As an alternative to a more or less standard derivation procedure for design wave heights in relatively shallow water, two improvements of the procedure are suggested which lead to less conservative results. These improvements are based on observations of shallow water effects on both the decay of t

  18. Extreme wave and wind response predictions

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Olsen, Anders S.; Mansour, Alaa E.

    2011-01-01

    The aim of the paper is to advocate effective stochastic procedures, based on the First Order Reliability Method (FORM) and Monte Carlo simulations (MCS), for extreme value predictions related to wave and wind-induced loads.Due to the efficient optimization procedures implemented in standard FORM...

  19. Verification of model wave heights with long-term moored buoy data: Application to wave field over the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Samiksha, S.V.; Polnikov, V.G.; Vethamony, P.; Rashmi, R.; Pogarskii, F.; Sudheesh, K.

    for the model comparison. Based on the error estimates of significant wave heights and spectral wave energy, improvement achieved in wave prediction using ModWAM is demonstrated. We find that the ModWAM improved the accuracy of significant wave height prediction...

  20. A Rational Procedure for Determination of Directional Individual Design Wave Heights

    DEFF Research Database (Denmark)

    Sterndorff, M.; Sørensen, John Dalsgaard

    2001-01-01

    crest elevation are available. In Sørensen & Sterndorff (2000) stochastic models for the annual maximum values of the omnidirectional and directional significant wave heights, individual wave heights, and individual crest heights were presented. The models include dependencies between the maximum wave......For code-based LRFD and for reliability-based assessment of offshore structures such as steel platforms it is essential that consistent directional and omnidirectional probability distributions for the maximum significant wave height, the maximum individual wave height, and the maximum individual...

  1. THE EFFECTS OF RADIATION STRESS ON WAVE HEIGHTS AND SEA LEVEL IN THE INTERACTION OF COUPLED WAVE-TIDE-SURGE IN THE COASTAL AREA

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Based on coastal high-resolution (2′×2′) coupled wave-tide-surge interaction numerical model, the effects of radiation stress on wave heights and sea level in the coastal area of Huanghe Delta were studied. By comparisons of simulated and measured wave heights and sea level for two mediately strong weather cases, it is demonstrated that the results simulated by coupled wave-tide-surge model are closer to the measured and particularly in excellent agreement in the extreme values of the wave heights and set-up. This study shows that the radiation stress can increase the wave heights maximally to 67cm and sea level to 40cm. It is also found that there are areas of over 50cm wave height increase and an area of over 20cm sea level increase in the Huanghe Delta coastal area, and this find may be very important in engineering. For this reason, it is suggested that in the practical engineering application, the coupled wave-tide-surge interaction numerical model should be prefered.

  2. Numerical Simulation of Wave Height and Wave Set-Up in Nearshore Regions

    Institute of Scientific and Technical Information of China (English)

    郑永红; 沈永明; 邱大洪

    2001-01-01

    Based on the time dependent mild slope equation including the effect of wave energy dissipation, an expression for the energy dissipation factor is derived in conjunction with the wave energy balance equation, and then a practical method for the simulation of wave height and wave set-up in nearshore regions is presented. The variation of the complex wave amplitude is numerically simulated by use of the parabolic mild slope equation including the effect of wave energy dissipation due to wave breaking. The components of wave radiation stress are calculated subsequently by new expressions for them according to the obtained complex wave amplitude, and then the depth-averaged equation is applied to the calculation of wave set-up due to wave breaking. Numerical results are in good agreement with experimental data,showing that the expression for the energy dissipation factor is reasonable and that the new method is effective for the simulation of wave set-up due to wave breaking in nearshore regions.

  3. On the Simulation of Sea States with High Significant Wave Height for the Validation of Parameter Retrieval Algorithms for Future Altimetry Missions

    Science.gov (United States)

    Kuschenerus, Mieke; Cullen, Robert

    2016-08-01

    To ensure reliability and precision of wave height estimates for future satellite altimetry missions such as Sentinel 6, reliable parameter retrieval algorithms that can extract significant wave heights up to 20 m have to be established. The retrieved parameters, i.e. the retrieval methods need to be validated extensively on a wide range of possible significant wave heights. Although current missions require wave height retrievals up to 20 m, there is little evidence of systematic validation of parameter retrieval methods for sea states with wave heights above 10 m. This paper provides a definition of a set of simulated sea states with significant wave height up to 20 m, that allow simulation of radar altimeter response echoes for extreme sea states in SAR and low resolution mode. The simulated radar responses are used to derive significant wave height estimates, which can be compared with the initial models, allowing precision estimations of the applied parameter retrieval methods. Thus we establish a validation method for significant wave height retrieval for sea states causing high significant wave heights, to allow improved understanding and planning of future satellite altimetry mission validation.

  4. A method to characterize the different extreme waves for islands exposed to various wave regimes: a case study devoted to Reunion Island

    Directory of Open Access Journals (Sweden)

    S. Lecacheux

    2012-07-01

    Full Text Available This paper outlines a new approach devoted to the analysis of extreme waves in presence of several wave regimes. It entails discriminating the different wave regimes from offshore wave data using classification algorithms, before conducting the extreme wave analysis for each regime separately. The concept is applied to the pilot site of Reunion Island which is affected by three main wave regimes: southern waves, trade-wind waves and cyclonic waves. Several extreme wave scenarios are determined for each regime, based on real historical cases (for cyclonic waves and extreme value analysis (for non-cyclonic waves. For each scenario, the nearshore wave characteristics are modelled all around Reunion Island and the linear theory equations are used to back calculate the equivalent deep-water wave characteristics for each portion of the coast. The relative exposure of the coastline to the extreme waves of each regime is determined by comparing the equivalent deep-water wave characteristics.

    This method provides a practical framework to perform an analysis of extremes within a complex environment presenting several sources of extreme waves. First, at a particular coastal location, it allows for inter-comparison between various kinds of extreme waves that are generated by different processes and that may occur at different periods of the year. Then, it enables us to analyse the alongshore variability in wave exposition, which is a good indicator of potential runup extreme values. For the case of Reunion Island, cyclonic waves are dominant offshore around the island, with equivalent deep-water wave heights up to 18 m for the northern part. Nevertheless, due to nearshore wave refraction, southern waves may become as energetic as cyclonic waves on the western part of the island and induce similar impacts in terms of runup and submersion. This method can be easily transposed to other case studies and can be adapted, depending on the data

  5. A multivariate extreme wave and storm surge climate emulator based on weather patterns

    Science.gov (United States)

    Rueda, A.; Camus, P.; Tomás, A.; Vitousek, S.; Méndez, F. J.

    2016-08-01

    Coastal floods often coincide with large waves, storm surge and tides. Thus, joint probability methods are needed to properly characterize extreme sea levels. This work introduces a statistical downscaling framework for multivariate extremes that relates the non-stationary behavior of coastal flooding events to the occurrence probability of daily weather patterns. The proposed method is based on recently-developed weather-type methods to predict extreme events (e.g., significant wave height, mean wave period, surge level) from large-scale sea-level pressure fields. For each weather type, variables of interest are modeled using Generalized Extreme Value (GEV) distributions and a Gaussian copula for modelling the interdependence between variables. The statistical dependence between consecutive days is addressed by defining a climate-based extremal index for each weather type. This work allows attribution of extreme events to specific weather conditions, enhancing the knowledge of climate-driven coastal flooding.

  6. Numerical modeling of space-time wave extremes using WAVEWATCH III

    Science.gov (United States)

    Barbariol, Francesco; Alves, Jose-Henrique G. M.; Benetazzo, Alvise; Bergamasco, Filippo; Bertotti, Luciana; Carniel, Sandro; Cavaleri, Luigi; Chao, Yung Y.; Chawla, Arun; Ricchi, Antonio; Sclavo, Mauro; Tolman, Hendrik

    2017-01-01

    A novel implementation of parameters estimating the space-time wave extremes within the spectral wave model WAVEWATCH III (WW3) is presented. The new output parameters, available in WW3 version 5.16, rely on the theoretical model of Fedele (J Phys Oceanogr 42(9):1601-1615, 2012) extended by Benetazzo et al. (J Phys Oceanogr 45(9):2261-2275, 2015) to estimate the maximum second-order nonlinear crest height over a given space-time region. In order to assess the wave height associated to the maximum crest height and the maximum wave height (generally different in a broad-band stormy sea state), the linear quasi-determinism theory of Boccotti (2000) is considered. The new WW3 implementation is tested by simulating sea states and space-time extremes over the Mediterranean Sea (forced by the wind fields produced by the COSMO-ME atmospheric model). Model simulations are compared to space-time wave maxima observed on March 10th, 2014, in the northern Adriatic Sea (Italy), by a stereo camera system installed on-board the "Acqua Alta" oceanographic tower. Results show that modeled space-time extremes are in general agreement with observations. Differences are mostly ascribed to the accuracy of the wind forcing and, to a lesser extent, to the approximations introduced in the space-time extremes parameterizations. Model estimates are expected to be even more accurate over areas larger than the mean wavelength (for instance, the model grid size).

  7. A maximum entropy distribution for wave heights of non-linear sea waves

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the maximum entropy principle, a probability density function (PDF) for the zero-crossing wave height (H)of random waves is derived as the simple form fn (H) = αHγe-βHn ( n is a selectable positive integer) through solving a variational problem subject to some quite general constraints. This PDF maximizes the information entropy of H, and its parameters α, γ and β are expressed ear sea waves with large uncertainty, and its parameters can be simply determined from available data. Comparisons between the PDF with n = 3 and n = 4 and the observed distributions of H from wave records measured in the East China Sea and in a wind-wave tunnel show fairly satisfying agreements.

  8. A new model to estimate significant wave heights with ERS-1/2 scatterometer data

    Institute of Scientific and Technical Information of China (English)

    GUO Jie; HE Yijun; William Perrie; SHEN Hui; CHU Xiaoqing

    2009-01-01

    A new model is proposed to estimate the significant wave heights with ERS-1/2 scatterometer data. The results show that the relationship between wave parameters and radar backscattering cross section is similar to that between wind and the radar backscattering cross section. Therefore, the relationship between significant wave height and the radar backscattering cross section is established with a neural network algorithm, which is, if the average wave period is ≤7s, the root mean square of significant wave height retrieved from ERS-1/2 data is 0.51 m, or 0.72 m if it is >7s otherwise.

  9. Storms or cold fronts? What is really responsible for the extreme waves regime in the Colombian Caribbean coast

    Science.gov (United States)

    Otero, L. J.; Ortiz-Royero, J. C.; Ruiz-Merchan, J. K.; Higgins, A. E.; Henriquez, S. A.

    2015-05-01

    On Friday, 7 March 2009, a 200 m-long section of the tourist pier in Puerto Colombia collapsed under the impact of the waves generated by a cold front in the area. The aim of this study is to determine the contribution and importance of cold fronts and storms on extreme waves in different areas of the Colombian Caribbean to determine the degree of the threat posed by the flood processes to which these coastal populations are exposed and the actions to which coastal engineering constructions should be subject. In the calculation of maritime constructions, the most important parameter is the wave's height; therefore, it is necessary to definitively know the design wave height to which a coastal engineering structure should be resistant. This wave height varies according to the return period considered. Using Gumbel's extreme value methodology, the significant height values for the study area were calculated. The methodology was evaluated using data from the re-analysis of the spectral NOAA Wavewatch III (WW3) model for 15 points along the 1600 km of the Colombia Caribbean coast (continental and insular) of the last 15 years. The results demonstrated that the extreme waves caused by tropical cyclones and cold fronts have different effects along the Colombian Caribbean coast. Storms and hurricanes are of greater importance in the Guajira Peninsula (Alta Guajira). In the central area formed by Baja Guajira, Santa Marta, Barranquilla, and Cartagena, the strong influence of cold fronts on extreme waves is evident. On the other hand, in the southern region of the Colombian Caribbean coast, from the Gulf of Morrosquillo to the Gulf of Urabá, even though extreme waves are lower than in the previous regions, extreme waves are dominated mainly by the passage of cold fronts. Extreme waves in the San Andrés and Providencia insular region present a different dynamic from that in the continental area due to its geographic location. The wave heights in the extreme regime are

  10. Storms or cold fronts? What is really responsible for the extreme waves regime in the Colombian Caribbean coast

    Directory of Open Access Journals (Sweden)

    L. J. Otero

    2015-05-01

    Full Text Available On Friday, 7 March 2009, a 200 m-long section of the tourist pier in Puerto Colombia collapsed under the impact of the waves generated by a cold front in the area. The aim of this study is to determine the contribution and importance of cold fronts and storms on extreme waves in different areas of the Colombian Caribbean to determine the degree of the threat posed by the flood processes to which these coastal populations are exposed and the actions to which coastal engineering constructions should be subject. In the calculation of maritime constructions, the most important parameter is the wave's height; therefore, it is necessary to definitively know the design wave height to which a coastal engineering structure should be resistant. This wave height varies according to the return period considered. Using Gumbel's extreme value methodology, the significant height values for the study area were calculated. The methodology was evaluated using data from the re-analysis of the spectral NOAA Wavewatch III (WW3 model for 15 points along the 1600 km of the Colombia Caribbean coast (continental and insular of the last 15 years. The results demonstrated that the extreme waves caused by tropical cyclones and cold fronts have different effects along the Colombian Caribbean coast. Storms and hurricanes are of greater importance in the Guajira Peninsula (Alta Guajira. In the central area formed by Baja Guajira, Santa Marta, Barranquilla, and Cartagena, the strong influence of cold fronts on extreme waves is evident. On the other hand, in the southern region of the Colombian Caribbean coast, from the Gulf of Morrosquillo to the Gulf of Urabá, even though extreme waves are lower than in the previous regions, extreme waves are dominated mainly by the passage of cold fronts. Extreme waves in the San Andrés and Providencia insular region present a different dynamic from that in the continental area due to its geographic location. The wave heights in the

  11. Extreme Waves in Svåheia SSG Location

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Kofoed, Jens Peter

    The present report is the written documentation of the work carried under a consultancy project agreement between WaveEnergy AS and Aalborg University (AAU). The purpose of the study is to define maximum wave heights and related waves loading acting on the SSG in Svaheia, Norway and to provide th...

  12. Future Wave Height Situation estimated by the Latest Climate Scenario around Funafuti Atoll, Tuvalu

    Science.gov (United States)

    Sato, D.; Yokoki, H.; Kuwahara, Y.; Yamano, H.; Kayanne, H.; Okajima, H.; Kawamiya, M.

    2012-12-01

    Sea-level rise due to the global warming is significant phenomenon to coastal region in the world. Especially the atoll islands, which are low-lying and narrow, have high vulnerability against the sea-level rise. Recently the improved future climate projection (MIROC-ESM) was provided by JAMSTEC, which adopted the latest climate scenarios based on the RCP (Representative Concentration Pathway) of the green house gasses. Wave field simulation including the latest sea-level rise pathway by MIROC-ESM was conducted to understand the change of significant wave heights in Funafuti Atoll, Tuvalu, which was an important factor to manage the coast protection. MIROC-ESM provides monthly sea surface height in the fine gridded world (1.5 degree near the equator). Wave field simulation was conducted using the climate scenario of RCP45 in which the radioactive forcing of the end of 21st century was stabilized to 4.5 W/m2. Sea-level rise ratio of every 10 years was calculated based on the historical data set from 1850 to 2005 and the estimated data set from 2006 to 2100. In that case, the sea-level increases by 10cm after 100 years. In this study, the numerical simulation of wave field at the rate of sea-level rise was carried out using the SWAN model. The wave and wind conditions around Funafuti atoll is characterized by two seasons that are the trade (Apr. - Nov.) and non-trade (Jan. - Mar., Dec.) wind season. Then, we set up the two seasonal boundary conditions for one year's simulation, which were calculated from ECMWF reanalysis data. Simulated results of significant wave heights are analyzed by the increase rate (%) calculated from the base results (Average for 2000 - 2005) and the results of 2100. Calculated increase rate of the significant wave height for both seasons was extremely high on the reef-flat. Maximum increase rates of the trade and non-trade wind season were 1817% and 686%, respectively. The southern part of the atoll has high increasing rate through the two

  13. Exploring the interannual variability of extreme wave climate in the Northeast Atlantic Ocean

    Science.gov (United States)

    Izaguirre, Cristina; Menéndez, Melisa; Camus, Paula; Méndez, Fernando J.; Mínguez, Roberto; Losada, Inigo J.

    2012-12-01

    The extreme wave climate is of paramount importance for: (i) off-shore and coastal engineering design, (ii) ship design and maritime transportation, or (iii) analysis of coastal processes. Identifying the synoptic patterns that produce extreme waves is necessary to understand the wave climate for a specific location. Thus, a characterization of these weather patterns may allow the study of the relationships between the magnitude and occurrence of extreme wave events and the climate system. The aim of this paper is to analyze the interannual variability of extreme wave heights. For this purpose, we present a methodological framework and its application to an area over the North East (NE) Atlantic Ocean. The climatology in the NE Atlantic is analyzed using the self-organizing maps (SOMs). The application of this clustering technique to monthly mean sea level pressure fields provides a continuum of synoptic categorizations compared with discrete realizations produced through most traditional methods. The extreme wave climate has been analyzed by means of monthly maxima of the significant wave height (SWH) in several locations over the NE Atlantic. A statistical approach based on a time-dependent generalized extreme value (GEV) distribution has been applied. The seasonal variation was characterized and, afterwards, the interannual variability was studied throughout regional pressure patterns. The anomalies of the 50-year return level estimates of SWH, due to interannual variability have been projected into the weather types of SOM. It provides a comprehensive visual representation, which relates the weather type with the positive or negative contribution to extreme waves over the selected locations.

  14. Effect of landing height on frontal plane kinematics, kinetics and energy dissipation at lower extremity joints.

    Science.gov (United States)

    Yeow, C H; Lee, P V S; Goh, J C H

    2009-08-25

    Lack of the necessary magnitude of energy dissipation by lower extremity joint muscles may be implicated in elevated impact stresses present during landing from greater heights. These increased stresses are experienced by supporting tissues like cartilage, ligaments and bones, thus aggravating injury risk. This study sought to investigate frontal plane kinematics, kinetics and energetics of lower extremity joints during landing from different heights. Eighteen male recreational athletes were instructed to perform drop-landing tasks from 0.3- to 0.6-m heights. Force plates and motion-capture system were used to capture ground reaction force and kinematics data, respectively. Joint moment was calculated using inverse dynamics. Joint power was computed as a product of joint moment and angular velocity. Work was defined as joint power integrated over time. Hip and knee joints delivered significantly greater joint power and eccentric work (pheights. Substantial increase (pwork was noted at the hip joint in response to increasing landing height. Knee and hip joints acted as key contributors to total energy dissipation in the frontal plane with increase in peak ground reaction force (GRF). The hip joint was the top contributor to energy absorption, which indicated a hip-dominant strategy in the frontal plane in response to peak GRF during landing. Future studies should investigate joint motions that can maximize energy dissipation or reduce the need for energy dissipation in the frontal plane at the various joints, and to evaluate their effects on the attenuation of lower extremity injury risk during landing.

  15. Influence of Earthquake Parameters on Tsunami Wave Height and Inundation

    Science.gov (United States)

    Kulangara Madham Subrahmanian, D.; Sri Ganesh, J.; Venkata Ramana Murthy, M.; V, R. M.

    2014-12-01

    After Indian Ocean Tsunami (IOT) on 26th December, 2004, attempts are being made to assess the threat of tsunami originating from different sources for different parts of India. The Andaman - Sumatra trench is segmented by transcurrent faults and differences in the rate of subduction which is low in the north and increases southward. Therefore key board model with initial deformation calculated using different strike directions, slip rates, are used. This results in uncertainties in the earthquake parameters. This study is made to identify the location of origin of most destructive tsunami for Southeast coast of India and to infer the influence of the earthquake parameters in tsunami wave height travel time in deep ocean as well as in the shelf and inundation in the coast. Five tsunamigenic sources were considered in the Andaman - Sumatra trench taking into consideration the tectonic characters of the trench described by various authors and the modeling was carried out using TUNAMI N2 code. The model results were validated using the travel time and runup in the coastal areas and comparing the water elevation along Jason - 1's satellite track. The inundation results are compared from the field data. The assessment of the tsunami threat for the area south of Chennai city the metropolitan city of South India shows that a tsunami originating in Car Nicobar segment of the Andaman - Sumatra subduction zone can generate the most destructive tsunami. Sensitivity analysis in the modelling indicates that fault length influences the results significantly and the tsunami reaches early and with higher amplitude. Strike angle is also modifying the tsunami followed by amount of slip.

  16. On microseisms recorded near the Ligurian coast (Italy) and their relationship with sea wave height

    DEFF Research Database (Denmark)

    Ferretti, G.; Zunino, Andrea; Scafidi, D.;

    2013-01-01

    In this study, microseism recordings from a near coast seismic station and concurrent significant sea wave heights (H13 ) are analysed to calibrate an empirical relation for predicting sea wave height in the Ligurian Sea. The study stems from the investigation of the damaging sea storms occurred ...

  17. Triggered lightning sky waves, return stroke modeling, and ionosphere effective height

    Science.gov (United States)

    Carvalho, F. L.; Uman, M. A.; Jordan, D. M.; Hill, J. D.; Cummer, S. A.; Kotovsky, D. A.; Moore, R. C.

    2017-03-01

    Ground waves and sky waves measured 209 km and 250 km south of six triggered lightning flashes containing 30 strokes that occurred in the half-hour before sunset on 27 August 2015 are presented and analyzed. We use a cross-correlation technique to find the ionospheric effective reflection height and compare our results to previous techniques that calculate effective height based on the time delay between ground wave and sky wave time domain features. From the first flash to the last flash there is, on average, a 1.6 km increase in effective ionospheric height, whereas no change in effective ionospheric height can be discerned along the individual strokes of a given flash. We show to what extent the triggered lightning radiation source can be described (using channel-base current, channel geometry, and channel luminosity versus time and height) and speculate that a well-characterized source could allow a more accurate determination of the electromagnetic fields radiated toward the ionosphere than has been done to date. We show that both channel geometry and the change in return stroke current amplitude and waveshape with channel height (inferred from measured channel luminosity versus height and time) determine the waveshape of the ground wave (and presumably the upward propagating wave that results in the sky wave) and that the waveshape of the ground wave does not appear to be related to the current versus time waveform measured at the channel base other than a roughly linear relationship between the two peak values.

  18. Interannual variability and future projection of summertime ocean wave heights in the western North Pacific

    Directory of Open Access Journals (Sweden)

    W. Sasaki

    2006-10-01

    Full Text Available A 70-yr (from 1985–1995 to 2055–2065 change of decadal mean summertime extreme significant wave heights (SWH in the western North Pacific under CO2-induced global warming condition is projected. For this purpose, possible atmospheric fields under future global warming are derived from 10-yr time-slice experiments using a T106 AGCM. The future changes of SWH are assessed by an empirical approach, where possible changes of SWH are estimated using a linear regression model which shows an empirical relationship between SWH anomalies and an eastward shift of the monsoon trough. It is projected that SWH increases by up to ~0.4 m over a wide area of the western North Pacific.

  19. Analysis of Wave Characteristics in Extreme Seas

    Science.gov (United States)

    1991-01-01

    hydrodynamic ’memory’ which complicate the usual analysis are automatically accounted for." With respect to the basic concepts of this methology , Chapter 4...12 - CHESTER A. POLING - FN FAIR WIND II. Episodic Waves: a. Steep Long- Recurring as every 7th * Observations by officers crested or 9th large wave...Grouped waves in seaway. Second CV-62, SEA-LAND Waves wave frequently largest in McLEAN, LST-1193 group. * Observations by officers from ocean weather

  20. Observing seasonal variations of sea surface wind speed and significant wave height using TOPEX altimetry

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    One year of ocean topography experiment (TOPEX) altimeter data are used to study the seasonal variations of global sea surface wind speed and significant wave height. The major wind and wave zones of the world oceans are precisely identified, their seasonal variability and characteristics are quantitatively analyzed, and the diversity of global wind speed seasonality and the variability of significant wave height in response to sea surface wind speed are also revealed.

  1. Gridded 5-day mean sea surface height anomaly and significant wave height from Jason-1 and OSTM/Jason-2 satellites (NODC Accession 0065055)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains the gridded 5-day mean sea surface height anomaly (SSHA) and Ku Band significant wave height (SWH-KU) observed from Jason-1 and OSTM/Jason-2...

  2. Conditional Second Order Short-crested Water Waves Applied to Extreme Wave Episodes

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2005-01-01

    A derivation of the mean second order short-crested wave pattern and associated wave kinematics, conditional on a given magnitude of the wave crest, is presented. The analysis is based on the second order Sharma and Dean finite water wave theory. A comparison with a measured extreme wave profile......, the Draupner New Year Wave, shows a good agreement in the mean, indicating that this second order wave can be a good identifier of the shape and occurrence of extreme wave events. A discussion on its use as an initial condition for a fully non-linear three-dimensional surface wave analysis is given....

  3. Nonlinear numerical simulation on extreme-wave kinematics

    Institute of Scientific and Technical Information of China (English)

    NING Dezhi; TENG Bin; LIU Shuxue

    2009-01-01

    A fully nonlinear numerical model based on a time-domain higher-order boundary element method (HOBEM) is founded to simulate the kinematics of extreme waves. In the model, the fully nonlinear free surface boundary conditions are satisfied and a semi-mixed Euler-Lagrange method is used to track free surface; a fourth-order Runga-Kutta technique is "adopted to refresh the wave elevation and velocity potential on the free surface at each time step; an image Green function is used in the numerical wave tank so that the integrations on the lateral surfaces and bottom are excluded. The extreme waves are generated by the method of wave focusing. The physical experiments are carried out in a wave flume. On the horizontal velocity of the measured point, numerical solutions agree well with experimental results. The characteristics of the nonlinear extreme-wave kinematics and the velocity distribution are studied here.

  4. Decadal variations in wave heights off Cape Kelba, Saaremaa Island, and their relationships with changes in wind climate

    Directory of Open Access Journals (Sweden)

    Ülo Suursaar

    2009-03-01

    Full Text Available Based on wind data from the Vilsandi meteorological station and a 5-month calibration measurement with a bottom-mounted Recording Doppler Current Profiler (RDCP, a semi-empirical hindcast of wave parameters near the quickly developing accumulative Kelba Spit is presented for the period 1966-2006. The significant wave heights with a gross mean value of 0.56 m exhibited some quasiperiodic cycles, with the last high stage in 1980-95 and a decreasing overall trend of $-0.001$ m per year. At the same time, both the frequency and intensity of high wave events showed rising trends, and the mean wave heights during winter (December to February increased as well. As the study area has the longest fetches in westerly directions, the discussed tendencies in wave conditions are sensitive to regional changes in the wind climate and can be related to a decrease in the local average wind speed on the one hand, but an intensification of westerly winds, storm events and the wintertime NAO index on the other. The roughest wave storms on record were associated with prominent W-storms on 2 November 1969 and 9 January 2005; a few other extreme wind events (e.g. in 1967, 1999, 2001, however, did not yield equally prominent waves.

  5. Local finite-amplitude wave activity as an objective diagnostic of midlatitude extreme weather

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gang; Lu, Jian; Burrows, Alex D.; Leung, Lai-Yung R.

    2015-12-28

    Midlatitude extreme weather events are responsible for a large part of climate related damage, yet our understanding of these extreme events is limited, partly due to the lack of a theoretical basis for midlatitude extreme weather. In this letter, the local finite-amplitude wave activity (LWA) of Huang and Nakamura [2015] is introduced as a diagnostic of the 500-hPa geopotential height (Z500) to characterizing midlatitude weather events. It is found that the LWA climatology and its variability associated with the Arctic Oscillation (AO) agree broadly with the previously reported blocking frequency in literature. There is a strong seasonal and spatial dependence in the trend13 s of LWA in recent decades. While there is no observational evidence for a hemispheric-scale increase in wave amplitude, robust trends in wave activity can be identified at the regional scales, with important implications for regional climate change.

  6. PRE-ACTIVITY MODULATION OF LOWER EXTREMITY MUSCLES WITHIN DIFFERENT TYPES AND HEIGHTS OF DEEP JUMP

    Directory of Open Access Journals (Sweden)

    Vladimir Mrdakovic

    2008-06-01

    Full Text Available The purpose of this study was to determine modulation of pre- activity related to different types and heights of deep jump. Sixteen male soccer players without experience in deep jumps training (the national competition; 15.0 ± 0.5yrs; weight 61.9 ± 6.1kg; height 1.77 ± 0.07m, who participated in the study, performed three types of deep jump (bounce landing, counter landing, and bounce drop jump from three different heights (40cm, 60cm, and 80cm. Surface EMG device (1000Hz was used to estimate muscle activity (maximal amplitude of EMG - AmaxEMG; integral EMG signal - iEMG of five muscles (mm.gastrocnemii, m.soleus, m.tibialis anterior, m.vastus lateralis within 150ms before touchdown. All the muscles, except m. gastrocnemius medialis, showed systematic increase in pre-activity when platform height was raised. For most of the lower extremity muscles, the most significant differences were between values of pre-activity obtained for 40 cm and 80 cm platforms. While the amount of muscle pre-activity in deep jumps from the heights above and beneath the optimal one did not differ significantly from that generated in deep jumps from the optimal drop height of 60 cm, the patterns of muscle pre-activity obtained for the heights above the optimal one did differ from those obtained for the optimal drop height. That suggests that deep jumps from the heights above the optimal one do not seem to be an adequate exercise for adjusting muscle activity for the impact. Muscle pre-activity in bounce drop jumps differed significantly from that in counter landing and bounce landing respectively, which should indicate that a higher amount of pre-activity generated during bounce drop jumps was used for performing take-offs. As this study included the subjects who were not familiar with deep jumps training, the prospective studies should reveal the results of athletes with previous experience

  7. Global validation of the wave model WAM over a one-year period using geosat wave height data

    Energy Technology Data Exchange (ETDEWEB)

    Romeiser, R. (Universitaet Hamburg (Germany))

    1993-03-15

    The high quality of wave fields simulated by the third-generation wave model WAM has already been demonstrated in various validation studies using in situ measurements as well as data from satellites as reference. However, owing to limitations of the reference data sets, the previous studies concentrated on relatively small regions or short time periods only, for which adequate measurements were available. In this paper the first global verification of the WAM model over a full 1-year period is presented. The significant wave heights hindcast for 1988 by the WAM model as implemented at the European Centre for Medium Range Weather Forecasts are compared with measurements obtained by the Geosat radar altimeter. The wave heights from WAM and Geosat show good agreement in general. However, significant regional and seasonal differences are found. The hindcast wave heights are underestimated by about 20% in large parts of the southern hemisphere and the tropical region during May-September. For the rest of the time, the agreement with Geosat data is fairly good. Together with the fact that also the rms variability of wave heights in the tropical region is clearly underestimated by WAM, this can possibly be attributed to simplifications like the neglect of atmospheric stratification effects when converting wind speeds to the wind stress fields driving WAM. Furthermore, the intercomparison indicates that low wave heights below [approx]1.5 m are generally overestimated by WAM. As it is planned to use altimeter wave heights for updating wave models in future data assimilation systems, it is quite important to have efficient quality control criteria for these data. The difference between the Geosat and WAM wave heights shows a clear dependence on the additional parameters in some cases, which must be related to quality problems of the Geosat data. Some new criteria for the rejection of incorrect Geosat data points are obtained. 16 refs., 6 figs.

  8. Observation of gravity waves during the extreme tornado outbreak of 3 April 1974

    Science.gov (United States)

    Hung, R. J.; Phan, T.; Smith, R. E.

    1978-01-01

    A continuous wave-spectrum high-frequency radiowave Doppler sounder array was used to observe upper-atmospheric disturbances during an extreme tornado outbreak. The observations indicated that gravity waves with two harmonic wave periods were detected at the F-region ionospheric height. Using a group ray path computational technique, the observed gravity waves were traced in order to locate potential sources. The signals were apparently excited 1-3 hours before tornado touchdown. Reverse ray tracing indicated that the wave source was located at the aurora zone with a Kp index of 6 at the time of wave excitation. The summation of the 24-hour Kp index for the day was 36. The results agree with existing theories (Testud, 1970; Titheridge, 1971; Kato, 1976) for the excitation of large-scale traveling ionospheric disturbances associated with geomagnetic activity in the aurora zone.

  9. Estimation of sea surface wave height from Bhaskara II SAMIR data

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, M.V.; Viswambharan, N.K.; Rao, L.V.G.

    from R V Gaveshani and visual observations from other ships as reported in IDWR) are available. Using this, an attempt has been made to obtain an empirical relation between brightness temperature and significant wave height. Linear correlation between...

  10. Characterizing extreme and oppressive heat waves in Illinois

    Science.gov (United States)

    Ford, Trent W.; Schoof, Justin T.

    2017-01-01

    Heat waves are characteristic features of summertime climate in the Midwest United States and can have significant agricultural, hydrological, and societal impacts. Historically, heat waves in the Midwest state of Illinois have been either extreme (high temperature and low humidity) or oppressive (high temperature and high humidity) in nature, but our knowledge of the factors determining which heat wave type occurs is limited. We use self-organizing maps to classify synoptic-scale atmospheric circulation patterns associated with oppressive and extreme heat events and analysis of variance to evaluate the atmospheric and land surface features responsible for differences in humidity that characterize the two. We find that the majority of extreme and oppressive heat events are associated with similar synoptic-scale atmospheric conditions. Additionally, both locally evaporated moisture and advected moisture sources were important for determining which of the two heat wave types occurred. Specifically, oppressive heat waves were characterized by abundant antecedent precipitation, surplus soil moisture, and elevated evapotranspiration and related atmospheric humidity. Lower humidity levels during extreme heat wave events were driven by relative reductions in evapotranspiration due to limited soil water content. Overall, our results suggest that the onset of heat waves in Illinois is primarily driven by circulation features in the upper atmosphere; however, the distinction of extreme or oppressive heat wave is due to differences in boundary layer humidity, driven in part by land surface moisture availability for evapotranspiration.

  11. Changes in extreme regional sea surface height due to an abrupt weakening of the Atlantic MOC

    Directory of Open Access Journals (Sweden)

    S.-E. Brunnabend

    2014-04-01

    Full Text Available As an extreme scenario of dynamical sea level changes, regional sea surface height (SSH changes that occur in the North Atlantic due to an abrupt weakening of the Atlantic Meridional Overturning Circulation (AMOC are simulated. Two versions of the same ocean-only model are used to study the effect of ocean model resolution on these SSH changes: a high-resolution (HR strongly eddying version and a low-resolution (LR version in which the effect of eddies are parameterized. The weakening of the AMOC is induced in both model versions by applying strong freshwater perturbations around Greenland. A rapid decrease of the AMOC in the HR version induces much shorter return times of several specific regional and coastal extremes in North Atlantic SSH than in the LR version. This effect is caused by a change in main eddy pathways associated with a change in separation latitude of the Gulf Stream.

  12. Application of Maximum Entropy Principle to Studying the Distribution of Wave Heights in A Random Wave Field

    Institute of Scientific and Technical Information of China (English)

    周良明; 郭佩芳; 王强; 杜伊

    2004-01-01

    Based on the maximum entropy principle, a probability density function (PDF) is derived for the distribution of wave heights in a random wave field, without any more hypothesis. The present PDF, being a non-Rayleigh form, involves two parameters: the average wave height H and the state parameter γ. The role of γ in the distribution of wave heights is examined. It is found that γ may be a certain measure of sea state. A least square method for determining γ from measured data is proposed. In virtue of the method, the values of γ are determined for three sea states from the data measured in the East China Sea. The present PDF is compared with the well known Rayleigh PDF of wave height and it is shown that it much better fits the data than the Rayleigh PDF. It is expected that the present PDF would fit some other wave variables, since its derivation is not restricted only to the wave height.

  13. Projected changes in significant wave height toward the end of the 21st century: Northeast Atlantic

    Science.gov (United States)

    Aarnes, Ole Johan; Reistad, Magnar; Breivik, Øyvind; Bitner-Gregersen, Elzbieta; Ingolf Eide, Lars; Gramstad, Odin; Magnusson, Anne Karin; Natvig, Bent; Vanem, Erik

    2017-04-01

    Wind field ensembles from six CMIP5 models force wave model time slices of the northeast Atlantic over the last three decades of the 20th and the 21st centuries. The future wave climate is investigated by considering the RCP4.5 and RCP8.5 emission scenarios. The CMIP5 model selection is based on their ability to reconstruct the present (1971-2000) extratropical cyclone activity, but increased spatial resolution has also been emphasized. In total, the study comprises 35 wave model integrations, each about 30 years long, in total more than 1000 years. Here annual statistics of significant wave height are analyzed, including mean parameters and upper percentiles. There is general agreement among all models considered that the mean significant wave height is expected to decrease by the end of the 21st century. This signal is statistically significant also for higher percentiles, but less evident for annual maxima. The RCP8.5 scenario yields the strongest reduction in wave height. The exception to this is the north western part of the Norwegian Sea and the Barents Sea, where receding ice cover gives longer fetch and higher waves. The upper percentiles are reduced less than the mean wave height, suggesting that the future wave climate has higher variance than the historical period.

  14. A simple method for retrieving significant wave height from Dopplerized X-band radar

    Science.gov (United States)

    Carrasco, Ruben; Streßer, Michael; Horstmann, Jochen

    2017-02-01

    Retrieving spectral wave parameters such as the peak wave direction and wave period from marine radar backscatter intensity is very well developed. However, the retrieval of significant wave height is difficult because the radar image spectrum (a backscatter intensity variance spectrum) has to be transferred to a wave spectrum (a surface elevation variance spectrum) using a modulation transfer function (MTF) which requires extensive calibration for each individual radar setup. In contrast to the backscatter intensity, the Doppler velocity measured by a coherent radar is induced by the radial velocity (or line-of-sight velocity) of the surface scattering and its periodic component is mainly the contribution of surface waves. Therefore, the variance of the Doppler velocity can be utilized to retrieve the significant wave height. Analyzing approximately 100 days of Doppler velocity measurements of a coherent-on-receive radar operating at X-band with vertical polarization in transmit and receive, a simple relation was derived and validated to retrieve significant wave heights. Comparison to wave measurements of a wave rider buoy as well as an acoustic wave and current profiler resulted in a root mean square error of 0.24 m with a bias of 0.08 m. Furthermore, the different sources of error are discussed and investigated.

  15. Extreme wave analysis in the space-time domain: from observations to applications

    Science.gov (United States)

    Barbariol, Francesco; Alves, Jose-Henrique; Benetazzo, Alvise; Bergamasco, Filippo; Carniel, Sandro; Chao, Yung Y.; Chawla, Arun; Ricchi, Antonio; Sclavo, Mauro

    2016-04-01

    The occurrence of extreme waves is one of the most dangerous marine hazards and one of the most challenging sea surface phenomena to be understood. Many severe accidents and casualties at sea are ascribed to the occurrence of abnormally high waves. Despite significant efforts to investigate their occurrence, up to now research has not yet provided exhaustive experimental and theoretical frameworks able to fully explain the development of extremely large waves (i.e. waves that are outlier from standard wave statistics). Recently, relying on the stereo-photogrammetric instrumentation known as "Wave Acquisition Stereo System", it was observed that the number of waves that can be labeled as "freak" increases significantly if the domain of observation is extended from the time (i.e. the classical point time series), to the space-time (i.e. a time sequence of sea surface snapshots covering an area). The empirical statistics of such extremely high waves gathered during a sea state over an area, outlying standard linear and nonlinear extreme value models, have been found in fair agreement with a statistical model accounting for the probability of a maximum crest height occurring in a space-time domain of given size. This model, developed by Fedele (2012) and extended to second order nonlinear waves by Benetazzo et al (2015), relies upon the Euler Characteristics approach of Adler and Taylor (2007), and upon the knowledge of kinematic and geometric properties of the sea state that can be obtained from the directional spectrum of the sea surface. Therefore, new efforts have been put on applying this approach to provide an interpretation of the occurrence of extreme crest heights in sea states, observed via stereo photography. Results have allowed the development of applications in ocean engineering and weather forecasting. In the former, the statistical model of Fedele has been used to investigate the role of metocean forcings on the space-time extremes of sea states. To

  16. Wintertime connections between extreme wind patterns in Spain and large-scale geopotential height field

    Science.gov (United States)

    Pascual, A.; Martín, M. L.; Valero, F.; Luna, M. Y.; Morata, A.

    2013-03-01

    The present study is focused on the study of the variability and the most significant wind speed patterns in Spain during the winter season analyzing as well connections between the wind speed field and the geopotential height at 1000 hPa over an Atlantic area. The daily wind speed variability is investigated by means of principal components using wind speed observations. Five main modes of variation, accounting 66% of the variance of the original data, have been identified, highlighting their differences in the Spanish wind speed behavior. Connections between the wind speeds and the large-scale atmospheric field were underlined by means of composite maps. Composite maps were built up to give an averaged atmospheric circulation associated with extreme wind speed variability in Spain. Moreover, the principal component analysis was also applied to the geopotential heights, providing relationships between the large-scale atmospheric modes and the observational local wind speeds. Such relationships are shown in terms of the cumulated frequency values of wind speed associated with the extreme scores of the obtained large-scale atmospheric modes, showing those large-scale atmospheric patterns more dominant in the wind field in Spain.

  17. The role of planetary waves in weather extremes

    Science.gov (United States)

    Rahmstorf, Stefan; Coumou, Dim; Petoukhov, Vladimir

    2014-05-01

    The recent decade has seen an exceptional number of high-impact weather extremes in the Northern Hemisphere mid-latitudes, such as the European heat wave 2003, the Russian heat wave and the Indus river flood in Pakistan in 2010, the heat waves in the United States and southern Europe and catastrophic floods in China and Japan in 2012, the heat wave in the United States and the severe flooding in central Europe in 2013. Many of these events were associated with anomalous jet stream circulation patterns. Recently, a novel mechanism, involving the amplification of quasi-stationary Rossby waves by resonance with thermal and orographic forcing patterns, has been proposed that could explain many of these boreal summer extremes (1). We discuss the evidence linking planetary wave resonance to extreme weather events and present new analysis on temporal changes in the occurrence of wave resonance events. 1. Petoukhov, V., S. Rahmstorf, S. Petri, and H. J. Schellnhuber, 2013: Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proceedings of the National Academy of Sciences of the United States of America, 110, 5336-5341

  18. Storms or cold fronts: what is really responsible for the extreme waves regime in the Colombian Caribbean coastal region?

    Science.gov (United States)

    Otero, L. J.; Ortiz-Royero, J. C.; Ruiz-Merchan, J. K.; Higgins, A. E.; Henriquez, S. A.

    2016-02-01

    The aim of this study is to determine the contribution and importance of cold fronts and storms to extreme waves in different areas of the Colombian Caribbean in an attempt to determine the extent of the threat posed by the flood processes to which these coastal populations are exposed. Furthermore, the study wishes to establish the actions to which coastal engineering constructions should be subject. In the calculation of maritime constructions, the most important parameter is the height of the wave. For this reason, it is necessary to establish the design wave height to which a coastal engineering structure should be resistant. This wave height varies according to the return period considered. The significant height values for the areas focused on in the study were calculated in accordance with Gumbel's extreme value methodology. The methodology was evaluated using data from the reanalysis of the spectral National Oceanic and Atmospheric Administration (NOAA) WAVEWATCH III® (WW3) model for 15 points along the 1600 km of the Colombian Caribbean coastline (continental and insular) between the years 1979 and 2009. The results demonstrated that the extreme waves caused by tropical cyclones and those caused by cold fronts have different effects along the Colombian Caribbean coast. Storms and hurricanes are of greater importance in the Guajira Peninsula (Alta Guajira). In the central area (consisting of Baja Guajira, and the cities of Santa Marta, Barranquilla, and Cartagena), the strong impact of cold fronts on extreme waves is evident. However, in the southern region of the Colombian Caribbean coast (ranging from the Gulf of Morrosquillo to the Gulf of Urabá), the extreme values of wave heights are lower than in the previously mentioned regions, despite being dominated mainly by the passage of cold fronts. Extreme waves in the San Andrés and Providencia insular region present a different dynamic from that in the continental area due to their geographic location

  19. On the joint distribution of wave heights and periods: The role of the spectral bandwidth

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, R.G.; Rubio, R.F.; Pacheco, M.M.; Martinez, M.A. [Univ. de Las Palmas de Gran Canaria (Spain). Dept. de Fisica

    1996-12-31

    The influence of spectral bandwidth on the probabilistic structure of the joint distribution of wave heights and periods is analyzed by means of simulated wave records. The authors put the emphasis on its effect upon the asymmetric and bimodal structure of the distributions. Moreover, the adequacy of some theoretical models to describe such features is considered.

  20. Seasonal distribution of wave heights off Yanam on the east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Nayak, B.U.; Chandramohan, D.; Sakhardande, R.N.

    Waves were measured off Yanam on the East Coast of India for a period of one year from June 1983 to May 1984. The data were analysed using the Tucker's zero up-crossing and the spectral methods. Seasonwise distribution of significant wave height...

  1. Extremely Fast Numerical Integration of Ocean Surface Wave Dynamics

    Science.gov (United States)

    2007-09-30

    1) is a natural two-space-dimension extension of the KdV equation . The periodic KP solutions include directional spreading in the wave field: y η...of the nonlinear preprocessor in the new approach for obtaining numerical solutions to nonlinear wave equations . I will now do so, but without many...analytical study and extremely fast numerical integration of the extended nonlinear Schroedinger equation for fully three dimensional wave motion

  2. Wind and waves in extreme hurricanes

    NARCIS (Netherlands)

    Holthuijsen, L.H.; Powell, M.D.; Pietrzak, J.D.

    2012-01-01

    Waves breaking at the ocean surface are important to the dynamical, chemical and biological processes at the air-sea interface. The traditional view is that the white capping and aero-dynamical surface roughness increase with wind speed up to a limiting value. This view is fundamental to hurricane

  3. Wind and waves in extreme hurricanes

    NARCIS (Netherlands)

    Holthuijsen, L.H.; Powell, M.D.; Pietrzak, J.D.

    2012-01-01

    Waves breaking at the ocean surface are important to the dynamical, chemical and biological processes at the air-sea interface. The traditional view is that the white capping and aero-dynamical surface roughness increase with wind speed up to a limiting value. This view is fundamental to hurricane f

  4. Wind and waves in extreme hurricanes

    NARCIS (Netherlands)

    Holthuijsen, L.H.; Powell, M.D.; Pietrzak, J.D.

    2012-01-01

    Waves breaking at the ocean surface are important to the dynamical, chemical and biological processes at the air-sea interface. The traditional view is that the white capping and aero-dynamical surface roughness increase with wind speed up to a limiting value. This view is fundamental to hurricane f

  5. A statistical methodology for the estimation of extreme wave conditions for offshore renewable applications

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Kalogeri, Christina; Galanis, George

    2015-01-01

    Rev, which is located in the North Sea, west of Denmark. The post-processing targets at correcting the modeled time series of the significant wave height, in order to match the statistics of the corresponding measurements, including not only the conventional parameters such as the mean and standard...... as a characteristic index of extreme wave conditions. The results from the proposed methodology seem to be in a good agreement with the measurements at both the relatively deep, open water and the shallow, coastal water sites, providing a potentially useful tool for offshore renewable energy applications. © 2015...

  6. Final Report for Project: Impacts of stratification and non-equilibrium winds and waves on hub-height winds

    Energy Technology Data Exchange (ETDEWEB)

    Patton, Edward G. [Univ. Corporation for Atmospheric Research, Boulder, CO (United States)

    2015-07-14

    wind plant scale. Overall project conclusions include; In the presence of fast-moving swell (significant wave height Hs = 6.4 m, and phase speed cp = 18 ms-1), the atmospheric boundary layer grows more rapidly when waves propagate opposite to the winds compared to when winds and waves are aligned. Pressure drag increases by nearly a factor of 2 relative to the turbulent stress for the extreme case where waves propagate at 180° compared to the pressure gradient forcing. Net wind speed reduces by nearly 15% at hub-height for the 180°-case compared to the 0°-case, and turbulence intensities increase by nearly a factor of 2. These impacts diminish with decreasing wave age; Stratification increases hub height wind speeds and increases the vertical shear of the mean wind across the rotor plane. Fortuitously, this stability-induced enhanced shear does not influence turbulence intensity at hub height, but does increase (decrease) turbulence intensity below (above) hub height. Increased stability also increases the wave-induced pressure stress by ~ 10%; Off the East Coast of the United States during Coupled Boundary Layers Air-Sea Transfer - Low Wind (CBLAST-Low), cases with short fetch include thin stable boundary layers with depths of only a few tens of meters. In the coastal zone, the relationship between the mean wind and the surface fiction velocity (u*(V )) is significantly related to wind direction for weak winds but is not systematically related to the air sea difference of virtual potential temperature, δθv; since waves generally propagate from the south at the Air-Sea Interaction Tower (ASIT) tower, these results suggest that under weak wind conditions waves likely influence surface stress more than stratification does; and Winds and waves are frequently misaligned in the coastal zone. Stability conditions persist for long duration. Over a four year period, the Forschungsplattformen in Nord- und Ostsee Nr. 1 (FINO1) tower (a site with long fetch

  7. Numerical simulation of floating bodies in extreme free surface waves

    Directory of Open Access Journals (Sweden)

    Z. Z. Hu

    2011-02-01

    Full Text Available In this paper, we use the in-house Computational Fluid Dynamics (CFD flow code AMAZON-SC as a numerical wave tank (NWT to study wave loading on a wave energy converter (WEC device in heave motion. This is a surface-capturing method for two fluid flows that treats the free surface as contact surface in the density field that is captured automatically without special provision. A time-accurate artificial compressibility method and high resolution Godunov-type scheme are employed in both fluid regions (air/water. The Cartesian cut cell method can provide a boundary-fitted mesh for a complex geometry with no requirement to re-mesh globally or even locally for moving geometry, requiring only changes to cut cell data at the body contour. Extreme wave boundary conditions are prescribed in an empty NWT and compared with physical experiments prior to calculations of extreme waves acting on a floating Bobber-type device. The validation work also includes the wave force on a fixed cylinder compared with theoretical and experimental data under regular waves. Results include free surface elevations, vertical displacement of the float, induced vertical velocity and heave force for a typical Bobber geometry with a hemispherical base under extreme wave conditions.

  8. Numerical simulation of floating bodies in extreme free surface waves

    Science.gov (United States)

    Hu, Z. Z.; Causon, D. M.; Mingham, C. G.; Qian, L.

    2011-02-01

    In this paper, we use the in-house Computational Fluid Dynamics (CFD) flow code AMAZON-SC as a numerical wave tank (NWT) to study wave loading on a wave energy converter (WEC) device in heave motion. This is a surface-capturing method for two fluid flows that treats the free surface as contact surface in the density field that is captured automatically without special provision. A time-accurate artificial compressibility method and high resolution Godunov-type scheme are employed in both fluid regions (air/water). The Cartesian cut cell method can provide a boundary-fitted mesh for a complex geometry with no requirement to re-mesh globally or even locally for moving geometry, requiring only changes to cut cell data at the body contour. Extreme wave boundary conditions are prescribed in an empty NWT and compared with physical experiments prior to calculations of extreme waves acting on a floating Bobber-type device. The validation work also includes the wave force on a fixed cylinder compared with theoretical and experimental data under regular waves. Results include free surface elevations, vertical displacement of the float, induced vertical velocity and heave force for a typical Bobber geometry with a hemispherical base under extreme wave conditions.

  9. The dependence of wind stress on wave height and wind speed

    Science.gov (United States)

    Blake, Reginald A.

    1991-01-01

    Three near-neutral boundary layer data sets were investigated with the aim of finding a dependence of wind stress on both wind speed and significant wave height. The data set most representative of open-ocean wave height, wind speed, and momentum flux conditions, was selected and analyzed by means of the least-squares method to produce a new parameterization for the wind stress as a function of both wind speed and significant wave height. This study shows that the wind stress, and consequently the drag coefficient, decreases with increasing wave height for a fixed wind speed. The study also shows that the curvature of the wind profile decreases with increasing wave height and that the C(DN) = A + BU-bar(10) form for the drag coefficient parameterization is inadequate. A drag coefficient that applies to both smooth and rough flows is proposed. These results are more applicable for open-ocean deep-water conditions and less applicable for sheltered, closed, shallow water sites.

  10. Increased jump height with an external focus due to enhanced lower extremity joint kinetics.

    Science.gov (United States)

    Wulf, Gabriele; Dufek, Janet S

    2009-10-01

    Individuals jump higher when they adopt an external focus of attention, relative to an internal focus or no focus of attention (G. Wulf, T. Zachry, C. Granados, & J. S. Dufek, 2007). In the present study, the authors determined the underlying cause of this effect. Participants performed a vertical jump-and-reach task for (a) an external focus condition (i.e., participants focused on the rungs of a Vertec [Perform Better, Cranston, RI] measurement device that they touched) and (b) an internal focus condition (i.e., participants focused on the finger with which they touched the rungs). Participants' jump height, center-of-mass displacement, jump impulse, and lower extremity joint moments were greater with an external focus compared with an internal focus. These results suggest that participants jump higher by producing greater forces when they adopt an external focus. This finding adds to evidence that an external focus facilitates the production of effective and efficient movement patterns.

  11. Short Wave Amplification and Extreme Runup by the 2011 Tohoku Tsunami

    Science.gov (United States)

    Shimozono, Takenori; Cui, Haiyang; Pietrzak, Julie D.; Fritz, Hermann M.; Okayasu, Akio; Hooper, Andrew J.

    2014-12-01

    Watermarks found during the post-event surveys of the 2011 Tohoku tsunami confirmed extreme runup heights at several locations along the central to northern part of the Sanriku coast, Japan. We measured the maximum height of nearly 40 m above mean sea level at a narrow coastal valley of the Aneyoshi district. Wave records by offshore GPS-buoys suggest that the remarkably high runup was associated with a leading, impulsive crest of the tsunami amplified by local bathymetry and topography. In order to elucidate the underlying amplification mechanism, we apply a numerical model to reproduce the measured distribution of tsunami heights along the target coastline. A series of numerical tests under different boundary conditions suggests that a spectral component with a dominant period of 4-5 min in the leading wave play a key role in generating the extreme runup. Further analyses focusing on the Aneyoshi district confirm that the short wavelength component undergoes critical amplification in a narrow inlet. Our findings highlight the importance of resolving offshore waveforms as well as local bathymetry and topography when simulating extreme runup events.

  12. Application of neural networks and support vector machine for significant wave height prediction

    Directory of Open Access Journals (Sweden)

    Jadran Berbić

    2017-07-01

    Full Text Available For the purposes of planning and operation of maritime activities, information about wave height dynamics is of great importance. In the paper, real-time prediction of significant wave heights for the following 0.5–5.5 h is provided, using information from 3 or more time points. In the first stage, predictions are made by varying the quantity of significant wave heights from previous time points and various ways of using data are discussed. Afterwards, in the best model, according to the criteria of practicality and accuracy, the influence of wind is taken into account. Predictions are made using two machine learning methods – artificial neural networks (ANN and support vector machine (SVM. The models were built using the built-in functions of software Weka, developed by Waikato University, New Zealand.

  13. Stochastic procedures for extreme wave induced responses in flexible ships

    Directory of Open Access Journals (Sweden)

    Jensen Jørgen Juncher

    2014-12-01

    Full Text Available Different procedures for estimation of the extreme global wave hydroelastic responses in ships are discussed. Firstly, stochastic procedures for application in detailed numerical studies (CFD are outlined. The use of the First Order Reliability Method (FORM to generate critical wave episodes of short duration, less than 1 minute, with prescribed probability content is discussed for use in extreme response predictions including hydroelastic behaviour and slamming load events. The possibility of combining FORM results with Monte Carlo simulations is discussed for faster but still very accurate estimation of extreme responses. Secondly, stochastic procedures using measured time series of responses as input are considered. The Peak-over-Threshold procedure and the Weibull fitting are applied and discussed for the extreme value predictions including possible corrections for clustering effects.

  14. Forecasting extreme wave events in moderate and high sea states

    Science.gov (United States)

    Magnusson, Anne Karin; Reistad, Magnar; Bitner-Gregersen, Elzbieta Maria

    2013-04-01

    Empirical studies on measurements have not yet come to conclusive relations between occurrence of rogue waves and - parameters which could be forecasted . Theoretical and tank experiments have demonstrated that high spectral peakedness and low spectral width combined (high Benjamin-Feir instability index, Onorato et al., 2006) give higher probability of rogue wave occurrence. Directional spread seems to reduce the probability of occurrence of rogue waves in these studies. Many years of experience with forecasting and discussions with people working in ocean environment indicate that rogue waves may as well occur in crossing seas. This was also indicated in a study in the Maxwave project (Toffoli et al., 2003) and the EXTREME SEAS project (Toffoli et al., 2011). We have here experimented with some indexes describing both high BFI and crossing seas and run the WAM model for some North Sea storm cases. Wave distributions measured at Ekofisk are analysed in the different cases. References • Onorato, M., Osborne, A., Serio, M., Cavaleri, L., Brandini, C., and Stansberg, C.: Extreme waves, modulational instability and second order theory: wave flume experiments on irregular waves,Europ. J. Mech. B/Fluids, 25, 586-601, 2006. • Toffoli, A., Lefevre, J.M., Monbaliu, J., Savina, H., and Bitner-Gregersen, E., "Freak Waves:Clues for Prediction in Ship Accidents?", Proc. ISOPE'2003 Conf. Hawai, USA, 2003. • Toffoli A., Bitner-Gregersen E. M., Osborne A. R., Serio M. Monbaliu J., Onorato M. (2011) Extreme Waves in Random Crossing Seas: Laboratory Experiments and Numerical Simulations. Geophys. Res. Lett., Vol. 38, L06605, 5 pp. doi: 10.1029/2011.

  15. Auto-correlation analysis of wave heights in the Bay of Bengal

    Indian Academy of Sciences (India)

    Abhijit Sarkar; Jignesh Kshatriya; K Satheesan

    2006-04-01

    Time series observations of significant wave heights in the Bay of Bengal were subjected to auto-correlation analysis to determine temporal variability scale.The analysis indicates an exponential fall of auto-correlation in the first few hours with a decorrelation time scale of about six hours.A similar figure was found earlier for ocean surface winds.The nature of variation of auto-correlation with time lags was also found to be similar for winds and wave heights.

  16. Extreme wave phenomena in down-stream running modulated waves

    NARCIS (Netherlands)

    Andonowati, A.; Karjanto, N.; van Groesen, Embrecht W.C.

    Modulational, Benjamin-Feir, instability is studied for the down-stream evolution of surface gravity waves. An explicit solution, the soliton on finite background, of the NLS equation in physical space is used to study various phenomena in detail. It is shown that for sufficiently long modulation

  17. Extreme wave phenomena in down-stream running modulated waves

    NARCIS (Netherlands)

    Andonowati,; Karjanto, N.; Groesen, van E.

    2006-01-01

    Modulational, Benjamin-Feir, instability is studied for the down-stream evolution of surface gravity waves. An explicit solution, the soliton on finite background, of the NLS equation in physical space is used to study various phenomena in detail. It is shown that for sufficiently long modulation le

  18. Final Report for Project: Impacts of stratification and non-equilibrium winds and waves on hub-height winds

    Energy Technology Data Exchange (ETDEWEB)

    Patton, Edward G. [Univ. Corporation for Atmospheric Research, Boulder, CO (United States)

    2015-07-14

    wind plant scale. Overall project conclusions include; In the presence of fast-moving swell (significant wave height Hs = 6.4 m, and phase speed cp = 18 ms-1), the atmospheric boundary layer grows more rapidly when waves propagate opposite to the winds compared to when winds and waves are aligned. Pressure drag increases by nearly a factor of 2 relative to the turbulent stress for the extreme case where waves propagate at 180° compared to the pressure gradient forcing. Net wind speed reduces by nearly 15% at hub-height for the 180°-case compared to the 0°-case, and turbulence intensities increase by nearly a factor of 2. These impacts diminish with decreasing wave age; Stratification increases hub height wind speeds and increases the vertical shear of the mean wind across the rotor plane. Fortuitously, this stability-induced enhanced shear does not influence turbulence intensity at hub height, but does increase (decrease) turbulence intensity below (above) hub height. Increased stability also increases the wave-induced pressure stress by ~ 10%; Off the East Coast of the United States during Coupled Boundary Layers Air-Sea Transfer - Low Wind (CBLAST-Low), cases with short fetch include thin stable boundary layers with depths of only a few tens of meters. In the coastal zone, the relationship between the mean wind and the surface fiction velocity (u*(V )) is significantly related to wind direction for weak winds but is not systematically related to the air sea difference of virtual potential temperature, δθv; since waves generally propagate from the south at the Air-Sea Interaction Tower (ASIT) tower, these results suggest that under weak wind conditions waves likely influence surface stress more than stratification does; and Winds and waves are frequently misaligned in the coastal zone. Stability conditions persist for long duration. Over a four year period, the Forschungsplattformen in Nord- und Ostsee Nr. 1 (FINO1) tower (a site with long fetch

  19. Terrestrial Laser Scanner (TLS) as a tool for the reconstruction of extreme wave event characteristics

    Science.gov (United States)

    Schneider, Bastian; Hoffmann, Gösta

    2017-04-01

    The shores of the Northern Indian Ocean were exposed to extreme wave inundation in the past. Two relevant hazards, storm surges triggered by tropical cyclones and tsunamis, are known to occur in the region but are rarely instrumentally recorded. Various sediment deposits along the coast are the only remnants of those past events. A profound understanding of return periods and magnitudes of past events is essential for developing land-use planning and risk mitigation measures in Oman and neighboring countries. A detailed investigation of these deposits, in this case primarily blocks and boulder trains but also fine grained sediments, provides insight on parameters such as wave height and inundation distance. These parameters can then be used for modeling inundation scenarios superimposed on modern infrastructure. We are investigating the spatial 3D-distribution of the extreme wave event sediments along the coastline through a high-precision survey of the event deposits using a Faro Focus 3D X330 TLS. A TLS is capable of recording high-detail and colored point clouds, which allows detailed measurements and has proved to be a powerful tool in geosciences. These multi-parameter point clouds in combination with dating results serve as a base for extreme wave event return period and magnitude estimations. Relevant parameters on large sediments are size, shape, volume, mass as well as relative arrangement, sorting and orientation. Furthermore, the TLS data is used to distinguish between the various boulder lithologies using a multi-scale supervised classification. Surface roughness as a result of weathering can serve as an indicator for exposure time of boulders and hint on various generations of extreme wave events. The distribution of the boulders relative to the site they were quarried from indicates on the flow direction of the waves and consequently might help to distinguish between storm and tsunami waves.

  20. Survivability mode and extreme loads on the mooring lines of the Wave Dragon Wave Energy Converter

    Energy Technology Data Exchange (ETDEWEB)

    Parmeggiani, S.; Kofoed, J.P.

    2010-11-15

    This report is a product of the cooperation agreement between Wave Dragon and Aalborg University regarding phase 2 of the development of the Wave Dragon Wave Energy Converter. The research is carried out by testing the 1:51.8 scale model of the Wave Dragon, aiming at the assessment of the survivability of the device in extreme waves and evaluation of the design loads for the mooring component. The outcome of the research will be used as input for future research work aimed at the design of the mooring system and the certification of the structural design for the full scale Wave Dragon demonstrator. (Author)

  1. Plane-Wave Propagation in Extreme Magnetoelectric (EME) Media

    CERN Document Server

    Lindell, I V; Favaro, A

    2016-01-01

    The extreme magnetoelectric medium (EME medium) is defined in terms of two medium dyadics, $\\alpha$, producing electric polarization by the magnetic field and $\\beta$, producing magnetic polarization by the electric field. Plane-wave propagation of time-harmonic fields of fixed finite frequency in the EME medium is studied. It is shown that (if $\\omega\

  2. Extremely stable piezo mechanisms for the New Gravitational Wave Observatory

    NARCIS (Netherlands)

    Pijnenburg, J.A.C.M.; Rijnveld, N.; Hogenhuis, H.

    2012-01-01

    Detection and observation of gravitational waves requires extreme stability in the frequency range 3e-5 Hz to 1 Hz. NGO/LISA will attain this by creating a giant interferometer in space, based on free floating proof masses in three spacecrafts. To operate NGO/LISA, the following piezo mechanisms are

  3. Spatial and temporal variations of wave height in shelf seas around India

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Anoop, T.R.

    trend (maximum ~-0.18 cm/year) in wave height is observed in the western Bay of Bengal except along the southern region. At most of the locations weak decreasing trend (0.1–2.5 cm/s/year) is observed for the annual mean wind speed. The conflicting trends...

  4. Kinematics and amplitude evolution of global coronal extreme ultraviolet waves

    Institute of Scientific and Technical Information of China (English)

    Ting Li; Jun Zhang; Shu-Hong Yang; Wei Liu

    2012-01-01

    With the observations of the Solar-Terrestrial Relations Observatory (STEREO) and the Solar Dynamics Observatory (SDO),we analyze in detail the kinematics of global coronal waves together with their intensity amplitudes (so-called "perturbation profiles").We use a semi-automatic method to investigate the perturbation profiles of coronal waves.The location and amplitude of the coronal waves are calculated over a 30° sector on the sphere,where the wave signal is strongest.The position with the strongest perturbation at each time is considered as the location of the wave front.In all four events,the wave velocities vary with time for most of their lifetime,up to 15 min,while in the event observed by the Atmospheric Imaging Assembly there is an additional early phase with a much higher velocity.The velocity varies greatly between different waves from 216 to 440 km s-1.The velocity of the two waves initially increases,subsequently decreases,and then increases again.Two other waves show a deceleration followed by an acceleration.Three categories of amplitude evolution of global coronal waves are found for the four events.The first is that the amplitude only shows a decrease.The second is that the amplitude initially increases and then decreases,and the third is that the amplitude shows an orderly increase,a decrease,an increase again and then a decrease.All the extreme ultraviolet waves show a decrease in amplitude while propagating farther away,probably because the driver of the global coronal wave (coronal mass ejection) is moving farther away from the solar surface.

  5. On the hysteresis of the sea surface and its applicability to wave height predictions

    Science.gov (United States)

    Parsons, C. L.

    1977-01-01

    Because of the low dissipation rate of wave energy on the ocean's surface, the wave height at some location and time must be dependent upon wind fields in existence there at previous times and upon swell propagated there from other regions. To study these relationships, significant wave height (SWH) measurements from the Geos-3 radar altimeter are used in conjunction with anemometer windspeed measurements from weather ships, L, C, and R. During the passage of large cyclonic disturbances near the fixed locations of these vessels in the North Atlantic in February 1976, distinct hysteresis profiles that characterize the sea's memory during generation and dissipation conditions are observed. Examples are given that demonstrate the influences of cyclone intensity, movement, velocity, and shape on the configuration of these profiles.

  6. Variations mechanism in entropy of wave height field and its relation with thermodynamic entropy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper gives a brief description of annual period and seasonal variation in the wave height field entropy in the northeastern Pacific. A calculation of the quantity of the, received by lithosphere systems in the northern hemisphere is introduced. The wave heat field entropy is compared with the difference in the quantity of the sun's radiation heat. Analysis on the transfer method, period and lag of this seasonal variation led to the conclusion that the annual period and seasonal variation in the entropy of the wave height field in the Northwestern Pacific is due to the seasonal variation of the sun's radiation heat. Furthermore, the inconsistency between thermodynamic entropy and information entropy was studied.

  7. Propagation of Electromagnetic Waves in Extremely Dense Media

    CERN Document Server

    Masood, Samina

    2016-01-01

    We study the propagation of electromagnetic (EM) waves in extremely dense exotic systems with very unique properties. These EM waves develop a longitudinal component due to its interaction with the medium. Renormalization scheme of QED is used to understand the propagation of EM waves in both longitudinal and transverse directions. The propagation of EM waves in a quantum statistically treatable medium affects the properties of the medium itself. The electric permittivity and the magnetic permeability of the medium are modified and influence the related behavior of the medium. All the electromagnetic properties of a medium become a function of temperature and chemical potential of the medium. We study in detail the modifications of electric permittivity and magnetic permeability and other related properties of a medium in the superdense stellar objects.

  8. Accuracy of Satellite-Measured Wave Heights in the Australian Region for Wave Power Applications

    Science.gov (United States)

    Meath, Sian E.; Aye, Lu; Haritos, Nicholas

    2008-01-01

    This article focuses on the accuracy of satellite data, which may then be used in wave power applications. The satellite data are compared to data from wave buoys, which are currently considered to be the most accurate of the devices available for measuring wave characteristics. This article presents an analysis of satellite- (Topex/Poseidon) and…

  9. Extreme Loads on the Mooring Lines and Survivability Mode for the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter; Friis-Madsen, E.

    2011-01-01

    One of the main challenges Wave Energy Converters have to face on the road towards commercialization is to ensure survivability in extreme condition at a reasonable capital costs. For a floating device like the Wave Dragon, a reliable mooring system is essential. The control strategy of the Wave...... by approximately 20-30% by lowering the crest level and balancing the device to lean a little towards the front....

  10. Progress Report on the GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height) Research Project

    Science.gov (United States)

    Kitazawa, Y.; Ichikawa, K.; Akiyama, H.; Ebinuma, T.; Isoguchi, O.; Kimura, N.; Konda, M.; Kouguchi, N.; Tamura, H.; Tomita, H.; Yoshikawa, Y.; Waseda, T.

    2016-12-01

    Global Navigation Satellite Systems (GNSS), such as GPS is a system of satellites that provide autonomous geo-spatial positioning with global coverage. It allows small electronic receivers to determine their location to high precision using radio signals transmitted from satellites, GNSS reflectometry (GNSS-R) involves making measurements from the reflections from the Earth of navigation signals from GNSS satellites. Reflected signals from sea surface are considered that those are useful to observe sea state and sea surface height. We have started a research program for GNSS-R applications on oceanographic observations under the contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) and launched a Japanese research consortium, GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height). It is aiming to evaluate the capabilities of GNSS-R observations for oceanographic phenomena with different time scales, such as ocean waves (1/10 to tens of seconds), tides (one or half days), and sea surface dynamic height (a few days to years). In situ observations of ocean wave spectrum, wind speed vertical profile, and sea surface height will be quantitatively compared with equivalent estimates from simultaneous GNSS-R measurements. The GROWTH project will utilize different types of observation platforms; marine observation towers (about 20 m height), multi-copters (about 100 to 150 m height), and much higher-altitude CYGNSS data. Cross-platform data, together with in situ oceanographic observations, will be compared after adequate temporal averaging that accounts differences of the footprint sizes and temporal and spatial scales of oceanographic phenomena. This paper will provide overview of the GROWTH project, preliminary test results, obtained by the multi-sensor platform at observation towers, suggest actual footprint sizes and identification of swell. Preparation status of a ground station which will be supplied to receive CYGNSS data

  11. Decomposing variations of geopotential height in the troposphere and stratosphere into stationary and travelling waves

    Science.gov (United States)

    Guryanov, Vladimir; Eliseev, Alexey

    2016-07-01

    The ERA-Interim geopotential height in the Northern Hemisphere from November to March, 1992-2015 in the layer from between pressure levels 1000 mb and 1 mb is expanded into stationary and travelling zonal waves with zonal wavenumbers, k, from 1 to 10, and with periods, T, from 2 to 156 days (the so called Hayashi spectra). Among the studied waves, the largest amplitude is attained by the stationary and travelling waves with zonal wavenumber k=1 and with periods from 3 to 4 weeks in the upper stratosphere over the latitudinal belt 60-70oN. The stationary waves with k from 1 to 3 and with T from 2 to 3 weeks are most pronounced in the stratosphere. In turn, the largest amplitudes of the travelling waves with zonal wavenumbers k ≥ 5 are found in the troposphere. The dominant periods of the latter waves are about 1 week or slightly higher, and this dominant period basically decrease with increasing wavenumber. In the upper stratosphere, the eastward travelling waves generally dominate over westward ones. The only exception is the longest zonal mode with k=1, for which the amplitude of the westward travelling wave is larger than that for the eastward one. The period of the travelling waves dominating in the upper stratosphere is close to 3 weeks. In the upper troposphere, the amplitudes of the eastward waves with k from 4 to 10 is several-fold larger than those for their westward counterparts. The latter is reflected in the larger average wavenumber of the eastward travelling wave in comparison to that of the westarward one. The period of the gravest of the dominant travelling waves in the upper troposphere is close to one week, and it decreases to 2-4 days for the dominant travelling waves with k=8-10.

  12. Experimental investigation of the dependence of radar backscattering on wind speed, wind stress and wave height

    Science.gov (United States)

    Gogineni, S. P.; Katsaros, K. B.

    1989-01-01

    During summer 1988, radar measurements were performed in conjunction with detailed environmental observations on Lake Washington at the University of Washington Sand Point field station. Radar data were collected at 5.3 and 10 GHz for incidence angles between 30 and 60 deg with VV-polarization. The environmental measurements included wind speed and direction, large-wave heights, the high-frequency portion of the wave spectrum, humidity, and air and water temperatures. The small-scale wave spectrum was measured using a resistance wire gauge. The results show that backscatter increased with wind speed as expected. However, little difference was observed in the scattering coefficient for upwind and crosswind directions. The results also indicated an increase in the amplitude of small waves with friction velocity.

  13. Progress Report on the GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height) Research Project

    Science.gov (United States)

    Ichikawa, Kaoru; Akiyama, Hiroaki; Ebinuma, Takuji; Isoguchi, Osamu; Kimura, Noriaki; Kitazawa, Yukihito; Konda, Masanori; Kouguchi, Nobuyuki; Tamura, Hitoshi; Tomita, Hiroyuki; Yoshikawa, Yutaka; Waseda, Takuji

    2016-04-01

    There has been considerable interest in GNSS Reflectometry (GNSS-R) as a new remote-sensing method. We have started a research program for GNSS-R applications on oceanographic observations under the contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) and launched a Japanese research consortium, GROWTH. It is aiming to evaluate the capabilities of GNSS-R observations for oceanographic phenomena with different time scales, such as ocean waves (1/10 to tens of seconds), tides (one or half days), and sea surface dynamic height (a few days to years). In situ observations of ocean wave spectrum, wind speed vertical profile, and sea surface height will be quantitatively compared with equivalent estimates from simultaneous GNSS-R measurements. The GROWTH project will utilize different types of observation platforms; marine observation towers (about 20 m height), multi-copters (about 100 to 200 m height), and much higher-altitude CYGNSS data. Cross-platform data, together with in situ oceanographic observations, will be compared after adequate temporal averaging that accounts differences of the footprint sizes and temporal and spatial scales of oceanographic phenomena. This paper will provide overview of the GROWTH project, preliminary test results obtained by the multi-sensor platform at observation towers, and preparation status of a ground station that will be supplied to receive CYGNSS data at Japan.

  14. Automation of measurement of heights waves around a model ship; Mokeisen mawari no hako keisoku no jidoka

    Energy Technology Data Exchange (ETDEWEB)

    Ikehata, M.; Kato, M.; Yanagida, F. [Yokohama National University, Yokohama (Japan). Faculty of Engineering

    1997-10-01

    Trial fabrication and tests were performed on an instrument to automate measurement of heights of waves around a model ship. The currently used electric wave height measuring instrument takes long time for measurement, hence poor in efficiency. The method for processing optical images also has a problem in accuracy. Therefore, a computer controlled system was structured by using AC servo motors in driving the X and Y axes of a traverse equipment. Equipment was fabricated to automate the wave height measurement, in which four servo type wave height meters are installed on a moving rack in the lateral (Y-axial) direction so that wave heights to be measured by four meters can be measured automatically all at once. Wave heights can be measured continuously by moving the moving rack at a constant speed, verifying that wave shapes in longitudinal cross sections can be acquired by only one towing. Time required in the measurements using the instrument was 40 hours as a net time for fixed point measurement and 12 hours for continuous measurement, or 52 hours in total. On the other hand, the time may reach 240 hours for fixed point measurement when the conventional all-point manual traverse equipment is used. Enormous effects were obtained from automating the instrument. Collection of wave height data will continue also on tankers and other types of ships. 2 refs., 8 figs., 1 tab.

  15. An atmosphere-wave regional coupled model: improving predictions of wave heights and surface winds in the southern North Sea

    Science.gov (United States)

    Wahle, Kathrin; Staneva, Joanna; Koch, Wolfgang; Fenoglio-Marc, Luciana; Ho-Hagemann, Ha T. M.; Stanev, Emil V.

    2017-04-01

    The coupling of models is a commonly used approach when addressing the complex interactions between different components of earth systems. We demonstrate that this approach can result in a reduction of errors in wave forecasting, especially in dynamically complicated coastal ocean areas, such as the southern part of the North Sea - the German Bight. Here, we study the effects of coupling of an atmospheric model (COSMO) and a wind wave model (WAM), which is enabled by implementing wave-induced drag in the atmospheric model. The numerical simulations use a regional North Sea coupled wave-atmosphere model as well as a nested-grid high-resolution German Bight wave model. Using one atmospheric and two wind wave models simultaneously allows for study of the individual and combined effects of two-way coupling and grid resolution. This approach proved to be particularly important under severe storm conditions as the German Bight is a very shallow and dynamically complex coastal area exposed to storm floods. The two-way coupling leads to a reduction of both surface wind speeds and simulated wave heights. In this study, the sensitivity of atmospheric parameters, such as wind speed and atmospheric pressure, to the wave-induced drag, in particular under storm conditions, and the impact of two-way coupling on the wave model performance, is quantified. Comparisons between data from in situ and satellite altimeter observations indicate that two-way coupling improves the simulation of wind and wave parameters of the model and justify its implementation for both operational and climate simulations.

  16. Numerical modeling and validation of wave heights and directionality in the ice using WAVEWATCH III

    Science.gov (United States)

    Ardhuin, Fabrice; Dumont, Dany; Accensi, Mickael; Sevigny, Caroline; Boutin, Guillaume; Rogers, Erick

    2016-04-01

    The poorly understood attenuation of waves, the key dynamic effect that defines the width of the Marginal Ice Zone, has been attributed to the combined effect of wave scattering and wave dissipation. Because scattering and dissipation have very different effects on the directional distribution of wave energy, it is possible to better understand the balance between scattering and dissipation by an analysis of the width of the directional wave spectrum. We have thus introduced dissipation and scattering terms in the spectral wave model WAVEWATCH III, and an estimation of the maximum ice floe size. Academic and realistic simulations show that the energy level and directional spreading far into the Arctic pack ice (Wadhams and Doble 2009) can be well explained by dissipative processes without the need for scattering. The same is true of observed swells in the Southern Ocean (Ardhuin et al. 2015). However, the dissipation level required to explain the observed wave height goes from 2 in the southern ocean to 12 times the viscous dissipation under a smooth ice plate. This and other data suggest that broken ice causes less dissipation than a continuous ice cover, possibly due to the dissipation by creep inside the ice when it is not broken and bends. Work is under way to parameterize that effect using the estimated maximum ice floe size.

  17. Calibration of HY-2A satellite significant wave heights within situ observation

    Institute of Scientific and Technical Information of China (English)

    PENG Hailong; LIN Mingsen

    2016-01-01

    Significant wave height (SWH) can be computed from the returning waveform of radar altimeter, this parameter is only raw estimates if it does not calibrate. But accurate calibration is important for all applications, especially for climate studies. HY-2a altimeter has been operational since April 2012 and its products are available to the scientific community. In this work, SWH data from HY-2A altimeters are calibrated againstin situ buoy data from the National Data Buoy Center (NDBC), Distinguished from previous calibration studies which generally regarded buoy data as "truth", the work of calibration for HY-2A altimeter wave data againstin situ buoys was applied a more sophisticated statistical technique—the total least squares (TLS) method which can take into account errors in both variables. We present calibration results for HY-2A radar altimeter measurement of wave height against NDBC buoys. In addition, cross-calibration for HY-2A and Jason-2 wave data are talked over and the result is given.

  18. Projection of tropical cyclone-generated extreme wave climate based on CMIP5 multi-model ensemble in the Western North Pacific

    Science.gov (United States)

    Shimura, Tomoya; Mori, Nobuhito; Hemer, Mark A.

    2017-08-01

    Climate change impacts on future ocean wave climate have been studied using a suite of Global Climate Models (GCM). We investigated the representation of extreme (annual maximum) wave climate in the Atmosphere-Ocean GCM (AOGCM) driven wave climate projections, specifically looking at tropical cyclone (TC)-generated extreme waves in the Western North Pacific. The representation of the extreme wave climate by AOGCM driven wave climate projections was evaluated by comparing with higher-resolution AGCM driven wave climate projections, reanalysis and observations. We find better performance of AOGCM's to simulate TCs leads to significantly improved representation of the extreme wave climate. The better performing models can produce more than 30 ms^{-1} wind speed in TCs and the frequency of occurrence of TCs is 80 % of the observed frequency of occurrence. The projected changes in the extreme wave climate are dominated by changes in TC-generated waves. Although the projected changes in TC-generated wave heights show the coherent decreases in some models with greater TC skill, there is a large variation in the projected changes among models. The other models which are less able to resolve the TC characteristics display projected changes dominated by non-TC generated waves systems, which is the decrease in wave heights around latitudes 30°N. Although there is a large variation in the projected changes in TC-generated waves, the change ratio is 2 times larger than those of non-TC waves. Therefore, appropriate interpretation of the TC-generated wave changes and its variation is important for risk assessment.

  19. Characteristics of the large-height swell-like waves on the east coast of Korea

    Science.gov (United States)

    Oh, S.-H.; Jeong, W.-M.; Baek, W.-D.

    2012-04-01

    On the east coast of Korean peninsula, unusually high swell-like waves are occasionally observed several times during the winter season. These high swell-like waves are not related to the northwest monsoon that is typical in winter season, but are generated when strong northeasters blow continuously over the East Sea of Korea. In recent years, exceptionally high swell-like waves compared to the past observation record has attacked the east coast of Korean peninsula and caused severe casualties and damages of ships and coastal structures. Taking a few examples, abnormally high swell-waves of Hs =9.69 m were observed near Sokcho harbor on October 2006. More recently on the first day of Year 2011, large-height swell-like waves of Hs = 6.7 m visited at Jukbyeon port. At the present, the occurrence of such high swell-like waves are not fully predicted and only partially included in the normal weather forecast. Hence, researchers have much interest in improving understanding of the detailed generation mechanism of the high swell-like waves and predicting its occurrence. In this presentation, the characteristics of the high swell-like waves occurred on the first day of 2011 will be reported, with some supplementary results of the other big wave events that occurred previously. The New Year wave was monitored at 12 measuring stations simultaneously along the east coast. By analyzing these wave data with the corresponding meteorological data provided by Korean Meteorological Agency (KMA), major characteristics of these waves were clarified in some detail. The reason for appearance of the high swell-like waves was found to be due to the long-lasting strong northeasters in the East Sea, which was formed as a result of the low pressure trough in the vicinity of the extra-tropical low pressure system that advances to East Sea from the China inland with decreasing its central pressure. Such a strong low pressure system can be occasionally developed in winter season and may cause

  20. The interaction of extreme waves with hull elements

    Science.gov (United States)

    Galiev, Shamil; Flay, Richard

    2010-05-01

    The problem of the impact of a rogue wave onto a deformable marine structure is formulated in a few publications (see, for example, a short review in http://researchspace.auckland.ac.nz/handle/2292/4474). In this paper the results from numerical and experimental investigations of the effect of cavitation on the deformation of a hull element, loaded by a wall of water, generated by an extreme ocean surface wave are considered. The hull element is modelled as a circular metal plate with the edge of the plate rigidly clamped. The plate surface is much smaller than the surface of the wave front, so that at the initial moment of the interaction, the pressure is constant on the plate surface. At the next instant, because of the plate deformation, axisymmetric loading of the plate occurs. The influences of membrane forces and plastic deformations are ignored, and therefore, the equation of plate motion has the following classical form Eh3(wrrrr+2r -1wrrrr- r-2wrr+r-3wr) = - 121- ν2)[ρhwtt+ δ(r,t)(p+ ρ0a0wt)]. Here w is the plate displacement, subscripts t and rindicate derivatives with respect to time and the radial coordinate, PIC is the plate material density, his the plate thickness, Eis Young's modulus, PIC is Poisson's ratio and p is the pressure of the incident surface wave measured on the wall, PIC is the water density, PIC is the speed of sound in water, and PIC is the normal velocity of the plate. The term PIC takes into account the effect of the deformability of the plate. Obviously, the hull of a vessel is not rigid like a solid wall, but starts to deform and to move. This motion produces a reflected pressure wave, which travels from the hull into the water wave with a magnitude equal to PIC . The normal velocity is positive so the reflected pressure PIC is negative (tensile wave). If the fluid pressure drops below some critical value pk, the wet plate surface separates from the water, and cavitation may be generated. The function δ(r,t) takes into account

  1. Tsunami Lead Wave Reconstruction Based on Noisy Sea Surface Height Measurements

    Science.gov (United States)

    Yu, Kegen

    2016-06-01

    This paper presents a Tsunami lead wave reconstruction method using noisy sea surface height (SSH) measurements such as observed by a satellite-carried GNSS reflectometry (GNSS-R) sensor. It is proposed to utilize wavelet theory to mitigate the strong noise in the GNSS-R based SSH measurements. Through extracting the noise components by high-pass filters at decomposition stage and shrinking the noise by thresholding prior to reconstruction, the noise is greatly reduced. Real Tsunami data based simulation results demonstrate that in presence of SSH measurement error of standard deviation 50 cm the accuracy in terms of root mean square error (RMSE) of the lead wave height (true value 145.5 cm) and wavelength (true value 592.0 km) estimation is 21.5 cm and 56.2 km, respectively. The results also show that the proposed wavelet based method considerably outperforms the Kalman filter based method on average. The results demonstrate that the proposed wave reconstruction approach has the potential for Tsunami detection and parameter estimation to assist in achieving reliable Tsunami warning.

  2. TSUNAMI LEAD WAVE RECONSTRUCTION BASED ON NOISY SEA SURFACE HEIGHT MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    K. Yu

    2016-06-01

    Full Text Available This paper presents a Tsunami lead wave reconstruction method using noisy sea surface height (SSH measurements such as observed by a satellite-carried GNSS reflectometry (GNSS-R sensor. It is proposed to utilize wavelet theory to mitigate the strong noise in the GNSS-R based SSH measurements. Through extracting the noise components by high-pass filters at decomposition stage and shrinking the noise by thresholding prior to reconstruction, the noise is greatly reduced. Real Tsunami data based simulation results demonstrate that in presence of SSH measurement error of standard deviation 50 cm the accuracy in terms of root mean square error (RMSE of the lead wave height (true value 145.5 cm and wavelength (true value 592.0 km estimation is 21.5 cm and 56.2 km, respectively. The results also show that the proposed wavelet based method considerably outperforms the Kalman filter based method on average. The results demonstrate that the proposed wave reconstruction approach has the potential for Tsunami detection and parameter estimation to assist in achieving reliable Tsunami warning.

  3. The maximum sloshing wave height evaluation in cylindrical metallic tanks by numerical means

    Directory of Open Access Journals (Sweden)

    Manser Walid Samir

    2017-01-01

    Full Text Available The metallic cylindrical storage tanks are very common structures in the field of civil engineering; These facilities are especially used in the industry in which they are used to store all kinds of products-which are for the most toxic or flammable. The tanks are also used in the storing of drinking water. When earthquakes, these structures must be strictly maintained in order to avoid that they lose their precious contents causing reactions that can cause more damage than the earthquake itself. In this study, the effects of the liquid height, the geometric parameters of tanks in the variation of the maximum sloshing wave height are studied: For this purpose, the software ANSYS V11.0 is used for modelling the tanks, the results found are compared with thus given in the Euro code 8

  4. Managing Information Uncertainty in Wave Height Modeling for the Offshore Structural Analysis through Random Set

    Directory of Open Access Journals (Sweden)

    Keqin Yan

    2017-01-01

    Full Text Available This chapter presents a reliability study for an offshore jacket structure with emphasis on the features of nonconventional modeling. Firstly, a random set model is formulated for modeling the random waves in an ocean site. Then, a jacket structure is investigated in a pushover analysis to identify the critical wave direction and key structural elements. This is based on the ultimate base shear strength. The selected probabilistic models are adopted for the important structural members and the wave direction is specified in the weakest direction of the structure for a conservative safety analysis. The wave height model is processed in a P-box format when it is used in the numerical analysis. The models are applied to find the bounds of the failure probabilities for the jacket structure. The propagation of this wave model to the uncertainty in results is investigated in both an interval analysis and Monte Carlo simulation. The results are compared in context of information content and numerical accuracy. Further, the failure probability bounds are compared with the conventional probabilistic approach.

  5. A background error covariance model of significant wave height employing Monte Carlo simulation

    Institute of Scientific and Technical Information of China (English)

    GUO Yanyou; HOU Yijun; ZHANG Chunmei; YANG Jie

    2012-01-01

    The quality of background error statistics is one of the key components for successful assimilation of observations in a numerical model.The background error covariance(BEC)of ocean waves is generally estimated under an assumption that it is stationary over a period of time and uniform over a domain.However,error statistics are in fact functions of the physical processes governing the meteorological situation and vary with the wave condition.In this paper,we simulated the BEC of the significant wave height(SWH)employing Monte Carlo methods.An interesting result is that the BEC varies consistently with the mean wave direction(MWD).In the model domain,the BEC of the SWH decreases significantly when the MWD changes abruptly.A new BEC model of the SWH based on the correlation between the BEC and MWD was then developed.A case study of regional data assimilation was performed,where the SWH observations of buoy 22001 were used to assess the SWH hindcast.The results show that the new BEC model benefits wave prediction and allows reasonable approximations of anisotropy and inhomogeneous errors.

  6. Surf zone, infragravity wave energy flux, and runup in extreme conditions

    Science.gov (United States)

    Fiedler, J. W.; Brodie, K. L.; McNinch, J.; Guza, R. T.

    2014-12-01

    Waves, currents, and sand levels were observed on a 1.4 km-long cross-shore transect extending from the back beach to ~11 m water depth at Agate Beach, Oregon in Fall 2013. Wave runup and water table fluctuations on this low slope (1:80) beach were measured with a cliff-mounted scanning Lidar and buried pressure sensors. Significant wave heights at an offshore buoy in 128m depth ranged from small (0.5m) to extreme (7.5m), with peak periods between 4-22 seconds. Infragravity frequency (nominally 0.01 Hz) horizontal runup excursions exceeded 100m, and infragravity cross-shore velocity exceeded 3 m/s. Cross-shore patterns of infragravity wave energy flux, observed with seven co-located pressure and current meters, indicate 'proto-saturation' of the inner surfzone in extreme conditions. That is, the intensification of incident wave forcing (e.g. higher energy, longer swell) leads to a wider surfzone and an increase in the shoreward infragravity wave energy seaward of the surfzone, but produces more modest increases in flux in the inner surfzone, and in the runup. Nonlinear energy balances, based on the observations, show transfer of energy from sea-swell to infragravity waves, and vice-versa. The infragravity energy balance closes in cases with low energy incident sea-swell. With more energetic incident waves, there is an unexplained inner surfzone energy sink at the lowest IG frequencies (0.004-0.02 Hz). Ongoing work aims to quantify the effect on infragravity energy balances by infragravity wave breaking and bottom friction. Additionally, the estimates may be degraded by contamination with rotational velocities of surfzone eddies. Whatever the dynamical explanation, infragravity wave runup on a low slope beach in high-energy conditions is limited significantly by dissipation. The slow rate of runup increase suggests nascent, or 'proto' saturation. This work was supported by the U.S. Army Corps of Engineers.

  7. Projected changes, climate change signal, and uncertainties in the CMIP5-based projections of ocean surface wave heights

    Science.gov (United States)

    Wang, Xiaolan; Feng, Yang; Swail, Val R.

    2016-04-01

    Ocean surface waves can be major hazards in coastal and offshore activities. However, wave observations are available only at limited locations and cover only the recent few decades. Also, there exists very limited information on ocean wave behavior in response to climate change, because such information is not simulated in current global climate models. In a recent study, we used a multivariate regression model with lagged dependent variable to make statistical global projections of changes in significant wave heights (Hs) using mean sea level pressure (SLP) information from 20 CMIP5 climate models for the twenty-first century. The statistical model was calibrated and validated using the ERA-Interim reanalysis of Hs and SLP for the period 1981-2010. The results show Hs increases in the tropics (especially in the eastern tropical Pacific) and in southern hemisphere high-latitudes. Under the projected 2070-2099 climate condition of the RCP8.5 scenario, the occurrence frequency of the present-day one-in-10-year extreme wave heights is likely to double or triple in several coastal regions around the world (e.g., the Chilean coast, Gulf of Oman, Gulf of Bengal, Gulf of Mexico). More recently, we used the analysis of variance approaches to quantify the climate change signal and uncertainty in multi-model ensembles of statistical Hs simulations globally, which are based on the CMIP5 historical, RCP4.5 and RCP8.5 forcing scenario simulations of SLP. In a 4-model 3-run ensemble, the 4-model common signal of climate change is found to strengthen over time, as would be expected. For the historical followed by RCP8.5 scenario, the common signal in annual mean Hs is found to be significant over 16.6%, 55.0% and 82.2% of the area by year 2005, 2050 and 2099, respectively. For the annual maximum, the signal is much weaker. The signal is strongest in the eastern tropical Pacific, featuring significant increases in both the annual mean and maximum of Hs in this region. The climate

  8. nowCOAST's Map Service for NOAA NWS NDFD Gridded Forecasts of Significant Wave Height (feet) (Time Offsets)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Map Information: This nowCOAST time-offsets map service provides maps depicting the NWS significant wave height forecasts from the National Digital Forecast Database...

  9. Cold fronts in the Colombian Caribbean Sea and their relationship to extreme wave events

    Science.gov (United States)

    Ortiz-Royero, J. C.; Otero, L. J.; Restrepo, J. C.; Ruiz, J.; Cadena, M.

    2013-11-01

    Extreme ocean waves in the Caribbean Sea are commonly related to the effects of storms and hurricanes during the months of June through November. The collapse of 200 m of the Puerto Colombia pier in March 2009 revealed the effects of meteorological phenomena other than storms and hurricanes that may be influencing the extreme wave regime in the Colombian Caribbean. The marked seasonality of these atmospheric fronts was established by analyzing the meteorological-marine reports of the Instituto de Hidrología, Meteorología y Estudios Ambientales of Colombia (IDEAM, based on its initials in Spanish) and the Centro de Investigación en Oceanografía y Meteorología of Colombia (CIOH, based on its initials in Spanish) during the last 16 yr. The highest number of cold fronts was observed during the months of January, February, and March, with 6 fronts occurring per year. An annual trend was observed and the highest number of fronts occurred in 2010 (20 in total); moreover, an annual strong relationship between the maximum average wave values and the cold fronts in the central zone of the Colombian Caribbean during the first three months of the year was established. In addition, the maximum values of the significant height produced by the passage of cold fronts during the last 16 yr were identified. Although the Colombian Caribbean has been affected by storms and hurricanes in the past, this research allows us to conclude that there is a strong relationship between cold fronts and the largest waves in the Colombian Caribbean during the last 16 yr, which have caused damage to coastal infrastructure. We verified that the passage of a cold front corresponded to the most significant extreme wave event of the last two decades in the Colombian Caribbean, which caused the structural collapse of the Puerto Colombia pier, located near the city of Barranquilla, between 5 and 10 March 2009. This information is invaluable when evaluating average and extreme wave regimes for the

  10. Extreme physical information and the nonlinear wave equation

    Science.gov (United States)

    Frieden, B. R.

    1995-09-01

    The nonlinear wave equation an be derived from a principle of extreme physical information (EPI) K. This is for a scenario where a probe electron moves through a medium in a weak magnetic field. The field is caused by a probabilistic line current source. Assume that the probability current density S of the electron is approximately constant, and directed parallel to the current source. Both the source probability amplitudes (rho) and the electron probability amplitudes (phi) are unknowns (called 'modes') of the problem. The net physical information K here consists of two components: functional K1[(phi) ] due to modes (phi) and K2[(rho) ] due to modes (rho) , respectively. To form K1[(phi) ], the Fisher information functional I1[(phi) ] for the electron modes is first constructed. This is of a fixed mathematical form. Then, a unitary transformation on (phi) to a physical space is sought that leaves I1 invariant, as form J1. This is, of course, the Fourier transformation, where the transform coordinates are momenta and I1 is essentially the mean-square electron momentum. Information K1[(phi) ] is then defined as (I1 - J1). Information K2 is formed similarly. The total information K is formed as the sum of the two components K1[(phi) ] and K2[(rho) ], by the additivity of Fisher information, and is then extremized in both (phi) and (rho) . Extremizing first in (rho) gives a Taylor series in powers of (phi) n*(phi) n, which is cut off at the quadratic term. Back-substituting this into the total Lagrangian gives one that is quadratic in (phi) n*(phi) n. Now varying (phi) * gives the required cubic wave equation in (phi) .

  11. Changes to extreme wave climates of islands within the Western Tropical Pacific throughout the 21st century under RCP 4.5 and RCP 8.5, with implications for island vulnerability and sustainability

    Science.gov (United States)

    Shope, James B.; Storlazzi, Curt; Erikson, Li; Hegermiller, Christie

    2016-01-01

    Waves are the dominant influence on coastal morphology and ecosystem structure of tropical Pacific islands. Wave heights, periods, and directions for the 21st century were projected using near-surface wind fields from four atmosphere-ocean coupled global climate models (GCM) under representative concentration pathways (RCP) 4.5 and 8.5. GCM-derived wind fields forced the global WAVEWATCH-III wave model to generate hourly time-series of bulk wave parameters around 25 islands in the mid to western tropical Pacific Ocean for historical (1976–2005), mid-, and end-of-century time periods. Extreme significant wave heights decreased (~10.0%) throughout the 21st century under both climate scenarios compared to historical wave conditions and the higher radiative forcing 8.5 scenario displayed a greater and more widespread decrease in extreme significant wave heights compared to the lower forcing 4.5 scenario. An exception was for the end-of-century June–August season. Offshore of islands in the central equatorial Pacific, extreme significant wave heights displayed the largest changes from historical values. The frequency of extreme events during December–February decreased under RCP 8.5, whereas the frequency increased under RCP 4.5. Mean wave directions often rotated more than 30° clockwise at several locations during June–August, which could indicate a weakening of the trade winds’ influence on extreme wave directions and increasing dominance of Southern Ocean swell or eastern shift of storm tracks. The projected changes in extreme wave heights, directions of extreme events, and frequencies at which extreme events occur will likely result in changes to the morphology and sustainability of island nations.

  12. Measuring the Absolute Height and Profile of the Mesospheric Sodium Layer using a Continuous Wave Laser

    CERN Document Server

    Butler, D J; Redfern, R M; Ageorges, N; Fews, H

    2003-01-01

    We have developed and tested a novel method, based on LIDAR, of measuring the height and profile of the mesospheric sodium layer using a continuous wave laser. It is more efficient than classical LIDAR as the laser is on for 50% of the time, and so can in principle be used during laser guide star adaptive optics observations. It also has significant advantages over direct imaging techniques because it does not require a second telescope, is almost independent of the atmospheric conditions, and avoids triangulation problems in determining the height. In the long term, regular monitoring using this method would allow a valuable database of sodium layer profiles, heights, and return flux measurements to be built up which would enable observatory staff astronomers to schedule observations optimally. In this paper we describe the original experiment carried out using the ALFA laser guide star system at Calar Alto Observatory in Spain. We validate the method by comparing the LIDAR results with those obtained from s...

  13. Regional Frequency Analysis of Significant Wave Heights Based on L-moments

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    L-moments are defined as linear combinations of probability-weighted moments. They are virtually unbiased for small samples, and perform well in parameter estimation, choice of the distribution type and regional analysis. The traditional methods of determining the design wave heights for planning marine structures use data only from the site of interest. Regional frequency analysis gives a new approach to estimate quantile by use of the homogeneous neighborhood information. A regional frequency analysis based on L-moments with a case study of the California coast is presented. The significant wave height data for the California coast is offered by NDBC. A 6-site region without 46023 is considered to be a homogeneous region, whose optimal regional distribution is Pearson Ⅲ. The test is conducted by a simulation process. The regional quantile is compared with the at-site quantile, and it is shown that efficient neighborhood information can be used via regional frequency analysis to give a reasonable estimation of the site without enough historical data.

  14. Modeled changes in extreme wave climates of the tropical Pacific over the 21st century: Implications for U.S. and U.S.-Affiliated atoll islands

    Science.gov (United States)

    Shope, J.B.; Storlazzi, Curt; Erikson, Li H.; Hegermiller, C.A.

    2015-01-01

    Wave heights, periods, and directions were forecast for 2081–2100 using output from four coupled atmosphere–ocean global climate models for representative concentration pathway scenarios RCP4.5 and RCP8.5. Global climate model wind fields were used to drive the global WAVEWATCH-III wave model to generate hourly time-series of bulk wave parameters for 25 islands in the mid to western tropical Pacific. December–February 95th percentile extreme significant wave heights under both climate scenarios decreased by 2100 compared to 1976–2010 historical values. Trends under both scenarios were similar, with the higher-emission RCP8.5 scenario displaying a greater decrease in extreme significant wave heights than where emissions are reduced in the RCP4.5 scenario. Central equatorial Pacific Islands displayed the greatest departure from historical values; significant wave heights decreased there by as much as 0.32 m during December–February and associated wave directions rotated approximately 30° clockwise during June–August compared to hindcast data.

  15. Individual wave height distributions in the coastal zone: Measurements and simulations and the effect of directional spreading

    NARCIS (Netherlands)

    Van Vledder, G.P.; Ruessink, G.; Rijnsdorp, D.P.

    2013-01-01

    Characteristics of the individual wave height distribution in shallow water have been investigated using measured wave data and results of numerical simulations using the non-hydrostatic SWASH model. It is shown that the SWASH model is capable of reproducing the temporal and spatial variation of sur

  16. Survivability Mode and Extreme Loads on the Mooring Lines of the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter

    of the survivability of the device in extreme waves and evaluation of the design loads for the mooring component. The testing has been carried out in October 2010 by PhD student Stefano Parmeggiani and Master students Giovanna Bevilacqua and Giacomo Girardi Ferruzza at the Hydraulic and Coastal Laboratories...... of the department of Civil Engineering at Aalborg University. The outcome of the research will be used as input for future research work aimed at the design of the mooring system and the certification of the structural design for the full scale Wave Dragon demonstrator....

  17. Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010

    Science.gov (United States)

    Trenberth, Kevin E.; Fasullo, John T.

    2012-09-01

    A global perspective is developed on a number of high impact climate extremes in 2010 through diagnostic studies of the anomalies, diabatic heating, and global energy and water cycles that demonstrate relationships among variables and across events. Natural variability, especially ENSO, and global warming from human influences together resulted in very high sea surface temperatures (SSTs) in several places that played a vital role in subsequent developments. Record high SSTs in the Northern Indian Ocean in May 2010, the Gulf of Mexico in August 2010, the Caribbean in September 2010, and north of Australia in December 2010 provided a source of unusually abundant atmospheric moisture for nearby monsoon rains and flooding in Pakistan, Colombia, and Queensland. The resulting anomalous diabatic heating in the northern Indian and tropical Atlantic Oceans altered the atmospheric circulation by forcing quasi-stationary Rossby waves and altering monsoons. The anomalous monsoonal circulations had direct links to higher latitudes: from Southeast Asia to southern Russia, and from Colombia to Brazil. Strong convection in the tropical Atlantic in northern summer 2010 was associated with a Rossby wave train that extended into Europe creating anomalous cyclonic conditions over the Mediterranean area while normal anticyclonic conditions shifted downstream where they likely interacted with an anomalously strong monsoon circulation, helping to support the persistent atmospheric anticyclonic regime over Russia. This set the stage for the "blocking" anticyclone and associated Russian heat wave and wild fires. Attribution is limited by shortcomings in models in replicating monsoons, teleconnections and blocking.

  18. Distinctive metaphyseal chondrodysplasia with severe distal radius and ulna involvement (upper extremity mesomelia) and normal height.

    Science.gov (United States)

    Camera, Andrea; Camera, Gianni

    2003-10-01

    Metaphyseal chondrodysplasias (MCD) are skeletal disorders characterized by metaphyseal irregularities and, usually, by short stature. In MCD, wide heterogeneity exists with regard to clinical and radiological changes. We report on a patient with clinical and radiological findings of MCD who had coxa valga and normal height with metaphyseal involvement of the long bones. The short radii and ulnae showed a very severe change in their distal metaphyses, leading to mesomelic shortening confined to the upper limbs. Hematological, ophthalmological, and hearing examinations were normal. This type of MCD appears to represent a yet undescribed syndrome.

  19. Four-wave mixing experiments with extreme ultraviolet transient gratings.

    Science.gov (United States)

    Bencivenga, F; Cucini, R; Capotondi, F; Battistoni, A; Mincigrucci, R; Giangrisostomi, E; Gessini, A; Manfredda, M; Nikolov, I P; Pedersoli, E; Principi, E; Svetina, C; Parisse, P; Casolari, F; Danailov, M B; Kiskinova, M; Masciovecchio, C

    2015-04-09

    Four-wave mixing (FWM) processes, based on third-order nonlinear light-matter interactions, can combine ultrafast time resolution with energy and wavevector selectivity, and enable the exploration of dynamics inaccessible by linear methods. The coherent and multi-wave nature of the FWM approach has been crucial in the development of advanced technologies, such as silicon photonics, subwavelength imaging and quantum communications. All these technologies operate at optical wavelengths, which limits the spatial resolution and does not allow the probing of excitations with energy in the electronvolt range. Extension to shorter wavelengths--that is, the extreme ultraviolet and soft-X-ray ranges--would allow the spatial resolution to be improved and the excitation energy range to be expanded, as well as enabling elemental selectivity to be achieved by exploiting core resonances. So far, FWM applications at such wavelengths have been prevented by the absence of coherent sources of sufficient brightness and of suitable experimental set-ups. Here we show how transient gratings, generated by the interference of coherent extreme-ultraviolet pulses delivered by the FERMI free-electron laser, can be used to stimulate FWM processes at suboptical wavelengths. Furthermore, we have demonstrated the possibility of observing the time evolution of the FWM signal, which shows the dynamics of coherent excitations as molecular vibrations. This result opens the way to FWM with nanometre spatial resolution and elemental selectivity, which, for example, would enable the investigation of charge-transfer dynamics. The theoretical possibility of realizing these applications has already stimulated ongoing developments of free-electron lasers: our results show that FWM at suboptical wavelengths is feasible, and we hope that they will enable advances in present and future photon sources.

  20. Performance of a data-driven technique to changes in wave height and its effect on beach response

    Directory of Open Access Journals (Sweden)

    Jose M. Horrillo-Caraballo

    2016-01-01

    Full Text Available In this study the medium-term response of beach profiles was investigated at two sites: a gently sloping sandy beach and a steeper mixed sand and gravel beach. The former is the Duck site in North Carolina, on the east coast of the USA, which is exposed to Atlantic Ocean swells and storm waves, and the latter is the Milford-on-Sea site at Christchurch Bay, on the south coast of England, which is partially sheltered from Atlantic swells but has a directionally bimodal wave exposure. The data sets comprise detailed bathymetric surveys of beach profiles covering a period of more than 25 years for the Duck site and over 18 years for the Milford-on-Sea site. The structure of the data sets and the data-driven methods are described. Canonical correlation analysis (CCA was used to find linkages between the wave characteristics and beach profiles. The sensitivity of the linkages was investigated by deploying a wave height threshold to filter out the smaller waves incrementally. The results of the analysis indicate that, for the gently sloping sandy beach, waves of all heights are important to the morphological response. For the mixed sand and gravel beach, filtering the smaller waves improves the statistical fit and it suggests that low-height waves do not play a primary role in the medium-term morphological response, which is primarily driven by the intermittent larger storm waves.

  1. Variational modelling of extreme waves through oblique interaction of solitary waves: application to Mach reflection

    Science.gov (United States)

    Gidel, Floriane; Bokhove, Onno; Kalogirou, Anna

    2017-01-01

    In this work, we model extreme waves that occur due to Mach reflection through the intersection of two obliquely incident solitary waves. For a given range of incident angles and amplitudes, the Mach stem wave grows linearly in length and amplitude, reaching up to 4 times the amplitude of the incident waves. A variational approach is used to derive the bidirectional Benney-Luke equations, an asymptotic equivalent of the three-dimensional potential-flow equations modelling water waves. This nonlinear and weakly dispersive model has the advantage of allowing wave propagation in two horizontal directions, which is not the case with the unidirectional Kadomtsev-Petviashvili (KP) equation used in most previous studies. A variational Galerkin finite-element method is applied to solve the system numerically in Firedrake with a second-order Störmer-Verlet temporal integration scheme, in order to obtain stable simulations that conserve the overall mass and energy of the system. Using this approach, we are able to get close to the 4-fold amplitude amplification predicted by Miles.

  2. Wave heave spectra from radar Doppler velocities at extreme low grazing angles

    Science.gov (United States)

    Flampouris, Stylianos; Seemann, Joerg; Ziemer, Friedwart

    2013-04-01

    The ground based microwaves radar systems are used for the measurement of the sea surface phenomena for more than three decades. By calibrating the radar cross section, the extraction of the wave spectral characteristics is a well established empirical methodology (Ziemer et al. 1993) with theoretical background (Alpers et al. 1978) and commercial applications (Nieto et al. 2004), which provides comparable measurements with wave buoys. The transfer function is necessary mainly due to the imaging mechanisms, like shadowing and or tilt modulation (Seemann 1997). To avoid the obligatory use of a transfer function, instead of the radar cross section, the Doppler velocity, which is a direct measurement of the sea surface, could be used. In this poster, a methodology for the determination of heave spectra based on time series of Doppler velocity acquired under extreme low grazing angle conditions, is presented. We prove that for the determination of the peak frequency the analysis of the binary shadow mask is sufficient, but for the calculation of the spectral density, a transfer function is necessary because of the gaps of the time series due to the shadowing. The physical and technical limitations are discussed and the algorithm is tested with in situ measurements from the coastal area of German Bight. Both properties, peak frequency and significant wave height from radar, have significant correlation with buoy measurements.

  3. Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A

    Science.gov (United States)

    Ardhuin, Fabrice; Collard, Fabrice; Chapron, Bertrand; Girard-Ardhuin, Fanny; Guitton, Gilles; Mouche, Alexis; Stopa, Justin E.

    2015-04-01

    Swell evolution from the open ocean into sea ice is poorly understood, in particular the amplitude attenuation expected from scattering and dissipation. New synthetic aperture radar (SAR) data from Sentinel-1A wave mode reveal intriguing patterns of bright oscillating lines shaped like instant noodles. We investigate cases in which the oscillations are in the azimuth direction, around a straight line in the range direction. This observation is interpreted as the distortion by the SAR processing of crests from a first swell, due to the presence of a second swell. Since deviations from a straight line should be proportional to the orbital velocity toward the satellite, swell height can be estimated, from 1.5 to 5 m in the present case. The evolution of this 13 s period swell across the ice pack is consistent with an exponential attenuation on a length scale of 200 km.

  4. Wave Extremes in the North East Atlantic from Ensemble Forecasts

    CERN Document Server

    Breivik, Øyvind; Bidlot, Jean-Raymond; Carrasco, Ana; Saetra, Øyvind; 10.1175/JCLI-D-12-00738.1

    2013-01-01

    A method for estimating return values from ensembles of forecasts at advanced lead times is presented. Return values of significant wave height in the North-East Atlantic, the Norwegian Sea and the North Sea are computed from archived +240-h forecasts of the ECMWF ensemble prediction system (EPS) from 1999 to 2009. We make three assumptions: First, each forecast is representative of a six-hour interval and collectively the data set is then comparable to a time period of 226 years. Second, the model climate matches the observed distribution, which we confirm by comparing with buoy data. Third, the ensemble members are sufficiently uncorrelated to be considered independent realizations of the model climate. We find anomaly correlations of 0.20, but peak events (>P97) are entirely uncorrelated. By comparing return values from individual members with return values of subsamples of the data set we also find that the estimates follow the same distribution and appear unaffected by correlations in the ensemble. The a...

  5. Long-term trend of satellite-observed significant wave height and impact on ecosystem in the East/Japan Sea

    Science.gov (United States)

    Woo, Hye-Jin; Park, Kyung-Ae

    2017-09-01

    Significant wave height (SWH) data of nine satellite altimeters were validated with in-situ SWH measurements from buoy stations in the East/Japan Sea (EJS) and the Northwest Pacific Ocean. The spatial and temporal variability of extreme SWHs was investigated by defining the 90th, 95th, and 99th percentiles based on percentile analysis. The annual mean of extreme SWHs was dramatically increased by 3.45 m in the EJS, which is significantly higher than the normal mean of about 1.44 m. The spatial distributions of SWHs showed significantly higher values in the eastern region of the EJS than those in the western part. Characteristic seasonality was found from the time-series SWHs with high SWHs (>2.5 m) in winter but low values (<1 m) in summer. The trends of the normal and extreme (99th percentile) SWHs in the EJS had a positive value of 0.0056 m year-1 and 0.0125 m year-1, respectively. The long-term trend demonstrated that higher SWH values were more extreme with time during the past decades. The predominant spatial distinctions between the coastal regions in the marginal seas of the Northwest Pacific Ocean and open ocean regions were presented. In spring, both normal and extreme SWHs showed substantially increasing trends in the EJS. Finally, we first presented the impact of the long-term trend of extreme SWHs on the marine ecosystem through vertical mixing enhancement in the upper ocean of the EJS.

  6. Modelling the interannual variability of extreme wave climate combining a time-dependent GEV model and Self-Organizing Maps

    Science.gov (United States)

    Izaguirre, Cristina; Mendez, Fernando J.; Camus, Paula; Minguez, Roberto; Menendez, Melisa; Losada, Iñigo J.

    2010-05-01

    It is well known that the seasonal-to-interannual variability of extreme wave climate is linked to the anomalies of the atmosphere circulation. In this work, we analyze the relationships between extreme significant wave height at a particular site and the synoptic-scale weather type. We combine a time-dependent Generalized Extreme Value (GEV) model for monthly maxima and self-organizing maps (SOM) applied to monthly mean sea level pressure field (SLP) anomalies. These time-varying SLP anomalies are encoded using principal component analysis, obtaining the corresponding spatial patterns (Empirical Orthogonal Functions, EOFs) and the temporal modes (PC, principal components). The location, scale and shape parameters of the GEV distribution are parameterized in terms of harmonic functions (seasonality) and linear covariates for the PCs (interannual variability) and the model is fitted using standard likelihood theory and an automatic parameter selection procedure, which avoids overparameterization. Thus, the resulting anomalies of the location and scale parameters with respect to the seasonality are projected to the SOM lattice obtaining the influence of every weather type on the extreme wave height probability distribution (and subsequently, return-level quantiles). The use of Self-organizing maps allows an easy visualization of the results. The application of the method to different areas in the North Atlantic Ocean helps us to quantify the importance of the North Atlantic Oscillation and the East Atlantic pattern in the location and scale parameters of the GEV probability distribution. Additionally, this work opens new forecasting possibilities for the probabilities of extreme events based on synoptic-scale patterns.

  7. Four wave mixing experiments with extreme ultraviolet transient gratings

    Science.gov (United States)

    Bencivenga, F.; Cucini, R.; Capotondi, F.; Battistoni, A.; Mincigrucci, R.; Giangrisostomi, E.; Gessini, A.; Manfredda, M.; Nikolov, I. P.; Pedersoli, E.; Principi, E.; Svetina, C.; Parisse, P.; Casolari, F.; Danailov, M. B.; Kiskinova, M.; Masciovecchio, C.

    2015-01-01

    Four wave mixing (FWM) processes, based on third-order non-linear light-matter interactions, can combine ultrafast time resolution with energy and wavevector selectivity, and enables to explore dynamics inaccessible by linear methods.1-7 The coherent and multi-wave nature of FWM approach has been crucial in the development of cutting edge technologies, such as silicon photonics,8 sub-wavelength imaging9 and quantum communications.10 All these technologies operate with optical wavelengths, which limit the spatial resolution and do not allow probing excitations with energy in the eV range. The extension to shorter wavelengths, that is the extreme ultraviolet (EUV) and soft-x-ray (SXR) range, will allow to improve the spatial resolution and to expand the excitation energy range, as well as to achieve elemental selectivity by exploiting core resonances.5-7,11-14 So far FWM applications at these wavelengths have been prevented by the absence of coherent sources of sufficient brightness and suitable experimental setups. Our results show how transient gratings, generated by the interference of coherent EUV pulses delivered by the FERMI free electron laser (FEL),15 can be used to stimulate FWM processes at sub-optical wavelengths. Furthermore, we have demonstrated the possibility to read the time evolution of the FWM signal, which embodies the dynamics of coherent excitations as molecular vibrations. This result opens the perspective for FWM with nanometer spatial resolution and elemental selectivity, which, for example, would enable the investigation of charge-transfer dynamics.5-7 The theoretical possibility to realize these applications have already stimulated dedicated and ongoing FEL developments;16-20 today our results show that FWM at sub-optical wavelengths is feasible and would be the spark to the further advancements of the present and new sources. PMID:25855456

  8. Roadmap on optical rogue waves and extreme events

    Science.gov (United States)

    Akhmediev, Nail; Kibler, Bertrand; Baronio, Fabio; Belić, Milivoj; Zhong, Wei-Ping; Zhang, Yiqi; Chang, Wonkeun; Soto-Crespo, Jose M.; Vouzas, Peter; Grelu, Philippe; Lecaplain, Caroline; Hammani, K.; Rica, S.; Picozzi, A.; Tlidi, Mustapha; Panajotov, Krassimir; Mussot, Arnaud; Bendahmane, Abdelkrim; Szriftgiser, Pascal; Genty, Goery; Dudley, John; Kudlinski, Alexandre; Demircan, Ayhan; Morgner, Uwe; Amiraranashvili, Shalva; Bree, Carsten; Steinmeyer, Günter; Masoller, C.; Broderick, Neil G. R.; Runge, Antoine F. J.; Erkintalo, Miro; Residori, S.; Bortolozzo, U.; Arecchi, F. T.; Wabnitz, Stefan; Tiofack, C. G.; Coulibaly, S.; Taki, M.

    2016-06-01

    The pioneering paper ‘Optical rogue waves’ by Solli et al (2007 Nature 450 1054) started the new subfield in optics. This work launched a great deal of activity on this novel subject. As a result, the initial concept has expanded and has been enriched by new ideas. Various approaches have been suggested since then. A fresh look at the older results and new discoveries has been undertaken, stimulated by the concept of ‘optical rogue waves’. Presently, there may not by a unique view on how this new scientific term should be used and developed. There is nothing surprising when the opinion of the experts diverge in any new field of research. After all, rogue waves may appear for a multiplicity of reasons and not necessarily only in optical fibers and not only in the process of supercontinuum generation. We know by now that rogue waves may be generated by lasers, appear in wide aperture cavities, in plasmas and in a variety of other optical systems. Theorists, in turn, have suggested many other situations when rogue waves may be observed. The strict definition of a rogue wave is still an open question. For example, it has been suggested that it is defined as ‘an optical pulse whose amplitude or intensity is much higher than that of the surrounding pulses’. This definition (as suggested by a peer reviewer) is clear at the intuitive level and can be easily extended to the case of spatial beams although additional clarifications are still needed. An extended definition has been presented earlier by N Akhmediev and E Pelinovsky (2010 Eur. Phys. J. Spec. Top. 185 1-4). Discussions along these lines are always useful and all new approaches stimulate research and encourage discoveries of new phenomena. Despite the potentially existing disagreements, the scientific terms ‘optical rogue waves’ and ‘extreme events’ do exist. Therefore coordination of our efforts in either unifying the concept or in introducing alternative definitions must be continued. From

  9. Observations and Predictions of Wave Runup, Extreme Water Levels, and Medium-Term Dune Erosion during Storm Conditions

    Directory of Open Access Journals (Sweden)

    Serge Suanez

    2015-07-01

    Full Text Available Monitoring of dune erosion and accretion on the high-energy macrotidal Vougot beach in North Brittany (France over the past decade (2004–2014 has revealed significant morphological changes. Dune toe erosion/accretion records have been compared with extreme water level measurements, defined as the sum of (i astronomic tide; (ii storm surge; and (iii vertical wave runup. Runup parameterization was conducted using swash limits, beach profiles, and hydrodynamic (Hm0, Tm0,–1, and high tide water level—HTWL data sets obtained from high frequency field surveys. The aim was to quantify in-situ environmental conditions and dimensional swash parameters for the best calibration of Battjes [1] runup formula. In addition, an empirical equation based on observed tidal water level and offshore wave height was produced to estimate extreme water levels over the whole period of dune morphological change monitoring. A good correlation between this empirical equation (1.01Hmoξo and field runup measurements (Rmax was obtained (R2 85%. The goodness of fit given by the RMSE was about 0.29 m. A good relationship was noticed between dune erosion and high water levels when the water levels exceeded the dune foot elevation. In contrast, when extreme water levels were below the height of the toe of the dune sediment budget increased, inducing foredune recovery. These erosion and accretion phases may be related to the North Atlantic Oscillation Index.

  10. Amplified mid-latitude planetary waves favour particular regional weather extremes

    Science.gov (United States)

    Screen, James A.; Simmonds, Ian

    2014-08-01

    There has been an ostensibly large number of extreme weather events in the Northern Hemisphere mid-latitudes during the past decade. An open question that is critically important for scientists and policy makers is whether any such increase in weather extremes is natural or anthropogenic in origin. One mechanism proposed to explain the increased frequency of extreme weather events is the amplification of mid-latitude atmospheric planetary waves. Disproportionately large warming in the northern polar regions compared with mid-latitudes--and associated weakening of the north-south temperature gradient--may favour larger amplitude planetary waves, although observational evidence for this remains inconclusive. A better understanding of the role of planetary waves in causing mid-latitude weather extremes is essential for assessing the potential environmental and socio-economic impacts of future planetary wave changes. Here we show that months of extreme weather over mid-latitudes are commonly accompanied by significantly amplified quasi-stationary mid-tropospheric planetary waves. Conversely, months of near-average weather over mid-latitudes are often accompanied by significantly attenuated waves. Depending on geographical region, certain types of extreme weather (for example, hot, cold, wet, dry) are more strongly related to wave amplitude changes than others. The findings suggest that amplification of quasi-stationary waves preferentially increases the probabilities of heat waves in western North America and central Asia, cold outbreaks in eastern North America, droughts in central North America, Europe and central Asia, and wet spells in western Asia.

  11. Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies

    Science.gov (United States)

    Savage, Anna C.; Arbic, Brian K.; Richman, James G.; Shriver, Jay F.; Alford, Matthew H.; Buijsman, Maarten C.; Thomas Farrar, J.; Sharma, Hari; Voet, Gunnar; Wallcraft, Alan J.; Zamudio, Luis

    2017-03-01

    High horizontal-resolution (1/12.5° and 1/25°) 41-layer global simulations of the HYbrid Coordinate Ocean Model (HYCOM), forced by both atmospheric fields and the astronomical tidal potential, are used to construct global maps of sea surface height (SSH) variability. The HYCOM output is separated into steric and nonsteric and into subtidal, diurnal, semidiurnal, and supertidal frequency bands. The model SSH output is compared to two data sets that offer some geographical coverage and that also cover a wide range of frequencies—a set of 351 tide gauges that measure full SSH and a set of 14 in situ vertical profilers from which steric SSH can be calculated. Three of the global maps are of interest in planning for the upcoming Surface Water and Ocean Topography (SWOT) two-dimensional swath altimeter mission: (1) maps of the total and (2) nonstationary internal tidal signal (the latter calculated after removing the stationary internal tidal signal via harmonic analysis), with an average variance of 1.05 and 0.43 cm2, respectively, for the semidiurnal band, and (3) a map of the steric supertidal contributions, which are dominated by the internal gravity wave continuum, with an average variance of 0.15 cm2. Stationary internal tides (which are predictable), nonstationary internal tides (which will be harder to predict), and nontidal internal gravity waves (which will be very difficult to predict) may all be important sources of high-frequency "noise" that could mask lower frequency phenomena in SSH measurements made by the SWOT mission.

  12. The validation of HY-2 altimeter measurements of a significant wave height based on buoy data

    Institute of Scientific and Technical Information of China (English)

    WANG Jichao; ZHANG Jie; YANG Jungang

    2013-01-01

    HY-2 has been launched by China on August 16, 2011 which assembles multi-microwave remote sensing payloads in a body and has the ability of monitoring ocean dynamic environments. The HY-2 satellite data need to be calibrated and validated before being put into use. Based on the in-situ buoys from the Nation-al Data Buoy Center (NDBC), Ku-band significant wave heights (SWH, hs) of HY-2 altimeter are validated. Eleven months of HY-2 altimeter Level 2 products data are chose from October 1, 2011 to August 29, 2012. Using NDBC 60 buoys yield 902 collocations for HY-2 by adopting collocation criteria of 30 min for tempo-ral window and 50 km for a spatial window. An overall RMS difference of the SWH between HY-2 and buoy data is 0.297 m. A correlation coefficient between these is 0.964. An ordinary least squares (OLS) regression is performed with the buoy data as an independent variable and the altimeter data as a dependent vari-able. The regression equation of hs is hs(HY-2)=0.891×hs(NDBC)+0.022. In addition, 2016 collocations are matched with temporal window of 30 min at the crossing points of HY-2 and Jason-2 orbits. RMS difference of Ku-band SWH between the two data sets is 0.452 m.

  13. [P wave dispersion increased in childhood depending on blood pressure, weight, height, and cardiac structure and function].

    Science.gov (United States)

    Chávez-González, Elibet; González-Rodríguez, Emilio; Llanes-Camacho, María Del Carmen; Garí-Llanes, Merlin; García-Nóbrega, Yosvany; García-Sáez, Julieta

    2014-01-01

    Increased P wave dispersion are identified as a predictor of atrial fibrillation. There are associations between hypertension, P wave dispersion, constitutional and echocardiographic variables. These relationships have been scarcely studied in pediatrics. The aim of this study was to determine the relationship between P wave dispersion, blood pressure, echocardiographic and constitutional variables, and determine the most influential variables on P wave dispersion increases in pediatrics. In the frame of the PROCDEC II project, children from 8 to 11 years old, without known heart conditions were studied. Arterial blood pressure was measured in all the children; a 12-lead surface electrocardiogram and an echocardiogram were done as well. Left ventricular mass index mean values for normotensive (25.91±5.96g/m(2.7)) and hypertensive (30.34±8.48g/m(2.7)) showed significant differences P=.000. When we add prehypertensive and hypertensive there are 50.38% with normal left ventricular mass index and P wave dispersion was increased versus 13.36% of normotensive. Multiple regression demonstrated that the mean blood pressure, duration of A wave of mitral inflow, weight and height have a value of r=0.88 as related to P wave dispersion. P wave dispersion is increased in pre- and hypertensive children compared to normotensive. There are pre- and hypertensive patients with normal left ventricular mass index and increased P wave dispersion. Mean arterial pressure, duration of the A wave of mitral inflow, weight and height are the variables with the highest influence on increased P wave dispersion. Copyright © 2013 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  14. An MCV Nonhydrostatic Atmospheric Model with Height-Based Terrain following Coordinate: Tests of Waves over Steep Mountains

    Directory of Open Access Journals (Sweden)

    Xingliang Li

    2016-01-01

    Full Text Available A nonhydrostatic atmospheric model was tested with the mountain waves over various bell-shaped mountains. The model is recently proposed by using the MCV (multimoment constrained finite volume schemes with the height-based terrain following coordinate representing the topography. As discussed in our previous work, the model has some appealing features for atmospheric modeling and can be expected as a practical framework of the dynamic cores, which well balances the numerical accuracy and algorithmic complexity. The flows over the mountains of various half widths and heights were simulated with the model. The semianalytic solutions to the mountain waves through the linear theory are used to check the performance of the MCV model. It is revealed that the present model can accurately reproduce various mountain waves including those generated by the mountains with very steep inclination and is very promising for numerically simulating atmospheric flows over complex terrains.

  15. Extrapolation of extreme response for different mooring line systems of floating wave energy converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Sterndorff, Martin; Sørensen, John Dalsgaard

    2014-01-01

    Mooring systems for floating wave energy converters (WECs) are a major cost driver. Failure of mooring systems often occurs due to extreme loads. This paper introduces an extrapolation method for extreme response which accounts for the control system of a WEC that controls the loads onto the stru......Mooring systems for floating wave energy converters (WECs) are a major cost driver. Failure of mooring systems often occurs due to extreme loads. This paper introduces an extrapolation method for extreme response which accounts for the control system of a WEC that controls the loads onto...... the structure and the harvested power of the device as well as the fact that extreme loads may occur during operation and not at extreme wave states when the device is in storm protection mode. The extrapolation method is based on shortterm load time series and applied to a case study where up-scaled surge load...

  16. Trends and extremes of wave fields in the north-eastern part of the Baltic Prope

    Directory of Open Access Journals (Sweden)

    Barry Broman

    2006-06-01

    Full Text Available The paper analyses one of the longest contemporarywave measurements in the northern Baltic Sea, performed at Almagrundet1978-2003. This record contains the roughest instrumentally measuredwave conditions (significant wave height = c. 7.8 m in the northernBaltic Proper until December 2004. The data for the years 1979-95,the period for which the data are the most reliable, show a linearrising trend of 1.8% per annum in the average wave height. Theseasonal variation in wave activity follows the variation inwind speed. The monthly mean significant wave height varies from0.5 m in May-July to 1.3-1.4 m in December-January. No correctionshave been made in the analysis to compensate for missing values,for their uneven distribution, or for ice cover.

  17. Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes

    OpenAIRE

    Petoukhov, Vladimir; Rahmstorf, Stefan; Petri, Stefan; Schellnhuber, Hans Joachim

    2013-01-01

    In recent years, the Northern Hemisphere has suffered several devastating regional summer weather extremes, such as the European heat wave in 2003, the Russian heat wave and the Indus river flood in Pakistan in 2010, and the heat wave in the United States in 2011. Here, we propose a common mechanism for the generation of persistent longitudinal planetary-scale high-amplitude patterns of the atmospheric circulation in the Northern Hemisphere midlatitudes. Those patterns—with zonal wave numbers...

  18. Stochastic procedures for extreme wave induced responses in flexible ships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Andersen, Ingrid Marie Vincent; Seng, Sopheak

    2014-01-01

    estimation of extreme responses. Secondly, stochastic procedures using measured time series of responses as input are considered. The Peak-over-Threshold procedure and the Weibull fitting are applied and discussed for the extreme value predictions including possible corrections for clustering effects....

  19. Experimental study on the standing-wave tube with tapered section and its extremely nonlinear standing-wave field

    Institute of Scientific and Technical Information of China (English)

    MIN Qi; YIN Yao; LI Xiaodong; LIU Ke

    2011-01-01

    A standing-wave tube with tapered section (STTS) was evolved from a standingwave tube with abrupt section (STAS) whose abrupt section was replaced with tapered section. The research was intended to compare the acoustic properties and the extremely nonlinear pure standing waves of STTS with those of STAS. The acoustic properties of the STTS were studied with transfer matrix. It was proved, like the STAS, that the STTS was dissonant standingwave tube. With its dissonant property, the 181 dB extremely nonlinear pure standing wave was obtained in the STTS excited at its first resonance frequency. Then the comparative experimental studies on the saturation properties of the extremely nonlinear standing waves were carried out in the STTS and the STAS with the same length. It was found that the STTS could suppress the harmonics and meanwhile reduce energy loss of the standing wave more effectively. Compared with the STAS, under the same voltage of loudspeaker, the STTS obtained a higher extremely nonlinear pure standing wave. Moreover, it was found for the STTS that the third harmonic of the third resonance frequency was close to the seventh resonance frequency of sound source impedance, to which the valley value of the sound pressure level transfer function corresponded. Because of this, the third harmonic increased rapidly with the increase of fundamental wave and tended to saturate.

  20. Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes.

    Science.gov (United States)

    Petoukhov, Vladimir; Rahmstorf, Stefan; Petri, Stefan; Schellnhuber, Hans Joachim

    2013-04-01

    In recent years, the Northern Hemisphere has suffered several devastating regional summer weather extremes, such as the European heat wave in 2003, the Russian heat wave and the Indus river flood in Pakistan in 2010, and the heat wave in the United States in 2011. Here, we propose a common mechanism for the generation of persistent longitudinal planetary-scale high-amplitude patterns of the atmospheric circulation in the Northern Hemisphere midlatitudes. Those patterns--with zonal wave numbers m = 6, 7, or 8--are characteristic of the above extremes. We show that these patterns might result from trapping within midlatitude waveguides of free synoptic waves with zonal wave numbers k ≈ m. Usually, the quasistationary dynamical response with the above wave numbers m to climatological mean thermal and orographic forcing is weak. Such midlatitude waveguides, however, may favor a strong magnification of that response through quasiresonance.

  1. A Floating Offshore Wind Turbine in Extreme Wave Conditions

    DEFF Research Database (Denmark)

    Wehmeyer, Christof

    and peak enhancement factors, based on cyclonic storm conditions (Wehmeyer et al., 2012). 2. Based on Wehmeyer et al. (2012), a physical model test campaign was drafted, where an industry inspired floating offshore wind turbine was tested (Wehmeyer et al., 2013). 3. A comparison of measured pitch responses...... versus responses from an in-house developed numerical tool, as well as a code to code comparison in regular non-linear waves served as initial key performance indicator of numerical model quality and good agreement was found (Wehmeyer et al., 2014). 4. As a final step, the numerical model was extended...... in order to include non-linear irregular incident waves as well as non-linear irregular incident waves with an embedded Stream-function wave. A linear background sea state into which a Stream-function wave was embedded was assumed no longer appropriate. Therefore a 2nd order sea state model was developed...

  2. Constraining Depths and Wave Heights for Titan's lakes with Cassini RADAR Data

    Science.gov (United States)

    Wye, L.; Zebker, H. A.; Hayes, A. G.; Lorenz, R. D.; Notarnicola, C.; Ventura, B.; Casarano, D.; Cassini RADAR Team

    2010-12-01

    Ontario Lacus' near shore regions, we evaluate partial depth profiles for these two northern lakes. We assume the dielectric properties to apply uniformly across the lake volumes, but we explore the effects that differing dielectric properties has on the depth interpretations. In our analysis, we allow for scatter from small-scale waves on the surface of these lakes. We find that the wave activity, assumed uniform across the lake, has to be less than 1 mm in rms height according to small perturbation theory. These results are consistent with the analysis of altimetry echoes from Ontario Lacus (Wye et al., GRL 2009) and suggest either that the wind is not strong enough at the time of the observations to initiate significant wave activity or that the liquid properties are quite different from what has been assumed (Lorenz et al., Icarus 2010). The outputs of this analysis will also be compared with those of another double layer model applied to SAR data. This model uses a Bayesian inversion algorithm to provide the mean values and the PDFs of the single parameter estimates, including wind speeds and optical thickness (Notarnicola et. al, IEEE TGRS 2009).

  3. Extreme localization of light with femtosecond subwavelength rogue waves

    KAUST Repository

    Liu, Changxu

    2015-01-01

    By using theory and experiments, we investigate a new mechanism based on spontaneous synchronization of random waves which generates ultrafast subwavelength rare events in integrated photonic chips. © 2014 Optical Society of America.

  4. Most Likely Response Waves for Estimation of Extreme Value Ship Response Statistics

    DEFF Research Database (Denmark)

    Dietz, Jesper Skjoldager; Friis-Hansen, Peter; Jensen, Jørgen Juncher

    2004-01-01

    Fast and accurate methods for estimation of non-linear extreme value ship response statistics using 2D or 3D time-domain codes are of interest. The present study illustrates a new approach using Most Likely Response Waves (MLRW) to estimate the entire non-linear extreme response value distribution...

  5. Changes to extreme wave climates of islands within the Western Tropical Pacific throughout the 21st century under RCP 4.5 and RCP 8.5, with implications for island vulnerability and sustainability

    Science.gov (United States)

    Shope, James B.; Storlazzi, Curt D.; Erikson, Li H.; Hegermiller, Christie A.

    2016-06-01

    Waves are the dominant influence on coastal morphology and ecosystem structure of tropical Pacific islands. Wave heights, periods, and directions for the 21st century were projected using near-surface wind fields from four atmosphere-ocean coupled global climate models (GCM) under representative concentration pathways (RCP) 4.5 and 8.5. GCM-derived wind fields forced the global WAVEWATCH-III wave model to generate hourly time series of bulk wave parameters around 25 islands in the mid to western tropical Pacific Ocean for historical (1976-2005), mid-century, and end-century time periods for the December-February and June-August seasons. The December-February regional wave climate is dominated by strong winds and large swell from extratropical cyclones in the north Pacific while the June-August season brings smaller waves generated by the trade winds and swell from Southern Hemisphere extratropical storms. Extreme significant wave heights decreased ( 10.0%) throughout the 21st century under both climate scenarios compared to historical wave conditions and the higher radiative forcing RCP 8.5 scenario displayed a greater and more widespread decrease in extreme significant wave heights compared to the lower forcing RCP 4.5 scenario. An exception was for the end-century June-August season. Offshore of islands in the central equatorial Pacific, extreme significant wave heights displayed the largest changes from historical values. The frequency of extreme events during December-February decreased under RCP 8.5, whereas the frequency increased under RCP 4.5. Mean wave directions rotated more than 30° clockwise at several locations during June-August, which could indicate a weakening of the trade winds' influence on extreme wave directions and increasing dominance of Southern Ocean swell. The results of this study underscore that December-February large wave events will become smaller and less frequent in most regions, reducing the likelihood and magnitude of wave

  6. Econometric analysis of the changing effects in wind strength and significant wave height on the probability of casualty in shipping.

    Science.gov (United States)

    Knapp, Sabine; Kumar, Shashi; Sakurada, Yuri; Shen, Jiajun

    2011-05-01

    This study uses econometric models to measure the effect of significant wave height and wind strength on the probability of casualty and tests whether these effects changed. While both effects are in particular relevant for stability and strength calculations of vessels, it is also helpful for the development of ship construction standards in general to counteract increased risk resulting from changing oceanographic conditions. The authors analyzed a unique dataset of 3.2 million observations from 20,729 individual vessels in the North Atlantic and Arctic regions gathered during the period 1979-2007. The results show that although there is a seasonal pattern in the probability of casualty especially during the winter months, the effect of wind strength and significant wave height do not follow the same seasonal pattern. Additionally, over time, significant wave height shows an increasing effect in January, March, May and October while wind strength shows a decreasing effect, especially in January, March and May. The models can be used to simulate relationships and help understand the relationships. This is of particular interest to naval architects and ship designers as well as multilateral agencies such as the International Maritime Organization (IMO) that establish global standards in ship design and construction.

  7. Validation of Chinese HY-2 satellite radar altimeter significant wave height

    Institute of Scientific and Technical Information of China (English)

    YE Xiaomin; LIN Mingsen; XU Ying

    2015-01-01

    Chinese Haiyang-2(HY-2) satellite is the first Chinese marine dynamic environment satellite. The dual-frequency (Ku and C band) radar altimeter onboard HY-2 has been working effective to provide operational significant wave height (SWH) for more than three years (October 1, 2011 to present).We validated along-track Ku-band SWH data of HY-2 satellite against National Data Buoy Center (NDBC)in-situ measurements over a time period of three years from October 1, 2011 to September 30, 2014, the root mean square error (RMSE) and mean bias of HY-2 SWH is 0.38 m and (–0.13±0.35) m, respectively. We also did cross validation against Jason-2 altimeter SWH data,the RMSE and the mean bias is 0.36m and (–0.22±0.28) m, respectively. In order to compare the statistical results between HY-2 and Jason-2 satellite SWH data, we validated the Jason-2 satellite radar altimeter along-track Ku-band SWH data against NDBC measurements using the same method. The results demonstrate the validation method in this study is scientific and the RMSE and mean bias of Jason-2 SWH data is 0.26 m and (0.00±0.26) m, respectively. We also validated both HY-2 and Jason-2 SWH data every month, the mean bias of Jason-2 SWH data almost equaled to zero all the time, while the mean bias of HY-2 SWH data was no less than –0.31m before April 2013 and dropped to zero after that time. These results indicate that the statistical results for HY-2 altimeter SWH are reliable and HY-2 altimeter along-track SWH data were steady and of high quality in the last three years. The results also indicate that HY-2 SWH data have greatly been improved and have the same accuracy with Jason-2 SWH data after April, 2013. SWH data provided by HY-2 satellite radar altimeter are useful and acceptable for ocean operational applications.

  8. Extreme waves that appear from nowhere: On the nature of rogue waves

    Energy Technology Data Exchange (ETDEWEB)

    Akhmediev, N. [Optical Sciences Group, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Soto-Crespo, J.M. [Instituto de Optica, C.S.I.C., Serrano 121, 28006 Madrid (Spain)], E-mail: iodsc09@io.cfmac.csic.es; Ankiewicz, A. [Optical Sciences Group, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia)

    2009-06-01

    We have numerically calculated chaotic waves of the focusing nonlinear Schrrodinger equation (NLSE), starting with a plane wave modulated by relatively weak random waves. We show that the peaks with highest amplitude of the resulting wave composition (rogue waves) can be described in terms of exact solutions of the NLSE in the form of the collision of Akhmediev breathers.

  9. Observation of two-dimensional Faraday waves in extremely shallow depth.

    Science.gov (United States)

    Li, Xiaochen; Yu, Zhengyue; Liao, Shijun

    2015-09-01

    A family of two-dimensional Faraday waves in extremely shallow depth (1 mm to 2 mm) of absolute ethanol are observed experimentally using a Hele-Shaw cell that vibrates vertically. The same phenomena are not observed by means of water, ethanol solution, and silicone oil. These Faraday waves are quite different from the traditional ones. These phenomena are helpful to deepen and enrich our understandings about Faraday waves, and besides provide a challenging problem for computational fluid dynamics.

  10. Wave induced extreme hull girder loads on containerships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Pedersen, Preben Terndrup; Shi, Bill;

    2009-01-01

    , forward speed and hull flexibility. The vertical hull girder loads are evaluated for specific operational profiles. Firstly a quadratic strip theory is presented which can give separate predictions for the hogging and sagging bending moments and shear forces and for hull girder loads. Then this procedure...... is used as a base to derive semi-analytical formulas such that approximate wave load calculations can be performed by a simple spreadsheet program. Due to the few input parameters this procedure can be used to estimate the wave-induced bending moments at the conceptual design phase. Since the procedure...

  11. Extreme Wave Statistics within the Mouth of the Columbia River

    Science.gov (United States)

    2014-12-01

    the Suez Canal closure from the Israel-Arab War (1967- 1975), a spike in maritime mishaps was noted in the vicinity of the Agulhas, as more ships were...Atmospheric Research, COMET, cited 2014. Wave Life Cycle II: Propagation & Dispersion. [available online at http://www.meted.ucar.edu/marine

  12. Characterization and effects of cold fronts in the Colombian Caribbean Coast and their relationship to extreme wave events

    Science.gov (United States)

    Ortiz-Royero, J. C.; Otero, L. J.; Restrepo, J. C.; Ruiz, J.; Cadena, M.

    2013-07-01

    Extreme ocean waves in the Caribbean Sea are commonly related to the effects of storms and hurricanes during the months of June through November. The collapse of 200 m of the Puerto Colombia pier in March 2009 revealed the effects of meteorological phenomena other than storms and hurricanes that may be influencing the extreme wave regime in the Colombian Caribbean. The marked seasonality of these atmospheric fronts was established by analyzing the meteorological-marine reports of Instituto de Hidrología, Meteorología y Estudios Ambientales of Colombia (IDEAM, based on its initials in Spanish) and Centro de Investigación en Oceanografía y Meteorología of Colombia (CIOH, based on its initials in Spanish). The highest occurrences were observed during the months of January, February, and March, with 6 fronts occurring per year. An annual trend was not observed, although the highest number of fronts occurred in 2010 (20 in total). An annual strong relationship between the maximum average wave values and the cold fronts, in the central zone of the Colombian Caribbean during the first three months of the year was established. In addition, the maximum values of the significant height produced by the passage of cold fronts during the last 16 yr were identified. Although the Colombian Caribbean has been affected by storms and hurricanes in the past, this research allows us to conclude that, there is a strong relationship between cold fronts and the largest waves in the Colombian Caribbean during the last 16 yr, which have caused damage to coastal infrastructure. We verified that the passage of a cold front corresponded to the most significant extreme wave event of the last two decades in the Colombian Caribbean, which caused the structural collapse of the Puerto Colombia pier, located near the city of Barranquilla, between 5 and 10 March 2009. This information is invaluable when evaluating average and extreme wave regimes for the purpose of informing the design of

  13. Numerical simulations and observations of surface wave fields under an extreme tropical cyclone

    Science.gov (United States)

    Fan, Y.; Ginis, I.; Hara, T.; Wright, C.W.; Walsh, E.J.

    2009-01-01

    The performance of the wave model WAVEWATCH III under a very strong, category 5, tropical cyclone wind forcing is investigated with different drag coefficient parameterizations and ocean current inputs. The model results are compared with field observations of the surface wave spectra from an airborne scanning radar altimeter, National Data Buoy Center (NDBC) time series, and satellite altimeter measurements in Hurricane Ivan (2004). The results suggest that the model with the original drag coefficient parameterization tends to overestimate the significant wave height and the dominant wavelength and produces a wave spectrum with narrower directional spreading. When an improved drag parameterization is introduced and the wave-current interaction is included, the model yields an improved forecast of significant wave height, but underestimates the dominant wavelength. When the hurricane moves over a preexisting mesoscale ocean feature, such as the Loop Current in the Gulf of Mexico or a warm-and cold-core ring, the current associated with the feature can accelerate or decelerate the wave propagation and significantly modulate the wave spectrum. ?? 2009 American Meteorological Society.

  14. On the retrieval of significant wave heights from spaceborne Synthetic Aperture Radar using the Max-Planck Institut algorithm.

    Science.gov (United States)

    Violante-Carvalho, Nelson

    2005-12-01

    Synthetic Aperture Radar (SAR) onboard satellites is the only source of directional wave spectra with continuous and global coverage. Millions of SAR Wave Mode (SWM) imagettes have been acquired since the launch in the early 1990's of the first European Remote Sensing Satellite ERS-1 and its successors ERS-2 and ENVISAT, which has opened up many possibilities specially for wave data assimilation purposes. The main aim of data assimilation is to improve the forecasting introducing available observations into the modeling procedures in order to minimize the differences between model estimates and measurements. However there are limitations in the retrieval of the directional spectrum from SAR images due to nonlinearities in the mapping mechanism. The Max-Planck Institut (MPI) scheme, the first proposed and most widely used algorithm to retrieve directional wave spectra from SAR images, is employed to compare significant wave heights retrieved from ERS-1 SAR against buoy measurements and against the WAM wave model. It is shown that for periods shorter than 12 seconds the WAM model performs better than the MPI, despite the fact that the model is used as first guess to the MPI method, that is the retrieval is deteriorating the first guess. For periods longer than 12 seconds, the part of the spectrum that is directly measured by SAR, the performance of the MPI scheme is at least as good as the WAM model.

  15. Evolution of bed form height and length during a discharge wave

    NARCIS (Netherlands)

    Warmink, J.J.; Schielen, R.M.J.; Dohmen-Janssen, C.M.; Lancker, van V.; Garlan, T.

    2013-01-01

    This research focusses on modeling the evolution of bed form during a discharge wave for application in operational flood forecasting. The objective of this research was to analyze and predict the bed form evolution during a discharge wave in a flume experiment. We analyzed the data of a flume exper

  16. Wave-induced extreme water levels in the Puerto Morelos fringing reef lagoon

    Directory of Open Access Journals (Sweden)

    A. Torres-Freyermuth

    2012-12-01

    Full Text Available Wave-induced extreme water levels in the Puerto Morelos fringing reef lagoon are investigated by means of a phase-resolving non-hydrostatic wave model (SWASH. This model solves the nonlinear shallow water equations including non-hydrostatic pressure. The one-dimensional version of the model is implemented in order to investigate wave transformation in fringing reefs. Firstly, the numerical model is validated with (i laboratory experiments conducted on a physical model (Demirbilek et al., 2007and (ii field observations (Coronado et al., 2007. Numerical results show good agreement with both experimental and field data. The comparison against the physical model results, for energetic wave conditions, indicates that high- and low-frequency wave transformation is well reproduced. Moreover, extreme water-level conditions measured during the passage of Hurricane Ivan in Puerto Morelos are also estimated by the numerical tool. Subsequently, the model is implemented at different along-reef locations in Puerto Morelos. Extreme water levels, wave-induced setup, and infragravity wave energy are estimated inside the reef lagoon for different storm wave conditions (Hs >2 m. The numerical results revealed a strong correlation between the offshore sea-swell wave energy and the setup. In contrast, infragravity waves are shown to be the result of a more complex pattern which heavily relies on the reef geometry. Indeed, the southern end of the reef lagoon provides evidence of resonance excitation, suggesting that the reef barrier may act as either a natural flood protection morphological feature, or as an inundation hazard enhancer depending on the incident wave conditions.

  17. SeaBuoySoft – an On-line Automated Windows based Ocean Wave height Data Acquisition and Analysis System for Coastal Field’s Data Collection

    Directory of Open Access Journals (Sweden)

    P.H.Tarudkar

    2014-12-01

    Full Text Available Measurement of various hydraulic parameters such as wave heights for the research and the practical purpose in the coastal fields is one of the critical and challenging but equally important criteria in the field of ocean engineering for the design and the development of hydraulic structures such as construction of sea walls, break waters, oil jetties, fisheries harbors, all other structures, and the ships maneuvering, embankments, berthing on jetties. This paper elucidates the development of “SeaBuoySoft online software system for coastal field‟s wave height data collection” for the coastal application work. The system could be installed along with the associated hardware such as a Digital Waverider Receiver unit and a Waverider Buoy at the shore. The ocean wave height data, transmitted by wave rider buoy installed in the shallow/offshore waters of sea is received by the digital waverider receiver unit and it is interfaced to the SeaBuoySoft software. The design and development of the software system has been worked out in-house at Central Water and Power Research Station, Pune, India. The software has been developed as a Windows based standalone version and is unique of its kind for the reception of real time ocean wave height data, it takes care of its local storage of wave height data for its further analysis work as and when required. The system acquires real time ocean wave height data round the clock requiring no operator intervention during data acquisition process on site.

  18. Extreme value prediction of the wave-induced vertical bending moment in large container ships

    DEFF Research Database (Denmark)

    Andersen, Ingrid Marie Vincent; Jensen, Jørgen Juncher

    2015-01-01

    in the present paper is based on time series of full scale measurements from three large container ships of 8600, 9400 and 14000 TEU. When carrying out the extreme value estimation the peak-over-threshold (POT) method combined with an appropriate extreme value distribution is applied. The choice of a proper...... increase the extreme hull girder response significantly. Focus in the present paper is on the influence of the hull girder flexibility on the extreme response amidships, namely the wave-induced vertical bending moment (VBM) in hogging, and the prediction of the extreme value of the same. The analysis...... threshold level as well as the statistical correlation between clustered peaks influence the extreme value prediction and are taken into consideration in the present paper....

  19. The impact of North Atlantic wind and cyclone trends on European precipitation and significant wave height in the Atlantic.

    Science.gov (United States)

    Trigo, Ricardo M; Valente, Maria A; Trigo, Isabel F; Miranda, Pedro M A; Ramos, Alexandre M; Paredes, Daniel; García-Herrera, Ricardo

    2008-12-01

    An analysis of the frequency of cyclones and surface wind velocity for the Euro-Atlantic sector is performed by means of an objective methodology. Monthly and seasonal trends of cyclones and wind speed magnitude are computed and trends between 1960 and 2000 evaluated. Results reveal a significant frequency decrease (increase) in the western Mediterranean (Greenland and Scandinavia), particularly in December, February, and March. Seasonal and monthly analysis of wind magnitude trends shows similar spatial patterns. We show that these changes in the frequency of low-pressure centers and the associated wind patterns are partially responsible for trends in the significant height of waves. Throughout the extended winter months (October-March), regions with positive (negative) wind magnitude trends, of up to 5 cm/s/year, often correspond to regions of positive (negative) significant wave height trends. The cyclone and wind speed trends computed for January-March are well matched by the corresponding trends in significant wave height, with February being the month with the highest trends (negative south of lat 50 degrees N up to -3 cm/year, and positive up to 5 cm/year just north of Scotland). Trends in European precipitation are assessed using the Climatic Research Unit data set. The results of the assessment emphasize the link with the corresponding tendencies of cyclone frequencies. Finally, it is shown that these changes are associated, to a large extent, with the preferred phases of major large-scale atmospheric circulation modes, particularly with the North Atlantic Oscillation, the eastern Atlantic pattern, and the Scandinavian pattern.

  20. The heat wave of August 2012 in the Czech Republic: Evaluation using the Weather Extremity Index

    Science.gov (United States)

    Holtanová, Eva; Valeriánová, Anna; Crhová, Lenka

    2014-05-01

    We present an analysis of the summer heat wave of August 2012 in the Czech Republic. We use and compare results of two different approaches to heat wave evaluation. The Weather Extremity Index evaluates the extremity and spatial extent of the meteorological extreme event of interest. The second method is based on the duration of daily maximum air temperature above specific thresholds. In August 2012, the high air temperature in the Czech Republic lasted from 18/8 to 24/8. It was connected with the inflow of hot air from northern Africa between the low pressure trough over the eastern Atlantic and the region of high pressure in central Europe. The heat wave culminated on 20/8 when the maximum air temperature was higher than 30°C in the whole area of the Czech Republic and the highest daily maximum air temperature on record in the Czech Republic with value of 40.4°C was observed at Dobřichovice station. Our results demonstrate that the studied heat wave was quite extraordinary, occurring so late in the summer with a relatively large areal extent and extremity of detected maximum air temperature. Furthermore, the Weather Extremity Index was found useful for identification of really extreme high air temperature events and facilitated inter-comparison in terms of extremity and spatial extent. However, it cannot be used for detection of all heat waves that could have severe impacts on both human activities and natural ecosystems. The work has been supported by the grant P209/11/1990 funded by the Czech Science Foundation.

  1. Extreme Wave-Induced Oscillation in Paradip Port Under the Resonance Conditions

    Science.gov (United States)

    Kumar, Prashant; Gulshan

    2017-08-01

    A mathematical model is constructed to analyze the long wave-induced oscillation in Paradip Port, Odisha, India under the resonance conditions to avert any extreme wave hazards. Boundary element method (BEM) with corner contribution is utilized to solve the Helmholtz equation under the partial reflection boundary conditions. Furthermore, convergence analysis is also performed for the boundary element scheme with uniform and non-uniform discretization of the boundary. The numerical scheme is also validated with analytic approximation and existing studies based on harbor resonance. Then, the amplification factor is estimated at six key record stations in the Paradip Port with multidirectional incident waves and resonance modes are also estimated at the boundary of the port. Ocean surface wave field is predicted in the interior of Paradip Port for the different directional incident wave at various resonance modes. Moreover, the safe locations in the port have been identified for loading and unloading of moored ship with different resonance modes and directional incident waves.

  2. A Floating Offshore Wind Turbine in Extreme Wave Conditions

    DEFF Research Database (Denmark)

    Wehmeyer, Christof

    probability is equal to an event occurring once in a lifetime of an offshore wind turbine structure, i.e. a 50 year return period event. It can be shown that the applied sea state is representative for harsh European offshore wind sites as well, providing hence a more general applicability. The floating...... a satisfying match, though the hybrid model over predicts the remaining 5% to 10% maximum loads by 32%, 34% and 29% for a linear irregular sea state, a nonlinear irregular sea state and a nonlinear irregular sea state with an embedded Stream-function wave, respectively. The limited number of sea states during...... measure to assess critical ULS events for FOWT – though still towards the background of necessary further developments. The approach is similar to current state of the art ULS analysis of bottom fixed offshore wind turbines. So far it has however not been applied in floating structure designs...

  3. Response spectrum method for extreme wave loading with higher order components of drag force

    Science.gov (United States)

    Reza, Tabeshpour Mohammad; Mani, Fatemi Dezfouli; Mohammad Ali, Dastan Diznab; Saied, Mohajernasab; Saied, Seif Mohammad

    2017-01-01

    Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass attached to a light cantilever cylinder and their corresponding deformation response spectra are estimated by utilizing a generalized single degree of freedom system. Based on the wave data recorded in the Persian Gulf region, extreme wave loading conditions corresponding to different return periods are exerted on the offshore structures. Accordingly, the effect of the higher order components of the drag force is considered and compared to the linearized state for different sea surface levels. When the fundamental period of the offshore structure is about one third of the main period of wave loading, the results indicate the linearized drag term is not capable of achieving a reliable deformation response spectrum.

  4. Experiments on extreme wave generation using the Soliton on Finite Background

    CERN Document Server

    Huijsmans, R H M; Karjanto, N; Andonowati,

    2011-01-01

    A theoretical model of Soliton on Finite Background of a family of exact solution of the nonlinear Schr\\"{o}dinger equation for extreme wave generation is discussed in this paper. Some characteristics and physical properties of this solution are explained. The comparisons with experimental results from MARIN and with the simulation result from nonlinear wave model HUBRIS are also presented. The occurrence of phase singularity is observed, as predicted by the theoretical model of Soliton on Finite Background.

  5. Multi-scale wavelet analysis of TOPEX/Poseidon altimeter significant wave height in eastern China seas

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The multi-scale characteristics of wave significant height (Hs) in eastern China seas were revealed by multi-scale wavelet analysis. In order to understand the relation between wave and wind, the TOPEX/Poseidon measurements of Hs and wind speed were analyzed. The result showed that Hs and wind speed change in multi-scale at one-, two-month, half-, one- and two-year cycles. But in a larger time scale, the variations in Hs and wind speed are different. Hs has a five-year cycle similar to the cycle of ENSO variation, while the wind speed has no such cycle. In the time domain, the correlation between Hs and ENSO is unclear.

  6. A new global model for the ionospheric F2 peak height for radio wave propagation

    Directory of Open Access Journals (Sweden)

    M. M. Hoque

    2012-05-01

    Full Text Available The F2-layer peak density height hmF2 is one of the most important ionospheric parameters characterizing HF propagation conditions. Therefore, the ability to model and predict the spatial and temporal variations of the peak electron density height is of great use for both ionospheric research and radio frequency planning and operation. For global hmF2 modelling we present a nonlinear model approach with 13 model coefficients and a few empirically fixed parameters. The model approach describes the temporal and spatial dependencies of hmF2 on global scale. For determining the 13 model coefficients, we apply this model approach to a large quantity of global hmF2 observational data obtained from GNSS radio occultation measurements onboard CHAMP, GRACE and COSMIC satellites and data from 69 worldwide ionosonde stations. We have found that the model fits to these input data with the same root mean squared (RMS and standard deviations of 10%. In comparison with the electron density NeQuick model, the proposed Neustrelitz global hmF2 model (Neustrelitz Peak Height Model – NPHM shows percentage RMS deviations of about 13% and 12% from the observational data during high and low solar activity conditions, respectively, whereas the corresponding deviations for the NeQuick model are found 18% and 16%, respectively.

  7. Application of the Most Likely Extreme Response Method for Wave Energy Converters: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Quon, Eliot; Platt, Andrew; Yu, Yi-Hsiang; Lawson, Michael

    2016-07-01

    Extreme loads are often a key cost driver for wave energy converters (WECs). As an alternative to exhaustive Monte Carlo or long-term simulations, the most likely extreme response (MLER) method allows mid- and high-fidelity simulations to be used more efficiently in evaluating WEC response to events at the edges of the design envelope, and is therefore applicable to system design analysis. The study discussed in this paper applies the MLER method to investigate the maximum heave, pitch, and surge force of a point absorber WEC. Most likely extreme waves were obtained from a set of wave statistics data based on spectral analysis and the response amplitude operators (RAOs) of the floating body; the RAOs were computed from a simple radiation-and-diffraction-theory-based numerical model. A weakly nonlinear numerical method and a computational fluid dynamics (CFD) method were then applied to compute the short-term response to the MLER wave. Effects of nonlinear wave and floating body interaction on the WEC under the anticipated 100-year waves were examined by comparing the results from the linearly superimposed RAOs, the weakly nonlinear model, and CFD simulations. Overall, the MLER method was successfully applied. In particular, when coupled to a high-fidelity CFD analysis, the nonlinear fluid dynamics can be readily captured.

  8. Application of the Most Likely Extreme Response Method for Wave Energy Converters

    Energy Technology Data Exchange (ETDEWEB)

    Quon, Eliot; Platt, Andrew; Yu, Yi-Hsiang; Lawson, Michael

    2016-06-24

    Extreme loads are often a key cost driver for wave energy converters (WECs). As an alternative to exhaustive Monte Carlo or long-term simulations, the most likely extreme response (MLER) method allows mid- and high-fidelity simulations to be used more efficiently in evaluating WEC response to events at the edges of the design envelope, and is therefore applicable to system design analysis. The study discussed in this paper applies the MLER method to investigate the maximum heave, pitch, and surge force of a point absorber WEC. Most likely extreme waves were obtained from a set of wave statistics data based on spectral analysis and the response amplitude operators (RAOs) of the floating body; the RAOs were computed from a simple radiation-and-diffraction-theory-based numerical model. A weakly nonlinear numerical method and a computational fluid dynamics (CFD) method were then applied to compute the short-term response to the MLER wave. Effects of nonlinear wave and floating body interaction on the WEC under the anticipated 100-year waves were examined by comparing the results from the linearly superimposed RAOs, the weakly nonlinear model, and CFD simulations. Overall, the MLER method was successfully applied. In particular, when coupled to a high-fidelity CFD analysis, the nonlinear fluid dynamics can be readily captured.

  9. Extreme waves from tropical cyclones and climate change in the Gulf of Mexico

    Science.gov (United States)

    Appendini, Christian M.; Pedrozo-Acuña, Adrian; Meza-Padilla, Rafael; Torres-Freyermuth, Alec; Cerezo-Mota, Ruth; López-González, José

    2017-04-01

    Tropical cyclones generate extreme waves that represent a risk to infrastructure and maritime activities. The projection of the tropical cyclones derived wave climate are challenged by the short historical record of tropical cyclones, their low occurrence, and the poor wind field resolution in General Circulation Models. In this study we use synthetic tropical cyclones to overcome such limitations and be able to characterize present and future wave climate associated with tropical cyclones in the Gulf of Mexico. Synthetic events derived from the NCEP/NCAR atmospheric reanalysis and the Coupled Model Intercomparison Project Phase 5 models NOAA/GFDL CM3 and UK Met Office HADGEM2-ES, were used to force a third generation wave model to characterize the present and future wave climate under RCP 4.5 and 8.5 escenarios. An increase in wave activity is projected for the future climate, particularly for the GFDL model that shows less bias in the present climate, although some areas are expected to decrease the wave energy. The practical implications of determining the future wave climate is exemplified by means of the 100-year design wave, where the use of the present climate may result in under/over design of structures, since the lifespan of a structure includes the future wave climate period.

  10. Trends in significant wave height and surface wind speed in the China Seas between 1988 and 2011

    Science.gov (United States)

    Zheng, Chongwei; Zhang, Ren; Shi, Weilai; Li, Xin; Chen, Xuan

    2017-10-01

    Wind and waves are key components of the climate system as they drive air-sea interactions and influence weather systems and atmospheric circulation. In marine environments, understanding surface wind and wave fields and their evolution over time is important for conducting safe and efficient human activities, such as navigation and engineering. This study considers long-term trends in the sea surface wind speed (WS) and significant wave height (SWH) in the China Seas over the period 1988-2011 using the Cross-Calibrated Multi-Platform (CCMP) ocean surface wind product and a 24-year hindcast wave dataset obtained from the WAVEWATCH-III (WW3) wave model forced with CCMP winds. The long-term trends in WS and SWH in the China Seas are analyzed over the past 24 years to provide a reference point from which to assess future climate change and offshore wind and wave energy resource development in the region. Results demonstrate that over the period 1988-2011 in the China Seas: 1) WS and SWH showed a significant increasing trend of 3.38 cm s-1 yr-1 and 1.52 cm yr-1, respectively; 2) there were notable regional differences in the long-term trends of WS and SWH; 3) areas with strong increasing trends were located mainly in the middle of the Tsushima Strait, the northern and southern areas of the Taiwan Strait, and in nearshore regions of the northern South China Sea; and 4) the long-term trend in WS was closely associated with El Niño and a significant increase in the occurrence of gale force winds in the region.

  11. Detection of quasiresonant amplification of planetary waves and their connection to northern hemisphere summer heat extremes

    Science.gov (United States)

    Kornhuber, Kai; Coumou, Dim; Petri, Stefan; Petoukhov, Vladimir

    2014-05-01

    Several recent northern hemisphere (NH) summer heat extremes have been linked to anomalous patterns of mid-latitudinal planetary waves , e.g. the European heat wave in 2003, the Russian Heat wave and Pakistani floods in 2010 and the US heat wave in 2011(Lau and Kim 2012, Black et al 2004, Petoukhov et al 2013). The NH large-scale circulation patterns in those years were characterized by persistent longitudinal planetary-scale high-amplitude waves of relative high wavenumber (6-8). A common mechanism that could lead to the observed high-amplitude planetary waves was proposed by Petukhov et al. (Petukhov et al 2013). Under certain conditions, free synoptic waves can be 'trapped' in a midlatitudinal waveguide while their amplitudes are amplified by a quasiresonant response to thermal and orographic forcing. We have searched the available reanalysis data for the emergence of waveguides for particular planetary waves and will present preliminary results of this analysis. Using spectral analysis, we quantify the planetary wave field in terms of wavenumber, amplitude, phase and eastward phase-propagation. We will present statistics of these wave quantities for periods with and without waveguides. With those conditions explicitly implemented in code we should be able to detect and point out the periods in time the requirements for amplification were met. By doing so the connection of actual summer month heat extremes to quasiresonance events can be assessed statistically. Black E., Blackburn M., Hoskins B. and Methven J.; 2004: Factors contributing to the summer 2003 European heatwave 217-23 Lau W. K. M. and Kim K.-M.; 2012: The 2010 Pakistan Flood and Russian Heat Wave: Teleconnection of Hydrometeorological Extremes J. Hydrometeorol. 13 392-403 Online: http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-11-016.1 Petoukhov V., Rahmstorf S., Petri S. and Schellnhuber H .J.;2013: Quasi-resonant amplification of atmospheric planetary waves as a mechanism for recent Northern

  12. Predicting Boat-Generated Wave Heights: A Quantitative Analysis through Video Observations of Vessel Wakes

    Science.gov (United States)

    2012-05-18

    Engineering ________________________________ (signature) Acceptance for the Trident Scholar Committee Professor Carl Wick Deputy Director of Research... Whittaker et al, 2001). The angle of propagation increases and is dependent on the depth Froude number...7) Figure 4: Super-critical wave pattern (Adapted from Whittaker et al, 2001) 18 Therefore, when

  13. Joint Occurrence Period of Wind Speed and Wave Height Based on Both Service Term and Risk Probability

    Institute of Scientific and Technical Information of China (English)

    DONG Sheng; FAN Dunqiu; TAO Shanshan

    2012-01-01

    Return periods calculated for different environmental conditions are key parameters for ocean platform design.Many codes for offshore structure design give no consideration about the correlativity among multi-loads and over-estimate design values.This frequently leads to not only higher investment but also distortion of structural reliability analysis.The definition of design return period in existing codes and industry criteria in China are summarized.Then joint retum periods of different ocean environmental parameters are determined from the view of service term and danger risk.Based on a bivariate equivalent maximum entropy distribution,joint design parameters are estimated for the concomitant wave height and wind speed at a site in the Bohai Sea.The calculated results show that even if the return period of each environmental factor,such as wave height or wind speed,is small,their combinations can lead to larger joint return periods.Proper design criteria for joint return period associated with concomitant environmental conditions will reduce structural size and lead to lower investment of ocean platforms for the exploitation of marginal oil field.

  14. UAS Observations of Polynya Wave Height and Surface Temperature During the September 2012 Terra Nova Bay, Antarctica Field Campaign

    Science.gov (United States)

    Bradley, A. C.; Palo, S. E.; Knuth, S. L.; Cassano, J. J.

    2013-12-01

    A 2012 campaign flew Aerosonde unmanned aerial systems (UASs) over the Terra Nova Bay polynya in Antarctica to study air-sea fluxes in this environment. Sea ice forms over the open water of the polynya and is pushed out from the coast by strong offshore winds, resulting in significant heat and moisture flux out of the area. The Aerosonde UAS payloads contained a number of instruments, including the Everest IR surface temperature sensor and the CULPIS LIDAR profilometer system, for the purpose of measuring these fluxes. Wave heights were extracted from the CULPIS data and compared to wind speed measurements collected onboard the Aerosonde and to wind speed measurements from AWS stations upwind. Wave height showed minimal correlation to the co-located UAS wind speed measurements, but high geographic predictability. High moisture flux out of polynyas often results in cloud formation, limiting the utility of satellite-based IR measurement of surface temperatures and ice extent. This study compares sea surface temperature measurements from the Everest instrument to the MODIS sea ice surface temperature data product. Surface temperature measurements from the Everest system show high agreement with concurrent MODIS data over a variety of ice surface conditions. The sample time of the UAV instrument relative to the time of the MODIS data provides an estimate of the time rate of change of the surface temperatures of different ice surface types (thin ice, thick ice, open water), which is related to air temperature.

  15. Experimental study of wave impact on the nearshore structures during extreme coastal floods

    Science.gov (United States)

    Sriram, Venkatachalam; Didenkulova, Ira; Pelinovsky, Efim; Rodin, Artem; Didenkulov, Oleg; Sergeeva, Anna; Nair Vishnu, Reghunathan; Sundar, Vallam; Annamalaisamy Sannasiraj, Sannasi

    2016-04-01

    We study the dynamics of strongly nonlinear waves in the coastal zone and their impact on coasts during flash floods and tsunami. For this we use analytical theory of strongly nonlinear wave propagation along the slope and compare it with the data of experiments carried out in shallow water flume of IIT Madras (72 m long, 2 m wide and up to 2 m deep). Different kinds of waves like elongated solitons, N-waves are simulated and its run-up and impact force on the idealized structure on the slope are evaluated. Different numerical models (CLAWPACK, pseudospectral code for solving nonlinear evolutional equations and FNPT model) areused to describe strongly nonlinear waves along the slope. Results of numerical simulations are compared with predictions of analytical theory and with the data of experiments. The results presented here are the preliminary results obtained within DST - RFBR joint project "Impact of waterborne debris on the nearshore structures during extreme coastal floods".

  16. National scale multivariate extreme value modelling of waves, winds and sea levels

    Directory of Open Access Journals (Sweden)

    Gouldby Ben

    2016-01-01

    Full Text Available It has long been recognised that extreme coastal flooding can arise from the joint occurrence of extreme waves, winds and sea levels. The standard simplified joint probability approach used in England and Wales can result in an underestimation of flood risk unless correction factors are applied. This paper describes the application of a state-of-the-art multivariate extreme value model to offshore winds, waves and sea levels around the coast of England. The methodology overcomes the limitations of the traditional method. The output of the new statistical analysis is a Monte-Carlo (MC simulation comprising many thousands of offshore extreme events and it is necessary to translate all of these events into overtopping rates for use as input to flood risk assessments. It is computationally impractical to transform all of these MC events from the offshore to the nearshore. Computationally efficient statistical emulators of the SWAN wave transformation model have therefore been constructed. The emulators translate the thousands of MC events offshore. Whilst the methodology has been applied for national flood risk assessment, it has the potential to be implemented for wider use, including climate change impact assessment, nearshore wave climates for detailed local assessments and coastal flood forecasting.

  17. Observed changes in seasonal heat waves and warm temperature extremes in the Romanian Carpathians

    Science.gov (United States)

    Micu, Dana; Birsan, Marius-Victor; Dumitrescu, Alexandru; Cheval, Sorin

    2015-04-01

    Extreme high temperature have a large impact on environment and human activities, especially in high elevation areas particularly sensitive to the recent climate warming. The climate of the Romanian Carpathians became warmer particularly in winter, spring and summer, exibiting a significant increasing frequency of warm extremes. The paper investigates the seasonal changes in the frequency, duration and intensity of heat waves in relation to the shifts in the daily distribution of maximum temperatures over a 50-year period of meteorological observations (1961-2010). The paper uses the heat wave definition recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI) and exploits the gridded daily dataset of maximum temperature at 0.1° resolution (~10 km) developed in the framework of the CarpatClim project (www.carpatclim.eu). The seasonal changes in heat waves behavior were identified using the Mann-Kendall non-parametric trend test. The results suggest an increase in heat wave frequency and a lengthening of intervals affected by warm temperature extremes all over the study region, which are explained by the shifts in the upper (extreme) tail of the daily maximum temperature distribution in most seasons. The trends are consistent across the region and are well correlated to the positive phases of the East Atlantic Oscillation. Our results are in good agreement with the previous temperature-related studies concerning the Carpathian region. This study was realized within the framework of the project GENCLIM, financed by UEFISCDI, code PN-II 151/2014.

  18. 76 FR 74776 - Forum-Trends in Extreme Winds, Waves, and Extratropical Storms Along the Coasts

    Science.gov (United States)

    2011-12-01

    ... National Oceanic and Atmospheric Administration Forum--Trends in Extreme Winds, Waves, and Extratropical... open public forum. SUMMARY: This notice sets forth the schedule and topics of an upcoming forum hosted... the forum and are required to RSVP to Brooke.Stewart@noaa.gov by 5 p.m. EST, Wednesday, December 28...

  19. Error quantification of abnormal extreme high waves in Operational Oceanographic System in Korea

    Science.gov (United States)

    Jeong, Sang-Hun; Kim, Jinah; Heo, Ki-Young; Park, Kwang-Soon

    2017-04-01

    In winter season, large-height swell-like waves have occurred on the East coast of Korea, causing property damages and loss of human life. It is known that those waves are generated by a local strong wind made by temperate cyclone moving to eastward in the East Sea of Korean peninsula. Because the waves are often occurred in the clear weather, in particular, the damages are to be maximized. Therefore, it is necessary to predict and forecast large-height swell-like waves to prevent and correspond to the coastal damages. In Korea, an operational oceanographic system (KOOS) has been developed by the Korea institute of ocean science and technology (KIOST) and KOOS provides daily basis 72-hours' ocean forecasts such as wind, water elevation, sea currents, water temperature, salinity, and waves which are computed from not only meteorological and hydrodynamic model (WRF, ROMS, MOM, and MOHID) but also wave models (WW-III and SWAN). In order to evaluate the model performance and guarantee a certain level of accuracy of ocean forecasts, a Skill Assessment (SA) system was established as a one of module in KOOS. It has been performed through comparison of model results with in-situ observation data and model errors have been quantified with skill scores. Statistics which are used in skill assessment are including a measure of both errors and correlations such as root-mean-square-error (RMSE), root-mean-square-error percentage (RMSE%), mean bias (MB), correlation coefficient (R), scatter index (SI), circular correlation (CC) and central frequency (CF) that is a frequency with which errors lie within acceptable error criteria. It should be utilized simultaneously not only to quantify an error but also to improve an accuracy of forecasts by providing a feedback interactively. However, in an abnormal phenomena such as high-height swell-like waves in the East coast of Korea, it requires more advanced and optimized error quantification method that allows to predict the abnormal

  20. Significant wave height estimation using azimuth cutoff of C-band RADARSAT-2 single-polarization SAR images

    Institute of Scientific and Technical Information of China (English)

    REN Lin; YANG Jingsong; ZHENG Gang; WANG Juan

    2015-01-01

    This paper proposes two simple models, look-up table (LUT) model and empirical model, to directly retrieve significant wave height (Hs) using synthetic aperture radar (SAR) azimuth cutoff (λc). Both models aim at C-band VV, HH, VH, and HV single-polarization SAR images. The LUT model relatesHs toλc, while the empirical model relatesHs to bothλc and SAR range-to-velocity (β). The LUT model coefficients are derived by simulation under different sea states and observation conditions, which depend on incidence angle (θ), wave direction (dw), andβbut are independent of polarization. The empirical model coefficients are obtained by fitting the collocated data, which only depend on polarization. To fit empirical model coefficients and validate the two models, C-band RADARSAT-2 fine quad-polarization (VV+HH+VH+HV) single-look complex (SLC) SAR images and collocated buoy data are collected. RetrievedHs, using Yang model and the two models proposed in this paper from four kinds of polarization SAR data, are compared with buoyHs. Results show that both LUT and empirical models have the capacity of retrievingHs from C-band RADARSAT-2 co-polarization SAR data, while Yang model is not suitable for these kinds of SAR data. Moreover, the empirical model is also valid for cross-polarization SAR data showing clear ocean wave stripes.

  1. Links of the significant wave height distribution in the Mediterranean sea with the Northern Hemisphere teleconnection patterns

    Directory of Open Access Journals (Sweden)

    P. Lionello

    2008-06-01

    Full Text Available This study analyzes the link between the SWH (Significant Wave Height distribution in the Mediterranean Sea during the second half of the 20th century and the Northern Hemisphere SLP (Sea Level Pressure teleconnection patterns.

    The SWH distribution is computed using the WAM (WAve Model forced by the surface wind fields provided by the ERA-40 reanalysis for the period 1958–2001. The time series of mid-latitude teleconnection patterns are downloaded from the NOAA web site. This study shows that several mid-latitude patterns are linked to the SWH field in the Mediterranean, especially in its western part during the cold season: East Atlantic Pattern (EA, Scandinavian Pattern (SCA, North Atlantic Oscillation (NAO, East Atlantic/West Russia Pattern (EA/WR and East Pacific/ North Pacific Pattern (EP/NP. Though the East Atlantic pattern exerts the largest influence, it is not sufficient to characterize the dominant variability. NAO, though relevant, has an effect smaller than EA and comparable to other patterns. Some link results from possibly spurious structures. Patterns which have a very different global structure are associated to similar spatial features of the wave variability in the Mediterranean Sea. These two problems are, admittedly, shortcomings of this analysis, which shows the complexity of the response of the Mediterranean SWH to global scale SLP teleconnection patterns.

  2. An integrated wave modelling framework for extreme and rare events for climate change in coastal areas – the case of Rethymno, Crete

    Directory of Open Access Journals (Sweden)

    Vasiliki K. Tsoukala

    2016-04-01

    Full Text Available Coastal floods are regarded as among the most dangerous and harmful of all natural disasters affecting urban areas adjacent to the shorelines. Rapid urbanization combined with climate change and poor governance often results in significant increase of flood risk, especially for coastal communities. Wave overtopping and wave run-up are the key mechanisms for monitoring the results of coastal flooding and as such, significant efforts are currently focusing on their predicting. In this paper, an integrated methodology is proposed, accounting for wave overtopping and wave run-up under extreme wave scenarios caused by storm surges. By taking advantage of past and future climatic projections of wind data, a downscaling approach is proposed, utilizing a number of appropriate numerical models than can simulate the wave propagation from offshore up to the swash zone. The coastal zone of Rethymno in Greece is selected as a case study area and simulations of wave characteristics with the model SWAN for the period 1960–2100 in the offshore region are presented. These data are given as boundary conditions to further numerical models (MIKE21 PMS and HD in order to investigate the spatial evolution of the wave and the hydrodynamic field in intermediate and shallow waters. Finally, the calculated wave height serves as input to empirical formulas and time dependent wave propagation models (MIKE21 BW to estimate the wave run-up and wave overtopping (EurOtop. It is suggested that the proposed procedure is generic enough to be applicable to any similar region.

  3. Projected sea level rise and changes in extreme storm surge and wave events during the 21st century in the region of Singapore

    Science.gov (United States)

    Cannaby, Heather; Palmer, Matthew D.; Howard, Tom; Bricheno, Lucy; Calvert, Daley; Krijnen, Justin; Wood, Richard; Tinker, Jonathan; Bunney, Chris; Harle, James; Saulter, Andrew; O'Neill, Clare; Bellingham, Clare; Lowe, Jason

    2016-05-01

    Singapore is an island state with considerable population, industries, commerce and transport located in coastal areas at elevations less than 2 m making it vulnerable to sea level rise. Mitigation against future inundation events requires a quantitative assessment of risk. To address this need, regional projections of changes in (i) long-term mean sea level and (ii) the frequency of extreme storm surge and wave events have been combined to explore potential changes to coastal flood risk over the 21st century. Local changes in time-mean sea level were evaluated using the process-based climate model data and methods presented in the United Nations Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5). Regional surge and wave solutions extending from 1980 to 2100 were generated using ˜ 12 km resolution surge (Nucleus for European Modelling of the Ocean - NEMO) and wave (WaveWatchIII) models. Ocean simulations were forced by output from a selection of four downscaled ( ˜ 12 km resolution) atmospheric models, forced at the lateral boundaries by global climate model simulations generated for the IPCC AR5. Long-term trends in skew surge and significant wave height were then assessed using a generalised extreme value model, fit to the largest modelled events each year. An additional atmospheric solution downscaled from the ERA-Interim global reanalysis was used to force historical ocean model simulations extending from 1980 to 2010, enabling a quantitative assessment of model skill. Simulated historical sea-surface height and significant wave height time series were compared to tide gauge data and satellite altimetry data, respectively. Central estimates of the long-term mean sea level rise at Singapore by 2100 were projected to be 0.52 m (0.74 m) under the Representative Concentration Pathway (RCP)4.5 (8.5) scenarios. Trends in surge and significant wave height 2-year return levels were found to be statistically insignificant and/or physically

  4. Extreme waves from Nortes and climate change in the Gulf of Mexico

    Science.gov (United States)

    Appendini, Christian M.; Hernández-Lasheras, Jaime; Pedrozo-Acuña, Adrian; Meza-Padilla, Rafael

    2017-04-01

    Extreme ocean waves in the Gulf of Mexico are a result from the incidence of tropical cyclones and anticyclone systems known as Nortes. While the waves derived from tropical cyclones have devastating consequences but a low probability of occurrence, Nortes are a frequent phenomenon producing disruptions of maritime activities during autumn/winter months. In this study we present an assessment of the waves generated by Nortes and the effects of a warming climate. To do so, we first developed a methodology to identify Norte events and classify them according to their effect over the sea state. A new index is proposed to identify events, which was used to identify events in the present and future climates. A third generation wave model was run for each of the events identified in the CFSR reanalysis and the CMIP5 model CNRM-M5 under the RCP 8.5 scenario. Nortes were classified into 5 types, using both principal component analysis and a cluster analysis by k-means over the computed wave power of the individual events. An assessment of the effect of climate change was performed over the different Norte types, which indicated that climate change will result in less frequent events of higher intensity and more frequent mild events. This may provide a relief for coastal and marine operations, in relation to downtimes due to extreme wave conditions, so that the operational design of maritime structures could consider a lower occurrence of extreme events as a result of Nortes. While the results are not conclusive due to the uncertainty imposed by Global Circulation Models, this study provides the methodology to perform the assessment on other models to reduce uncertainty.

  5. On the Co-occurrence of Air Quality Extremes and Heat Waves

    Science.gov (United States)

    Schnell, J.; Prather, M. J.

    2015-12-01

    We investigate the relationship between observed maximum extremes of ozone, PM2.5, temperature over eastern North America during 15 extended summer seasons (April-September, 1999-2013). We use an objective mapping algorithm to calculate a 1° x 1° grid-cell averaged product of (1) the maximum daily 8-hour average of surface ozone abundance and (2) the daily average PM2.5 abundance from surface monitoring networks in the US and Canada. In addition, we use ECMWF reanalysis data to generate a 1° x 1° grid-cell averaged product of (3) the maximum temperature at 2-meter height. The extreme maxima for these 3 data sets are defined at each grid cell as the 50 days with the highest value in three 5-year windows (~94.5 percentile of all Apr-Sep days). These extremes for ozone, particles and temperature are denoted OX, PX, and TX, respectively. Extreme ozone and PM2.5 most often occur together (35% of OX and PX events in a cell occur simultaneously), followed by PM2.5 and temperature (29%), ozone and temperature (27%), and all three (15%). In all cases, the greatest co-occurrence is found in the northeast US (>50% for two co-occurring events). We find that the day after any extreme is also likely to be an extreme of any kind (p > 75%) and that the most likely follow-on extreme is of the same type (p = 20-40%). The northeast US is an exception where OX are more likely to be followed by PX. Extreme episodes (defined as multi-day, spatially connected events) typically originate as an OX event, followed by PX and then TX. This ordering is also evident in the generalized spatial structure of episodes: OX occur at the center and the eastern leading edge, PX are found to the immediate northwest, and TX surround the OX and PX events. The largest OX and PX episodes are similar in size, but TX episodes are usually larger and longer lasting. In general, extremes are more likely to co-occur for larger episodes. The intensity of OX, PX, and TX events is measured as the % above the 5

  6. Extreme value predictions and critical wave episodes for marine structures by FORM

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2008-01-01

    The aim of the present paper is to advocate for a very effective stochastic procedure, based on the First Order Reliability Method (FORM), for extreme value predictions related to wave induced loads. Three different applications will be illustrated. The first deals with a jack-up rig where second...... order stochastic waves are included in the analysis. The second application is parametric roll motions of ships. Finally, the motion of a TLP floating foundation for an offshore wind turbine is analysed taking into account large motions....

  7. Extreme value predictions and critical wave episodes for marine structures by FORM

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2007-01-01

    The aim of the present paper is to advocate for a very effective stochastic procedure, based on the First Order Reliability Method (FORM), for extreme value predictions related to wave induced loads. Three different applications will be illustrated. The first deals with a jack-up rig where second...... order stochastic waves are included in the analysis. The second application is parametric roll motions of ships. Finally, the motion of a TLP floating foundation for an offshore wind turbine is analysed taking into account large motions....

  8. Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves.

    Science.gov (United States)

    McKechnie, Andrew E; Wolf, Blair O

    2010-04-23

    Severe heat waves have occasionally led to catastrophic avian mortality in hot desert environments. Climate change models predict increases in the intensity, frequency and duration of heat waves. A model of avian evaporative water requirements and survival times during the hottest part of day reveals that the predicted increases in maximum air temperatures will result in large fractional increases in water requirements (in small birds, equivalent to 150-200 % of current values), which will severely reduce survival times during extremely hot weather. By the 2080s, desert birds will experience reduced survival times much more frequently during mid-summer, increasing the frequency of catastrophic mortality events.

  9. The North Atlantic Oscillation Influence on the Wave Regime in Portugal: An Extreme Wave Event Analysis

    Science.gov (United States)

    2005-03-01

    storm wave classification criterion used by the Portuguese Weather Services (Instituto de Meteorologia ) or in the Portuguese Navy IH, a simple...PORTUGAL 13. Dr Nuno Moreira Instituto de Meteorologia Rua C ao Aeroporto Lisboa – PORTUGAL 14. LCDR Juan Conforto Sección de Oceanografía

  10. Non-Gaussian statistics and extreme waves in a nonlinear optical cavity.

    Science.gov (United States)

    Montina, A; Bortolozzo, U; Residori, S; Arecchi, F T

    2009-10-23

    A unidirectional optical oscillator is built by using a liquid crystal light valve that couples a pump beam with the modes of a nearly spherical cavity. For sufficiently high pump intensity, the cavity field presents complex spatiotemporal dynamics, accompanied by the emission of extreme waves and large deviations from the Gaussian statistics. We identify a mechanism of spatial symmetry breaking, due to a hypercycle-type amplification through the nonlocal coupling of the cavity field.

  11. Modeling Extreme Solar Energetic Particle Acceleration with Self-Consistent Wave Generation

    Science.gov (United States)

    Arthur, A. D.; le Roux, J. A.

    2015-12-01

    Observations of extreme solar energetic particle (SEP) events associated with coronal mass ejection driven shocks have detected particle energies up to a few GeV at 1 AU within the first ~10 minutes to 1 hour of shock acceleration. Whether or not acceleration by a single shock is sufficient in these events or if some combination of multiple shocks or solar flares is required is currently not well understood. Furthermore, the observed onset times of the extreme SEP events place the shock in the corona when the particles escape upstream. We have updated our focused transport theory model that has successfully been applied to the termination shock and traveling interplanetary shocks in the past to investigate extreme SEP acceleration in the solar corona. This model solves the time-dependent Focused Transport Equation including particle preheating due to the cross shock electric field and the divergence, adiabatic compression, and acceleration of the solar wind flow. Diffusive shock acceleration of SEPs is included via the first-order Fermi mechanism for parallel shocks. To investigate the effects of the solar corona on the acceleration of SEPs, we have included an empirical model for the plasma number density, temperature, and velocity. The shock acceleration process becomes highly time-dependent due to the rapid variation of these coronal properties with heliocentric distance. Additionally, particle interaction with MHD wave turbulence is modeled in terms of gyroresonant interactions with parallel propagating Alfven waves. However, previous modeling efforts suggest that the background amplitude of the solar wind turbulence is not sufficient to accelerate SEPs to extreme energies over the short time scales observed. To account for this, we have included the transport and self-consistent amplification of MHD waves by the SEPs through wave-particle gyroresonance. We will present the results of this extended model for a single fast quasi-parallel CME driven shock in the

  12. Extreme events of 2012, 2013 and 2014 linked to planetary wave resonance

    Science.gov (United States)

    Petoukhov, Vladimir; Coumou, Dim; Rahmstorf, Stefan; Stadtherr, Lisa; Kornhuber, Kai; Petri, Stefan; Schellnhuber, Hans Joachim

    2016-04-01

    Quasi-stationary planetary waves of large-amplitude have been linked to the occurrence of many of the most extreme weather events of the past decades in the Northern Hemisphere. This includes the European heat waves of 2003 and 2010 as well as the catastrophic Elbe flooding 2002. A resonance mechanism was proposed to explain the occurrence of large-amplitude planetary waves (Petoukhov et al. 2013) and a recent increase in the frequency of resonance events has been identified (Coumou et al. 2014). We extend the analysis to more recent extreme weather events. 2012 marked the warmest spring on record in the USA, accompanied by wettest spring in 100 years in the UK and national heat records for the warmest temperature in spring in 13 other European countries; torrential rains and demolishing floods in central and eastern China together with an oppressive heat wave in the USA in June; hottest July on record in the USA simultaneously with the worst flooding in 60 years in eastern China and Japan; unparalleled heat in the USA and destructive floods in China and the Philippines in August; and widespread floods in the UK in September. 2013 saw Central European Flooding in May-early June; trains of persistent heat waves in the USA and China in mid-June; and in the USA, central Europe, and western and eastern China end of June/July; strong floods in central China and Japan in late July/early August; and in north-eastern China and eastern Russia in mid-and late August; a sweltering heat wave in eastern China and Japan in early September; the worst flood in central China in late September/early October. The obtained results confirm a recent tendency to an increase in the frequency of occurrence of quasi-resonant conditions, favoring the emergence of persistent regional extremes in the NH mid-latitudes (Petoukhov et al, submitted). In May 2014, the Balkans were hit by a Vb-type cyclone that brought disastrous flooding and severe damage to Bosnia and Herzegovina, Serbia and

  13. The seasonal variations in the significant wave height and sea surface wind speed of the China’s seas

    Institute of Scientific and Technical Information of China (English)

    ZHENG Chongwei; PAN Jing; TAN Yanke; GAO Zhansheng; RUI Zhenfeng; CHEN Chaohui

    2015-01-01

    Long-term variations in a sea surface wind speed (WS) and a significant wave height (SWH) are associated with the global climate change, the prevention and mitigation of natural disasters, and an ocean resource exploitation, and other activities. The seasonal characteristics of the long-term trends in China’s seas WS and SWH are determined based on 24 a (1988–2011) cross-calibrated, multi-platform (CCMP) wind data and 24 a hindcast wave data obtained with the WAVEWATCH-III (WW3) wave model forced by CCMP wind data. The results show the following. (1) For the past 24 a, the China’s WS and SWH exhibit a significant increasing trend as a whole, of 3.38 cm/(s·a) in the WS, 1.3 cm/a in the SWH. (2) As a whole, the increasing trend of the China’s seas WS and SWH is strongest in March-April-May (MAM) and December-January-February (DJF), followed by June-July-August (JJA), and smallest in September-October-November (SON). (3) The areal extent of significant increases in the WS was largest in MAM, while the area decreased in JJA and DJF;the smallest area was apparent in SON. In contrast to the WS, almost all of China’s seas exhibited a significant increase in SWH in MAM and DJF;the range was slightly smaller in JJA and SON. The WS and SWH in the Bohai Sea, the Yellow Sea, East China Sea, the Tsushima Strait, the Taiwan Strait, the northern South China Sea, the Beibu Gulf, and the Gulf of Thailand exhibited a significant increase in all seasons. (4) The variations in China’s seas SWH and WS depended on the season. The areas with a strong increase usually appeared in DJF.

  14. Granularity and textural analysis as a proxy for extreme wave events in southeast coast of India

    Indian Academy of Sciences (India)

    C S Vijaya Lakshmi; P Srinivasan; S G N Murthy; Deshraj Trivedi; Rajesh R Nair

    2010-06-01

    Extreme wave events of 1000 and 1500 years (radiocarbon ages) have been recently reported in Mahabalipuram region, southeast coast of India. Subsequently, we carried out extensive sedimentological analysis in regions covering a total lateral coverage of 12 km with a new archeological site as the central portion of the study area. Twelve trenches in shore normal profiles exhibit landward thinning sequences as well as upward fining sequences confirming with the global signatures of extreme wave events. The sediment size ranges from fine-to-medium and moderately well sorted-to-well sorted, and exhibit positive skewness with platykurtic-to-leptokurtic nature. We now propose the abrupt winnowing or back and forth motion including unidirectional transport of these deposited sediments, which results in positive skewness. Textural analyses derived from scanning electron microscope studies (SEM) demonstrate the alteration produced, in the ilmenite mineral with vivid presence of pits and crescents with deformation observed on the surface due to extreme wave activities. This is further confirmed with the predominance of high-density mineral such as magnetite (5.2) and other heavy minerals in these deposits inferred the high-intensity of the reworking process of the beach shelf sediments.

  15. An extreme internal solitary wave event observed in the northern South China Sea

    Science.gov (United States)

    Huang, Xiaodong; Chen, Zhaohui; Zhao, Wei; Zhang, Zhiwei; Zhou, Chun; Yang, Qingxuan; Tian, Jiwei

    2016-07-01

    With characteristics of large amplitude and strong current, internal solitary wave (ISW) is a major hazard to marine engineering and submarine navigation; it also has significant impacts on marine ecosystems and fishery activity. Among the world oceans, ISWs are particular active in the northern South China Sea (SCS). In this spirit, the SCS Internal Wave Experiment has been conducted since March 2010 using subsurface mooring array. Here, we report an extreme ISW captured on 4 December 2013 with a maximum amplitude of 240 m and a peak westward current velocity of 2.55 m/s. To the authors’ best knowledge, this is the strongest ISW of the world oceans on record. Full-depth measurements also revealed notable impacts of the extreme ISW on deep-ocean currents and thermal structures. Concurrent mooring measurements near Batan Island showed that the powerful semidiurnal internal tide generation in the Luzon Strait was likely responsible for the occurrence of the extreme ISW event. Based on the HYCOM data-assimilation product, we speculate that the strong stratification around Batan Island related to the strengthening Kuroshio may have contributed to the formation of the extreme ISW.

  16. Temporal Changes in Extreme High Temerature, Heat Waves in Istanbul Between 1960-2014

    Science.gov (United States)

    Yürük, C.; Ünal, Y. S.; Bilgen, S. I.; Menteş, Ş. S.; İncecik, S.

    2015-12-01

    Climate change has crucial effects on cities and especially for informal settlements, urban poor and other vulnerable groups by influencing human health, assets and livelihoods. These impacts directly result from the variations in temperature and precipitation, and emergence of heat waves, droughts, floods and fires (IPCC, 2014). Summertime episodes with extremely high air temperatures which last for several days or longer are addressed to as heat waves and affect the weather and climate in the globe. The aim of this study is to analyze the occurrence of heat waves in terms of quantity, duration and frequency and also to evaluate the accuracy of the COSMO-CLM (CCLM) model in reproducing the characteristics of heat waves in Istanbul. The summer maximum temperatures of six Turkish State Meteorological Service (TSMS) stations are selected between 1960 and 2014 to estimate the characteristics of heat waves in Istanbul. We define the heat wave if the maximum temperatures exceed a threshold value for at least three consecutive days. The threshold value is determined as 30.5 from the 90th percentile of all six station's observations. Then it is used in the detection of the hot days, heat waves and their durations. The results show that not only the number of heat waves but also duration of heat waves increase towards the end of the study period. Especially, a significant increase in heat wave events is evident after 1990s. In 2012, the number of hot days reaches the maximum value in all stations and Kartal station located southern part of city, has the highest value of 60 hot days. Furthermore, Kartal as an urban area in the Asian side of the city, exhibits highest heat wave duration with 18 consecutive days in 1998. To estimate the relationship between urban heat island intensity and the heat waves, we examined data at 43 stations collected by Disaster Coordination Center and TSMS between 2007 and 2012. Urban heat island phenomenon is found to be related to higher

  17. Prediction of a thermodynamic wave train from the monsoon to the Arctic following extreme rainfall events

    Science.gov (United States)

    Krishnamurti, T. N.; Kumar, Vinay

    2016-06-01

    This study addresses numerical prediction of atmospheric wave trains that provide a monsoonal link to the Arctic ice melt. The monsoonal link is one of several ways that heat is conveyed to the Arctic region. This study follows a detailed observational study on thermodynamic wave trains that are initiated by extreme rain events of the northern summer south Asian monsoon. These wave trains carry large values of heat content anomalies, heat transports and convergence of flux of heat. These features seem to be important candidates for the rapid melt scenario. This present study addresses numerical simulation of the extreme rains, over India and Pakistan, and the generation of thermodynamic wave trains, simulations of large heat content anomalies, heat transports along pathways and heat flux convergences, potential vorticity and the diabatic generation of potential vorticity. We compare model based simulation of many features such as precipitation, divergence and the divergent wind with those evaluated from the reanalysis fields. We have also examined the snow and ice cover data sets during and after these events. This modeling study supports our recent observational findings on the monsoonal link to the rapid Arctic ice melt of the Canadian Arctic. This numerical modeling suggests ways to interpret some recent episodes of rapid ice melts that may require a well-coordinated field experiment among atmosphere, ocean, ice and snow cover scientists. Such a well-coordinated study would sharpen our understanding of this one component of the ice melt, i.e. the monsoonal link, which appears to be fairly robust.

  18. Prediction of a thermodynamic wave train from the monsoon to the Arctic following extreme rainfall events

    Science.gov (United States)

    Krishnamurti, T. N.; Kumar, Vinay

    2017-04-01

    This study addresses numerical prediction of atmospheric wave trains that provide a monsoonal link to the Arctic ice melt. The monsoonal link is one of several ways that heat is conveyed to the Arctic region. This study follows a detailed observational study on thermodynamic wave trains that are initiated by extreme rain events of the northern summer south Asian monsoon. These wave trains carry large values of heat content anomalies, heat transports and convergence of flux of heat. These features seem to be important candidates for the rapid melt scenario. This present study addresses numerical simulation of the extreme rains, over India and Pakistan, and the generation of thermodynamic wave trains, simulations of large heat content anomalies, heat transports along pathways and heat flux convergences, potential vorticity and the diabatic generation of potential vorticity. We compare model based simulation of many features such as precipitation, divergence and the divergent wind with those evaluated from the reanalysis fields. We have also examined the snow and ice cover data sets during and after these events. This modeling study supports our recent observational findings on the monsoonal link to the rapid Arctic ice melt of the Canadian Arctic. This numerical modeling suggests ways to interpret some recent episodes of rapid ice melts that may require a well-coordinated field experiment among atmosphere, ocean, ice and snow cover scientists. Such a well-coordinated study would sharpen our understanding of this one component of the ice melt, i.e. the monsoonal link, which appears to be fairly robust.

  19. Properties of high-frequency wave power halos around active regions: an analysis of multi-height data from HMI and AIA onboard SDO

    CERN Document Server

    Rajaguru, S P; Sun, Xudong; Hayashi, K; Schunker, H

    2012-01-01

    We study properties of waves of frequencies above the photospheric acoustic cut-off of $\\approx$5.3 mHz, around four active regions, through spatial maps of their power estimated using data from Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) onboard Solar Dynamics Observatory (SDO). The wavelength channels 1600 {\\AA} and 1700 {\\AA} from AIA are now known to capture clear oscillation signals due to helioseismic p modes as well as waves propagating up through to the chromosphere. Here we study in detail, in comparison with HMI Doppler data, properties of the power maps, especially the so called 'acoustic halos' seen around active regions, as a function of wave frequencies, inclination and strength of magnetic field (derived from the vector field observations by HMI) and observation height. We infer possible signatures of (magneto-)acoustic wave refraction from the observation height dependent changes, and hence due to changing magnetic strength and geometry, in the dependences of ...

  20. Linking Quasi- Resonant Amplification of Planetary Waves to Weather Extremes in Northern and Southern Hemisphere.

    Science.gov (United States)

    Kornhuber, K.; Coumou, D.; Petoukhov, V.; Petri, S.; Karoly, D. J.; Rahmstorf, S.

    2015-12-01

    Several recent Northern Hemisphere (NH) summer heat extremes have been linked to persistent high-amplitude planetary wave patterns (e.g. heat waves in Europe 2003, Russia 2010 and in the US 2011, Floods in Pakistan 2010 and Europe 2013) with large-scale circulation patterns characterized by persistent longitudinal planetary-scale high-amplitude waves of relative high wavenumber (6-8). Based on atmospheric wave dynamics, Petoukhov et al. (2013) proposed a so called quasi-resonant amplification (QRA) mechanism that, in case certain conditions in the NH circulation are fulfilled, can lead to such situations. Key requirements for the amplification of a slow moving (quasi stationary) synoptic wave of wavenumber 6 - 8 are i.) the formation of a waveguide to prevent meridional dissipation of their energy and ii.)a reasonable strong thermal and orographic forcing for the respective wavenumber. By casting these conditions into a script, we implemented an automated detection scheme to scan reanalysis data for QRA events. By employing this more objective approach, we were able to analyze duration and occurrence of QRA, investigate its role during summer extremes and put prior results to the test. In accordance with earlier studies we identify a rise of long lasting QRA events over the last decade, primarily attributed to an increase of wave 7 QRA episodes many of them coinciding with extreme weather in the mid-latitudes. During those periods a double jet flow regime is identified as the prevalent circulation pattern. Detected events include the summers of the record breaking heat extremes of 2003 and 2010. We employ these examples as case studies to explain evolution and effect of the QRA mechanism in detail. In a complementary study we adapted the detection scheme to the Southern Hemisphere (SH) to investigate if the mechanism is a general feature of mid-latitude circulation or whether specific conditions are needed which might only be fulfilled in the NH. We present

  1. A chain of winking (oscillating) filaments triggered by an invisible extreme-ultraviolet wave

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yuandeng; Tian, Zhanjun; Zhao, Ruijuan [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Ichimoto, Kiyoshi; Ishii, Takako T.; Shibata, Kazunari, E-mail: ydshen@ynao.ac.cn [Kwasan and Hida Observatories, Kyoto University, Yamashina-ku, Kyoto 607-8471 (Japan)

    2014-05-10

    Winking (oscillating) filaments have been observed for many years. However, observations of successive winking filaments in one event have not yet been reported. In this paper, we present the observations of a chain of winking filaments and a subsequent jet that are observed right after the X2.1 flare in AR11283. The event also produced an extreme-ultraviolet (EUV) wave that has two components: an upward dome-like wave (850 km s{sup –1}) and a lateral surface wave (554 km s{sup –1}) that was very weak (or invisible) in imaging observations. By analyzing the temporal and spatial relationships between the oscillating filaments and the EUV waves, we propose that all the winking filaments and the jet were triggered by the weak (or invisible) lateral surface EUV wave. The oscillation of the filaments last for two or three cycles, and their periods, Doppler velocity amplitudes, and damping times are 11-22 minutes, 6-14 km s{sup –1}, and 25-60 minutes, respectively. We further estimate the radial component magnetic field and the maximum kinetic energy of the filaments, and they are 5-10 G and ∼10{sup 19} J, respectively. The estimated maximum kinetic energy is comparable to the minimum energy of ordinary EUV waves, suggesting that EUV waves can efficiently launch filament oscillations on their path. Based on our analysis results, we conclude that the EUV wave is a good agent for triggering and connecting successive but separated solar activities in the solar atmosphere, and it is also important for producing solar sympathetic eruptions.

  2. The 2010 Pakistan Flood and Russian Heat Wave: Teleconnection of Hydrometeorological Extremes

    Science.gov (United States)

    Lau, William K. M.; Kim, Kyu-Myong

    2012-01-01

    In this paper, preliminary results are presented showing that the two record-setting extreme events during 2010 summer (i.e., the Russian heat wave-wildfires and Pakistan flood) were physically connected. It is found that the Russian heat wave was associated with the development of an extraordinarily strong and prolonged extratropical atmospheric blocking event in association with the excitation of a large-scale atmospheric Rossby wave train spanning western Russia, Kazakhstan, and the northwestern China-Tibetan Plateau region. The southward penetration of upper-level vorticity perturbations in the leading trough of the Rossby wave was instrumental in triggering anomalously heavy rain events over northern Pakistan and vicinity in mid- to late July. Also shown are evidences that the Russian heat wave was amplified by a positive feedback through changes in surface energy fluxes between the atmospheric blocking pattern and an underlying extensive land region with below-normal soil moisture. The Pakistan heavy rain events were amplified and sustained by strong anomalous southeasterly flow along the Himalayan foothills and abundant moisture transport from the Bay of Bengal in connection with the northward propagation of the monsoonal intraseasonal oscillation.

  3. Wind and Wave Extremes over the World Oceans From Very Large Forecast Ensembles

    CERN Document Server

    Breivik, Øyvind; Abdalla, Saleh; Bidlot, Jean-Raymond

    2013-01-01

    Global return value estimates of significant wave height and 10-m neutral wind speed are estimated from very large aggregations of archived ECMWF ensemble forecasts at +240-h lead time from the period 2003-2012. The upper percentiles are found to match ENVISAT wind speed better than ERA-Interim (ERA-I), which tends to be biased low. The return estimates are significantly higher for both wind speed and wave height in the extratropics and the subtropics than what is found from ERA-I, but lower than what is reported by Caires and Sterl (2005) and Vinoth and Young (2011). The highest discrepancies between ERA-I and ENS240 are found in the hurricane-prone areas, suggesting that the ensemble comes closer than ERA-I in capturing the intensity of tropical cyclones. The width of the confidence intervals are typically reduced by 70% due to the size of the data sets. Finally, non-parametric estimates of return values were computed from the tail of the distribution. These direct return estimates compare very well with Ge...

  4. Comparison of gridded multi-mission and along-track mono-mission satellite altimetry wave heights with in situ near-shore buoy data.

    Digital Repository Service at National Institute of Oceanography (India)

    Shanas, P.R.; SanilKumar, V.; Hithin, N.K.

    The applicability of altimeter data for the coastal region is examined by comparing the gridded multi-mission and along-track mono-mission significant wave height (SWH) data with the in situ buoy measurements at four stations off the east and west...

  5. Predicting location-specific extreme coastal floods in the future climate by introducing a probabilistic method to calculate maximum elevation of the continuous water mass caused by a combination of water level variations and wind waves

    Science.gov (United States)

    Leijala, Ulpu; Björkqvist, Jan-Victor; Johansson, Milla M.; Pellikka, Havu

    2017-04-01

    Future coastal management continuously strives for more location-exact and precise methods to investigate possible extreme sea level events and to face flooding hazards in the most appropriate way. Evaluating future flooding risks by understanding the behaviour of the joint effect of sea level variations and wind waves is one of the means to make more comprehensive flooding hazard analysis, and may at first seem like a straightforward task to solve. Nevertheless, challenges and limitations such as availability of time series of the sea level and wave height components, the quality of data, significant locational variability of coastal wave height, as well as assumptions to be made depending on the study location, make the task more complicated. In this study, we present a statistical method for combining location-specific probability distributions of water level variations (including local sea level observations and global mean sea level rise) and wave run-up (based on wave buoy measurements). The goal of our method is to obtain a more accurate way to account for the waves when making flooding hazard analysis on the coast compared to the approach of adding a separate fixed wave action height on top of sea level -based flood risk estimates. As a result of our new method, we gain maximum elevation heights with different return periods of the continuous water mass caused by a combination of both phenomena, "the green water". We also introduce a sensitivity analysis to evaluate the properties and functioning of our method. The sensitivity test is based on using theoretical wave distributions representing different alternatives of wave behaviour in relation to sea level variations. As these wave distributions are merged with the sea level distribution, we get information on how the different wave height conditions and shape of the wave height distribution influence the joint results. Our method presented here can be used as an advanced tool to minimize over- and

  6. Subsurface signatures and timing of extreme wave events along the southeast Indian coast

    Indian Academy of Sciences (India)

    Rajesh R Nair; Madhav K Murari; C S Vijaya Lakshmi; Ilya Buynevich; Ron J Goble; P Srinivasan; S G N Murthy; Deshraj Trivedi; Suresh Chandra Kandpal; S M Hussain; D Sengupta; Ashok K Singhvi

    2011-10-01

    Written history’s limitation becomes apparent when attempting to document the predecessors of extreme coastal events in the Indian Ocean, from 550–700 years in Thailand and 1000 years in Indonesia. Detailed ground-penetrating radar (GPR) surveys in Mahabalipuram, southeast India, complemented with sedimentological analyses, magnetic susceptibility measurements, and optical dating provide strong evidence of extreme wave events during the past 3700 years. The diagnostic event signatures include the extent and elevation of the deposits, as well as morphologic similarity of buried erosional scarps to those reported in northern Sumatra region. Optical ages immediately overlying the imaged discontinuities that coincides with high concentration of heavy minerals date the erosional events to 340 ± 35, 350 ± 20, 490 ± 30, 880 ± 40, 1080 ± 60, 1175 ± 188, 2193 ± 266, 2235 ± 881, 2489 ± 293, 2450 ± 130, 2585 ± 609, 3710 ± 200 years ago. These evidences are crucial in reconstructing paleo extreme wave events and will pave the way for regional correlation of erosional horizons along the northern margin of Indian Ocean.

  7. Comments on ‘Temporal significant wave height estimation from wind speed by perceptron Kalman filtering’ by A. Altunkaynak and M. Ozger, Ocean Engineering, Vol. 31(10); 2004,1245-1255

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.

    The significant wave heights and periods are conventionally forecasted from the wind information on the basis of the wind–wave relationship. However, the error may become large due to many uncertainties in the wind generation prediction and wind...

  8. Experimental study of an optimised Pyramid wave-front sensor for Extremely Large Telescopes

    Science.gov (United States)

    Bond, Charlotte Z.; El Hadi, Kacem; Sauvage, Jean-François; Correia, Carlos; Fauvarque, Olivier; Rabaud, Didier; Lamb, Masen; Neichel, Benoit; Fusco, Thierry

    2016-07-01

    Over the last few years the Laboratoire d'Astrophysique de Marseille (LAM) has been heavily involved in R&D for adaptive optics systems dedicated to future large telescopes, particularly in preparation for the European Extremely Large Telescope (E-ELT). Within this framework an investigation into a Pyramid wave-front sensor is underway. The Pyramid sensor is at the cutting edge of high order, high precision wave-front sensing for ground based telescopes. Investigations have demonstrated the ability to achieve a greater sensitivity than the standard Shack-Hartmann wave-front sensor whilst the implementation of a Pyramid sensor on the Large Binocular Telescope (LBT) has provided compelling operational results.1, 2 The Pyramid now forms part of the baseline for several next generation Extremely Large Telescopes (ELTs). As such its behaviour under realistic operating conditions must be further understood in order to optimise performance. At LAM a detailed investigation into the performance of the Pyramid aims to fully characterise the behaviour of this wave-front sensor in terms of linearity, sensitivity and operation. We have implemented a Pyramid sensor using a high speed OCAM2 camera (with close to 0 readout noise and a frame rate of 1.5kHz) in order to study the performance of the Pyramid within a full closed loop adaptive optics system. This investigation involves tests on all fronts, from theoretical models and numerical simulations to experimental tests under controlled laboratory conditions, with an aim to fully understand the Pyramid sensor in both modulated and non-modulated configurations. We include results demonstrating the linearity of the Pyramid signals, compare measured interaction matrices with those derived in simulation and evaluate the performance in closed loop operation. The final goal is to provide an on sky comparison between the Pyramid and a Shack-Hartmann wave-front sensor, at Observatoire de la Côte d'Azur (ONERA-ODISSEE bench). Here we

  9. Gravitational waves from a plunge into a nearly extremal Kerr black hole

    CERN Document Server

    Burko, Lior M

    2016-01-01

    We study numerically in the time domain the linearized gravitational waves emitted from a plunge into a nearly extremal Kerr black hole by solving the inhomogeneous Teukolsky equation. We consider spinning black holes for which the specific spin angular momentum $a/M=1-\\epsilon$, and we consider values of $\\epsilon\\geq 10^{-6}$. We find an effective transient behavior for the quasi-normal ringdown: the early phase of the quasi-normal ringdown is governed by a decay according to inverse time, with frequency equaling twice the black hole's horizon frequency. The smaller $\\epsilon$ the later the transition from this transient inverse time decay to exponential decay. Such sources, if exist, may be interesting potential sources for terrestrial or space borne gravitational wave observatories.

  10. Observation of extremely strong shock waves in solids launched by petawatt laser heating

    Science.gov (United States)

    Lancaster, K. L.; Robinson, A. P. L.; Pasley, J.; Hakel, P.; Ma, T.; Highbarger, K.; Beg, F. N.; Chen, S. N.; Daskalova, R. L.; Freeman, R. R.; Green, J. S.; Habara, H.; Jaanimagi, P.; Key, M. H.; King, J.; Kodama, R.; Krushelnick, K.; Nakamura, H.; Nakatsutsumi, M.; MacKinnon, A. J.; MacPhee, A. G.; Stephens, R. B.; Van Woerkom, L.; Norreys, P. A.

    2017-08-01

    Understanding hydrodynamic phenomena driven by fast electron heating is important for a range of applications including fast electron collimation schemes for fast ignition and the production and study of hot, dense matter. In this work, detailed numerical simulations modelling the heating, hydrodynamic evolution, and extreme ultra-violet (XUV) emission in combination with experimental XUV images indicate shock waves of exceptional strength (200 Mbar) launched due to rapid heating of materials via a petawatt laser. We discuss in detail the production of synthetic XUV images and how they assist us in interpreting experimental XUV images captured at 256 eV using a multi-layer spherical mirror.

  11. The 2010 Pakistan Flood and the Russia Heat Wave: Teleconnection of Extremes

    Science.gov (United States)

    Lau, William K.; Kim, K. M.

    2010-01-01

    The Pakistan flood and the Russia heat wave/Vvild fires of the summer of2010 were two of the most extreme, and catastrophic events in the histories of the two countries occurring at about the same time. To a casual observer, the timing may just be a random coincidence of nature, because the two events were separated by long distances, and represented opposite forces of nature, i.e., flood vs. drought, and water vs. fire. In this paper, using NASA satellite and NOAA reanalysis data, we presented observation evidences that that the two events were indeed physically connected.

  12. An adaptive metamaterial beam with hybrid shunting circuits for extremely broadband control of flexural waves

    Science.gov (United States)

    Chen, Y. Y.; Hu, G. K.; Huang, G. L.

    2016-10-01

    A great deal of research has been devoted to controlling the dynamic behaviors of phononic crystals and metamaterials by directly tuning the frequency regions and/or widths of their inherent band gaps. Here, we report a new class of adaptive metamaterial beams with hybrid shunting circuits to realize super broadband Lamb-wave band gaps at an extreme subwavelength scale. The proposed metamaterial is made of a homogeneous host beam on which tunable local resonators consisting of hybrid shunted piezoelectric stacks with proof masses are attached. The hybrid shunting circuits are composed of negative-capacitance and negative-inductance elements connected in series or in parallel in order to tune the desired frequency-dependent stiffness. It is shown theoretically and numerically that by properly modifying the shunting impedance, the adaptive mechanical mechanism within the tunable resonator can produce high-pass and low-pass wave filtering capabilities for the zeroth-order anti-symmetric Lamb-wave modes. These unique behaviors are due to the hybrid effects from the negative-capacitance and negative-inductance circuit elements. Such a system opens up important perspectives for the development of adaptive vibration or wave-attenuation devices for broadband frequency applications.

  13. Heat wave beats green wave: the effect of a climate extreme on alpine grassland phenology as seen by phenocams

    Science.gov (United States)

    Cremonese, Edoardo; Filippa, Gianluca; Migliavacca, Mirco; Siniscalco, Consolata; Oddi, Ludovica; Galvagno, Marta

    2016-04-01

    The year 2015 has been one of the warmest on record for many regions of the world. The record-breaking temperatures did not spare the European Alps, where the summer anomaly reached +4°C. This heat wave caused important impacts on the seasonal development and structural properties of alpine grasslands that deserve investigations. Phenocams are useful tools to describe canopy greenness seasonal dynamics and many recent studies demonstrated that the major phenological events (e.g. budbrust, senescence, …) can be extracted from greenness trajectories. In contrast, little is know about their capabilities to describe the impact of extreme climate events on a fully developed canopy. Moreover the relation between quantitative structural and functional vegetation properties (e.g. biomass, LAI, …) and phenocam data remains poorly investigated. In this study we examine the impact of the 2015 summer heat wave on a subalpine grassland by jointly analyzing phenocam greenness trajectories, proximal sensing and flux data together with field measures of vegetation structural properties. The effect of different environmental drivers on greenness seasonal development was further evaluated by a modeling approach (GSI model). Phenocam tracked the impact of heatwave 2015 that caused a lower canopy development and an anticipation of yellowing by more than 2 months. The same pattern was observed for CO2 fluxes, NDVI and field measures. GSI model results show that during the heatwave, a combination of moisture and high temperature limitation was responsible for the observed reduction of the canopy development. Moreover, spatially explicit analysis of digital images allowed to highlight the differential response of specific plant functional types to the extreme event.

  14. Wave kinematics and response of slender offshore structures. Vol 4: Wave kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Riber, H.J.

    1999-08-01

    The kinematics of large surface waves has been measured by means of sonar's placed on the sea floor at the Tyra field. Measurements from the most severe storm are analysed and extreme wave velocity profiles are compared to Stoke wave velocity profiles. Statistical distributions of crest velocity and wave celerity are presented. The analysis shows how the deviation from the Stokes prediction varies with wave heights and steepness. Analyses of the directional wave field leads to the conclusion that the extreme waves are three-dimensional. It is shown that the peculiar kinematics of extreme waves is of great relevance to the design of jacket type structures. (au)

  15. DIFFRACTION, REFRACTION, AND REFLECTION OF AN EXTREME-ULTRAVIOLET WAVE OBSERVED DURING ITS INTERACTIONS WITH REMOTE ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yuandeng; Liu Yu; Zhao Ruijuan; Tian Zhanjun [Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming 650011 (China); Su Jiangtao [Key Laboratory of Solar Activity, Chinese Academy of Sciences, Beijing 100012 (China); Li Hui [Key Laboratory of Dark Matter and Space Astronomy, Chinese Academy of Sciences, Nanjing 210008 (China); Ichimoto, Kiyoshi; Shibata, Kazunari, E-mail: ydshen@ynao.ac.cn [Kwasan and Hida Observatories, Kyoto University, Kyoto 6078471 (Japan)

    2013-08-20

    We present observations of the diffraction, refraction, and reflection of a global extreme-ultraviolet (EUV) wave propagating in the solar corona. These intriguing phenomena are observed when the wave interacts with two remote active regions, and together they exhibit properties of an EUV wave. When the wave approached AR11465, it became weaker and finally disappeared in the active region, but a few minutes later a new wavefront appeared behind the active region, and it was not concentric with the incoming wave. In addition, a reflected wave was also simultaneously observed on the wave incoming side. When the wave approached AR11459, it transmitted through the active region directly and without reflection. The formation of the new wavefront and the transmission could be explained with diffraction and refraction effects, respectively. We propose that the different behaviors observed during the interactions may be caused by different speed gradients at the boundaries of the two active regions. We find that the EUV wave formed ahead of a group of expanding loops a few minutes after the start of the loops' expansion, which represents the initiation of the associated coronal mass ejection (CME). Based on these results, we conclude that the EUV wave should be a nonlinear magnetosonic wave or shock driven by the associated CME, which propagated faster than the ambient fast mode speed and gradually slowed down to an ordinary linear wave. Our observations support the hybrid model that includes both fast wave and slow non-wave components.

  16. Influence of Anthropogenic Climate Change on Planetary Wave Resonance and Extreme Weather Events

    Science.gov (United States)

    Mann, Michael E.; Rahmstorf, Stefan; Kornhuber, Kai; Steinman, Byron A.; Miller, Sonya K.; Coumou, Dim

    2017-01-01

    Persistent episodes of extreme weather in the Northern Hemisphere summer have been shown to be associated with the presence of high-amplitude quasi-stationary atmospheric Rossby waves within a particular wavelength range (zonal wavenumber 6–8). The underlying mechanistic relationship involves the phenomenon of quasi-resonant amplification (QRA) of synoptic-scale waves with that wavenumber range becoming trapped within an effective mid-latitude atmospheric waveguide. Recent work suggests an increase in recent decades in the occurrence of QRA-favorable conditions and associated extreme weather, possibly linked to amplified Arctic warming and thus a climate change influence. Here, we isolate a specific fingerprint in the zonal mean surface temperature profile that is associated with QRA-favorable conditions. State-of-the-art (“CMIP5”) historical climate model simulations subject to anthropogenic forcing display an increase in the projection of this fingerprint that is mirrored in multiple observational surface temperature datasets. Both the models and observations suggest this signal has only recently emerged from the background noise of natural variability. PMID:28345645

  17. Coastal flooding: impact of waves on storm surge during extremes - a case study for the German Bight

    Science.gov (United States)

    Staneva, Joanna; Wahle, Kathrin; Koch, Wolfgang; Behrens, Arno; Fenoglio-Marc, Luciana; Stanev, Emil V.

    2016-11-01

    This study addresses the impact of wind, waves, tidal forcing and baroclinicity on the sea level of the German Bight during extreme storm events. The role of wave-induced processes, tides and baroclinicity is quantified, and the results are compared with in situ measurements and satellite data. A coupled high-resolution modelling system is used to simulate wind waves, the water level and the three-dimensional hydrodynamics. The models used are the wave model WAM and the circulation model GETM. The two-way coupling is performed via the OASIS3-MCT coupler. The effects of wind waves on sea level variability are studied, accounting for wave-dependent stress, wave-breaking parameterization and wave-induced effects on vertical mixing. The analyses of the coupled model results reveal a closer match with observations than for the stand-alone circulation model, especially during the extreme storm Xaver in December 2013. The predicted surge of the coupled model is significantly enhanced during extreme storm events when considering wave-current interaction processes. This wave-dependent approach yields a contribution of more than 30 % in some coastal areas during extreme storm events. The contribution of a fully three-dimensional model compared with a two-dimensional barotropic model showed up to 20 % differences in the water level of the coastal areas of the German Bight during Xaver. The improved skill resulting from the new developments justifies further use of the coupled-wave and three-dimensional circulation models in coastal flooding predictions.

  18. Fatigue and extreme wave loads on bottom fixed offshore wind turbines. Effects from fully nonlinear wave forcing on the structural dynamics

    DEFF Research Database (Denmark)

    Schløer, Signe

    2013-01-01

    Since the world’s first offshore wind farm was built in the early 1990s in Denmark, the offshore wind industry has increased tremendously in Europe, and will increase even more the next years. Both the water depth and the size of the wind turbines have increased continually since the first offshore...... wind farms. As wind farms are being moved further offshore the wave loads become larger compared to the wind loads and therefore more important in the design of offshore wind turbines. Yet, the water depth is still only shallow or intermediate where the waves should be described by nonlinear irregular...... is the consequence of incorporation of full nonlinearity in the wave kinematics. In the main part of the thesis six wind and sea states with increasing wind speed and significant wave height are considered. The wave realizations are considered at four different water depths to investigate the effect of water depth...

  19. Northern Hemisphere Stratospheric Polar Vortex Extremes in February under the Control of Downward Wave Flux in the Lower Stratosphere

    Institute of Scientific and Technical Information of China (English)

    WEI Ke; CHEN Wen

    2012-01-01

    Using ECWMF ERA-40 and Interim reanalysis data, the planetary wave fluxes associated with the February extreme stratospheric polar vortex were studied. Using the three-dimensional Eliassen-Palm (EP) flux as a measure of the wave activity propagation, the authors show that the unusual warm years in the Arctic feature an anomalous weak stratosphere-troposphere coupling and weak downward wave flux at the lower stratosphere, especially over the North America and North Atlantic (NANA) region. The extremely cold years are characterized by strong stratosphere-troposphere coupling and strong downward wave flux in this region. The refractive index is used to examine the conception of planetary wave reflection, which shows a large refractive index (low reflection) for the extremely warm years and a small refractive index (high reflection) for the extremely cold years. This study reveals the importance of the downward planetary wave propagation from the stratosphere to the troposphere for explaining the unusual state of the stratospheric polar vortex in February.

  20. Folded Fields as the Source of Extreme Radio-Wave Scattering in the Galactic Center

    CERN Document Server

    Goldreich, P; Goldreich, Peter

    2006-01-01

    A strong case has been made that radio waves from sources within about half a degree of the Galactic Center undergo extreme diffractive scattering. However, problems arise when standard (``Kolmogorov'') models of electron density fluctuations are employed to interpret the observations of scattering in conjunction with those of free-free radio emission. Specifically, the outer scale of a Kolmogorov spectrum of electron density fluctuations is constrained to be so small that it is difficult to identify an appropriate astronomical setting. Moreover, an unacceptably high turbulent heating rate results if the outer scale of the velocity field coincides with that of the density fluctuations. We propose an alternative model based on folded magnetic field structures that have been reported in numerical simulations of small-scale dynamos. Nearly isothermal density variations across thin current sheets suffice to account for the scattering. There is no problem of excess turbulent heating because the outer scale for the...

  1. Spectral characteristics of the nearshore waves off Paradip, India during monsoon and extreme events

    Digital Repository Service at National Institute of Oceanography (India)

    Aboobacker, V.M.; Vethamony, P.; Sudheesh, K.; Rupali, S.P.

    Spectral and statistical wave parameters obtained from the measured time series wave data off Paradip, east coast of India during May 1996-January 1997 were analysed along with MIKE 21 spectral wave model (SW) results. Statistical wave parameters...

  2. Toward the Extreme Ultra Violet Four Wave Mixing Experiments: From Table Top Lasers to Fourth Generation Light Sources

    Directory of Open Access Journals (Sweden)

    Riccardo Cucini

    2015-01-01

    Full Text Available Three different Transient Grating setups are presented, with pulsed and continuous wave probe at different wavelengths, ranging from infrared to the extreme ultra violet region. Both heterodyne and homodyne detections are considered. Each scheme introduces variations with respect to the previous one, allowing moving from classical table top laser experiments towards a new four wave mixing scheme based on free electron laser radiation. A comparison between the various setups and the first results from extreme ultra violet transient grating experiments is also discussed.

  3. Attributing human mortality during extreme heat waves to anthropogenic climate change

    Science.gov (United States)

    Mitchell, Daniel; Heaviside, Clare; Vardoulakis, Sotiris; Huntingford, Chris; Masato, Giacomo; Guillod, Benoit P.; Frumhoff, Peter; Bowery, Andy; Wallom, David; Allen, Myles

    2016-07-01

    It has been argued that climate change is the biggest global health threat of the 21st century. The extreme high temperatures of the summer of 2003 were associated with up to seventy thousand excess deaths across Europe. Previous studies have attributed the meteorological event to the human influence on climate, or examined the role of heat waves on human health. Here, for the first time, we explicitly quantify the role of human activity on climate and heat-related mortality in an event attribution framework, analysing both the Europe-wide temperature response in 2003, and localised responses over London and Paris. Using publicly-donated computing, we perform many thousands of climate simulations of a high-resolution regional climate model. This allows generation of a comprehensive statistical description of the 2003 event and the role of human influence within it, using the results as input to a health impact assessment model of human mortality. We find large-scale dynamical modes of atmospheric variability remain largely unchanged under anthropogenic climate change, and hence the direct thermodynamical response is mainly responsible for the increased mortality. In summer 2003, anthropogenic climate change increased the risk of heat-related mortality in Central Paris by ∼70% and by ∼20% in London, which experienced lower extreme heat. Out of the estimated ∼315 and ∼735 summer deaths attributed to the heatwave event in Greater London and Central Paris, respectively, 64 (±3) deaths were attributable to anthropogenic climate change in London, and 506 (±51) in Paris. Such an ability to robustly attribute specific damages to anthropogenic drivers of increased extreme heat can inform societal responses to, and responsibilities for, climate change.

  4. On the retrieval of significant wave heights from spaceborne Synthetic Aperture Radar (ERS-SAR using the Max-Planck Institut (MPI algorithm

    Directory of Open Access Journals (Sweden)

    Violante-Carvalho Nelson

    2005-01-01

    Full Text Available Synthetic Aperture Radar (SAR onboard satellites is the only source of directional wave spectra with continuous and global coverage. Millions of SAR Wave Mode (SWM imagettes have been acquired since the launch in the early 1990's of the first European Remote Sensing Satellite ERS-1 and its successors ERS-2 and ENVISAT, which has opened up many possibilities specially for wave data assimilation purposes. The main aim of data assimilation is to improve the forecasting introducing available observations into the modeling procedures in order to minimize the differences between model estimates and measurements. However there are limitations in the retrieval of the directional spectrum from SAR images due to nonlinearities in the mapping mechanism. The Max-Planck Institut (MPI scheme, the first proposed and most widely used algorithm to retrieve directional wave spectra from SAR images, is employed to compare significant wave heights retrieved from ERS-1 SAR against buoy measurements and against the WAM wave model. It is shown that for periods shorter than 12 seconds the WAM model performs better than the MPI, despite the fact that the model is used as first guess to the MPI method, that is the retrieval is deteriorating the first guess. For periods longer than 12 seconds, the part of the spectrum that is directly measured by SAR, the performance of the MPI scheme is at least as good as the WAM model.

  5. A long record of extreme wave events in coastal Lake Hamana, Japan

    Science.gov (United States)

    Boes, Evelien; Yokoyama, Yusuke; Schmidt, Sabine; Riedesel, Svenja; Fujiwara, Osamu; Nakamura, Atsunori; Garrett, Ed; Heyvaert, Vanessa; Brückner, Helmut; De Batist, Marc

    2017-04-01

    Coastal Lake Hamana is located near the convergent tectonic boundary of the Nankai-Suruga Trough, along which the Philippine Sea slab is subducted underneath the Eurasian Plate, giving rise to repeated tsunamigenic megathrust earthquakes (Mw ≥ 8). A good understanding of the earthquake- and tsunami-triggering mechanisms is crucial in order to better estimate the complexity of seismic risks. Thanks to its accommodation space, Lake Hamana may represent a good archive for past events, such as tsunamis and tropical storms (typhoons), also referred to as "extreme wave" events. Characteristic event layers, consisting of sediment entrained by these extreme waves and their backwash, are witnesses of past marine incursions. By applying a broad range of surveying methods (reflection-seismic profiling, gravity coring, piston coring), sedimentological analyses (CT-scanning, XRF-scanning, multi-sensor core logging, grain size, microfossils etc.) and dating techniques (210Pb/137Cs, 14C, OSL, tephrochronology), we attempt to trace extreme wave event deposits in a multiproxy approach. Seismic imagery shows a vertical stacking of stronger reflectors, interpreted to be coarser-grained sheets deposited by highly energetic waves. Systematic sampling of lake bottom sediments along a transect from ocean-proximal to ocean-distal sites enables us to evaluate vertical and lateral changes in stratigraphy. Ocean-proximal, we observe a sequence of eight sandy units separated by silty background sediments, up to a depth of 8 m into the lake bottom. These sand layers quickly thin out and become finer-grained land-inward. Seismic-to-core correlations show a good fit between the occurrence of strong reflectors and sandy deposits, hence confirming presumptions based on acoustic imagery alone. Sand-rich intervals typically display a higher magnetic susceptibility, density and stronger X-ray attenuation. However, based on textural and structural differences, we can make the distinction between

  6. Abnormal Patella Height Based on Insall-Salvati Ratio and its Correlation with Patellar Cartilage Lesions: An Extremity-Dedicated Low-Field Magnetic Resonance Imaging Analysis of 1703 Chinese Cases.

    Science.gov (United States)

    Lu, W; Yang, J; Chen, S; Zhu, Y; Zhu, C

    2016-09-01

    Diagnostic performance of patellar position for patellar cartilage lesions remains unclear. The aim of this study was to assess the abnormal patella height and its correlation with chondral lesions of the patellofemoral joint in China. A total of 1703 consecutive patients who performed knee joint examination using an extremity-dedicated low-field magnetic resonance imaging were enrolled in this study. Patellar cartilage lesions were diagnosed based on the result of magnetic resonance imaging and clinical data. Patella height was defined as the ratio of patellar tendon length to patellar length according to Insall-Salvati index. Patella alta and infera were defined as tendon length/patellar length >1.2 and patella alta and infera (p patella height had statistical significance in diagnosing cartilage lesions (p patella height is significantly correlated with chondral lesions and can be used as a potential diagnostic marker. © The Finnish Surgical Society 2015.

  7. Extreme Value Predictions for Wave- and Wind-induced Loads on Floating Offshore Wind Turbines using FORM

    DEFF Research Database (Denmark)

    Joensen, Sunvard; Jensen, Jørgen Juncher; Mansour, Alaa E.

    2007-01-01

    The aim of the present paper is to advocate for a very effective stochastic procedure, based on the First Order Reliability Method (FORM), for extreme value predic-tions related to wave induced loads. Due to the efficient optimisation procedures implemented in standard FORM codes and the short du...

  8. Mode transformation and frequency change with height in 3D numerical simulations of magneto-acoustic wave propagation in sunspots

    CERN Document Server

    Felipe, T; Collados, M

    2010-01-01

    Three-dimensional numerical simulations of magnetoacoustic wave propagation are performed in a sunspot atmosphere with a computational domain covering from the photosphere to the chromosphere. The wave source, with properties resembling the solar spectrum, is located at different distances from the axis of the sunspot for each simulation. These results are compared with the theory of mode transformation and also with observational features. Simulations show that the dominant oscillation frequency in the chromosphere decreases with the radial distance from the sunspot axis. The energy flux of the different wave modes involved, including de Alfv\\'en mode, is evaluated and discussed.

  9. Characterization and effects of cold fronts in the Colombian Caribbean Coast and their relationship to extreme wave events

    Directory of Open Access Journals (Sweden)

    J. C. Ortiz-Royero

    2013-07-01

    passage of cold fronts during the last 16 yr were identified. Although the Colombian Caribbean has been affected by storms and hurricanes in the past, this research allows us to conclude that, there is a strong relationship between cold fronts and the largest waves in the Colombian Caribbean during the last 16 yr, which have caused damage to coastal infrastructure. We verified that the passage of a cold front corresponded to the most significant extreme wave event of the last two decades in the Colombian Caribbean, which caused the structural collapse of the Puerto Colombia pier, located near the city of Barranquilla, between 5 and 10 March 2009. This information is invaluable when evaluating average and extreme wave regimes for the purpose of informing the design of structures in this region of the Caribbean.

  10. Trends of wave height and period in the Central Arabian Sea from 1996 to 2012: A study based on satellite altimeter data

    Digital Repository Service at National Institute of Oceanography (India)

    Hithin, N.K.; SanilKumar, V.; Shanas, P.R.

    : Ocean Eng., Vol.108; 2015; 416-425. Trends of wave height and period in the Central Arabian Sea from 1996 to 2012: A study based on satellite altimeter data N.K. Hithin, V. Sanil Kumar*, P.R. Shanas+ Ocean Engineering Division, CSIR... measures wind speed at 3 m above the sea surface and SWH at a 3-h interval. Wind observation is a 10-minute average with wind speed and direction sampled at 1 Hz by a cup anemometer with vane. The accuracy of wind speed measurements is 1.5% of full scale...

  11. Statistics of Amplitude and Fluid Velocity of Large and Rare Waves in the Ocean

    Science.gov (United States)

    2007-06-01

    Hextreme_max Maximum crest-to-trough height meters Hs Significant wave height meters Hs100 Extreme significant wave height with the 100 year return period...NHsHsP −=< (3.1-7) Where: Hs100 = extreme significant wave height with the 100 year return period D = a decorrelation time scale in hours for...between the buoy-derived extreme Hs with the return period of 100 years and the Hs100 based on IDM and POT differed by less than 10% (under 5% for all but

  12. Extremely asymmetrical scattering of electromagnetic waves in gradually varying periodic arrays

    CERN Document Server

    Gramotnev, D K

    1999-01-01

    This paper analyses theoretically and numerically the effect of varying grating amplitude on the extremely asymmetrical scattering (EAS) of bulk and guided optical modes in non-uniform strip-like periodic Bragg arrays with stepwise and gradual variations in the grating amplitude across the array. A recently developed new approach based on allowance for the diffractional divergence of the scattered wave is used for this analysis. It is demonstrated that gradual variations in magnitude of the grating amplitude may change the pattern of EAS noticeably but not radically. On the other hand, phase variations in the grating may result in a radically new type of Bragg scattering - double-resonant EAS (DEAS). In this case, a combination of two strong simultaneous resonances (one with respect to frequency, and another with respect to the phase variation) is predicted to take place in non-uniform arrays with a step-like phase and gradual magnitude variations of the grating amplitude. The tolerances of EAS and DEAS to sm...

  13. On extreme transient events from rotating black holes and their gravitational wave emission

    CERN Document Server

    van Putten, Maurice H P M

    2016-01-01

    The super-luminous object ASASSN-15lh (SN2015L) is an extreme event with a total energy $E_{rad}\\simeq 1.1\\times 10^{52}$ erg in black body radiation on par with its kinetic energy $E_k$ in ejecta and a late time plateau in the UV, that defies a nuclear origin. It likely presents a new explosion mechanism for hydrogen-deprived supernovae. With no radio emission and no H-rich environment we propose to identify $E_{rad}$ with dissipation of a baryon-poor outflow in the optically thick remnant stellar envelope produced by a central engine. By negligible time scales of light crossing and radiative cooling of the envelope, SN2015L's light curve closely tracks the evolution of this engine. We here model its light curve by the evolution of black hole spin, during angular momentum loss in Alv\\'en waves to matter at the Inner Most Stable Circular Orbit (ISCO). The duration is determined by $\\sigma=M_T/M$ of the torus mass $M_T$ around the black hole of mass $M$: $\\sigma\\sim 10^{-7}$ and $\\sigma\\sim 10^{-2}$ for SN2015...

  14. Simulation of the extreme waves generated by typhoon Bolaven (1215) in the East China Sea and Yellow Sea

    Institute of Scientific and Technical Information of China (English)

    JUN Ki Cheon; JEONG Weon Mu; CHOI Jin Yong; PARK Kwang Soon; JUNG Kyung Tae; KIM Mee Kyung; CHAE Jang Won; QIAO Fangli

    2015-01-01

    Record-breaking high waves occurred during the passage of the typhoon Bolaven (1215) (TYB) in the East China Sea (ECS) and Yellow Sea (YS) although its intensity did not reach the level of a super typhoon. Winds and directional wave measurements were made using a range of in-situ instruments mounted on an ocean tower and buoys. In order to understand how such high waves with long duration occurred, analyses have been made through measurement and numerical simulations. TYB winds were generated using the TC96 typhoon wind model with the best track data calibrated with the measurements. And then the wind fields were blended with the reanalyzed synoptic-scale wind fields for a wave model. Wave fields were simulated using WAM4.5 with adjustment ofCd for gust of winds and bottom friction for the study area. Thus the accuracy of simulations is considerably enhanced, and the computed results are also in better agreement with measured data than before. It is found that the extremely high waves evolved as a result of the superposition of distant large swells and high wind seas generated by strong winds from the front/right quadrant of the typhoon track. As the typhoon moved at a speed a little slower than the dominant wave group velocity in a consistent direction for two days, the wave growth was significantly enhanced by strong wind input in an extended fetch and non-linear interaction.

  15. Patterns of megaclasts along the coast of Eastern Samar (Philippines) - Implications for Holocene extreme-wave events

    Science.gov (United States)

    Engel, Max; Boesl, Fabian; Narod Eco, Rodrigo; Galang, Jam Albert; Gonzalo, Lia Anne; Llanes, Francesca; Quix, Eva; Schroeder-Ritzrau, Andrea; Frank, Norbert; Mahar Lagmay, Alfredo; Brückner, Helmut

    2017-04-01

    The Eastern Visayas region in the Philippines is hit by some of the most violent tropical cyclones on Earth on a regular basis, exemplified by Typhoon Haiyan, 7-9 November 2013, and a number of other category 4 and 5 events during the last decades. Moreover, strong earthquakes along the Philippine Trench have triggered several tsunamis in the historical past. Coastal flooding through extreme waves associated with these events represents a significant hazard for communities along the eastern coasts of Samar. However, not much is known about frequency-magnitude relationships of coastal flooding events and the maximum magnitude on centennial and millennial scales, which can be derived from geological traces and which have to be considered in a coastal hazard management process. We investigated a large boulder field in Eastern Samar distributed over an elevated, intertidal palaeo-reef platform in order to understand mechanisms of boulder transport and to derive implications for the maximum spatial extent, height, and velocity of coastal flooding. In the field, we recorded location, shape, morphological features as well as length and orientation of the main axes of more than 250 boulders, the a-axes of which were between 1.5 and 10.7 m. Eight samples were taken for Th/U dating of post-depositional, secondary calcite flowstones and pre-depostional coral, and four samples were taken for radiocarbon dating of pre-depositional, sessil organisms attached to the boulders. We 3D-mapped the most important parts of the boulder field using an unmanned aerial vehicle (UAV) and created structure-from-motion (SfM) models of the most prominent boulders, which will be used for inverse modelling of transport flows. Samples of the most common coralline lithofacies were taken for density estimations. We used interviews with elders of the local community as well as multi-temporal analysis of satellite images to reconstruct recent flooding patterns and boulder movement during recent events

  16. An adaptive metamaterial beam with hybrid shunting circuits for extremely broadband control of flexural wave (Conference Presentation)

    Science.gov (United States)

    Chen, Yangyang; Huang, Guoliang

    2017-04-01

    A great deal of research has been devoted to controlling the dynamic behaviors of phononic crystals and metamaterials by directly tuning the frequency regions and/or widths of their inherent band gaps. Here, we present a novel approach to achieve extremely broadband flexural wave/vibration attenuation based on tunable local resonators made of piezoelectric stacks shunted by hybrid negative capacitance and negative inductance circuits with proof masses attached on a host beam. First, wave dispersion relations of the adaptive metamaterial beam are calculated analytically by using the transfer matrix method. The unique modulus tuning properties induced by the hybrid shunting circuits are then characterized conceptually, from which the frequency dependent modulus tuning curves of the piezoelectric stack located within wave attenuation frequency regions are quantitatively identified. As an example, a flexural wave high-pass band filter with a wave attenuation region from 0 to 23.0 kHz is demonstrated analytically and numerically by using the hybrid shunting circuit, in which the two electric components are connected in series. By changing the connection pattern to be parallel, another super wide wave attenuation region from 13.5 to 73.0 kHz is demonstrated to function as a low-pass filter at a subwavelength scale. The proposed adaptive metamaterial possesses a super wide band gap created both naturally and artificially. Therefore, it can be used for the transient wave mitigation at extremely broadband frequencies such as blast or impact loadings. We envision that the proposed design and approach can open many possibilities in broadband vibration and wave control.

  17. On the Draupner freak wave

    CERN Document Server

    Fedele, Francesco

    2015-01-01

    In this paper, we revisit extreme wave statistics related to the 1993's Draupner freak wave event drawing on ERA-interim reanalysis data. In particular, we study the influence of nonlinear wave-wave interactions and space-time variability of the wave field on the predictions of the maximum wave and crest heights expected at the Draupner site. According to Janssen's (2003) theory, in realistic oceanic storms characterized by short-crested seas the wave field forgets its initial conditions and adjusts to a non-Gaussian state dominated by second order bound nonlinearities on time scales $t\\gg t_{c}\\approx0.13T_{0}/\

  18. Alternation in F-wave parameters of median nerve from unaffected extremity in stroke patients with hemiplegia under dynamic state

    Institute of Scientific and Technical Information of China (English)

    Hang Zhao; Yong Lin; Wenhua Qi; Shuping Yin; Jiachun Feng

    2006-01-01

    BACKGROUND: For many years, the extremities of stroke patients are divided into affected side and unaffected side according to clinical symptoms and body signs. Moreover, previous rehabilitation function training is developed simply aiming to the dysfunction manifested by unaffected extremity. Problems of unaffected extremity are always ignored, such as left- and right- side connection dysfunction, abnormal muscular tension of unaffected side and so on.OBJECTIVE: To observe neurophysiological change characteristics of unaffected extremity of stroke patients with hemiplegia by electromyographical method.DESIGN: Case-control observation.SETTING: First Hospital, Jilin University.PARTICIPANTS: Eighty stroke patients with hemiplegia confirmed by skull CT or MRI, who firstly hospitalized in the Department of Neurology, First Hospital, Jilin University between July 2004 and March 2005, were retrieved. They were scored > 8 points in Glasgow Coma Scale and had stable vital sign. Nineteen normal persons who received healthy examination in the clinic were involved in normal control group. Following the classification criteria of Brunnstrom's Recovery Stages of Stroke (BRSS), 80 stroke patients with hemiplegia were assigned into 3 groups: BRSS Ⅰ -Ⅱ group (n =36), BRSS Ⅲ-Ⅳ group (n =23) and BRSSⅤ-Ⅵ (n=21).METHODS: F-wave parameters of median nerve of unaffected extremity were detected by electromyographical technique. The recording electrode (muscular belly of abductor pollicis brevis) and reference electrode (first finger bone) were connected with grounding electrode. Stimulating electrode was placed in the median part of wrist joint with stimulation intensity of 130% that of threshold stimulation, stimulation frequency of 2 Hz, current pulse width of 0.2 ms, time course of 5 ms and sensitivity of 2 mV. The F-wave of median nerve of affected extremity under the resting stage (static status) and that of unaffected extremity under the maximum resistant contracted

  19. Extreme Heat Wave over European Russia in Summer 2010: Anomaly or a Manifestation of Climatic Trend?

    Science.gov (United States)

    Razuvaev, V.; Groisman, P. Y.; Bulygina, O.; Borzenkova, I.

    2010-12-01

    Extraordinary temperature anomalies over European Russia (ER) in summer 2010 raised a legitimate question in the title of this presentation. A 60-days-long hot anticyclonic weather system with daily temperature anomalies as high as +10K and no or negligible amount of rainfall first decimated crops in the forest-steppe zone of ER, gradually dried wetlands in the forest zone and, finally, caused numerous natural and anthropogenic fires that at the time of this abstract preparation have not yet been extinguished. The extreme heat, lack of precipitation, and forest fires have caused hundreds of deaths and multimillion dollars in property losses. Indirect losses of lives due to this weather anomaly, with the ensuing fires and related air pollution, as well as the absence of air conditioning in apartments has yet to be estimated. The center of European Russia was well covered by meteorological observations for the past 130 years. These data, historical weather records (yearbooks or "letopisi" , which were carried on in the major Russian monasteries), and finally, dendroclimatological information, all show that this summer temperature anomaly was well above all known extremes in the past 1000 years. Like ocean waves and ocean tides, weather and climate variability go together strengthening (or mitigating) each other. We shall show the precursors of the current outbreak using principally the most accurate meteorological records of the past century updated to 2009 (at the Session, the 2010 data will also be presented). While a careful analyses of these records and thoughtful analyses of recent similar temperature outbreaks in Western Europe could not prevent the occurrence of this disaster, the lessons learned from these analyses (a) would warn about its increasing probability and (b) mitigation and adaptation measures could well be made to reduce its negative consequences. Among our arguments are: (1)There is a century-long tendency of reduction of equator minus pole

  20. On extreme transient events from rotating black holes and their gravitational wave emission

    Science.gov (United States)

    van Putten, Maurice H. P. M.; Della Valle, Massimo

    2017-01-01

    The super-luminous object ASASSN-15lh (SN2015L) is an extreme event with a total energy Erad ≃ 1.1 × 1052 erg in blackbody radiation on par with its kinetic energy Ek in ejecta and a late time plateau in the UV, which defies a nuclear origin. It likely presents a new explosion mechanism for hydrogen-deprived supernovae. With no radio emission and no H-rich environment, we propose to identify Erad with dissipation of a baryon-poor outflow in the optically thick remnant stellar envelope produced by a central engine. By negligible time-scales of light crossing and radiative cooling of the envelope, SN2015L's light curve closely tracks the evolution of this engine. We here model its light curve by the evolution of black hole spin during angular momentum loss in Alvén waves to matter at the Inner Most Stable Circular Orbit (ISCO). The duration is determined by σ = MT/M of the torus mass MT around the black hole of mass M: σ ˜ 10-7 and σ ˜ 10-2 for SN2015L and, respectively, a long GRB. The observed electromagnetic radiation herein represents a minor output of the rotational energy Erot of the black hole, while most is radiated unseen in gravitational radiation. This model explains the high-mass slow-spin binary progenitor of GWB150914, as the remnant of two CC-SNe in an intra-day binary of two massive stars. This model rigorously predicts a change in magnitude Δm ≃ 1.15 in the light curve post-peak, in agreement with the light curve of SN2015L with no fine-tuning.

  1. The Role of Rossby-Wave Propagation in a North American Extreme Cold Event

    Directory of Open Access Journals (Sweden)

    Chunhua Shi

    2017-01-01

    Full Text Available The Eliassen–Palm flux and Plumb wave activity flux are calculated using the European Centre for Medium-Range Weather Forecasts interim reanalysis daily dataset to determine the propagation of Rossby waves before a North American cold wave in January 2014. The results show that the upward wave activity fluxes mainly come from planetary waves 1 and 2, which provide a stable circulation background for the influence of the subplanetary-scale waves 3 and 4. The Rossby-wave propagation anomalies between the troposphere and the stratosphere are due to the modulating effects of waves 3 and 4 on waves 1 and 2. During 9–14 January 2014, the modulating effects helped strengthen upward and eastward wave activity fluxes over the Atlantic region and enhance the Pacific high in the stratosphere in its early stage. Later in 19–24 January, the downward wave activity fluxes over the east Pacific due to the modulating effects were beneficial to downward development of the stratospheric high over the Pacific and the formation of a blocking high over the west coast of North America in the troposphere accompanied by a strong adjacent cold low on the east side. These circulations benefit the southward invasion of polar cold air reaching the lower latitudes of east North America, leading to the cold wave outbreak.

  2. Trends in surface wind speed and significant wave height as revealed by ERA-Interim wind wave hindcast in the Central Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Shanas, P.R.; SanilKumar, V.

    The Arabian Sea and Bay of Bengal (BoB) regions are special interested sea areas in the Northern Hemisphere with large seasonal variability. This study focused on the long-term wind and wave in the central BoB from 1979 to 2012 based on the ECMWF...

  3. Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission

    Science.gov (United States)

    Islam, Md. Saiful; Sultana, Jakeya; Rana, Sohel; Islam, Mohammad Rakibul; Faisal, Mohammad; Kaijage, Shubi F.; Abbott, Derek

    2017-03-01

    In this paper, we present a porous-core circular photonic crystal fiber (PC-CPCF) with ultra-low material loss for efficient terahertz wave transmission. The full vector finite element method with an ideally matched layer boundary condition is used to characterize the wave guiding properties of the proposed fiber. At an operating frequency of 1 THz, simulated results exhibit an extremely low effective material loss of 0.043 cm-1, higher core power fraction of 47% and ultra-flattened dispersion variation of 0.09 ps/THz/cm. The effects of important design properties such as single mode operation, confinement loss and effective area of the fiber are investigated in the terahertz regime. Moreover, the proposed fiber can be fabricated using the capillary stacking or sol-gel technique and be useful for long distance transmission of terahertz waves.

  4. Theory of multivariate compound extreme value distribution and its application to extreme sea state prediction

    Institute of Scientific and Technical Information of China (English)

    LIU Defu; WANG Liping; PANG Liang

    2006-01-01

    In this paper, a new type of distribution,multivariate compound extreme value distribution(MCEVD), is introduced by compounding a discrete distribution with a multivariate continuous distribution of extreme sea events. In its engineering application the number over certain threshold level per year is fitting to Poisson distribution and the corresponding extreme sea events are fitting to Nested Logistic distribution, then the Poisson-Nested logistic trivariate compound extreme value distribution (PNLTCED) is proposed to predict extreme wave heights, periods and wind speeds in Yellow Sea. The new model gives more stable and reasonable predicted results.

  5. Historical extreme wave and landslide deposits on the Shirasuka coastal lowlands, Shizuoka Prefecture, Japan

    Science.gov (United States)

    Garrett, Ed; Riedesel, Svenja; Fujiwara, Osamu; Walstra, Jan; Deforce, Koen; Yokoyama, Yusuke; Schmidt, Sabine; Brill, Dominik; Roberts, Helen; Duller, Geoff; Brückner, Hulmut; De Batist, Marc; Heyvaert, Vanessa

    2017-04-01

    Future megathrust earthquakes and consequential tsunamis pose exceptional hazards to densely populated and highly industrialised coastlines facing the Nankai-Suruga Trough, south central Japan. Geological investigations of coastal sedimentary sequences play a key role in understanding megathrust behaviour and developing seismic and tsunami hazard assessments. In this study, we revisit a previously published palaeoseismic site at Shirasuka, located on the Enshu-nada coastline of Shizuoka Prefecture, seeking both to provide further information on past earthquakes and tsunamis and to explore the prospects and limitations of geological data with respect to assessing seismic and tsunami hazards. At Shirasuka, six closely-spaced vibrocores reveal four sand layers interbedded with organic muds. Photographs, X-ray CT scans and grain size analysis reveal a variety of sedimentary structures within these layers, including abrupt contacts, massive sands, rip-up clasts, internal mud drapes and cross bedding. Microfossil assemblages (diatoms, pollen, non-pollen palynomorphs) and optically stimulated luminescence overdispersion values of single grain feldspars highlight varying sediment sources and transport mechanisms. We suggest that the uppermost sand layer records a landslide from the landward margin of the site, while the remaining three sand layers reflect at least four extreme wave events, some of which are overprinted. We refine the published chronology using AMS radiocarbon, radionuclide and infrared stimulated luminescence approaches. Our Bayesian age models suggest that the oldest two sand layers relate to historically documented tsunamis in AD 1361 and 1498. The second youngest sand layer provides ages consistent with tsunamis in AD 1605 and 1707 and potentially also storm surges in 1680 and/or 1699. The modelled age of the landslide sand layer is consistent with the AD 1944 earthquake. The presence of a fresh scarp in US military aerial photographs from 1947 and

  6. Constraining timing and origin of extreme wave events, Shirazuka Lowlands, Japan

    Science.gov (United States)

    Riedesel, Svenja; Brill, Dominik; Brückner, Helmut; De Batist, Marc; Fujiwara, Osamu; Garrett, Ed; Heyvaert, Vanessa M. A.; Miyairi, Yosuke; Opitz, Stephan; Seeliger, Martin; Shishikura, Masanubu; Yokoyama, Yusuke; Zander, Anja

    2016-04-01

    Tsunami and storm surges are major threats on coastal settlements. The Pacific Coast of southwest Japan is impacted by typhoons and tsunamis caused by earthquakes along the Nankai trough. This part of the Philippine Sea to Eurasia Plate subduction zone is expected to cause another earthquake and tsunami in near future. To improve the predictability of potential events, it is important to establish chronologies of former tsunamis as a basis for long-term recurrence intervals. Characterization of potential event deposits following a multi-proxy approach provides information about sediment source, transport dynamics and depositional processes. Sandwiched between a mid-Pleistocene terrace and a beach ridge, the coastal lowlands at Shirasuka, are ideally situated to record evidence of typhoons and tsunamis. Sediment cores from the lowlands include seven potential extreme wave event deposits. Their age, roughly constrained from a radiocarbon chronology, is historical. However, since the radiocarbon plateau deteriorates the precision of radiocarbon dating, optically stimulated luminescence dating was tested at this site. Quartz, as the favoured mineral for dating young and potentially poorly bleached sediments failed due to low signal intensity, absence of a fast component, and sensitivity to IR stimulation. Instead, feldspar dating is applied, using a standard IR50 and the post-IR-IR130 protocol to account for both signal stability (anomalous fading) and bleachability of the relatively young age of the sediments (deposits that, in the end, may help to refine the existing radiocarbon chronology. Beside the establishment of a high-resolution OSL chronology, sedimentological, geochemical and microfaunal analyses allow a more detailed characterization of the event deposits. By applying the end-member modelling algorithm to grain-size data, as well as factor analysis and principle component analyses on sedimentological, geochemical and microfaunal data, discrimination between

  7. Extreme Wave Simulation due to Typhoon Bolaven based on locally Enhanced Fine-Mesh Unstructured Grid Model

    Science.gov (United States)

    Kim, Kyeong Ok; Choi, Byung Ho; Jung, Kyung Tae

    2016-04-01

    The performance of an integrally coupled wave-tide-surge model using the unstructured mesh system has been tested for the typhoon Bolaven which is regarded as the most powerful storm to strike the Korean Peninsula in nearly a decade with wind gusts measured up to 50 m/s, causing serious damages with 19 victims. Use of the unstructured mesh in coastal sea regions of marginal scale allows all energy from deep to shallow waters to be seamlessly followed; the physics of wave-circulation interactions can be then correctly resolved. The model covers the whole Yellow and East China Seas with locally refined meshes near the regions of Gageo Island (offshore southwestern corner of the Korean Peninsula) and south of Jeju Island (Gangjeong and Seogwipo ports). The wind and pressure fields during the passage of typhoon Bolaven are generated by the blending method. Generally the numerical atmospheric model cannot satisfactorily reproduce the strength of typhoons due to dynamic and resolution restrictions. In this study we could achieve an improved conservation of the typhoon strength by blending the Holland typhoon model result by the empirical formula onto the ambient meteorological fields of NCEP dataset. The model results are compared with the observations and the model performance is then evaluated. The computed wave spectrums for one and two dimensions are compared with the observation in Ieodo station. Results show that the wind wave significantly enhances the current intensity and surge elevation, addressing that to incorporate the wave-current interaction effect in the wave-tide-surge coupled model is important for the accurate prediction of current and sea surface elevation as well as extreme waves in shallow coastal sea regions. The resulting modeling system can be used for hindcasting and forecasting the wave-tide-surges in marine environments with complex coastlines, shallow water depth and fine sediment.

  8. Extremely Fast Numerical Integration of Ocean Surface Wave Dynamics: Building Blocks for a Higher Order Method

    Science.gov (United States)

    2006-09-30

    Fisica Generale, Università di Torino Via Pietro Giuria 1 10125 Torino, Italy Phone: (+39) 11-670-7451 or (+39) 11-329-5492 fax: (39) 11-658444 email...spectrum” of the solution), the vector k constitutes the usual wave numbers, the vector θ(x,t | %B,φ) ω contains the frequencies and the vector φ...the Riemann matrix, the vector k constitutes the wave numbers in the x direction and the wave number vector l constitutes the y-direction wave

  9. ENERGETIC EXTREMES IN A HOSTILE HABITAT: FISH LOCOMOTION ON WAVE-SWEPT CORAL REEFS

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2010-01-01

    Fulton, C.J., Johansen, J. L. and Steffensen, J.F. Abstract: Shallow wave-swept habitats are a major challenge for fish locomotion, where crashing waves produce water flows equivalent to cyclone-force winds. Here we document the exceptional locomotor energetics of Bluelined wrasse (Stethojulis...

  10. Extreme Response Predictions for Jack-up Units in Second Order Stochastic Waves by FORM

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Capul, Julien

    2006-01-01

    An efficient procedure for derivation of mean outcrossing rates for non-linear wave-induced responses in stationary sea states is presented and applied to an analysis of the horizontal deck sway of a jack-up unit. The procedure is based on the theory of random vibrations and uses the first order...... reliability method (FORM) to estimate the most probable set of wave components in the ocean wave system that will lead to exceedance of a specific response level together with the associated mean outcrossing rate. The procedure bears some resemblance to the Constrained NewWave methodology, but is conceptually......-tic waves, not previously included in the analysis of jack-up units in stochastic seaways....

  11. The extreme wave interaction with the constructions of the breakwaters including the damping chamber that was filled up with the stones and concrete units

    Science.gov (United States)

    Maximov, Vasily; Nudner, Igor; Revyakin, Alexei

    2010-05-01

    The eight types of the breakwaters constructions including the damping chamber were experimentally studied. The damping chamber has the infilling with the stones, with the concrete units, or with the combinations of the stones and units. The back wall of the damping chamber was impermeable. The construction varies by the volume and by the type of the infilling. The experiments to specify the pressure at the internal walls of the damping chamber, the reflected wave height, and the wave height at the front wall were performed at the hydro flume. This flume has the following dimensions: 43 m length, 0.7 m width, and 1.2 m height. The periodic waves were produced by the shield-type wavemaker. We vary in this research the periods of the waves over the range 0.8 s to 1.64 s, and the wave height over the range 10 cm to 24 cm. The analysis revealed the most improved structure possessing the good wave-protective features.

  12. Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot.

    Science.gov (United States)

    Caputi, Nick; Kangas, Mervi; Denham, Ainslie; Feng, Ming; Pearce, Alan; Hetzel, Yasha; Chandrapavan, Arani

    2016-06-01

    An extreme marine heat wave which affected 2000 km of the midwest coast of Australia occurred in the 2010/11 austral summer, with sea-surface temperature (SST) anomalies of 2-5°C above normal climatology. The heat wave was influenced by a strong Leeuwin Current during an extreme La Niña event at a global warming hot spot in the Indian Ocean. This event had a significant effect on the marine ecosystem with changes to seagrass/algae and coral habitats, as well as fish kills and southern extension of the range of some tropical species. The effect has been exacerbated by above-average SST in the following two summers, 2011/12 and 2012/13. This study examined the major impact the event had on invertebrate fisheries and the management adaption applied. A 99% mortality of Roei abalone (Haliotis roei) and major reductions in recruitment of scallops (Amusium balloti), king (Penaeus latisulcatus) and tiger (P. esculentus) prawns, and blue swimmer crabs were detected with management adapting with effort reductions or spatial/temporal closures to protect the spawning stock and restocking being evaluated. This study illustrates that fisheries management under extreme temperature events requires an early identification of temperature hot spots, early detection of abundance changes (preferably using pre-recruit surveys), and flexible harvest strategies which allow a quick response to minimize the effect of heavy fishing on poor recruitment to enable protection of the spawning stock. This has required researchers, managers, and industry to adapt to fish stocks affected by an extreme environmental event that may become more frequent due to climate change.

  13. Ground pressure law of fully mechanized large cutting height face in extremely-soft thick seam and stability control in tip-to-face area

    Institute of Scientific and Technical Information of China (English)

    LIU Chang-you; CHANG Xing-min; HUANG Bing-xiang; WEI Min-tao; WANG Jun; WANG Jian-shu

    2007-01-01

    When stepped coal getting technology was applied to high seam mining working face, with field observations the following aspects of working face were analyzed based on the inherent conditions of extremely soft thick seam mined by Liangbei Mine, such as the brokenness and activity law of rock seam in the working face, the law of load-bearing of its supports, and the instability character of coal or rock in tip-to-face area.The following are the major laws. Pressure intensity of roof in high seam mining with extremely soft thick seam is stronger than one in slicing and sublevel-caving as a whole. But the greater crushing deformation of coal side makes pressure intensity of roof in the middle of working face be equivalent to one in sublevel-caving. In the middle of working face the roof brokenness has less dynamic load effect than roof brokenness in the two ends of working face. The brokenness instability of distinct pace of roof brings several load-bearings to supports. In condition of extremely soft thick seam, the ratio of resistance increment of supports in two ends of working face is obviously greater than that of supports in the middle. Most sloughing in coal side is triangular slop sloughing caused by shear slipping in high seam mining with extremely soft thick seam. Ultrahigh mining is the major reason for roof fall. Instability of coal or rock in tip-to-face area can be controlled effectively with the methods such as improving setting load of supports, mining along roof by reinforcing floor and protecting the immediate roof in time, and so on.

  14. Theta height and Faltings height

    CERN Document Server

    Pazuki, F

    2009-01-01

    Using original ideas from J.-B. Bost and S. David, we provide an explicit comparison between the Theta height and the stable Faltings height of a principally polarized abelian variety. We also give as an application an explicit upper bound on the number of K-rational points of a curve of genus g>1 over a number filed K under a conjecture of S. Lang and J. Silverman. We complete the study with a comparison between differential lattice structures.

  15. How extreme are extremes?

    Science.gov (United States)

    Cucchi, Marco; Petitta, Marcello; Calmanti, Sandro

    2016-04-01

    High temperatures have an impact on the energy balance of any living organism and on the operational capabilities of critical infrastructures. Heat-wave indicators have been mainly developed with the aim of capturing the potential impacts on specific sectors (agriculture, health, wildfires, transport, power generation and distribution). However, the ability to capture the occurrence of extreme temperature events is an essential property of a multi-hazard extreme climate indicator. Aim of this study is to develop a standardized heat-wave indicator, that can be combined with other indices in order to describe multiple hazards in a single indicator. The proposed approach can be used in order to have a quantified indicator of the strenght of a certain extreme. As a matter of fact, extremes are usually distributed in exponential or exponential-exponential functions and it is difficult to quickly asses how strong was an extreme events considering only its magnitude. The proposed approach simplify the quantitative and qualitative communication of extreme magnitude

  16. Links between traumatic brain injury and ballistic pressure waves originating in the thoracic cavity and extremities

    CERN Document Server

    Courtney, Amy

    2007-01-01

    Identifying patients at risk of traumatic brain injury (TBI) is important because research suggests prophylactic treatments to reduce risk of long-term sequelae. Blast pressure waves can cause TBI without penetrating wounds or blunt force trauma. Similarly, bullet impacts distant from the brain can produce pressure waves sufficient to cause mild to moderate TBI. The fluid percussion model of TBI shows that pressure impulses of 15-30 psi cause mild to moderate TBI in laboratory animals. In pigs and dogs, bullet impacts to the thigh produce pressure waves in the brain of 18-45 psi and measurable injury to neurons and neuroglia. Analyses of research in goats and epidemiological data from shooting events involving humans show high correlations (r > 0.9) between rapid incapacitation and pressure wave magnitude in the thoracic cavity. A case study has documented epilepsy resulting from a pressure wave without the bullet directly hitting the brain. Taken together, these results support the hypothesis that bullet imp...

  17. The prediction and validation of spatial variation of storm tide height along the coastline of North Somerset, U.K. during extreme events typical of coastal flooding using Synthetic Aperture Radar.

    Science.gov (United States)

    Lewis, Matt; Schumann, Guy; Horsburgh, Kevin; Bates, Paul

    2010-05-01

    Inundation modellers are faced with the problem of determining coastal flood risk in a future climate in order to aid planners, policy makers and engineers. Current research suggests a major source of uncertainty is the water-level height along the coastline which is used to force 2D inundation models of the region studied. Recent research has indicated that the spatial variation of the water-level during a storm (storm tide) has a predictable spatial relationship based upon historical storm events, however, this new proposed method needs to be validated. Detailed observations of a storm tide along a coastline are very rare, but it is believed that Synthetic Aperture Radar (SAR) can be employed with the "water-line method" to provide this detailed dataset of observed water heights. This project is accessing the degree to which current space-borne SAR imagery can be used to determine detailed water-level heights along a coastline during an extreme water-level event typical of a coastal flood, and then employing this dataset to validate a new spatial storm tide variation prediction method. Future inundation risk models may benefit from this research with an improved and more accurate forcing condition, but also oceanographers and coastal scientists can employ the SAR imagery-derived water level approach developed within this work to aid storm surge and coastal inundation research.

  18. Navicula height

    DEFF Research Database (Denmark)

    Rathleff, M; Nielsen, RG; Olesen, Christian Gammelgaard;

    2008-01-01

    position and relaxed standing posture. Excessive movement of the navicula is considered a predisposing factor in the development of shin splits. No single direct static measurement of navicula height has yet shown to predict a high degree of mid foot movement. The purpose of this study was to investigate...

  19. Wuthering Heights

    NARCIS (Netherlands)

    Bronte, Emily

    2005-01-01

    Wuthering Heights tells the story of a romance between two youngsters: Catherine Earnshaw and an orphan boy, Heathcliff. After she rejects him for a boy from a better background he develops a lust for revenge that takes over his life. In attempting to win her back and destroy those he blames for his

  20. Testing Chern-Simons Modified Gravity with Gravitational-Wave Detections of Extreme-Mass-Ratio Binaries

    CERN Document Server

    Canizares, Priscilla; Sopuerta, Carlos F

    2012-01-01

    [abridged] The detection of gravitational waves from extreme-mass-ratio (EMRI) binaries, comprising a stellar-mass compact object orbiting around a massive black hole, is one of the main targets for low-frequency gravitational-wave detectors in space, like the Laser Interferometer Space Antenna (LISA or eLISA/NGO). The long-duration gravitational-waveforms emitted by such systems encode the structure of the strong field region of the massive black hole, in which the inspiral occurs. The detection and analysis of EMRIs will therefore allow us to study the geometry of massive black holes and determine whether their nature is as predicted by General Relativity and even to test whether General Relativity is the correct theory to describe the dynamics of these systems. To achieve this, EMRI modeling in alternative theories of gravity is required to describe the generation of gravitational waves. In this paper, we explore to what extent EMRI observations with LISA or eLISA/NGO might be able to distinguish between G...

  1. Pulse wave transit time measured by imaging photoplethysmography in upper extremities

    Science.gov (United States)

    Volynsky, M. A.; Mamontov, O. V.; Sidorov, I. S.; Kamshilin, A. A.

    2016-08-01

    We describe highly reliable measurement method of the pulse wave transit time (PWTT) to human limbs by using simultaneous recordings of imaging photoplethysmography and electrocardiography. High accuracy of measurements was achieved by access to a larger number of statistically independent data obtained simultaneously in different points. The method is characterized by higher diagnostic reliability because of automatic selection of the regions less affected by environmental noise. The technique was tested in the group of 12 young healthy subjects aged from 21 to 33 years. Even though PWTT in right and left hands was comparable after averaging over the whole group of subjects, significant difference in the time delay of pulse wave between the hands was found in several individuals. The technique can be used for early-stage diagnostics of various vascular diseases.

  2. Gravitational waves from extreme mass-ratio inspirals in Dynamical Chern-Simons gravity

    CERN Document Server

    Pani, Paolo; Gualtieri, Leonardo

    2011-01-01

    Dynamical Chern-Simons gravity is an interesting extension of General Relativity, which finds its way in many different contexts, including string theory, cosmological settings and loop quantum gravity. In this theory, the gravitational field is coupled to a scalar field by a parity-violating term, which gives rise to characteristic signatures. Here we investigate how Chern-Simons gravity would affect the quasi-circular inspiralling of a small, stellar-mass object into a large non-rotating supermassive black hole, and the accompanying emission of gravitational and scalar waves. We find the relevant equations describing the perturbation induced by the small object, and we solve them through the use of Green's function techniques. Our results show that for a wide range of coupling parameters, the Chern-Simons coupling gives rise to an increase in total energy flux, which translates into a fewer number of gravitational-wave cycles over a certain bandwidth. For space-based gravitational-wave detectors such as LIS...

  3. Gravitational waves from extreme mass-ratio inspirals in dynamical Chern-Simons gravity

    Science.gov (United States)

    Pani, Paolo; Cardoso, Vitor; Gualtieri, Leonardo

    2011-05-01

    Dynamical Chern-Simons gravity is an interesting extension of general relativity, which finds its way in many different contexts, including string theory, cosmological settings, and loop quantum gravity. In this theory, the gravitational field is coupled to a scalar field by a parity-violating term, which gives rise to characteristic signatures. Here we investigate how Chern-Simons gravity would affect the quasicircular inspiralling of a small, stellar-mass object into a large nonrotating supermassive black hole, and the accompanying emission of gravitational and scalar waves. We find the relevant equations describing the perturbation induced by the small object, and we solve them through the use of Green’s function techniques. Our results show that for a wide range of coupling parameters, the Chern-Simons coupling gives rise to an increase in total energy flux, which translates into a fewer number of gravitational-wave cycles over a certain bandwidth. For space-based gravitational-wave detectors such as LISA, this effect can be used to constrain the coupling parameter effectively.

  4. ORAL ISSUE OF THE JOURNAL "USPEKHI FIZICHESKIKH NAUK": Intense shock waves and extreme states of matter

    Science.gov (United States)

    Fortov, Vladimir E.

    2007-04-01

    The physical properties of hot dense matter over a broad domain of the phase diagram are of immediate interest in astrophysics, planetary physics, power engineering, controlled thermonuclear fusion, impulse technologies, enginery, and several special applications. The use of intense shock waves in dynamic physics and high-pressure chemistry has made the exotic high-energy-density states of matter a subject of laboratory experiments and enabled advancing by many orders of magnitude along the pressure scale to range into the megabars and even gigabars. The present report reviews the latest experimental research involving shock waves in nonideal plasmas under conditions of strong collective interparticle interaction. The results of investigations into the thermodynamic, transport, and optical properties of strongly compressed hot matter, as well as into its composition and conductivity, are discussed. Experimental techniques for high energy density cumulation, the drivers of intense shock waves, and methods for the fast diagnostics of high-energy plasma are considered. Also discussed are compression-stimulated physical effects: pressure-induced ionization, plasma phase transitions, the deformation of bound states, plasma blooming ('transparentization' of plasma), etc. Suggestions for future research are put forward.

  5. Navicula height

    DEFF Research Database (Denmark)

    Mølgaard, Carsten Møller; Olesen Gammelgaard, Christian; Nielsen, R. G.;

    2008-01-01

    In 1996 Cornwall and McPoil discovered that the static measurement of the rearfoot angle while standing on one leg in a relaxed position, could serve as a clinical indicator of the maximum amount of rearfoot eversion during walking. Due to the close relationship between midfoot and rearfoot motio...... the relationship between static measurements, using Navicual Drop Test and One Leg Standing (OLS) and the dynamic measurements of minimal navicula height loaded (NHL) and navicula drop (ΔNH)...

  6. Inhibition of Salmonella typhi growth using extremely low frequency electromagnetic (ELF-EM) waves at resonance frequency.

    Science.gov (United States)

    Fadel, M A; Mohamed, S A; Abdelbacki, A M; El-Sharkawy, A H

    2014-08-01

    Typhoid is a serious disease difficult to be treated with conventional drugs. The aim of this study was to demonstrate a new method for the control of Salmonella typhi growth, through the interference with the bioelectric signals generated from the microbe during cell division by extremely low frequency electromagnetic waves (ELF-EMW-ELF-EM) at resonance frequency. Isolated Salmonella typhi was subjected to square amplitude modulated waves (QAMW) with different modulation frequencies from two generators with constant carrier frequency of 10 MHz, amplitude of 10 Vpp, modulating depth ± 2 Vpp and constant field strength of 200 V m(-1) at 37°C. Both the control and exposed samples were incubated at the same conditions during the experiment. The results showed that there was highly significant inhibition effect for Salm. typhi exposed to 0·8 Hz QAMW for a single exposure for 75 min. Dielectric relaxation, TEM and DNA results indicated highly significant changes in the molecular structure of the DNA and cellular membrane resulting from the exposure to the inhibiting EM waves. It was concluded that finding out the inhibiting resonance frequency of ELF-EM waves that deteriorates Salm. typhi growth will be promising method for the treatment of Salm. typhi infection either in vivo or in vitro. This new non-invasive technique for treatment of bacterial infections is of considerable interest for the use in medical and biotechnological applications. © 2014 The Society for Applied Microbiology.

  7. Wind and Wave Setup Contributions to Extreme Sea Levels at a Tropical High Island: A Stochastic Cyclone Simulation Study for Apia, Samoa

    Directory of Open Access Journals (Sweden)

    Ron Karl Hoeke

    2015-09-01

    Full Text Available Wind-wave contributions to tropical cyclone (TC-induced extreme sea levels are known to be significant in areas with narrow littoral zones, particularly at oceanic islands. Despite this, little information exists in many of these locations to assess the likelihood of inundation, the relative contribution of wind and wave setup to this inundation, and how it may change with sea level rise (SLR, particularly at scales relevant to coastal infrastructure. In this study, we explore TC-induced extreme sea levels at spatial scales on the order of tens of meters at Apia, the capitol of Samoa, a nation in the tropical South Pacific with typical high-island fringing reef morphology. Ensembles of stochastically generated TCs (based on historical information are combined with numerical simulations of wind waves, storm-surge, and wave setup to develop high-resolution statistical information on extreme sea levels and local contributions of wind setup and wave setup. The results indicate that storm track and local morphological details lead to local differences in extreme sea levels on the order of 1 m at spatial scales of less than 1 km. Wave setup is the overall largest contributor at most locations; however, wind setup may exceed wave setup in some sheltered bays. When an arbitrary SLR scenario (+1 m is introduced, overall extreme sea levels are found to modestly decrease relative to SLR, but wave energy near the shoreline greatly increases, consistent with a number of other recent studies. These differences have implications for coastal adaptation strategies.

  8. Traveling planetary wave ionospheric disturbances and their role in the generation of equatorial spread-F and GPS phase fluctuations during the last extreme low solar activity and comparison with high solar activity

    Science.gov (United States)

    de Abreu, A. J.; Fagundes, P. R.; Bolzan, M. J. A.; Gende, M.; Brunini, C.; de Jesus, R.; Pillat, V. G.; Abalde, J. R.; Lima, W. L. C.

    2014-09-01

    This investigation studies traveling planetary wave ionospheric disturbance (TPWID) type oscillations on the modulation of the F region virtual height rise during the E×B electric field pre-reversal enhancement (PRE), near sunset hours. We also studied their role in the generation of equatorial spread F (ESF) and GPS phase fluctuations during periods of the last extreme low solar activity (LSA) of January 2009 to April 2010 (F10.7bar=73). A comparison is made with periods of high solar activity (HSA) in 2003 and 2004 near equatorial region. The ionospheric irregularities investigated are medium (bottom-side) and large (plasma bubble) scales. Ionospheric F region oscillations with period of days are due to the TPWIDs, which play an important role in producing favorable or unfavorable conditions for equatorial ionospheric irregularities, changing the electron vertical profile and F region height. In this paper, we present simultaneous ionospheric sounding (ionosonde) and GPS vertical total electron content (vTEC) observations carried out near equatorial region (Palmas 10.2°S, 48.2°W) and low latitude region (São José dos Campos 23.2°S, 45.9°W; located under the southern crest of the equatorial ionospheric anomaly), Brazil. Observations show that the occurrence of fresh ESF during LSA and HSA and fresh GPS phase fluctuations at equatorial region follow the trend of day-to-day variations in the F region virtual height, which are due to electric field PRE modulated by TPWID wave like oscillations. During LSA, the altitude of 250 km acts as a threshold height for the generation of fresh ionospheric irregularities, whereas during HSA, the threshold height is 300 km. The observations also found a strong increase in the generation of fresh ionospheric irregularities from October 2009 to March 2010 during LSA and from September 2003 to March 2004 during the HSA. Furthermore, in LSA, the period of fresh ionospheric irregularities was less than during HSA, though both

  9. Stochastic Modeling of Long-Term and Extreme Value Estimation of Wind and Sea Conditions for Probabilistic Reliability Assessments of Wave Energy Devices

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kofoed, Jens Peter; Sørensen, John Dalsgaard

    2014-01-01

    Wave energy power plants are expected to become one of the major future contribution to the sustainable electricity production. Optimal design of wave energy power plants is associated with modeling of physical, statistical, measurement and model uncertainties. This paper presents stochastic models....... The stochastic model for extreme value estimation covers annual extreme value distributions and the statistical uncertainty due to limited amount of available data. Furthermore, updating based on new available data is explained based on a Bayesian approach. The statistical uncertainties are estimated based...... on the Maximum-Likelihood method, and the extreme value estimation uses the peaks-over-threshold (POT) method. Two generic examples of reliability assessments for failure due to fatigue and extreme...

  10. Millimeter waves or extremely high frequency electromagnetic fields in the environment: what are their effects on bacteria?

    Science.gov (United States)

    Soghomonyan, Diana; Trchounian, Karen; Trchounian, Armen

    2016-06-01

    Millimeter waves (MMW) or electromagnetic fields of extremely high frequencies at low intensity is a new environmental factor, the level of which is increased as technology advance. It is of interest that bacteria and other cells might communicate with each other by electromagnetic field of sub-extremely high frequency range. These MMW affected Escherichia coli and many other bacteria, mainly depressing their growth and changing properties and activity. These effects were non-thermal and depended on different factors. The significant cellular targets for MMW effects could be water, cell plasma membrane, and genome. The model for the MMW interaction with bacteria is suggested; a role of the membrane-associated proton FOF1-ATPase, key enzyme of bioenergetic relevance, is proposed. The consequences of MMW interaction with bacteria are the changes in their sensitivity to different biologically active chemicals, including antibiotics. Novel data on MMW effects on bacteria and their sensitivity to different antibiotics are presented and discussed; the combined action of MMW and antibiotics resulted with more strong effects. These effects are of significance for understanding changed metabolic pathways and distinguish role of bacteria in environment; they might be leading to antibiotic resistance in bacteria. The effects might have applications in the development of technique, therapeutic practices, and food protection technology.

  11. The Spanish tourist sector facing extreme climate events: a case study of domestic tourism in the heat wave of 2003

    Science.gov (United States)

    Gómez-Martín, M. Belén; Armesto-López, Xosé A.; Martínez-Ibarra, Emilio

    2014-07-01

    This research explores, by means of a questionnaire-based survey, public knowledge and perception as well as the behaviour of young Spanish tourists before, during and after the summer holiday period affected by an episode of extreme heat in 2003. The survey was administered between November and December 2004. The extraordinary heat wave of the summer of 2003 can be seen as an example of a normal episode in terms of the predicted intensity and duration of European summers towards the end of the twenty-first century. It can therefore be used as the laboratory setting for this study. In this context, the use of the climate analogue approach allows us to obtain novel perspectives regarding the future impact that this type of event could have on tourist demand, based on a real experience. Likewise, such an approach allows the strategies of adaptation implemented by the different elements in the tourist system in order to cope with the atmospheric episode to be evaluated. Such strategies could prove useful in reducing vulnerability when faced with similar episodes in the future. The main results indicate that Spanish tourists (young segment market) are flexible in adapting to episodes of extremely high temperatures. Their personal perception of the phenomenon, their behaviour and the adaptation measures implemented to a greater or lesser extent before that time, reduce the vulnerability of the sector when faced with this type of event, at least from the point of view of this young segment of the internal national market. In Spain, the episode of extreme heat of 2003 has led to the implementation or improvement of some adaptive measures after the event, especially in the fields of management, policy and education.

  12. The Spanish tourist sector facing extreme climate events: a case study of domestic tourism in the heat wave of 2003.

    Science.gov (United States)

    Gómez-Martín, M Belén; Armesto-López, Xosé A; Martínez-Ibarra, Emilio

    2014-07-01

    This research explores, by means of a questionnaire-based survey, public knowledge and perception as well as the behaviour of young Spanish tourists before, during and after the summer holiday period affected by an episode of extreme heat in 2003. The survey was administered between November and December 2004. The extraordinary heat wave of the summer of 2003 can be seen as an example of a normal episode in terms of the predicted intensity and duration of European summers towards the end of the twenty-first century. It can therefore be used as the laboratory setting for this study. In this context, the use of the climate analogue approach allows us to obtain novel perspectives regarding the future impact that this type of event could have on tourist demand, based on a real experience. Likewise, such an approach allows the strategies of adaptation implemented by the different elements in the tourist system in order to cope with the atmospheric episode to be evaluated. Such strategies could prove useful in reducing vulnerability when faced with similar episodes in the future. The main results indicate that Spanish tourists (young segment market) are flexible in adapting to episodes of extremely high temperatures. Their personal perception of the phenomenon, their behaviour and the adaptation measures implemented to a greater or lesser extent before that time, reduce the vulnerability of the sector when faced with this type of event, at least from the point of view of this young segment of the internal national market. In Spain, the episode of extreme heat of 2003 has led to the implementation or improvement of some adaptive measures after the event, especially in the fields of management, policy and education.

  13. Testing Chern-Simons modified gravity with gravitational-wave detections of extreme-mass-ratio binaries

    Science.gov (United States)

    Canizares, Priscilla; Gair, Jonathan R.; Sopuerta, Carlos F.

    2012-08-01

    The detection of gravitational waves from extreme-mass-ratio inspirals (EMRI) binaries, comprising a stellar-mass compact object orbiting around a massive black hole, is one of the main targets for low-frequency gravitational-wave detectors in space, like the Laser Interferometer Space Antenna (LISA) or evolved LISA/New Gravitational Observatory (eLISA/NGO). The long-duration gravitational-waveforms emitted by such systems encode the structure of the strong field region of the massive black hole, in which the inspiral occurs. The detection and analysis of EMRIs will therefore allow us to study the geometry of massive black holes and determine whether their nature is as predicted by general relativity and even to test whether general relativity is the correct theory to describe the dynamics of these systems. To achieve this, EMRI modeling in alternative theories of gravity is required to describe the generation of gravitational waves. However, up to now, only a restricted class of theories has been investigated. In this paper, we explore to what extent EMRI observations with a space-based gravitational-wave observatory like LISA or eLISA/NGO might be able to distinguish between general relativity and a particular modification of it, known as dynamical Chern-Simons modified gravity. Our analysis is based on a parameter estimation study which uses approximate gravitational waveforms obtained via a radiative-adiabatic method. In this framework, the trajectory of the stellar object is modeled as a sequence of geodesics in the spacetime of the modified-gravity massive black hole. The evolution between geodesics is determined by flux formulae based on general relativistic post-Newtonian and black hole perturbation theory computations. Once the trajectory of the stellar compact object has been obtained, the waveforms are computed using the standard multipole formulae for gravitational radiation applied to this trajectory. Our analysis is restricted to a five

  14. Model Test Setup and Program for Experimental Estimation of Surface Loads of the SSG Kvitsøy Pilot Plant from Extreme Wave Conditions

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Larsen, Brian Juul

    This report presents the preparations done prior to model tests planned for November 2005 focusing on experimental estimation of the surface loads on the wave energy convert (WEC) Seawave Slot-Cone Generator (SSG) due to extreme wave conditions. SSG is a WEC utilizing wave overtopping in multiple...... the planned pilot plant site is also modeled. The tests will be carried out at Dept. of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank.......This report presents the preparations done prior to model tests planned for November 2005 focusing on experimental estimation of the surface loads on the wave energy convert (WEC) Seawave Slot-Cone Generator (SSG) due to extreme wave conditions. SSG is a WEC utilizing wave overtopping in multiple...... reservoirs. In the present SSG setup three reservoirs have been used. Model tests are planned using a model (length scale 1:60) of the SSG prototype at the planned location of a pilot plant at the west coast of the island Kvitsøy near Stavanger, Norway. The properties of the coastal area surrounding...

  15. Geosat altimeter derived sea surface wind speeds and significant wave heights for the north Indian Ocean and their comparison with in situ data

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Vaithiyanathan, R.; Almeida, A.M.; Santanam, K.; Rao, L.V.G.; Sarkar, A.; Kumar, R.; Gairola, R.M.; Gohil, B.S.

    coded maps, showing the distribution of mean monthly values of wind and wave parameters over 2.5 degrees square grids. Altimeter derived wind and wave parameters are compared with (1) winds and waves obtained through ships of opportunity and documented...

  16. Adaptive re-tracking algorithm for retrieval of water level variations and wave heights from satellite altimetry data for middle-sized inland water bodies

    Science.gov (United States)

    Troitskaya, Yuliya; Lebedev, Sergey; Soustova, Irina; Rybushkina, Galina; Papko, Vladislav; Baidakov, Georgy; Panyutin, Andrey

    by the improved threshold algorithm. The possibility of determination of significant wave height (SWH) in the lakes through a two-step adaptive retracking is also studied. Calculation of the parameter SWH for Gorky Reservoir from May 2010 to March 2014 showed the anomalously high values of SWH, derived from altimetry data [15], which means that the calibration of this SWH for inland waters is required. Calibration ground measurements were performed at Gorky reservoir in 2011-2013, when wave height, wind speed and air temperature were collected by equipment placed on a buoy [15] collocated with Jason-1 and Jason-2 altimetry data acquisition. The results obtained on the basis of standard algorithm and method for adaptive re-tracking at Rybinsk , Gorky , Kuibyshev , Saratov and Volgograd reservoirs and middle-sized lakes of Russia: Chany, Segozero, Hanko, Oneko, Beloye, water areas of which are intersected by the Jason-1,2 tracks, were compared and their correlation with the observed data of hydrological stations in reservoirs and lakes was investigated. It was noted that the Volgograd reservoir regional re-tracking to determine the water level , while the standard GDR data are practically absent. REFERENCES [1] AVISO/Altimetry. User Handbook. Merged TOPEX/ POSEIDON Products. Edition 3.0. AVISO. Toulouse., 1996. [2] C.M. Birkett et al., “Surface water dynamics in the Amazon Basin: Application of satellite radar altimetry,” J. Geophys. Res., vol. 107, pp. 8059, 2002. [3] G. Brown, “The average impulse response of a rough surface and its applications,” IEEE Trans. Antennas Propagat., vol. 25, pp. 67-74, 1977. [4] I.O. Campos et al., “Temporal variations of river basin waters from Topex/Poseidon satellite altimetry. Application to the Amazon basin,” Earth and Planetary Sciences, vol. 333, pp. 633-643, 2001. [5] A.V. Kouraev et al., “Ob’ river discharge from TOPEX/Poseidon satellite altimetry (1992-2002),” Rem. Sens. Environ., vol. 93, pp. 238-245, 2004

  17. Comparison of H2 and He carbon cleaning mechanisms in extreme ultraviolet induced and surface wave discharge plasmas

    CERN Document Server

    Dolgov, A; Rachimova, T; Kovalev, A; Vasilyeva, A; Lee, C J; Krivtsun, V M; Yakushev, O; Bijkerk, F

    2013-01-01

    Cleaning of contamination of optical surfaces by amorphous carbon (a-C) is highly relevant for extreme ultraviolet (EUV) lithography. We have studied the mechanisms for a-C removal from a Si surface. By comparing a-C removal in a surface wave discharge (SWD) plasma and an EUV-induced plasma, the cleaning mechanisms for hydrogen and helium gas environments were determined. The C-atom removal per incident ion was estimated for different sample bias voltages and ion fluxes. It was found that H2 plasmas generally had higher cleaning rates than He plasmas: up to seven times higher for more negatively biased samples in EUV induced plasma. Moreover, for H2, EUV induced plasma was found to be 2-3 times more efficient at removing carbon than the SWD plasma. It was observed carbon removal during exposure to He is due to physical sputtering by He+ ions. In H2, on the other hand, the increase in carbon removal rates is due to chemical sputtering. This is a new C cleaning mechanism for EUV-induced plasma, which we call "E...

  18. A Comparison of Nature Waves and Model Waves with Special Reference to Wave Grouping

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    This paper represents a comparative analyses of the occurrence of wave grouping in field storm waves and laboratory waves with similar power spectra and wave height distribution.......This paper represents a comparative analyses of the occurrence of wave grouping in field storm waves and laboratory waves with similar power spectra and wave height distribution....

  19. On the use of ocean-atmosphere-wave models during an extreme CAO event: the importance of being coupled

    Science.gov (United States)

    Carniel, Sandro; Barbariol, Francesco; Benetazzo, Alvise; Bonaldo, Davide; Falcieri, Francesco M.; Miglietta, Mario M.; Ricchi, Antonio; Sclavo, Mauro

    2015-04-01

    During winter 2012 an extreme meteorological event stroke the whole Europe and particularly its central-southern sector. A strong and persistent spit of cold air coming from Siberian region (a Cold Air Outbreak, CAO) insisted on northern Italy and the Adriatic sea basin, leading to decreases in the sea temperatures up to 6 °C in less than two weeks, ice formation on the Venice lagoon and an exceptional snow fall in the Apennine region. In the sea the CAO was associated to a significant episode of dense water formation (DWF), a crucial phenomenon that heavily impacts the whole Adriatic Sea (from the sinking of water masses and associated ventilation of the northernmost shelf, to the flow along the western coast, until the flushing of southern Adriatic open slope and submarine canyons, with associated sediment transport and bottom reshaping). The extent of the DWF event in the Northern Adriatic sub-basin was estimated by means of coastal observatories, ad hoc measurements and, until now, results from existing one-way coupled atmosphere-ocean models. These are characterized by no SST feedback from the ocean to the atmosphere, and therefore by turbulent heat fluxes that may heavily reflect a non-consistent ocean state. The study proposes an investigation of the 2012 CAO using a fully coupled, three components, ocean-atmosphere-wave system (COAWST). Results highlight that, although the energy interplays between air and sea do not seem to significantly impact the wind forecasts, when providing heat fluxes that are consistent with the ocean temperature we find modified heat fluxes and air sea temperatures figures. Moreover, the consistent description of thermal exchanges adopted in the fully coupled model can affect the basin circulation, the quantification of dense water produced mass, and the description of its migration pathways and rates of off-shelf descent.

  20. Spatial Bayesian hierarchical modelling of extreme sea states

    Science.gov (United States)

    Clancy, Colm; O'Sullivan, John; Sweeney, Conor; Dias, Frédéric; Parnell, Andrew C.

    2016-11-01

    A Bayesian hierarchical framework is used to model extreme sea states, incorporating a latent spatial process to more effectively capture the spatial variation of the extremes. The model is applied to a 34-year hindcast of significant wave height off the west coast of Ireland. The generalised Pareto distribution is fitted to declustered peaks over a threshold given by the 99.8th percentile of the data. Return levels of significant wave height are computed and compared against those from a model based on the commonly-used maximum likelihood inference method. The Bayesian spatial model produces smoother maps of return levels. Furthermore, this approach greatly reduces the uncertainty in the estimates, thus providing information on extremes which is more useful for practical applications.

  1. STUDY ON HISTORICAL EXTREME FLOODS IN OCCURRENCE YEAR AND FLOODY HEIGHT,TAIHU LAKE%探讨太湖历史极端洪水发生年份和水位高程

    Institute of Scientific and Technical Information of China (English)

    于革; 胡守云; 李春海

    2013-01-01

    and West Pacific summer monsoon; while Chinese historical chorography has recorded a great number of historical floods in Taihu Lake. However,comparing with the modern instrumental records,the historical floods were very hard to get quantitative information from those text descriptions. It is necessary to built long-term series of flood data to understand those events with the small probabilities. On basis of studies of sedimetology and magnetics from core-based lacustrine sediments, the core taking from the center of Taihu Lake, this paper was attempted to reconstruct the historical sequence of extreme flood of Taihu Lak. Meanwhile, we used multiply evidence of flood events by combining historical flood records from historical literature and cultural relics. Through examining the stone countmark-measured flood level with modern observations of the extreme flood levels in the 20 century, we found that the lowest lake level in the 15 years of extreme floods during 1600 - 1954A. D. had a height at 4. 03m a. s. 1.,equivalent to the 80th percentiles of hydrological-gauged lake levels during 1921 -2004A. D. Flood signals from coarse silt-sand sediments and low-frequency magnetic susceptibility (xlf) captured 85% flood years in the history. The sediment records also revealed some historical flood years that have been missed in the stone countmark records. There were three flood years in the sediment records, which can be identified in historical documents in 1766A. D., 1875A. D. and 1882A. D. and the lake flood levels were estimated at 4. 0 -4. 1m, 4. 1 -4. 2m and 4. 13 -4. 23m respectively. Spectrum analysis using the Fast Fourier Transform for three time series of historical lake levels, sedment granularity and magnetic susceptibility repetitively, produced some synchronorous changes at three peaks of the return periods 90 - 102 years,60 -62 years and 42-44 years. To test if the historical extreme floods with lake level heights and flood occurence have statistical

  2. Discussion on the parameters of design waves

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-ying

    2008-01-01

    In order to respond the discredit on the design wave standard and to recommend new consideration on design wave parameters, based on the long-term distribution of statistic characteristics of waves and the short-term probability properties of sea state defined by giving the return period, the calculation of the return period, the height, the period, and the oceanic wave parameters of the design wave and the forecasting methods are discussed in this paper. To provide references for the operation reliability of floating structures in the extreme sea state, the method of determining the design wave parameters is resurveyed. A proposal is recommended that the design wave, which can be either significant wave with 500-year of the return period, or the maximum wave with 1/N of exceeding probability, 100-year of the return period, can be applied in the engineering design practice.

  3. Wind-wave hindcast in the Yellow Sea and the Bohai Sea from the year 1988 to 2002

    Institute of Scientific and Technical Information of China (English)

    HE Hailun; XU Yao

    2016-01-01

    We performed long-term wind-wave hindcast in the Yellow Sea and the Bohai Sea from the year 1988 to 2002, and then analyzed the regional wave climate. Comparisons between model results and satellite data are generally consistent on monthly mean significant wave height. Then we discuss the temporal and spatial characteristics of the climatological monthly mean significant wave heights and mean wave periods. The climatologically spatial patterns are observed as increasing from northwest to southeast and from offshore to deep-water area for both significant wave height and mean wave period, and the patterns are highly related to the wind forcing and local topography. Seasonal variations of wave parameters are also significant. Furthermore, we compute the extreme values of wind and significant wave height using statistical methods. Results reveal the spatial patterns ofN-year return significant wave height in the Yellow Sea and the Bohai Sea, and we discuss the relationship between extreme values of significant wave height and wind forcing.

  4. Optimization of multi-model ensemble forecasting of typhoon waves

    Directory of Open Access Journals (Sweden)

    Shun-qi Pan

    2016-01-01

    Full Text Available Accurately forecasting ocean waves during typhoon events is extremely important in aiding the mitigation and minimization of their potential damage to the coastal infrastructure, and the protection of coastal communities. However, due to the complex hydrological and meteorological interaction and uncertainties arising from different modeling systems, quantifying the uncertainties and improving the forecasting accuracy of modeled typhoon-induced waves remain challenging. This paper presents a practical approach to optimizing model-ensemble wave heights in an attempt to improve the accuracy of real-time typhoon wave forecasting. A locally weighted learning algorithm is used to obtain the weights for the wave heights computed by the WAVEWATCH III wave model driven by winds from four different weather models (model-ensembles. The optimized weights are subsequently used to calculate the resulting wave heights from the model-ensembles. The results show that the Optimization is capable of capturing the different behavioral effects of the different weather models on wave generation. Comparison with the measurements at the selected wave buoy locations shows that the optimized weights, obtained through a training process, can significantly improve the accuracy of the forecasted wave heights over the standard mean values, particularly for typhoon-induced peak waves. The results also indicate that the algorithm is easy to implement and practical for real-time wave forecasting.

  5. Evolution of foredune barriers at Admiral Bay, Western Australia - Implications for Holocene relative sea levels and extreme wave events

    Science.gov (United States)

    Engel, Max; May, Simon Matthias; Scheffers, Anja; Squire, Peter; Pint, Anna; Kelletat, Dieter; Brückner, Helmut

    2014-05-01

    Only few geomorphological studies on the Canning Coast of Western Australia exist to date, most probably reflecting its remoteness and low population density. However, WA's annual gross state product (GSP) growth of ~5 % during the past decade and the highest GSP per capita nationwide resulting from a mining boom increase public attention as well as the demand for precise information on landscape inventory and evolution. In this paper, new data from a sequence of vegetated foredune barriers, gradually being eroded by a migrating estuary inside the macrotidal Admiral Bay (also known as McKelson Creek, Whistle Creek or Panganunganyjal), 110 km southwest of Broome, are presented. Based on sediment cores, DGPS-based elevation transects, and stratigraphical analyses on outcrops of the relict foredunes, we aim at (i) reconstructing lateral coastal changes during the Holocene, (ii) drawing inferences on relative sea-level (RSL) change, and (iii) identifying and dating imprints of extreme-wave events. Sedimentary analyses comprise documentation of bedding structures, foraminiferal content and macrofaunal remains (including shell taphonomy), grain size, and organic matter. Chronological contexts are established using 26 14C-AMS datings. Marine flooding of the pre-Holocene base landward of the 2.5 km-wide foredunes can be pinpointed to 7400-7200 cal BP. A mangrove ecosystem established and was quickly replaced by intertidal coarse sands after only 200-400 years. The high-energy intertidal environment prevailed until c. 4000 cal BP before turning into the present supralittoral mudflat environment. At that time, coastal regression led to beach progradation and isochronic formation of foredune barriers. Drivers of progradation were a stable RSL or gradual RSL fall after the mid-Holocene highstand and a positive sand budget provided by high sublittoral productivity of calcareous shells in combination with erosion at the adjacent sandstone capes and longshore drift. The foredunes

  6. Effect of Second-Order and Fully Nonlinear Wave Kinematics on a Tension-Leg-Platform Wind Turbine in Extreme Wave Conditions: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-02

    In this study, we assess the impact of different wave kinematics models on the dynamic response of a tension-leg-platform wind turbine. Aero-hydro-elastic simulations of the floating wind turbine are carried out employing linear, second-order, and fully nonlinear kinematics using the Morison equation for the hydrodynamic forcing. The wave kinematics are computed from either theoretical or measured signals of free-surface elevation. The numerical results from each model are compared to results from wave basin tests on a scaled prototype. The comparison shows that sub and superharmonic responses can be introduced by second-order and fully nonlinear wave kinematics. The response at the wave frequency range is better reproduced when kinematics are generated from the measured surface elevation. In the future, the numerical response may be further improved by replacing the global, constant damping coefficients in the model by a more detailed, customizable definition of the user-defined numerical damping.

  7. Sea-level rise induced amplification of coastal protection design heights

    Science.gov (United States)

    Arns, Arne; Dangendorf, Sönke; Jensen, Jürgen; Bender, Jens; Talke, Stefan; Pattiaratchi, Charitha

    2017-04-01

    Coastal protection design heights typically consider the superimposed effects of tides, surges, waves, and relative sea-level rise (SLR), neglecting non-linear feedbacks between these forcing factors. Here, we use hydrodynamic modelling and multivariate statistics to show that shallow coastal areas are extremely sensitive to changing non-linear interactions between individual components caused by SLR. As sea-level increases, the depth-limitation of waves relaxes, resulting in waves with larger periods, greater amplitudes, and higher run-up; moreover, depth and frictional changes affect tide, surge, and wave characteristics, altering the relative importance of other risk factors. Consequently, sea-level driven changes in wave characteristics, and to a lesser extent, tides, amplify the resulting design heights by an average of 48-56%, relative to design changes caused by SLR alone. Since many of the world's most vulnerable coastlines are impacted by depth-limited waves, our results suggest that the overall influence of SLR may be greatly underestimated in many regions. Reference: Arns, A.; Dangendorf, S., Jensen, J., Talke, S., Bender, J., Pattiaratchi, C.: Sea-level rise induced amplification of coastal protection design heights. Sci. Rep. 6, 40171; doi: 10.1038/srep40171 (2016).

  8. Extreme Value Predictions for Wave- and Wind-induced Loads on Floating Offshore Wind Turbines using FORM

    DEFF Research Database (Denmark)

    Joensen, Sunvard; Jensen, Jørgen Juncher; Mansour, Alaa E.

    2007-01-01

    probable wave episodes leading to given re-sponses. As an example the motions of floating foundations for offshore wind turbines are analysed taking into consid-eration both the wave and wind induced loads and con-sidering different mooring systems. The possible large horizontal motions make it important...

  9. Rogue waves in 2006–2010

    Directory of Open Access Journals (Sweden)

    I. Nikolkina

    2011-11-01

    Full Text Available The evidence of rogue wave existence all over the world during last five years (2006–2010 has been collected based mainly on mass media sources. Only events associated with damage and human loss are included. The waves occurred not only in deep and shallow zones of the World Ocean, but also at the coast, where they were manifested as either sudden flooding of the coast or high splashes over steep banks or sea walls. From the total number of 131 reported events, 78 were identified as evidence of rogue waves (which are expected to be at least twice larger than the significant wave height. The background significant wave height was estimated from the satellite wave data. The rogue waves at the coast, where the significant wave height is unknown or meaningless, were selected based on their unexpectedness and hazardous character. The statistics built on the selected 78 events suggests that extreme waves cause more damage in shallow waters and at the coast than in the deep sea and can be used for hazard assessment of the rogue wave phenomenon.

  10. Wave Analysis for West Coast of South Myanmar

    Directory of Open Access Journals (Sweden)

    Xu Yanan

    2015-01-01

    Full Text Available The characteristic of southern parts of Myanmar is tropical monsoon climate, and this area is affected by few typhoons. The wave height is changed with season, the field measured data shows that the aver-age monthly maximum wave height is in June. The wave height, swelling from Indian Ocean and spreading to research area, is small. The research adopts SWAN model to simulate the waves that are transformed from off-shore to nearshore Myanmar based on the meteorological data from ECMWF. The simulated results were com-pared with satellite data and field measured data, it showed that the trend between the curves is unified, and the extreme value of simulation is close to the measured value. The simulation presents wave distribution around Myanmar southern sea, it shows that the wave height and wave directions are affected by terrain refraction and island trains shielding. When the wave is from WSW direction, the wave will be decreased fast caused by island shielding, and the direction turns to W direction at northern coastline. When the wave comes from SSW direction, the island shielding will be weak, the wave will be decreased slowly, and the direction will turn to SW direction at southern coastline.

  11. Analysis on the Extreme Heat Wave over China around Yangtze River Region in the Summer of 2013 and Its Main Contributing Factors

    Directory of Open Access Journals (Sweden)

    Jin Li

    2015-01-01

    Full Text Available In the summer of 2013, a rare extreme heat wave occurred in the middle and lower reaches of the Yangtze River in China. Based on high resolution reanalysis data from ECMWF, comprehensive analyses on the associated atmospheric circulation and the sea surface temperature anomaly (SSTA were provided. The stable and strong West Pacific Subtropical High (WPSH was the direct cause for the heat wave. The WPSH had four westward extensions, which brought about four hot spells in southern China. The South Asia High (SAH at 150 hPa was more eastward and more northward than normal. The strong Hadley circulation in the central and western Pacific and the anomalous easterlies at 500 hPa and 250 hPa in the middle and high latitudes were favorable for more hot days (HDs. The total HDs in the middle and lower reaches of the Yangtze River had close relationships with the zonal wind anomalies in the middle and high latitudes, the SSTA in the Indian Ocean and Pacific, and the dry soil conditions of the Yangtze River Valley in spring and summer. The anomalies of the tropical, subtropical, and polar circulation and the underlying surfaces could be responsible for this extreme heat wave.

  12. A study of dynamic F-waves in juvenile spinal muscular atrophy of the distal upper extremity (Hirayama disease).

    Science.gov (United States)

    Zheng, Chaojun; Zhu, Yu; Yang, Shuo; Lu, Feizhou; Jin, Xiang; Weber, Robert; Jiang, Jianyuan

    2016-08-15

    The study aimed to analyse changes in the upper limb F-waves during neck flexion in patients with Hirayama disease (HD). This study included 41 healthy subjects, 38 HD patients and 24 patients with amyotrophic lateral sclerosis (ALS). Bilateral F-waves were consecutively recorded 20 times with the neck both in the standard position and after persistent neck flexion for 30min. The persistence, minimal latencies, chronodispersion, F/M ratios and amplitudes of the F-waves and repeater F-waves were compared between the standard neck and neck flexion positions. During neck flexion, repeater F-waves were found in more HD patients, the percentage of both the ulnar and median repeater F-waves increased significantly, and higher F/M ratios were observed on the symptomatic side (P0.05). HD might be more likely to present as a position-related dysfunction rather than a spinal cord-intrinsic disease. Thus, HD patients could be counselled to avoid neck flexion for long periods of time to prevent further damage, especially in the progressive stage of the disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Fear of heights and visual height intolerance.

    Science.gov (United States)

    Brandt, Thomas; Huppert, Doreen

    2014-02-01

    The aim of this review is, first, to cover the different aspects of visual height intolerance such as historical descriptions, definition of terms, phenomenology of the condition, neurophysiological control of gaze, stance and locomotion, and therapy, and, second, to identify warranted epidemiological and experimental studies. Vivid descriptions of fear of heights can be found in ancient texts from the Greek, Roman, and Chinese classics. The life-time prevalence of visual height intolerance is as high as 28% in the general population, and about 50% of those who are susceptible report an impact on quality of life. When exposed to heights, visual exploration by eye and head movements is restricted, and the velocity of locomotion is reduced. Therapy for fear of heights is dominated by the behavioral techniques applied during real or virtual reality exposure. Their efficacy might be facilitated by the administration of D-cycloserine or glucocorticoids. Visual height intolerance has a considerable impact on daily life and interpersonal interactions. It is much more frequent than fear of heights, which is defined as an environmental subtype of a specific phobia. There is certainly a continuum stretching from acrophobia to a less-pronounced visual height intolerance, to which the categorical distinction of a specific phobia does not apply.

  14. Assessment and comparison of extreme sea levels and waves during the 2013/2014 storm season in two UK coastal regions

    Directory of Open Access Journals (Sweden)

    M. P. Wadey

    2015-04-01

    Full Text Available The extreme sea levels and waves experienced around the UK's coast during the 2013/2014 winter caused extensive coastal flooding and damage. In such circumstances, coastal managers seek to place such extremes in relation to the anticipated standards of flood protection, and the long-term recovery of the natural system. In this context, return periods are often used as a form of guidance. We therefore provide these levels for the winter storms, as well as discussing their application to the given data sets and case studies (two UK case study sites: Sefton, northwest England; and Suffolk, east England. We use tide gauge records and wave buoy data to compare the 2013/2014 storms with return periods from a national dataset, and also generate joint probabilities of sea level and waves, incorporating the recent events. The UK was hit at a national scale by the 2013/2014 storms, although the return periods differ with location. We also note that the 2013/2014 high water and waves were extreme due to the number of events, as well as the extremity of the 5 December 2013 "Xaver" storm, which had a very high return period at both case study sites. Our return period analysis shows that the national scale impact of this event is due to its coincidence with spring high tide at multiple locations as the tide and storm propagated across the continental shelf. Given that this event is such an outlier in the joint probability analyses of these observed data sets, and that the season saw several events in close succession, coastal defences appear to have provided a good level of protection. This type of assessment should be recorded alongside details of defence performance and upgrade, with other variables (e.g. river levels at estuarine locations included and appropriate offsetting for linear trends (e.g. mean sea level rise so that the storm-driven component of coastal flood events can be determined. Local offsetting of the mean trends in sea level allows long

  15. Sea-cliff erosion as a function of beach changes and extreme wave runup during the 1997-1998 El Nino

    Science.gov (United States)

    Sallenger, A.H.; Krabill, W.; Brock, J.; Swift, R.; Manizade, S.; Stockdon, H.

    2002-01-01

    Over time scales of hundreds to thousands of years, the net longshore sand transport direction along the central California coast has been driven to the south by North Pacific winter swell. In contrast, during the El Nin??o winter of 1997-1998, comparisons of before and after airborne lidar surveys showed sand was transported from south to north and accumulated on the south sides of resistant headlands bordering pocket beaches. This resulted in significant beach erosion at the south ends of pocket beaches and deposition in the north ends. Coincident with the south-to-north redistribution of sand, shoreline morphology became prominently cuspate with longshore wavelengths of 400-700 m. The width and elevation of beaches were least where maximum shoreline erosion occurred, preferentially exposing cliffs to wave attack. The resulting erosional hotspots typically were located in the embayments of giant cusps in the southern end of the pocket beaches. The observed magnitude of sea cliff retreat, which reached 14 m, varied with the number of hours that extreme wave runup exceeded certain thresholds representing the protective capacity of the beach during the El Nin??o winter. A threshold representing the width of the beach performed better than a threshold representing the elevation of the beach. The magnitude of cliff erosion can be scaled using a simple model based on the cross-shore distance that extreme wave runup exceeded the pre-winter cliff position. Cliff erosion appears to be a balance between terrestrial mass wasting processes, which tend to decrease the cliff slope, and wave attack, which removes debris and erodes the cliff base increasing the cliff slope. ?? 2002 Elsevier Science B.V. All rights reserved.

  16. Wave Dragon Wave Energy Converters Used as Coastal Protection

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke; Kofoed, Jens Peter

    2011-01-01

    This paper deals with wave energy converters used to reduce the wave height along shorelines. For this study the Wave Dragon wave energy converter is chosen. The wave height reduction from a single device has been evaluated from physical model tests in scale 1:51.8 of the 260 x 150 m, 24 kW/m model...... Spain, to evaluate the potential for reducing wave heights close the shore by means of Wave Dragons....

  17. Influence of Wave State Uncertainties on Probabilistic Reliability Assessments of Wave Energy Devices

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kofoed, Jens Peter; Sørensen, John Dalsgaard

    2013-01-01

    Probabilistic reliability assessments of wave energy devices (WEDs) need to consider, among others, uncertainties related to the wave states, which are often defined by the significant wave height HS and the peak period TP or the mean crossing wave period TZ or the energy period Te. Based...... on the JONSWAP spectrum and white noise filtering, wave elevation time series are generated and uncertainties related to the wave states are estimated. In this paper, uncertainties regarding the time series length used to characterize a certain wave state, uncertainties related to the JONSWAP spectrum parameters...... and the influence on wave state discretization in a scatter diagram are assessed. The estimated uncertainties are then implemented in two generic structural reliability assessments with focus on fatigue and extreme failure modes. The resulting reliability indices are compared with related industries like offshore...

  18. Mars thermospheric scale height: CO Cameron and CO2+ dayglow observations from Mars Express

    Science.gov (United States)

    Stiepen, A.; Gérard, J.-C.; Bougher, S.; Montmessin, F.; Hubert, B.; Bertaux, J.-L.

    2015-01-01

    The CO Cameron (170-270 nm) and CO2+ ultraviolet doublet (298 and 299 nm) emissions have been observed on the Mars dayside with Mars Express Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars (SPICAM) instrument in the limb viewing mode. These ultraviolet emissions ultimately arise from the excitation of the neutral atmosphere by solar extreme ultraviolet radiation. We analyze a wide dataset covering the years 2003-2013 to determine the scale height of the thermosphere and its variability. We show under which conditions the neutral thermospheric temperature is derived from the CO Cameron and CO2+ emission topside scale height of the limb profiles. We show that emission scale heights are highly variable, ranging from 8.4 to 21.8 km and analyze possible differences between CO Cameron and CO2+-derived scale heights. These large variations appear to dominate over the long-term control exerted by the solar flux reaching the top of the atmosphere during the SPICAM observing period when solar minimum to moderate conditions prevailed. Solar heating impacting the topside thermosphere scale height is apparently overwhelmed by other forcing processes (e.g. waves and tides) during this observing period. It also appears that the crustal residual magnetic field does not significantly influence the scale height of the thermosphere. Furthermore, our analysis suggests that local variations in the thermospheric scale height and associated temperature are equal to or larger than seasonal-latitudinal variability.

  19. The relative contribution of waves, tides, and nontidal residuals to extreme total water levels on U.S. West Coast sandy beaches

    Science.gov (United States)

    Serafin, Katherine A.; Ruggiero, Peter; Stockdon, Hilary F.

    2017-01-01

    To better understand how individual processes combine to cause flooding and erosion events, we investigate the relative contribution of tides, waves, and nontidal residuals to extreme total water levels (TWLs) at the shoreline of U.S. West Coast sandy beaches. Extreme TWLs, defined as the observed annual maximum event and the simulated 100 year return level event, peak in Washington, and are on average larger in Washington and Oregon than in California. The relative contribution of wave-induced and still water levels (SWL) to the 100 year TWL event is similar to that of the annual maximum event; however, the contribution of storm surge to the SWL doubles across events. Understanding the regional variability of TWLs will lead to a better understanding of how sea level rise, changes in storminess, and possible changes in the frequency of major El Niños may impact future coastal flooding and erosion along the U.S. West Coast and elsewhere.

  20. Pulse Waves in the Lower Extremities as a Diagnostic Tool of Peripheral Arterial Disease and Predictor of Mortality in Elderly Chinese.

    Science.gov (United States)

    Sheng, Chang-Sheng; Li, Yan; Huang, Qi-Fang; Kang, Yuan-Yuan; Li, Fei-Ka; Wang, Ji-Guang

    2016-03-01

    Patients with peripheral arterial disease may have elongated upstroke time in pulse waves in the lower extremities. We investigated upstroke time as a diagnostic tool of peripheral arterial disease and predictor of mortality in an elderly (≥60 years) Chinese population. We recorded pulse waves at the left and right ankles by pneumoplethysmography and calculated the percentage of upstroke time per cardiac cycle. Diagnostic accuracy was compared with the conventional ankle-brachial index method (n=4055) and computed tomographic angiography (34 lower extremities in 17 subjects). Upstroke time per cardiac cycle at baseline (mean±SD, 16.4%±3.1%) was significantly (Pperipheral arterial disease (upstroke time per cardiac cycle, ≥21.7%) in comparison with computed tomographic angiography. During 5.9 years (median) of follow-up, all-cause and cardiovascular deaths occurred in 366 and 183 subjects, respectively. In adjusted Cox regression analyses, an upstroke time per cardiac cycle ≥21.7% (n=219; 5.4%) significantly (Pperipheral arterial disease and predictor of mortality in the elderly.

  1. [Height vertigo, fear of heights, acrophobia].

    Science.gov (United States)

    Rennert, H

    1990-06-01

    Height vertigo (acrophobia) is a very frequent phenomenon being of interest for its physiological and psychological background, though usually only of limited significance in neuropsychiatry and otology. The different aspects as to its nature and origin are discussed. If acrophobia has developed into a conditioned reaction of avoidance with pressure of suffering, or acrophobia in persons, who have to work at heights, behavior therapeutic measures with systematic desensibilisation, starting from an imaginative training, are indicated.

  2. Height Measurement Algorithm of Meter-wave Radar Network Based on Virtual Plane%基于虚拟平面的米波组网雷达测高算法

    Institute of Scientific and Technical Information of China (English)

    夏添; 沈一鹰; 刘永坦; 陈迪

    2015-01-01

    With development of anti-stealth technology, meter-wave radar comes into sight of scientific community again due to its natural superiority of anti-stealth and anti-radiation missile. But as strongly influenced by multi- path effect in process of detecting target with low elevation angle, meter-wave radar may obtain a measured height with large deviation that unable to meet actual need. However, the development of data fusion technology in radar network finds a solution to this problem. This paper uses data fusion technology of radar network to realize three-dimensional positioning of target only with distance and azimuth information measured by meter-wave radar, so that the problem of height measurement in meter-wave radar can be well solved. In consideration of effect of earth curvature, the proposed height measurement algorithm of meter-wave radar network utilizes geodetic coordinate transformation, coordinate system transformations, and data transformation to unite all radar's data into one reasonable work platform, namely virtual plane. Height measurement is conducted to target on this plane. Azimuth angle information with not high resolution ratio but good data stability is used to determine hunting zone of algorithm so as to improve minimum error method. The target distance information with high resolution ratio is used to obtain final longitude, latitude and altitude estimate of target. Sometimes target distance estimate may be inaccurate as a result of strong reflection on earth surface, according to which a confidence judgment criterion is established to verify availability of positioning. Through the simulation analysis, the proposed algorithm is verified to obtain a good accuracy in height measurement and can be regarded as an effective method in height measurement for radar network.%随着反隐身技术的发展,米波雷达凭借其反隐身、反辐射导弹方面的天然优势,再度进入科学界的视野.但米波雷达在探测低仰角目标

  3. On the design of experiments for the study of extreme field limits in the ultra-relativistic interaction of electromagnetic waves with plasmas

    Science.gov (United States)

    Bulanov, Sergei V.; Esirkepov, Timur Z.; Hayashi, Yukio; Kando, Masaki; Kiriyama, Hiromitsu; Koga, James K.; Kondo, Kiminori; Kotaki, Hideyuki; Pirozhkov, Alexander S.; Bulanov, Stepan S.; Zhidkov, Alexei G.; Chen, Pisin; Neely, David; Kato, Yoshiaki; Narozhny, Nikolay B.; Korn, Georg

    2011-06-01

    The critical electric field of quantum electrodynamics, called also the Schwinger field, is so strong that it produces electron-positron pairs from vacuum, converting the energy of light into matter. Since the dawn of quantum electrodynamics, there has been a dream on how to reach it on Earth. With the rise of laser technology this field has become feasible through the construction of extremely high power lasers or/and with the sophisticated use of nonlinear processes in relativistic plasmas. This is one of the most attractive motivations for extremely high power laser development, i.e. producing matter from vacuum by pure light in fundamental process of quantum electrodynamics in the nonperturbative regime. Recently it has been realized that a laser with intensity well below the Schwinger limit can create an avalanche of electron-positron pairs similar to a discharge before attaining the Schwinger field. It has also been realized that the Schwinger limit can be reached using an appropriate configuration of laser beams. In experiments on the collision of laser light and high intensity electromagnetic pulses generated by relativistic flying mirrors, with electron bunches produced by a conventional accelerator and with laser wake field accelerated electrons the studying of extreme field limits in the nonlinear interaction of electromagnetic waves is proposed. The regimes of dominant radiation reaction, which completely changes the electromagnetic wave-matter interaction, will be revealed. This will result in a new powerful source of high brightness gamma-rays. A possibility of the demonstration of the electronpositron pair creation in vacuum via multi-photon processes can be realized. This will allow modeling under terrestrial laboratory conditions neutron star magnetospheres, cosmological gamma ray bursts and the Leptonic Era of the Universe.

  4. Teleconnection, Regime Shift, and Predictability of Climate Extremes: A Case Study for the Russian Heat Wave and Pakistan Flood in Summer 2010

    Science.gov (United States)

    Lau, W. K.; Reale, O.; Kim, K.

    2011-01-01

    In this talk, we present observational evidence showing that the two major extremes events of the summer of 2010, i.e., the Russian heat wave and the Pakistan flood were physically connected. We find that the Pakistan flood was contributed by a series of unusually heavy rain events over the upper Indus River Basin in July-August. The rainfall regimes shifted from an episodic heavy rain regime in mid-to-late July to a steady heavy rain regime in August. An atmospheric Rossby wave associated with the development of the Russian heat wave was instrumental in spurring the episodic rain events , drawing moisture from the Bay of Bengal and the northern Arabian Sea. The steady rain regime was maintained primarily by monsoon moisture surges from the deep tropics. From experiments with the GEOS-5 forecast system, we assess the predictability of the heavy rain events associated with the Pakistan flood. Preliminary results indicate that there are significantly higher skills in the rainfall forecasts during the episodic heavy rain events in July, compared to the steady rain period in early to mid-August. The change in rainfall predictability may be related to scale interactions between the extratropics and the tropics resulting in a modulation of rainfall predictability by the circulation regimes.

  5. Teleconnection, regime shift, and predictability of climate extremes: A case study for the Russian heat wave and Pakistan flood in summer 2010.

    Science.gov (United States)

    Lau, W. K.; Reale, O.; Kim, K.

    2011-12-01

    In this talk, we present observational evidence showing that the two major extremes events of the summer of 2010, i.e., the Russian heat wave and the Pakistan flood were physically connected. We find that the Pakistan flood was contributed by a series of unusually heavy rain events over the upper Indus River Basin in July-August. The rainfall regimes shifted from an episodic heavy rain regime in mid-to-late July to a steady heavy rain regime in August. An atmospheric Rossby wave associated with the development of the Russian heat wave was instrumental in spurring the episodic rain events , drawing moisture from the Bay of Bengal and the northern Arabian Sea. The steady rain regime was maintained primarily by monsoon moisture surges from the deep tropics. From experiments with the GEOS-5 forecast system, we assess the predictability of the heavy rain events associated with the Pakistan flood. Preliminary results indicate that there are significantly higher skills in the rainfall forecasts during the episodic heavy rain events in July, compared to the steady rain period in early to mid-August. The change in rainfall predictability may be related to scale interactions between the extratropics and the tropics, resulting in a modulation of rainfall predictability by the circulation regimes.

  6. Sea-level rise induced amplification of coastal protection design heights

    Science.gov (United States)

    Arns, Arne; Dangendorf, Sönke; Jensen, Jürgen; Talke, Stefan; Bender, Jens; Pattiaratchi, Charitha

    2017-01-01

    Coastal protection design heights typically consider the superimposed effects of tides, surges, waves, and relative sea-level rise (SLR), neglecting non-linear feedbacks between these forcing factors. Here, we use hydrodynamic modelling and multivariate statistics to show that shallow coastal areas are extremely sensitive to changing non-linear interactions between individual components caused by SLR. As sea-level increases, the depth-limitation of waves relaxes, resulting in waves with larger periods, greater amplitudes, and higher run-up; moreover, depth and frictional changes affect tide, surge, and wave characteristics, altering the relative importance of other risk factors. Consequently, sea-level driven changes in wave characteristics, and to a lesser extent, tides, amplify the resulting design heights by an average of 48–56%, relative to design changes caused by SLR alone. Since many of the world’s most vulnerable coastlines are impacted by depth-limited waves, our results suggest that the overall influence of SLR may be greatly underestimated in many regions.

  7. Wave Dragon Wave Energy Converters Used as Coastal Protection

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke; Kofoed, Jens Peter

    2011-01-01

    This paper deals with wave energy converters used to reduce the wave height along shorelines. For this study the Wave Dragon wave energy converter is chosen. The wave height reduction from a single device has been evaluated from physical model tests in scale 1:51.8 of the 260 x 150 m, 24 kW/m model...

  8. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many t...

  9. Measurement and Analysis of Extreme Wave and Ice Actions in the Great Lakes for Offshore Wind Platform Design

    Energy Technology Data Exchange (ETDEWEB)

    England, Tony [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; van Nieuwstadt, Lin [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; De Roo, Roger [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; Karr, Dale [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; Lozenge, David [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; Meadows, Guy [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering

    2016-05-30

    This project, funded by the Department of Energy as DE-EE0005376, successfully measured wind-driven lake ice forces on an offshore structure in Lake Superior through one of the coldest winters in recent history. While offshore regions of the Great Lakes offer promising opportunities for harvesting wind energy, these massive bodies of freshwater also offer extreme and unique challenges. Among these challenges is the need to anticipate forces exerted on offshore structures by lake ice. The parameters of interest include the frequency, extent, and movement of lake ice, parameters that are routinely monitored via satellite, and ice thickness, a parameter that has been monitored at discrete locations over many years and is routinely modeled. Essential relationships for these data to be of use in the design of offshore structures and the primary objective of this project are measurements of maximum forces that lake ice of known thicknesses might exert on an offshore structure.

  10. 极端波浪与海洋结构物的强非线性作用研究综述%A review on the nonlinear interactions between extreme waves and marine structures

    Institute of Scientific and Technical Information of China (English)

    邓燕飞; 杨建民; 肖龙飞; 李欣

    2016-01-01

    鉴于极端波浪的极大破坏力,其与海洋结构物的强非线性作用研究正日益受到重视。为了评估极端波浪可能带来的严重破坏,有必要对极端波浪作用下海洋结构物的波浪爬升与抨击、强非线性波浪力、结构载荷与运动响应等问题开展深入研究。国内外许多学者采用数值计算、模型实验及小波分析等手段对这些问题开展了探索研究,获得了一些有益的研究结论。该文对极端波浪与海洋结构物相互作用的研究现状和现有结论作了综述,可为进一步开展深入研究提供有益参考。%Considering the potential threats due to extreme waves, interactions between extreme waves and marine structures have been receiving more and more attentions. In order to assess the possible damage in-duced by extreme waves, in-depth investigations on the wave run-ups, slamming, nonlinear wave forces, motion responses and structural loadings due to extreme waves are required. For these issues, a great many studies based on numerical simulations, model tests or wavelet analyses were conducted and some mean-ingful conclusions were achieved. This paper presents a state-of-art review on the nonlinear interactions be-tween extreme waves and marine structures.

  11. Venous Ultrasound (Extremities)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound - Venous (Extremities) Venous ultrasound uses sound waves to ... limitations of Venous Ultrasound Imaging? What is Venous Ultrasound Imaging? Ultrasound is safe and painless, and produces ...

  12. The Weather of the Future: Heat Waves, Extreme Storms, and Other Scenes from a Climate-Changed Planet

    Science.gov (United States)

    Cullen, H. M.

    2010-12-01

    In The Weather of the Future, Dr. Heidi Cullen puts a vivid face on climate change, offering a new way of seeing this phenomenon not just as an event set to happen in the distant future but as something happening right now in our own backyards. Arguing that we must connect the weather of today with the climate change of tomorrow, Cullen combines the latest research from scientists on the ground with state-of-the-art climate model projections to create climate-change scenarios for seven of the most at-risk locations around the world. From the Central Valley of California, where coming droughts will jeopardize the entire state’s water supply, to Greenland, where warmer temperatures will give access to mineral wealth buried beneath ice sheets for millennia, Cullen illustrates how, if left unabated, climate change will transform every corner of the world by midcentury. What emerges is a mosaic of changing weather patterns that collectively spell out the range of risks posed by global warming—whether it’s New York City, whose infrastructure is extremely vulnerable even to a relatively weak Category 3 hurricane or to Bangladesh, a country so low-lying that millions of people could become climate refugees thanks to rising sea levels. The Weather of the Future makes climate change local, showing how no two regions of the country or the world will be affected in quite the same way and demonstrating that melting ice is just the beginning.

  13. Development of large Area Covering Height Model

    Science.gov (United States)

    Jacobsen, K.

    2014-04-01

    bathymetric height information is an analysis of the wave structure in optical and SAR-images. An overview about the absolute and relative accuracy, the consistency, error distribution and other characteristics as influence of terrain inclination and aspects is given. Partially by post processing the height models can or have to be improved.

  14. Capturing rogue waves by multi-point statistics

    CERN Document Server

    Hadjihosseini, Ali; Hoffmann, Norbert P; Peinke, Joachim

    2015-01-01

    As an example for complex systems with extreme events we investigate ocean wave states exhibiting rogue waves. We present a statistical method of data analysis based on multi-point statistics which for the first time allows grasping extreme rogue wave events in a statistically highly satisfactory manner. The key to the success of the approach is mapping the complexity of multi-point data onto the statistics of hierarchically ordered height increments for different time scales for which we can show that a stochastic cascade process with Markov properties is governed by a Fokker-Planck equation. Conditional probabilities as well as the Fokker-Planck equation itself can be estimated directly from the available observational data. With this stochastic description surrogate data sets can in turn be generated allowing to work out arbitrary statistical features of the complex sea state in general and extreme rogue wave events in particular. The results also open up new perspectives for forecasting the occurrence pro...

  15. Wave climatology of Lake Erie based on an unstructured-grid wave model

    Science.gov (United States)

    Niu, Qianru; Xia, Meng

    2016-10-01

    Hindcast of wave dynamics in Lake Erie during 2002 to 2012 was conducted using a state-of-art finite-volume coastal ocean surface wave model (FVCOM-SWAVE). After model calibration, the surface gravity wave dynamics were examined from the aspects of wave climate and seasonality, inter-basin wave interactions, as well as its potential susceptibility to regional climate change. Compared to the Central and Eastern Basins, the Western Basin has relatively gentle wave climate. The Western Basin and the nearshore areas are most susceptible to the wave-induced bottom orbital oscillations on the seasonal mean scale, and the offshore Central Basin is sensitive to them as well during episodic events. Profound seasonality was found in both mean and extreme wave dynamics during ice-free cycles. Mean significant wave height (SWH) is highest during fall with more occurrences of extreme events (SWH > 3.1 m) and is lowest during summer, which is controlled by wind speed and direction collectively. Besides, swells generated in the Central and Eastern Basins could interact with each other under various wind directions, whereas wave generated in the Central Basin could hardly propagate into the Western Basin. In addition, the regression analysis of surrounding meteorological stations indicates increasing SWH in the Western Basin and decreasing SWH in the Eastern Basin.

  16. Potential predecessors of the 2004 Indian Ocean Tsunami — Sedimentary evidence of extreme wave events at Ban Bang Sak, SW Thailand

    Science.gov (United States)

    Brill, D.; Brückner, H.; Jankaew, K.; Kelletat, D.; Scheffers, A.; Scheffers, S.

    2011-08-01

    Where historical records are short and/or fragmentary, geological evidence is an important tool to reconstruct the recurrence rate of extreme wave events (tsunamis and/or storms). This is particularly true for those coastal zones around the Indian Ocean, where predecessors of similar magnitude as the 2004 Indian Ocean Tsunami (IOT) have not been reported by written sources. In this context, the sedimentary record of the Holocene coastal plain of Ban Bang Sak (Phang-nga province, Thailand) provides evidence of multiple prehistoric coastal flooding events in the form of allochthonous sand beds, which were radiocarbon dated to 700-500, 1350-1180, and younger than 2000 cal BP. The layers were assigned to high-energy events of marine origin, which could be either tsunamis or tropical storms, by means of granulometry, geochemistry, vertical structure, and macrofossil content. Although no landfall of a strong storm has occurred in the last 150 years of meteorological data recording, cyclones cannot be ruled out for the last centuries and millennia. However, discrimination between tsunami and storm origin was mainly based on the comparison of the palaeoevent beds with the local deposit of the IOT, which revealed similar characteristics in regard to spatial extend and sediment properties. Furthermore, the youngest palaeoevent correlates with contemporaneous deposits from Thailand and more distant coasts. Hence, we relate it to a basin wide tsunami which took place 700-500 years ago. For the sediments of older extreme events, deposited between 2000 and 1180 cal BP, we found no unambiguous counterparts at other sites; nevertheless, at least for now, they are treated as tsunami candidates.

  17. Geomorphological record of extreme wave events during Roman times in the Guadalquivir estuary (Gulf of Cadiz, SW Spain): An archaeological and paleogeographical approach

    Science.gov (United States)

    Rodríguez-Ramírez, Antonio; Villarías-Robles, Juan J. R.; Pérez-Asensio, José N.; Santos, Ana; Morales, Juan Antonio; Celestino-Pérez, Sebastián; León, Ángel; Santos-Arévalo, Francisco Javier

    2016-05-01

    Analysis of the geological record has made it possible to delimit for the Guadalquivir estuary the traces of extreme wave events (EWEs) during the Roman period in the Iberian Peninsula (218 BCE to 476 CE). The largest event occurred in the 2nd-3rd century CE. It generated clearly visible erosive effects in the coastal barriers, including washover fans and erosional scarps. In the inner estuary, however, the effects were minor: crevasse splays that broke levees and cheniers, as well as a residual sedimentary lag. The significant development of the spits protected the inner estuary from the marine incursion, which only caused a water level rise with low-regime waves. Correlation of the geomorphological and sedimentary marks left by this event with the archaeological and geological evidence of other events recognized elsewhere in the Gulf of Cadiz effectively argues for a tsunami as to the nature of the 2nd-3rd century CE event. Yet this and the other identified EWEs in the Guadalquivir estuary during the pre-Roman and the Roman period all fit a model of paleogeographic evolution dominated by processes of coastal progradation and estuarine infilling. Radiocarbon dating, geomorphological analysis, and historical references fail to warrant the so-called '218-209 BCE' Atlantic tsunami, as hypothesized in the received scientific literature. In pre-Roman and Roman times, human occupation at the mouth of the Guadalquivir River was strongly influenced by various geodynamic processes, the location of the settlements being contingent upon dependable, fast communication with the sea and, above all, upon adequate protection from EWEs, on the leeward side of spits. Progressive progradation of these coastal barriers combined with the gradual infilling of the estuary to make navigation to open sea increasingly difficult and, eventually, to result in the abandonment of settlements.

  18. Rogue waves in 2006-2011

    Science.gov (United States)

    Nikolkina, I.; Didenkulova, I.

    2012-04-01

    Nowadays rogue waves are frequently registered all over the world by various instrumental measurements (range finders installed on offshore platforms or deployed buoys, SAR image processing, etc.). They are confirmed to exist in both deep and shallow areas of the World Ocean and even at the coast. Usually coastal rogue events result in a short-time sudden flooding of the coast, or strong impact upon the steep bank or coastal structures. The relevant descriptions, although at times suffering from too emotional character, are still very important as they considerably broaden the understanding of possible rogue wave occurrence. Although there exist hundreds of instrumental freak wave records, the pool of existing data is still insufficient to build reliable statistics and to give a definite answer concerning the nature of rogue waves. Therefore, it is important further to collect and to analyse all existing data of rogue wave events. It can bring us to new ideas of its nature and mechanisms of formation. In this study the evidence of rogue wave existence all over the world during last years has been collected based mainly on mass media sources. The waves occurred not only in deep and shallow zones of the World Ocean, but also at the coast. From the total number of 131 events reported in 2006-2010, 78 were identified as evidence of rogue waves (which are expected to be at least twice larger than the significant wave height). The background significant wave height was estimated from the satellite wave data. The rogue waves at the coast, where the significant wave height is unknown or meaningless, were selected based on their unexpectedness and hazardous character. In addition, the information on wind speed has been provided when available. The annual and seasonal statistics of rogue waves in each group and overall statistics of rogue wave occurrence has been discussed. The geography of freak wave events has been analyzed. The occurrence of multiple extreme waves (two

  19. The impact of mass segregation and star-formation on the rates of gravitational-wave sources from extreme mass ratio inspirals

    CERN Document Server

    Aharon, Danor

    2016-01-01

    Compact stellar objects inspiralling into massive black holes (MBHs) in galactic nuclei are some of the most promising gravitational wave (GWs) sources for next generation GW-detectors. The rates of such extreme mass ratio inspirals (EMRIs) depend on the dynamics and distribution of compact objects around the MBH. Here we study the impact of mass-segregation processes on EMRI rates. In particular, we provide the expected mass function of EMRIs, given an initial mass function of stellar BHs (SBHs), and relate it to the mass-dependent detection rate of EMRIs. We then consider the role of star formation on the distribution of compact objects and its implication on EMRI rates. We find that the existence of a wide spectrum of SBH masses lead to the overall increase of EMRI rates, and to high rates of the EMRIs from the most-massive SBHs. However, it also leads to a relative quenching of EMRI rates from lower-mass SBHs, and together produces a steep dependence of the EMRI mass function on the highest-mass SBHs. Sta...

  20. Impact of the second order self-forces on the dephasing of the gravitational waves from quasi-circular extreme mass-ratio inspirals

    CERN Document Server

    Isoyama, Soichiro; Sago, Norichika; Tagoshi, Hideyuki; Tanaka, Takahiro

    2012-01-01

    The accurate calculation of long-term phase evolution of gravitational wave (GW) forms from extreme (intermediate) mass ratio inspirals (E(I)MRIs) is an inevitable step to extract information from this system. Achieving this goal, it is believed that we need to understand the gravitational self-forces. However, it is not quntatively demonstrated that the second order self-forces are necessary for this purpose. In this paper we revisit the problem to estimate the order of magnitude of the dephasing caused by the second order self-forces on a small body in a quasi-circular orbit around a Kerr black hole, based on the knowledge of the post-Newtonian (PN) approximation and invoking the energy balance argument. In particular, we focus on the averaged dissipative part of the self-force, since it gives the leading order contribution among the various components of them. To avoid the possibility that the energy flux of GWs becomes negative, we propose a new simple resummation called exponential resummation, which ass...

  1. Rogue waves in a water tank: Experiments and modeling

    Science.gov (United States)

    Lechuga, Antonio

    2013-04-01

    Recently many rogue waves have been reported as the main cause of ship incidents on the sea. One of the main characteristics of rogue waves is its elusiveness: they present unexpectedly and disappear in the same wave. Some authors (Zakharov and al.2010) are attempting to find the probability of their appearances apart from studyingthe mechanism of the formation. As an effort on this topic we tried the generation of rogue waves in a water wave tank using a symmetric spectrum(Akhmediev et al. 2011) as input on the wave maker. The produced waves were clearly rogue waves with a rate (maximum wave height/ Significant wave height) of 2.33 and a kurtosis of 4.77 (Janssen 2003, Onorato 2006). These results were already presented (Lechuga 2012). Similar waves (in pattern aspect, but without being extreme waves) were described as crossing waves in a water tank(Shemer and Lichter1988). To go on further the next step has been to apply a theoretical model to the envelope of these waves. After some considerations the best model has been an analogue of the Ginzburg-Landau equation. This apparently amazing result is easily explained: We know that the Ginzburg-Landau model is related to some regular structures on the surface of a liquid and also in plasmas, electric and magnetic fields and other media. Another important characteristic of the model is that their solutions are invariants with respectto the translation group. The main aim of this presentation is to extract conclusions of the model and the comparison with the measured waves in the water tank.The nonlinear structure of waves and their regularity make suitable the use of the Ginzburg-Landau model to the envelope of generated waves in the tank,so giving us a powerful tool to cope with the results of our experiment.

  2. The wave climate of the Northeast Atlantic over the period 1955-1994: the WASA wave hindcast

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, H.; Rosenthal, W.; Stawarz, M. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Gewaesserphysik; Carretero, J.C.; Gomez, M.; Lozano, I.; Serrano, O. [Programa de Clima Maritimo (Puertos del Estado), Madrid (Spain); Reistad, M. [Det Norske Meteorologiske Inst., Bergen (Norway)

    1997-12-31

    The European project ``waves and storms in the North Atlantic`` (WASA) has been set up to prove, or to disprove, hypotheses of a worsening storm and wave climate in the Northeast Atlantic and adjacent seas in the present century. A major obstacle for assessing changes in storm and wave conditions are inhomogeneities in the observational records, both in the local observations and in the analysed products, which usually produce an artificial increase of extreme winds and waves. Therefore, changes in the wave climate were assessed with a state-of-the-art wave model using wind analyses. Within the scope of the WASA project, a 40 year reconstruction (1955-1994) of the wave climate in the North Atlantic was completed using the WAM wave model. The input wind fields were assumed to be reasonably homogeneous with time in the area south of 70 N and east of 20 W, and it was expected that the hindcast wave data would reliably describe the space-time evolution of wave conditions in this area. The results of the hindcast experiment are presented in this article. The main conclusion was that the wave climate in most of the Northeast Atlantic and in the North Sea has undergone significant variations on time scales of decades. Part of variability was found to be related to the North Atlantic oscillation. As a general result we noted an increase of the maximum annual significant wave height over the last 40 years of about 5 to 10 cm/year for large parts of the Northeast Atlantic, north of the North Sea. There was also a slight increase of probabilities of high waves derived from conventional extreme value statistics in northwest approaches to the North Sea. Similar trends of the extreme waves were found in a scenario of future wave climate at a time of doubled C0{sub 2} concentration in the atmosphere. (orig.) 28 refs.

  3. Multiscale climate emulator of multimodal wave spectra: MUSCLE-spectra

    Science.gov (United States)

    Rueda, Ana; Hegermiller, Christie A.; Antolinez, Jose A. A.; Camus, Paula; Vitousek, Sean; Ruggiero, Peter; Barnard, Patrick L.; Erikson, Li H.; Tomás, Antonio; Mendez, Fernando J.

    2017-02-01

    Characterization of multimodal directional wave spectra is important for many offshore and coastal applications, such as marine forecasting, coastal hazard assessment, and design of offshore wave energy farms and coastal structures. However, the multivariate and multiscale nature of wave climate variability makes this complex problem tractable using computationally expensive numerical models. So far, the skill of statistical-downscaling model-based parametric (unimodal) wave conditions is limited in large ocean basins such as the Pacific. The recent availability of long-term directional spectral data from buoys and wave hindcast models allows for development of stochastic models that include multimodal sea-state parameters. This work introduces a statistical downscaling framework based on weather types to predict multimodal wave spectra (e.g., significant wave height, mean wave period, and mean wave direction from different storm systems, including sea and swells) from large-scale atmospheric pressure fields. For each weather type, variables of interest are modeled using the categorical distribution for the sea-state type, the Generalized Extreme Value (GEV) distribution for wave height and wave period, a multivariate Gaussian copula for the interdependence between variables, and a Markov chain model for the chronology of daily weather types. We apply the model to the southern California coast, where local seas and swells from both the Northern and Southern Hemispheres contribute to the multimodal wave spectrum. This work allows attribution of particular extreme multimodal wave events to specific atmospheric conditions, expanding knowledge of time-dependent, climate-driven offshore and coastal sea-state conditions that have a significant influence on local nearshore processes, coastal morphology, and flood hazards.

  4. Freak wave: prediction and its generation from phase coherence

    NARCIS (Netherlands)

    Latifah, Arnida Laitalul

    2016-01-01

    The processes that lead to the appearance of an extreme wave are not unique: one extreme wave may occur due to different mechanisms than another extreme wave. This gives challenges in the study of extreme waves, which are also called ’freak’ waves, or ’rogue’ waves when they satisfy certain conditio

  5. 极端环境条件下TLP平台的应力校核%Stress verification of a TLP under extreme wave environment

    Institute of Scientific and Technical Information of China (English)

    闫发锁; 张大刚; 孙丽萍; 戴仰山

    2009-01-01

    计算校核了某TLP平台垂向肘板在极端环境条件下的应力响应.该垂向肘板为TLP立柱与张力支撑系统(TSS)间的连接件,是TLP平台强度评估的关键部位.根据通用的业界标准,平台的环境载荷计算采用三维线性理论,结构分析使用有限元方法.应力数值计算与处理与实测应变片的位置和方向完全一致.平台在位监测的数据使用FFT技术进行了处理,得到了不同时段统计下各浪向的应力谱密度(RAO).数值计算与平台在位实测对比表明,数值模拟的应力谱密度与实测数据吻合较好,业界的分析方法可以在极端条件下对TLP的关键部位进行有效的强度分析.%Stress response of a tension leg platform (TLP) in extreme environments was investigated in this paper. A location on one of the gussets was selected as the object point, where directional stresses were numerically simulated and also experimentally verified by a strain gage. Environmental loading and the platform.s structural strength were analyzed in accordance with industrial standards, utilizing linear wave theory and the finite element method (FEM). The fast Fourier transform technique was used to calculate the stress response amplitude operators (RAO) from the records of measurements. A comparison was performed between the stress RAO of the numerical simulation and that of the actual measurements. The results indicated that the stress RAO of the numerical simulation fitted well with measured data at specified wave headings with different periods.

  6. On Wuthering Heights

    Institute of Scientific and Technical Information of China (English)

    马春玲

    2001-01-01

    本文剖析了小说主人公的悲惨命运及时代特征%Through the story of Wuthering Heights,the article analyzes the tragic fate of Heathcliff and the characteristic of the 19th century England.

  7. Narrators in Wuthering Heights

    Institute of Scientific and Technical Information of China (English)

    刘俊红

    2009-01-01

    Wuthering Heights is Emily Bront e's only novel. The narrative is non-linear, involving several flashbacks an dtwo primary narrators. Emily Bronte has adopted the device of introducing two narrators--Mr. Lockwood and Ellen "Nel-ly" Dean so as to achieve certain purpose.

  8. WaveNet

    Science.gov (United States)

    2015-10-30

    generates wave and wind roses and histograms of directional wave data required to define the wave climate for Corps projects. Five published technical...on the CIRP wiki: http://cirpwiki.info/wiki/Main_Page Application of Products Projected Benefits Documentation Points of Contact CIRP Website Figure 2. Display of time series of wave height ( blue ) and wind speed (red)

  9. Estimation of Extreme Marine Hydrodynamic Variables in Western Laizhou Bay

    Institute of Scientific and Technical Information of China (English)

    DAI Yanchen; QIAO Lulu; XU Jishang; ZHOU Chunyan; DING Dong; BI Wei

    2015-01-01

    Laizhou Bay and its adjacent waters are of great importance to China's marine oil and gas development. It is therefore crucial to estimate return-period values of marine environmental variables in this region to ensure the safety and success of maritime engineering and maritime exploration. In this study, we used numerical simulations to estimate extreme wave height, sea current velocity and sea-level height in western Laizhou Bay. The results show that the sea-level rise starts at the mouth of the bay, increases toward west/southwest, and reaches its maximum in the deepest basin of the bay. The 100-year return-period values of sea level rise can reach 3.4–4.0m in the western bay. The elevation of the western part of the Qingdong Oil Field would remain above the sea surface during extreme low sea level, while the rest of the oil field would be 1.6–2.4m below the sea surface. The return-period value of wave height is strongly affected by water depth; in fact, its spatial distribution is similar to the isobath's. The 100-year return-period values of effective wave height can be 6m or higher in the central bay and be more than 1 m in the shallow water near shore. The 100-year return-period values of current velocity is about 1.2–1.8ms-1 in the Qingdong Oil Field. These results provide scientific basis for ensuring construction safety and reducing construction cost.

  10. Characteristics of monsoon waves off Uran, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Nayak, B.U.; Chandramohan, P.; Mandal, S.

    's and the spectral methods for determining various wave parameters. Monsoon wave climate was stronger with the occurrence of the highest significant wave height of 2.45 m and the corresponding maximum wave height of 3.9 m in July. Significant wave height varied from...

  11. GENERATION OF EXTREMELY LOW FREQUENCY WAVES BY MODULATED HEATING OF POLAR IONOSPHERIC F REGION%极区电离层F区加热激发极低频波研究

    Institute of Scientific and Technical Information of China (English)

    徐彤; 徐彬; 吴健; 胡艳莉; 许正文

    2014-01-01

    Polar ionospheric heaters operated by HARRP and EISCAT have generated extremely low frequency waves by modulating the auroral electrojet at D and E region altitudes .However , the auroral electrojet often varies over time and is not always present .Alternatively, modulated F-region HF heating can generate ionospheric diamagnetic cur-rent, and the periodic modulation results in a magnetic moment that radiates extremely low frequency waves .Based on a one-dimensional time physical model of polar ionospheric heating and a full-wave model , we analyzed the fea-tures of extremely low frequency waves over Tromsø(69.59°N, 19.23°E).The results showed that extremely low frequency waves on the ground are different from lower ionospheric modulation , i.e., radiation of polar electrojet antenna.Furthermore, effective radiated power (ERP), modulated frequency, and ionospheric background, have significant influence on the generated extremely low frequency wave .%“极区电急流天线”辐射依赖于低电离层D/E区背景电急流,而高电离层F区极低频调制加热,可产生抗磁性电流,形成极低频波辐射源。利用电离层F区一维时变加热数值模型,采用全波解算法研究高纬Tromsø(69.59°N,19.23°E)地区电离层F区极低频调制加热。模拟结果表明,极区高电离层激发的极低频波与极区低电离层激发的结果不同。加热泵波的有效辐射功率( effective radiated power ,ERP)、调制频率及电离层背景对极低频波强度有着重要影响。

  12. [Regulation of plant height by gibberellins biosynthesis and signal transduction].

    Science.gov (United States)

    Wei, Lingzhu; Cheng, Jianhui; Li, Lin; Wu, Jiang

    2012-02-01

    Plant height is one of the most important agronomic traits that could affect both crop yield and quality. Among all the hormones, gibberellins are crucial to regulate plant height. Cloning and molecular mechanism research of the plant height genes associated gibberellins have extremely important value for the regulation of crop growth and agricultural production, and have been widely used in rice, wheat and other grain crops breeding. In order to promote utilization of gibberellins in fruit trees, flowers and other horticultural crops breeding, we reviewed the regulation of plant height by gibberellins biosynthesis and signal transduction at the molecular level in this paper.

  13. Childhood height, adult height, and the risk of prostate cancer

    DEFF Research Database (Denmark)

    Bjerregaard, Lise Geisler; Aarestrup, Julie; Gamborg, Michael;

    2016-01-01

    PURPOSE: We previously showed that childhood height is positively associated with prostate cancer risk. It is, however, unknown whether childhood height exerts its effects independently of or through adult height. We investigated whether and to what extent childhood height has a direct effect...... on the risk of prostate cancer apart from adult height. METHODS: We included 5,871 men with height measured at ages 7 and 13 years in the Copenhagen School Health Records Register who also had adult (50-65 years) height measured in the Danish Diet, Cancer and Health study. Prostate cancer status was obtained...... through linkage to the Danish Cancer Registry. Direct and total effects of childhood height on prostate cancer risk were estimated from Cox regressions. RESULTS: From 1996 to 2012, 429 prostate cancers occurred. Child and adult heights were positively and significantly associated with prostate cancer risk...

  14. Three-dimensional freak waves and higher-order wave-wave resonances

    Science.gov (United States)

    Badulin, S. I.; Ivonin, D. V.; Dulov, V. A.

    2012-04-01

    Quite often the freak wave phenomenon is associated with the mechanism of modulational (Benjamin-Feir) instability resulted from resonances of four waves with close directions and scales. This weakly nonlinear model reflects some important features of the phenomenon and is discussing in a great number of studies as initial stage of evolution of essentially nonlinear water waves. Higher-order wave-wave resonances attract incomparably less attention. More complicated mathematics and physics explain this disregard partially only. The true reason is a lack of adequate experimental background for the study of essentially three-dimensional water wave dynamics. We start our study with the classic example of New Year Wave. Two extreme events: the famous wave 26.5 meters and one of smaller 18.5 meters height (formally, not freak) of the same record, are shown to have pronounced features of essentially three-dimensional five-wave resonant interactions. The quasi-spectra approach is used for the data analysis in order to resolve adequately frequencies near the spectral peak fp ≈ 0.057Hz and, thus, to analyze possible modulations of the dominant wave component. In terms of the quasi-spectra the above two anomalous waves show co-existence of the peak harmonic and one at frequency f5w = 3/2fp that corresponds to maximum of five-wave instability of weakly nonlinear waves. No pronounced marks of usually discussed Benjamin-Feir instability are found in the record that is easy to explain: the spectral peak frequency fp corresponds to the non-dimensional depth parameter kD ≈ 0.92 (k - wavenumber, D ≈ 70 meters - depth at the Statoil platform Draupner site) that is well below the shallow water limit of the instability kD = 1.36. A unique data collection of wave records of the Marine Hydrophysical Institute in the Katsiveli platform (Black Sea) has been analyzed in view of the above findings of possible impact of the five-wave instability on freak wave occurrence. The data cover

  15. Detecting Extreme Events in Gridded Climate Data

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandra, Bharathkumar [North Carolina State University (NCSU), Raleigh; Gadiraju, Krishna [North Carolina State University (NCSU), Raleigh; Vatsavai, Raju [North Carolina State University (NCSU), Raleigh; Kaiser, Dale Patrick [ORNL; Karnowski, Thomas Paul [ORNL

    2016-01-01

    Detecting and tracking extreme events in gridded climatological data is a challenging problem on several fronts: algorithms, scalability, and I/O. Successful detection of these events will give climate scientists an alternate view of the behavior of different climatological variables, leading to enhanced scientific understanding of the impacts of events such as heat and cold waves, and on a larger scale, the El Nin o Southern Oscillation. Recent advances in computing power and research in data sciences enabled us to look at this problem with a different perspective from what was previously possible. In this paper we present our computationally efficient algorithms for anomalous cluster detection on climate change big data. We provide results on detection and tracking of surface temperature and geopotential height anomalies, a trend analysis, and a study of relationships between the variables. We also identify the limitations of our approaches, future directions for research and alternate approaches.

  16. Optimization of Truss Height

    Directory of Open Access Journals (Sweden)

    Tomas Ulitinas

    2011-04-01

    Full Text Available The article analyzes the task in truss height and in the optimization of the cross-sections of their elements. Element cross-sections are designed of steel profiles considering requirements for strength, stability and rigidity. A mathematical model is formulated as a nonlinear mathematical programming problem. It is solved as an iterative process, using mathematical software package “MATLAB” routine “fmincon”. The ratio of buckling is corrected in the each iteration. Optimization results are compared with those obtained applying software package “Robot Millennium”.Article in Lithuanian

  17. Typhoon generated surface gravity waves measured by NOMAD-type buoys

    Science.gov (United States)

    Collins, Clarence O., III

    steepness. The largest extreme waves, which are more impressive than the Draupner (aka Newyears) wave in terms of normalized wave height, were found to occur under circumstances which support the theory of modulation instability. It is suggested that swell and wind sea, as generated by complex TCs winds, may merge and/or couple in such a way to produce sea-states which are unstable. The largest extreme wave, which was over 21 m high, appears to have occurred under such circumstances. However, the development of unstable seas, and the possible connection between the occurrence of extreme waves and unstable seas, has yet to be confirmed.

  18. Investigation of Wave Transmission from a Floating Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke

    2012-01-01

    This paper focuses on the calibration of the MIKE21BW model against the measured wave height reduction behind a 24 kW/m Wave Dragon (WD) wave energy converter. A numerical model is used to determine the wave transmission through the floating WD in varying wave conditions. The transmission obtained...

  19. Extreme precipitation event over North China in August 2010: observations, monthly forecasting, and link to intra-seasonal variability of the Silk-Road wave-train across Eurasia

    Science.gov (United States)

    Orsolini, Yvan; Zhang, Ling; Peters, Dieter; Fraedrich, Klaus

    2014-05-01

    Forecast of regional precipitation events at the sub-seasonal timescale remains a big challenge for operational global prediction systems. Over the Far East in summer, climate and precipitation are strongly influenced by the fluctuating western Pacific subtropical high (WPSH) and strong precipitation is often associated with southeasterly low-level wind that brings moist-laden air from the southern China seas. The WPSH variability is partly influenced by quasi-stationary wave-trains propagating eastwards from Europe across Asia along the two westerly jets: the Silk-Road wave-train along the Asian jet at mid-latitudes and, on a more northern route, the polar wave-train along the sub-polar jet. While the Silk-Road wave-train appears as a robust, internal mode of variability in seasonal predictions models, its predictability is very low on the sub-seasonal to seasonal time scale. A case in point is the unusual summer of 2010, when China experienced its worst seasonal flooding for a decade, triggered by unusually prolonged and severe monsoonal rains. In addition that summer was also characterized by record-breaking heat wave over Eastern Europe and Russia as well as catastrophic monsoonal floods in Pakistan 2010. The impact of the latter circulation anomalies on the precipitation further east over China, has been little explored. Here, we examine the role and the actual predictability of the Silk-Road wave-train, and its impact on precipitation over Northeastern China throughout August 2010, using the high-resolution IFS forecast model of ECMWF, realistic initialized and run in an ensemble mode. We demonstrate that the forecast failure with regard to flooding and extreme precipitation over Northeastern China in August 2010 is linked to the failure to represent intra-seasonal variations of the Silk-Road wave-train and the associated intensification of the WPSH.

  20. Projected wave conditions in the Eastern North Pacific under the influence of two CMIP5 climate scenarios

    Science.gov (United States)

    Erikson, Li H.; Hegermiller, Christie; Barnard, Patrick; Ruggiero, Peter; van Ormondt, Martin

    2015-01-01

    Hindcast and 21st century winds, simulated by General Circulation Models (GCMs), were used to drive global- and regional-scale spectral wind-wave generation models in the Pacific Ocean Basin to assess future wave conditions along the margins of the North American west coast and Hawaiian Islands. Three-hourly winds simulated by four separate GCMs were used to generate an ensemble of wave conditions for a recent historical time-period (1976–2005) and projections for the mid and latter parts of the 21st century under two radiative forcing scenarios (RCP 4.5 and RCP 8.5), as defined by the fifth phase of the Coupled Model Inter-comparison Project (CMIP5) experiments. Comparisons of results from historical simulations with wave buoy and ERA-Interim wave reanalysis data indicate acceptable model performance of wave heights, periods, and directions, giving credence to generating projections. Mean and extreme wave heights are projected to decrease along much of the North American west coast. Extreme wave heights are projected to decrease south of ∼50°N and increase to the north, whereas extreme wave periods are projected to mostly increase. Incident wave directions associated with extreme wave heights are projected to rotate clockwise at the eastern end of the Aleutian Islands and counterclockwise offshore of Southern California. Local spatial patterns of the changing wave climate are similar under the RCP 4.5 and RCP 8.5 scenarios, but stronger magnitudes of change are projected under RCP 8.5. Findings of this study are similar to previous work using CMIP3 GCMs that indicates decreasing mean and extreme wave conditions in the Eastern North Pacific, but differ from other studies with respect to magnitude and local patterns of change. This study contributes toward a larger ensemble of global and regional climate projections needed to better assess uncertainty of potential future wave climate change, and provides model boundary conditions for assessing the impacts of

  1. Significant Wave Heights, Periods, and Directions, and Air and Sea Temperature Data from a Directional Waverider Buoy off Diamond Head, Oahu during March-April 2000 (NODC Accession 0000475)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A directional waverider buoy located about one nautical mile south of Diamond Head, Oahu, provided an approximately 10-day time series of wave characteristics and...

  2. WAVE HEIGHT - SIGNIFICANT, WIND GUST and other data from FIXED PLATFORM in the Gray's Reef National Marine Sanctuary, Gulf of Mexico and other waters from 1998-08-01 to 1998-08-31 (NODC Accession 9800157)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wind wave spectra and other data were collected from FIXED PLATFORMS. Data were collected by the National Data Buoy Center (NDBC) from 01 August 1998 to 31 August...

  3. Extraction of Significant Wave Height and Its Accuracy Analysis Based on HY-2 Altimeter Calibration Flight Data%基于HY-2卫星高度计机载校飞数据的有效波高信息提取及初步分析

    Institute of Scientific and Technical Information of China (English)

    李秀仲; 张有广; 孟俊敏

    2012-01-01

    利用HY-2卫星雷达高度计校飞数据,开展了有效波高信息提取及精度比对研究.首先对其进行波形筛选、1 s平均和去噪,然后基于Hayne海面回波模型进行波形拟合,提取出波高均方根并得到有效波高,并与浮标和同轨迹的Jason-1卫星高度计有效波高进行了比较.结果表明,本次校飞其高度计测波精度存在系统偏差,初步分析可能是其数据未经仪器校正等原因导致.%Based on the HY-2 calibration flight data, the significant wave height (SWH) is retrieved and its accuracy is compared with those from buoys and Jason-1 altimeter. For the extraction of the root mean square (RMS) of the wave heights and hence to obtain the SWH, first is to carry out waveform screening, averaging over 1 second and destriping, and then to make waveform fitting according to the Hayne echo model. The significant wave heights thus obtained are compared with those from the buoys and the Jason-1 altimeter which runs along the same track as that of the HY-2 calibration flight. The results indicate that a systematic bias is present for the accuracy of the SWH resulted from the HY-2 altimeter. This bias is mainly due to the absence of instrumental correction.

  4. Extreme Heat

    Science.gov (United States)

    ... Landslides & Debris Flow Nuclear Blast Nuclear Power Plants Power Outages Pandemic Radiological Dispersion Device Severe Weather Snowstorms & Extreme ... Landslides & Debris Flow Nuclear Blast Nuclear Power Plants Power Outages Pandemic Radiological Dispersion Device Severe Weather Snowstorms & Extreme ...

  5. 极限波浪下半潜平台气隙和波浪爬升的统计分析%Statistical analysis of airgap and wave run-up for a semi-submersible platform under extreme waves

    Institute of Scientific and Technical Information of China (English)

    闫发锁; 杨慧; 沈鹏飞; 赵九龙

    2015-01-01

    气隙是半潜式平台设计的关键参数之一。对一座深水半潜式平台在极限海况下的气隙响应进行了模型试验,研究了测点气隙的严重程度和量值的概率分布。通过试验证实,斜浪情况下平台后立柱附近为气隙最严重区域。试验结果与三维势流方法的数值预报的比较表明,测点的气隙极小值总体上低于数值计算值,亦即线性势流方法低估了气隙的严重程度。通过信号的能量谱密度分析,低频成分在气隙响应中占有较大的比例。对气隙测点的时历进行跨零统计和概率分布拟合,结果表明高斯模型能在总体上反映极限海况下气隙量值的分布规律,但在极值点的分布上需要拟合修正。%The airgap is one of the key parameters in the design of semi-submersible platforms.A series of model tests were performed to investigate the airgap responses of a deepwater semisubmersible platform under extreme sea conditions, deriving the severity of airgaps and the probability distribution of the airgap values at 11 locations on the deck.It is proven in the experiment that the severest region of airgap lies in the vicinity of post in the back of the platform under the oblique wave circumstances.The experimental results were compared with the numerical predic-tion by the three-dimensional potential flow method, showing that the minimal values of airgaps at the measure points are generally lower than the numerical calculation results, namely the linear potential flow method underesti-mates the severity of airgaps.The analyses of signals′energy spectrum density proved the low frequency elements account for a considerable proportion in the airgap responses.The cross-zero statistics and probability distribution fitting on the time history of airgap measure points indicate that the Gaussian model can reflect general distribution of airgap values, but the distribution of extremal points needs to be fitted for

  6. Mandelbrot's Extremism

    NARCIS (Netherlands)

    Beirlant, J.; Schoutens, W.; Segers, J.J.J.

    2004-01-01

    In the sixties Mandelbrot already showed that extreme price swings are more likely than some of us think or incorporate in our models.A modern toolbox for analyzing such rare events can be found in the field of extreme value theory.At the core of extreme value theory lies the modelling of maxima

  7. Wave climate of the Adriatic Sea: a future scenario simulation

    Directory of Open Access Journals (Sweden)

    A. Benetazzo

    2012-06-01

    Full Text Available We present a study on expected wind wave severity changes in the Adriatic Sea for the period 2070–2099 and their impact on extremes. To do so, the phase-averaged spectral wave model SWAN is forced using wind fields computed by the high-resolution regional climate model COSMO-CLM, the climate version of the COSMO meteorological model downscaled from a global climate model running under the IPCC-A1B emission scenario. Namely, the adopted wind fields are given with a horizontal resolution of 14 km and 40 vertical levels, and they are prepared by the Italian Aerospace Research Centre (CIRA. Firstly, in order to infer the wave model accuracy in predicting seasonal variability and extreme events, SWAN results are validated against a control simulation, which covers the period 1965–1994. In particular, numerical predictions of the significant wave height Hs are compared against available in-situ data. Further, a statistical analysis is carried out to estimate changes on wave storms and extremes during the simulated periods (control and future scenario simulations. In particular, the generalized Pareto distribution is used to predict changes of storm peak Hs for frequent and rare storms in the Adriatic Sea. Finally, Borgman's theory is applied to estimate the spatial pattern of the expected maximum wave height Hmax during a storm, both for the present climate and that of the future scenario. Results show a future wave climate in the Adriatic Sea milder than the present climate, even though increases of wave severity can occur locally.

  8. Characteristics of Hydraulic Shock Waves in an Inclined Chute Contraction by Using Three Dimensional Numerical Model

    Science.gov (United States)

    Hsiao, Kai-Wen; Hsu, Yu-Chao; Jan, Chyan-Deng; Su, Yu-Wen

    2016-04-01

    The inclined rectangular chute construction is a common structure used in hydraulic engineering for typical reasons such as the increase of bottom slope, the transition from side channel intakes to tunnel spillways, the drainage construction, and the reduction of chute width due to bridges, flood diversion structures or irrigation systems. The converging vertical sidewalls of a chute contraction deflect the supercritical flow to form hydraulic shock waves. Hydraulic shock waves have narrow and locally extreme wavy surfaces, which commonly results in the requirement of higher height of sidewalls. Therefore, predicting the possible height and position of maximum hydraulic shock wave are necessary to design the required height of sidewalls to prevent flow overtopping. In this study, we used a three-dimensional computation fluid dynamics model (i.e., FLOW-3D) to simulate the characteristics of hydraulic shock waves in an inclined chute contraction. For this purpose, the parameters of simulated hydraulic shock wave, such as the shock angle, maximum shock wave height and maximum shock wave position in various conditions are compared with those calculated by the empirical relations obtained from literatures. We showed that the simulated results are extremely close to the experimental results. The numerical results validated the applicability of these empirical relations and extend their applicability to higher approach Froude numbers from 3.51 to 7.27. Furthermore, we also applied the Yuan-Shan-Tsu flood diversion channel under 200-year peak flow condition to FLOW-3D model to simulate the hydraulic shock waves and validate the effect of the installation of a diversion pier in the channel on promoting the stability of flow fluid. The results revealed that a diversion pier installed in the Yuan-Shan-Tsu flood diversion channel is helpful for improving the stability of flow field. In summary, this study demonstrates that FLOW-3D model can be used to simulate the

  9. Forecasting extreme temperature health hazards in Europe

    Science.gov (United States)

    Di Napoli, Claudia; Pappenberger, Florian; Cloke, Hannah L.

    2017-04-01

    Extreme hot temperatures, such as those experienced during a heat wave, represent a dangerous meteorological hazard to human health. Heat disorders such as sunstroke are harmful to people of all ages and responsible for excess mortality in the affected areas. In 2003 more than 50,000 people died in western and southern Europe because of a severe and sustained episode of summer heat [1]. Furthermore, according to the Intergovernmental Panel on Climate Change heat waves are expected to get more frequent in the future thus posing an increasing threat to human lives. Developing appropriate tools for extreme hot temperatures prediction is therefore mandatory to increase public preparedness and mitigate heat-induced impacts. A recent study has shown that forecasts of the Universal Thermal Climate Index (UTCI) provide a valid overview of extreme temperature health hazards on a global scale [2]. UTCI is a parameter related to the temperature of the human body and its regulatory responses to the surrounding atmospheric environment. UTCI is calculated using an advanced thermo-physiological model that includes the human heat budget, physiology and clothing. To forecast UTCI the model uses meteorological inputs, such as 2m air temperature, 2m water vapour pressure and wind velocity at body height derived from 10m wind speed, from NWP models. Here we examine the potential of UTCI as an extreme hot temperature prediction tool for the European area. UTCI forecasts calculated using above-mentioned parameters from ECMWF models are presented. The skill in predicting UTCI for medium lead times is also analysed and discussed for implementation to international health-hazard warning systems. This research is supported by the ANYWHERE project (EnhANcing emergencY management and response to extreme WeatHER and climate Events) which is funded by the European Commission's HORIZON2020 programme. [1] Koppe C. et al., Heat waves: risks and responses. World Health Organization. Health and

  10. Future wave and wind projections for United States and United-States-affiliated Pacific Islands

    Science.gov (United States)

    Storlazzi, Curt D.; Shope, James B.; Erikson, Li H.; Hegermiller, Christine A.; Barnard, Patrick L.

    2015-01-01

    Changes in future wave climates in the tropical Pacific Ocean from global climate change are not well understood. Spatially and temporally varying waves dominate coastal morphology and ecosystem structure of the islands throughout the tropical Pacific. Waves also impact coastal infrastructure, natural and cultural resources, and coastal-related economic activities of the islands. Wave heights, periods, and directions were forecast through the year 2100 using wind parameter outputs from four atmosphere-ocean global climate models from the Coupled Model Inter-Comparison Project, Phase 5, for Representative Concentration Pathways (RCP) scenarios 4.5 and 8.5 that correspond to moderately mitigated and unmitigated greenhouse gas emissions, respectively. Wind fields from the global climate models were used to drive a global WAVEWATCH-III wave model and generate hourly time-series of bulk wave parameters for 25 islands in the mid to western tropical Pacific for the years 1976–2005 (historical), 2026–2045 (mid-century projection), and 2085–2100 (end-of-century projection). Although the results show some spatial heterogeneity, overall the December-February extreme significant wave heights, defined as the mean of the top 5 percent of significant wave height time-series data modeled within a specific period, increase from present to mid-century and then decrease toward the end of the century; June-August extreme wave heights increase throughout the century within the Central region of the study area; and September-November wave heights decrease strongly throughout the 21st century, displaying the largest and most widespread decreases of any season. Peak wave periods increase east of the International Date Line during the December-February and June-August seasons under RCP4.5. Under the RCP8.5 scenario, wave periods decrease west of the International Date Line during December-February but increase in the eastern half of the study area. Otherwise, wave periods decrease

  11. Crossing seas and occurrence of rogue waves

    Science.gov (United States)

    Bitner-Gregersen, Elzbieta; Toffoli, Alessandro

    2017-04-01

    The study is addressing crossing wave systems which may lead to formation of rogue waves. Onorato et al. (2006, 2010) have shown using the Nonlinear Schr?dringer (NLS) equations that the modulational instability and rogue waves can be triggered by a peculiar form of directional sea state, where two identical, crossing, narrow-banded random wave systems interact with each other. Such results have been underpinned by numerical simulations of the Euler equations solved with a Higher Order Spectral Method (HOSM) and experimental observations (Toffoli et al., 2011). They substantiate a dependence of the angle between the mean directions of propagation of the two crossing wave systems, with a maximum rogue wave probability for angles of approximately 40 degrees. Such an unusual sea state of two almost identical wave systems (approximately the same significant wave height and mean frequency) with high steepness and different directions was observed during the accident to the cruise ship Louis Majesty (Cavaleri et al. 2012). Occurrence of wind sea and swell having almost the same spectral period and significant wave height and crossing at the angle 40o region. These sea states have been observed in the North Atlantic as well as in the North and Norwegian Seas but only in low and intermediate wave conditions. They have not been found in a location off coast of Australia and Nigeria. There are some indications that in the future climate we may expect an increase number of occurrence of rogue-prone crossing sea states in some ocean regions An adopted partitioning procedure of a wave spectrum will impact the results. References Bitner-Gregersen, E.M. and Toffoli, A., 2014. Probability of occurrence of rogue sea states and consequences for design of marine structures. Special Issue of Ocean Dynamics, ISSN 1616-7341, 64(10), DOI 10.1007/s10236-014-0753-2. Cavaleri, L., Bertotti, L., Torrisi, L. Bitner-Gregersen, E., Serio, M. and Onorato, M., 2012. Rogue Waves in Crossing Seas

  12. Accurate barrier heights using diffusion Monte Carlo

    CERN Document Server

    Krongchon, Kittithat; Wagner, Lucas K

    2016-01-01

    Fixed node diffusion Monte Carlo (DMC) has been performed on a test set of forward and reverse barrier heights for 19 non-hydrogen-transfer reactions, and the nodal error has been assessed. The DMC results are robust to changes in the nodal surface, as assessed by using different mean-field techniques to generate single determinant wave functions. Using these single determinant nodal surfaces, DMC results in errors of 1.5(5) kcal/mol on barrier heights. Using the large data set of DMC energies, we attempted to find good descriptors of the fixed node error. It does not correlate with a number of descriptors including change in density, but does correlate with the gap between the highest occupied and lowest unoccupied orbital energies in the mean-field calculation.

  13. Dynamical and statistical explanations of observed occurrence rates of rogue waves

    Directory of Open Access Journals (Sweden)

    J. Gemmrich

    2011-05-01

    Full Text Available Extreme surface waves occur in the tail of the probability distribution. Their occurrence rate can be displayed effectively by plotting ln(–ln P, where P is the probability of the wave or crest height exceeding a particular value, against the logarithm of that value. A Weibull distribution of the exceedance probability, as proposed in a standard model, then becomes a straight line. Earlier North Sea data from an oil platform suggest a curved plot, with a higher occurrence rate of extreme wave and crest heights than predicted by the standard model. The curvature is not accounted for by second order corrections, non-stationarity, or Benjamin-Feir instability, though all of these do lead to an increase in the exceedance probability. Simulations for deep water waves suggest that, if the waves are steep, the curvature may be explained by including up to fourth order Stokes corrections. Finally, the use of extreme value theory in fitting exceedance probabilities is shown to be inappropriate, as its application requires that not just N, but also lnN, be large, where N is the number of waves in a data block. This is unlikely to be adequately satisfied.

  14. Evaluation of hydraulic response of the Wave Dragon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The present study investigates the hydraulic response of the wave energy converter Wave Dragon. This is done by performing model tests in a wave tank in the Hydraulics and Coastal Engineering Laboratory at Aalborg University. In the model tests a floating scale model (length scale 1:50) of the Wave Dragon is subjected to irregular long crested irregular and short crested sea conditions corresponding to typical situations under which the Wave Dragon will produce power. Furthermore two situations corresponding to extreme storm conditions are tested. The objective of the study is to determine the wave induced forces in the moorings and in the junction between the reflectors and the reservoir part, and motions of the Wave Dragon situated in different sea conditions. On the background of the performed model tests and evaluation of the investigated concept is given. The floating model of Wave Dragon demonstrated a good behaviour and was able to collect water in all sea conditions. Motions in seas with up to 5 m significant wave height were reasonable. Though, the heave motion and the pitch motion seemed to be rather large. wave Dragon survived tests in very severe sea conditions with significant wave heights between 10 m and 15 m. This was the case for long crested waves and short crested as well. Some problems were seen while adjusting the crest freeboard to the different sea conditions. The maximum force in the instrumented junction between the reflector and the reservoir part was found to be approximately 30 MN (3.000 ton). Maximum forces in the mooring system were found to be 20 MN, 30 MN and 140 MN, respectively, giving stresses in the order of 1.000 MPa to 4.000 MPa in the pre-designed wires. (au)

  15. Dynamic analysis of turret-moored FPSO system in freak wave

    Science.gov (United States)

    Tang, You-gang; Li, Yan; Wang, Bin; Liu, Shu-xiao; Zhu, Long-huan

    2016-07-01

    Freak wave is the common wave which has significant wave height and irregular wave shape, and it is easy to damage offshore structure extremely. The FPSOs (Floating Production Storage and Offloading) suffer from the environment loads, including the freak wave. The freak waves were generated based on the improved phase modulation model, and the coupling model of FPSO-SPM (Single Point Mooring) was established by considering internal-turret FPSO and its mooring system. The dynamic response characteristics of both FPSO and SPM affected by the freak wave were analyzed in the time domain. According to the results, the freak waves generated by original phase modulation model mainly affect the 2nd-order wave loads. However, the freak waves which are generated by random frequencies phase modulation model affect both 1st-order and 2nd-order wave loads on FPSO. What is more, compared with the irregular waves, the dynamic responses of mooring system are larger in the freak waves, but its amplitude lags behind the peak of the freak wave.

  16. Wave energy resource in the Estaca de Bares area (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, G.; Carballo, R. [Univ. of Santiago de Compostela, EPS, Hydraulic Eng., Campus Univ. s/n, 27002 Lugo (Spain)

    2010-07-15

    The area around Cape Estaca de Bares (the northernmost point of Iberia) presents a great potential for wave energy exploitation owing to its prominent position, with average deepwater wave power values exceeding 40 kW/m. The newly available SIMAR-44 dataset, composed of hindcast data spanning 44 years (1958-2001), is used alongside wave buoy data and numerical modelling to assess this substantial energy resource in detail. Most of the energy is provided by waves from the IV quadrant, generated by the prevailing westerlies blowing over the long Atlantic fetch. Combined scatter and energy diagrams are used to characterise the wave energy available in an average year in terms of the sea states involved. The lion's share is shown to correspond to significant wave heights between 2 and 5 m and energy periods between 11 and 14 s. The nearshore energy patterns are then examined using a coastal wave model (SWAN) with reference to four situations: average wave energy, growing wave energy (at the approach of a storm), extreme wave energy (at the peak of the storm) and decaying wave energy (as the storm recedes). The irregular bathymetry is found to produce local concentrations of wave energy in the nearshore between Cape Prior and Cape Ortegal and in front of Cape Estaca de Bares, with similar patterns (but varying wave power) in the four cases. These nearshore areas of enhanced wave energy are of the highest interest as prospective sites for a wave energy operation. The largest of them is directly in the lee of a large underwater mount west of Cape Ortegal. In sum, the Estaca de Bares area emerges as one of the most promising for wave energy exploitation in Europe. (author)

  17. Wave Data Analysis

    DEFF Research Database (Denmark)

    Alikhani, Amir; Frigaard, Peter; Burcharth, Hans F.

    1998-01-01

    The data collected over the course of the experiment must be analysed and converted into a form suitable for its intended use. Type of analyses range from simple to sophisticated. Depending on the particular experiment and the needs of the researcher. In this study three main part of irregular wave...... data analyses are presented e.g. Time Domain (Statistical) Analyses, Frequency Domain (Spectral) Analyses and Wave Reflection Analyses. Random wave profile and definitions of representative waves, distributions of individual wave height and wave periods and spectra of sea waves are presented....

  18. Random walks across the sea: the origin of rogue waves?

    CERN Document Server

    Birkholz, Simon; Veselić, Ivan; Demircan, Ayhan; Steinmeyer, Günter

    2015-01-01

    Ocean rogue waves are large and suddenly appearing surface gravity waves, which may cause severe damage to ships and other maritime structures. Despite years of research, the exact origin of rogue waves is still disputed. Linear interference of waves with random phase has often been cited as one possible explanation, but apparently does not satisfactorily explain the probability of extreme events in the ocean. Other explanations therefore suggested a decisive role of a nonlinearity in the system. Here we show that linear interference of a finite and variable number of waves may very well explain the heavy tail in the wave height distribution. Our model can explain all prototypical ocean rogue waves reported so far, including the "three sisters" as well as rogue holes. We further suggest nonlinear time series analysis for estimation of the characteristic number of interfering waves for a given sea state. If ocean dynamics is ruled by interference of less than ten waves, rogue waves cannot appear as a matter of...

  19. Scale heights of 84 northern spiral galaxies

    Institute of Scientific and Technical Information of China (English)

    马骏; 彭秋和

    1997-01-01

    Using the method proposed by Peng (1988) on the basis of density waves theory and the solution of three-dimensional Poisson s equation for a logarithmic disturbance of density,and analyzing the spiral patterns,the scale heights of 84 northern spiral galaxies,whose images are taken from the Digitized Sky Survey at Xinglong Observational Station of Beijing Observatory,are measured.The spiral arms of all these galaxies have been fitted on their photographs with some logarithmic spiral curves for getting their correct inclinations.

  20. Nonlinear surface waves over topography

    NARCIS (Netherlands)

    Janssen, T.T.

    2006-01-01

    As ocean surface waves radiate into shallow coastal areas and onto beaches, their lengths shorten, wave heights increase, and the wave shape transforms from nearsinusoidal to the characteristic saw-tooth shapes at the onset of breaking; in the ensuing breaking process the wave energy is cascaded to

  1. Freak waves off Ratnagiri, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Johnson, G.; SanilKumar, V.; Nair, T.M.B.; Singh, J.; Nherakkol, A.

    December 2011 using directional wave rider buoy at 13 m water depth is used to study the freak waves Abnormality Index (AI), the ratio between maximum wave height and significant wave height, is used to identify and study the variation of the freak wave ev...

  2. Making waves: visualizing fluid flows

    NARCIS (Netherlands)

    Zweers, Wout; Zwart, Valerie; Bokhove, Onno

    2013-01-01

    We explore the visualization of violent wave dynamics and erosion by waves and jets in laser-cut reliefs, laser engravings, and three-dimensional printing. For this purpose we built table-top experiments to cast breaking waves, and also explored the creation of extreme or rogue waves in larger wave

  3. Sources of localized waves

    OpenAIRE

    Chatzipetros, Argyrios Alexandros

    1994-01-01

    The synthesis of two types of Localized Wave (L W) pulses is considered; these are the 'Focus Wave Model (FWM) pulse and the X Wave pulse. First, we introduce the modified bidirectional representation where one can select new basis functions resulting in different representations for a solution to the scalar wave equation. Through this new representation, we find a new class of focused X Waves which can be extremely localized. The modified bidirectional decomposition is applied...

  4. The June 2016 Australian East Coast Low: Importance of Wave Direction for Coastal Erosion Assessment

    Directory of Open Access Journals (Sweden)

    Thomas R. Mortlock

    2017-02-01

    Full Text Available In June 2016, an unusual East Coast Low storm affected some 2000 km of the eastern seaboard of Australia bringing heavy rain, strong winds and powerful wave conditions. While wave heights offshore of Sydney were not exceptional, nearshore wave conditions were such that beaches experienced some of the worst erosion in 40 years. Hydrodynamic modelling of wave and current behaviour as well as contemporaneous sand transport shows the east to north-east storm wave direction to be the major determinant of erosion magnitude. This arises because of reduced energy attenuation across the continental shelf and the focussing of wave energy on coastal sections not equilibrated with such wave exposure under the prevailing south-easterly wave climate. Narrabeen–Collaroy, a well-known erosion hot spot on Sydney’s Northern Beaches, is shown to be particularly vulnerable to storms from this direction because the destructive erosion potential is amplified by the influence of the local embayment geometry. We demonstrate the magnified erosion response that occurs when there is bi-directionality between an extreme wave event and preceding modal conditions and the importance of considering wave direction in extreme value analyses.

  5. Observations of wave transformation over a fringing coral reef and the importance of low-frequency waves and offshore water levels to runup, overwash, and coastal flooding

    Science.gov (United States)

    Cheriton, Olivia M.; Storlazzi, Curt D.; Rosenberger, Kurt J.

    2016-05-01

    Many low-lying tropical islands are susceptible to sea level rise and often subjected to overwash and flooding during large wave events. To quantify wave dynamics and wave-driven water levels on fringing coral reefs, a 5 month deployment of wave gauges and a current meter was conducted across two shore-normal transects on Roi-Namur Island in the Republic of the Marshall Islands. These observations captured two large wave events that had waves with maximum heights greater than 6 m with peak periods of 16 s over the fore reef. The larger event coincided with a peak spring tide, leading to energetic, highly skewed infragravity (0.04-0.004 Hz) and very low frequency (0.004-0.001 Hz) waves at the shoreline, which reached heights of 1.0 and 0.7 m, respectively. Water surface elevations, combined with wave runup, reached 3.7 m above the reef bed at the innermost reef flat adjacent to the toe of the beach, resulting in flooding of inland areas. This overwash occurred during a 3 h time window that coincided with high tide and maximum low-frequency reef flat wave heights. The relatively low-relief characteristics of this narrow reef flat may further drive shoreline amplification of low-frequency waves due to resonance modes. These results (1) demonstrate how the coupling of high offshore water levels with low-frequency reef flat wave energetics can lead to large impacts along fringing reef-lined shorelines, such as island overwash, and (2) lend support to the hypothesis that predicted higher sea levels will lead to more frequent occurrences of these extreme events, negatively impacting coastal resources and infrastructure.

  6. Observations of wave transformation over a fringing coral reef and the importance of low-frequency waves and offshore water levels to runup, overwash, and coastal flooding

    Science.gov (United States)

    Cheriton, Olivia; Storlazzi, Curt; Rosenberger, Kurt

    2016-01-01

    Many low-lying tropical islands are susceptible to sea level rise and often subjected to overwash and flooding during large wave events. To quantify wave dynamics and wave-driven water levels on fringing coral reefs, a 5 month deployment of wave gauges and a current meter was conducted across two shore-normal transects on Roi-Namur Island in the Republic of the Marshall Islands. These observations captured two large wave events that had waves with maximum heights greater than 6 m with peak periods of 16 s over the fore reef. The larger event coincided with a peak spring tide, leading to energetic, highly skewed infragravity (0.04–0.004 Hz) and very low frequency (0.004–0.001 Hz) waves at the shoreline, which reached heights of 1.0 and 0.7 m, respectively. Water surface elevations, combined with wave runup, reached 3.7 m above the reef bed at the innermost reef flat adjacent to the toe of the beach, resulting in flooding of inland areas. This overwash occurred during a 3 h time window that coincided with high tide and maximum low-frequency reef flat wave heights. The relatively low-relief characteristics of this narrow reef flat may further drive shoreline amplification of low-frequency waves due to resonance modes. These results (1) demonstrate how the coupling of high offshore water levels with low-frequency reef flat wave energetics can lead to large impacts along fringing reef-lined shorelines, such as island overwash, and (2) lend support to the hypothesis that predicted higher sea levels will lead to more frequent occurrences of these extreme events, negatively impacting coastal resources and infrastructure.

  7. Extreme cosmos

    CERN Document Server

    Gaensler, Bryan

    2011-01-01

    The universe is all about extremes. Space has a temperature 270°C below freezing. Stars die in catastrophic supernova explosions a billion times brighter than the Sun. A black hole can generate 10 million trillion volts of electricity. And hypergiants are stars 2 billion kilometres across, larger than the orbit of Jupiter. Extreme Cosmos provides a stunning new view of the way the Universe works, seen through the lens of extremes: the fastest, hottest, heaviest, brightest, oldest, densest and even the loudest. This is an astronomy book that not only offers amazing facts and figures but also re

  8. 76 FR 77696 - Establishment of the Naches Heights Viticultural Area

    Science.gov (United States)

    2011-12-14

    ... vineyards on the Naches Heights. Soils After the volcanic flow of andesite cooled and hardened to form the..., including the Weirman, Wenas, and Kittitas series, are subject to seasonal flooding and a water table close... rooting depths that can reach the water table and be frozen during extreme cold weather. Further,...

  9. The perfect storm: Unusual synchronisation of the components of wave energy spectra dominates episodic soft-cliff erosion.

    Science.gov (United States)

    Hackney, Christopher; Darby, Stephen

    2015-04-01

    Between December 2013 and February 2014 the United Kingdom experienced the stormiest winter on record. The persistent low pressure systems arriving from the North Atlantic during this period resulted in some of the most energetic maritime conditions ever recorded along the English Channel. The unprotected soft cliffs which comprise the south west Isle of Wight coastline were highly exposed to these conditions, facing the full force of extreme sea-levels and significant wave heights. Although long term rates of soft-cliff erosion have previously been defined for this coastline, the role of such extreme forcings on rates of soft-cliff erosion has not previously been document, and is therefore relatively poorly understood. We employed pre-event LIDAR and post-event RTK-GPS shoreline surveys in tandem with hourly sea-levels and significant wave height records from the English Channel to build an unprecedented data set that we use here to determine the response of this soft-cliff coastline to the extreme forcings of the 2013/2014 winter. It was found that the between October 2013 and March 2014, the south west Isle of Wight eroded, on average 4.25 m (σ = 3.6m). Such a high degree of erosion is approximately a factor of nine times greater than the long term average retreat rate of ~0.5 m/yr for this coastline and is the largest recorded erosion event since the start of reliable records began. The extreme erosion observed is shown to be a result of the synchronisation between sea-levels and wave heights. Indeed, we show that a 7-hour lag of the wave height record relative to background sea-level would have resulted in only half (2.1 m) of the observed erosion. An analysis of the historical record implies that previous extreme erosion events were a function of similar synchronisation between sea-levels and wave heights, thus it is likely that future changes in the timing of peak sea-levels and wave heights have the potential to outweigh changes in magnitude in terms of

  10. Efficient Generation of Freak Waves in Laboratory

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the present study, Kriebel's method is improved to generate freak waves in laboratory. The improved method superposes a random wave train with two transient wave trains to simulate freak wave events in a wave tank. The freak waves are more nonlinear than what generated with Kriebel's method of the same energy. It can also generate freak waves to satisfy all the qualifications of the adopted definition with less energy than Kriebel's and can hardly influence the significant wave height.

  11. Wind fields of storms from surface isobars for wave hindcasting

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.; Vaithiyanathan, R.; Santanam, K.

    Marine operations of various types are critically linked to mean and extreme wave statistics. In the Indian seas extreme wave conditions are caused by cyclones and steady strong monsoon winds. Wave data from cyclone areas are not directly available...

  12. Rogue wave variational modelling through the interaction of two solitary waves

    Science.gov (United States)

    Gidel, Floriane; Bokhove, Onno

    2016-04-01

    The extreme and unexpected characteristics of Rogue waves have made them legendary for centuries. It is only on the 1st of January 1995 that these mariners' tales started to raise scientist's curiosity, when such a wave was recorded in the North Sea; a sudden wall of water hit the Draupner offshore platform, more than twice higher than the other waves, providing evidence of the existence of rogue or freak waves. Since then, studies have shown that these surface gravity waves of high amplitude (at least twice the height of the other sea waves [Dyste et al., 2008]) appear in non-linear dispersive water motion [Drazin and Johnson, 1989], at any depth, and have caused a lot of damage in recent years [Nikolkina and Didenkulova, 2011 ]. So far, most of the studies have tried to determine their probability of occurrence, but no conclusion has been achieved yet, which means that we are currently unenable to predict or avoid these monster waves. An accurate mathematical and numerical water-wave model would enable simulation and observation of this external forcing on boats and offshore structures and hence reduce their threat. In this work, we aim to model rogue waves through a soliton splash generated by the interaction of two solitons coming from different channels at a specific angle. Kodama indeed showed that one way to produce extreme waves is through the intersection of two solitary waves, or one solitary wave and its oblique reflection on a vertical wall [Yeh, Li and Kodama, 2010 ]. While he modelled Mach reflection from Kadomtsev-Petviashvili (KP) theory, we aim to model rogue waves from the three-dimensional potential flow equations and/or their asymptotic equivalent described by Benney and Luke [Benney and Luke, 1964]. These theories have the advantage to allow wave propagation in several directions, which is not the case with KP equations. The initial solitary waves are generated by removing a sluice gate in each channel. The equations are derived through a

  13. Wind speed, wind direction, air temperature, wave energy spectra, significant wave height, dominant wave period and direction, peak wave period and direction, currents, temperature, conductivity, pressure, sigma-theta, river level, sonar readings, and backscatter data collected at Myrtle Beach in the North Atlantic Ocean from instruments deployed on MOORINGS using platforms NOAA Ship NANCY FOSTER and RV DAN MOORE from 2003-10-01 to 2004-05-01 (NCEI Accession 0066109)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These bottom current, wave and associated observations were collected as part of a larger study to understand the physical processes that control the transport of...

  14. Height and Tilt Geometric Texture

    DEFF Research Database (Denmark)

    Andersen, Vedrana; Desbrun, Mathieu; Bærentzen, Jakob Andreas

    2009-01-01

    We propose a new intrinsic representation of geometric texture over triangle meshes. Our approach extends the conventional height field texture representation by incorporating displacements in the tangential plane in the form of a normal tilt. This texture representation offers a good practical...... compromise between functionality and simplicity: it can efficiently handle and process geometric texture too complex to be represented as a height field, without having recourse to full blown mesh editing algorithms. The height-and-tilt representation proposed here is fully intrinsic to the mesh, making...

  15. Impact of increasing heat waves on U.S. ozone episodes in the 2050s: Results from a multimodel analysis using extreme value theory

    Science.gov (United States)

    Shen, L.; Mickley, L. J.; Gilleland, E.

    2016-04-01

    We develop a statistical model using extreme value theory to estimate the 2000-2050 changes in ozone episodes across the United States. We model the relationships between daily maximum temperature (Tmax) and maximum daily 8 h average (MDA8) ozone in May-September over 2003-2012 using a Point Process (PP) model. At ~20% of the sites, a marked decrease in the ozone-temperature slope occurs at high temperatures, defined as ozone suppression. The PP model sometimes fails to capture ozone-Tmax relationships, so we refit the ozone-Tmax slope using logistic regression and a generalized Pareto distribution model. We then apply the resulting hybrid-extreme value theory model to projections of Tmax from an ensemble of downscaled climate models. Assuming constant anthropogenic emissions at the present level, we find an average increase of 2.3 d a-1 in ozone episodes (>75 ppbv) across the United States by the 2050s, with a change of +3-9 d a-1 at many sites.

  16. Gravity waves

    Science.gov (United States)

    Fritts, David

    1987-02-01

    Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.

  17. A preliminary study on the intensity of cold wave storm surges of Laizhou Bay

    Science.gov (United States)

    Li, Xue; Dong, Sheng

    2016-12-01

    Dike failure and marine losses are quite prominent in Laizhou Bay during the period of cold wave storm surges because of its open coastline to the north and flat topography. In order to evaluate the intensity of cold wave storm surge, the hindcast of marine elements induced by cold waves in Laizhou Bay from 1985 to 2004 is conducted using a cold wave storm surge-wave coupled model and the joint return period of extreme water level, concomitant wave height, and concomitant wind speed are calculated. A new criterion of cold wave storm surge intensity based on such studies is developed. Considering the frequency of cold wave, this paper introduces a Poisson trivariate compound reconstruction model to calculate the joint return period, which is closer to the reality. By using the newly defined cold wave storm surge intensity, the `cold wave grade' in meteorology can better describe the severity of cold wave storm surges and the warning level is well corresponding to different intensities of cold wave storm surges. Therefore, it provides a proper guidance to marine hydrological analysis, disaster prevention and marine structure design in Laizhou Bay.

  18. Alaska Geoid Heights (GEOID96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' geoid height grid for Alaska is distributed as a GEOID96 model. The computation used 1.1 million terrestrial and marine gravity data held in the...

  19. Mexico Geoid Heights (MEXICO97)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' geoid height grid for Mexico, and North-Central America, is the MEXICO97 geoid model. The computation used about one million terrestrial and marine gravity...

  20. Modified Inverse First Order Reliability Method (I-FORM) for Predicting Extreme Sea States.

    Energy Technology Data Exchange (ETDEWEB)

    Eckert-Gallup, Aubrey Celia; Sallaberry, Cedric Jean-Marie; Dallman, Ann Renee; Neary, Vincent Sinclair

    2014-09-01

    Environmental contours describing extreme sea states are generated as the input for numerical or physical model simulation s as a part of the stand ard current practice for designing marine structure s to survive extreme sea states. Such environmental contours are characterized by combinations of significant wave height ( ) and energy period ( ) values calculated for a given recurrence interval using a set of data based on hindcast simulations or buoy observations over a sufficient period of record. The use of the inverse first - order reliability method (IFORM) i s standard design practice for generating environmental contours. In this paper, the traditional appli cation of the IFORM to generating environmental contours representing extreme sea states is described in detail and its merits and drawbacks are assessed. The application of additional methods for analyzing sea state data including the use of principal component analysis (PCA) to create an uncorrelated representation of the data under consideration is proposed. A reexamination of the components of the IFORM application to the problem at hand including the use of new distribution fitting techniques are shown to contribute to the development of more accurate a nd reasonable representations of extreme sea states for use in survivability analysis for marine struc tures. Keywords: In verse FORM, Principal Component Analysis , Environmental Contours, Extreme Sea State Characteri zation, Wave Energy Converters

  1. Longshore Currents of Random Waves on Different Plane Beaches

    Institute of Scientific and Technical Information of China (English)

    邹志利; 王淑平; 邱大洪; 王艳; 王风龙; 董国海

    2003-01-01

    Model tests and numerical calculation of longshore currents and wave heights produced by irregular waves on two beaches with slopes of 1:100 and 1:40 are studied. The cross-shore distributions of longshore current velocities and wave heights are given and the influences of wave heights, wave periods, and beach slopes on longshore currents are discussed. The discussion is also made on the influences of different eddy viscosity coefficients on the numerical results of longshore current velocities.

  2. Cause of winter gravity wave spectrum saturation

    Institute of Scientific and Technical Information of China (English)

    WU; Yongfu; XU; Jiyao

    2005-01-01

    This paper utilizes horizontal velocity measurements observed from 19 chaff rockets and nearly simultaneous temperature measurements collected from 19 falling sphere rockets to study the cause of winter gravity wave spectrum saturation. Results suggest that strong horizontal velocity shears larger than 0.04 s-1 are observed to be present at various heights near the winter mesopause. On one single chaff rocket flight, an extremely strong horizontal velocity shear as high as 0.33 s-1 is observed at 87.4 km and is believed to be the strongest value ever measured in the mesosphere. These strong horizontal velocity shears, together with Brunt-V(a)is(a)l(a) frequency squared obtained from the temperature profile, act collectively to yield two dynamical instability regions of Richardson number smaller than 1/4, suggesting that the saturated gravity wave spectrum observed by the chaff rockets in winter is a result of dynamical instability.

  3. Generation and validation of the Chilean Wave Atlas database

    Science.gov (United States)

    Beyá, José; Álvarez, Marco; Gallardo, Ariel; Hidalgo, Héctor; Winckler, Patricio

    2017-08-01

    This paper summarizes the calibration and validation of a 35-year wave hindcast database used to create the Chilean Wave Atlas. The hindcast was generated with the Wavewatch III wave model and consists of: i) time series of wave statistical parameters in a 1° × 1° grid throughout the Pacific Ocean; ii) spectral data at points latitudinally spaced every 2° off the Chilean coast. A comprehensive calibration process was undertaken in order to assess the performance of statistical parameters at different locations under normal and extreme conditions. A multi-criteria performance score was defined to select the optimal Wavewatch III model configuration. Few buoy records available and a broad set of satellite data were used in this process. A correction method was then applied to the statistical parameters in order to reduce systematic errors of the model. The Atlas showed better performance when compared to existing databases under normal wave conditions. However, the accuracy was shown to be lesser for the highest wave heights, consistently following the behaviour of other databases. This deficiency in the estimate of extreme values has important consequences in the design of coastal structures, and its improvement remains to be solved.

  4. Extreme Conditions Modeling Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Coe, R. G.; Neary, V. S.; Lawson, M. J.; Yu, Y.; Weber, J.

    2014-07-01

    Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) hosted the Wave Energy Converter (WEC) Extreme Conditions Modeling (ECM) Workshop in Albuquerque, NM on May 13th-14th, 2014. The objective of the workshop was to review the current state of knowledge on how to model WECs in extreme conditions (e.g. hurricanes and other large storms) and to suggest how U.S. Department of Energy (DOE) and national laboratory resources could be used to improve ECM methods for the benefit of the wave energy industry.

  5. Recent wave climate and expected future changes in the seasonally ice-infested waters of the Gulf of St. Lawrence, Canada

    Science.gov (United States)

    Ruest, Benoit; Neumeier, Urs; Dumont, Dany; Bismuth, Eliott; Senneville, Simon; Caveen, James

    2016-01-01

    A new method is developed to evaluate the wave climate in the Gulf of St. Lawrence (GSL) with the consideration of wave attenuation by sea ice. Ice concentrations outputs from a regional oceanic model are used to attenuate, in post-processing, significant wave height ( H s ) time-series simulated with a parametric wave model for ice-free conditions. Reanalysis data is used to compute GSL wave climate for the 1981-2010 period with and without wave attenuation by sea ice. Outputs from two simulations from the Canadian Regional Climate Model are also used to evaluate how GSL wave climate should evolve during the twenty first century according to the SRES-A2 greenhouse gases emission scenario. Results show that sea ice has reduced extreme H s on the GSL by about 12 % on average over the 1981-2010 period but its impact on wave climate should become negligible by 2100 except in the St. Lawrence Estuary. Over the twenty first century, an increase of extreme H s on the GSL should be expected mostly because of the reduction of sea ice. On the other hand, little changes in the extreme wave climate should be expected as a response to changes in the wind regime over the GSL. For future coastal engineering applications, the GSL wave climate could be evaluated by supposing an ice-free sea to integrate the likely impact of future climate change.

  6. Robust Wave Resource Estimation

    DEFF Research Database (Denmark)

    Lavelle, John; Kofoed, Jens Peter

    2013-01-01

    An assessment of the wave energy resource at the location of the Danish Wave Energy test Centre (DanWEC) is presented in this paper. The Wave Energy Converter (WEC) test centre is located at Hanstholm in the of North West Denmark. Information about the long term wave statistics of the resource...... is necessary for WEC developers, both to optimise the WEC for the site, and to estimate its average yearly power production using a power matrix. The wave height and wave period sea states parameters are commonly characterized with a bivariate histogram. This paper presents bivariate histograms and kernel...... density estimates of the PDF as a function both of Hm0 and Tp, and Hm0 and T0;2, together with the mean wave power per unit crest length, Pw, as a function of Hm0 and T0;2. The wave elevation parameters, from which the wave parameters are calculated, are filtered to correct or remove spurious data...

  7. The Draupner wave: A fresh look and the emerging view

    Science.gov (United States)

    Cavaleri, Luigi; Barbariol, Francesco; Benetazzo, Alvise; Bertotti, Luciana; Bidlot, Jean-Raymond; Janssen, Peter; Wedi, Nils

    2016-08-01

    Using the new high-resolution operational model of ECMWF, we revisit the storm during which the Draupner freak wave of 1 January 1995 was recorded. The modeling system gives a realistic evolution of the storm highlighting the crucial role played by the southward propagating polar low in creating the extreme wave conditions present at the time the freak wave was recorded. We also discuss the predictability of the meteorological event. The hindcast wave spectra allow a new analysis of the probability of occurrence of the Draupner wave that we analyze not only in time at a specific position, but also in space. This leads us to discuss how exceptional the so-called freak waves really are. For a given sea state, as characterized by the significant wave height, they are namely part of the reality of the ocean, the key point being the probability of encountering them. In this respect, the often considered record at a specific location can be misleading because the probability of detecting a freak wave must be considered both in space and time.

  8. A new climate index controlling winter wave activity along the Atlantic coast of Europe: The West Europe Pressure Anomaly

    Science.gov (United States)

    Castelle, Bruno; Dodet, Guillaume; Masselink, Gerd; Scott, Tim

    2017-02-01

    A pioneering and replicable method based on a 66-year numerical weather and wave hindcast is developed to optimize a climate index based on the sea level pressure (SLP) that best explains winter wave height variability along the coast of western Europe, from Portugal to UK (36-52°N). The resulting so-called Western Europe Pressure Anomaly (WEPA) is based on the sea level pressure gradient between the stations Valentia (Ireland) and Santa Cruz de Tenerife (Canary Islands). The WEPA positive phase reflects an intensified and southward shifted SLP difference between the Icelandic low and the Azores high, driving severe storms that funnel high-energy waves toward western Europe southward of 52°N. WEPA outscores by 25-150% the other leading atmospheric modes in explaining winter-averaged significant wave height, and even by a largest amount the winter-averaged extreme wave heights. WEPA is also the only index capturing the 2013/2014 extreme winter that caused widespread coastal erosion and flooding in western Europe.

  9. Blast Waves

    CERN Document Server

    Needham, Charles E

    2010-01-01

    The primary purpose of this text is to document many of the lessons that have been learned during the author’s more than forty years in the field of blast and shock. The writing therefore takes on an historical perspective, in some sense, because it follows the author’s experience. The book deals with blast waves propagating in fluids or materials that can be treated as fluids. It begins by distinguishing between blast waves and the more general category of shock waves. It then examines several ways of generating blast waves, considering the propagation of blast waves in one, two and three dimensions as well as through the real atmosphere. One section treats the propagation of shocks in layered gases in a more detailed manner. The book also details the interaction of shock waves with structures in particular reflections, progressing from simple to complex geometries, including planar structures, two-dimensional structures such as ramps or wedges, reflections from heights of burst, and three-dimensional st...

  10. Real time wave measurements and wave hindcasting in deep waters

    Digital Repository Service at National Institute of Oceanography (India)

    Anand, N.M.; Mandal, S.; SanilKumar, V.; Nayak, B.U.

    Deep water waves off Karwar (lat. 14~'45.1'N, long. 73~'34.8'E) at 75 m water depth pertaining to peak monsoon period have been measured using a Datawell waverider buoy. Measured wave data show that the significant wave height (Hs) predominantly...

  11. Glacial effects limiting mountain height.

    Science.gov (United States)

    Egholm, D L; Nielsen, S B; Pedersen, V K; Lesemann, J-E

    2009-08-13

    The height of mountain ranges reflects the balance between tectonic rock uplift, crustal strength and surface denudation. Tectonic deformation and surface denudation are interdependent, however, and feedback mechanisms-in particular, the potential link to climate-are subjects of intense debate. Spatial variations in fluvial denudation rate caused by precipitation gradients are known to provide first-order controls on mountain range width, crustal deformation rates and rock uplift. Moreover, limits to crustal strength are thought to constrain the maximum elevation of large continental plateaus, such as those in Tibet and the central Andes. There are indications that the general height of mountain ranges is also directly influenced by the extent of glaciation through an efficient denudation mechanism known as the glacial buzzsaw. Here we use a global analysis of topography and show that variations in maximum mountain height correlate closely with climate-controlled gradients in snowline altitude for many high mountain ranges across orogenic ages and tectonic styles. With the aid of a numerical model, we further demonstrate how a combination of erosional destruction of topography above the snowline by glacier-sliding and commensurate isostatic landscape uplift caused by erosional unloading can explain observations of maximum mountain height by driving elevations towards an altitude window just below the snowline. The model thereby self-consistently produces the hypsometric signature of the glacial buzzsaw, and suggests that differences in the height of mountain ranges mainly reflect variations in local climate rather than tectonic forces.

  12. Numerical and experimental results on the spectral wave transfer in finite depth

    Science.gov (United States)

    Benassai, Guido

    2016-04-01

    Determination of the form of the one-dimensional surface gravity wave spectrum in water of finite depth is important for many scientific and engineering applications. Spectral parameters of deep water and intermediate depth waves serve as input data for the design of all coastal structures and for the description of many coastal processes. Moreover, the wave spectra are given as an input for the response and seakeeping calculations of high speed vessels in extreme sea conditions and for reliable calculations of the amount of energy to be extracted by wave energy converters (WEC). Available data on finite depth spectral form is generally extrapolated from parametric forms applicable in deep water (e.g., JONSWAP) [Hasselmann et al., 1973; Mitsuyasu et al., 1980; Kahma, 1981; Donelan et al., 1992; Zakharov, 2005). The present paper gives a contribution in this field through the validation of the offshore energy spectra transfer from given spectral forms through the measurement of inshore wave heights and spectra. The wave spectra on deep water were recorded offshore Ponza by the Wave Measurement Network (Piscopia et al.,2002). The field regressions between the spectral parameters, fp and the nondimensional energy with the fetch length were evaluated for fetch-limited sea conditions. These regressions gave the values of the spectral parameters for the site of interest. The offshore wave spectra were transfered from the measurement station offshore Ponza to a site located offshore the Gulf of Salerno. The offshore local wave spectra so obtained were transfered on the coastline with the TMA model (Bouws et al., 1985). Finally the numerical results, in terms of significant wave heights, were compared with the wave data recorded by a meteo-oceanographic station owned by Naples Hydrographic Office on the coastline of Salerno in 9m depth. Some considerations about the wave energy to be potentially extracted by Wave Energy Converters were done and the results were discussed.

  13. Nonbreaking wave-induced mixing in upper ocean during tropical cyclones using coupled hurricane-ocean-wave modeling

    Science.gov (United States)

    Aijaz, S.; Ghantous, M.; Babanin, A. V.; Ginis, I.; Thomas, B.; Wake, G.

    2017-05-01

    The effects of turbulence generated by nonbreaking waves have been investigated by testing and evaluating a new nonbreaking wave parameterization in a coupled hurricane-ocean-wave model. The MPI version of the Princeton Ocean Model (POM) with hurricane forcing is coupled with the WAVEWATCH-III (WW3) surface wave model. Hurricane Ivan is chosen as the test case due to its extreme intensity and availability of field data during its passage. The model results are validated against field observations of wave heights and sea surface temperatures (SSTs) from the National Data Buoy Centre (NDBC) during Hurricane Ivan and against limited in situ current and bottom temperature data. A series of numerical experiments is set up to examine the influence of the nonbreaking wave parameterization on the mixing of upper ocean. The SST response from the modeling experiments indicates that the nonbreaking wave-induced mixing leads to significant cooling of the SST and deepening of the mixed layer. It was found that the nondimensional constant b1 in the nonbreaking wave parameterization has different impacts on the weak and the strong sides of the storm track. A constant value of b1 leads to improved predictions on the strong side of the storm while a steepness-dependent b1 provides a better agreement with in situ observations on the weak side. A separate simulation of the intense tropical cyclone Olwyn in north-west Australia revealed the same trend for b1 on the strong side of the tropical cyclone.

  14. Near Shore Wave Processes

    Science.gov (United States)

    2016-06-07

    the alongshore current, and a full non linear bottom shear stress. Contributions from the alongshore wind stress are mostly evident offshore and over...fraction) profiles measured on a day with offshore wave height of 1.6m, and 10 ms-1 wind speed. The one hour mean void fraction profiles are measured in a...given the offshore wave conditions. OBJECTIVES We hypothesize that the wave-induced kinematic, sediment and morphologic processes are nonlinearly

  15. Wave climate in the Arctic 1992-2014: seasonality and trends

    Science.gov (United States)

    Stopa, Justin E.; Ardhuin, Fabrice; Girard-Ardhuin, Fanny

    2016-07-01

    Over the past decade, the diminishing Arctic sea ice has impacted the wave field, which depends on the ice-free ocean and wind. This study characterizes the wave climate in the Arctic spanning 1992-2014 from a merged altimeter data set and a wave hindcast that uses CFSR winds and ice concentrations from satellites as input. The model performs well, verified by the altimeters, and is relatively consistent for climate studies. The wave seasonality and extremes are linked to the ice coverage, wind strength, and wind direction, creating distinct features in the wind seas and swells. The altimeters and model show that the reduction of sea ice coverage causes increasing wave heights instead of the wind. However, trends are convoluted by interannual climate oscillations like the North Atlantic Oscillation (NAO) and Pacific Decadal Oscillation. In the Nordic Greenland Sea the NAO influences the decreasing wind speeds and wave heights. Swells are becoming more prevalent and wind-sea steepness is declining. The satellite data show the sea ice minimum occurs later in fall when the wind speeds increase. This creates more favorable conditions for wave development. Therefore we expect the ice freeze-up in fall to be the most critical season in the Arctic and small changes in ice cover, wind speeds, and wave heights can have large impacts to the evolution of the sea ice throughout the year. It is inconclusive how important wave-ice processes are within the climate system, but selected events suggest the importance of waves within the marginal ice zone.

  16. Height and Breast Cancer Risk

    DEFF Research Database (Denmark)

    Zhang, Ben; Shu, Xiao-Ou; Delahanty, Ryan J

    2015-01-01

    BACKGROUND: Epidemiological studies have linked adult height with breast cancer risk in women. However, the magnitude of the association, particularly by subtypes of breast cancer, has not been established. Furthermore, the mechanisms of the association remain unclear. METHODS: We performed a meta......-analysis to investigate associations between height and breast cancer risk using data from 159 prospective cohorts totaling 5216302 women, including 113178 events. In a consortium with individual-level data from 46325 case patients and 42482 control patients, we conducted a Mendelian randomization analysis using...... a genetic score that comprised 168 height-associated variants as an instrument. This association was further evaluated in a second consortium using summary statistics data from 16003 case patients and 41335 control patients. RESULTS: The pooled relative risk of breast cancer was 1.17 (95% confidence...

  17. replacing orthometric heights with ellipsoidal heights in engineering ...

    African Journals Online (AJOL)

    user

    This work investigates the use of ellipsoidal heights in place of orthometric ... be represented mathematically, and therefore enables computation to be .... suitable locations along the levelling routes. The ..... 5.3 Assumptions and theoretical approximations made ... tectonics movement, deformation and land subsidence.

  18. Tree Height Calculator: An Android App for Estimating Tree Height

    Science.gov (United States)

    Burca, V. S.; Htet, N. M.; Huang, X.; de Lanerolle, T. R.; Morelli, R.; Gourley, J. R.

    2011-12-01

    Conventionally, measuring tree height requires a collection of different tools - clinometer, transit, pencil, paper, laptop computer. Results are recorded manually and entered into a spreadsheet or database for future calculation and analysis. Tree Height Calculator is a mobile Android app the integrates the various steps in this process thereby improving the accuracy and dramatically reducing the time required to go from taking measurements to analyzing data. Given the user's height and the distance from the base of the tree (which can be downloaded into the app from a server), the app uses the phone's orientation sensor to calculate the angle of elevation. A simple trigonometric formula is then used to calculate and record the tree's height in the phone's database. When the phone has a WiFi connection, the data are transmitted to a server, from where they can be downloaded directly into a spreadsheet. The application was first tested in an Environmental Science laboratory at Trinity College. On the first trial, 103 data samples were collected, stored, and uploaded to the online database with only couple of dropped data points. On the second trial, 98 data samples were gathered with no loss of data. The app combined the individual measurements taken by the students in the lab, reducing the time required to produce a graph of the class's results from days to hours.

  19. ALMA telescope reaches new heights

    Science.gov (United States)

    2009-09-01

    The ALMA (Atacama Large Millimeter/submillimeter Array) astronomical observatory has taken another step forward - and upwards. One of its state-of-the-art antennas was carried for the first time to the 5000m plateau of Chajnantor, in the Chilean Andes, on the back of a custom-built giant transporter. The antenna, which weighs about 100 tons and has a diameter of 12 metres, was transported up to the high-altitude Array Operations Site, where the extremely dry and rarefied air is ideal for ALMA's observations of the Universe. The conditions at the Array Operations Site on Chajnantor, while excellent for astronomy, are also very harsh. Only half as much oxygen is available as at sea level, making it very difficult to work there. This is why ALMA's antennas are assembled and tested at the lower 2900 m altitude of the ALMA Operations Support Facility. It was from this relatively hospitable base camp that the ALMA antenna began its journey to the high Chajnantor site. "This is an important moment for ALMA. We are very happy that the first transport of an antenna to the high site went flawlessly. This achievement was only possible through contributions from all international ALMA partners: this particular antenna is provided by Japan, the heavy-lift transporter by Europe, and the receiving electronics inside the antenna by North America, Europe, and Asia", said Wolfgang Wild, European ALMA Project Manager. The trip began when one of the two ALMA transporters, named Otto, lifted the antenna onto its back. It then carried its heavy load along the 28 km road from the Operations Support Facility up to the Array Operations Site. While the transporter is capable of speeds of up to 12 km/hour when carrying an antenna, this first journey was made more slowly to ensure that everything worked as expected, taking about seven hours. The ALMA antennas are the most advanced submillimetre-wavelength antennas ever made. They are designed to operate fully exposed in the harsh conditions

  20. Fear of heights in infants?

    Science.gov (United States)

    Adolph, Karen E; Kretch, Kari S; LoBue, Vanessa

    2014-02-01

    Based largely on the famous "visual cliff" paradigm, conventional wisdom is that crawling infants avoid crossing the brink of a dangerous drop-off because they are afraid of heights. However, recent research suggests that the conventional wisdom is wrong. Avoidance and fear are conflated, and there is no compelling evidence to support fear of heights in human infants. Infants avoid crawling or walking over an impossibly high drop-off because they perceive affordances for locomotion-the relations between their own bodies and skills and the relevant properties of the environment that make an action such as descent possible or impossible.

  1. Down on heights? One in three has visual height intolerance.

    Science.gov (United States)

    Huppert, Doreen; Grill, Eva; Brandt, Thomas

    2013-02-01

    The distressing phenomenon of visual height intolerance (vHI) occurs when a visual stimulus causes apprehension of losing control of balance and falling from some height. Epidemiological data of this condition in the general population are lacking. Assignment of prevalence, determinants, and compensation of vHI was performed in a cross-sectional epidemiological study of 3,517 individuals representing the German population. Life-time prevalence of vHI is 28 % (females 32 %). A higher prevalence is associated independently with a family history of vHI, anxiety disorders, migraine, or motion sickness susceptibility. Women aged 50-59 have a higher prevalence than younger women or men of all ages. Initial attacks occur most often (30 %) in the second decade; however, attacks can manifest throughout life. The main symptoms are fearfulness, inner agitation, a queasy-stomach feeling, subjective postural instability with to-and-fro vertigo, and weakness in the knees. Climbing a tower is the first most common precipitating stimulus; the spectrum of such stimuli widens with time in more than 50 % of afflicted individuals. The most frequent reaction to vHI is to avoid the triggering stimuli (>50 %); 11 % of susceptible individuals consult a doctor, most often a general practitioner, neurologist, ENT doctor, or psychiatrist. In brief, visual height intolerance affects one-third of the general population, considerably restricting the majority of these individuals in their daily activities. The data show that the two terms do not indicate a categorical distinction but rather a continuum from slight forms of visual height intolerance to the specific phobia of fear of heights.

  2. Mixing height determination from the momentum balance of the neutral or stable PBL

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, J.C. [Risoe National Lab., Roskilde (Denmark)

    1997-10-01

    The mixing height is defined by the top of the layer of turbulent mixing. This height is equal to the height H of turbulent vertical momentum transport (fiction) in neutral or stable stratification. In very stable cases, the wave induced momentum transport must be excluded if the waves do not have mixing effects (e.g. break) within the frictional layer. Thus the conditions provided by the momentum balance determine the mixing height in most cases of mechanical turbulence. Mixing is a time dependent process and depends also on the height of release of substance to be mixed. It depends on the specific form of the exchange coefficient function whether the mixing time for the mixed layer is finite of infinite. If this time is infinite, an additional mixing time criterion for a substance released close to the ground must be applied for the determination of the corresponding mixing height. (au)

  3. A Boussinesq Equation-Based Model for Nearshore Wave Breaking

    Institute of Scientific and Technical Information of China (English)

    余建星; 张伟; 王广东; 杨树清

    2004-01-01

    Based on the wave breaking model by Li and Wang (1999), this work is to apply Dally' s analytical solution to the wave-height decay irstead of the empirical and semi-empirical hypotheses of wave-height distribution within the wave breaking zone. This enhances the applicability of the model. Computational results of shoaling, location of wave breaking, wave-height decay after wave breaking, set-down and set-up for incident regular waves are shown to have good agreement with experimental and field data.

  4. Canonical Height Functions For Monomial Maps

    CERN Document Server

    Lin, Jan-Li

    2012-01-01

    We show that the canonical height function defined by Silverman does not have the Northcott finiteness property in general. We develop a new canonical height function for monomial maps. In certain cases, this new canonical height function has nice properties.

  5. Shock Formation Height in the Solar Corona Estimated from SDO and Radio Observations

    Science.gov (United States)

    Gopalswamy, N.; Nitta, N.

    2011-01-01

    Wave transients at EUV wavelengths and type II radio bursts are good indicators of shock formation in the solar corona. We use recent EUV wave observations from SDO and combine them with metric type II radio data to estimate the height in the corona where the shocks form. We compare the results with those obtained from other methods. We also estimate the shock formation heights independently using white-light observations of coronal mass ejections that ultimately drive the shocks.

  6. Height-Deterministic Pushdown Automata

    DEFF Research Database (Denmark)

    Nowotka, Dirk; Srba, Jiri

    2007-01-01

    of regular languages and still closed under boolean language operations, are considered. Several of such language classes have been described in the literature. Here, we suggest a natural and intuitive model that subsumes all the formalisms proposed so far by employing height-deterministic pushdown automata...

  7. Variability In Long-Wave Runup as a Function of Nearshore Bathymetric Features

    Energy Technology Data Exchange (ETDEWEB)

    Dunkin, Lauren McNeill [Texas A & M Univ., College Station, TX (United States)

    2010-05-01

    Beaches and barrier islands are vulnerable to extreme storm events, such as hurricanes, that can cause severe erosion and overwash to the system. Having dunes and a wide beach in front of coastal infrastructure can provide protection during a storm, but the influence that nearshore bathymetric features have in protecting the beach and barrier island system is not completely understood. The spatial variation in nearshore features, such as sand bars and beach cusps, can alter nearshore hydrodynamics, including wave setup and runup. The influence of bathymetric features on long-wave runup can be used in evaluating the vulnerability of coastal regions to erosion and dune overtopping, evaluating the changing morphology, and implementing plans to protect infrastructure. In this thesis, long-wave runup variation due to changing bathymetric features as determined with the numerical model XBeach is quantified (eXtreme Beach behavior model). Wave heights are analyzed to determine the energy through the surfzone. XBeach assumes that coastal erosion at the land-sea interface is dominated by bound long-wave processes. Several hydrodynamic conditions are used to force the numerical model. The XBeach simulation results suggest that bathymetric irregularity induces significant changes in the extreme long-wave runup at the beach and the energy indicator through the surfzone.

  8. Temporal variability in wind-wave climate and its validation with ESSO-NIOT wave atlas for the head Bay of Bengal

    Science.gov (United States)

    Patra, Anindita; Bhaskaran, Prasad K.

    2017-08-01

    The head Bay region bordering the northern Bay of Bengal is a densely populated area with a complex geomorphologic setting, and highly vulnerable to extreme water levels along with other factors like sea level rise and impact of tropical cyclones. The influence of climate change on wind-wave regime from this region of Bay of Bengal is not known well and that requires special attention, and there is a need to perform its long-term assessment for societal benefits. This study provides a comprehensive analysis on the temporal variability in domain averaged wind speed, significant wave height (SWH) utilizing satellite altimeter data (1992-2012) and mean wave period using ECMWF reanalysis products ERA-Interim (1992-2012) and ERA-20C (1992-2010) over this region. The SWH derived from WAVEWATCH III (WW3) model along with the ERA-Interim reanalysis supplements the observed variability in satellite altimeter observations. Further, the study performs an extensive error estimation of SWH and mean wave period with ESSO-NIOT wave atlas that shows a high degree of under-estimation in the wave atlas mean wave period. Annual mean and wind speed maxima from altimeter show an increasing trend, and to a lesser extent in the SWH. Interestingly, the estimated trend is higher for maxima compared to the mean conditions. Analysis of decadal variability exhibits an increased frequency of higher waves in the present decade compared to the past. Linear trend analysis show significant upswing in spatially averaged ERA-20C mean wave period, whereas the noticed variations are marginal in the ERA-Interim data. A separate trend analysis for the wind-seas, swell wave heights and period from ERA-20C decipher the fact that distant swells governs the local wind-wave climatology over the head Bay region, and over time the swell activity have increased in this region.

  9. Extreme Heat in Southwest a Deadly Threat

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_166797.html Extreme Heat in Southwest a Deadly Threat Here's how to ... t take off in Phoenix on Tuesday, the heat wave scorching the Southwest for the next week ...

  10. Waves from Propulsion Systems of Fast Ferries

    DEFF Research Database (Denmark)

    Taatø, Søren Haugsted; Aage, Christian; Arnskov, Michael M.

    1998-01-01

    Waves from fast ferries have become an environmental problem of growing concern to the public. Fast ferries produce not only higher waves than conventional ships but also fundamentally different wave systems when they sail at supercritical speeds. Hitherto, ship waves have been considered as bein...... similar to that of the hull alone, but with higher wave amplitudes. Conventional propellers will cause increased wave heights of about 10%, whereas water jets will cause increased wave heights of 20-40% as compared to those of the naked monohull....

  11. Measuring the height-to-height correlation function of corrugation in suspended graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kirilenko, D.A., E-mail: Demid.Kirilenko@mail.ioffe.ru [Ioffe Institute, Politekhnicheskaya ul. 26, 194021 St-Petersburg (Russian Federation); EMAT, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Brunkov, P.N. [Ioffe Institute, Politekhnicheskaya ul. 26, 194021 St-Petersburg (Russian Federation); ITMO University, Kronverksky pr. 49, 197101 St. Petersburg (Russian Federation)

    2016-06-15

    Nanocorrugation of 2D crystals is an important phenomenon since it affects their electronic and mechanical properties. The corrugation may have various sources; one of them is flexural phonons that, in particular, are responsible for the thermal conductivity of graphene. A study of corrugation of just the suspended graphene can reveal much of valuable information on the physics of this complicated phenomenon. At the same time, the suspended crystal nanorelief can hardly be measured directly because of high flexibility of the 2D crystal. Moreover, the relief portion related to rapid out-of-plane oscillations (flexural phonons) is also inaccessible by such measurements. Here we present a technique for measuring the Fourier components of the height–height correlation function H(q) of suspended graphene which includes the effect of flexural phonons. The technique is based on the analysis of electron diffraction patterns. The H(q) is measured in the range of wavevectors q≈0.4–4.5 nm{sup −1}. At the upper limit of this range H(q) does follow the T/κq{sup 4} law. So, we measured the value of suspended graphene bending rigidity κ=1.2±0.4 eV at ambient temperature T≈300 K. At intermediate wave vectors, H(q) follows a slightly weaker exponent than theoretically predicted q{sup −3.15} but is closer to the results of the molecular dynamics simulation. At low wave vectors, the dependence becomes even weaker, which may be a sign of influence of charge carriers on the dynamics of undulations longer than 10 nm. The technique presented can be used for studying physics of flexural phonons in other 2D materials. - Highlights: • A technique for measuring free-standing 2D crystal corrugation is proposed. • The height-to-height correlation function of the suspended graphene corrugation is measured. • Various parameters of the intrinsic graphene properties are experimentally determined.

  12. Observational and Dynamical Wave Climatologies. VOS vs Satellite Data

    Science.gov (United States)

    Grigorieva, Victoria; Badulin, Sergei; Chernyshova, Anna

    2013-04-01

    The understanding physics of wind-driven waves is crucially important for fundamental science and practical applications. This is why experimental efforts are targeted at both getting reliable information on sea state and elaborating effective tools of the sea wave forecasting. The global Visual Wave Observations and satellite data from the GLOBWAVE project of the European Space Agency are analyzed in the context of these two viewpoints. Within the first "observational" aspect we re-analyze conventional climatologies of all basic wave parameters for the last decades [5]. An alternative "dynamical" climatology is introduced as a tool of prediction of dynamical features of sea waves on global scales. The features of wave dynamics are studied in terms of one-parametric dependencies of wave heights on wave periods following the theoretical concept of self-similar wind-driven seas [3, 1, 4] and recently proposed approach to analysis of Voluntary Observing Ship (VOS) data [2]. Traditional "observational" climatologies based on VOS and satellite data collections demonstrate extremely consistent pictures for significant wave heights and dominant periods. On the other hand, collocated satellite and VOS data show significant differences in wave heights, wind speeds and, especially, in wave periods. Uncertainties of visual wave observations can explain these differences only partially. We see the key reason of this inconsistency in the methods of satellite data processing which are based on formal application of data interpolation methods rather than on up-to-date physics of wind-driven waves. The problem is considered within the alternative climatology approach where dynamical criteria of wave height-to-period linkage are used for retrieving wave periods and constructing physically consistent dynamical climatology. The key dynamical parameter - exponent R of one-parametric dependence Hs ~ TR shows dramatically less pronounced latitudinal dependence as compared to observed Hs

  13. Multi-method observation and analysis of an impulse wave and tsunami caused by glacier calving

    Science.gov (United States)

    Lüthi, M. P.; Vieli, A.

    2015-11-01

    Glacier calving can cause violent impulse waves which, upon landfall, can lead to destructive tsunami-like waves. Here we present data acquired during a calving event from Eqip Sermia, an ocean-terminating glacier in West Greenland. During an exceptionally well documented event, the collapse of 9 × 105 m3 ice from a 200 m high ice cliff caused an impulse wave of 50 m height, traveling at a speed of 25-30 m s-1. This wave was filmed from a tour boat in 800 m distance from the calving face, and simultaneously measured with a terrestrial radar interferometer and a tide gauge. Tsunami wave run-up height on the steep opposite shore in 4 km distance was 10-15 m, destroying infrastructure and eroding old vegetation. These observations indicate that such high tsunami waves are a recent phenomenon in the history of this glacier. Analysis of the data shows that only moderately bigger tsunami waves are to be expected in the future, even under rather extreme scenarios.

  14. Wind/Wave Misalignment in the Loads Analysis of a Floating Offshore Wind Turbine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Barj, L.; Stewart, S.; Stewart, G.; Lackner, M.; Jonkman, J.; Robertson, A.

    2014-02-01

    Wind resources far from the shore and in deeper seas have encouraged the offshore wind industry to look into floating platforms. The International Electrotechnical Commission (IEC) is developing a new technical specification for the design of floating offshore wind turbines that extends existing design standards for land-based and fixed-bottom offshore wind turbines. The work summarized in this paper supports the development of best practices and simulation requirements in the loads analysis of floating offshore wind turbines by examining the impact of wind/wave misalignment on the system loads under normal operation. Simulations of the OC3-Hywind floating offshore wind turbine system under a wide range of wind speeds, significant wave heights, peak-spectral periods and wind/wave misalignments have been carried out with the aero-servo-hydro-elastic tool FAST [4]. The extreme and fatigue loads have been calculated for all the simulations. The extreme and fatigue loading as a function of wind/wave misalignment have been represented as load roses and a directional binning sensitivity study has been carried out. This study focused on identifying the number and type of wind/wave misalignment simulations needed to accurately capture the extreme and fatigue loads of the system in all possible metocean conditions considered, and for a down-selected set identified as the generic US East Coast site. For this axisymmetric platform, perpendicular wind and waves play an important role in the support structure and including these cases in the design loads analysis can improve the estimation of extreme and fatigue loads. However, most structural locations see their highest extreme and fatigue loads with aligned wind and waves. These results are specific to the spar type platform, but it is expected that the results presented here will be similar to other floating platforms.

  15. and the CMJ jump height

    Directory of Open Access Journals (Sweden)

    Struzik Artur

    2016-04-01

    Full Text Available Study aim: The elastic potential energy accumulated in the musculotendinous units during the countermovement phase of a jump adds up to the energy supplied by the contracting muscles used in the take-off phase. Consequently, the total mechanical energy used during the jump may reach higher values. Stiffness represents a quantitative measure of a body’s elastic properties. Therefore, the aim of this study was to establish the relationship between leg stiffness and the countermovement jump height.

  16. Effective Height Upper Bounds on Algebraic Tori

    CERN Document Server

    Habegger, Philipp

    2012-01-01

    The main emphasis will be on height upper bounds in the algebraic torus G^{n}_{m}. By height we will mean the absolute logarithmic Weil height. Section 3.2 contains a precise definition of this and other more general height functions. The first appendix gives a short overview of known results in the abelian case. The second appendix contains a few height bounds in Shimura varieties.

  17. Wave Height Incidence on Mediterranean Short Sea Shipping Routes

    Directory of Open Access Journals (Sweden)

    F. X. Martínez de Osés

    2006-01-01

    Full Text Available According to the recent mid term review of the EU white paper on transport, Short Sea Shipping in EU waters is expected to grow from 2000 to 2020 at a rate of 59% in volume (metric tonnes. If we consider that the overall expected growth in freight exchanges is of 50% (also in volume, sea transport is one of the most feasible ways to reduce traffic congestion on European roads. High speed vessels are a possible way to compete with road transport in certain traffics; however these ships are highly affected by heavy weather. This paper is going to analyse the weather influence on several short sea shipping Mediterranean routes to be served by fast ships.

  18. Height and Body Mass on the Mating Market

    Directory of Open Access Journals (Sweden)

    David A. Frederick

    2015-09-01

    Full Text Available People with traits that are attractive on the mating market are better able to pursue their preferred mating strategy. Men who are relatively tall may be preferred by women because taller height is a cue to dominance, social status, access to resources, and heritable fitness, leading them to have more mating opportunities and sex partners. We examined height, education, age, ethnicity, and body mass index (BMI as predictors of sexual history among heterosexual men and women (N = 60,058. The linear and curvilinear associations between self-reported height and sex partner number were small for men when controlling for education, BMI, and ethnicity (linear β = .05; curvilinear β = −.03. The mean and median number of sex partners for men of different heights were: very short (9.4; 5, short (11.0; 7, average (11.7; 7, tall (12.0; 7, very tall (12.1; 7, and extremely tall (12.3; 7. Men who were “overweight” reported a higher mean and median number of sex partners than men with other body masses. The results for men suggested limited variation in reported sex partner number across most of the height continuum, but that very short men report fewer partners than other men.

  19. Analytic height correlation function of rough surfaces derived from light scattering

    CERN Document Server

    Zamani, M; Fazeli, S M; Downer, M C; Jafari, G R

    2015-01-01

    We obtain an analytic expression for the height correlation function of a rough surface based on the inverse wave scattering method of Kirchhoff theory. The expression directly relates the height correlation function to diffuse scattered intensity. We test the solution by measuring the angular distribution of light scattered from rough silicon surfaces, solving for the height correlation functions, and comparing them to functions derived from AFM measurements. The results show good agreement. The advantages of this method are its accurate analytical equation for the height correlation function and the simplicity of the experimental setup required to measure it.

  20. Experimental Study on the WavePiston Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Angelelli, E.

    This report presents the results of an experimental study of the power performance of the WavePiston wave energy converter. It focuses mainly on evaluating the power generating capabilities of the device and the effect of the following issues: Scaling ratios PTO loading Wave height and wave period...... dependency Oblique incoming waves Distance between plates During the study, the model supplied by the client, WavePiston, has been rigorously tested as all the anticipated tests have been done thoroughly and during all tests, good quality data has been obtained from all the sensors....

  1. Etymological study of Wuthering Heights

    Institute of Scientific and Technical Information of China (English)

    张倩; 张露

    2013-01-01

    In Wuthering Heights, the main characters and places have been delicately designed and cautiously named, which have their special implications based on the characters’identity, status and personalities or the features of the places. Therefore, through analyzing the implied meanings of the characters and place names in this novel, this essay illustrates that the author pur-posefully failed Heathcliff’s revenge. Meanwhile, the theme of this novel-Emily’s ultimate concern for the social inequality-is naturally exposed to the reader.

  2. Supersaturation of vertically propagating internal gravity waves

    Science.gov (United States)

    Lindzen, Richard S.

    1988-01-01

    The usual assumption that vertically propagating internal gravity waves will cease growing with height once their amplitudes are such as to permit convective instability anywhere within the wave is reexamined. Two factors lead to amplitude limitation: (1) wave clipping associated with convective mixing, and (2) energetic constraints associated with the rate at which the wave can supply energy to the convection. It is found that these two factors limit supersaturation to about 50 percent for waves with short horizontal wavelengths and high relative phase speeds. Usually the degree of supersaturation will be much less. These factors also lead to a gradual, rather than sudden, cessation of wave growth with height.

  3. Wind generated rogue waves in an annular wave flume

    CERN Document Server

    Toffoli, A; Salman, H; Monbaliu, J; Frascoli, F; Dafilis, M; Stramignoni, E; Forza, R; Manfrin, M; Onorato, M

    2016-01-01

    We investigate experimentally the statistical properties of a wind-generated wave field and the spontaneous formation of rogue waves in an annular flume. Unlike many experiments on rogue waves, where waves are mechanically generated, here the wave field is forced naturally by wind as it is in the ocean. What is unique about the present experiment is that the annular geometry of the tank makes waves propagating circularly in an {\\it unlimited-fetch} condition. Within this peculiar framework, we discuss the temporal evolution of the statistical properties of the surface elevation. We show that rogue waves and heavy-tail statistics may develop naturally during the growth of the waves just before the wave height reaches a stationary condition. Our results shed new light on the formation of rogue waves in a natural environment.

  4. Wind Generated Rogue Waves in an Annular Wave Flume.

    Science.gov (United States)

    Toffoli, A; Proment, D; Salman, H; Monbaliu, J; Frascoli, F; Dafilis, M; Stramignoni, E; Forza, R; Manfrin, M; Onorato, M

    2017-04-07

    We investigate experimentally the statistical properties of a wind-generated wave field and the spontaneous formation of rogue waves in an annular flume. Unlike many experiments on rogue waves where waves are mechanically generated, here the wave field is forced naturally by wind as it is in the ocean. What is unique about the present experiment is that the annular geometry of the tank makes waves propagating circularly in an unlimited-fetch condition. Within this peculiar framework, we discuss the temporal evolution of the statistical properties of the surface elevation. We show that rogue waves and heavy-tail statistics may develop naturally during the growth of the waves just before the wave height reaches a stationary condition. Our results shed new light on the formation of rogue waves in a natural environment.

  5. The physical simulation of wave groups and their variations in a wave flume

    Institute of Scientific and Technical Information of China (English)

    LIU Si; ZHANG Yongliang; LIU Shuxue; LI Jinxuan; XIA Zhisheng

    2013-01-01

    The physical simulation method of wave groups in a wave flume is proposed and verified by the exper-iments. The experimental results demonstrate that random waves with desired wave groupiness, which simultaneously includes the wave group height and length, can be generated satisfactorily at the specified position in a wave flume using the proposed method. Furthermore, the transformation properties of the wave groupiness along the flat-bottomed wave flume are investigated based on the physically simulated waves. Associated proposals with the physical simulation of wave groups are given.

  6. Occurrence of energetic extreme oceanic events in the Colombian Caribbean coasts and some approaches to assess their impact on ecosystems

    Science.gov (United States)

    Bernal, G.; Osorio, A. F.; Urrego, L.; Peláez, D.; Molina, E.; Zea, S.; Montoya, R. D.; Villegas, N.

    2016-12-01

    Above-normal meteorological and oceanographic conditions that generate damage on coastal ecosystems and associated human communities are called extreme oceanic events. Accurate data are needed to predict their occurrence and to understand their effects. We analyzed available data from four localities in the Colombian Caribbean to study the effect of wave-related extreme events (hurricanes, surges) in three coastal ecosystems, i.e., mangroves, beaches, and reefs. Three localities were continental (Portete Bay mangroves at the Guajira Peninsula, Bocagrande Public Beach at Cartagena City, Tayrona Natural Park reefs near Santa Marta City), and one was oceanic (Old Providence Island reefs in the San Andres and Old Providence Archipelago, SW Caribbean). We gathered data on ocean surface winds (1978-2011) for the four locations, then modeled significant wave heights, then identified extreme events, and finally tried to identify effects on the ecosystems, directly or from published literature. Wave-related extreme surges were also compiled from Colombian press news (1970-2008). Modeled wave maximums (> 5 m significant wave height) and press-reported events coincided with hurricanes, extreme dry season, mid-summer drought and northern hemisphere winter cold fronts, with neither a relationship to ENSO events, nor a temporal trend of increase, excepting Portete Bay, with a marked increase after 1995. Changes in Portete Bay mangroves were analyzed from aerial photographs before and after Tropical Storm Cesar (1996). In the 38 years before Cesar there was mangrove inland colonization, with some loss associated to beach erosion, while during the 8 years following the storm there were localized retreats and important changes in vegetation composition related to the falling of large trees and subsequent recolonization by species that are faster colonizers, and changes in soil composition brought about by inundation. Cartagena's Bocagrande Beach was followed between 2009 and 2011

  7. Investigation of Wave Transmission from a Floating Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke

    2012-01-01

    This paper focuses on the calibration of the MIKE21BW model against the measured wave height reduction behind a 24 kW/m Wave Dragon (WD) wave energy converter. A numerical model is used to determine the wave transmission through the floating WD in varying wave conditions. The transmission obtained...... from the MIKE21BW model is compared to results from a simpler model, based on the integration of wave energy flux. The conclusion is that the simplified approach provides results similar to the transmission obtained from the numerical model, both for a single WD and a farm of multiple WDs....

  8. Climatic aspects of the variability of extreme storm occurrence and intensity in the western Black Sea

    Science.gov (United States)

    Valchev, Nikolay; Trifonova, Ekaterina; Andreeva, Nataliya; Eftimova, Petya

    2010-05-01

    The study considers potential changes in the storm occurrence and intensity over the western Black Sea through analysis of long term series of wind and wave conditions simulated with relatively high resolution. It is a result of coupling of atmospheric and wave models and spans period of more than 62 years (1948-2009). The wave hincast is driven with the global reanalysis data produced by ECMWF and NCEP/NCAR. The continuous dataset is reduced to a series of storms of considerable intensity and/or destructive potential through application of thresholds for filtration of weak seas. They are primarily based on storm impact on the coastal environment and principles for statistical representativeness. The climatic variability of occurrence and intensity of the selected extreme events is analyzed using different criteria such as number of stormy days, wind speed and wave height extremes. Particular consideration is paid to the mean wave energy per storm season and specific storm energy that are found to be more indicative for understanding of the storm pattern variability. Despite of the overall tendency for storminess decrease, there are no incontestable evidences corroborating a marked reduction of the storm intensity. While the total number of stormy hours diminishes, an increase of the mean wave energy is discernible. This is found to be caused by a change of the storm pattern: storms with short growth stage, energetic stage of full development and fast decay are more frequently observed. This storm type still provides significant energy input in the coastal zone and is able of producing considerable morphological impact, including damages. Such storms develop abruptly, therefore, timely prediction and mitigation of hazard effects become more complex to tackle with. Hence, little potential seems to exist for reducing the vulnerability to storms in the western Black Sea. That means the societies must begin to take such far-reaching implications into serious

  9. Extreme skin depth waveguides

    CERN Document Server

    Jahani, Saman

    2014-01-01

    Recently, we introduced a paradigm shift in light confinement strategy and introduced a class of extreme skin depth (e-skid) photonic structures (S. Jahani and Z. Jacob, "Transparent sub-diffraction optics: nanoscale light confinement without metal," Optica 1, 96-100 (2014)). Here, we analytically establish that figures of merit related to light confinement in dielectric waveguides are fundamentally tied to the skin depth of waves in the cladding. We contrast the propagation characteristics of the fundamental mode of e-skid waveguides and conventional waveguides to show that the decay constant in the cladding is dramatically larger in e-skid waveguides, which is the origin of sub-diffraction confinement. Finally, we propose an approach to verify the reduced skin depth in experiment using the decrease in the Goos-H\\"anchen phase shift.

  10. Analysis of the nature of injuries in victims of fall from height

    Directory of Open Access Journals (Sweden)

    Magdalena E. Kusior

    2017-01-01

    Full Text Available Aim of study: To assess the types and extent of injuries sustained by victims of fall from height depending on the height of fall. Material and methods: The study included 338 bodies of victims of fatal falls from different heights (from the 1st to 10th floors who were subjected to medico-legal autopsy at the Department of Forensic Medicine, Jagiellonian University Medical College, between 1995 and 2014. For each individual, selected data were collected including gender, age, body height, injury types and presence of alcohol or other intoxicants in blood. The analysis comprised injuries to the brain, thoracic and abdominal organs, fractures of the skull, extremities, ribs and spine, and fractures of the scapula, clavicle and sternum (considered together. The study focused on determining the frequency of occurrence of different injuries in relation to one another and depending on the height of fall. Results : The number and extent of injuries was found to increase along with the height of fall. Three injury types, including injuries to the mesentery and both kidneys and fractures of upper extremity small bones, were shown to occur from the threshold heights of the 3rd, 4th and 6th floors. Eleven injuries demonstrated a statistically significant correlation with the height of fall. The study also revealed a number of correlations between the frequencies of occurrence of different injuries. Conclusions : Injuries found from the threshold value may suggest the minimal height of fall. The presence of injuries which correlate with increasing height, and the overall number of injuries observed in victims of fall from height, may be useful for inferring the height of the fall.

  11. NAO and extreme ocean states in the Northeast Atlantic Ocean

    Science.gov (United States)

    Gleeson, Emily; Gallagher, Sarah; Clancy, Colm; Dias, Frédéric

    2017-02-01

    Large scale atmospheric oscillations are known to have an influence on waves in the North Atlantic. In quantifying how the wave and wind climate of this region may change towards the end of the century due to climate change, it is useful to investigate the influence of large scale oscillations using indices such as the North Atlantic Oscillation (NAO: fluctuations in the difference between the Icelandic low pressure system and the Azore high pressure system). In this study a statistical analysis of the station-based NAO index was carried out using an ensemble of EC-Earth global climate simulations, where EC-Earth is a European-developed atmosphere ocean sea-ice coupled climate model. The NAO index was compared to observations and to projected changes in the index by the end of the century under the RCP4.5 and RCP8.5 forcing scenarios. In addition, an ensemble of EC-Earth driven WAVEWATCH III wave model projections over the North Atlantic was analysed to determine the correlations between the NAO and significant wave height (Hs) and the NAO and extreme ocean states. For the most part, no statistically significant differences were found between the distributions of observed and modelled station-based NAO or in projected distributions of the NAO. Means and extremes of Hs are projected to decrease on average by the end of this century. The 95th percentile of Hs is strongly positively correlated to the NAO. Projections of Hs extremes are location dependent and in fact, under the influence of positive NAO the 20-year return levels of Hs were found to be amplified in some regions. However, it is important to note that the projected decreases in the 95th percentile of Hs off the west coast of Ireland are not statistically significant in one of the RCP4.5 and one of the RCP8.5 simulations (me41, me83) which indicates that there is still uncertainty in the projections of higher percentiles.

  12. Extreme Conditions Modeling Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Coe, Ryan Geoffrey [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Neary, Vincent Sinclair [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Lawon, Michael J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Lab. (NREL), Golden, CO (United States); Weber, Jochem [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-07-01

    Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) hosted the Wave Energy Converter (WEC) Extreme Conditions Modeling (ECM) Workshop in Albuquerque, New Mexico on May 13–14, 2014. The objective of the workshop was to review the current state of knowledge on how to numerically and experimentally model WECs in extreme conditions (e.g. large ocean storms) and to suggest how national laboratory resources could be used to improve ECM methods for the benefit of the wave energy industry. More than 30 U.S. and European WEC experts from industry, academia, and national research institutes attended the workshop, which consisted of presentations from W EC developers, invited keynote presentations from subject matter experts, breakout sessions, and a final plenary session .

  13. Abnormal Waves Modelled as Second-order Conditional Waves

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2005-01-01

    The paper presents results for the expected second order short-crested wave conditional of a given wave crest at a specific point in time and space. The analysis is based on the second order Sharma and Dean shallow water wave theory. Numerical results showing the importance of the spectral density......, the water depth and the directional spreading on the conditional mean wave profile are presented. Application of conditional waves to model and explain abnormal waves, e.g. the well-known New Year Wave measured at the Draupner platform January 1st 1995, is discussed. Whereas the wave profile can be modelled...... quite well by the second order conditional wave including directional spreading and finite water depth the probability to encounter such a wave is still, however, extremely rare. The use of the second order conditional wave as initial condition to a fully non-linear three-dimensional analysis...

  14. MHD waves in sunspots

    CERN Document Server

    Sych, Robert

    2015-01-01

    The review addresses the spatial frequency morphology of sources of sunspot oscillations and waves, including their localization, size, oscillation periods, height localization with the mechanism of cut-off frequency that forms the observed emission variability. Dynamic of sunspot wave processes, provides the information about the structure of wave fronts and their time variations, investigates the oscillation frequency transformation depending on the wave energy is shown. The initializing solar flares caused by trigger agents like magnetoacoustic waves, accelerated particle beams, and shocks are discussed. Special attention is paid to the relation between the flare reconnection periodic initialization and the dynamics of sunspot slow magnetoacoustic waves. A short review of theoretical models of sunspot oscillations is provided.

  15. Improving the wind and wave estimation of dual-frequency altimeter JASON1 in Typhoon Shanshan and considering the rain effects

    Institute of Scientific and Technical Information of China (English)

    YANG Le; LIN Mingsen; ZOU Juhong; LI Zhenghua; PAN Delu

    2008-01-01

    Altimetry data have been widely used in various fields of oceanography, including the extreme weather events such as tropical cyclones, typhoons, and hurricanes. The performance of JASONI in Typhoon Shanshan is assessed by examining the sensor geophysical data record and illustrates how the measured return waveform, significant wave height, and backscatter are all affected by various factors associated with the typhoon, with details by the rain are illustrated. The correction method to maintain accurate wave height and wind speed measurements in Typhoon Shanshan and the results are presented. Furthermore, the additional results of rain rate and typhoon eye diameter can be retrieved. Because of the lack of in-situ measurements of wind, wave, and rain rate at Typhoon Shanshan, results are compared with the forecasted typhoon data and a good agreement is found.

  16. Extreme winds in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, L.; Rathmann, O.; Hansen, S.O.

    1999-02-01

    Wind-speed data from four sites in Denmark have been analyzed in order to obtain estimates of the basic wind velocity which is defined as the 50-year wind speed under standard conditions, i.e. ten-minute averages at the height 10 m over a uniform terrain with the roughness length 0.05 m. The sites are, from west, Skjern (15 years), Kegnaes (7 years), Sprogoe (20 years), and Tystofte (15 years). The data are ten minute averages of wind speed, wind direction, temperature and pressure. The last two quantities are used to determine the air density {rho}. The data are cleaned for terrain effects by means of a slightly modified WASP technique where the sector speed-up factors and roughness lengths are linearly smoothed with a direction resolution of one degree. Assuming geotropic balance, all the wind-velocity data are transformed to friction velocity u{sub *} and direction at standard conditions by means of the geotropic drag law for neutral stratification. The basic wind velocity in 30 deg. sectors are obtained through ranking of the largest values of the friction velocity pressure 1/2{rho}u{sub *}{sup 2} taken both one every two months and once every year. The main conclusion is that the basic wind velocity is significantly larger at Skjern, close to the west coast of Jutland, than at any of the other sites. Irrespective of direction, the present standard estimates of 50-year wind are 25 {+-} 1 m/s at Skern and 22 {+-} 1 m/s at the other three sites. These results are in agreement with those obtained by Jensen and Franck (1970) and Abild (1994) and supports the conclusion that the wind climate at the west coast of Jutland is more extreme than in any other part of the country. Simple procedures to translate in a particular direction sector the standard basic wind velocity to conditions with a different roughness length and height are presented. It is shown that a simple scheme makes it possible to calculate the total 50-year extreme load on a general structure without

  17. Counting Young Tableaux of Bounded Height

    Science.gov (United States)

    Bergeron, Francois; Gascon, Francis

    2000-03-01

    We show that formulas of Gessel, for the generating functions for Young standard tableaux of height bounded by k (see [2]), satisfy linear differential equations, with polynomial coefficients, equivalent to P-recurrences conjectured by Favreau, Krob and the first author (see [1]) for the number of bounded height tableaux and pairs of bounded height tableaux.

  18. Indium Growth and Island Height Control on Si Submonolayer Phases

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jizhou [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    lithography (EUVL) have a wave length of 13.4 nm so it can curve on the surface of an sample to make structure as small as the order of 10 nm. however, lithograph usually causes permanent damages to the surface and in many cases the QDs are damaged during the lithograph and therefore result in high percentage of defects. Quantum size effect has attracted more and more interests in surface science due to many of its effects. One of its effects is the height preference in film growing and the resulting possibility of uniformly sized self-assemble nanostructure. The experiment of Pb islands on In 4x1 phase shows that both the height and the width can be controlled by proper growth conditions, which expands the growth dimensions from 1 to 2. This discover leads us to study the In/Pb interface. In Ch.3, we found that the Pb islands growing on In 4x1-Si(111) surface which have uniform height due to QSE and uniform width due to the constriction of In 4x1 lattice have unexpected stability. These islands are stable in even RT, unlike usual nanostructures on Pb/Si surface which are stable only at low temperature. Since similar structures are usually grown at low temperature, this discovery makes the grown structures closer to technological applications. It also shows the unusual of In/Pb interface. Then we studied the In islands grown on Pb-α-√3x√3-Si(111) phase in Ch.4. These islands have fcc structure in the first few layers, and then convert to bct structure. The In fcc islands have sharp height preference due to QSE like Pb islands. However, the preferred height is different (7 layer for Pb on Si 7x7 and 4 layer for Pb on In 4x1), due to the difference of interface. The In islands structure prefers to be bct than fcc with coverage increase. It is quantitatively supported by first-principle calculation. Unexpectedly, the In islands grown on various of In interfaces didn't show QSE effects and phase transition from fcc and bct structures as on the Pb-α interface (Ch.6). In

  19. Indium Growth and Island Height Control on Si Submonolayer Phases

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jizhou [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    lithography (EUVL) have a wave length of 13.4 nm so it can curve on the surface of an sample to make structure as small as the order of 10 nm. however, lithograph usually causes permanent damages to the surface and in many cases the QDs are damaged during the lithograph and therefore result in high percentage of defects. Quantum size effect has attracted more and more interests in surface science due to many of its effects. One of its effects is the height preference in film growing and the resulting possibility of uniformly sized self-assemble nanostructure. The experiment of Pb islands on In 4x1 phase shows that both the height and the width can be controlled by proper growth conditions, which expands the growth dimensions from 1 to 2. This discover leads us to study the In/Pb interface. In Ch.3, we found that the Pb islands growing on In 4x1-Si(111) surface which have uniform height due to QSE and uniform width due to the constriction of In 4x1 lattice have unexpected stability. These islands are stable in even RT, unlike usual nanostructures on Pb/Si surface which are stable only at low temperature. Since similar structures are usually grown at low temperature, this discovery makes the grown structures closer to technological applications. It also shows the unusual of In/Pb interface. Then we studied the In islands grown on Pb-α-√3x√3-Si(111) phase in Ch.4. These islands have fcc structure in the first few layers, and then convert to bct structure. The In fcc islands have sharp height preference due to QSE like Pb islands. However, the preferred height is different (7 layer for Pb on Si 7x7 and 4 layer for Pb on In 4x1), due to the difference of interface. The In islands structure prefers to be bct than fcc with coverage increase. It is quantitatively supported by first-principle calculation. Unexpectedly, the In islands grown on various of In interfaces didn't show QSE effects and phase transition from fcc and bct structures as on the Pb-α interface (Ch.6). In

  20. Return Period of a Sea Storm with at Least Two Waves Higher than a Fixed Threshold

    Directory of Open Access Journals (Sweden)

    Felice Arena

    2013-01-01

    Full Text Available Practical applications in ocean engineering require the long-term analysis for prediction of extreme waves, that identify design conditions. If extreme individual waves are investigated, we need to combine long-term statistical analysis of ocean waves with short-term statistics. The former considers the distribution of standard deviation of free surface displacement in the considered location in a long-time span, of order of 10 years or more. The latter analyzes the distribution of individual wave heights in a sea state, which is a Gaussian process in time domain. Recent advanced approaches enable the combination of the two analyses. In the paper the analytical solution is obtained for the return period of a sea storm with at least two individual waves higher than a fixed level. This solution is based on the application of the Equivalent Triangular Storm model for the representation of actual storms. One of the corollaries of the solution gives the exact expression for the probability that at least two waves higher than fixed level are produced during the lifetime of a structure. The previous solution of return period and the relative probability of exceedance may be effectively applied for the risk analysis of ocean structures.

  1. The New Year Wave: Generation, Propagation, Kinematics and Dynamics - Registered in a Seakeeping Basin

    Science.gov (United States)

    Clauss, Günther; Klein, Marco

    2010-05-01

    In the past years the existence of freak waves has been affirmed by observations, registrations, and severe accidents. One of the famous real world registrations is the so called 'New Year wave,' recorded in the North Sea at the Draupner jacket platform on January 1st, 1995. Since there is only a single point registration available, it is not possible to draw conclusions on the spatial development in front of and behind the point of registration, which is indispensable for a complete understanding of this phenomenon. This paper presents the temporal and spatial development of the New Year Wave generated in a model basin. To simulate the recorded New Year wave in the wave tank, an optimization approach for the experimental generation of wave sequences with predefined characteristics is used. The method is applied to generate scenarios with a single high wave superimposed to irregular seas. During the experimental optimization special emphasis is laid on the exact reproduction of the wave height, crest height, wave period, as well as the vertical and horizontal asymmetries of the New Year Wave. The fully automated optimization process is carried out in a small wave tank. At the beginning of the optimization process, the scaled real-sea measured sea state is transformed back to the position of the piston type wave generator by means of linear wave theory and by multiplication with the electrical and hydrodynamic transfer functions in the frequency domain. As a result a preliminary control signal for the wave generator is obtained. Due to nonlinear effects in the wave tank, the registration of the freak wave at the target position generated by this preliminary control signal deviates from the predefined target parameters. To improve the target wave in the tank only a short section of the control signal in time domain has to be adapted. For these temporally limited local changes in the control signal, the discrete wavelet transformation is introduced into the

  2. Maximum Entropy Estimation of n-Year Extreme Waveheights

    Institute of Scientific and Technical Information of China (English)

    徐德伦; 张军; 郑桂珍

    2004-01-01

    A new method for estimating the n (50 or 100) -year return-period waveheight, namely, the extreme waveheightexpected to occur in n years, is presented on the basis of the maximum entropy principle. The main points of the method are as follows: ( 1 ) based on the Hamiltonian principle, a maximum entropy probability density function for the extreme waveheight H, f(H)= αHγe-βΗ4 is derived from a Lagrangian function subject to some necessary and rational constraints; (2) the parametersα,β, andγin the function are expressed in terms of the mean H, variance V = ( H - H)2and bias B = ( H- H)3; and (3) with H, V and B estimated from observed data, the n-year return-period wave height Hn is computed in accordance with the formula 1/1 - F(Hn) = n, where F(Hn) is defined as F(Hn) =n Hn Of(H)dH.Examples of estimating the 50 and 100-year retum period waveheights by the present method and by some currently used method from observed data acquired from two hydrographic stations are given. A comparison of the estimated results shows that the present method is superior to the others.

  3. Statistical properties of successive ocean wave parameters

    Energy Technology Data Exchange (ETDEWEB)

    Wist, Hanne Therese

    2004-07-01

    For random waves the free surface elevation can be described by a number of individual wave parameters. The main object of this work has been to study the statistical properties of individual parameters in successive waves; the wave crest height, the wave height and the wave period. In severe sea states the wave crest heights exhibit a nonlinear behavior, which must be reflected in the models. An existing marginal distribution that uses second order Stokes-type nonlinearity is transformed to a two-dimensional distribution by use of the two-dimensional Rayleigh distribution. This model only includes sum frequency effects. A two-dimensional distribution is also established by transforming a second order model including both sum and difference frequency effects. Both models are based on the narrow-band assumption, and the effect of finite water depth is included. A parametric wave crest height distribution proposed by Forristall (2000) has been extended to two dimensions by transformation of the two-dimensional Weibull distribution. Two successive wave heights are modeled by a Gaussian copula, which is referred to as the Nataf model. Results with two initial distributions for the transformation are presented, the Naess (1985) model and a two-parameter Weibull distribution, where the latter is in best agreement with data. The results are compared with existing models. The Nataf model has also been used for modeling three successive wave heights. Results show that the Nataf transformation of three successive wave heights can be approximated by a first order autoregressive model. This means that the distribution of the wave height given the previous wave height is independent of the wave heights prior to the previous wave height. The simulation of successive wave heights can be done directly without simulating the time series of the complete surface elevation. Successive wave periods are modeled with the Nataf transformation by using a two-parameter Weibull distribution

  4. The Impact of a Barrier Island Loss on Extreme Events in the Tampa Bay

    Directory of Open Access Journals (Sweden)

    Marius eUlm

    2016-04-01

    Full Text Available Barrier islands characterize up to an eighth of the global coastlines. They buffer the mainland coastal areas from storm surge and wave energy from the open ocean. Changes in their shape or disappearance due to erosion may lead to an increased impact of sea level extremes on the mainland. A barrier island threatened by erosion is Egmont Key which is located in the mouth of the Tampa Bay estuary at the west-central coast of Florida.In this sensitivity study we investigate the impact a loss of Egmont Key would have on storm surge water levels and wind waves along the coastline of Tampa Bay. We first simulate still water levels in a control run over the years 1948-2010 using present-day bathymetry and then in a scenario run covering the same period with identical boundary conditions but with Egmont Key removed from the bathymetry. Return water levels are assessed for the control and the scenario runs using the Peak-over-threshold method along the entire Tampa Bay coastline. Egmont Key is found to have a significant influence on the return water levels in the Bay, especially in the northern, furthest inland parts where water levels associated with the 100-year return period increase between 5 cm and 15 cm.Additionally, wind wave simulations considering all 99.5th percentile threshold exceedances in the years 1980-2013 were conducted with the same control and scenario bathymetries. Assessing changes in return levels of significant wave heights due to the loss of Egmont Key revealed an increase of significant wave heights around today's location of the island.

  5. Strong winds and waves offshore

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo

    2016-01-01

    This report is prepared for Statoil, with the intention to introdu e DTU Wind Energy's ongoing resear h a tivities on o shore extreme wind and wave onditions. The purpose is to share our re ent ndings and to establish possible further ollaboration with Statoil. The fo us of this report is on the ......This report is prepared for Statoil, with the intention to introdu e DTU Wind Energy's ongoing resear h a tivities on o shore extreme wind and wave onditions. The purpose is to share our re ent ndings and to establish possible further ollaboration with Statoil. The fo us of this report...... is on the meteorologi al and o eani onditions related to storm winds and waves over the North Sea. With regard to the o shore wind energy appli ation, the parameters addressed here in lude: extreme wind and extreme waves, storm wind and waves and turbulen e issues for o shore onditions....

  6. Local Scour Around Piles Under Wave Action

    Institute of Scientific and Technical Information of China (English)

    陈国平; 左其华; 黄海龙

    2004-01-01

    The model tests are performed with regular waves, and the effect of wave height, wave period, water depth, scdiment size and pile diameter is evaluated. The shape and size of local scour around piles are studied. There are three typical scour patterns due to wave action. It is found that a relationship exists between the erosion depth and the wave number. An empirical formula of the maximum local scour is thus derived.

  7. Estimating vehicle height using homographic projections

    Science.gov (United States)

    Cunningham, Mark F; Fabris, Lorenzo; Gee, Timothy F; Ghebretati, Jr., Frezghi H; Goddard, James S; Karnowski, Thomas P; Ziock, Klaus-peter

    2013-07-16

    Multiple homography transformations corresponding to different heights are generated in the field of view. A group of salient points within a common estimated height range is identified in a time series of video images of a moving object. Inter-salient point distances are measured for the group of salient points under the multiple homography transformations corresponding to the different heights. Variations in the inter-salient point distances under the multiple homography transformations are compared. The height of the group of salient points is estimated to be the height corresponding to the homography transformation that minimizes the variations.

  8. Global Unification Problem of the Height System

    Directory of Open Access Journals (Sweden)

    XU Houze

    2017-08-01

    Full Text Available Some fundamental problems on the establishment of the global unified height system, including the geometry and gravity definition of the normal height, the global unification of the regional height systems obtained from leveling measurements, and the determination of geoid potential W0 are discussed. The main conclusions are summarized:①The definition of normal height in the sense of geometry leveling and gravity theory is different, so that h-ζ≠HL, here h, ζ and HL are geodetic height, height anomaly and levelling height respectively. Instead of it, we found HL=h-ζ+∂γ/∂hζH, in the mountain area, the last correction term have to be added. ②Based on the merging of GNSS/gravity/regional leveling, the regional leveling height can be transformed into a global relative unified height system, however the value of geoid potential W0 is still needed in order to establish an absolute height system. ③W0 can be determinated from the modern geodetic techniques with a certain accuracy, but it is time variable, so that people may only define a global absolute unified height system in a fixed epoch.

  9. Secondary microseism generation mechanisms and microseism derived ocean wave parameters, NE Atlantic, West of Ireland.

    Science.gov (United States)

    Donne, S. E.; Bean, C. J.; Lokmer, I.; Nicolau, M.; O'Neill, M.

    2014-12-01

    Ocean waves, driven by atmospheric processes, generate faint continuous Earth vibrations known as microseisms (Bromirski, 1999). Under certain conditions, ocean waves travelling in opposite directions may interact with one another producing a partial or full standing wave. This wave-wave interaction produces a pressure profile, unattenuated with depth, which exerts a pressure change at the seafloor, resulting in secondary microseisms in the 0.1-0.33 Hz band. There are clear correlations between microseism amplitude and storm and ocean wave intensity. We aim to determine ocean wave heights in the Northeast Atlantic offshore Ireland at individual buoy locations, using terrestrially recorded microseism signals. Two evolutionary approaches are used: Artificial Neural Networks (ANN) and Grammatical Evolution (GE). These systems learn to interpret particular input patterns and corresponding outputs and expose the often complex underlying relationship between them. They learn by example and are therefore entirely data driven so data selection is extremely important for the success of the methods. An analysis and comparison of the performance of these methods for a five month period in 2013 will be presented showing that ocean wave characteristics may be reconstructed using microseism amplitudes, adopting a purely data driven approach. There are periods during the year when the estimations made from both the GE and ANN are delayed in time by 10 to 20 hours when compared to the target buoy measurements. These delays hold important information about the totality of the conditions needed for microseism generation, an analysis of which will be presented.

  10. Two-color walking Peregrine solitary waves.

    Science.gov (United States)

    Baronio, Fabio; Chen, Shihua; Mihalache, Dumitru

    2017-09-15

    We study the extreme localization of light, evolving upon a non-zero background, in two-color parametric wave interaction in nonlinear quadratic media. We report the existence of quadratic Peregrine solitary waves, in the presence of significant group-velocity mismatch between the waves (or Poynting vector beam walk-off), in the regime of cascading second-harmonic generation. This finding opens a novel path for the experimental demonstration of extreme rogue waves in ultrafast quadratic nonlinear optics.

  11. Wave Run-Up on Rubble Breakwaters

    DEFF Research Database (Denmark)

    Van de Walle, Bjorn; De Rouck, Julien; Troch, Peter

    2005-01-01

    Seven sets of data for wave run-up on a rubble mound breakwater were combined and re-analysed, with full-scale, large-scale and small-scale model test results being taken into account. The dimensionless wave run-up value Ru-2%/Hm0 was considered, where R u-2% is the wave run-up height exceeded by...

  12. Spectral characteristics of high shallow water waves

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; AshokKumar, K.

    .0081 and 3.3, respectively. By carrying out a multi-regression analysis, an empirical equation is arrived relating the JONSWAP parameters with significant wave height, peak wave period and mean wave period. It was found that the Scott spectra underestimate...

  13. Wave characteristics around Sittwe Port, Myanmar

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; SanilKumar, V.

    as 4.5 m for 1 in 100 year return period. Two cyclones passed near study region were collected for estimation of wind and waves. Estimation of cyclonic wave heights was carried out using a parametric hurricane wave prediction model....

  14. Extreme tsunami runup simulation at Babi Island due to 1992 Flores tsunami and Okushiri due to 1993 Hokkido tsunami

    Science.gov (United States)

    Chule Kim, Dong; Choi, Byung Ho; Kim, Kyeong Ok; Pelinovsky, Efim

    2014-05-01

    This study is based on a series of three dimensional numerical modeling experiments to understand the tsunami run-up and inundation process at the circular shape Babi Island in the Indonesia caused by 1992 Flores earthquake tsunami and at Monai valley in Okushiri Island, west part of East (Japan) Sea caused by the 1993 Hokkaido Nansei-Oki earthquake. The wave field in the coastal area is modeled within the framework of fully nonlinear dispersive Reynolds-averaged Navier-Stokes (RANS) equations solved using the FLOW3D code. Boundary conditions for this model were extracted from computed wave characteristics obtained from the 2D tsunami propagation model based on the shallow water equations. This model has shown it effectivity to explain extreme runup characteristics during the 2004 Indian Ocean tsunami and 2011 Japan tsunami (Kim et al, 2013). In case of the 1992 Flores Island tsunami the results of numerical simulation run-up results are compared with field measured run-up heights. It has good agreement with measurement and computational run-up heights. The particle velocity distribution is also computed. In the case of 1993 Okushiri tsunami the numerical simulation reproduces extreme run-up at the Monai valley (31.7 m).

  15. Extremely Preterm Birth

    Science.gov (United States)

    ... Events Advocacy For Patients About ACOG Extremely Preterm Birth Home For Patients Search FAQs Extremely Preterm Birth ... Spanish FAQ173, June 2016 PDF Format Extremely Preterm Birth Pregnancy When is a baby considered “preterm” or “ ...

  16. Drifter Observations Of Wave-Current Evolution Through The San Francisco Bight

    Science.gov (United States)

    Pearman, D. W.; Herbers, T. H.; Janssen, T. T.; McIntyre, S.; Jessen, P.

    2012-12-01

    Ocean waves approaching the Golden Gate, the narrow strait connecting the San Francisco Bay to the Pacific Ocean, are affected by refraction over the San Francisco Bar and the strong tidal currents in the area. During ebb tides, when currents through the Golden Gate can exceed 2.5 m/s, the approach to San Francisco Bay is characterized by focusing and steepening of the incident wave field on the opposing current jet. These dynamics are not uncommon in coastal inlets and are known to present hazardous navigation conditions. The strong inhomogeneity and enhanced nonlinearity of the waves can result in deviations from non-Gaussian statistics and changes in the likelihood of extreme waves. However, since observations of wave-current dynamics are so difficult to make with conventional instruments, these dynamics remain still poorly understood. In this work we present the development and testing of a compact, low-cost, Wave-Resolving Drifter (WRD), designed to resolve the wave orbital surface motions and surface drifts in high-energy areas. The WRDs consist of a 30cm buoy equipped with an off-the-shelf GPS receiver and a three-axis accelerometer. The combined GPS-accelerometer package is functionally equivalent to a conventional pitch-roll (or PUV) wave height and direction instrument, but at a fraction of the price. In our presentation we will discuss results from several WRD array deployments in the San Francisco Bight during high-energy conditions with strong ebb currents. The buoys are shown to resolve the surface waves and surface drift with remarkable accuracy and allow the analysis of the evolution of the wave group structure over the opposing current. To obtain statistical results for currents and waves, WRDs were released in clusters (ensemble) from which shoaling effects over the bar and wave-current interaction can be identified.

  17. Near Shore Wave Modeling and applications to wave energy estimation

    Science.gov (United States)

    Zodiatis, G.; Galanis, G.; Hayes, D.; Nikolaidis, A.; Kalogeri, C.; Adam, A.; Kallos, G.; Georgiou, G.

    2012-04-01

    The estimation of the wave energy potential at the European coastline is receiving increased attention the last years as a result of the adaptation of novel policies in the energy market, the concernsfor global warming and the nuclear energy security problems. Within this framework, numerical wave modeling systems keep a primary role in the accurate description of wave